e
MICROSOFTe

COMPATIBLE
i 32-Bit Application

The Six-Volume Documentation Collection
for Microsoft Visual C(++ Version 4 for Win32.
Volume One — A complete guide to using the

Microsoft Visual (44 integrated development
environment and command-line tools

Microsoft Press

Visual C++ User’s Guide

Microsoft’ Visual C++

Development System for Windows® 95 and Windows NT"
Version 4

Microsoft Corporation

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1995 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual C++ programmer’s references / Microsoft Corporation.
- 2nd ed.
p. cm. :

Includes index.

v. 1. Microsoft Visual C++ user’s guide -- v.-2. Programming with
MEC -- v. 3. Microsoft foundation class library reference, part 1 --

v. 4. Microsoft foundation class library reference, part 2 -- v.
5. Microsoft Visual C++ run-time library reference -- v.
6. Microsoft Visual C/C++ language reference.

ISBN 1-55615-915-3 (v. 1). -- ISBN 1-55615-921-8 (v. 2). -- ISBN
1-55615-922-6 (v. 3). -- ISBN 1-55615-923-4 (v. 4). -- ISBN
1-55615-924-2 (v. 5). -- ISBN 1-55615-925-0 (v. 6)

1. C++ (Computer program language) 2. Microsoft Visual C++.

1. Microsoft Corporation.

QA76.73.C153M53 1995

005.13'3--dc20 95-35604
CIP

Printed and bound in the United States of America.
123456789 QMQM 098765

Distributed to the book trade in Canada by Macmillan of Canada, a division of
Canada Publishing Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (206) 936-7329.

America Online is a registered trademark of America Online, Inc. Macintosh is a registered trademark of
Apple Computer, Inc. dBASE, dBASE II, dBASE III, dBASE 1V, and Paradox are registered trademarks
of Borland International, Inc. Btrieve is a registered trademark of Btrieve Technologies, Inc. CompuServe is
a registered trademark of CompuServe, Inc. GEnie is a trademark of General Electric Corporation. Intel is a
registered trademark of Intel Corporation. FoxPro, Microsoft, Microsoft Press, MS, MS-DOS, Visual Basic,
Win32, Win32s, Windows, and XENIX are registered trademarks and Visual C++, Visual FoxPro, and
Windows NT are trademarks of Microsoft Corporation in the U.S. and/or other countries. MIPS is a regis-
tered trademark of MIPS Computer Systems, Inc. Motorola is a registered trademark of Motorola, Inc.
ORACLE is a registered trademark of Oracle Corporation. Prodigy is a trademark of Prodigy Services
Company. Unicode is a trademark of Unicode, Inc.

Acquisitions Editor: Eric Stroo
Project Editor: Brenda L. Matteson

Part

Contents

Introduction xxxi

Microsoft Developer Studio xxxi
Powerful Wizards xxxii
Reusable Components xxxii
Developer Studio Projects xxxiii
Build Error Correction xxxiii
Integrated Debugger xxxiv
Source Code Browse Window xxxiv
User Preferences xxxv
Extensive Information xxxv
Visual C++ User’s Guide xxxvi

1 Development Environment

Chapter 1 Creating Applications Using AppWizard 3
Starting an AppWizard Project 4

Creating an MFC AppWizard EXE Project 5

Choosing Options for Dialog-Based Applications 7
Choosing Database Options 9

Choosing OLE Options 12

Choosing SDI and MDI Application and Project Options 13
Creating an MFC AppWizard DLL Project 17

Creating an MFC Form-Based Application With AppWizard 18
Understanding AppWizard-Created Files 21

Creating a Custom AppWizard 22

Chapter 2 Working with Projects 23
Project Workspaces 25

Elements of Project Workspaces 25

Files Associated with Project Workspaces 26

Contents

Using Project Workspaces: Three Basic Scenarios 26
Top-Level Project 27
Top-Level Project with a Single Subproject 28
Empty Top-Level Project with Multiple Subprojects 30
Managing Project Workspaces 34
Creating a Project Workspace 34
Project Types 36
Platform Types 37
Saving a Project Workspace 38
Closing a Project Workspace 38
Opening an Existing Project Workspace 38
Opening Other File Types 39
Specifying Subprojects in a Project Workspace 41.
Working with Views 42
Using Folders 43
Working with Items 44 .
Shortcut Methods for Views 45
Using FileView 46
Using ClassView 47
Adding Members from ClassView 49
Browsing Symbols from ClassView 50
Displaying Graphs from ClassView 51
Setting Breakpoints in ClassView 51
Using ResourceView 51
Using InfoView 52
Using Projects 52
Inserting and Deleting Projects 52
Adding and Removing Files from Projects 53
Creating and Deleting Configurations in a Project 55
Updating Dependencies in a Project 57
Specifying Settings for a Project Configuration 58
Selecting the Directories for Output Files 59
Specifying Project Configuration Settings 60
Specifying File Settings 60
Specifying Custom Build Tools 62
Using Precompiled Headers 64

Contents

Building a Project Configuration 64
Setting the Default Project Configuration 65
Building the Default Project Configuration 65
Compiling Files 67
Removing Intermediate Files 67
Building Multiple Project Configurations 68
Using External Projects 69
Opening an Existing Makefile 69
Creating an External Project 71
Building a Single File Without a Project Workspace 73
Running a Program 74

Chapter 3 Using the Text Editor 75
File Management 76 '
Creating Files 76
Opening Files 77
Opening Multiple Files 78
Saving Files 79
Printing Files 80
Moving Around in Source Files 81
Using Virtual Space 82
Matching Group Delimiters 82
Matching Conditional Statements 83
Using Go To 84
Using Bookmarks 84
The Navigating Commands 87
Finding and Replacing Text 88
Finding Text in a Single File 89
Finding Text in Multiple Files 91
Replacing Text 92
Using Regular Expressions with Developer Studio 93
Using Regular Expressions with BRIEF Emulation 95
Using Regular Expressions with Epsilon Emulation 97
Selecting Text 99
Editing with the Text Editor 101
Cutting, Copying, Pasting, and Deleting Text 103
Undoing and Redoing Editing Actions 103
Using Drag-and-Drop 104
Recording and Playing Back Keystrokes 104

Contents

Setting Text Editor Options 105

Setting Editor Emulation 106

Setting Save Preferences 106

Setting and Using the Selection Margin 107

Setting Tabs and Indents 107

Setting the Font Style, Size, and Color 109

Setting Syntax Coloring 111

Setting Syntax Coloring for User-Defined Types 111
Managing Open Windows 113

Chapter 4 Working with Source-Code Control 117
Setting Up Source-Code Control 117
Supported Source-Code Control Functionality 118
Unsupported Source-Control Functionality 118
- Putting Files Under Source-Code Control 118
Displaying the Source-Code Control Toolbar 119
Adding a Project to Source-Code Control 119
Adding Individual Files to Source-Code Control 120
Removing Files from Source-Code Control 120
Determining the Status of Files 121 v
Reading the FileView Pane 121
Examining File Status on Property Pages 122
Examining File Histories 122
Getting Current Versions of Files 123
Checking Files In and Out 124 '
Checking Files Out 124
Checking Files In 125
Viewing Your Changes to a File 125
Checking Files In and Removing Your Changes 126
Checking Files In and Merging Others’ Changes 126
Checking Files In When Closing the Workspace 127
Maintaining Makefiles Under Source-Code Control 128

Chapter 5 Working with Resources 129
Using the Resource Editors 129

Viewing Resources 130

Creating a New Resource 131

Using Resource Templates 132

Copying Resources 133

Editing Resources 135

vi

Contents

Importing and Exporting Resources 136
Using Property Pages 136
Working with Symbols 137
Changing a Symbol or Symbol Name 138
Changing a Symbol’s Numerical Value 138
Managing Symbols with the Resource Symbols Browser 139
Creating New Symbols 140
Changing Unassigned Symbols 140
Opening the Resource Editor for a Given Symbol 141
Symbol Name Restrictions 141
Symbol Value Restrictions 142
Working With Resource Files 143
Importing Non-Microsoft Developer Studio Resource Script Files 144

Features Supported Only in Microsoft Foundation Class Library Resource
Files 145

Using Advanced Resource File Techniques 145
Changing the Name of the Symbol Header File 146
Using Shared (Read-Only) or Calculated Symbols 146
Including Resources From Other Files 147

Chapter 6 Using the Dialog Editor 149
Adding and Editing Controls in a Dialog Box 150
Types of Controls 151
Adding Controls 151
Selecting Controls 153
Sizing Individual Controls 154
Formatting the Layout of a Dialog Box 155
‘ Arranging Controls 156
Aligning Controls 157
Using Guides and Margins 159
Aligning Controls on a Guide 160
Disabling the Guides 161
Using the Layout Grid 161
Editing the Dialog Box 162
Changing the Tab Order 162
Defining Mnemonic Keys 163
Using OLE Controls in a Dialog Box 164
Adding OLE Controls 164
Editing OLE Control Property Pages 164

vii

Contents

Using Custom Controls in a Dialog Box 165
Working with User-Defined Controls 165

Creating a Form View Dialog Box 165

Importing a Visual Basic Form 166

Testing a Dialog Box 167

Chapter 7 Using the Menu Editor 169

Creating Menus or Menu Items 170

Selecting Menus and Menu Items 172

Creating Pop-up Menus 172

Moving and Copying Menus and Menu Items 173
Viewing the Menu Resource as a Pop-up Menu 174
Associating a Menu Item with an Accelerator Key 175
Associating a Menu Item with a Status Bar Prompt 175

Chapter 8 Using the Accelerator Editor 177
Editing an Accelerator Table 178

Setting Accelerator Properties 179

Associating an Accelerator Key with a Menu Item 179

Chapter 9 Using the String Editor 181
Finding a String 182
Adding or Deleting a String 182
' Moving a String from One Segment to Another 183
Moving a String from One Resource Script File to Another 183
Changing a String or Its Identifier 184
Adding Formatting or Special Characters to a String 184

Chapter 10 Using the Graphic Editor 185
Using the Image Editor Window and Tools 186
The Image Editor Window 186
The Graphics Toolbar 186
The Colors Palette 187
The Status Bar. 187
The Image Menu 187
Managing the Graphic Editor Workspace 187
Using Image-Editor Panes 187
Changing the Magnification Factor 188
Displaying and Hiding the Pixel Grid 188

vili

Contents

Editing Graphical Resources 189
Setting Bitmap Properties 189
Showing and Hiding the Graphics Toolbar 190
Freehand Drawing and Erasing 191
Selecting and Using a Drawing Tool 191
Drawing Lines and Closed Figures 192
Drawing a Line 192
Drawing a Closed Figure 193
Selecting an Area of the Bitmap 194
Cutting, Copying, Clearing, and Moving 194
Flipping the Selection 196
Creating a Custom Brush 196
Using a Custom Brush 196
Resizing a Bitmap 197
Resizing an Entire Bitmap 197
Working With Colors in the Graphic Editor 198
Selecting Foreground and Background Colors 199
Filling Bounded Areas 199
Picking Up Colors 199
Choosing Opaque and Transparent Backgrounds 200
Inverting Colors in the Current Selection 200
Changing Colors 200
Saving and Loading Colors Palettes 201
Creating and Editing Icons and Cursors 202
Creating a New Icon or Cursor Image 202
Selecting a Display Device 203
Drawing with Screen and Inverse Colors 203
Creating 256 Color Icons and Cursors 204
Setting a Cursor’s Hot Spot 205

Chapter 11 Using the Toolbar Editor 207

Creating New Toolbar Resources 208

Converting Bitmaps to Toolbars 208

Creating, Moving and Editing Toolbar Buttons 209
Editing the Property Page of a Toolbar Button 210

Contents

Chapter 12 Using the Binary Data Editor 213
Creating a New Data Resource or Custom Resource 213
Opening a Resource for Binary Editing 214

Editing Binary Data 215

Chapter 13 Using the Version Information Editor 217
Editing the Version Information 218 .

Chapter 14 Working With Classes 221
Using ClassWizard 221
Using WizardBar 222
Classes Offered by ClassWizard 224
Adding a Class 226
Creating a Class That Does Not Require a Resource ID 227
Creating a Class That Requires a Resource ID 229
Importing a Class 231
Selecting an Existing Class 232
Importing the Elements of an OLE Type Library - 233
Mapping Messages to Functions 234
Adding a Message Handler 234
Shortcut for Defining Message Handlers for Dialog Buttons 237
Shortcut for Defining Member Variables for Dialog Controls 237
Deleting a Message Handler 238
Editing a Message Handler 239
Overriding a Virtual Function 240
Creating a Reusable Control Class 241
Defining a Message Handler for a Reflected Message 242
Declaring a Variable Based on Your New Reusable Class 244
Working with Dialog Box Data 245
Dialog Data Exchange 245
Defining Member Variables 246
Setting Initial Values for Member Variables 248
Dialog Data Validation 249
Custom Data Exchange and Validation 249
Keeping ClassWizard Updated When Code Changes 250
Deleting Classes 250
Renaming or Moving Classes 251
Rebuilding the ClassWizard (.CLW) File 252

Chapter 15 Using Component Gallery 253
Inserting Components into a Project 254
Sharing Components with Others 255
Adding Components to Component Gallery 256
Importing Components 256
Creating Your Own Components 257
Managing Components 259
Renaming a Component 259
Moving Components Between Categories 260
Deleting a Component from a Category 261
Changing a Component’s Icon 262
Providing a Description of a Component to Users 263
Managing Categories . 264
Creating a Category in Which to Store Components 264
Deleting a Category of Components 264
Renaming a Category of Components 265
Rearranging the Order of Existing Categories 266

Chapter 16 Browsing Through Symbols 267
Opening and Closing Browse Files 267
Modifying the Browse Window Display 268
Using Browse Files 269
Symbol Codes in the Browse Window 270
Disabling and Enabling BSCMAKE 271
Displaying the Symbols in a File 272
Filtering Browse Information for Files 273
Displaying Class Information 274
Displaying the Graph of Classes Derived from a Class 274
Displaying the Base Class Graph for a Class 276
Filtering Browse Information for Classes 277
Displaying Function Information 278
Displaying a Call Graph 278
Displaying a Graph of Calling Functions 279
Finding Definitions and References 280
Displaying a Symbol Definition or Reference 280

Contents

Xi

Contents

Chapter 17 Using the Debugger 283
Using the Debugger Interface Components 284
Debugger Menu Items 284
Debugger Windows 284
Pop-up Menus 285
Debugger Dialog Boxes 286
Spreadsheet Fields 286
Dragging and Dropping Debugger Information 287
Controlling Program Execution 287
Running to a Location 289
Stepping Into Functions 290
Using Step Into with SendMessage and DispatchMessage 291
Stepping Over or Out of Routines 292
Interrupting Your Program 292
Just-in-Time Debugging 293
Using Breakpoints 293
Quick Methods for Location Breakpoints 294
Quick Methods for Data Breakpoints 296
Using the Breakpoints Dialog Box 297
The Breakpoints List 297
The Location Breakpoints Tab 299
The Data Breakpoints Tab 301
The Messages Breakpoints Tab 304
Conditional Breakpoints 305
Advanced Breakpoint Syntax 306
Viewing and Modifying Variables and Expressions 307
Using DataTips Pop-up Information 307
Using QuickWatch 308
Using the Watch Window 310
Formatting Watch Variables 312
Using the Variables Window 314
Using the Call Stack Window 317
Controlling Call Stack Display 318
Using the Registers Window 318
Using the Memory Window 319
Using the Disassembly Window 321

Xi

Debugging Methods and Strategies 323
Debugging Compiler and Linker Errors 323
How Can1...? 324
Debugging Assertions 327
Debugging Exceptions 331
Debugging Threads 333
Debugging DLLs 334
Debugging Optimized Code 336
Debugging an OLE Application 337
Debugging Remote Applications 338

Setting up the Remote Debug Monitor 338
Connecting the Host and Target Machines 339
. Remote Debugging 340
Using I/O Redirection 341

Chapter 18 Profiling Code 343
Setting Up the Profiler 344
Building Code for Profiling 344
Running the Profiler 345
Types of Profiling 345
Function Profiling 346
Function Timing 346
Function Counting 347
Function Coverage 347
Line Profiling 348
Line Counting 348
Line Coverage 349
Selective Profiling 349
Modifying TOOLS.INI 350
Specifying Functions to Profile 350
Specifying Lines to Profile 350
Choosing Starting Functions for Profiling 351
Other Profiler Features 351 :
Merging Profiler Output 351
Running a Custom Batch File 352
Advanced Profiler Settings 352
Profiling Under Win32s 352
Installing the Win32s Profiler 352
‘Win32s Profiling Procedure 352

Contents

Xiii

Contents

Chapter 19 Using Spy++ 353
Working In Spy++ 353
Starting Spy++ 354
Viewing with Spy++ 354
The Spy++ Toolbar 354
Refreshing the View 355
Changing Fonts 356
Expanding and Collapsing Spy++ Trees 356
The Windows View 357
The Window Finder Tool 357
Searching for a Window 358
Opening Window Properties 359
Window Properties 359
The Processes View 362
Searching for a Process 363
Opening Process Properties 364
Process Properties for Windows 95 365
Process Properties for Windows NT 364
The Threads View 368
Searching for a Thread 369
Opening Thread Properties 369
Thread Properties for Windows 95 370
Thread Properties for Windows NT 371
The Messages View 372
Message Codes 374
Controlling the Messages View 374
Starting and Stopping the Message Log Display 374
Choosing Message Options 375
The Windows Tab 375
The Messages Tab 376
The Output Tab 376
Searching for a Message 377
Opening Message Properties 378
Message Properties 378

Chapter 20 Setting Compiler Options 381
General 381

Warning Level 382

Warnings as Errors 383 s ,

Xiv

Debug Info 383
Common/Project/Source File Options 384
Reset 384
C++ Language 384
Pointer-to-Member Representation 385
Representation Method 385
General Purpose Representation 386
Enable Exception Handling 386
Enable Run-Time Type Information (RTTI) 387
Disable Construction Displacements 387
Code Generation 388
Processor 388
Use Run-Time Library 389
Calling Convention 390
Struct Member Alignment 392
Customize 392
Disable Language Extensions 393
Enable Function-Level Linking 396
Eliminate Duplicate Strings 396
Enable Minimal Rebuild 396
Enable Incremental Compilation 397
Suppress Startup Banner and Information Messages 397
Listing Files 397
Generate Browse Info 398
Intermediate Browse Info File Destination 398
Exclude Local Variables 398
Listing File Type 398
Listing File Name 399
Optimizations 399 ,
Types of Optimizations 400
In-line Function Expansion 406
Precompiled Headers 407
Not Using Precompiled Headers 407
Automatic Use of Precompiled Headers 408
Create Precompiled Header File (PCH) 409
Use Precompiled Header File (PCH) 409
Preprocessor 410
Preprocessor Definitions 411
Undefined Symbols 411

Contents

Xv

Contents

Undefine All Symbols 411
Additional Include Directories 412
Ignore Standard Include Paths 412

Chapter 21 Setting Linker Options 413
General Category Options 413
Enable Profiling 414
Common/Project Options 414
Reset 415
Customize Category Options 415
Link Incrementally 416
Use Program Database 417
Program Database Name 417
Output File Name 418
Force File Output 418
Print Progress Messages 418
Suppress Startup Banner 418
Debug Category Options 419
Mapfile Name 419
Generate Mapfile 419
Generate Debug Info 420
Microsoft Format 420
COFF Format 421
Both Formats 421
Input Category Options 422
Object/Library Modules 422
Ignore Libraries 422
Ignore All Default Libraries 423
Force Symbol References 423
MS-DOS Stub File Name 423
Output Category Options 424
Base Address 424
Entry-Point Symbol 425
Stack Allocations 426
Version Information 426

Xvi

Contents

Part 2 Customizing Visual C++

Chapter 22 Customizing Microsoft Developer Studio 429
Working with Window Types 430
Working with Document Windows 431
Positioning Document Windows 432
Selecting Document Windows to Display When Opening a Project 432
Working with Docking Tool Windows 433
Showing and Hiding Docking Tool Windows 434
Positioning Docking Tool Windows 434
Sizing Docking Tool Windows 437
Changing Docking Tool Window Characteristics 438
Working with Toolbars 438
Showing and Hiding Toolbars 439
Showing ToolTips 440
Creating a Custom Toolbar 440
Modifying a Toolbar 441
Resetting a Toolbar 444
Deleting a Toolbar 444
Docking Toolbars 444
Floating Mode 445
Docked Mode 446
Sizing Floating Toolbars 447
Customizing the Keyboard 447
Displaying the Keyboard Shortcuts 447
~ Assigning Shortcut Keys 448
Customizing the Tools Menu 450 ,
Adding Commands to the Tools Menu 450
Editing a Tools Menu Command 451
Tools Options 452 ‘
Using Argument Macros 452
Using Error Syntax for Tools 454
Showing the Status Bar 455
Setting Directories 456
Using Full-Screen Mode 458
Customizing with Other Options 459

xvii

Contents

Chapter 23 Editor Emulations 461
Setting Editor Behavior 461

Using Epsilon Emulation 463

Using BRIEF Emulation 466

Viewing and Changing the Shortcut Keys 469

Chapter 24 Creating Custom AppWizards 473
Understanding Custom AppWizards 473
Using a Custom AppWizard 474
Overview of Creating a Custom AppWizard 475
How to Create a Custom AppWizard Project 478
Understanding the Files that AppWizard Creates 483
Adding Functionality to Your Custom AppWizard 483
Understanding Custom Resource Templates 484
Understanding Text Templates 486
Understanding CONFIRM.INF and NEWPROJ.INF 488
CONFIRM.INF 489
NEWPROJ.INF 490
" Understanding Text Template Parsing 491
How Macros Get Their Values 491
How to Specify Macros in Directives or Text 492
Understanding Binary Templates 493
Debugging Custom AppWizards 493
Creating a ClassWizard Information File Template 494
Providing Context-Sensitive Help 495
AppWizard Programming Reference 495
NEWPROJ.INF Statements 497
CAppWizStepDlg 499
CAppWizStepDlg Class Members 500
CAppWizStepDlg::CAppWizStepDlg 500
CAppWizStepDlg::OnDismiss 500
CCustomAppWiz 501
CCustomAppWiz Class Members 501
CCustomAppWiz::Back 502
CCustomAppWiz::CopyTemplate 503
CCustomAppWiz::ExitCustomAppWiz 503
CCustomAppWiz::GetPlatforms 504
CCustomAppWiz::InitCustomAppWiz 505
CCustomAppWiz::LoadTemplate 506

xviii

CCustomAppWiz::Next 507
CCustomAppWiz::PostProcessTemplate 508
CCustomAppWiz::ProcessTemplate 508
CCustomAppWiz::m chtlonary 509

OutputStream 510
Class Members - 511
OutputStream::WriteBlock 511
OutputStream::WriteLine 511

C Functions Exported by MFCAPWZ.DLL 512
GetDialog 512
SetCustomAppWizClass 514
SetNumberOfSteps 514
ScanForAvailableLanguages 515
SetSupportedLanguages 516

Standard AppWizard Directives 516
$$IF, $$SELIF, $$ELSE, and $$ENDIF 517
$$INCLUDE 518
$$BEGINLOOP and $$ENDLOOP 519
$$SET_DEFAULT_LANG 520
$$// 523

Standard AppWizard Macros 523

New Project Workspace and Insert Project Dialog Box Options 524

Step 1, Project Type Options 524
Step 2, Database Options 525
Step 3, OLE Options 527
Step 4, Application Options 528
Step 4, Advanced Options, Document Template Strings Tab 528
Step 4, Advanced Options, Window Styles Tab 529
Step 4, Advanced Options, Macintosh-Specific Tab 530
Step 5, Project Options 530
Step 6, Class and File Names 530
Miscellaneous Macros 532
Language Loop Macros 533
Standard Custom Resource Templates 534
All AppWizard Projects 535
Dialog-Based Applications 536
Dynamic-Link Libraries 537
MDI and SDI Applications 537
OLE Applications 541

Contents

Xix

Contents

Help File Support 542

Custom AppWizard Help File Support 543
Database Applications 543

Macintosh Applications 544

Part 3 Command-Line Tools

XX

Chapter 25 CL Reference 547
Description of CL Syntax 547
Filename Syntax 548
Specifying CL Options 548
Order of Options 548
CL Command Files 549
CL Environment Variable 549
Using CL 550
Fast Compilation 550
Linking 551
Reference to Command-Line Only Options 552
/C 553
/c 553
/D 553
/E 554
/EP 555
/F 556
Output-File Options 556
Drive, Path, and File Specifications 557
Device Names for Windows 557
/Fd 557
/Fe 558
/FL 558
/Fm 559
/Fo 559
/Fp 559
/Ge 560
/GF 560
/Gh 560
/Gs 561

Contents

/M 561
/HELP 562
1562
/LD 562
/LDd 563
flink 564
/P 564
[Tc, [Tp 565
IV 565
/Yd 565
/Zg 566
/Z1 566
/Zs 567

Chapter 26 LINK Reference 569
LINK Input Files 569
.OBJ Files 570
.LIB Files 570
.EXP Files 570
.DEF Files 571
.PDB Files 571
.RES Files 571
.EXE Files 571
.TXT Files 571
JLK Files 571
LINK Output 572 -
Output Files 572
Other Output 572
Running LINK on the Command Line 573
LINK Command Line 573
LINK Command Files 573
LINK Environment Variables 574
LINK Options 574 ‘
Alphabetic List of LINK Options 575
Developer Studio LINK Options 576
Compiler-Controlled LINK Options 577

xxi

Contents

LINK Command-Line Options 578
/ALIGN 578
/COMMENT 578
/DEF 579
/DEFAULTLIB 579
/DLL 579
/EXETYPE 580
/EXPORT 580
/FIXED 581
/HEAP 581
/IMPLIB 582
/MACHINE 582
/MERGE 582
/NOENTRY 583
/OPT 583
/ORDER 583
/RELEASE 584
/SECTION 584
/SUBSYSTEM 585
/VERBOSE:LIB 586
VXD 586
/WARN 586

Module-Definition (DEF) Files 586
Rules for Module-Definition Statements 587

NAME 587
LIBRARY 588
DESCRIPTION 588
STACKSIZE 588
SECTIONS 588
EXPORTS 589
VERSION 589

Reserved Words 590

Chapter 27 Profiler Reference 591
Profiler Batch Processing . 591
Profiler Batch Response Files 593
Standard Batch Files 593

. Xxi

Profiler Command-Line Options 594
PREP 594
PROFILE 596
PLIST 597
Analyzing Data from the Profiler 599
Exporting Data from the Profiler 599
Tab-Delimited File Format 599
Global Information Records 600
Local Information Records 602
Analyzing Profiler Statistics 603
Processing Profiler Output with Microsoft Excel 604
Using the PROFILER.XLM Macro 604
Changing the PROFILER.XLM Selection Criteria 605

Chapter 28 LIB Reference 607
Overview of LIB 607
LIB Input Files 607 |
LIB Output Files 608
Other LIB Output 608
Structure of a Library 608
Running LIB 608
Managing a Library 610
Extracting a Library Member 611 .
‘Working with Import Libraries and Export Files 611
Building an Import Library and Export File 612
Using an Import Library and Export File- 613

Chapter 29 BSCMAKE Reference 615
Building a .BSC File 615
Creating an .SBR File 615
How BSCMAKE Builds a .BSC File 616
‘Increasing Efficiency with BSCMAKE 616
Making a Smaller Browse Information File 617
Saving Build Time and Disk Space 617
BSCMAKE Command Line 617
BSCMAKE Command File 618
BSCMAKE Options 618
BSCMAKE Exit Codes 620

Contents

Xxiii

Contents

Chapter 30 DUMPBIN Reference 621
DUMPBIN Command Line 621
DUMPBIN Options 621

Chapter 31 EDITBIN Reference 625
EDITBIN Command Line 625
EDITBIN Options 625

/BIND 626

/HEAP 626

/NOLOGO 626

/REBASE 627

/RELEASE 627

/SECTION 627

/STACK 628

Chapter 32 NMAKE Reference 631
Running NMAKE 631
NMAKE Options 631
TOOLS.INI and NMAKE 633
Exit Codes from NMAKE 633
Contents of a Makefile 633
Wildcards and NMAKE 033
Long Filenames in a Makefile 634
Comments in a Makefile 634
Special Characters in a Makefile 634
Description Blocks 635
Targets 635
Pseudotargets 635
Multiple Targets 635
Cumulative Dependencies 636
Targets in Multiple Description Blocks 636
A Side Effect 636
Dependents 637
Inferred Dependents 637
Search Paths for Dependents 637
Commands in a Makefile 638
Command Modifiers 638
Filename-Parts Syntax 639

Xxiv

Contents

Inline Files in a Makefile 639
Specifying an Inline File 639
Creating Inline File Text 640
Reusing Inline Files 640
Multiple Inline Files 640
Macros and NMAKE 640
Defining an NMAKE Macro 641
Special Characters in Macros 641
Null and Undefined Macros 641
Where to Define Macros 641
Precedence in Macro Definitions 642
Using an NMAKE Macro 642
Macro Substitution 642
Special NMAKE Macros 642
Filename Macros 643
Recursion Macros 643
Command Macros and Options Macros 644
Environment-Variable Macros 644
Inference Rules 645
Defining a Rule 645
Search Paths in Rules 645
Predefined Rules 646 -
Inferred Dependents and Rules 646
Precedence in Inference Rules 647
Dot Directives 647
Makefile Preprocessing 648
Makefile Preprocessing Directives 648
Expressions in Makefile Preprocessing 649
Makefile Preprocessing Operators 649
Executing a Program in Preprocessing 650

Part 4 Appendices

Appendix A Decorated Names 653
Using Decorated Names 653
Format of a C++ Decorated Name 653
Format of a C Decorated Name 654

Contents

Viewing Decorated Names 654
Using a Listing to View Decorated Names 654
Using DUMPBIN to View Decorated Names 655

Appendix B Initializing and Configuring Microsoft Developer Studio 657
Setting Default Dialog Box Buttons 658 '

Setting User Interface Fonts 658

Setting the Default Magnification Factor 659

Describing Mouse Pointer Devices 659

Describing Icon Devices 660

Appendix C DDESpy Reference 661
Selecting the Output 661
Using the Monitor Menu 662
String-Handle Data 662
Sent DDE Messages 663
Posted DDE Messages 663
Callbacks 663
Errors 664
Filters 664
Tracking Options = 664

Appendix D PView Reference 667
Opening PView 668

Process Selection 668

Process Memory Used 669

Priority 669

Thread Priority 669

Thread Selection 670

Thread Information 670

Memory Details Dialog Box 670

Appendix E Zoomin Reference 673
Zoomln Menus 673

Appendix F WinDiff Reference 675
WinDiff Command Line - 675

Using the Expand/Outline Button 676
WinDiff Colors 676

WinDiff Menus 676

Xxvi

Index

Contributors

Figures and Tables

List of Figures

1.1
2.1
22
2.3
24
2.5
2.6
2.7
2.8
2.9
4.1
5.1
52
53
54
55
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
7.1
7.2
7.3
8.1
9.1
10.1.
10.2

AppWizard’s Architecture Options 6

The Project Workspace Window 23

Top-Level Project 27 ‘
Top-Level Project with a Single Subproject 28
Empty Top-Level Project with Multiple Subprojects 30
FileView with Multiple Subprojects 32

‘Workspace Window 43

The FileView Pane 46

ClassView 48

Project Settings Dialog Box 59

FileView Showing a Checked Out File 121

The ResourceView Pane 131

The Resource Toolbar 132

The Insert Resource Dialog Box 133

Using Drag-and-Drop to Copy Resources Beiween Files 134
The Resource Symbols Browser 140

The Dialog Editor 150

The Controls Toolbar 151

Dragging a Control from the Controls Toolbar 152
Selecting Multiple Controls 153

Sizing a Control 154

Sizing the Drop-down Portion of a Combo Box 155
Dialog Toolbar 156

Dialog Editor Position Indicators 157

Dialog Editor with Guides and Margins 159

Menu Terminology 170

Menu Editor New-Item Boxes 170

Moving a Menu to a Cascading Menu 174

The Accelerator Editor 177

The String Editor 182

Image Editor Window, Graphics Toolbar, and Colors Palette 186

Drawing Tools in the Graphics Toolbar 191

Contents

xxvii

Contents

Xxxviii

10.3
10.4
10.5
10.6
10.7
10.8
11.1
12.1
13.1
14.1
15.1
16.1
16.2
16.3
16.4
16.5
16.6
16.7
17.1
18.1
19.1
19.2
19.3
19.4
19.5

119.6

19.7
19.8
19.9
19.10
19.11
19.12
19.13
19.14
19.15
20.1
20.2
20.3
20.4

Closed-Tools on the Graphics Toolbar 193
Custom Color Selector Dialog Box 201
New Icon Image Dialog Box 203
Custom Image Dialog Box 203
Selectors for Screen Color and Inverse Color 204
Property Page with Palette for 256 Colors 205
The Toolbar Editor 207
Binary Data Editor 214
Version Information Resource 218
WizardBar 223
Component Gallery 253 ‘
Browse Window with Active Pushpin 268
Browse Window with File Outline 273
Derived Classes and Members Window 275
Base Classes and Members Window 276
Call Graph Window 278
Callers Graph Window 279
Definitions and References Window 281
Return Value Icon in Name Column 316
Profile Dialog Box 345
The Spy++ Windows View 357
Showing Properties with the Find Window 358
The Window Properties Dialog Box 360
The Processes View Window 363
Process Search Dialog Box 363
Process Properties Dialog Box for Windows 95 364
Process Properties Dialog Box for Windows NT 365
The Threads View Window 368
Thread Search Dialog Box 369
Thread Properties Dialog Box for Windows 95 370
Thread Properties Dialog Box for Windows NT 371
The Messages View Window 373
Message Options Dialog Box 375
Message Search Dialog Box 377
Message Properties Dialog Box 378
General Category on the C/C++ Tab 382
C++ Language Category on the C/C++ Tab 385
Code Generation Category on the C/C++ Tab 388
Customize Category on the C/C++ Tab 392

20.5
20.6
20.7
20.8
21.1
212
213
214
215
22.1
222
223
22.4
225
22.6
227
22.8
24.1
24.2
243
27.1
27.2
273

Listing Files Category on the C/C++ Tab 398
Optimizations Category on the C/C++ Tab 399
Precompiled Headers Category on the C/C++ Tab 407
Preprocessor Category on the C/C++ Tab 411

General Category on the Link Tab 414

Customize Category on the Link Tab 415

Debug Category on the Link Tab 419

Input Catégory on the Link Tab 422

Output Category on the Link Tab 424

Pop-up Menus Displayed with the Right Mouse Button 431
Floating Variables Window 435

Docked Variables Window 436

Window in Floating and Docked Modes 437

Standard Toolbar Layout 445

Floating Toolbar 445

Docked Toolbar 446

A Status Bar 455

AppWizard’s Structure 475

Custom AppWizard Step 1 480

Adding Functionality to Your Custom AppWizard 484
Profiler Batch Processing Flow 592

Tab-Delimited File in Microsoft Excel 599

Graph Created with CreateColumnChart Macro 604

List of Tables

2.1

22

2.3

9.1
10.1
14.1
14.2
14.3
14.4
14.5
16.1
16.2
16.3
164

Shortcut Methods for Views 45

File Icons in FileView 47

Icons in ClassView 48

Formatting and Special Characters in Strings 184
Devices for Icon or Cursor Images 202

Types of MFC Classes Available from ClassWizard 224
User-Interface Objects and Associated Messages 234
DDX Variable Types for the Value Property 247

DDX Variable Types Defined with the Control Property 248
DDV Variable Types 249

Browse Window Symbol Codes 270

File Outline Window 273

Derived Classes and Members Window 275

Base Classes and Members Window 276

Contents

XXix

Contents

16.5- Call Graph Window 279

16.6 Callers Graph Window 280

16.7 Definitions and References Window ~ 282

17.1 Debugger Windows 285

17.2 Debugger Dialog Boxes 286

17.3 Build Menu Debug Commands 288

17.4 Debug Menu Commands that Control Program Execution 288

17.5 Register Window Flags 319

22.1 Argument Macros 453

24.1 The Players 476

24.2 The Tools 476

24.3 Template Name Flags 498

24.4 Enumerated Values of Standard AppWizard Steps 513

24.5 Language Identifiers 520

24.6 Macro Prefixes 531

24.7 Macro Components 531

25.1 CL Options Set from the Command Line 552

25.2 CL Options Set from the Project Settings Dialog Box 552
26.1 Alphabetic List of LINK Options 575

26.2 Developer Studio LINK Options 576

26.3 Compiler-Controlled LINK Options 577

27.1 Profiling Types 601

XXX

Introduction

The Microsoft Visual C++™ version 4.0 Development System for Windowse 95 and
Windows NT™ is an integrated development environment for C and C++
applications, with support for multiplatform and cross-platform development. It
includes a C++ application framework, the Microsoft Foundation Class Library
version 4.0, which facilitates the development of applications for Windows as well as
the porting of applications to multiple platforms. You can easily develop an
application for Windows on one platform using Visual C++ and Microsoft
Foundation Class Library (MFC), and then use the same code to build applications
for other platforms.

Microsoft Developer Studio

Microsoft Developer Studio is the development environment in which the elements of
Visual C++ run. It consists of an integrated set of tools that all run under

Windows 95 or Windows NT. Developer Studio gives you the tools to complete, test,
and refine your application all in one place. It includes a text editor, resource editors,
project build facilities, an optimizing compiler, an incremental linker, a source code
browse window, an integrated debugger, and Books Online. You can control the
operation of all the tools from a single application. Because these tools run under
Windows, they use a variety of familiar methods in their operation. For example, you
can select a variable name in an editor window while debugging and drag that name
into the Watch window. The debugger then evaluates the variable and displays the
result in the Watch window. Or you can select and drop a control from the toolbar in
the dialog box editor onto a dialog box under creation. You can then size and position
the control as required for your application. Developer Studio also includes toolbars
s0 you can quickly invoke commands by clicking a button. To help you choose the
correct button, each one displays a descriptive label if the mouse pointer rests on it. If
the default toolbars are not to your liking, you can customize them or create your own
toolbars with the toolbar buttons of your choice.

XXXi

Introduction

Powerful Wizards

Visual C++ provides some powerful tools that work in conjunction with the MFC
application framework:

e AppWizard. AppWizard generates a complete suite of source files and resource
files based on classes from the MFC library. By selecting options in AppWizard,
you can customize the starter files that AppWizard generates. Once you have
completed your selections in AppWizard, Visual C++ builds a functional skeleton
application for Windows from those starter files, without any further work on
your part.

¢ OLE ControlWizard. ControlWizard creates a set of starter files for an OLE
control. This set includes all the files necessary to build an OLE control, including
source and header files, resource files, a module-definition file, a project file, an
object description language file, and so on. These starter files are compatible with
ClassWizard. You can then use ClassWizard to define your control’s events,
properties, and methods, some of which have been preimplemented in the MFC

library.

- o ClassWizard. ClassWizard automates the creation and editing of classes, and

creates additional classes based on MFC. It creates the source code for new classes
and creates member functions and message maps in those classes, as well as
making it easy to bind Windows messages to code. It also maps dialog box data to
member variables and validates that data.

¢ Custom AppWizard. With Custom AppWizard you can create your own project
type and add it to the list of types available when you create projects. It creates the
starter source files for the new AppWizard type, and allows you to modify or add
dialog boxes to your AppWizard. Custom AppWizards are useful for creating
generic application project types that can repetitively generate common
functionality—application types that can be used over and over again.

‘When you build an application for Windows with Visual C++, you run AppWizard, a
custom AppWizard that you have created, or OLE ControlWizard to create the
skeleton of your application. You then run ClassWizard to flesh out the application’s
classes, message handling and data handling, or a control’s events, properties, and
methods. Finally, in your classes, you add the functionality required for your
application.

Reusable Components

Xxxii

Visual C++ includes Component Gallery. Component Gallery contains a number of
reusable components that you can insert into your projects. Some of the components
take the form of Wizards, which request information about your project and provide
you with choices about the functionality to insert. In additon, you can add your own
components or components from other vendors to Component Gallery. Your

Introduction

components can take the form of reusable C++ classes with any associated resources,
or your own OLE controls. Components created by vendors can range from reusable
code segments to OLE controls to entire tools, such as a code analysis tool.

Developer Studio Projects

Microsoft Developer Studio organizes development in project workspaces. A project
workspace contains one or more projects. Each project consists of a set of source files
required for an application and one or more configurations for that project. A
configuration specifies such things as the platform for which the application is
intended, and the tools and settings to use when building. Within a project
workspace, one project can be a subproject of another project. This organization
creates a dependency relationship used by the build system to automatically keep both
the project and the subproject up to date when building the output files. The inclusion
of multiple projects with subprojects in a workspace allows you to group, build, and
maintain dependencies among related applications. By using multiple configurations,
you can extend the scope of a single project but still maintain a consistent source-
code base from which to work.

With the Project Settings dialog box, you can quickly set options for any
configuration in a project, any file in a configuration, or all the files in a project. If
you have file types in your project that the build system does not process by default,
you can specify custom commands to process those files.

Developer Studio includes a Project Workspace window, which displays various
aspects of the projects. In FileView, you can examine relationships among the files
contained in the project, and take the appropriate actions on the files. In
ResourceView, you can examine the resources in a project, and open them in the
appropriate editors. With Visual C++ installed, you can examine classes and their
members in ClassView, and quickly display a class hierarchy, add a member, or open
the file containing the class.

Once you have specified the projects in your workspace, the configurations that your
project is to build, and the tool settings for those configurations, you can build the
project with the commands on the Build menu. If you are creating an application for
a platform other than the one on which you are running Visual C++, the development
environment can automatically transfer the application to the remote machine after it
is built.

Build Error Correction

If your build has errors, Developer Studio can help you fix them more quickly. The
Output window displays a list of errors generated during a build. If you press the F4
key, Developer Studio displays an editor window with the source file and marks the
line of code associated with the first error in the Output window so you can

XXxiii

Introduction

immediately correct the code. With menu commands and keyboard shortcuts, you can
then move quickly to the next or previous error.

Integrated Debugger

After you have corrected all the build errors, you can use the integrated debugger to
correct logic errors. The debugger allows you to monitor your program as it runs and
to stop it at locations or situations of your choosing. You can set a breakpoint on a
particular line of code, for instance, and have your application execute until it reaches
that line. You can have your application suspend execution when it receives a
specified Windows message or when a specific exception occurs. If you are interested
in the values assigned to a variable, you can have the debugger break whenever your
application changes the variable’s value.

With the integrated debugger, you can debug both client and server applications that
use OLE. The debugger can execute a client OLE application line by line, and when
the client calls the server OLE application, another instance of Developer Studio
starts, with its debugger executing the server application. This method allows you to
determine if both the client and server sides of your OLE application are functioning
properly.

Developer Studio can also start its integrated debugger for any program that fails
while it is running, whether the program has debug information or not, and whether
Developer Studio was running beforehand or not. The debugger starts up while the

program is still alive, and this “Just-in-Time” debugging allows you to analyze the

living program rather than conduct a postmortem examination after it dies. With

Just-in-Time debugging, it is possible to find and fix the problem in the program and
let it continue running.

The debugger also supports multiplatform and cross-platform development by
allowing you to debug an application running on a remote machine.

Source Code Browse Window

XXxiv

As you are developing and debugging your application, you need to see the classes
and other symbols that you are using in a variety of contexts. When you build your
application, Developer Studio can create a browse information file with information
about the symbols in your program. The browse window displays this information
and allows you to move readily among instances of the symbols in your source code.
You can easily view all the symbols contained in a given file, display the definition of
any symbol in the file and all its references in your project, and then open the file
containing a particular reference by double-clicking the entry in the window. In the
browse window, you can view calling relationships among functions. The ease with
which you can examine the relationships among symbols and move among the files
containing them facilitates the maintenance, revision, and debugging of your code.

Introduction

Visual C++ also parses source files after you create them and displays the information
in ClassView. You can immediately open a file at a definition of a member function
or at a reference to a data member. After you build your project, you can view graphs
of inheritance relationships among classes.

User Preferences

With Microsoft Developer Studio you can customize its operation to suit your
preferences. You can select fonts, specify colors for particular types of text, and zoom
or shrink the text in a window. For example, in text editor windows, you can display
language elements, such as comments or keywords, in the color of your choice. When
you establish a layout for the windows associated with a particular project workspace,
Developer Studio retains that layout of open files and window positions the next time
you start the project. When you are debugging an application, you can choose which
windows and toolbars to display, and Developer Studio retains your selections for all
subsequent debugging sessions.

If you have some preferences for shortcut keys other than the defaults, you can
change any of the shortcut keys to your liking, add shortcut keys, set multiple
shortcut keys for a command, and specify the windows in which any shortcut is
active. You can use the Keyboard command on the Help menu to display a list of the
current keyboard shortcuts and print all or part of the list. Developer Studio also
provides keyboard emulations for BRIEFe and Epsilon™ text editors. In a text editor
window, you can record keystrokes and then play them back to recreate that sequence
of commands.

Extensive Information

Developer Studio provides several methods to learn about the development
environment or the supporting software. Tutorials contains a series of tutorials to
familiarize you with Developer Studio, with the methods and processes you need to
use within Developer Studio, and with the development of C++ applications using
Visual C++ and the Microsoft Foundation Class Library. From your source code in an
editor window, you can readily get information about a class from the Microsoft
Foundation Class Library, a function name from the C Run-Time Library, or a
language element. If you select a name in an editor window, and press F1 or CTRL+FI,
Developer Studio displays reference information for that name.

InfoView in the Project Workspace window displays the table of contents for Books
Online. Books Online contains the entire Visual C++ documentation set as well as
reference information from a number of software development kits (SDKs). New
Visual C++ Features refers you to new topics in Books Online, and Key Visual C++
Topics refers you to topics that group information by subject. You can browse through
the table of contents and select topics to view. From any topic, you can search through
all the text of Books Online for the occurrence of a selected word or combination of
words with the Search command on the Help menu. If you need information about an

XXXV

Introduction

open dialog box, you can choose the Help button to view descnptlons of its controls,
and methods to access further information, if necessary.

Visual C++ User’s Guide

In the Visual C++ User’s Guide, you will find procedures that show you how to
undertake various development tasks with Microsoft Developer Studio. Visual C++
User’s Guide also includes reference information on underlying command-line tools.

PART 1

Development Environment

Chapter 1 Creating Applications Using AppWizard 3
Chapter 2 Working with Projects 23

Chapter 3 Using the Text Editor 75

Chapter 4 Working with Source-Code Control 117
Chapter 5 Working with Resources 129

Chapter 6 Using the Dialog Editor 149

Chapter 7 ‘Using the Menu Editor 169

Chapter 8 Using the Accelerator Editor 177
Chapter 9 Using the String Editor 181

Chapter 10 Using the Graphic Editor 185

Chapter 11 Using the Toolbar Editor 207

Chapter 12 Using the Binary Data Editor 213
Chapter 13 Using the Version Information Editor 217
Chapter 14 Working with Classes 221

Chapter 15 Using Component Gallery 253
Chapter 16 Browsing Through Symbols 267
Chapter 17 Using the Debugger 283

Chapter 18 Profiling Code 343

Chapter 19 Using Spy++ 353

Chapter 20 Setting Compiler Options 381
Chapter 21 Setting Linker Options 413

Creating Applications Using
AppWizard

AppWizard is the tool you use to create a Windows-based application that is based on -
the Microsoft Foundation Class Library (MFC). You can use AppWizard to quickly
create an executable file ((EXE) or a dynamic-link library (DLL).

AppWizard’s interface is simple and easy to understand but also powerful and
flexible enough to quickly generate Windows-based applications. Using AppWizard,
you can generate applications with the following features:

¢ Single-document, multiple-document; or dialog-based interfaces

e OLE support and database (ODBC and DAO) support

¢ Docking toolbars, a status bar, support for context-sensitive help, and a three-
dimensional interface

L]

Immediate built-in functionality such as the Open, Save As, and Print commands
on the File menu

e Control over window frame styles

When you have finished defining application and project options, AppWizard
generates the starter files necessary to build a Windows-based application. These
starter files include source files, header files, resource files, a project file, and so on.

The Visual C++ source files contain skeletal versions of the classes that make up your
application. This AppWizard-generated code is based on MFC to provide
compatibility with ClassWizard and to simplify your development work. When you
build AppWizard-generated code, you get a working, skeleton application with a
wealth of built-in functionality.

See Also Starting an AppWizard Project, Creating an MFC AppWizard EXE
Project, Choosing Options for Dialog-Based Applications, Choosing Database
Options, Choosing OLE Options, Choosing SDI and MDI Application and Project
Options, Creating an MFC AppWizard DLL Project, Understanding AppWizard-
Created Files, Creating a Custom AppWizard

Visual C++ User's Guide

Starting an AppWizard Project

You start AppWizard from either the New Project Workspace dialog box or the Insert
Project dialog box. These two dialog boxes begin a series of dialog boxes in which
you-choose options to create your project. You will choose options that determine the
basic architecture of your application, such as EXE or DLL, the kind of support it
provides, such as OLE Automation or Windows Sockets, the appearance and
manipulation of the user interface, such as 3D controls and docking toolbars, and so
on. For more information on projects, see Chapter 2, “Working With Projects.” For
more information on the Insert Project dialog box, see “Inserting and Deleting
Projects” on page 52.

Once started, AppWizard displays a series of steps showing options for the features of
your application. The series is a forking path. Depending on your application’s
architecture, some steps may not be displayed. You select options by cycling through
the steps, forwards or backwards. You can change the options at any time before you
create an AppWizard application.

» To create a new project and application
1 Start Visual C++.
2 From the File menu, choose New.
The New dialog box appears.
3 In the New box, select Project Workspace.
4 Choose OK.
The New Project Workspace dialog box appears.
5 In the Name text box, type a name.

6 From the Type list, select MFC AppWizard (exe) or MFC Aplezard (dll) to
create a project based on the MFC library.

The Type list allows selection of various project types.Of the displayed project
types, AppWizard helps you create an MFC AppWizard (exe) Project and an MFC
AppWizard (dil) Project. OLE ControlWizard helps you create an OLE control,
and Custom AppWizard helps you create a custom AppWizard.

If you select one of the remaining project types, you can build a project that is not
based on the MFC library. You must, however, use the Insert Files Into Project
dialog box to specify the files you want added to a project. For more information
on the Insert Files Into Project dialog box, see “Adding and Removing Files from
Projects” on page 53 in Chapter 2. If you choose to create a non-MFC project, you
will have to either write or have access to the considerable amount of code that
AppWizard and MFC would otherwise provide.

Chapter 1 Creating Applications Using AppWizard

7 From the Platforms list box, select any of the available target platforms.

Note Win32e s the default platform. To select other platforms, the associated cross-
development edition of Visual C++ version 4 must be instalied.

8 In the Location text box, type a path to the new workspace. A directory'will be
created if you specify one that does not exist.

Use the Browse button to select a drive and a directory.
9 Choose Create.

Microsoft Developer Studio creates a workspace and/or inserts a project into a
workspace. With the workspace structure created, AppWizard displays either the
AppWizard .EXE file options or the AppWizard DLL options, depending on
which project type you choose. For more information on projects and workspaces,
see Chapter 2, “Working With Projects.” For more information on the MFC
AppWizard .EXE file options, see “Creating an MFC AppWizard EXE Project”
below. For more information on the MFC DLL options, see “Creating an MFC
AppWizard DLL Project” on page 17.

See Also Creating an MFC AppWizard EXE Project, Choosing Options for Dialog-
Based Applications, Choosing Database Options, Choosing OLE Options, Choosing
SDI and MDI Application and Project Options, Creating an MFC AppWizard DLL
Project, Creating an MFC Form-Based Application With AppWizard, Understanding
AppWizard-Created Files, Creating a Custom AppWizard

Creating an MFC AppWizard EXE Project

If you choose MFC AppWizard (exe) from the Type list in the New Project
Workspace dialog box or the Insert Project dialog box, AppWizard creates a project
that will generate an executable (.EXE) file. For more information on projects, see
Chapter 2, “Working With Projects.” For more information on the Insert Project
dialog box, see “Inserting and Deleting Projects” on page 52 of Chapter 2.

Once you choose Create from either dialog box, Microsoft Developer Studio creates a
workspace and/or inserts a project into a workspace. AppWizard then displays the
available architecture options as shown in Figure 1.1.

Visual C++ User's Guide

Figure 1.1 AppWizard's Architecture Options

MFC AppWizard - Step 1

pplication

| English [United States] (APPWZENU.DLL |

» To select an architecture type and resource language _
1 From MFC AppWizard - Step 1 of 1, select one of the three architecture types:

o Single document A single document interface (SDI) architecture allows a user
to work with just one document at a time. Windows Notepad is an example of
an SDI application. \

o Multiple documents A multiple document interface (MDI) architecture allows
a user to open multiple documents, each with its own window. Windows File
Manager is an example of an MDI application.

e Dialog based A dialog-based architecture displays a simple dialog box for
user input. MFC Trace Options is an example of a dialog-based application.

As you make AppWizard feature selections, the left side of AppWizard’s dialog
box displays a representation of the selected features. For example, selecting
multiple document architecture displays two documents in the “application’s”

. window on the left side of the AppWizard dialog box.

2 Select a language for the resource text.

Note English is the default language for resource text. To select other languages, the -
language DLL must already be installed on your system. The file-naming convention is

Chapter 1 Creating Applications Using AppWizard

LANGUAGE.DLL, where LANGUAGE is of the form APPWZ*.DLL and * is a three-letter
language specifier such as “DEU” or “JPN”.

3 Choose Next to display MFC AppWizard - Step 2 of 6.

If your application has a single or multiple document interface, the AppWizard
database options for single and multiple document interfaces are displayed. If your
application has a dialog-based document interface, the AppWizard options for
dialog-based interfaces are displayed.

See Also Creating Applications Using AppWizard, Starting an AppWizard Project,
Choosing Options for Dialog-Based Applications, Choosing Database Options,
Choosing OLE Options, Choosing SDI and MDI Application and Project Options,
Creating an MFC AppWizard DLL Project, Creating an MFC Form-Based
Application With AppWizard, Understanding AppWizard-Created Files, Creating a
Custom AppWizard

Choosing Options for Dialog-Based
Applications

After choosing to create a dialog-based application from MFC AppWizard - Step 1,
AppWizard provides three additional steps to help you develop your dialog-based
application. The following three procedures describe the features that AppWizard
offers.

» To select applicatidn options

1 From MFC AppWizard - Step 2 of 4, you can choose from the basic features that
are described below:

e About box Select this option to add an About box to your application’s
Control-menu box. The About box lists your application’s version number and
copyright date. You can edit the generated About box so that it also contains
brief product- and author-specific information.

o Context-sensitive help Select this option to add a Help button to the dialog
box that your project generates. A starter rich-text (RTF) file, a help project -
(.HPJ) file, and a batch file are provided to help you write your application’s
help system. These files are in the HLP directory. For convenience, the .RTF
and .HPIJ files take the base name of your project. Project.RTF contains one or
more topics that are hooked to your dialog box’s Help button. You can use any
rich-text format word processor, such as Microsoft Word for Windows, to add
information to this file. The .HPJ file controls compiling project.RTF into a
WinHelp help file. The batch file, MAKEHELP.BAT, compiles project.RTF into
a help file. Type MAKEHELP.BAT from the command line to create a help file
from project.RTF. In order for your help file to respond to your dialog-based

Visual C++ User's Guide

application’s Help button, both the help file and the application must use the
same base filename and must reside in the same directory.

¢ 3D controls This option adds a three-dimensional look to your application’s
user interface. '

¢ OLE automation Select this option if you want to expose your application to
OLE Automation clients. This option allows your application to be accessed by
other Automation clients, such as Microsoft Excel.

e OLE controls Select this option if you want your application to use OLE
controls. If you do not choose this option and, at a later time, want to insert
OLE controls into your project, you must add a call to
AfxEnableControlContainer in your application’s InitInstance member
function. For additional information about MFC OLE support, see Chapter 5,
“Working With OLE,” in Programming with MFC.

o Windows sockets This option allows you to write applications that
communicate over TCP/IP networks.

‘o Please enter a title Jor your dialog This option allows you to override the
default name that is added to your dialog box’s title bar. The project name is
used by default.

2 From MFC AppWizard - Step 2 of 4, choose Next.

MFC AppWizard - Step 3 of 4 is displayed. This step allows you to select the
following application options.

o Would you like to generate source file comments? AppWizard generates and
inserts comments in the source files that guide you in writing your program.
Source-file comments indicate where you need to add your own code. A
README.TXT file that describes each of the files is also produced. This
option is recommended.

e How would you like to use the MFC library? The Microsoft Foundation
classes can be linked from a static library or a shared DLL. Applications
comprised of multiple modules benefit from using the shared DLL because they
are more space efficient. By default, applications created from your AppWizard
project are linked with the shared MFC DLL.

3 Choose Next.

MFC AppWizard - Step 4 of 4 is displayed. This step displays the classes that
AppWizard will create for you. You can use the fields in this step to change the
names of the classes and the names of the class’s header (.H) and implementation
(.CPP) files, as described in the next procedure.

Chapter 1 Creating Applications Using AppWizard

» To change class names and file names

1 From MFC AppWizard - Step 4 of 4, select a class from the top pane, which is
entitled “AppWizard creates the following classes for you.”

The associated class name, base class, header file, and implementation file names
are displayed in the boxes below the top pane.

2 Change the names as required.
3 Choose Finish.
The New Project Information dialog box is displayed.

» To create your application

The New Project Information dialog box displays the details of the options you
have chosen from the previous AppWizard steps.
1 Choose OK when you are satisfied that the options are correct.

AppWizard will generate the new application’s source files according to the
options you have selected.

2 If you want to modify any of these options, choose Cancel to close the New Project
Information dialog box.

Choosing Cancel lets you access the steps you have used previously to specify your
project’s options.

See Also Creating Applications Using AppWizard, Starting an AppWizard Project,
Creating an MFC AppWizard EXE Project, Understanding AppWizard-Created
Files, Creating a Custom AppWizard

Choosing Database Options

If, in MFC AppWizard - Step 1, you choose to create a project with a user interface
that uses either single or multiple documents, Step 2 allows you to choose whether
and to what degree you want your project to support open database connectivity
(ODBC) or Microsoft Data Access Objects (DAO).

» To select a database support option

¢ Sclect one of the database support options:

e None This option excludes the libraries that support open database
connectivity. If the application does not use a database, choosing this option
builds a smaller application.

Visual C++ User's Guide

10

Header files only This option provides the minimal level of database support
by including all the database header files and link libraries. With this option,
AppWizard does not create any database-specific classes; you must do it
yourself.

Database view without file support This option includes all the database
header files and link libraries and creates a record view and recordset for you.
With this option, the application has document support but no serialization
support.

Database view with file support This option includes all the database header
files and link libraries and creates a record view and recordset. With this
option, the application has document support and also has serialization support.

For additional information about MFC database support, see Chapter 7, “Workmg
With Databases,” in Programming with MFC.

To define a data source

If your application includes a database view, you must define a data source.
Choose the Data Source button.

The Database Options dialog box appears and enables you to select from the

. following options:

ODBC or DAO 1If you are working primarily with an external (ODBC)
database file, select ODBC. If you are working primarily with a Microsoft Jet
(MDBC) database file, select DAO. For more information on ODBC and DOA,
see “Database Overview” in Programming with MFC.

Snapshot A snapshot is the result of a query and is a view into a database at
one point in time. A snapshot is static in nature. All records found as a result of
the query are cached. Using a snapshot, you will not see any changes that occur
to the original records.

Dynaset A dynaset is the result of a query that provides an indexed view into
the data of the queried database. A dynaset caches only a key into the original
data and thus offers a performance gain over a snapshot. Because you have a
key that points directly to each record that was found as a result of a query, you
can tell if a record has changed or was removed. You will also have access to
updated information in the queried records.

Table A table provides you with a means of directly manipulating the data in a
base table in a database (DAO only).

Chapter 1 Creating Applications Using AppWizard

o Detect dirty columns This option creates a data cache to detect whether data
values or NULL status has changed. You may turn this option off for better
performance, but you must explicitly call both SetFieldDirty and SetFieldNull.

- o Bind all columns This option creates a recordset that has data members for all
columns in the selected database.

Use one of the following two procedures to select an ODBC database or a DAO
database.
» To select an ODBC data source

1 In the Database Options dialog box, select ODBC.

2 From the ODBC drop-down list, select a data source.

To be visible from the ODBC drop-down list, a data source must be registered with
the ODBC Administrator, which is accessed from the Control Panel. For
instructions on registering an ODBC data source, see the article “ODBC
Administrator” in Programming with MFC.

3 Choose OK.

Some database drivers (SQL Server, for example) present a login dialog box at this
point. Fill in the information required to gain access to the data source.

4 Choose OK.
The Select Database Tables dialog box appears.
5 Select the tables for which you want recordsets created.
6 Choose OK.
MFC AppWizard - Step 2 of 6 reappears.
7 Choose Next.
MFC AppWizard - Step 3 of 6 appears.

» To select a DAO data source
1 In the Database Options dialog box, select DAO.

2 Choose the Browse button — the button with the ellipsis just to the right of the
DAO text box.

The Open dialog box appears.
3 Select a database file (MDB format).
4 Choose OK.
The Database Options dialog box reappears.

1

Visual C++ User's Guide

5 Choose OK.
The Select Database Tables dialog box appears.
6 Select the tables for which you want recordsets created.
7 Choose OK.
MEFC AppWizard - Step 2 of 6 reappears.
8 Choose Next.
MFC AppWizard - Step 3 of 6 appears.
See Also Creating Applications Using AppWizard, Starting an AppWizard Project,
Creating an MFC AppWizard EXE Project, Choosing SDI and MDI Application and
Project Options, Creating an MFC AppWizard DLL Project, Creating an MFC Form-

Based Application With AppWizard, Understanding AppWizard-Created Files,
Creating a Custom AppWizard

Choosing OLE Options

12

If, in MFC AppWizard - Step 1, you choose to create a project with a user interface
that uses either single or multiple documents, Step 3 allows you to choose whether
and to what degree you want your project to support OLE. ’

» To select OLE options

'AppWizard generates application support code for a variety of OLE application types.

Selecting any of the OLE options enables the standard OLE resources and adds extra
OLE commands to the application’s menu bar.

1 Select from the following OLE options:

e None By default, AppWizard does not create an application with OLE
support.

e Container This option enables your application to contain linked and
embedded objects.

e Mini-server This option allows only the creation of embedded objects.

o Full-server This option enables your application to run in stand-alone mode
and to support both linked and embedded items as well as to create objects to be
contained in compound documents. '

¢ Both container and server This option enables your application to be both a
container and a server.

o Yes, please Select this option to use the OLE compound-file format to serialize
your OLE container application’s documents. Documents containing one or
more OLE objects are saved to one file but access is allowed to the individual
OLE objects’ files. This option provides load on demand of, and incremental
saves to, the individual OLE objects’ native data.

Chapter 1 Creating Applications Using AppWizard

o No, thank you Select this option to not use the OLE compound-file format to
serialize your OLE container application’s documents. This option forces the
loading of an entire file containing OLE objects into memory. Incremental
saves to individual OLE objects are not available. If one OLE object is changed
and subsequently saved, all OLE objects in the files are saved.

e OLE automation Select this option if you want to expose your application to
OLE Automation clients. This option allows your application to be accessed by
other Automation clients, such as Microsoft Excel.

e OLE controls Select this option if you want your application to use OLE
controls. If you do not choose this option and, at a later time, want to insert
OLE controls into your project, you must add a call to
AfxEnableControlContainer in your application’s InitInstance member
function.

For additional information about MFC OLE support, see Chapter 5, “Working
With OLE,” in Programming with MFC.

2 Choose Next.
MFC AppWizard - Step 4 of 6 appears.

See Also Creating Applications Using AppWizard, Starting an AppWizard Project,
Creating an MFC AppWizard EXE Project, Choosing SDI and MDI Application and
Project Options, Creating an MFC AppWizard DLL Project, Creating an MFC Form-
Based Application With AppWizard, Understanding AppWizard-Created Files,
Creating a Custom AppWizard

Choosing SDI and MDI Apphcatlon and
Project Options

If, in MFC AppWizard - Step 1, you choose to create a project with a user interface
that uses either single or multiple documents, Step 4 allows you to choose various
user-interface options. You can also select MAPI and Windows Sockets support.

» To select application options

1 Specify the basic features you want your application to have by selecting from the
options described below.

¢ Docking toolbar Select this option to add a toolbar to the application that your
project generates. The toolbar contains buttons for creating a new document;
opening and saving document files; cutting, copying, pasting, or printing text;
displaying the About box; and entering SHIFT+F1 Help mode. Enabling this
option also adds menu commands to display or hide the toolbar.

13

Visual C++ User's Guide

14

o Initial status bar Select this option to add a status bar to the application that

your project generates, The status bar contains automatic indicators for the
keyboard’s CAPS LOCK, NUM LOCK, and SCROLL LOCK keys and a message line
that displays help strings for menu commands and toolbar buttons. Enabling
this option also adds menu commands to display or hide the status bar.

Printing and print preview Select this option to add the code to handle print,
print setup, and print preview commands by calling member functions in the
CView class of the MFC library. It also adds commands for these functions to
your application’s File menu.

Context-sensitive help Select this option to add a Help button to the dialog
box that your project generates. A starter rich-text (.RTF) file, a help project
(.HPJ) file, and a batch file are provided to help you write your application’s
help system. These files are in the HLP directory. For convenience, the .RTF
and .HP]J files take the base name of your project. Project.RTF contains one or

" more topics that are hooked to your dialog box’s Help button. You can use any

rich-text format word processor, such as Microsoft Word for Windows, to add
information to this file. The .HPJ file controls comipiling project.RTF into a
WinHelp help file. The batch file, MAKEHELP.BAT, compiles project.RTF into
a help file. Type MAKEHELP.BAT from the command line to create a help file
from project.RTF. In order for your help file to respond to your dialog-based
application’s Help button, both the help file and the application must use the
same base filename and must reside in the same directory.

3D controls This option adds a three-dimensional look to your application’s
user interface.

MAPI (Messaging API) This option allows you to write an application that
creates, manipulates, transfers, and stores mail messages.

Windows sockets This option allows you to write an application that
communicates over TCP/IP networks.

How many files would you like on your recent file list? This option sets the
number of files to be remembered on the “most recently used” list.

2 If your application requires adjustment of other advanced options, choose the
Advanced button.

The Advanced Options dialog box appears.

3 Select the Document Template Strings tab to modify the filenames and extensions
that will identify your application:

o File extension The file extension associated with a document created by your

application. Typing a file extension allows the Windows 95 Explorer to print
your.application’s documents, without launching your application, when. they
are dropped onto a printer icon.

o File type ID This ID is used to label your document type in the system

registry.

Chapter 1 Creating Applications Using AppWizard

Language This selection controls the language in which strings are displayed
in the edit boxes of the Localized Strings control group.

Main frame caption The name displayed in the title bar of your application’s
main frame window.

Doc type name The filename associated with the selected class. This option is
available only if the selected class is derived from class CDocument.

Filter name The string that appears in the List Files Of Type list box in the
Open and Save As dialog boxes. This field does nothing unless you type a file
extension in the File Extension edit box.

File new name (OLE short name) The name that appears in the File New
dialog box if there is more than one new document template. If your application
is an OLE server, this name is used as the short name of your OLE object.

File type name (OLE long name) If your application is an OLE server, this
name is used as the long name of your OLE object. It is also used as the file
type name in the system registry.

4 Select the Window Styles tab and choose from the following list for the user-
interface frame styles. If your project uses a single document interface, the MDI
child frame styles are grayed out.

Use split window Enables your application’s windows to use a split bar. The
split bar will split the application’s main views. In an MDI application, the
MDI child frame’s client window is a split window, and in an SDI application,
the main frame’s client window is a split window. For more information on
split windows, see “Adding Splitter Windows” in Tutorials.

Thick frame This option specifies that the main frame window have a sizing
border.

Minimize box This option specifies that the main frame window include a
minimize box. This is the default option.

Maximize box This option specifies that the main frame window include a
maximize box. This is the default option.

System menu This option specifies that the main frame window include a
system menu. This is the default option. '

Minimized This option specifies that the main frame window open as an icon.

Maximized This option specifies that the main frame window open to the full
size of the display.

Thick frame This option specifies that the frames of all MDI child windows
have a sizing border.

Minimize box This option specifies that MDI child windows include a
minimize box. This is the default option.

15

Visual C++ User's Guide

® Maximize box This option specifies that MDI child windows include a
maximize box. This is the default option.

e Minimized This option specifies that MDI child windows open as icons.

® Maximized This option specifies that MDI child windows open maximized.
5 From the Advanced Options dialog box, choose Close.
6 Choose Next.

MFC AppWizard - Step 5 of 6 appears.

The AppWizard project options for source code are displayed.

» To select project options
" 1 You can select settings for these project options:

o Would you like to generate source file comments? AppWizard generates and
inserts comments in the source files that guide you in writing your program.
Source-file comments indicate where you need to add your own code. Selecting

this option is recommended.

A README.TXT file that describes each AppWizard-generated file is also
produced.

o How would you like to use the MFC library? The Microsoft Foundation
classes can be linked from a static library or a dynamic-link library. If your
application mixes both MFC and non-MFC code, use MFC as a statically
linked library. If your application is comprised of multiple modules that all use
only the MFC library, it will use less disk and memory space by using the
shared DLL.

2 Choose Next.

MFC AppWizard - Step 6 of 6 is displayed. This step displays the classes that
AppWizard will create for you. You can edit the fields in this step to change the
names of the classes and the names of the class’s header (.H) and implementation
(.CPP) files, as described in the next procedure.

» To change class names and file names

1 Select a class from the top pane, which is entitled “AppWizard creates the
following classes for you.”

The associated class name, base name, header file, and implementation file names
are displayed in the boxes below the top pane.

If you choose your application’s view class, the Base Class text box becomes a
drop-down list from which you can specify a view type.

2 Change the names and select a view type as required.
3 Choose Finish. _
The New Project Information dialog box is displayed.

16

Chapter 1 Creating Applications Using AppWizard

» To create your application

You can modify any of the options displayed in the New Project Information dialog
box.

1 If you want to make modifications to any of the options, choose the Cancel button
to close the New Project Information dialog box and return to the AppWizard
steps.

2 Choose OK when you are satisfied that the options are correct.

AppWizard will generate the new application’s source files according to the
options you have selected.

See Also Creating Applications Using AppWizard, Starting an AppWizard Project,
Choosing Database Options, Choosing OLE Options, Creating an MFC AppWizard
DLL Project, Creating an MFC Form-Based Application With AppWizard,
Understanding AppWizard-Created Files, Creating a Custom AppWizard

Creating an MFC AppWizard DLL Project

If you choose MFC AppWizard (dll) from the Type list in the New Project Workspace
dialog box or the Insert Project dialog box, AppWizard creates a project that will
generate a dynamic-link library (DLL). For more information on projects, see
Chapter 2, “Working With Projects.” For more information on the Insert Project
dialog box, see “Inserting and Deleting Projects” on page 52 in Chapter 2.

Once you choose Create from either dialog box, Microsoft Developer Studio creates a
workspace and/or inserts a project into a workspace. AppWizard then displays the
available DLL options.

» To select MFC DLL project options
1 You can select settings for these project options:

e What type of DLL would you like to create? The two Regular DLLs can be
loaded by any Win32 application.

The MFC Extension DLL can be loaded only by an MFC application.
Applications comprised of multiple modules benefit from using a DLL that uses
a shared copy of MFC because they use less disk and memory space. Also, a
system running multiple MFC applications runs more efficiently if the
applications link dynamically to MFC.

e What features would you like in your DLL? OLE automation exposes your
DLL’s class to OLE Automation clients. This option allows objects of this class
to be accessed by Automation clients, such as Microsoft Visual Basice and
Microsoft Excel. With Windows Sockets support you can write applications that
communicate over TCP/IP networks.

17

Visual C++ User's Guide

o Would you like to generate source file comments? AppWizard generates and
inserts comments in the source files that guide you in writing your program.
Source-file comments indicate where you need to add your own code. Selecting
this option is recommended.

A README.TXT file that describes each AppWizard-generated file is also
produced.

» To create your application
1 Choose Finish.

The New Project Information dialog box dlsplays the project options you have
selected.

2 If you want to modify any of the options displayed here, choose Cancel to close the
New Project Information dialog box and return to the previous AppWizard steps.

3 Choose OK when you are satisfied that the options are correct.
AppWizard will generate the new application’s source files according to the
options you have selected.

See Also Creating Applications Using AppWizard, Starting an AppWizard Project,
Creating an MFC AppWizard EXE Project, Choosing Database Options, Choosing
OLE Options, Choosing SDI and MDI Application and Project Options, Creating an
MEFC Form-Based Application With AppWizard, Understandmg AppWizard-Created
Files, Creating a Custom AppWizard

Creating an MFC Form-Based Application
With AppWizard

With AppWizard you can create MFC form-based applications that give you access to
data in existing databases.
» To create an MFC form-based application
1 Start Visual C++.
2 From the File menu, choose New.
The New dialog box appears.
3 In the New box, select Project Workspace.
4 Choose OK.
The New Project Workspace dialog box appears.

5 Type a name in the Name text box.

18

Chapter 1 Creating Applications Using AppWizard

6 From the Type list, select MFC AppWizard.(exe).
7 From the Platforms list box, select any of the available target platforms.

Note Win32e is the default platform. To select other platforms, the associated cross-
development edition of Visual C++ version 4.0 must be installed.

8 Accept the default path to the new project workspace or type a new one in the
Location text box. A directory will be created if you specify one that does not exist.
—or—

Use the Browse button to select a drive and a directory.

9 Choose Create.

MFC AppWizard - Step 1 is displayed.
10 Choose either Single Document or Multiple Documents.
11 Select a language for the resource text.

Note English is the default language for resource text. To select other languages, the
language DLL must already be installed on your system. The file-naming convention is
LANGUAGE.DLL, where LANGUAGE is of the form APPWZ*.DLL and * is a three-letter
language specifier such as “DEU” or “JPN".

12 Choose the Next button,
MFC AppWizard - Step 2 of 6 appears.

13 Select either Database View Without File Support or Database View With File
Support.

If you choose Database View Without File Support, AppWizard creates a record
view and recordset for you. With this option, the application has document support
but no serialization support. If you choose database view with files support,
AppWizard creates a record view and recordset. With this option, the application
has document support and also has serialization support.

14 Choose the Data Source button.

The Database Options dialog box appears and enables you to select from the
following options:

e ODBC or DAO 1If you are working primarily with an external (ODBC)
database file, select ODBC. If you are working primarily with a Microsoft Jet
(MDBC) database file, select DAO. For more information on ODBC and DOA,
see Database Overview in Programming with MFC.

o Snapshot A snapshot is the result of a query and is a view into a database at
one point in time. A snapshot is static in nature. All records found as a result of
the query are cached. Using a snapshot, you will not see any changes that occur
to the original records.

19

Visual C++ User's Guide

e Dynaset A dynaset is the result of a query that provides an indexed view into
the data of the queried database. A dynaset caches only a key into the original
data and thus offers a performance gain over a snapshot. Because you have a
key that points directly to each record that was found as a result of a query, you
can tell if a record has changed or was removed. You will also have access to
updated information in the queried records. '

¢ Table A table provides you with a means of directly manipulating the records
and data in a base table in a database (DAO only).

o Detect dirty columns This option creates a data cache to detect whether data
values or NULL status has changed. You may turn this option off for better
performance, but you must explicitly call both SetFieldDirty and SetFieldNull.

e Bind all columns This option creates a recordset that has data members for all
columns in the selected database.

Use one of the following two procedures to select an ODBC database or a DAO
database. ‘
» To select an ODBC data source

1 In the Database Options dialog box, select ODBC.

2 From the ODBC drop-down list, select a data source.

To be visible from the ODBC drop-down list, a data source must be registered with
the ODBC Administrator, which is accessed from the Control Panel. For
instructions on registering an ODBC data source, see the article “ODBC
Administrator” in Programming with MFC.

3 Choose OK.

Some database drivers (SQL Server, for example) present a login dialog box at this
point. Fill in the information required to gain access to the data source.

4 Choose OK.
The Select Database Tables dialog box appears.
5 Select the tables for which you want recordsets created.
6 Choose OK. v
MFC AppWizard - Step 2 of 6 reappears.
7 Choose Next to display the next AppWizard step.

The AppWizard OLE options are displayed for your single or multiple document
application.

20

Chapter 1 Creating Applications Using AppWizard

» To select a DAO data source
1 In the Database Options dialog box, select DAO.

2 Choose the Browse button — the button with the ellipsis just to the right of the
DAO text box.

3 Use the Open dialog box that appears to select a database file (MDB format).
4 Choose OK.
The Database Options dialog box reappears.
5 Choose OK.
The Select Database Tables dialog box appears.
6 Select the tables for which you want recordsets created.
7 Choose OK.
MFC AppWizard Step - 2 of 6 reappears.
8 Choose Next to display the next AppWizard step.

If your application is for single or multiple documents (not dialog-based), the
AppWizard OLE options are displayed.

See Also Creating Applications Using AppWizard, Starting an AppWizard Project,
Creating an MFC AppWizard EXE Project, Choosing Database Options, Choosing
OLE Options, Choosing SDI and MDI Application and Project Options, Creating an
MFC AppWizard DLL Project, Understanding AppWizard-Created Files, Creating a
Custom AppWizard

Understanding AppWizard-Created Files

AppWizard always creates a basic list of files, regardlesé of which options you
choose. AppWizard uses the name that you specify in the Name box to derive names
for most of its files and classes.

You’ll undoubtedly want to examine the source-ode files you create. If you choose to
have AppWizard add comments to the files it creates for your project, AppWizard
will also create a text file, README.TXT, in your new application directory. This
file explains the contents and uses of the other new files created by AppWizard.

For additional information about the files that AppWizard creates, see the article
“AppWizard: Files Created” in Programming with MFC.

See Also Creating Applications Using AppWizard, Starting an AppWizard Project,
Creating an MFC AppWizard EXE Project, Choosing Database Options, Choosing
OLE Options, Choosing SDI and MDI Application and Project Options, Creating an
MFC AppWizard DLL Project, Creating an MFC Form-Based Application With
AppWizard, Creating a Custom AppWizard

21 .

Visual C++ User's Guide

Creating a Custom AppWizard

22

You can use AppWizard to create custom AppWizards that will generate applications
with the specific features you need. For more information on how to create a custom
AppWizard, see Chapter 24, “Creating Custom AppWizards.”

See Also Creating Applications Using AppWizard, Starting an AppWizard Project,
Creating an MFC AppWizard EXE Project, Choosing Database Options, Choosing
OLE Options, Choosing SDI and MDI Application and Project Options, Creating an
MEFC AppWizard DLL Project, Creating an MFC Form-Based Application With
AppWizard, Understanding AppWizard-Created Files

CHAPTER 2

Working with Projects

The project workspace organizes your projects and their elements, and maintains
your preferences for the display of information. The project workspace consists of a
subdirectory and various files. The files describe the individual projects in the project
workspace, and how to display them.

There are three basic scenarios for using project workspaces. Before you create your
project workspace, you should determine which scenario for project workspace
organization suits your needs best. For further information, see “Using Project
Workspaces: Three Basic Scenarios” on page 26. You can modify the three scenarios
~ in a number of ways to fit your specific requirements.

‘When you create or open a project workspace, Microsoft Developer Studio displays
the elements of your Project Workspace in the project workspace window, as shown in
Figure 2.1.

Figure 2.1 The Project Workspace Window

/— Project toolbar

Myprol - Win32 Debug Select default project
configuration list

E}- M2 CAboulDlg
i @ CAboutDlg()

¢ DoDataExchange(}
(M3 CChildFrame
M3 CMainFrame . "
(3% CMyprojlApp Project workspace window
{#-®3 CMyprojiDoc .
#51-®3 CMyprojlView
EH-423 Globals

¢ thedpp

Tabs to access panes

When you open a project workspace file, Developer Studio displays the Project
Workspace window, along with other windows, in the last locations and states that

23

Visual C++ User's Guide

24

you chose for them. You can dock or undock, size, move, or hide the Project
Workspace window. '

In the Project Workspace window, Developer Studio creates panes, which you access
from the tabs at the bottom of the window. Certain panes contain a specific view of
all the projects in your workspace. Each pane has at least one top-level folder, which
contains the elements that make up that view of the project; expanding the folder
displays the details of that view. In a project workspace containing Visual C++
projects, for instance, the Project Workspace window contains the following panes by
default.

Pane Title Description

FileView Displays the projects that you have created. Expanding the top-level
folders shows files within the project.

ResourceView Displays the resource files included in your projects. Expanding the
top-level folders shows the resource types.

ClassView Displays the C++ classes defined in your projects. Expanding the top-
level folders shows the classes; expanding a class shows its members.

InfoView Displays the table of contents for Books Online. Expanding the top-
: level folders shows books and topics.

"Each folder within a view can contain other folders or various kinds of items. The

items may consist of subprojects, files, resources, classes, topics, and so on.

It is important to keep in mind that the organization of the items in a folder
represents the relationships of the items in the project, not the physical location of
items. A project folder, for instance, contains icons representing the files used to
build the project. The icons show whether or not the files are used in the build
process, as well as the relationship of source files to their dependent files, such as
header files. Those files could reside in any directory on any drive accessible from
your machine.

The default project configuration is shown in bold type in the panes. If you choose a
build command, you build that default project configuration.

You can access information about elements of the project workspace from the views
in the Project Workspace window. Selecting any item and pressing ALT+ENTER opens
the property page for that item. Double-clicking any item in a pane displays that item
in an appropriate way: source files in a text editor, dialog boxes in the dialog editor,
information topics in the topic window, and so on.

Pop-up menus take action on selections in the Project Workspace window. When you
make a selection, and then press the right mouse button with the mouse pointer over
the selection, the pop-up menu appears. It contains commands appropriate for the
selection.

See Also Working with Window Types, Customizing the Toolbar, Customizing the
Keyboard, Setting Text Editor Options

Chapter 2 Working with Projects

Project Workspaces

In Microsoft Developer Studio, you organize your work in a project workspace. A
project workspace consists of a location — the workspace directory — and some files
in that directory, which describe the workspace and its contents. When you first
create a project workspace, you create a directory for the project workspace and a
project workspace file with the extension .MDP. The project workspace file is what
you save when you have completed working in your new project workspace and what
you open when you want to resume work in your project workspace.

The project workspace directory is the root directory for the project workspace, and
all subsequent projects that you add to this project workspace are added in
subdirectories under the project workspace directory. By default, Developer Studio
selects the Projects subdirectory under the Developer Studio installation directory as
the initial location for all your project workspace directories. You can, however,
choose another location. If you do choose another location, Developer Studio retains
that location as the initial location for subsequent project workspaces that you create.
The project workspace directory contains the following files:

e The project workpace file (MDP)
e The project workspace makefile (MAK)

Usually all source files associated with the first top-level project are created in the
project workspace directory. You can add source files to the project from any location,
however, without copying or moving them to this subdirectory.

Elements of Project Workspaces

Project workspaces have the following elements:

Project A set of zero or more source files, with one or more configurations. A
project also specifies the type of application to build. Your project
workspace can contain any number of projects. A project can contain
subprojects.

Configuration Settings for a project that specify a platform on which the output file is to
run, and tool settings with which to build the output. You can add any
number of configurations to a project. By default, when you create a new
project, you create Debug and Release configurations.

Within a project workspace, projects can have the following relations:

Top-level project A project that is not a dependency of any other project. Not a subproject
of any other project. A project workspace has at least one top-level
project.

Subproject A project that has a dependency relationship with another project. The
build system determines if it needs to build the subproject before it builds
the containing project. Any project can be a subproject of any other
project.

25

Visual C++ User's Guide

Files Associated .With Project Workspaces

When you create a project workspace, Developer Studio creates two or more
associated files. In the case of Visual C++ projects, for instance, it creates a project
makefile (MAK) and a project workspace file (MDP) to store information.

The .MAK file stores the following kinds of information required to build the project:

& The names and locations of the source files that are used to build each project.

o The settings for the tools required to build each project, such as compiler and
linker options.

¢ The tools and actions required to build the project.

The .MDP file stores the following kinds of information for your particular
workspace:

¢ The look and organization of Microsoft Developer Studio for the project
workspace (choice and locations of windows, for instance).

¢ Breakpoints that you have set.

o Other information related to your local setup, such as fonts and colors.

If you work in a group, you generally want to share the makefile with other members
of your group, so that they can build the projects defined in the project workspace. To
do this, see “Maintaining Makefiles Under Source-Code Control” on page 128 in
Chapter 4 for more information. You probably should not share the project workspace
file, because it contains information about your local organization and appearance.

Developer Studio may also generate a number of other transient files as you use it,
depending on the project type and the settings that you choose. Developer Studio
manages these files without any explicit intervention on your part.

Using Project Workspaces: Three
Basic Scenarios

26

There are three basic scenarios for using project workspaces. These consist of the
following cases:

e A top-level project only

¢ A top-level project with a single subproject

o An empty top-level project with multiple subprojects, which also may have
subprojects

These are very basic, general organizations. You can modify or expand them in
innumerable ways to serve your particular development needs.

Chapter 2 Working with Projects

Top-Level Project

This organization is suitable for the development of a single application without any
dependencies on any other applications. Choose this organization if you want to
develop, for instance, a single application generated by AppWizard, a single console
application, or a static library. Figure 2.2 shows the relationships among the elements
of a top-level project.

Figure 2.2 Top-Level Project

Debug config Release config
MYPROG MYPROG.EXE MYPROG.EXE
\MSDEV\Projects\MYPROG (w/ debug info) (w/o debug info)

» To create a top-level project

1 From the File menu, choose New.
The New dialog box appears.

2 From the New list, choose Project Workspace.
The New Project Workspace dialog box appears.

3 Select the project type from the list of types.

4 Tn the Name text box, type a name for the project workspace.
This name is also the name of the initial top-level project.

5 From the Platforms list, select any of the available platforms for which you want to
create applications.

Note Win32 is the default platform. You must install the Microsoft Visual C++ Cross-
Development Edition for Macintoshe before other platforms are available.

6 In the Location text box, type another directory name in which you want to create
this project workspace subdirectory if you do not want to use the default directory,
PROJECTS.

If you revise this location, Developer Studio retains the new location as the new
default for creating project workspaces.

7 Choose the Create button.

Now you can add files if necessary, modify the source code, add functions to classes
or add message-handlers, change the settings for your application, and so on.

Note If you chose an AppWizard, OLE ControlWizard, or Custom AppWizard type, the wizard
created a set of starter files for your application. You can now modify those files to complete
your application.

27

Visual C++ User's Guide

You build a configuration of your application by selecting a configuration to build,
using the Default Configuration drop-down list on the Project toolbar, and then
choosing the Build command from the Build menu.

Top-Level Project with a Single Subproject

28

An organization that has a top-level project with a single subproject is suitable for the
development of an application that depends on another application. You could choose
this organization if you want to develop, for instance, an executable generated by
AppWizard that uses a dynamic-link library (DLL) also generated by AppWizard, or
a console application that uses a static library that you create. Figure 2.3 shows the
relationships among the elements of a top-level project with a single subproject.

Figure 2.3 Top-Level Project with a Single Subproject

Debug config - Release config
MYPROG MYPROG.EXE MYPROG.EXE
\MSDEV\Projects\MYPROG (w/ debug info) (w/o debug info)
MYDLL MYDLL.DLL MYDLL.DLL
\MSDEV\Projects\MYPROG\WMYDLL (w/ debug info) (w/o debug info)

» To create a top-level project with a subproject
1 Create a top-level project.
2 From the Build menu, choose Subprojects.
The Subprojects dialog box appears.
3 Choose the New button.

The Insert Project dialog box appears, with the Subproject option selected, and the
existing top-level project selected in the drop-down list. Retain these default
choices.

4 In the Name text box, type a name for the subproject.

This name is appended to the existing project workspace directory to form the
fully qualified path for the new subproject directory.

5 From the Type list, select a project type.

6 Select any of the available platforms for which to create initial Debug and Release
configurations. '

Chapter 2 Working with Projects

7 Choose the Create button.

If you have chosen an application type for a type generated by AppWizard, OLE
ControlWizard, or Custom AppWizard, the dialog box(es) for that wizard appear.

After yoﬁ have responded to any wizard dialog boxes, the Subprojects dialog box
reappears. Your newly created subproject is selected for inclusion.

8 Choose the Close button.
You have completed creating a top-level project with a single subproject. In FileView,

the top-level project displays an icon representing the dependency relation for the
subproject. The subproject also has a top-level representation.

Now you can add files if necessary, modify the source code, add functions to classes
or add message-handlers, change the settings for the application, and so on.

When you build in this project workspace, you can build either the subproject or both
the top-level project and the subproject.
» To build the subproject only

1 Select the subproject with the configuration you want to build from the Set Default
Project Configuration drop-down list on the Project toolbar.

—0Or—

From the Build menu, choose Set Default Configuration, and choose from the list
in the Default Project Configuration dialog box.

2 From the Build menu, choose Build.

» To build both the top-level project and the subproject
1 Select the top-level project with the configuration you want to build from the Set
Default Project Configuration drop-down list on the Project toolbar.
—or— _
From the Build menu, choose Set Default Configuration,vand choose from the list
in the Default Project Configuration dialog box.
2 From the Build menu, choose Build.

If the subproject output file is out of date, the build system first builds it, and then
it builds the top-level project. If it is not out of date, the build system builds only
the top-level project.

If you want to force the system to rebuild all the output files, choose Rebuild All from
the Build menu. This method ensures, for instance, that you are always testing both
elements of your project workspace with the most up-to-date changes.

Note if you have an output executable created by a project which calls a DLL created by a
subproject, you need to do one of three things in order to run the executable and have it find
the DLL. You can add the output directory for the DLL to your path, you can specify the output

29

Visual C++ User's Guide

Empty Top-Level Project with Multiple Subprojects

30

directory for the DLL to be same as the output directory for the executable, or you can move
the DLL after it is built to a directory on the path, using a custom build command. In the case
when you're debugging, it is preferable to set the output directories to be the same for the

executable and the DLL.

This organization is suitable for the development of a suite of related applications,
some of which have other applications on which they depend. Choose this
organization if you want to develop, for instance, two executables generated by
AppWizard, one of which uses a DLL also generated by AppWizard, or two console
applications, one of which uses a static library that you create. Figure 2.4 shows the
relationships among the elements of an empty top-level project with multiple

subprojects.

Figure 24 Empty Top-Level Project with Multiple Subprojects

PRIMPROJ
\MSDEV\Projecits\PRIMPROJ
(contains no buildable files)

MYPROG1
\MSDEV\Projects\PRIMPROJMYPROG1

MYDLL
\MSDEV\Projects\PRIMPROJ\MYDLL

MYPROG2
\MSDEV\Projects\PRIMPROJAMYPROG2

Debug config

Release config

PRIMPROJ.EXE
(w/ debug info)

PRIMPROJ.EXE
(w/o debug info)

| | MYPROG1.EXE

| | MYPROG1.EXE

(w/ debug info)

(w/o debug info)

[MYDLL.DLL
(w/ debug info)

‘\ MYDLL.DLL

(w/o debug info)

MYPROG2.EXE
(w/ debug info)

MYPROG2.EXE
(w/o debug info)

The following procedure assumes that all the applications in your suite are
AppWizard applications. The approach is appropriate for other project types,

however.

» To create an empty top-level project with multiple subprojects

1 Create a top-level project.

Note In this case, select Application in the Type list. This option creates the project
workspace and the top-level project without any source files. You will not add any files to

the top-level project in this example.

Chapter 2 Working with Projects

The directory that you create in this case contains the project workspace files. It
also serves as the root for the subdirectories that you create for the rest of the -
projects in your application suite.

2 From the Build menu, choose Subprojects.
The Subprojects dialog box appears.
3 Choose the New button.

The Insert Project dialog box appears, with the Subproject option selected, and the
existing top-level project selected in the drop-down list. Retain these default
choices.

4 In the Name text box, type a name for the subproject.

This name is appended to the existing project workspace directory to form the
fully qualified path for the new subproject directory.

5 Select the MFC AppWizard (exe) project type.

6 Select any of the available platforms for which to create initial Debug and Release
configurations. :

7 Choose the Create button, and complete the AppWizard dialog boxes as they
appear.

After you have responded to the dialog bokes, the Subprojects dialog box
reappears.

8 Repeat steps 3 through 7 for the second subproject. Select the top-level project
from the drop-down list of the Insert Project dialog box.

9 Repeat steps 3 through 7 for the subproject contained by the first executable
project. In the Insert Project dialog box, select the MFC AppWizard (dll) project
type, and select the first AppWizard executable from the drop-down list.

10 Choose the Close button.

‘When you have completed adding the top-level project and all the subprojects, the
FileView pane in your Project Workspace window looks like the one shown in Figure
2.5. The empty top-level project displays only icons representing dependency
relations for the AppWizard executable subprojects. Each subproject also has a top- -
level representation.

3

Visual C++ User's Guide

Figure 2.5 FileView with Multiple Subprojects

@ Mulhple Subs files
: WizGen_Exel
4| WizGen_Exe2

\WizGen_DLL
ChildFrm.cpp
MainFrm.cpp
ReadMe.txt
StdAfx.cpp
‘WizGen_Exel.cpp
WizGen_Exel.rc
WizGen_ExelDoc.cpp

‘WizGen_ExelView.cpp
- Dependencies

Now you can add files if necessary, modify the source code, add functions to classes
or add message-handlers, change the settings for the application, and so on.

 When you build in this project workspace, you now have a number of choices. You
can build the following combinations:

e The subproject DLL of the subproject AppWizard executable

e The subproject AppWizard executable that contains the subproject DLL, as well as
the contained DLL

e The subproject AppWizard executable that does not contain a subproject
e Both AppWizard executables and the DLL

» To build the subproject DLL only

1 Select the subproject DLL with the configuration you want to build from the Set
Default Project Configuration drop-down list on the Project toolbar.

From the Build menu, choose Set Default Configuration, and choose from the list
in the Project Default Configuration dialog box.

2 From the Build menu, choose Build.

» To Build the subproject executable and its subproject DLL

1 Select a configuration of the subproject executable to build from the Set Default
Project Configuration drop-down list on the Project toolbar.

From the Build menu, choose Set Default Configuration, and choose from the list
in the Project Default Configuration dialog box.

32

Chapter 2 Working with Projects

2 From the Build menu, choose Build.

If the subproject DLL is out of date, the build system first builds it, and then it
builds the subproject executable. If it is not out of date, the build system builds
only the subproject executable.

» To build the second subproject executable only

1 Select a configuration of the second subproject executable to build from the Set
Default Project Configuration drop-down list on the Project toolbar.

From the Build menu, choose Set Default Configuration, and choose from the list
in the Project Default Configuration dialog box.

2 From the Build menu, choose Build.

» To build the entire suite of applications

1 Select a configuration of the empty top-level project to build from the Set Default
Project Configuration drop-down list on the Project toolbar.

From the Build menu, choose Set Default Configuration, and choose from the list
in the Project Default Configuration dialog box.

2 From the Build menu, choose Build.

The build checks the subprojects, working its way down the chain of
dependencies, and builds the selected configuration in all the subprojects that are
out of date. In this case, the build system takes no action for the top-level project
because there is nothing to build.

In this example, the top-level project does not build anything. You could choose to
have it build something, however, if the structure of your application suite lent itself
to that organization. You could, for example, choose to have it build an online help
file by adding the help source files to the top-level project and applying custom build
commands to the files to create the online help file as output.

If you want to force the system to rebuild all the output files, choose Rebuild All from
the Build menu. This method ensures, for instance, that you are always testing both
elements of your project workspace with the most up-to-date changes.

Note If you have an output executable created by a project that calls a DLL created by a
subproject, you need to do one of three things in order to run the executable and have it find
the DLL. You can add the output directory for the DLL to your path, you can specify the output
directory for the DLL to be same as the output directory for the executable, or you can move
the DLL after it is built to a directory on the path, using a custom build command. In the case
when you're debugging, it is preferable to set the output directories to be the same for the
executable and the DLL.

33

Visual C++ User's Guide

Managing Project Workspaces

Project workspaces contain projects that you can build. A project consists of a single
set of files and a set of one or more project configurations. Each project
configuration, together with the set of files, determines the binary output file that you
create.

When you create a project workspace, by default you always create one project with
two configurations for each platform:

o A version with debugging information included and optimizations disabled
(Debug)

e A version with no debugging information and optimizations enabled (Release)

After you have created that initial project workspace, you can add:

e New projects to your existing workspace.
e New configurations to an existing project.
¢ Subprojects to any project.

A subproject establishes a dependency of one project on another. A project that
builds an executable program that depends on a static library is one example. If
the static library is a subproject of the project that builds the executable program,
then the library will be updated before the executable program is built. Each
configuration of a subproject is made a dependency of the corresponding
configuration in the containing project. Building a configuration of the executable
program also builds the same configuration of the subproject.

Creating a Project Workspace

34

When you start a software development task with Microsoft Developer Studio, you
create a project workspace and an initial project in the workspace. The initial project
has Debug and Release configurations for each platform that you choose. Before you
create your project workspace, you should determine which of the basic scenarios for
project workspace organization suits your needs best. For further information, see
“Using Project Workspaces: Three Basic Scenarios” on page 26.

With Visual C++, there are essentially two ways to create a new project workspace
and the initial new project in the workspace:

e Choose an AppWizard, OLE ControlWizard, or Custom AppWizard project type.
These choices automatically create starter files with the appropriate classes using
the Microsoft Foundation Class Library (MFC). For more information on
AppWizard, see Chapter 1, “Creating Applications Using AppWizard.” For more
information on OLE ControlWizard, see “The OLE Control Tutorial” in Tutorials.
For more information on Custom AppWizard, see Chapter 24, “Creating Custom
AppWizards.”

- Chapter 2 Working with Projects

¢ Choose another project type. In this case, you must create all the files, and select
the files to add to the project.

When you create a new project workspace for Visual C++, Microsoft Developer
Studio always creates the following two files:

e Makefile. This file has the extension .MAK. It contains all commands, macro
definitions, options, and so forth to specify how to build all the configurations for
all projects in the project workspace.

e Workspace configuration file. This file has the extension .MDP. It contains
environment settings for Developer Studio, such as window sizes and positions,
insertion point locations, state of project breakpoints, contents of the Watch
window, and so on.

You cannot modify these files directly.

When you create a project workspace, you select a root directory in which to create
your project workspace directory. By default, Developer Studio selects the PROJECTS
directory under your installation directory. You can, however, choose another
directory. If you choose another directory, Developer Studio uses that choice for all
subsequent project workspaces that you create.

When you create a project workspace, you must specify a name that is used both for
the project workspace directory and the initial project in the workspace. Developer
Studio creates a subdirectory of this name in the root directory. This subdirectory
contains the files for your project workspace and the files for your initial project.

Developer Studio also specifies subdirectories for intermediate and final output files
for the various projects that you specify. These subdirectories enable you to build
various configurations of a project without overwriting intermediate and final output
files with the same names. With the Settings command on the Build menu, you can
open the General tab in the Project Settings dialog box and modify these
subdirectories, if you choose.

When you create the initial project in a new project workspace, you automatically
create two configurations: Debug and Release. The Debug version specifies settings
to include debugging information and to disable optimizations during the build. The
Release version doesn’t specify settings to include debug information, and enables
any optimizations that you have chosen.

If you use AppWizard, OLE ControlWizard, or Custom AppWizard to create the
initial project for Visual C++, these tools also write the starter files into the project
directory and subdirectories. If you use another project type, the files for the project
can initially be in the project directory or in any other directory that you want. You
can add files from any directory to a project. Adding files to a project does not move
the files on your disk drives. The project merely records the name and location of the
file and displays an icon in the project window to indicate the file’s relationship to
other files in the project. '

35

Visual C++ User's Guide

36

Note If you add files from directories above the project workspace directory, Developer Studio
uses absolute paths in the filenames for those files in the project's .MAK file. Because of the
absolute paths, it is difficult to share the .MAK file. Other developers in your group may have
other drive names or higher-level directory structures. See “Maintaining Makefiles Under
Source-Code Control” on page 128 in Chapter 4 for further information about sharing
makefiles.

» To create a project workspacé
1 From the File menu, choose New.
The New dialog box appears.
2 Select Project Workspace from the list.
3 Choose OK. '
The New Project Workspace dialog box appears.
4 From the Type list, select the type of application that you want to create.

5 In the Name text box, type the name for the project workspace . This name is also
used for the initial project in the Project Workspace window.

Developer Studio automatically creates a new subdirectory with this name for your
project workspace and for the files for the initial project.

6 Select the platform type or types from the Platforms list.

Note Win32 is the default platform. You must install the Microsoft Visual C++ Cross-
Development Edition for Macintoshe before other platforms are available.

7 If you want, type a different location for the root directory for this project
workspace in the Location text box, or choose the Browse button and select a
location.

8 Choose the Create button.

If you chose a project type that does not generate starter files, you now need to add
the files to your projects. See “Adding and Removing Files from Projects” on page 53
for more information.

Project Types

Each project has a project type, which you choose when you create the project. The
project type specifies what to generate and specifies some default settings required in
order to build that output type. It specifies, for instance, the settings that the compiler
uses for the source files, the libraries that the linker uses to build each project
configuration, the default locations for output files, defined constants, and so on.

~ You can select from the following nine project types in Visual C++ version 4.0:

MFC AppWizard (exe) Applications with a full graphical interface, developed with
MFC. Visual C++ automatically creates skeleton files with the appropriate classes
and adds the files to the project. The file extension is .EXE.

Chapter 2 Working with Projects

MFC AppWizard (dll) Function libraries developed with MFC. Visual C++
automatically creates skeleton files with the appropriate classes and adds the files
to the project. The file extension is .DLL.

OLE ControlWizard OLE controls, developed with MFC. Visual C++ automatically
creates skeleton files with the appropriate classes and adds the files to the project.
The file extension is .OCX.

Application Applications with a full graphical interface, developed with Windows
NT Win32 API functions or with MFC. The file extension is .EXE.

Dynamic-Link Library Function libraries developed with Windows NT Win32 API
functions that are called dynamically at run time by 32-bit Windows-based
programs. The file extension is .DLL.

Console Application Applications developed with Console API functions, which
provide character-mode support in console windows. The Visual C++ run-time
libraries also provide output and input from console windows with standard I/O
functions, such as printf() and scanf(). The file extension is .EXE.

Static Library Standard libraries created directly by the build, using the object files
and other library files belonging to the project. The generated library is composed
of all the object files in the project, all the object files generated by the project, and
all the libraries in the project. The file extension is .LIB.

Makefile Any type of command-line program or any makefile created by an
application other than the current version of Developer Studio. With this project
type, you can represent the project files, display class information, and view
resources in the Project Workspace window, as well as add this project as a
subproject to other projects.

Custom AppWizard A custom modification to MFC AppWizard. Visual C++
automatically creates starter files with the appropriate classes and adds the files to
the project. You can subsequently add these to the list of types displayed. The file
extension is .AWX.

In addition to these project types; you can create custom AppWizards, and add these
project types to the list.

Platform Types

The platform type for a project configuration specifies the operating environment. If
you have installed the Visual C++ Cross-Development Edition for Macintoshe, for
example, you can create project configurations for both Win32 and Macintosh
platforms. The platform type specifies default settings required by a given platform,
such as settings that the compiler uses for the source files, the libraries that the linker
uses to build each project configuration, the default locations for output files, defined
constants, and so on. It also specifies the tools required to build the final output files
for that platform. :

37

Visual C++ User's Guide

Saving a Project Workspace

You can save the workspace files and all other files that you have modified with the
Save All command.

» To save all files in a project workspace

‘e From the File menu, choose Save All.

Microsoft Developer Studio saves all files that you have modified — whether or
not they are included in a project — without any further action on your part.

Closing a Project Workspace

You can close the workspace files with the Close Workspace command.

» To close a project workspace
¢ From the File menu, choose Close Workspace.
If necessary, Microsoft Developer Studio prompts for actions concerning the

windows that are open and the files that you have modified — whether or not they
are included in a project.

Opening an Existing Project Workspace

38

Opening an existing project workspace loads all project workspace information, and
restores all the environment settings to their state when you last saved the project
workspace. '
» To open an existing project workspace
1 From the File menu, choose Open Workspace.
The Open Project Workspace dialog box appears.

The default selection in the List Files Of Type drop-down list is Project
Workspaces (MDP).

* 2 Select the drive and directory containing the project workspace that you want to

open.

3 Select the .MDP file for the project workspace from the File Name list and choose
OK.

Doubie-click the filename in the iist.
The Project Workspace window appears, as shown in Figure 2.1, and displays views
of the projects in the workspace.

Chapter 2 Working with Projects

Opening Other File Types
You can open file types other than project workspace files in the Project Workspace
window. In particular, you can open makefiles (MAK), or you can open executable
files to debug them or to view their resources.
» To open an existing makefile with the extension .MAK
1 From the File menu, choose Open Workspace.
The Open Project Workspace dialog box appears.
2 Select Makefiles from the drop-down list to display .MAK files.
3 Select the drive and directory containing the makefile that you want to open.
4 Select the .MAK file from the list and choose OK.
—or—
Double-click the filename in the list.

If you have a project workspace currently open, Developer Studio saves the
workspace and asks if you want to close document windows associated with that
workspace. ’

If your makefile has a different extension, or has the name MAKEFILE, you can use
the Open command on the Flle menu to open it as a makefile.
» To open an existing makefile without the extension .MAK
1 From ihe File menu, choose Open.
The Open dialog box appears.
2 Select All Files from the drop-down list to display all files.
3 From the Open As drop-down list, select Makefile.
4 Select the drive and directory containing the makefile that you want to open.
5 Select the file from the list and choose OK.
—or—
Double-click the filename in the list.

If you have a project workspace currently open, Developer Studio saves the
workspace and asks if you want to close document windows associated with that
workspace.

The Project Workspace window appears, and Developer Studio takes the appropriate
action for the file opened. For instance, if you open a project makefile from any
previous version of Visual C++, Developer Studio asks if you want to convert the
makefile to the current format. If you choose to convert the file, Developer Studio
creates a project workspace and its associated files. It then displays the Save As
dialog box so that you can save the new project workspace and its new associated
makefile under a new name. :

39

Visual C++ User's Guide

40

Note The new version of the makefile is incompatible with previous vefsions of Visual C++. If
you want to continue to use the original makefile with the previous version of Visual C++,
choose a different name under which to save new project workspace and makefile.

You should set the directories for intermediate and output files as well, so that
Developer Studio does not overwrite the files created by the previous version. See
“Selecting the Directories for Output Files” on page 59 for more information.

You can also open an executable file and create a project workspace for it in order to
debug it.
» To open an executable file for debugging
1 From the File menu, choose Open Workspace.
The Open Project Workspace dialog box appears.

2 Select Executable Files from the drop-down list to display .EXE files in the File
Name list.

3 Select the drive and directory containing the executable file that you want to open.
4 Select the .EXE file and choose OK. ‘
—or—
Double-click the filename in the list.

If you have a project workspace currently open, Developer Studio saves the
workspace and asks if you want to close document windows associated with that
workspace.

The Project Workspace window opens and displays the executable as a folder in the
FileView pane. You can now choose debugging commands from the Build menu, and
debug the executable. When you close the project workspace, Developer Studio asks
if you want to save the new project workspace associated with this executable file.
» To open an executable file to view its resources
1 From the File menu, choose Open.
The Open dialog box appears.
2 Select Executable Files from the drop-down list to display all files.
3 From the Open As drop-down list, select Resources.
4 Select the drive and directory containing the executable file that you want to open.
5 Select the file and choose OK.
—or—
Double-click the filename in the list.

The resource browser window appears and displays the resources in the
selected file.

. Chapter 2 Working with Projects

Specifying Subprojects in a Project Workspace
Subprojects indicate dependency relationships in the project workspace. When you
build a project containing a subproject, the subproject is built first if it is out of date,
and then the containing project is built. The dependency relationship is established by
configuration. That is, if you build the Debug configuration of the containing project,
you also build the Debug configuration of the subproject. Subprojects can contain
other subprojects. All subprojects also have a top-level representation in the FileView
pane.

When you specify a subproject, you can either create a new project and give it a
subproject relationship, or you can choose an existing project and give it a subproject
relationship.
“» To create a new project as a subproject
" 1 From the Build menu, choose Subprojects.
The Subprojects dialog box appears.

2 From the Select Project To Modify list, select the project that is to contain the new
subproject.

3 Choose the New button.

The Insert Project dialog box appears, with the Subproject option selected, and the
selected project displayed in the Subproject Of drop-down list. Retain these default
choices. ‘

In the Name text box, type a name for the subproject.

This name is appended to the existing project workspace directory to form the
fully qualified path for the new subproject directory.

5 From the Type list, select a project type.

-6 Select any of the available platforms for which to create initial Debug and Release
configurations.

7 Choose the Create button.

If you have chosen an application type for a type generated by AppWizard, OLE
ControlWizard, or Custom AppWizard, the dialog box(es) for that wizard appear.

After you have responded to any wizard dialog boxes, the Subprojects dialog box
reappears. Your newly created subproject is selected for inclusion.

8 Choose OK.

» To include an existing project as a subproject
1 From the Build menu, choose Subprojects.
The Subprojects dialog box appears.

2 From the Select Project To Modify list, select the project that is to contain the
subproject.

L)

Visual C++ User's Guide

The Select Subprojects To Include list displays the projects that you can include as
subprojects of the selected project. Projects that are already subprojects for this
project have a check next to them. '

3 From the Select Subprojects To Include list, select the project (or projects) that you
want to include as a subproject.

4 Choose OK.

If you have included a project in another project as a subproject, you can remove it
from the project, and by doing so, remove its dependency relationship. This does not,
however, remove the project from the project workspace.

- » To remove a subproject from a project

1 From the Build menu, choose Subprojects.
The Subprojects dialog box appears.

2 From the Select Project To Modify list, select the project that now contains the
subproject.

The Select Subprojects To Include list displays projects that are already subprojects
with a check next to them.

3 From the Select Subprojects To Include list, select the prOJect (or prOJects) that you
want to remove as a subproject.

4 Choose OK.

Working with Views

42

In the Project Workspace window, Developer Studio creates panes, which you access
from the tabs at the bottom of the window. Certain panes contain a specific view of
all the projects in your workspace. Each pane has at least one top-level folder, which
contains the elements that make up that view of the project; expanding the folder
displays the details of that view. In a project workspace containing Visual C++
projects, for instance, the Project Workspace window contains the following panes by
default.

Pane Title Description

FileView Displays the projects that you have created. Expanding the top-level
folders shows files within the project.

ResourceView Displays the resource files included in your projects. Expanding the
top-level folders shows the resource tvpes.

ClassView Displays the C++ classes defined in your projects. Expanding the top-
level folders shows the classes; expanding a class shows its members.

InfoView Displays the table of contents for Books Online. Expanding the top-
level folders shows books and topics.

Chapter 2 Working with Projects

You can switch from one pane to another by selecting a tab at the bottom of the
Project Workspace window, as shown in Figure 2.6. You can also switch using
CTRL+PAGE UP and CTRL+PAGE DOWN.

Figure 2.6 Project Workspace Window

/—’ Project toolbar

[Myproi! - Win32 Debug Select default project
configuration list

projl classes |
CAboutDlg
& CAboutDIg()

@@ DoDataExchange()
CChildFrame
CMainFrame X i
CMyproilApp Project workspace window
CMyproj1 Doc
CMyprojlView

Tabs to access panes

Each pane contains a hierarchical (tree), view consisting of various nodes. You can
expand the nodes in the hierarchy to display their contents, or collapse the nodes to
display the organization. The top-level node (or nodes) in a pane is the folder. Each
folder can contain a variety of items. Some items are container items, such as
resource scripts, which contain resources used in the program. Container items can
also be expanded. A bottom-level node, which you cannot further expand, represents
an editable item. You open the item in an appropriate editor — text editors for
source files or classes, dialog box editor for dialog box resources, and so on — to edit
the resource.

9 Tip While using any pane in the Project Workspace window, you can click the right mouse

il button when the mouse pointer is over the selection to display a pop-up menu of frequently

used commands. The available commands depend on the current selection. For example, if

the selection is a source file, the pop-up menu shows the Properties command and several
commands also available on the Build menu, such as Build and Compile.

Using Folders

The top-level node (or nodes) in a pane is the folder. Each folder can contain a
variety of items, including other folders. You can open a folder to display the items
that it contains, or you can close a folder to simplify the view in the pane.

The types of panes displayed in the Project Workspace window depend on the type of
project. In Visual C++ projects, for instance, Microsoft Developer Studio displays a
pane that contains the classes in the project.

43

Visual C++ User's Guide

» To.open a folder
¢ Double-click the folder.
—or—
o Click the plus sign (+) to the left of the folder.

» To close a folder
e Double-click the folder.

¢ Click the minus sign (-) to the left of the folder.

Working with Items

Each folder in a pane can contain a variety of items. Some items are container items,
such as resource scripts, that contain resources used in the program. Container items
can be expanded in the same way folders can be expanded. A bottom-level node that
you cannot expand further represents an editable item. Rather than expanding these
nodes, you open the item in an appropriate editor—text editors for source files or
classes, dialog box editor for dialog box resources, and so on—to edit the resource.
All items have properties, which you can view and edit on an item’s property page(s).
Each type of item has a distinct set of properties.

» To open an editable item

e Double-click the item.

The appropriate editor for the item opens and displays the item.
» To view or change an item’s properties
e Select the item, and then press ALT+ENTER.

o Select the item, click the right mouse button, and from the pop-up menu, choose
Properties.

e Select the item, and from the Edit menu, choose Properties. .

The property page for the item appears. If the item has editable properties, you can
edit them on the property page, and those edits take immediate effect.

» To delete resources or fileg from a folder

¢ Select the item, and press the DEL key.

2]

Chapter 2 Working with Projects

Shortcut Methods for Views

_ While using any view in the Project Workspace window, you can click the right
mouse button when the mouse pointer is over the selection to display a pop-up menu
of frequently used commands. The commands available depend on the current
selection. For example, if the selection is a source file, the pop-up menu shows the
Properties command and several commands also available on the Build menu, such

as Build and Compile.

You can use the shortcut methods listed in Table 2.1 to navigate in the various views,
to expand and contract nodes, to select items, and so on.

Table 2.1 Shortcut Methods for Views

Method Result

HOME Moves to first node in tree

END Moves to last node in tree

PAGE UP Moves up one page (number of visible items determines page
size)

PAGE DOWN Moves down one page (number of visible items determines page
size)

CTRL+PAGE UP Activates previous Project Workspace window pane

CTRL+PAGE DOWN Activates next Project Workspace window pane

UP ARROW Moves to previous node in list

DOWN ARROW Moves to next node in list

CTRL+UP ARROW Moves focus up one item

CTRL+DOWN ARROW Moves focus down one item

SHIFT+UP ARROW Extends selection up one item

SHIFT+DOWN ARROW Extends selection down one item

LEFT ARROW Collapses current node if possible; otherwise, moves to parent
node

RIGHT ARROW Expands current node if possible; otherwise, moves to first child
node '

BACKSPACE Moves to parent node

ENTER - Performs default action on node (opens/closes folder, opens
item in the editor, and so on)

PLUS SIGN Expands current node if expandable

MINUS SIGN Collapses current node if collapsible

ASTERISK Fully expands current node, including all child nodes

Visual C++ User's Guide

Table 2.1 Shortcut Methods for Views (continued)

Method ' Result
Click plus sign Expands current node if expandable
Click minus sign Collapses current node if collapsible _
Double-click Performs default action on node (opens/closes folder, opens

' item in the editor, and so on)
CTRL+click : Selects or deselects item (noncontiguous selection)
SHIFT+click Selects block from current selection to item (contiguous

selection)

Using FileView

The FileView pane shows relationships among the source files and the dependent

~ files used to build all project configurations included in the project workspace. The
relationships in FileView are logical relationships, not physical relationships, and do
not reflect the organization of files on your hard disk. FileView also shows
subprojects within the project workspace, if any exist.

The default project configuration in the workspace is indicated in FileView by bold
type. You can select the default configuration either by using the pop-up menu in
FileView .or by using the Select Default Project Configuration drop-down list on the
Project toolbar. '

When you expand the top-level folder in FileView, it displays the files included in the
project, and the Dependencies folder. If you expand the Dependencies folder, it
displays files that the source files in the project depend on, such as .H or .ICO files.
Figure 2.7 shows an expanded FileView.

Figure 27 The FileView Pane

E-&3 Myprojl files
. i B ChildFrm.cpp
~ B MainFrm.cpp
) Myproil.cpp

) Myprojl.ic

Myproj1Doc.cpp
] Myproj1View.cpp
ReadMe.txt
) StdAfx.cpp
A Dependencies

FileView uses file icons to convey additional information about the files in the
project. Table 2.2 shows the icons and their meanings.

46

Chapter 2 Working with Projects

Table 2.2 File Icons in FileView

lcon Meaning

Developer Studio can use this file in a build, and it is included in the build
for this project.

Developer Studio can use this file in a build, but it is not included in the
build for this project.

Developer Studio uses this file as an explicit dependency in a project.

Developer Studio cannot build this file using the default tools. Files in this
category might include documentation or specifications. You could specify
custom tools for these files.

i Developer Studio refers to this project as a subproject of the project that

contains it. When Developer Studio builds the containing project, it first
builds the output of this subproject if it is out of date with respect to its input
files.

If you have installed a source-code control system that conforms to the Microsoft
Common Source Code Control Interface, the icons also represent some source-code
control states. A grayed icon indicates that a file is under source-code control. A
check next to the icon for a file under source-code control indicates that you have the
file checked out.

Using ClassView

Visual C++ derives the ClassView pane from the contents of the source files included
in the project workspace. It shows all the C++ classes for which definitions are
available, and the members of those classes. The relationships in ClassView are
logical relationships, not physical relationships. ‘

Note Visual C++ computes the contents of ClassView as a background process. This may
mean that there is some delay from the time you open a project workspace or save a revised
file until the view is ready to be displayed. If you are completing other processes that use
significant computing resources, the delay may increase.

In ClassView, you can:
o Add member functions to the selected class.
¢ Add member variables to the selected class.
¢ Go to the definition of the class or member.
¢ Qo to the references to the class or member.
¢ Display derived class or base class graphs.

- e Set a breakpoint on a member function.

The folder name shown in bold type in ClassView represents the default project
configuration. When you expand the top-level folder in ClassView, it displays the

a7

Visual C++ User's Guide

classes included in that project. If you expand any class, it displays the members in
that class. Figure 2.8 shows an expanded ClassView.

Figure 2.8 ClassView

E}’& Myprojl classes
E£1-®2 CAboutDlg
i~ & CAboutDlg)

.. % DoDataExchange()
CChildFrame
CMainFrame
CMyprojlApp

o
E-%3

-5 CMyproj1Doc
£3-B3 CMynrojlView
& G

§ theApp

ClassView uses icons to convey additional information about the classes and class
members in the project. Table 2.3 shows the icons and their meanings.

Table 2.3 Icons in ClassView

lcon Meaning

i Class

LA Protected member function
= Private member function

L Public member function
¢ Protected member variable
& Private member variable
@ Public member variable

You can group the items in a class either alphabetically by name or alphabetically in
access specifier groups— that is, private, protected, or public.
» To group members in a class

1 Select one or more class nodes.

2 Click the right mouse button to display the pop-up menu.

3 Choose Group By Access to toggle the grouping.

If the command has a check, the members are already grouped by access specifier;
if not, they are giouped ailphabeticaily.

18

Chapter 2 Working with Projects

Adding Members from ClassView

From ClassView, you can add a member function or a member variable to the selected
class. This mechanism allows you to readily add member functions that do not handle
messages or member variables that are not used in a data-exchange and data-
validation context.

Note If you want to add a message-handler function for user interface objects or member
variables for data exchange and data validation, you should use.ClassWizard. ClassWizard is
specifically designed to take the relevant information and use it to insert elements in your
source files at the appropriate focations. ’

» To add a member function
1 Select the class to which you want to add a function.

2 With the mouse pointer over the selected class, click the right mouse button to
display the pop-up menu, and choose Add Function.

The Add Member Function dialog box appears.
3 In the Function Type text box, type the function’s return type.

4 In the Function Declaration text box, type the function declaration. The Function
Type text box contains the return type for the function, so here you type only the
function name, followed by a list of the names and types of formal parameters
enclosed in parentheses.

5 Select an access specifier for the function from the Access group of options.
6 If you want a staiic function, seleci the Stactic check box.

7 If you want a virtual function, select the Virtual check box.

8 Choose OK. '

This procedure adds a declaration to the header file for the class, and a corresponding
function body in the implementation file for the class.

» To add a member variable
1 Select the class to which you want to add a variable.

2 With the mouse pointer over the selected class, click the right mouse button to
display the pop-up menu, and select Add Variable.

The Add Member Variable dialog box appears.
3 In the Variable Type text box, type the Variable type.
4 In the Variable Declaration text box, type the variable name.

49

Visual C++ User's Guide

5 Select an access specifier for the variable from the Access group of options.
6 Choose OK.

This procedure adds a definition to the header file for the class.

See Also Working with Classes, Adding a New User-Interface Class, Adding a
Message Handler, Defining Member Variables, Access Specifiers, Methods, Storage-
Class Specifiers, C++ Declarations, C++ Definitions, Controlling Access to Class
Members

Browsing Symbols from ClassView
From ClassView, you can get information about the use of the classes, functions, and
variable symbols in your application. You can select a symbol, and then automatically
open that source file to the definition or declaration of the symbol, or find references
to those symbols in your application’s source files.
» To find a definition or declaration

1 Select the symbol for which you want to find the definition or declaration.

2 With the mouse pointer over the selected class, click the right mouse button to
display the pop-up menu, and select Go To Definition or Go To Declaration.

Double-click the name of the symbol.

Visual C++ opens a text editor window and displays the source file containing the
definition or declaration, with the insertion point positioned there.

Note Visual C++ computes the contents of ClassView as a background process. This may
mean that there is some delay from the time you open a project or save a revised file until the
view is computed, and you can find a definition or declaration. If you are completing other
processes that use significant computing resources, the delay may increase.

» To find references
1 Select the symbol for which you want to find references.

2 With the mouse pointer over the selected class, click the right mouse button to
display the pop-up menu,and select References.

Note If you have not built your application with the option to build a browse information
file, a message box appears, asking if you want to build the browse information file. If you
choose Yes, it builds the browse information file, and you can then find references. If you
choose No, the references are not availaie.
The Definitions And References browse information window appears, with the
symbol that you chose selected.

See Also Browsing Through Symbols, Finding Definitions and References

50

Chapter 2 Working with Projects

Displaying Graphs from ClassView

From ClassView, you can display graphs showing the class derivations and the
function-calling order in your application.

Note If you have not built your application with the option to build the browse information file,
a message box appears, asking if you want to build the browse information file. If you choose
Yes, it builds the browse information file, and you can then find references. If you choose No,
the references are not available. Building a browse information file increases your build times.

» To display a class graph
1 Select the class for which you want to display a graph.

2 With the mouse pointer over the selected class, click the right mouse button to
display the pop-up menu, and choose Base Classes to display a graph of the
derivation for this class, or Derived Classes to display a graph of classes derived
from this class.

The browse information window appears, with a graph for the class that
you chose.

3 Select the function for which you want to display a graph.

4 With the mouse pointer over the selected class, click the right mouse button to
display the pop-up menu, and choose Calls to display a graph of the functions that
this function calls, or Called By to display a graph of functions that call this
function.

The browse information window dppears, with a graph for the function that
you chose.
See Also Browsing through Symbols, Displaying Function Information

Setting Breakpoints in ClassView

From ClassView, you can quickly set breakpoints for use in the integrated debugger.
You can set breakpoints on the definition of member functions.

» To set a breakpoint

e Select the member function, click the right mouse button to display the pop-up

menu, and choose Set Breakpoint.

The breakpoint is set at the definition, and the breakpoint symbol appears in the
source file at the breakpoint location.

Using ResourceView

Microsoft Developer Studio derives the ResourceView pane from the contents of the
resource file (or files) included in the project workspace. ResourceView displays all
the resource types and all the individual resources of each type. ResourceView is
described fully in Chapter 5, “Working with Resources.”

51

Visual C++ User's Gﬁide

Using InfoView

The InfoView pane shows the organization of Books Online. You can display any
- topic in its hierarchy. InfoView is described fully in the section of Books Online titled
Using InfoViewer. '

Using Projects

A project consists of a project configuration and a set of files, which together
determine the final binary output file that you create. Developer Studio creates the
final output file from the following elements:

e Settings for the platform for which you are building, such as the locations and
names of libraries

o Settings for the type of binary output file, such as application, static library,
dynamic-link library, and so on

e Tools — compiler, linker, and so on — required to build for the specified platform,
as well as their settings '

e The set of source files

The information for building each individual project is stored in the makefile for the
project workspace, along with the information for all other projects in the workspace.

Inserting and Deleting Projects

You can insert new projects into your project workspace. You could, for instance,
create an initial project with Debug and Release configurations specifying an
application for the Win32 environment, and add source files to the projects. Later,
within the project workspace you could create a project specifying a DLL with Debug
and Release configurations for the Win32 environment, and add an entirely disjunct
set of files to this project.
» To insert a new project into an existing project workspace

1 From the Insert menu, choose Project.

The Insert Project dialog box appears, with the Top-Level Project option selected.
2 In the Name text box, type a name for the project.

This name is appended to the existing project workspace directory to form the
fully qualified path for the new project directory.

3 From the Type list, select the project type.

52

Chapter 2 Working with Projects

4 Select any of the available platforms for which you want to create initial Debug
and Release configurations.

5 Choose the Create button.
If you have chosen an application type for a type generated by AppWizard, OLE
ControlWizard, or Custom AppWizard, the dialog box(es) for that wizard appear.

The new project that you just created becomes the default project in the project
workspace. If you chose a type other than AppWizard, Custom AppWizard, or OLE
ControlWizard, you must now add files to your project. You can then build your new
project by choosing Rebuild All from the Build menu.
» To delete a project from a project workspace

1 From the Build menu, choose Configurations.

The Configurations dialog-box appears.
2 In the Projects And Configurations box, expand the project that you want to delete.

Projects are the leftmost entities in the tree. You can click the plus or minus sign
to expand or contract them to show or hide their configurations.

3 Select each configuration in the project you want to delete in turn, and choose the
Remove button.

Respond Yes to the message box that appears each time. When you have removed
the last configuration, the project is removed as well.

4 Choose the Close button.

Note Deleting a project removes it as a subproject from any other project in the project
workspace. '

Adding and Removing Files from Projects

When you add a file to a project, you add the file to all project configurations in that
project. For instance, if you have a project named MyProject, with Debug and Release
configurations, and an additional project configuration named MyShipProj based on
the Release configuration, adding a file adds it to all those project configurations.

» To add files to a project

1 From the Set Default Project Configuration drop-down list on the Project toolbar,
select the project to which you want to add files.

If the Project toolbar is not displayed, choose Toolbars from the View menu, and
select Project from the list.

2 From the Insert menu, choose Files Into Project.
The Insert Files Into Project dialog box appears.
3 Select the file type to display.

53

Visual C++ User's Guide

54

4 If necessary, select the drive and directory to view.

Note If you add files from directories above the project workspace directory, Microsoft
Developer Studio uses absolute paths in the filenames for those files in the project's .MAK
file. Because of the absolute paths, it is difficult to share the .MAK file. Other developers in
your group may have other drive names or higher-level directory structures.

5 Select one or more files from the File Name list. You can use the SHIFT or CTRL
key in conjunction with the mouse to make multiple selections.

6 Choose OK.

This procedure adds the files to the selected project.

Repeat the steps for all types of files that you want to add, or to add files from
different subdirectories. When you close the Files Into Project dialog box, Visual C++
automatically scans the files for dependencies. It adds all the included files that it
finds to the Dependencies folder for each project to which you’ve added files.

“Visual C++ automatically scans the added project files recursively for #include

directives, both bracketed (<incl.h>) and quoted ("incl.k"). It scans both source files
(.C, .CPP, or .CXX) and resource files (RC or .R), and adds all the included files that
it finds to a Dependencies folder. The files in this folder can have extensions of .H,
HXX, .INC, .FON, .CUR, .BMP, .ICO, .DLG, or .TLB. You cannot directly add or
delete the files included in this folder.

Visual C++ also refers to the following two exclusion files:

SYSINCL.DAT This file, which contains a default list of system include files, is
installed by the setup program on your computer in the directory in which you
installed Microsoft Developer Studio (MSDEV.EXE).

MSVCINCL.DAT This is a text file that you can create and put in your Windows
directory. You can list in it additional files that you want to exclude, such as
headers for external class libraries or some of the include files in a large project.
You should use this file for additions because SYSINCL.DAT may be overwritten
if you reinstall Visual C++, if you modify your installation with Setup, or if you
update your installation. If you use the Developer Studio text editor to create this
file, you must exit Developer Studio and then restart it for the file to become
effective.

These lists should contain only files that are not likely to change often. Whenever
Visual C++ updates dependencies, it excludes the files in these lists from dependency
scanning and does not display them in the Dependencies folder. If you change only
files in either of these lists, you must choose Rebuild All from the Build menu in
order to build your selected project. If you merely choose Build, the dependency
folder has no changes in it, and Visual C++ reports that your project is up to date.
Alternatively, you could select the source files that include the changed dependencies,
and choose Compile from the pop-up menu in order to explicitly build those files.

Chapter 2 Working with Projects

After those files have been built, choose Build from the Build menu to build the
project.

If you create a new source file, or open a source file that is not included in the current
default project, you can quickly add it to a project with the pop-up menu.
» To add an open source file to a project

1 With the mouse pointer in the source file, click the right mouse button.

2 From the pop-up menu, choose Add To Project, and select the project name from
the cascading menu.

» To remove files from a project

o Select the file in FileView, and from the Edit menu, choose Delete.
—Or—

o Press the DEL key.

You can hold down the CTRL or SHIFT keys and use the mouse to select multiple files
in the Project Workspace window.

p Tip Press CTRL and click a selection to toggle the selection state for the clicked item. You can
oMl use this method to quickly remove a file from a multiple selection.

» To move or co'py files from one project workspace to another

1 In the FileView pane of the Project Workspace window, select the files that you
want to move or Copy.

You can hold down the CTRL or SHIFT keys to select multiple files in the Project
Workspace window.

2 From the Edit menu, choose Cut if you want to move the files, or Copy if you want
to copy the files. '

3 Close the current project workspace.

4 Open the destination project workspace.

5 Select the project to receive the files.

6 From the Edit menu, choose Paste.
If you move or copy selections that include files in Dependencies folders, Visual C++
explicitly moves or copies only the source files. Visual C++ automatically updates the

dependencies before building the project, however, and they appear in the appropriate
Dependencies folders.

Creating and Deleting Configurations in a Project

A project configuration consists of settings that determine the characteristics of the
final output file for a project. When you create a new project configuration for a
project, it initially has the settings from an existing project configuration. The new

55

Visual C++ User's Guide

56

project configuration always uses the same set of files as that existing project
configuration. You must also specify a platform for the configuration.

A new configuration is a way to make a variation of a project that you are currently
building. It could merely specify a different platform, or it could specify different
optimization options, for instance.
» To create a project configuration
1 From the Build menu, choose Configurations.
The Configurations dialog box appears.

2 In the Projects' And Configurations box, select the project to which you want to
add a configuration.

Projects are the leftmost entities in the tree. You can click the plus or minus sign
to expand or contract them to show or hide their configurations.

3 Choose the Add button.
The Add Project Configuration dialog box appears.
4 In the Configuration text box, type a new name.

This name, along with the platform type, will be used to 1dent1fy the new
configuration.

5 From the Copy Settings From drop-down list, select the configuration from which
the new configuration copies its initial settings.

6 From the Platform drop-down list, select a platform for the new configuration.

You can select the same platform as the project on which you are basing the new
one if you want merely a variation of the existing settings.

7 Choose OK.
The Configurations dialog box reappears.
8 Choose the Close button.
A new project configuration is now available from the Set Default Project
Configuration drop-down list on the Project toolbar. You can now choose new

settings for this configuration, and those settings will be retained in the project
configuration.

Note If you choose settings incompatible with the project type for the project or platform on
which you based this configuration, you may not get the result that you expect.

If you add files to the project containing this configuration, those files are also used to
build the configuration.
» To prevent a file from being built in a configuration
1 From the Build menu, choose Settings.
The Settings dialog box appears.

Chapter 2 Working with Projects

2 Select the General tab.

3 In the Settings For pane, select the file that you want to exclude from the build.
4 Select the Exclude File From Build check box.

5 Choose OK.

v

To delete a configuration from a project
1 From the Build menu, choose Configurations.
The Configurations dialog box appears.

2 In the Projects And Configurations box, expand the project from which you want
to delete a configuration.

Projects are the leftmost entities in the tree. You can click the plus or minus sign
to expand or contract them to show or hide their configurations.

3 Select the configuration that you want to remove.
4 Choose the Remove button.

Respond Yes to the message box that appears.
5 Choose the Close button.

Updating Dependencies in a Project

After editing one or more source files to add #include directives, you can explicitly
update the project dependencies to add included files to the appropriate dependency
folders.

» To update dependencies in all the files in the workspace
1 From the Build menu, choose Update All Dependencies.
The Update All Dependencies dialog box appears.
2 In the Projects box, select the project you want to update.
3 Choose OK.

Visual C++ scans the project files recursively for #include directives, both bracketed
(<incl.h>) and quoted ("'incl.h"). It also refers to the following two exclusion files:

SYSINCL.DAT This file, which contains a default list of system include files, is
installed by the setup program on your computer in the directory in which you
installed Microsoft Developer Studio (MSDEV.EXE).

MSVCINCL.DAT This is a text file that you can create and put in your Windows
directory. You can list in it additional files that you want to exclude, such as
headers for external class libraries or some of the include files in a large project.
You should use this file for additions because SYSINCL.DAT may be overwritten
if you reinstall Visual C++, if you modify your installation with Setup, or if you
update your installation. If you use the Developer Studio text editor to create this

57

Visual C++ User's Guide

file, you must exit Developer Studio and then restart it for the file to become
effective. '

These lists should contain only files that are not likely to change often. Whenever
Visual C++ updates dependencies, it excludes the files in these lists from dependency
scanning and does not display them in the Dependencies folder. If you change only
files in either of these lists, you must choose Rebuild All on the Build menu in order
to build your selected project. If you merely choose Build, the dependency folder has
no changes in it, and Developer Studio reports that your project is up to date.

Specifying Settings for a Project Configuration

58

Specifying settings at the project configuration level is sufficient for most projects. -
But if you want, you can specify different settings within a project configuration for
various files.

Project configurations have a hierarchical structure of settings. The settings specified
at the project configuration level apply to all files within the configuration. However,
you can specify settings for individual files if you need to compile files with settings
different from the general configuration settings. For instance, if you specify Default
optimizations for a configuration, all files contained within the configuration use
Default optimizations. You can, however, specify specific optimization settings — or
the setting for no optimizations at all — for any individual files in the configuration.
The settings that you specify at the file level in the project configuration override
options set at the configuration level. '

You can specify some types of settings, such as linking, only at the project
configuration level.

You can specify settings at the following levels within a project configuration:

¢ Project configuration level. Settings specified at this level apply to all actions. Any
settings specified for the project configuration apply to every file in the project
unless overridden at the file level.

~* Filelevel. Settings specified at this level apply to file-level actions, such as

compiling. Any settings specified for the file apply only to that file and override
any settings specified at the project configuration level.

Chapter 2 Working with Projects

Selecting the Directories for Output Files
You can select the directories in which to put the intermediate and final output files
for each project configuration. By putting these files in different directories, you can
maintain copies of the same files built in different ways — for instance, the Debug
and the Release versions of your project.
» To select output directories ‘

1 From the Build menu, choose Settings.

The Project Settings dialog box appears, as shown in Figure 2.9.
2 In the Settings For pane, select the node for which you want to set directories.

If you select the project configuration node (highlighted in the left pane of Figure
2.9, below), you can set both intermediate and output directories; if you select a
file, you can set only the intermediate directory.

3 Select the General tab.

The General tab is one of several that contain options for the project. This tab
specifies how the project uses the Microsoft Foundation Class Library (MFC) and
which directories the project uses for intermediate and final output files.

4 In the Intermediate Files text box, type the directory name for the intermediate
files (.OBIJ files, for instance).

5 If you are setting directories for the project level, type the directory name for the
final output files (.EXE files, for instance) in the Output Files text box.

6 Choose OK.

Figure 2.9 Project Settings Dialog Box

B

B ManFm.cpp
@ Myproil.cpp
B Myproil.ic Y08 MLl
% m:g;ggaz‘-:z::” Shared DIl [mic40(d)dl)
B MyproitView.cpp

ReadMe.tst

3 Myprojl - Win32 Release (M;

59

Visual C++ User's Guide

Specifying Project Configuration Settings
You can set options for a project configuration only when it is selected.
» To specify project settings
1 From the Build menu, choose Settings.
The Project Settings dialog box appears, as shown in Figure 2.9.

2 In the Settings For pane, select the project configuration, such as Win32 Debug
shown in Figure 2.9.

You can also select multiple project configurations, and specify settings common
to all the configurations.

3 From the tabs at the top of the dialog box, select the type of settings that you want
to specify.

4 Specify the settings you want on the selected tab.

‘On the C/C++.and Link tabs in Visual C++, you can select from the Category list
at the top of the tab to set options in various categories, if necessary.

For more information on linker or Visual C++ compiler settings, see option
descriptions in Chapter 20, “Setting Compiler Options,” and Chapter 21, “Setting
Linker Options.”

When you have completed specifying the settings on a tab, you can select another
and specify additional settings. CTRL+TAB displays the next tab, and
CTRLASHIFT+TAB displays the previous tab.

5 When you have completed setting options, choose OK.

Note If you specify settings incompatible with the project type that you chose when yo'u
created your project, you may not get the result that you expect.

Specifying File Settings
A file is built with the settings from a project configuration when you build that
configuration. However, for each individual file, you can specify settings that are
different from, or in addition to, the project configuration’s settings.
» To set file options in a project
1 From the Build menu, choose Settings.
The Project Settings dialog box appears, as shown in Figure 2.9.

2 In the Settings For pane, éxpaind the project, such as MyProj1 Win32 Debug
shown in Figure 2.9, and select the file or files.

3 From the tabs at the top of the dialog box, select the type of options that you want
to display.

60

Chapter 2 Working with Projects

4 Set the options you want on the selected tab.

On the C/C++ tab in Visual C++, you can select from the Category list at the top
of the tab to set options in various categories, if necessary.

For more information on linker or Visual C++ compiler settings, see option
descriptions in Chapter 20, “Setting Compiler Options,” and Chapter 21, “Setting
Linker Options.”

When you have completed specifying the settings on a tab, you can select another
and specify additional settings. CTRL+TAB displays the next tab, and
CTRL+SHIFT+TAB displays the previous tab.

5 When you have completed spet:ifying setfings, choose OK.
Note If you specify settings incompatible with the project type that you chose when you
created your project, you may not get the result that you expect.

You can also specify common settings across multiple projects or project
configurations. Within the projects in your project workspace, you can select any
combination of files. '

» To specify file settings in multiple project configurations
1 From the Build menu, choose Settings.

The Project Settings dialog box appears, as shown in Figure 2.9.

2 In the Settings For pane, expand the project configuration, such as MyProj1
Win32 Debug shown in Figure 2.9, and select the file or files.

Click the plus signs or double-click the node names to expand the graph of project
files if necessary, and use the SHIFT and CTRL keys with the mouse to make
multiple selections.

3 From the tabs at the top of the dialog box, select the type of settings that you want
to display. The visible tabs depend on the files or configurations that you have
selected. Only those tabs with settings common to the selections appear.

4 Specify the settings you want on the selected tab. Only the settings common to all
the selections-are available.

On the C/C++ tab in Visual C++, you can select from the Category list at the top
of the tab to specify settings in various categories, if necessary.

For more information on linker or Visual C++ compiler settings, see option
descriptions in Chapter 20, ”Setting Compiler Options,” and Chapter 21, “Setting
Linker Options.” '

When you have completed specifying the settings on a tab, you can select another
and specify additional settings. CTRL+TAB displays the next tab, and
CTRL+SHIFT+TAB displays the previous tab.

61

Visual C++ User's Guide

62

5 When you have completed specifying settings, choose OK.

Note If you specify settings incompatible with the project type that you chose when you
created your projects, you may not get the result that you expect.

Specifying Custom Build Tools

You can specify custom build tools for use with any project or with any 1nd1v1dual
files that do not already have a tool associated with them. These tools then process
the files at the appropriate point in the build if the output file is out of date with
respect to the input file. For instance, you can add an .L file to your project, specify a
lexical analyzer to process the file and produce a .Y output file, and then specify a
parser generator to process that file to create a C source-code file for Visual C++. You
could also select the output file for a configuration, to copy it to a specific directory
for testing, for instance. Microsoft Developer Studio provides a number of macros for
use in these commands.

Note By default, a number of file types have tools associated with them, such as .C or .CPP
files in Visual C++. You cannot specify a custom tool for these files.

You can specify more than one custom tool for a file or project, and the tools run in
the order that you specify them.

The custom tools run on files only in builds of the configurations in which you
selected the files. That is, if your file set includes an .L file, and you select it only in
one configuration, the tools that you specify run only in that configuration. -
» To specify custom build tools
1 From the Build menu, choose Settings.
The Project Settings dialog box appears.

2 In the Settings For pane, select the source files or output files from project
configurations for which you want to specify a custom tool or tools.

Selecting the top-level node specifies the output file for a configuration.
3 Select the Custom Build tab.

If you have made multiple selections, the Input File text specifies multiple
selections.

4 In the Description text box, type a description.

This description appears on the Build tab of the Output window when the
command runs.

5 In the Build Command(s) list, select the first line, and type the command that you
want to run on the input file.

If you type more than one command in the grid, the build process runs them in
order, from top to bottom.

Chapter 2 Working with Projects

Note The command must include all required options, including the input file name or
names and output file name or names. You may want to use a directory macro to specify
the location for the output file.

6 In the Output File(s) list, select the first line, and type the name of an output file
that is created by the build commands specified in the Build commands grid.

If the commands create more than one output file, type additional names in the
subsequent lines of the grid.

7 Choose OK.

For example, assume that you want to include in your project a file named
MYLEXINF.L. You first want a lexical analyzer to process MYLEXINEL to produce
a .Y file with the same base name (MYLEXINFE.Y). You then want a parser generator
to process MYLEXINE.Y to produce a .C file. First, you add MYLEXINEL and
MYLEXINF.C to your project using the Files Into Project command on the Insert
menu. (If you have not already created a version of MYLEXINF.C, Microsoft
Developer Studio recognizes that and asks if you want to add a reference to the file
anyway.) You then choose the Settings command from the Build menu, and select
MYLEXINF.L in the appropriate configuration. Next, select the Custom Build tab,
and type commands similar to the following in the Build Command(s) list:

Texer $(InputPath) $(IntDir)\$(InputName).y
parser $(IntDir)\$(InputName).y $(ProjDir$)\$(InputName).c

This puts the intermediate output, MYLEXINE.Y, in the directory used for
intermediate files, and generates MYLEXINF.C in the project directory.

In the Output File(s) list, type $(ProjDir)\$(InputName).C. When you build
this project, the build system checks the date of MYLEXINFE.C. If its date is earlier
than MYLEXINF.L, the build system runs these custom commands to rebuild
MYLEXINE.C. ,

Macros for Custom Build Commands

You can use the File and Directory drop-down lists to insert any of the following
directory and filename macros in either grid at the current insertion point location.
The File and Directory drop-down lists are on the Custom Build tab of the Project
Settings dialog box, accessed with the Settings command from the Build menu.

Label Macro . Description
Intermediate $(IntDir) Path to the directory specified for
" intermediate files, relative to the project
directory
Output $(OutDir) Path to the directory specified for output

files, relative to the project directory

Target $(TargetDir) Fully qualified path to the directory
: specified to output files

Input $(InputDir) Fully qualified path to the project directory
63

Visual C++ User's Guide

Label Macro Description

Project $(ProjDir) Fully qualified path to the project directory

Workspace $(WkspDir) Fully qualified path to the project directory

Microsoft $(MSDevDir) Fully qualified path to the installation

Developer directory for Microsoft Developer Studio

Remote Target $(RemoteDir) Fully qualified path to the remote output
file ‘

Target Path $(TargetPath) Fully qualified name for the project output
file

Target Name $(TargetName) Base name for the output file

Input Path $(InputPath) Fully qualified name for the input file

Input Name $(InputName) Base name for the input file

Workspace $(WkspName) Name of the project workspace

Name

Remote Target $(RemoteTargetPath) Fully qualified name for the remote output

Path file - :

If you have made multiple selections, during a build the input macros are set in turn
to each file that you have selected for each configuration that you have selected.

Using Precompiled Headers

You can greatly speed compile time by compiling any C or C++ files — including
inline code — ‘only once into a precompiled header (.PCH) file and thereafter using
the precompiled header for each build. Visual C++ offers two ways to create and use
precompiled header files. One method is to use AppWizard and allow it to set default
compiler options for your application. The other method is to use the Precompiled
Headers category on the C/C++ tab of the Prject Settings dialog box.

The simplest way to use precompiled headers is to generate a new application using
AppWizard. It sets default compiler options to create a precompiled header file,
STDAFX.PCH, from STDAFX_.H for use by all the skeleton files it creates.

If you do not use AppWizard to create your application, you can select the
Precompiled Headers category on the C/C++ tab in the Project Settings dialog box
and select the Automatic Use Of Precompiled Headers option to create an easy-to-use
precompiled header file. For more information, see “Precompiled Headers” on page
407 in Chapter 20 or the “/Yd option” on page 565 in Chapter 25.

Building a Project Configuration

From Microsoft Developer Studio, you can build or rebuild the program or library
that a project configuration defines. When you build a project configuration,
Developer Studio processes only the files in the project that have changed since the

64

Chapter 2 Working with Projects

last build. When you rebuild a project configuration, Developer Studio processes all
the files in the project. You can either choose to build a single project configuration,
or the default project configuration, or you can choose multiple conflguratlons to
build in one operation.

When you create a project, Developer Studio sets default options for both Debug and
Release configurations. The Debug configuration contains full symbolic debugging
information that can be used by the integrated debugger in Developer Studio or by
other debuggers that use the Microsoft debug format. Developer Studio also turns off
all optimizations in the Debug configuration because they generally make debugging
more difficult. The Release configuration does not contain any symbolic debugging
information, and it uses any optimizations that you have set after creating the
projects. Depending on your installation and the choices you made when you created
your project, you may have other default project configurations with other options, or
you may have specifically created other project configurations with other options.
Each project configuration also specifies the directories in which the intermediate
and final files are created.

Settlng the Default Project Configuration

‘When you set the default project configuration, subsequent build commands act on
the default configuration and build its output. If the project associated with the ,
default configuration contains subprojects, the same configuration in the subprojects
gets built if the output file for the configuration in the subproject is out of date.

» To set the default project configuration

o From the Set Default Project Configuration drop-down list on the Pl‘O_]CCt toolbar
choose a project configuration.

—or—
1 From the Build menu, choose Set Default Configuration.

The Default Project Configuration dialog box appears.
2 In the Project Configurations list, select the default project configuration.
3 Choose OK.

Building the Default Project Configuration

You can choose the project configuration that you want to build by default. This is the
project configuration that you build when you choose Build project from the Build
menu. If this project configuration contains any explicit project dependencies, and
those project configurations are out of date, they are built first.

65

Visual C++ User's Guide

66

» To select a project configuration

o From the Set Default Project Configuration drop-down list on the Project toolbar,
choose a project configuration.

—or—
1 From the Build menu, choose Set Default Configuration.

The Default Project Configuration dialog box appears.
2 In the Project Configurations list, select the default project configuration.
3 Choose OK.

» To build the default project configuration

e From the Build menu, choose Build project, where project represehts the program
or library defined by the project configuration.

If you want ‘to ensure that all files associated with a project configuration get built,
whether or not they are out of date, you can choose the Rebuild All command.

Note Ifyou have updated any files that appear in either SYSINCL.DAT or MSCVINCL.DAT,
you must choose Rebuild All to ensure that the changes are incorporated in the build. See
“Updating Dependencies in a Project” on page 57.

» To rebuild the default project configuration
e From the Build menu, choose Rebuild All.

Information about the build is displayed in the Output window. The Output window
displays information from the build tools and lists any errors or warnings that occur
during the build. If no errors are reported, the build completed successfully. If errors
are reported, you need to debug them. For information on debugging build errors, see
“Debugging Compiler and Linker Errors” on page 323 in Chapter 17.

» To stop a build
¢ From the Build menu, choose Stop Build.

Developer Studio stops the currently executing tool if possible; otherwise, it stops the
build as soon as the currently executing tool finishes.

Since builds occur in the background, you can continue to use Developer Studio
during a build. However, some menu commands and toolbar buttons are disabled
during a build. You can use the tabs at the bottom of the Output window to view the
previous output from another tooi whiie you are running the current buiid, and then
choose the Build tab to return to the current build output.

Chapter 2 Working with Projects

An audible message notifies you when the build is complete. Unless you have a sound
card installed, all audible events issue a beep. If you have a sound card installed, you
can use the Sound application in the Windows Control Panel to assign the three
standard system events listed below to different sounds.

System Event Indicates

Asterisk (*) Build has completed without errors or warnings.
Question (?) Build has completed with warnings.
Exclamation (!) Build has completed with errors.

In some cases, you may need to stop building your project before the process finishes.

Compiling Files
You can select and compile files in any project in your project workspace.
» To compile selected files

1 Select the files in the FileView pane of the Project Workspace window.

2 With the mouse pointer over the selection, click the right mouse button to display
the pop-up menu, and choose Compile.

If you have specified a custom tool (or tools) for a file, when you select Compile,
Developer Studio runs that tool with the file as input, and produces the output
specified.

Removing Intermediate Files
You can remove all files from the Intermediate directories in any project
configuration in your project workspace. Removing the files forces Developer Studio
to build these files if you subsequently choose the Build command.
» To remove intermediate files

1 From the Set Default Project Configuration drop-down list on the Project toolbar,
choose a project configuration.

—or—
2 From the Build menu, choose Set Default Configuration.

The Default Project Configuration dialog box appears.
3 In the Project Configurations list, select the default project configuration.
4 Choose OK.

67

Visual C++ User's Guide

5 Select the project in the FileView pane of the Project Workspaée window.
6 With the mouse pointer over the selected project, click the right mouse button to
display the pop-up menu, and choose Delete Intermediate Files.

This procedure deletes the intermediate files from the intermediate files directory
associated with the selected configuration. ~

Building Multiple Project Configurations

68

Any project workspace can have more than one project configuration. Instead of
selecting each project configuration in turn and building it as the default
configuration using the Build project command on the Build menu, you can select
multiple project configurations and build them all.

Note You can also build multiple project configurations by using subprojects, and building the
appropriate containing project. See “Using Project Workspaces: Three Basic Scenarios” on
page 26 for more information.

» To build multiple project configurations
1 From the Build menu, choose Batch Build.

The Batch Build dialog box appears. By default, all project configurations in the
project workspace are selected.

2 If you don’t want to build certain project configurations, clear the check boxes in
the Project Configurations list.

3 Choose the Build button to build only those intermediate files of each project
configuration that are out of date, or the Rebuild All button to build all
intermediate files for each project configuration.

The results for each project configuration are separated in the Output window by a
line containing the name of the project configuration being built.

» To stop building multiple projects
e From the Build menu, choose Stop Build.

Developer Studio stops the currently executing tool if possible; otherwise, it stops the
build as soon as the currently executing tool finishes. The build of the project
configuration currently in progress ends. A message box appears, asking if you wish
to continue building the remaining project configurations. If you choose Yes, then the
batch build continues from the next configuration in the list. If you choose No, then
the entire batch build is stopped.

Chapter 2 Working with Projects

Using External Projects

In Microsoft Developer Studio you can have two types of external projects: -

¢ Projects that are built using a makefile not created by the current version of
Developer Studio.

You can open an existing makefile in Developer Studio to create external projects.
External projects are called that because they originally used external methods to
set compiler or linker options, for instance, rather than using the methods
available within Developer Studio. Developer Studio uses NMAKE to build the
external project, and automatically sets certain internal project options to build the
project with NMAKE. You can continue to use external methods to set options, if
you choose. '

e Projects that are built using methods other than the internal build system in
Developer Studio.

You can specify a new project with the Makefile project type, and then specify
tools other than NMAKE which Developer Studio needs to run to build the
project, using the Project Settings dialog box.

All external projects use project settings on the General tab of the Project Settings
dialog box. If you open an existing makefile, named either explicitly MAKEFILE or
filename MAK, Developer Studio uses NMAKE as the command-line tool to build
the project. If you create an external project by choosing Makefile from the Type list
in the New Project Workspace or Insert Project dialog box, Develper Studio prompts
you to open the Project Settings dialog box and explicitly specify the tool that
Developer Studio must run to build the project.

Once you create an external project, you can add files to it, or you can add it to other
projects as a subproject. Adding the source files comprising the external project to the
project workspace enables you to view those files in FileView, to open them from
FileView, to add them to your source-code control system from Microsoft Developer
Studio, and so on.

If your external project generates an executable file compatible with the Microsoft
Developer Studio debugging format, you can debug it from within Developer Studio.

Opening an Existing Makefile

When you open an existing makefile (MAKEFILE or filename. MAK) that Developer
Studio does not recognize as a makefile that it created, it displays a message box
asking if you want to create a project to wrap the makefile. If you choose No,
Developer Studio does not open the file. If you choose Yes, Developer Studio creates
a project workspace and its associated file for the external makefile. The external
makefile becomes a part of the project workspace. (Remember that the command-line
tool, NMAKE, creates the resulting project files: executable programs, DLLs, static
libraries, and so on.)

69

Visual C++ User's Guide

» To open an existing makefile with the extension .MAK
1 From the File menu, choose Open Workspace.
The Open Project Workspace dialog box appears.
2 Select All Files from the drop-down list to display all files.
3 From the Open As drop-down list, select Makefile.
4 Select the drive and directory containing the makefile that you want to open.
5 Select the file from the list and choose OK.
—or— '
Double-click the filename in the list.

If you have a project workspace currently open, Developer Studio saves the
workspace and asks if you want to close document windows associated with that
workspace. '

Developer Studio displays a message box asking if you want to convert the
external makefile into a project workspace with an external project containing the
external makefile.

6 Choose Yes to convert the makefile.
If you choose No, Developer Studio cancels the conversion process.

If you have installed multiple platforms, Developer Studio displays the Platforms
dialog box. It displays selections for all the platforms that you have installed.

7 In the Platforms list, select the platforms for which you want to create external
projects. By default, Developer Studio selects all installed platforms.

8 Choose OK.

Developer Studio displays the Save As dialog box, with a default name for the
Developer Studio project workspace file.

9 Either enter a new name, or accept the default name, and select OK to create the
project workspace file. If necessary, choose a drive or directory for the file.

Note You cannot use the name of the existing makefile for the Developer Studio project
workspace file. If you used that name, the project workspace file would overwrite the
existing makefile, and would then have no file to run.

If your makefile has a different extension, or has the name MAKEFILE, you can use
the Open command from the Flle menu to open it as a makefile.
» To open an existing makefiie wiihoui the exiension .MAK
1 From the File menu, choose Open.
The Open dialog box appears.
2 Select All Files from the drop-down list to display all files.
3 Select Makefile from the Open As drop-down list.

70

Chapter 2 Working with Projects

4 Select the drive and directory containing the makefile that you want to open.
5 Select the .MAK file from the File Name list and choose OK.

—or—

Double-click the filename in the list.

If you have a project workspace currently open, Developer Studio saves the
workspace and asks if you want to close document windows associated with that
workspace.

Developer Studio displays a message box asking if you want to convert the
external makefile into a project workspace with an external project containing the
external makefile.

6 Choose Yes to convert the makefile.
If you choose No, Developer Studio cancels the conversion process.

If you have installed multiple platforms, Developer Studio displays the Platforms
dialog box. It displays selections for all the platforms that you have installed.

7 In the Platforms list, select the platforms for which you want to create external
projects. By default, Developer Studio selects all installed platforms.

8 Choose OK.

The Save As dialog box appears, with a default name for the Developer Studio
project workspace file.

9 Either enter a new name, or accept the default name, and select OK to create the
project workspace file. If necessary, you can choose a drive or directory for the file.

Note You cannot use the name of the existing makefile for the Developer Studio project
workspace file. If you used that name, the project workspace file would overwrite the
existing makefile, and would then have no file to run.

Developer Studio opens a Project Workspace window for the project and shows
FileView with only the external project-level nodes and the external makefile as a
source file in each. You can use the menu commands to add or delete files from these
projects. You can also use the Settings command on the Build menu to change the
settings for external projects.

Creating an External Project

You can create an external project to run external commands, such as batch files or
other executables, to build the project.

» To add an external project to an existing project workspace
1 From the Insert menu, choose Project.

The Insert Project dialog box appears, with the Top-Level Project option selected.

7

Visual C++ User's Guide

72

2 In the Name text box, type a name for the project.

This name is appended to the existing project workspace directory to form the
fully qualified path for the new project directory.

3 Fom the Type list, select the Makefile.

4 Select any of the available platforms for which you want to create initial Debug
and Release configurations.

5 Choose the Create button.

The project appears in the Project Workspace window. You now need to specify the
tools used to build the target.

6 From the Build menu, choose Settings.

The Project Settings dialog box appears. It displays the tabs with options for the '
project.

7 Select the General tab.

8 From the following list, select the options that apply or fill in the appropriate
information in the text boxes.

¢ Build Command Line The command line that the operating system executes
for this project when you choose Build from the Build menu. By default, the
system executes Microsoft NMAKE with the /F option followed by the name of
the external makefile. You can, however, add any batch or executable filename
along with command-line options and input files.

e Rebuild All Options The options added to the command line when you choose
Rebuild All from the Build menu. By default, the /A option for Microsoft
NMAKE is added.

o OQutput File Name The name of the file that is created when you build the
project. This could be an application or static library, for instance.

o Browse Info File Name Name of the browse information file to create for this
project. It must have the extension .BSC.

'9 Select the Debug tab.

10 Select the General category from the Category list, and enter the information
required for debugging in the text boxes. Developer Studio uses this information
when you choose commands such as Go or Step Into on the Debug menu.

e Executable For Debug Session The name of the program that the external
makefile builds if you are debugging an executable program, or the name of the
execuiabie fiie that caiis a DLL if you are debugging a DLL. if you are
debugging an executable file on a remote machine, this executable file on the
local machine contains the symbolic debugging information.

o Working Directory The working directory that the application uses when it
runs. This directory may be different from the output files directory in the
project. It could contain test cases, for instance.

Chapter 2 Working with Projects

e Program Arguments (for .EXE files) Arguments that need to be passed to the
executable file when it starts.

e Remote Executable Rath And File Name The name for the executable file
that you are debugging on a remote machine. The location for this executable
file is specified relative to the remote machine.

11 Select the Additional DLLs category from the Category list on the Debug tab, and
specify the information required for debugging. Developer Studio uses this
information when you choose commands such as Go or Step Into on the Debug
menu.

e Modules Each line in the grid specifies whether or not to preload symbols for
the module when you start debugging, the local name of the DLL, and if you
are debugging remotely, its remote name. After you type a name, a check box
appears at the left of the grid in that line. Selecting the box preloads symbols. If
you preload symbols, you can set breakpoints before the module loads. Clearing
the box does not preload symbols.

o Try To Locate Additional DLLs If this check box is selected, the debugger
asks for additional DLLs when debugging begins.

12 Choose OK.

Developer Studio creates both a makefile and a project workspace file, with the
extension .MDP, for the external project. The project workspace file stores
information about your local configuration — syntax coloring, editor preferences, key

assignments, window layout, and so on. The makefile stores information required to
build the project.

Building a Single File Without a
Project Workspace

You can create a single source file and then build a console application directly from
that source file. This method is generally useful only for relatively simple
applications.
» To build a console application from a single source file

1 Close any open project workspace.

2 Create or open a source file in a text editor window.

3 From the Build menu, choose Build.

Developer Studio displays a message box asking if you would like to create a
project workspace.

4 Choose Yes.

The Save As dialog box appears if you have not yet given the source file a name.

[£]

Visual C++ User's Guide

5 If necessary, give the source file a new name, with an extension for a file that
Developer Studio can build, such as .C, .CXX, or .CPP for Visual C++.

If you don’t use one of these file extensions, Developer Studio does not build
anything because it cannot find a type of source file in the project to build.

6 Choose OK.
Developer Studio creates a default project workspace using the base name of the

source file as the base name for the project. It uses default settings for a console
application for the project configuration and builds the application.

Running a Program

When you have completed building a project configuration, you can start the

application from Developer Studio. You can also run applications and dynamic-link

libraries in the integrated debugger. -

» To run an executable program

¢ From the Build menu, choose Execute project, where project represents the
program defined by the project configuration.

» To run an application in the integrated debugger

e From the Build menu, choose Debug, and from the cascading menu, choose Go,

Step Into, or if you have a source file open and it has the focus, Run To Cursor.

If you are debugging a DLL, you need to prepare for your debugging session as
‘described in “Debugging DLLs” in Chapter 17 on page 334. For more information on
debugging your programs, see Chapter 17, “Using the Debugger.”

74

CHAPTER.3

Using the Text Editor

Microsoft Developer Studio provides an integrated text editor to manage, edit, and
print source files. Most of the procedures for using the editor should seem familiar if
you have used other Windows-based text editors. With the text editor, you can:

o Use the File menu to create source files, open single files, open multiple files, and
save and print source files.

¢ Use virtual spaces for advanced cursor positioning.

o Identify sections of code by matching group delimiters.

¢ Find matching conditional statements.

e Move around in a source file with the Go To dialog box.

o Use bookmarks to mark frequently accessed lines in your source file.

e Navigate source files using a wide range of commands.

o Perform advanced find and replace operations in a single file or multiple files.

o Use regular expressions with Developer Studio, BRIEFe emulation, and Epsilon™
emulation. '

o Specify text selection for lines, multiple lines, and columns.
e Cut, copy, paste, and delete text with the Edit menu.

e Use drag-and-drop editing.

e Record and play back keystrokes.

e Emulate two popular text editors: BRIEF and Epsilon.

¢ Customize the text editor with save preferences, virtual spaces, the selection
margin, and tabs and indents.

e Modify the font style, size, and color.
¢ Set syntax coloring for source files and user-defined types.

¢ Control the source window by switching between windows, opening new windows,
splitting window views, and using full-screen mode.

75

Visual C++ User's Guide

v
~A

Tip While using the text editor, in many instances you can click the right mouse buttonto -
display a pop-up menu of frequently used commands. The commands available depend on
what the mouse pointer is pointing to and whether you are in edit or debug mode. For
example, if you click while pointing to the name of a file, the pop-up menu shows a command
to open that file, as well as other commands including Copy, Insert/Remove Breakpoint, and
Properties. '

F1le Management

The text editor File menu has several commands for standard file management. With
these commands you can perform the following actions:

o Creating files

® Opening files

e Opening multiple files
e Saving files

e Printing files

Creating Files

76

The New command creates a new source file. Creating a source file does not affect

~ other open source files.

» To create a new source file
1 From the File menu, choose New.
The New dialog box appears. ‘ ‘
2 Select Text File, and then choose the OK button.
3 From the File menu, choose Save.
The Save As dialog box appears.
4 Select a path where you want to store the source file.
5 In the File Name box, type a file name.

The default extension given to a file is the last extension used when you saved a
file. You can type another extension or select one from the Save As Type box.

6 Choose the Save button.

P
=
S

=
3

£

cr
]
=
]
u

3
=
“

Chapter 3 Using the Text Editor

Opening Files

When you open a source file, its name is added to the Window menu. You cannot use
the Open command on the File menu to open another copy of an open source file.

» To open a file

1 From the File menu, choose'Open.

The Open dialog box appears.
2 Select the drive and directory where the file is stored.
3 If you want read only, select the Open As Read Only check box.

- Note You can edit a file even if the Open As Read Only check box is selected. When you
save the file, the Save As dialog box appears, allowing you to save the file using a different
name.

4 Specify the types of files to display in the Files Of Type box.

Files with the chosen extension are displayed in the list box. For example, Project
Workspaces displays all files with the .mdp extension. The Files Of Type drop-
down list box initially lists commonly used file extensions. The default shows the
.C, .Cpp, -CXX, .h, and .rc extensions.

Specify wildcard patterns in the File Name box to display file types. You can use
any combination of wildcard patterns, delimited by semicolons. For example, if
you type *.h;*.cpp, all files with these extensions are displayed. The wildcard
patterns you specify are retained until you close the dialog box.

5 Select a filename, then choose the Open button.
Double-click the filename.

You can also open a file by doublé—clicking the file icon in the Project Workspace, or
by dragging the icon of a non-project file into the application window.

P Tip The names of the four most recently opened files are displayed at the end of the File
Ml menu. To open one of these files, choose its name from the menu.

Note The number of files on the list of most recently opened files is controlled by the .
FileCount item in the Registry.

7

Visual C++ User's Guide

The text editor commands that can open or activate a new file are described in the
following table.

Command Description

Bookmark ‘ Edits or navigates bookmarks.

GoTo _ Moves to a specified location.

GoToErmrorTag Moves to the line containing the current error or tag.
GoToNextErrorTag Moves to the line containing the next error or tag.
GoToPrevErrorTag Moves to the line containing the previous error or tag.
WindowList Manages the currently open windows.

See Also Viewing and Changing the Shortcut Keys

Opemng Multiple Files

78

You can open multiple files from the Open dialog box by using the mouse to select a
file or group of files. Before you can select files, they must be visible in the
Directories window.
» To open two or more files in sequence
1 From the File menu, choose Open.
The Open dialog box appears.
2 Select the drive and directory where the files are stored.
The default is the current drive and directory. _
3 Specify the types of files to display in the Files Of Type box.

Files with the chosen extension are displayed in the list box. For example, Project
Workspaces displays all files with the .mdp extension. The Files Of Type drop-
down list box initially lists commonly used file extensions. The default shows the
.C, .Cpp; .CXX, .h, and .rc extensions.

—or—

Specify wildcard patterns in the File Name box to display file types. You can use
any combination of wildcard patterns, delimited by semicolons. For example, if
youtype *.h;*.cpp, all files with these extensions are displayed. The wildcard
patterns you specify are retained until you close the dialog box.

4 Click the first file or directory you want to select.
5 Hold down the SHIFT key while you click the last file or directory in the group, and
then choose the Open button.
» To open two or more files out of sequence
1 From the File menu, choose Open.

The Open dialog box appears.

Chapter 3 Using the Text Editor

2 Select the drive and directory where the files are stored.
The default is the current drive and directory.
3 Specify the types of files to display in the Files of Type box.

Files with the chosen extension are displayed in the list box. For example, Project
Workspaces displays all files with the .mdp extension. The Files of Type drop-
down list box initially lists commonly used file extensions. The default shows the
.C, .Cpp;, .CXX, .h, and .rc extensions.

Specify wildcard patterns in the File Name box to display file types. You can use
any combination of wildcard patterns, delimited by semicolons. For example, if
you type *. h; *.cpp, all files with these extensions are displayed. The wildcard
patterns you specify are retained until you close the dialog box.

4 Hold down the CTRL key while you click each file or directory that you want. Once
your selection is complete, choose the Open button.

To cancel a selection, hold down CTRL while you click the selected file or
directory.

Saving Files
As you make changes to a source file, an asterisk (*) appears in the title bar to
indicate that the file has changed since it was last saved. Each source window
associated with a source file can retain its own sizing and other window attributes.
» To save afile
1 Switch to the source window.
2 From the File menu, choose Save.

If you already named the file, the Save command saves changes without displaying
the Save As dialog box.

If your file is unnamed, the Save As dialog box appears.
3 In the File Name box, type the filename.
4 Select the drive and directory where the you want to save the file.
5 Choose the Save button.

» To save all open files

¢ From the File menu, choose Save All.

» To save selected open files
1 From the Window menu, choose Windows.
The Windows dialog box appears.

2 Select one or more files from the file list.

79

Visual C++ User's Guide

3 Choose the Save Button.

4 Choose the Cancel button.
You can also save another copy of an existing file. This procedure is useful for
maintaining revised copies of a file while keeping the original unchanged.
» To save a new file or another copy of an existing file

1 Make the file active by clicking the source window.

2 From the File menu, choose Save As.

The Save As dialog box appears.

3 In the File Name box, type the filename.

4 Select the drive and the directory where you want to save the file.

5 Choose the Save button. |

» To set Save options
1 From the Tools menu, choose Options.
The Options dialog box appears.
2 Select the Editor tab, and then select the desired save option.

¢ To save open files before running any tool, select the Save Before Running
Tools check box.

e To always prompt before saving a file, select the Prompt Before Saving Files
check box.

¢ To automatically reload externally modified files that have been loaded (but not
yet changed) by the editor, select the Automatic Reload check box.

3 Choose the OK button.

Printing Files
With the text editor, you can print selected text or a complete file. Text is printed in

the default font for the printer if the default editor font is used. Otherwise, the text
prints with the selected editor font, if that font is available on the printer.

You can customize your print jobs by adding headers and footers and by adjusting
margins. ‘
» To print selected text in a source file

1 Select the text you want to print.

2 From the File menu, choose Print.

The Print dialog box appears. Under Print Range, the Selection option is
automatically selected for you.

3 Choose the OK button.

Chapter 3 Using the Text Editor

» To print a complete source file
1 Move the focus to the source file you want to print.
2 From the File menu, choose Print.
The Print dialog box appears.
3 Under Print Range, select the All option button.
4 Choose the OK button.

» To customize a print job
1 From the File menu, choose Page Setup,
The Page Setup dialog box appears.

2 In the Header and Footer boxes, type the header or footer text, codes, or both. You
can use the drop-list to insert codes into the text box. Only one of the alignment
options (left, centered, or right) is available at a time for either header or footer.

To print Use
Filename &f
Current page number &p
Current system time &t

Current system date &d
Left aligned &l

Centered &c
Right aligned ' &r

3 Under Margins, type the left, right, top, and bottom measurements.
4 Choose the OK button.

Moving Around in Source Files

The text editor provides a variety of methods to move around in a source file. In
addition to using the regular mouse movement and page controls, you can:

¢ Use virtual space for advanced cursor control.

¢ Identify sections of source code by matching group delimiters.

¢ Find matching conditional statements.

¢ Use the Go To dialog box to navigate your source files.

o Set bookmarks to mark frequently accessed lines in your source files.

¢ Choose from a wide-range of source file navigation commands.

81

Visual C++ User's Guide

Using Virtual Space

All editors support moving the cursor by one character position. This feature has been
implemented in many ways. The most common difference among text editors is
whether or not you can move the cursor into a location that does not currently contain
text. For example, if your cursor is on column 20, and there is no text on the line
below the current line, moving the cursor down can do one of two things: Either the
cursor moves to column 1—because there is no text on the line below—or the cursor
remains on column 20. This latter behavior is called virtual space.

With the Developer Studio’s text editor, you can treat text selection and space
insertion in two ways. When you select the Virtual Spaces option, spaces are inserted
between the end of the line and the insertion point before new characters are added to
the line. When you clear the Virtual Spaces option, the text editor behaves like
Microsoft Word for Windows, and the insertion point is set to the end of the line.

» To enable virtual spaces
1 From the Tools menu, choose Options.
The Options dialog box appears.
2 Select the Compatibility tab.

3 In the Recommended Options For list box, select the editor emulation in which
you want to have virtual spaces.

4 Select the Enable Virtual Space check box.
5 Choose the OK button.

Many word processors support the idea of moving the cursor one sentence at a time.
Developer Studio’s text editor supports this as well (SentenceUp and SentenceDown),
but most source code doesn’t have the spacing and punctuation marks needed for
sentence navigation. Instead, you can use LineUp and LineDown to navigate single
lines of source code.

Matching Group Delimiters

82

Source code is often grouped using delimiters such as (), { }, and []. These groupings
are called levels. You can navigate these levels using the LevelUp and LevelDown
commands. The editor understands nested levels, and matches the correct delimiter
even if the level spans several pages and itself contains many levels.

The LevelUp command searches backwards for one of the right-side delimiters, and
then positions the cursor before the matching left-side delimiter. The LevelDown
command searches forward for a left-side delimiter, and then positions the cursor
after the matching right-side delimiter.

» To search forward for a matching level

e Press the LevelDown key combination.

Chapter 3 Using the Text Editor

The command begins searching for one of the left-side delimiters, which are (, {,
and [. When the left-side delimiter is found, the cursor is positioned at the
matching right-side delimiter. If a matching delimiter cannot be found, the editor
beeps.

The editor also provides the command GoToMatchBrace. When the cursor is initially
positioned next to a delimiter, the GoToMatchBrace command moves the cursor to
the matching delimiter in a block. Since this command works independently of
whether the character is a right-side or left-side delimiter, you can quickly jump
between the start and end of a level.

» To move to a matching brace
1 Place the insertion point immediately in front of a brace.
2 Press the GoToMatchBrace key combination.

The insertion point moves forward or backward to the matching brace. Choosing
the command again returns the insertion point to its starting place. If a matching
brace cannot be found, the editor beeps. This method also works for parentheses,
angle brackets, and square brackets.

See Also The Navigating Commands, Viewing and Changing the Shortcut Keys

Matching Conditional Statements

Another way of grouping source code is between compiler preprocessor statements.
The editor will allow you to move from inside a conditional statement to the
enclosing preprocessor statement. For example, ConditionalUp will move the cursor
to the enclosing #if, #ifdef, #else, #elif; while ConditionalDown will move the cursor
to the enclosing #else, #elif, #endif. If the cursor is positioned on a preprocessor
statement, it is considered to be in the next conditional block while moving down,
and in the previous conditional block while moving up.

» To move to the matching preprocessor statement

e Move the insertion point to the line that is enclosed by preprocessor statements.

e Press the ConditionalUp key combination to move the insertion point up to the
line containing the matching preprocessor statement (such as #ifdef).

e Press the ConditionalDown key combination to move the insertion point down
to the line containing the matching preprocessor statement (such as #endif).

Note If you hold down the SHIFT key, you can use the ConditionalUpExtend and
ConditionalDownExtend key combinations to select text from the current cursor position to
the enclosing #if, #ifdef, #else, #elif, or #endif preprocessor statement. This key binding of
the SHIFT key with ConditionalUpExtend and ConditionalDownExtend is available in the
standard configuration after installation. If you have changed shortcut key assignments, this
keystroke combination may not be available.

See Also The Navigating Commands, Viewing and Changing the Shortcut Keys .
83

Visual C++ User's Guide

Using Go To

The Go To dialog box is organized into three areas: a list of Go To What items,
additional selection criteria, and navigation buttons. Depending on the Go To What
selection, the additional selection criteria format changes to either an edit control or a
list box. You can display Help text in all cases. The following table lists the Go To
‘What types and related additional selection criteria.

Go To What Additional Selection Criteria Comments

Address Enter address expression Type any valid debugger expression.

Bookmark Enter bookmark name Type the bookmark name.

Definition Enter identifier This requires browse information.

Error/Tag Enter error/tag Select one of the listed error/tags.

InfoViewer Enter InfoViewer annotated Type the annotated topic.

Annotations topic

InfoViewer Enter InfoViewer bookmark Type the bookmark name.

Bookmarks . name ’

Line Enter line number Type the line number.

Offset Enter offset Type the decimal or hexadecimal
number.

Reference Enter identifier Type the browse information.

» To use the Go To dialog box

1 From the Edit menu, choose Go To.

The Go To dialog box appears.

2 In the Go To What list box, select the type.

3 Enter the additional selection criteria.

4 Choose one of the navigation buttons: Go To, Previous, or Next.

Note Ifthe Go To What item is undefined, the additional selection criteria box is greyed. For
~ example, if you have not defined any bookmarks, the Enter Bookmark Name text box is

grayed.

Using Bookmarks

You can set bookmarks to mark frequently accessed lines in your source file. Once a
bookmark is set, you can use menu or keyboard commands to move to it. You can
remove a bookmark when you no longer need it.

Chapter 3 Using the Text Editor

You can use both named and unnamed bookmarks. Named bookmarks are saved
between editing sessions. Once you create a named bookmark, you can jump to that
location whether or not the file is open. Named bookmarks store both the line number
and the column number of the location of the cursor when the bookmark was created.
This location is adjusted whenever you edit the file. Even if you delete the characters
around the bookmark, the bookmark remains in the correct location.

Unnamed bookmarks are temporary. They are removed when the file containing them
. is closed or reloaded. Unnamed bookmarks store only the current line, not the column
offset of the cursor. When a line containing an unnamed bookmark is deleted, the
bookmark is also removed. You can jump to an unnamed bookmark by activating the
file and using either the BookmarkNext or BookmarkPrev command. The advantage
of unnamed bookmarks is that they are very easy to set (just use BookmarkToggle),
and they provide you with visible feedback in the selection margin of your document.
» To set a named bookmark

1 Move the insertion point to the line and column where you want to set a named
bookmark.

2 From the Edit menu, choose Bookmark.
The Bookmark dialog box appears.
3 In the Name box, type the name of the bookmark.
4 Choose the Add button to add the named bookmark to the list of bookmarks.
5 Choose the Close button.

» To remove multiple named bookmarks
1 From the Edit menu, choose Bookmark.
The Bookmark dialog box appears.
2 In the Name box, select the names of the bookmarks to be removed.
3 Choose the Delete button to remove the selected bookmarks.
4 Choose the Close button.

» To go to a named bookmark
1 From the Edit menu, choose Bookmark.
The Bookmark dialog box appears.
2 In the Name box, select the name of the bookmark to go to.
3 Choose the Go To button.

85

Visual C++ User's Guide

» To remove a hamed bookmark
1 From the Edit menu, choose Bookmark.
The Bookmark dialog box appears.
2 In the Name box, select the name of the bookmark to be removed:
3 Choose the Delete button to remove the selected bookmark.
-4 Choose the Close button.

» To set an unnamed bookmark
1 Move the insertion point to the line where you want to set a bookmark.
2 Press the BookmarkToggle key combination.

The line is selected, or marked in the margin if you have set the selection margin.

» To move to the next bookmark after the insertion point
e Press the BookmarkNext key combination.

» To move to the previous bookmark before the insertion point

e Press the BookmarkPrev key combination.

» To remove an unnamed bookmark

1 Move the insertion point to anywhere on the line containing the unnamed
bookmark.

2 Press the BookmarkToggle key combination.

The text editor commands that are associated with bookmarks are described in the

following table.

Command Description

Bookmark Edits or navigates named bookmarks.

BookmarkClearAll Clears all unnamed bookmarks in the window.

BookmarkNext “Moves to the line containing the next named or unnamed bookmark.

BookmarkPrev Moves to the line containing the previous named or unnamed
bookmark.

BookmarkToggle Toggles an unnamed bookmark for the current line.

Note These bookmark commands can open files or activate different files in the open
Whindaum lind Thana AaammnanAdas ava an anaur s 4a maun haharaan tavd in A miimbar af AiffAvant
VYL IUUWO 1IOL. 1TITOT LUILIHTIAlIuD alT all caay \"ld.y W THUVC UCILWETTI LCAL I Q HIVITTINGE VI UHIGITHIL

source files. For more information on opening files, see “Opening Files” earlier in this chapter.

See Also Viewing and Changing the Shortcut Keys

86

Chapter 3 Using the Text Editor

The Navigating Commands

The text editor commands for moving around in a source file are descnbed in the

following table.

Command Description

CharLeft Moves the cursor one character to the left.

CharRight Moves the cursor one character to the right.

ConditionalDown Finds the next matching preprocessor condition.

ConditionalUp Finds the previous matching preprocessor condition.

DocumentEnd Moves the cursor to the end of the file.

DocumentStart Moves the cursor to the beginning of the file.

GoTolndentation Moves the cursor to the end of the indentation.

GoToMatchBrace Finds the matching brace.

Home Moves the cursor alternately between the beginning of the current line
and the beginning of the text on that line.

IndentToPrev Moves the cutsor to the position of the next text that is on the previous
line.

LevelDown Searches forward for the end of the next bracketed level.

LevelUp Searches back for the beginning of the previous bracketed level.

LineDown Moves the cursor one line downward.

LineEnd Moves the cursor to the end of the text on the current line.

LineStart Moves the cursor to the beginning of the current line.

LineUp Moves the cursor one line upward.

PageDown Moves the cursor one page downward.

PageUp Moves the cursor one page upward.

ParaDown Moves the cursor forward to the beginning of the next paragraph.

ParaUp Moves the cursor backward to the beginning of the previous paragraph.

SentenceLeft Moves the cursor back to the previous beginning of a sentence.

SentenceRight Moves the cursor forward to the next end of a sentence.

WindowEnd Moves the cursor to the bottom of the text window.

WindowStart Moves the cursor the the top of the text window.

WordLeft Moves the cursor backward one word.

WordRight Moves the cursor forward one word.

87

Visual C++ User's Guide

Note The command Home is distinct from the LineStart command. LineStart always moves
the cursor to the first column in the line, while Home moves the cursor to different locations
depending on the cursor’s current location. The Home command moves the cursor to the first
non-blank character in the line. However, if the cursor is already located on the first non-blank
character, Home moves to the first column of the line.

See Also Viewing and Changing the Shortcut Keys

Finding and Replacing Text

88

The text editor supports two common searching methods: full string searching and
incremental searching. With full string searching, the entire search string is specified
before the search begins. With incremental searching, the search is performed as the
string is typed.

With the advanced find and replace capabilities of the text editor, you can search for
text in a single source file or in multiple files. You can search for literal text strings

~or use regular expressions to find words or characters. You can even use tagged

regular expressions for searching and replacing.

With the find and replace commands of the text editor, you can:

.e Find text in a single file.

e Find text in multiple files.
¢ Replace text.

o Useregular expressions with Developer Studio, BRIEF emulation, and Epsilon
emulation. '

If you use any of the incremental search commands (IncrementalSearch,
IncrementalSearchBack, IncrementalSearchRE, IncrementalSearchREBack), you can
modify the search by toggling the word mode (CTRL+W), regular expression mode
(CTRL+T), and case sensitive mode (CTRL+C). These keystrokes are not bindable and
only affect the incremental search command.

Since IncrementalSearch finds the match while you are typing, you rarely need to
type the complete search string. If you are looking for a string that occurs multiple
times in your file, just repeat the IncrementalSearch command after you have typed
enough to specify the string. Incremental search stops when the ESC key is pressed.

The text editor commands for searching in a source file are described in the following
table.

Command Description

Find Finds the specified text.

FindBack Finds the previous occurrence of the specified text.
FindForward Finds the next occurrence of the specified text.

Chapter 3 Using the Text Editor

Command Description

FindNext Continues the search forward, finding the next occurrence of
the specified text.

FindNextWord Finds the next occurrence of the selected text.

FindPrev Continues the search backward, finding the previous
occurrence of the specified text.

FindPrevWord Finds the previous occurrence of the selected text.

FindRE Searches forward for a string using regular expressions.

FindREPrev Searches backward for a string using regular expressions.

FindRepeat Continues the previous search. v

FindReplace Replaces specific text with different text.

FindReplaceRE Replaces specific text with different text found by using
regular expressions.

FindTool Activates the Find combo box tool.

IncrementalSearch Starts an incremental search forward.

IncrementalSearchBack Starts an incremental search backward.

IncrementalSearchRE Starts a regular expression incremental search forward.

IncrementalSearchREBack Starts a regular expression incremental search backward.

See Also Viewing and Changing the Shortcut Keys, Using Regular Expressions with
Developer Studio, Using Regular Expressions with BRIEF Emulation, Using Regular

Expressions with Epsilon Emulation

Finding Text in a Single File

With the Find command, you can search the active window for the following types of

text strings:

e Whole Word Match Matches all occurrences of a text string not preceded or
followed by an alphanumeric character or the underscore ().

e Case Match Searches for text that matches the capitalization of the text string:

e Regular Expressions Uses special character sequences—regular expressions —

to search for text. If you select the Regular Expression check box in the Find
dialog box, you can build the search string using regular expressions from the

drop-down list.

You can set bookmarks at every occurance of the text string or expression. You can
then use the Next Bookmark command to move to each bookmark in your file.

» - To find a text string

1 Move the insertion point to where you want to begin your search.

The editor uses the location of the insertion point to select a default search string.

89

Visual C++ User's Guide

b

90

2 From the Edit menu, choose Find.
The Find dialog box appears.
3 In the Find What text box, type the search text or a regular expression.

Select the menu button to the right of the combo box to display a list of regular
search expressions. When you select an expression from this list, the expression is
substituted as the search text in the Find What text box. If you do use regular
expressions, be sure the Regular Expression check box is selected.

You can also use the drop-down list to select from a hst of up to 16 previous search
strings.

4 Select any of the Find options.

5 To begin your search, choose Find Next or Mark All. The Find dialog box
disappears when the search begins. To repeat a find operation, use the shortcut
keys or toolbar buttons.

6 To continue your search, use the F1nd Next or Find Previous toolbar buttons.

> To begin a find without the Find dialog box :
1 Type or select a search string in the Standard toolbar Find box.
2 Press ENTER.

Note You can use regular expressions with the Standard toolbar Find box if you have
previously selected the Regular Expression check box in the Find dialog box.

» To find a string using incremental search
1 Press the IncrementalSearch key combination.
The cursor moves to the status bar.
2 Begin typing the search string.
As you type each character, the text editor selects the matching string in your file.

3 If necessary, press the IncrementalSearch key combination to go to the next match
in your file.

4 Press the ESC key or use any of the navigational commands to end the search.

Note If there is no match, the text edit_or beeps and displays a warning in the status bar.

Tin Vou oan assion shaoricut kaus i thrae of the ontiong in the EinA dialan hnv
llr VU vUdn u\J\)lull PHVI VUL \l’\’ W ulnve vi uiv U'Jl LI 1T LG 1 T Al V

EditToggleCaseSensitivity, EditToggleFindMatchWord, and EditToggleRE. By using the
shortcut keys, you can change the search criteria without displaying the Find dialog box.

See Also Viewing and Changing the Shortcut Keys, Finding and Replacing Text

Chapter 3 Using the Text Editor

Finding Text in Multiple Files
With the Find in Files command on the File menu, you can search multiple text files
for the following types of text strings:

o Whole Word Match Matches all occurrences of a text string not preceded or
followed by an alphanumeric character or an underscore (_).

e (Case Match Searches for text that matches the capitalization of the text string.

¢ Regular Expressions Uses special character sequences—regular expressions—
to search for text. If you select the Regular Expression check box in the Find
dialog box, you can build the search string using regular expressions from the
drop-down list.

» To find a text string in multiple source files
1 From the File menu, choose Find In Files.
The Find In Files dialog box appears.
2 In the Find What text box, type the search text or a regular expression.
—or—

Select the menu button to the right of the combo box to display a list of regular
search expressions. When you select an expression from this list, the expression is
substituted as the search text in the Find What text box. If you do use regular
expressions, be sure the Regular Expression check box is selected.

You can also use the drop-down list to select from a list of up to 16 previous search
strings.

3 In the In Files Of Type box, select the file types you want to search.

You can use the drop-down list to select from common file types or to type text
specifying other file types.

4 In the In Folder box, select the primary folder that you want to search. Choose the
Browse button (...) to display the Choose Directory dialog box if you want to
change drives and directories.

5 If necessary, select one or more of the Find options.
6 To select additional folders to search, choose the Advanced button.
The Look In Additional Folders portion of the dialog box appears.
7 If necessary, select the Look In Folders For Project Source Files check box.
8 If necessary, select the Look In Folders For Project Include Files check box.

Note These project source and project include file folders are the same as the project's
directory paths. For more information on how to view and change these directory paths, see
“Setting Directories” in Chapter 22, “Customizing Microsoft Developer Studio.”

9

Visual C++ User's Guide

9 To add a folder to the Look In Additional Folders list, double-click the empty
selection. Then type the path and filename, or use the Browse button (...) to
display the Choose Directory dialog box to change drives and directories.

To remove a folder from the Look In Additional Folders list, select the folder and
press DEL.

Developer Studio retains the contents of the Find In Files list between uses of the
Find In Files command in any single session.

10 Choose the Find button to begin the search.

The Output window displays the list of file locations where the text string appears.
Each occurrence lists the fully qualified filename, followed by the line number of
the occurrence and the line containing the match.

11 To open a file containing a match, double-click the entry in the Output window.

An editor window containing the file opens, with the line containing the match
selected. You can jump to other occurrences of the text string by double-clicking - -
the specific entries in the Output window, or you can use the GoToNextErrorTag
command.

‘When you jump to a found string location specified in the Output window, the
corresponding source file is loaded if it is not already open in the editor.

Note The Output window is a virtual window that is maintained even when it is not displayed.
You can display the output from your last multiple-file search done during your current session

by choosing the Output command from the View menu and by choosing the Find In Files tab in
the Output window.

See Also Finding and Replacing Text, Using Regular Expressions with Developer
Studio, Using Regular Expressions with BRIEF Emulation, Using Regular
Expressions with Epsilon Emulation

Replacing Text

With the Replace command, you can search the active window for the following types
of text strings, and replace each with another text string:

¢ Whole Word Match Matches all occurrences of a text string not preceded or
followed by an alphanumeric character or an underscore ().

e Case Match Searches for text that matches the capitalization of the text string.

e Regular Expressions Uses special character sequences—regular expressions—
to search for texi. If you select the Regular Expression chieck box in the Find
dialog box, you can build the search string using regular expressions from the
drop-down list.

92

Chapter 3 Using the Text Editor

» To replace text
1 Move the insertion point to where you want to begin your search.
The editor uses the location of the insertion point to select a default search string.
2 From the Edit menu, choose Replace.
The Replace dialog box appears.
3 In the Find What text box, type the search text or a regular expression.

f’ Tip Select the menu button to the right of the combo box to display a list of regular search
< expressions. When you select an expression from this list, the expression is substituted as
the search text in the Find What text box. You can also use the drop-down list to select from
a list of up to 16 previous search strings. If you do use regular expressions, be sure the

Regular Expression check box is selected.

i

4 In the Replace With text box, type the replacement text.

Select the menu button to the right of the combo box to display a list of
replacement options.

5 Select any of the remaining Find options.
6 To begin the search, choose the Find Next button.
The Replace command selects the first matching text string.
7 Replace the current selection by choosing the Replace button.
—or—
Replace all identical strings by choosing the Replace All button.
—Oor— ' ’
Skip the current selection and find the next selection by choosing the Find Next

button.

See Also Using Regular Expressions with Developer Studio, Using Regular
Expressions with BRIEF Emulation, Using Regular Expressions with Epsilon
Emulation

Using Regular Expressibns with Developer Studio

A regular expression is a search string that uses special characters to match a text
pattern in a file. You can use regular expressions with both the Find and Replace
commands.

» To use a regular expression
1 From the Edit menu, choose either Find or Replace.

2 In the Find What text box, type a regular expression.

93

Visual C++ User's Guide

94

“@.

3 In the Replace With text box, type a regular expression if required.

Tip Select the menu button to the right of the combo box to display a list of regular search
expressions. When you select an expression from this list, the expression is substituted as
the search text in the Find What text box. You can also use the drop-down list to select from
a list of up to 16 previous search strings. If you do use regular expressions, be sure the
Regular Expression check box is selected.

The following table lists valid regular expressions.

Regular expression

Description

[1]

\NC V)

\~

\{c\lc\}

ARAY;

Any single character.

Any one of the characters contained in the brackets, or any of an ASCII
range of characters separated by a hyphen (-). For example,
b[aeiould matches bad, bed, bid, bod, and bud, and r[eo]+d
matches red, rod, reed, and rood, but not reod or roed. x[0-91]
matches X0, x1, X2, and so on.

If the first character in the brackets is a caret (), then the regular
expression matches any characters except those in the brackets.

The beginning of a line.
The end of a line.

Indicates a tagged expression to retain for replacement purposes. If the
expression in the Find What text box is \ (1psz\)BigPointer, and
the expression in the Replace With box is \1NewPointer, all
selected occurrences of 1pszBigPointer are replaced with
1pszNewPointer.

Each occurrence of a tagged expression is numbered according to its
order in the Find What text box, and its replacement expression is \n,
where 1 corresponds to the first tagged expression, 2 to the second, and
so on. You can have up to nine tagged expressions. ‘

Not the following character. For example, b\~ad matches bbd, bcd,
bdd, and so on, but not bad.

Any one of the characters separatéd by the alternation symbol (\ !). For
example, \ {j\lu\}+fruit finds jfruit, jjfruit, ufruit,
ujfruit, uufruit, and so on.

None or more of the preceding characters or expressions. For example,
ba*c matches bc, bac, baac, baaac, and so on.

At least one or more of the preceding characters or expressions. For
example, ba+c matches bac, baac, baaac, butnot bc.

Any sequence of characters between the escaped braces. For example,
\{ju\}+fruit finds jufruit, jujufruit, jujujufruit, and
so on. Note that it will not find jfruit, ufruit,orujfruit,
because the sequence j U is not in any of those strings.

~ Chapter 3 Using the Text Editor

Regular expression Description

- [*] Any character except those following the caret (*) character in the

brackets, or any of an ASCII range of characters separated by a hyphen
(). For example, X[*0- 9] matches Xa, Xb, X¢, and so on, but not
X0, x1, x2, and so on.

\:a * Any single alphanumeric character [a-zA-Z0-9].
Any white-space character. The \ : b finds tabs and spaces. There is no
alternate syntax to express :b.

\:c Any single alphabetic character [a-zA-Z].

\:d Any decimal digit [0-9].
Any unsigned number \ {[0-9]+\.[0-9]*\I[0-9]*\.[0-
9]1+\![0-9]1+\}. For example, \ : n should match 123, .45, and
123.45.

\:z Any unsigned decimal integer [0-9]+.

\:h Any hexadecimal number [0-9a-fA-F]+.

\:i Any C/C++ identifier [a-zA-Z_$1[a-zA-20-9_$]1+

\:w Any English word (that is, a string of alphabetlc characters) [a-zA-
Z]+.

\:q Any quoted string \ {“[*”]*”\ 1" [~”]*"\].

Removes the pattern match characteristic in the Find What text box from
the special characters listed above. For example, 100$ matches 100 at
the end of a line, but 100\ $ matches the character string 100$
anywhere on a line.

Note You can use regular expressions with the Find button on the toolbar if you have
previously selected the Regular Expression check box in the Find dialog box or the Replace
dialog box.

Using Regular Expressions with BRIEF Emulation

A regular expression is a search string that uses special characters to match a text
pattern in a file. You can use regular expressions with both the Find and Replace
commands.
» Tousea regular express:on

1 From the Edit menu, choose either Find or Replace

2 In the Find What text box, type a regular expression.

3 In the Replace With text box, type a regular expression if required.

Q Tip Select the menu button to the right of the combo box to display a list of regular search
= expressions. When you select an expression from this list, the expression is substituted as
the search text in the Find What text box. You can also use the drop-down list to select from
a list of up to 16 previous search strings. If you do use regular expressnons be sure the

Regular Expression check box is selected.

95

Visual C++ User's Guide

96

The following table lists valid regular expressions for the BRIEF emulation.

Regular expression

Description

2

[1]

{c|c}

[1]

[~]

[a-zA-70-9]
[\x09\]1+

Any single character.

Any one of the characters contained in the brackets, or any of an
ASCII range of characters separated by a hyphen (-). For
example, b[aeiould matches bad, bed, bid, bod and bud,
and r[eo]+d matches red, rod, reed and rood, but not
reod or roed. X[0-9] matches X0, x1, x2, and so on.

If the first character in the brackets is a tilde (~), then the regular
expression matches any characters except those in the brackets.

The beginning of a line.
The end of a line.

Indicates a tagged expression to retain for replacement purposes.
If the expression in the Find What text box is
{1psz}BigPointer, and the expression in the Replace With
box is \ONewPointer, all selected occurrences of
1pszBigPointer are replaced with 1pszNewPointer.

Each occurrence of a tagged expression is numbered according to
its order in the Find What text box, and its replacement
expression is \n, where 0 corresponds to the first tagged
expression, 1 to the second, and so on. You can have up to ten
tagged expressions.

Not the following character. For example, b~ad matches bbd,
bcd, bdd, and so on, but not bad.

Any one of the characters separated by the alternation symbol
(]). For example, {j |u}+fruit finds jfruit, jjfruit,
ufruit,ujfruit, uufruit, and so on.

None or more of the preceding characters or expressions. For
example, ba@c matches bc, bac, baac, baaac, and so on.

At least one or more of the preceding characters or expressions.
For example, ba+c matches bac, baac, and baaac, but
not bc.

Any sequence of characters between the brackets. For example,
[jul+fruit finds jufruit, jujufruit, jujujufruit,
and so on. Note that it will not find jfruit, ufruit, or

- ujfruit because the sequence ju is not in any of those

strings.

Any character except those following the tilde character (~) in
the brackets, or any of an ASCII range of characters separated by
a hyphen (-). For example, X[~0 -9] matches xa, xb, xc, and
so on, but not X@, X1, X2, and so on.

Any single alphanumeric character.
Any white-space character.

Chapter 3 Using the Text Editor

Regular expression Description

[a-zA-Z] Any single alphabetic character.

[0-9] Any decimal digit.

[0-9a-fA-F]1+ Any hexadecimal number.

{[0-9]+.[0- Any unsigned number. For example, {[0-9]+.[0-9]@} |
9le}| {[e- {[0-91@.[0-91+} | {[@-9]+)} should match 123, .45,
9]@.[0- 9]+}| and 123.45,

{[0-91+}

[0-9]+ Any unsigned decimal integer.

[a-zA-Z_$] C/C++ identifier.

[a-zA-Z0-9_$%$]@

[a-zA-Z]+ Any English word (that is, any string of alphabetic characters).
“[~"]@” Any quoted string.

\ Removes the pattern match characteristic in the Find What text

box from the special characters listed above. For example, 100$
matches 100 at the end of a line, but 100\ $ matches the
character string 100$ anywhere on a line.

Note You can use regular expressions with the Find button on the toolbar if you have
previously selected the Regular Expression check box in the Find dialog box or the Replace
dialog box.

Using Regular Expressions with Epsilon Emulation

y
€« -
-

i

>

A regular expression is a search string that uses special characters to match a text
pattern in a file. You can use regular expressions with both the Find and Replace
commands.

» To use a regular expression

1 From the Edit menu, choose either Find or Replace.
2 In the Find What text box, type a regular expression.
3 In the Replace With text box, type a regular expression if required.

Tip Select the menu button to the right of the combo box to display a list of regular search
expressions. When you select an expression from this list, the expression is substituted as
the search text in the Find What text box. You can also use the drop-down list to select from
a list of up to 16 previous search strings. If you do use regular expressions, be sure the
Regular Expression check box is selected.

97

Visual C++ User's Guide

98 .

The following table lists valid regular expressions for the Epsilon emulation.

Regular expression

Description

L1

~ N

(clc)

[~]

[a-zA-70-9]
[<tab>]+
[a-zA-Z]
{0-9]
[@-9a-fA-F1+
([0-9]+.[0-
91*| [o-
91*.[0-9]1+|
[0-91+)

Any single character.

Any one of the characters contained in the brackets or any of an
ASCII range of characters separated by a hyphen (-). For example,
b(aeiou)d matches bad, bed, bid, bod and bud, and
r(eo)+d matches red, rod, reed and rood, but not reod or
roed. X (0-9) matches X0, X1, X2, and so on.

If the first character in the brackets is a caret (™), then the regular
expression matches any characters except those in the brackets.

The beginning of a line.
The end of a line.

Indicates a tagged expression to retain for replacement purposes. If
the expression in the Find What text box is (1psz)BigPointer,
and the expression in the Replace With box is #1NewPointer, all
selected occurrences of 1pszBigPointer are replaced with
TpszNewPointer.

Each occurrence of a tagged expression is numbered according to its
order in the Find What text box, and its replacement expression is
#fn, where 1 corresponds to the first tagged expression, 2 to the
second, and so on. You can have up to nine tagged expressions.

Not the following character. For example, b~ad matches bbd,
bcd, bdd, and so on, but not bad.

Any one of the characters separated by the alternation symbol (|).
For example, (j|u)+fruit finds jfruit, jjfruit,ufruit,
ujfruit, uufruit, and soon.

None or more of the preceding characters or expressions. For
example, ba*c matches bc, bac, baac, baaac, and so on.

- At least one or more of the preceding characters or expressions. For

example, ba+c matches bac, baac, and baaac, butnot bc.

Any character except those following the caret (*) in the brackets,
or any of an ASCII range of characters separated by a hyphen (-).
For example, X[*0-9] matches xa, xb, Xc, and so on, but not
X0, x1, X2, and so on.

Any single alphanumeric character.
Any white-space character.

Any single alphabetic character.
Any decimal digit.

Any hexadecimal number.

Any unsigned number. For example, ([0-91+.[0-91*|[0-
91*.[0-9]+|[0-91+) should match 123, .45, and 123.45.

Chapter 3 Using the Text Editor

Regular expression Description

[0-9]+ Any unsigned decimal integer.

[a-zA-Z_%] C/C++ identifier.

[a-zA-Z0-

9_%1*

[a-zA-Z]+ Any English word (that is, any string of alphabetic characters).
“[~7]%” Any quoted string.

\ Removes the pattern match characteristic in the Find What text box

from the special characters listed above. For example, 100$
matches 100 at the end of a line, but 10@\ $ matches the character
string 100$ anywhere on a line.

Note You can use regular expressions with a search in a single source file with the Find
button on the toolbar if you have previously selected Regular Expression in the Find or

Replace dialog box.

Selecting Text

You can select lines, multiple lines, and column blocks of text to cut, copy, delete,
indent, and unindent. Most of the selection commands have extensions (the word
“Extend” is appended to the name of the command) that move the cursor and extend
the selection. By default, these commands are bound to the same key combination as
the primary selection command plus the SHIFT key (such as SHIFT+LEFT ARROW for

CharLeftExtend).

» To select a line of text

¢ In the selection margin, point to the beginning of the text you want to select and
click the left mouse button. '

» To select multiple lines of text

1 In the selection margin, point to the beginning of the text you want to select.

2 Drag either up or down to select the lines of text.

» To select a column block of text

1 Point to the beginning of the text you want to select.

2 Hold down the ALT key and click the left mouse button.

3 Release the ALT key and point to the end of the text you want to select.

When you release the left mouse button, the block of text is selected, and the text
is available for cut, copy, delete, and indent operations. To cancel column-select
mode, click the left mouse button.

9

Visua1>C++ User's Guide

Note When you use proportional fonts in the editor window, the column positions you select
in the first line may not correspond exactly to the subsequent lines you select. The text editor
selects the character most directly in line with the start and end columns, ignoring the actual
character count.

The text editor commands for selection are described in the following table.

. Command Description
CharLeftExtend Extends the selection one character to the left.

CharRightExtend Extends the selection one character to the right.

- ConditionalDownExtend Selects to the next matching preprocessof condition.
ConditionalUpExtend Selects to the previous matching preprocessor condition.
DocumentEndExtend Extends the selection to the end of the file. -
DocumentStartExtend Extends the selection to the beginning of the file.

HomeExtend Extends the selection alternately between the start of the current
line and the start of the text on that line.

LineDownExtend Extends the selection one line downward.

LineEndExtend Extends the selection to the end of the text on the current line.

LineUpExtend ‘ Extends the selection one line upward.

PageDownExtend Extends the selection one page downward.

PageUpExtend Extends the selection one page upward.

SelectAll Selects the entire document.

SelectChar Starts the character-selection mode. While this mode is active, all

other navigation commands will select the characters from the
position where the command was executed to the current cursor
location.

SelectLine : Starts the line-selection mode. While this mode is active, all other
navigation commands will select lines from the position where
the command was executed to the current cursor location.

SelectColumn Starts the column-select mode. In column-select mode, the
navigation keys act as if virtual space is enabled.

WordLeftExtend - Extends the selection backward one word.

WordRightExtend Extends the selection forward one word.

See Also Viewing and Changing the Shortcut Keys

100

Chapter 3 Using the Text Editor

Editing with the Text Editor

With the text editor, you can cut, copy, and paste text using menu commands or drag-
and-drop. You can also undo and redo selected editing actions.

The text editor provides the following editing commands:

¢ Cutting, copying, pasting, and deleting text
¢ Undoing and redoing editing actions
e Using drag-and-drop

¢ Specifying column blocks for editing

All editing commands require a selection in order to work. Some of the commands
can make a selection based on the current cursor location. Command names that
begin with an object (such as WordCapitalize) assume that object for a default
selection; otherwise, the default selection will be the character adjacent to the cursor.
For example, the Delete command removes the character to the right of the cursor if
there is no selection. :

Note You can enable the copy command to work on the current line even if there is no
selection. From the Tools menu, select Options. Select the Compatibility tab, and select the
Enable Copy Without Selection option. This enables the copy command to work on the current
line if there is no selection. '

When you cut text from the file, the text is removed from your file and placed on the
Clipboard. When you delete text from the file, the text is removed from your file, and
the Clipboard is not used. All Windows applications share one single Clipboard.
Commands that use the Clipboard will overwrite whatever was previously placed
onto the Clipboard by other commands or other Windows applications. This single-
Clipboard behavior is true even when Developer Studio is emulating an editor, such -
as Epsilon, that supports multiple Clipboards. '

The text editor commands for editing are described in the following table.

Command Description

‘CharTranspose Swaps characters around the cursor.

Copy Copies the selection to the Clipboard.

Cut Removes the selection and copies it to the Clipboard.
Delete Deletes the selection.

101

Visual C++ User's Guide

Command Description ‘
DeleteBack Deletes the selection, or if theré is no selection, deletes the
~ character to the left of the cursor.
DeleteBlankLines Deletes the blank lines adjacent to the cursor.
DeleteHorizontalSpace Deletes the spaces and tabs around the cursor.
FormatSelection Formats the selection using the smart indent settings.
IndentSelection Indents the selected text right one tab stop.
IndentSelectionToPrev Indents the selection to line up with the previous line’s indention.
LevelCutToEnd Cuts the text between the cursor and the end of the next
bracketed level.
LevelCutToStart Cuts the text between the cursor and the beginning of the
previous bracketed level.
LineCut Deletes the selected lines and places them on the Clipboard.
LineDelete Deleted the selected line.
. LineDeleteToEnd Deletes to the end of the current line.
LineDeleteToStart Deletes to the beginning of the current line.
LineOpenAbove Opens a new line above the cursor.
LineOpenBelow Opens a new line below the cursor.
LineTranspose Swaps the current and previous lines.
LowerCaseSelection Makes the selection all lowercase.
Paste Inserts the Clipboard contents at the cursor.
SentenceCut Deletes the remainder of the sentence.
TabifySelection Replaces spaces with tabs in the selection.
UnindentSelection Indents the selected text left one tab stop.
UntabifySelection Replaces tabs with spaces in the selection. ‘
UpperCaseSelection Makes the selection all uppercase.
WordCapitalize Makes the first character uppercase.
WordDeleteToEnd Deletes a word to the right.
WordDeleteToStart Deletes a word to the left.
WordLowerCase Makes the current word lowercase.
WordTranspose Swaps the current and previous words.
WordUpperCase Makes the current word uppercase.

See Also Viewing and Changing the Shortcut Keys

Chapter 3 Using the Text Editor

Cutting, Copying, Pasting, and Deleting Text

You can edit your text using the following actions.

Action Description

Cut Removes selected text from the active window.

Copy Duplicates selected text in the active window.
Paste Pastes cut or copied text into an active window.
Delete Deletes text without copying it to the Clipboard.
Undo Restores the text.

Redo Re-applies the prior edit.

» To cut or copy and paste text
1 Select the text you want to cut or copy.
2 From the Edit menu, choose Cut or Copy. _
The cut or copied text is placed onto the Clipboard and is available for pasting.
3 Move the insertion point to any source window where you want to insert the text.

4 From the Edit menu, choose Paste.

» To delete text
1 Select the text you want to delete.
2 From the Edit menu, choose Deleie.

The deleted text is not placed onto the Clipboard, and cannot be pasted.

Undoing and Redoing Editing Actions

Use the Undo command to undo previous editing actions. Use the Redo command to
reapply editing actions that have been undone. Redo is unavailable unless you have
used the Undo command.

The number and scope of editing actions you can undo is determined by the size of
the text editor’s UndoRedoSize buffer in the registry. For information on how to
modify the Registry, see Appendix B, Initializing and Configuring Microsoft
Developer Studio.

Note You can also undo automated edits. For example, if you have used ClassWizard to add
a command handler, you can undo the ClassWizard edits by choosing AutomatedEdit in the
Undo drop-down list.

103

Visual C++ User's Guide

» To undo an editing action

From the Edit menu, choose Undo.

» To redo an undo action

From the Edit menu, choose Redo.

Using Drag-and-Drop

" ¥
-
»

Drag-and-drop editing is the easiest way to move or copy a selection of text in a file
or between files.
» To move text using drag-and-drop editing
1 Select the text you want to move.
2 Drag the selected text to the new location.
Note You can also use the right mouse button for drag-and-drop editing. Select the text you

want, and then use the right mouse button to drag the text to a new location. A pop-up menu
appears, asking if you want to move or copy the selected text.

Tip At any time during a drag-and-drop, you can click the other mouse button to cancel the
operation.
» To copy text using drag-and-drop

1 Select the text you want to copy.

2 While holding down the CTRL key, drag the selected text to the new location.

Recording and Playing Back Keystrokes

104

With the text editor, you can automate repetitive keyboard tasks by recording and
playing back keystrokes. The playback feature is available until you record a new set
of keystrokes or end the editing session.

You can play back recorded keystrokes only into a single editor view. If you activate a
new editor view while recording keystrokes, the recorder will remain in record mode
and continue recording keystrokes. However, when the recorded keystrokes are
played back, they will be played back into the view they were recorded from. If a
window is closed, the playback stops.

Note During recording, all mouse-driven selections in text windows are disabled.

» To record keystrokes
1 Move the mouse pointer to where you want to begin typing.
2 From the Tools menu, choose Record Keystrokes.

The Record toolbar appears.

Chapter 3 Using the Text Editor

3 Record the keystrokes that you want.

During recording, all mouse-driven selections are disabled. Keystrokes are entered
at the location you have selected.

4 From the Tools menu, choose Stop Recording when you have finished recording
your keystrokes.

» To play back keystrokes
1 Move the mouse pointer to where you want to play back the recorded keystrokes.
2 From the Tools menu, choose Playback Recording.

The recorded keystrokes will be played back into the active editor window at the
location you have selected.

Setting Text Editor Options

With Developer Studio, you can set the text editor’s behavior to suit your preferences
and work habits. You can customize the text editor by:

¢ Setting editor emulation.

o Setting file save preferences.

¢ Setting and using the selection margin.
o Setting tabs and indents.

o Setting the font style, size, and color.

e Setting syntax coloring.

¢ Setting syntax coloring for user-defined types.

The text editor commands for editor settings are described in the following table.

Command Description

EditToggleCaseSensitivity Toggles the search case sensitivity.

EditToggleFindMatchWord Toggles match whole word.

EditToggleOvertype Toggles between inserting and replacing
typing.

EditToggleRE Toggles the regular expression search.

EditToggleTabDisplay Shows or hides the tab characters.

See Also Viewing and Changing the Shortcut Keys, Using Virtual Space

105

Visual C++ User's Guide

Setting Editor Emulation

The Microsoft Developer Studio text editor can emulate two popular text editors:
BRIEF and Epsilon. With the emulation feature, the text editor can emulate the key
bindings, text selection, caret display, and w1ndow display, as well as most editing
commands of the selected editor.
» To set an editor emulation

1 From the Tools menu, choose Options.

The Options dialog box appears.
2 Select the Compatibility tab.

3 In the Recommended Options For list box, select the editor that you want to
emulate.

The default editor is Developer Studio.
The Options box displays the status of pre-defined editor options.
4 Choose the OK button.

See Also Setting Editor Behavior, Using Epsilon Emulation, Usmg BRIEF
Emulation, Viewing and Changing the Shoﬂcut Keys :

Setting Save Preferences

You can set save preferences—such as whether to be prompted before saving a file—
in the Options dialog box. As a default, the text editor saves all changed files prior to
building an application. The following table lists the save preferences:

Save Option : Description

Save before running tools Saves files before you build a project or run a build utility
such as NMAKE.

Prompt before saving files Confirms (with a dialog box prompt) that you want to
save files.

Automatic reload of externally Automatically reloads externally modified files that have

modified files been loaded (but not yet changed) by the editor.

» To change the save options
1 From the Tools menu, choose Options. .
The Options dialog box appears.
2 Select the Editor tab.
3 Select any of the Save Options.
4 Choose the OK button.

106

Chapter 3 Using the Text Editor

Setting and Using the Selection Margin

The selection margin is an area to the left of each line of text. You can use the mouse
in this area to select text. The selection margin also displays information about source
lines. Breakpoints, bookmarks, the extended instruction pointer (EIP), and the tag
pointer are all indicated by icons in the selection margin.
» To set the selection margin

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Editor tab.

3 Select the Selection Margin check box.

4 Choose the OK button.

» To use the selection margin

When the mouse pointer is moved into the selection margin, it changes to an up-
and-right-pointing select arrow (a mirror image of the standard select arrow).

¢ Do any of the following:
¢ Click in the margin to select the entire line to the right of the mouse pointer.

¢ Click in the margin and move the mouse pointer to select multiple consecutive
lines.

e While holding down SHIFT, click in the margin and move the mouse pointer to
extend a selection.

e While holding down CTRL, click anywhere in the margin to select the entire file.
(This is equivalent to choosing the Select All command from the Edit menu.)

Setting Tabs and Indents
You can indent text with tab characters several ways:
e Use the INDENT SELECTION key.
e Use Auto Indent (without Smart Indent)
e Use Auto Indent (with Smart Indent enabled)

When you press the TAB key, the insertion point moves to the next indent level. You
can display (or hide) the tab symbols by pressing the EditToggleTabDisplay key
combination.

Note You can display all of the current keyboard shortcuts. For more information, see
“Displaying the Keyboard Shortcuts” in Chapter 22, “Customizing Microsoft Developer Studio.”

You can also use Auto Indent (without Smart Indent) to automatically indent new
lines to match the previous line.

107

Visual C++ User's Guide

» To set Auto Indent
1 From the Tools menu, choose Options.
The Options dialog box appears.
2 Select the Tabs tab.

3 Under Auto Indent, select the appropriate setting. To use Smart Indent, select the
Smart option. Select the Default option to set the tab and indent size to match that
of the previous level. '

4 Choose the OK button.
If you use Auto Indent (with Smart Indent enabled), the text editor automatically
indents the text based on the context of the previous lines.
» To set Smart Indent

1 From the Tools menu, choose Options.

The Options dialog box appears.
2 Select the Tabs tab.
3 Under Auto Indent, select the Smart option.

4 Under Smart Indent Options, select the language element and specify the number
of previous lines to use for the context of smart indenting.

5 Choose the OK button.
Backspacing over a tab character deletes the tab character, regardless of the indent
setting.

If you select the Insert Spaces option, a tab character is not inserted, and only spaces
are inserted to reach the next indent level.

Note The File Type list box on the Tabs tab contains a list of file types. The initial tab settings
for each file you load are assigned based on the file extension and the setting of this list box.
You can use the Tab Size box and Indent Size box on the Tabs tab or on the Source Window
property page to specify individual settings for these two fields on a per-file basis, as needed. -

» To change tab and indent settings
1 From the Tools menu, choose Options.
The Options dialog box appears.
2 Select the Tabs tab.

3 In the Tab Size box, type the number of spaces to use as a tab stop. The default is
four spaces.

4 In the Indent Size box, type the number of spaces to use for indents. The default is
four spaces.

08

Chapter 3 Using the Text Editor

5 Select the Keep Tabs option to treat each tab as a single tab character when the file
is saved.

Select the Insert Spaces option to use spaces as specified in the Tab Size box.
6 Choose the OK button.

» To change tab and insert settings using the Source Window property page
1 Click the right mouse button with the mouse pointer in the source window,
2 From the pop-up menu, choose Properties.
The Source Window property page appears.
3 In the Tab Size box and Indent Size box, type the tab and indent setting.

» To display or hide tab symbols
e Press the EditToggleTabDisplay key combination to toggle the display of tab
symbols. Tab symbols are displayed as >> whenever there is a tab in a source file.

You can press the TAB key to move the caret to the next indent level. You can also
move a block of lines one tab to the right or left.
» Toindent a group of lines

1 Select the group of lines.

2 Press the IndentSelection key combination.

» To unindent a group of lines
1 Select the group of lines.
2 Press the UnindentSelection key combination.
Note The UnindentSelection command only returns to previous tab stops.

See Also Viewing and Changing the Shortcut Keys

Setting the Font Style, Size, and Color

You can change the font style, size, and color settings for any window within
Developer Studio with the Format command. You may find different fonts in various
windows give visual clues about the function of the windows—the default setting for
source windows, a different font for the Watch window, and so on. You can use the
text font and size to better manage your window display of information.

Note In addition to setting font coloring, you must enable syntax coloring in order to view
colored text elements.

109

Visual C++ User's Guide

110

» To change a font style, size, or color
1 From the Tools menu, choose Options.
The Options dialog box appears.
2 Select the Format tab.
3 In the Category box, select the category of information to be formatted.
The Category list box displays the windows that have formatting options.
4 In the font box, select the font to be used for the category you selected.

The Font drop-down list box displays the different fonts installed on your system.
The text sample in the sample box changes to the font you select.

5 In the Size box, select the Size to be used for the font you selected.

The Size drop-down list displays the sizes available for the selected font. The text
sample in the sample box changes to the size you select.

6 In the Colors list box, select the type of text you want to color.
7 In the Background list box, select a background color.
8 In the Foreground list box, select a foreground color.

Note The Background and Foreground lists display the 16 standard colors and the
Automatic setting. The text sample displayed in the Sample box changes to the color you
select. '

The behavior of the Automatic color setting depends on the element selected. For colors
that map to standard system elements (such as Foreground color, Background color, or Text
Selection color), the Automatic setting sets the element to the appropriate system color. For
syntax coloring elements and other non-system defined colors, the Automatic setting
indicates that the foreground color or background color from the same category is to be
used.

9 Choose the OK button.

Text within one category of window can be only one font and size. Multiple fonts
cannot be displayed in the same category of source window.

The font and size settings apply to everything within the selected category, while the
foreground and background color settings apply only to the selected element of that
category.

Tip You can reset the formatting options for a selected Category to the default settings by
chaoging Reget,

Chapter 3 Using the Text Editor

Setting Syntax Coloring

Using different colors for various elements of your display, such as functions or
variables lines, gives you visual cues about the structure of your source code. These
changes are global and affect all source files with extensions recognized by the
installed language.

» To set syntax coloring in an individual source file

1 Click the source file window or use the Window menu to make the source window
active.

If there are multiple windows open on the source file, select one. Syntax coloring
changes will appear in all windows opened on the source file.

2 From the Edit menu, choose Properties.

The Source Window property page appears. The Language list box displays the
current language setting for syntax coloring. The drop-down list contains the
installed language choices.

3 In the Language list box, select C/C++ to set syntax coloring for that source file,
or select None to turn syntax coloring off.

Note Global syntax coloring for C++ is enabled by default.

Settmg Syntax Coloring for User-Defined Types

The text editor can display custom coloring of user-defmed data types as well as
predefined language elements.

The process of setting colors for user-defined types has three stages:
e Create an ASCII text file containing a list of user-defined types.
-+ Enable syntax coloring.

¢ Select appropriate colors for the user-defined types. '

» To set syntax coloring for user-defined types

1 In the same directory as MSDEV.EXE, create a text-only file named
USERTYPE.DAT, containing a list of user-defined type names.

Note You must save USERTYPE.DAT as a text-only file. You can use the text editor or the
Windows Notepad to create this file. The file should contain a list (one per line) of the user-
defined strings that should be colored.

2 Click the source file window or use the Window menu to make the source window
active.

If there are multiple windows open on the source file, select one. Syntax coloring
changes will appear in all windows opened on the source file.

111

Visual C++ User's Guide

12

3 From the Edit menu, choose Properties.

The Source Window Properties page appears. The Languagé list box displays the
current language setting for syntax coloring. The drop -down list contains the
installed language choices.

4 In the Language list box, select C/C++ to set syntax coloring for that source file,
or select None to turn syntax coloring off.

Note Global syntax coloring for C++ is enabled by default.

5 From the Tools menu, choose Options.
The Options dialog box appears.
6 Select the Format tab.
7 In the Category box, select the category of information to be formatted.
The Category list box displays the windows that have formatting options.
8 In the Font box, select the font to be used for the category you selected.

The Font list box displays the different fonts installed on your system. The text
sample in the sample box changes to the font you select.

9 In the Size box, select the. Size to be used with the font you selected.

The Size list box displays the sizes available for the selected font. The text sample
in the sample box changes to the size you select.

10 In the Colors list box, select the type of text you want to color.
11 In the Background list box, select a background color.
12 In the Foreground list box, select a foreground color.

Note The Background and Foreground lists display the 16 standard colors and the
Automatic setting. The text sample displayed in the Sample box changes to the color you
select.

The behavior of the Automatic color setting depends on the element selected. For colors
that map to standard system elements (such as Foreground Color, Background Color, or
Selected Text Color), the Automatic setting sets the element to the appropriate system
color. For syntax coloring elements and other non-system defined colors, the Automatic
setting indicates that the foreground color or background color from the same category is
to be used.

Chapter 3 Using the Text Editor

13 Choose the OK button.

The USERTYPE.DAT file is read during initialization. It cannot be renamed, nor can
it be reloaded during an editing session. The syntax coloring mechanism checks the
USERTYPE.DAT file last. Thus, all previously defined color settings take precedence
over the user-defined types.

Tip For any source file, you can use the Source Window property page to specify which
fanguage syntax coloring to apply (or turn off syntax coloring altogether). For more information,
see “Setting the Font Style, Size, and Color” earlier in this chapter.

1
“O.
4 »

Managing Open Windows
The text editor features options that control the display of source windows. You can
switch between windows, open new windows, split window views, and view a source
file in full-screen mode.
» To switch to a source window
e Click anywhere in the window.
—or—
¢ From the Window menu, choose the filename.
—or—
1 From the Window menu, choose Windows.
The Windows dialog box appears.
2 Select a window from the Select Window list.

3 Choose the Activate button, or double-click the selection.

» To create a new window for an open source file
1 Switch to the source window.
2 From the Window menu, choose the New Window command.

A second copy of the source file is displayed with an :» suffix. As you open more
windows on the source file, the value of # increases. You can scroll and split each
window independently. You can make changes to the source file from any window.

Note When you first open afile, if you select the Read Only check box in the Open dialog
box, the current window and any duplicates of the window remain read only.

113

Visual C++ User's Guide

» To split a source window

e Click the split bar at the top of the vertical scroll bar, and drag it down to the
location you want.

—or—
~ 1 Switch to the source window.

If there are multiple windows open on the source file, select one of them.
- 2 From the Window menu, choose Split.

The split bar appears.

3 Drag the split bar to the location you want.

» To view a source file in full-screen mode
1 Switch to the source window.
2 From the View menu, select Full Screen.

The source window is displayed in full-screen mode. A small button appears at the
top that allows you to reset the screen to regular mode.

Initially, the toolbars, status bar, and scroll bars are hidden. From the Tools menu
(ALT+T), choose Options and then use the Editor tab to control window settings.

» To end full screen mode
e Press the ESC key.
—or—
¢ Click the Full-Screen button.
All files are automatically closed when you quit Developer Studio (you will be
prompted to save any changed files). You can also close any individual source file
without quitting the application.
» To close a source file ,
1 From the Window menu, choose Windows.
The Windows dialog box appears.

2 Select one or more files from the Select Window list box.

114

Chapter 3 Using the Text Editor

3 Choose the Close Window button.
4 Switch to the source window.

5 From the File menu, choose Close to close the active window and any additional
views of the window.

If the window is not maximized, double-click the window’s Control-menu box.
When you double-click the Control-menu box, the window is closed, but
additional views of the document remain open.

115

CHAPTER 4

Working with Source-Code Control

Source-code control systems enable you to track changes to source-code files during
the course of software development. With source-code control systems, you can
ensure that changes are not overwritten in projects with multiple authors, and that
authors are working with the most up-to-date code. You can also return to earlier
versions of code, if necessary.

Microsoft Developer Studio provides facilities for integrating a source-code control
system into the development environment. If you install a source-code control system
that conforms to the Microsoft Common Source Code Control Interface, you can
directly access source-code control functionality from the Developer Studio menus.

Note Until you install a source-code control system that conforms to the Microsoft Common
Source Code Control interface, the menu commands for source-code control will not appear. In
addition, either you or the installation program must make the correct entries in the Registry.

Setting Up Source-Code Control

To use the integrated source-code control capabilities in Microsoft Developer Studio,
you must take the following steps:

¢ Install a source-code control system that conforms to the Microsoft Common
Source Code Control Interface. .

¢ Ensure that the installation program for the source-code control system writes the
correct information to the Registry, and if it doesn’t, make the correct entries.

¢ Complete all the administrative tasks required by your source-code control system.
These tasks may include designating locations for master versions of files, creating
network connections, setting permissions for drives and/or directories, or adding
user information and permissions to the system.

117

Visual C++ User's Guide

Supported Source-Code Control Functionality

Microsoft Developer Studio provides commands for a number of common source-
code control operations used in everyday work. It supports the following operations:
e Putting an entire project under source-code control.

e Putting individual files under source-code control.

¢ Getting current versions of files.

. Checking files out of the source-code control system.

e Checking files into the source-code control system and merging others’ changes.
o Checking files into the source-code control system and ignoring changes.

e Removing files from the source-code control system.

e Viewing the history of changes made to a file.

e Viewing the differences between the local copy of a file and its master copy.

If your installed source-code control system supports other operations in addition to
these basic ones, Microsoft Developer Studio provides access to them from the
Advanced button on the relevant dialog box. These other operations could include

such things as checking out files exclusively to prevent other users from working on
them at the same time.

Unsupported Source-Control Functionality

Microsoft Developer Studio supports basic functionality in installed source-code
control systems, as outlined in the section “Supported Source-Code Control
Functionality” earlier in this chapter. This integrates common source-code control
operations into your customary working environment.

These integrated operations do not encompass all possible capabilities of source-code
control systems. For certain source-code control operations, you will have to use the
programs or features of your installed source-code control system. These operations
include adminstrative tasks, such as designating locations for master versions of files,
creating network connections, setting permissions for drives and/or directories, or
adding user information and permissions to the system. '

In addition, if your source-code control system allows certain operations on files in
the source-code control tree, such as getting specific versions of files, branching, or
merging branches, you need to use the installed source-code control program for
those operations.

Putting Files Under Source-Code Control

When you add a file to your source-code control system, the system manages access
to the file and maintains a record of all changes made to the file. It also records when

118

Chapter 4° Working with Source-Code Control

a file was changed and who changed the file. From Microsoft Developer Studio, you
can put entire projects under source-code control, or you can put individual files
under source-code control.

Displaying the Source-Code Control Toolbar
You can access the integrated source-code control commands from buttons on a
standard toolbar.
» To display the Source-Code Control toolbar
1 From the View menu, choose Toolbars.
The Toolbars dialog box appears.
2 From the Toolbars list, select Source Control.
The Source-Code Control toolbar immediately appears.
3 Choose the Close button.
You can also remove buttons from the toolbar, add other buttons, or add source-code

control buttons to other toolbars. For information on customizing toolbars, see the
section “Working with Toolbars” in Chapter 22.

Addmg a Project to Source-Code Control

You can add a project to your source-code control system any time after you have
created it.

Note Before you can add any files to source-code control, you must complete any
administrative tasks required by your source-code control system, using the administrative
program supplied by your system. This may include adding users or creating a source-code
control project database, for instance.

» To add a project to source-code control
1 Open an existing project or create a new project.

2 From the Tools menu, choose Source Control, and from the cascading menu,
choose Add To Source Control.

The installed source-code control displays one or more dialog boxes, requesting
source-code control project information.

3 Specify the information required by the installed source-code control system.

The Add To Source Control dialog box appears, with files in the project workspace
selected.

4 If you want to add the files to source-code control, but immediately check them
out, select the Keep Checked Out check box.

5 In the Comment text box, type a comment about the files, if you want.

119

Visual C++ User's Guide

Note If your source-code control system supports additional options, an Advanced button
appears on the Add To Source Control dialog box, and you can select those options at this
point.

6 Choose the OK button.

Adding Individual Files to Source-Code Control

You can set Developer Studio options to prompt you automatically each time you
insert files into your project, or you can explicitly choose to put them under source-
code control.
» To prompt automatically for inclusion under source-code control

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Source Control tab.

3 Select the Prompt To Add Files When Inserted check box.

4 Choose the OK button.

Now, each time you insert files into the project, Developer Studio prompts you to
add the inserted files to your source-code control system.

If some or all of the files currently included in your project are not under source-code
control, you can add them individually to the source-code control system.
» To add individual files to source-code control

1 In the FileView pane of the Project Workspace window, select the files that you
want to put under source-code control.

2 From the Tools menu, choose Source Control, and then choose Add To Source
Control from the cascading menu.

The Add To Source Control dialog box appears, with checks in the Files list next
to the files that you have selected. The list includes all files in the project directory
that are not already under source-code control, and you may check or uncheck any
files in the list.

3 In the Comment text box, type a comment about the files, if you want.
4 Choose the OK button.

The files are now under source-code control, and the file icons in the File View
pane are now grayed to indicate this. ‘

Removing Files from Source-Code Control

When you remove files from your Microsoft Developer Studio project, you may first
want to remove them from source-code control.

120

Chapter 4 Working with Source-Code Control

» To remove a file from source-code control

1 In the FileView pane of the Project Workspace window, select the files that you
want to remove from source-code control.

2 From the Tools menu, choose Source Control, and from the cascading menu,
choose Remove From Source Control.

The Remove From Source Control dialog box appears, with checks in the Files list
next to the files that you have selected. You may check or uncheck any files in the
list.

3 Choose OK.

Note Not all source-code control systems allow individual users to remove files from source-
code control. Some systems require source-code control administrators to remove them, and
the administrator may need to use the source-code control system’s administrative program.

Determining the Status of Files

‘When you are using a source-code control system, it is important to be able to
determine the status of files within the system. This can help prevent collisions in
groups with multiple authors, ensure that you are working on current files, determine
whether you have access to a file, and so on. You can also examine the historical
status of files to determine when and what changes were made, and who made them.

You can determine some information from the FileView pane, other information from
the property pages for a file, and other information from examining the file’s history.

Reading the FileView Pane

The FileView pane of the Project Workspace window displays all the files that are
currently in the project workspace. If a project is under source-code control, the file
icons are grayed, and if a file is checked out, a check mark appears to the left of the
file icon. Figure 4.1 shows a file under source-code control that has been checked out.

Figure 4.1 FileView Showing a Checked Out File

 ["5-&3 Myproil files
i~ B ChidFm.cpp

Myprojl.cpp

Myprojl.ic

Myproj1Doc.cpp
3 MyprojiView.cpp
ReadMe.txt

ffff B Stdatx.cpp

-3 Dependencies

21

Visual C++ User's Guide

Examining File Status on Property Pages
Each file in a project has a property page associated with it. The property page

includes information about the file; including its current status in the source-code
control system if it is under source-code control.

~ Note If the file is not under source-code control, no status information appears on the property
page. '
» To examine a property page from the FileView pane

o Select the file in the FileView pane of the Project Workspace window, and press
"ALT+ENTER.

e Select the file in the FileView pane of the Project Workspace window, click the
right mouse button to display the pop-up menu, and choose Properties.

—0r—
e Select the file in the FileView pane of the Project Workspace window, and from
the Edit menu, choose Properties.

» To examine a property page from a source editor window
e Press ALT+ENTER and select the General tab.

¢ Click the right mouse button to display the pop-up menu, choose Properties, and
then select the General tab. -

e From the Edit menu, choose Properties, and then select the General tab.

Examining File Histories |
In some cases, you may want to know what changes were made to a file, either
recently or throughout its existence. You can request the source-code control system
to show a history for a file or files that you have added to source-code control. Some
source-code control systems allow you to select only a single file. The type of detail

~shown in the file histories depends on the source-code control system.
» To show file histories

1 In the FileView pane of the Project ‘Workspace window, select the file or files for
which you want a history.

2 From the Tools menu, choose Source Control,-and then choose Show History from
the cascading menu.

Your source-code control system displays the history for the selected file or files.

122

Chapter 4 Working with Source-Code Control

Getting Current Versions of Files

Updating your local copies of files to versions from the master source-code control
files is called “getting” or “synchronizing” files. In any software project with multiple
authors, you need to update your local copies frequently to ensure that you
incorporate changes that other authors have made.

In a large project, changes can be made in files that you normally do not work in, but
that do contain information that you use. For instance, project-wide header files may
define manifest constants or macros that appear in your source files. When you get or
synchronize your local files, the master versions of files are copied to your local
project. The files are not checked out, and you cannot modify them and check in
changes, but you can build with the most up-to-date versions.

If you have checked out files and made changes to your local copies, and other
authors have made changes to those same files and checked them in, your source-
code control system reports that you have changes to merge. You then need to follow
the recommended procedures in your source-code control system to reconcile and
verify those changes.

» To get current files in your project

1 In the FileView pane of the Project Workspace window, select the files that you
want to get.

2 From the Tools menu, choose Source Control, and from the cascading menu,
choose Get Latest Version.

The Get Latest Version dialog box appears, with checks next to the files that you
have selected. The list includes all files in the project directory that are under
source-code control, and you may check or uncheck any files in the list.

Tip You can quickly select ali the items in the list by selecting the first item, pressing
SHIFT+END to select all the items, and then pressing the SPACEBAR to change the check box
state. If one or more files are checked, they now are unchecked. Pressing the SPACEBAR
again checks them all.

3 Choose the OK button.

The source-code control system copies all the selected files with changes by other
authors to your local directory.

You can also have Developer Studio automatically prompt you to get the current
versions of files when you open a project workspace.
» To get current versions of files when opening a project workspace
1 From the Tools menu, choose Options.
The Options dialog box appears.
2 Select the Source Control tab.

123

Visual C++ User's Guide

3 Select the Get Files When Opemng The Workspace check box.
4 Choose the OK button.

Checking Files In and Out

‘When you begin work on your project, normally you open the project in the project
workspace and get the current versions of the project files to make sure that you are
looking at the most up-to-date sources. Before you begin to modify the source files,
you check them out; after you have completed the modifications, you check the files
in.

‘When you have a file checked in, your local copy of the file is read-only, and you
cannot save any changes to it. When you check out a file, you can make changes to
your local copy of the file, and save those changes to the file. When you check the file
in, you copy those changes to the master copy of the file in the source-code control
project. This makes those changes available to your coworkers. Depending on the
characteristics of your source-code control system, only one author can check out a
file, or more than one author can check out a file simultaneously.

In Microsoft Developer Studio, in addition to selecting files directly from the
FileView pane, you can also check them in and out by selecting from the other panes.
For instance, if you select a class to-check out in the ClassView pane, Developer
Studio prompts you to check out files associated with that class. In the Resource View

. pane, if you select a bitmap resource to check out, Developer Studio prompts you to

check out the resource file and the bitmap file.

Checking Files Out

124

When you check a file out, your installed source-code control system changes the
status of the file from read-only to writeable, and records that you have the file
checked out. You then have the necessary permissions to revise the file. Your source-
code control system may include a mechanism for exclusive use. You can then specify
that you have the file checked out, and that no one else may check out that file.

Some source-code control systems allow multiple authors to check out the same file.
In this case, the source-code control system merges the changes from the authors
when each checks in the file.

» To check files out
1 In the FileView pane of the Pro;ect Workspace wmdow select the files that you

w;mt to rhpnk out.

2 From the Tools menu, choose Source Control, and from the cascading menu,
choose Check Out.

The Check Out File(s) dialog box appears, with checks next to the files that you
have selected. The list includes all checked-in files in the project dlrectory, and
you may check or uncheck any files in the list.

Chapter 4 Working with Source-Code Control

3 Type a comment in the Comment text box, if you want.
Note Not all source-code control systems support comments when checking files out. If
yours does not, this text box does not appear.

4 Choose the OK button.

You can also check out a file using the pop-up menu in the text editor windows. Press
the right mouse button to display the menu. From the menu, choose Check Out.

You can have Developer Studio prompt you to check out a file if you start to edit it,
but have not checked it out.
» To prompt for check out from editor windows

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Source Contro] tab.

3 Select the Check Out Source File(s) When Edited check box.

4 Choose the OK button.

Checking Files In
When you check a file in, the source-code control system changes the status of the file
from writeable to read-only, and records that you have checked in the file. It also

records the differences between the contents of the file when you checked it out and
when you checked it in.

You generally want to view the changes to the file before you check it in to confirm
the changes that you made. In some cases, you may want to discard all changes to
your file before checking it in. In other cases, you may need to merge changes that
coworkers have made to the file after you checked it out. If you had the file checked
out exclusively, after you check it in, others can check out the file.

Viewing Your Changes to a File
It is best to review the changes that you have made in a file before you check in the
file. Your source-code control system displays the differences between your local
version of the file and the master version in your source-code control project.
» To view your changes

1 Select the file with the changes that you want to view.

Note You can select only a single file, which must already be checked out. This méthod
reports only the differences between this version and the master version. You cannot use
this method to examine differences between two files in your project, for instance.

125

Visual C++ User's Guide

126

2 From the Tools menu, choose Source Control, and from the cascading menu,
choose Show Differences.

Your source-code control system displays the differences, or reports that the files
are identical.

Checking Files In and Removing Your Changes

In some cases, you may make changes to your local files, and then decide that you do
not want to check the changes in to the source-code control system. You may, for
instance, have viewed the local changes and discovered errors, you may have pursued
some modifications that were not fruitful, or you may not have had time to
completely implement some changes and do not care to check in incomplete code. In
these cases, you can have the source-code control system check the files in, but ignore
any changes you made.

Note If you want to save the changes before checking the files in without the changes, you
can always copy the files to another location, or save them under another name using the
Save As command.

» To check files in but ignore changes

1 In the FileView pane of the Project Workspace window, select the files that you
want to check in without incorporating changes.

2 From the Tools menu, choose Source Control, and from the cascading menu,
choose Undo Check Out.

The Undo Check Out dialog box appears, with checks next to the files that you
have selected. The list includes all checked-out files in the project directory, and
you may check or uncheck any files in the list.

3 Choose the OK button.

The source-code control system changes the status of the files to checked in, but
does not copy any of your changes to the master files. It does not record any
differences. It also restores your local copy of the file so that it matches the master
file.

Checking Files In and Merging Others’ Changes

If your source-code control system does not support exclusive use, while you have had
the file checked out, another author may have also checked the file out, made
changes, and then checked the file in. In this case, before you check your local copy
of the file in, you need to find out if there were changes by other authors. If so, you
need to merge those changes into vour local copy. You can then verify that all the
changes are compatible and that none cause problems when you use the file. After
you have verified the changes, you can check in the file.

» To check files in and merge others’ changes

1 In the FileView pane of the Project Workspace window, select the files that you
want to check in.

Chapter 4 Working with Source-Code Control

2 From the Tools menu, choose Source Control, and from the cascading menu,
choose Get Latest Version.

The Get Latest Version dialog box appears, with checks next to the files that you
have selected. The list includes all files in the project directory under source-code
control, and you may check or uncheck any files in the list.

3 Choose the OK button.

The source-code control system copies master files to your local copies. If there is
a file with changes in both your local copy and the master copy, your source-code
control system notifies you that you have changes to merge. You then need to
follow the recommended procedures in your source-code control system to
reconcile the changes and verify those changes.

4 Repeat steps 1 through 3.

Remember that while you are verifying the last set of changes, another set may
have appeared. :

5 When your source-code control system reports that there are no more files to
merge, select the files that you want to check in.

6 From the Tools menu, choose Source Control and from the cascading menu,
choose Check In.

The Check In File(s) dialog box appears, with checks next to the files that you
have selected. The list includes all files in the project directory, and you may check
or uncheck any files in the list.

7 Choose.the OK button.

You can alsb check in a file using the pop-up menu in the text editor windows. Press
the right mouse button to display the menu, and choose Check In.

Checking Files In When Closing the Workspace

You can choose to have Developer Studio prompt you to check in files when you close
the current workspace.
» To check in files when closing the workspace
1 From the Tools menu, choose Options.
~ The Options dialog box rappears.
2 Select the Source Control tab.
3 Select the Check In Files When Closing The Workspace check box.
4 Choose OK.

127

Visual C++ User's Guide

Maintaining Makefiles Under Source-Code
Control

If you work in a group, you generally want to share the makefile for a project
workspace with other members of your group. This ensures that everyone in the
group can build the projects defined in the project workspace using the same files,
settings, tools, and so on, as well as ensuring that everyone gets the changes to the
makefile and builds with the most up-to-date settings.

Updating the makefile in a group setting requires some coordination among the
members of the group in order for the process to work smoothly. In the optimal case,
all members of the group get the makefile from source- code control when they open
the project, but no one checks it out.

The following actions cause the makefile to change:

¢ Adding or deleting files.
¢ Adding or deleting projects, subprojects, or project configurations.

¢ Changing settings for any configuration.

If you want to take any of these actions, you need to take the following steps:
1. Plan the changes to make in your project workspace.

2. Check out the makefile.

3. Make the changes.
4

. Save the changes to the makefile by choosing the Save All command from the File
menu. (Closing the project workspace or closing Developer Studio also saves the
changes to the makefile.)

. Check in the makefile.
6. Notify the members of the group that the makefile has changed.

W

At this point, the other members of the group need to close the project workspace,
then reopen it and get the new version of the makefile. If they have set the option
to prompt to get the latest versions of files, opening the project workspace reminds
them to get the latest version.

If two or more members of the group simultaneously check out the makefile and
revise it, checking the makefile in could require merging changes. Because Developer
Studio may write muitipie settings to a singie iine of the makefiie, and changes to
settings by different users may alter a single line in two (or more) different places,
reconciling those changes manually could result in errors.

Note If your source-code control system supports exclusive check-outs, you should check the
makefile out for exclusive use if you need to alter it.

128

CHAPTER 5

Working with Resources

In Microsoft Developer Studio, a resource is an interface element that the user gains
information from or manipulates to perform an action. Some basic resources are
created for your project by AppWizard in Visual C++.

The following are common areas in the resources:
e The resource editing procedures common to all the editors
e Common operations for working with symbols (resource identifiers)

e Working with resource files

Using the Resource Editors

The Microsofi Deveioper Studio resource editors share techniques and interfaces to
create and modify application resources quickly and easily. You can use the resource
editors to create new resources, modify existing resources, copy existing resources,
and delete old resources. The resource editors are functionally consistent for ease of
use.

With Developer Studio you can edit all of the Microsoft Windows resources that your
application uses:

o Accelerator tables (described in Chapter 8, “Using the Accelerator Editor”)
¢ Binary data information (Chapter 12, “Using the Binary Data Editor”)

o Bitmaps (Chapter 10, “Using the Graphic Editor”)

e Cursors (Chapter 10, “Using the Graphic Editor”)

e Dialog boxes (Chapter 6, “Using the Dialog Editor”)

e Icons (Chapter 10, “Using the Graphic Editor”)

o Menus (Chapter 7, “Using the Menu Editor”)

129

Visual C++ User's Guide

o String tables (Chapter 9, “Using the String Editor”)

e Toolbar resources (Chapter 11, “Using the Toolbar Editor™)

e Version Information (Chapter 13, “Using the Version Information Editor”)
When you create or open a resource, the appropriate editor opens automaticaily. For
example, graphical resources like toolbar buttons, cursors, and icons are modifiable
bitmaps. The accelerator tables, string tables, and version information consist of

formatted text. Dialog boxes are a combination of graphical components and text
strings. Menus consist of text strings that appear in the menu bar.

The resource editors have many commands and procedures in common. For example,
once you learn how to create and open a dialog box, you know the steps for creating
and opening any of the other resources. The most common resource editing activities
are: ’

e Viewing resources

¢ Creating new resources

¢ Using resource templates

e Using language ID and conditionals
e Copying resources

e Editing resources

e Importing or exporting resources

¢ Using the property pages
Viewing Resources

You can access resources from the ResourceView pane of the project window. Select
the resource tab if ResourceView is not the topmost pane.
» To view the ResourceView pane

e With the PRINAME .MAK project window open, double-click the PRINAME.RC
item. : :

ResourceView appears (Figure 5.1).

130

Chapter 5 Working with Resources

Figure 5.1 The ResourceView Pane

Sc'n‘hble' rﬁ 5 .\ b'
=3 @ Scribble.rc

i .@ |DR_MAINFRAME
E}‘% Bisiap

Double-click a resource to open it
IDB_BITMAP1

- IDD_ABOUTBOX
‘.E] IDD_HELLO_DLG

-3 Icon

E:E} B3 Sting Table
E} '@ Tuolbar

Click once to expand or contract

Double-click to expand or contract

When the ResourceView pane is first displayed, each of the resource categorics is
condensed. You can expand any category by clicking its plus sign (+).
While viewing the ResourceView pane, standard Edit menu commands such as

- Undo, Cut, Copy, Paste, and Delete are available by using either the menu
commands or the accelerator keys.

Creating a New Resource

You can create a resource as a new default resource, or as a resource patterned after a
template. Creating a new default resource is as easy as clicking the appropriate button
on the Resource toolbar (see Figure 5.2). For more information on creating a resource
from a template file, see “Using Resource Templates” later in this chapter.

‘When you create a resource, Developer Studio assigns it a unique symbol name and
value. If you need to change the symbol value, you can use the ID box on the
resource’s property page. For more information on the property page, use the Help
button.
» To create a new resource

1 From the Insert menu, choose Resource.

The Insert Resource dialog box appears.

131

Visual C++ User's Guide

2 Select a resource from the Resource Type list box and choose the OK button.
-or— _
o Click the corresponding toolbar button.

Figure 5.2 The Resource Toolbar

New Bitmap
New Accelerator

New Dialog New Version

Hesouice

Resource -Symbols

New String Table
New Toolbar
New icon
New Cursor
— New Menu

» To display the Resource toolbar

e For information on displaying toolbars and customizing your workspace, see
“Showing and Hiding Toolbars” in Chapter 22, “Customizing Microsoft Developer
Studio.”

Using Resource Templates

A template file is a copy of an edited resource that you can use to create additional
- resources. Resource templates save time in developing additional resources or groups
of resources that share a particular feature.

For instance, you might want to include a Help button and an icon of a company logo
in several dialog boxes. Create a new template, and customize that template dialog
box with the logo and Help button. Now, when you want to create a new dialog box,
you can choose this template dialog box with the features already added.
» To create templates for resources
1 From the Insert menu, choose Resource.
The Insert Resource dialog box (Figure 5.3) appears. v ;
2 Select a resource from the Resource Type list box, and choose the OK button.
—or— ' ' ’

Copy a resource from another resource file. Hold down CTRL and drag the new
resource to the resource template directory.

132

Chapter 5 Working with Resources

& IDC_CURSORT

| ®-[E] Dialog
| =Bl Icon
w@ Menu
| -8 Stiing Table
| oo

| @6 Version

3 Modify the resource.

This resource, once saved as a template, can be copied numerous times to save
effort on positioning controls, inserting text, and so on.

4 From the File menu, choose Save As.
5 In the Save File As Type drop-down list box, select Resource Template (*.rct).
6 Select the TEMPLATE subdirectory under your MSDEYV installation.
7 Choose the OK button to save the template.
Repeat for any remaining templates.

» To create new resources from the templates
1 From the Insert menu, choose Resource.
- The Insert Resource dialog box appears.

2 Select a resource type. Click the resource icon to create a default resource template
object.

Click the plus sign (+) next to a resource to move down the hierarchy to the
template files grouped under that resource. Then click the specific template file
under that resource to create a resource template object.

3 Choose the OK button.

Copying Resources

You can duplicate resources exactly, change their language IDs or conditions, or
duplicate them from a template (see “Using Resource Templates” earlier in this
_chapter).

When you create or copy a resource with a different language or condition, this is
displayed after the symbol name in the project window. The language identifies the

133

Visual C++ User's Guide

language used for text in the resource. The condition is a symbol that identifies a
condition under which this copy of the resource is used.
» To copy an existing resource exactly

1 In ResourceView, select the resource you want to copy.

2 From the Edit menu, choose Copy and then Paste.

» To copy an existing resource and change the language or condition
1 In ResourceView, select the resource you want to copy.
2 From the Insert menu, choose Resource Copy.
The Insert Resource Copy dialog box appears.
3 In the Language list box, select the language.
—or—
In the Condition box, type the condition.
4 Choose the OK button.

» To modify the language or property conditions of a resource
1 In ResourceView, select the resource you want to edit.
2 From the Edit menu, choose Properties.
—or—
Click the right mouse button to display the pop-up menu, and choose Properties.
3 Edit the Language or Condition properties.
The easiest way to copy resources from either an existing resource or an executable
file to your current resource file is to have both .RC files open in Developer Studio at

the same time. Then use drag-and-drop to move items from one ResourceView pane
to another (see Figure 5.4).

Figure 5.4 Using Drag-and-Drop to Copy Resources Between Files

' Scribble.rc
&3 Accelerator
@2 IDR_MAINFRAME

IDD_ABOUTBOX
IDD_HELLO_DLG

Stiing Table h
Toolbar =

| .33 IDR_MAINFRAME i
B8 Version 0 s

134

Chapter 5 Working with Resources

Note Developer Studio includes sample resource files that you can use in your own
application. For more information, see “COMMON.RES Sample Resources” in Part 2 of
Programming with MFC.

» To copy resources from one file to another
1 Open both files. Make sure both resource files are visible at the same time.
2 In the ResourceView pane of the “from” file, select the resource you want to copy.

3 Hold down the CTRL key and drag the resource to the ResourceView pane of the
“to” file. ‘ '

Dragging the resource without holding down the CTRL key moves the resource
rather than copying it. ' ‘

Note To avoid conflicts with symbol names or values in the existing file, Developer Studio
may change the transferred resource’s symbol value, or symbol name and value, when you
copy it to the new file.

Editing Resources

The editors for the different resources share many of the same procedures. For more

detailed information on editing the individual resources, see the chapter for that

resource.

» To open an existing resource for editing

= In ResourceView, select the resource you want to edit, and press ENTER.
Double-click the resource.

The resource editor window opens for editing.

» To save an edited resource file
o From the File menu, choose Save.
The resource is saved using its current name.
—or-—
1 From the File menu, choose Save As.
2 In the Drives list box, select the target drive.
3 In the Directories list box, select the directory path.
4 In the File Name box, type the name for the file.
5 Choose the OK button.

The resource is saved using the Save As name.

135

Visual C++ User's Guide

» To delete an existing resource
1 In ResourceView, select the resource you want to delete.
2 From the Edit menu, choose Delete.

The resource is deleted.

Importing and Exporting Resources

» To import a separate bitmap, icon, or cursor file into your current resource file
1 From the right mouse pop-up menu, choose Import. -
The Import Resource dialog box appears.
2 Select the name of the .EPS, .ICO, or .CUR file you want to import.
3 Choose the OK button to add the file to the current resource file.

Q Tip You can also copy a bitmap, icon, or cursor into your current resource file by dragging it
sl from File Manager and dropping it into the Developer Studio ResourceView pane.

» To export a bitmap, icon, or cursor as a separate file
1 Select the bitmap, icon, or cursor you want to export.

Developer Studio exports the graphic selected in the ResourceView pane or the
graphic in the currently active image editor window.

2 From the right mouse pop-up menu, choose Export.

The Export Resource dialog box appears.
3If you do not want to accept the current filename, type a new one.
4 Choose the OK button to save the graphics file on the disk.

Using Property Pages
Property pages control the appearance and the behavior of resources and differ
according to their purpose. For example, a bitmap resource property page contains
information on the ID, language, condition, and filename, as well as a preview of the
resource. But a property page for a pushbutton control in a dialog box contains

several tabs of information, General and Extended Styles, each with many style bits
to modify the control’s behavior.

OLE controls supplied from independent vendors may come equipped with their own
property pages and characteristics. OLE controls always have General and All pages.
plus whatever the vendor has attached to a particular control.

Accelerator keys have many legal entries in the key box on the property page. For
more information, see “Setting Accelerator Properties” in Chapter 8.

Note Whenever you make a change on a property page, it is made immediately. You cannot
cancel any changes made on a property page.

136

Chapter 5 Working with Resources

Manipulating a Property Page
You can use any of the editing keyboard shortcut keys to cut, copy, and paste text. In
general these shortcut keys can be used in any edit control on the property page.

You can control the behavior of the Properties window to suit your working style or
the nature of the resource editing task. Use the Pushpin button in the upper-left
corner of the property page.

Button position ~ Result

5 When the button is in the down position, the Properties window stays
Do visible even when you are working in another window. This is
convenient if, during an editing session, you want to move back and
forth frequently between setting properties and editing objects. Pressing
ENTER after you change a value in the Properties window returns you to
the editing window but leaves the Properties window visible.

When the button is in the up position, you can dismiss the active
Properties window by pressing ENTER or ESC. This is useful if you
want to concentrate on working in an editing window but need to bring
up the Properties window briefly to change one or two values.

Working with Symbols

A symbol is a resource identifier that consists of a text string (name) mapped to an
integer value. Symbols provide a descriptive way of referring to resources and user
interface objects, both in your source code and while you’re working with them in the
resource editors.

When you create a new resource or resource object, Microsoft Developer Studio
provides a default name for the resource (for example, IDC_RADIO01) and assigns a
value to it. The name-plus-value definition is stored in the Developer Studio-
generated file RESOURCE.H.

In working with symbols from within Developer Studio, you can:

e Change the symbol associated with a resource or object.

¢ Change a symbol’s name or value in the Resource Symbols browser (if the symbol
hasn’t been used yet).

¢ Change a symbol’s name in the Properties window (if the symbol is already in use
by a single object).

e Manage symbols (add, delete, or change the symbols) in the Resource Symbols
browser.

~Note When you are copying resources or resource objects from one .RC file to another,
Developer Studio may change the transferred resource’s symbol value, or symbol name and
value, to avoid conflicts with symbol names or values in the existing file.

137

Visual C++ User's Guide

Changing a Symbol or Symbol Name

When you create a new resource or resource object, Developer Studio assigns it a

~ default name—for example, IDD_DIALOG1. Use the resource’s property page to - ‘

change the default symbol name or to change the name of any symbol already
associated with a resource. ‘
» To change a resource’s symbol name
1 In ResourceView, select the resource.
2 From the Edit menu, choose Properties to move directly to the resource’s property
page. : :
3 In the ID box, type a new symbol name or select from the list of existing symbols.
If you type a new symbol name, Developer Studio assigns it a value automatically. -

You can use the Resource Symbols browser to-change the names of symbols not
currently assigned to a resource. For more information, see “Changing Unassigned
Symbols” later in this chapter. '

Changing a Symbol’s Numerical Value

138

Usually you can let Microsoft Developer Studio assign the numerical value
associated with the symbol names you define. However, there may be times when you
need to change the symbol value associated with a resource—for example, when you
want a group of controls or a series of related strings in the string table to have
sequential IDs.

For symbols already associated with a single resource, use the resource’s property
page to change the symbol value. For symbols associated with more than one resource
or object, make the changes directly in RESOURCE.H using a text editor.
» To change a symbol value assigned to a single resource or object

1 Select the resource.

2 From the Edit menu, choose Properties.

3 In the property page ID box, type the symbol name followed by an equal sign and
an integer. For example,

IDC_EDITNAME=5100 -
—or—
¢ From the View menu, choose Resource Symbols.
The Resource Symbols browser appears.
e Select the symbol you want to change, and choose the Change button.
The Change Symbol dialog box appears.
¢ Choose the View Use button.)
The resource and its property page are displayed.

Chapter 5 Working with Resources

¢ In the property page ID box, type the symbol name followed by an equal sign and
an integer. For example, :

IDC_EDITNAME=5100

The new value is stored in the symbol header file the next time you save the project.
Only the symbol name remains visible in the ID box; the equal sign and value are not
displayed after they are validated.

» To change the numeric value of a symbol assigned to more than one resource or
object
1 End your editing session by closing the current resource file.
2 Open RESOURCE.H in a source window and make the necessary changes.
3 Save RESOURCE.H. _
The next time you open the project’s .RC file, Developer Studio uses the new
symbol values.

Note While editing RESOURCE.H, take special care not to define duplicate symbols.
Developer Studio can detect duplicates only of the symbols it creates.

You can use the Resource Symbols browser to change the value of symbols not
currently assigned to a resource. For more information, see “Changing Unassigned
Symbols” later in this chapter.

Managing Symbols with the Resource Symbols Browser

As your application grows in size and sophistication, so do the number of resources
and symbols. Tracking large numbers of symbols scattered throughout several files
can be difficult. The Resource Symbols browser (Figure 5.5) simplifies symbol
management by offering a central tool through which you can:

e Quickly browse existing symbol definitions to see the value of each symbol, a list
of symbols being used, and the resources assigned to each symbol.

e Create new symbols.
¢ Change the name and value of a symbol that is not in use.
e Delete a symbol if it is not being used.

e Move quickly to the appropriate Developer Studio resource editor where the
symbol is being used.

139

Visual C++ User's Guide

40

Figure 5.5 The Resource Symbols Browser

L€ KKK € €

» To open the Resource Symbols browser

e From the View menu, choose Resource Symbols.

Creating New Symbols

When you are beginning a new project, you may find it convenient to map out the
symbol names you need before creating the resources they will be assigned to.

» To create a new symbol using the Resource Symbols browser
1 In the Resource Symbols browser, choose the New button.
The New Symbol dialog box appea.fs.
2 In the Name box, type a symbol name.

3 Accept the symbol value assigned by Developer Studio or, in the Value box, type a
new value. ’

4 Choose the OK button to add the new symbol to the symbol list.
~ The symbols appear in alphabetic order.

If you type a symbol name that already exists, a message box appears stating that a
symbol with that name is already defined. You cannot define two or more symbols
with the same name, but you can define different symbols with the same numeric
value. For more information, see “Symbol Name Restrictions” and *“Symbol Value
Restrictions” later in this chapter.

Changing Unassigned Symbois

While in the Resource Symbols browser, you can edit or delete existing symbols that
are not already assigned to a resource or object. You can change existing symbols that
are in use in only one place by using the Change command to move to the
appropriate resource’s property page or by moving to the property page directly. You
cannot change read-only symbols.

Chapter 5 Working with Resources

A check mark in the In Use column of the Resource Symbols browser indicates that
the symbol is being used. If Show Read-Only Symbols is selected, read-only symbols
are also displayed. Editable symbols are displayed as bold text, and read-only symbols
are displayed as normal text.

For more information on changing the name or value of a symbol already in use, see
“Changing a Symbol or Symbol Name” earlier in this chapter.
» To change an unassigned symbol using the Resource Symbols browser

1 In the Name box, select the unassigned symbol you want, and choose the Change
button.

The Change Symbol dialog box appears.
2 Edit the symbol’s name or value in the boxes provided.
3 Choose the OK button.

» To delete an unassigned symbol using the Resource Symbols browser
e Select the unassigned symbol that you want to delete, and choose the Delete
button.

Note Before deleting an unused symbol in a resource file, make sure it is not used elsewhere
_in the program or by resource files included at compile time.

Opening the Resource Editor for a Given Symbol
When you are browsing symbols in the Resource Symbols browser, you may want
more information on how a particular symbol is used. The View Use command
provides a quick way to get this information.
» To move to the resource editor where a symbol is being used
1 In the Name box of the Resource Symbols browser, select the symbol you want.
2 In the Used By box, select the resource type that interests you.
3 Choose the View Use button. '

The resource appears in the appropriate editor window.

-Symbol Name Restrictions

All symbol names must be unique within the scope of the application. This prevents
conflicting symbol definitions in the header files.. Legal characters for a symbol name
include A-Z, a-z, 0-9, and the underscore (_). Symbol names cannot begin with a
number and are limited to 247 characters. Symbol names are not case sensitive, but
the case of the first symbol definition is preserved.

Symbol names can be used more than once in your application. For example, if you
are writing a data-entry program with several dialog boxes containing a text box for a
person’s Social Security number, you may want to give all the related text boxes a

4

Visual C++ User's Guide

symbol name of IDC_SSN. To do this, you can define a single symbol and use it as
many times as needed.

While it is not requiredy, symbol names are often given descriptive prefixes that
indicate the kind of resource or object they represent. The Microsoft Foundation
Class Library (MFC) uses the symbol naming conventions shown in the following
table.

Category Prefix Use
Resources IDR _ Accelerator or menu (and associated resources)
IDD_ Dialog box
IDC_ Cursor
IDL_ Icon
IDB_ Bitmap
Menu items IDM_ Menu item
Commands ID_ Command
Controls and IDC_ Control
child windows
Strings IDS_ String in the string table
IDP_ String-table string used for message boxes

For more information on framework naming conventions, see Technical Note 20
under MFC in Books Online. ‘

Symbol Value Restrictions

142

In Developer Studio, a symbol value can be any integer expressed in the normal
manner for #define preprocessor directives. Here are some examples of symbol
values:

18
4001
0x0012
-3456

Note Symbol values for resources (accelerators, bitmaps, cursors, dialog boxes, icons,
menus, string tables, and version information) must be decimal numbers in the range from 0 to
32,767 (but cannot be hexadecimal). Symbol values for parts of resources (such as dialog box
controls or individual strings in the string table) can be from 0 to 65,534 or from -32,768 to
32,767.

Some number ranges are used by Deveioper Studio and MFC for special purposes. For more
information, see Technical Note 20 under MFC in Books Online.

You cannot define a symbol value using other symbol strings. For example, the
following symbol definition is not supported:

ffdefine IDC_MYEDIT IDC_OTHEREDIT //not supported

Chapter 5 Working with Resources

You also cannot use preprocessor macros with arguments as value definitions. For
example,

fidefine IDD_ABOUT ID(7) //not supported
is not a valid expression in Developer Studio regardless of what 1D evaluates to at
compile time. »

Your application may have an existing file containing symbols defined with
expressions. For more information on how to include the symbols as read-only
symbols, see “Using Shared (Read Only) or Calculated Symbols” later in this chapter.

Working With Resource Files

You can work with resources that were not developed in the Microsoft Developer
Studio environment or are not part of your current project. For example, you can:

e Work with nested and conditionally included resource files
e Update existing resources or convert them to Developer Studio format
e Import or export graphic resources to or from your current resource file.

¢ Include shared or read-only identifiers (symbols) that can’t be modified by
Developer Studio.

¢ Include resources in your executable (.EXE) file that don’t require editing (or that
you don’t want to be edited) during your current project, such as resources that are
shared between several projects.

e Include resource types not supported by Developer Studio

You can open the types of files shown in the following table and edit the resources
they contain.

Filename Description

RC 16- and 32-bit resource script files.

.RES “16- and 32-bit resource files.

EXE 16- and 32-bit executable files.

.DLL 16~ and 32-bit dynamic-link library files.
.EPS, .DIB, .ICO, and .CUR Bitmap, icon, and cursor files.

You can save your resources as shown in the following table.

Open file as ‘ Save file as

.RC .RC or 32-Bit .RES

16-Bit .RES .RC or 16-Bit .RES

32-Bit .RES , .RC or 32-Bit .RES .
16-Bit . EXE 16-Bit .EXE, .RC or 16-Bit .RES

143

Visual C++ User's Guide

Open file as ~ Save file as

32-Bit .EXE 32-Bit .EXE, .RC or 32-Bit .RES
16-Bit .DLL 16-Bit .DLL, .RC or 16-Bit .RES
32-Bit .DLL 32-Bit .DLL, .RC or 32-Bit .RES
BMP or .DIB BMP or .DIB

ICO ICO

.CUR .CUR

Note Resource script files (.RC) are distinguished as being 16 or 32 bit by whether they
contain 32-bit resource keywords (such as LANGUAGE, EXSTYLE, or DIALOGEX), not by
some underlying file structure. You create a 32-bit .RC file only by adding 32-bit keywords to it.

Developer Studio also works with the files shown in the following table during your
resource editing session.

Filename Description

RESOURCE.H Header file generated by Developer Studio; contains symbol
definitions.

filename.APS Binary version of the current resource script file; used by
Developer Studio for quick loading.

projectname.CLW File containing information about the current project; used by
ClassWizard in Visual C++.

projectname MAK File containing project build instructions.

projectname VCP A project configuration file.

Importing Non-Microsoft Developer Studio
Resource Script Files

144

» To update an existing resource script file for use with Microsoft Developer Studio
1 Make a backup copy of your existing resource script (.RC) file.
2 Add the .RC file to your project.
3 Open the .RC file in Developer Studio.

Note Developer Studio uses the include path set using the Directories tab in the Options
dialog box. In addition, relative include paths for a Developer Studio .RC file must be based
on the directory where the .RC file is currently located.

A Qavea tha DNavalaner Stndin varcion nf tha RO fila
P SRY Y LAl AUV LIUPUL S uulial VOLoaUal Ul wiav N Luv,

Reading in and then saving .RC files not created by Developer Studio modifies the
organization of your .RC files.

Chapter 5 Working with Resources

Features Supported Only in Microsoft Foundation
Class Library Resource Files

Normally when you build an MFC application for Windows from scratch using
AppWizard, you start by generating a basic set of files, including a resource script file
(.RC), that contain the core features of the Microsoft Foundation classes. However, if
you are editing an .RC file for an application for Windows that is not based on MFC,
the following features specific to the framework are not available in Visual C++:

o (ClassWizard
e Menu prompt strings

o List contents for combo-box controls
You can, however, add framework support to existing .RC files that do not have it.

» To add framework support to .RC files that do not already have it
1 Open the resource file.
2 In ResourceView, highlight the resource file.
3 From the Edit menu, choose Properties.
The Resource File Properties page appears.
4 Select the Enable MFC Features check box.
5 Choose the OK button.

Using Advanced Resource File Techniques

You can use the Resource Includes command on the View menu to modify Microsoft
Developer Studio’s normal working arrangement of storing all resources in the
project .RC file and all symbols in RESOURCE.H. For more information on symbols,
see “Working with Symbols” earlier in this chapter.

In the Resource Includes dialog box, use the Symbol Header File box to change the
name of the header file where Developer Studio stores the symbol definitions for your
resource file.

Use the Read-Only Symbol Directives box to include header files that contain
symbols that should not be modified during a Developer Studio editing session. For
example, you can use the Read-Only Symbol Directives box to include a symbol file
that has been created to be shared among several projects. You can also use this box
to include MFC.H files.

145

Visual C++ User's Guide

. Use the Compile-Time Directives box to include resource files that:

e Are created and edited separately from the resources in your main resource file.

e Contain compile-time directives, such as directives that conditionally include
resources.

¢ Contain resources in a custom format.

The Compile-Time Directives box is also used to include standard MFC resource
files.

Once you’ve made changes to your resource file using the Resource Includes dialog
box, you need to close the file and then re-open it for the changes to take effect.

Changing the Name of the Symbol Header File
Normally Developer Studio saves all symbol definitions in RESOURCE.H. However,
you may need to change this include filename so that you can, for example, work
with more than one resource file in the same directory.
» To change the name of the resource symbol header file

1 From the View menu, choose Resource Includes.

The Resource Includes dialog box appears.
2 In the Symbol Header File box, type the new name for the include file.
3 Choose the OK button. |

Using Shared (Read-Only) or Calculated Symbols

The first time Microsoft Developer Studio reads a non-Developer Studio resource file,
it marks all included header files as read-only. Subsequently, you can use the
Resource Includes command on the View menu to add additional read- only symbol
header files.

One reason you may want to use read-only symbol definitions is for symbol flles that
you plan to share among several projects.

You would also use included symbol files when you have existing resources with
symbol definitions that use expressions rather than simple integers to define the
symbol value. For example,

ffdefine IDC_CONTROL1 2100
fidefine IDC_CONTROLZ2 (IDC_CONTROL1+1)

Developer Studio will correctly interpret these calculated symbols as long as:

¢ The calculated symbols are placed in a read-only symbols file.

¢ Your resource file contains resources to which these calculated symbols are already
assigned.

146

Chapter 5 Working with Resources

» To include shared (read-only) symbols in your resource file
1 From the View menu, choose Resource Includes.
The Resource Includes dialog box appears.

2 In the Read-Only Symbol Directives box, use the #include compiler directive to
specify the file where you want the read-only symbols to be kept. (The file should
not be called RESOURCE.H, since that is the filename normally used by
Developer Studio’s main symbol header file.)

Important What you type in the Read-Only Symbol Directives box s included in the
resource file exactly as you type it. Make sure what you type does not contain any spelling
or syntax errors.

You should use the Read-Only Symbol Directives box to include files with symbol
definitions only. Do not include resource definitions; otherwise, duplicate resource
definitions will be created when it is saved.

3 Place the symbols in the file you specified.

The symbols in files included in this way are evaluated each time you open your
resource file, but they are not replaced on the disk by Developer Studio when you
save your file.

4 Choose the OK button.

Including Resources From Other Files

Normally it is easy and convenient to work with Developer Studio’s default
arrangement of all resources in one resource script (.RC) file. However, you can add
resources in other files to your current project at compile time. Use the Resource
Includes dialog box’s Compile-Time Directives box.

" There are several reasons to place resources in a file other than Developer Studio’s
main .RC file:

e To include resources that have already been developed and tested and need no
further modification.

¢ To include resources that are being used by several different projects, or that are
part of a source code version-control system, and thus must exist in a central
location where modifications will affect all projects.

¢ To include resources (such as RCDATA resources) that are in a custom format.

e To include statements in your resource file that execute conditionally at compile
time using compiler directives such as #ifdef and #else. For example, your project
may have a group of resources that are bracketed by #ifdef DEBUG ... #endif
and are thus included only if the constant DEBUG is defined at compile time.

e To include statements in your resource file that modify resource-file syntax by
using #define to implement simple macros.

147

Visual C++ User's Guide

148

If you have sections in your existing .RC files that meet any of these conditions, you

should place the sections in one or more separate .RC files and include them in your
project using the Resource Includes dialog box. The projectname RC2 file created by
Developer Studio in the RES subdirectory of a new project is used for this purpose.

~ » To include resource files that will be added to your project at compile time

1 Place the resources in a resource script file with a unique filename. (Do not use
projectname . RC, since this is the filename used for Developer Studio’s main
resource script file.)

2 From the View menu, choose Resource Includes.
The Resource Includes dialog box appears.

3 In the Compile-Time Directives box, use the #include compiler directive to
include the new resource file in the main Developer Studio resource file.
The resources in files included in this way are made a part of your executable file
at compile time. They are not directly available for editing or modification when
you are working on your project’s main .RC file. You need to open included .RC
files separately. ’

4 Choose the OK button.

CHAPTER 6

Using the Dialog Editor

The Microsoft Developer Studio dialog editor helps with the creation or editing of a
dialog box template or resource. You can place, arrange, or activate controls; add
OLE controls; and test the dialog box. Dialog boxes can be stored as templates. While
using the dialog editor, you can define message handlers and manage data collection
and validation with ClassWizard.

With the dialog editor, you can:

e Add, arrange, or edit controls.

e Change the tab order or accelerator keys.

o Use guides in the dialog layout.

e Add and edit OLE controls.

e Configure custom controls.

¢ Create a form-view dialog box.

¢ Import a Visual Basic form to a dialog resource.

e Test a dialog box.

You can use resource templates to create dialog boxes to use later or copy dialog box

~ resources. For more information, see “Using Resource Templates” in Chapter 53,
“Working with Resources.”

You can also use the dialog editor to create and edit templates used with form views
and dialog bars. A form view is a template for a program window whose client area
contains dialog box controls. For more information, see “Creating a Form View
Dialog Box” later in this chapter.

149

Visual C++ User's Guide

Figure 6.1 The Dialog Editor
r Rulers for guides

= Scribble - IDD_DIALOG1 [Dialog] |

Guides Dialog Toolbar Controls Toolbar

P Tip While using the dialog editor, in many instances you can click the right mouse button to
sl display a pop-up menu of frequently used commands. The commands available depend on
what the pointer is pointing to. For example, if you click while pointing to a dialog box, the pop-
up menu shows the ClassWizard and Properties commands.

For information about common resource edit procedures such as creating new
resources, opening existing resources, and deleting resources, see Chapter 5,
“Working with Resources.”

Adding and Editing Controls in a

Dialog Box

1Al s A
One of the first steps to creating a new dialog box (or making a dialog box template)
is to add controls to the dialog box. Controls can be edited to fit a certain size, shape, -
or alignment, or they can be moved around to work within the dialog box.

Chapter 6 Using the Dialog Editor

This section focuses on:

Types of controls in dialog boxes
¢ Adding controls to dialog boxes
¢ Selecting specific controls or groups of controls

¢ Sizing individual controls

Types of Controls

With the dialog editor you can create dialog boxes that include the standard control
types shown on the Controls toolbar in Figure 6.2. '

Figure 6.2 The Controls Toolbar

Selection Picture Static Text

Edit Box Group Box Pushbutton
Check Box Radio Button Combo Box

List Box Horizontal Scroll Bar Vertical Scroll Bar
Animate Tab Control Tree Control

List Control Hot Key Slider

Progress Spin Custom Control

By defauit the Controls toolbar is displayed when the dialog editor is open, but you
can modify this behavior.
» To hide the Controls toolbar

¢ Click the close box in the upper-left corner of the Controls toolbar.

» To show the Controls toolbar
.1 From the View menu, choose Toolbars.
2 Select the Controls check box, and then choose Close.

Adding Controls

You add controls to a dialog box by using the Controls toolbar to choose the control
you want and drag the control to the dialog box. When displayed, the toolbar stays
positioned above other open windows in your workspace.

The fastest way to add controls to a dialog box, reposition existing controls, or move
controls from one dialog box to another is to use the drag-and-drop method. (See
Figure 6.3.) The control’s position is outlined in a dotted line until it is dropped into
the dialog box. When you add a control to a dialog box with drag-and-drop, the
control is given a standard height appropriate to that type of control.

151

Visual C++ User's Guide

152

Figure 6.3 Dragging a Control from the Controls Toolbar

1. Click here and drag.

1+ Seribble - IDD_DIALOG] [Dialog)

2. Cursor changes shape to show that you are dragging.

3. Release mouse button to place the control.

You can also add a new control by clicking the Controls toolbar button for the control
you want and:

e “Drawing” the control in the dialog box. This is a good method when you want to
specify the initial size of the object. Just place the pointer where you want the
upper-left corner of the control to be. Drag the pointer to the right and downward
to the appropriate size for that control.

e Clicking the dialog box at the location you want. This is an alternative method to
dragging and dropping.

Holding down CTRL when selecting a control from the Controls toolbar places
multiple controls using either method listed above. Pressing ESC stops placing
controls.

When you add a control to a dialog box or reposition it, its final placement may be
information about guides and margins, see “Using Guides and Margins” later in this
chapter. For information about the Grid and other placement and alignment tools, see
“Arranging Controls” later in this chapter.

When you have added a control to the dialog box, you can change its caption or any .
of its other properties in its property page.

Chapter 6 Using the Dialog Editor

Selecting Controls

To move, copy, delete, or align controls, you select them and then perform the
- operation you want. In most cases, you need to select more than one control to use the
sizing and alignment tools on the Dialog toolbar.

‘When a control is selected, it has a shaded border around it with solid (active) or
hollow (inactive) “sizing handles,” small squares that appear in the selection border.

When you are sizing or aligning multiple controls, the dialog editor uses the
“dominant control” to determine how the other controls are sized or aligned. When
multiple controls are selected, the dominant control has solid sizing handles; all the
other selected controls have hollow sizing handles.
» To select multiple controls

1 From the Controls toolbar, select the pointer tool.

2 Drag to draw a selection box around the controls you want to select (Figure 6.4).
Controls partially outside the selection box are not selected.

When you release the mouse button, all controls inside the selection box are
selected.

Figure 6.4 Selecting Multiple Controls

To select the controls you want, drag the mouse
pointer to draw a box around them...

...then release the mouse button.
Once you have selected one or more controls, you can remove or add individual
controls without disturbing the selection as a whole.
3 Hold down the SHIFT key and click the control you want to remove from or add to
the existing selection.
» To change the dominant control when more than one control is selected

e Hold down the CTRL key and click the control you want to use to influence the size
or location of the others.

The sizing handles change from hollow to solid. All further resizing or alignment
is based on this control. '

153

Visual C++ User's Guide

Sizing Individual Controls

154

Use the sizing handles to resize a control. When the pointer is positioned on a sizing
handle, it changes shape to indicate the direction in which the control will be resized

(see Figure 6.5). Active sizing handles are solid; if a sizing handle is hollow, the

control cannot be resized along that axis.

Figure 6.5 Sizing a Control

You can also change the size of a control by snapping the control to guides or
margins, or by moving a snapped control and guide away from another. For more
information, see “Using Guides and Margins” later in this chapter. The final shape of
the control may be affected by whether or not you have the Grid turned on. For more
information, see “Using the Layout Grid” later in this chapter.
» Tosizeacontrol
1 Click the control, or select it with the TAB key.
2 Drag the sizing handles to change the size of the control:
¢ Sizing handles at the top and sides change the horizontal or vertical size.
e Sizing handles at the corners change both horizontal and vertical size.
Hold down the SHIFT key and use the ARROW keys to resize the control one dialog
unit (DLU) at a time.

As you type a caption to text within a control, the control will resize to fit the text
caption. This function can be disabled by manually resizing the control with the

* sizing handles. To return to the automatic resizing of a control to fit the text within it,

choose Size To Content from the Layout menu.

‘When you select a drop-down combo box or drop-down list box to size it, only the
right and left sizing handles are active (Figure 6.6). Use these handles to set the
width of the box as it is initially displayed. :

You can also set the vertical size of the drop-down portion of the box.

Chapter 6 Using the Dialog Editor

Figure 6.6 Sizing the Drop-down Portion of a Combo Box

Click the button to change to
drop-down view...

...then drag the sizing handle
to change the size of the
drop-down box.

» To set the size of the combo box drop-down area
1 Click the drop-down arrow at the right of the combo box (Figure 6.6).

The outline of the control changes to show the size of the combo box with the
drop-down area extended.

2 Use the bottom sizing handle to change the initial size of the drop-down area.
3 Click the drop-down arrow again to close the drop-down portion of the combo
box.

You can resize a group of controls based on the size of the dominant control. You can
also resize a control based on the dimensions of its caption text.
» To make controls the same width, height, or size

1 Select the controls you want to resize.

2 Make sure the correct dominant control is selected.

The final size of the controls in the group depends on the size of the dominant
control. For more information on selecting the dominant control, see “Selecting
Controls” earlier in this chapter.

3 Choose one of the following tools on the Dialog toolbar:
e Make Same Width
e Make Same Height
e Make Same Size

Formatting the Layout of a Dialog Box

The dialog editor contains special tools for layout to help in arranging controls in the
correct place and alignment. Some of these tools are contained on the Dialog toolbar,
like guides and the Grid.

You can use the dialog editor in three different states for moving controls: with the
guides and margins on (default setting), with Grid on, or plain, with no snapping or
alignment features on at all.

155

Visual C++ User's Guide

You can:

~ Arrange the controls using the Dialog toolbar.
e Align controls with each other or by spacing.
¢ - Use guides and margins to align controls inside the dialog box.

e Use Grid to place controls inside the dialog box.

Arranging Controls

The dialog editor provides layout tools that align and size controls automatically. For
most tasks, you can use the Dialog toolbar (Figure 6.7). All commands are also
available on the Layout menu, and most have shortcut keys.

Figure 6.7 Dialog Toolbar
Make same Width, Height, or Size

Space evenly Horizontally or Vertically

L Toggle Grid or Guides
Center Horizontally or Vertically

AlignLeft, Right, Top, or Bottom

— Test mode

Many layout commands are available only when more than one control is selected.
For information on selecting more than one control, see “Selecting Controls” earlier -
in this chapter. ‘

The location, height, and width of the current control is displayed in the lower-right
corner of the Developer Studio status bar (Figure 6.8). When more than one control is
selected, the position indicators show the position of the dominant control (the
control with solid sizing handles). When the dialog box is selected, the status bar
displays the position of the dialog box and its height and width.

156

Chapter 6 Using the Dialog Editor -

Figure 6.8 Dialog Editor Position Indicators

Height and width of object

Position of selected object relative to upper-left
corner of containing window

The location and size of a dialog box, as well as the location and size of controls
within it, are measured in dialog units (DLUs). A DLU is based on the size of the
dialog box font, normally 8-point MS Sans Serif. A horizontal DLU is the average
width of the dialog box divided by four. A vertical DLU is the average height of the
font divided by eight.

Aligning Controls

Once controls are in place, the dialog editor offers a variety of ways to refine their .
positions. You can:

e Align a group of controls along their left, right, top, or bottom edges.

e Align a group of controis on their center, either horizontally or vertically.
¢ Even the spacing between a group of three or more controls.

e Center one or more controls in the dialog box, vertically or horizontally.

¢ Automatically give pushbuttons a standard position along the bottom or on the
right of the dialog box.

» To align controls
1 Select the controls you want to align.
2 Make sure the correct dominant control is selected.

The final position of the group of controls depends on the position of the dominant
control. For more information on selecting the dominant control, see “Selecting
Controls” earlier in this chapter.

3 From the Layout menu, choose Align Controls, and then choose one of the
following alignments:

e The Left command aligns the selected controls along their left side.
e The Right command aligns the selected controls along their right side.
¢ The Top command aligns the selected controls along their top edges.

¢ The Bottom command aligns the selected controls along their bottom edges.

157

Visual C++ User's Guide

» To align controls on their center, vertically or horizontally
1 Select the controls you want to center.
2 Make sure the correct dominant control is selected.

The final position of the group of controls depends on the position of the dominant
control. For more information on selecting the dominant control, see “Selecting
Controls” earlier in this chapter.

3 From the Layout menu, choose Align Controls, and then choose Vert. Center or
Horiz. Center. '

» To even the spacing between controls
1 Select the controls you want to rearrange.

2 From the Layout menu, choose Space Evenly, and then choose one of the
following spacing alignments:

o Across: Controls are spaced evenly between the leftmost and the rightmost
control selected.

o Down: Controls are spaced evenly between the topmost and the bottommost
control selected.

» To center controls in the dialog box
1 Select the control or controls you want to rearrange.

2 From the Layout menu, choose Center In Dialog, and then choose one of the
following arrangements:

e Vertical: Controls are centered vertically in the dialog box.

¢ Horizontal: Controls are centered horizontally in the dialog box.

» To arrange pushbuttons along the right or bottom of the dialog box
1 Select one or more pushbuttons.

2 From the Layout menu, choose Arrange Buttons, and then choose one of the
following arrangements:

¢ Right
e Bottom

The selected buttons are positioned in a standard arrangement along the bottom or

right side of the dialog box. If a control other than a pushbutton is selected, its
nogition is not affected.

158

Chapter 6 Using the Dialog Editor

Using Guides and Margins
Whether you are moving controls, adding Controls, or rearranging a current layout,
guides can help you align controls accurately within a dialog box. Guides appear as
blue dotted lines across the dialog box displayed in the editor and corresponding
arrows in the rulers.

When you create a dialog box, four margins are provided. Margins are modified
guides, appearing as blue dotted lines.

You can:

e Align controls on a guide or move controls with a guide.
e Disable the guides or move the guides without the controls.

Figure 6.9 shows the dialog editor with guides and margins.

Figure 6.9 Dialog Editor with Guides and Margins
r Rulers with guides

1% Seribble.rc - IDD_ABOUTBOX (Dialog)

- Margin (also a guide) Vertical guide line

L Horizontal guide line

159

Visual C++ User's Guide

160

» To create and set a guide
1 Click anywhere within the rulers to create a guide.
2 Drag the guide into position.

The number of DLUs is displayed in the ruler and below on the Developer Studio
status bar. After the guide is dropped into position, hold the cursor over the
guide’s arrow in the ruler to see the exact position of the guide.

To delete a guide, drag the guide out of the dialog box that is being edited.
Aligning Controls on a Guide

The sizing handles of controls snap to guides when the controls are moved, and
guides snap to controls (if there are no controls previously snapped to the guide).
When a guide is moved, controls that are snapped to it move as well. Controls
snapped to more than one guide are resized when one of the guides is moved.

The tick marks in the rulers that determine the spacing of guides and controls are
determined by dialog units (DLUs). A DLU is based on the size of the dialog box
font, normally 8-point MS Sans Serif. A horizontal DLU is the average width of the
dialog box divided by four. A vertical DLU is the average height of the font divided
by eight. '

» To move guides

¢ Drag the guide to the new position.

The coordinates of the guide are displayed in the status bar at the bottom of the '
Developer Studio window and in the ruler. Move the pointer over the arrow in the
ruler to display the exact position of the guide.

» To move margins
e Drag the margin to the new position.
—or—
Move the gray spacing block in the ruler adjoining the margin.
To make a margin disappear, move the margin to a zero position. To bring that
margin back, place the pointer over the margin’s zero position and move the
margin into position.
» To size a group of controls with guides
1 Snap one side of the control (or controls) to a guide.
2 Drag a guide to the other side of the control (or controls).
If necessary with multiple controls, size each to snap to the second guide.

3 Move either guide to size the control (or controls) on that side.

Chapter 6 Using the Dialog Editor

» To change the intervals of the tick marks
1 From the Layout menu, choose Guide Settings.
The Guide Settings dialog box appears. '
2 In the Grid Spacing box, specify the new width and height in DLUs.
3 Choose the OK button.

Disabling the Guides

You can use special keys in conjunction with the mouse to dlsable the snapping effect
of the guides. Using the ALT key disables the snapping effects of the guide selected.
Moving a guide with the SHIFT key prevents snapped controls from moving with the
guide.

» To disable the snapping effect of the guides

e Drag the control while holding down the ALT key.

» To move guides without moving the snapped controls
Drag the guide while holding down the SHIFT key.

» To clear all the guides
1 Click the right mouse button in the ruler bar.

2 From the pop-up menu, choose Clear All.

» To turn off the guides
1 From the Layout menu, choose Guide Settings.
The Guide Settings dialog box appears.
2 Under Layout Guides, select None.
3 Choose the OK button.

Using the Layout Grid

When you are placing or arranging controls in a d1alog box, you can use the layout
grid for more precise positioning. When the grid is turned on, controls appear to
“snap to” the dotted lines of the grid as if magnetized. You can turn this “snap to
“grid” feature on and off and change the size of the layout grid cells.
» To turn the Grid on or off
1 From the Layout menu, choose Guide Settings.
2 Select or clear the Grid radio button.

You can still control Grid in individual dialog editor windows using the Toggle
Grid button on the Dialog toolbar.

161

Visual C++ User's Guide

» To change the size of the layout grid
1 From the Layout menu, choose Guide Settings.

2 Type the height and width in DLUSs for the cells in the grid. The minimum height
or width is 4 DLUs. For more information on DLUs, see “Arranging Controls
earlier in thls chapter.

Edltlng the Dialog Box

Each dialog box has a property page, a tab order, and mnemonic keys. The tab order
is the order that the focus moves from when using the TAB key. Alternatively, a
keyboard user can press a mnemonic key to move the input focus from one control to
another.

You can:
¢ Change the tab order for the input focus.

e Define the mnemonic keys for the input focus.

For more information on editing property pages, see “Using Property Pages” in
Chapter 5, “Working with Resources.”

Changing the Tab Order

162

The tab order is the order in which the TAB key moves the input focus from one
control to the next within a dialog box. Usually the tab order proceeds from left to
right in a dialog box, and from top to bottom. Each control has a property page with a
Tabstop check box used to determine whether a control actually receives input focus
or not.

Even controls that do not have the Tabstop property set need to be part of the tab
order. This can be important, for example, when you define mnemonics for controls
that do not have captions. Static text that contains a mnemonic for a related control
must immediately precede the related control in the tab order.

Note If your dialog box contains overlapping controls, changing the tab order may change the
way the controls are displayed. Controls that come first in the tab order are always displayed
on top of any overlapping controls that follow them in the tab order.

» To change the tab order for all controls in a dialog box
1 From the Layout menu, choose Tab Order.

A number in the upper-left corner of each control shows its place in the current
tab order:

2 Set the tab order by clicking each control in the order you want the TAB key to
follow.

3 Press ENTER to exit Tab Order mode.

Chapter 6 Using the Dialog Editor

» To change the existing tab order

To change the existing tab order, specify the starting control; that is, select the control
prior to the one where you want the changed order to begin. The selected control
determines the number of the control you click next. For example, if you are in Tab
Order mode, and control number 3 is selected, the next control you click is set to

number 4.
1 From the Layout menu, choose Tab Order.

2 Specify where the change in order will begin. To do this, hold down the CTRL key
and click the control prior to the one where you want the changed order to begin.

For example, if you want to change the order of controls 7 through 9, select
control 6 first.
Note To set a specific control to number 1 (first in the tab order), double-click the control.

3 Reset the tab order by clicking the controls in the order you want the TAB key to
follow.

4 Press ENTER to exit Tab Order mode.

Defmmg Mnemonic Keys

Normally, keyboard users move the input focus from one control to another in a
dialog box with the TAB and ARROW keys. However, you can define a mnemonic key
that allows users to choose a control by pressing a single key.

Note All the mnemonics within a dialog box should be unique.

» To define a mnemonic key for a control with a visible caption (pushbuttons, check
boxes, and radio buttons)

1 Select the control.
2 From the Edit menu, choose Properties to open the control’s property page.

3 In the Caption box, type an ampersand (&) in front of the letter you want as the
mnemonic for that control.

An underline appears in the displayed caption to indicate the mnemonic key.

» To define a mnemonic for a control without a visible caption

1 Make a caption for the control by using a static text control. In the static text
caption, type an ampersand (&) in front of the letter you want as the mnemonic.

2 Make sure the static text control immediately precedes the control it labels in the
tab order.

163

Visual C++ User's Guide

USing OLE Controls in a Dialog Box

An OLE control is a custom control implemented as an object that fully supports
OLE technology for its interface. Each OLE control has its own unique set of
features. Some controls may not support all the features.

OLE controls can be imported to a project, installed on the toolbar and manipulated
like other controls. You can:

¢ Add OLE controls to a dialog box.
¢ Edit the property pages associated with that control.

You can also edit the control’s message map and data map with ClassWizard (for
more information, see Chapter 14, “Working With Classes™).

Adding OLE Controls

To place OLE controls on the dialog editor Controls toolbar, you must first add the
OLE controls to your project in Component Gallery. Once inserted, the OLE controls
appear on the dialog editor Controls toolbar and can be dragged to the dialog box that
you are constructing. The controls that you apply are reloaded each time you start the
project.
» To add an OLE control to the project

1 From the Insert menu, choose Component.

The Component Gallery dialog box appears.

2 Select the control you want by clicking the OLE control icon in the Component
Gallery window.

3 Choose the Insert button.

An icon representing each control installed appears on the dialog editor Controls
toolbar: :

Note You can also insert an OLE control using the right-mouse menu. This method inserts the
control as a stand-alone control without the wrapper class.

Editing OLE Control Property Pages

164

Each of the OLE controls features a unique set of property pages that are appropriate
to that control’s purpose. These property pages enable you to customize the exact
parameters of a control to certain specifications. The property pages for an OLE
control usually contain General and All, and may have other property pages specific
to that control.

For more information on property pages, see “Using Property Pages” in Chapter 5,
“Working with Resources.”

Chapter 6 Using the Dialog Editor

Using Custom Controls in a Dialog Box

A custom control is a special-format dynamic-link library (DLL) or object file used to
add additional features and functionality to the user interface of the Windows NT
operating system. A custom control can be a variation on an existing Windows dialog
box control (for example, a text box suitable for use with Windows for Pen
Computing) or a totally new category of control.

Working with User-Defined Controls

The dialog editor user-defined controls let you use existing custom controls
regardless of their format.

With user-defined controls, you can:

e Set the location in the dialog box.
e Type a caption.

¢ Identify the name of the control’s Windows class (your application code must
register the control by this name).

¢ Type a 32-bit hexadecimal value that sets the control’s style.
When you are designing a dialog box that contains custom controls, the custom
control is displayed as a gray square. In test mode the custom control is also
displayed as a gray square, and its run-time behavior is not simulated.
» To edit user-defined control properties

1 Select the control.

2 From the Edit menu, choose Properties.

3 Type or modify the information as appropriate.

Creating a Form View Dialog Box

You can use the dialog editor to create a template that is used as a “form view,” a
CView-compatible window that contains dialog box controls. An application that
might need a form view is one in which the primary program function is data entry.
In this case, the program’s main view contains nothing but dialog box controls for
entering data. -

To construct a form view, you create a dialog box as you normally would but set
several style properties differently. You then incorporate the form view into your
program using the Microsoft Foundation Class Library CFormView class. You can
use the same procedure to create a template for use with the CDialogBar class. For
more information, see the Class Library Reference.

165

Visual C++ User's Guide

» To create a dialog box template for use with the CFormView or CDialogBar class

1 Use the dialog editor in the usual way to create a dialog box template with the
controls arranged as you want them to appear in the form view.

2 From the Edit menu, choose Properties.
3 Select the Styles tab, and set the following properties:
e In the Style box, select Child.
e In the Border box, select None.
4 Select the More Styles tab, and clear the Visible check box.
5 Select the General tab, and clear the Caption box.

6 Incorporate the template into your program using the CFormView class. - ‘

Importing a Visual Basic Form

You can import a Visual Basic form into Visual C++ in the dialog editor. Some ,
controls will also import with the form; OLE controls, if installed in the project, will
import. Controls that are native to Visual Basic can be troublesome; nested controls
also have limitations. Most of these limitations come from Visual Basic run-time
differing from the Windows run-time and dialog behaviors.
» To import a Visual Basic form
1 From the Insert menu, choose Resource.
The Insert Resource dialog box appears.
2 Choose the Import button.
The Import Resource dialog box appears.
3 Type the name of the .FRM file.
4 Choose the Import button.

Warning Messages
‘When importing a Visual Basic form, several warning messages may appear, with
information similar to this:

e The OLE control “FOOLIB.FOOCTRL” is not installed in the project.

OLE controls have to be installed using the Component Gallery. (System registry
alone will not work.)

H mmimm A matnat
e Syntax error in VB form description.

The form is invalid because of customization. For example, editing or merging
with a source-code file.

e The form’s binary data file “FOO.FRX” can’t be opened.

Chapter 6 Using the Dialog Editor

- Limitations with Imported Visual Basic Controls
The following controls are implemented in a reduced-functionality way or ignored,
due to differences between the Visual Basic run-time and the Windows dialog
functionality:

e Drive and directory list boxes
These are converted to a Windows list box, which can be filled.
¢ MDI forms
Imported as a normal dialog box. Menus are ignored.
¢ Data controls
e Line and shape controls
e Horizontal and vertical scroll bars
¢ Timers
e Printers
e Screens
¢ Clipboards
¢ Queries

e Apps

Limitations with Visual Basic Properties and Nested Controls

Several properiies of Visual Basic controls are implemented only by Visual Basic and
have no equivalent in Windows dialog boxes and controls. Several examples include
per/control font and per/control color.

Nested controls possible in Visual Basic do not translate into the Windows
enviroment. In the Visual Basic environment, controls can be nested inside of each
other, with the code turning one control of the many set to Visible. In the Visual C++
environment, the visibility of the controls is a run-time feature; in the editor you can
see all the controls. One solution is to move the overlapping controls into separate
dialog boxes. Then have the code create the dialog boxes as needed, with the main
dialog box as a parent window. ‘

Testing a Dialog Box
You can simulate the run-time behavior of a dialog box from within the dialog editor
without compiling your program. This gives you immediate feedback on how the

layout of controls appears and performs and thus speeds up the user-interface design
process. '

167

Visual C++ User's Guide

68

When you are in test mode, you can:

e Type text, select from combo-box lists, turn options on and off, and choose
commands.

e Test the tab order.

e Test the grouping of controls, such as radio buttons or check boxes.

e Test the dialog box’s keyboard shortcuts (for controls that have mnemonic keys
defined for them).

Note Connections to dialog box code made using ClassWizard are not simulated during
dialog box test mode.

When you test a dialog box, it is usually displayed at a location relative to the main
Developer Studio program window. If the dialog box’s Absolute Align property is
selected, the dialog box is displayed at a position relative to the upper-left corner of
the screen.
» To test a dialog box
1 From the Layout menu, choose Test.
2 To end the test session, do one of the following actions:
e Press ESC.
e Close the dialog box using its Control-menu box.
e Choose a pushbutton with a symbol name of IDOK or IDCANCEL.

o

CHAPTER 7

Using the Menu Editor

Menus allow you to arrange commands in a logical, easy-to-find fashion. With the
Microsoft Developer Studio menu editor, you can create and edit menus by working
directly with a menu bar that closely resembles the one in your finished application.

With the menu editor, you can:

e Create standard menus and commands.
¢ (Create pop-up menus.

o Assign shortcut keys accelerator keys, and status bar prompts to menus and
commands.

¢ Move menus or commands from one place to another.

In addition, you can use ClassWizard to hook menu items to code. For more
information on connecting interface objects to message handling functions, see
Chapter 14, “Working with Classes.”

Tip While using the menu editor, in many instances you can click the right mouse button to
display a pop-up menu of frequently used commands. The commands available depend on
what the pointer is pointing at. For example, if you click while pointing at a menu item, the pop-
up menu shows Cut, Copy, Paste, and View As Popup commands, as well as commands to
open ClassWizard and the properties page for the selected item.

For information about common resource edit procedures such as creating new
resources, opening existing resources, and deleting resources, see Chapter 5,
“Working with Resources.”

169

Visual C++ User's Guide

~ Figure 7.1 Menu Terminology

Menu Menu bar

IDR_PAINTTYPE (Menu] [1[=

Accelerator keys

Cascading menu

Menu items (underlined letter is shortcut key)

Creating Menus or Menu Items

You can create menus, cascading menus, and menu commands on the menu bar in
the menu editor.

» To create a menu on the menu bar

1 Select the new-item box (an empty rectangle) on the menu bar (see Figure 7.2). Or -
move the new item box to a blank spot with the right and left arrow keys.

Figure 7.2 Menu Editor New-Item Boxes

New item boxes

70

Chapter 7 Using the Menu Editor

2 Type the name of the menu. When you start typing, focus automatically shifts to
the Menu Item Properties page, and the text you type appears both in the Caption
box and in the menu editor window.

You can define a mnemonic key that allows the user to select the menu with the
keyboard. Type an ampersand (&) in front of a letter to specify it as the mnemonic.
Make sure all the mnemonics on a menu bar are unique.

Once you have given the menu a name on the menu bar, the new-item box shifts to
the right, and another new-item box opens below for adding menu items.

Note To create a single-item menu on the menu bar, clear the Pop-up check box on the
Menu ltem Properties page.

» To create a menu item
1 First, create a menu according to the steps outlined in the previous procedure.
2 Select the menu’s new-item box.
—or—

Select an existing menu item and press INS. The new-item box is inserted before
the selected item. ’

3 Type the name of the menu item. When you start typing, focus automatically
shifts to the Menu Item Properties page, and the text you type appears in the
Caption box.

You can define a mnemonic key that allows the user to select the menu command.
Type an ampersand in front of a letter to specify it as the mnemonic. The
mnemonic allows the user to select the menu command by typing that letter.

4 In the ID box, type the menu item ID, or select an existing command identifier. If
you don’t specify an ID, Visual C++ will generate an ID for you based on the
command name.

5 On the properties page, select the menu item styles that apply.

6 In the Prompt box on the properties page, type the prompt string you want to
appear in your application’s status bar. This feature is only available with
Microsoft Foundation Class Library resource script (.RC) files.

This creates an entry in the string table with the same resource identifier as the
menu item you created. '

7 Press ENTER to complete the menu item. The new-item box is selected so you can
create additional menu items.

» To create a cascading (hierarchical) menu

1 Select the new-item box on the menu where you want the cascading menu to
appear. Then type the name of the menu item that, when selected, will cause the
cascading menu to appear.

mn

Visual C++ User's Guide

When you start typing, focus automatically shifts to the Menu Item Properties
page, and the text you type appears in the Caption box.

Select an existing menu item that you want to be the parent item of the cascading
menu, and double-click.

2 On the properties page, select the Pop-up check box. This marks the menu item
with the cascading menu symbol, and a new-item box appears to its right.

3 Add additional menu items to the cascading menu according to the instructions in
the previous procedure. ‘

Selecting Menus and Menu Items

» To select a menu and display its menu items

e Click the menu caption on the menu bar or the parent item of the cascading menu.
Then click the menu item you want.

Move to the menu caption with the TAB (move right) and SHIFT+TAB (move left)
keys or the right and left arrow keys.

» To select one or more menu items
1 Click the menu or cascading menu you want.
Its menu items are displayed.

2 Click to select a menu item, or press the SHIFT key while clicking to select multiple
menu items. Hold down the SHIFT key and click an already-selected menu item to
deselect it. '

With the pointer outside the menu, drag to draw a selection box around the menu
items you want to select.

Creating Pop-up Menus

72

Pop-up menus display frequently used commands with a right mouse click. They
can be context sensitive to the location of the pointer. Using pop-up menus in

your application requires building the menu itself and then connecting it to
application code.

Once you have created the menu resource, your application code needs to load the
menu resource and use the TrackPopupMenu command to cause the menu to appear.
Once the user has dismissed it by clicking outside it, or has clicked on a command,
that function will return. If the user chooses a command, that command message will
be sent to the window whose handle was passed.

Chapter 7 Using the Menu Editor

» To create a pop-up menu

1 Create a menu bar with an empty title. Type a temporary letter in the caption or
choose an attribute to reverse later. This is to allow the menu to be created below.

2 Move to the next menu item below. Bring up the property page and type in the
caption and any other information. Repeat this process for any other menu items
in the pop-up menu.

3 Make the top menu bar empty again (if using a temporary letter in the caption) or
reset the temporary attribute. The goal is to have a pop-up menu descending
beneath a blank menu bar.

4 Save the menu resource.

» To connect a pop-up menu to your application

¢ Add the following code to your source file:

CMenu menu; :
VERIFY(menu.LoadMenu(IDR_MENUL1));
CMenu* pPopup = menu.GetSubMenu(0);
ASSERT (pPopup != NULL);

pPopup->TrackPopupMenu(TPM_LEFTALIGN | TPM;RIGHTBUTTON, X,
Yy, AfxGetMainWnd());

Moving and Copying Menus
and Menu Items

» To move or copy menus or menu items using drag-and-drop
1 Drag or copy the item you want to move to:
¢ A new location on the current menu.

o A different menu. (You can navigate into other menus by dragging the mouse
pointer over them.)

2 Drop the menu item when the insertion guide shows the position you want.

173

Visual C++ User's Guide

Figure 7.3 Moving a Menu to a Cascading Menu

Step 2

Insertion guide -

» To move or copy menus or menu items using the menu commands
1 Select one or more menus or menu items.
2 From the Edit menu, choose Cut (to move) or Copy.

3 If you are moving the items to another menu resource or resource script file, make
that menu editor window active.

4 Select the position of the menu or menu item you want to move or copy to.
5 From the Edit menu, choose Paste. The moved or copied item is placed before the
item you select.

Note You can also drag, copy, and paste to other menus in other menu windows.

Viewing the Menu Resource
as a Pop-up Menu

174

Normally, when you are working in the menu editor, a menu resource is displayed as
a menu bar. However, you may have menu resources that are added to the
application’s menu bar while the program is running. To see what a menu resource
looks like as a pop-up menu, use the menu editor’s View As Popup command on the
right mouse pop-up menu. To change back to the menu-bar view, choose View As
Popup again.

Chapter 7 Using the Menu Editor

Associating a Menu Item with an
Accelerator Key

Many times you want a menu item and a keyboard combination to issue the same
program command. You do this by assigning the same resource identifier to the menu
item and to an entry in your application’s accelerator table. You then edit the menu
item’s caption to show the name of the accelerator key.

» To associate a menu item with an accelerator key

1 In the menu editor, select the menu item you want. From the Edit menu, choose
Properties or.double-click the item.

2 In the Caption box, add the name of the accelerator key to the menu caption:

e Following the menu caption, type the escape sequence for a TAB (\t), so that all
the menu’s accelerator keys are left-aligned.

e Type the name of the modifier key (CTRL, ALT, or SHIFT) followed by a plus sign
and the name, letter, or symbol of the additional key.

For example, to assign CTRL+O to the Open command on the File menu, you
modify the menu item’s caption so that it looks like this:

Open\tCtri+0

The menu item in the menu editor is updated to reflect the new caption as you
o i
type it.

3 Create the accelerator-table entry in the accelerator editor and assign it the same
identifier as the menu item. Use a key combination that you think will be easy to
remember.

For more information on creating and naming accelerator resources, see
Chapter 8, “Using the Accelerator Editor.”

Associating a Menu Item with a
Status Bar Prompt

Your application can display descriptive text for each of the menu items that may be
selected. MFC can handle this for you if you have a string in the string table whose
ID is the same as the command. You do this by assigning a text string to each menu
item using the Menu Item Properties page.
» To associate a menu item with a status bar text string

1 Select the menu item.

2 In the Prompt box, type the associated status bar text.

175

CHAPTER 38

Using the Accelerator Editor

An accelerator table is a Windows resource that contains a list of accelerator keys
(also known as shortcut keys) and the command identifiers that are associated with
them. A program can have more than one accelerator table.

Normally, accelerators are used as keyboard shortcuts for program commands that are
also available on a menu or toolbar. However, you can use the accelerator table to
define key combinations for commands that don’t have a user-interface object
associated with them. ’

You can use ClassWizard to hook accelerator key commands to code. For more
information on ClassWizard, see Chapter 14, “Working with Classes.”

With the accelerator editor, you can:

¢ Add, delete, change, and browse the accelerator key assignments in your project.

e View and change the resource identifier associated with each entry in the
accelerator table. The identifier is used to reference each accelerator table entry in
program code.

® Associate an accelerator key with a menu item.
Figure 8.1 The Accelerator Editor

i

ID_FILE_NEW Cul +N VIRTKEY
ID_FILE_OPEN Cul+0 VIRTKEY
ID_FILE_PRINT Ctl +P VIRTKEY
ID_FILE_SAVE Ctl+S VIRTKEY
ID_EDIT_PASTE Cul+V VIRTKEY
ID_EDIT_UNDO Alt + VK_BACK VIRTKEY
ID_EDIT_CUT Shift +VK_DELETE VIRTKEY
ID_NEXT_PANE VK_F6 WYIRTKEY
ID_PREV_PANE Shift + VK_FB VIRTKEY
ID_EDIT_COPY Ctl + VK_INSERT VIRTKEY
ID_EDIT_PASTE Shift + VK_INSERT VIRTKEY
ID_EDIT_CUT Ctil +X VIRTKEY -
ID_EDIT_UNDO Cl+2 VIRTKEY

177

Visual C++ User's Guide

™ ¥
-

1

>

Tip While using the accelerator editor, in many instances you can click the right mouse button
to display a pop-up menu of frequently used commands. The commands available depend on
what the pointer is pointing to. For example, if you click while pointing to an accelerator entry,
the pop-up menu shows the Cut, Copy, New Accelerator, ClassWizard, and Properties
commands.

Note Windows does not allow the creation of empty accelerator tables. If you create an
accelerator table with no entries, it is deleted automatically when you exit Microsoft Developer
Studio. '

For information about common resource edit procedures such as creating new
resources, opening existing resources, and deleting resources, see Chapter 5,
“Working with Resources ”

Editing an Accelerator Table

178

» To add an entry to an accelerator table
1 Select the new-item box at the end of the list, or press the INS key.
2 Type the accelerator key to define it.
The Accel Properties page appears, with the focus in the Key box.

Note Make sure all accelerators you define are unique. When duplicate accelerator keys are
assigned, only the first one works correctly.

» To delete an entry from an accelerator table

1 Select the entry you want to delete Hold down the CTRL or SHIFT key while
clicking to select multiple entries.

2 From the Edit menu, choose Delete.

» To move or copy an accelerator table entry from one resource script file to another
1 Open the accelerator editor. windows in both resource script files.
2 Select the entry you want to move.
3 Drag the entry to its new location.
or- ‘
Use the Copy (or Cut) and Paste commands on the Edit menu.
Note When you copy—rather than move—an entry, duplicate accelerator keys

are created. Microsoft Developer Studio does not prompt you to resolve accelerator
key conflicts. ’

Chapter 8 Using the Accelerator Editor

Setting Accelerator Properties

The Accel Properties page allows you to control the features of each accelerator key.
By default, the property page is dismissed when it does not have focus. If you want
the property page to remain on the screen, even when it does not have focus, click the
Pushpin button in the upper-left corner of the window.

The following are legal entries in the Key box of an accelerator property page:

¢ An integer between 0 and 255 in decimal, hexadecimal, or octal format. The
setting of the Type property determines if the number is an ASCII or virtual key
value. ’

Single-digit numbers are always interpreted as the corresponding key, rather than
as ASCII values. To enter an ASCII value from O to 9, precede it with two zeros
(for example, 006).

e A single keyboard character. Uppercase A—Z or the numbers 0—9 can be either
ASCI or virtual key values; any other character is ASCII only.

¢ A single keyboard character in the range A—Z (uppercase only), preceded by a
caret () (for example, ~C). This enters the ASCII value of the key when it is
pressed with the CTRL key held down.

Note When entering an ASCH value, the CTRL and SHIFT modifiers on the property page
are not available. You cannot use a control-key combination entered with a caret to create a
virtual accelerator key. :

e Any valid virtnal key identifier. The Key box on the property page contains a list
of standard virtual key identifiers.

,, Tip Another way to define an accelerator key is to choose the Next Key Typed button in the
LMl property page and then press any of the keys on the keyboard.

Associating an Accelerator Key with a
Menu Item

Many times you want a menu item and a keyboard combination to issue the same
program command. You do this by assigning the same resource identifier to the menu
item and to an entry in your application’s accelerator table. You then edit the menu
item’s caption to show the name of the accelerator. For more information on menu
items and accelerator keys, see “Associating a Menu Item with an Accelerator Key”
in Chapter 7.

179

CHAPTER 9

Using the String Editor

A string table is a Windows resource that contains a list of IDs, values, and captions
for all the strings of your application. For example, the status-bar prompts are located
in the string table. An application can have only one string table.

With the string editor you can edit a program’s string table resource. In a string table,
strings are grouped into segments, or blocks, of 16 strings each. The segment a string
belongs to is determined by the value of its identifier; for example, strings with
identifiers of O to 15 are in one segment, strings with identifiers of 16 to 31 are in a
second segment, and so on. Thus, to move a string from one segment to another you
need to change its identifier.

Individual string segments are loaded on demand in order to conserve memory. For
this reason, programmers usually try to group strings into logical groupings of 16 or
less and then use each group or segment only when it is needed.

With the string editor (shown in Figure 9.1), you can:

e Find a string in the string table.

e Add a string table entry.

e Delete an individual string.

e Move a string from one segment to another.

e Movea string from one resource script (.RC) file to another.
¢ Change a string or its identifier.

e Add formatting or special characters to a string.

181

Visual C++ User's Guide -

Figure 9.1 The String Editor

IDR_MAINFRAME Paint .
1 IDR_PAINTTYPE \nPaint\nPaintsnin\nPaint. Document
| ARX_IDS_APP_TITLE

1D FILE_ Dpen an existing documentin pen
ID_FILE_CLOSE Close the active documentinClose
1 ID_FILE_SAVE 57603 | Save the active document\nSave
1 ID_FILE_SAVE_AS 57604 | Save the active document with a new
ID_FILE_PAGE_SETUP 57605 | Change the printing options\nPage Sel
{ ID_FILE_PRINT_SETUP 576068 | Change the printer and printing options'

Q Tip While using the string editor, in many instances you can click the right mouse button to

Ml display a pop-up menu of resource-specific commands. The commands available depend on
what the pointer is pointing to. For example, if you click while pointing to a string table entry,
the pop-up menu shows the Cut, Copy, New String, and Properties commands.

‘Note Windows does not allow the creation of empty string tables. If you create a string table
with no entries, it is deleted automatically when you exit Microsoft Developer Studio.

For information about common resource edit procedures such as creating new
resources, opening existing resources, and deleting resources, see Chapter 5,
“Working with Resources.”

Finding a String

With the string editor’s Find command you can quickly locate a string in the string
table by either the caption or resource identifier.

» To find a string in the string table
1 In ResourceView, open the string table by double-clicking its icon.
2 From the Edit menu, choose Find.
The Find dialog box appears.

3 In the Find What box, type the caption text or resource identifier of the string you
want to find. Select or clear the Match Case check box as appropriate.

4 Choose the Find Next button.

If a string or its identifier in the string table matches what you typed, it is selected.

Adding or Deleting a String

‘When the string editor window is displayed, you can add or delete entries in the
string table. String table segments are separated by horizontal lines in the string
editor window.

182

Chapter 9 Using the String Editor

» To add a string table entry
1 Select the new-item box (an empty rectangle) at the end of a string segment.
2 Type the new string.

Focus shifts to the String Properties page as you start typing. The text is entered in
the Caption box, and the string is given the next identifier in sequence.

3 Press ENTER to place the new string in the string table.
New entries can also be inserted into the string table. Select an existing entry, and

-from the Insert menu, choose New String. The new string is placed after the currently
selected string in the next available identifier.

Note Null strings are not allowed in Windows string tables. If you create an entry in the string
table that is a null string, the entry is deleted when you close the string editor.

» To delete a string table entry
1 Select the string you want to delete.

2 From the Edit menu, choose Delete.

Moving a String from One Segment
to Another

» To move a siring from one segment io anoiher
1 Select the string you want to move.
2 From the Edit menu, choose Properties.

~ The String Properties page opens. ,
3 Change the string’s value in the ID box so that it falls in the range you want.

For example, to move a string with a name of IDS_MYSTRING and a value of 100
to a segment in the 200 range, type the following in the ID box:

IDS_MYSTRING=201
4 Press ENTER to record the change.

Moving a String from One Resource
Script File to Another

» To move a string from one resource script file to another
1 Open the string editor windows in both resource script files..

2 Select the string you want to move.

183

Visual C++ User's Guide

3 Drag the selected string from one string editor window and drop it in the target
string editor window.

Use the Cut and Paste commands on the Edit menu.
Note If the symbol name or value of the moved string conflicts with an existing identifier in

the destination file, the symbol name is changed (if a symbol with that name already exists) or
the symbol value is changed (if a symbol with that value already exists).

Changing a String or Its Identifier

» To change a string or its identifier
1 Select the string you want to edit.
2 From the Edit menu, choose Properties, and modify the string in the Caption box.
3 In the ID box, modify the string’s identifier:
¢ Type a new symbol name, or select one from the list.

¢ To change a string’s value, type the symbol name followed by an equal sign and
the new value; for example:

IDS_ERROR_MSG=2350

For more information on éditing symbols, see Chapter 16, “Browsing Through
Symbols.”

Adding Formatting or Special Characters to
a String

» To add formatting or special characters to a string
e Use the standard escape sequences shown in Table 9.1.
Table 9.1 Formatting and Special Characters in Strings

To get this Type this

New line v \n

Carriage return \r

Tab o\

Backslash (\) A\

ASCII character \ddd (octal notation)
Alert (bell) \a

184

‘8
4

CHAPTER

10

Using the Graphic Editor

The Microsoft Developer Studio graphic editor has an extensive set of tools for
drawing bitmaps, icons, and cursors, as well as features to support the creation of
toolbar bitmaps and the management of icon and cursor images.

With the graphic editor, you can:

e Use the image editor window and docking toolbars.

¢ Customize and adjust the graphic editor workspace.
e Edita graphic resource and draw new graphics.

¢ Customize colors, change palettes, and select colors.

o Edit icons and cursors, including 48 x 48 icons.

Most editing procedures are the same for bitmaps, icons, and cursors. This chapter
first shows the procedures common to all graphical resources. Later sections detail
procedures and graphic-editor capabilities specific to icons and cursors. For specific
information on editing toolbar resources and converting bitmaps to toolbars, see
Chapter 11, “Using the Toolbar Editor.”

Note Many of the graphic editor's functions require a mouse or other pointing device. For
keyboard shortcuts or accelerators, check the Help Keyboard Table in the Help menu. See
Chapter 22, “Customizing the Microsoft Developer Studio Display.”

Tip While using the graphic editor, in many instances you can click the right mouse button to
display a pop-up menu of frequently used commands. The commands available depend on
what the pointer is pointing to. For example, if you click while pointing to a bitmap folder, the
pop-up menu shows the New and New Bitmap commands.

For information about common resource edit procedures such as creating new
resources, opening existing resources, and deleting resources, see Chapter 5,
“Working with Resources.”

185

Visual C++ User's Guide

Using the Image Editor Window and Tools

You edit bitmaps, icons, and cursors in the image editor window, using the tools on
the Graphics toolbar (Figure 10.1).

Figure 10.1 Image Editor Window, Graphics Toolbar, and Colors Palette
Image editor window

[-Split bar , Graphics toolbar

Option selector

Selection border J L Colors palette

Sizing handle — — Color indicator

The figure shows three basic tools: the image editor,window, the Graphics toolbar,
and the Colors palette. Additionally, the Image menu provides useful commands, and
the status bar shows helpful information.

The Image Editor Window
The image editor window shows two views of an image. A split bar separates the two

panes. You can drag the split bar from side to side to change the relative sizes of the
panes. The active pane displays a selection border, as shown in Figure 10.1.

The Graphics Toolbar

-~ PG | R N Y Al nsen o
1115 Ula}]lll\.«b {o010ar nas two a.ltb WiiiCii ai S

e The toolbar, which contains 21 tools for drawmg, painting, entering text, erasing,
and manipulating views.

¢ The option selector, which you click to select brush widths and other drawing
options.

186

Chapter 10 Using the Graphic Editor

To use the Graphics toolbar, Colors palette, and option selector, click the tool, color,
or option that you want,

The Colors Palette

The Colors palette has two parts, which are shown in Figure 10.1:

e The color indicator, which shows the foreground and background colors and (for
icons and cursors) selectors for “screen” and “inverse” color.

e The Colors palette, which you click to select the foreground and background
colors.

For large icons using the 256-color palette on the property page, see “Creating and
Editing Icons and Cursors” later in this chapter.

The Status Bar

The status bar, at the bottom of the frame window, displays two panes when an image
editor window is open. When the pointer is over an image, the left pane shows the
cursor’s current position, in pixels, relative to the upper-left corner of the image.
During a dragging operation, such as selecting, moving, or drawing a rectangle, the
right pane shows the size, in pixels, of the affected area.

The Image Menu

The Image menu, which appears only when the graphic editor is active, has
commands for editing images, managing coior palettes, and setting image editor
window options.

Managing the Graphic Editor Workspace

By adjusting the graphic editor workspace to fit your needs and preferences, you can
work more effectively and comfortably. This section describes procedures for:

e Selecting and sizing image-editor panes.
e Changing the magnification of image editor windows.

¢ Displaying and hiding pixel grids.

Using Image-Editor Panes

The image editor window typically displays a bltmap in two panes separated by a
split bar. One view is actual size, and the other is enlarged (the default enlargement
factor is 6). The views in these two panes are updated automatically: changes you
make in one pane are immediately shown in the other. The two panes make it easy
for you to work on an enlarged “picture” of your bitmap, in which you can
distinguish individual pixels and, at the same time, observe the effect of your work on
the actual-size view of the image.

187

Visual C++ User's Guide

If the bitmap is 200 x 200 pixels or larger, however, only one pane is displayed
initially. Move the split bar to display both panes.

You can use the two panes in other ways. For example, you might enlarge the smaller
pane and use the two panes to show different regions of a large bitmap. Click in the
pane to select it.

You can change the relative sizes of the panes by positioning the pointer on the split
bar and moving the split bar to the right or left. The split bar can move all the way to
either 51de if you want to work on only one pane.

Changmg the Magnification Factor

By default, the graphic editor displays the view in the left pane at actual size and the
view in the right pane at 6 times actual size. The magnification factor is the ratio
between the actual size of the bitmap and the displayed size. The default is 6, and the
range is from 1 to 8.
» To change the magnification factor

1 Select the image-editor pane whose magnification factor you want to change.

2 On the toolbar, click the Magnify tool.

The pointer changes to the Magnify tool, and magnification-factor options appear
in the option selector on the Graphics toolbar. If the current magnification factor
matches an option, that option is highlighted.

3 Click the desired magnification factor.
Select the image-editor pane whose magnification factor you want to change.

Press SHIFT+RIGHT ANGLE BRACKET (>) to increase the magnification factor, or
press SHIFT+LEFT ANGLE BRACKET (<) to decrease the magnification factor.

Dlsplaylng and Hiding the Pixel Grid

188

For all image-editor panes with a magnification factor of 4 or greater, you can display
a grid that delimits the individual pixels in the image. For more information, see
“Changing the Magnification Factor.”
» To display or hide the pixel grid
1 From the Image menu, choose Grid Settings.
The Grid Seiiings diaiog box appears.
2 Select the Pixel Grid check box to display the grid, or clear the box to hide the
grid.

Chapter 10 Using the Graphic Editor

3 Choose the OK button.

e Press G to toggle the grid display.

Editing Graphical Resources

There are several editing operations involved in using the graphic editor. This section
describes these graphics-editing tasks:

¢ Setting bitmap properties

* Showing and hiding the Graphics toolbar

¢ Drawing and erasing

¢ Drawing lines and closed figures

¢ Cutting, copying, clearing, and moving selected parts of a bitmap

¢ Creating a custom brush '

¢ Flipping or resizing a bitmap

You can also import existing bitmaps, icons, and cursors and add them to your
project, and you can open files that are not part of a project for stand-alone editing.

For more information on importing resources, see “Using the Resource Editors” and
“Working with Symbols,” both in Chapter 5.

Note Most graphic editor operations are the same for all kinds of graphical resources. Unless

~ the text states otherwise, the procedures described in this section can be performed on

bitmaps, cursors, or icons.

Setting Bitmap Properties

((":

‘>

You use the Properties window to change most resource properties. Exceptions are
new icons or cursors for additional target devices. For more information, see “Setting
a Cursor’s Hot Spot,” later in this chapter, and Appendix B, “Initializing and
Configuring Microsoft Developer Studio.”

Tip By defauit the Properties window is hidden whenever it does not have focus. To keep the
Properties window in view when it does not have focus, click the Pushpin command button in
the upper-left corner of the Properties window.

» To change a bitmap’s properties
1 Open the bitmap whose properties you want to change.

2 From the Edit menu, choose Properties to open its property page.

189

Visual C++ User's Guide

3 Change any or all of these properties on the General tab:

¢ In the ID box, modify the resource’s identifier. For a bitmap, Microsoft
Developer Studio by default assigns the next available identifier in a series:
IDB_BITMAPI, IDB_BITMAP2, and so forth. Similar names are used for
icons and cursors.

¢ In the Width and Height boxes, modify the bitmap’s width and height (in
pixels). The default value for each is 48.

If you change the dimensions of a bitmap using the property page, the image is
cropped or “blank™ space is added to the right of or below the existing image.

¢ Inthe Colors list box, select Monochrome, 16, or 256. If you have already
drawn the bitmap with a 16-color palette, selecting Monochrome causes
substitutions of black and white for the colors in the bitmap. Contrast is not
always maintained: for example, adjacent areas of red and green are both
converted to black.

¢ In the File Name box, modify the name of the file in which the bitmap is to be
stored. By default, Developer Studio assigns a base filename created by
removing the first four characters (“IDB_") from the default identifier and
adding the extension .EPS.

e Select the Save Compressed check box to save the bitmap in a compressed
format.

4 Change any or all of the color properties on the Palette tab:
e Double-click to select a color and display the Custom Color Selector dialog box.

¢ Define the color by typing RGB or HSL values in the appropriate text boxes, or
by moving the cross hairs on the color box.

¢ For more information, see “Changing Colors” later in this chapter.

Showing and Hiding the Graphics Toolbar
Since many of the drawing tools are available from the keyboard, sometimes it is
useful to hide the Graphics toolbar.
» To show or hide the Graphics toolbar
1 Place the mouse pointer over the toolbar area and click the right mouse button.
A pop-up menu appears.

2 From the pop-up menu, choose Graphics.

190

Chapter 10 Using the Graphic Editor

Freehand Drawing and Erasing

r
((0‘

3

The graphic editor’s freehand drawing and erasing tools all work in the same way:
you select the tool and, if necessary, select foreground and background colors and size
and shape options. You then move the pointer to the bitmap and click or drag to draw
and erase.

When you have selected the eraser tool, brush tool, or airbrush tool, the optlon
selector displays that tool’s options.

Tip Instead of using the eraser tool, you may find it more convenient to draw in the
background color with one of the drawing tools.

Selecting and Using a Drawing Tool

The various drawing tools are easily selected using the Graphics toolbar. Figure 10.2
shows each toolbar button and its related drawing tool.
Figure 10.2 Drawing Tools in the Graphics Toolbar

) Select Region
Select Rectangle

Select Color
Eraser Magnify
Fill
Pencil Air Brush
Line Text
Brush
Curve

Brush or Eraser
Size Selector

» To select and use a drawing tool
1 Click a button on the Graphics toolbar:

e The eraser tool “paints over” the image with the current background color
when you press the left mouse button. When you press the right mouse button,
it replaces the current foreground color with the current background color.

e The pencil tool draws freehand in a constant width of one pixel.

191

Visual C++ User's Guide

o The brush tool’s shape and size are determined by the option selector.

o The airbrush tool randomly distributes color pixels around the center of the
brush.

2 If necessary, select colors and a brush:

¢ In the Colors palette, click the left button to select a foreground color or the
right button to select a background color.

¢ On the options selector of the Graphics toolbar, click a shape representing the
brush you want to use. Your selection is highlighted.

3 Point to the place on the bitmap where you want to start drawing or painting. The
brush or pointer appears on the bitmap.

4 Press the left mouse button (for the foreground color) or the right mouse button
(for the background color), and hold it down as you draw.

5 Release the mouse button.

» To change the size of the brush, airbrush, or eraser

e Press the PLUS SIGN (+) key to increase the size or the MINUS SIGN (-) key to
decrease it.

Press the PERIOD (.) to choose the smallest size.

Choose a brush in the option selector.

Drawing Lines and Closed Figures

192

The graphic editor tools for drawing lines and closed figures all work in the same
way: you place the insertion point at one point and drag to another. For lines, these
points are the endpoints. For closed figures, these points are opposite corners of a
rectangle bounding the figure.

- Lines are drawn in a width determined by the current brush selection, and framed

figures are drawn in a width determined by the current width selection. Lines and all
figures, both framed and filled, are drawn in the current foreground color if you press
the left mouse button, or in the current background color if you press the right mouse
button.

Drawing a Line
» Todraw a line
1 From the toolbar, select the line tool.

2 If necessary, select colors: in the Colors palette, click the left button to select a
foreground color or the right button to select a background color.

Chapter 10 Using the Graphic Editor

3 If necessary, select a brush: in the option selector, click a shape representing the
brush you want to use. Your selection is highlighted.

4 Place the pointer at the line’s starting point.

5 Drag to the line’s endpoint.

Drawing a Closed Figure

The various closed-figure drawing tools are easily selected using the Graphics
toolbar. Figure 10.3 shows the toolbar buttons for closed-figure drawing.

Figure 10.3 Closed-Figure Tools on the Graphics Toolbar

Outlined Round Rectangle

Outlined Rectangle

Filled Rectangle

Outlined Ellipse
Filled Round Rectangle

Rectangle
Round Rectangle

Filled Ellipse

Width of Line

Ellipse ! :
Option Seiector

» To draw a closed figure

1 From the Graphics toolbar, select a closed-figure drawing tool:

The outlined-rectangle tool draws a rectangle framed with the foréground or
background color.

The filled rectangle tool draws a rectangle filled with the foreground or
background color.

The outlined round rectangle tool draws a rectangle with rounded corners
framed with the foreground or background color.

The filled round rectangle tool draws a rectangle with rounded corners filled
with the foreground or background color.

The outlined ellipse tool draws an ellipse framed with the foreground or
background color.

The filled ellipse tool draws an ellipse filled with the foreground or background
color.

193

Visual C++ User's Guide

2 If necessary, select colors: on the Colors palette, click the left button to select a
foreground color or the right button to select a background color.

3 If necessary, select a line width: on the option selector, click a shape representing
the brush you want to use. Your selection is highlighted.

4 Move the pointer to one corner of the rectangular area in which you want to draw
the figure.

5 Drag it to the diagonally opposite corner.

Selecting an Area of the Bitmap

The selection tool defines an area of the bitmap that you can cut, copy, clear, resize,
invert, or move. You can also create a custom brush from the selection. For more
information on creating a custom brush, see “Creating a Custom Brush” later in this
chapter. ‘)
» To select an area of the bitmap

1 In the Graphics toolbar, click the selection tool.

2 Move the insertion point to one corner of the bitmap area that you want to select.

Cross hairs appear when the insertion point is over the bitmap.
3 Drag the insertion point to the opposite corner of the area you want to select.

A rectangle shows which pixels will be selected. All pixels within the rectangle,
including those “under” the rectangle, are included in the selection.

4 Release the mouse button.

The “selection border”’—a rectangular frame—encloses the selected area. Now
any operation you perform will affect only the pixels within the rectangle.

» To select the entire bitmap

¢ Click the bitmap outside of the current selection.
—or— ’

e Press the ESC key.
—or—

e Choose another tool on the toolbar.

Cutting, Copying, Clearing, and Moving

194

You can perform standard editing operations—cutting, copying, clearing, and
moving—with the selection, whether the selection is the entire bitmap or just a part
of it. Because the graphic editor uses the Windows Clipboard, you can transfer
images between Developer Studio and other applications for Windows, such as
Microsoft Paintbrush™ and Microsoft Word for Windows.

Chapter 10 Using the Graphic Editor

In addition, you can resize the selection, whether it includes the entire bitmap or just
a part. For more information on resizing, see “Resizing a Bitmap” later in this
chapter.
» To cut the current selection and move it to the Clipboard
o From the Edit menu, choose Cut.
The original area of the selection is filled with the current background color, and
the selection is now in the Clipboard.
» To clear the current selection without moving it to the Clipboard
¢ From the Edit menu, choose Clear.

The original area of the selection is filled with the current background color.

» To paste the Clipboard contents into the bitmap
1 From the Edit menu, choose Paste.

The Clipboard contents, surrounded by the selection border, appear in the upper-
left corner of the pane.

2 Position the pointer within the selection border and drag the image to the desired
location on the bitmap.

3 To anchor the image at its new location, click outside of the selection border or
choose a new tool.
» To move the selection

1 Position the pointer inside the selection border or anywhere on it except the sizing
handles. ‘

2 Drag the selection to its new location.
The original area of the selection is filled with the current background color.
3 To anchor the selection in the bitmap at its new location, click outside the
selection border or choose a new tool.
» To copy the selection

1 Position the pointer inside the selection border or anywhere on it except the sizing
handles. ' ’

2 Hold down the CTRL key as you drag the selection to a new location.
The area of the original selection is unchanged.

3 To copy the selection into the bitmap at its current location, click outside the
selection cursor or choose a new tool.

195

Visual C++ User's Guide

» To draw with the selection

1 Position the pointer inside the selection border or anywhere on it except the sizing
handles.

2 Hold down the SHIFT key as you drag the selection.

Copies of the selection are left along the dragging path. The more slowly you drag,
the more copies are made.

Flipping the Selection

» To tlip the selectlon along the horizontal axis

e From the Image menu, choose Flip Horizontal.

» To flip the selection along the vertical axis

¢ From the Image menu, choose Flip Vertical.

» To rotate the selection 90°

¢ From the Image menu, choose Rotate 90°.

Creating a Custom Brush

196

A custom brush is a rectangular portion of a bitmap that you “pick up” and use like
one of the graphic editor’s ready-made brushes. All operations you can perform on a
selection, you can perform on a custom brush as well.

» To create a custom brush

1 Select the part of the bitmap that you want to use for a brush. For more
information, see “Selecting and Using a Drawing Tool” earlier in this chapter.

2 Press CTRL+B.

Pixels in a custom brush that match the current background color are normally
“transparent,” they do not paint over the existing image. You can change this
behavior so that background-color pixels paint over the existing image.

You can use the custom brush like a “stamp” or a “stencil” to create a variety of

special effects.

Using a Custom Brush
» To draw custom brush shapes in the background color

1 Select an opaque or transparent background. For more information, see “Choosing
Opaque and Transparent Backgrounds” later in this chapter.

2 Set the background color to the color in which you want to draw.

3 Position the custom brush where you want to draw.

Chapter 10 Using the Graphic Editor

4 Press the right mouse button.

Any opaque regions of the custom brush are drawn in the background color.

» To double or halve the custom brush size

o Press the PLUS SIGN (+) key to double the brush size, or the MINUS SIGN (—) key to
halve it.

» To cancel the custom brush
e Press ESC or choose another drawing tool.

Resizing a Bitmap
The behavior of the graphic editor while resizing a bitmap depends on whether the
selection includes the entire bitmap or just part of it:

e When the selection includes only part of the bitmap, Microsoft Developer Studio
shrinks the selection by deleting rows or columns of pixels and filling the vacated
regions with the current background color, or it stretches the selection by
duplicating rows or columns of pixels.

e When the selection includes vthe entire bitmap, Developer Studio either shrinks
and stretches the bitmap, or.crops and extends it.

There are two mechanisms for resizing a bitmap: the resizing handles and the .
property page. You can drag the sizing handles to change the size of all or part of a
bitmap. Sizing handies that you can drag are solid, like those on the lower-right
corner and the midpoints of the right and bottom sides of the bitmaps. You cannot
drag handles that are hollow. You can use the property page to resize only the entire
bitmap, not a selected part.

Note If you have the Tile Grid option selected (see Grid Settings command on the Image
menu), then resizing snaps to the next tile grid line. If only the Pixel Grid option is selected,
resizing snaps to the next available pixel. Usually, only the Pixel Grid option is selected.

Resizing an Entire Bitmap

» To resize an entire bitmap using the property page

1 From the Edit menu, choose Properties to open the property page.
2 In the Width and Height boxes, type the dimensions that you want.

If you are increasing the size of the bitmap, the graphic editor extends the bitmap
to the right downward, or both, and fills the new region with the current
background color. The image is not stretched.

If you are decreasing the size of the bitmap, the graphic editor crops the bitmap on
the right or bottom edge, or both.

197

Visual C++ User's Guide

You can use the Width and Height properties to resize only the entire bitmap, not to
resize a partial selection.
» To crop or extend an entire bitmap

1 Select the entire bitmap.

If part of the bitmap is currently selected, and you want to select the entire bitmap,
click anywhere on the bitmap outside the current selection border, press ESC, or
choose another drawing tool.

2 Drag a sizing handle until the bitmap is the desired size.
Normally, the graphic editor crops or enlarges a bitmap when you resize it by moving
a sizing handle. If you hold down the SHIFT key as you move a sizing handle, the
graphic editor shrinks or stretches the bitmap.
» To shrink or stretch an entire bitmap

1 Select the entire bitmap.

If a part of the bitmap is currently selected and you want to select the entire
bitmap, click anywhere on the bitmap outside the current selection border, press
ESC, or choose another drawing tool.

2 Hold down the SHIFT key and drag a sizing handle until the bitmap is the desired
size. ' '
» To shrink or stretch part of a bitmap

1 Select the part of the bitmap you want to resize. For more information, see
“Selecting an Area of the Bitmap” earlier in this chapter.

2 Drag one of the sizing handles until the selection is the desired size.

Working With Colors in the Graphic Editor

The graphic editor comes equipped with many features specifically to help with the
handling and customizing of colors. You can:

¢ Set foreground and background colors, and choose opaque and transparent
backgrounds. '

e Fill an area of a bitmap with a color or quickly “pick up” a color from the bitmap
to use it elsewhere.

e Invert the colors in a selection.
e Customize or change the colors.

o Save and load different color palettes.

198

Chapter 10 Using the Graphic Editor

Selecting Foreground and Background Colors

Except for the eraser, these tools on the Graphics toolbar draw with the current
foreground or background color when you press the left or right mouse button,
respectively.

» To select a foreground color

e - With the left mouse button, click the color you want on the Colors palette.

» To select a background color

e With the right mouse button, click the color you want on the Colors palette.

Filling Bounded Areas
The graphic editor provides the fill (or * pamt -bucket”) tool for filling any enclosed
bitmap area with the current drawing color or the current background color.
» To use the fll tool
1 From the Graphics toolbar, choose the fill tool.

2 If necessary, choose drawing colors: in the Colors palette, click the left button to
select a foreground color or the right button to select a background color.

3 Move the fill tool to the area you want to fill.

4 Click the left or right mouse button to fill with the foreground color or the
background color, respectively.

Picking Up Colors
The color-pickup tool makes any color on the bitmap the current foreground color or
background color, depending on whether you press the left or the right mouse button. .
To cancel the color pickup tool, choose another tool or press ESC.
» To pick up a color
1 From the Graphics toolbar, select the color-pickup tool.
The pointer changes to the “eyedropper.”

2 Select the color you want to pick up from the Colors palette or from the Palette tab
of the property page.

After you pick up a color, the graphic editor reactivates the most recently used
tool.

3 Draw using the left mouse button for the foreground color, or the right mouse
button for the background color.

199

Visual C++ User's Guide

Choosing Opaque and Transparent Backgrounds

‘When you move or copy a selection from a cursor or icon, any pixels in the selection
that match the current background color are by default “transparent,” they do not
obscure pixels in the target location. A custom brush behaves in the same way. For
more information on custom brushes, see “Creating a Custom Brush” earlier in this
chapter.

» To toggle the background-color transparency

o In the Graphics toolbar option selector, click the appropriate button:
¢ Opaque background: existing image is obscured by all parts of the selection.
o Transparent background: existing image shows through parts of the selection

that match the current background color.

You can change the background color while a selection is already in effect to change
which parts of the image are transparent.

Inverting Colors in the Current Selectlon

So that you can tell how a b1tmap would appear with inverted colors, the graphic
editor provides a convenient way to invert colors in the selected part of the bitmap.

» To invert colors in the current selection

e From the Image menu, choose Invert Colors.

Changing Colors

200

The graphic editor’s Colors palette initially displays 24 “ready-made” colors: 16
standard colors and 8 dithered colors. In addition to the ready-made colors, you can
create your own custom colors. Colors palette selections can be saved on disk and
individually reloaded as needed. The “most recently used” Colors palette definition is
saved in the Registry and automatically loaded the next time you start Developer
Studio.

The Palette tab in the Properties window displays up to 256 colors. Changing any of
the colors on the Palette tab will immediately change the corresponding color in the
bitmap. The colors on the Palette tab are always solid colors and can indicate any
color your video card is capable of displaying.

Note The Palette tab in the Properties window displays for hitmans only,

Chapter 10 Using the Graphic Editor

» To change colors on the Colors palette or Palette tab
1 From the Image menu, choose Adjust Colors.
—or—
Double-click one of the colors on the Colors palette.
—or—
Double-click one of the colors on the Palette tab of the Bitmap Properties page.
The Custom Color Selector dialog box (Figure 10.4) appears.

Figure 10.4 Custom Color Selector Dialog Box

2 Define the color by typing RGB or HSL values in the appropriate text boxes, or by
moving the cross hairs on the color box.

3 Set the luminance by moving the slider on the luminance bar.

4 Many custom colors are dithered. If you want the solid color closest to the dithered
color, double-click the Color preview window. (If you later decide you want the
dithered color, move the slider or the cross hairs again to restore the dithering.)

5 Choose OK to add the new color.

Saving and Loading Colors Palettes

You use commands on the Image menu save or load a palette.

» To save a custom Colors palette .
1 From the Image menu, choose Save Palette.

2 Use the Save Palette Colors dialog box to navigate directories, and type a
filename.

201

Visual C++ User's Guide

» To load a custom Colors palette
1 From the Image menu, choose Load Palette.
2 Use the Load Palette Colors dialog box to navigate directories and choose a
filename.

W Tip Since the graphic editor has no means to restore the default Colors palette, save
LMl the default Colors palette under a name such as STANDARD.PAL or DEFAULT.PAL
so that you can easily restore the default settings.

Creating and Editing Icons and Cursors

Icons and cursors are like bitmaps, and you edit them in the same ways. However,
icons and cursors have attributes that distinguish them from bitmaps. For example,
each icon or cursor resource can contain multiple images for different display
devices. In addition, a cursor has a “hot spot”—the location Windows NT uses to
track its position.

With the graphic editor, you-can:

e Create a new image for icons and cursors.

e Select a display device or customize a display device.
¢ Draw with screen and inverse colors.

e Set a cursor’s hot spot.

e Use 256 colors from the property page for large icons and cursors.

Creating a New Icon or Cursor Image

When you create a new icon or cursor, the graphic editor first creates an image for
the VGA. The image is initially filled with the “screen” (transparent) color. If the
image is a cursor, the hot spot is initially the upper-left corner (coordinates 0,0).

By default, the graphic editor supports the creation of images for the devices shown
in Table 10.1.

Table 10.1 Devices for Icon or Cursor Images

Devices Colors Width Height
Monochrome 2 32 32
Small 16 16 16
Normal 16 32 32
Large 256 64 : 64

You can create images for other devices by typing width, height, and color-count
parameters into the custom device dialog box. See “Selecting a Display Device” later
in this chapter for more information.

02

Chapter 10 Using the Graphic Editor

Selecting a Display Device

When you create a new icon or cursor image, you need to designate the target display
device. When the icon or cursor resource is opened, the image most closely matching
the current display device is opened by default (see Figure 10.5).

Figure 10.5 New Icon Image Dialog Box

Monochrome (32432)

In addition to the standard types of devices listed, you can add a custom device for
your icon or cursor image. You can enter width, height and color-count parameters in
the Custom Image dialog box (Figure 10.6).

Figure 10.6 Custom Image Dialog Box

» To select a target device image

-1 On the control bar of the image editor window, click the New Device Image
button.

v 2 Select a target device image from the list box.
—or— .

Choose the Custom button to define the width, height, and colors of a custom
image.

3 Choose OK to select the new parameters.

Drawing with Screen and Inverse Colors

The initial icon or cursor image has a transparent attribute. Although icon and cursor
images are rectangular, many do not appear so because parts of the image are
“transparent,” the underlying image on the screen shows through the icon or cursor.
When you drag an icon, parts of the image may appear in an inverted color. You
create this effect by choosing screen-color and inverse-color options from the color
indicator on the Colors palette (see Figure 10.7).

203

Visual C++ User's Guide

The screen and inverse “colors” you apply to icons and cursors either shape and color
the derived image or designate inverse regions. The colors indicate parts of the image
possessing those attributes. You can change the colors that represent the screen-color
and inverse-color attributes for your convenience in editing. These changes do not
affect the appearance of the icon or cursor in your application.

Figure 10.7 Selectors for Screen Color and Inverse Color

Screen Color

Inverse Color

» To create transparent or inverse regions in an icon or cursor
1 On the Colors palette, click a selector for screen or inverse color.

2 Apply the screen or inverse color.

» To change the colors representing screen color and inverse color
1 Select either the screen-color selector or the inverse-color selector.
2 Choose a color from the Colors palette.
The complementary color is automatically designated for the other selector.

Tip If you double-click the screen color or inverse-color indicator, the Custom Color Selector
dialog box appears.

Creating 256 Color Icons and Cursors

04

Icons can be sized large (64 x 64) with a 256-color palette to choose from. For more
information on large icons, see “Selecting a Display Device” earlier in this chapter.
For more information on creating icons or cursors in general, see “Creating and
Editing Icons and Cursors” earlier in this chapter.

To draw with a selection from the 256-color palette, you need to display the palette in
the property page for the icon or cursor and select the colors from the property page.

Chapter 10 Using the Graphic Editor

Figure 10.8 Property Page with Palette for 256 Colors

Ieon Propetties

» To choose a color from the 256-color palette for large icons:
1 Select the large icon or cursor, or create a new large icon or cursor.
2 From the Edit menu, choose Properties. Select the Palette tab.
3 Choose the color from the 256 colors displayed in the palette.
—or—
Double-click a color to customize the color on the palette.
The initial palette used for 256-color images matches the palette returned by

CreateHalftonePalette() Windows API. All icons intended for the Windows shell |
should use this palette to prevent flicker during palette realization.

Custom colors can be added by double clicking a color in the Palette property page.

Setting a Cursor’s Hot Spot

The hot spot is the point to which Windows refers in tracking the cursor’s position.
By default, the hot spot is set to the upper-left corner (coordinates 0,0). The Cursor
Properties page and the image editor control bar show the hot spot coordinates.

» To set a cursor’s hot spot
1 On the control bar of the image editor window, choose the Hot Spot button.

2 Click the pixel you want to designate as the cursor’s hot spot.

205

CHAPTER 11

- Using the Toolbar Editor

-The Visual C++ toolbar editor is a graphic tool to support the creation of toolbar
resources and the conversion of bitmaps into toolbar resources. The toolbar editor
uses a graphic display to show a subject toolbar and selected button that closely
resembles the toolbar and buttons in a finished application. Toolbar buttons can be
linked to code using ClassWizard.

With the toolbar editor, you can:

e Create new toolbars and buttons.

¢ Convert bitmaps to toolbar resources.
e Create, move, and edit toolbar buttons.
Figure 11.1 The Toolbar Editor

— Selected toolbar button Blank toolbar button

Split bar Graphics toolbar

i

Seriblile.1c - IDR_MAINFR,

Selection border — I_ Colors palette

Sizing handle — — Color indicator

207

Visual C++ User's Guide

The toolbar editor window shows two views of a button image, the same as the
graphic editor window. A split bar separates the two panes. You can drag the split bar
from side to side to change the relative sizes of the panes. The active pane displays a
selection border. ‘)

Above the two views of the image is the display of the subject toolbar, indicated by
white space surrounding the subject toolbar, as shown in Figure 11.1. The selected
button in this toolbar shows a fuzzy border.

The toolbar editor is similar to the graphic editor in functionality. The menu items,
graphic tools, and bitmap grid are the same as those in the graphic editor. For more
information on using the Graphics toolbar, Colors palette, or Image menu, see “Using
the Image Editor Window and Tools” in Chapter 10, “Using the Graphic Editor.”

Creating New Toolbar Resources

There are two methods for creating a new toolbar. One method is to select a new
toolbar resource from the Insert Resource menu. The other method is to convert an
existing bitmap to a toolbar. For more information on converting bitmaps, see
“Converting Bitmaps to Toolbars” later in this chapter. For further editing of the new
toolbar resource, see “Creating, Moving and Editing Toolbar Buttons” later in this
chapter.

» To create a new toolbar resource
1 From the Insert menu, choose Resource.
The Insert Resource dialog box appears.
2 In the Resource Type list, select Toolbar, and choose the OK button.
—or—

Click the plus sign (+) for the toolbar resource. Any toolbar resources listed are
templates. Select a template to use, and choose the OK button.

Converting Bitmaps to Toolbars

You can create a new toolbar resource by converting a bitmap to a toolbar resource.
You can also create a new toolbar from the Resource menu (see “Creating New
Toolbar Resources” earlier in this chapter).

The graphic from the bitmap converts to the button images for a toolbar resource.
Usually the bitmap contains several button images on a single bitmap. usually with
one image for each button. Images can be any size; the default is 16 x 15 pixels. You
can specify the size of the button images in the New Toolbar dialog box when you
choose Toolbar Editor from the Image menu.

You can change the ID of the buttons of the new toolbar resource, using the property
pages for the buttons. For information on editing the new toolbar, see “Creating,
Moving and Editing Toolbar Buttons™ later in this chapter.

208

Chapter 11 Using the Toolbar Editor

» To convert bitmaps to a toolbar resource
1 Open an existing bitmap resource in the graphic editor.
2 From the Image menu, choose Toolbar Editor.

The New Toolbar Resource dialog box appears. You can change the width and
height of the icon images to match the bitmap. The toolbar image is then
displayed in the toolbar editor.

3 To finish the conversion, change the command IDs on the buttons in the toolbar.

¢ Open the property page on the toolbar button. (From the Edit menu, choose
Properties.)

o Type in the new ID, or select an ID from the drop-down list.

P Tip Click the Pushpin button on the property page to cycle through all the toolbar buttons
Ll without having to re-open the individual property pages.

Creating, Moving and Editing Toolbar
Buttons

Toolbar buttons can be easily created, moved, copied, and edited. There are property
pages for the buttons as well as the toolbar resource. Toolbar buttons can be
connected to code by using ClassWizard while the toolbar editor is active.

A new or “blank” button is displayed, by default, at the right end of the toolbar. This
button can be moved before it is edited. When a new button is created, another blank
button appears to the right of that edited button. When a toolbar resource is saved, the
blank button is not saved with the resource.

» To create a new toolbar button

e Assign an ID to the blank button at the right end of the toolbar. Open the property
"~ page on that toolbar button to edit the ID box.

¢ Select the blank button at the right end of the toolbar, and begin drawing. A
default button command ID is assigned ID_BUTTON<n>).
» To move a toolbar button

e Drag the button that you want to move to its new location on the toolbar.

» To copy buttons from a toolbar resource
1 Hold down the CTRL key.

2 Drag the button from the originating toolbar to its new location on the same
toolbar or to a location on another displayed toolbar.

209

Visual C++ User's Guide

» To delete a toolbar button
e Select the toolbar button on the subject toolbar, and drag the button off the toolbar.

» To insert a space between buttons on a toolbar resource

1 To insert a space before a button that is not followed by a space, drag the button to
the right or down until it overlaps the next button about halfway.

2 To insert a space before a button that is followed by a space and retain the space
following the button, drag the button until the right or bottom edge is Just touching
the next button or just overlaps it. .

3 To insert a space before a button that is followed by a space and close up the
following space, drag the button to the right or down until it overlaps the next
button about halfway.

» To close up a space between buttons on a toolbar

e Drag the button on one side of the space toward the button on the other side of the
space until it overlaps the next button about halfway.

If there is no space on the side of the button that you are dragging away from, and
- you drag the button more than halfway past the adjacent button, Visual C++also
inserts a space on the opposite side of the button that you are dragging.

Editing the Property Page of a Toolbar Button

The property page of a toolbar button (see Figure 11.2) contains the ID box, the
Width and Height boxes, and the Prompt box. The ID box has a drop-down list
containing common ID names. The Prompt box is for the message displayed in the
status bar. Adding \n and a name adds a tooltip to that toolbar button.

Figure 11.2 The Toolbar Button Property Page

Create a new documentinNew

- » To change the ID of a toolbar button
1 Select the toolbar button.

2 From the Edit menu, choose Properties to bring up the property page for that
toolbar button.

3 Type the new ID in the ID box, or use the drop-down list to select a new ID.

210

Chapter 11 Using the Toolbar Editor

» To add a tooltip to a toolbar button
1 Select the toolbar button.

2 From the Edit menu, choose Properties to bring up the property page for that
toolbar button.

3 In the Prompt box, add a description of the button for the status bar; after the
message, add \n and the tooltip name.

211

CHAPTER 12

Using the Binary Data Editor

The binary data editor allows you to edit a resource at the binary level in either
hexadecimal or ASCII format. You should use the binary data editor only when you
need to view or make minor changes to custom resources. or resource types not
supported by Microsoft Developer Studio.

Caution Editing nondata resources in the binary data editor can corrupt the resource. A
corrupted resource can cause Microsoft Developer Studio and Windows NT to behave in
unexpected ways.

Q Tip While using the binary data editor, in many instances you can click the right mouse button
Ml to display a pop-up menu of resource-specific commands. The commands available depend on
what the pointer is pointing to. For example, if you click while pointing to the binary data editor
with selected hexadecimal values, the pop-up menu shows the Cut, Copy, and Paste
commands.

Creating a New Data Resource or
Custom Resource

You can create a new custom or data resource by placing the resource in a separate
file using normal resource script (.RC) file syntax, and then including the file with
the Resource Includes command on the View menu.
» To create a hew custom or data resource

1 Create an .RC file that contains the custom or data resource.

Custom data can be typed in an .RC file as null-terminated quoted strings, or as
integers in decimal, hexadecimal, or octal format. For more information, see the
Win32 Software Development Kit documentation.

2 From the View menu, choose Resource Includes.

The Resource Includes dialog box appears.

213

Visual C++ User's Guide

3 In the Compile-Time Directives box, type an include statement that gives the
name of the file containing your custom resource. For example:

ffinclude mydata.rc

Make sure the syntax and spelling of what you type are correct. The contents of
the Compile-Time Directives box are inserted into the resource script file exactly
as you typed them.

4 Choose the OK button to record your changes.

The custom or data resource is included in your application at compile time.

Opening a Resource for Binary Editing

» To open a resource for binary editing
1 Open the project or resource script containing the resource to be edited.
2 Select the specific resource file you want to edit. Just highlight the resource.
3 Click the right mouse button and choose Open Binary Data.
The binary data editor appears (Figure 12.1).

If you want to use the binary data editor on a resource already being edited in another
editor window, close the other editor window first.

Note If you use the ResourceView window to open a resource with a format that Microsoft
Developer Studio does not recognize (such as a VERSION, RCDATA, or custom resource), the
resource is automatically opened in the binary data editor.

Figure 12.1 ' Binary Data Editor

000000
000010
000020
000030
000040
000050
000060
000070
000080
000090
000020
000050
0000c0
000040
L0000el

- Offset L- Hexadecimal value L ASCII value

214

Chapter 12 Using the Binary Data Editor

Editing Binary Data
» To edit a resource in the binary data editor

1 Select the byte you want to edit.

The TAB key moves the focus between the hexadecimal and ASCII sections of the
binary data editor. You can use the PAGE UP and PAGE DOWN keys to move through
the resource one screen at a time.

2 Type the new value, or paste a value you have copied.

215

CHAPTER

13

Using the Version Information Editor

>

Version information consists of company and product-identification, a product release
number, and copyright and trademark notification. The version information editor is
a tool for creating and maintaining this data. Although the version information
resource is not required by an application, it is a useful place to collect this
information that identifies the application.

A single version information resource can contain multiple string blocks, each
representing a different language or character set. All you need to do is define the
character sets and languages that are specific to your product.

With the version information editor, you can add or delete string blocks, and you can
modify individual string values.

Note The Windows standard is to have only one version resource, named
VS_VERSION_INFO.

If you wish to access the version information from within your program, your
application can make use of the GetFileVersionInfo function and the

VerQuery Value function. For additional information on how to access version
information, see the online Microsoft Win32 Programmer’s Reference, Volume 2.

Tip While using the version information editor, in many instances you can click the right
mouse button to display a pop-up menu of resource-specific commands. For example, if you
click while pointing to a block header entry, the pop-up menu shows the New String Block and
Delete String Block commands.

For information about common resource edit procedures such as creating new
resources, opening existing resources, and deleting resources, see Chapter 5,
“Working with Resources.”

217

Visual C++ User's Guide

Editing the Version Information

218

The version information resource (shown in Figure 13.1) has a single fixed
information block (at the top of the resource) and one or more string information

“blocks (at the bottom of the resource). The top block has both editable numeric boxes

and selectable drop-down lists. The bottom string block has editable text boxes.

Figure 13.1 Version Information Resource

FILEVERSION
1 PRODUCTVERSION = 1.,0.0.1
| FILEFLAGSMASK Ox3fL
| FILEFLAGS 0x0L
FILEOS VOS_WINDOWS32
| FILETYPE VFT_APP

BTY! W NKNOW!

Comments
| CompanyName
| FileDescription SCRIBBLE MFC Application

You can sort the information sequence of the string block by choosing either the Key
button or the Value button. This choice automatically rearranges the information into
the selected sequence.
» To edit a version information resource
e Click the item you want to edit.

The selected text box or drop-down list appears for modification.

Note When editing the FILEFLAGS property page, the DEBUG flag cannot be set for .RC
files because Microsoft Developer Studio sets that flag with an #ifdef in the resource script,
based on the _DEBUG build flag.

» To add a new string block
1 Open a version information resource.

2 From the Insert menu, choose New String Block.

This command appends an additional string information block into the current
version information resource and opens the Block Header property page.

3 On the Block Header property page, choose the appropriate language and
characier sei for the new biock.

Chapter 13 Using the Version Information Editor

» To delete a string block
1 With a version information resource open, select one of the block headers.
2 From the Insert menu, choose Delete String Block.

This command deletes the selected header and leaves the remaining version
information intact.

219

CHAPTER 14

Working With Classes

ClassWizard and WizardBar simplify your use of the classes found in the Microsoft
Foundation Class Library (MFC). ClassWizard assists you in creating classes,
member variables, and message-handling functions. It also simplifies working with
OLE and database classes. WizardBar is a shortcut from your implementation (.CPP)
files into ClassWizard that further simplifies creating, modifying, or locating
message-handling functions. For more information on these tools, see “Using
‘ClassWizard” below, and “Using WizardBar” on page 222.

You can only use ClassWizard and WizardBar with applications that use MFC. Both
work with MFC message-maps, OLE automation dispatch maps, and the
DoDataExchange member function of your application’s view class. For more
information on the classes that ClassWizard and WizardBar handle, see “Classes
Offered by ClassWizard” on page 224.

ClassWizard and WizardBar are used with Microsoft Foundation Class Library
version 4.0 projects. For information on how to convert other projects (including
Microsoft Foundation Class Library version 1 projects) for use with ClassWizard, see
Technical Note 19 available under MFC in Books Online.

See Also ClassWizard, WizardBar, Classes Offered by ClassWizard

Using ClassWizard

ClassWizard is like a programmer’s assistant: it makes it easier for you to do certain
routine tasks such as creating new classes, defining message handlers, overriding
MFC virtual functions, and gathering data from controls in a dialog box, form view,
or record view. ClassWizard works only with applications that use MFC.

With ClassWizard, you can:

e Create new classes derived from many of the main framework base classes that
handle Windows messages and recordsets.

e Map messages to functions associated with windows, dialog boxes, controls, menu
items, and accelerators.

221

Visual C++ User's Guide

¢ Create new message-handling member functions.
¢ Delete message-handling member functions.

¢ See which messages have message handlers already defined and jump to the
handler program code.

¢ Define member variables that automatically initialize, gather, and validate data
entered into dialog boxes or form views.

¢ Add OLE Automation methods and properties when creating a new class.
See Also Addihg a Class, Mapping Messages to Functions, Adding a Message

Handler, Deleting a Message Hander, Editing a Message Handler, Working With
Dialog Box Data

Using WizardBar

222

WizardBar is a shortcut into ClassWizard that simplifies routine tasks such as
defining message handlers, overriding MFC virtual functions, and navigating in an
implementation (.CPP) file. Like ClassWizard, WizardBar works only with
applications that use MFC.

With WizardBar, you can:

e Browse the Windows messages associated with windows, dialog boxes, controls,
menu items, and accelerators.

¢ Create new message-handling member functions.
o Delete message-handling member functions.

o See which messages have message handlers already defined and jump to the
handler program code.

WizardBar Features
WizardBar resides at the top of any text-editing window that displays a .CPP file of a

‘ class that is in the ClassWizard database. You control whether WizardBar is

displayed with the Toolbar command in the edit window’s pop-up menu. The pop-up
menu is activated with the right mouse button.

You can use WizardBar, shown in Figure 14.1, to select a class component quickly
and modify the associated virtual functions, Windows messages, or CCmdTarget
procedures. WizardBar has four parts that will be described in the following sections.

Chapter 14 Working With Classes

Figure 14.1 WizardBar

Open Header
File Button

Delete Button

Class Object IDs

Messages List

Class Object IDs

The Object IDs list, on the left side of WizardBar, displays the class name and ID
names of a class that is in the currently opened implementation file. The first item in
the list is always the class itself, which allows you to override virtual functions and
Windows messages.

Messages List

The Messages drop-down list contains virtual functlons Windows messages, and
CCmdTarget procedures associated with the class component currently selected in
the Class Object IDs list. Messages in bold have already been mapped or overridden
in the class. For more information, see “Overriding a Virtual Function” on page 240
and “Adding a Message Handler” on page 234.

Delete Function Button

If you’ve selected an overridden virtual function in the Messages box, the Delete
Function button becomes active and will delete the associated function prototype in
the class definition. If you’ve selected a command with a message handler in the
Messages box, the Delete button will delete the message-map and declaration code.

After either use of the Delete button, the insertion point moves to the function
definition, allowing you to check whether you want to delete the code in the function
body. You must delete it yourself. For more information, see “Deleting a Message
Handler” on page 238.

Open Header File Button
This button opens the current .CPP file’s header (.H) file in a new window.

See Also Adding a Message Handler, Deleting a Message Handler, Overriding a
Virtual Function, Mapping Messages to Functions, Editing a Message Handler, Using
ClassWizard

223

Visual C++ User's Guide

Classes Offered by ClassWizard

Use ClassWizard to add error-free class declarations to your project for classes that
contain message-handling functions.

224

Note ClassWizard is only for use with user-interface classes derived from CCmdTarget that
handle messages or manage dialog box controls. To add a new class that does not handle
messages, create the class directly in the text editor. (The exception to this rule is class
CRecordset, for database support, which can be created with ClassWizard.)

ClassWizard enables you to create classes derived from the Microsoft Foundation
Classes shown in Table 14.1.

.

Table 14.1 Types of MFC Classes Available from ClassWizard

Class Description.

CAnimateCtrl Provides the functionality of the Windows common animation
control.

CButton Button control.

CCmdTarget Base class for objects that can receive and respond to
messages. It is the result of a selection based on a table query.

CColorDialog Color-selection dialog box with a list of colors that are defined
for the display system.

CComboBox List box with static or edit control.

CDaoRecordSet Represents a set of records selected from a data source.
CDaoRecordset objects are available in three forms: table-
type recordsets, dynaset-type recordsets, and snapshot-type
recordsets.

CDaoRecordView Displays database records in controls. This form view is

: directly connected to a CDaoRecordset object.

CDialog Dialog box.

CDocument Class for managing program data.

CDragListBox Windows list box that allows the user to move list box items
within the list box.

CEdit Rectangular child window for text entry.

CEditView Provides the functionality of a Windows edit control and can
be used to implement simple text-editor functionality.

CFileDialog Windows common file dialog box provides an easy way to
imnlement File Onen and File Save As dialogs boxes
implement Open and File Save As dinlog boxes,

CFontDialog Font-selection dialog box that displays a list of fonts that are
currently installed in the system.

CFormView Window that can contain dialog box controls.

CFrameWnd Single document interface (SDI) frame window.

Chapter 14 Working With Classes

Table 14.1 Types of MFC Classes Available from ClassWizard (Continued)

CSpinButtonCtrl

Class Description

CHeaderCtrl Provides the functionality of the Windows common header
control.

CHotKeyCtrl Provides the functionality of the Windows common hot key
control.

CListBox List box.

CListCtrl Provides the functionality of the Windows common list view
control.

CListView List control that simplifies use of CListCtrl, the class that

: encapsulates list-control functionality.

CMDIChildWnd Multiple document interface (MDI) child frame window.

COleDocument Treats a document as a collection of CDocltem objects to
handle OLE items. Both container and server applications
require this architecture because their documents must be able
to contain OLE items.

COleLinkingDoc Base class for OLE container documents that support linking to
the embedded items they contain.

COleServerDoc Base class for OLE server documents.

CPrintDialog Windows common dialog box for printing that provides an easy
way to implement Print and Print Setup dialog boxes.

CProgressCtrl - Provides the functionality of the Windows common progress

. bar control.

CPropertyPage Represents an individual page of a property sheet, otherwise
known as a tab dialog box.

CPropertySheet Represents property sheets, otherwise known as tab dialog
boxes. A property sheet consists of a CPropertySheet object
and one or more CPropertyPage objects.

CRecordset Class for accessing a database table or query.

CRecordView Window containing dialog box controls mapped to recordset
fields.

CRichEditCtrl Window in which the user can enter and edit text. The text can
be assigned character and paragraph formatting, and can
include embedded OLE objects.

CRichEditDoc Maintains the list of OLE client items which are in the view.

CRichEditView Maintains the text and formatting characteristics of text.

CScrollBar Scroll bar.

CScrollView Scrolling window, derived from CView..

CSliderCtrl Provides a window containing a slider and optional tick marks.
Provides a pair of arrow buttons that the user can click to

increment or decrement a value.

225

Visual C++ User's Guide

Table 14.1 Types of MFC Classes Available from ClassWizard (Continued)

Class . Description .

CStatic A simple text field, box, or rectangle used to label, box, or
separate other controls.

CStatusBarCtrl Provides a horizontal window, usually displayed at the bottom
of a parent window, in which an application can display status
information.

CTabCltrl Allows an application to display multiple pages in the same

, area of a window or dialog box.

CToolBarCtrl Provides the functionality of the Windows toolbar common
control. '

CToolTipCtrl Provides the functionality of a “tooltip control,” a small pop-up

window that displays a single line of text describing the
purpose of a tool in an application.

CTreeCtrl Displays a hierarchical list of items.

CTreeView Tree control that simplifies use of CTreeCtrl, the class that
encapsulates tree-control functionality

CView Class for displaying program data.

CWinThread Represents a thread of execution within an application.

generic CWnd - Custom window.

splitter An MDI child window that contains a CSplitterWnd class.

The user can split the resulting window into multiple panes.

For more information on these classes, see the Class Library Reference.

When you use ClassWizard to create a new class derived from one of the framework
classes listed in Table 14.1, it automatically places a complete and functional class in
the header (.H) and implementation (.CPP) files you specify. ClassWizard keeps track
of the class’s message-handling and data-exchange members, so that you can update
the class at a later time.

See Also Adding a Class, Creating a Class That Does Not Require a Resource ID,
Creating a Class That Requires a Resource ID, Using Component Gallery, MFC
Message Maps, Importing a Class, Importing the Elements of an OLE Type Library,
Selecting an Existing Class, Creating a Reusable Control Class

Adding a Class

26

ClassWizard enables you to easily bind user-interface classes that are derived from
the MFC library to the messages generated by the resources of your application. It
uses MFC message maps to create the binding. You can use one of the following
three ways to add MFC classes to a project:

¢ Click ClassWizard’s Add Class menu button and choose the New command to
create an entirely new class and add it to the ClassWizard database.

Chapter 14 Working With Classes

With ClassWizard you can create two kinds of classes:

e Those, such as CButton, that do not require a resource ID. For more
information, see “Creating a Class That Does Not Require a Resource ID”
below.

¢ Those, such as CDialog, that require a resource ID. For more information, see
“Creating a Class That Requires a Resource ID” on page 229.

e Click ClassWizard’s Add Class menu button and choose the From A File
command to import an existing class from another project into the ClassWizard
database. For more information on importing a class, see “Importing a Class” on
page 231.

¢ Click ClassWizard’s Add Class menu button and choose the From An OLE
TypeLib command to select elements from an OLE Type library, wrap them in an
MFC C++ class, import the resulting class into a project, and add the class to the
ClassWizard database. For more information on this command, see “Importing the
Elements of an OLE Type Library” on page 233.

See Also Classes Offered by ClassWizard, Creating a Class That Does Not Require a
Resource ID, Creating a Class That Requires a Resource ID, Using Component
Gallery, MFC Message Maps, Importing a Class, Importing the Elements of an OLE
Type Library, Selecting an Existing Class, Creating a Reusable Control Class

Creating a Class That Does Not Require a Resource ID

The following procedure describes how to create classes that do not require a resource
ID—classes, such as CButton or CEdit, that are derived from base classes other
than CDaoRecordView, CDialog, CFormView, CPropertyPage, or CRecordView.

» To add a class to a project
1 From the View menu, choose ClassWizard.
ClassWizard appears.
2 Choose the Add Class button.

3 Choose the New command to create an entirely new class and add it to the
ClassWizard database as described in the following procedure.

Choose the From A File command to import an existing class from another project
into the ClassWizard database. For more information on importing a class, see
“Importing a Class” on page 231.

Choose the From An OLE TypeLib command to select elements from an OLE
Type library, wrap them in an MFC C++ class, import the resulting class into a
project, and add the class ClassWizard database. For more information on this
command, see “Importing the Elements of an OLE Type Library” on page 233.

227

Visual C++ User's Guide

228

» To create a new class that does not require a resource ID
1 From ClassWizard, choose the Add Class menu button.
2 Choose the New command.

The Create New Class dialog box appears.
3 Type the name of your new class in the Name text box.

4 From the Base Class combo box, select a base class from which to derive your
current class (see Table 14.1, “Types of MFC Classes Available From
ClassWizard” on page 224).

5 Choose the Change button if you want to see and/or change the default names of
the header (.H) and implementation (.CPP) files where the class is to be defined.

The Change Files dialog box appears.

6 Accept the default file names by choosing the OK button or use the Header File
and Implementation File text boxes to change them. By default, ClassWizard
assigns the same name to .H and .CPP files.

As this class does not require a resource ID, the Dialog ID drop-down list is not
active.

7 From the OLE Automation group box, select one of the following options:
¢ Select None for no OLE Automation.

¢ Select Automation if you want to expose the capabilities of this class through
OLE Automation.

If you select this option, the newly created class will be available as a
programmable object by automation client applications, such as Microsoft
Visual Basic™ or Microsoft Excel. This option is available only for some
classes.

e Select Createable By Type ID if you want to allow other appllcatlons to create
objects of this class by using OLE Automation.

With this option, automation clients can directly create an OLE Automation
object. The type ID in the text box is used by the client application to specify
the object to be created; it is systemwide and must be unique. This option is
available only for some classes.

Note Use ClassWizard's OLE Automation tab to add OLE Automation methods and
properties to an existing class. These methods and properties define a dispatch interface
that OLE Automation clients can use.

8 Select the Add To Component Gallery option to add this class to the Component
Gallery. For more information on the Component Gallery, see Chapter 15, “Using
Component Gallery.”

Chapter 14 Working With Classes

9 Choose the Create button to create the class in the files you specified.

The name of your new class is displayed in the Class Name drop-down list of the
ClassWizard dialog box.

If you specify filenames that don’t yet exist, ClassWizard creates the new files and
adds them to your project. It adds skeletal information on the new class to both the
header and implementation files.

10 Choose OK.
For information about creating database classes (CRecordView, CRecordset) and
OLE classes, see the article “ClassWizard” in Programming with MFC.

See Also Classes Offered by ClassWizard, Adding a Class, Creating a Class That
Requires a Resource ID, Importing a Class, Importing the Elements of an OLE Type
Library, Selecting an Existing Class, Creating a Reusable Control Class

Creating a Class That Requires a Resource ID

For classes that require a resource ID (classes derived from CDaoRecordView,
CDialog, CFormView, CPropertyPage, or CRecordView), you should first use the
dialog editor to create the resource and its ID and then use ClassWizard to create the
associated class. This is true for for the following reasons:

e Most importantly, if you plan to add your new resource class to Component
Gallery, you must do so from the Create New Class dialog box at the time the class
is created. The resource must already exist or it will not be added into Component
Gallery along with the new class. You cannot retroactively add the resource into
Component Gallery. For more information on Component Gallery, see Chapter 15,
“Using Component Gallery.”

e If you first create the class and then the resource, you must perform more steps
and your work flow will be less efficient.

The following procedure describes how to create classes that require a resource ID.

» To create a new class and bind it to an existing resource

1 Use the dialog, menu, toolbar, or accelerator editor to create a resource. For
information on using these editors, see Using the Resource Editors.

2 Save the resource and ensure that the editor has the focus.
3 From the View menu, choose ClassWizard. v
ClassWizard appears with the Adding A Class dialog box in front of it.

4 Choose Create A New Class to create an entirely new class and add it to the
ClassWizard database.

For information on importing a class, see”’Importing a Class” on page 231. For
information on selecting an existing class, see “Selecting an Existing Class” on
page 232.

229

Visual C++ User's Guide

5 Choose OK.
The Create New Class dialog box appears.
6 In the Name text box, type the name of your new class.

7 From the Base Class combo box, select a base class from which to derive your
current class (see Table 14.1, “Types of MFC Classes Available From
ClassWizard,” on page 224).

8 Choose the Change button if you want to see and/or change the default names of
the header (.H) and implementation (.CPP) files where the class is to be defined.

The Change Files dialog box appears.

9 Accept the default file names by choosing the OK button or use the Header File
text box and Implementation File text box to change them. By default,
ClassWizard assigns the same name to .H and .CPP files.

10 If the resource for which you are creating a class is a dialog box, choose the new
resource’s ID from the Dialog ID combo box. It may already be selected.

11 From the OLE Automation group box, select one of the following options:
¢ Select None for no OLE Automation.

¢ Select Automation if you want to expose the capabilities of this class through
OLE Automation. ‘

If you select this option, the newly created class will be available as a
programmable object by automation client applications, such as Microsoft
Visual Basic™ or Microsoft Excel. This option is available only for some
classes. :

e Select Createable By Type ID if you want to allow other applications to create
objects of this class by using OLE Automation.

With this option, automation clients can directly create an OLE Automation
object. The type ID in the text box is used by the client application to specify
the object to be created; it is systemwide and must be unique. This option is
available only for some classes.

Note Use ClassWizard’s OLE Automation tab to add OLE Automation methods and
properties to an existing class. These methods and properties define a dispatch interface
that OLE Automation clients can use.

12 Select the Add To Component Gallery check box to add this class to the
Component Gallery. For more information on the Component Gallery, see
Chapter 15, “Using Component Gallery.”

230

Chapter 14 Working With Classes

13 Choose the Create button to create the class in the files you specified.

The name of your new class is displayed in the Class Name drop-down list of the
ClassWizard dialog box.

If you specify filenames that don’t yet exist, ClassWizard creates the new files and
adds them to your project. It adds skeletal information on the new class to both the
header and implementation files.

14 Choose OK.

For information about creating database classes (CRecordView, CRecordset) and
OLE classes, see the article “ClassWizard” in Programming with MFC.

See Also Classes Offered by ClassWizard, Adding a Class, Creating a Class That
Does Not Require a Resource ID, Using Component Gallery, Using the Resource
Editors, Importing a Class, Importing the Elements of an OLE Type Library,
Selecting an Existing Class, Creating a Reusable Control Class

Importing a Class

If you add a message-handling class to your current project by copying code from
another project, you can update ClassWizard so that it recognizes the new class.

Note If the new code you copy contains more than two or three new message-handling
classes, you can save time by completely rebuilding the ClassWizard file rather than importing
each new class individually. For more information, see “Rebuilding the ClassWizard (.CLW)
File” on page 252.

If the code you are importing does not already have ClassWizard comments in it,
manually add the special-format comments ClassWizard uses to locate message-map
entries. For information on the ClassWizard special-format comments, see Technical
Note 6, available under MFC in Books Online.
» To import a class from another project
1 From the View menu, choose ClassWizard.
ClassWizard appears.

2 From any of ClassWizard’s tabs, choose the Add Class button and select the From
A File command. :

The Import Class Information dialog box appears.

231

7isual C++ User's Guide

3 Type the name of the class to import and the name of the header and
implementation files where the class source code can be found. You can also use
the Browse buttons to locate the files.

By default, the header file and the implementation file have the same name as the
class file.

4 Choose OK to add the new class to the ClassWizard file.

See Also Classes Offered by ClassWizard, Adding a Class, Creating a Class That
Does Not Require a Resource ID, Creating a Class That Requires a Resource ID,
Rebuilding the ClassWizard (.CLW) File, Importing the Elements of an OLE Type
Library, Selecting an Existing Class, Creating a Reusable Control Class

Selecting an Existing Class

Use the Select Class dialog box to associate a new dialog box, menu, toolbar, or
accelerator resource with an existing class. You will use this dialog box if you created
a class before you created the resource that the class should be associated with. The
association will cause ClassWizard to make the resource command IDs available for

. mapping when the class is selected in the ClassWizard Message Maps tab or in
WizardBar.

Note Your can work more efficiently if you first create a resource and then use ClassWizard to
associate a class with the resource. ‘

» To select an existing class from the project

1 Use the dialog, menu, toolbar, or accelerator editor to create a resource. For
information on using these editors, see Using the Resource Editors in Chapter 5,
“Working with Resources.”

2 Save the resource and ensure that the editor has the focus.
3 From the View menu, choose ClassWizard.
The Adding A Class dialog box appears.
4 Select the Select An Existing Class option.
5 Choose OK.
The Select Class dialog box appears.
6 From the Class Name list, select an existing class.
7 Choose Select.

A message box asks if you want to subsitute your dialog box’s resource ID for the
class’s current resource ID.

Chapter 14 Working With Classes

. 8 Choose Yes.
ClassWizard reappears.
9 Choose OK.
ClassWizard associates the user-interface component with the specified class.
See Also Classes Offered by ClassWizard, Using the Resource Editors, Adding a
Class, Creating a Class That Does Not Require a Resource ID, Creating a Class That

Requires a Resource ID, Importing a Class, Importing the Elements of an OLE Type
Library, Creating a Reusable Control Class

Importing the Elements of an OLE Type
Library

You can use ClassWizard to wrap the elements of an OLE type library in an MFC
C++ class and add the new class to a project.
» To import the elements of an OLE type library
1 From the View menu, choose ClassWizard.
ClassWizard appears.

2 From any of ClassWizard’s tabs, choose the Add Class button, and select the From
An OLE TypeLib command.

The Import From OLE TypeLib dialog box appears.
3 Use the File Name, Drives, and Directories controls to select an OLE type library.
4 Choose OK.

The Confirm Classes dialog box appears. This dialog box contains a list of classes
that ClassWizard can create from information in the type library. The class names
are generated by ClassWizard.

5 Use the Name text box to rename the class that is currently selected from the list.

6 Use the Header File and Implementation File text boxes to rename the .H and
.CPP files, if you choose to. Also, you can use the Browse buttons to rename the
files or cause the files to be generated in a different directory.

All classes selected from the class list are added to these two files.
7 Choose OK.
ClassWizard generates the specified class.
See Also Classes Offered by ClassWizard, Adding a Class, Creating a Class That

Does Not Require a Resource ID, Creating a Class That Requires a Resource ID,
Importing a Class, Selecting an Existing Class, Creating a Reusable Control Class

233

V1sual C++ User's Guide

Mapping Messages to Functions

Both ClassWizard and WizardBar let you browse the messages associated with a
user-interface object in your application and quickly define message-handling
functions for them. Both tools automatically update the message-dispatch table, or
message map, and your class header file when you use them to define message-
handling functions.

Table 14.2 shows the types of objects you work with in ClassWizard and the types of
messages associated with them.

Table 14.2 User-Iinterface Objects and Associated Messages

Object ID v Messages
Class name, representing the containing Windows messages appropriate to a CWnd-
window (see Table 14.1) derived class: a dialog box, window, child

window, MDI child window, or topmost
frame window

Menu or accelerator identifier COMMAND message (executes the program
function)
UPDATE_COMMAND_UI message
(dynamically updates the menu item)

Control identifier Control notification messages for the selected
control type

See Also Classes Offered by ClassWizard, Creating a Reusable Control Class,
Adding a Message Handler, Shortcut for Defining Message Handlers for Dialog
Buttons, Shortcut for Defining Member Variables for Dialog Controls, Deleting a
Message Handler, Editing a Message Handler, Overriding a Virtual Function

Adding a Message Handler

34

After creating a class with ClassWizard, or importing an existing class, you can use
either ClassWizard or WizardBar to browse the messages or control notifications
associated with each obJect and to create handler routines (member functions) as
appropriate.
» To define a message handler with ClassWizard
1 From the View menu, choose ClassWizard.
ClassWizard appears and displays information about the currently selected class or
ihie class you last edited with ClassWizard.

2 Select the Message Maps tab.

>

((Q’
B

Chapter 14 Working With Classes

3 From the Class Name drop-down list box, select the class name of the user-
interface component (such as a menu, accelerator, or dialog resource) you want to
work with.

ClassWizard displays informatiqh about the user-interface object that is currently
selected.

4 In the Object IDs box, select the name of the user-interface object for which you
want to define a message handler.

5 In the Messages box, select the message for which you want to define a handler.
Choose Add Function (or double-click the message name).

A message with a handler already defined is displayed in bold.

Note The messages you see in the Messages box are those most appropriate to your
class. If your class is not associated with the menu resource that contains the command
that you want to handle, set the focus on the menu or accelerator resource, open
ClassWizard, and then use the Class Name drop-down list to switch to the class from which
you want the message handled.

In addition, you can change the set of messages you handle by selecting the Class Info tab
and selecting a new set of messages in the Message Filter box. For information on
handling custom messages, see Technical Note 6, available under MFC in Books Online.

Tip Selecting a message displays a brief description of it at the bottom of the MFC
ClassWizard dialog box. You can get a more complete description of the message by
pressing the F1 KEY.

For messages that do not already have a predefined name for the handler function,
the Add Member Function dialog box appears.

6 If the Add Member Function dialog box appears, type a name for the member
function and press ENTER.

From the Add Member Function dialog box, press ENTER to accept the proposed
name.

Either action returns you to the ClassWizard Message Maps tab.

The message name is displayed in bold to show that a message handler is defined.
The name of the new message hander appears in the Member Functions box.

7 At this point you have several options. You can:

e Choose Cancel to avoid updating your source code with the selected member
functions. Note that ClassWizard does not remove any functions or code that it
has already added.

¢ Add more message handlers.

235

Visual C++ User's Guide

¢ Choose OK to automatically update your source code with selected member
functions and close ClassWizard. You can return to ClassWizard any time
during the development process.

e Choose Edit Code to jump to the empty function body just created by
ClassWizard and begin defining the function’s behavior.

‘When you choose OK or Edit Code, ClassWizard updates your source code as
follows:

e A function declaration is inserted into the header file.

¢ A complete, correct function definition with a skeletal implementation is
inserted into the implementation file.

e The class’s message map is updated to include the new message-handling
function.

» To define a message handler with WizardBar

1 Use ClassView to navigate to the implementation (.CPP) file in which you want
the new message handler placed. For information on using ClassView, see “Using
ClassView” in Chapter 2, “Working with Projects.”

2 In the WizardBar Object List, select the name of the user-interface object for
which you want to define a message handler. Table 14.3, “User-Interface Objects
and Associated Messages” shows the types of classes that will appear in the Object
List and the messages appropriate to each type.

The WizardBar Messages List contains the messages aésociated with the selected
user-interface object. Messages that are bold already have handlers.

3 In the Messages List, click the message for which you want to define a handler.

4 1f the user-interface object you selected in step 1 was a virtual member function, a
message box informs you that the message is not handled and asks if you want to
add a handler. Choose Yes.

If the user-interface object that you selected in step 1 was a message, such as
COMMAND or UPDATE_COMMAND, the Add Member Function dialog box
appears.Type a name for the member function and press ENTER.

Press ENTER to accept the default name.
In all of these three cases,WizardBar updates your source code as follows:
e A function declaration is inserted into the header file.

e A complete, correct function definition with a skeletal implementation is
inserted into the implementation file.

e The class’s message map is updated to include the new message-handling
function.

Chapter 14 Working With Classes

WizardBar then moves the text-editor’s insertion point to the body of the function.

Note The messages you see in the Members list are those most appropriate to your class.
If your class is a dialog class, form view, or record view, then the messages will normally
include window messages but not menu commands. To list menu commands as well as
window messages, set the focus on a menu or accelerator resource, open ClassWizard,
and then use the Class Name drop-down list to switch to the class you want to use.

In addition, you can change the set of messages you handle by selecting ClassWizard’s
Class Info tab and selecting a new set of messages in the Message Filter box. For
information on handling custom messages, see Technical Note 6, available under MFC in
Books Online.

See Also Mapping Messages to Functions, Creating a Reusable Control Class,
Shortcut for Defining Message Handlers for Dialog Buttons, Shortcut for Defining
Member Variables for Dialog Controls, Deleting a Message Handler, Editing a
Message Handler, Overriding a Virtual Function

Shortcut for Defining Message Handlers for Dialog
Buttons

To define a message handler for a dialog box button, you can use the following
convenient shortcut to bypass some intermediate steps.
» To define a message handler for a dialog box button

1 In the dialog editor, select a button.

2 While holding down the CTRL key, double-click the button.

ClassWizard automatically creates a message handler in the class associated with
the dialog box. The message handler is named according to the control ID of the
dialog box button. Finally, the insertion point moves to the newly created function
in your source code.

See Also Mapping Messages to Functions, Creating a Reusable Control Class,
Adding a Message Handler, Shortcut for Defining Member Variables for Dialog
Controls, Deleting a Message Handler, Editing a Message Handler, Overriding a
Virtual Function

Shortcut for Defining Member Variables for Dialog
Controls

To define a member variable for a dialog box control, you can use the following
shortcut to bypass explicitly invoking ClassWizard from the dialog editor.

237

Visual C++ User's Guide

» To define a member variable for a dialog box control
1 In the dialog editor, select a control.
2 While holding down the CTRL key, double-click the dialog box control.
The Add Member Variable dialog box appears.

3 Type the appropriate information in the Add Member Variable dialog box. For
more information, see “Defining Member Variables” on page 246.

4 Choose OK.

ClassWizard returns you to the dialog editor.

Y0

g M Tip Tojump from a dialog box button to its existing handler, hold down the CTRL key while
s double-clicking the button.

See Also Mapping Messages to Functions, Creating a Reusable Control Class,
Adding a Message Handler, Shortcut for Defining Message Handlers for Dialog
Buttons, Deleting a Message Handler, Editing a Message Handler, Overriding a
“Virtual Function

Deleting a Message Handler

Once you have defined a message handler with ClassWizard or WizardBar, you can
use either tool to delete it. However, you must remove the function definition, as well
as any references to the function, from the implementation file. Neither ClassWizard
nor WizardBar make changes to your implementation code—only to the message and
data maps.
» To delete a message-handling function with ClassWizard

1 In the ClassWizard dialog box, select the Message Maps tab.

2 In the Class Name box, select the class containing the message-handling function
you want to delete.

3 In the Member Functions box, select the name of the member function to delete.

4 Choose Edit Code to open the implementation file containing the member
function.

5 Comment out or delete the function header and function body.

6 Return to ClassWizard and choose Delete Function. This deletes the member
function entries from the message map for that class in both the header and
implementation files. : '

» To delete a message-handling function with WizardBar

1 Use ClassView to navigate to the implementation (.CPP) file that contains the
message-handling function. For information on using ClassView, see “Using
ClassView” in Chapter 2, “Working with Projects.”

238

Chapter 14 Working With Classes

2 From the Object IDs list, select the name of the user-interface object for which you
want to delete the associated message-handling function.

3 From the Messages List, select the name of the message that has the handler you
want to delete. Messages with handlers are bold.

VVlzardBar moves the insertion point to the member function.
4 Choose the Delete button, to the right of the Members list. -

WizardBar displays a message box informing you that deleting the handler will
require manually removing the implementation code. If you choose Yes,
WizardBar deletes the member function entries from the message map for that
class in both the header and implementation files. You must remove the handler’s
function body.

See Also Mapping Messages to Functions, Creating a Reusable Control Class,
Adding a Message Handler, Shortcut for Defining Message Handlers for Dialog
Buttons, Shortcut for Defining Member Variables for Dialog Controls, Editing a
Message Handler, Overriding a Virtual Function

Editing a Message Handler

Once you have defined a procedure with ClassWizard or WizardBar, you can use
either tool to jump to the member function’s definition and begin to add or modify
code.
» To jump to a member function definition with ClassWizard

1 In the ClassWizard dialog box, select the Message Maps tab.

2 In the Class Name box, select the class containing the message-handling function
you want to edit.

3 In the Member Functions box, select the function you want to edit.
4 Choose Edit Code. |

—or—

Double-click the function name.

The insertion point moves to the function.

» To jump to a member function definition with WizardBar

1 In the Object IDs list, select the class name or the user-interface ID for which you
want to edit an associated function.

239

Visual C++ User's Guide

2 In the Messages list, select the virtual function you want to edit or the message
that has a handler you want to edit. Virtual functions and messages with handlers
are bold.

The insertion point moves to the function.

See Also Mapping Messages to Functions, Creating a Reusable Control Class,
Adding a Message Handler, Shortcut for Defining Message Handlers for Dialog
Buttons, Shortcut for Defining Member Variables for Dialog Controls, Deleting a
Message Handler, Overriding a Virtual Function '

Overriding a Virtual Function
Both ClassWizard and WizardBar can override virtual functions defined in a base
class. The mechanism is similar to creating message handlers for Windows messages.
» To override a virtual function with ClassWizard
1 From the View menu, choose ClassWizard.
ClassWizard appears.

2 On the Message Maps tab, select the name of the class in which you want to
override a virtual function.

3 In the Object IDs box, select the class name again.

The Object IDs box displays a list of virtual functions you can override and a list
of Windows messages. The virtuals come before the messages and appear in
mixed case.

4 In the Messages box, select the name of the virtual function you want to override.
5 Choose Add Function.

The function is created and its name displayed in the Member Functions box. The
names of virtual overrides are preceded by a gray glyph containing the letter “V”
(handlers have a “W™).

6 Choose Edit Code to jump to the Windows message code.

» To override a virtual function with WizardBar .

1 In the Object IDs list, select the name of the class contalnmg the virtual function
you want to override.

The Messages list contains the virtual functions and the messages associated with
the class that you’ve selected. The virtuals come before the messages and appear
in mixed case. Virtual function names that are bold are already overridden.

2 In the Messages list, click the virtual function you want to override.

A message box appears to inform you that the virtual function is not handled and
asks if you want to add a handler.

240

Chapter 14 Working With Classes

3 Choose the Yes button.
WizardBar updates your source code as follows:
e A member function declaration is inserted into the class’s header file.

e A complete, correct function definition with a skeletal implementation is
inserted into the class’s implementation file.

WizardBar then moves the text-editor’s insertion point to the body of the function.

See Also Mapping Messages to Functions, Creating a Reusable Control Class,
Adding a Message Handler, Shortcut for Defining Message Handlers for Dialog
Buttons, Shortcut for Defining Member Variables for Dialog Controls, Deleting a
Message Handler, Editing a Message Handler "

Creating a Reusable Control Class

With ClassWizard you can build reusable control classes that are derived from any of
the following MFC control classes:

CAnimateCtrl CListBox CStatic
CButton CListCtrl CTabCtrl
CComboBox . CProgressCtrl CTreeCtrl
CEdit CSliderCtrl

CHotKeyCtrl CSpinButtonCtrl

You can define handlers for the messages received by these controls in the same way
ihai you would for any other type of window. You can also define reflecied message
handlers that allow your class to handle its own messages before the message is
received by the parent.

With this functionality you could, for example, create a list box that will redraw itself
rather than relying on the parent window to do so (owner drawn). For more
information on reflected messages, seeMFC: OLE and Other Enhancements in MFC
Version 4.0 in Programming with MFC.

You can develop a reusable class in your current project. To create an OLE control
with the same functionality, you would have to create a project for the OLE control.
The following procedure describes how to create a new MFC control class.
» To create a new MFC control class
1 From the View menu, choose ClassWizard.
ClassWizard appears.

When you finish your new class, it will be added to the project selected in the
Project drop-down list box.

2 Choose the Add Class button.

24

Visual C++ User's Guide

242

3 Choose the New command. »
The Create New Class dialog box appears.

4 In the Name text box, type the name of your new class.

5 From the Base Class combo box, select one of the MFC control classes as a base

class from which to derive your class. An MFC control is one that you can add to a
dialog box.

6 Select the Add To Component Gallery option to add this class to the Component
Gallery. For more information on Component Gallery, see Chapter 15, “Using
Component Gallery.”

7 Choose the Create button to create the class in the files specified in the File control
group. .
ClassWizard reappears. The name of your new class is displayed in the Class
Name drop-down list.

8 Choose OK.

If you chose to add your new class to Component Gallery, you can now add it to
other projects. You can also use ClassWizard to create variables that are based on
your new class. Before doing either, you will probably want to add some message
handlers to your new class. The following procedure explains how.

For more information on adding a new class, see “Adding a Class” on page 226.

See Also Defining a Message Handler for a Reflected Message, Declaring a Variable
Based on Your New Reusable Class, Mapping Messages to Functions, Adding a
Message Handler, Shortcut for Defining Message Handlers for Dialog Buttons,
Shortcut for Defining Member Variables for Dialog Controls, Deleting a Message
Handler, Editing a Message Handler, Overriding a Virtual Function

Defining a Message Handler for a Reflected Message

Once you have created your new class derived from an MFC control class, you can
use either ClassWizard or WizardBar to define message handlers for it. Thus, your
control can handle its own messages. You can use the MFC CWnd::SendMessage
function to send messages from your control to a parent window.

» To define a message handler for a reflected message with ClassWizard
1 From ClassWizard, select the Message Maps tab.
2 From the Class Name drop-down list box, select the name of your reusable class.
3 In the Object IDs box, select the name of your 1‘eusa;ole class.
4 In the Messages box, select the message for which you want to define a handler.
Your class’s reflected messages are marked with an equal sign (=).

A message with a handler already defined is displayed in bold.

Chapter 14 Working With Classes

Q Tip Selecting a message displays a brief description of it at the bottom of the MFC
A ClassWizard dialog box. You can get a more complete description of the message by
pressing the F1 KEY.

5 Choose Add Function (or double-click the message name).

For messages that do not already have a predefined name for the handler function,
the Add Member Function dialog box appears.

6 Choose OK to accept the proposed name.

ClassWizard reappears. The message name is displayed in bold to show that a
message handler is defined. The name of the new message hander appears in the
Member Functions box.

7 At this point you have several options. You can:

e Choose Cancel to avoid updating your source code with the selected member
functions. Note that ClassWizard does not remove any functions or code that it
has already added.

¢ Add more message handlers.

¢ Choose OK to automatically update your source code with selected member
functions and close ClassWizard. You can return to ClassWizard any time
during the development process.

e Choose Edit Code to jump to the empty function body just created by
ClassWizard and begin defining the function’s behavior.

When you choose OK or Edit Code, ClassWizard updates vour source code as
follows:

e A function declaration is inserted into the header file.

¢ A complete, correct function definition with a skeletal implementation is
inserted into the implementation file.

¢ The class’s message map is updated to include the new message-handling
function.

» To define a message handler for a reflected message with WizardBar

1 Use ClassView to navigate to your reusable class’s implementation (.CPP) file. For
information on using ClassView, see “Using ClassView” in Chapter 2, “Working
with Projects.”

2 In the WizardBar Object List, select the name of your reusable class.

The WizardBar Messages List contains the messages associated with the selected
user-interface object. Messages that are bold already have handlers.

3 In the Messages List, click the message for which you want to define a handler.
Your class’s reflected messages are marked with an equal sign (=).

For messages that do not already have a predefined name for the handler function,
the Add Member Function dialog box appears.

243

Visual C++ User's Guide

4 Choose OK to accept the proposéd name.
WizardBar updates your source code as follows:
¢ A function declaration is inserted into the header file.

¢ A complete, correct function definition with a skeletal implementation is
inserted into the implementation file.

o The class’s message map is updated to include the new message-handling
function.

WizardBar then moves the text-editor’s insertion point to the body of the function.

See Also Creating a Reusable Control Class, Declaring a Variable Based on Your -
New Reusable Class, Mapping Messages to Functions, Adding a Message Handler;,
Shortcut for Defining Message Handlers for Dialog Buttons, Shortcut for Defining
Member Variables for Dialog Controls, Deleting a Message Handler, Ed1t1ng a
Message Handler, Overriding a Virtual Function

Declaring a Variable Based on Your New Reusable Class

Once you have created a reusable control, you can use ClassWizard to declare a
variable based on it. To provide a context that ClassWizard can use to place the new
variable, you must open the dialog editor and edit the dialog box in which you want
to use your reusable control. Moreover, the dialog box must already have a class
associated with it. For information on using the dialog editor, see Chapter 6, “Using
the Dialog Editor.” For information on using ClassWizard to add a class, see “Adding
a Class” on page 226.

» To declare a variable based on your reusable class

1 While editing the dialog box, drag a control of the same type as your new control
from the Controls toolbar onto the dialog box.

2 Place the mouse cursor over the dropped control.
3 While holding down the CTRL key, double-click the control.
The Add Member Variable dialog box appears.
4 In the Member Variables Name text box, type a name.
5 From the Categbry drop-down list, select Control.
6 From the Variable Type drop-down list; select the name of your reusable control.
7 Choose OK. '

’a hand
A message box reminds you to include (#include) your reusable control’s header

(.H) file into the project so that the compiler has access to its symbols.
ClassWizard has no safe way of guaranteemg that your control class is in the scope
of the dialog class.

Chapter 14 Working With Classes

8 Choose OK, and remember to.include your control’s .H file.

ClassWizard generates dialog data exchange (DDX) code to attach your control
class to the dialog box.

See Also Creating a Reusable Control Class, Defining a Message Handler for a
Reflected Message, Mapping Messages to Functions, Adding a Message Handler,
Shortcut for Defining Message Handlers for Dialog Buttons, Shortcut for Defining
Member Variables for Dialog Controls, Deleting a Message Handler, Editing a
Message Handler, Overriding a Virtual Function

Working with Dialog Box Data

ClassWizard offers an easy way to take advantage of the dialog data éxchange (DDX)
and dialog data validation (DDV) capabilities of MFC.

To use DDX, you define member variables in the dialog box, form view, or record
view class, and associate each of them with a dialog box control. The framework
transfers any initial values to the controls when the dialog box is displayed. When
you choose OK, it updates the variables with the data that you entered.

With DDV, dialog box information entered by the user is validated automatically. You
can set the validation boundaries: the maximum length for string values in an edit-
box control or the minimum or maximum numeric values when you expect a number
to be entered. You can also use ClassWizard to connect dialog box controls to your
own custom data-validation routines.,

See Also Dialog Data Exchange, Defining Member Variables, Table 14.4 DDX
Variable Types Defined with the Control Property, Table 14.3 DDX Variable Types
for the Value Property, Setting Initial Values for Member Variables, Dialog Data
Validation

Dialog Data Exchange

ClassWizard lets you create variables that use the framework’s automatic dialog data
exchange capabilities. When you want to set an initial value for or gather data from a
dialog box control, use ClassWizard to define a data member in the dialog box class.
The framework then transfers the initial value of the variable to the dialog box when
it is created and updates the associated member variable when the dialog box is
dismissed. .

Note You can also use CWnd::UpdateData to transfer data back and forth between controls
and member variables while a dialog box is open.

See Also Working with Dialog Box Data, Defining Member Variables, Table 14.4
DDX Variable Types Defined with the Control Property, Table 14.3 DDX Variable
Types for the Value Property, Setting Initial Values for Member Variables, Dialog
Data Validation

245

Visual C++ User's Guide

246

Defining Member Variables

You can use ClassWizard to define member variables for dialog box controls.

» To define data members for dialog data exchange

1 Create your dialog box, place in it the controls you want, and set the appropriate
control styles in the Properties window. Then use ClassWizard to define a new
dialog box class. For more information on adding a class, see “Adding a Class” on
page 226.

2 In the MFC ClassWizard dialog box, select the Member Variables tab.

Note For arecordset class, the Update Columns button updates the current static list with
the current database list. Members assigned to a deleted column may be deleted.

The Bind All button creates an initial recordset with a default member name for every
column in the table.

3 In the Control IDs box, select the control for which you want to set up dialog data
exchange (DDX), and choose Add Variable.

The Add Member Variable dialog box appears.

4 In the Member Variable Name box, type the name of the new variable.
ClassWizard provides the m_ prefix to identify it as a member variable.

5 In the Category box, select whether this variable is a Value variable or a Control
variable. ’

For standard Windows controls, choose Value to create a variable that contains the
control’s text or status as typed by the user. The framework automatically converts
the control’s data to the data type selected in the Variable Type box (see Table
14.4, “DDX Variable Types Defined with the Control Property”).

You can also choose Control in the Category drop-down list to create a Control
variable that gives you access to the control itself (see Table 14.4, “DDX Variable
Types Defined with the Control Property”).

6 In the Variable Type box, choose from a list of variable types appropriate to the
control (see Table 14.3, “DDX Variable Types for the Value Property” and Table
14.4, “DDX Variable Types Defined with the Control Property”).

7 Choose OK.

The new member variable is added to the Control IDs list.

Chapter 14 Working With Classes

Once you’ve defined a DDX Value variable for a standard Windows control, the
framework automatically initializes and updates the variable for you.

Table 14.4 shows the type of DDX Value variables ClassWizard initially provides. T
create additional variable types, see Technical Note 26, available under MFC in

Books Online.
Table 14.3 DDX Variable Types for the Value Property
Control Variable type
Edit box CString, int, UINT, long, DWORD, float, double,
short, BOOL, COleDateTime, COleCurrency
Normal check box BOOL
Three-state check box int
Radio button (first in group) int (
Nonsorted list box CString, int
Drop-down combo box CString, int

All other list box and combo box CString
types

The following additional notes apply to using DDX Value variables:

Possible values for three-state check boxes are 0 (off), 1 (on), and 2
(indeterminate).

Values for a group of radio buttons range from 0 for the first button in the group to
n—1 for a group with 7 buttons. A value of —1 indicates that no buttons are
selected.

When you are using a group of check boxes or radio buttons with a DDX variable,
set the Auto property from each control’s Property window.

Set the Group property for the first radio button in a group, and make sure all the
other radio buttons immediately follow the first button in the tab order.

To use an integer value with a combo box or list box, turn off the Sort property
found on each control’s Property window Styles tab.

You can now use ClassWizard to bind a member variable to the value of a scroll-bar
control, using the Value property and the int data type, as well as to a CScrollBar
object, using the Control property. The Value property binds the value of a scroll-bar
control (the position of the scroll box, or “thumb”). ClassWizard enables DDX for a
scroll bar by calling DDX_Scroll in your DoDataExchange override.

247

Visual C++ User's Guide
If your DoDataExchange function contains a call to DDX Scroll, you must
additionally set the scroll-bar range before that call, as shown in the following code:

void CMyD1g::DoDataExchange(CDataExchange* pDX)
{

CScrol1Bar* pScrollBar = (CScrollBar*)GetDlgItem(IDC_SCROLLBAR1);
pScroll1Bar->SetScrollRange(0, 100); :
CDialog::DoDataExchange(pDX);

//{{AFX_DATA_MAP(CMyD1g)

DDX_Scrol1(pDX, IDC_SCROLLBAR1, m_nScroll);

//3YAFX_DATA_MAP

}

Table 14.4 shows the type of DDX Control variables you can define with
ClassWizard.

Table 14.4 DDX Variable Types Defined with the Control Property
Control Variable type

Edit box CEdit

Check box CButton

Radio button . CButton

Pushbutton CButton

List box CListBox

Combo box or drop- CComboBox

down combo box

Static text CStatic

Scroll bar CScrollBar

See Also Working with Dialog Box Data, Dialog Data Exchange, Setting Initial
Values for Member Variables, Dialog Data Validation -

Setting Initial Values for Member Variables

You can set the initial value of dialog data exchange (DDX) variables by editing the
initialization code that ClassWizard places in the constructor for the dialog box class.
(ClassWizard does not disturb these initialization statements once they are put in
place.) The framework transfers the values to the dialog box when it is created.

248

Chapter 14 Working With Classes -

To see what the user typed once the dialog box is dismissed, access the values of the
DDX variables just as you would any other C++ member variable.

See Also Working with Dialog Box Data, Dialog Data Exchange, Defining Member
Variables, Table 14.4, DDX Variable Types Defined with the Control Property, Table
14.3, DDX Variable Types for the Value Property, Dialog Data Validation

Dialog Data Validation

By default, ClassWizard supports the types of dialog data vahdatlon (DDV) shown in
Table 14:5, but you can add additional types (see Technical Note 26, available under

MEFC in Books Online).

Table 14.5 DDV Variable Types

Variable type " Data validation

CString Maximum length

Numeric (int, UINT, long, Minimum value, maximum value

DWORD, float, double)

You can define the maximum length for a CString DDX variable or the minimum or
maximum values for a numeric DDX variable at the time you create it.

At run time, if the value entered by the user exceeds the range you specify, the
framework automatically displays a message box asking the user to reenter the value.
The validation of DDX variables takes place all at once when the user chooses OK to
accept the entries in the dialog box.

See Also Working with Dialog Box Data, Dialog Data Exchange, Defining Member
Variables, Table 14.4, DDX Variable Types Defined with the Control Property, Table
14.3, DDX Variable Types for the Value Property

Custom Data Exchange and Validation

Although you can write a dialog box class that gathers and validates its own dialog
box data using custom message handlers, you may find that you have routines for
data exchange and validation (containing your own variable types and data formats)
that you want to use repeatedly. You can extend the ClassWizard user interface to
reuse your own DDX and DDV routines. For more information on this subject, see
Technical Note 26, available under MFC in Books Online.

See Also Working with Dialog Box Data, Dialog Data Exchange, Defining Member
Variables, Table 14.4, DDX Variable Types Defined with the Control Property, Table
14.3, DDX Variable Types for the Value Property, Setting Initial Values for Member
Variables

249

Visual C++ .User s Guide

Keeping ClassWizard Updated When
Code Changes

As your program develops, it’s very likely that you’ll need to delete or modify classes,
delete or add resources, or move a class from one source file to another. ClassWizard
will track your code as you make these changes: it asks you for the updated
information when you next edit the affected class.

ClassWizard stores the information about your project’s classes in a file with the file
extension .CLW. To accommodate source files that have changed, ClassWizard
displays the Repair Class Information dialog box whenever it finds that the
information in the .CLW file is out of date.

The Repair Class Information dialog box has two main functions:

e Deleting obsolete classes from the ClassWizard file
e Updating the ClassWizard file with the new name or locatlon of classes that you
have changed or moved

See Also Deleting Classes, Renaming or Moving Classes, Rebuilding the
ClassWizard (.CLW) File

Deleting Classes

To delete a ClassWizard-created class from your project, you can either delete it from
the header (.H) and implementation (.CPP) files in which it coexists with other
classes or delete the .H and .CPP files altogether. In either case, you must update the
information in the ClassWizard (.CLW) file.

» To delete a class

1 Delete all references to the class from its .H and .CPP files or delete the files from
the disk.

2 From the View menu, choose ClassWizard.
If ClassWizard appears, the active project does not contain the deleted class.

3 From ClassWizard’s Project drop-down list, select the project that contains the
deleted class.

4 If ClassWizard asks you to close any files, close ClassWizard, close the files, and
then restart ClassWizard.

A message box informs you that ClassWizard cannot find the deleted class.
5 Choose OK.
ClassWizard displays the Repair Class Information dialog box.

250

Chapter 14 Working With Classes

6 Choose Remove.
The class is deleted from the .CLW file.
ClassWizard appears.

7 Choose OK.

See Also Keeping ClassWizard Updated When Code Changes, Renaming or Moving
Classes, Rebuilding the ClassWizard (.CLW) File

Renaming or Moving Classes

‘When you change the name of a class or move it from one implementation file to
another, you’re prompted to update the information in the ClassWizard (.CLW) file
the next time you start ClassWizard.
» To change the name of a class or move it from one file to another

1 Make the desired changes to your source files.

Note When you change the name of a class, remember to change it everywhere, including
in the special-format comments ClassWizard uses. For example,

//{{AFX_MSG_MAP(01dClass) becomes //{{AFX_MSG_MAP(NewClass)
2 From the View menu, choose ClassWizard.

If ClassWizard appears, the active project does not contain the renamed or moved
class.

3 From ClassWizard’s Project drop-down list, select the project that contains the
renamed or moved class.

4 If ClassWizard asks you to close any files, close ClassWizard, close the files, and
then restart ClassWizard.

ClassWizard displays a message box warning you that the old class could not be
found.

5 Choose OK.
The Repair Class Information dialog box appears.

Supply the new information about the class in the Class Name, Header File, and
Implementation File text boxes. If necessary, use the Browse button to supply the
correct name of the header file or the implementation file.

6 Choose OK to update the .CLW file.

See Also Keeping ClassWizard Updated When Code Changes, Deleting Classes,
Rebuilding the ClassWizard (.CLW) File

251

Visual C++ User's Guide

Rebuilding the ClassWizard (.CLW) File

If you have made numerous changes to your code or have added a large number of
existing user-interface classes to your current project, you may find it convenient to
rebuild the associated ClassWizard (.CLW) file from scratch rather than update it one
class at a time. To do this, delete your project’s .CLW file and use ClassWizard to
generate a new one. The newly-generated .CLW file contains information about all
the classes that have the special-format ClassWizard comments. For information on
the ClassWizard special-format comments, see Technical Note 6, available under
MEFC in Books Online.

» To rebuild the ClassWizard file
1 Delete your project’s .CLW file.
2 From the View menu, choose ClassWizard.

If ClassWizard appears, the project for which you deleted the .CLW file is not the
active project. From ClassWizard’s Project drop-down list, select the project for
- which you want to rebuild the .CLW file.

3 If ClassWizard asks you to close any files, close ClassWizard, close the files, and
then restart ClassWizard. :

A message box asks if you want to rebuild the ClassWizard file from your source
files.

4 Choose Yes.
The Select Source Files dialog box appears.

5 Use the Add and Add All buttons to transfer all of the project’s .H and .CPP files,
and the .RC file from the File Name list to the Files In Project box. Use the
Remove button to remove any files other than .H, .CPP, or .RC from the Files In
Project box.

6 Choose OK.
ClassWizard appears and generates a new .CLW file.
7 Choose OK to close ClassWizard.

See Also Keeping ClassWizard Updated When Code Changes, Deleting Classes,
Renaming or Moving Classes

252

CHAPTER 15

Using Component Gallery

Have you ever wanted an easy way to reuse a new dialog box or dialog box control
you have just created? A way that doesn’t require that you cut and paste across
multiple files or require hit-or-miss checking for name collisions? With Component
Gallery, you can do just that. Component Gallery contains reusable code such as OLE
controls, your own reusable C++ classes with any associated resources, or
components created by a third-party vendor. Third-party-created components can
range from reusable code to useful tools, such as a code analysis tool.

Figure 15.1 Component Gallery

m Giid Contral Key State Microsoft
Control Comm Contral

Microsoft Microsoft PicClip Control
asked Edit Multimedia

Control Control

As you can see in Figure 15.1, Component Gallery uses tabbed panes to organize
components. Each tab is labeled with a category name. You can easily create and/or
add components to Component Gallery. You can also create and name your own
categories and move components from one category to another.

See Also Inserting Components into a Project, Creating Your Own Components,
Sharing Components with Others, Managing Components, Managing Categories

253

Visual C++ User's Guide

Inserting Components into a Project

254

One of the most important uses of Component Gallery is inserting components, such
as OLE controls, into your project. To do this, use the Insert button, found in the
Component Gallery’s main dialog box. Usually, inserting a component adds the
associated header (.H) and implementation (.CPP) files to the currently selected
default project and updates the information in the Project Workspace window.
However, the result of inserting a component depends on the component. Refer to
each component’s documentation to determine its functionality. Each component
shipped with Visual C++ has a help system that you can view by selecting the
component from the main Component Gallery dialog box and pressing the question-
mark button found in the Component Gallery dialog box. In addition, each
component you buy from a third-party vendor will have its own documentation.

» Toinsert components into your project

1 Open the préject workspace to which you want to add a component.

2 From the Build menu, choose Set Default Project, and select a project and one of
its configuration in the Default Project Configuration dialog box.

3 From the Insert menu, choose Component.
Component Gallery appears.

4 1f there is more than one tabbed pane, use the mouse and the CTRL+PAGE UP and
CTRL+PAGE DOWN keys to tabbed select the pane containing the component to
apply. '

5 Use the mouse or the UP, DOWN, LEFT OR RIGHT ARROW Kkeys to move to the
component that you want to apply.

6 Choose the Insert button.

The component makes changes to your project, prompting you for any information
it needs.

For example, if you insert an OLE control into your project, Component Gallery
will:

e Register, if not already registered, the OLE control with the Windows OLE
registration database.

¢ Add the OLE control to the dialog editor’s toolbar of controls.

o Generate a programmatic interface, called an OLE wrapper, which allows the
OLE control to communicate with your program. If, for example, you added an
OLE control that looks like a measuring gauge to a dialog box, the associated
wrapper (a header file and an implementation file) would allow you to write
code allowing the gauge to visually represent some program action.

Chapter 15 Using Component Gallery

Note OLE controls are per-project components. You must insert an OLE control into each
project in which you want to use it.

See Also Creating Your Own Components, Adding Components to Component
Gallery, Sharing Components with Others, Managing Components, Managing
Categories

Sharing COmponents with Others

Through Component Gallery, you can share the components that you have created
using the Create New Class dialog box with others. However, the component must be
exported to a file before it can be shared. The resulting file contains a component’s
classes and resources. The file extension is, by convention, .OGX. Use the Export
Component dialog box, accessed from the Custom tab of the Properties dialog box, to
export a component to a file.
» To export a component

1 From the Insert menu, choose Component.

Component Gallery appears.
2 From the tabbed panes, choose the component that you want to distribute.

You can only export components that you have created using the Create New Class
dialog box.

3 Choose the Customize button. ’
The Customize Componeni Gallery dialog box appears.
4 Choose the Properties button.
The Properties dialog box appears.
5 Using the mouse or the LEFT ARROW or RIGHT ARROW keys, select the Custom tab.

If the Export button is grayed out, an export file already exists for the component
and you need not finish the following steps.

6 Choose the Export button.
The Export Component dialog box appears.
7 Select the drive and directory on which to store the exported file.

8 Set the exported component’s file extension, displayed in the File Name box, using
the Save Files As Type list. The recommended file extension is .OGX.

L

Alternatively, you can specify the file extension directly in the File Name box.

255

Visual C++ User's Guide

9 In the File Name box, type a filename.
10 Choose OK. .
The exported component can be shared with others. They need only import it into
their own Component Gallery. ‘ ‘

See Also Inserting Components into a Project, Importing Components, Creating
Your Own Components, Renaming a Component, Moving Components Between
Catego