
MlCROSOFT®
WINDOWS®
COMPATIBLE
32-8it Application

Version 4

The Six-Volume Documentation Collection
for Microsoft Visual C++ Version 4 for Win32®

Volume One - A complete guide to using the
Microsoft Visual c++ integrated development

environment -and command-line tools

Micl'OSott'Press

Visual C++ User's Guide

Microsoft® Visual C++TM

Development System for Windows® 95 and Windows NTTM
Version 4

Microsoft Corporation

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1995 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual C++ programmer's references / Microsoft Corporation.

-- 2nd ed.
p. cm.

Includes index.
v. 1. Microsoft Visual C++ user's ~uide -- v. 2. Programming with

MFC -- v. 3. Microsoft foundation class library reference, part 1 --
v. 4. Microsoft foundation class library reference, part 2 -- v.
5. Microsoft Visual C++ run-time library reference -- v.
6. Microsoft Visual C/C++ language reference.

ISBN 1-55615-915-3 (v. 1). -- ISBN 1-55615-921-8 (v. 2).
1-55615-922-6 (v. 3). -- ISBN 1-55615-923-4 (v. 4). -- ISBN
1-55615-924-2 (v. 5). -- ISBN 1-55615-925-0 (v. 6)

ISBN

1. C++ (Computer program language) 2. Microsoft Visual C++.
I. Microsoft Corporation.
QA76.73.CI53M53 1995
005. 13'3--dc20

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QMQM 0 9 8 7 6 5

95-35604
CIP

Distributed to the book trade in Canada by Macmillan of Canada, a division of
Canada Publishing Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (206) 936-7329.

America Online is a registered trademark of America Online, Inc. Macintosh is a registered trademark of
Apple Computer, Inc. dBASE, dBASE II, dBASE III, dBASE IV, and Paradox are registered trademarks
of Borland International, Inc. Btrieve is a registered trademark of Btrieve Technologies, Inc. CompuServe is
a registered trademark of CompuServe, Inc. GEnie is a trademark of General Electric Corporation. Intel is a
registered trademark of Intel Corporation~ FoxPro, Microsoft, Microsoft Press, MS, MS-DOS, Visual Basic,
Win32, Win32s, Windows, and XENIX are registered trademarks and Visual C++, Visual FoxPro, and
Windows NT are trademarks of Microsoft Corporation in the U.S. and/or other countries. MIPS is a regis­
tered trademark of MIPS Computer Systems, Inc. Motorola is a registered trademark of Motorola, Inc.
ORACLE is a registered trademark of Oracle Corporation. Prodigy is a trademark of Prodigy Services
Company. Unicode is a trademark of Unicode, Inc.

Acquisitions Editor: Eric Stroo
Project Editor: Brenda L. Matteson

Introduction xxxi
Microsoft Developer Studio xxxi

Powerful Wizards xxxii

Reusable Components xxxii

Developer Studio Projects xxxiii
Build Error Correction xxxiii

Integrated Debugger xxxiv

Source Code Browse Window xxxiv

User Preferences xxxv
Extensive Information xxxv

Visual C++ User's Guide xxxvi

Part 1 Development Environment
Chapter 1 Creating Applications Using AppWizard 3
Starting an App Wizard Project 4

Creating an MFC AppWizard EXE Project 5
Choosing Options for Dialog-Based Applications 7

Choosing Database Options 9

Choosing OLE Options 12

Choosing SDI and MDI Application and Project Options 13

Creating an MFC App Wizard DLL Project 17

Creating an MFC Form-Based Application With AppWizard 18

Understanding AppWizard-Created Files 21

Creating a Custom App Wizard 22

Chapter 2 Working with Projects 23
Project Workspaces 25

Elements of Project Workspaces 25

Files Associated with Project Workspaces 26

Contents

iii

Contents

iv

U sing Project Workspaces: Three Basic' Scenarios 26

Top-Level Project 27

Top-Level Project with a Single Subproject 28

Empty Top-Level Project with Multiple Subprojects 30

Managing Project Workspaces 34

Creating a Project Workspace 34

Project Types 36
Platform Types 37

Saving a Project Workspace 38

Closing a Project Workspace 38

Opening an Existing Project Workspace 38

Opening Other File Types 39

Specifying Subprojects in a Project Workspace 41.

Working with Views 42

Using Folders 43
Working with Items 44.

Shortcut Methods for Views 45
Using File View 46

Using Class View 47
Adding Members from Class View 49

Browsing Symbols from Class View 50

Displaying Graphs from Class View 51

Setting Breakpoints in Class View 51

Using Resource View 51

Using InfoView 52

Using Projects 52

Inserting and Deleting Projects 52

Adding and Removing Files from Projects 53

Creating and Deleting Configurations in a Project 55

Updating Dependencies in a Project 57

Specifying Settings for a Project Configuration 58

Selecting the Directories for Output Files 59

Specifying Project Configuration Settings 60

Specifying File Settings 60

Specifying Custom Build Tools 62
Using Precompiled Headers 64

Building a Project Configuration 64

Setting the Default Project Configuration 65

Building the Default Project Configuration 65

Compiling Files 67

Removing Intermediate Files 67

Building Multiple Project Configurations 68

Using External Projects 69

Opening an Existing Makefile 69

Creating an External Project 71

Building a Single File Without a Project Workspace 73

Running a Program 74

Chapter 3 Using the Text Editor 75
File Management 76

Creating Files 76

Opening Files 77

Opening Multiple Files 78

Saving Files 79

Printing Files 80

Moving Around in Source Files 81

Using Virtual Space 82

Matching Group Delimiters 82

Matching Conditional Statements 83

U sing Go To 84

Using Bookmarks 84

The Navigating Commands 87

Finding and Replacing Text 88

Finding Text in a Single File 89

Finding Text in Multiple Files 91

Replacing Text 92

U sing Regular Expressions with Developer Studio 93

U sing Regular Expressions with BRIEF Emulation 95

Using Regular Expressions with Epsilon Emulation 97

Selecting Text 99

Editing with the Text Editor 101

Cutting, Copying, Pasting, and Deleting Text 103

Undoing and Redoing Editing Actions 103

Using Drag-and-Drop 104

Recording and Playing Back Keystrokes 104

Contents

v

Contents

vi

Setting Text Editor Options 105
Setting Editor Emulation 106
Setting Save Preferences 106
Setting and Using the Selection Margin 107

Setting Tabs and Indents 107
Setting the Font Style, Size, and Color 109
Setting Syntax Coloring 111
Setting Syntax Coloring for User-Defined Types 111

Managing Open Windows 113

Chapter 4 Working with Source-Code Control 117
Setting Up Source-Code Control 117

Supported Source-Code Control Functionality 118
Unsupported Source-Control Functionality 118

Putting Files Under Source-Code Control 118
Displaying the Source-Code Control Toolbar 119

Adding a Project to Source-Code Control 119
Adding Individual Files to Source-Code Control 120

Removing Files from Source-Code Control 120
Determining the Status of Files 121

Reading the FileView Pane 121

Examining File Status on Property Pages 122
Examining File Histories. 122

Getting Current Versions of Files 123
Checking Files In and Out 124

Checking Files Out 124
Checking Files In 125

Viewing Your Changes to a File 125
Checking Files In and Removing Your Changes 126
Checking Files In and Merging Others' Changes 126

Checking Files In When Closing the Workspace 127
Maintaining. Makefiles Under Source-Code Control 128

Chapter 5 Working with Resources 129
Using the Resource Editors 129

Viewing Resources 130
Creating a New Resource 131
Using Resource Templates 132

Copying Resources 133
Editing Resources 135

Importing and Exporting Resources 136
Using Property Pages 136

Working with Symbols 137
Changing a Symbol or Symbol Name 138

Changing a Symbol's Numerical Value 138
Managing Symbols with the Resource Symbols Browser 139

Creating New Symbols 140
Changing Unassigned Symbols 140

Opening the Resource Editor for a Given Symbol 141
Symbol N arne Restrictions 141
Symbol Value Restrictions 142

Working With Resource Files 143

Importing Non-Microsoft Developer Studio Resource Script Files 144

Features Supported Only in Microsoft Foundation Class Library Resource
Files 145

U sing Advanced Resource File Techniques 145

Changing the Name of the Symbol Header File 146
Using Shared (Read-Only) or Calculated Symbols 146

Including Resources From Other Files 147

Chapter 6 Using the Dialog Editor 149
Adding and Editing Controls in a Dialog Box 150

Types of Controls 151
Adding Controls 151
Selecting Controls 153
Sizing Individual Controls 154

Formatting the Layout of a Dialog Box 155
Arranging Controls 156

Aligning Controls 157
Using Guides and Margins 159

Aligning Controls on a Guide 160
Disabling the Guides 161

U sing the Layout Grid 161
Editing the Dialog Box 162

Changing the Tab Order 162
Defining Mnemonic Keys 163

Using OLE Controls in a Dialog Box 164
Adding OLE Controls 164

Editing OLE Control Property Pages 164

Contents

vii

Contents

viii

U sing Custom Controls in a Dialog Box 165
Working with User-Defined Controls 165

Creating a Form View Dialog Box 165
Importing a Visual Basic Form 166
Testing a Dialog Box 167·

Chapter 7 Using the Menu Editor 169
Creating Menus or Menu Items 170
Selecting Menus and Menu Items 172
Creating Pop-up Menus 172
Moving and Copying Menus and Menu Items 173
Viewing the Menu Resource as a Pop-up Menu 174
Associating a Menu Item with an Accelerator Key 175
Associating a Menu Item with a Status Bar Prompt 175

Chapter 8 Using the Accelerator Editor 177
Editing an Accelerator Table 178
Setting Accelerator Properties 179
Associating an Accelerator Key with a Menu Item 179

Chapter 9 Using the String Editor 181
Finding a String 182
Adding or Deleting a String 182
Moving a String from One Segment to Another 183
Moving a String from One Resource Script File to Another 183
Changing a String or Its Identifier 184
Adding Formatting or Special Characters to a String 184

Chapter 10 Using the Graphic Editor 185
U sing the Image Editor Window and Tools 186

The Image Editor Window 186
The Graphics Toolbar 186
The Colors Palette 187
The Status Bar. 187
The Image Menu 187

Managing the Graphic Editor Workspace 187
Using Image-Editor Panes 187
Changing the Magnification Factor 188
Displaying and Hiding the Pixel Grid 188

Editing Graphical Resources 189
Setting Bitmap Properties 189
Showing and Hiding the Graphics Toolbar 190
Freehand Drawing and Erasing 191

Selecting and Using a Drawing Tool 191
Drawing Lines and Closed Figures 192

Drawing a Line 192
Drawing a Closed Figure 193

Selecting an Area of the Bitmap 194
Cutting, Copying, Clearing, and Moving 194
Flipping the Selection 196
Creating a Custom Brush 196

Using a Custom Brush 196
Resizing a Bitmap 197

Resizing an Entire Bitmap 197
Working With Colors in the Graphic Editor 198

Selecting Foreground and Background Colors 199
Filling Bounded Areas 199
Picking Up Colors 199
Choosing Opaque and Transparent Backgrounds 200
Inverting Colors in the Current Selection 200

Changing Colors 200
Saving and Loading Colors Palettes 201

Creating and Editing Icons and Cursors 202
Creating a New Icon or Cursor Image 202
Selecting a Display Device 203
Drawing with Screen and Inverse Colors 203
Creating 256 Color Icons and Cursors 204
Setting a Cursor's Hot Spot 205

Chapter 11 Using the Toolbar Editor 207
Creating New Toolbar Resources 208
Converting Bitmaps to Toolbars 208
Creating, Moving and Editing Toolbar Buttons 209

Editing the Property Page of a Toolbar Button 210

Contents

ix

Contents

x

Chapter 12 Using the Binary Data Editor 213
Creating a New Data Resource or Custom Resource 213
Opening a Resource for Binary Editing 214

Editing Binary Data 215

Chapter 13 Using the Version Information Editor 217
Editing.the Version Information 218

Chapter 14 Working With Classes 221
Using Class Wizard 221
Using WizardBar 222
Classes Offered by Class Wizard 224

Adding a Class 226
Creating a Class That Does Not Require a Resource ID 227

Creating a Class That Requires a Resource ID 229
Importing a Class 231
Selecting an Existing Class 232
Importing the Elements of an OLE Type Library 233

Mapping Messages to Functions 234
Adding a Message Handler 234

Shortcut for Defining Message Handlers for Dialog Buttons 237
Shortcut for Defining Member Variables for Dialog Controls 237

Deleting a Message Handler 238
Editing a Message Handler 239
Overriding a Virtual Function 240

Creating a Reusable Control Class 241
Defining a Message Handler for a Reflected Message 242
Declaring a Variable Based on Your New Reusable Class 244

Working with Dialog Box Data 245
Dialog Data Exchange 245

Defining Member Variables 246
Setting Initial Values for Member Variables 248

Dialog Data Validation 249
Custom Data Exchange and Validation 249

Keeping ClassWizard Updated When Code Changes 250
Deleting Classes 250
Renaming or Moving Classes 251

Rebuilding the ClassWizard (.CLW) File 252

Chapter 15 Using Component Gallery 253
Inserting Components into a Project 254
Sharing Components with Others 255

Adding Components to Component Gallery 256
Importing Components· 256

Creating Your Own Components 257
Managing Components 259

Renaming a Component 259

Moving Components Between Categories 260
Deleting a Component from a Category 261
Changing a Component's Icon 262

Providing a Description of a Component to Users 263
Managing Categories - 264

Creating a Category in Which to Store Components 264
Deleting a Category of Components 264

Renaming a Category of Components 265
Rearranging the Order of Existing Categories 266

Chapter 16 Browsing Through Symbols 267
Opening and Closing Browse Files 267
Modifying the Browse Window Display 268
U sing Browse Files 269

Symbol Codes in the Browse Window 270
Disabling and Enabling BSCMAKE 271
Displaying the Symbols in a File 272

Filtering Browse Information for Files 273
Displaying Class Information 274

Displaying the Graph of Classes Derived from a Class 274
Displaying the Base Class Graph for a Class 276

Filtering Browse Information for Classes 277
Displaying Function Information 278

Displaying a Call Graph 278

Displaying a Graph of Calling Functions 279
Finding Definitions and References 280

Displaying a Symbol Definition or Reference 280

Contents

xi

Contents

xii

Chapter 17 Using the Debugger 283
Using the Debugger Interface Components 284

Debugger Menu Items 284

Debugger Windows 284

Pop-up Menus 285

Debugger Dialog Boxes 286

Spreadsheet Fields 286

Dragging and Dropping Debugger Information 287

Controlling Program· Execution 287

Running to a Location 289
Stepping Into Functions 290

Using Step Into with SendMessage and DispatchMessage 291

Stepping Over or Out of Routines 292

Interrupting Your Program 292
Just-in-Time Debugging 293

U sing Breakpoints 293

Quick Methods for Location Breakpoints 294

Quick Methoqs for Data Breakpoints 296

U sing the Breakpoints Dialog Box 297

The Breakpoints List 297

The Location Breakpoints Tab 299

The Data Breakpoints Tab 301

The Messages Breakpoints Tab 304

Conditional Breakpoints 305

Advanced Breakpoint Syntax 306

Viewing and Modifying Variables and Expressions 307
Using DataTips Pop-up Information 307

Using QuickWatch 308

U sing the Watch Window 310

Formatting Watch Variables 312
Using the Variables Window 314

U sing the Call Stack Window 317

Controlling Call Stack Display 318

U sing the Registers Window 318

U sing the Memory Window 319

Using the Disassembly Window 321

Debugging Methods and Strategies 323
Debugging Compiler and Linker Errors 323
How Can I...? 324
Debugging Assertions 327
Debugging Exceptions 331
Debugging Threads 333
Debugging DLLs 334
Debugging Optimized Code 336
Debugging an OLE Application 337
Debugging Remote Applications 338

Setting up the Remote Debug Monitor 338
Connecting the Host and Target Machines 339

. Remote Debugging 340
Using I/O Redirection 341

Chapter 18 Profiling Code 343
Setting Up the Profiler 344
Building Code for Profiling 344
Running the Profiler 345
Types of Profiling 345

Function Profiling 346
Function Timing 346
Function Counting 347
Function Coverage 347

Line Profiling 348
Line Counting 348
Line Coverage 349

Selective Profiling 349
Modifying TOOLS.INI 350
Specifying Functions to Profile 350
Specifying Lines to Profile 350
Choosing Starting Functions for Profiling 351

Other Profiler Features 351
Merging Profiler Output. 351
Running a Custom Batch File 352
Advanced Profiler Settings 352

Profiling Under Win32s 352
Installing the Win32s Profiler 352
Win32s Profiling Procedure 352

Contents

xiii

Contents

xiv

Chapter 19 Using Spy++ 353
Working In Spy++ 353

Starting Spy++ 354
Viewing with Spy++ 354
The Spy++ Toolbar 354
Refreshing the View 355
Changing Fonts 356
Expanding and Collapsing Spy++ Trees 356

The Windows View 357
The Window Finder Tool 357
Searching for a Window 358
Opening Window Properties 359
Window Properties 359

The Processes View 362
Searching for a Process 363
Opening Process Properties 364
Process Properties for Windows 95 365
Process Properties for Windows NT 364

The Threads View 368
Searching for a Thread 369
Opening Thread Properties 369
Thread Properties for Windows 95 370
Thread Properties for Windows NT 371

The Messages View 372
Message Codes 374
Controlling the Messages View 374
Starting and Stopping the Message Log Display 374
Choosing Message Options 375

The Windows Tab 375
The Messages Tab 376
The Output Tab 376

Searching for a Message 377
Opening Message Properties 378
Message Properties 378

Chapter 20 Setting Compiler Options 381
General 381

Warning Level 382
Warnings as Errors 383

Debug Info 383
Common/project/Source File Options 384
Reset 384

c++ Language 384
Pointer-to-Member Representation 385
Representation Method 385
General Purpose Representation 386
Enable Exception Handling 386
Enable Run-Time Type Information (RTTI) 387
Disable Construction Displacements 387

Code Generation 388
Processor 388
Use Run-Time Library 389
Calling Convention 390
Struct Member Alignment 392

Customize 392
Disable Language Extensions 393
Enable Function-Level Linking 396
Eliminate Duplicate Strings 396
Enable Minimal Rebuild 396
Enable Incremental Compilation 397
Suppress Startup Banner and Information Messages 397

Listing Files 397
Generate Browse Info 398
Intermediate Browse Info File Destination 398
Exclude Local Variables 398
Listing File Type 398
Listing File Name 399

Optimizations 399
Types of Optimizations 400
In-line Function Expansion 406

Precompiled Headers 407
Not Using Precompiled Headers 407
Automatic Use of Precompiled Headers 408
Create Precompiled Header File (.PCH) 409
Use Precompiled Header File (.PCH) 409

Preprocessor 410
Preprocessor Definitions 411
Undefined Symbols 411

Contents

xv

Contents

xvi

Undefine All Symbols 411
Additional Include Directories 412
Ignore Standard Include Paths 412

Chapter 21 Setting Linker Options 413
General Category Options 413

Enable Profiling . 414
Common/project Options 414
Reset 415

Customize Category Options 415
Link Incrementally 416
Use Program Database 417
Program Database Name 417
Output File Name 418
Force File Output 418
Print Progress Messages 418
Suppress Startup Banner 418

Debug Category Options 419
Mapfile Name 419
Generate Mapfile 419
Generate Debug Info 420
IviicrosofI Formal 420
COFF Format 421
Both Formats 421

Input Category Options 422
Object/Library Modules 422
Ignore Libraries 422
Ignore All Default Libraries 423
Force Symbol References 423
MS-DOS Stub File Name 423

Output Category Options 424
Base Address 424
Entry-Point Symbol 425
Stack Allocations 426
Version Information 426

Part 2 Customizing Visual C++
Chapter 22 Customizing Microsoft Developer Studio 429
Working with Window Types 430

Working with Document Windows 431
Positioning Document Windows 432
Selecting Document Windows to Display When Opening a Project 432

Working with Docking Tool Windows 433
Showing and Hiding Docking Tool Windows 434
Positioning Docking Tool Windows 434
Sizing Docking Tool Windows 437
Changing Docking Tool Window Characteristics 438

Working with Toolbars 438
Showing and Hiding Toolbars 439
Showing ToolTips 440
Creating a Custom Toolbar 440
Modifying a Toolbar 441
Resetting a Toolbar 444
Deleting a Toolbar 444
Docking Toolbars 444

Floating Mode 445
Docked Mode 446

Sizing Floating Toolbars 447
Customizing the Keyboard 447

Displaying the Keyboard Shortcuts 447
. Assigning Shortcut Keys 448

Customizing the Tools Menu 450
Adding Commands to the Tools Menu 450
Editing a Tools Menu Command 451
Tools Options 452
Using Argument Macros 452
U sing Error Syntax for Tools 454

Showing the Status Bar 455
Setting Directories 456
Using Full-Screen Mode 458
Customizing with Other Options 459

Contents

xvii

Contents

xviii

Chapter 23 Editor Emulations 461
Setting Editor Behavior 461

U sing Epsilon Emulation 463

Using BRIEF Emulation 466

Viewing and Changing the Shortcut Keys 469

Chapter 24 Creating Custom AppWizards 473
Understanding Custom AppWizards 473

U sing a Custom App Wizard 474

Overview of Creating a Custom App Wizard 475

How to Create a Custom App Wizard Project 478

Understanding the Files that App Wizard Creates 483

Adding Functionality to Your Custom App Wizard 483

Understanding Custom Resource Templates 484

Understanding Text Templates 486

Understanding CONFIRM.lNF and NEWPROJ.lNF 488

CONFIRM.lNF 489

NEWPROJ.lNF 490

Understanding Text Template Parsing 491

How Macros Get Their Values 491

How to Specify Macros in Directives or Text 492

Understanding Binary Templates 493

Debugging Custom App Wizards 493

Creating a Class Wizard Information File Template 494

Providing Context-Sensitive Help 495

AppWizard Programming Reference 495

NEWPROJ.INF Statements 497

CApp WizStepDlg 499

CApp WizStepDlg Class Members 500

CApp WizStepDlg: :CApp WizStepDlg 500

CApp WizStepDlg: :OnDismiss 500

CCustomApp Wiz 501

CCustomApp Wiz Class Members 501

CCustomApp Wiz: :Back 502

CCustomApp Wiz: :CopyTemplate 503

CCustomApp Wiz: :ExitCustomApp Wiz 503

CCustomApp Wiz: : GetPlatforms 504

CCustomApp Wiz: : InitCustomApp Wiz 505

CCustomApp Wiz: :LoadTemplate 506

CCustomAppWiz::Next 507

CCustomApp Wiz: :PostProcessTemplate 508

CCustomApp Wiz: :ProcessTemplate 508

CCustomApp Wiz: :m_Dictionary 509

OutputStream 510

Class Members 511

OutputStream:: WriteBlock 511

OutputStream:: WriteLine 511

C Functions Exported by MFCAPWZ.DLL 512

GetDialog 512

SetCustomApp WizClass 514

SetNumberOfSteps 514

ScanForAvailableLanguages 515

SetSupportedLanguages 516

Standard AppWizard Directives 516

$$IF, $$ELIF, $$ELSE, and $$ENDIF 517

$$INCLUDE 518

$$BEGINLOOP and $$ENDLOOP 519

$$SET _DEFAULT_LANG .520

$$// 523

Standard App Wizard Macros 523

New Project Workspace and Insert Project Dialog Box Options 524

Step 1, Project Type Options 524

Step 2, Database Options 525

Step 3, OLE Options 527

Step 4, Application Options 528

Step 4, Advanced Options, Document Template Strings Tab 528

Step 4, Advanced Options, Window Styles Tab 529

Step 4, Advanced Options, Macintosh-Specific Tab 530

Step 5, Project Options 530

Step 6, Class and File Names 530

Miscellaneous Macros 532

Language Loop Macros 533

Standard Custom Resource Templates 534

All AppWizard Projects 535

Dialog-Based Applications 536

Dynamic-Link Libraries 537

MDI and SDI Applications 537

OLE Applications 541

Contents

xix

Contents

Help File Support 542
Custom App Wizard Help File Support 543
Database Applications 543
Macintosh Applications 544

Part 3 Command-Line Tools

xx

Chapter 25 CL Reference 547
Description of CL Syntax 547

Filename Syntax 548
Specifying CL Options 548
Order of Options 548
CL Command Files 549
CL Environment Variable 549

Using CL 550
Fast Compilation 550
Linking 551

Reference to Command-Line Only Options 552

IC 553
Ic 553

/D 553
IE 554
IEP 555
/F 556
Output-File Options 556
Drive, Path, and File Specifications 557
Device Names for Windows 557
/Fd 557
/Fe 558
/FI 558
/Fm 559
/Fo 559
/Fp 559
IOe 560

IOF 560

IOh ~60

lOs 561

/H 561
/HELP 562
II 562

/LD 562
/LDd 563
/link 564
/P 564
/Tc, /Tp 565
N 565

IYd 565

IZg 566

IZI 566

IZs 567

Chapter 26 LINK Reference 569
LINK Input Files 569

.OBI Files 570

.LIB Files 570

.EXP Files 570

.DEF Files 571

.PDB Files 571

.RES Files 571

.EXE Files 571

.TXT Files 571

.ILK Files 571
LINK Output 572 .

Output Files 572
Other Output 572

Running LINK on the Command Line 573
LINK Command Line 573
LINK Command Files 573
LINK Environment Variables 574

LINK Options 574
Alphabetic List of LINK Options 575

Developer Studio LINK Options 576
Compiler-Controlled LINK Options 577

Contents

xxi

Contents

xxii

LINK Command-Line Options 578

IALIGN 578
ICOMMENT 578

/DEF 579
/DEFAULTLIB 57~

/DLL 579
/EXETYPE 580
/EXPORT 580
/FIXED 581
/HEAP 581
/lMPLIB 582
/MACHINE 582
/MERGE 582
/NOENTRY 583
IOPT 583
IORDER 583
/RELEASE 584
ISECTION 584
ISUBSYSTEM 585
NERBOSE:LIB 586
Nyn "~h ,-.- --,
/WARN 586

Module-Definition (.DEF) Files 586
Rules for Module-Definition Statements 587

NAME 587
LffiRARY 588
DESCRIPTION 588
STACKSIZE 588
SECTIONS 588
EXPORTS 589
VERSION 589

Reserved Words 590

Chapter 27 Profiler Reference 591
Profiler Batch Processing. 591

Profiler Batch Response Files 593
Standard Batch Files 593

Profiler Command-Line Options 594
PREP 594
PROFILE 596
PLIST 597

Analyzing Data from the Profiler 599
Exporting Data from the Profiler 599
Tab-Delimited File Format 599

Global Information Records 600
Local Information Records 602

Analyzing Profiler Statistics 603
Processing Profiler Output with Microsoft Excel 604

Using the PROFILER.XLM Macro 604·

Changing the PROFILER.XLM Selection Criteria 605

Chapter 28 LIB Reference 607
Overview of LIB 607

LIB Input Files 607,
LIB Output Files 608

Other LIB Output 608
Structure of a Library 608

Running LIB 608
Managing a Library 610
Extracting a Library Member 611
Working with Import Libraries and Export Files 611

Building an Import Library and Export File 612

U sing an Import Library and Export File 613

Chapter 29 BSCMAKE Reference 615
Building a .BSC File 615

Creating an .SBR File 615
How BSCMAKE Builds a .BSC File 616

. Increasing Efficiency with BSCMAKE 616

Making a Smaller Browse Information File 617
Saving Build Time and Disk Space 617

BSCMAKE Command Line 617
BSCMAKE Command File 618

BSCMAKE Options 618
BSCMAKE Exit Codes 620

Contents

xxiii

Contents

xxiv

Chapter 30 DUMPBIN Reference 621
DUMPBIN Command Line 621

DUMPBIN Options 621

Chapter 31 EDITBIN Reference 625
EDITBIN Command Line 625

EDITBIN Options 625

/BIND 626

/HEAP 626

/NOLOGO 626

/REBASE 627

/RELEASE 627

/SECTION 627

/STACK 628

Chapter 32 NMAKE Reference 631
Running NMAKE 631

NMAKE Options 631

TOOLS.INI and NMAKE 633

Exit Codes from NMAKE 633

Contents of a Makefile 633

Willkanls ami NlvlAKE 633

Long Filenames in a Makefile 634

Comments in a Makefile 634

Special Characters in a Makefile 634

Description Blocks 635

Targets 635

Pseudotargets 635

MUltiple Targets 635

Cumulative Dependencies 636

Targets in Multiple Description Blocks 636

A Side Effect 636

Dependents 637

Inferred Dependents 637

Search Paths for Dependents 637

Commands in a Makefile 638

Command Modifiers 638

Filename-Parts Syntax 639

Inline Files in a Makefile 639
Specifying an Inline File 639
Creating Inline File Text 640
Reusing Inline Files 640
Multiple Inline Files 640

Macros and NMAKE 640
Defining an NMAKE Macro 641

Special Characters in Macros 641
Null and Undefined Macros 641
Where to Define Macros 641
Precedence in Macro Definitions 642

Using an NMAKE Macro 642
Macro Substitution 642

Special NMAKE Macros 642
Filename Macros 643
Recursion Macros 643
Command Macros and Options Macros 644
Environment-Variable Macros 644

Inference Rules 645
Defining a Rule 645

Search Paths in Rules 645
Predefined Rules 646
Inferred Dependents and Rules 646
Precedence in Inference Rules 647

Dot Directives 647
Makefile Preprocessing 648

Makefile Preprocessing Directives 648
Expressions in Makefile Preprocessing 649

Makefile Preprocessing Operators 649
Executing a Program in Preprocessing 650

Part 4 Appendices
Appendix A Decorated Names 653
Using Decorated Names 653

Format of a C++ Decorated Name 653
Format of a C Decorated N arne 654

Contents

xxv

Contents

xxvi

Viewing Decorated Names 654
U sing a Listing to View Decorated Names 654
Using DUMPBIN to View Decorated Names 655

Appendix B Initializing and Configuring Microsoft Developer Studio 657
Setting Default Dialog Box Buttons 658
Setting User Interface Fonts 658
Setting the Default Magnification Factor 659
Describing Mouse Pointer Devices 659
Describing Icon Devices 660

Appendix C DDESpy Reference 661
Selecting the Output 661
U sing the Monitor Menu 662

String-Handle Data 662
Sent DDE Messages 663
Posted DDE Messages 663
Callbacks 663
Errors 664
Filters 664

Tracking Options 664

Appendix D PView Reference 667
Opening PView 668

Process Selection 668
Process Memory Used 669
Priority 669
Thread Priority 669 .
Thread Selection 670
Thread Information 670
Memory Details Dialog Box 670

Appendix E Zoomln Reference 673
ZoomIn Menus 673

Appendix F WinDiff Reference 675
WinDiff Command Line 675
Using the Expand/Outline Button. 676
WinDiffColors 676
WinDiffMenus 676

Index

Contributors

Figures and Tables
List of Figures

1.1 AppWizard's Architecture Options 6

2.1 The Project Workspace Window 23
2.2 Top-Level Project 27
2.3 Top-Level Project with a Single Subproject 28
2.4 Empty Top-Level Project with Multiple Subprojects 30

2.5 File View with Multiple Subprojects 32

2.6 Workspace Window 43
2.7 The File View Pane 46
2.8 ClassView 48
2.9 Project Settings Dialog Box 59
4.1 FileView Showing a Checked Out File 121

5.1 The Resource View Pane 131
5.2 The Resource Toolbar 132

5.3 The Insert Resource Dialog Box 133
5.4 Using Drag-and-Drop to Copy Resources Between Files 134

5.5 The Resource Symbols Browser 140
. 6.1 The Dialog Editor 150

6.2 The Controls Toolbar 151
6.3 Dragging a Control from the Controls Toolbar 152

6.4 Selecting Multiple Controls 153
6.5 Sizing a Control 154
6.6 Sizing the Drop-down Portion of a Combo Box 155

6.7 Dialog Toolbar 156
6.8 Dialog Editor Position Indicators 157
6.9 Dialog Editor with Guides and Margins 159
7.1 Menu Terminology 170
7.2 Menu Editor New-Item Boxes 170

7.3 Moving a Menu to a Cascading Menu 174
8.1 The Accelerator Editor 177
9.1 The String Editor 182

10.1 Image Editor Window, Graphics Toolbar, and Colors Palette 186

10.2 Drawing Tools in the Graphics Toolbar 191

Contents

xxvii

Contents

xxviii

10.3 Closed-Tools on the Graphics Toolbar 193

lOA Custom Color Selector Dialog Box 201
10.5 New Icon Image Dialog Box 203
10.6 Custom Image Dialog Box 203
10.7 Selectors for Screen Color and Inverse Color 204

10.8 Property Page with Palette for 256 Colors 205
11.1 The Toolbar Editor 207
12.1 Binary Data Editor 214
13.1 Version Information Resource 218
14.1 WizardBar 223

15.1 Component Gallery 253
16.1 Browse Window with Active Pushpin 268

16.2 Browse Window with File Outline 273
16.3 Derived Classes and Members Window 275

1604 Base Classes and Members Window 276
16.5 Call Graph Window 278

16.6 Callers Graph Window 279
16.7 Definitions and References Window 281
17.1 Return Value Icon in Name Column 316
18.1 Profile Dialog Box 345

19.1 The Spy++ Windows View 357
19.2 Showing Properties with the Find Window 3S~

19.3 The Window Properties Dialog Box· 360
19 A The Processes View Window 363
19.5 Process Search Dialog Box 363

19.6 Process Properties Dialog Box for Windows 95 364
19.7 Process Properties Dialog Box for Windows NT 365
19.8 The Threads View Window 368
19.9 Thread Search Dialog Box 369
19.10 Thread Properties Dialog Box for Windows 95 370

19.11 Thread Properties Dialog Box for Windows NT 371
19.12 The Messages View Window 373

19.13 Message Options Dialog Box 375
19.14 Message Search Dialog Box 377

19.15 Message Properties Dialog Box 378
20.1 General Category on the C/C++ Tab 382
20.2 C++ Language Category on the C/C++ Tab 385
20.3 Code Generation Category on the C/C++ Tab 388

2004 Customize Category on the C/C++ Tab 392

20.5 Listing Files Category on the C/C++ Tab 398
20.6 Optimizations Category on the C/C++ Tab 399
20.7 Precompiled Headers Category on the C/C++ Tab 407
20.8 Preprocessor Category on the C/C++ Tab 411
21.1 General Category on the Link Tab 414

21.2 Customize Category on the Link Tab 415
21.3 Debug Category on the Link Tab 419
21.4 Input Category on the Link Tab 422 .

21.5 Output Category on the Link Tab 424
22.1 Pop-up Menus Displayed with the Right Mouse Button 431

22.2 Floating Variables Window 435
22.3 Docked Variables Window 436

22.4 Window in Floating and Docked Modes 437
22.5 Standard Toolbar Layout 445

22.6 Floating Toolbar 445
22.7 Docked Toolbar 44(i

22.8 A Status Bar 455
24.1 AppWizard's Structure 475
24.2 Custom App Wizard Step 1 480
24.3 Adding Functionality to Your Custom AppWizard 484
27.1 Profiler Batch Processing Flow 592

27.2 Tab-Delimited File in Microsoft Excel 599
27.3 Graph Created with CreateColumnChart Macro 604

List of Tables
2.1 Shortcut Methods for Views 45
2.2 File Icons in File View 47
2.3 Icons in Class View 48
9.1 Formatting and Special Characters in Strings 184

10.1 Devices for Icon or Cursor Images 202
14.1 Types ofMFC Classes Available from ClassWizard 224
14.2 User-Interface Objects and Associated Messages 234
14.3 DDX Variable Types for the Value Property 247

14.4 DDX Variable Types Defined with the Control Property 248

14.5 DDV Variable Types 249
16.1 Browse Window Symbol Codes 270

16.2 File Outline Window 273
16.3 Derived Classes and Members Window 275

16.4 Base Classes and Members Window 276

Contents

xxix

Contents

xxx

16.5 Call Graph Window 279
16.6 Callers Graph Window 280
16.7 Definitions and References Window 282
17.1 Debugger Windows 285
17.2 Debugger Dialog Boxes 286
17.3 Build Menu Debug Commands 288
17.4 Debug Menu Commands that Control Program Execution 288
17.5 Register Window Flags 319
22.1 Argument Macros 453
24.1 The Players 476
24.2 The Tools 476
24.3 Template Name Flags 498
24.4 Enumerated Values of Standard App Wizard Steps 513
24.5 Language Identifiers 520
24.6 Macro Prefixes 531
24.7 Macro Components 531
25.1 CL Options Set from the Command Line 552
25.2 CL Options Set from the Project Settings Dialog Box 552

·26.1 Alphabetic List of LINK Options 575
26.2 Developer Studio LINK Options 576
26.3 Compiler-Controlled LINK Options 577
27.1 Profiling Types 601

Introduction

The Microsoft Visual C++TM version 4.0 Development System for Windows® 95 and
Windows NTTM is an integrated development environment for C and C++
applications, with support for multiplatform and cross-platform development. It
includes a C++ application framework, the Microsoft Foundation Class Library
version 4.0, which facilitates the development of applications for Windows as well as
the porting of applications to multiple platforms. You can easily develop an
application for Windows on one platform using Visual C++ and Microsoft
Foundation Class Library (MFC), and then use the same code to build applications
for other platforms.

Microsoft Developer Studio
Microsoft Developer Studio is the development environment in which the elements of
Visual C++ run. It consists of an integrated set of tools that all run under
Windows 95 or Windows NT. Developer Studio gives you the tools to complete, test,
and refine your application all in one place. It includes a text editor, resource editors,
project build facilities, an optimizing compiler, an incremental linker, a source code
browse window, an integrated debugger, and Books Online. You can control the
operation of all the tools from a single application. Because these tools run under
Windows, they use a variety of familiar methods in their operation. For example, you
can select a variable name in an editor window while debugging and drag that name
into the Watch window. The debugger then evaluates the variable and displays the
result in the Watch window. Or you can select and drop a control from the toolbar in
the dialog box editor onto a dialog box under creation. You can then size and position
the control as required for your application. Developer Studio also includes toolbars
so you can quickly invoke commands by clicking a button. To help you choose the
correct button, each one displays a descriptive label if the mouse pointer rests on it. If
the default toolbars are not to your liking, you can customize them or create your own
toolbars with the toolbar buttons of your choice.

xxxi

Introduction

Powerful Wizards
Visual C++ provides some powerful tools that work in conjunction with the MFC
application framework:

• App Wizard. App Wizard generates a complete suite of source files and resource
files based on classes from the MFC library. By selecting options in AppWizard,
you can customize the starter files that App Wizard generates. Once you have
completed your selections in AppWizard, Visual C++ builds a functional skeleton
application for Windows from those starter files, without any further work on
your part.

• OLE ControlWizard. ControlWizard creates a set of starter files for an OLE
control. This set includes all the files necessary to build an OLE control, including
source and header files, resource files, a module-definition file, a project file, an
object description language file, and so on. These starter files are compatible with
ClassWizard. You can then use ClassWizard to define your control's events,
properties, and methods, some of which have been preimplemented in the MFC
library.

• Class Wizard. Class Wizard automates the creation and editing of classes, and
creates additional classes based on MFC. It creates the source code for new classes
and creates member functions and message maps in those classes, as well as
making it easy to bind Windows messages to code. It also maps dialog box data to
member variables and validates that data.

• Custom App Wizard. With Custom App Wizard you can create your own project
type and add it to the list of types available when you create projects. It creates the
starter source files for the new App Wizard type, and allows you to modify or add
dialog boxes to your AppWizard. Custom AppWizards are useful for creating
generic application project types that can repetitively generate common
functionality-application types that can be used over and over again.

When you build an application for Windows with Visual C++, you run AppWizard, a
custom App Wizard that you have created, or OLE ControlWizard to create the
skeleton of your application. You then run ClassWizard to flesh out the application's
classes, message handling and data handling, or a control's events, properties, and
methods. Finally, in your classes, you add the functionality required for your
application.

Reusable Components

xxxii

Visual C++ includes Component Gallery. Component Gallery contains a number of
reusable components that you can insert into your projects. Some of the components
take the form of Wizards, which request information about your project and provide
you with choices about the functionality to insert. In additon, you can add your own
components or components from other vendors to Component Gallery. Your

components can take the form of reusable C++ classes with any associated resources,
or your own OLE controls. Components created by vendors can range from reusable
code segments to OLE controls to entire tools, such as a code analysis tool.

Developer Studio Projects
Microsoft DeveloperStudio organizes development in project workspaces. A project
workspace contains one or more projects. Each project consists of a set of source files
required for an application and one or more configurations for that project. A
configuration specifies such things as the platform for which the application is
intended, and the tools and settings to use when building. Within a project
workspace, one project can be a subproject of another project. This organization
creates a dependency relationship used by the build system to automatically keep both
the project and the subproject up to date when building the output files. The inclusion
of multiple projects with subprojects in a workspace allows you to group, build, and
maintain dependencies among related applications. By using multiple configurations,
you can extend the scope of a single project but still maintain a consistent source­
code base from which to work.

With the Project Settings dialog box, you can quickly set options for any
configuration in a project, any file in a configuration, or all the files in a project. If
you have file types in your project that the build system does not process by default,
you can specify custom commands to process those files.

Developer Studio includes a Project Workspace window, which displays various
aspects of the projects, In File View; you can examine relationships among the files
contained in the project, and take the appropriate actions on the files. In
Resource View, you can examine the resources in a project, and open them in the
appropriate editors. With Visual C++ installed, you can examine classes and their
members in Class View, and quickly display a class hierarchy, add a member, or open
the file containing the class.

Once you have specified the projects in your workspace, the configurations that your
project is to build, and the tool settings for those configurations, you can build the
project with the commands on the Build menu. If you are creating an application for
a platform other than the one on which you are running Visual C++, the development
environment can automatically transfer the application to the remote machine after it
is built.

Build Error Correction
If your build has errors, Developer Studio can help you fix them more quickly. The
Output window displays a list of errors generated during a build. If you press the F4

key, Developer Studio displays an editor window with the source file and marks the
line of code associated with the first error in the Output window so you can

Introduction

xxxiii

Introduction

immediately correct the code. With menu commands and keyboard shortcuts, you can
then move quickly to the next or previous error.

Integrated Debugger
After you have corrected all the build errors, you can use the integrated debugger to
correct logic errors. The debugger allows you to monitor your program as it runs and
to stop it at locations or situations of your choosing. You can set a breakpoint on a
particular line of code, for instance, and have your application execute until it reaches
that line. You can have your application suspend execution when it receives a
specified Windows message or when a specific exception occurs. If you are interested
in the values assigned to a variable, you can have the debugger break whenever your
application changes the variable's value.

With the integrated debugger, you can debug both client and server applications that
use OLE. The debugger can execute a client OLE application line by line, and when
the client calls the server OLE application, another instance of Developer Studio
starts, with its debugger executing the server application. This method allows you to
determine if both the client and server sides of your OLE application are functioning
properly.

Developer Studio can also start its integrated debugger for any program that fails
while it is running, whether the program has debug information or not, and whether
Developer Studio was running beforehand or not. The debugger starts up while the
program is still alive, and this "Just-in-Time" debugging allows you to analyze the
living program rather than conduct a postmortem examination after it dies. With
Just-in-Time debugging, it is possible to find and fix the problem in the program and
let it continue running.

The debugger also supports multiplatform and cross-platform development by
allowing you to debug an application running on a remote machine.

Source Code Browse Window

xxxiv

As you are developing and debugging your application, you need to see the classes
and other symbols that you are using in a variety of contexts. When you build your
application, Developer Studio can create a browse information file with information
about the symbols in your program. The browse window displays this information
and allows you to move readily among instances of the symbols in your source code.
You can easily view all the symbols contained in a given file, display the definition of
any symbol in the file and all its references in your project, and then open the file
containing a particular reference by double-clicking the entry in the window. In the
browse window, you can view calling relationships among functions. The ease with
which you can examine the relationships among symbols and move among the files
containing them facilitates the maintenance, revision, and debugging of your code.

Visual C++ also parses source files after you create them and displays the information
in ClassView. You can immediately open a file at a definition of a member function
or at a reference to a data member. After you build your project, you can view graphs
of inheritance relationships among classes.

User Preferences
With Microsoft Developer Studio you can customize its operation to suit your
preferences. You can select fonts, specify colors for particular types of text, and zoom
or shrink the text in a window. For example, in text editor windows, you can display
language elements, such as comments or keywords, in the color of your choice. When
you establish a layout for the windows associated with a particular project workspace,
Developer Studio retains that layout of open files and window positions the next time
you start the project. When you are debugging an application, you can choose which
windows and toolbars to display, and Developer Studio retains your selections for all
subsequent debugging sessions.

If you have some preferences for shortcut keys other than the defaults, you can
change any of the shortcut keys to your liking, add shortcut keys, set multiple
shortcut keys for a command, and specify the windows in which any shortcut is
active. You can use the Keyboard command on the Help menu to display a list of the
current keyboard shortcuts and print all or part of the list. Developer Studio also
provides keyboard emulations for BRIEF® and Epsilon ™ text editors. In a text editor
window, you can record keystrokes and then play them back to recreate that sequence
of commands.

Extensive Information
Developer Studio provides several methods to learn about the development
environment or the supporting software. Tutorials contains a series of tutorials to
familiarize you with Developer Studio, with the methods and processes you need to
use within Developer Studio, and with the development of C++ applications using
Visual C++ and the Microsoft Foundation Class Library. From your source code in an
editor window, you can readily get information about a class from the Microsoft
Foundation Class Library, a function name from the C Run-Time Library, or a
language element. If you select a name in an editor window, and press Fl or CTRL+Fl,

Developer Studio displays reference information for that name.

Info View in the Project Workspace window displays the table of contents for Books
Online. Books Online contains the entire Visual C++ documentation set as well as
reference information from a number of software development kits (SDKs). New
Visual C++ Features refers you to new topics in Books Online, and Key Visual C++
Topics refers you to topics that group information by subject. You can browse through
the table of contents and select topics to view. From any topic, you can search through
all the text of Books Online for the occurrence of a selected word or combination of
words with the Search command on the Help menu. If you need information about an

Introduction

xxxv

Introduction

open dialog box, you can choose the Help button to view descriptions of its controls,
and methods to access further information, if necessary.

Visual C++ User's Guide

xxxvi

In the Visual C++ User's Guide, you will find procedures that show you how to
undertake various development tasks with Microsoft Developer Studio. Visual C++
User's Guide also includes reference information on underlying command-line tools.

PAR T

Development Environment

Chapter 1 Creating Applications Using App Wizard

Chapter 2 Working with Projects 23

Chapter 3 U sing the Text Editor 75

Chapter 4 Working with Source-Code Control

Chapter 5 Working with Resources 129

Chapter 6 U sing the Dialog Editor 149

Chapter 7 -Using the Menu Editor 169

Chapter 8 U sing the Accelerator Editor 177

Chapter 9 U sing the String Editor 181

Chapter 1 0 Using the Graphic Editor 185

Chapter 11 U sing the Toolbar Editor 207

Chapter 12 Using the Binary Data Editor 213

117

3

Chapter 13 U sing the Version Information Editor 217

Chapter 14 Working with Classes 221

Chapter 15 Using Component Gallery 253

Chapter 16 Browsing Through Symbols 267

Chapter 17 Using the Debugger 283

Chapter 18 Profiling Code 343

Chapter 19 Using Spy++ -353

Chapter 20 Setting Compiler Options 381

Chapter 21 Setting Linker Options 413

CHAPTER

Creating Applications Using
AppWizard

AppWizard is the tool you use to create a Windows-based application that is based on
the Microsoft Foundation Class Library (MFC). You can use AppWizard to quickly
create an executable file (.EXE) or a dynamic-link library (DLL).

AppWizard's interface is simple and easy to understand but also powerful and
flexible enough to quickly generate Windows-based applications. Using App Wizard,
you can generate applications with the following features:

• Single-document, multiple-document, or dialog-based interfaces

• OLE support and database (ODBC and DAO) support

• Docking toolbars, a status bar, support for context-sensitive help, and a three­
dimensional interface

~ Immediate built~in functionality such as the Open, Save As, and Print commands
on the File menu

• Control over window frame styles

When you have finished defining application and project options, App Wizard
generates the starter files necessary to build a Windows-based application. These
starter files include source files, header files, resource files, a project file, and so on.

The Visual C++ source files contain skeletal versions of the classes that make up your
application. This AppWizard-generated code is based on MFC to provide
compatibility with Class Wizard and to simplify your development work. When you
build App Wizard-generated code, you get a working, skeleton application with a
wealth of built-in functionality.

See Also Starting an AppWizard Project, Creating an MFC AppWizard EXE
Project, Choosing Options for Dialog-Based Applications, Choosing Database
Options, Choosing OLE Options, Choosing SDI and MDI Application and Project
Options, Creating an MFC App Wizard DLL Project, Understanding App Wizard­
Created Files, Creating a Custom App Wizard

3

Visual c++ User's Guide

Starting an App Wizard Project

4

You start AppWizard from either the New Project Workspace dialog box or the Insert
Project dialog box. These two dialog boxes begin a series of dialog boxes in which
you choose options to create your project. You will choose options that determine the
basic architecture of your application, such as EXE or DLL, the kind of support it
provides, such as OLE Automation or Windows Sockets, the appearance and
manipulation of the user interface, such as 3D controls and docking toolbars, and so
on. For more information on projects, see Chapter 2, "Working With Projects." For
more information on the Insert Project dialog box, see "Inserting and Deleting
Projects" on page 52.

Once started, App Wizard displays a series of steps showing options for the features of
your application. The series is a forking path. Depending on your application's
architecture, some steps may not be displayed. You select options by cycling through
the steps, forwards or backwards. You can change the options at any time before you
create an App Wizard application.

~ To create a new project and application

1 Start Visual C++.

2 From the File menu, choose New.

The New dialog box appears.

3 In the New box, select Project Workspace.

The New Project Workspace dialog box appears.

5 In the Name text box, type a name.

6 From the Type list, select MFC AppWizard (exe) or MFC AppWizard (dll) to
create a project based on the MFC library.

The Type list allows selection of various project types. Of the displayed project
types, App Wizard helps you create an MFC App Wizard (exe) Project and an MFC
AppWizard (dll) Project. OLE ControlWizard helps you create an OLE control,
and Custom App Wizard helps you create a custom App Wizard.

If you select one of the remaining project types, you can build·a project that is not
based on the MFC library. You must, however, use the Insert Files Into Project
dialog box to specify the files you want added to a project. For more information
on the Insert Files Into Project dialog box, see" Adding and Removing Files from
Projects" on page 53 in Chapter 2. If you choose to create a non-MFC project, you
will have to either write or have access to the considerable amount of code that
AppWizard and MFC would otherwise provide.

Chapter 1 Creating Applications Using AppWizard

7 From the Platforms list box, select any of the available target platforms.

Note Win32® is the default platform. To select other platforms, the associated cross­
development edition of Visual C++ version 4 must be installed.

8 In the Location text box, type a path to the new workspace. A directory will be
created if you specify one that does not exist.

-or-

Use the Browse button to select a drive and a directory.

9 Choose Create.

Microsoft Developer Studio creates a workspace and/or inserts a project into a
workspace. With the workspace structure created, App Wizard displays either the
AppWizard .EXE file options or the AppWizard DLL options, depending on
which project type you choose. For more information on projects and workspaces,
see Chapter 2, "Working With Projects." For more information on the MFC
App Wizard .EXE file options, see "Creating an MFC App Wizard EXE Project"
below. For more information on the MFC DLL options, see "Creating an MFC
AppWizard DLL Project" on page 17.

See Also Creating an MFC App Wizard EXE Project, Choosing Options for Dialog­
Based Applications, Choosing Database Options, Choosing OLE Options, Choosing
SDI and MDI Application and Project Options, Creating an MFC App Wizard DLL
Project, Creating an MFC Form-Based Application With AppWizard, Understanding
App Wizard-Created Files, Creating a Custom App Wizard

Creating an MFC App Wizard EXE Project
If you choose MFC AppWizard (exe) from the Type list in the New Project
Workspace dialog box or the Insert Project dialog box, App Wizard creates a project
that will generate an executable (.EXE) file. For more information on projects, see
Chapter 2, "Working With Projects." For more information on the Insert Project
dialog box, see "Inserting and Deleting Projects" on page 52 of Chapter 2.

Once you choose Create from either dialog box, Microsoft Developer Studio creates a
workspace and/or inserts a project into a workspace. AppWizard then displays the
available architecture options as shown in Figure 1.1.

5

Visual C++ User's Guide

6

Figure 1.1 AppWizard's Architecture Options

~ To select an architecture type and resource language

1 From MFC AppWizard - Step 1 of 1, select one of the three architecture types:

• Single document A single document interface (SDI) architecture allows a user
to work with just one document at a time. Windows Notepad is an example of
an SDI application.

• Multiple documents A multiple document interface (MDI) architecture allows
a user to open mUltiple documents, each with its own window. Windows File
Manager is an example of an MDI application.

• Dialog based A dialog-based architecture displays a simple dialog box for
user input. MFC Trace Options is an example of a dialog-based application.

As you make App Wizard feature selections, the left side of App Wizard's dialog
box displays a representation of the selected features. For example, selecting
multiple document architecture displays two documents in the "application's"
window on the left side of the App Wizard dialog box.

2 Select a language for the resource text.

Note English is the default language for resource text. To select other languages, the
language DLL must already be installed on your system. The file-naming convention is

Chapter 1 Creating Applications Using App Wizard

LANGUAGE.DLL, where LANGUAGE is of the form APPWZ*.DLL and * is a three-letter
language specifier such as "DEU" or "JPN".

3 Choose Next to display MFC AppWizard - Step 2 of 6.

If your application has a single or multiple document interface, the App Wizard
database options for single and multiple document interfaces are displayed. If your
application has a dialog-based document interface, the AppWizard options for
dialog-based interfaces are displayed.

See Also Creating Applications Using App Wizard, Starting an App Wizard Project,
Choosing Options for Dialog-Based Applications, Choosing Database Options,
Choosing OLE Options, Choosing SDI and MDI Application and Project Options,
Creating an MFC AppWizard DLL Project, Creating an MFC Form-Based
Application With AppWizard, Understanding AppWizard-Created Files, Creating a
Custom App Wizard

Choosing Options for Dialog-Based
Applications

After choosing to create a dialog-based application from MFC AppWizard - Step 1,
AppWizard provides three additional steps to help you develop your dialog-based
application. The following three procedures describe the features that App Wizard
offers.

~ To select application options

1 From MFC App Wizard - Step 2 of 4, you can choose from the basic features that
are described below:

• About box Select this option to add an About box to your application's
Control-menu box. The About box lists your application's version number and
copyright date. You can edit the generated About box.so that it also contains
brief product- and author-specific information .

• Context-sensitive help Select this option to add a Help button to the dialog
box that your project generates. A starter rich-text (.RTF) file, a help project
(.HPJ) file, and a batch file are provided to help you write your application's
help system. These files are in the HLP directory. For convenience, the .RTF
and .HPJ files take the base name of your project. Project.RTF contains one or
more topics that are hooked to your dialog box's Help button. You can use any
rich-text format word processor, such as Microsoft Word for Windows, to add
information to this file. The .HPJ file controls compiling project.RTF into a
WinHelp help file. The batch file, MAKEHELP.BAT, compiles project.RTF into
a help file. Type MAKEHELP.BAT from the command line to create a help file
fromproject.RTF. In order for your help file to respond to your dialog-based

7

Visual C++ User's Guide

8

application's Help button, both the help file and the application must use the
same base filename and must reside in the same directory.

• 3D controls This option adds a three-dimensional look to your application's
user interface.

• OLE automation Select this option if you want to expose your application to
OLE Automation clients. This option allows your application to be accessed by
other Automation clients, such as Microsoft Excel.

• OLE controls Select this option if you want your application to use OLE
controls. If you do not choose this option and, at a later time, want to insert
OLE controls into your project, you must add a call to
AfxEnableControlContainer in your application's Initlnstance member
function. For additional information about MFC OLE support, see Chapter 5,
"Working With OLE," in Programming with MFC.

• Windows sockets This option allows you to write applications that
communicate over TCP/IP networks.

• Please enter a title for your dialog This option allows you to override the
default name that is added to your dialog box's title bar. The project name is
used by default.

2 From MFC AppWizard - Step 2 of 4, choose Next.

MFC App Wizard - Step 3 of 4 is displayed. This step allows you to select the
following application options.

• Would you like to generate source file comments? AppWizard generates and
inserts comments in the source files that guide you in writing your program.
Source-file comments indicate where you need to add your own code. A
README. TXT file that describes each of the files is also produced. This
option is recommended.

• How would you like to use the MFC library? The Microsoft Foundation
classes can be linked from a static library or a shared DLL. Applications
comprised of mUltiple modules benefit from using the shared DLL because they
are more space efficient. By default, applications created from your AppWizard
project are linked with the shared MFC DLL.

3 Choose Next.

MFC App Wizard - Step 4 of 4 is displayed. This step displays the classes that
AppWizard will create for you. You can use the fields in this step to change the
names of the classes and the names of the class's header (.H) and implementation
(.CPP) files, as described in the next procedure.

Chapter 1 Creating Applications Using AppWizard

~ To change class names and file names
1 From MFC App Wizard - Step 4 of 4, select a class from the top pane, which is

entitled "AppWizard creates the following classes for you."

The associated class name, base class, header file, and implementation file names
are displayed in the boxes below the top pane.

2 Change the names as required.

3 Choose Finish.

The New Project Information dialog box is displayed.

~ To create your application
The New Project Information dialog box displays the details of the options you
have chosen from the previous App Wizard steps.

1 Choose OK when you are satisfied that the options are correct.

AppWizard will generate the new application's source files according to the
options you have selected.

2 If you want to modify any of these options, choose Cancel to close the New Project
Information dialog box; .

Choosing Cancel lets you access the steps you have used previously to specify your
project's options.

See Also Creating Applications Using App Wizard, Starting an App Wizard Project,
Creating an MFC AppWizard EXE Project, Understanding AppWizard-Created
Files, Creating a Custom App Wizard

Choosing Database Options
If, in MFC App Wizard - Step 1, you choose to create a project with a user interface
that uses either single or multiple documents, Step 2 allows you to choose whether
and to what degree you want your project to support open database connectivity
(ODBC) or Microsoft Data Access Objects (DAO).

~ To select a database support option
• Select one of the database support options:

• None This option excludes the libraries that support open database
connectivity. If the application does not use a database, choosing this option
builds a smaller application.

9

Visual C++ User's Guide

10

• Header files only This option provides the minimal level of database support
by including all the database header files and link libraries. With this option,
App Wizard does not create any database-specific classes; you must do it
yourself.

• Database view without file support This option includes all the database
header files and link libraries and creates a record view and recordset for you.
With this option, the application has document support but no serialization
support.

• Database view with file support This option includes all the database header
files and link libraries and creates a record view and recordset. With this
option, the application has document support and also has serialization support.

For additional information about MFC database support, see Chapter 7, "Working
With Databases," in Programming with MFC. .

~ To define a data source

• If your application includes a database view, you must define a data source.
Choose the Data Source button.

The Database Options dialog box appears and enables you to select from the
following options: .

• ODBC or DAO If you are working primarily with an external (ODBC)
database file, select ODBC. If you are working primarily with a Microsoft Jet
(MDBC) database file, select DAO. For more information on ODBC and DOA,
see "Database Overview" in Programming with MFC.

• Snapshot A snapshot is the result of a query and is a view into a database at
one point in time. A snapshot is static in nature. All records found as a result of
the query are cached. Using a snapshot, you will not see any changes that occur
to the original records.

• Dynaset A dynaset is the result of a query that provides an indexed view into
the data of the queried database. A dynaset caches only a key into the original
data and thus offers a performance gain over a snapshot. Because you have a
key that points directly to each record that was found as a result of a query, you
can tell if a record has changed or was removed. You will also have access to
updated information in the queried records.

• Table A table provides you with a means of directly manipulating the data in a
base table in a database (DAO only).

Chapter 1 Creating Applications Using App Wizard

• Detect dirty columns This option creates a data cache to detect whether data
values or NULL status has changed. You may turn this option off for better
performance, but you must explicitly call both SetFieldDirty and SetFieldNull.

• Bind all columns This option creates a recordset that has data members for all
columns in the selected database.

Use one of the following two procedures to select an ODBC database or a DAO
database.

~ To select an ooac data source

1 In the Database Options dialog box, select ODBC.

2 From the ODBC drop-down list, select a data source.

To be visible from the ODBC drop-down list, a data source must be registered with
the ODBC Administrator, which is accessed from the Control Panel. For
instructions on registering an ODBC data source, see the article "ODBC
Administrator" in Programming with MFC.

3 Choose OK.

Some database drivers (SQL Server, for example) present a login dialog box at this
point. Fill in the information required to gain access to the data source.

4 Choose OK.

The Select Database Tables dialog box appears.

5 Select the tables for which you want recordsets created.

6 Choose OK.

MFC AppWizard - Step 2 of 6 reappears.

7 Choose Next.

MFC App Wizard - Step 3 of 6 appears.

~ To select a DAO data source

1 In the Database Options dialog box, select DAO.

2 Choose the Browse button - 'the button with the ellipsis just to the right of the
DAO text box.

The Open dialog box appears.

3 Select a database file (.MDB format).

4 Choose OK.

The Database Options dialog box reappears.

11

Visual C++ User's Guide

5 Choose OK.

The Select Database Tables dialog box appears.

6 Select the tables for which you want recordsets created.

7 Choose OK.

MFC App Wizard - Step 2 of 6 reappears.

8 Choose Next.

MFC AppWizard - Step 3 of 6 appears.

See Also Creating Applications Using App Wizard, Starting an App Wizard Project,
Creating an MFC AppWizard EXE Project, Choosing SDI and MDI Application and
Project Options, Creating an MFC AppWizard DLL Project, Creating an MFC Form­
Based Application With App Wizard, Understanding App Wizard-Created Files,
Creating a Custom App Wizard

Choosing OLE Options

12

If, in MFC App Wizard - Step 1, you choose to create a project with a user interface
that uses either single or multiple documents, Step 3 allows you to choose whether
and to what degree you want your project to support OLE.

~ To select OLE options

AppWizard generates application support code for a variety of OLE application types.
Selecting any of the OLE options enables the standard OLE resources and adds extra
OLE commands to the application's menu bar.

1 Select from the following OLE options:

• None By default, AppWizard does not create an application with OLE
support.

• Container This option enables your application to contain linked and
embedded objects.

• Mini-server This option allows only the creation of embedded objects.

• Full-server This option enables your application to run in stand-alone mode
and to support both linked and embedded items as well as to create objects to be
contained in compound documents.

• Both container and server This option enables your application to be both a
container and a server.

• Yes, please Select this option to use the OLE compound-file format to serialize
your OLE container application's documents. Documents containing one or
more OLE objects are saved to one file but access is allowed to the individual
OLE objects' files. This option provides load on demand of, and incremental
saves to, the individual OLE objects' native data.

Chapter 1 Creating Applications Using App Wizard

• No, thank you Select this option to not use the OLE compound-file fonnat to
serialize your OLE container application's documents. This option forces the
loading of an entire file containing OLE objects into memory. Incremental
saves to individual OLE objects are not available. If one OLE object is changed
and subsequently saved, all OLE objects in the files are saved.

• OLE automation Select this option if you want to expose your application to
OLE Automation clients. This option allows your application to be accessed by
other Automation clients, such as Microsoft Excel.

• OLE controls Select this option if you want your application to use OLE
controls. If you do not choose this option and, at a later time, want to insert
OLE controls into your project, you must add a call to
AfxEnableControlContainer in your application's InitInstance member
function.

For additional infonnation about MFC OLE support, see Chapter 5, "Working
With OLE," in Programming with MFC.

2 Choose Next.

MFC App Wizard - Step 4 of 6 appears.

See Also Creating Applications Using App Wizard, Starting an App Wizard Project,
Creating an MFC AppWizard EXE Project, Choosing SDI and MDI Application and
Project Options, Creating an MFC App Wizard DLL Project, Creating an MFC Fonn­
Based Application With AppWizard, Understanding AppWizard-Created Files,
Creating a Custom App Wizard

Choosing SDI and MDI Application and
Project Options

If, in MFC App Wizard - Step 1, you choose to create a project with a user interface
that uses either single or mUltiple documents, Step 4 allows you to choose various
user-interface options. You can also select MAPI and Windows Sockets support.

~ To select application options

1 Specify the basic features you want your application to have by selecting from the
options described below.

• Docking toolbar Select this option to add a toolbar to the application that your
project generates. The toolbar. contains buttons for creating a new document;
opening and saving document files; cutting, copying, pasting, or printing text;
displaying the About box; and entering SHIFT +Pl Help mode. Enabling this
option also adds menu commands to display or hide the toolbar.

13

Visual C++ User's Guide

14

• Initial status bar Select this option to add a status bar to the application that
your project generates. The status bar contains automatic indicators for the
keyboard's CAPS LOCK, NUM LOCK, and SCROLL LOCK keys and a message line
that displays help strings for menu commands and toolbar buttons. Enabling
this option also adds menu commands to display or hide, the status bar.

• Printing and print preview Select this option to add the code to handle print,
print setup, and print preview commands by calling member functions in the
CView class of the MFC library. It also adds commands for these functions to
your application's File menu.

• Context-sensitive help Select this option to add a Help button to the dialog
box that your project generates. A starter rich-text (.RTF) file, a help project
(.HPJ) file, and a batch file are provided to help you write your application's
help system. These files are in the HLP directory. For convenience, the .RTF
and .HPJ files take the base name of your project. Project.RTF contains one or
more topics that are hooked to your dialog box's Help button. You can use any
rich-text format word processor, such as Microsoft Word for Windows, to add
information to this file. The .HPJ file controls compiling project.RTF into a
WinHelp help file. The batch file, MAKEHELP.BAT, compiles project.RTF into
a help file. Type MAKEHELP.BAT from the command line to create a help file
from project.RTF. In order for your help file to respond to your dialog-based
application's Help button, both the help file and the application must use the
same base filename and must reside in the same directory.

• 3D controls This option adds a three-dimensional look to your application's
user interface.

• MAPI (Messaging API) This option allows you to write an application that
creates, manipulates, transfers, and stores mail messages.

• Windows sockets This option allows you to write an application that
communicates over TCP/IP networks.

• How many files would you like on your recent file list? This option sets the
number of files to be remembered on the "most recently used" list.

2 If your application requires adjustment of other advanced options, choose the
Advanced button.

The Advanced Options dialog box appears.

3 Select the Document Template Strings tab to modify the filenames and extensions
that will identify your application:

• File extension The file extension associated with a document created by your
application. Typing a file extension allows the Windows 95 Explorer to print
your application's documents, without launching your application, when. they
are dropped onto a printer icon.

• File type ID This ID is used to label your document type in the system
registry.

Chapter 1 Creating Applications Using AppWizard

• Language This selection controls the language in which strings are displayed
in the edit boxes of the Localized Strings control group.

• Mainframe caption The name displayed in the title bar of your application's
main frame window.

• Doc type name The filename associated with the selected class. This option is
available only if the selected class is derived from class CDocument.

• Filter name The string that appears in the List Files Of Type list box in the
Open and Save As dialog boxes. This field does nothing unless you type a file
extension in the File Extension edit box.

• File new name (OLE short name) The name that appears in the File New
dialog box if there is more than one new document template. If your application
is an OLE server, this name is used as the short name of your OLE object.

• File type name (OLE long name) If your application is an OLE server, this
name is used as the long name of your OLE object. It is also used as the file
type name in the system registry.

4 Select the Window Styles tab and choose from the following list for the user­
interface frame styles. If your project uses a single document interface, the MDI
child frame styles are grayed out.

• Use split window Enables your application's windows to use a split bar. The
split bar will split the application's main views. In an MDI application, the
MDI child frame's client window is a split window, and in an SDI application,
the main frame's client window is a split window, For more information on
split windows, see "Adding Splitter Windows" in Tutorials.

• Thick frame This option specifies that the main frame window have a sizing
border.

• Minimize box This option specifies that the main frame window include a
minimize box. This is the default option.

• Maximize box This option specifies that the main frame window include a
maximize box. This is the default option.

• System menu This option specifies that the main frame window include a
system menu. This is the default option.

• Minimized This option specifies that the main frame window open as an icon.

• Maximized This option specifies that the main frame window open to the full
size of the display.

• Thick frame This option specifies that the frames of all MDI child windows
have a sizing border.

• Minimize box This option specifies that MDI child windows include a
minimize box. This is the default option.

15

Visual C++ User's Guide

16

• Maximize box This option specifies that MDI child windows include a
maximize box. This is the default option.

• Minimized This option specifies that MDI child windows open as icons.

• Maximized This option specifies that MDI child windows open maximized.

5 From the Advanced Options dialog box, choose Close.

6 Choose Next.

MFC AppWizard - Step 5 of 6 appears.

The App Wizard project options for source code are displayed.

~ To select project options

1 You can select settings for these project options:

• Would you like to generate source file comments? AppWizard generates and
inserts comments in the source files that guide you in writing your program.
Source-file comments indicate where you need to add your own code. Selecting
this option is recommended.

A README.TXT file that describes each AppWizard-generated file is also
produced.

• How would you like to use the MFC library? The Microsoft Foundation
classes can be linked from a static library or a dynamic-link library. If your
application mixes both MFC and non-MFC code, use MFC as a statically
linked library. If your application is comprised of mUltiple modules that all use
only the MFC library, it will use less disk and memory space by using the
shared DLL.

2 Choose Next.

MFC App Wizard - Step 6 of 6 is displayed. This step displays the classes that
AppWizard will create for you. You can edit the fields in this step to change the
names of the classes and the names of the class's header (.R) and implementation
(.CPP) files, as described in the next procedure.

~ To change class names and file names

1 Select a class from the top pane, which is entitled "App Wizard creates the
following classes for you."

The associated class name, base name, header file, and implementation file names
are displayed in the boxes below the top pane.

If you choose your application's view class, the Base Class text box becomes a
drop-down list from which you can specify a view type.

2 Change the names and select a view type as required.

3 Choose Finish.

The New Project Information dialog box is displayed.

Chapter 1 Creating Applications Using AppWizard

~ To create your application

You can modify any of the options displayed in the New Project Information dialog
box.

1 If you want to make modifications to any of the options, choose the Cancel button
to close the New Project Information dialog box and return to the AppWizard
steps.

2 Choose OK when you are satisfied that the options are correct.

AppWizard will generate the new application's source files according to the
options you have selected.

See Also Creating Applications Using App Wizard, Starting an App Wizard Project,
Choosing Database Options, Choosing OLE Options, Creating an MFC AppWizard
DLL Project, Creating an MFC Form-Based Application With AppWizard,
Understanding AppWizard-Created Files, Creating a Custom AppWizard

Creating an MFC AppWizard DLL Project
If you choose MFC AppWizard (dll) from the Type list in the New Project Workspace
dialog box or the Insert Project dialog box, App Wizard creates a project that will
generate a dynamic-link library (DLL). For more information on projects, see
Chapter 2, "Working With Projects." For more information on the Insert Project
dialog box, see "Inserting and Deleting Projects" on page 52 in Chapter 2.

Once you choose Create from either dialog box, Microsoft Developer Studio creates 'a
workspace and/or inserts a project into a workspace. AppWizard then displays the
available DLL options.

~ To select MFC DLL project options

1 You can select settings for these project options:

• What type of DLL would you like to create? The two Regular DLLs can be
loaded by any Win32 application.

The MFC Extension DLL can be loaded only by an MFC application.
Applications comprised of multiple modules benefit from using a DLL that uses
a shared copy of MFC because they use less disk and memory space. Also, a
system running multiple MFC applications runs more efficiently if the
applications link dynamically to MFC.

• What features would you like in your DLL? OLE automation exposes your
DLL's class to OLE Automation clients. This option allows objects of this class
to be accessed by Automation clients, such as Microsoft Visual Basic® and
Microsoft Excel. With Windows Sockets support you can write applications that
communicate over TCP/lP networks.

17

Visual C++ User's Guide

• Would you like to generate source file comments? AppWizard generates and
inserts comments in the source files that guide you in writing your program.
Source-file comments indicate where you need to add your own code. Selecting
this option is recommended.

A README.TXT file that describes each AppWizard-generated file is also
produced.

~ To create your application

1 Choose Finish.

The New Project Information dialog box displays the project options you have
selected.

2 If you want to modify any of the options displayed here, choose Cancel to close the
New Project Information dialog box and return to the previous App Wizard steps.

3 Choose OK when you are satisfied that the options are correct.

AppWizard will generate the new application's source files according to the
options you have selected.

See Also Creating Applications Using App Wizard, Starting an App Wizard Project,
Creating an MFC App Wizard EXE Project, Choosing Database Options, Choosing
OLE Options, Choosing SDI and MDI Application and Project Options, Creating an
MFC Form-Based Application With AppWizard, Understanding AppWizard-Created
Files, Creating a Custom App Wizard

Creating an MFC Form-Based Application
With App Wizard

18

With AppWizard you can create MFC form-based applications that give you access to
data in existing databases.

~ To create an MFC form-based application

1 Start Visual C++.

2 From the File menu, choose New.

The New dialog box appears.

3 In the New box, select Project Workspace.

4 Choose OK.

The New Project Workspace dialog box appears.

5 Type a name in the Name text box.

Chapter 1 Creating Applications Using AppWizard

6 From the Type list, select MFC AppWizard.(exe).

7 From the Platforms list box, select any of the available target platforms.

Note Win32® is the default platform. To select other platforms, the associated cross­
development edition of Visual C++ version 4.0 must be installed.

8 Accept the default path to the new project workspace or type a new one in the
Location text box. A directory will be created if you specify one that does not exist.

-or-

Use the Browse button to select a drive and a directory.

9 Choose Create.

MFC App Wizard - Step 1 is displayed.

10 Choose either Single Document or Multiple Documents.

11 Select a language for the resource text.

Note English is the default language for resource text. To select other languages, the
language DLL must already be installed on your system. The file-naming convention is
LANGUAGE.DLL, where LANGUAGE is of the form APPWZ*.DLL and * is a three-letter
language specifier such as "DEU" or "JPN".

12 Choose the Next button.

MFC AppWizard - Step 2 of 6 appears.

13 Select either Database View Without File Support or Database View With File
Support.

If you choose Database View Without File Support, App Wizard creates a record
view and recordset for you. With this option, the application has document support
but no serialization support. If you choose database view with files support,
App Wizard creates a record view and recordset. With this option, the application
has document support and also has serialization support.

14 Choose the Data Source button.

The Database Options dialog box appears and enables you to select from the
following options:

• DDBC or DAD If you are working primarily with an external (ODBC)
database file, select ODBC. If you are working primarily with a Microsoft Jet
(MDBC) database file, select DAO. For more information on ODBC and DOA,
see Database Overview in Programming with MFC .

• Snapshot A snapshot is the result of a query and is a view into a database at
one point in time. A snapshot is static in nature. All records found as a result of
the query are cached. Using a snapshot, you will not see any changes that occur
to the original records.

19

Visual C++ User's Guide

20

• Dynaset A dynaset is the result of a query that provides an indexed view into
the data of the queried database. A dynaset caches only a key into the original
data and thus offers a performance gain over a snapshot. Because you have a
key that points directly to each record that was found as a result of a query, you
can tell if a record has changed or was removed. You will also have access to
updated information in the queried records.

• Table A table provides you with a means of directly manipulating the records
and data in a base table in a database (DAO only).

• Detect dirty columns This option creates a data cache to detect whether data
values or NULL status has changed. You may tum this option off for better
performance, but you must explicitly call both SetFieldDirty and SetFieldNull.

• Bind all columns This option· creates a recordset that has data members for all
columns in the selected database.

Use one of the following two procedures to select an ODBC database or a DAO
database.

~ To select an ooec data source

1 In the Database Options dialog box, select ODBC.

2 From the ODBC drop-down list, select a data source.

To be visible from the ODBC drop-down list, a data source must be registered with
the ODBC Administrator, which is accessed from the Control Panel. For
instructions on registering an ODBC data source, see the article "ODBC
Administrator" in Programming with MFC.

3 Choose OK.

Some database drivers (SQL Server, for example) present a login dialog box at this
point. Fill in the information required to gain access to the data source.

4 Choose OK.

The Select Database Tables dialog box appears.

5 Select the tables for which you want recordsets created.

6 Choose OK.

MFC App Wizard - Step 2 of 6 reappears.

7 Choose Next to display the next AppWizard step.

The App Wizard OLE options are displayed for your single or multiple document
application.

Chapter 1 Creating Applications Using AppWizard

~ To select a DAO data source

1 In the Database Options dialog box, select DAO.

2 Choose the Browse button - the button with the ellipsis just to the right of the
DAO text box.

3 Use the Open dialog box that appears to select a database file (.MDB format).

4 Choose OK.

The Database Options dialog box reappears.

5 Choose OK.

The Select Database Tables dialog box appears.

6 Select the tables for which you want recordsets created.

7 Choose OK.

MFC App Wizard Step - 2 of 6 reappears.

8 Choose Next to display the next AppWizard step.

If your application is for single or multiple documents (not dialog-based), the
AppWizard OLE options are displayed.

See Also Creating Applications Using AppWizard, Starting an AppWizard Project,
Creating an MFC App Wizard EXE Project,Choosing Database Options, Choosing
OLE Options, Choosing SDI and MDI Application and Project Options, Creating an
MFC AppWizard DLL Project, Understanding AppWizard-Created Files, Creating a
Custom App Wizard

Understanding App Wizard-Created Files
AppWizard always creates a basic list of files, regardless of which options you
choose. AppWizard uses the name that you specify in the Name box to derive names
for most of its files and classes.

You'll undoubtedly want to examine the source-ode files you create. If you choose to
have App Wizard add comments to the files it creates for your project, App Wizard
will also create a text file, README. TXT, in your new application directory. This
file explains the contents and uses of the other new files created by App Wizard.

For additional information about the files that AppWizard creates, see the article
"AppWizard: Files Created" in Programming with MFC.

See Also Creating Applications Using AppWizard, Starting an AppWizard Project,
Creating an MFC App Wizard EXE Project, Choosing Database Options, Choosing
OLE Options, Choosing SDI and MDI Application and Project Options, Creating an
MFC AppWizard DLL Project, Creating an MFC Form-Based Application With
App Wizard, Creating a Custom App Wizard

21

Visual C++ User's Guide

Creating a Custom App Wizard

22

You can use AppWizard to create custom AppWizards that will generate applications
with the specific features you need. For more information on how to create a custom
AppWizard, see Chapter 24, "Creating Custom AppWizards."

See Also Creating Applications Using AppWizard, Starting an AppWizard Project,
Creating an MFC App Wizard EXE Project, Choosing Database Options, Choosing
OLE Options, Choosing SDI and MDI Application and Project Options, Creating an
MFC AppWizard DLL Project, Creating an MFC Form-Based Application With
App Wizard, Understanding App Wizard-Created Files

CHAPTER 2

Working with Projects

The project workspace organizes your projects and their elements, and maintains
your preferences for the display of information. The project workspace consists of a
subdirectory and various files. The files describe the individual projects in the project
workspace, and how to display them.

There are three basic scenarios for using project workspaces. Before you create your
project workspace, you should determine which scenario for project workspace
organization suits your needs best. For further information, see "Using Project
Workspaces: Three Basic Scenarios" on page 26. You can modify the three scenarios
in a number of ways to fit your specific requirements.

When you create or open a project workspace, Microsoft Developer Studio displays
the elements of your Project Workspace in the project workspace window, as shown in
Figure 2.1.

Figure 2.1 The Project Workspace Window

Project toolbar

Select default project
configuration list

Project workspace window

Tabs to access panes

When you open a project workspace file, Developer Studio displays the Project
Workspace window, along with other windows, in the last locations and states that

23

Visual C++ User's Guide

24

you chose for them. You can dock or undock, size, move, or hide the Project
Workspace window.

In the Project Workspace window, Developer Studio creates panes, which you access
from the tabs at the bottom of the window. Certain panes contain a specific view of
all the projects in your workspace. Each pane has at least one top-level folder, which
contains the elements that make up that view of the project; expanding the folder
displays the details of that view. In a project workspace containing Visual C++
projects, for instance, the Project Workspace window contains the following panes by
default.

Pane Title

FileView

ResourceView

Class View

InjoView

Description

Displays the projects that you have created. Expanding the top-level
folders shows files within the project.

Displays the resource files included in your projects. Expanding the
top-level folders shows the resource types.

Displays the C++ classes defined in your projects. Expanding the top­
level folders shows the classes; expanding a class shows its members.

Displays the table of contents for Books Online. Expanding the top­
level folders shows books and topics.

Each folder within a view can contain other folders or various kinds of items. The
items may consist of subprojects, files, resources, classes, topics, and so on.

It is important to keep in mind that the organization of the items in a folder
represents the relationships of the items in the project, not the physical location of
items. A project folder, for instance, contains icons representing the files used to
build the project. The icons show whether or not the files are used in the build
process, as well as the relationship of source files to their dependent files, such as
header files. Those files could reside in any directory on any drive accessible from
your machine.

The default project configuration is shown in bold type in the panes. If you choose a
build command, you build that default project configuration.

You can access information about elements of the project workspace from the views
in the Project Workspace window. Selecting any item and pressing ALT+ENTER opens
the property page for that item. Double-clicking any item in a pane displays that item
in an appropriate way: source files in a text editor, dialog boxes in the dialog editor,
information topics in the topic window, and so on.

Pop-up menus take action on selections in the Project Workspace window. When you
make a selection, and then press the right mouse button with the mouse pointer over
the selection, the pop-up menu appears. It contains commands appropriate for the
selection.

See Also Working with Window Types, Customizing the Toolbar, Customizing the
Keyboard, Setting Text Editor Options

Chapter 2 Working with Projects

Project Workspaces
In Microsoft Developer Studio, you organize your work in a project workspace. A
project workspace consists of a location - the workspace directory - and some files
in that directory, which describe the workspace and its contents. When you first
create a project workspace, you create a directory for the project workspace and a
project workspace file with the extension .MDP. The project workspace file is what
you save when you have completed working in your new project workspace and what
you open when you want to resume work in your project workspace.

The project workspace directory is the root directory for the project workspace, and
all subsequent projects that you add to this project workspace are added in
subdirectories under the project workspace directory. By default, Developer Studio
selects the Projects subdirectory under the Developer Studio installation directory as
the initial location for all your project workspace directories. You can, however,
choose another location. If you do choose another location, Developer Studio retains
that location as the initial location for subsequent project workspaces that you create.
The project workspace directory contains the following files:

• The project workpace file (.MDP)

• The project workspace makefile (.MAK)

Usually all source files associated with the first top-level project are created in the
project workspace directory. You can add source files to the project from any location,
however, without copying or moving them to this subdirectory.

Elements of Project Workspaces
Project workspaces have the following elements:

Project

Configuration

A set of zero or more source files, with one or more configurations. A
project also specifies the type of application to build. Your project
workspace can contain any number of projects. A project can contain
subprojects.

Settings for a project that specify a platform on which the output file is to
run, and tool settings with which to build the output. You can add any
number of configurations to a project. By default, when you create a new
project, you create Debug and Release configurations.

Within a project workspace, projects can have the following relations:

Top-level project A project that is not a dependency of any other project. Not a subproject
of any other project. A project workspace has at least one top-level
project.

SUbproject A project that has a dependency relationship with another project. The
build system determines if it needs to build the subproject before it builds
the containing project. Any project can be a subproject of any other
project.

25

Visual C++ User's Guide

Files Associated with Project Workspaces
When you create a project workspace, Developer Studio creates two or more
associated files. In the case of Visual C++ projects, for instance, it creates a project
makefile (.MAK) and a project workspace file (.MDP) to store information.

The .MAK file stores the following kinds of information required to build the project:

• The names and locations of the source files that are used to build each project.

• The settings for the tools required to build each project, such as compiler and
linker options.

• The tools and actions required to build the project.

The .MDP file stores the following kinds of information for your particular
workspace:

• The look and organization of Microsoft Developer Studio for the project
workspace (choice and locations of windows, for instance).

• Breakpoints that you have set.

• Other information related to your local setup, such as fonts and colors.

If you work in a group, you generally want to share the makefile with other members
of your group, so that they can build the projects defined in the project workspace. To
do this, see "Maintaining Makefiles Under Source-Code Control" on page 128 in
Chapter 4 for more information. You probably should not share the project workspace
file, because it contains information about your local organization and appearance.

Developer Studio may also generate a number of other transient files as you use it,
depending on the project type and the settings that you choose. Developer Studio
manages these files without any explicit intervention on your part.

U sing Project Workspaces: Three
Basic Scenarios

26

There are three basic scenarios for using project workspaces. These consist of the
following cases:

• A top-level project only

• A top-level project with a single subproject

• An empty top-level project with multiple subprojects, which also may have
subprojects

These are very basic, general organizations. You can modify or expand them in
innumerable ways to serve your particular development needs.

Chapter 2 Working with Projects

Top-Level Project
This organization is suitable for the development of a single application without any
dependencies on any other applications. Choose this organization if you want to
develop, for instance, a single application generated by App Wizard, a single console
application, or a static library. Figure 2.2 shows the relationships among the elements
of a top-level project.

Figure 2.2 Top-Level Project

MYPROG
\MSDEv\Projects\MYPROG

~ To create a top-level project

1 From the File menu, choose New.

The New dialog box appears.

Debug config

MYPROG.EXE
(wi debug info)

2 From the New list, choose Project Workspace.

The New Project Workspace dialog box appears.

3 Select the project type from the list of types.

4 In the Name text box, type a name for the project workspace.

This name is also the name of the initial top-level project.

Release config

MYPROG.EXE
(w/o debug ·info)

S From the Platforms list, select any of the available platforms for which you want to
create applications.

Note Win32 is the default platform. You must install the Microsoft Visual C++ Cross­
Development Edition for Macintosh® before other platforms are available.

6 In the Location text box, type another directory name in which you want to create
this project workspace subdirectory if you do not want to use the default directory,
PROJECTS.

If you revise this location, Developer Studio retains the new location as the new
default for creating project workspaces.

7 Choose the Create button.

Now you can add files if necessary, modify the source code, add functions to classes
or add message-handlers, change the settings for your application, and so on.

Note If you chose an AppWizard, OLE ControlWizard, or Custom AppWizard type, the wizard
created a set of starter files for your application. You can now modify those files to complete
your application.

27

Visual C++ User's Guide

You build a configuration of your application by selecting a configuration to build,
using the Default Configuration drop-down list on the Project toolbar, and then
choosing the Build command from the Build menu.

Top-Level Project with a Single Subproject

28

An organization that has a top-level project with a single subproject is suitable for the
development of an application that depends on another application. You could choose
this organization if you want to develop, for instance, an executable generated by
AppWizard that uses a dynamic-link library (DLL) also generated by AppWizard, or
a console application that uses a static library that you create. Figure 2.3 shows the
relationships among the elements of a top-level project with a single subproject.

Figure 2.3 Top-Level Project with a Single Subproject

MYPROG
\MSDEv\Projects\MYPROG

MYDLL
\MSDEv\Projects\MYPROG\MYDLL

Debug config

MYPROG.EXE
(wi debug info)

MYDLL.DLL
(wi debug info)

~ To create a top-level project with a subproject

1 Create a top-level project.

2 From the Build menu, choose Subprojects.

The Subprojects dialog box appears.

3 Choose the New button.

. Release config

MYPROG.EXE
(w/o debug info)

MYDLL.DLL
(w/o debug info)

The Insert Project dialog box appears, with the Subproject option selected, and the
existing top-level project selected in the drop-down list. Retain these default
choices.

4 In the Name text box, type a name for the subproject.

This name is appended to the existing project workspace directory to form the
fully qualified path for the new subproject directory.

5 From the Type list, select a project type.

6 Select any of the available platforms for which to create initial Debug and Release
configurations.

Chapter 2 Working with Projects

7 Choose the Create button.

If you have chosen an application type for a type generated by App Wizard, OLE
ControlWizard, or Custom App Wizard, the dialog box(es) for that wizard appear.

After you have responded to any wizard dialog boxes, the Subprojects dialog box
reappears. Your newly created subproject is selected for inclusion.

S Choose the Close button.

You have completed creating a top-level project with a single subproject. In FileView,
the top-level project displays an icon representing the dependency relation for the
subproject. The subproject also has a top-level representation.

Now you can add files if necessary, modify the source code, add functions to classes
or add message-handlers, change the settings for the application, and so on.

When you build in this project workspace, you can build either the subproject or both
the top-level project and the subproject.

~ To build the subproject only

1 Select the subproject with the configuration you want to build from the Set Default
Project Configuration drop-down list on the Project toolbar.

-or-

From the Build menu, choose Set Default Configuration, and choose from the list
in the Default Project Configuration dialog box.

2 From the Build menu, choose Build.

~ To build both the top-level project and the subproject

1 Select the top-level project with the configuration you want to build from the Set
Default Project Configuration drop-down list on the Project toolbar.

-or-

From the Build menu, choose Set Default Configuration, and choose from the list
in the Default Project Configuration dialog box.

2 From the Build menu, choose Build.

If the subproject output file is out of date, the build system first builds it, and then
it builds the top-level project. If it is not out of date, the build system builds only
the top-level project.

If you want to force the system to rebuild all the output files, choose Rebuild All from
the Build menu. This inethod ensures, for instance, that you are always testing both
elements of your project workspace with the most up-to-date changes.

Note If you have an output executable created by a project which calls a DLL created by a
subproject, you need to do one of three things in order to run the executable and have it find
the DLL. You can add the output directory for the DLL to your path, you can specify the output

29

Visual C++ User's Guide

directory for the DLL to be same as the output directory for the executable, or you can move
the DLL after it is built to a directory on the path, using a custom build command. In the case
when you're debugging, it is preferable to set the output directories to be the same for the
executable and the DLL.

Empty Top-Level Project with Multiple Subprojects

30

This organization is suitable for the development of a suite of related applications,
some of which have other applications on which they depend. Choose this
organization if you want to develop, for instance, two executables generated by
AppWizard, one of which uses a DLL also generated by AppWizard, or two console
applications, one of which uses a static library that you create. Figure 2.4 shows the
relationships among the elements of an empty top-level project with multiple
subprojects.

Figure 2.4 Empty Top-Level Project with Multiple Subprojects

Debug config

PRIMPROJ
\MSDEV\Projects\PRIMPROJ
(contains no buildable files)

MYPROG1
\MSDEv\Projects\PRIMPROJ\MYPROG1

MYDLL
\MSDEv\Projects\PRIMPROJ\MYDLL

MYPROG2
\MSDEv\Projects\PRIMPROJ\MYPROG2

PRIMPROJ.EXE
(wi debug info)

MYPROG1.EXE
(wi debug info)

MYDLL.DLL
(wi debug info)

MYPROG2.EXE
(wi debug info)

Release config

PRIMPROJ.EXE
(w/o debug info)

MYPROG1.EXE
(w/o debug info)

MYDLL.DLL
,(w/o debug info)

MYPROG2.EXE
(w/o debug info)

The following procedure assumes that all the applications in your suite are
App Wizard applications. The approach is appropriate for other project types,
however.

~ To create an empty top-level project with multiple subprojects

1 Create a top-level project.

Note In this case, select Application in the Type list. This option creates the project
workspace and the top-level project without any source files. You will not add any files to
the top-level project in this example.

Chapter 2 Working with Projects

The directory that you create in this case contains the project workspace files. It
also serves as the root for the subdirectories that you create for the rest of the
projects in your application suite.

2 From the Build menu, choose Subprojects.

The Subprojects dialog box appears.

3 Choose the New button.

The Insert Project dialog box appears, with the Subproject option selected, and the
existing top-level project selected in the drop-down list. Retain these default
choices.

4 In the Name text box, type a name for the subproject.

This name is appended to the existing project workspace directory to form the
fully qualified path for the new subproject directory.

5 Select the MFC App Wizard (exe) project type.

6 Select any of the available platforms for which to create initial Debug and Release
configurations.

7 Choose the Create button, and complete the App Wizard dialog boxes as they
appear.

After you have responded to the dialog boxes, the Subprojects dialog box
reappears.

8 Repeat steps 3 through 7 for the second subproject. Select the top-level project
from the drop-down list of the Insert Project dialog box.

g Repeat steps 3 through 7 for the subproject contained by the first executable
project. In the Insert Project dialog box, select the MFC AppWizard (dll) project
type, and select the first App Wizard executable from the drop-down list.

10 Choose the Close button.

When you have completed adding the top-level project and all the subprojects, the
File View pane in your Project Workspace window looks like the one shown in Figure
2.5. The empty top-level project displays only icons representing dependency
relations for the App Wizard executable subprojects. Each subproject also has a top­
level representation.

31

Visual C++ User's Guide

32

Figure 2.5 FileView with Multiple Subprojects

Multiple_Subs files
r""~ WizGen_Exe1
: ~ WizGen_Exe2

I±Ha WizGen_DLL files
H· .. '~.~.!)=g.'~.~.f}i!.~i.l

" WizGen_DLL
[!l ChildFrm.cpp

. [!l MainFrm.cpp
~ ReadMe.txt
Itll StdAfx.cpp

, Itll WizGen_Exe1.cpp
i .. ·· [!l WizGen_Exe1.rc
i· .. 1tll WizGen_Exe1Doc.cpp
i· .. · Itll WizGen_Exe1View.cpp

e·· iii 0 ependencies
!±} .. ~ WizGen_Exe2 files

Now you can add files if necessary, modify the source code, add functions to classes
or add message-handlers, change the settings for the application, and so on.

When you build in this project workspace, you now have a number of choices. You
can build the following combinations:

• The subproject DLL of the subproject App Wizard executable

• The subproject AppWizard executable that contains the subproject DLL, as well as
the contained DLL

• The subproject App Wizard executable that does not contain a subproject

• Both AppWizard executables and the DLL

~ To build the subproject DLL only

1 Select the subproject DLL with the configuration you want to build from the Set
Default Project Configuration drop-down list on the Project toolbar.

-or-

From the Build menu, choose Set Default Configuration, and choose from the list
in the Project Default Configuration dialog box.

2 From the Build menu, choose Build.

~ To Build the subproject executable and its subproject DLL

1 Select a configuration of the subproject executable to build from the Set Default
Project Configuration drop-down list on the Project toolbar.

-or-

From the Build menu, choose Set Default Configuration, and choose from the list
in the Project Default Configuration dialog box.

Chapter 2 Working with Projects

2 From the Build menu, choose Build.

If the subproject DLL is out of date, the build system first builds it, and then it
builds the subproject executable. If it is not out of date, the build system builds
only the subproject executable.

~ To build the second subproject executable only

1 Select a configuration of the second subproject executable to build from the Set
Default Project Configuration drop-down list on the Project toolbar.

-or-

From the Build menu, choose Set Default Configuration, and choose from the list
in the Project Default Configuration dialog box.

2 From the Build menu, choose Build.

~ To build the entire suite of applications

1 Select a configuration of the empty top-level project to build from the Set Default
Project Configuration drop-down list on the Project toolbar.

-or-

From the Build menu, choose Set Default Configuration, and choose from the list
in the Project Default Configuration dialog box.

2 From the Build menu, choose Build.

The build checks the subprojects, working its way down the chain of
dependencies, and builds the selected configuration in all the subprojects that are
out of date. In this case, the build system takes no action for the top-level project
because there is nothing to build.

In this example, the top-level project does not build anything. You could choose to
have it build something, however, if the structure of your application suite lent itself
to that organization. You could, for example, choose to have it build an online help
file by adding the help source files to the top-level project and applying custom build
commands to the files to create the online help file as output.

If you want to force the system to rebuild all the output files, choose Rebuild All from
the Build menu. This method ensures, for instance, that you are always testing both
elements of your project workspace with the most up-to-date changes.

Note If you have an output executable created by a project that calls a DLL created by a
subproject, you need to do one of three things in order to run the executable and have it find
the DLL. You can add the output directory for the DLL to your path, you can specify the output
directory for the DLL to be same as the output directory for the executable, or you can move
the DLL after it is built to a directory on the path, using a custom build command. In the case
when you're debugging, it is preferable to set the output directories to be the same for the
executable and the DLL.

33

Visual C++ User's Guide

Managing Project Workspaces
Project workspaces contain projects that you can build.· A project consists of a single
set of files and a set of one or more project configurations. Each project
configuration, together with the set of files, determines the binary output file that you
create.

When you create a project workspace, by default you always create one project with
two configurations for each platform:

• A version with debugging information included and optimizations disabled
(Debug)

• A version with no debugging information and optimizations enabled (Release)

After you have created that initial project workspace, you can add:

• New projects to your existing workspace.

• New configurations to an existing project.

• Subprojects to any project.

A subproject establishes a dependency of one project on another. A project that
builds an executable program that depends on a static library is one example. If
the static library is a subproject of the project that builds the executable program,
then the library will be updated before the executable program is built. Each
configuration of a subproject is made a dependency of the corresponding
configuration in the containing project. Building a configuration of the executable
program also builds the same configuration of the subproject.

Creating a Project Workspace

34

When you start a software development task with Microsoft Developer Studio, you
create a project workspace and an initial project in the workspace. The initial project
has Debug and Release configurations for each platform that you choose. Before you
create your project workspace, you should determine which of the basic scenarios for
project workspace organization suits your needs best. For further information, see
"Using Project Workspaces: Three Basic Scenarios" on page 26.

With Visual C++, there are essentially two ways to create a new project workspace
and the initial new project in the workspace:

• Choose an App Wizard, OLE ControlWizard, or Custom App Wizard project type.
These choices automatically create starter files with the appropriate classes using
the Microsoft Foundation Class Library (MFC). For more information on
AppWizard, see Chapter 1, "Creating Applications Using AppWizard." For more
information on OLE ControlWizard, see "The OLE Control Tutorial" in Tutorials.
For more information on Custom App Wizard, see Chapter 24, "Creating Custom
App Wizards."

Chapter 2 Working with Projects

• Choose another project type. In this case, you must create all the files, and select
the files to add to the project.

When you create a new project workspace for Visual C++, Microsoft Developer
Studio always creates the following two files:

• Makefile. This file has the extension .MAK. It contains all commands, macro
definitions, options, and so forth to specify how to build all the configurations for
all projects in the project workspace .

• Workspace configuration file. This file has the extension .MDP. Itcontains
environment settings for Developer Studio, such as window sizes and positions,
insertion point locations, state of project breakpoints, contents of the Watch
window, and so on.

You cannot modify these files directly.

When you create a project workspace, you select a root directory in which to create
your project workspace directory. By default, Developer Studio selects the PROJECTS
directory under your installation directory. You can, however, choose another
directory. If you choose another directory, Developer Studio uses that choice for all
subsequent project workspaces that you create.

When you create a project workspace, you must specify a name that is used both for
the project workspace directory and the initial project in the workspace. Developer
Studio creates a subdirectory of this name in the root directory. This subdirectory
contains the files for your project workspace and the files for your initial project.

Developer Studio also specifies subdirectories for intermediate and final output files
for the various projects that you specify. These subdirectories enable you to build
various configurations of a project without overwriting intermediate and final output
files with the same names. With the Settings command on the Build menu, you can
open the General tab in the Project Settings dialog box and modify these
subdirectories, if you choose.

When you create the initial project in a new project workspace, you automatically
create two configurations: Debug and Release. The Debug version specifies settings
to include debugging information and to disable optimizations during the build. The
Release version doesn't specify settings to include debug information, and enables
any optimizations that you have chosen.

If you use AppWizard, OLE ControlWizard, or Custom AppWizard to create the
initial project for Visual C++, these tools also write the starter files into the project'
directory and subdirectories. If you use another project type, the files for the project
can initially be in the project directory or in any other directory that you want. You
can add files from any directory to a project. Adding files to a project does not move
the files on your disk drives. The project merely records the name and location of the
file and displays an icon in the project window to indicate the file's relationship to
other files in the project.

35

Visual C++ User's Guide

36

Note If you add files from directories above the project workspace directory, Developer Studio
uses absolute paths in the filenames for those files in the project's .MAK file. Because of the
absolute paths, it is difficult to share the .MAK file. Other developers in your group may have
other drive names or higher-level directory structures. See "Maintaining Makefiles Under
Source-Code Control" on page 128 in Chapter 4 for further information about sharing
makefiles.

~ To create a project workspace

1 From the File menu, choose New.

The New dialog box appears.

2 Select Project Workspace from the list.

3 Choose OK.

The New Project Workspace dialog box appears.

4 From the Type list, select the type of application that you want to create.

5 In the Name text box,type the name for the project workspace. This name is also
used for the initial project· in the Project Workspace window.

Developer Studio automatically creates a new subdirectory with this name for your
project workspace and for the files for the initial project.

6 Select the platform type or types from the Platforms list.

Note Win32 is the default platform. You must install the Microsoft Visual C++ Cross­
Development Edition for Macintosh® before other platforms are available.

7 If you want, type a different location for the root directory for this project
workspace in the Location text box, or choose the Browse button and select a
location.

S Choose the Create button.

If you chose a project type that does not generate starter files, you now need to add
the files to your projects. See "Adding and Removing Files from Projects" on page 53
for more information.

Project Types
Each project has a project type, which you choose when you create the project. The
project type specifies what to generate and specifies some default settings required in
order to build that output type. It specifies, for instance, the settings that the compiler
uses for the source files, the libraries that the linker uses to build each project
configuration, the default locations for output files, defined constants, and so on.

You can select from the following nine project types in Visual c++ version 4.0:

MFC App Wizard (exe) Applications with a full graphical interface, developed with
MFC. Visual C++ automatically creates skeleton files with the appropriate classes
and adds the files to the project. The file extension is .EXE.

Chapter 2 Working with Projects

MFC AppWizard (dll) Function libraries developed with MFC. Visual C++
automatically creates skeleton files with the appropriate classes and adds the files
to the project. The file extension is .DLL.

OLE ControlWizard OLE controls, developed with MFC. Visual C++ automatically
creates skeleton files with the appropriate classes and adds the files to the project.
The file extension is .OCX.

Application Applications with a full graphical interface, developed with Windows
NT Win32 API functions or with MFC. The file extension is .EXE.

Dynamic-Link Library Function libraries developed with Windows NT Win32 API
functions that are called dynamically at run time by 32-bit Windows-based
programs. The file extension is .DLL.

Console Application Applications developed with Console API functions, which
provide character-mode support in console windows. The Visual C++ run-time
libraries also provide output and input from console windows with standard I/O
functions, such as printfO and scanfO. The file extension is .EXE.

Static Library Standard libraries created directly by the build, using the object files
and other library files belonging to the project. The generated-library is composed
of all the object files in the project, all the object files generated by the project, and
all the libraries in the project. The file extension is .LIB.

Makefile Any type of command-line program or any makefile created by an
application other than the current version of Developer Studio. With this project
type, you can represent the project files, display class information, and view
resources in the Project Workspace window, as well as add this project as a
subproject to other projects.

Custom AppWizard A custom modification to MFC AppWizard. Visual C++
automatically creates starter files with the appropriate classes and adds the files to
the project. You can subsequently add these to the list of types displayed. The file
extension is .A WX.

In addition to these project types, you can create custom App Wizards, and add these
project types to the list.

Platform Types
The platform type for a project configuration specifies the operating environment. If
you have installed the Visual C++ Cross-Development Edition for Macintosh®, for
example, you can create project configurations for both Win32 and Macintosh
platforms. The platform type specifies default settings required by a given platform,
such as settings that the compiler uses for the source files, the libraries that the linker
uses to build each project configuration, the default locations for output files, defined
constants, and so on. It also specifies the tools required to build the final output files
for that platform.

37

Visual C++ User's Guide

Saving a Project Workspace
You can save the workspace files and all other files that you have modified with the
Save All command.

~ To save all files in a project workspace

• From the File menu, choose Save All.

Microsoft Developer Studio saves all files that you have modified - whether or
not they are included in a project - without any further action on your part.

Closing a Project Workspace
You can close the workspace files with the Close Workspace command.

~ To close a project workspace

• From the File menu, choose Close Workspace.

If necessary, Microsoft Developer Studio prompts for actions concerning the
windows that are open and the files that you have modified - whether or not they
are included in a project.

Opening an Existing Project Workspace

38

Opening an existing project workspace loads all project workspace information, and
restores all the environment settings to their state when you last saved the project
workspace.

~ To open an existing project workspace

1 From the File menu, choose Open Workspace.

The Open Project Workspace dialog box appears.

The default selection in the List Files Of Type drop-down list is Project
Workspaces (.MDP). .

2 Select the drive and directory containing the project workspace that you want to
open.

3 Select the .MDP file for the project workspace from the File Name list and choose
OK.

-or-

Double-click ihe filename in the list.

The Project 'Workspace window appears, as shown in Figure 2.1, and displays views
of the projects in the workspace.

Chapter 2 Working with Projects

Opening Other File Types
You can open file types other than project workspace files in the Project Workspace
window. In particular, you can openmakefiles (.MAK), or you can open executable
files to debug them or to view their resources.

~ To open an existing makefile with the extension .MAK

1 From the File menu, choose Open Workspace.

The Open Project Workspace dialog box appears.

2 Select Makefiles from the drop-down list to display .MAK files.

3 Select the drive and directory containing the makefile that you want to open.

4 Select the .MAK file from the list and choose OK.

-or-

Double-click the filename in the list.

If you have a project workspace currently open, Developer Studio saves the
workspace and asks if you want to close document windows associated with that
workspace.

If your makefile has a different extension, or has the name MAKEFILE, you can use
the Open command on the FIle menu to open it as a makefile.

~ To open an existing makefile without the extension .MAK

1 From the File menu, choose Open.

The Open dialog box appears.

2 Select All Files from the drop-down list to display all files.

3 From the Open As drop-down list, select Makefile.

4 Select the drive and directory containing the makefile that you want to open.

S Select the file from the list and choose OK.

-or-

Double-click the filename in the list.

If you have a project workspace currently open, Developer Studio saves the
workspace and asks if you want to close document windows associated with that
workspace.

The Project Workspace window appears, and Developer Studio takes the appropriate
action for the file opened. For instance, if you open a project makefile from any
previous version of Visual C++, Developer Studio asks if you want to convert the
makefile to the current format. If you choose to convert the file, Developer Studio
creates a project workspace and its associated files. It then displays the Save As
dialog box so that you can save the new project workspace and its new associated
makefile under a new name.

39

Visual C++ User's Guide

40

Note The new version of the makefile is incompatible with previous versions of Visual C++. If
you want to continue to use the original makefile with the previous version of Visual C++,
choose a different name under which to save new project workspace and makefile.

I

You should set the directories for intermediate and output files as well, so that
Developer Studio does not overwrite the files created by the previous version. See
"Selecting the Directories for Output Files" on page 59 for more information.

You can also open an executable file and create a project workspace for it in order to
debug it.

~ To open an executable file for debugging

1 From the File menu, choose Open Workspace.

The Open Project Workspace dialog box appears.

2 Select Executable Files from the drop-down list to display .EXE files in the File
Name list.

3 Select the drive and directory containing the executable file that you want to open.

4 Select the .EXE file and choose OK.

-or-

Double-click the filename in the list.

If you have a project workspace currently open, Developer Studio saves the
workspace and asks if you want to close document windows associated with that
workspace.

The Project Workspace window opens and displays the executable as a folder in the
FileView pane. You can now choose debugging commands from the Build menu, and
debug the executable. When you close the project workspace, Developer Studio asks
if you want to save the new project workspace associated with this executable file.

~ To open an executable file to view its resources

1 From the File menu, choose Open.

The Open dialog box appears.

2 Select Executable Files from the drop-down list to display all files.

3 From the Open As drop-down list, select Resources.

4 Select the drive and directory containing the executable file that you want to open.

S Select the file and choose OK.

-or-

Double-click the filename in the list.

The resource browser window appears and displays the resources in the
selected file.

Chapter 2 Working with Projects

Specifying Subprojects in a Project Workspace
Subprojects indicate dependency relationships in the project workspace. When you
build a project containing a subproject, the subproject is built first if it is out of date,
and then the containing project is built. The dependency relationship is established by
configuration. That is, if you build the Debug configuration of the containing project,
you also build the Debug configuration of the subproject. Subprojects can contain
other subprojects. All subprojects also have a top-level representation in the FileView
pane.

When you specify a subproject, you can either create a new project and give it a
subproject relationship, or you can choose an existing project and give it a subproject
relationship.

~ To create a new project as a subproject

. 1 From the Build menu, choose Subprojects.

The Subprojects dialog box appears.

2 From the Select Project To Modify list, select the project that is to contain the new
subproject.

3 Choose the New button.

The Insert Project dialog box appears, with the Subproject option selected, and the
selected project displayed in the Subproject Of drop-down list. Retain these default
choices. .

4 In the Name text box, type a name for the subproject.

This name is appended to the existing project workspace directory to form the
fully qualified path for the new sUbproject directory.

5 From the Type list, select a project type.

·6 Select any of the available platforms for which to create initial Debug and Release
configurations.

7 Choose the Create button.

If you have chosen an application type for a type generated by App Wizard, OLE
ControlWizard, or Custom AppWizard, the dialog box(es) for that wizard appear.

After you have responded to any wizard dialog boxes, the Subprojects dialog box
reappears. Your newly created subproject is selected for inclusion.

S Choose OK.

~ To include an existing project as a subproject

1 From the Build menu, choose Subprojects.

The Subprojects dialog box appears.

2 From the Select Project To Modify list, select the project that is to contain the
subproject.

41

Visual C++ User's Guide

The Select Subprojects To Include list displays the projects that you can include as
subprojects of the selected project. Projects that are already subprojects for this
project have a check next to them.

3 From the Select Subprojects To Include list, select the project (or projects) that you
want to include as a subproject.

4 Choose OK.

If you have included a project in another project as a subproject, you can remove it
from the project, and by doing so, remove its dependency relationship. This does not,
however, remove the project from the project workspace.

~ To remove a subproject from a project

1 From the Build menu, choose Subprojects.

The Subprojects dialog box appears.

2 From the Select Project To Modify list, select the project that now contains the
subproject.

The Select Subprojects To Include list displays projects that are already subprojects
with a check next to them.

3 From the Select Subprojects To Include list, select the project (or projects) that you
want to remove as a subproject.

4 Choose OK.

Working with Views

42

In the Project Workspace window, Developer Studio creates panes, which you access
from the tabs at the bottom of the window. Certain panes contain a specific view of
all the projects in your workspace. Each pane has at least one top-level folder, which
contains the elements that make up that view of the project; expanding the folder
displays the details of that view. In a project workspace containing Visual C++
projects, for instance, the Project Workspace window contains the following panes by
default.

Pane Title

FileView

ResourceView

ClassView

InfoView

Description

Displays the projects that you have created. Expanding the top-level
folders shows files within the project.

Displays the resource files included in your projects. Expanding the
top-level folrlers shows the resource types.

Displays the C++ classes defined in your projects. Expanding the top­
level folders shows the classes; expanding a class shows its members.

Displays the table of contents for Books Online. Expanding the top­
level folders shows books and topics.

a

Chapter 2 Working with Projects

You can switch from one pane to another by selecting a tab at the bottom of the
Project Workspace window, as shown in Figure 2.6. You can also switch using
CTRL+PAGE UP and CTRL+PAGE DOWN.

Figure 2.6 Project Workspace Window

· .~ C,Il,boutDlg

· r····. C,Il,boutDlg(}
: ' '\i'. DoDataExchange(}
: .~ CChildFrame
· -r: CMainFrame
· ~ CMyprojlApp
~ CMyprojl Doc
.~ CMyproj1View

· .~ Globals

Project tool bar

Select default project
configuration list

Project workspace window

Tabs to access panes

Each pane contains a hierarchical (tree), view consisting of various nodes. You can
expand the nodes in the hierarchy to display their contents, or collapse the nodes to
display the organization. The top-level node (or nodes) in a pane is the folder. Each
folder can contain a variety of items. Some items are container items, such as
resource scripts, which contain resources used in the program. Container items can
also be expanded. A bottom-level node, which you cannot further expand, represents
an editable item. You open the item in an appropriate editor - text editors for
source files or classes, dialog box editor for dialog box resources, and so on - to edit
the resource.

Tip While using any pane in the Project Workspace window, you can click the right mouse
button when the mouse pointer is over the selection to display a pop-up menu of frequently
used commands. The available commands depend on the current selection. For example, if
the selection is a source file, the pop-up menu shows the Properties command and several
commands also available on the Build menu, such as Build and Compile.

U sing Folders
The top-level node (or nodes) in a pane is the folder. Each folder can contain a
variety of items, including other folders. You can open a folder to display the items
that it contains, or you can close a folder to simplify the view in the pane.

The types of panes displayed in the Project Workspace window depend on the type of
project. In Visual c++ projects, for instance, Microsoft Developer Studio displays a
pane that contains the classes in the project.

43

Visual C++ User's Guide

~ To.open a folder

• Double-click the folder.

-or-

• Click the plus sign (+) to the left of the folder.

~ To close a folder

• Double-click the folder.

-or-

• Click the minus sign (-) to the left of the folder.

Working with Items

14

Each folder in a pane can contain a variety of items. Some items are container items,
such as resource scripts, that contain resources used in the program. Container items
can be expanded in the same way folders can be expanded. A bottom-level node that
you cannot expand further represents an editable item. Rather than expanding these
nodes, you open the item in an appropriate editor-text editors for source files or
classes, dialog box editor for dialog box resources, and so on-to edit the resource.
All items have properties, which you can view and edit on an item's property page(s).
Each type of item has a distinct set of properties.

~ To open an editable item

• Double-click the item.

The appropriate editor for the item opens and displays the item.

~ To view or change an item's properties

• Select the item, and then press ALT+ENTER.

-or-

• Select the item, click the right mouse button, and from the pop-up menu, choose
Properties.

-or-

• Select the item, and from the Edit menu, choose Properties.

The property page for the item appears. If the item has editable properties, you can
edit them on the property page, and those edits take immediate effect.

~ To delete resources or files from a folder

• Select the item, and press the DEL key.

Chapter 2 Working with Projects

Shortcut Methods for Views
. While using any view in the Project Workspace window, you can click the right

mouse button when the mouse pointer is over the selection to display a pop-up menu
of frequently used commands. The commands available depend on the current
selection. For example, if the selection is a source file, the pop-up menu shows the
Properties command and several commands also available on the Build menu, such
as Build and Compile.

You can use the shortcut methods listed in Table 2.1 to navigate in the various views,
to expand and contract nodes, to select items, and so on.

Table 2.1 Shortcut Methods for Views

Method

HOME

END

PAGE UP

PAGE DOWN

CTRL+PAGE UP

CTRL+PAGE DOWN

UPARROW

DOWN ARROW

CTRL+UP ARROW

CTRL+DOWN ARROW

SHIFf +UP ARROW

SHIFf+DOWN ARROW

LEFfARROW

RIGHT ARROW

BACKSPACE

ENTER

PLUS SIGN

MINUS SIGN

ASTERISK

Result

Moves to first node in tree

Moves to last node in tree

Moves up one page (number of visible items determines page
size)

Moves down one page (number of visible items determines page
size)

Activates previous Project Workspace window pane

Activates next Project Workspace window pane

Moves to previous node in list

Moves to next node in list

Moves focus up one item

Moves focus down one item

Extends selection up one item

Extends selection down one item

Collapses current node if possible; otherwise, moves to parent
node

Expands current node if possible; otherwise, moves to first child
node

Moves to parent node

Performs default action on node (opens/closes folder, opens
item in the editor, and so on)

Expands current node if expandable

Collapses current node if collapsible

Fully expands current node, including all child nodes

45

Visual C++ User's Guide

Table 2.1 Shortcut Methods for Views (continued)

Method

Click plus sign

Click minus sign

Double-click

CTRL+click

SHIFT +click

Result

Expands current node if expandable

Collapses current node if collapsible

Perfonns default action on node (opens/closes Jolder, opens
ite,n in the editor, and so on)

Selects or deselects item (noncontiguous selection)

Selects block from current selection to item (contiguous
selection)

U sing File View

46

The File View pane shows relationships among the source files and the dependent
files used to build all project configurations included in the project workspace. The
relationships in File View are logical relationships, not physical relationships, and do
not reflect the organization of files on your hard disk. File View also shows
subprojects within the project workspace, if any exist.

The default project configuration in the workspace is indicated in File View by bold
type. You can select the default configuration either by using the pop-up menu in
File View ·or by using the Select Default Project Configuration drop-down list on the
Project toolbar.

When you expand the top-level folder in FileView, it displays the files included in the
project, and the Dependencies folder. If you expand the Dependencies folder, it
displays files that the source files in the project depend on, such as .R or .ICO files.
Figure 2.7 shows an expanded File View.

Figure 2.7 The FileView Pane

Myprojl files
; ~ ChildFrm.cpp
. ~ MainFrm.cpp

[;1J Myproj1.cpp
[;1J Myproj1.rc

. ~ Myproj1Doc.cpp
; .. [;1J Myproj1View.cpp
;·Iiil ReadMe.txt
i . [;1J Stdll.fx.cpp

File View uses file icons to convey additional information about the files in the
project. Table 2.2 shows the icons and their meanings.

Chapter 2 Working with Projects

Table 2.2 File Icons. in FileView

Icon Meaning

Developer Studio can use this file in a build, and it is included in the build
for this project.

Developer Studio can use this file in a build, but it is not included in the
build for this project.

Developer Studio uses this file as an explicit dependency in a project.

Developer Studio cannot build this file using the default tools. Files in this
category might include documentation or specifications. You could specify
custom tools for these files.

Developer Studio refers to this project as a subproject of the project that
contains it. When Developer Studio builds the containing project, it first
builds the output of this subproject if it is out of date with respect to its input
files.

If you have installed a source-code control system that conforms to the Microsoft
Common Source Code Control Interface, the icons also represent some source-code
control states. A grayed icon indicates that a file is under source-code control. A
check next to the icon for a file under source-code control indicates that you have the
file checked out.

U sing Class View
Visual C++ derives the Class View pane from the contents of the source files included
in the project workspace. It shows all the C++ classes for which definitions are
available, and the members of those classes. The relationships in Class View are
logical relationships, not physical relationships.

Note Visual C++ computes the contents of ClassView as a background process. This may
mean that there is some delay from the time you open a project workspace or save a revised
file until the view is ready to be displayed. If you are completing other processes that use
significant computing resources, the delay may increase.

In Class View, you can:

• Add member functions to the selected class.

• Add member variables to the selected class.

• Go to the definition of the class or member.

• Go to the references to the class or member.

• Display derived class or base class graphs.

• Set a breakpoint on a member function.

The folder name shown in bold type in Class View represents the default project
configuration. When you expand the top-level folder in ClassView, it displays the

47

Visual C++ User's Guide

~8

classes included in that project. If you expand any class, it displays the members in
that class. Figure 2.8 shows an expanded Class View.

Figure 2.8 Class View

M1'projl classes
'lit"; CAboutDlg

;... • CAboutDlg(]
!·····w. DoDataExchangeO

-r: CChildFrame
-r: CMainFrame

, .-r: CMyproj1App
-r: CMyproj1 Doc

Class View uses icons to convey additional information about the classes and class
members in the project. Table 2.3 shows the icons and their meanings.

Table 2.3 Icons in ClassView

Icon Meaning

-r: Class

~. Protected member function .,
Private member function

• Public member function

if' Protected member variable ... Private member variable

• Public member variable

You can group the items in a class either alphabetically by name or alphabetically in
access specifier groups- that is,private, protected, or public.

~ To group members in a class

1 Select one or more class nodes.

2 Click the right mouse button to display the pop-up menu.

3 Choose Group By Access to toggle the grouping.

If the command has a check, the members are already grouped by access specifier;
!.c_.-L LL __ • _____________ ..1 _1 __ 1 __ 1 __ ..L.~ __ 11 __

11 Hut, tHCy IDC ~lUUpCU dlpUdUCUl:dUy.

Chapter 2 Working with Projects

Adding Members from ClassView
From Class View, you can add a member function or a member variable to the selected
class. This mechanism allows you to readily add member functions that do not handle
messages or member variables that are not used in a data-exchange and data­
validation context.

Note If you want to add a message-handler function for user interface objects or member
variables for data exchange and data validation, you should use ClassWizard. ClassWizard is
specifically designed to take the relevant information and use it to insert elements in your
source files at the appropriate locations. '

~ To add a member function

1 Select the class to which you want to add a function.

2 With the mouse pointer over the selected class, click the right mouse button to
display the pop-up menu, and choose Add Function.

The Add Member Function dialog box appears.

3 In the Function Type text box, type the function's return type.

4 In the Function Declaration text box, type the function declaration. The Function
Type text box contains the return type for the function, so here you type only the
function name, followed by a list of the names and types of formal parameters
enclosed in parentheses.

5 Select an access specifier for the function from the Access group of options.

6 If you want a static function, select the Stactic check box.

7 If you want a virtual function, select the Virtual check box.

8 Choose OK.

This procedure adds a declaration to the header file for the class, and a corresponding
function body in the implementation file for the class.

~ To add a member variable

1 Select the class to which you want to add a variabltt.

2 With the mouse pointer over the selected class, click the right mouse button to
display the pop-up menu, and select Add Variable.

The Add Member Variable dialog box appears.

3 In the Variable Type text box, type the Variable type.

4 In the Variable Declaration text box, type the variable name.

49

Visual C++ User's Guide

50

5 Select an access specifier for the variable from the Access group of options.

6 Choose OK.

This procedure adds a definition to the header file for the class.

See Also Working with Classes, Adding a New User-Interface Class, Adding a
Message Handler, Defining Member Variables, Access Specifiers, Methods, Storage­
Class Specifiers, C++ Declarations, C++ Definitions, Controlling Access to Class
Members

Browsing Symbols from ClassView
From Class View, you can get information about the use of the classes, functions, and
variable symbols in your application. You can select a symbol, and then automatically
open that source file to the definition or declaration of the symbol, or find references
to those symbols in your application's source files.

~ To find a definition or declaration '

1 Select the symbol for which you want to find the definition or declaration.

2 With the mouse pointer over the selected class, click the right mouse button to
display the pop-up menu, and select Go To Definition or Go To Declaration.

-or-

Double-click the name of the symbol.

Visual C++ opens a text editor window and displays the source file containing the
definition or declaration, with the insertion point positioned there.

Note Visual C++ computes the contents of ClassView as a background process. This may
mean that there is some delay from the time you open a project or save a revised file until the
view is computed, and you can find a definition or declaration. If you are completing other
processes that use significant computing resources, the delay may increase.

~ To find references

1 Select the symbol for which you want to find references.

2 With the mouse pointer over the selected class, click the right mouse button to
display the pop-up menu,and select References.

Note If you have not built your application with the option to build a browse information
file, a message box appears, asking if you want to build the browse information file. If you
choose Yes, it builds the browse information file, and you can then find references. If you
choose No, the references are not avaiiabie.

The Definitions And References browse information window appears, with the
symbol that you chose selected.

See Also Browsing Through Symbols,. Finding Definitions and References

Chapter 2 Working with Projects

Displaying Graphs from ClassView
From Class View, you can display graphs showing the class derivations and the
function-calling order in your application.

Note If you have not built your application with the option to build the browse information file,
a message box appears, asking if you want to build the browse information file. If you choose
Yes, it builds the browse information file, and you can then find references. If you choose No,
the references are not available. Building a browse information file increases your build times.

~ To display a class graph

1 Select the class for which you want to display a graph.

2 With the mouse pointer over the selected class, click the right mouse button to
display the pop-up menu, and choose Base Classes to display a graph of the
derivation for this class, or Derived Classes to display a graph of classes derived
from this class.

The browse information window appears, with a graph for the class that
you chose.

3 Select the function for which you want to display a graph.

4 With the mouse pointer over the selected class, click the right mouse button to
display the pop-up menu, and choose Calls to display a graph of the functions that
this function calls, or Called By to display a graph of functions that call this
function.

The browse information window appears, with a graph for the function that
you chose.

See Also Browsing through Symbols, Displaying Function Information

Setting Breakpoints in ClassView
From Class View, you can quickly set breakpoints for use in the integrated debugger.
You can set breakpoints on the definition of member functions.

~ To set a breakpoint

• Select the member function, click the right mouse button to display the pop-up
menu, and choose Set Breakpoint.

The breakpoint is set at the definition, and the breakpoint symbol appears in the
source file at the breakpoint location.

U sing Resource View
Microsoft Developer Studio derives the Resource View pane from the contents of the
resource file (or files) included in the project workspace. Resource View displays all
the resource types and all the individual resources of each type. Resource View is
described fully in Chapter 5, "Working with Resources."

51

Visual c++ User's Guide

U sing Info View
The InfoView pane shows the organization of Books Online. You can display any
topic in its hierarchy. Info View is described fully in the section of Books Online titled
U sing Info Viewer.

Using Projects
A project consists of a project configuration and a set of files, whiCh together

detennine the final binary output file that you create. Developer Studio creates the
final output file from the following elements:

• Settings for the platfonn for which you are building, such as the locations and
names of libraries

• Settings for the type of binary output file, such as application, static library,
dynamic-link library, and so on

• Tools - compiler, linker, and so on - required to build for the specified platfonn,
as well as their settings

• The set of source files

The infonnation for building each individual project is stored in the makefile for the
project workspace, along with the infonnation for all other projects in the workspace.

Inserting and Deleting Projects

52

You can insert new projects into your project workspace. You could, for instance,
create an initial project with Debug and Release configurations specifying an
application for the Win32 environment, and add source files to the projects. Later,
within the project workspace you could create a project specifying a DLL with Debug
and Release configurations for the Win32 environment, and add an entirely disjunct
set of files to this project.

~ To insert a new project into an existing project workspace

1 From the Insert menu, choose Project.

The Insert Project dialog box appears, with the Top-Level Project option selected.

2 In the Name text box, type a name for the project.

This name is appended to the existing project workspace directory to fonn the
fully qualified path for the new project directory.

3 From the Type list, select the project type.

Chapter 2 Working with Projects

4 Select any of the available platforms for which you want to create initial Debug
and Release configurations.

5 Choose the Cre'ate button.

If you have chosen an application type for a type generated by App Wizard, OLE
ControlWizard, or Custom App Wizard, the dialog box(es) for that wizard appear.

The new project that you just created becomes the default project in the project
workspace. If you chose a type other than AppWizard, Custom AppWizard, or OLE
ControlWizard, you must now add files to your project. You can then build your new
project by choosing Rebuild All from the Build menu.

~ To delete a project from a project workspace

1 From the Build menu, choose Configurations.

The Configurations dialog box appears.

2 In the Projects And Configurations box, expand the project that you want to delete.

Projects are the leftmost entities in the tree. You can click the plus or minus sign
to expand or contract them to show or hide their configurations.

3 Select each configuration in the project you want to delete in tum, and choose the
Remove button.

Respond Yes to the message box that appears each time. When you have removed
the last configuration, the project is removed as well.

4 Choose the Close button.

Note Deleting a project removes it as a subproject from any other project in the project
workspace.

Adding and Removing Files from Projects
When you add a file to a project, you add the file to all project configurations in that
project. For instance, if you have a project named MyProject, with Debug and Release
configurations, and an additional project configuration named MyShipProj based on
the Release configuration, adding a file adds it to all those project configurations.

~ To add files to a project

1 From the Set Default Project Configuration drop-down list on the Project toolbar,
select the project to which you want to add files.

If the Project toolbar is not displayed, choose Toolbars from the View menu, and
select Project from the list.

2 From the Insert menu, choose Files Into Project.

The Insert Files Into Project dialog box appears.

3 Select the file type to display.

53

Visual C++ User's Guide

54

4 If necessary, select the drive and directory to view.

Note If you add files from directories above the project workspace directory, Microsoft
Developer Studio uses absolute paths in the filenames for those files in the project's .MAK
file. Because of the absolute paths, it is difficult to share the .MAK file. Other developers in
your group may have other drive names or higher-level directory structures.

5 Select one or more files from the File Name list. You can use the SHIFT or CTRL

key in conjunction with the mouse to make multiple selections.

6 Choose OK.

This procedure adds the files to the selected project.

Repeat the steps for all types of files that you want to add, or to add files from
different subdirectories. When you close the Files Into Project dialog box, Visual C++
automatically scans the files for dependencies. It adds all the included files that it
finds to the Dependencies folder for each project to which you've added files.

Visual C++ automatically scans the added project files recursively for #include
directives, both bracketed «incl.h» and quoted (" incl.h"). It scans both source files
(.C, .CPP, or .CXX) and resource files (.RC or .R), and adds all the included files that
it finds to a Dependencies folder. The files in this folder can have extensions of .H,
.HXX, .INC, .FON, .CUR, .BMP, .ICO, .DLG, or .TLB. You cannot directly add or
delete the files included in this folder.

Visual C++ also refers to the following two exclusion files:

SYSINCL.DAT This file, which contains a default list of system include files, is
installed by the setup program on your computer in the directory in which you
installed Microsoft Developer Studio (MSDEV.EXE).

MSVCINCL.DAT This is a text file that you can create and put in your Windows
directory. You can list in it additional files that you want to exclude, such as
headers for external class librarIes or some of the include files in a large project.
You should use this file for additions because SYSINCL.DAT may be overwritten
if you reinstall Visual C++, if you modify your installation with Setup, or if you
update your installation. If you use the Developer Studio text editor to create this
file, you must exit Developer Studio and then restart it for the file to become
effective.

These lists should contain only files that are not likely to change often. Whenever
Visual C++ updates dependencies, it excludes the files in these lists from dependency
scanning and does not display them in the Dependencies folder. If you change only
files in either of these lists, you must choose Rebuild All from the Build menu in
order to build your selected project. If you merely choose Build, the dependency
folder has no changes in it, and Visual C++ reports that your project is up to date.
Alternatively, you could select the source files that include the changed dependencies,
and choose Compile from the pop-up menu in order to explicitly build those files.

Chapter 2 Working with Projects

After those files have been built, choose Build from the Build menu to build the
project.

If you create a new source file, or open a source file that is not included in the current
default project, you can quickly add it to a project with the pop-up menu.

~ To add an open source file to a project

1 With the mouse pointer in the source file, click the right mouse button.

2 From the pop-up menu, choose Add To Project, and select the project name from
the cascading menu.

~ To remove files from a project

• Select the file in File View, and from the Edit menu, choose Delete.

-or-

• Press the DEL key.

You can hold down the CTRL or SHIFT keys and use the mouse to select mUltiple files
in the Project Workspace window.

Tip Press CTRL and click a selection to toggle the selection state for the clicked item. You can
use this method to quickly remove a file from a multiple selection.

~ To move or copy files from one project workspace to another

1 In the File View pane of the Project Workspace window, select the files that you
want to move or copy.

You can hold down the CTRL or SHIFT keys to select multiple files in the Project
Workspace window. .

2 From the Edit menu, choose Cut if you want to move the files, or Copy if you want
to copy the files.

3 Close the current project workspace.

4 Open the destination project workspace.

5 Select the project to receive the files.

6 From the Edit menu, choose Paste.

If you move or copy selections that include files in Dependencies folders, Visual C++
explicitly moves or copies only the source files. Visual C++ automatically updates the
dependencies before building the project, however, and they appear in the appropriate
Dependencies folders.

Creating and Deleting Configurations in a Project
A project configuration consists of settings that determine the characteristics of the
final output file for a project. When you create a new project configuration for a
project, it initially has the settings from an existing project configuration. The new

55

Visual C++ User's Guide

56

project configuration always uses the same set of files as that existing project,
configuration. You must also specify a platform for the configuration.

A new configuration is a way to make a variation of a project that you are currently
building. It could merely &pecify a different platform, or it could specify different
optimization options, for instance.

~ To create a project configuration

1 From the Build menu, choose Configurations.

The Configurations dialog box appears.

2 In the Projects 'And Configurations box, select the project to which you want to
add a configuration.

Projects are the leftmost entities in the tree. You can click the plus or minus sign
to expand or contract them to show or hide their configurations.

3 Choose the Add button.

The Add Project Configuration dialog box appears.

4 In the Configuration text box, type a new name.

This name, along with the platform type, will be used to identify the new
configuration.

5 From the Copy Settings From drop-down list, select the configuration from which
the new configuration copies its initial settings.

6 From the Platform drop-down list, select a platform for the new configuration.

You can select the same platform as the project on which you are basing the new
one if you want merely a variation of the existing settings.

7 Choose OK.

The Configurations dialog box reappears.

8 Choose the Close button.

A new project configuration is now available from the Set Default Project
Configuration drop-down list on the Project toolbar. You can now choose new
settings for this configuration, and those settings will be retained in the project
configuration.

Note If you choose settings incompatible with the project type for the project or platform on
which you based this configuration, you may not get the result that you expect.

If you add files to the project containing this configuration, those files are also used to
build the configuration.

~ To prevent a file from being built in a configuration

1 From the Build menu, choose Settings.

The Settings dialog box appears.

Chapter 2 Working with Projects

2 Select the General tab.

3 In the Settings For pane, select the file that you want to exclude from the build.

4 Select the Exclude File From Build check box.

5 Choose OK.

~ To delete a configuration from a project

1 From the Build menu, choose Configurations.

The Configurations. dialog box appears.

2 In the Projects And Configurations box, expand the project from which you want
to delete a configuration.

Projects are the leftmost entities in the tree. You can click the plus or minus sign
to expand or contract them to show or hide their configurations.

3 Select the configuration that you want to remove.

4 Choose the Remove button.

Respond Yes to the message box that appears.

5 Choose the Close button.

Updating Dependencies in a Project
After editing one or more source files to add #include directives, you can explicitly
update the project dependencies to add included files to the appropriate dependency
folders.

~ To update dependencies in all the files in the workspace

1 From the Build menu, choose.Update All Dependencies.

The Update All Dependencies dialog box appears.

2 In the Projects box, select the project you want to update.

3 Choose OK.

Visual C++ scans the project files recursively for #include directives, both bracketed
«incl.h» and quoted ("incl.h").1t also refers to the following two exclusion files:

SYSINCL.DAT This file, which contains a default list of system include files, is
installed by the setup program on your computer in the directory in which you
installed Microsoft Developer Studio (MSDEV.EXE).

MSVCINCL.DAT This is a text file that you can create and put in your Windows
directory. You can list in it additional files that you want to exclude, such as
headers for external class libraries or some of the include files in a large project.
You should use this file for additions because SYSINCL.DAT may be overwritten
if you reinstall Visual C++, if you modify your installation with Setup, or if you
update your installation. If you use the Developer Studio text editor to create this

57

Visual C++ User's Guide

file, you must exit Developer Studio and then restart it for the file to become
effective.

These lists should contain only files that are not likely to change often. Whenever
Visual C++ updates dependencies, it excludes the files in these lists from dependency
scanning and does not display them in the Dependencies folder. If you change only
files in either of these lists, you must choose Rebuild All on the Build menu in order
to build your selected project. If you merely choose Build, the dependency folder has
no changes in it, and Developer Studio reports that your project is up to date.

Specifying Settings for a Project Configuration

58

Specifying settings at the project configuration level is sufficient for most projects.
But if you want, you can specify different settings within a project configuration for
various files.

Project configurations have a hierarchical structure of settings. The settings specified
at the project configuration level apply to all files within the configuration. However,
you can specify settings for individual files if you need to compile files with settings
different from the general configuration settings. For instance, if you specify Default
optimizations for a configuration, all files contained within the configuration use
Default optimizations. You can, however, specify specific optimization settings - or
the setting for no optimizations at all -=--- for any individual files in the configuration.
The settings that you specify at the file level in the project configuration override
options set at the configuration level.

You can specify some types of settings, such as linking, only at the project
configuration level.

You can specify settings at the following levels within a project configuration:

• Project configuration level. Settings specified at this level apply to all actions. Any
settings specified for the project configuration apply to every file in the project
uriless overridden at the file level.

• File level. Settings specified at this level apply to file-level actions, such as
compiling. Any settings specified for the file apply only to that file and override
any settings specified at the project configuration level.

Chapter 2 Working with Projects

Selecting the Directories for Output Files,
You can select the directories in which to put the intermediate and final output files
for each project configuration. By putting these files in different directories, you can
maintain copies of the same files built in different ways - for instance, the Debug
and the Release versions of your project.

~ To select output directories

1 From the Build menu, choose Settings.

The Project Settings dialog box appears, as shown in Figure 2.9.

2 In the Settings For pane, select the node for which you want to set directories.

If you select the project configuration node (highlighted in the left pane of Figure
2.9, below), you can set both intermediate and output directories; if you select a
file, you can set only the intermediate directory.

3 Select the General tab.

The General tab is one of several that contain options for the project. This tab
specifies how the project uses the Microsoft Foundation Class Library (MFC) and
which directories the project uses for intermediate and final output files.

4 In the Intermediate Files text box, type the directory name for the intermediate
files (.OBJ files, for instance).

5 If you are setting directories for the project level, type the directory name for the
final output files (.EXE files, for instance) in the Output Files text box.

6 Choose OK.

Figure 2.9 Project Settings Dialog Box

59

Visual c++ User's Guide

60

Specifying Project Configuration Settings
You can set options for a project configuration only when it is selected.

• To specify project settings

1 From the Build menu, choose Settings.

The Project Settings dialog box appears, as shown in Figure 2.9.

2 In the Settings For pane, select the project configuration, such as Win32 Debug
shown in Figure 2.9.

You can also select multiple project configurations, and specify settings common
to all the configurations.

3 From the tabs at the top of the dialog box, select the type of settings that you want
to specify.

4 Specify the settings you want on the selected tab.

On the C/C++ and Link tabs in Visual C++, you can select from the Category list
at the top of the tab to set options in various categories, if necessary.

For more information on linker or Visual C++ compiler settings, see option
descriptions in Chapter 20, "Setting Compiler Options," and Chapter 21, "Setting
Linker Options."

When you have completed specifying the settings on a tab, you can select another
and specify additional settings. CTRL+TAB displays the next tab, and
CTRL+SHIFT + T AB displays the previous tab.

S When you have completed setting options, choose OK.

Note If you specify settings incompatible with the project type that you chose when you
created your project, you may not get the result that you expect.

Specifying File Settings
A file is built with the settings from a project configuration when you build that
configuration. However; for each individual file, you can specify settings that are
different from, or in addition to, the project configuration's settings.

• To set file options in a project

1 From the Build menu, choose Settings.

The Project Settings dialog box appears, as shown in Figure 2.9.

2 In the Settings For pane, exp~nd the project, such as MyProj 1 Win32 Debug
shown in Figure 2.9, and select the file or files.

3 From the tabs at the top of the dialog box, select the type of options that you want
to display.

Chapter 2 Working with Projects

4 Set the options you want on the selected tab.

On the C/C++ tab in Visual C++, you can select from the Category list at the top
of the tab to set options in various categories, if necessary.

For more information on linker or Visual C++ compiler settings, see option
descriptions in Chapter 20, "Setting Compiler Options," and Chapter 21, "Setting
Linker Options."

When you have completed specifying the settings on a tab, you can select another
and specify additional settings. CTRL+TAB displays the next tab, and
CTRL+SHIFT+TAB displays the previous tab.

S When you have completed specifying settings, choose OK.

Note If you specify settings incompatible with the project type that you chose when you
created your project, you may not get the result that you expect.

You can also specify common settings across multiple projects or project
configurations. Within the projects in your project workspace, you can select any
combination of files.

~ To specify file settings in multiple project configurations

1 From" the Build menu, choose Settings.

The Project Settings dialog box appears, as shown in Figure 2.9.

2 In the Settings For pane, expand the project configuration, such as MyProj 1
Win32 Debug shown in Figure 2.9, and select the file or files.

Click the plus signs or double-click the node names to expand the graph of project
files if necessary, and use the SHIFT and CTRL keys with the mouse to make
multiple selections.

3 From the tabs at the top of the dialog box, select the type of settings that you want
to display. The visible tabs depend on the files or configurations that you have
selected. Only those tabs with settings common to the selections appear.

4 Specify the settings you want on the selected tab. Only the settings common to all
the selections" are available~

On the C/C++ tab in Visual C++, you can select from the Category list at the top
of the tab to specify settings in various categories, if necessary.

For more information on linker or Visual C++ compiler settings, see option
descriptions in Chapter 20, "Setting Compiler Options," and Chapter 21, "Setting
Linker Options."

When you have completed specifying the settings on a tab, you can select another
and specify additional settings. CTRL+ T AB displays the next tab, and
CTRL+SHIFT+TAB displays the previous tab.

61

Visual C++ User's Guide

62

5 When you have completed specifying settings, choose OK.

Note If you specify settings incompatible with the project type that you chose when you
created your projects, you may not get the result that you expect.

Specifying Custom Build Tools
You can specify custom build tools for use with any project or with any individual
files that do not already have a tool associated with them. These tools then process
the files at the appropriate point in the build if the output file is out of date with
respect to the input file. For instance, you can add an .L file to your project, specify a
lexical analyzer to process the file and produce a . Y output file, and then specify a
parser generator to process that file to create a C source-code file for Visual C++. You
could also select the output file for a configuration, to copy it to a specific directory
for testing, for instance. Microsoft Developer Studio provides a number of macros for
use in these commands.

Note By default, a number of file types have tools associated with them, such as .C or .CPP
files in Visual C++. You cannot specify a custom tool for these files.

You can specify more than one custom tool for a file or project, and the tools run in
the order that you specify them.

The custom tools run on files only in builds of the configurations in which you
selected the files. That is, if your file set includes an .L file, and you select it only in
one configuration, the tools that you specify run only in that configuration.

~ To specify custom build tools

1 From the Build menu, choose Settings.

The Project Settings dialog box appears.

2 In the Settings For pane, select the source files or output files from project
configurations for which you want to specify a custom tool or tools.

Selecting the top-level node specifies the output file for a configuration.

3 Select the Custom Build tab.

If you have made mUltiple selections, the Input File text specifies mUltiple
selections.

4 In the Description text box, type a description.

This description appears on the Build tab of the Output window when the
command runs.

5 In the Build Command(s) list, select the first line, and type the command that you
want to run on the input file.

If you type more than one command in the grid, the build process runs them in
order, from top to bottom.

Chapter 2 Working with Projects

Note The command must include all required options, including the input file name or
names and output file name or names. You may want to use a directory macro to specify
the location for the output file.

6 In the Output File(s) list, select the first line, and type the name of an output file
that is created by the build commands specified in the Build commands grid.

If the commands create more than one output file, type additional names in the
subsequent lines of the grid.

7 Choose OK.

For example, assume that you want to include in your project a file named
MYLEXINF.L. You first want a lexical analyzer to process MYLEXINEL to produce
a.Y file with the same base name (MYLEXINEY). You then want a parser generator
to process MYLEXINF. Y to produce a .C file. First, you add MYLEXINEL and
MYLEXINF.C to your project using the Files Into Project command on the Insert
menu. (If you have not already created a version of MYLEXINEC, Microsoft
Developer Studio recognizes that and asks if you want to add a reference to the file
anyway.) You then choose the Settings command from the Build menu, and select
MYLEXINF.L in the appropriate configuration. Next, select the Custom Build tab,
and type commands similar to the following in the Build Command(s) list:

lexer $(InputPath) $(IntDir)\$(InputName).y
parser $(IntDir)\$(InputName).y $(ProjDir$)\$(InputName).c

This puts the intermediate output, MYLEXINE Y, in the directory used for
intermediate files, and generates MYLEXINEC in the project directory.

In the Output File(s) list, type $ (Proj Di r) \$ (I nputName). C. When you build
this project, the build system checks the date of MYLEXINF.C. If its date is earlier
than MYLEXINEL, the build system runs these custom commands to rebuild
MYLEXINF.C.

Macros for Custom Build Commands
You can use the File and Directory drop-down lists to insert any of the following
directory and filename macros in either grid at the current insertion point location.
The File and Directory drop-down lists are on the Custom Build tab of the Project
Settings dialog box, accessed with the Settings command from the Build menu.

Label Macro Description

Intermediate $(IntDir) Path to the directory specified for
intermediate files, relative to the project
directory

Output $(OutDir) Path to the directory specified for output
files, relative to the project directory

Target $(TargetDir) Fully qualified path to the directory
specified to output files

Input $(InputDir) Fully qualified path to the project directory

63

Visual C++ User's Guide

Label

Project

Workspace

Microsoft
Developer

Remote Target

Target Path

Target Name

Input Path

Input Name

Workspace
Name

Remote Target
Path

Macro

$(ProjDir)

$(WkspDir)

$(MSDevDir)

$(RemoteDir)

$ (TargetPath)

$(TargetName)

$(InputPath)

$(InputName)

$(WkspName)

$(RemoteTargetPath)

Description

Fully qualified path to the project directory

Fully qualified path to the project directory

Fully qualified path to the installation
directory for Microsoft Developer Studio

Fully qualified path to the remote output
file

Fully qualified name for the project output
file

Base name for the output file

Fully qualified name for the input file

Base name for the input file

Name of the project workspace

Fully qualified name for the remote output
file

If you have made multiple selections, during a build the input macros are set in turn
to each file that you have selected for each configuration that you have selected.

U sing Precompiled Headers
You can greatly speed compile time by compiling any C or C++ files - including
inline code - only once into a precompiled header (.PCH) file and thereafter using
the precompiled header for each build. Visual C++ offers two ways to create and use
precompiled header files. One method is to use App Wizard and allow it to set default
compiler options for your application. The other method is to use the Precompiled
Headers category on the C/C++ tab of the Prject Settings dialog box.

The simplest way to use precompiled headers is to generate a new application using
App Wizard. It sets default compiler options to create a precompiled header file,
STDAFX.PCH, from STDAFX.H for use by all the skeleton files it creates.

If you do not use App Wizard to create your application, you can select the
Precompiled Headers category on the C/C++ tab in the Project Settings dialog box
and select the Automatic Use Of Precompiled Headers option to create an easy-to-use
precompiled header file. For more information, see "Precompiled Headers" on page
407 in Chapter 20 or the "/Y d option" on page 565 in Chapter 25.

Building a Project Configuration

64

From Microsoft Developer Studio, you can build or rebuild the program or library
that a project configuration defines. When you build a project configuration,
Developer Studio processes only the files in the project that have changed since the

Chapter 2 Working with Projects

last build. When you rebuild a project configuration, Developer Studio processes all
the files in the project. You can either choose to build a single project configuration,
or the default project configuration, or you can choose multiple configurations to
build in one operation.

When you create a project, Developer Studio sets default options for both Debug and
Release configurations. The Debug configuration contains full symbolic debugging
information that can be used by the integrated debugger in Developer Studio or by
other debuggers that use the Microsoft debug format. Developer Studio also turns off
all optimizations in the Debug configuration because they generally make debugging
more difficult. The Release configuration does not contain any symbolic debugging
information, and it uses any optimizations that you have set after creating the
projects. Depending on your installation and the choices you made when you created
your project, you may have other default project configurations with other options, or
you may have specifically created other project configurations with other options.
Each project configuration also specifies the directories in which the intermediate
and final files are created.

Setting the Default Project Configuration
When you set the default project configuration, subsequent build commands act on
the default configuration and build its output. If the project associated with the
default configuration contains subprojects, the same configuration in the subprojects
gets built if the output file for the configuration in the subproject is out of date.

~ To set the default project configuration

• From the Set Default Project Configuration drop-down list on the Project toolbar,
choose a project configuration.

-or-

1 From the Build menu, choose Set Default Configuration.

The Default Project Configuration dialog box appears.

2 In the Project Configurations list, select the default project configuration.

3 Choose OK.

Building the Default Project Configuration
You can choose the project configuration that you want to build by default. This is the
project configuration that you build when you choose Build project from the Build
menu. If this project configuration contains any explicit project dependencies, and
those project configurations are out of date, they are built first.

65

Visual c++ User's Guide

66

~ To select a project configuration

• From the Set Default Project Configuration drop-down list on the Project toolbar,
choose a project configuration.

-or-

1 From the Build menu, choose Set Default Configuration.

The Default Project Configuration dialog box appears.

2 In the Project Configurations list, select the default project configuration.

3 Choose OK.

~ To build the default project configuration

• From the Build menu, choose Build project, where project represents the program
or library defined by the project configuration.

If you want to ensure that all files associated with a project configuration get built,
whether or not they are out of date, you can choose the Rebuild All command.

Note If you have updated any files that appear in either SYSINCL.DAT or MSCVINCL.DAT,
you must choose Rebuild All to ensure that the changes are incorporated in the build. See
"Updating Dependencies in a Project" on page 57.

~ To rebuild the default project configuration

• From the Build menu, choose Rebuild All.

Information about the build is displayed in the Output window. The Output window
displays information from the build tools and lists any errors or warnings that occur
during the build. If no errors are reported, the build completed successfully. If errors
are reported, you need to debug them. For information on debugging build errors, see
"Debugging Compiler and Linker Errors" on page 323 in Chapter 17.

~ To stop a build

• From the Build menu, choose Stop Build.

Developer Studio stops the currently executing tool if possible; otherwise, it stops the
build as soon as the currently executing tool finishes.

Since builds occur in the background, you can continue to use Developer Studio
during a build. However, some menu commands and toolbar buttons are disabled
during a build. You can use the tabs at the bottom of the Output window to view the
previous output from another tool while you are running ihe curreni build, and ihen
choose the Build tab to return to the current build output.

Chapter 2 Working with Projects

An audible message notIfies you when the build is complete. Unless you have a sound
card installed, all audible events issue a beep. If you have a sound card installed, you
can use the Sound application in the Windows Control Panel to assign the three
standard system events listed below to different sounds.

System Event

Asterisk (*)
Question (?)

Exclamation (!)

Indicates

Build has completed without errors or warnings.

Build has completed with warnings.

Build has completed with errors.

In some cases, you may need to stop building your project before the process finishes.

Compiling Files
You can select and compile files in any project in your project workspace.

~ To compile selected files

1 Select the files in the File View pane of the Project Workspace window.

2 With the mouse pointer over the selection, click the right mouse button to display
the pop-up menu, and choose Compile.

If you have specified a custom tool (or tools) for a file, when you select Compile,
Developer Studio runs that tool with the file as input, and produces the output
specified.

Removing Intermediate Files
You can remove all files from the Intermediate directories in any project
configuration in your project workspace. Removing the files forces Developer Studio
to build these files if you subsequently choose the Build command.

~ To remove intermediate files

1 From the Set Default Project Configuration drop-down list on the Project toolbar,
choose a project configuration.

-or-

2 From the Build menu, choose Set Default Configuration.

The Default Project Configuration dialog box appears.

3 In the Project Configurations list, select the default project configuration.

4 Choose OK.

67

Visual C':i-+ User's Guide

I

5 Select the project in the File View pane of the Project Workspace window.

6 With the mouse pointer over the selected project, click the right mouse button to
display the pop-up menu, and choose Delete Intermediate Files.

This procedure deletes the intermediate files from the intermediate files directory
associated with the selected configuration.

Building Multiple Project Configurations

68

Any 'project workspace can have more than one project configuration. Instead of
selecting each project configuration in tum and building it as the default
configuration using the Build project command on the Build menu, you can select
multiple project configurations and build them all.

Note You can also build multiple project configurations by using subprojects, and building the
appropriate containing project. See "Using Project Workspaces: Three Basic Scenarios" on
page 26 for more information.

~ To build multiple project configurations

1 From the Build menu, choose Batch Build.

The Batch Build dialog box appears. By default, all project configurations in the
project workspace are selected.

2 If you don't want to build certain project configurations, clear the check boxes in
the Project Configurations list.

3 Choose the Build button to build only those intermediate files of each project
configuration that are out of date, or the Rebuild All button to build all
intermediate files for each project configuration.

The results for each project configuration are separated in the Output window by a
line containing the name of the project configuration being built.

~ To stop building multiple projects

• From the Build menu, choose Stop Build.

Developer Studio stops the currently executing tool if possible; otherwise, it stops the
build as soon as the currently executing tool finishes. The build of the project
configuration currently in progress ends. A message box appears, asking if you wish
to continue building the remaining project configurations. If you choose Yes, then the
batch build continues from the next configuration in the list. If you choose No, then
the entire batch build is stopped.

Chapter 2 Working with Projects

U sing External Projects
In Microsoft Developer Studio you can have two types of external projects:

• Projects that are built using a make file not created by the current version of
Developer Studio.

You can open an existing makefile in Developer Studio to create external projects.
External projects are called that because they originally used external methods to
set compiler or linker options, for instance, rather than using the methods
available within Developer Studio. Developer Studio uses NMAKE to build the
external project, and automatically sets certain internal project options to build the
project with NMAKE. You can continue to use external methods to set options, if
you choose.

• Projects that are built using methods other than the internal build system in
Developer Studio.

You can specify a new project with the Makefile project type, and then specify
tools other than NMAKE which Developer Studio needs to run to build the
project, using the Project Settings dialog box.

All external projects use project settings on the General tab of the Project Settings
dialog box. If you open an existing makefile, named either explicitly MAKEFILE or
filename.MAK, Developer Studio uses NMAKE as the command-line tool to build
the project. If you create an external project by choosing Makefile from the Type list
in the New Project Workspace or Insert Project dialog box, Develper Studio prompts
you to open the Project Settings dialog box and explicitly specify the tool that
Developer Studio must run to build the project.

Once you create an external project, you can add files to it, or you can add it to other
projects as a subproject. Adding the source files comprising the external project to the
project workspace enables you to view those files in File View, to open them from
File View, to add them to your source-code control system from Microsoft Developer
Studio, and so on.

If your external project generates an executable file compatible with the Microsoft
Developer Studio debugging format, you can debug it from within Developer Studio.

Opening an Existing Makefile
When you open an existing makefile (MAKEFILE or filename.MAK) that Developer
Studio does not recognize as a makefile that it created, it displays a message box
asking if you want to create a project to wrap the makefile. If you choose No,
Developer Studio does not open the file. If you choose Yes, Developer Studio creates
a project workspace and its associated file for the external makefile. The external
makefile becomes a part of the project workspace. (Remember that the command-line
tool, NMAKE, creates the resulting project files: executable programs, DLLs, static
libraries, and so on.)

69

Visual c++ User's Guide

70

~ To open an existing makefile with the extension .MAK

1 From the File menu, choose Open Workspace.

The Open Project Workspace dialog box appears.

2 Select All Files from the drop-down list to display all files.

3 From the Open As drop-down list, select Makefile.

4 Select the drive and directory containing the makefile that you want to open.

S Select the file from the list and choose OK.

-or-

Double-click the filename in the list.

If you have a project workspace currently open, Developer Studio saves the
workspace and asks if you want to close document windows associated with that
workspace.

Developer Studio displays a message box asking if you want to convert the
external makefile into a project workspace with an external project containing the
external makefile.

6 Choose Yes to convert the makefile.

If you choose No, Developer Studio cancels the conversion process.

If you have installed multiple platforms, Developer Studio displays the Platforms
dialog box. It displays selections for all the platforms that you have installed.

7 In the Platforms list, select the platforms for which you want to create external
projects. By default, Developer Studio selects all installed platforms.

8 Choose OK.

Developer Studio displays the Save As dialog box, with a default name·for the
Developer Studio project workspace file.

9 Either enter a new name, or accept the default name, and select OK to create the
project workspace file. If necessary, choose a drive or directory for the file~

Note You cannot use the name of the existing makefile for the Developer Studio project
workspace file. If you used that name, the project workspace file would overwrite the
existing makefile, and would then have no file to run.

If your makefile has a different extension, or has the name MAKEFILE, you can use
the Open command from the FIle menu to open it as a makefile.

~ To open an existing makeiiie without the extension .iviAK

1 From the File menu, choose Open.

The Open dialog box appears.

2 Select All Files from the drop-down list to display all files.

3 Select Makefile from the Open As drop-down list.

Chapter 2 Working with Projects

4 Select the drive and directory containing the makefile that you want to open.

S Select the .MAK file from the File Name list and choose OK.

-or-

Double-click the filename in the list.

If you have a project workspace currently open, Developer Studio saves the
workspace and asks if you want to close document windows associated with that
workspace.

Developer Studio displays a message box asking if you want to convert the
external makefile into a project workspace with an external project containing the
external makefile.

6 Choose Yes to convert the makefile.

If you choose No, Developer Studio cancels the conversion process.

If you have installed multiple platforms, Developer Studio displays the Platforms
dialog box. It displays selections for all the platforms that you have installed.

7 In the Platforms list, select the platforms for which you want to create external
projects. By default, Developer Studio selects all installed platforms.

8 Choose OK.

The Save As dialog box appears, with a default name for the Developer Studio
project workspace file.

9 Either enter a new name, or accept the default name, and select OK to create the
project workspace file. If necessary, you can choose a drive or directory for the file.

Note You cannot use the name of the existing makefile for the Developer Studio project
workspace file. If you used that name, the project workspace file would overwrite the
existing makefile, and would then have no file to run.

Developer Studio opens a Project Workspace window for the project and shows
FileView with only the external project-level nodes and the external makefile as a
source file in each. You can use the menu commands to add or delete files from these
projects. You can also use the Settings command on the Build menu to change the
settings for external projects.

Creating an External Project
You can create an external project to run external commands, such as batch files or
other executables, to build the project.

~ To add an external project to an existing project workspace

1 From the Insert menu, choose Project.

The Insert Project dialog box appears, with the Top-Level Project option selected.

71

Visual C++ User's Guide

72

2 In the Name text box, type a name for the project.

This name is appended to the existing project workspace directory to form the
fully qualified path for the new project directory.

3 Fom the Type list, select the Makefile.

4 Select any of the available platforms for which you want to create initial Debug
and Release configurations.

5 Choose the Create button.

The project appears in the Project Workspace window. You now need to specify the
tools used to build the target.

6 From the Build menu, choose Settings.

The Project Settings dialog box appears. It displays the tabs with options for the
project.

7 Select the General tab.

S From the following list, select the options that apply or fill in the appropriate
information in the text boxes.

• Build Command Line The command line that the operating system executes
for this project when you choose Build from the Build menu. By default, the
system executes Microsoft NMAKE with the IF option followed by the name of
the external makefile. You can, however, add any batch or executable filename
along with command-line options and input files.

• Rebuild All Options The options added to the command line when you choose
Rebuild All from the Build menu. By default, the fA option for Microsoft
NMAKE is added.

• Output File Name The name of the file that is created when you build the
project. This could be an application or static library, for instance.

• Browse Info File Name Name of the browse information file to create for this
project. It must have the extension .BSC.

9 Select the Debug tab.

10 Select the General category from the Category list, and enter the information
required for debugging in the text boxes. 'Developer Studio uses this information
when you choose commands such as Go or Step Into on the Debug menu.

• Executable For Debug Session The name of the program that the external
makefile builds if you are debugging an executable program, or the name of the
execuiable file ihai calls a DLL if you are debugging a DLL. If you are
debugging an executable file on a remote machine, this executable file on the
local machine contains the symbolic debugging information.

• Working Directory The working directory that the application uses when it
runs. This directory may be different from the output files directory in the
project. It could contain test cases, for instance.

Chapter 2 Working with Projects

• Program Arguments (for .EXE Jiles) Arguments that need to be passed to the
executable file when it starts.

• Remote Executable Rath And File Name The name for the executable file
that you are debugging on a remote machine. The location for this executable
file is specified relative to the remote machine.

11 Select the Additional DLLs category from the Category list on the Debug tab, and
specify the information required for debugging. Developer Studio uses this
information when you choose commands such as Go or Step Into on the Debug
menu.

• Modules Each line in the grid specifies whether or not to preload symbols for
the module when you start debugging, the local name of the DLL, and if you
are debugging remotely, its remote name. After you type a name, a check box
appears at the left of the grid in that line. Selecting the box preloads symbols. If
you preload symbols, you can set breakpoints before the module loads. Clearing
the box does not preload symbols.

• Try To Locate Additional DLLs If this check box is selected, the debugger
asks for additional DLLs when debugging begins.

12 Choose OK.

Developer Studio creates both a makefile and a project workspace file, with the
extension .MDP, for the external project. The project workspace file stores
information about your local configuration - syntax coloring, editor preferences, key
assignments, window layout, and so on. The makefile stores information required to
build the project.

Building a Single File Without a
Project Workspace

You can create a single source file and then build a console application directly from
that source file. This method is generally useful only for relatively simple
applications.

~ To build a console application from a single source file

1 Close any open project workspace.

2 Create or open a source file in a text editor window.

3 From the Build menu, choose Build.

Developer Studio displays a message box asking if you would like to create a
project workspace.

4 Choose Yes.

The Save As dialog box appears if you have not yet given the source file a name.

73

Visual C++ User's Guide

5 If necessary, give the source file a new name, with an extension for a file that
Developer Studio can build, such as .C, ~CXX, or .CPP for Visual C++.

If you don't use one of these file extensions, Developer Studio does not build
anything because it cannot find a type of source file in the project to build.

6 Choose OK.

Developer Studio creates a default project workspace using the base name of the
source file as the base name for the project. It uses default settings for a console
application for the project configuration and builds the application.

Running a Program

74

When you have completed building a project configuration, you can start the
application from Developer Studio. You can also run applications and dynamic-link
libraries in the integrated debugger.

~ To run an executable program
• From the Build menu, choose Execute project, where project represents the

program defined by the project configuration.

~ To run an application in the integrated debugger

• From the Build menu, choose Debug, and from the cascading menu, choose Go,
Step Into, or if you have a source file open and it has the focus, Run To Cursor.

If you are debugging a DLL, you need to prepare for your debugging session as
described in "Debugging DLLs" in Chapter 17 on page 334. For more information on
debugging your programs, see Chapter 17, "Using the Debugger."

CHAPTER.3

U sing the Text Editor

Microsoft Developer Studio provides an integrated text editor to manage, edit, and .
print source files. Most of the procedures for using the editor should seem familiar if
you have used other Windows-based text editors. With the text editor, you can:

• Use the File menu to create source files, open single files, open multiple files, and
save and print source files.

• Use virtual spaces for advanced cursor positioning.

• Identify sections of code by matching group delimiters.

• Find matching conditional statements.

• Move around in a source file with the Go To dialog box.

• Use bookmarks to mark frequently accessed lines in your source file.

• Navigate source files using a wide range of commands.

• Perform advanced find and replace operations in a single file or multiple files.

• Use. regular expressions with Developer Studio, BRIEF®emulation, and Epsilon™
emulation.

• Specify text selection for lines, multiple lines, and columns.

• Cut, copy, paste, and delete text with the Edit menu.

• Use drag-and-drop editing.

• Record and play back keystrokes.

• Emulate two popular text editors: BRIEF and Epsilon.

• Customize the text editor with save preferences, virtual spaces, the selection
margin, and tabs and indents. . .

• Modify the font style, size, and color.

• Set syntax coloring for source files and user-defined types.

• Control the source window by switching between windows, opening new windows,
splitting window views, and using full-screen mode.

75

Visual C++ User's Guide

a Tip While using the text editor, in many instances you can click the right mouse button to
display a pop-up menu of frequently used commands. The commands available depend on
what the mouse pointer is pointing to and whether you are in edit or debug mode. For
example, if you click while pointing to the name of a file, the pop-up menu shows a command
to open that file, as well as other commands including Copy, Insert/Remove Breakpoint, and
Properties.

File Management
The text editor File menu has several commands for standard file management. With
these commands you can perform the following actions:

• Creating files

• Opening files

• Opening multiple files

• Saving files

• Printing files

Creating Files

76

The New command creates a new source file. Creating a source file does not affect
other open source files.

~ To create a new source file

1 From the File menu, choose New.

The New dialog box appears.

2 Select Text File, and then choose the OK button.

3 From the File menu, choose Save.

The Save As dialog box appears.

4 Select a path where you want to store the source file.

5 In the File Name box, type a file name.

The default extension given to a file is the last extension used when you saved a
file. You can type another extension or select one from the Save As Type box.

6 Choose the Save button.

Chapter 3 U sing the Text Editor

Opening Files

a

When you open a source file, its name is added to the Window menu. You cannot use
the Open command on the File menu to open another copy of an open source file.

~ To open a file

1 From the File menu, choose Open.

The Open dialog box appears.

2 Select the drive and directory where the file is stored.

3 If you want read only, select the Open As Read Only check box.

Note You can edit a file even if the Open As Read Only check box is selected. When you
save the file, the Save As dialog box appears, allowing you to save the file using a different
name.

4 Specify the types of files to display in the Files Of Type box.

Files with the chosen extension are displayed in the list box. For example, Project
Workspaces displays all files with the .mdp extension. The Files Of Type drop­
down list box initially lists commonly used file extensions. The default shows the
.c, .cpp, .cxx, .h, and .rc extensions.

-or-

Specify wildcard patterns in the File Name box to display file types. You can use
any combination of wildcard patterns, delimited by semicolons. For example, if
you type * . h; * . cpp, all files with these extensions are displayed. The wildcard
patterns you specify are retained until you close the dialog box.

5 Select a filename, then choose the Open button.

-or-

Double-click the filename.

You can also open a file by double-clicking the file icon in the Project Workspace, or
by dragging the icon of a non-project file into the application window.

Tip The names of the four most recently opened files are displayed at the end of the File
menu. To open one of these files, choose its name from the menu.

Note The number of files on the list of most recently opened files is controlled by the
FileCount item in the Registry.

77

Visual c++ User's Guide

The text editor commands that can open or activate a new file are described in the
following table.

Command

Bookmark

GoTo

GoToErrorTag

GoToNextErrorTag

GoToPrevErrorTag

WindowList

Description

Edits or navigates bookmarks.

Moves to a specified location.

Moves to the line containing the current error or tag.

Moves to the line containing the next error or tag.

Moves to the line containing the previous error or tag.

Manages the currently open windows.

See Also Viewing and Changing the Shortcut Keys

Opening Multiple Files

78

You can open multiple files from the Open dialog box by using the mouse to select a
file or group of files. Before you can select files, they must be visible in the
Directories window.

~ To open two or more files in sequence

1 From the File menu, choose Open.

The Open dialog box appears.

2 Select the drive and directory where the files are stored.

The default is the current drive and directory.

3 Specify the types of files to display in the Files Of Type box.

Files with the chosen extension are displayed in the list box. For example, Project
Workspaces displays all files with the .mdp extension. The Files Of Type drop­
down list box initially lists commonly used file extensions. The default shows the
.c, .cpp, .cxx, .h, and .rc extensions.

-or-

Specify wildcard patterns in the File Name box to display file types. You can use
any combination of wildcard patterns, delimited by semicolons. For example, if
you type * . h: *. cpp, all files with these extensions are displayed. The wildcard
patterns you specify are retained until you close the dialog box.

4 Click the first file or directory you want to select.

5 Hold down the SHIFT key while you click the last file or directory in the group, and
then choose the Open button.

~ To open two or more files out of sequence

1 From the File menu, choose Open.

The Open dialog box appears.

Chapter 3 Using the Text Editor

2 Select the drive and directory where the files are stored.

The default is the current drive and directory.

3 Specify the types of files to display in the Files of Type box.

Files with the chosen extension are displayed in the list box. For example, Project
Workspaces displays all files with the .mdp extension. The Files of Type drop­
down list box initially lists commonly used file extensions. The default shows the
.c, .cpp, .cxx, .h, and .rc extensions.

-or-

Specify wildcard patterns in the File Name box to display file types. You can use
any combination of wildcard patterns, delimited by semicolons. For example, if
you type *. h; * . cpp, all files with these extensions are displayed. The wildcard
patterns you specify are retained until you close the dialog box.

4 Hold down the CTRL key while you click each file or directory that you want. Once
your selection is complete, choose the Open button.

To cancel a selection, hold down CTRL while you click the selected file or
directory.

Saving Files
As you make changes to a source file, an asterisk (*) appears in the title bar to
indicate that the file has changed since it was last saved. Each source window
associated with a source file can retain its own sizing and other window attributes.

~ To save a file

1 Switch to the source window.

2 From the File menu, choose Save.

If you already named the file, the Save command saves changes without displaying
the Save As dialog box.

If your file is unnamed, the Save As dialog box appears.

3 In the File Name box, type the filename.

4 Select the drive and directory where the you want to save the file.

S Choose the Save button.

~ To save all open files

• From the File menu, choose Save All.

~ To save selected open files

1 From the Window menu, choose Windows.

The Windows dialog box appears.

2 Select one or more files from the file list.

79

Visual C++ User's Guide

3 Choose the Save button.

4 Choose the Cancel button.

You can also save another copy of an existing file. This procedure is useful for
maintaining revised copies of a file while keeping the original unchanged.

~ To save a new file or another copy of an existing file

1 Make the file active by clicking the source window.

2 From the File menu, choose Save As.

The Save As dialog box appears.

3 In the File Name box, type the filename.

4 Select the drive and the directory where you want to save the file.

5 Choose the Save button.

~ To set Save options

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Editor tab, and then select the desired save option.

• To save open files before running any tool, select the Save Before Running
Tools check box.

• To always prompt before saving a file, select the Prompt Before Saving Files
check box.

• To automatically reload externally modified files that have been loaded (but not
yet changed) by the editor, select the Automatic Reload check box.

3 Choose the OK button.

Printing Files

80

With the text editor, you can print selected text or a complete file. Text is printed in
the default font for the printer if the default editor font is used. Otherwise, the text
prints with the selected editor font, if that font is available on the printer.

You can customize your print jobs by adding headers and footers and by adjusting
margins.

~ To print selected text in a source file

1 Select the text you want to print.

2 From the File menu, choose Print.

The Print dialog box appears. Under Print Range, the Selection option is
automatically selected for you.

3 Choose the OK button.

Chapter 3 U sing the Text Editor

~ To print a complete source file

1 Move the focus to the source file you want to print.

2 From the File menu, choose Print.

The Print dialog box appears.

3 Under Print Range, select the All option button.

4 Choose the OK button.

~ To customize a print job

1 From the File menu, choose Page Setup~

The Page Setup dialog box appears.

2 In the Header and Footer boxes, type the header or footer text, codes, or both. You
can use the drop-list to insert codes into the text box. Only one of the alignment
options (left, centered, or right) is available at a time for either header or footer.

To print Use

Filename &f
Current page number &p
Current system time &t
Current system date &d
Left aligned &1
Centered &c

Right aligned &r

3 Under Margins, type the left, right, top, and bottom measurements.

4 Choose the OK button.

Moving Around in Source Files
The text editor provides a variety of methods to move around in a source file. In
addition to using the regular mouse movement and page controls, you can:

• Use virtual space for advanced cursor control.

• Identify sections of source code by matching group delimiters.

• Find matching conditional statements.

• Use the Go To dialog box to navigate your source files.

• Set bookmarks to mark frequently accessed lines in your source files.

• Choose from a wide-range of source file navigation commands.

81

Visual C++ User's Guide

U sing Virtual Space
All editors support moving the cursor by one character position. This feature has been
implemented in many ways. The most common difference among text editors is
whether or not you can move the cursor into a location that does not currently contain
text. For example, if your cursor is on column 20, and there is no text on the line
below the current line, moving the cursor down can do one of two things: Either the
cursor moves to column 1-because there is no text on the line below -or the cursor
remains on column 20. This latter behavior is called virtual space.

With the Developer Studio's text editor, you can treat text selection and space
insertion in two ways. When you select the Virtual Spaces option, spaces are inserted
between the end of the line and the insertion point before new characters are added to
the line. When you clear the Virtual Spaces option, the text editor behaves like
Microsoft Word for Windows, and the insertion point is set to the end of the line.

~ To enable virtual spaces

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Compatibility tab.

3 In the Recommended Options For list box, select the editor emulation in which
you want to have virtual spaces.

4 Select the Enable Virtual Space check box.

5 Choose the OK button.

Many word processors support the idea of moving the cursor one sentence at a time.
Developer Studio's text editor supports this as well (SentenceUp and SentenceDown),
but most source code doesn't have the spacing and punctuation marks needed for
sentence navigation. Instead, you can use LineUp and LineDown to navigate single
lines of source code.

Matching Group Delimiters

82

Source code is often grouped using delimiters such as 0, { }, and []. These groupings
are called levels. You can navigate these levels using the LevelUp and LevelDown
commands. The editor understands nested levels, and matches the correct delimiter
even if the level spans several pages and itself contains many levels.

The LevelUp command searches backwards for one of the right-side delimiters, and
ihen posiiions the cursor before. the matching left-side delimiter. The LevelDown
command searches forward for a left-side delimiter, and then positions the cursor
after the matching right-side delimiter.

~ To search forward for a matching level

• Press the LevelDown key combination.

Chapter 3 Using the Text Editor

The command begins searching for one of the left-side delimiters, which are (, {,
and [. When the left-side delimiter is found, the. cursor is positioned at the
matching right-side delimiter. If a matching delimiter cannot be found, the editor
beeps.

The editor also provides the command GoToMatchBrace. When the cursor is initially
positioned next to a delimiter, the GoToMatchBrace command moves the cursor to
the matching delimiter in a block. Since this command works independently of
whether the character is a right-side or left-side delimiter, you can quickly jump
between the start and end of a level.

~ To move to a matching brace

1 Place the insertion point immediately in front of a brace.

2 Press the GoToMatchBrace key combination.

The insertion point moves forward or backward to the matching brace. Choosing
the command again returns the insertion point to its starting place. If a matching
brace cannot be found, the editor beeps. This method also works for parentheses,
angle brackets, and square brackets.

See Also The Navigating Commands, Viewing and Changing th~ Shortcut Keys

Matching Conditional Statements
Another way of grouping source code is between compiler preprocessor statements.
The editor will allow you to move from inside a conditional statement to the
enclosing preprocessor statement. For example, ConditionalUp will move the cursor
to the enclosing #if, #ifdef, #else, #elif; while ConditionalDown will move the cursor
to the enclosing #else, #elif, #endif. If the cursor is positioned on a preprocessor
statement, it is considered to be in the next conditional block while moving down,
and in the previous conditional block while moving up.

~ To move to the matching preprocessor statement

• Move the insertion point to the line that is enclosed by preprocessor statements.

• Press the ConditionalUp key combination to move the insertion point up to the
line containing the matching preprocessor statement (such as #ifdef').

• Press the ConditionalDown key combination to move the insertion point down
to the line containing the matching preprocessor statement (such as #endif').

Note If you hold down the SHIFT key, you can use the ConditionalUpExtend and
Conditional Down Extend key combinations to select text from the current cursor position to
the enclosing #if, #ifdef, #else, #elif, or #endif preprocessor statement. This key binding of
the SHIFT key with ConditionalUpExtend and Conditional Down Extend is available in the
standard configuration after installation. If you have changed shortcut key assignments, this
keystroke combination may not be available.

See Also The Navigating Commands, Viewing and Changing the Shortcut Keys

83

Visual C++ User's Guide

Using Go To
The Go To dialog box is organized into three areas: a list of Go To What items,
additional selection criteria, and navigation buttons. Depending on the Go To What
selection, the additional selection criteria format changes to either an edit control or a
list box. You can display Help text in all cases. The following table lists the Go To
What types and related additional selection criteria.

Go To What Additional Selection Criteria

Address Enter address expression

Bookmark Enter bookmark name

Definition Enter identifier

Errorrrag Enter error/tag

InfoViewer Enter Info Viewer annotated
Annotations topic

lnfoViewer Enter Info Viewer bookmark
Bookmarks name

Line Enter line number

Offset Enter offset

Reference Enter identifier

~ To use the Go To dialog box

1 From the Edit menu, choose Go To.

The Go To dialog box appears.

2 In the Go To What list box, select the type.

3 Enter the additional selection criteria.

Comments

Type any valid debugger expression.

Type the bookmark name.

This requires browse information.

Select one of the listed error/tags.

Type the annotated topic.

Type the bookmark name.

Type the line number.

Type the decimal or hexadecimal
number.

Type the browse information.

4 Choose one of the navigation buttons: Go To, Previous, or Next.

Note If the Go To What item is undefined, the additional selection criteria box is greyed. For
example, if you have not defined any bookmarks, the Enter Bookmark Name text box is
grayed.

Using Bookmarks

84

You can set bookmarks to mark frequently accessed lines in your source file. Once a
bookmark is set, you can use menu or keyboard commands to move to it. You can
remove a bookmark when you no longer need it.

Chapter 3 Using the Text Editor

You can use both named and unnamed bookmarks. Named bookmarks are saved
between editing sessions. Once you create a named bookmark, you can jump to that
location whether or not the file is open. Named bookmarks store both the line number
and the column number of the location of the cursor when the bookmark was created. .
This location is adjusted whenever you edit the file. Even if you delete the characters
around the bookmark, the bookmark remains in the correct location.

Unnamed bookmarks are temporary. They are removed when the file containing them
is closed or reloaded. Unnamed bookmarks store only the current line, not the column
offset of the cursor. When a line containing an unnamed bookmark is deleted, the
bookmark is also removed. You can jump to an unnamed bookmark by activating the
file and using either the BookmarkNext or BookmarkPrev command. The advantage
of unnamed bookmarks is that they are very easy to set Gust use BookmarkToggle),
and they provide you with visible feedback in the selection margin of your document.

~ To set a named bookmark

1 Move the insertion point to the line and column where you want to set a named
bookmark.

2 From the Edit menu, choose Bookmark.

The Bookmark dialog box appears.

3 In the Name box, type the name of the bookmark.

4 Choose the Add button to add the named bookmark to the list of bookmarks.

5 Choose the Close button.

~ To remove multiple named bookmarks

1 From the Edit menu, choose Bookmark.

The Bookmark dialog box appears.

2 In the Name box, select the names of the bookmarks to be removed.

3 Choose the Delete button to remove the selected bookmarks.

4 Choose the Close button.

~ To go to a named bookmark

1 From the Edit menu, choose Bookmark.

The Bookmark dialog box appears.

2 In the Name box, select the name of the bookmark to go to.

3 Choose the Go To button.

85

Visual C++ User's Guide

86

~ To remove a named bookmark

1 From the Edit menu, choose Bookmark. .

The Bookmark dialog box appears.

2 In the Name box, select the name of the bookmark to be removed.

3· Choose the Delete button to remove the selected bookmark.

4 Choose the Close button.

~ To set an unnamed bookmark

1 Move the insertion point to the line where you want to set a bookmark.

2 Press the BookmarkToggle key combination.

The line is selected, or marked in the margin if you have set the selection margin.

~ To move to the next bookmark after the insertion point

• Press the BookmarkNext key combination.

~ To move to the previous bookmark before the insertion point

• Press the BookmarkPrev key combination.

~ To remove an unnamed bookmark
1 Move the insertion point to anywhere on the line containing the unnamed

bookmark.

2 Press the BookmarkToggle key combination.

The text editor commands that are associated with bookmarks are described in the
following table.

Command

Bookmark

BookmarkClearAll

BookmarkNext

BookmarkPrev

BookmarkToggle

Description

Edits or navigates named bookmarks.

Clears all unnamed bookmarks in the window.

Moves to the line containing the next named or unnamed bookmark.

Moves to the line containing the previous named or unnamed
bookmark.

Toggles an unnamed bookmark for the current line.

Note These bookmark commands can open files or activate different files in the open
\A/: .. ·u',J"" .. ,1"\ I:,..'" TI,..."",,,,, "'A~"""''''",J,... "" ... "" '"'''"' ",.."'" .. ",,"', ... "" I'¥III""" ""''''' ,''',," ... "",," : "" 11 1,..." ... "".c: ,.1:'"" ... " +
VVIIIUVVV;) II;)L. IIIIJ;)IJ \.IVllllliaIIU;) allJ alllJa"y vvay LV IIIVVIJ UIJLVVIJIJII LIJAL III a IIUIIIUIJI VI UIIIIJIIJIIL

source files. For more information on opening files, see "Opening Files" earlier in this chapter.

See Also Viewing and Changing the Shortcut Keys

Chapter 3 U sing the Text Editor

The Navigating Commands
The text editor commands for moving around in a source file are described in the
following table.

Command

CharLeft

CharRight

ConditionalDown

ConditionalUp

DocumentEnd

DocumentStart

GoToIndentation

GoToMatchBrace

Home

IndentToPrev

LevelDown

LevelUp

LineDown

LineEnd

LineStart

LineUp

PageDown

PageUp

ParaDown

ParaUp

SentenceLeft

SentenceRight

WindowEnd

WindowS tart

WordLeft

WordRight

Description

Moves the cursor one character to the left.

Moves the cursor one character to the right.

Finds the next matching preprocessor condition.

Finds the previous matching preprocessor condition.

Moves the cursor to the end of the file.

Moves the cursor to the beginning of the file.

Moves the cursor to the end of the indentation.

Finds the matching brace.

Moves the cursor alternately between the beginning of the current line
and the beginning of the text on that line.

Moves the cursor to the position of the next text that is on the previous
line.

Searches forward for the end of the next bracketed level.

Searches back for the beginning of the previous bracketed level.

Moves the cursor one line downward.

Moves the cursor to the end of the text on the current line.

Moves the cursor to the beginning of the current line.

Moves the cursor one line upward.

Moves the cursor one page downward.

Moves the cursor one page upward.

Moves the cursor forward to the beginning of the next paragraph.

Moves the cursor backward to the beginning of the previous paragraph.

Moves the cursor back to the previous beginning of a sentence.

Moves the cursor forward to the next end of a sentence.

Moves the cursor to the bottom of the text window.

Moves the cursor the the top of the text window.

Moves the cursor backward one word.

Moves the cursor forward one word.

87

Visual C++ User's Guide

Note The command Home is distinct from the LineStart command. LineStart always moves
the cursor to the first column in the line, while Home moves the cursor to different locations
depending on the cursor's current location. The Home command moves the cursor to the first
non-blank character in the line. However, if the cursor is already located on the first non-blank
character, Home moves to the first column of the line.

See Also Viewing and Changing the Shortcut Keys

Finding and Replacing Text

88

The text editor supports two common searching methods: full string searching and
incremental searching. With full string searching, the entire search string is specified
before the search begins. With incremental searching, the search is performed as the
string is typed.

With the advanced find and replace capabilities of the text editor, you can search for
text in a single source file or in multiple files. You can search for literal text strings
or use regular expressions to find words or characters. You can even use tagged
regular expressions for searching and replacing.

With the find and replace commands of the text editor, you can:

.• Find text in a single file.

• Find text in multiple files.

• Replace text.

• Use regular expressions with Developer Studio, BRIEF emulation, and Epsilon
emulation.

If you use any of the incremental search commands (IncrementaISearch,
IncrementalSearchBack, IncrementalSearchRE, IncrementaISearchREBack), you can
modify the search by toggling the word mode (CTRL+W), regular expression mode
(CTRL+T), and case sensitive mode (CTRL+C). These keystrokes are not bindable and
only affect the incremental search command.

Since IncrementalSearch finds the match while you are typing, you rarely need to
type the complete search string. If you are looking for a string that occurs multiple
times in your file, just repeat the IncrementalSearch command after you have typed
enough to specify the string. Incremental search stops when the ESC key is pressed.

The text editor commands for searching in a source file are described in the following
table.

Command

Find

FindBack

FindForward

Description

Finds the specified text.

Finds the previous occurrence of the specified text.

Finds the next occurrence of the specified text.

Chapter 3 U sing the Text Editor

Command

FindNext

FindNextWord

FindPrev

FindPrevWord

FindRE

FindREPrev

FindRepeat

FindReplace

FindReplaceRE

FindTool

IncrementalSearch

IncrementalSearchBack

IncrementalSearchRE

IncrementalSearchREBack

Description

Continues the search forward, finding the next occurrence of
the specified text.

Finds the next occurrence of the selected text.

Continues the search backward, finding the previous
occurrence of the specified text.

Finds the previous occurrence of the selected text.

Searches forward for a string using regular expressions.

Searches backward for a string using regular expressions.

Continues the previous search.

Replaces specific text with different text.

Replaces specific text with different text found by using
regular expressions.

Activates the Find combo box tool.

Starts an incremental search forward.

Starts an incremental search backward.

Starts a regular expression incremental search forward.

Starts a regular expression incremental search backward.

See Also Viewing and Changing the Shortcut Keys, Using Regular Expressions with
Developer Studio, Using Regular Expressions with BRIEF Emulation, Using Regular
Expressions with Epsilon Emulation.

Finding Text in a Single File
With the Find command, you can search the active window for the following types of
text strings:

• Whole Word Match Matches all occurrences of a text string not preceded or
followed by an alphanumeric character or the underscore L).

• Case Match Searches for text that matches the capitalization of the text string .

• Regular Expressions Uses special character sequences-regular expressions­
to search for text. If you select the Regular Expression check box in the Find
dialog box, you can build the search string using regular expressions from the
drop-down list.

You can set bookmarks at every occurance of the text string or expression. You can
then use the Next Bookmark command to move to each bookmark in your file.

~ To find a text string

1 Move the insertion point to where you want to begin your search.

The editor uses the location of the insertion point to select a default search string.

89

Visual C++ User's Guide

--II
90

2 From the Edit menu, choose Find.

The Find dialog box appears.

3 In the Find What text box, type the search text or a regular expression.

-or"""'"

Select the menu button to the right of the combo box to display a list of regular
search expressions. When you select an expression from this list, the expression is
substituted as the search text in the Find What text box. If you do use regular
expressions, be sure the Regular Expression check box is selected.

You can also use the drop-down list to select from a list of up to 16 previous search
strings.

4 Select any of the Find options.

5 To begin your search, choose Find Next or Mark All. The Find dialog box
disappears when the search begins. To repeat a find operation, use the shortcut
keys or toolbar buttons.

6 To continue your search, use the Find Next or Find Previous toolbar buttons.

~ To begin a find without the Find dialog box

1 Type or select a search string in the Standard toolbar Find box.

2 Press ENTER.

Note You can use regular expressions with the Standard tool bar Find box if you have
previously selected the Regular Expression check box in the Find dialog box.

~. To find a string using incremental search

1 Press the IncrementalSearch key combination.

The cursor moves to the status bar.

2 Begin typing the search string.

As you type each character, the text editor selects the matching string in your file.

3 If necessary, press the IncrementalSearch key combination to go to the next match
in your file.

4 Press the ESC key or use any of the navigational commands to end the search.

Note If there is no match, the text editor beeps and displays a warning in the status bar.

Tin V"II "~n ~C'C'i"n C'h"rf"llt ,,"O\lC' tn throo nf tho n",tinn" in tho l:i",rI rli~ln" hnv'
.1.., IVY VUII U~WI~:"I wllVILVUL 1\"1\:1 LV LI II "''''' VI LII\.I' Vt""LIVIIW 1111.11\.1" I 111\.1 UIUIV~ ...,"'".

EditToggleCaseSensitivity, EditToggleFindMatchWord, and EditToggleRE. By using the
shortcut keys, you can change the search criteria without displaying the Find dialog box.

See Also Viewing and Changing the Shortcut Keys, Finding and Replacing Text

Chapter 3 Using the Text Editor

Finding Text in Multiple Files
With the Find in Files command on the File menu, you can search multiple text files
for the following types of text strings:

• Whole Word Match Matches all occurrences of a text string not preceded or
followed by an alphanumeric character or an underscore C).

• Case Match Searches for text that matches the capitalization of the text string.

• Regular Expressions Uses special character sequences-regular expressions­
to search for text. If you select the Regular Expression check box in the Find
dialog box, you can build the search string using regular expressions from the
drop-down list.

~ To find a text string in multiple source files

1 From the File menu, choose Find In Files.

The Find In Files dialog box appears.

2 In the Find What text box, type the search text or a regular expression.

-or-

Select the menu button to the right of the combo box to display a list of regular
search expressions. When you select an expression from this list, the expression is
substituted as the search text in the Find What text box. If you do use regular
expressions, be sure the Regular Expression check box is selected.

You can also use the drop-down list to select from a list of up to 16 previous search
strings.

3 In the In Files Of Type box, select the file types you want to search.

You can use the drop-down list to select from common file types or to type text
specifying other file types.

4 In the In Folder box, select the primary folder that you want to search. Choose the
Browse button (oo.) to display the Choose Directory dialog box if you want to
change drives and directories.

5 If necessary, select one or more of the Find options.

6 To select additional folders to search, choose the Advanced button.

The Look In Additional Folders portion of the dialog box appears.

7 If necessary, select the Look In Folders For Project Source Files check box.

8 If necessary, select the Look In Folders For Project Include Files check box.

Note These project source and project include file folders are the same as the project's
directory paths. For more information on how to view and change these directory paths, see
"Setting Directories" in Chapter 22, "Customizing Microsoft Developer Studio."

91

Visual c++ User's Guide

9 To add a folder to the Look In Additional Folders list, double-click the empty
selection. Then type the path and filename, or use the Browse button (...) to
display the Choose Directory dialog box to change drives and directories.

To remove a folder from the Look In Additional Folders list, select the folder and
press DEL.

Developer Studio retains the contents of the Find In Files list between uses of the
Find In Files command in any single session.

10 Choose the Find button to begin the search.

The Output window displays the list of file locations where the text string appears.
Each occurrence lists the fully qualified filename, followed by the line number of
the occurrence and the line containing the match.

11 To open a file containing a match, double-click the entry in the Output window.

An editor window containing the file opens, with the line containing the match
selected. You can jump to other occurrences of the text string by double-clicking
the specific entries in the Output window, or you can use the GoToNextErrorTag
command.

When you jump to a found string location specified in the Output window, the
corresponding source file is loaded if it is not already open in the editor.

Note The Output window is a virtual window that is maintained even when it is not displayed.
You can display the output from your last multiple-file search done during your current session
by choosing the Output command from the View menu and by choosing the Find In Files tab in
the Output window.

See Also Finding and Replacing Text, Using Regular Expressions with Developer
Studio, Using Regular Expressions with BRIEF Emulation, Using Regular
Expressions with Epsilon Emulation

Replacing Text

92

With the Replace command, you can search the active window for the following types
of text strings, and replace each with another text string:

• Whole Word Match Matches all occurrences of a text string not preceded or
followed by an alphanumeric character or an underscore.(_).

• Case Match Searches for text that matches the capitalization of the text string.

• Regular Expressions Uses special character sequences-regular expressions-
.4 ___ ~.~_1_ .c __ ~ ___ T.c_~ _____ 1 __ 1-_ Tl ____ l ___ n ______ ! __ .-.1- __ 1_'1-..-._ ... !-.- 1-.-. n!.-..-..l
lV :SCi:1l~ll lUI lCAl. H yuu :SC1C~l UIC J:\.C~Uli:1l DAP1C:SMUll ~HC~l\. UVA HI lHC rlHU

dialog box, you can build the search string using regular expressions from the
drop-down list.

Chapter 3 Using the Text Editor

a

~ To replace text

1 Move the insertion point to where you want to begin your search.

The editor uses the location of the insertion point to select a default search string.

2 From the Edit menu, choose Replace.

The Replace dialog box appears.

3 In the Find What text box, type the search text or a regular expression.

Tip Select the menu button to the right of the combo box to display a list of regular search
expressions. When you select an expression from this list, the expression is substituted as
the search text in the Find What text box. You can also use the drop-down list to select from
a list of up to 16 previous search strings. If you do use regular expressions, be sure the
Regular Expression check box is selected.

4 In the Replace With text box, type the replacement text.

Select the menu button to the right of the combo box to display a list of
replacement options.

5 Select any of the remaining Find options.

6 To begin the search, choose the Find Next button.

The Replace command selects the first matching text string.

7 Replace the current selection by choosing the Replace button.

-or-

Replace all identical strings by choosing the Replace All button.

-or-

Skip the current selection and find the next selection by choosing the Find Next
button.

See Also U sing Regular Expressions with Developer Studio, Using Regular
Expressions with BRIEF Emulation, Using Regular Expressions with Epsilon
Emulation

Using Regular Expressions with Developer Studio
A regular expression is a search string that uses special characters to match a text
pattern in a file. You can use regular expressions with both the Find and Replace
commands.

~ To use a regular expression

1 From the Edit menu, choose either Find or Replace.

2 In the Find What text box, type a regular expression.

93

Visual C++ User's Guide

a

94

3 In the Replace With text box, type a regular expression if required.

Tip Select the menu button to the right of the combo box to display a list of regular search
expressions. When you select an expression from this list, the expression is substituted as
the search text in the Find What text box. You can also use the drop-down list to select from
a list of up to 16 previous search strings. If you do use regular expressions, be sure the
Regular Expression check box is selected.

The following table lists valid regular expressions.

Regular expression Description

[]

1\

$

\(\)

\,...

\{c\!c\}

*

+

\{\}

Any single character.

Anyone of the characters contained in the brackets, or any of an ASCII
range of characters separated by a hyphen (-). For example,
b[aei ou]d matches bad, bed, bi d, bod, and bud, and r[eo]+d
matches red, rod, r e ed, and roo d, but not reo d or roe d. X [0 - 9]
matches x0, xl, x2, and so on.

If the first character in the brackets is a caret (1\), then the regular
expression matches any characters except those in the brackets.

The beginning of a line.

The end of a line.

Indicates a tagged expression to retain for replacement purposes. If the
expression in the Find What text box is \ (1 psz\) Bi gPo; nter, and
the expression in the Replace With box is \ I New Poi n t e r, all
selected occurrences of 1 p s z B ; gPo i n t e r are replaced with
1 pszNewPoi nter.

Each occurrence of a tagged expression is numbered according to its
order in the Find What text box, and its replacement expression is \ n,
where 1 corresponds to the first tagged expression, 2 to the second, and
so on. You can have up to nine tagged expressions.

Not the following character. For example, b \""ad matches bbd, bcd,
bdd, and so on, but not bad.

Anyone of the characters separated by the alternation symbol (\ !). For
example, \ {j \! u\}+frui t finds j fru; t, j j fru; t, ufrui t,
u j f r u it, u u f r u it, and so on.

None or more of the preceding characters or expressions. For example,
ba*e matches be, bac, baae, baaac, and so on.

At least one or more of the preceding characters or expressions. For
example, ba+c matches bae, baac, baaac, but not bc.

Any sequence of characters between the escaped braces. For example,
\ {j u\}+fru; t finds j ufrui t, j uj ufru; t, j uj uj ufru; t, and
so on. Note that it will not find j fru; t, ufru; t, or uj fru; t,
because the sequence j U is not in any of those strings.

· Chapter 3 U ~ing the Text Editor

Regular expression Description

[1\] Any character except those following the caret (1\) character in the
brackets, or any of an ASCII range of characters separated by a hyphen
(-). For example, x[1\0 - 9] matches xa, xb, xc, and so on, but not
x0, xl, x2, and so on.

\ : a Any single alphanumeric character [a - z A - Z 0 - 9] .

\ : b Any white-space character. The \ : b finds tabs and spaces. There is no
alternate syntax to express :b.

\ : C Any single alphabetic character [a - zA - Z J.
\ : d Any decimal digit [0 - 9 J .

\ : n Any unsigned number \ { [0 - 9 J + \ . [0 - 9 J * \ ! [0 - 9] * \ . [0-
9 J + \ ! [0 - 9 J + \}. For example, \: n should match 123, .45, and
123.45.

\ : z Any unsigned decimal integer [0 - 9 J +.
\ : h Any hexadecimal number [0 - 9 a - fA - F J +.
\ : i Any C/C++ identifier [a - zA - Z_$] [a - zA - Z0 - 9_$ J+.

\ : w Any English word (that is, a string of alphabetic characters) [a - zA­
ZJ+.

\ : q Any quoted string \ { .. [1\ "] * "\ ! • [1\ • J * · \ } .
\ Removes the pattern match characteristic in the Find What text box from

the special characters listed above. For example, 100$ matches 100 at
the end of a line, but 100 \ $ matches the character string 100 $
anywhere on a line.

Note You can use regular expressions with the Find button on the toolbar if you have
previously selected the Regular Expression check box in the Find dialog box or the Replace
dialog box.

U sing Regular Expressions with BRIEF Emulation
A regular expression is a search string that uses special characters to match a text
pattern in a file. You canuse regular expressions with both the Find and Replace
commands.

~ To use a regular expression

1 From the Edit menu, choose either Find or Replace.

2 In the Find What text box, type a regular expression.

3 In the Replace With text box, type a regular expression if required.

Tip Select the menu button to the right of the combo box to display a list of reg~lar search
expressions. When you select an expression from this list, the expression is substituted as
the search text in the Find What text box. You can also use the drop-down list to select from
a list of up to 16 previous search strings. If you do use regular expressions, be sure the
Regular Expression check box is selected.

95

Visual C++ User's Guide

96

The f'Oll'Owing table lists valid regular expressi'Ons f'Or the BRIEF emulati'On.

Regular expression Description

?

[]

%

$

{ }

{clc}

@

+

[]

[-]

[a-zA-Z0-9]

[\x09\]+

Any single character.

Anyone of the characters contained in the brackets, or any of an
ASCII range of characters separated by a hyphen (-). For
example, b[ae; ou]d matches bad, bed, b; d, bod and bud,
and r [eo]+d matches red, rod, reed and rood, but not
reo d or roe d. X [0 - 9] matches x 0, x I, x 2, and so on.

If the first character in the brackets is a tilde (-), then the regular
expression matches any characters except those in the brackets.

The beginning of a line.

The end of a line.

Indicates a tagged expression to retain for replacement purposes.
If the expression in the Find What text box is
{l P s z } B ; gPo; n t e r, and the expression in the Replace With
box is \ 0 New Po; n t e r, all selected occurrences of
1 pszB; gPo; nter are replaced with 1 pszNewPo; nter.

Each occurrence of a tagged expression is numbered according to
its order in the Find What text box, and its replacem~nt
expression is \ n, where 0 corresponds to the first tagged
expression, 1 to the second, and so on. You can have up to ten
tagged expressions.

Not the following character. For example, b-ad matches bbd,
bcd, bdd, and so on, but not bad.

Anyone of the characters separated by the alternation symbol
(I). For example, {j I u}+fru; t finds j fru; t, j j fru; t,
u f r u ; t, u j f r u ; t, u u f r u ; t, and so on.

None or more of the preceding characters or expressions. For
example,_ ba@c matches bc, bac, baac, baaac, and so on.

At least one or more of the preceding characters or expressions.
For example, ba+c matches bac, baac, and baaac, but
not bc.

Any sequence of characters between the brackets. For example,
[j u]+fru; t finds j ufru; t, j uj ufru; t, j uj uj ufru; t,
and so on. Note that it will not find j f r u it, u f r u it, or
U j f r u ; t because the sequence j U is not in any of those
strings.

Any character except those following the tilde character (-) in
the brackets, or any of an ASCII range of characters separated by
a hyphen (-). For example, x[-0 - 9] matches xa, xb, xc, and
so on, but not x0, xl, x2, and so on.

Any single alphanumeric character.

Any white-space character.

Chapter 3 Using the Text Editor

Regular expression

[a-zA-Z]
[0-9]
[0-9a-fA-F]+
{[0-9]+.[0-
9]@} I {[0-
9]@. [0- 9]+} I
{[0-9]+}
[0-9]+
[a-zA-Z_$]
[a-zA-Z0-9_$]@
[a-zA-Z]+
•• [...., ..]@ ..

\

Description

Any single alphabetic character.

Any decimal digit.

Any hexadecimal number.

Any unsigned number. For example, {[0 -9]+. [0 - 9]@} I
{[0-9]@. [0-9]+} I {[0-9]+} should match 123, .45,
and 123.45.

Any unsigned decimal integer.

C/C++ identifier.

Any English word (that is, any string of alphabetic characters) .

Any quoted string.

Removes the pattern match characteristic in the Find What text
box from the special characters listed above. For example, 100$
matches 100 at the end of a line, but 100 \ $ matches the
character string 100$ anywhere on a line.

Note You can use regular expressions with the Find button on the tool bar if you have
previously selected the Regular Expression check box in the Find dialog box or the Replace
dialog box.

U sing Regular Expressions with Epsilon Emulation
A regular expression is a search string that uses special characters to match a text
pattern in a file. You can use regular expressions with both the Find and Replace
commands.

~ To use a regular expression

1 From the Edit menu, choose either Find or Replace.

2 In the Find What text box, type a regular expression.

3 In the Replace With text box, type a regular expression if required.

Tip Select the menu button to the right of the combo box to display a list of regular search
expressions. When you select an expression from this list, the expression is substituted as
the search text in the Find What text box. You can also use the drop-down list to select from
a list of up to 16 previous search strings. If you do use regular expressions, be sure the
Regular Expression check box is selected.

97

Visual C++ User's Guide

98

The following table lists valid regular expressions for the Epsilon emulation.

Regular expression Description

[]

A

$

(

(ele)

*

+

[a-zA-Z0-9]

[<tab>]+

[a-zA-Z]

{0-9]

[0-9a-fA-F]+

([0-9]+.[0-
9]*1 [0-
9]*.[0-9]+1
[0-9]+)

Any single character.

Anyone of the characters contained in the brackets or any of an
ASCII range of characters separated by a hyphen (-). For example,
b (a e; 0 U) d matches bad, bed, b; d, bod and bud, and
r(eo)+d matches red, rod, reed and rood, but not reod or
roed. X (0 - 9) matches x0, xl, x2, and so on.

If the first character in the .brackets is a caret (A), then the regular
expression matches any characters except those in the brackets.

The beginning of a line.

The end of a: line.

Indicates a tagged expression to retain for replacement purposes. If
the expression in the Find What text box is (1 P s z) B ; gPo; n t e r,
and the expression in the Replace With box is #1 New Po; n t e r, all
selected occurrences of 1 p s z B ; gPo; n t e r are replaced with
1 pszNewPo; nter.

Each occurrence of a tagged expression is numbered according to its
order in the Find What text box, and its replacement expression is
lin, where 1 corresponds to the first tagged expression, 2 to the
second, and so on. You can have up to nine tagged expressions.

Not the following character. For example, b-a d matches b b d,
bcd, bdd, and so on, but not bad.

Anyone of the characters separated by the alternation symbol (1).

For example, (j 1 u) +f r u; t finds j f r u; t, j j f r u; t,u f r u; t,
u j f r u ; t, u u f r u ; t, and so on.

None or more of the preceding characters or expressions. For
example, ba*e matches be, bae, baae, baaae, and so on .

. At least one or more of the preceding characters or expressions. For
example, ba+e matches bae, baac, and baaac, but not be.

Any character except those following the caret (A) in the brackets,
or any of an ASCII range of characters separated by a hyphen (-).
For example, X [A 0 - 9] matches x a, xb, x c, and so on, but not
x0, xl; x2, and so on.

Any single alphanumeric character.

Any white-space character.

Any single alphabetic character.

Any decimal digit.

Any hexadecimal number.

Any unsigned number. For example, ([0 - 9] +. [0 - 9] * 1 [0-
9] * . [0 - 9]+ I [0 - 9]+) should match 123, .45, and 123.45.

Chapter 3 Using the Text Editor

Regular expression

[0-9J+
[a-zA-Z_$J
[a-zA-Z0-
9_$J*
[a-zA-ZJ+
U[,...,,,]*,,

\

Description

Any unsigned decimal integer.

C/C++ identifier.

Any English word (that is, any string of alphabetic characters).

Any quoted string.

Removes the pattern match characteristic in the Find What text box
from the special characters listed above. For example, 100$
matches 100 at the end of a line, but 100 \ $ matches the character
string 100$ anywhere on a line.

Note You can use regular expressions with a search in a single source file with the Find
button on the tool bar if you have previously selected Regular Expression in the Find or
Replace dialog box.

Selecting Text
You can select lines, multiple lines, and column blocks of text to cut, copy, delete,
indent, and unindent. Most of the selection commands have extensions (the word
"Extend" is appended to the name of the command) that move the cursor and extend
the selection. By default, these commands are bound to the same key combination as
the primary selection command plus the SHIFf key (such as SHIFf +LEFf ARROW for
CharLeftExtend).

~ To select a line of text

• In the selection margin, point to the beginning of the text you want to select and
click the left mouse button.

~ To select multiple lines of text

1 In the selection margin, point to the beginning of the text you want to select.

2 Drag either up or down to select the lines of text.

~ To select a column block of text

1 Point to the beginning of the text you want to select.

2 Hold down the ALT key and click the left mouse button.

3 Release the ALT key and point to the end of the text you want to select.

When you release the left mouse button, the block of text is selected, and the text
is available for cut, copy, delete, and indent operations. To cancel column-select
mode, click the left mouse button.

99

Visual C++ User's Guide

100

Note When you use proportional fonts in the editor window, the column positions you select
in the first line may not correspond exactly to the subsequent lines you select. The text editor
selects the character most directly in line with the start and end columns, ignoring the actual
character count.

The text editor commands for selection are described in the following table.

Command

CharLeftExtend

CharRightExtend

ConditionalDownExtend

ConditionalUpExtend

DocumentEndExtend

DocumentStartExtend

HomeExtend

LineDownExtend

LineEndExtend

LineUpExtend

PageDownExtend

PageVpExtend

SelectAll

SelectChar

SelectLine

SelectColumn

WordLeftExtend

WordRightExtend

Description

Extends the selection one character to the left.

Extends the selection one character to the right.

Selects to the next matching preprocessor condition.

Selects to the previous matching preprocessor condition.

Extends the selection to the end of the file.

Extends the selection to the beginning of the file.

Extends the selection alternately between the start of the current
line and the start of the text on that line.

Extends the selection one line downward.

Extends the selection to the end of the text on the current line.

Extends the selection one line upward.

Extends the selection one page downward.

Extends the selection one page upward.

Selects the entire document.

Starts the character-selection mode. While this mode is active, all
other navigation commands will select the characters from the
position where the command was executed to the current cursor
location.

Starts the line-selection mode. While this mode is active, all other
navigation commands will select lines from the position where
the command was executed to the current cursor location.

Starts the column-select mode. In column-select mode, the
navigation keys act as if virtual space is enabled.

Extends the selection backward one word.

Extends the selection forward one word.

See Also Viewing and Changing the Shortcut Keys

Chapter 3 U sing the Text Editor

Editing with the Text Editor
With the text editor, you can cut, copy, and paste text using menu commands or drag­
and-drop. You can also undo and redo selected editing actions.

The text editor provides the following editing commands:

• Cutting, copying, pasting, and deleting text

• Undoing and redoing editing actions

• Using drag-and-drop

• Specifying column blocks for editing

All editing commands require a selection in order to work. Some of the commands
can make a selection based on the current cursor location. Command names that
begin with an object (such as WordCapitalize) assume that object for a default
selection; otherwise, the default selection will be the character adjacent to the cursor.
For example, the Delete command removes the character to the right of the cursor if
there is no selection.

Note You can enable the copy command to work on the current line even if there is no
selection. From the Tools menu, select Options. Select the Compatibility tab, and select the
Enable Copy Without Selection option. This enables the copy command to work on the current
line if there is no selection.

When you cut text from the file, the text is removed from your file and placed on the
Clipboard. When you delete text from the file, the text is removed from your file, and
the Clipboard is not used. All Windows applications share one single Clipboard.
Commands that use the Clipboard will overwrite whatever was previously placed
onto the Clipboard by other commands or other Windows applications. This single­
Clipboard behavior is true even when Developer Studio is emulating an editor, such
as Epsilon, that supports multiple Clipboards.

The text editor commands for editing are described in the following table.

Command Description

CharTranspose

Copy

Cut

Delete

Swaps characters around the cursor.

Copies the selection to the Clipboard.

Removes the selection and copies it to the Clipboard.

Deletes the selection.

101

Visual C++ User's Guide

Command

DeleteBack

DeleteBlankLines

DeleteHorizontalSpace

FormatSelection

IndentS election

IndentSelectionToPrev

LevelCutToEnd

LevelCutToStart

LineCut

LineDelete

LineDeleteToEnd

LineDeleteToStart

LineOpenAbove

LineOpenBelow

LineTranspose

LowerCaseSelection

Paste

SentenceCut

TabifySelection

UnindentSelection

UntabifySelection

UpperCaseSelection

W ordCapitalize

WordDeleteToEnd

WordDeleteToStart

WordLowerCase

WordTranspose

WordUpperCase

Description

Deletes the selection, or if there is no selection, deletes the
character to the left of the cursor.

Deletes the blank lines adjacent to the cursor.

Deletes the spaces and tabs around the cursor.

Formats the selection using the smart indent settings.

Indents the selected text right one tab stop.

Indents the selection to line up with the previous line's indention.

Cuts the text between the cursor and the end of the next
bracketed level.

Cuts the text between the cursor and the beginning of the
previous bracketed level.

Deletes the selected lines and places them on the Clipboard.

Deleted the selected line.

Deletes to the end of the current line.

Deletes to the beginning of the current line.

Opens a new line above the cursor.

Opens a new line below the cursor.

Swaps the current and previous lines.

Makes the selection all lowercase.

Inserts the Clipboard contents at the cursor.

Deletes the remainder of the sentence.

Replaces spaces with tabs in the selection.

Indents the selected text left one tab stop.

Replaces tabs with spaces in the selection.

Makes the selection all uppercase.

Makes the first character uppercase.

Deletes a word to the right.

Deletes a word to the left.

Makes the current word lowercase.

Swaps the current and previous words.

Makes the current word uppercase.

See Also Viewing and Changing the Shortcut Keys

102

Chapter 3 Using the Text Editor

Cutting, Copying, Pasting, and Deleting Text
You can edit your text using the following actions.

Action

Cut

Copy

Paste

Delete

Undo

Redo

Description

Removes selected text from the active window.

Duplicates selected text in the active window.

Pastes cut or copied text into an active window.

Deletes text without copying it to the Clipboard.

Restores the text.

Re-applies the prior edit.

~ To cut or copy and paste tex~

1 Select the text you want to cut or copy.

2 From the Edit menu, choose Cut or Copy.

The cut or copied text is placed onto the Clipboard and is available for pasting.

3 Move the insertion point to any source window where you want to insert the text.

4 From the Edit menu, choose Paste.

~ To delete text

1 Select the text you want to delete.

2 From the Edit menu, choose Delete.

The deleted text is not placed onto the Clipboard, and cannot be pasted.

Undoing and Redoing Editing Actions
Use the Undo command to undo previous editing actions. Use the Redo command to
reapply editing actions that have been undone. Redo is unavailable unless you have
used the Undo command.

The number and scope of editing actions you can undo is determined by ~he size of
the text editor's UndoRedoSize buffer in the registry. For information on how to
modify the Registry, see Appendix B, Initializing and Configuring Microsoft
Developer Studio.

Note You can also undo automated edits. For example, if you have used ClassWizard to add
a command handler, you can undo the ClassWizard edits by choosing AutomatedEdit in the
Undo drop-down list.

103

Visual C++ User's Guide

~ To undo an editing action

• From the Edit menu, choose Undo.

~ To redo an undo action

• From the Edit menu, choose Redo.

Using Drag-and-Drop

a

Drag-and-drop editing is the easiest way to move or copy a selection of text in a file
or between files.

~ To move text using drag-and-drop editing

1 Select the text you want to move.

2 Drag the selected text to the new location.

Note You can also use the right mouse button for drag-and-drop editing. Select the text you
want, and then use the right mouse button to drag the text to a new location. A pop-up menu
appears, asking if you want to move or copy the selected text.

Tip At any time during a drag-and-drop, you can click the other mouse button to cancel the
operation.

~ To copy text using drag-and-drop

1 Select the text you want to copy.

2 While holding down the CTRL key, drag the selected text to the new location.

Recording and Playing Back Keystrokes

104

With the text editor, you can automate repetitive keyboard tasks by recording and
playing back keystrokes. The playback feature is available until you record a new set
of keystrokes or end the editing session.

You can play back recorded keystrokes only into a single editor view. If you activate a
new editor view while recording keystrokes, the recorder will remain in record mode
and continue recording keystrokes. However, when the recorded keystrokes are
played back, they will be played back into the view they were recorded from. If a
window is closed, the playback stops.

Note During recording, all mouse-driven selections in text windows are disabled.

~ To record keystrokes

1 Move the mouse pointer to where you want to begin typing.

2 From the Tools menu, choose Record Keystrokes.

The Record toolbar appears.

Chapter 3 Using the Text Editor

3 Record the keystrokes that you want.

During recording, all mouse-driven selections are disabled. Keystrokes are.entered
at the location you have selected.

4 From the Tools menu, choose Stop Recording when you have finished recording
your keystrokes.

~ To play back keystrokes

1 Move the mouse pointer to where you want to play back the recorded keystrokes.

2 From the Tools menu, choose Playback Recording.

The recorded keystrokes will be played back into the active editor window at the
location you have selected.

Setting Text Editor Options
With Developer Studio, you can set the text editor's behavior to suit your preferences
and work habits.You can customize the text editor by:

• Setting editor emulation.

• Setting file save preferences.

• Setting and using the selection margin.

• Setting tabs and indents.

• Setting the font style, size, and color.

• Setting syntax coloring.

• Setting syntax coloring for user-defined types.

The text editor commands for editor settings are described in the following table.

Command Description

EditToggleCaseSensitivity

EditToggleFindMatch Word

EditToggleOvertype

EditToggleRE

EditToggleTabDisplay

Toggles the search case sensitivity_

Toggles match whole word.

Toggles between inserting and replacing
typing.

Toggles the regular expression search.

Shows or hides the tab characters.

See Also Viewing and Changing the Shortcut Keys, Using Virtual Space

105

Visual C++ User's Guide

Setting Editor Emulation
The Microsoft Developer Studio text editor can emulate two popular text editors:
BRIEF and Epsilon. With the emulation feature, the text editor can emulate the key
bindings, text selection, caret display, and window display, as well as most editing
commands of the selected editor.

~ To set an editor emulation
1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Compatibility tab.

3 In the Recommended Options For list box, select the editor that you want to
emulate.

The default editor is Developer Studio.

The Options box displays the status of pre-defined editor options.

4 Choose the OK button.

See Also Setting Editor Behavior, Using Epsilon Emulation, Using BRIEF
Emulation, Viewing and Changing the Shortcut Keys

Setting Save Preferences

106

You can set save preferences-such as whether to be prompted before saving a file­
in the Options dialog box. As a default, the text editor saves all changed files prior to
building an application. The following table lists the save preferences:

Save Option

Save before running tools

Prompt before saving files

Automatic reload of externally
modified files

~ To change the save options

Description

Saves files before you build a project or run a build utility
such as NMAKE.

Confinns (with a dialog box prompt) that you want to
save files.

Automatically reloads externally modified files that have
been loaded (but not yet changed) by the editor.

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Editor tab.

3 Select any of the Save Options.

4 Choose the OK button.

Chapter 3 Using the Text Editor

Setting and Using the Selection Margin
The selection margin is an area to the left of each line of text. You can use the mouse
in this area to select text. The selection margin also displays information about source
lines. Breakpoints, bookmarks, the extended instruction pointer (EIP), and the tag
pointer are all indicated by icons in the selection margin.

~ To set the selection margin

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Editor tab.

3 Select the Selection Margin check box.

4 Choose the OK button.

~ To use the selection margin

When the mouse pointer is moved into the selection margin, it changes to an up­
and-right-pointing select arrow (a mirror image of the standard select arrow).

• Do any of the following:

• Click in the margin to select the entire line to the right of the mouse pointer.

• Click in the margin and move the mouse pointer to select multiple consecutive
lines.

• While holding down SHIFT, click in the margin and move the mouse pointer to
extend a selection.

• While holding down CTRL, click anywhere in the margin to select the entire file.
(This is equivalent to choosing the Select All command from the Edit menu.)

Setting Tabs and Indents
You can indent text with tab characters several ways:

• Use the INDENT SELECTION key.

• Use Auto Indent (without Smart Indent)

• Use Auto Indent (with Smart Indent enabled)

When you press the TAB key, the insertion point moves to the next indent level. You
can display (or hide) the tab symbols by pressing the EditToggleTabDisplay key
combination.

Note You can display all of the current keyboard shortcuts. For more information, see
"Displaying the Keyboard Shortcuts" in Chapter 22, "Customizing Microsoft Developer Studio."

You can also use Auto Indent (without Smart Indent) to automatically indent new
lines to match the previous line.

107

Visual C++ User's Guide

~ To set Auto Indent

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Tabs tab.

3 Under Auto Indent, select the appropriate setting. To use Smart Indent, select the
Smart option. Select the Default option to set the tab and indent size to match that
of the previous level.

4 Choose the OK button.

If you use Auto Indent (with Smart Indent enabled), the text editor automatically
indents the text based on the context of the previous lines.

~ To set Smart Indent

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Tabs tab.

3 Under Auto Indent, select the Smart option.

4 Under Smart Indent Options, select the language element and specify the number
of previous lines to use for the context of smart indenting.

5 Choose the OK button.

Backspacing over a tab character deletes the tab character, regardless of the indent
setting.

If you select the Insert Spaces option, a tab character is not inserted, and only spaces
are inserted to reach the next indent level.

Note The File Type list box on the Tabs tab contains a list of file types. The initial tab settings
for each file you load are assigned based on the file extension and the setting of this list box.
You can use the Tab Size box and Indent Size box on the Tabs tab or on the Source Window
property page to specify individual settings for these two fields on a per-file basis, as needed.

~ To change tab and indent settings

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Tabs tab.

3 In the Tab Size box, type the number of spaces to use as a tab stop. The default is
four spaces.

4 In the Indent Size box, type the number of spaces to use for indents. The default is
four spaces.

Chapter 3 U sing the Text Editor

5 Select the Keep Tabs option to treat each tab as a single tab character when the file
is saved.

-or-

Select the Insert Spaces option to use spaces as specified in the Tab Size box.

6 Choose the OK button.

~ To change tab and insert settings using the Source Window property page

1 Click the right mouse button with the mouse pointer in the source window,

2 From the pop-up menu, choose Properties.

The Source Window property page appears.

3 In the Tab Size box and Indent Size box, type the tab and indent setting.

~ To display or hide tab symbols

• Press the EditToggleTabDisplay key combination to toggle the display of tab
symbols. Tab symbols are displayed as > > whenever there is a tab in a source file.

You can press the TAB key to move the caret to the next indent level. You can also
move a block of lines one tab to the right or left.

~ To indent a group of lines

1 Select the group of lines.

2 Press the IndentSelection key combination.

~ To unindent a group of lines

1 Select the group· of lines.

2 Press the UnindentSelection key combination.

Note The UnindentSelection command only returns to previous tab stops.

See Also Viewing and Changing the Shortcut Keys

Setting the Font Style, Size, and Color
You can change the font style, size, and color settings for any window within
Developer Studio with the Format command. You may find different fonts in various
windows give visual clues about the function of the windows-the default setting for
soutce windows, a different font for the Watch window, and so on. You can use the
text font and size to better manage your window display of information.

Note In addition to setting font coloring, you must enable syntax coloring in order to view
colored text elements.

109

Visual C++ User's Guide

110

~ To change a font style, size, or color

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Format tab.

3 In the Category box, select the category of information to be formatted.

The Category list box displays the windows that have formatting options.

4 In the font box, select the font to be used for the category you selected.

The Font drop-down list box displays the different fonts installed on your system.
The text sample in the sample box changes to the font you select.

S In the Size box, select the Size to be used for the font you selected.

The Size drop-down list displays the sizes available for the selected font. The text
sample in the sample box changes to the size you select.

6 In the Colors list box, select the type of text you want to color.

7 In the Background list box, select a background color.

a In the Foreground list box, select a foreground color.

Note The Background and Foreground lists display the 16 standard colors and the
Automatic setting. The text sample displayed in the Sample box changes to the color you
select.

The behavior of the Automatic color setting depends on the element selected. For colors
that map to standard system elements (such as Foreground color, Background color, or Text
Selection color), the Automatic setting sets the element to the appropriate system color. For
syntax coloring elements and other non-system defined colors, the Automatic setting
indicates that the foreground color or background color from the same category is to be
used.

9 Choose the OK button.

Text within one category of window can be only one font and size. Multiple fonts
cannot be displayed in the same category of source window.

The font and size settings apply to everything within the selected category, while the
foreground and background color settings apply only to the selected element of that
category.

Tip You can reset the formatting options for a selected Category to the default settings by
~hnn~inn RA<::At _ .. ---... ~ .. _-_ ..

Chapter 3 Using the Text Editor

Setting Syntax Coloring
U sing different colors for various elements of your display, such as functions or
variables lines, gives you visual cues about the structure of your source code. These
changes are global and affect all source files with extensions recognized by the
installed language.

~ To set syntax coloring in an individual source file

1 Click the source file window or use ,the Window menu to make the source window
active.

If there are multiple windows open on the source file, select one. Syntax coloring
changes will appear in all windows opened on the source file.

2 From the Edit menu, choose Properties.

The Source Window property page appears. The Language list box displays the
current language setting for syntax coloring. The drop-down list contains the
insta.lled language choices.

3 In the Language list box, select C/C++ to set syntax coloring for that source file,
or select None to turn syntax coloring off.

Note Global syntax coloring for C++ is enabled by default.

Setting Syntax Coloring for User ... Defined Types
The text editor can display custom coloring of user-defined data types as well as
predefined language elements.

The process of setting colors for user-defined types has three stages:

• Create an ASCII text file containing a list of user-defined types.

• Enable syntax coloring.

• Select appropriate colors for the user-defined types.

~ To set syntax coloring for user-defined types

1 In the same directory as MSDEV.EXE, create a text-only file named
USERTYPE.DAT, containing a list of user-defined type names.

Note You must save USERTYPE.DAT as a text-only file. You can use the text editor or the
Windows Notepad to create this file. The file should contain a list (one per line) of the user­
defined strings that should be colored.

2 Click the source file window or use the Window menu to make the source window
active.

If there are multiple windows open on the source file, select one. Syntax coloring
changes will appear in all windows opened on the source file.

111

Visual C++ User's Guide

112

3 From the Edit menu, choose Properties.

The Source Window Properties page appears. The Language list box displays the
current language setting for syntax coloring. The drop-down list contains the
installed language choices.

4 In the Language list box, select C/C++ to set syntax coloring for that source file,
or select None to turn syntax coloring off.

Note Global syntax coloring for C++ is enabled by default.

5 From the Tools menu, choose Options.

The Options dialog box appears.

6 Select the Format tab.

7 In the Category box, select the category of information to be formatted.

The Category list box displays the windows that have formatting options.

8 In the Font box, select the font to be used for the category you selected.

The Font list box displays the different fonts installed on your system. The text
sample in the sample box changes to the font you select.

9 In the Size box, select the. Size to be used with the font you selected.

TJ:1e Size list box displays the sizes available for the selected font. The text sample
in the sample box changes to the size you select.

10 In the Colors list box, select the type of text you want to color.

11 In the Background list box, select a background color.

12 In the Foreground list box, select a foreground color.

Note The Background and Foreground lists display the 16 standard colors and the
Automatic setting. The text sample displayed in the Sample box changes to the color you
select.

The behavior of the Automatic color setting depends on the element selected. For colors
that map to standard system elements (such as Foreground Color, Background Color, or
Selected Text Color), the Automatic setting sets the element to the appropriate system
color. For syntax coloring elements and other non-system defined colors, the Automatic
setting indicates that the foreground color or background color from the same category is
to be used.

a

Chapter 3 Using the Text Editor

13 Choose the OK button.

The USERTYPE.DAT file is read during initialization. It cannot be renamed, nor can
it be reloaded during an editing session. The syntax coloring mechanism checks the
USERTYPE.DAT file last. Thus, all previously defined color settings take precedence
over the user-defined types.

Tip For any source file, you can use the Source Window property page to specify which
language syntax coloring to apply (or turn off syntax coloring altogether). For more information,
see "Setting the Font Style, Size, and Color" earlier in this chapter.

Managing Open Windows
The text editor features options that control the display of source windows. You can
switch between windows, open new windows, split window views, and view a source
file in full-screen mode.

~ To switch to a source window
• Click anywhere in the window.

-or-

• From the Window menu, choose the filename.

-or-

1 From the Window menu, choose Windows.

The Windows dialog box appears.

2 Select a window from the Select Window list.

3 Choose the Activate button, or double-click the selection.

~ To create a new window for an open source file

1 Switch to the source window.

2 From the Window menu, choose the New Window command.

A second copy of the source file is displayed with an :n suffix. As you open more
windows on the source file, the value of n increases. You can scroll and split each
window independently. You can make changes to the source file from any window.

Note When you first open a file, if you select the Read Only check box in the Open dialog
box, the current window and any duplicates of the window remain read only.

113

Visual C++ User's Guide

114

~. To split a source window

• Click the split bar at the top of the vertical scroll bar, and drag it down to the
location you want.

-or-

1 Switch to the source window.

If there are multiple windows open on the source file, select one of them.

2 From the Window menu, choose Split.

The split bar appears:

3 Drag the split bar to the location you want.

~ To view a source file in full-screen mode

1 Switch to the source window.

2 From the View menu, select Full Screen.

The source window is displayed in full-screen mode. A small button appears at the
top that allows you to reset the screen to regular mode.

Initially, the toolbars~ status bar, and scroll bars are hidden. From the Tools menu
(ALT+T), choose Options and then use the Editor tab to control window settings.

~ To end full screen mode

• Press the ESC key.

-or-

• Click the Full-Screen button.

All files are automatically closed when you quit Developer Studio (you will be
prompted to save any changed files). You can also close any individual source file
without quitting the application.

~ To close a source file

1 From the Window menu, choose Windows.

The Windows dialog box appears.

2 Select one or more files from the Select Window list box.

Chapter 3 Using the Text Editor

3 Choose the Close Window button.

-or-

4 Switch to the source window.

S From the File menu, choose Close to close the active window and any additional
views of the window.

-or-

If the window is not maximized, double-click the window's Control-menu box.
When you double-click the Control-menu box, the window is closed, but
additional views of the document remain open.

115

CHAPTER 4

Working with Source-Code Control

Source-code control systems enable you to track changes to source-code files during
the course of software development. With source-code control systems, you can
ensure that changes are not overwritten in projects with multiple authors, and that
authors are working with the most up-to-date code. You can also 'return to earlier
versions of code, if necessary.

Microsoft Developer Studio provides facilities for integrating a source-code control
system into the development environment. If you install a source-code control system
that conforms to the Microsoft Common Source Code Control Interface, you can
directly access source-code control functionality from the Developer Studio menus.

Note Until you install a source-code control system that conforms to the Microsoft Common
Source Code Control Interface, the menu commands for source-code control will not appear. In
addition, either you or the installation program must make the correct entries in the Registry.

Setting Up Source-Code Control
To use the integrated source-code control capabilities in Microsoft Developer Studio,
you must take the following steps:

• Install a source-code control system that conforms to the Microsoft Common
Source Code Control Interface.

• Ensure that the installation program for the source-code control system writes the
correct information to the Registry, and if it doesn't, make the correct entries.

• Complete all the administrative tasks required by your source-code control system.
These tasks may include designating locations for master versions of files, creating
network connections, setting permissions for drives and/or directories, or adding
user information and permissions to the system.

117

Visual C++ User's Guide

Supported Source-Code Control Functionality
Microsoft Developer Studio provides commands for a number of common source­
code control operations used in everyday work. It supports the following operations:

• Putting an entire project under source-code control.

• Putting individual files under source-code control.

• Getting current versions of files.

• Checking files out of the source-code control system.

• Checking files into the source-code control system and merging others' changes.

• Checking files into the source-code control system and ignoring changes.

• Removing files from the source-code control system.

• Viewing the history of changes made to a file.

• Viewing the differences between the local copy of a file and its master copy.

If your installed source-code control system supports other operations in addition to
these basic ones, Microsoft Developer Studio provides access to them from the
Advanced button on the relevant dialog box. These other operations could include
such things as checking out files exclusively to prevent other users from working on
them at the same time.

Unsupported Source-Control Functionality
Microsoft Developer Studio supports basic functionality in installed source-code
control systems, as outlined in the section "Supported Source-Code Control
Functionality" earlier in this chapter. This integrates common source-code control
operations into your customary working environment.

These integrated operations do not encompass all possible capabilities of source-code
control systems. For certain source-code control operations, you will have to use the
programs or features of your installed source-code control system. These operations
include adminstrative tasks, such as designating locations for master versions of files,
creating network connections, setting permissions for drives and/or directories, or
adding user information and permissions to the system.

In addition, if your source-code control system allows certain operations on files in
the source-code control tree, such as getting specific versions of files, branching, or
merging branches, you need to use the installed source-code control program for
those operations.

Putting Files Under Source-Code Control

118

When you add a file to your source-code control system, the system manages access
to the file and maintains a record of all changes made to the file. It also records when

Chapter 4· Working with Source-Code Control

a file was changed and who changed the file. From Microsoft Developer Studio, you
can put entire projects under source-code control, or you can put individual files
under source-code control.

Displaying the Source-Code Control Toolbar
You can access the integrated source-code control commands from buttons on a
standard toolbar.

~ To display the Source-Code Control tool bar

1 From the View menu, choose Toolbars.

The Toolbars dialog box appears.

2 From the Toolbars list, select Source Control.

The Source-Code Control toolbar immediately appears.

3 Choose the Close button.

You can also remove buttons from the toolbar, add other buttons, or add source-code
control buttons to other toolbars. For information on customizing toolbars, see the
section "Working with Toolbars" in Chapter 22.

Adding a Project to Source-Code Control
You can add a project to your source-code control system any time after you have
created it.

Note Before you can add any files to source-code control, you must complete any
administrative tasks required by your source-code control system, using the administrative
program supplied by your system. This may include adding users or creating a source-code
control project database, for instance.

~ To add a project to source-code control

1 Open an existing project or create a new project.

2 From the Tools menu, choose Source Control, and from the cascading menu,
choose Add To Source Control.

The installed source-code control displays one or more dialog boxes, requesting
source-code control project information.

3 Specify the information required by the installed source-code control system.

The Add To Source Control dialog box appears, with files in the project workspace
selected.

4 If you want to add the files to source-code control, but immediately check them
out, select the Keep Checked Out check box.

5 In the Comment text box, type a comment about the files, if you want.

119

Visual c++ User's Guide

Note If your source-code control system supports additional options, an Advanced button
appears on the Add To Source Control dialog box, and you can select those options at this
point.

6 Choose the OK button.

Adding Individual Files to Source-Code Control
You can set Developer Studio options to prompt you automatically each time you
insert files into your project, or you can explicitly choose to put them under source­
code control.

~ To prompt automatically for inclusion under source-code control

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Source Control tab.

3 Select the Prompt To Add Files When Inserted check box.

4 Choose the OK button.

Now, each time you insert files into the project, Developer Studio prompts you to
add the inserted files to your source-code control system.

If some or all of the files currently included in your project are not under source-code
control, you can add them individually to the source-code control system.

~ To add individual files to source-code control

1 In the File View pane of the Project Workspace window, select the files that you
want to put under source-code control.

2 From the Tools menu, choose Source Control, and then choose Add To Source
Control from the cascading menu.

The Add To Source Control dialog box appears, with checks in the Files list next
to the files that you have selected. The list includes all files in the project directory
that are not already under source-code control, and you may check or uncheck any
files in the list.

3 In the Comment text box, type a comment about the files, if you want.

4 Choose the OK button.

The files are now under source-code control, and the file icons in the File View
pane are now grayed to indicate this.

Removing Files from Source-Code Control

120

When you remove files from your Microsoft Developer Studio project, you may first
want to remove them from source-code control.

Chapter 4 Working with Source-Code Control

~ To remove a file from source-code control

1 In the File View pane of the Project Workspace window, select the files that you
want to remove from source-code control.

2 From the Tools menu, choose Source Control, and from the cascading menu,
choose Remove From Source Control.

The Remove From Source Control dialog box appears, with checks in the Files list
next to the files that you have selected. You may check or uncheck any files in the
list.

3 Choose OK.

Note Not all source-code control systems allow individual users to remove files from source­
code control. Some systems require source-code control administrators to remove them, and
the administrator may need to use the source-code control system's administrative program.

Determining the Status of Files
When you are using a source-code control system, it is important to be able to
determine the status of files within the system. This can help prevent collisions in
groups with multiple authors, ensure that you are working on current files, determine
whetp.er you have access to a file, and so .on. You can also examine the historical
status of files to determine when and what changes were made, and who made them.

You can determine some information from the FileView pane, other information from
the property pages for a file, and other information from examining the file's history.

Reading the File View Pane
The File View pane of the Project Workspace window displays all the files that are
currently in the project workspace. If a project is under source-code control, the file
icons are grayed, and if a file is checked out, a check mark appears to the left of the
file icon. Figure 4.1 shows a file under source-code control that has been checked out.

Figure 4.1 FileView Showing a Checked Out File

M}lprojl files
II ChildFrm.cpp

, II MainFrm.cpp
i··· II Myprojl.cpp
[... II Myprojl.rc
;··11 MyprojlDoc.cpp
i'(II Myproj1View.cpp
f· ~iReadMe.txtl
}... II 5 td6.fx. cpp

ffi··1i3 Dependencies

121

Visual c++ User's Guide

Examining File Status on Property Pages
Each file in a project has a property page associated with it. The property page
includes information about the file; including its current status in the source-code
control system if it is under source-code control.

Note If the file is not under source-code control, no status information appears on the property
page.

~ To examine a property page from the FileView pane

• Select the file in the File View pane of the Project Workspace window, and press
ALT+ENTER.

-or-

• Select the file in the File View pane of the Project Workspace window, click the
right mouse button to display the pop-up menu, and choose Properties.

-or-

• Select the file in the File View pane of the Project Workspace window, and from
the Edit menu, choose Properties.

~ To examine a property page from a source editor window

• Press ALT+ENTER and select the General tab.

-or-

• Click the right mouse button to display the pop-up menu, choose Properties, and
then select the General tab.

-or-

• From the Edit menu, choose Properties, and then select the General tab.

Examining File Histories

122

In some cases, you may want to know what changes were made to a file, either
recently or throughout its existence. You can request the source-code control system
to show a history for a file or files that you have added to source-code control. Some
source-code control systems allow you to select only a single file. The type of detail
shown in the file histories depends on the source-code control system.

~. To show file histories

1 In the File View pane of the Project Workspace window, select the file or files for
which you want a history.

2 From the Tools menu, choose Source Control, and then choose Show History from
the cascading menu.

Your source-code control system displays the history for the selected file or files.

Chapter 4 Working with Source-Code Control

Getting Current Versions of Files

a

Updating your local copies of files to versions from the master source-code control
files is called "getting" or "synchronizing" files. In any software project with multiple
authors, you need to update your local copies frequently to ensure that you
incorporate changes that other authors have made.

In a large project, changes can be made in files that you normally do not work in, but
that do contain information that you use. For instance, project-wide header files may
define manifest constants or macros that appear in your source files. When you get or
synchronize your local files, the master versions of files are copied to your local
project. The files are not checked out, and you cannot modify them and check in
changes, but you can build with the most up-to-date versions.

If you have checked out files and made changes to your local copies, and other
authors have made changes to those same files and checked them in, your source­
code control system reports that you have changes to merge. You then need to follow
the recommended procedures in your source-code control system to reconcile and
verify those changes.

~ To get current files in your project

1 In the File View pane of the Project Workspace window, select the files that you
want to get.

2 From the Tools menu, choose Source Control, and from the cascading menu,
choose Get Latest Version.

The Get Latest Version dialog box appears, with checks next to the files that you
have selected. The list includes all files in the project directory that are under
source-code control, and you may check or uncheck any files in the list.

Tip You can quickly select all the items in the list by selecting the first item, pressing
SHIFT +END to select all the items, and then pressing the SPACEBAR to change the check box
state. If one or more files are checked, they now are unchecked. Pressing the SPACEBAR
again checks them all.

3 Choose the OK button.

The source-code control system copies all the selected files with changes by other
authors to your local directory.

You can also have Developer Studio automatically prompt you to get the current
versions of files when you open a project workspace.

~ To get current versions of files when opening a project workspace

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Source Control tab.

123

Visual C++ User's Guide

3 Select the Get Files When Opening The Workspace check box.

4 Choose the OK button.

Checking Files In and Out
When you begin work on your project, normally you open the project in the project
workspace and get the current versions of the project files to make sure that you are
looking at the most up-to-date sources. Before you begin to modify the source files,
you check them out; after you have completed the modifications, you check the files
in.

When you have a file checked in, your local copy of the file is read-only, and you
cannot save any changes to it. When you check out a file, you can make changes to
your local copy of the file, and save those changes to the file. When you check the file
in, you copy those changes to the master copy of the file in the source-code control
project. This makes those changes available to your coworkers. Depending on the
characteristics of your source-code control system, only one author can check out a
file, or more than one author can check out a file simultaneously.

In Microsoft Developer Studio, in addition to selecting files directly from the
File View pane, you can also check them in and out by selecting from the other panes.
For instance, if you select a class to·check out in the ClassView pane, Developer
Studio prompts you to check out files associated with that class. In the Resource View
pane, if you select a bitmap resource to check out, Developer Studio prompts you to
check out the resource file and the bitmap file.

Checking Files Out

124

When you check a file out, your installed source-code control system changes the
status of the file from read-only to writeable, and records that you have the file
checked out. You then have the necessary permissions to revise the file. Your source­
code control system may include a mechanism for exclusive use. You can then specify
that you have the file checked out, and that no one else may check out that file.

Some source-code control systems allow mUltiple authors to check out the same file.
In this case, the source-code control system merges the changes from the authors
when each checks in the file.

~ To check files out

1 In the File View pane of the Project Workspace window, select the files that you
want to check out.

2 From the Tools menu, choose Source Control, and from the cascading menu,
choose Check Out.

The Check Out File(s) dialog box appears, with checks next to the files that you
have selected. The list includes all checked-in files in the project directory, and
you may check or uncheck any files in the list.

Chapter 4 Working with Source-Code Control

3 Type a comment in the Comment text box, if you want.

Note Not all source-code control systems support comments when checking files out. If
yours does not, this text box does not appear. .

4 Choose the OK button.

You can also check out a file using the pop-up menu in the text editor windows. Press
the right mouse button to display the menu. From the menu, choose Check Out.

You can have Developer Studio prompt you to check out a file if you start to edit it,
but have not checked it out.

~ To prompt for check out from editor windows

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Source Control tab.

3 Select the Check Out Source File(s) When Edited check box.

4 Choose the OK button.

Checking Files In
When you check a file in, the source-code control system changes the status of the file
from writeable to read-only, and records that you have checked in the file. It also
records the differences between the contents of the file when you checked it out and
when you checked it in.

You generally want to view the changes to the file before you check it in to confirm
the changes that you made. In some cases, you may want to discard all changes to
your file before checking it in. In other cases, you may need to merge changes that
coworkers have made to the file after you checked it out. If you had the file checked
out exclusively, after you check it in, others can check out the file.

Viewing Your Changes to a File
It is best to review the changes that you have made in a file before you check in the
file. Your source-code control system displays the differences between your local
version of the file and the master version in your source-code control project.

~ To view your changes

1 Select the file with the changes that you want to view.

Note You can select only a single file, which must already be checked out. This method
reports only the differences between this version and the master version. You cannot use
this method to examine differences between two files in your project, for instance.

125

Visual C++ User's Guide

126

2 From the Tools menu, choose Source Control, and from the cascading menu,
choose Show Differences.

Your source-code control system displays the differences, or reports that the files
are identical.

Checking Files In and Removing Your Changes
In some cases, you may make changes to your local files, and then decide that you do
not want to check the changes in to the source-code control system, You may, for
instance, have viewed the iocal changes and discovered errors, you may have pursued
some modifications that were not fruitful, or you may not have had time to
completely implement some changes and do not care to check in incomplete code. In
these cases, you can have the source-code control system check the files in, but ignore
any changes you made.

Note If you want to save the changes before checking the files in without the changes, you
can always copy the files to another location, or save them under another name using the
Save As command.

~ To check files in but ignore changes

1 In the File View pane of the Project Workspace window, select the files that you
want to check in without incorporating changes.

2 From the Tools menu, choose Source Control, and from the cascading menu,
choose Undo Check Out.

The Undo Check Out dialog box appears, with checks next to the files that you
have selected. The list includes all checked-out files in the project directory, and
you may check or uncheck any files in the list.

3 Choose the OK button.

The source-code control system changes the status of the files to checked in, but
does not copy any of your changes to the master files. It does not record any
differences. It also restores your local copy of the file so that it matches the master
file.

Checking Files In and Merging Others' Changes
If your source-code control system does not support exclusive use, while you have had
the file checked out, another author may have also checked the file out, made
changes, and then checked the file in. In this case, before you check your local copy
of the file in, you need to find out if there were changes by other authors. If so, you
need to merge those changes into your local copy. You can then verify that all the
changes are compatible and that none cause problems when you use the file. After
you have verified the changes, you can check in the file.

~ To check files in and merge others' changes

1 In the File View pane of the Project Workspace window, select the files that you
want to check in.

Chapter 4 Working with Source-Code Control

2 From the Tools menu, choose Source Control, and from the cascading menu,
choose Get Latest Version.

The Get Latest Version dialog box appears, with checks next to the files that you
have selected. The list includes all files in the project directory under source-code
control, and you may check or uncheck any files in the list.

3 Choose the OK button.

The source-code control system copies master files to your local copies. If there is
a file with changes in both your local copy and the master copy, your source-code
control system notifies you that you have changes to merge. You then need to
follow the recommended procedures in your source-code control system to
reconcile the changes and verify those changes.

4 Repeat steps 1 through 3.

Remember that while you are verifying the last set of changes, another set may
have appeared.

5 When your source-code control system reports that there are no more fi.les to
merge, select the files that you want to check in.

6 From the Tools menu, choose Source Control and from the cascading menu,
choose Check In.

The Check In File(s) dialog box appears, with checks next to the files that you
have selected. The list includes all files in the project directory, and you may check
or uncheck any files in the list.

7 Choose the OK button.

You can also check in a file using the pop:...up menu in the text editor windows. Press
the right mouse button to display the menu, and choose·Check In.

Checking Files In When Closing the Workspace
You can choose to have Developer Studio prompt you to check in files when you close
the current workspace.

~ To check in files when closing the workspace

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Source Control tab.

3 Select the Check In Files When Closing The Workspace check box.

4 Choose OK.

127

Visual C++ User's Guide

Maintaining Makefiles Under Source-Code
'Control

128

If you work in a group, you generally want to share the makefile for a project
workspace with other members of your group. This ensures that everyone in the
group can build the projects defined in the project workspace using the same files,
settings, tools, and so on, as well as ensuring that everyone gets the changes to the
makefile and builds with the most up-to-date settings.

Updating the makefile in a group setting requires some coordination among the
members of the group in order for the process to work smoothly. In the optimal case,
all members of the group get the makefile from source-code control when they open
the project, but no one checks it out.

The following actions cause the makefile to change:

• Adding or deleting files.

• Adding or deleting projects, subprojects, or project configurations.

• Changing settings for any configuration.

If you want to take any of these actions, you need to take the following steps:

1. Plan the changes to make in your project workspace.

2. Check out the makefile.

3. Make the changes.

4. Save the changes to the makefile by choosing the Save All command from the File
menu. (Closing the project workspace or closing Developer Studio also saves the
changes to the ma.t<:efile.)

5. Check in the makefile.

6. Notify the members of the group that the makefile has changed.

At this point, the other members of the group need to close the project workspace,
then reopen it and get the new version of the makefile. If they have set the option
to prompt to get the latest versions of files, opening the project workspace reminds
them to get the latest version.

If two or more members of the group simultaneously check out the makefile and
revise it, checking the makefile in could require merging changes. Because Developer
Studio may write muitipie settings to a singie Hne of the makefiie, and changes io

settings by different users may alter a single line in two (or more) different places,
reconciling those changes manually could result in errors.

Note If your source-code control system supports exclusive check-outs, you should check the
makefile out for exclusive use if you need to alter it.

CHAPTER 5

Working with Resources

In Microsoft Developer Studio, a resource is an interface element that the user gains
information from or manipulates to perform an action. Some basic resources are
created for your project by AppWizard in Visual C++.

The following are common areas in the resources:

• The resource editing procedures common to all the editors

• Common operations for working with symbols (resource identifiers)

• Working with resource files

U sing the Resource Editors
The Microsoft Developer Studio resource editors share techniques and interfaces to
create and modify application resources quickly and easily. You can use the resource
editors to create new resources, modify existing resources, copy existing resources,
and delete old resources. The resource editors are functionally consistent for ease of
use.

With Developer Studio you can edit all of the Microsoft Windows resources that your
application uses:

• Accelerator tables (described in Chapter 8, "Using the Accelerator Editor")

• Binary data information (Chapter 12, "Using the Binary Data Editor")

• Bitmaps (Chapter 10, "Using the Graphic Editor")

• Cursors (Chapter 10, "Using the Graphic Editor")

• Dialog boxes (Chapter 6, "Using the Dialog Editor")

• Icons (Chapter 10, "Using the Graphic Editor")

• Menus (Chapter 7, "Using the Menu Editor")

129

Visual C++ User's Guide

• String tables (Chapter 9, "Using the String Editor")

• Toolbar resources (Chapter 11, "Using the Toolbar Editor")

• Version Information (Chapter 13, "U:sing the Version Information Editor")

When you create or open a resource, the appropriate editor opens automatically. For
example, graphical resources like toolbar buttons, cursors, and icons are modifiable
bitmaps. The accelerator tables, string tables, and version information consist of
formatted text. Dialog boxes are a combination of graphical components and text
strings. Menus consist of text strings that appear in the menu bar.

The resource editors have many commands and procedures in common. For example,
once you learn how to create and open a dialog box, you know the steps for creating
and opening any of the other resources. The most common resource editing activities
are:

• Viewing resources

• Creating new resources

• Using resource templates

• U sing language ID and conditionals

• Copying resources

• Editing resources

• Importing or exporting resources

• U sing the property pages

Viewing Resources

130

You can access resources from the Resource View pane of the project window. Select
the resource tab if Resource View is not the topmost pane.

~ To view the ResourceView pane

• With the PRJNAME.MAK project window open, double-click the PRJNAME.RC
item.

Resource View appears (Figure 5.1).

Chapter 5 Working with Resources

Figure 5.1 The ResourceView Pane

.,,?! Scribble.JC lit • Pi6iT f!l ~
"" ~ ~ w'" =_ »»»_ .".,,'" ~"ff"'~~~ .",.,.,>:«««., ~«-« x ""'''''"'-'''''-> ."«.,, = '" "" ~ "'~_ w

B'~ Scribble.rc
8· ~ Accelerator
1 j ~ lOR_MAINFRAME
$.• Bi ap

~ ,.... IDB_BITMAP1
... ," Cursor

1 , ~ IDD_HELLO_DLG
S·lJiIlcon
S'WI Menu
S· iii String Table
$.~ Toolbar
l L .• lOR_MAINFRAME

lB· (ij Version

Double-click a resource to open it

Click once to expand or contract

Double-click to expand or contract

When the Resource View pane is first displayed, each of the resource categories is
condensed. You can expand any category by clicking its plus sign (+).

While viewing the Resource View pane, standard Edit menu commands such as
Undo, Cut, Copy, Paste, and Delete are available by using either the menu
commands or the accelerator keys.

Creating a New Resource
You can create a resource as a new default resource, or as a resource patterned after a
template. Creating a new default resource is as easy as clicking the appropriate button
on the Resource toolbar (see Figure 5.2). For more information on creating a resource
from a template file, see "Using Resource Templates" later in this chapter.

When you create a resource, Developer Studio assigns it a unique symbol name and
value. If you need to change the symbol value, you can use the ID box on the
resource's property page. For more information on the property page, use the Help
button.

~ To create a new resource

1 From the Insert menu, choose Resource.

The Insert Resource dialog box appears.

131

Visual C++ User's Guide

2 Select a resource from the Resource Type list box and choose the OK button.

-or-

• Click the corresponding toolbar button.

Figure 5.2 The Resource Toolbar

New Bitmap
New Accelerator

Resource Symbols
New String Table

New Toolbar
New Icon

New Cursor
New Menu

~ To display the Resource toolbar

• For information on displaying toolbars and customizing your workspace, see
"Showing and Hiding Toolbars" in Chapter 22, "Customizing Microsoft Developer
Studio."

U sing Resource Templates

132

A template file is a copy of an edited resource that you can use to create additional
resources. Resource templates save time in developing additional resources or groups
of resources that share a particular feature.

For instance, you might want to include a Help button and an icon of a company logo
in several dialog boxes. Create a new template, and customize that template dialog
box with the logo and Help button. Now, when you want to create a new dialog box,
you can choose this template dialog box with the features already added.

~ To create templates for resources

1 From the Insert menu, choose Resource.

The Insert Resource dialog box (Figure 5.3) appears.

2 Select a resource from the Resource Type list box, and choose the OK button.

-or-

Copy a resource from another resource file. Hold down CTRL and drag the new
resource to the resource template directory.

Chapter 5 Working with Resources

Figure 5.3 The Insert Resource Dialog Box

Accelerator
IE'. Bitmap
El' ~, Cursor

L .. , ~ IDC_CURSOR1
IE"~ Dialog
IE .. III Icon
lEI Menu
IE". String Table
B .. 111'"

L .. III lOR_MAINFRAME
1E"1t'J Version

3 Modify the resource.

This resource, once saved as a template, can be copied numerous times to save
effort on positioning controls, inserting text, and so on.

4 From the File menu, choose Save As.

S In the Save File As Type drop-down list box, select Resource Template (* .rct).

6 Select the TEMPLATE subdirectory under your MSDEV installation.

7 Choose the OK button to save the template.

Repeat for any remaining templates.

~ To create new resources from the templates
1 From the Insert menu, choose Resource.

The Insert Resource dialog box appears.

2 Select a resource type. Click the resource icon to create a default resource template
object.

-or-

Click the plus sign (+) next to a resource to move down the hierarchy to the
template files grouped under that resource. Then click the specific template file
under that resource to create a resource template object.

3 Choose the OK button.

Copying Resources
You can duplicate resources exactly, change their language IDs or conditions, or
duplicate them from a template (see "Using Resource Templates" earlier in this
chapter).

When you create or copy a resource with a different language or condition, this is
displayed after the symbol name in the project window. The language identifies the

133

Visual C++ User's Guide

134

language used for text in the resource. The condition is a symbol that identifies a
condition under which this copy of the resource is used.

~ To copy an existing resource exactly

1 In Resource View, select the resource you want to copy.

2 From the Edit menu, choose Copy and then Paste.

~ To copy an existing resource and change the language or condition

1 In Resource View, select the resource you want to copy.

2 From the Insert menu, choose Resource Copy.

The Insert Resource Copy dialog box appears.

3 In the Language list box, select the language.

-or-

In the Condition box, type the condition.

4 Choose the OK button.

~ To modify the language or property conditions of a resource

1 In Resource View, select the resource you want to edit.

2 From the Edit menu, choose Properties.

-or-

Click the right mouse button to display the pop-up menu, and choose Properties.

3 Edit the Language or Condition properties.

The easiest way to copy resources from either an existing resource or an executable
file to your current resource file is to have both .RC files open in Developer Studio at
the same time. Then use drag-and-drop to move items from one ResourceView pane
to another (see Figure 5.4).

Figure 5.4 Using Drag-and-Drop to Copy Resources Between Files

B-~ Scribble.rc
8'~ Accelerator
! ! ~ IDR MAINFRAME
8'~ Bitmap -
i ! IDB_BITMAP1
m·ll.fj Cursor

$~"
. : ~ IDD_ABOUTBOX
! : ~ IDD_HELLO_DLG

m·i&J Icon mll.fj Menu
$(EEJ String Table ~
$.• Toolbar
. ' IDR_MAINFRAME

@.i&J Version

El"~ Paint.rc
Efr'~ Accelerator
H'~ Dialog

II

! ... 1i,9 IDD ABOUTBOX

L .. ~ It •• iiill
8·fiillcon

fiiI Menu
iii String Table
iii Toolbar
I~ •

Chapter 5 Working with Resources

Note Developer Studio includes sample resource files that you can use in your own
application. For more information, see "COMMON. RES Sample Resources" in Part 2 of
Programming with MFG.

~ To copy resources from one file to another

1 Open both files. Make sure both resource files are visible at the same time.

2 In the Resource View pane of the "from" file, select the resource you want to copy.

3 Hold down the CTRL key and drag the resource to the Resource View pane of the
"to" file.

Dragging the resource without holding down the CTRL key moves the resource
rather than copying it.

Note To avoid conflicts with symbol names or values in the existing file, Developer Studio
may change the transferred resource's symbol value, or symbol name and value, when you
copy it to the new file.

Editing Resources
The editors for the different resources share many of the same procedures. For more
detailed information on editing the individual resources, see the chapter for that
resource.

~ To open an existing resource for editing

;; In Resource View, select the resource you want to edit, and press ENTER.

-or-

Double-click the resource.

The resource editor window opens for editing.

~. To save an edited resource file

• From the File menu, choose Save.

The resource is saved using its current name.

-or-

1 From the File menu, choose Save As.

2 In the Drives list box, select the target drive.

3 In the Directories list box, select the directory path.

4 In the File Name box, type the name for the file.

S Choose the OK button.

The resource is saved using the Save As name.

135

Visual C++ User's Guide

~ To delete an existing resource

1 In Resource View, select the resource you want to delete.

2 From the Edit menu, choose Delete.

The resource is deleted.

Importing and Exporting Resources
~ To import a separate bitmap, icon, or cursor file into your current resource file

1 From the right mouse pop-up menu, choose Import. .

The Import Resource dialog box appears.

2 Select the name of the .EPS, .ICO, or .CUR file you want to import.

3 Choose the OK button to add the file to the current resource file.

Tip You can also copy a bitmap, icon, or cursor into your current resource file by dragging it
from File Manager and dropping it into the Developer Studio ResourceView pane.

~ To export a bitmap, icon, or cursor as a separate file

1 Select the bitmap, icon, or cursor you want to export.

Developer Studio exports the graphic selected in the Resource View pane or the
graphic in the currently active image editor window.

2 From the right mouse pop-up menu, choose Export.

The Export Resource dialog box appears.

3 If ~ou do not want to accept the current filename, type a new one.

4 Choose the OK button to save the graphics file on the disk.

U sing Property Pages

136

Property pages control the appearance and the behavior of resources and differ
according to their purpose. For example, a bitmap resource property page contains
information on the ID, language, condition, and filename, as well as a preview of the
resource. But a property page for a pushbutton control in a dialog box contains
several tabs of information, General and Extended Styles, each with many style bits
to modify the control's behavior.

OLE controls supplied from independent vendors may come equipped with their own
property pages and characteristics. OLE controls always have General and All pages~
plus whatever the vendor has attached to a particular control.

Accelerator keys have many legal entries in the key box on the property page. For
more information, see "Setting Accelerator Properties" in Chapter 8.

Note Whenever you make a change on a property page, it is made immediately. You cannot
cancel any changes made on a property page.

Chapter 5 Working with Resources

Manipulating a Property Page
You can use any of the editing keyboard shortcut keys to cut, copy, and paste text. In
general the~ shortcut keys can be used in any edit control on the property page.

You can control the behavior of the Properties window to suit your working style or
the nature of the resource editing task. Use the Pushpin button in the upper-left
corner of the property page.

Button position Result

When the button is in the down position, the Properties window stays
visible even when you are working in another window. This is
convenient if, during an editing session, you want to move back and
forth frequently between setting properties and editing objects. Pressing
ENTER after you change a value in the Properties window returns you to
the editing window but leaves the Properties window visible.

When the button is in the up position, you can dismiss the active
Properties window by pressing ENTER or ESC. This is useful if you
want to concentrate on working in an editing window but need to bring
up the Properties window briefly to change one or two values.

Working with Symbols
A symbol is a resource identifier that consists of a text string (name) mapped to an
integer value. Symbols provide a descriptive way of referring to resources and user
interface objects, both in your source code and while you're working with them in the
resource editors.

When you create a new resource or resource object, Microsoft Developer Studio
provides a default name for the resource (for example, I D C_RA D I 01) and assigns a
value to it. The name-plus-value definition is stored in the Developer Studio­
generated file RESOURCE.H.

In working with symbols from within Developer Studio, you can:

• Change the symbol associated with a resource or object.

• Change a symbol's name or value in the Resource Symbols browser (if the symbol
hasn't been used yet).

• Change a symbol's name in the Properties window (if the symbol is already in use
by a single object).

• Manage symbols (add, delete, or change the symbols) in the Resource Symbols
browser.

Note When you are copying resources or resource objects from one .Re file to another,
Developer Studio may change the transferred resource's symbol value, or symbol name and
value, to avoid conflicts with symbol names or values in the existing file.

137

Visual C++ User's Guide

Changing a Symbol or Symbol Name
When you create a new resource or resource object, Developer Studio assigns it a
default name-for example, I DD_DIALOGl. Use the resource's property page to
change the default symbol name or to change the name of any symbol already
associated with a resource.

~ To change a resource's symbol name

1 In Resource View, select the resource.

2 From the Edit menu, choose Properties to move directly to the resource's property
page.

3 In the ID box, type a new symbol name or select from the list of existing symbols.
If you type a new symbol name, Developer Studio assigns it a value automatically.

You can use the Resource Symbols browser to change the names of symbols not
currently assigned to a resource. For more information, see "Changing Unassigned
Symbols" later in this chapter.

Changing a Symbol's Numerical Value

138

Usually you can let Microsoft Developer Studio assign the numerical value
associated with the symbol names you define. However, there may be times when you
need to change the symbol value associated with a resource-for example, when you
want a group of controls or a series of related strings in the string table to have
sequential IDs.

For symbols already associated with a single resource, use the resource's property
page to change the symbol value. For symbols associated with more than one resource
or object, make the changes directly in RESOURCE.H using a text editor.

~ To change a symbol value assigned to a single resource or object

1 Select the resource.

2 From the Edit menu, choose Properties.

3 In the property page ID box, type the symbol name followed by an equal sign and
an integer. For example,

IDC EDITNAME=5100
-or-

• From the View menu, choose Resource Symbols.

The Resource Symbols browser appears.

• Select the symbol you want to change, and choose the Change button.

The Change Symbol dialog box appears.

• Choose the View Use button.

The resource and its property page are displayed.

Chapter 5 Working with Resources

• In the property page ID box, type the symbol name followed by an equal sign and
an integer. For example,

IDC_EDITNAME=5100
The new value is stored in the symbol header file the next time you save the project.
Only the symbol name remains visible in the ID box; the equal sign and value are not
displayed after they are validated.

~ To change the numeric value of a symbol assigned to more than one resource or
object

1 End your editing session by closing the current resource file.

2 Open RESOURCE.H in a source window and make the necessary changes.

3 Save RESOURCE.H.

The next time you open the project's .RC file, Developer Studio uses the new
symbol values.

Note While editing RESOURCE.H, take special care not to define duplicate symbols.
Developer Studio can detect duplicates only of the symbols it creates.

You can use the Resource Symbols browser to change the value of symbols not
currently assigned to a resource. For more information, see "Changing Unassigned
Symbols" later in this chapter.

Managing Symbols with the Resource Symbols Browser
As your application grows in size and sophistication, so do the number of resources
and symbols. Tracking large numbers of symbols scattered throughout several files
can be difficult. The Resource Symbols browser (Figure 5.5) simplifies symbol
management by offering a central tool through which you can:

• Quickly browse existing symbol definitions to see the value of each symbol, a list
of symbols being used, and the resources assigned to each symbol.

• Create new symbols.

• Change the name and value of a symbol that is not in use.

• Delete a symbol if it is not being used.

• Move quickly to the appropriate Developer Studio resource editor where the
symbol is being used.

139

Visual C++ User's Guide

40

Figure 5.5 The Resource Symbols Browser

~ To open the Resource Symbols browser

• From the View menu, choose Resource Symbols.

Creating New Symbols
When you are beginning a new project, you may find it convenient to map out the
symbol names you need before creating the resources they will be assigned to.

~ To create a new symbol using the Resource Symbols browser

1 In the Resource Symbols browser, choose the New button.

The New Symbol dialog box appears.

2 In the Name box, type a symbol name.

3 Accept the symbol value assigned by Developer Studio or, in the Value box, type a
new value.

4 Choose the OK button to add the new symbol to the symbol list.

The symbols appear in alphabetic order.

If you type a symbol name that already exists, a message box appears stating that a
symbol with that name is already defined. You cannot define two or more symbols
with the same name, but you can define different symbols with the same numeric
value. For more informati<?n, see "Symbol Name Restrictions" and "Symbol Value
Restrictions" later in this chapter.

Changing Unassigned Symbois
While in the Resource Symbols browser, you can edit or delete existing symbols that
are not already assigned to a resource or object. You can change existing symbols that
are in use in only one place by using the Change command to move to the
appropriate resource's property page or by moving to the property page directly. You
cannot change read-only symbols.

Chapter 5 Working with Resources

A check mark in the In Use column of the Resource Symbols browser indicates that
the symbol is being used. If Show Read-Only Symbols is selected, read-only symbols
are also displayed. Editable symbols are displayed as bold text, and read-only symbols
are displayed as normal text.

For more information on changing the name or value of a symbol already in use, see
"Changing a Symbol or Symbol Name" earlier in this chapter.

~ To change an unassigned symbol using the Resource Symbols browser

1 In the Name box, select the unassigned symbol you want, and choose the Change
button.

The Change Symbol dialog box appears.

2 Edit the symbol's name or value in the boxes provided.

3 Choose the OK button.

~ To delete an unassigned symbol using the Resource Symbols browser

• Select the unassigned symbol that you want to delete, and choose the Delete
button.

Note Before deleting an unused symbol in a resource file, make sure it is not used elsewhere
in the program or by resource files included at compile time.

Opening the Resource Editor for a Given Symbol
When you are browsing symbols in the Resource Symbols browser, you may want
more information on how a particular symbol is used. The View Use command
provides a quick way to get this information.

~ To move to the resource editor where a symbol is being used

1 In the Name box of the Resource Symbols browser, select the symbol you want.

2 In the Used By box, selectthe resource type that interests you.

3 Choose the View Use button.

The resource appears in the appropriate editor window.

Symbol Name Restrictions
All symbol names must be unique within the scope of the application. This prevents
conflicting symbol definitions in the header files .. Legal characters for a symbol name
include A - Z, a - z, 0 - 9, and the underscore (_). Symbol names cannot begin with a
number and are limited to 247 characters. Symbol names are not case sensitive, but
the case of the first symbol definition is preserved.

Symbol names can be used more than once in your application. For example, if you
are writing a data-entry program with several dialog boxes containing a text box for a
person's Social Security number, you may want to give all the related text boxes a

141

Visual C++ User's Guide

symbol name of IDC_SSN. To do this, you can define a single symbol and use it as
many times as needed.

While it is not required, symbol names are often given descriptive prefixes that
indicate the kind of resource or object they represent. The Microsoft Foundation
Class Library (MFC) uses the symbol naming conventions shown in the following
table.

Category

Resources

Menu items

Commands

Controls and
child windows

Strings

Prefix Use

Accelerator or menu (and associated resources)

Dialog box

IDC_ Cursor

IDe Icon

IDB_ Bitmap

Menu item

Command

Control

String in the string table

IDP _ String-table string used for message boxes

For more information on framework naming conyentions, see Technical Note 20
under MFC in Books Online.

Symbol Value Restrictions

142

In Developer Studio, a symbol value can be any integer expressed in the normal
manner for #define preprocessor directives. Here are some examples of symbol
values:

18
4001
0x0012
-3456

Note Symbol values for resources (accelerators, bitmaps, cursors, dialog boxes, icons,
menus, string tables, and version information) must be decimal numbers in the range from 0 to
32,767 (but cannot be hexadecimal). Symbol values for parts of resources (such as dialog box
controls or individual strings in the string table) can be from 0 to 65,534 or from -32,768 to
32,767.

Some number ranges are used by Developer Studio and MFC for special purposes. For more
information, see Technical Note 20 under MFC in Books Online.

You cannot define a symbol value using other symbol strings. For example, the
following symbol definItion is not supported:

#define IDC_MYEDIT IDC_OTHEREDIT //not supported

Chapter 5 Working with Resources

You also cannot use preprocessor macros with arguments as value definitions. For
example,

f/define IOO_ABOUT IO(7) //not supported

is not a valid expression in Developer Studio regardless of what I 0 evaluates to at
compile time.

Your application may have an existing file containing symbols defined with
expressions. For more information on how to include the symbols as read-only
symbols, see "Using Shared (Read Only) or Calculate~ Symbols" later in this chapter.

Working With Resource Files
You can work with resources that were not developed in the Microsoft Developer
Studio environment or are not part of your current project. For example, you can:

• Work with nested and conditionally included resource files

• Update existing resources or convert them to Developer Studio format

• Import or export graphic resources to or from your current resource file.

• Include shared or read-only identifiers (symbols) that can't be modified by
Developer Studio.

• Include resources in your executable (.EXE) file that don't require editing (or that
you don't want to be edited) during your current project, such as resources that are
shared between several projects.

• Include resource types not supported by Developer Studio

You can open the types of files shown in the following table and edit the resources
they contain.

Filename

. RC

.RES

. EXE

. DLL

.EPS, .DIB, .ICO, and .CUR

Description

16- and 32-bit resource script files .

~ 16- and 32-bit resource files.

16- and 32-bit executable files .

. 16- and 32-bit dynamic-link library files .

Bitmap, icon, and cursor files.

You can save your resources as shown in the following table.

Open file as

.RC

16-Bit .RES .

32-Bit .RES

16-Bit .EXE

Save file as

.RC or 32-Bit .RES

.RC or 16-Bit .RES

.RC or 32-Bit .RES

16-Bit .EXE, .RC or 16-Bit .RES

143

Visual C++ User's Guide

Open file as

32-Bit .EXE

16-Bit .DLL

32-Bit .DLL

.BMPor.DIB

.ICO

.CUR

Save file as

32-Bit .EXE, .RC or 32-Bit .RES

16-Bit .DLL, .RC or 16-Bit .RES

32-Bit .DLL, .RC or 32-Bit .RES

.BMPor .DIB

.ICO

.CUR

Note Resource script files (.Re) are distinguished as being 16 or 32 bit by whether they
contain 32-bit resource keywords (such as LANGUAGE, EXSTYLE, or DIALOGEX), not by
some underlying file structure. You create a 32-bit .Re file only by adding 32-bit keywords to it.

Developer Studio also works with the files shown in the following table during your
resource editing session.

Filename

RESOURCE.H

filename.APS

projectname.CLW

projectname .MAK

projectname. VCP

Description

Header file generated by Developer Studio; contains symbol
definitions.

Binary version of the current resource script file; used by
Developer Studio for quick loading.

File containing information about the current project; used by
ClassWizardin Visual C++.

File containing project build instructions.

A project configuration file.

Importing Non-Microsoft Developer Studio
Resource Script Files

144

~ To update an existing resource script file for use with Microsoft Developer Studio

1 Make a backup copy of your existing resource script (.Re) file.

2 Add the .Re file to your project.

3 Open the .Re file in Developer Studio.

Note Developer Studio uses the include path set using the Directories tab in the Options
dialog box. In addition, relative include paths for a Developer Studio .Re file must be based
on the directory where the .Re file is currently located.

Reading in and then saving .Re files not created by Developer Studio modifies the
organization of your .Re files.

Chapter 5 Working with Resources

Features Supported Only in Microsoft Foundation
Class Library Resource Files

Nonnally when you build an MFC application for Windows from scratch using
App Wizard, you start by generating a basic set of files, including a resource script file
(.RC), that contain the core features of the Microsoft Foundation classes. However, if
you are editing an .RC file for an application for Windows that is not based on MFC,
the following features specific to the framework are not available in Visual C++:

• Class Wizard

• Menu prompt strings

• List contents for combo-box controls

You can, however, add framework support to existing .RC files that do not have it.

~ To add framework support to .Re files that do not already have it

1 Open the resource file.

2 In Resource View, highlight the resource file.

3 From the Edit menu, choose Properties.

The Resource File Properties page appears.

4 Select the Enable MFC Features check box.

5 Choose the OK button.

U sing Advanced Resource File Techniques
You can use the Resource Includes command on the View menu to modify Microsoft
Developer Studio's nonnal working arrangement of storing all resources in the
project .RC file and all symbols in RESOURCE.H. For more infonnation on symbols,
see "Working with Symbols" earlier in this chapter.

In the Resource Includes dialog box, use the Symbol Header File box to change the
name of the header file where Developer Studio stores the symbol definitions for your
resource file.

Use the Read-Only Symbol Directives box to include header files that contain
symbols that should not be modified during a Developer Studio editing session. For
example, you can use the Read-Only Symbol Directives box to include a symbol file
that has been created to be shared among several projects. You can also use this box
to include MFC.H files.

145

Visual C++ User's Guide

146

Use the Compile-Time Directives box to include resource files that:

• Are created and edited separately from the resources in your main resource file.

• Contain compile-time directives, such as directives that conditionally include
resources.

• Contain resources in a custom format.

The Compile-Time Directives box is also used to include standard MFC resource
files.

Once you've made changes to your resource file using the Resource Includes dialog
box, you need to close the file and then re-open it for the changes to take effect.

Changing the Name of the Symbol Header File
Normally Developer Studio saves all symbol definitions in RESOURCE.H. However,
you may need to change this include filename so that you can, for example, work
with more than one resource file in the same directory.

~ To change the name of the resource symbol header file

1 From the View menu, choose Resource Includes.

The Resource Includes dialog box appears.

2 In the Symbol Header File box, type the new name for the include file.

3 Choose the OK button.

Using Shared (Read-Only) or Calculated Symbols
The first time Microsoft Developer Studio reads a non-Developer Studio resource file,
it marks all included header files as read-only. Subsequently, you can use the
Resource Includes command on the View menu to add additional read-only symbol
header files.

One reason you may want to use read-only symbol definitions is for symbol files that
you plan to share among several projects.

You would also use included symbol files when you have existing resources with
symbol definitions that use expressions rather than simple integers to define the
symbol value. For example,

#define IDC_CONTROl1 2100
#define IDC_CONTROl2 (IDC_CONTROl1+1)

Developer Studio will correctly interpret these calculated symbols as long as:

• The calculated symbols are placed in a read-only symbols file.

• Your resource file contains resources to which these calculated symbols are already
assigned.

Chapter 5 Working with Resources

~ To include shared (read-only) symbols in your resource file

1 From the View menu, choose Resource Includes.

The Resource Includes dialog box appears.

2 In the Read-Only Symbol Directives box, use the #include compiler directive to
specify the file where you want the read-only symbols to be kept. (The file should
not be called RESOURCE.H, since that is the filename normally used by
Developer Studio's main symbol header file.)

Important What you type in the Read-Only Symbol Directives box is included in the
resource file exactly as you type it. Make sure what you type does not contain any spelling
or syntax errors.

You should use the Read-Only Symbol Directives box to include files with symbol
definitions only. Do not include resource definitions; otherwise, duplicate resource
definitions will be created when it is saved.

3 Place the symbols in the file you specified.

The symbols in files included in this way are evaluated each time you open your
resource file, but they are not replaced on the disk by Developer Studio when you
save your file.

4 Choose the OK button.

Including Resources From Other Files
Normally it is easy.and convenient to work with Developer Studio's default
arrangement of all resources in one resource script (.Re) file. However, you can add
resources in other files to your current project at compile time. Use the Resource
Includes dialog box's Compile-Time Directives box.

There are several reasons to place resources in a file other than Developer Studio's
main .RC file:

• To include resources that have already been developed and tested and need no
further modification.

• To include resources that are being used by several different projects, or that are
part of a source code version-control system, and thus must exist in a central
location where modifications will affect all projects.

• To include resources (such as RCDATA resources) that are in a custom format.

• To include statements in your resource file that execute conditionally at compile
time using compiler directives such as #ifdef and #else. For example, your project
may have a group of resources that are bracketed by #ifdef _DEBUG ... #endif
and are thus included only if the constant _DEBUG is defined at compile time.

• To include statements in your resource file that modify resource-file syntax by
using #define to implement simple macros.

147

Visual c++ User's Guide

148

If you have sections in your existing .RC files that meet any of these conditions, you
should place the sections in one or more separate .RC files and include them in your
project using the Resource Includes dialog box. The projectname.RC2 file created by
Developer Studio in the RES subdirectory of a new project is used for this purpose.

~ To include resource files that will be added to your project at compile time

1 Place the resources in a resource script file with a unique filename. (Do not use
projectname.RC, since this is the filename used for Developer Studio's main
resource script file.)

2 From the View menu, choose Resource Includes.

The Resource Includes dialog box appears.

3 In the Compile-Time Directives box, use the #include compiler directive to
include the new resource file in the main Developer Studio resource file.

The resources in files included in this way are made a part of your executable file
at compile time. They are not directly available for editing or modification when
you are working on your project's main.RC file. You need to open included .RC
files separately.

4 Choose the OK button.

CHAPTER 6

U sing the Dialog Editor

The Microsoft Developer Studio dialog editor helps with the creation or editing of a
dialog box template or resource. You can place, arrange, or activate controls; add
OLE controls; and test the dialog box. Dialog boxes can be stored as templates. While
using the dialog editor, you can define message handlers and manage data collection
and validation with Class Wizard.

With the dialog editor, you can:

• Add, arrange, or edit controls.

• Change the tab order or accelerator keys.

• Use guides in the dialog layout.

• Add and edit OLE controls.

• Configure custom controls.

• Create a fonn-view dialog box.

• Import a Visual Basic fonn to a dialog resource.

• Test a dialog box.

You can use resource templates to create dialog boxes to use later or copy dialog box
resources. For more infonnation, see "Using Resource Templates" in Chapter 5,
"Working with Resources."

You can also use the dialog editor to create and edit templates used with fonn views
and dialog bars. A fonn view is a template for a program window whose client area
contains dialog box controls. For more infonnation, see "Creating a Fonn View
Dialog Box" later in this chapter.

149

Visual c++ User's Guide

a

Figure 6.1 The Dialog Editor

Rulers for guides

Guides Dialog Toolbar Controls Toolbar

Tip While using the dialog editor, in many instances you can click the right mouse button to
display a pop-up menu of frequently used commands. The commands available depend on
what the pointer is pointing to. For example, if you click while pointing to a dialog box, the pop­
up menu shows the ClassWizard and Properties commands.

For information about common resource edit procedures such as creating new
resources, opening existing resources, and deleting resources, see Chapter 5,
"Working with Resources." .

Adding and Editing Controls in a
Dlalop Rox - -----0 - -~~

150

One of the first steps to creating a new dialog box (or making a dialog box template)
is to add controls to the dialog box. Controls can be edited to fit a certain size, shape,
or alignment, or they can be moved around to work within the dialog box.

Chapter 6 Using the Dialog Editor

This section focuses on:

• Types of controls in dialog boxes

• Adding controls to dialog boxes

• Selecting specific controls or groups of controls

• Sizing individual controls

Types of Controls
With the dialog editor you can create dialog boxes that include the standard control
types shown on the Controls toolbar in Figure 6.2.

Figure 6.2 The Controls Toolbar

Selection Picture Static Text

Edit Box Group Box Pushbutton

Check Box Radio Button Combo Box

List Box Horizontal Scroll Bar Vertical Scroll Bar

Animate Tab Control Tree Control

List Control Hot Key Slider

Progress Spin Custom Control

By default the Controls toolbar is displayed when the dialog editor is open, but you
can modify this behavior.

~ To hide the Controls toolbar

• Click the close box in the upper-left corner of the Controls toolbar.

~ To show the Controls tool bar

1 From the View menu, choose Toolbars.

2 Select the Controls check box, and then choose Close.

Adding Controls
You add controls to a dialog box by using the Controls toolbar to choose the control
you want and drag the control to the dialog box. When displayed, the toolbar stays
positioned above other open windows in your workspace.

The fastest way to add controls to a dialog box, reposition existing controls, or move
controls from one dialog box to another is to use the drag-and-drop method. (See
Figure 6.3.) The control's position is outlined in a dotted line until it is dropped into
the dialog box. When you add a control to a dialog box with drag-and-drop, the
control is given a standard height appropriate to that type of control.

151

Visual C++ User's Guide

152

Figure 6.3 Dragging a Control from the Controls Toolbar

1. Click here and drag.

2. Cursor changes shape to show that you are dragging.

3. Release mouse button to place the control.

You can also add a new control by clicking the Controls toolbar button for the control
you want and:

• "Drawing" the control in the dialog box. This is a good method when you want to
specify the initial size of the object. Just place the pointer where you want the
upper-left comer of the control to be. Drag the pointer to the right and downward
t6 the appropriate size for that control.

• Clicking the dialog box at the location you want. This is an alternative method to
dragging and dropping.

Holding down CTRL when selecting a control from the Controls toolbar places
multiple controls using either method listed above. Pressing ESC stops placing
controls.

When you add a control to a dialog box or reposition it, its final placement may be
determined bv Q"uides or mamlns. or whether von h~ve the Grin tllmen on For more

J '-' <.;1 ~ - .---~- .I - -- ---- - --.-- - ---- ------- _. ---¥ - -- ------

information about guides and margins, see "Using Guides and Margins" later in this
chapter. For information about the Grid and other placement and alignment tools, see
"Arranging Controls" later in this chapter.

When you have added a control to the dialog box, you can change its caption or any
of its other properties in its property page.

Chapter 6 Using the Dialog Editor

Selecting Controls
To move, copy, delete, or align controls, you select them and then perform the

. operation you want. In most cases, you need to select more than one control to use the
sizing and alignment tools on the Dialog toolbar.

When a control is selected, it has a shaded border around it with solid (active) or
hollow (inactive) "sizing handles," small squares that appear in the selection border.

When you are sizing or aligning multiple controls, the dialog editor uses the
"dominant control" to determine how the other controls are sized or aligned. When
multiple controls are selected, the dominant control has solid sizing handles; all the
other selected controls have hollow sizing handles.

~ To select multiple controls

1 From the Controls toolbar, select the pointer tool.

2 Drag to draw a selection box around the controls you want to select (Figure 6.4).
Controls partially outside the selection box are not selected.

When you release the mouse button, all controls inside the selection box are
selected.

Figure 6.4 Selecting Multiple Controls

To select the controls you want, drag the mouse
pointer to draw a box around them ...

... then release the mouse button.

Once you have selected one or more controls, you can remove or add individual
controls without disturbing the selection as a whole.

3 Hold down the SHIFf key and click the control you want to remove from or add to
the existing selection.

~ To change the dominant control when more than one control is selected

• Hold down the CTRL key and click the control you want to use to influence the size
or location of the others.

The sizing handles change from hollow to solid. All further resizing or alignment
is based on this control.

153

Visual C++ User's Guide

Sizing Individual Controls

154

Use the sizing handles to resize a control. When-the pointer is positioned on a sizing
handle, it changes shape to indicate the direction in which the control will be resized
'(see Figure 6.5). Active sizing handles are solid; if a sizing handle is hollow, the
control cannot be resized along that axis.

Figure 6.5 Sizing a Control

You can also change the size of a control by snapping the control to guides or
margins, or by moving a snapped control and guide away from another. For more
information, see "Using Guides and Margins" later in this chapter. The final shape of
the control may be affected by whether or not you have the Grid turned on. For more
information, see "Using the Layout Grid" later in this chapter.

~ To size a control

1 Click the control, or select it with the TAB key.

2 Drag the sizing handles to change the size of the control:

• Sizing handles at the top and sides change the horizontal or vertical size.

• Sizing handles at the corners change both horizontal and vertical size.

-or-

Hold down the SHIFT key and use the ARROW keys to resize the control one dialog
unit (DLU) at a time.

As you type a caption to text within a control, the control will resize to fit the text
caption. This function can be disabled by manually resizing the control with the
sizing handles. To return to the automatic resizing of a control to fit the text within it,
choose Size To Content from the Layout menu.

When you select a drop-down combo box or drop-down list box to size it, only the
right and left sizing handles are active (Figure 6.6). Use these handles to set the
width of the box as it is initially displayed.

You can also set the vertical size of the drop-down portion of the box.

Chapter 6 Using the Dialog Editor

Figure 6.6 Sizing the Drop-down Portion of a Combo Box

Click the button to change to
drop-down view ...

... then drag the sizing handle
to change the size of the
drop-down box.

~ To set the size of the combo box drop-down area

1 Click the drop-down arr~w at the right of the combo box (Figure 6.6).

The outline of the control changes to show the size of the combo box with the
drop-down area extended.

2 Use the bottom sizing handle to change the initial size of the drop-down area.

3 Click the drop-down arrow again to close the drop-down portion of the combo
box.

You can resize a group of controls based on the size of the dominant control. You can
also resize a control based on the dimensions of its caption text.

~ To make controls the same width, height, or size

1 Select the controls you want to resize.

2 Make sure the correct doininant control is selected.

The final size of the controls in the group depends on the size of the dominant
control. For more information on selecting the dominant control, see "Selecting
Controls" earlier in this chapter.

3 Choose one of the following tools on the Dialog toolbar:

• Make Same Width

• Make Same Height

• Make Same Size

Formatting the Layout of a Dialog Box
The dialog editor contains special tools for layout to help in arranging controls in the
correct place and alignment. Some of these tools are contained on the Dialog toolbar,
like guides and the Grid.

You can use the dialog editor in three different states for moving controls: with the
guides and margins on (default setting), with Grid on, or plain, with no snapping or
alignment features on at all.

155

Visual C++ User's Guide

You can:

• Arrange the controls using the Dialog toolbar.

• Align controls with each other or by spacing.

• Use guides and margins to align controls inside the dialog box.

• Use Grid to place controls inside the dialog box.

Arranging Controls

156

The dialog editor provides layout tools that align and size controls automatically. For
most tasks, you can use the Dialog toolbar (Figure 6.7). All commands are also.
available on the Layout menu, and most have shortcut keys.

Figure 6.7 Dialog Toolbar

Make same Width, Height, or Size

Space evenly Horizontally or Vertically

Test mode

Toggle Grid or Guides

Center Horizontally or Vertically

AlignLeft, Right, Top, or Bottom

Many layout commands are available only when more than one control is selected.
For information on selecting more than one control, see "Selecting Controls" earlier .
in this chapter.

The location, height, and width of the current control is displayed in the l?wer-right
comer of the Developer Studio status bar (Figure 6.8). When more than one control is
selected, the position indicators show the position of the dominant control (the
control with solid sizing handles). When the dialog box is selected, the status bar
displays the position of the dialog box and its height and width.

Chapter 6 Using the Dialog Editor·

Figure 6.8 Dialog Editor Position Indicators

Height and width of object

Position of selected object relative to upper-left
corner of containing window

The location and size of a dialog box, as well as the location and size of controls
within it, are measured in dialog units (DLUs). A DLU is based on the size of the
dialog box font, normally 8-point MS Sans Serif. A horizontal DLU is the average
width of the dialog box divided by four. A vertical DLU is the average height of the
font divided by eight.

Aligning Controls
Once controls are in place, the dialog editor offers a variety of ways to refine their
positions. You can:

• Align a group of controls along their left, right, top, or bottom edges.

• Align a group of controls on their center, either horizontally or vertically.

• Even the spacing between a group of three or more controls.

• Center one or more controls in the dialog box, vertically or horizontally.

• Automatically give pushbuttons a standard position along the bottom or on the
right of the dialog box.

~ To align controls

1 Select the controls you want to align.

2 Make sure the correct dominant control is selected.

The final position of the group of controls depends on the position of the dominant
control. For more information on selecting the dominant control, see "Selecting
Controls" earlier in this chapter.

3 From the Layout menu, choose Align Controls, and then choose one of the
following alignments:

• The Left command aligns the selected controls along their left side.

• The Right command aligns the selected controls along their right side.

• The Top command aligns the selected controls along their top edges.

• The Bottom command aligns the selected controls along their bottom edges.

157

Visual C++ User's Guide

158

~ To align controls on their center, vertically or horizontally

1 Select the controls you want to center.

2 Make sure the correct dominant control is selected.

The final position of the group of controls depends on the position of the dominant
control. For more information on selecting the dominant control, see "Selecting
Controls" earlier in this chapter.

3 From the Layout menu, choose Align Controls, and then choose Vert. Center or
Horiz. Center.

~ To even the spacing between controls

1 Select the controls you want to rearrange.

2 From the Layout menu, choose Space Evenly, and then choose one of the
following . spacing alignments:

• Across: Controls are spaced evenly between the leftmost and the rightmost
control selected.

• Down: Controls are spaced evenly between the topmost and the bottommost
control selected.

~ To center controls in the dialog box

1 Select the control or controls you want to rearrange.

2 From the Layout menu, choose Center In Dialog, and then choose one of the
following arrangements: .

• Vertical: Controls are centered vertically in the dialog box.

• Horizontal: Controls are centered horizontally in the dialog box.

~ To arrange push buttons along the right or bottom of the dialog box

1 Select one or more pushbuttons.

2 From the Layout menu, choose Arrange Buttons, and then choose one of the
following arrangements:

• Right

• Bottom

The selected buttons are positioned in a standard arrangement along the bottom or
right side of the dialog box. If a control other than a pushbutton is selected, its
nO~ltlrm 11;: not llffp('tpil
r - ------- -- --- - -~~-- ---.

Chapter 6 U sing the Dialog Editor

U sing Guides and Margins
Whether you are moving controls, adding controls, or rearranging a current layout,
guides can help you align controls accurately within a dialog box. Guides appear as
blue dotted lines across the dialog box displayed in the editor and corresponding
arrows in the rulers.

When you create a dialog box, four margins are provided. Margins are modified
guides, appearing as blue dotted lines.

You can:

• Align controls on a guide or move controls with a guide.

• Disable the guides or move the guides without the controls.

Figure 6.9 shows the dialog editor with guides and margins.

Figure 6.9 Dialog Editor with Guides and Margins

Margin (also a guide)

Horizontal guide line

Vertical guide line

159

Visual C++ User's Guide

160

~ To create and set a guide

1 Click anywhere within the rulers to create a guide.

2 Drag the guide into position.

The number ofDLUs is displayed in the ruler and below on the Developer Studio
status bar. After the guide is dropped into position, hold the cursor over the
guide's arrow in the ruler to see the exact position of the guide.

To delete a guide, drag the guide out of the dialog box that is being edited.

Aligning Controls on a Guide
The sizing handles of controls snap to guides when the controls are moved, and
guides snap to controls (if there are no controls previously snapped to the guide).
When a guide is moved, controls that are snapped to it move as well. Controls
snapped to more than one guide are resized when one of the guides is moved.

The tick marks in the rulers that determine the spacing of guides and controls are
determined by dialog units (DLUs). A DLU is based on the size of the dialog box
font, normally 8-point MS Sans Serif. A horizontal DLU is the average width of the
dialog box divided by four. A vertical DLU is the average height of the font divided
by eight.

~ To move guides
• Drag the guide to the new position.

The coordinates of the guide are displayed in the status bar at the bottom of the
Developer Studio window and in the ruler. Move the pointer over the arrow in the
ruler to display the exact position of the guide.

~ To move margins

• Drag the margin to the new position.

-or-

Move the gray spacing block in the ruler adjoining the margin.

To make a margin disappear, move the margin to a zero position. To bring that
margin back, place the pointer over the margin's zero position and move the
margin into position.

~ To size a group of controls with guides

1 Snap one side of the control (or controls) to a guide.

2 Drag a guide to the other side of the control (or controls).

If necessary with multiple controls, size each to snap to the second guide.

3 Move either guide to size the control (or controls) on that side.

Chapter 6 Using the Dialog Editor

~ To change the intervals of the tick marks

1 From the Layout menu, choose Guide Settings.

The Guide Settings dialog box appears.

2 In the Grid Spacing box, specify the new width and height in DLUs.

3 Choose the OK button.

Disabling the Guides
You can use special keys in conjunction with the mouse to disable the snapping effect
of the guides. Using the ALT key disables the snapping effects of the guide selected.
Moving a guide with the SHIff key prevents snapped controls from moving with the
guide.

~ To disable the snapping effect of the guides

• Drag the control while holding down the ALT key.

~ To move guides without moving the snapped controls

• Drag the guide while holding down the SHIff key.

~ To clear all the guides

1 Click the right mouse button in the ruler bar.

2 From the pop-up menu, choose Clear All.

~ To turn off the guides

1 From the Layout menu, choose Guide Settings.

The Guide Settings dialog box ,appears.

2 Under Layout Guides, select None.

3 Choose the OK button.

U sing the Layout Grid
When you are placing or arranging controls in a dialog box, you can use the layout
grid for more precise positioning. When the grid is turned on, controls appear to
"snap to" the dotted lines of the grid as if magnetized. You can tum this "snap to
grid" feature on and off and change the size of the layout grid cells.

~ To turn the Grid on or off

1 From the Layout menu, choose Guide Settings.

2 Select or clear the Grid radio button.

You can still control Grid in individual dialog editor windows using the Toggle
Grid button on the Dialog toolbar.

161

Visual c++ User's Guide

~ To change the size of the layout grid

1 From the Layout menu, choose Guide Settings.

2 Type the height and width in DLUs for the cells in the grid. The minimum height
or width is 4 DLUs. For more information on DLUs, see "Arranging Controls"
earlier in this chapter.

Editing the Dialog Box
Each dialog box has a property page, a tab order, and mnemonic keys. The tab order
is the order that the focus moves from when using the TAB key. Alternatively, a
keyboard.user can press a mnemonic key to move the input focus from one control to
another.

You can:

• Change the tab order for the input focus.

• Define the mnemonic keys for the input focus.

For more information on editing property pages, see "Using Property Pages" in
Chapter 5, "Working with Resources."

Changing the Tab Order

162

The tab order is the order in which the TAB key moves the input focus from one
control to the next within a dialog box. Usually the tab order proceeds from left to
right in a dialog box, and from top to bottom. Each control has a property page with a
Tabstop check box used to determine whether a control actually receives input focus
or not.

Even controls that do not have the Tabstop property set need to be part of the tab
order. This can be important, for example, when you define mnemonics for controls
that do not have captions. Static text that contains a mnemonic for a related control
must immediately precede the related control in the tab order.

Note If your dialog box contains overlapping controls, changing the tab order may change the
way the controls are displayed. Controls that come first in the tab order are always displayed
on top of any overlapping controls that follow them in the tab order.

~ To change the tab order for all controls in a dialog box

1 From the Layout menu, choose Tab Order.

A number in the upper-left corner of each control shows its place in the current
tab order.

2 Set the tab order by clicking each control in the order you want the TAB key to
follow.

3 Press ENTER to exit Tab Order mode.

Chapter 6 U sing the Dialog Editor

~ To change the existing tab order

To change the existing tab order, specify the starting control; that is, select the control
prior to the one where you want the changed order to begin. The selected control
determines the number of the control you click next. For example, if you are in Tab
Order mode, and control number 3 is selected, the next control you click is set to
number 4.

1 From the Layout menu, choose Tab Order.

2 Specify where the change in order will begin. To do this, hold down the CTRL key
and click the control prior to the one where you want the changed order to begin.

For example, if you want to change the order of controls 7 through 9, select
control 6 first.

Note To set a specific control to number 1 (first in the tab order), double-click the control.

3 Reset the tab order by clicking the controls in the order you want the TAB key to
follow.

4 Press ENTER to exit Tab Order mode.

Defining Mnemonic Keys
Normally, keyboard users move the input focus from one control to another in a
dialog box with the TAB and ARROW keys. However, you can define a mnemonic key
that allows users to choose a control by pressing a single key.

Note All the mnemonics within a dialog box should be unique.

~ To define a mnemonic key for a control with a visible caption (pushbuttons, check
boxes, and radio buttons)

1 Select the control.

2 From the Edit menu, choose Properties to open the control's property page.

3 In the Caption box, type an ampersand (&) in front of the letter you want as the
mnemonic for that control.

An underline appears in the displayed caption to indicate the mnemonic -key.

~ To define a mnemonic for a control without a visible caption

1 Make a caption for the control by using a static text control. In the static text
caption, type an ampersand (&) in front of the letter you want as the mnemonic.

2 Make sure the static text control immediately precedes the control it labels in the
tab order.

163

Visual c++ User's Guide

U sing OLE Controls in a Dialog Box
An OLE control is a custom control implemented as an object that fully supports
OLE technology for its interface. Each OLE control has its own unique set of
features. Some controls may not support all the features.

OLE controls can be imported to a project, installed on the toolbar and manipulated
like other controls. You can:

• Add OLE controls to a dialog box.

• Edit the property pages associated with that control.

You can also edit the control's message map and data map with ClassWizard (for
more information, see Chapter 14, "Working With Classes").

Adding OLE Controls
To place OLE controls on the dialog editor Controls toolbar, you must first add the
OLE controls to your project in Component Gallery. Once inserted, the OLE controls
appear on the dialog editor Controls toolbar and can be dragged to the dialog box that
you are constructing. The controls that you apply are reloaded each time you start the
project.

~ To add an OLE control to the project

1 From the Insert menu, choose Component.

The Component Gallery dialog box appears.

2 Select the control you want by clicking the OLE control icon in the Component
Gallery window.

3 Choose the Insert button.

An icon representing each control installed appears on the dialog editor Controls
toolbar;

Note You can also insert an OLE control using the right-mouse menu. This method inserts the
control as a stand-alone control without the wrapper class.

Editing OLE Control Property Pages

164

Each of the OLE controls features a unique set of property pages that are appropriate
to that control's purpose. These property pages enable you to customize the exact
parameters of a control to certain specifications. The property pages for an OLE
control usually contain General and All, and may have other property pages specific
to that control.

For more information on property pages, see "Using Property Pages" in Chapter 5,
"Working with Resources."

Chapter 6 U sing the Dialog Editor

U sing Custom Controls in a Dialog Box
A custom control is a special-format dynamic-link library (DLL) or object file used to
add additional features and functionality to the user interface of the Windows NT
operating system. A custom control can be a variation on an existing Windows dialog
box control (for example, a text box suitable f<?r use with Windows for Pen
Computing) or a totally new category of control.

Working with User-Defined Controls
The dialog editor user-defined controls let you use existing custom controls
regardless of their format.

With user-defined controls, you can:

• Set the location in the dialog box.

• Type a caption.

• Identify the name of the control's Windows class (your application code must
register the control by this name).

• Type a 32-bit hexadecimal value that sets the control's style.

When you are designing a dialog box that contains custom controls, the custom
control is displayed as a gray square. In test mode the custom control is also
displayed as a gray square, and its run-time behavior is not simulated.

~ To edit user=defined control properties

1 Select the control.

2 From the Edit menu, choose Properties.

3 Type or modify the information as appropriate.

Creating a Form View Dialog Box
You can use the dialog editor to create a template that is used as a "form view," a
CView-compatible window that contains dialog box controls. An application that
might need a form view is one in which the primary program function is data entry.
In this case, the program's main view contains nothing but dialog box controls for
entering data.

To construct a form view, you create a dialog box as you normally would but set
several style properties differently. You then incorporate the form view into your
program using the Microsoft Foundation Class Library CForm View class. You can
use the same procedure to create a template for use with the CDiaiogBar class. For
more information, see the Class Library Reference.

165

Visual C++ User's Guide

~ To create a dialog box template for use with the CFormView or CDialogBar class

1 Use the dialog editor in the usual way to create a dialog box template with the
controls arranged as you want them to appear in the form view.

2 From the Edit menu, choose Properties.

3 Select the Styles tab, and set the following properties:

• In the Style box, select Child .

• In the Border box, select None.

4 Select the More Styles tab, and clear the Visible check box.

5 Select the General tab, and clear the Caption box.

6 Incorporate the template into your program using the CForm View class.

Importing a Visual Basic Form

i6

You can import a Visual Basic form into Visual C++ in the dialog editor. Some
controls will also import with the form; OLE controls, if installed in the project, will
import. Controls that are native to Visual Basic can be troublesome; nested controls
also have limitations. Most of these limitations come from Visual Basic run-time
differing from the Windows run-time and dialog behaviors.

~ To import a Visual Basic form

1 From the Insert menu, choose Resource.

The Insert Resource dialog box appears.

2 Choose the Import button.

The Import Resource dialog box appears.

3 Type the name of the .FRM file.

4 Choose the Import button.

Warning Messages
When importing a Visual Basic form, several warning messages may appear, with
information similar to this:

• The OLE control "FOOLIB.FOOCTRL" is not installed in the project.

OLE controls have to be installed using the Component Gallery. (System registry
alone will not work.)

.. Syntax error in VB fonn descriptioI!.

The form is invalid because of customization. For example, editing or merging
with a source-code file .

• The form's binary data file "FOO.FRX" can't be opened.

Chapter 6 Using the Dialog Editor

Limitations with Imported Visual Basic Controls
The following controls are implemented in a reduced-functionality way or ignored,
due to differences between the Visual Basic run-time and the Windows dialog
functionality:

• Drive and directory list boxes

These are converted to a Windows list box, which can be filled.

• MDIforms

Imported as a normal dialog box. Menus are ignored.

• Data controls

• Line and shape controls

• Horizontal and vertical scroll bars

• Timers

• Printers

• Screens

• Clipboards

• Queries

• Apps

Limitations with Visual Basic Properties and Nested Controls
Several properties of Visual Basic controls are implemented only by Visual Basic and
have no equivalent in Windows dialog boxes and controls. Several examples include
per/control font and per/control color.

Nested controls possible in Visual Basic do not translate into the Windows
enviroment. In the Visual Basic environment, controls can be nested inside of each
other, with the code turning one control of the many set to Visible. In the Visual C++
environment, the visibility of the controls is a run-time feature; in the editor you can
see all the controls. One solution is to move the overlapping controls into separate
dialog boxes. Then have the code create the dialog boxes as needed, with the main
dialog box as a parent window.

Testing a Dialog Box
You can simulate the run-time behavior of a dialog box from within the dialog editor
without compiling your program. This gives you immediate feedback on how the
layout of controls appears and performs and thus speeds up the user-interface design
process.

167

Visual C++ User's Guide

68

When you are in test mode, you can:

• Type text, select from combo-box lists, tum options on and off, and choose
commands.

• Test the tab order.

• Test the grouping of controls, such as radio buttons or check boxes.

• Test the dialog box's keyboard shortcuts (for controls that have mnemonic keys
defined for them).

Note Connections to dialog box code made using ClassWizard are not simulated during
dialog box test mode.

When you test a dialog box, it is usually displayed at a location relative to the main
Developer Studio program window. If the dialog box's Absolute Align property is
selected, the dialog box is displayed at a position relative to the upper-left comer of
the screen.

~ To test a dialog box

1 From the Layout menu, choose Test.

2 To end the test session, do one of the following actions:

• Press ESC.

• Close the dialog box using its Control-menu box.

• Choose a pushbutton with a symbol name of IDOK or IDCANCEL.

a

CHAPTER 7

U sing the Menu Editor

Menus allow you to arrange commands in a logical, easy-to-find fashion. With the
Microsoft Developer Studio menu editor, you can create and edit menus by working
directly with a menu bar that closely resembles the one in your finished application.

With the menu editor, you can:

• Create standard menus and commands.

• Create pop-up menus.

• Assign shortcut keys accelerator keys, and status bar prompts to menus and
commands.

• Move menus or commands from one place to another.

In addition, you can use ClassWizard to hook menu items to code. For more
information on connecting interface objects to message handling functions, see
Chapter 14, "Working with Classes."

Tip While using the menu editor, in many instances you can click the right mouse button to
display a pop-up menu of frequently used commands. The commands available depend on
what the pointer is pointing at. For example, if you click while pointing at a menu item, the pop­
up menu shows Cut, Copy, Paste, and View As Popup commands, as well as commands to
open ClassWizard and the properties page for the selected item.

For information about common resource edit procedures such as creating new
resources, opening existing resources, and deleting resources, see Chapter 5,
"Working with Resources."

169

Visual C++ User's Guide

Figure 7.1 Menu Terminolo~y

--------lI1- Accelerator keys

Cascading menu

Menu items (underlined letter is shortcut key)

Creating Menus or Menu Items

70

You can create menus, cascading menus, and menu commands on the menu bar in
the menu editor.

~ To create a menu on the menu bar

1 Select the new-item box (an empty rectangle) on the menu bar (see Figure 7.2). Or .
move the new item box to a blank spot with the right and left arrow keys.

Figure 7.2 Menu Editor New-Item Boxes

New item boxes

Chapter 7 Using the Menu Editor

2 Type the name of the menu. When you start typing, focus automatically shifts to
the Menu Item Properties page, and the text you type appears both in the Caption
box and in the menu editor window.

You can define a mnemonic key tha.t allows the user to select the menu with the
keyboatd. Type an ampersand (&) in front of a letter to specify it as the mnemonic.
Make sure all the mnemonics on a menu bar are unique.

Once you have given the menu a name on the menu bar, the new-item box shifts to
the right, and another new-item box opens below for adding menu items.

Note To create a single-item menu on the menu bar, clear the Pop-up check box on the
Menu Item Properties page.

~ To create a menu item

1 First, create a menu according to the steps outlined in the previous procedure.

2 Select the menu's new-item box.

-or-

Select an existing menu item and press INS. The new-item box is inserted before
the selected item.

3 Type the name of the menu item. When you start typing, focus automatically
shifts to the Menu Item Properties page, and the text you type appears in the
Caption box.

You can define a mnemonic key that allows the user to select the menu command.
Type an ampersand in front of a letter to specify it as the mnemonic. The
mnemonic allows the user to select the menu command by typing that letter.

4 In the ID box, type the menu item ID, or select an existing command identifier. If
you don't specify an ID, Visual C++ will generate an ID for you based on the
command name.

S On the properties page, select the menu item styles that apply.

6 In the Prompt box on the properties page, type the prompt string you want to
appear in your application's status bar. This feature is only available with
Microsoft Foundation Class Library resource script (.RC) files.

This creates an entry in the string table with the same resource identifier as the
menu item you created.

7 Press ENTER to complete the menu item. The new-item box is selected so you can
create additional menu items.

~ To create a cascading (hierarchical) menu

1 Select the new-item box on the menu where you want the cascading menu to
appear. Then type the name of the menu item that, when selected, will cause the
cascading menu to appear.

171

Visual c++ User's Guide

When you start typing, focus automatically shifts to the Menu Item Properties
page, and the text you type appears in the Caption box.

-or-

Select an existing menu item that you want to be the parent item of the cascading
menu, and double-click.

2 On the properties page, select the Pop-up check box. This marks the menu item
with the cascading menu symbol, and a new-item box appears to its right.

3 Add additional menu items to the cascading menu according to the instructions in
the previous procedure.

Selecting Menus and Menu Items
~ To select a menu and display its menu items

• Click the menu caption on the menu bar or the parent item of the cascading menu.
Then click the menu item you want.

-or-

Move to the menu caption with the TAB (move right) and SHIFf+TAB (move left)
keys or the right and left arrow keys.

~ To select one or more menu items

1 Click the menu or cascading menu you want.

Its menu items are displayed.

2 Click to select a menu item, or press the SHIff key while clicking to select multiple
menu items. Hold down the SHIff key and click an already-selected menu item to
deselect it.

-or-

With the pointer outside the menu, drag to draw a selection box around the menu
items you want to select.

Creating Pop-up Menus

72

Pop-up menus display frequently used commands with a right mouse click. They
can be context sensitive to the location of the pointer. Using pop-up menus in
your application requires building the menu itself and then connecting it to
:lnnl1r:ltl0n rocfp. -·rr---------- -----

Once you have created the menu resource, your application code needs to load the
menu resource and use the TrackPopupMenu command to cause the menu to appear.
Once the user has dismissed it by clicking outside it, or has clicked on a command,
that function will return. If the user chooses a command, that command message will
be sent to the window whose handle was passed.

Chapter 7 Using the Menu Editor

~ To create a pop-up menu

1 Create a menu bar with an empty title. Type a temporary letter in the caption or
choose an attribute to reverse later. This is to allow the menu to be created below.

2 Move to the next menu item below. Bring up the property page and type in the
caption and any other information. Repeat this process for any other menu items
in the pop-up menu.

3 Make the top menu bar empty again (if using a temporary letter in the caption) or
reset the temporary attribute. The goal is to have a pop-up menu descending
beneath a blank menu bar.

4 Save the menu resource.

~ To connect a pop-up menu to your application

• Add the following code to your source file:

CMenu menu;
VERIFY(menu.LoadMenu(IDR_MENU1»;
CMenu* pPopup = menu.GetSubMenu(0);
ASSERT(pPopup != NULL);

pPopup-)TrackPopupMenu(TPM_LEFTALIGN
Y. AfxGetMainWnd(»;

TPM_RIGHTBUTTON. x.

Moving and Copying Menus
and Menu Items

~ To move or copy menus or menu items using drag-and-drop

1 Drag or copy the item you want to move to:

• A new location on the current menu.

• A different menu. (You can navigate into other menus by dragging the mouse
pointer over them.)

2 Drop the menu item when the insertion guide shows the position you want.

173

Visual C++ User's Guide

Figure 7.3 Moving a Menu to a Cascading Menu

Step 2

Step 1

Step 3

Insertion guide

~ To move or copy menus or menu items using the menu commands

1 Select one or more menus or menu items.

2 From the Edit menu, choose Cut (to move) or Copy.

3 If you are moving the items to another menu resource or resource script file, make
that menu editor window active.

4 Select the position of the menu or menu item you want to move or copy to.

S From the Edit menu, choose Paste. The moved or copied item is placed before the
item you select.

Note You can also drag, copy, and paste to other menus in other menu windows.

Viewing the Menu Resource
as a Pop-up Menu

174

Normally, when you are working in the menu editor, a menu resource is displayed as
a menu bar. However, you may have menu resources that are added to the
application's menu bar while the program is running. To see what a menu resource
looks like as a pop-up menu, use the menu editor's View As Popup command on the
right mouse pop-up menu. To change back to the.menu-bar view, choose View As
Popup again.

Chapter 7 Using the Menu Editor

Associating a Menu Item with an
Accelerator Key

Many times you want a menu item and a keyboard combination to issue the same
program command. You do this by assigning the same resource identifier to the menu
item and to an entry in your application's accelerator table. You then edit the menu
item's caption to show the name of the accelerator key.

~ To associate a menu item with an accelerator key

1 In the menu editor, select the menu item you want. From the Edit menu, choose
Properties or double-click the item.

2 In the Caption box, add the name of the accelerator key to the menu caption:

• Following the menu caption, type the escape sequence for a TAB (\t), so that all
the menu's accelerator keys are left-aligned .

• Type the name of the modifier key (CTRL, ALT, or SHIff) followed by a plus sign
and the name, letter, or symbol of the additional key.

For example, to assign CTRL+O to the Open command on the File menu, you
modify the menu item's caption so that it looks like this:

Open\tCtrl+O

The menu item in the menu editor is updated to reflect the new caption as you
type it.

3 Create the accelerator-table entry in the accelerator editor and assign it the same
identifier as the menu item. Use a key combination that you think will be easy to
remember.

For more information on creating and naming accelerator resources, see
Chapter 8, "Using the Accelerator Editor."

Associating a Menu Item with a
Status Bar Prompt

Your application can display descriptive text for each of the menu items that may be
selected. MFC can handle this for you if you have a string in the string table whose
ID is the same as the command. You do this by assigning a text string to each menu
item using the Menu Item Properties page.

~ To associate a menu item with a status bar text string

1 Select the menu item.

2 In the Prompt box, type the associated status bar text.

175

CHAPTER 8

U sing the Accelerator Editor

An accelerator table is a Windows resource that contains a list of accelerator keys
(also known as shortcut keys) and the command identifiers that are associated with
them. A program can have more than one accelerator table.

Normally, accelerators are used as keyboard shortcuts for program commands that are
also available on a menu or toolbar. However, you can use the accelerator table to
define key combinations for commands that don't have a user-interface object
associated with them.

You can use Class Wizard to hook accelerator key commands to code. For more
information on ClassWizard, see Chapter 14, "Working with Classes."

With the accelerator editor, you can:

• Add, delete, change, and browse the accelerator key assignments in your project.

• View and change the resource identifier associated with each entry in the
accelerator table. The identifier is used to reference each accelerator table entry in
program code.

• Associate an accelerator key with a menu item.

Figure 8.1 The Accelerator Editor

IDJILE_NEW
IDJILE_OPEN
IDJILE_PRINT
IDJILE_SAVE
ID _EDIT _PASTE
ID_EDIT_UNDO
ID_EDIT_CUT
ID_NEXT_PANE
ID_PREV_PANE
ID_EDIT_COPY
ID_EDIT_PASTE
ID_EDIT_CUT
ID _EDIT_UNDO

Ctrl+N
Ctrl+O
Ctrl+P
Ctrl+S
Ctrl+V
Alt + VK_BACK
Shift + VK_DELETE
VKJ6
Shift+VKJ6
Ctrl + VKJNSERT
Shift + VKJNSERT
Ctrl+X
Ctrl+Z

VIRTKEY
VIRTKEY
VIRTKEY
VIRTKEY
VIRTKEY
VIRTKEY
VIRTKEY
VIRTKEY
VIRTKEY
VIRTKEY
VIRTKEY
VIRTKEY
VIRTKEY

177

Visual C++ User's Guide

a Tip While using the accelerator editor, in many instances you can click the right mouse button
to display a pop-up menu of frequently used commands. The commands available depend on
what the pointer is pointing to. For example, if you clickwhile pointing to an accelerator entry,
the pop-up menu shows the Cut, Copy, New Accelerator, ClassWizard, and Properties
commands.

Note Windows does not allow the creation of empty accelerator tables. If you create an
accelerator table with no entries, it is deleted automatically when you exit Microsoft Developer
Studio.

For information about common resource edit procedures such as creating new
resources, opening existing resources, and deleting resources, see Chapter 5,
"Working with Resources."

Editing an Accelerator Table

178

~ To add an entry to an accelerator table

1 Select the new-item box at the end of the list, or press the INS key.

2 Type the accelerator key to define it.

The Acce1 Properties page appears, with the focus in the Key box.

Note Make sure all accelerators you define are unique. When duplicate accelerator keys are
assigned, only the first one works correctly.

~ To delete an entry from an accelerator table

1 Select the entry you want to delete. Hold down the CTRL or SHIFT key while
clicking to select multiple entries.

2 From the Edit menu, choose Delete.

~ To move or copy an accelerator table entry from one resource script file to another

1 Open the accelerator editor windows in both resource script files.

2 Select the entry you want to move.

3 Drag the entry to its new location.

-or-

Use the Copy (or Cut) and Paste commands on the Edit menu.

Note When you copy-rather than move-an entry, duplicate accelerator keys
are created. Microsoft Developer Studio does not prompt you to resolve accelerator
key conflicts.

Chapter 8 Using the Accelerator Editor

Setting Accelerator Properties

a

The Accel Properties page allows you to control the features of each accelerator key.
By default, the property page is dismissed when it does not have focus. If you want
the property page to remain on the screen, even when it does not have focus, click the
Pushpin button in the upper-left comer of the window.

The following are legal entries in the Key box of an accelerator property page:

• . An integer between 0 and 255 in decimal, hexadecimal, or octal format. The
setting of the Type property determines if the number is an ASCII or virtual key
value.

Single-digit numbers are always interpreted as the corresponding key, rather than
as ASCII values. To enter an ASCII value from 0 to 9, precede it with two zeros
(for example, 006).

• A single keyboard character. Uppercase A-Z or the numbers 0-9 can be either
ASCII or virtual key values; any other character is ASCII only.

• A single keyboard character in the range A-Z (uppercase only), preceded by a
caret (A) (for example, A C). This enters the ASCII value of the key when it is
pressed with the CTRL key held down.

Note When entering an ASCII value, the CTRL and SHIFT modifiers on the property page
are not available. You cannot use a control-key combination entered with a caret to create a
virtual accelerator key.

~ Any valid virtual key identifier. The Key box on the property page contains a list
of standard virtual key identifiers.

Tip Another way to define an accelerator key is to choose the Next Key Typed button in the
property page and then press any of the keys on the keyboard.

Associating an Accelerator Key with a
Menu Item

Many times you want a menu item and a keyboard combination to issue the same
program command. You do this by assigning the same resource identifier to the menu
item and to an entry in your application's accelerator table. You then edit the menu
item's caption to show the name of the accelerator. For more information on menu
items and accelerator keys, see "Associating a Menu Item with an Accelerator Key"
in Chapter 7.

179

CHAPTER 9

Using the String Editor

A string table is a Windows resource that contains a list of IDs, values, and captions
for all the strings of your application. For example, the status-bar prompts are located
in the string table. An application can have only one string table.

With the string editor you can edit a program's string table resource. In a string table,
strings are grouped into segments, or blocks, of 16 strings each. The segment a string
belongs to is detennined by the value of its identifier; for example, strings with
identifiers of 0 to 15 are in one segment, strings with identifiers of 16 to 31 are in a
second segment, and so on. Thus, to move a string from one segment to another you
need to change its identifier.

Individual string segments are loaded on demand in order to conserve memory. For
this reason, programmers usually try to group strings into logical groupings of 16 or
less and then use each group or segment only when it is needed.

With the string editor (shown in Figure 9.1), you can:

• Find it string in the string table.

• Add a string table entry.

• Delete an individual string.

• Move a string from one segment to another.

• Move a string from one resource script (.Re) file to another.

• Change a string or its identifier.

• Add fonnatting or special characters to a string.

181

Visual C++ User's Guide

Figure 9.1 The String Editor

I
IDJILE_CLOSE
IDJILE_SAVE
IDJILE_SAVE_AS
IDJILE_PAGE_SETUP
IDJILE_PRINT_SETUP

57602 Close the active document\nClose
57603 Save the active document\nSave
57604 S ave the active document with a new
57605 Change the printing options\nPage S
57606 Change the printer and printing I

Tip While using the string editor, in many instances you can click the right mouse button to
display a pop-up menu of resource-specific commands. The commands available depend on
what the pointer is pointing to. For example, if you click while pointing to a string table entry,
the pop-up menu.shows the Cut, Copy, New String, and Properties commands.

Note Windows does not allow the creation of empty string tables. If you create a string table
with no entries, it is deleted automatically when you exit Microsoft Developer Studio.

For information about common resource edit procedures such as creating new
resources, opening existing resources, and deleting resources, see Chapter 5,
"Working with Resources."

Finding a String
With the string editor's Find command you can quickly locate a string in the string
table by either the caption or resource identifier.

~ To find a string in the string table

1 In ResourceView, open.the string table by double-clicking its icon.

2 From the Edit menu, choose Find.

The Find dialog box appears.

3 In the Find What box, type the caption text or resource identifier of the string you
want to find. Select or clear the Match Case check box as appropriate.

4 Choose the Find Next button.

If a string or its identifier in the string table matches what you typed, it is selected.

Adding or Deleting a String

182

When the string editor window is displayed, you can add or delete entries in the
string table. String table segments are separated by horizontal lines in the string
editor window.

Chapter 9 Using the String Editor

~ To add a string table entry

1 Select the new-item box (an empty rectangle) at the end of a string segment.

2 Type the new string.

Focus shifts to the String Properties page as you start typing. The text is entered in
the Caption box, and the string is given the next identifier in sequence.

3 Press ENTER to place the new string in the string table.

New entries can also be inserted into the string table. Select an existing entry, and
from the Insert menu, choose New String. The new string is placed after the currently
selected string in the next available identifier.

Note Null strings are not allowed -in Windows string tables. If you create an entry in the string
table that is a null string, the entry is deleted when you close the string editor.

~ To delete a string table entry

1 Select the string you want to delete.

2 From the Edit menu, choose Delete.

Moving a String from One Segment
to Another

~ To move a string from one segment to another

1 Select the string you want to move.

2 From the Edit menu, choose Properties.

The String Properties page opens.

3 Change the string's value in the ID box so that it falls in the range you want.

For example, to move a string with a name of IDS_MY STRI NG and a value of 100
to a segment in the 200 range, type the following in the ID box:

IDS_MYSTRING=201

4 Press ENTER to record the change.

Moving a String from One Resource
Script File to Another

~ To move a string from one resource script file to another

1 Open the string editor windows in both resource script files ..

2 Select the string you want to move.

183

Visual c++ User's Guide

3 Drag the selected string from one string editor window and drop it in the target
string editor window.

-or-

Use the Cut and Paste commands on the Edit menu.

Note If the symbol name or value of the moved string conflicts with an existing identifier in
the destination file, the symbol name is changed (if a symbol with that name already exists) or
the symbol value is changed (if a symbol with that value already exists).

Changing a String or Its Identifier
~ To change a ~tring or its identifier

1 Select the string you want to edit.

2 From the Edit menu, choose Properties, and modify the string in the Caption box.

3 In the ID box, modify the string's identifier:

• Type a new symbol name, or select one from the list.

• To change a string's value, type the symbol name followed by an equal sign and
the new value; for example:

I DS_ERROR_MSG=2350
For more information on editing symbols, see Chapter 16, "Browsing Through
Symbols."

Adding Formatting or Special Characters to
a String

184

~ To add formatting or special characters to a string

• Use the standard escape sequences shown in Table 9.1.

Table 9.1 Formatting and Special Characters in Strings

To get this Type this

New line \n

Carriage return

Tab

Backslash (\)

ASCn character

Alert (bell)

\r

\t

\\

\ddd (octal notation)

\a

a

C HAP T E R 1 0

U sing the Graphic Editor

The Microsoft Developer Studio graphic editor has an extensive set of tools for
drawing bitmaps, icons, and cursors, as well as features to support the creation of
toolbar bitmaps and the management of icon and cursor images.

With the graphic editor, you can:

• Use the image editor window and docking toolbars.

• Customize and adjust the graphic editor workspace.

• Edit a graphic resource and draw new graphics.

• Customize colors, change palettes, and select colors.

• Edit icons and cursors, including 48 x 48 icons.

Most editing procedures are the same for bitmaps, icons, and cursors. This chapter
first shows the procedures common to all graphical resources. Later sections detail
procedures and graphic-editor capabilities specific to icons and cursors. For specific
information on editing toolbar resources and converting bitmaps to toolbars, see
Chapter 11, "Using the Toolbar Editor."

Note Many of the graphic editor's functions require a mouse or other pointing device. For
keyboard shortcuts or accelerators, check the Help Keyboard Table in the Help menu. See
Chapter 22, "Customizing the Microsoft Developer Studio Display."

Tip While using the graphic editor, in many instances you can click the right mouse button to
display a pop-up menu of frequently used commands. The commands available depend on
what the pointer is pointing to. For example, if you click while pointing to a bitmap folder, the
pop-up menu shows the New and New Bitmap commands.

For information about common resource edit procedures such as creating new
resources, opening existing resources, and deleting resources, see Chapter 5,
"Working with Resources."

185

Visual C++ User's Guide

U sing the Image Editor Window and Tools
You edit bitmaps, icons, and cursors in the image editor window, using the tools on
the Graphics toolbar (Figure 10.1).

Figure 10.1 Image Editor Window, Graphics Toolbar, and Colors Palette

Image editor window

Graphics toolbar

Selection border

Sizing handle

Colors palette

Color indicator

Option selector

The figure shows three basic tools: the image editor, window, the Graphics toolbar,
and the Colors palette. Additionally, the Image menu provides useful commands, and
the status bar shows helpful infonnation.

The Image Editor Window
The image editor window shows two views of an image. A split bar separates the two
panes. You can drag the split bar from side to side to change the relative sizes of the
panes. The active pane displays a selection border, as shown in Figure 10.1.

The Graphics Toolbar

186

• The toolbar, which contains 21 tools for drawing, painting, entering text, erasing,
and manipulating views.

• The option selector, which you click to select brush widths and other drawing
options.

Chapter 10 Using the Graphic Editor

To use the Graphics toolbar, Colors palette, and option selector, click the tool, color,
or option that you want.

The Colors Palette
The Colors palette has two parts, which are shown in Figure 10.1:

• The color indicator, which shows the foreground and background colors and (for
icons and cursors) selectors for "screen" and "inverse" color.

• The Colors palette, which you click to select the foreground and background
colors.

For large icons using the 256-color palette on the property page, see "Creating and
Editing Icons and Cursors" later in this chapter.

The Status Bar
The status bar, at the bottom of the frame window, displays two panes when an image
editor window is open. When the pointer is over an image, the left pane shows the
cursor's current position, in pixels, relative to the upper-left comer of the image.
During a dragging operation, such as selecting, moving, or drawing a rectangle, the
right pane shows the size, in pixels, of the affected area.

The Image Menu
The Image menu, which appears only when the graphic editor is active, has
commands for editing images, managing color palettes, and setting image editor
window options.

Managing the Graphic Editor Workspace
By adjusting the graphic editor workspace to fit your needs and preferences, you can
work more effectively and comfortably. This section describes procedures for:

• Selecting and sizing image-editor panes.

• Changing the magnification of image editor windows .

• Displaying and hiding pixel grids.

U sing Image-Editor Panes
The image editor window typically displays a bitmap in two panes separated by a
split bar. One view is actual size, and the other is enlarged (the default enlargement
factor is 6). The views in these two panes are updated automatically: changes you
make in one pane are immediately shown in the other. The two panes make it easy
for you to work on an enlarged "picture" of your bitmap, in which you can
distinguish individual pixels and, at the same time, observe the effect of your work on
the actual-size view of the image.

187

Visual C++ User's Guide

If the bitmap is 200 x 200 pixels or larger, however, only one pane is displayed
initially. Move the split bar to display both panes.

You can use the two panes in other ways. For example, you might enlarge the smaller
pane and use the two panes to show different regions ofa large bitmap. Click in the
pane to select it.

You can change the relative sizes of the panes by positioning the pointer on the split
bar and moving the split bar to the right or left. The split bar can move all the way to
either side if you want to work on only one pane.

Changing the Magnification Factor
By default, the graphic editor displays the view in the left pane at actual size and the
view in the right pane at 6 times actual size. The magnification factor is the ratio
between the actual size of the bitmap and the displayed size. The default is 6, and the
range is from 1 to 8.

~ To change the magnification factor

1 Select the image-editor pane whose·magnification factor you want to change.

2 On the toolbar, click the Magnify tool.

The pointer changes to the Magnify tool, and magnification-factor options appear
in the option selector on the Graphics toolbar. If the current magnification factor
matches an option, that option is highlighted.

3 Click the desired magnification factor.

-or-

Select the image-editor pane whose magnification factor you want to change.

Press SHIFT +RIGHT ANGLE BRACKET (» to increase the magnification factor, or
press SHIFT +LEFT ANGLE BRACKET «) to decrease the magnification factor.

Displaying and Hiding the Pixel Grid

188

For all image-editor panes with a magnification factor of 4 or greater, you can display
a grid that delimits the individual pixels in the image. For more information, see
"Changing the Magnification Factor."

~ To display or hide the pixel grid

1 From the Image menu, choose Grid Settings.

The Grid SeUings dialog box appears.

2 Select the Pixel Grid check box to display the grid, or clear the box to hide the
grid.

Chapter 10 U sing the Graphic Editor

3 Choose the OK button.

-or-

• Press G to toggle the grid display.

Editing Graphical Resources
There are several editing operations involved in using the graphic editor. This section
describes these graphics-editing tasks:

• Setting bitmap properties

• Showing and hiding the Graphic,s toolbar

• Drawing and erasing

• Drawing lines and closed figures

• Cutting, copying, clearing, and moving selected parts of a bitmap

• Creating a custom brush

• Flipping or resizing a bitmap

You can also import existing bitmaps, icons, and cursors and add them to your
project, and you can open files that are not part of a project for stand-alone editing.
For more information on importing resources, see "Using the Resource Editors" and
"Working with Symbols," both in Chapter 5.

Note Most graphic editor operations are the same for all kinds of graphical resources. Unless
the text states otherwise, the procedures described in this section can be performed on
bitmaps, cursors, or icon/so

Setting Bitmap Properties
You use the Properties window to change most resource properties. Exceptions are
new icons or cursors for additional target devices. For more information, see "Setting
a Cursor's Hot Spot," later in this chapter, and Appendix B, "Initializing and
Configuring Microsoft Developer Studio."

Tip By default the Properties window is hidden whenever it does not have focus. To keep the
Properties window in view when it does not have focus, click the Pushpin command button in
the upper-left corner of the Properties window.

~ To change a bitmap's properties

1 Open the bitmap whose properties you want to change.

2 From the Edit menu, choose Properties to open its property page.

189

Visual C++ User's Guide

3 Change any or all of these properties on the General tab:

• In the ID box, modify the resource's identifier. For a bitmap, Microsoft
Developer Studio by default assigns the next available identifier in a series:
IDB_BITMAP1, IDB_BITMAP2, and so forth. Similar names are used for
icons and cursors.

• In the Width and Height boxes, modify the bitmap's width and height (in
pixels). The default value for each is 48.

If you change the dimensions of a bitmap using the property page, the image is
cropped or "blank" space is added to the right of or below the existing image.

• In the Colors list box, select Monochrome, 16, or 256. If you have already
drawn the bitmap with a 16-color palette, selecting Monochrome causes
substitutions of black and white for the colors in the bitmap. Contrast is not
always maintained: for example, adjacent areas of red and green are both
converted to black.

• In the File Name box, modify the name of the file in which the bitmap is to be
stored. By default, Developer Studio assigns a base filename created by
removing the first four characters ("IDB_") from the default identifier and
adding the extension .EPS.

• Select the Save Compressed check box to save the bitmap in a compressed
format.

4 Change any or all of the color properties on the Palette tab:

• Double-click to select a color and display the Custom Color Selector dialog box.

• Define the color by typing RGB or HSL values in the appropriate text boxes, or
by moving the cross hairs on the color box.

• For more information, see "Changing Colors" later in this chapter.

Showing and Hiding the Graphics Toolbar

190

Since many of the drawing tools are available from the keyboard, sometimes it is
useful to hide the Graphics toolbar.

~ To show or hide the Graphics toolbar

1 Place the mouse pointer over the toolbar area and click the right mouse button.

A pop-up menu appears.

2 From the pop-up menu, choose Graphics.

Chapter 10 Using the Graphic Editor

Freehand Drawing and Erasing
The graphic editor's freehand drawing and erasing tools all work in the same way:
you select the tool and, if necessary, select foreground and background colors and size
and shape options. You then move the pointer to the bitmap and click or drag to draw
and erase.

When you have selected the eraser tool, brush tool, or airbrush tool, the option
selector displays that tool's options.

Tip Instead of using the eraser tool, you may find it more convenient to draw in the
background color with one of the drawing tools.

Selecting and Using a Drawing Tool
The various drawing tools are easily selected using the Graphics toolbar. Figure 10.2
shows each toolbar button and its related drawing tool.

Figure 10.2 Drawing Tools in the Graphics Toolbar

Select Rectangle

Eraser

Fill

Pencil

Line

~ To select and use a drawing tool

1 Click a button on the Graphics toolbar:

Select Region

Select Color

Magnify

Air Brush

Text
Brush

Curve

Brush or Eraser
Size Selector

• The eraser tool "paints over" the image with the current background color
when you press the left mouse button. When you press the right mouse button,
it replaces the current foreground color with the current background color.

• The pencil tool draws freehand in 'a constant width of one pixel.

191

Visual C++ User's Guide

• The brush tool's shape and size are determined by the option selector.

• The airbrush tool randomly distributes color pixels around the center of the
brush.

2 If necessary, select colors and a brush:

• In the Colors palette, click the left button to select a foreground color or the
right button to select a background color.

• On the options selector of the Graphics toolbar, click a shape representing the
brush you want to use. Your selection is highlighted.

3 Point to the place on the bitmap where you want to start drawing or painting. The
brush or pointer appears on the bitmap.

4 Press the left mouse button (for the foreground color) or the right mouse button
(for the background color), and hold it down as you draw.

5 Release the mouse button.

~ To change the size of the brush, airbrush, or eraser

• Press the PLUS SIGN (+) key to increase the size or the MINUS SIGN (-) key to
decrease it.

-or-

Press the PERIOD (.) to choose the smallest size.

-or-

Choose a brush in the option selector.

Drawing Lines and Closed Figures

192

The graphic editor tools for drawing lines and closed figures all work in the same
way: you place the insertion point at one point and drag to another. For lines, these
points are the endpoints. For closed figures, these points are opposite comers of a
rectangle bounding the figure .

. Lines are drawn in a width determined by the current brush selection, and framed
figures are drawn in a width determined by the current width selection. Lines and all
figures, both framed and filled, are drawn in the current foreground color if you press
the left mouse button, or in the current background color if you press the right mouse
button.

Drawing a Line
~ To draw a line

1 From the toolbar, select the line tool.

2 If necessary, select colors: in the Colors palette, click the left button to select a
foreground color or the right button to select a background color.

Chapter 10 Using the Graphic Editor

3 If necessary, select a brush: in the option selector, click a shape representing the
brush you want to use. Your selection is highlighted.

4 Place the pointer at the line's starting point.

S Drag to the line's endpoint.

Drawing a Closed Figure
The various closed-figure drawing tools are easily selected using the Graphics
toolbar. Figure 10.3 shows the toolbar buttons for closed-figure drawing.

Figure 10.3 Closed-Figure Tools on the Graphics Toolbar

Rectangle

Round Rectangle

Outlined Round Rectangle

Ellipse

~ To draw a closed figure

Outlined Rectangle

Filled Rectangle

Outlined Ellipse
Filled Round Rectangle

Filled Ellipse

Width of Line
Option Seiector

1 From the Graphics toolbar, select a closed-figure drawing tool:

• The outlined-rectangle tool draws a rectangle framed with the foreground or
background color.

• The filled rectangle tool draws a rectangle filled with the foreground or
background color.

• The outlined round rectangle tool draws a rectangle with rounded comers
framed with the foreground or background color.

• The filled round rectangle tool draws a rectangle with rounded comers filled
with the foreground or background color.

• The outlined ellipse tool draws an ellipse framed with the foreground or
background color.

• The filled ellipse tool draws an ellipse filled with the foreground or background
color.

193

Visual c++ User's Guide

2 If necessary, select colors: on the Colors palette, click the left button to select a
foreground color or the right button to select a background color.

3 If necessary, select a line width: on the option selector, click a shape representing
the brush you want to use. Your selection is highlighted.

4 Move the pointer to one comer of the rectangular area in which you want to draw
the figure.

5 Drag it to the diagonally opposite comer.

Selecting an Area of the Bitmap
The selection tool defines an area of the bitmap that you can cut, copy, clear, resize,
invert, or move. You can also create a custom brush from the selection. For more
information on creating a custom brush, see "Creating a Custom Brush" later in this
chapter.

~ To select an area of the bitmap

1 In the Graphics toolbar, click the selection tool.

2 Move the insertion point to one comer of the bitmap area that you want to select.

Cross hairs appear when the insertion point is over the bitmap.

3 Drag the insertion point to the opposite comer of the area you want to select.

A rectangle shows which pixels will be selected. All pixels within the rectangle,
including those "under" the rectangle, are included in the selection.

4 Release the mouse button.

The "selection border" -a rectangular frame-encloses the selected area. Now
any operation you perform will affect only the pixels within the rectangle.

~ To select the entire bitmap

• Click the bitmap outside of the current selection.

-or-

• Press the ESC key.

-or-

• Choose another tool on the toolbar.

Cutting, Copying, Clearing, and Moving

194

You can perform standard editing operations-cutting, copying, clearing, and
moving-with the selection, whether the selection is the entire bitmap or just a part
of it. Because the graphic editor uses the Windows Clipboard, you can transfer
images between Developer Studio and other applications for Windows, such as
Microsoft Paintbrush™ and Microsoft Word for Windows.

Chapter lOUsing the Graphic Editor

In addition, you can resize the selection, whether it includes the entire bitmap or just
a part. For more information on resizing, see "Resizing a Bitmap" later in this
chapter.

~ To cut the current selection and move it to the Clipboard

• From the Edit menu, choose Cut.

The original area of the selection is filled with the current background color, and
the selection is now in the Clipboard. .

~ To clear the current selection without moving it to the Clipboard

• From the Edit menu, choose Clear.

The original area of the selection is filled with the current background color.

~ To paste the Clipboard contents into the bitmap

1 From the Edit menu, choose Paste.

The Clipboard contents, surrounded by the selection border, appear in the upper­
left comer of the pane.

2 Position the pointer within the selection border and drag the image to the desired
location on the bitmap.

3 To anchor the image at its new location, click outside of the selection border or
choose a new tool.

~ To move the selection

1 Position the pointer inside the selection border or anywhere on it except the sizing
handles.

2 Drag the selection to its new location.

The original area of the selection is filled with the current background color.

3 To anchor the selection in the bitmap at its new location, click outside the
selection border or choose a new tool.

~ To copy the selection

1 Position the pointer inside the selection border or anywhere on it except the sizing
handles.

2 Hold down the CTRL key as you drag the selection to a new location.

The area of the original selection is unchanged.

3 To copy the selection into the bitmap at its current location, click outside the
selection cursor or choose a new tool.

195

Visual C++ User's Guide

~ To draw with the selection

1 Position the pointer inside the selection border or anywhere on it except the sizing
handles.

2 Hold down the SHIFf key as you drag the selection.

Copies of the selection are left along the dragging path. The more slowly you drag,
the more copies are made.

Flipping the Selection
~ To flip the selection along the horizontal axis

• From the Image menu, choose Flip Horizontal.

~ To flip the selection along the vertical axis

• From the Image menu, choose Flip Vertical.

~ To rotate the selection 90°

• From the Image menu, choose Rotate 90°.

Creating a Custom Brush

196

A custom brush is a rectangular portion of a bitmap that you "pick up" and use like
one of the graphic editor's ready-made brushes. All operations you can perform on a
seleCtion, you can perform on a custom brush as well.

~ To create a custom brush

1 Select the part of the bitmap that you want to use for a brush. For more
information, see "Selecting and Using a Drawing Tool" earlier in this chapter.

2 Press CTRL+B.

Pixels in a custom brush that match the current background color are normally
"transparent," they do not paint over the existing image. You can change this
behavior so that background-color pixels paint over the existing image.

You can use the custom brush like a "stamp" or a "stencil" to create a variety of
special effects.

Using a Custom Brush
~ To draw custom brush shapes in the background color

1 Select an opaque or transparent background. For more information, see "Choosing
Opaque and Transparent Backgrounds" later in this chapter.

2 Set the background color to the color in which you want to draw.

3 Position the custom brush where you want to draw.

Chapter lOUsing the Graphic Editor

4 Press the right mouse button.

Any opaque regions of the custom brush are drawn in the background color.

~ To double or halve the custom brush size

• Press the PLUS SIGN (+) key to double the brush size, or the MINUS SIGN (-) key to
halve it.

~ To cancel the custom brush

• Press ESC or choose another drawing tool.

Resizing a Bitmap
The behavior of the graphic editor while resizing a bitmap depends on whether the
selection includes the entire bitmap or just part of it:

• When the selection includes only part of the bitmap, Microsoft Developer Studio
shrinks the selection by deleting rows or columns of pixels and filling the vacated
regions with the current background color, or it stretches the selection by
duplicating rows or columns of pixels.

• When the selection includes the entire bitmap, Developer Studio either shrinks
and stretches the bitmap, or crops and extends it.

There are two mechanisms for resizing a bitmap: the resizing handles and the.
property page. You can drag the sizing handles to change the size of all or part of a
bitmap. Sizing handles that you can drag are solid, like those on the lower-right
comer and the midpoints of the right and bottom sides of the bitmaps. You cannot
drag handles that are hollow. You can use the property page to resize only the entire
bitmap, not a selected part.

Note If you have the Tile Grid option selected (see Grid Settings command on the Image
menu), then resizing snaps to the next tile grid line. If only the Pixel Grid option is selected,
resizing snaps to the next available pixel. Usually, only the Pixel Grid option is selected.

Resizing an Entire Bitmap
~ To resize an entire bitmap using the property page

1 From the Edit menu, choose Properties to open the property page.

2 In the Width and Height boxes, type the dimensions that you want.

If you are increasing the size of the bitmap, the graphic editor extends the bitmap
to the right downward, or both, and fills the new region with the current
background color. The image is not stretched.

If you are decreasing the size of the bitmap, the graphic editor crops the bitmap on
the right or bottom edge, or both.

197

Visual C++ User's Guide

You can use the Width and Height properties to resize only the entire bitmap, not to
resize a pa~ial selection.

~ To crop or extend an entire bitmap

1 Select the entire bitmap.

If part of the bitmap is currently selected, and you want to select the entire bitmap,
click anywhere on the bitmap outside the current selection border, press ESC, or
choose another drawing tool.

2 Drag a sizing handle until the bitmap is the desired size.

Normally, the graphic editor crops or enlarges a bitmap when you resize it by moving
a sizing handle. If you hold down the SHIFf key as you move a sizing handle, the
graphic editor shrinks or stretches the bitmap.

~ To shrink or stretch an entire bitmap

1 Select the entire bitmap.

If a part of the bitmap is currently selected and you want to select the entire
bitmap, click anywhere on the bitmap outside the current selection border, press
ESC, or choose another drawing tool.

2 Hold down the SHIFf key and drag a sizing handle until the bitmap is the desired
size.

~ To shrink or stretch part of a bitmap

1 Select the part of the bitmap you want to resize. For more information, see
"Selecting an Area of the Bitmap" earlier in this chapter.

2 Drag one of the sizing handles until the selection is the desired size.

Working With Colors in the Graphic Editor

198

The graphic editor comes equipped with many features specifically to help with the
handling and customizing of colors. You can:

• Set foreground and background colors, and choose opaque and transparent
backgrounds.

• Fill an area of a bitmap with a color or quickly "pick up" a color from the bitmap
to use it elsewhere. .

• Invert the colors in a selection.

• Customize or change the colors.

• Save and load different color palettes.

Chapter 10 U sing the Graphic Editor

Selecting Foreground and Background Colors
Except for the eraser, these tools on the Graphics toolbar draw with the current
foreground or background color when you press the left or right mouse button,
respectively.

~ To select a foreground color

• With the left mouse button, click the color you want on the Colors palette.

~ To select a background color

• With the right mouse button, click the color you want on the Colors palette.

Filling Bounded Areas
The graphic editor provides the fill (or "paint-bucket") tool for filling any enclosed
bitmap area with the current drawing color or the current background color.

~ To use the fill tool

1 From the Graphics toolbar, choose the fill tool..

2 If necessary, choose drawing colors: in the Colors palette, click the left button to
select a foreground color or the right button to select a background color.

3 Move the fill tool to the area you want to fill.

4 Click the left or right mouse button to fill with the foreground color or the
background color, respectively.

Picking Up Colors
The color-pickup tool makes any color on the bitmap the current foreground color or
background color, depending on whether you press the left or the right mouse button ..
To cancel the color pickUp tool, choose another tool or press ESC.

~ To pick up a color

1 From the Graphics toolbar, select the color-pickup tool..

The pointer changes to the "eyedropper."

2 Select the color you want to pick up from the Colors palette or from the Palette tab
of the property page.

After you pick up a color, the graphic editor reactivates the most recently used
tool..

3 Draw using the left mouse button for the foreground color, or the right mouse
button for the background color.

199

Visual C++ User's Guide

Choosing Opaque and Transparent Backgrounds
When you move or copy a selection from a cursor or icon, any pixels in the selection
that match the current background color are by default "transparent," they do not
obscure pixels in the target location. A custom brush behaves in the same way. For
more information on custom brushes, see "Creating a Custom Brush" earlier in this
chapter.

~ To toggle the background-color transparency

• In the Graphics toolbar option selector, click the appropriate button:

• Opaque background: existing image is obscured by all parts of the selection.

• Transparent background: existing image shows through parts of the selection
that match the current background color.

You can change the background color while a selection is already in effect to change
which parts of the image are transparent.

Inverting Colors in the Current Selection
So that you can tell how a bitmap would appear with inverted colors, the graphic
editor provides a convenient way to invert colors in the selected part of the bitmap.

~ To invert colors in the current selection

• From the Image menu, choose Invert Colors.

Changing Colors

200

The graphic editor's Colors palette initially displays 24 "ready-made" colors: 16
standard colors and 8 dithered colors. In addition to the ready-made colors, you can
create your own custom colors. Colors palette selections can be saved on disk and
individually reloaded as needed. The "most recently used" Colors palette definition is
saved in the Registry and automatically loaded the next time you start Developer
Studio.

The Palette tab in the Properties window displays up to 256 colors. Changing any of
the colors on the Palette tab will immediately change the corresponding color in the
bitmap. The colors on the Palette tab are always solid colors and can indicate any
color your video card is capable of displaying.

Note The Palette tab in the Properties window displays for bitmaps only.

Chapter 10 Using the Graphic Editor

~ To change colors on the Colors palette or Palette tab

1 From the Image menu, choose Adjust Colors.

-or-

Double-click one of the colors on the Colors palette.

-or-

Double-click one of the colors on the Palette tab of the Bitmap Properties page.

The Custom Color Selector dialog box (Figure 10.4) appears.

Figure 10.4 Custom Color Selector Dialog ,Box

2 Define the color by typing RGB or HSL values in the appropriate text boxes, or by
moving the cross hairs on the color box.

3 Set the luminance by moving the slider on the luminance bar.

4 Many custom colors are dithered. If you want the solid color closest to the dithered
color, double-click the Color preview window. (If you later decide you want the
dithered color, move the slider or the cross hairs again to restore the dithering.)

5 Choose OK to add the new color.

Saving and Loading Colors Palettes
You use commands on the Image menu save or load a palette.

~ To save a custom Colors palette,

1 From the Image menu, choose Save Palette.

2 Use the Save Palette Colors dialog box to navigate directories, and type a
filename.

201

Visual C++ User's Guide

~ To load a custom Colors palette

1 From the Image menu, choose Load Palette.

2 Use the Load Palette Colors dialog box to navigate directories and choose a
filename.

Tip Since the graphic editor has no means to restore the default Colors palette, save
the default Colors palette under a name such as STANDARD.PAL or DEFAULT.PAL
so that you can easily restore the default settings.

Creating and Editing Icons and Cursors
Icons and cursors are like bitmaps, and you edit them in the same ways. However,
icons and cursors have attributes that distinguish them from bitmaps. For example,
each icon or cursor resource can contain multiple images for different display
devices. In addition, a cursor has a "hot spot" -the location Windows NT uses to
track its position.

With the graphic editor, you can:

• Create a new image for icons and cursors.

• Select a display device or customize a display device.

• Draw with screen and inverse colors.

• Set a cursor's hot spot.

• Use 256 colors from the property page for large icons and cursors.

Creating a New Icon or Cursor Image

~02

When you create a new icon or cursor, the graphic editor first creates an image for
the VGA. The image is initially filled with the "screen" (transparent) color. If the
image is a cursor, the hot spot is initially the upper-left comer (coordinates 0,0).

By default, the graphic editor supports the creation of images for the devices shown
in Table 10.1.

Table 10.1 Devices for Icon or Cursor Images

Devices Colors Width Height

Monochrome 2 32 32

Small 16 16 16

Normal 16 32 32

Large 256 64 64

You can create images for other devices by typing width, height, and color-count
parameters into the custom device dialog box. See "Selecting a Display Device" later
in this chapter for more information.

Chapter 10 Using the Graphic Editor

Selecting a Display Device
When you create a new icon or cursor image, you need to designate the target display
device. When the icon Or cursor resource is opened, the image most closely matching
the current display device is opened by default (see Figure 10.5).

Figure 10.5 New Icon Image Dialog Box

In addition to the standard types of devices listed, you can add a custom device for
your icon or cursor image. You can enter width, height and color-count parameters in
the Custom Image dialog box (Figure 10.6).

Figure 10.6 Custom Image Dialog Box

~ To select a target device image

. 1 On the control bar of the image editor window, click the New Device Image
button.

2 Select a target device image from the list box.

-or-

Choose the Custom button to define the width, height, and colors of a custom
image.

3 Choose OK to select the new parameters.

Drawing with Screen and Inverse Colors
The initial icon or cursor image has a transparent attribute. Although icon and cursor
images are rectangular, many do not appear so because parts of the image are
"transparent," the underlying image on the screen shows through the icon or cursor.
When you drag an icon, parts of the image may appear in an inverted color. You
create this effect by choosing screen-color and inverse-color options from the color
indicator on the Colors palette (see Figure 10.7).

203

Visual C++ User's Guide

The screen and inverse "colors" you apply to icons and cursors either shape and color
the derived image or designate inverse regions. The coiors indicate parts of the image
possessing those attributes. You can change the colors that represent the screen-color
and inverse-color attributes for your convenience in editing. These changes do not
affect the appearance of the icon or cursor in your application.

Figure 10.7 Selectors for Screen Color and Inverse Color

Screen Color

Inverse Color

~ To create transparent or inverse regions in an icon or cursor

1 On the Colors palette, click a selector for screen or inverse color.

2 Apply the screen or inverse color.

~ To change the colors representing screen color and inverse color

1 Select either the screen-color selector or the inverse-color selector.

2 Choose a color from the Colors palette.

The complementary color is automatically designated for the other selector.

Tip If you double-click the screen color or inverse-color indicator, the Custom Color Selector
dialog box appears.

Creating 256 Color Icons and Cursors

~04

Icons can be sized large (64 x 64) with a 256-color palette to choose·from. For more
information on large icons, see "Selecting a Display Device" earlier in this chapter.
For more information on creating icons or cursors in general, see "Creating and
Editing Icons and Cursors" earlier in this chapter.

To draw with a selection from the 256-color palette, you need to display the palette in
the property page for the icon or cursor and select the colors from the property page.

Chapter lOUsing the Graphic Editor

Figure 10.8 Property Page with Palette for 256 Colors

~ To choose a color from the 256-color palette for large icons:

1 Select the large icon or cursor, or create a new large icon or cursor.

2 From the Edit menu, choose Properties. Select the Palette tab.

3 Choose the color from the 256 colors displayed in the palette.

-or-

Double-click a color to customize the color on the palette.

The initial palette used for 256-color images matches the palette returned by
CreateHalftonePaletteO Windows API. All icons intended for the Windows shell
should use this palette to prevent flicker during palette realization.

Custom colors can be added by double clicking a color in the Palette property page.

Setting a Cursor's Hot Spot
The hot spot.is the point to which Windows refers in tracking the cursor's position.
By default, the hot spot is set to the upper-left comer (coordinates 0,0). The Cursor
Properties page and the image editor control bar show the hot spot coordinates.

~ To set a cursor's hot spot

1 On the control bar of the image editor ~indow, choose the Hot Spot button.

2 Click the pixel you want to designate as the cursor's hot spot.

205

CHAPTER 11

U sing the Toolbar Editor

The Visual C++ toolbar editor is a graphic tool to support the creation of toolbar
resources and the conversion of bitmaps into toolbar resources. The toolbar editor
uses a graphic display to show a subject toolbar and selected button that closely
resembles the toolbar and buttons in a finished application. Toolbar buttons can be
linked to code using Class Wizard.

With the toolbar editor, you can:

• Create new toolbars and buttons.

• Convert bitmaps to toolbar resources.

• Create, move, and edit toolbar buttons.

Figure 11.1 The Toolbar Editor

Selected tool bar button

Selection border

Sizing handle

Blank tool bar button

Graphics toolbar

Colors palette

Color indicator

207

Visual C++ User's Guide

The toolbar editor window shows two views of a button image, the same as the
graphic editor window. A split bar separates the two panes. You can drag the split bar
from side to side to change the relative sizes of the panes. The active pane displays a
selection border.

Above the two views of the image is the display of the subject toolbar, indicated by
white space surrounding the subject tool bar, as shown in Figure 11.1. The selected
button in this toolbar shows a fuzzy border:

The toolbar editor is similar to the graphic editor in functionality. The menu items,
graphic tools, and bitmap grid are the same as those in the graphic editor. For more
infonnation on using the Graphics tool bar, Colors palette, or Image menu, see "Using
the Image Editor Window and Tools" in Chapter 10, "Using the Graphic Editor."

Creating New Toolbar Resources
There are two methods for creating a new toolbar. Orie method is to select a new
toolbar resource from the Insert Resource menu. The other method is to convert an
existing bitmap to a toolbar. For more infonnation on converting bitmaps, see
"Converting Bitmaps to Toolbars" later in this chapter. For further editing of the new
toolbar resource, see "Creating, Moving and Editing Toolbar Buttons" later in this
chapter.

~ To create a new toolbar resource

1 From the Insert menu, choose Resource.

The Insert Resource dialog box appears.

2 In the Resource Type list, select Too1bar, and choose the OK button.

-or-

Click the plus sign (+) for the toolbar resource. Any toolbar resources listed are
templates. Select a template to use, and choose the OK button.

Converting Bitmaps to Toolbars

208

You can create a new toolbar resource by converting a bitmap to a toolbar resource.
You can also create a new toolbar from the Resource menu (see "Creating New
Toolbar Resources" earlier in this chapter).

The graphic from the bitmap converts to the button images for a toolbar resource.
Usually the bitmap contains several button images on a single bitmap, usually with
one image for each button. Images can be any size; the default is 16 x 15 pixels. You
can specify the size of the button images in the New Toolbar dialog box when you
choose Toolbar Editor from the Image menu.

You can change the ID of the buttons of the new toolbar resource, using the property
pages for the buttons. For infonnation on editing the new toolbar, see "Creating,
Moving and Editing Toolbar Buttons" later in this chapter.

Chapter 11 Using the Toolbar Editor

~ To convert bitmaps to a tool bar resource

1 Open an existing bitmap resource in the graphic editor.

2 From the Image menu, choose Toolbar Editor.

The New Toolbar Resource dialog box appears. You can change the width and
height of the icon images to match the bitmap. The toolbar image is then
displayed in the toolbar editor.

3 To finish the conversion, change the command IDs on the buttons in the toolbar.

• Open the property page on the toolbar button. (From the Edit menu, choose
Properties.)

• Type in the new ID, or select an ID from the drop-down list.

Tip Click the Pushpin button on the property page to cycle through all the toolbar buttons
without having to re-open the individual property pages.

Creating, Moving and Editing Toolbar
Buttons

Toolbar buttons can be easily created, moved, copied, and edited. There are property
pages for the buttons as well as the toolbar resource. Toolbar buttons can be
connected to code by using ClassWizard while the toolbar editor is active.

A new or "blank" button is displayed, by default, at the right end of the toolbar. This
button can be moved before it is edited. When a new button is created, another blank
button appears to the right of that edited button. When a toolbar resource is saved, the
blank button is not saved with the resource.

~ To create a new tool bar button

• Assign an ID to the blank button at the right end of the toolbar. Open the property
page on that toolbar button to edit the ID box.

-or-

• Select the blank button at the right end of the toolbar, and begin drawing. A
default button command ID is assigned (ID_BUTTON<n».

~ To move a toolbar button

• Drag the button that you want to move to its new location on the toolbar.

~ To copy buttons from a tool bar resource

1 Hold down the CTRL key.

2 Drag the button from the originating toolbar to its new location on the same
toolbar or to a location on another displayed toolbar.

209

Visual C++ User's Guide

~ To delete a toolbar button

• Select the toolbar button on the sUbject toolbar, and drag the button off the toolbar.

~ To insert a space between buttons on a tool bar resource

1 To insert a space before a button that is not followed by a space, drag the button to
the right or down until it overlaps the next button about halfway.

2 To insert a space before a button that is followed by a space and retain the space
following the button, drag the button until the right or bottom edge is just touching
the next button or just overlaps it.

3 To insert a space before a button that is followed by a space and close up the
following space, drag the button to the right or down until it overlaps the next
button about halfway.

~ To close up a space between buttons on a tool bar

• Drag the button on one side of the space toward the button on the other side of the
space until it overlaps the next button about halfway.

If there is no space on the side of the button that you are dragging away from, and
you drag the button more than halfway past the adjacent button, Visual C++ also
inserts a space on the opposite side of the button that you are dragging.

Editing the Property Page of a ToolbarButton

210

The property page of a toolbar button (see Figure 11.2) contains the ID box, the
Width and Height boxes, and the Prompt box. The ID box has a drop-down list
containing common ID names. The Prompt box is for the message displayed in the
status bar. Adding \ n and a name adds a tooltip to that toolbar button.

Figure 11.2 The Toolbar Button Property Page

~ To change the 10 of a tool bar button

i Select the tool bar button.

2 From the Edit menu, choose Properties to bring up the property page for that
toolbar button.

3 Type the new ID in the ID box, or use the drop-down list to select a new ID.

Chapter 11 Using the Toolbar Editor

~ To add a tooltip to a toolbar button

1 Select the toolbar button.

2 From the Edit menu, choose Properties to bring up the property page for that
toolbar button.

3 In the Prompt box, add a description of the button for the status bar; after the
message, add \ n and the tooltip name.

211

C HAP T E R 1 2

Using the Binary Data Editor

The binary data editor allows you to edit a resource at the binary level in either
hexadecimal or ASCII format. You should use the binary data editor only when you
need to view or make minor changes to custom resources- or resource types not
supported by Microsoft Developer Studio.

Caution Editing nondata resources in the binary data editor can corrupt the resource. A
. corrupted resource can cause Microsoft Developer Studio and Windows NT to behave in
unexpected ways.

Tip While using the binary data editor, in many instances you can click the right mouse button
to display a pop-up menu of resource-specific commands. The commands available depend on
what the pointer is pointing to. For example, if you click while pointing to the binary data editor
with selected hexadecimal values, the pop-up menu shows the Cut, Copy, and Paste
commands.

Creating a New Data Resource or
Custom Resource

You can create a new custom or data resource by placing the resource in a separate
file using normal resource script (.RC) file syntax, and then including the file with
the Resource Includes command on the View menu.

~ To create a new custom or data resource

1 Create an .RC file that contains the custom or data resource.

Custom data can be typed in an .RC file as null-terminated quoted strings, or as
integers in decimal, hexadecimal, or octal format. For more information, see the
Win32 Software Development Kit documentation.

2 From the View menu, choose Resource Includes.

The Resource Includes dialog box appears.

213

Visual C++ User's Guide

3 In the Compile-Time Directives box, type an include statement that gives the
name of the file containing your custom resource. For example:

#include mydata.rc

Make sure the syntax and spelling of what you type are correct. The contents of
the Compile-Time Directives box are inserted into the resource script file exactly
as you typed them.

4 Choose the OK button to record your changes.

The custom or data resource is included in your application at compile time.

Opening a Resource for Binary Editing

214

~ To open a resource for binary editing

1 Open the project or resource script containing the resource to be edited.

2 Select the specific resource file you want to edit. Just highlight the resource.

3 Click the right mouse button and choose Open Binary Data.

The binary data editor appears (Figure 12.1).

If you want to use the binary data editor on a resource already being edited in another
editor window, close the other editor window first.

Note If you use the ResourceView window to open a resource with a format that Microsoft
Developer Studio does not recognize (such as a VERSION, RCDATA, or custom resource), the
resource is automatically opened in the binary data editor.

Figure 12.1 Binary Data Editor

o co
000010 37 00 00 41 00
000020 20 63 00 72 00
000030 65 00 00 08 00 4D 00
000040 6E 00 73 20 00 53 00
000050 00 00 00 00 03 00 00 50
000060 14 00 14 00 FF FF FF FF
000070 00 00 02 50 00 00 00 00
000080 FF FF FF FF 82 00 53 00
000090 62 00 6C 00 65 00 20 00
OOOOaO 69 00 6F 00 6E 00 20 00
OOOObO 00 00 00 00 00 00 02 50
OOOOeO 77 00 08 00 FF FF FF FF
OOOOdO 79 00 72 00 69 00 67 00

OOOeO 20 00 31 0 39 00 39 00
o 01

6F 00 75 00 74 00
62 00 62 00 6C 00
20 00 53 00 61 00 e ..
72 00 69 00 66 00

00 00 00 OB 00 11 00
00 FF FF 80 00 00 00
00 OA 00 77 00 08 00
00 72 00 69 00 62 00
00 65 00 72 00 73 00
00 2E 00 30 00 00 00
00 00 00 28 00 19 00
00 43 00 6F 00 70 00
00 74 00 20 00 A9 00
00 00 00 00 00 00 0

Hexadecimal value

Chapter 12 Using the Binary Data Editor

Editing Binary Data
~ To edit a resource in the binary data editor

1 Select the byte you want to edit.

The TAB key moves the focus between the hexadecimal and ASCII sections of the
binary data editor. You can use the PAGE UP and PAGE DOWN keys to move through
the resource one screen at a time.

2 Type the new value, or paste a value you have copied.

215

C HAP T E R 1 3

U sing the Version Information Editor

a

Version information consists of company and product-identification, a product release
number, and copyright and trademark notification. The version information editor is
a tool for creating and maintaining this data. Although the version information
resource is not required by an application, it is a useful place to collect this
information that identifies the application.

A single version information resource can contain multiple string blocks, each
representing a different language or character set. All you need to do is define the
character sets and languages that are specific to your product.

With the version information editor, you can add or delete string blocks, and you can
modify individual string values.

Note The Windows standard is to have only one version resource, named
VS_ VERSIONJNFO.

If you wish to access the version information from within your program, your
application can make use of the GetFile Versionlnfo function and the
VerQueryValue function. For additional information on how to access version
information, see the online Microsoft Win32 Programmer's Reference, Volume 2.

Tip While using the version information editor, in many instances you can click the right
mouse button to display a pop-up menu of resource-specific commands. For example, if you
click while pointing to a block header entry, the pop-up menu shows the New String Block and
Delete String Block commands.

For information about common resource edit procedures such as creating new
resources, opening existing resources, and deleting resources, see Chapter 5,
"Working with Resources."

217

Visual C++ User's Guide

Editing the Version Information

218

The version information resource (shown in Figure 13.1) has a single fixed
information block (at the top of the resource) and one or more string information

. blocks (at the bottom of the resource). The top block has both editable numeric boxes
and selectable drop-down lists. The bottom string block has editable text boxes.

Figure 13.1 Version Information Resource

FILEVERSION 1,0,0,1
PRODUCTVERSION 1,0,0,1
FILEFLAGSMASK Ox3fL
FILEFLAGS OxOL
FILEOS VOS _WINDOWS32
FILETYPE VFT_APP
FILESUBTYPE VFT2_UNKNOWN

Comments
CompanyName
FileDescription SCRIBB LE MFC Application

You can sort the information sequence of the string block by choosing either the Key
button or the Value button. This choice automatically rearranges the information into
the selected sequence.

~ To edit a version information resource

• Click the item you want to edit.

The selected text box or drop-down list appears for modification.

Note When editing the FILEFLAGS property page, the DEBUG flag cannot be set for .Re
files because Microsoft Developer Studio sets that flag with an #ifdef in the resource script,
based on the _DEBUG build flag.

~ To add a new string block

1 Open a version information resource.

2 From the Insert menu, choose New String Block.

This command appends an additional string information block into the current
version information resource and opens the Block Header property page.

3 On the Block Header property page, choose the appropriate language and
characLer sei for ihe new block.

Chapter 13 Using the Version Information Editor

~ To delete a string block

1 With a version information resource open, select one of the block headers.

2 From the Insert menu, choose Delete String Block.

This command deletes the selected header and leaves the remaining version
information intact.

219

C HAP T E R 1 4

Working With Classes

Class Wizard and WizardBar simplify your use of the classes found in the Microsoft
Foundation Class Library (MFC). ClassWizard assists you in creating classes,
member variables, and message-handling functions. It also simplifies working with
OLE and database classes. WizardBar is a shortcut from your implementation (.CPP)
files into Class Wizard that further simplifies creating, modifying, or locating
message-handling functions. For more information on these tools, see "Using
ClassWizard" below,. and "Using WizardBar" on page 222.

You can only use ClassWizard and WizardBar with applications that use MFC. Both
work with MFC message-maps, OLE automation dispatch maps, and the
DoDataExchange member function of your application's view class. For more
information on the classes that ClassWizard and WizardBar handle, see "Classes
Offered by ClassWizard" on page 224.

Class Wizard and WizardBar are used with Microsoft Foundation Class Library
version 4.0 projects. For information on how to convert other projects (including
Microsoft Foundation Class Library version I projects) for use with Class Wizard, see
Technical Note 19 available under MFC in Books Online.

See Also . Class Wizard, WizardBar, Classes Offered by Class Wizard

U sing Class Wizard
ClassWizard is like a programmer's assistant: it makes it easier for you to do certain
routine tasks such as creating new classes, defining message handlers, overriding
MFC virtual functions, and gathering data from controls in a dialog box, form view,
or record view. Class Wizard works only with applications that use MFC.

With Class Wizard, you can:

• Create new classes derived from many of the main framework base classes that
handle Windows messages and recordsets.

• Map messages to functions associated with windows, dialog boxes, controls, menu
items, and accelerators.

221

Visual C++ User's Guide

• Create new message-handling member functions.

• Delete message-handling member functions.

~ See which messages have message handlers already defined and jump to the
handler program code.

• Define member variables that automatically initialize, gather, and validate data
entered into dialog boxes or form views.

• Add OLE Automation methods and properties when creating a new class.

See Also Adding a Class, Mapping Messages to Functions, Adding a Message
Handler, Deleting a Message Hander, Editing a Message Handler, Working With
Dialog Box Data

Using WizardBar

222

WizardBar is a shortcut into Class Wizard that simplifies routine tasks such as
defining message handlers, overriding MFC virtual functions, and navigating in an
implementation (.CPP) file. Like ClassWizard, WizardBar works only with
applications that use MFC.

With WizardBar, you can:

• Browse the Windows messages associated with windows, dialog boxes, controls,
menu items, and accelerators.

• Create new message-handling member functions.

• Delete message-handling member functions.

• See which messages have message handlers already defined and jump to the
handler program code.

WizardBar Features
WizardBar resides at the top of any text-editing window that displays a .CPP file of a
class that is in the Class Wizard database. You control whether WizardBar is
displayed with the Toolbar command in the edit window's pop-up menu. The pop-up
menu is activated with the right mouse button.

You can use WizardBar, shown in Figure 14.1, to select a class component quickly
and modify the associated virtual functions, Windows messages, or CCmdTarget
procedures. WizardBar has four parts that will be described in the following sections.

Chapter 14 Working With Classes

Figure 14.1 Wizard Bar

Class Object IDs

Open Header
File Button

Delete Button

Messages List

The Object IDs list, on the left side of WizardBar, displays the class name and ID
names of a class that is in the currently opened implementation file. The first item in
the list is always the class itself, which allows you to override virtual functions and
Windows messages.

Messages List
The Messages drop-down list contains virtual functions, Windows messages, and
CCmdTarget procedures associated with the class component currently selected in
the Class Object IDs list. Messages in bold have already been mapped or overridden
in the class. For more information, see "Overriding a Virtual Function" on page 240
and "Adding a Message Handler" on page 234.

Delete Function Button
If you've selected an overridden virtual function in the Messages box, the Delete
Function button becomes active and will delete the associated function prototype in
the class definition. If you've selected a command with a message handler in the
Messages box, the Delete button will delete the message-map and declaration code.

After either use of the Delete button, the insertion point moves to the function
definition, allowing you to check whether you want to delete the code in tlie function
body. You must delete it yourself. For more information, see "Deleting a Message
Handler" on page 238.

Open Header File Button
This button opens the current .CPP file's header (.H) file in a new window.

See Also Adding a Message Handler, Deleting a Message Handler, Overriding a
Virtual Function, Mapping Messages to Functions, Editing a Message Handler, Using
Class Wizard

223

Visual c++ User's Guide

Classes Offered by Class Wizard

224

Use ClassWizard to add error-free class declarations to your project for classes that
contain message-handling functions.

Note ClassWizard is only for use with user-interface classes derived from CCmdTarget that
handle messages or manage dialog box controls. To add a new class that does not handle
messages, create the class directly in the text editor. (The exception to this rule is class
CRecordset, for database support, which can be created with ClassWizard.)

Class Wizard enables you to create classes derived from the Microsoft Foundation
Classes shown in Table 14.1.

Table 14.1 Types of MFC Classes Available from ClassWizard

Class

CAnimateCtrl

CButton

CCmdTarget

CColorDialog

CComboBox

CDaoRecordSet

CDaoRecordView

CDialog

CDocument

CDragListBox

CEdit

CEditView

CFileDialog

CFontDialog

CFormView

CFrameWnd

Description

Provides the functionality of the Windows common animation
control.

Button control.

Base class for objects that can receive and respond to
messages. It is the result of a selection based on a table query.

Color-selection dialog box with a list of colors that are defined
for the display system.

List box with static or edit control.

Represents a set of records selected from a data source.
CDaoRecordset objects are available in three forms: table­
type recordsets, dynaset-type recordsets, and snapshot-type
recordsets.

Displays database records in controls. This form view is
directly connected to a CDaoRecordset object.

Dialog box.

Class for managing program data.

Windows list box that allows the user to move list box items
within the list box.

Rectangular child window for text entry.

Provides the functionality of a Windows edit control and can
be used to implement simple text-editor functionality.

Windows common file dialog box provides an easy way to
l1'nnlJ3O'lJ3nt P11;3 ()nA" I3nrl ')::;';1c.. ~~·uo. A. C'I r1~.,lr'\n h",,,...cu,
.&. ,Y _.a _ _ """'Y""..I..1. "A. ..I...I.V '"-I"" V ,L 1~ \,..I..I.".I.V6 UV.i\.vl.>.

Font~selection dialog box that displays a list of fonts that are
currently installed in the system.

Window that can contain dialog box controls.

Single document interface (SDI) frame window.

Chapter 14 Working With Classes

Table 14.1 Types of MFC Classes Available from ClassWizard (Continued)

Class

CHeaderCtrl

CHotKeyCtrl

CListBox

CListCtrl

CListView

CMDIChildWnd

COleDocument

COleLinkingDoc

COleServerDoc

CPrintDialog

CProgressCtrl

CPropertyPage

CPropertySheet

CRecordset

CRecordView

CRichEditCtrl

CRichEditDoc

CRichEdit View

CScrollBar

CScrollView

CSliderCtrl

CSpinButtonCtrl

Description

Provides the functionality of the Windows common header
control.

Provides the functionality of the Windows common hot key
control.

List box.

Provides the functionality of the Windows common list view
control.

List control that simplifies use of CListCtrl, the class that
encapsulates list-control functionality.

Multiple document interface (MDI) child frame window.

Treats a document as a collection of CDocItem objects to
handle OLE items. Both container and server applications
require this architecture because their documents must be able
to contain OLE items;

Base class for OLE container documents that support linking to
the embedded items they contain.

Base class for OLE server documents.

Windows common dialog box for printing that provides an easy
way to implement Print and Print Setup dialog boxes.'

. Provides the functionality of the Windows common progress
bar control.

Represents an individual page of a property sheet, otherwise
known as a tab dialog box.

Represents property sheets, otherwise known as tab dialog
boxes. A property sheet consists of a CPropertySheet object
and one or more CPropertyPage objects.

Class for accessing a database table or query.

Window containing dialog box controls mapped to recordset
fields.

Window in which the user can enter and edit text. The text can
be assigned character and paragraph formatting, and can
include embedded OLE objects.

Maintains the list of OLE client items which are in the view.

Maintains the text and formatting characteristics of text.

Scroll bar.

Scrolling window, derived from CView.

Provides a window containing a slider and optional tick marks.

Provides a pair of arrow buttons that the user can click to
increment or decrement a value.

225

visual C++ User's Guide

Table 14.1 Types of MFC Classes Available from ClassWizard (Continued)

CStatic

CStatusBarCtrl

CTabCtrl

CToolBarCtrl

CToolTipCtrl

CTreeCtrl

CTreeView

CView

CWinThread

generic CWnd

splitter

Description

A simple text field, box, or rectangle used to label, box, or
separate other controls.

Provides a horizontal window, usually displayed at the bottom
of a parent window, in which an application can display status
information.

Allows an application to display multiple pages in the same
area of a window or dialog box.

Provides the functionality of the Windows toolbar common
control.

Provides the functionality of a "tooltip control," a small pop-up
window that displays a single line of text describing the
purpose of a tool in an application.

Displays a hierarchical list of items.

Tree control that simplifies use of CTreeCtrl, the class that
encapsulates tree-control functionality

Class for displaying program data.

Represents a thread of execution within an application.

Custom window.

An MDI child window that contains a CSplitterWnd class.
The user can split the resulting window into multiple panes.

For more information on these classes, see the Class Library Reference.

When you use Class Wizard to create a new class derived from one of the framework
classes listed in Table 14.1, it automatically places a complete and functional class in
the header (.R) and implementation (.CPP) files you specify. ClassWizard keeps track
of the class's message-handling and data-exchange members, so that you can update
the class at a later time.

See Also Adding a Class, Creating a Class That Does Not Require a Resource ID,
Creating a Class That Requires a Resource ID, Using Component Gallery, MFC
Message Maps, Importing a Class, Importing the Elements of an OLE Type Library,
Selecting an Existing Class, Creating a Reusable Control Class

!\dding a Class

26

ClassWizard enables you to easily bind user-interface classes that are derived from
the MFC library to the messages generated by the resources of your application. It
uses MFC message maps to create the binding. You can use one of the following
three ways to add MFC classes to a project:

• Click ClassWizard's Add Class menu button and choose the New command to
create an entirely new class and add it to the ClassWizard database.

Chapter 14 Working With Classes

With Class Wizard you can create two kinds of classes:

• Those, such as CButton, that do not require a resource ID. For more
information, see "Creating a Class That Does Not Require a Resource ID"
below .

• Those, such as CDialog, that require a resource ID. For more information, see
"Creating a Class That Requires a Resource ID" on page 229 .

• Click ClassWizard's Add Class menu button and choose the From A File
command to import an existing class from another project into the ClassWizard
database. For more information on importing a class, see "Importing a Class" on
page 231 .

• Click ClassWizard's Add Class menu button and choose the From An OLE
TypeLib command to select elements from an OLE Type library, wrap them in an
MFC C++ class, import the resulting class into a project, and add the class to the
Class Wizard database. For more information on this command, see "Importing the
Elements of an OLE Type Library" on page 233.

See Also Classes Offered by Class Wizard, Creating a Class That Does Not Require a
Resource ID, Creating a Class That Requires a Resource ID, Using Component
Gallery, MFC Message Maps, Importing a Class, Importing the Elements of an OLE
Type Library, Selecting an Existing Class, Creating a Reusable Control Class

Creating a Class That Does Not Require a Resource ID
The following procedure describes how to create classes' that do not require a resource
ID-classes, such as CButton or CEdit, that are derived from base classes other
than CDaoRecordView, CDialog, CForm View, CPropertyPage, or CRecordView.

~ To add a class to a project

1 From the View menu, choose Class Wizard.

ClassWizard appears.

2 Choose the Add Class button.

3 Choose the New command to create an entirely new class and add it to the
Class Wizard database as described in the following procedure.

-or-

Choose the From A File command to import an existing class from another project
into the Class Wizard database. For more information on importing a class, see
"Importing a Class" on page 231.

-or-

Choose the From An OLE TypeLib command to select elements from an OLE
Type library, wrap them in an MFC C++ class, import the resulting class into a
project, and add the class Class Wizard database. For more information on this
command, see "Importing the Elements of an OLE Type Library" on page 233.

227

Visual c++ User's Guide

228

~ To create a new class that does not require a resource 10

1 From ClassWizard, choose the Add Class menu button.

2 Choose the New command.

The Create New Class dialog box appears.

3 Type the name of your new class in the Name text box.

4 From the Base Class combo box, select a base class from which to derive your
current class (see Table 14.1, "Types ofMFC Classes Available From
ClassWizard" on page 224).

5 Choose the Change button if you want to see and/or change the default names of
the header (.H) and implementation (.CPP) files where the class is to be defined.

The Change Files dialog box appears.

6 Accept the default file names by choosing the OK button or use the Header File
and Implementation File text boxes to change them. By default, ClassWizard
assigns the same name to .H and .CPP files.

As this class does not require a resource ID, the Dialog ID drop-down list is not
active.

7 From the OLE Automation group box, select one of the following options:

• Select None for no OLE Automation.

• Select Automation if you want to expose the capabilities of this class through
OLE Automation.

If you select this option, the newly created class will be available as a
programmable object by automation client applications, such as Microsoft
Visual Basic™ or Microsoft Excel. This option is available only for some
classes.

• Select Createable By Type ID if you want to allow other applications to create
objects of this class by using OLE Automation.

With this option, automation clients can directly create an OLE Automation
object. The type ID in the text box is used by the client application to specify
the object to be created; it is systemwide and must be unique. This option is
available only for some classes.

Note Use ClassWizard's OLE Automation tab to add OLE Automation methods and
properties to an existing class. These methods and properties define a dispatch interface
that OLE Automation clients can use.

8 Select the Add To Component Gallery option to add this class to the Component
Gallery. For more information on the Component Gallery, see Chapter 15, "Using
Component Gallery."

Chapter 14 Working With Classes

9 Choose the Create button to create the class in the files you specified.

The name of your new class is displayed in the Class Name drop-down list of the
Class Wizard dialog box.

If you specify filenames that don't yet exist, Class Wizard creates the new files and
adds them to your project. It adds skeletal information on the new class to both the
header and implementation files.

10 Choose OK ..

For information about creating database classes (CRecordView, CRecordset) and
OLE classes, see the article "ClassWizard" in Programming with MFC.

See Also Classes Offered by Class Wizard, Adding a Class, Creating a Class That
Requires a Resource ID, Importing a Class, Importing the Elements of an OLE Type
Library, Selecting an Existing Class, Creating a Reusable Control Class

Creating a Class That Requires a Resource ID
For classes that require a resource ID (classes derived from CDaoRecordView,
CDialog, CFormView,. CPropertyPage, or CRecordView), you should first use the
dialog editor to create the resource and its ID and then use Class Wizard to create the
associated class. This is true for for the following reasons:

• Most importantly, if you plan to add your new resource class to Component
Gallery, you must do so from the Create New Class dialog box at the time the class
is created. The resource must already exist or it will not be added into Component
Gallery along with the new class. You cannot retroactively add the resource into
Component Gallery. For more information on Component Gallery, see Chapter 15,
"U sing Component Gallery."

• If you first create the class and then the resource, you must perform more steps
and your work flow will be less efficient.

The following procedure describes how to create classes that require a resource ID.

~ To create a new class and bind it to an existing resource

1 Use the dialog, menu, toolbar, or accelerator editor to create a resource. For
information on using these editors, see Using the Resource Editors.

2 Save the resource and ensure that the editor has the focus.

3 From the View menu, choose Class Wizard.

Class Wizard appears with the Adding A Class dialog box in front of it.

4 Choose Create A New Class to create an entirely new class and add it to the
Class Wizard database.

For information on importing a class, see "Importing a Class" on page 231. For
information on selecting an existing class, see "Selecting an Existing Class" on
page 232.

229

Visual C++ User's Guide

!30

5 Choose OK.

The Create New Class dialog box appears.

6 In the Name text box, type the name of your new class.

7 From the Base Class combo box, select a base class from which to derive your
current class (see Table 14.1, "Types ofMFC Classes Available From
ClassWizard," on page 224).

8 Choose the Change button if you want to see and/or change the default names of
the header (.H) and implementation (.CPP) files where the class is to be defined.

The Change Files dialog box appears.

9 Accept the default file names by choosing the OK button or use the Header File
text box and Implementation File text box to change them. By default,
ClassWizard assigns the same name to .H and .CPP files.

10 If the resource for which you are creating a class is a dialog box, choose the new
resource's ID from the Dialog ID combo box. It may already be selected.

11 From the OLE Automation group box, select one of the following options:

• Select None for no OLE Automation.

• Select Automation if you want to expose the capabilities of this class through
OLE Automation.

If you select this option, the newly created class will be available as a
programmable object by automation client applications, such as Microsoft
Visual Basic™ or Microsoft Excel. This option is available only for some
classes.

• Select Create able By Type ID if you want to allow other applications to create
objects of this class by using OLE Automation.

With this option, automation clients can directly create an OLE Automation
object. The type ID in the text box is used by the client application to specify
the object to be created; it is systemwide and must be unique. This option is
available only for some classes.

Note Use ClassWizard's OLE Automation tab to add OLE Automation methods and
properties to an existing class. These methods and properties define a dispatch interface
that OLE Automation clients can use.

12 Select the Add To Component Gallery check box to add this class to the
Component Gallery. For more information on the Component Gallery, see
Chapter 15, "Using Component Gallery"

Chapter 14 Working With Classes

13 Choose the Create button to create the class in the files you specified.

The name of your new class is displayed in the Class Name drop-down list of the
Class Wizard dialog box.

If you specify filenames that don't yet exist, ClassWizard creates the new files and
adds them to your project. It adds skeletal information on the new class to both the
header and implementation files.

14 Choose OK.

For information about creating database classes (CRecordView, CRecordset) and
OLE classes, see the article "ClassWizard" in Programming with MFC.

See Also Classes Offered by Class Wizard, Adding a Class, Creating a Class That
Does Not Require a Resource ID, Using Component Gallery, Using the Resource
Editors, Importing a Class, Importing the Elements of an OLE Type Library,
Selecting an Existing Class, Creating a Reusable Control Class

Importing a Class
If you add a message-handling class to your current project by copying code from
another project, you can update Class Wizard so that it recognizes the new class.

Note If the new code you copy contains more than two or three new message-handling
classes, you can save time by completely rebuilding the ClassWizard file rather than importing
each new class individually. For more information, see "Rebuilding the ClassWizard (.CLW)
File" on page 252.

If the code you are importing does not already have ClassWizard comments in it,
manually add the special-format comments ClassWizard uses to locate message-map
entries. For information on the ClassWizard special-format comments, see Technical
Note 6, available under MFC in Books Online.

~ To import a class from another project

1 From the View menu, choose Class Wizard.

ClassWizard appears.

2 From any of ClassWizard's tabs, choose the Add Class button and select the From
A File command.

The Import Class Information dialog box appears.

231

lisual c++ User's Guide

3 Type the name of the class to import and the name of the header and
implementation files where the class source code can be found. You can also use
the Browse buttons to locate the files.

By default, the header file and the implementation file have the same name as the
class file.

4 Choose OK to add the new class to the ClassWizard file.

See Also Classes Offered by Class Wizard, Adding a Class, Creating a Class That
Does Not Require a Resource ID, Creating a Class That Requires a Resource ID,
Rebuilding the ClassWizard (.CLW) File, Importing the Elements of an OLE Type
Library, Selecting an Existing Class, Creating a Reusable Control Class

Selecting an Existing Class

2

Use the Select Class dialog box to associate a new dialog box, menu, toolbar, or
accelerator resource with an existing class. You will use this dialog box if you created
a class before you created the resource that the class should be associated with. The
association will cause Class Wizard to make the resource command IDs available for
mapping when the class is selected in the Class Wizard Message Maps tab or in
WizardBar.

Note Your can work more efficiently if you first create a resource and then use ClassWizard to
associate a class with the resource.

~ To select an existing class from the project

1 Use the dialog, menu, toolbar, or accelerator editor to create a resource. For
information on using these editors, see Using the Resource Editors in Chapter 5,
"Working with Resources."

2 Save the resource and ensure that the editor has the focus.

3 From the View menu, choose Class Wizard.

The Adding A Class dialog box appears.

4 Select the Select An Existing Class option.

5 Choose OK.

The Select Class dialog box appears.

6 From the Class Name list, select an existing class.

7 Choose Select.

A message box asks if you want to subsitute your dialog box's resource ID for the
class's current resource ID.

Chapter 14 Working With Classes

8 Choose Yes.

Class Wizard reappears.

9 Choose OK.

ClassWizard associates the user-interface component with the specified class.

See Also Classes Offered by Class Wizard, Using the Resource Editors, Adding a
Class, Creating a Class That Does Not Require a Resource ID, Creating a Class That
Requires a Resource ID, Importing a Class, Importing the Elements of an OLE Type
Library, Creating a Reusable Control Class

Importing the Elements of an OLE Type
Library

You can use ClassWizard to wrap the elements of an OLE type library in an MFC
C++ class and add the new class to a project.

~ To import the elements of an OLE type library

1 From the View menu, choose Class Wizard.

ClassWizard ~ppears.

2 From any of ClassWizard's tabs, choose the Add Class button, and select the From
An OLE TypeLib command.

The Import From OLE TypeLib dialog box appears.

3 Use the File Name, Drives, and Directories controls to select an OLE type library.

4 Choose OK.

The Confirm Classes dialog box appears. This dialog box contains a list of classes
that Class Wizard can create from information in the type library. The class names
are generated by Class Wizard.

S Use the N arne text box to rename the class that is currently selected from the list.

6 Use the Header File and Implementation File text boxes to rename the .H and
.CPP files, if you choose to. Also, you can use the Browse buttons to rename the
files or cause the files to be generated in a different directory.

All classes selected from the class list are added to these two files.

7 Choose OK.

Class Wizard generates the specified class.

See Also Classes Offered by Class Wizard, Adding a Class, Creating a Class That
Does Not Require a Resource ID, Creating a Class That Requires a Resource ID,
Importing a Class, Selecting an Existing Class, Creating a Reusable Control Class

233

Visual C++ User's Guide

Mapping Messages to Functions
Both Class Wizard and WizardBar let you browse the messages associated with a
user-interface object in your application and quickly define message-handling
functions for them. Both tools automatically update the message-dispatch table, or
message map, and your class header file when you use them to define message­
handling functions.

Table 14.2 shows the types of objects you work with in ClassWizard and the types of
messages associated with them.

Table 14.2 User-Interface Objects and Associated Messages

Object 10

Class name, representing the containing
window (see Table 14.1)

Menu or accelerator identifier

Control identifier

Messages

Windows messages appropriate to a CWnd­
derived class: a dialog box, window, child
window, MDI child window, or topmost
frame window

COMMAND message (executes the program
function)

UPDATE_COMMAND _ UI message
(dynamically updates the menu item)

Control notification messages for the selected
control type

See Also Classes Offered by Class Wizard, Creating a Reusable Control Class,
Adding a Message Handler, Shortcut for Defining Message Handlers for Dialog
Buttons, Shortcut for Defining Member Variables for Dialog Controls, Deleting a
Message Handler, Editing a Message Handler, Overriding a Virtual Function

Adding a Message Handler

34

After creating a class with Class Wizard, or importing an existing class, you can use
either Class Wizard or Wi~ardBar to browse the messages or control notifications
associated with each object and to create handler routines (member functions) as
appropriate.

~ To define a message handler with ClassWizard

1 From the View menu, choose Class Wizard.

Class Wizard appears and displays information about the currently selected class or
the class yuu lasi ediied wiih Class Wizard.

2 Select the Message Maps tab.

a

Chapter 14 Working With Classes

3 From the Class Name drop-down list box, select the class name of the user­
interface component (such as a menu, accelerator, or dialog resource) you want to
work with.

ClassWizard displays information about the user-interface object that is currently
selected. .

4 In the Object IDs box, select the name of the user-interface object for which you
want to define a message handler.

S In the Messages box, select the message for which you want to define a handler.
Choose Add Function (or double-click the message name).

A message with a handler already defined is displayed in bold.

Note The messages you see in the Messages box are those most appropriate to your
class. If your class is not associated with the menu resource that contains the command
that you want to handle, set the focus on the menu or accelerator resource, open
ClassWizard, and then use the Class Name drop-down list to switch to the class from which
you want the message handled.

In addition, you can change the set of messages you handle by selecting the Class Info tab
and selecting a new set of messages in the Message Filter box. For information on
handling custom messages, see Technical Note 6, available under MFC in Books Online.

Tip Selecting a message displays a brief description of it at the bottom of the MFC
ClassWizard dialog box. You can get a more complete description of the message by
pressing the F1 KEY.

For messages that do not already have a predefined name for the handler function,
the Add Member Function dialog box appears.

6 If the Add Member Function dialog box appears, type a name for the member
function and press ENTER.

-or-

From the Add Member Function dialog box, press ENTER to accept the proposed
name.

Either action returns you to the Class Wizard Message Maps tab.

The message name is displayed in bold to show that a message handler is defined.
The name of the new message hander appears in the Member Functions box.

7 At this point you have several options. You can:

• Choose Cancel to avoid updating your source code with the selected member
functions. Note that ClassWizard does not remove any functions or code that it
has already added.

• Add more message handlers.

235

Visual C++ User's Guide

6

• Choose OK to automatically update your source code with selected member
functions and close ClassWizard. You can return to ClassWizard any time
during the development process.

• Choose Edit Code to jump to the empty function body just created by
ClassWizard and begin defining the function's behavior.

When you choose OK or Edit Code, ClassWizard updates your source code as
follows:

• A function declaration is inserted into the header file.

• A complete, correct function definition with a skeletal implementation is
inserted into the implementation file.

• The class's message map is updated to include the new message-handling
function.

~ To define a message handler with Wizard Bar

1 Use ClassView to navigate to the implementation (.CPP) file in which you want
the new message handler placed. For information on using ClassView, see "Using
ClassView" in Chapter 2, "Working with Projects."

2 In the WizardBar Object List, select the name of the user-interface object for
which you want to define a message handler. Table 14.3, "User-Interface Objects
and Associated Messages" shows the types of classes that will appear in the Object
List and the messages appropriate to each type.

The WizardBar Messages List contains the messages associated with the selected
user-interface object. Messages that are bold already have handlers.

3 In the Messages List, click the message for which you want to define a handler.

4 If the user-interface object you selected in step 1 was a virtual member function, a
message box informs you that the message is not handled and asks if you want to
add a handler. Choose Yes.

-or-

If the user-interface object that you selected in step 1 was a message, such as
COMMAND or UPDATE_COMMAND, the Add Member Function dialog box
appears. Type a name for the member function and press ENTER.

-or-

Press ENTER to accept the default name.

In all of these three cases,WizardBar updates your source code as follows:

• A function declaration is inserted into. the header file.

• A complete, correct function definition with a skeletal implementation is
inserted into the implementation file.

• The class's message map is updated to include the new message-handling
function.

Chapter 14 Working With Classes

WizardBar then moves the text-editor's insertion point to the body of the function.

Note The messages you see in the Members list are those most appropriate to your class.
If your class is a dialog class, form view, or record view, then the messages will normally
include window messages but not menu commands. To list menu commands as well as
window messages, set the focus on a menu or accelerator resource, open ClassWizard,
and then use the Class Name drop-down list to switch to the class you want to use.

In addition, you can change the set of messages you handle by selecting ClassWizard's
Class Info tab and selecting a new set of messages in the Message Filter box. For
information on handling custom messages, see Technical Note 6, available under MFC in
Books Online.

See Also Mapping Messages to Functions, Creating a Reusable Control Class,
Shortcut for Defining Message Handlers for Dialog Buttons, Shortcut for Defining
Member Variables for Dialog Controls, Deleting a Message Handler, Editing a
Message Handler, Overriding a Virtual Function

Shortcut for Defining Message Handlers for Dialog
Buttons
To define a message handler for a dialog box button, you can use the following
convenient shortcut to bypass some intermediate steps.

~ To define a message handler for a dialog box button

1 In the dialog editor, select a button.

2 While holding down the CTRL key, double-click the button.

Class Wizard automatically creates a message handler in the class associated with
the dialog box. The message handler is named according to the control ID of the
dialog box button. Finally, the insertion point moves to the newly created function
in your source code~

See Also Mapping Messages to Functions, Creating a Reusable Control Class,
Adding a Message Handler, Shortcut for Defining Member Variables for Dialog
Controls, Deleting a Message Handler, Editing a Message Handler, Overriding a
Virtual Function

Shortcut for Defining Member Variables for Dialog
Controls
To define a member variable for a dialog box control, you can use the following
shortcut to bypass explicitly invoking Class Wizard from the dialog editor.

237

Visual C++ User's Guide

~ To define a member variable for a dialog box control

1 In the dialog editor, select a control.

2 While holding down the CTRL key, double-click the dialog box control.

The Add Member Variable dialog box appears.

3 Type the appropriate information in the Add Member Variable dialog box. For
more information, see "Defining Member Variables" on page 246.

4 Choose OK.

Class Wizard returns you to the dialog editor.

Tip To jump from a dialog box button to its existing handler, hold down the CTRL key while
double-clicking the button.

See Also Mapping Messages to Functions, Creating a Reusable Control Class,
Adding a Message Handler, Shortcut for Defining Message Handlers for Dialog
Buttons, Deleting a Message Handler, Editing a Message Handler, Overriding a
Virtual Function

Deleting a Message Handler

238

Once you have defined a message handler with Class Wizard or WizardBar, you can
use either tool to delete it. However, you must remove the function definition, as well
as any references to the function, from the implementation file. Neither ClassWizard
nor WizardBar make changes to your implementation code-only to the message and
data maps.

~ To delete a message-handling function with ClassWizard

1 In the ClassWizard dialog box, select the Message Maps tab.

2 In the Class Name box, select the class containing the "message-handling function
you want to delete.

3 In the Member Functions box, select the name of the member function to delete.

4 Choose Edit Code to open the implementation file containing the member
function.

5 Comment out or delete the function header and function body.

6 Return to Class Wizard and choose Delete Function. This deletes the member
function entries from the message map for that class in both the header and
implementation files.

~ To delete a message-handling function with Wizard Bar

1 Use ClassView to navigate to the implementation (.CPP) file that contains the
message-handling function. For information on using ClassView, see "Using
Class View" in Chapter 2, "Working with Projects."

Chapter 14 Working With Classes

2 From the Object IDs list, select the name of the user-interface object for which you
want to delete the associated message-handling function.

3 From the Messages List, select the name. of the message that has the handler you
want to delete. Messages with handlers are bold.

WizardBar moves the insertion point to the member function.
'.((

4 Choose the Delete button, to the right of the Members list.

WizardBar displays a message box informing you that deleting the handler will
require manually removing the implementation code. If you choose Yes,
WizardBar deletes the member function entries from the message map for that
class in both the header and implementation files. You must remove the handler's
function body.

See Also Mapping Messages to Functions, Creating a Reusable Control Class,
Adding a Message Handler, Shortcut for Defining Message Handlers for Dialog
Buttons, Shortcut for Defining Member Variables for Dialog Controls, Editing a
Message Handler, Overriding a Virtual Function

Editing a Message Handler
Once you have defined a procedure with Class Wizard or WizardBar, you can use
either tool to jump to the member function's definition and begin to add or modify
code.

~ To jump to a member function definition with ClassWizard

1 In the Class Wizard dialog box, select the Message Maps tab.

2 In the Class Name box, select the class containing the message-handling function
you want to edit.

3 In the Member Functions box, select the function you want to edit.

4 Choose Edit Code.

-or-

Double-click the function name.

The insertion point moves to the function.

~ To jump to a member function definition with Wizard Bar

1 In the Object IDs list, select the class name or the user-interface ID for which you
want to edit an associated function.

239

Visual C++ User's Guide

2 In the Messages list, select the virtual function you want to edit or the message
that has a handler you want to edit. Virtual functions and messages with handlers
are bold.

The insertion point moves to the function.

See Also Mapping Messages to Functions, Creating a Reusable Control Class,
Adding a Message Handler, Shortcut for Oefining Message Handlers for Dialog
Buttons, Shortcut for Defining Member Variables for Dialog Controls, Deleting a
Message Handler, Overriding a Virtual Function

Overriding a Virtual Function

240

Both Class Wizard and WizardBar can override virtual functions defined in a base
class. The mechanism is similar to creating message handlers for Windows messages.

~ To override a virtual function with ClassWizard

1 From the View menu, choose Class Wizard.

Class Wizard appears.

2 On the Message Maps tab, select the name of the class in which you want to
override a virtual function.

3 In the Object IDs box, select the class name again.

The Object IDs box displays a list of virtual functions you can override and a list
of Windows messages. The virtuals come before the messages and appear in
mixed case.

4 In the Messages box, select the name of the virtual function you want to override.

S Choose Add Function.

The function is created and its name displayed in the Member Functions box. The
names of virtual overrides are preceded by a gray glyph containing the letter "V"
(handlers have a "W").

6 Choose Edit Code to jump to the Windows message code.

~ To override a virtual function with Wizard Bar

1 In the Object IDs list, select the name of the class containing the virtual function
you want to override.

The Messages list contains the virtual functions and the messages associated with
the class that you've selected. The virtuals come before the messages and appear
in mixed case. Virtual hmction names that are bold are already overridden.

2 In the Messages list, click the virtual function you want to override.

A message box appears to inform you that the virtual function is not handled and
asks if you want to add a handler.

Chapter 14 Working With Classes

3 Choose the Yes button.

WizardBar updates your source code as follows:

• A member function declaration is inserted into the class's header file.

• A complete, correct function definition with a skeletal implementation is
inserted into the class's implementation file.

WizardBar then moves the text-editor's insertion point to the body of the function.

See Also Mapping Messages to Functions, Creating a Reusable Control Class,
Adding a Message Handler, Shortcut for Defining Message Handlers for Dialog
Buttons, Shortcut for Defining Member Variables for Dialog Controls, Deleting a
Message Handler, Editing a Message Handler

Creating a Reusable Control Class
With Class Wizard you can build reusable control classes that are derived from any of
the following MFC control classes:

CAnimateCtrl CListBox CStatic

CButton CListCtrl CTabCtrl

CComboBox CProgressCtrl CTreeCtrl

CEdit CSliderCtrl

CHotKeyCtrl CSpinButtonCtrl

You can define h.andlers for the messages received by these controls in the same way
ihai you would for any other type of window. You can also define reflected message
handlers that allow your class to handle its own messages before the message is
received by the parent.

With this functionality you could, for example, create a list box that will redraw itself
rather than relying on the parent window to do so (owner drawn). For more
information on reflected messages, seeMFC: OLE and Other Enhancements in MFC
Version 4.0 in Programming with MFC.

You can develop a reusable class in your current project. To create an OLE control
with the same functionality, you would have to create a project for the OLE control.
The following procedure describes how to create a new MFC control class.

~ To create a new MFC control class

1 From the View menu, choose Class Wizard.

Class Wizard appears.

When you finish your new class,· it will be added to the project selected in the
Project drop-down list box.

2 Choose the Add Class button.

241

Visual c++ User's Guide

242

3 Choose the New command.

The Create New Class dialog box appears.

4 In the Name text box, type the name of your new class.

5 From the Base Class combo box, select one of the MFC control classes as a base
class from which to derive your class. An MFC control is one that you can add to a
dialog box.

6 Select the Add To Component Gallery option to add this class to the COinponent
Gallery. For more information on Component Gallery, see Chapter 15, "Using
Component Gallery."

7 Choose the Create button to create the class in the files specified in the File control
group.

Class Wizard reappears. The name of your new class is displayed in the Class
N arne drop~down list.

S Choose OK.

If you chose to add your new class to Component Gallery, you can now add it to
other projects. You can also use ClassWizard to create variables that are based on
your new class. Before doing either, you will probably want to add some message
handlers to your new class. The following procedure explains how.

For more information on adding a new class, see "Adding a Class" on page 226.

See Also Defining a Message Handler for a Reflected Message, Declaring a Variable
Based on Your New Reusable Class, Mapping Messages to Functions, Adding a
Message Handler, Shortcut for Defining Message Handlers for Dialog Buttons,
Shortcut for Defining Member Variables for Dialog Controls, Deleting a Message
Handler, Editing a Message Handler, Overriding a Virtual Function

Defining a Message Handler for a Reflected Message
Once you have created your new class derived from an MFC control class, you can
use either Class Wizard or WizardBar to define message handlers for it. Thus, your
control can handle its own messages. You can use the MFC CWnd::SendMessage
function to send messages from your control to a parent window.

~ To define a message handler for a reflected message with ClassWizard

1 From Class Wizard, select the Message Maps tab.

2 From the Class Name drop-down list box, select the name of your reusable class.

3 In the Object IDs box, Select the name of your reusable class.

4 In the Messages box, select the message for which you want to define a handler.
Your class's reflected messages are marked with an equal sign (=).

A message with a handler already defined is displayed in bold.

a
Chapter 14 Working With Classes

Tip Selecting a message displays a brief description of it at the bottom of the MFC
ClassWizard dialog box. You can get a more complete description of the message by
pressing the F1 KEY.

S Choose Add Function (or double-click the message name).

For messages that do not already have a predefined name for the handler function,
the Add Member Function dialog box appears.

6 Choose OK to accept the proposed name.

Class Wizard reappears. The message name is displayed in bold to show that a
message handler is defined. The name of the new message hander appears in the
Member Functions box.

7 At this point you have several options. You can:

• Choose Cancel to avoid updating your source code with the selected member
functions. Note that ClassWizard does not remove any functions or code that it
has already added.

• Add more message handlers~

• Choose OK to automatically update your source code with selected member
functions and close ClassWizard. You can return to ClassWizard any time
during the development process.

• Choose Edit Code to jump to the empty function body just created by
ClassWizard and begin defining the function's behavior.

'V'hen you choose OK or Edit Code, ClassWizard updates your source code as
follows:

• A function declaration is inserted into the header file.

• A complete, correct function definition with a skeletal implementation is
inserted into the implementation file.

• The class's message map is updated to include the new message-handling
function.

~ To define a message handler for a reflected message with Wizard Bar

1 Use ClassView to navigate to your reusable class's implementation (.CPP) file. For
information on using Class View, see "Using Class View" in Chapter 2, "Working
with Projects."

2 In the WizardBar Object List, select the name of your reusable class.

The WizardBar Messages List contains the messages associated with the selected
user-interface object. Messages that are bold already have handlers.

3 In the Messages List, click the message for which you want to define a handler.
Your class's reflected messages are marked with an equal sign (=).

For messages that do not already have a predefined name for the handler function,
the Add Member Function dialog box appears.

243

Visual c++ User's Guide

~44

4 Choose OK to accept the proposed name.

WizardBar updates your source code as follows:

• A function declaration is inserted into the header file.

• A complete, correct function definition with a skeletal implementation is
inserted into the implementation file.

• The class's message map is updated to include the new message-handling
function.

WizardBar then moves the text-editor's insertion point to the body of the function.

See Also Creating a Reusable, Control Class, Declaring a Variable Based on Your
New Reusable Class, Mapping Messages to Functions, Adding a Message Handler;
Shortcut for Defining Message Handlers for Dialog Buttons, Shortcut for Defining
Member Variables for Dialog Controls, Deleting a Message Handler, Editing a
Message Handler, Overriding a Virtual Function

Declaring a Variable Based on Your New Reusable Class
Once you have created a reusable control, you call use Class Wizard to declare a
variable based on it. To provide a context that Class Wizard can use to place the new
variable, you must open the dialog editor and edit the dialog box in which you want
to use your reusable control. Moreover, the dialog box must already have a class
associated with it. For information on using the dialog editor, see Chapter 6, "Using
the Dialog Editor." For information on using Class Wizard to add a class, see "Adding
a Class" on page 226.

~ To declare a variable based on your reusable class

1 While editing the dialog box, drag a control of the same type as your new control
from the Controls toolbar onto the dialog box.

2 Place the mouse cursor over the dropped control.

3 While holding down the CTRL key, double-click the control.

The Add Member Variable dialog box appears.

4 In the Member Variables Name text box, type a name.

S From the Category drop-down list, select Control.

6 From the Variable Type drop-down list, select the name of your reusable control.

7 Choose OK .

.LA .. message box reminds you to include (#include) your reusable control's·h"eader
(.H) file into the project so that the compiler has access to its symbols.
Class Wizard has no safe way of guaranteeing that your control class is in the scope
of the dialog class.

Chapter 14 Working With Classes

8 Choose OK, and remember to include your control's .H file.

ClassWizard generates dialog data exchange (DDX) code to attach your control
class to the dialog box.

See Also Creating a Reusable Control Class, Defining a Message Handler for a
Reflected Message, Mapping Messages to Functions, Adding a Message Handler,
Shortcut for Defining Message Handlers for Dialog Buttons, Shortcut for Defining
Member Variables for Dialog Controls, Deleting a Message Handler, Editing a
Message Handler, Overriding a Virtual Function

Working with Dialog Box Data
ClassWizard offers an easy way to take advantage of the dialog data exchange (DDX)
and dialog data validation (DDV) capabilities of MFC.

To use DDX, you define member variables in the dialog box, form view, or record
view class, and associate each of them with a dialog box control. The framework
transfers any initial values to the controls when the dialog box is displayed. When
you choose OK, it updates the variables with the data that you entered.

With DDV, dialog box information entered by the user is validated automatically. You
can set the validation boundaries: the maximum length for string values in an edit­
box control or the minimum or maximum numeric values when you expect a number
to be entered. You can also use Class Wizard to connect dialog box controls to your
own custom data-validation routines.,

See Also Dialog Data Exchange, Defining Member Variables, Table 14.4 DDX
Variable Types Defined with the Control Property, Table 14.3 DDX Variable Types
for the Value Property, Setting Initial Values for Member Variables, Dialog Data
Validation

Dialog Data Exchange
ClassWizard lets you create variables that use the framework's automatic dialog data
exchange capabilities. When you want to set an initial value for or gather data from a
dialog box control, use Class Wizard to define a data member in the dialog box class.
The framework then transfers the initial value of the variable to the dialog box when
it is created and updates the associated member variable when the dialog box is
dismissed.

Note You can also use CWnd::UpdateData to transfer data back and forth between controls
and member variables while a dialog box is open.

See Also Working with Dialog Box Data, Defining Member Variables, Table 14.4
DDX Variable Types Defined with the Control Property, Table 14.3 DDX Variable
Types for the Value Property, Setting Initial Values for Member Variables, Dialog
Data Validation

245

Visual C++ User's Guide

246

Defining Member Variables
You can use ClassWizard to define member variables for dialog box controls.

~ To define data members for dialog data exchange

1 Create your dialog box, place in it the controls you want, and set the appropriate
control styles in the Properties window. Then use ClassWizard to define a new
dialog box class. For more information on adding a class, see "Adding a Class" on
page 226.

2 In the MFC Class Wizard dialog box, select the Member Variables tab.

Note For a recordset class, the Update Columns button updates the current static list with
the current database list. Members assigned to a deleted column may be deleted.

The Bind All button creates an initial recordset with a default member name for every
column in the table.

3 In the Control IDs box, select the control for which you want to set up dialog data
exchange (DDX), and choose Add Variable.

The Add Member Variable dialog box appears.

4 In the Member Variable Name box, type the name of the new variable.
Class Wizard provides the m_ prefix to identify it as a member variable.

S In the Category box, select whether this variable is a Value variable or a Control
variable.

For standard Windows controls, choose Value to create a variable that contains the
control's text or status as typed by the user. The framework automatically converts
the control's data to the data type selected in the Variable Type box (see Table
14.4, "DDX Variable Types Defined with the Control Property").

You can also choose Control in the Category drop-down list to create a Control
variable that gives you access to the control itself (see Table 14.4, "DDX Variable
Types Defined with the Control Property").

6 In the Variable Type box, choose from a list of variable types appropriate to the .
control (see Table 14.3, "DDX Variable Types for the Value Property" and Table
14.4, "DDX Variable Types Defined with the Control Property").

7 Choose OK.

The new member variable is added to the Control IDs list.

Chapter 14 Working With Classes

Once you've defined a DDX Value variable for a standard Windows control, the
framework automatically initializes and updates the variable for you.

Table 14.4 shows the type ofDDX Value variables ClassWizard initially provides. T
create additional variable types, see Technical Note 26, available under MFC in
Books Online.

Table14.3 DDX Variable Types for the Value Property

Control Variable type

Edit box CString, int, UINT, long, DWORD, float, double,
short, BOOL, COleDateTime, COleCurrency

Nonnal check box BOOL

Three-state check box int

Radio button (first in group) int

Nonsorted list box CString, int

Drop-down combo box CString, int

All other list box and combo box CString
types

The following additional notes apply to using DDX Value variables:

• Possible values for three-state check boxes are 0 (off), 1 (on), and 2
(indeterminate).

• Values for a group of radio buttons range from 0 for the first button in the group to
n-1 for a group with n buttons. A value of -1 indicates that no buttons are
selected.

• When you are using a group of check boxes or radio buttons with a DDX variable,
set the Auto property from each control's Property window.

• Set the Group property for the first radio button in a group, and make sure all the
other radio buttons immediately follow the first button in the tab order.

• To use an integer value with a combo box or list box, tum off the Sort property
found on each control's Property window Styles tab.

You can now use ClassWizard to bind a member variable to the value of a scroll-bar
control, using the Value property and the iot data type, as well as to a CScrollBar
object, using the Control property. The Value property binds the value of a scroll-bar
control (the position of the scroll box, or "thumb"). ClassWizard enables DDX for a
scroll bar by calling DDX_Scroll in your DoData Exchange override.

247

Visual C++ User's Guide

248

If your DoD a t a Ex c han 9 e function contains a call to DDX _Scroll, you must
additionally set the scroll-bar range before that call, as shown in the following code:

void CMyD1g::DoDataExchange(CDataExchange* pDX)
{

CScro11Bar* pScro11Bar = (CScro11Bar*)GetD1gItem(IDC_SCROLLBAR1);
pScro11Bar->SetScro11Range(0, 100);
CDia1og::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CMyDlg)
DDX_Scro 11 (pDX, I DC_SCROLLBAR1, m_nScro 11);
//}}AFX_DATA_MAP

}

Table 14.4 shows the type of DDX Control variables you can define with
Class Wizard.

Table 14.4 DDX Variable Types Defined with the Control Property

Control Variable type

Edit box CEdit

Check box CButton

Radio button CButton

Pushbutton CButton

List box CListBox

Combo box or drop- CComboBox
down combo box

Static text CStatic

Scroll bar CScrollBar

See Also Working with Dialog Box Data, Dialog Data Exchange, Setting Initial
Values for Member Variables, Dialog Data Validation

Setting Initial Values for Member Variables
You can set the initial value of dialog data exchange (DDX) variables by editing the
initialization code that ClassWizard places in the constructor for the dialog box class.
(ClassWizard does not disturb these initialization statements once they are put in
place.) The framework transfers the values to the dialog box when it is created.

Chapter 14 Working With Classes

To see what the user typed once the dialog box is dismissed, access the values of the
DDX variables just as you would any other C++ member variable.

See Also Working with Dialog Box Data, Dialog Data Exchange, Defining Member
Variables, Table 14.4, DDX Variable Types Defined with the Control Property, Table
14.3, DDX Variable Types for the Value Property, Dialog Data Validation

Dialog Data Validation
By default, ClassWizard supports the types of dialog data validation (DDV) shown in
Table 14;5, but you can add additional types (see Technical Note 26, available under
MFC in Books Online).

Table 14.5 DDV Variable Types

Variable type

CStriog

Numeric (iot, UINT, long,
DWORD, float, double)

Data validation

Maximum length

Minimum value, maximum value

You can define the maximum length for a CString DDX variable or the minimum or
maximum values for a numeric DDX variable at the time you create it.

At run time, if the value entered by the user exceeds the range you specify, the
framework automatically displays a message box asking the user to reenter the value.
The validation of DDX variables takes place all at once when the user chooses OK to
accept the entries in the dialog box.

See Also Working with Dialog Box Data, Dialog Data Exchange, Defining Member
Variables, Table 14.4, DDX Variable Types Defined with the Control Property, Table
14.3, DDX Variable Types for the Value Property

Custom Data Exchange and Validation
Although you can write a dialog box class that gathers and validates its own dialog
box data using custom message handlers, you may find that you have routines for
data exchange and validation (containing your own variable types and data formats)
that you want to use repeatedly. You can extend the ClassWizard user interface to
reuse your own DDX and DDV routines. For more information on this subject, see
Technical Note 26, available under MFC in Books Online.

See Also Working with Dialog Box Data, Dialog Data Exchange, Defining Member
Variables, Table 14.4, DDX Variable Types Defined with the Control Property, Table
14.3, DDX Variable Types for the Value Property, Setting Initial Values for Member
Variables

249

Visual C++ User's Guide

Keeping ClassWizard Updated When
Code Changes

As your program develops, it's very likely that you'll need to delete or modify classes,
delete or add resources, or move a class from one source file to another. Class Wizard
will track your code as you make these changes: it asks you for the updated
information when you next edit the affected class.

ClassWizard stores the information about your project's classes in a file with the file
extension .CLW. To accommodate source files that have changed, ClassWizard
displays the Repair Class Information dialog box whenever it finds that the
information in the. CLW file is out of date.

The Repair Class Information dialog box has two main functions:

• Deleting obsolete classes from the Class Wizard file

• Updating the Class Wizard file with the new name or location of classes that you
have changed or moved

See Also Deleting Classes, Renaming or Moving Classes, Rebuilding the
ClassWizard (.CLW) File

Deleting Classes

250

To delete a Class Wizard-created class from your project, you can either delete it from
the header (.H) and implementation (.CPP) files in which it coexists with other
classes or delete the .H and . CPP files altogether. In either case, you must update the
information in the Class Wizard (. CLW) file.

~ To delete a class

1 Delete all references to the class from its .H and .CPP files or delete the files from
the disk.

2 From the View menu, choose Class Wizard.

If Class Wizard appears, the active project does not contain the deleted class.

3 From Class Wizard's Project drop-down list, select the project that contains the
deleted class.

4 If Class Wizard asks you to close any files, close Class Wizard, close the files, and
then restart Class Wizard.

A message box informs you that ClassWizard cannot find the deleted class.

5 Choose OK.

Class Wizard displays the Repair Class Information dialog box.

Chapter 14 Working With Classes

6 Choose Remove.

The class is deleted from the .CLW file ..

ClassWizard appears.

7 Choose OK.

See Also Keeping ClassWizard Updated When Code Changes, Renaming or Moving
Classes, Rebuilding the Class Wizard (. CLW) File

Renaming or Moving Classes
When you change the name of a class or move it from one implementation file to
another, you're prompted to update the information in the ClassWizard (.CLW) file
the next time you start Class Wizard.

~ To change the name of a class or move it from one file to another

1 Make the desired changes to your source files.

Note When you change the name of a class, remember to change it everywhere, including
in the special-format comments ClassWizard uses. For example,
11{{AFX_MSG_MAP(OldClass) becomes 11{{AFX_MSG_MAP(NewClass)

2 From the View menu, choose Class Wizard.

If Class Wizard appears, the active project does not contain the renamed or moved
class.

3 From ClassWizard's Project drop-down list, select the project that contains the
renamed or moved class.

4 If Class Wizard asks you to close any files, close Class Wizard, close the files, and
then restart Class Wizard.

Class Wizard displays a message box warning you that the old class could not be
found.

S Choose OK.

The Repair Class Information dialog box appears.

Supply the new information about the class in the Class Name, Header File, and
Implementation File text boxes. If necessary, use the Browse button to supply the
correct name of the header file or the implementation file.

6 Choose OK to update the .CLW file.

See Also Keeping ClassWizard Updated When Code Changes, Deleting Classes,
Rebuilding the Class Wizard (. CLW) File

251

Visual C++ User's Guide

Rebuilding the ClassWizard (.CLW) File

252

If you have made numerous changes to your code or have added a large number of
existing user-interface classes to your current project, you may find it convenient to
rebuild the associated ClassWizard (.CLW) file from scratch rather than update it one
class at a time. To do this,delete your project's .CLW file and use ClassWizard to
generate a new one. The newly-generated .CLW file contains information about all
the classes that have the special-format ClassWizard comments. For information on
the ClassWizard special-format comments, see Technical Note 6, available under
MFC in Books Online.

~ To rebuild the ClassWizard file

1 Delete your project's .CLW file.

2 From the View menu, choose Class Wizard.

If ClassWizard appears, the project for which you deleted the .CLW file is not the
active project. From ClassWizard's Project drop-down list, select the project for
which you want to rebuild the .CLW file.

3 If Class Wizard asks you to close any files, close Class Wizard, close the files, and
then restart Class Wizard.

A message box asks if you want to rebuild the Class Wizard file from your source
files.

4 Choose Yes.

The Select Source Files dialog box appears.

5 Use the Add and Add All buttons to transfer all of the project's .H and .CPP files,
and the .RC file from the File Name list to the Files In Project box. Use the
Remove button to remove any files other than .H, .CPP, or .RC from the Files In
Project box.

6 Choose OK.

Class Wizard appears and generates a new . CLW file.

7 Choose OK to close ClassWizard.

See Also Keeping ClassWizard Updated When Code Changes, Deleting Classes,
Renaming or Moving Classes

C HAP T E R 1 5

U sing Component Gallery

Have you ever wanted an easy way to reuse a new dialog box or dialog box control
you have just created? A way that doesn't require that you cut and paste across
multiple files or require hit-or-miss checking for name collisions? With Component
Gallery, you can do just that. Component Gallery contains reusable code such as OLE
controls, your own reusable C++ classes with any associated resources, or
components created by a third-party vendor. Third-party-created components can
range from reusable code to useful tools, such as a code analysis tool.

Figure 15.1 Component Gallery

Grid Control Key State Microsoft
Control Comm Control

'. II Microsoft PicClip Control
Multimedia

Control

As you can see in Figure 15.1, Component Gallery uses tabbed panes to organize
components. Each tab is labeled with a category name. You can easily create and/or
add components to Component Gallery. You can also create and name your own
categories and move components from one category to another.

See Also Inserting Components into a Project, Creating Your Own Components,
Sharing Components with Others, Managing Components, Managing Categories

253

Visual C++ User's Guide

Inserting Components into a Project

254

One of the most important uses of Component Gallery is inserting components, such
as OLE controls, into your project. To do this, use the Insert button, found in the
Component Gallery's main dialog box. Usually, inserting a component adds the
associated header (.H) and implementation (.CPP) files to the currently selected
default project and updates the information in the Project Workspace window.
However, the result of inserting a component depends on the component. Refer to
each component's documentation to determine its functionality. Each component
shipped with Visual C++ has a help system that you can view by selecting the
component from the main Component Gallery dialog box and pressing the question­
mark button found in the Component Gallery dialog box. In addition, each
component you buy from a third-party vendor will have its own documentation.

~ To insert components into your project

1 Open the pr~ject workspace to which you want to add a component.

2 From the Build menu, choose Set Default Project, and select a project and one of
its configuration in the Default Project Configuration dialog box.

3 From the Insert menu, choose Component.

Component Gallery appears.

4 If there is more than one tabbed pane, use the mouse and the CTRL+PAGE UP and
CTRL+PAGE DOWN keys to tabbed select the pane containing the component to
apply.

5 Use the mouse or the UP, DOWN, LEFT OR RIGHT ARROW keys to move to the
component that you want to apply.

6 Choose the Insert button.

The component makes changes to your project, prompting you for any information
it needs.

For example, if you insert an OLE control into your project, Component Gallery
will:

• Register, if not already registered, the OLE control with the Windows OLE
registration database.

• Add the OLE control to the dialog editor's toolbar of controls.

• Generate a programmatic interface, called an OLE wrapper, which allows the
OLE control to communicate with your program. If, for example, you added an
OLE control that looks like a measuring gauge to a dialog box, the associated
wrapper (a header file and an implementation file) would allow you to write
code allowing the gauge to visually represent some program action.

Chapter 15 Using Component Gallery

Note OLE controls are per-project components. You must insert an OLE control into each
project in which you want to use it.

See Also Creating Your Own Components, Adding Components to Component
Gallery, Sharing Components with Others, Managing Components, Managing
Categories

Sharing Components with Others
Through Component Gallery, you can share the components that you have created
using the Create New Class dialog box with others. However, the component must be
exported to a file before it can be shared. The resulting file contains a component's
classes and resources. The file extension is, by convention, .OGX. Use the Export
Component dialog box, accessed from the Custom tab of the Properties dialog box, to
export a component to a file.

~ To export a component

1 From the Insert menu, choose Component.

Component Gallery appears.

2 From the tabbed panes, choose the component that you want to distribute.

You can only export components that you have created using the Create New Class
dialog box.

3 Choose the Customize button.

The Customize Component Gallery dialog box appears.

4 Choose the Properties button.

The Properties dialog box appears.

5 Using the mouse or the LEFT ARROW or RIGHT ARROW keys, select the Custom tab.

If the Export button is grayed out, an export file already exists for the component
and you need not finish the following steps.

6 Choose the Export button.

The Export Component dialog box appears.

7 Select the drive and directory on which to store the exported file.

a Set the exported component's file extension, displayed in the File Name box, using
a the Save Files As Type list. The recommended file extension is .OGX.

Alternatively, you can specify the file extension directly in the File Name box.

255

Visual C++ User's Guide

9 In the File Name box, type a filename.

10 Choose OK.

The exported component can be shared with others. They need only import it into
their own Component Gallery.

See Also Inserting Components into a Project, Importing Components, Creating
Your Own Components, Renaming a Component, Moving Components Between
Categories, Deleting a Component from a Category, Changing a Component's Icon,
Providing a Description of a Component to Users

Adding Components to Component Gallery
You can build your pwn gallery of components from components you have created,
components others have shared with you, and/or components you have purchased
from third-party vendors. There are four ways to add components to Component
Gallery: .

• Use the Import dialog box, accessible from the Customize Component Gallery
dialog box. For more information on this technique, see Importing Components.

• Use the Create New Class dialog box to create a new component. For more
information on this technique, see Creating Your Own Components.

• Run the setup program supplied with the component. Not all components provide
setup programs.

• Register an OLE control with the Windows OLE registration database. Any
registered OLE control is automatically added to Component Gallery.

You need not have a project open to add these to Component Gallery.

See Also Importing Components, Creating Your Own Components, Sharing
Components with Others, Renaming a Component, Moving Components Between
Categories,-Deleting a Component from a Category, Changing a Component's Icon,

. Providing a Description of a Component to Users

Importing Components

256

You can use the Import button in the Customize Component Gallery dialog box to
add components to Component Gallery. The Customize Component Gallery dialog
box is accessed from the Component Gallery's main dialog box, as described below.

~ To import components into Component Gallery

1 From the Insert menu, choose Component.

Component Gallery appears.

2 Select the pane to which you want to add the component.

Chapter 15 Using Component Gallery

3 Choose the Customize button.

The Customize Component Gallery dialog box appears.

4 Choose the Import button.

The Import Component dialog box appears.

5 Select the drive and directory where the component that you want to import is
stored.

6 Set the types of files to display in the List Files Of Type box.

Files with the chosen extension are displayed in the File Name box. This box
serves as a filter to display all files with a given extension. For example, selecting
the OLE Control Files (.ocx) list item displays all files with the .OCX extension.

Alternatively, you can specify wildcard patterns in the File Name box to display
file types. The new wildcard pattern is retained until the dialog box is closed. You
can also use any combination of wildcard patterns, delimited by semicolons.

7 Select the Copy To Gallery directory option in order to physically copy a
component to the Component Gallery's directory -\MSDEv\TEMPLATE.

If you do not select the Copy To Gallery directory box, no physical copy is made of
the component. Instead, Component Gallery stores information about the location
of the component in its database. As long as the location information in the
database is valid, these "reference components" can be applied to a project. You
cannot, however, export them. You can only export components created from the
Create New Class dialog box. For more information on exporting see, Sharing
Components with Others.

In the File Name box, enter a filename, and then choose the Import button.

-or-

Double-click the filename.

See Also Inserting Components into a Project, Creating Your Own Components,
Sharing Components with Others, Renaming a Component, Moving Components
Between Categories, Deleting a Component from a Category, Changing a
Component's Icon, Providing a Description of a Component to Users

Creating Your Own Components
You can use the Add To Component Gallery option in the Create New Class dialog
box to leverage your code into a component that you can use over and over again. The
Create New Class dialog box is accessed from ClassWizard. You can create a
component that includes a new class and any associated resource.

257

Visual C++ User's Guide

!58

~ To create a new component

1 From the View menu, choose Class Wizard.

Note If your new component uses a class associated with a dialog box resource-classes
derived from CDialog, CFormView, CPropertyPage, or CRecordView-create the
resource in the dialog editor before you use ClassWizard to create the class. This gives
ClassWizard access to the resource ID. If ClassWizard has access to the resource ID, the
Adding A Class dialog box appears. This dialog box enables you to add a class, import a
class into the ClassWizard database, or select a class from the ClassWizard database.

2 If the Create New Class dialog box does not appear, choose the Add Class menu
button, and then choose the New command.

The Create New Class dialog box appe~s.

3 In the Name text box, type the name of your new class.

4 In the Base Class drop-down list, select a base class to derive your current class
from (see Table 14.1, Types ofMFC Classes Created in ClassWizard, on
page 224).

5 Choose the Change button only if you want to see and/or change the default names
of the header (.H) and implementation (.CPP) files where the class is to be
defined.

The Change Files dialog box appears.

6 In the Change Files dialog box, accept the default filenames by choosing the OK
button, or use the Header File box and Implementation File box to change them.

By default, ClassWizard assigns the same name to .H and .CPP files.

7 If you're adding a class to describe a user-interface component that contains
controls and acts like a dialog box (CDialog, CFormView, CPropertyPage, or
CRecordView), use the Dialog ID combo box to select and associate the class you
are adding with an existing resource ID.

a Select Automation if you want to expose the capabilities of this class through OLE
Automation.

If you select this option, the newly created class will be available as a
programmable object by automation client applications, such as Microsoft Visual
Basic™ or Microsoft Excel.

9 Choose Createable By Type ID if you want to allow other applications to create
objects of this class by using OLE Automation.

With this option selected~ an OLE client application can create one of these ohjects
at any time. The type ID in the box is used by the client application to specify the
object to be created. The type ID is system-wide and must be unique. This option
is enabled only if you select OLE Automation.

Chapter 15 Using Component Gallery

10 Select the Add To Component Gallery option.

This option places a path to the associated header, implementation, and resource
files into the Component Gallery database and adds the component to Component
Gallery.

11 Choose the Create button to create the class in the files you specified in steps 5
and 6.

When you use Class Wizard to create a new class, it adds skeletal information on
the new class to both the header and implementation files. If you specify filenames
that don't yet exist, Class Wizard creates the new files and adds them to your
project.

12 Choose OK to close ClassWizard.

Once you have used the Create New Class dialog box to create a component, be sure
to provide a description of the component for display in Component Gallery's main
dialog box. For more information on adding a description, see "Providing a
Description of a Component to Users," on page 263.

See Also Inserting Components into a Project, Importing Components, Sharing
Components with Others, Renaming a Component, Moving Components Between
Categories, Deleting a Component from a Category, Changing a Component's Icon,
Providing a Description of a Component to Users

Managing Components
You can create components, add components to Component Gallery, distribute them
to others, rename components, move components between categories, and delete
components. You can also change a component's icon and the description it displays
in the Component Gallery's main dialog box. The following topics describe how to do
all of these procedures.

See Also Inserting Components into a Project, Importing Components, Creating
Your Own Components, Sharing Components with Others, Renaming a Component,
Moving Components Between Categories, Deleting a Component from a Category,
Changing a Component's Icon, Providing a Description of a Component to Users

Renaming a Component
To rename a component, overwrite the existing name in the Components pane of the
Customize Component Gallery dialog box.

~ To rename a component

1 From the Insert menu, choose Component.

Component Gallery appears.

259

Visual C++ User's Guide

2 Choose the Customize button.

The Customize Component Gallery dialog box appears.

3 In the Categories pane, select the category containing the component to rename.

You can use the mouse or the CTRL+TAB (move right) and the SHIFT+CTRL+TAB

(move left) keys to move the focus to and from the Categories pane. With the focus
on the Categories pane, you can move to a category using the mouse or the UP and
DOWN ARROW keys.

The components contained in the selected category are displayed in the component
pane.

4 In the Components pane, select the component to rename.

S Type a new name for the component.

6 Choose the OK button to accept the new name.

The main Component Gallery dialog box appears, and the component has a new
name.

Because components are sorted by name within a category, the renamed
component will most likely be relocated.

See Also Inserting Components into a Project, Importing Components, Creating
Your Own Components, Sharing Components with Others, Moving Components
Between Categories, Deleting a Component from a Category, Changing a
Component's Icon,·Providing a Description of a Component to Users

Moving Components Between Categories

260

To move components between categories, use the Move dialog box, accessed from the
Customize Component Gallery dialog box.

~ To move components between categories

1 From the Insert menu, choose Component.

Component Gallery appears.

2 Choose the Customize button.

The Customize Component Gallery dialog box appears.

3 In the Categories pane, select the category containing the component to move.

You can use the mouse or the CTRL+TAB (move right) and the SHIFT+CTRL+TAB

(move left) keys to move the focus to and from the Categories pane. With the focus
on the Categories pane, you can move to a category using the mouse or the UP and
DOWN ARROW keys.

The components contained in the selected category are displayed in the
Component pane.

4 In the Components pane, select the component to move.

Chapter 15 Using Component Gallery

5 Choose the Move button.

The Move dialog box appears.

6 In the Move To pane, select the category to which you want to move the selected
component.

7 Choose the OK button from the :Move dialog box and then the Customize
Component Gallery dialog box.

The main Component Gallery dialog box appears.

8 Select the tabbed pane into which you have moved the component and note that
the component has moved.

Note You can select multiple components to move several at once.

See Also Inserting Components into a Project, Importing Components, Creating
Your Own Components,. Sharing Components with Others, Renaming a Component,
Deleting a Component from a Category,·Changing a Component's Icon, Providing a
Description of a Component to Users

Deleting a Component from a Category
To delete a component from a category, select the component from the Components
pane of the Customize Component Gallery dialog box and press the DEL key.

. ~ To delete a component from a category

1 From the Insert menu, choose Component.

Component Gallery appears.

2 Choose the Customize button.

The Customize Component Gallery dialog box appears.

3 In the Categories pane, select the category containing the component to delete.

You can use the mouse or the CTRL+TAB (move right) and the SHIFT+CTRL+TAB

(move left) keys to move the focus to and from the Categories pane. With the focus
on the Categories pane, you can move to a category using the mouse or the UP and
DOWN ARROW keys.

The components contained in the selected category are displayed in the
Components pane.

4 In the Components pane, select the component to delete.

5 Press the DEL key.

The selected component disappears from the Components pane. Deleted
components are removed from Component Gallery only. The associated files are
not deleted. Deleting the files is left to your discretion.

261

Visual C++ User's Guide

6 Choose OK.

The main Component Gallery dialog box appears. Note that the component has
been removed from its pane.

See Also Inserting Components into a Project, Importing Components, Creating
Your Own Components, Sharing Components with Others, Renaming a Component,
Moving Components Between Categories, Changing a Component's Icon, Providing
a Description of a Component to Users

Changing a Component's Icon

262

To change a component's icon, use the Change Icon dialog box, accessed from the
General tab of the Properties dialog box. You can use any standard 32 x 32 icon
created by the graphic editor. For information on creating icons, see Chapter 10,
"Using the Graphic Editor."

~ To change a component's icon

1 From the Insert menu, choose Component.

Component Gallery appears.

2 From the tabbed panes, choose the component for which you want to change the
icon.

3 Choose the Customize button.

The Customize Component Gallery dialog box appears.

4 Choose the Properties button.

The Properties dialog box appears.

5 Select the General tab.

6 Choose the Change Icon button.

The Change Icon dialog box appears.

7 Select the drive and directory where the desired icon file resides.

The default is the current' drive and directory.

8 Set the icon's file extension, displayed in the File Name box, using the List Files
Of Type box.

The default file extension is .ICO.

Alternatively, you can type the file extension directly in the File Name box.

Chapter 15 U sing Component Gallery

9 In the File Name box, type a filename, and then choose the OK button.

10 Choose OK for the General tab and then for the Customize Component Gallery
dialog box.

The component's new icon appears in its tabbed pane.

See Also Inserting Components into a Project, Importing Components, Creating
Your Own Components, Sharing Components with Others, Renaming a Component,
Moving Components Between Categories, Deleting a Component from a Category,
Providing a Description of a Component to Users

Providing a Description of a Component to Users
When you have selected a component in Component Gallery, it should display a
simple description just under the tabbed panes in Component Gallery's main dialog
box. If it does not, you can write a description for it in the Description box that is
located on the General tab of Component Gallery's Properties dialog box.

~ To write a simple description of a component

1 From the Insert menu, choose Component.

Component Gallery appears.

2 From the tabbed panes, select the component for which you want to write a
description.

3 Choose the Customize button.

The Customize Component Gallery dialog box appears.

4 Choose the Properties button.

The Properties dialog box appears.

5 Select the General tab.

6 In the Description box, type a description of the selected component.

7 Choose the OK button for the Properties dialog box and then for the Customize
Component Gallery dialog box.

The main Component Gallery dialog box appears.

The component's description is displayed just under Component Gallery's tabbed
panes.

See Also Inserting Components into a Project, Importing Components, Creating
Your Own Components, Sharing Components with Others, Renaming a Component,
Moving Components Between Categories, Deleting a Component from a Category,
Changing a Component's Icon

263

fisual c++ User's Guide

Managing Categories
Component Gallery organizes components by the tabbed panes that you see in its
main dialog box. You can create new categories and delete, rename, and rearrange
existing categories. The following topics describe how to do all of these procedures.

See Also Creating a Category in Which to Store Components, Deleting a Category
of Components, Renaming a Category of Components, Rearranging the Order of
Existing Categories

::reating a Category in Which to Store Components
To create a new category in Component Gallery, type the name for the new category
in the Categories pane of the Customize Component Gallery dialog box.

~ To create a category

1 From the Insert menu, choose Component.

Component Gallery appears.

2 Choose the Customize button.

The Customize Component Gallery dialog box appears.

3In the Categories pane, select the new-category box (an empty rectangle).

You can use the mouse or the CTRL+TAB (move right) and the SHIFf+CTRL+TAB

(move left) keys to move the focus to and from the Categories pane. With the focus
on the Categories pane, you can move to the new-category box using the mouse,
UP and DOWN ARROW keys, or the END key.

4 Type the name of the new category.

5 Choose the OK button to accept the new category.

The main Component Gallery dialog box appears. Note the existence of your
newly-named tabbed pane.

See Also Deleting a Category of Components, Renaming a Category of Components,
Rearranging the Order of Existing Categories

)eleting a Category of Components
To delete a category from Component Gallery, select the name of the category in the
Categories pane of the Customize Component Gallery dialog box and press the DEL

key_ The category must first be empty of components. For information on deleting
components, see "Deleting a Component from a Category" on page 261. For
information on moving components between categories, see "Moving Components
Between Categories" on page 260.

Chapter 15 Using Component Gallery

~ To delete a category

1 From the Insert menu, choose Component.

Component Gallery appears.

2 Choose the Customize button.

The Customize Component Gallery dialog box appears.

3 In the Categories pane, select the category to delete.

You can use the mouse or the CTRL+TAB (move right) and the SHIFT+CTRL+TAB

(move left) keys to move the focus to and from the Categories pane. With the focus
on the Categories pane, you can move to a category using themouse or the UP and
DOWN ARROW keys.

4 Press the DEL key.

The selected category disappears from the Categories pane. You cannot delete a
category that contains components without first moving or deleting the
components it contains. Deleted components are removed from Component
Gallery only. The associated files are not deleted. Deleting the files is left to your
discretion. .

5 Choose OK.

The main Component Gallery dialog box appears. Note that the tabbed pane
associated with the deleted category is gone.

See Also Deleting a Component from a Category, Moving Components Between
Categories, Creating a Category in Which to Store Components, Renaming a
Category of Components, Rearranging the Order of Existing Categories

Renaming a Category of Components
To rename a category of components, overwrite the existing name in the Categories
pane of the Customize Component Gallery dialog box.

~ To rename a category

1 From the Insert menu, choose Component.

Component Gallery appears.

2 Choose the Customize button.

The Customize Component Gallery dialog box appears.

3 In the Categories pane, select the category to rename.

You can use the MOUSE OR THE CTRL+TAB (move right) and the SHIFf+CTRL+TAB

(move left) keys to move the focus to and from the Categories pane. With the focus
on the Categories pane, you can move to a category using the mouse or the UP and
DOWN ARROW keys.

4 Type a new name for the category.

265

Visual C++ User's Guide

5 Choose the OK to button to accept the new name.

The main Component Gallery dialog box appears, and the pane associated with
the. renamed category has a new name.

See Also Creating a Category in Which to Store Coniponents, Deleting a Category
of Components, Rearranging the Order of Existing Categories

Rearranging the Order of Existing Categories

266

To rearrange the order of existing categories in Component Gallery, use the
Categories pane of the Customize Component Gallery dialog box.

~ To rearrange the order of existing categories

1 From the Insert menu, choose Component.

Component Gallery appears.

2 Choose the Customize button.

The Customize Component Gallery dialog box appears.

3 In the Categories pane, select the category to move. Select the name, not the file­
folder icon.

To move the category with the mouse, drag it to a new location. A gray, horizontal
bar indicates the insertion point. To move the category with the keyboard, hold
down the ALT key and press the UP or DOWN ARROW keys to reposition the
category.

The category is moved to the insertion point.

4 Choose OK.

The main Component Gallery dialog box appears, and the pane associated with
the rearranged category has moved.

Note Components are sorted by name within a category and so cannot be reordered.

See Also Creating a Category in Which to Store Components, Deleting a Category
of Components, Renaming a Category of Components

a

C HAP T E R 1 6

Browsing Through Symbols

Browse windows display information about the symbols (classes, functions, data,
macros, and types) in your program. If you have browse information turned on when
you build a project, the compiler creates .SBR files with information about each
program file in your project. The BSCMAKE utility (BSCMAKE.EXE) assembles
these .SBR files into a single browse file. This browse file has the project's base name
and the extension .BSC.

Note For information on how to modify your project settings so that a browse file is always
generated, see "Disabling and Enabling BSCMAKE" on page 271.

You view browse information in browse windows, which have different appearances
and different controls depending on the type of information displayed.

U sing browse commands, you can examiIle:

•. Information about all the symbols in any source file.

• The source code line in which a symbol is defined.

• Each source code line where there is a reference to a symbol.

• The relationships between base classes and derived classes.

• The relationships between calling functions and called functions.

Tip If you do not require browse information, you can speed up the build process by turning
browse information off. When the browse option is off, .SBR files are not generated, and the
.BSC file is not updated.

Opening and Closing Browse Files
When you open a project workspace, Microsoft Developer Studio opens the project
browse file automatically.

If you want to browse information on a symbol in another project, you must open the
browse file for that project.

267

Visual C++ User's Guide

~ To open a browse file for another project

1 From the File menu, choose Open.

2 In the List Files of Type list box, select Browse Info Files (* .BSC).

3 Select the drive, directory, and browse file that you want.

4 Choose the Open button.

Note Some browser queries may.open source files. The current browse file determines which
project the browser can open source files from.

~ To close a browse file

• From the Tools menu, choose Close Browse Info File.

Tip When you use a browse information file, the .BSC file stays open for the
duration of the session unless you close it. If you run NMAKE outside of Developer
Studio, you should close the .BSC file to allow updating. If the .BSC file remains
open, it cannot be updated.

Modifying the Browse Window Display

:68

A browse window appears in response to queries. For example, if you query on name
CWinApp and select Definitions and References, a browse window for the
CWinApp class, with all of its definitions and references, is displayed.

By default, a browse window disappears when you move the focus away from the
window. You can keep the browse window in view with the pushpin button at the top
of the window as shown in Figure 16.1.

Figure 16.1 Browse Window with Active Pushpin

Fixing a browse window on your screen with the pushpin has these two effects:

• The browse window remains visible even if you move the focus to another window,
for instance, to edit a source file.

• The browse window remains on top of all other Developer Studio windows.

Chapter 16 Browsing Through Symbols

~ To keep a browse window visible

• Click the pushpin button at the top of the window.

~ To change the size of a pane in a browse window

• With the mouse pointer, point to the split bar between panes, and drag the split bar
to its new location.

~ To move the focus from pane to pane in a browse window

• Press TAB to move to the next pane.

• Press SHIFf + T AB to move to the previous pane.

Nodes in a graph display a plus sign or a minus sign in the left margin of the graph.
If a node has a plus sign, you can expand that node. If a node has a minus sign, you
can contract that node.

~ To expand or contract a node in a graph

• Click the plus sign or minus sign.

-or-

Select the node with the arrow keys, and then press ENTER.

Using Browse Files
Whenever you open a project, Developer Studio opens the browse file for the project
if it exists. If you close the browse file, Developer Studio reopens the file when you do
a query.

~ To query the current information file about a symbol

1 From the Tools menu, choose Browse.

The Browse dialog box appears.

2 In the Query On Name text box, type the name of the symbol you want to query
for.

You can use the asterisk as a wildcard to match any string.

3 In the Select Query list box, select the type of query you want.

4 If necessary, select the Case Sensitive Queries option.

S Choose the OK button.

A browse window specific to the query type appears. The query results for the
symbol you selected are displayed.

269

Visual C++ User's Guide

a

a

Tip If you select a symbol in a source file, the symbol appears in the Query On Name box
when you open the Browse dialog box. This eliminates step 2 in the procedure above.

When the browse infonnation file is open, you can use it to find where a symbol used
in a source file is defined or first referenced.

~ To find the definition of a symbol

1 Select the symbol in a source file or the standard toolbar Find box.

2 From the Edit menu, choose Go To.

The Go To dialog box appears.

3 In the Go To What list, select Definition.

4 Choose the Go To button.

~ To find the first reference to a symbol

1 Select the symbol in a source file or the standard toolbar Find box.

2 From the Edit menu, choose Go To.

The Go To dialog box appears.

3 In the Go To What list, select Reference.

4 Choose the Go To button.

Note The browse file is based on the state of the source files at the time of the last build. If
you edit source files and then go to a definition or a reference, the location in the browse file
may no longer be accurate. If the browse file has not been built, a dialog box provides the
option of building the browse file.

Tip You can jump to the previous or next definition or reference by choosing one of the
navigation buttons on the Go To dialog box: Previous or Next.

Symbol Codes in the Browse Window

270

A browse window uses symbol codes to describe the displayed query types. For
example, f V CAboutDl g: : GetMes s a geMa p (voi d) indicates a virtual (V)
function (t).

The following table shows the codes and their meanings.

Table 16.1 Browse Window Symbol Codes
",,.,,JA .1---=--VUUI; 1VIt:C:1IIII Iy

C Class

f Function

d Data

m Macro

Chapter 16 Browsing Through Symbols

Table 16.1 Browse Window Symbol Codes (continued)

Code Meaning

Type (other than class)

V Virtual function

S Static function or data member

Disabling and Enabling BSCMAKE

a

In a large project, creating the browse information file (.BSC file) can take a
significant amount of time. To create browse information, a separate .SBR file is
generated for each program file, and then these files are assembled into a single
browse file (.BSC file).

You can build your project more quickly if you tum off creation of both the .SBR files
and .BSC file. As a default, browse information is turned off. You will not be able to
browse current information until you tum the browse options on and build your
project again.

~ To turn on creation of the .SBR files at compile time

1 Open the project if it is not currently open.

2 From the Build menu, choose Settings.

The Project Settings dialog box appears.

3 Select the CjC++ tab.

4 Select the Generate Browse Info check box.

5 Choose the OK button.

~ To turn on updating of the .BSC file at compile time

1 Open the project if it is not currently open.

2 From the Build menu, choose Settings.

The Project Settings dialog box appears.

3 Select the Browse Info tab.

4 Select the Build Browse Info File check box.

5 Choose the OK button.

Note You must turn on creation of the .SSR files at compile time for this option to work;
otherwise, the browse file will be updated using old .SSR information.

Tip If you want to speed up your builds and also want to update your browse information file
quickly, turn on creation of .SSR files and turn off updating of the .sse file. When you want to
update your browse information file, turn on updating of the .sse file and build your project.

271

Visual C++ User's Guide

~ To turn off creation of the .SSR files at compile time

1 Open the project ifit is not currently open.

2 From the Build menu, choose Settings.

The Project Settings dialog box appears.

3 Select the C/C++ tab.

4 Clear the Generate Browse Info check box.

5 Choose the OK button.

~ To turn off updating of the .SSC file at compile time

1 Open the project if it is not currently open.

2 From the Build menu, choose Settings.

The Project Settings dialog box appears.

3 Select the Browse Info tab.

4 Clear the Build Browse Info File check box.

5 Choose the OK button.

Note Turning this option off prevents BSCMAKE from updating the .BSC file, but does not
prevent the compiler from creating .SBR files. To bring the browse file up to date, you must
turn this update option back on.

Displaying the Symbols in a File

272

You can display an outline of all the symbols in a specific source file and filter the
information that is displayed.

~ To display the symbols in a file

1 Open the source file that you want to examine. If it is already open, click that
window to move the focus there.

-or-

Select the file in the Project Workspace window.

2 From the Tools menu, choose Browse.

The Browse dialog box appears.

3 From the Select Query list box, select File Outline.

4 Choose the OK button.

The File Outline browse window appears, with classe~ and functions displayed at
the top of the left pane, as shown in Figure 16.2.

Chapter 16 Browsing Through Symbols

a

Figure 16.2 Browse Window with File Outline

f III CAboutDlg::_GetBaseMElssa~leMclp(vo,id)
f III CMypro~pp::_GetBaseMlessageM(lp(Vo'id)
c CAboutDlg (class)
f III CAboutDlg::DoDataExchange(class
f E CAboutDlg::GetMessageM
f III CMypro~pp::GetMessageM
f III CMypro~pp::lnitinstanlce(vc)id)
f CMypro~pp::O

The following table describes the window elements, the function of each element, and
tpe user's actions.

Table 16.2 File Outline Window

Window Element Function Action

Left pane Lists the symbols (classes, Select a symbol.
functions, data, macros, and types)
for the selected file. One or more
codes identify each symbol.

Right pane Lists the available definitions and Double-click the definition or
references for the symbol selected reference you want to see.
in the left pane.

Pushpin Determines whether or not the Select to push or pull the pin.
window is held open or allowed to
close. The window remains open
when the pin is pushed in.

Filter buttons Filter the symbols shown in the Select to toggle filter.
current display. For more
information, see Filtering Browse
Information for Files.

Tip You can display symbols in multiple files by using the asterisk as a wildcard character in
the filename. If you type a filename specification followed by the asterisk wildcard but no
extension (oc*, for example), the search finds files without extensions, such as "oc1 ," but not
files with extensions, such as "oc1.cpp".

Filtering Browse Information for files
When you do a file outline query, five buttons appear at the top of the browse window.
These buttons are filter buttons. Their settings determine which symbols are
displayed in the left pane of the browse window. When a button is selected (pushed
in), the corresponding symbols are displayed.

273

Visual C++ User's Guide

~ To filter the symbol display

• Select the buttons corresponding to the symbols you want to see, as shown in the
following table.

Button Keyboard Displays

Classes

Functions

Data

Macros

Types

ALT+C

ALT+U

ALT+A

ALT+M

ALT+Y

Classes

Functions

Data symbols

Macros

Types (other than classes)

Displaying Class Information
You can view c++ class hierarchies as graphs. You can select a class and display
either of the following two types of graphs for class hierarchies.

Derived Class Graph: All the classes that inherit attributes from the selected class.

Base Class Graph: All the classes from which the selected class inherits attributes, up
to its ultimate base class, or base classes if it has multiple inheritance.

In each graph, a node represents a class.

Displaying the Graph of Classes Derived from a Class

274

~ To display a derived class graph

1 Select the class name in a source file or the standard toolbar Find box.

2 From the Tools menu, choose Browse.

3 In the Select Query list box, select Derived Classes And Members.

4 Choose the OK button.

The Derived Classes And Members window appears, with the selected class name
displayed at the top of the left pane. Figure 16.3 shows an example of this window.

Chapter 16 Browsing Through Symbols

Figure 16.3 Derived Classes and Members Window

The following table describes the window elements, the function of each element, and
the user's actions.

Table 16.3 Derived Classes and Members Window

Window Element

Left pane

Top right pane

Bottom right
pane

Pushpin

Help button

Filter buttons

Function

Displays the derived class graph.

Displays member functions and
member variables of the class
selected in the left pane.

Displays available definitions and
references for the symbol selected
in the left pane or top right pane.

Determines whether or not the
window disappears after it loses
focus.

Displays help for the window.

Filter the browse query to display
selected types of information. For
more information on filters, see
Filtering Browse Information for
Classes.

Action

Click the plus sign or minus sign to
expand or contract the graph. To
display information for a class,
click the class name or folder icon.
To open the source file for a class,
double-click the class name or
folder icon.

Double-click the member whose
definition you want to see.

Double-click the definition or
reference you want to see.

Select to push or pull the pin.

Select for help.

Select filter types from the lists.

275

Visual C++ User's Guide

Displaying the Base Class Graph for a Class

276

• To display a base class graph

1 Select the class name in a source file or the standard toolbar Find box.

2 From the Tools menu, choose Browse

3 In the Select Query list box, select Base Classes And Members.

4 Choose the OK button.

The Base Classes And Members window appears, with the selected class name
displayed at the top of the left pane. Figure 16.4 shows an example of this window.

Figure 16.4 Base Classes and Members Window

The following table describes the window elements, the function of each element, and
the user's actions.

Table 16.4 Base Classes and Members Window

Window Element

Leftpane

Top right pane

Bottom right
pane '

Pushpin

Function

Displays the base class graph.

Displays member functions and
member variables of the class

. selected in the left pane. One or
more codes identify each symbol.

Displays available definitions and
references for the symbol selected
in the left pane or top right pane.

Determines whether or not the
window disappears after it loses
focus.

Action

Click the plus sign or minus sign to
expand or contract the graph. To
display information for a class,
click the class name or folder icon.
To open the source file for a class,
double-click the class name or
folder icon.

Double-click the member whose
definition you want to see.

Double-click the definition or
reference you want to see.

Select to push or pull the pin.

Chapter 16 Browsing Through Symbols

Table 16.4 Base Classes and Members Window (continued)

Window Element

Help button

Filter buttons

Function

Displays help for the window.

Filter the browse query to display
selected types of infonnation. For
more infonnation on filters, see
Filtering Browse Infonnation for
Classes.

Action

Select for help.

Select filter type from the lists.

If the class has mUltiple inheritance, and one base class appears in more than one
inheritance path, the second and subsequent instances of the class name have an
ellipsis (...) after them. You cannot expand nodes that have ellipses.

Filtering Browse Information for Classes
When you open the Derived Classes And Members window, two drop-down list boxes
appear at the top. You can use these lists to filter the display of information about
member functions and data members.

~ To filter information on member functions

• From the Functions drop-down list box, select the desired filter.

Filter Displays

All

Virtual

Static

Non-Virtual

Non-Static

Non-Virtual Non-Static

None

All member functions

Virtual member functions only

Static member functions only

Non-virtual member functions only

Non-static member functions only

Non-virtual, non-static member functions only

No member functions

~ To filter information on data members

•. From the Data drop-down list box, select the desired filter.

Filter Displays

All

Static

Non-Static

None

All member data

Static member data only

Non-static member data only

No member data

The graphic symbols displayed in the drop-down list boxes for the function and data
filters identify corresponding entries in the top right pane of the browse window.

277

Visual C++ User's Guide

Displaying Function Information
You can display the relationships among functions in your program as a graph. You
can select a function and display either of the following two types of graphs for
function relationships:

• Call Graph: All the functions that the selected function calls.

• Callers Graph: All the functions that call the selected function.

In each graph, a node represents a function.

Displaying a Call Graph

278

The call graph displays all the functions called by a selected function.

~ To display the graph of all functions that a selected function calls

1 Select the function name in a source file or the standard toolbar Find box.

2 From the Tools menu, choose Browse.

3 In the Select Query list box, select Call Graph.

4 Choose the OK button.

S If the function is an overloaded function or a member function of more than one
class, the Resolve Ambiguity dialog box appears. Select the function that you want
from the list.

The Call Graph window appears, with the selected function displayed at the top of
the left pane. Figure 16.5 shows the Call Graph window for a sample function.

Figure 16.5 Call Graph Window

Af~ssertValidObject(class CObject const • ch'1H~~~:::~:::JI
CMyprojl/iew::G etD ocument(void] ,.

i··!11al_CrtDbgReport
L ... !iil CObject::lsKindOf(struct CRuntimeClass

The following table describes the window elements, the function of each element, and
the user's actions.

Chapter 16 Browsing Through Symbols

Table 16.5 Call Graph Window

Window Element

Left pane

Right pane

Pushpin

Help button

Function

Displays the call graph for the
selected function.

Displays a list of available
definitions and references for the
function selected in the left pane.

Determines whether or not the
window disappears after it loses
focus.

Displays help for the window.

Action

Click the plus sign or minus sign to
expand or contract the graph. To
display information for a function,
click the class name or folder icon.
To open the source file for a
function, double-click the class
name or folder icon.

Double-click the definition or
reference you want to see.

Select to push or pull the pin.

Sel~ct for help.

Displaying a Graph of Calling Functions
A callers graph displays all the functions that call a selected function.

~ To display the graph of all functions that call a selected function

1 Select the function name in a source file or the standard toolbar Find box.

2 From the Tools menu, choose Browse.

3 In the Select Query list box, select Callers Graph.

4 Choose the OK button.

S If the function is an overloaded function or a member function of more than one
class, the Resolve Ambiguity dialog box appears. Select the function that you want
from the list.

The Callers Graph window appears, with the selected function displayed at the top
of the left pane. Figure 16.6 shows the Callers Graph window for a sample
function.

Figure 16.6 Callers Graph Window

279

Visual C++ User's Guide

The following table describes the window elements, the function of each element, and
the user's actions.

Table 16.6 Callers Graph Window

Window Element Function

Left pane Displays the callers graph for the

Right pane

Pushpin

Help button

. selected function.

Displays a list of available
definitions and references for the
function selected in the left pane.

Determines whether or not the
window disappears after it loses
focus.

Displays help for the window.

Action

Click the plus sign or minus sign to
expand or contract the graph. To
display information for a function,
click the class name or folder icon.
To open the source file for a
function, double-click the class
name or folder icon.

Double-click the definition or
reference you want to see.

Select to push or pull the pin.

Select for help.

Finding Definitions and References
Browse windows make it easy to move from one location of a symbol in a file to
another location in another file. For instance, if you are in a source file examining the
use of a symbol, you can immediately jump to the definition of that symbol. Or if you
have changed the definition of a symbol, you can jump to every place in every file
where the symbol is used.

Note· The browse file is based on the state of the source files at the time of the last build. If
you edit source files and then go to a definition or a reference, the location in the browse file
may no longer be accurate. When you issue a query, if the browse file has not been built (or is
not current), a dialog box is displayed with the option of building the browse file.

Displaying a Symbol Definition or Reference

280

You can quickly display the definition or reference of a symbol using the Browse
toolbar. Developer Studio opens the source file containing the first definition or
reference and highlights the symbol. To see the next definition or reference, choose
the Next Ref.IDef. button on the toolbar.

~ io dispiay the deiinition or reierence of a symboi using the Browse tooibar

1 Sylect the symbol in a source file or the standard toolbar Find box.

You can use the asterisk as a wildcard to match any string.

2 From the Browse toolbar, choose either the Go To Definition or Go To Reference
button.

Chapter 16 Browsing Through Symbols

3 If the symbol is a member of more than one class, the Resolve Ambiguity dialog
box appears. Select the symbol that you want from the list.

~ To display the definition or reference of a symbol using the right mouse button

1 Point to the symbol in a source file (either a text editor window or the pane
containing ClassView), and click the right mouse button.

2 From the pop-up menu, choose either Go To Definition or Go To Reference.

~ To display the definition or reference of a symbol using the Go To dialog box

1 From the Edit menu, choose Go To.

2 In the Go To What list box, select either Definition or Reference.

3 Enter the additional selection criteria.

4 Choose one of the navigation buttons: Go To, Previous, or Next.

~ To display the definition or reference of a symbol using the Definitions And
References window .

1 Select the symbol in a source file or the standard toolbar Find box.

You can use the asterisk as a wildcard to match any string.

2 From the Tools menu, choose Browse.

3 In the Select Query list box, select Definitions And References.

4 Choose the OK button.

S If the symbol is a member of more than one class, the Resolve Ambiguity dialog
box appears. Select the symbol that you want from the list.

6 In the Definitions And References window, double-click the definition or reference
you want to see.

The Definitions And References window appears, with the selected symbol
displayed at the top of the left pane. Figure 16.7 shows an example.

Figure 16.7 Definitions and References Window

281

Visual c++ User's Guide

282

The following table describes the Definitions And References window elements, the
function of each element, and the user's actions.

Table 16.7 Definitions and References Window

Window Element

Left pane

Right pane

Pushpin

Help button

Function

Displays the selected symbol, or a list
of the matching symbols if you used a
wildcard.· If the symbol is not fully
qualified, it is followed by the
symbol's type.

Displays definitions and references
for the symbol currently selected in
the left pane.

Determines whether or not the
window disappears after it loses
focus.

Displays help for the window.

Action

To display information for a
symbol, click the symbol name.
To open the source file for a
symbol, double-click the class
name or folder icon.

Double-click the definition or
reference you want to see.

Select to push or pull the pin.

Select for help.

Note The browse file is based on the state of the source files at the time of the last build. If
you edit source files and then go to a definition or a reference, the location in the browse file
may no longer be accurate. When you issue a query, if the browse file has not been built (or is
not current), a dialog box is displayed with the option of building the browse file.

C HAP T E R 1 7

Using the Debugger

Microsoft Developer Studio provides an integrated debugger to help locate bugs in an
executable program, dynamic-link library (DLL), thread, or OLE client or server.
U sing the debugger, you can:

• Use mUltiple debug windows displaying the call stack, variables, memory contents,
register contents, and assembly language code.

• Use Just-in-Time debugging to catch faults that occur while the program is
running outside the development environment.

• Control and manage breakpoints.

• Control threads in multithreaded environments.

• Debug DLLs imd OLE applications.

• Remotely debug programs operating on other operating systems.

U sing the debugger, you can control the execution of your program and examine
the program state at selected points through multiple windows and dialog boxes.
You can set breakpoints to halt execution at critical locations or when a specified
condition occurs.

When running a program with the debugger, you can single-step to observe the
effects of your code. You can choose to enter a function call, using the Step Into
command, or step past a function call, using the Step Over command. You can exit a
called function and return to the calling statement using the Step Out command.

When you end a debugging session, the project retains any breakpoints you have set.
When you reopen the project, the debugger restores the breakpoints in the proper
locations. When the program is halted at a breakpoint, you can use the debug
windows and dialog boxes to examine the state of your program.

283

Visual C++ User's Guide

U sing the Debugger Interface Components
To use the debugger, you use interface components including menus, windows, dialog
boxes, and spreadsheet fields. Drag-and-drop functionality is available for moving
debug information between components. This chapter provides basic information to
help you locate and operate these components.

Debugger Menu Items
Commands for debugging can be found on the Debug menu, the Build menu, the
View menu, and the Edit menu.

The Debug menu appears in the menu bar while the debugger is running (even if it is
stopped at a breakpoint). From the Debug menu, you can control program execution
and access the QuickWatch window. When the debugger is not running, the Debug
menu is replaced by the Build menu. The Build menu contains a command called
Debug, which contains a subset of the commands on the full Debug menu. These
commands start debugging (Go, Step Into, and Run To Cursor). For a description of
the Debug menu commands and the Debug commands on the Build menu, see
"Controlling Program Execution" on page 287 in this chapter.

The View menu contains commands that display the various debugger windows, such
as the Variables window and the Memory window. For more information about the
debugger windows, see "Viewing and Modifying Variables and Expressions" on page
307 in this chapter. From the Edit menu, you can access the Breakpoints dialog box,
from which you can insert, remove, enable, or disable different types of breakpoints.
For details, see "Using Breakpoints" on page 293 in this chapter.

The Edit menu contains a command to open the Breakpoint dialog to insert or edit a
breakpoint.

A pop-up menu appears whenever you click the right mouse button in a debugger
window. This menu provides commonly used commands applicable to that window.

Debugger Windows

284

Several specialized windows display debugging information for your program. When
you are debugging, you can access these windows using the View menu.

Chapter 17 U sing the Debugger

Table 17.1 lists the debugger windows and describes the information they display.

Table 17.1 Debugger Windows

Window

Output

Watch

Variables

Registers

Memory

Call Stack

Disassembly

Displays

Information about the build process, including any compiler,
linker, or build-tool errors, as well as output from the
OutputDebugString function or the afxDump class library,
thread termination codes, and first-chance exception
notifications.

Names and values of variables and expressions.

Information about variables used in the current and previous
statements and function return values (in the Auto tab),
variables local to the current function (in the Locals tab), and
the object pointed to by this (in the This tab).

Contents of the general purpose and CPU status registers.

Current memory contents.

Stack of all function calls that have not returned.

Assembly-language code derived from disassembly of the
compiled program.

Debugger windows can be docked or floating. For information on docked and floating
windows, see "Working with Docking Tool Windows," in Chapter 22, on page 433.

When a window is in floating mode, you can resize or minimize it to increase the
visibility of other windows. You can copy information from any debugger window,
You can print information only from the Output window.

Tip To set formatting and other options for these windows, use the Debug tab in the Options
dialog box (accessed from the Tools menu).

Pop-up Menus
Each debugger window has a pop-up menu, which contains frequently used
commands for that window.

~ To display the pop-up menu for a window

• Click the right mouse button inside the window.

For example, if you click the right mouse button in the Variables window, you see a
pop-up menu with several formatting options. If you click the right mouse button in a
source/text window, you see a pop-up menu with several commands, including
Insert/Remove Breakpoint. If you click a variable Var within a source window while
you are debugging, the pop-up menu includes the comwand QuickWatch Var, which
displays the variable Var in the QuickWatch dialog box.

285

Visual C++ User's Guide

Debugger Dialog Boxes
In addition to windows, the debugger uses a number of dialog boxes to manipulate
breakpoints, variables, threads, and exceptions. You can access the Breakpoints
dialog box using the Breakpoints command on the Edit menu. You can access the
other dialog boxes using commands from the Debug menu.

Table 17.2 lists the debugger dialog boxes and describes the information they display.

Table 17.2 Debugger Dialog Boxes

Dialog Box Displays

Breakpoints

Exceptions

QuickWatch

Threads

List of all breakpoints assigned to your project. Use the tabs in the
Breakpoints dialog box to create new breakpoints of various types.

System and user-defined exceptions for your project. Use the Exceptions
dialog box to control how the debugger handles exceptions.

A variable or expression. Use QuickWatch to quickly view or modify a
variable or expression or to add it to the Watch window.

Application threads available for debugging. Use the Threads dialog box
to suspend and resume threads and to set focus,

Spreadsheet Fields

286

The debugger interface uses spreadsheet fields, with an interface similar to that of
Microsoft Excel. These spreadsheet fields appear in the Watch window, the Variables
window, and the QuickWatch dialog box.

When working with these fields, you can autosize a column to fit its contents by
double-clicking the divider. You can size a column manually by dragging the divider
at the right edge of the column.

Note Rows fit the current font and cannot be resized. To change the font size, use the Format
tab of the Options dialog box, accessed from the Tools menu.

Spreadsheet fields contain controls for easy viewing of array, object, structure, and
pointer variables. These variables are marked with a box containing a plus sign (+) in
the Name column. You can expand the variable by clicking the + box, which opens
into a tree that may contain additional boxes.

If the variable'is a pointer, the branch immediately below the pointer contains the
value pointed to. If the variable is an array, object, or structure, the branch below the
variable contains the component elements or members. When a variable is expanded,
the box in the Name column contains a minus sign (-). You can collapSe an
expanded variable by clicking the - box. As an alternative, you can expand a variable
by selecting it and pressing the PLUS SIGN or RIGHT ARROW key. You can collapse a
variable by selecting it and pressing the MINUS SIGN or LEFT ARROW key.

Scalar variables, which have no components to expand, do not have boxes in the
Name column.

Chapter 17 U sing the Debugger

~ To select a spreadsheet cell for editing

1 Select the spreadsheet.

2 Use the UP ARROW and DOWN ARROW keys to move to the correct line.

3 To select the cell, press TAB to advance the selection to the next editable cell, or
press SHIFf+T AB to move the selection back to the previous editable cell.

The window where the spreadsheet field is located determines which cells are
editable. In the Variables window, you can edit the cells in the Value column. In the
Watch window, you can edit the cells in the Name and Value columns.

Dragging and Dropping Debugger Information
You can move information between debugger windows using drag-and-drop or cut­
and-paste features. When you select information and drag it with the mouse, the
mouse pointer changes. A small gray rectangle appears at the base of the arrow to
indicate that the information can be dropped. If you move the mouse pointer across a
window or area that cannot accept a drop, the mouse pointer temporarily changes
into the "No" symbol-a circle with a slash through it.

The debugger interface supports intelligent drag-and-drop. The result of a drag-and­
drop operation depends, in part, on the location where the drop takes place.

For example, you can drag a variable from the Variables window to the Watch
window. This action puts the variable information into the Watch window, where it is
updated each time the Watch window is updated. If you drag the variable to a text
window, instead, the variable information is converted into text. But if you drag the
variable to the Memory window or the Disassembly window, the variable is used as a
pointer, and the window scrolls to display the memory contents or instructions at the
indicated address.

If you expand an object (Obj, for example) in the Variables window, you can drag a
member of that object (such as Obj • chi 1 d) to the Watch window.

Controlling Program Execution
To start debugging, choose the Go, Step Into, or Run To Cursor command under
Debug on the Build menu. Table 17.3 lists the Build Debug menu commands and
their actions.

287

· Visual C++ User's Guide

288

Table 17.3 Build Menu Debug Commands

Build Menu
Command

Go

Step Into

Run to Cursor

Action

Executes code from the current statement until a breakpoint is
reached or the end of the program is reached. (Equivalent to the Go
button on the toolbar.)

Single-steps through instructions in the program, and enters each
function call that is encountered.

Executes the program as far as the line that contains the insertion
point. This is equivalent to setting a temporary breakpoint at the
insertion point location.

When you begin debugging, the Debug menu appears, replacing the Build menu on
the menu bar. You can then control program execution using the commands listed in
Table 17.4.

Table 17.4 Debug Menu Commands that Control Program Execution

Debug Menu
Command

Go

Restart

Stop Debugging

Break

Step Into

Step Over

Action

Executes code from the current statement until a breakpoint is
reached or the end of the program is reached. (Equivalent to the Go
button on the Standard toolbar.) When the Debug menu is not
available, you can choose from Go from the Debug submenu of the
Build menu.

Resets execution to the fIrst line of the program. This command
reloads the program into memory, and discards the current values of
all variables (breakpoints and watch expressions still apply). It
automatically halts at the mainO or WinMainO function.

Terminates the debugging session, and returns to a normal editing
session.

Halts the program at its current location.

Single-steps through instructions in the program, and enters each
function call that is encountered. When the Debug menu is not
available, you can choose Step Into from the Debug submenu of the
Build menu.

Single-steps through instructions in the program. If this command is
used when you reach a function call, the function is executed without
stepping through the function instructions.

Chapter 17 U sing the Debugger

Table 17.4 Debug Menu Commands that Control Program Execution (continued)

Debug Menu
Command

Step Out

Run to Cursor

Action

Executes the program out of a function call, and stops on the
instruction immediately following the call to the function. Using this
command, you can quickly finish executing the current function after
determining that a bug is not present in the function.

Executes the program as far as the line that contains the insertion
point. This command is equivalent to setting a temporary breakpoint
at the insertion point location. When the Debug menu is not available,
you can choose Run To Cursor from the Debug submenu of the Build
menu.

Running to a Location

a

~ To run until a breakpoint is reached

• From the Debug menu, choose Go.

~ To run to the cursor

1 Open a source file, and move the insertion point to the location where you want
the debugger to break.

2 From the Debug menu, choose Run To Cursor.

The Run To Cursor command also works in the Call Stack window, the Disassembly
window, and the Find box on the standard toolbar.

~ To run to the cursor location in object code

1 In the Disassembly window, move the insertion point to the location where you
want the debugger to break.

2 From the Debug menu, choose Run To Cursor.

~ To run to the cursor location in the call stack

1 In the Call Stack window, select the function name.

2 From the Debug menu, choose Run To Cursor.

~ To run to a specified function

1 In the Find box on the standard toolbar, type the function name.

2 From the Debug menu, choose Run To Cursor.

Tip You can use the Run To Cursor command to return to an earlier statement to retest your
application, using different values for variables.

You can use the Set Next Statement command to set the next statement or assembly
instruction to execute.

289

Visual C++ User's Guide

a

~ To set the next statement to execute

1 In a source window, move the insertion point to the statement or instruction that
you want to execute next.

2 Click the right mouse button.

3 From the pop-up menu, choose Set Next Statement.

~ To set the next assembly instruction to execute

1 In the Disassembly window, move the insertion point to the assembly instruction
you want to execute next.

2 Click the right mouse button.

3 From the pop-up menu, choose Set Next Statement.

Tip You can use the Set Next Statement command to skip a section of code~for instance, a
section that contains a known bug-and continue debugging other sections.

Caution The Set Next Statement command causes the CPU program counter to jump to the
new location. The intervening code is not executed. Use this command with caution.

Stepping Into Functions

290

Once your program has stopped at a breakpoint, you can step through the code one
statement at a time using the Step Into command from the Debug menu or the Step
Into button on the Debug toolbar.

~ To run the program and execute the next statement (Step Into)

1 While the program is paused at a breakpoint, choose Step Into from the Debug
menu.

The debugger executes the next statement, then pauses execution. If the next
statement is a function call, the debugger steps into that function, then pauses
execution at the beginning of the function.

2 Repeat step 1 to continue executing the program one statement at a time.

If you use this technique to step into a nested function call, the debugger steps into
the most deeply nested function. Consider, for example, the following line of code:

Fun(Fun2);

If you use the Step Into command, the debugger steps into the function Fun 2, then
pauses. If you use the Step Into Specific Function command instead, you can control
which function the debugger steps into. In the following example, you can use the
Step Into Specific Function command to step into Fun without first stepping through
Fun2.

Chapter 17 Using the Debugger

~ To step into a specific function

1 Set a breakpoint just before the nested function call

-Of-

Use the Step Into, Step Over, or Run To Cursor command to advance the program
execution to that point.

2 In a source window, select the function that you want to step into.

3 From the Debug menu, or from the source window pop-up menu, choose Step Into
Name, where Name is the name of the selected function.

The debugger executes the function call and pauses execution at the beginning of
the selected function.

For example, if you want to step into the function Fun in this nested function call:

Fun (Fun2) ;

select the function name Fun and choose Step Into Fun from the Debug menu.

The Step Into Specific Function command works for any number of nesting levels. In
the following statement, for example, you can select Fun, Fun2, or Fun3, and step
into the selected function:

Fun(Fun2(Fun3»;

In some cases, you can use the Step Into Specific Function command to step into a
function pointer or a member function. In the following call, for example, you might
use it to step into MemberFn:

CMyClass::MemberFn();

Note Because function pointers and member functions are bound at run time, the binding can
change before a function call occurs. As a result, it is not always possible to step into a'
function pointer or member function.

Using Step Into with Send Message and DispatchMessage
When the debugger is stopped on a line of source code with a call to the
SendMessage or DispatchMessage function, you can use the Step Into command to
step into the WndProc called by the function. To avoid stepping into the WndProc,
use the Step Over command instead.

Although SendMessage and DispatchMessage are the most common applications of
this feature, you can also step into the following WndProc functions:

• SendMessageTimeout

• SendMessageCallback

• SendNotifyMessage

291

Visual C++ User's Guide

• SendDlgJtemMessage

• CallWindowProc

Note If the source for the target WndProc is not available, the debugger cannot step into the
WndProc.

Stepping Over or Out of Routines
You can step through your program one statement at a time in a chosen function,
starting from a breakpoint, without entering any other functions, by using the Step
Over command. You can also exit from a function immediately andreturn to the line
where the function was called by using the Step Out command.

Caution In general, to avoid very slow execution, you should not step out of a function
containing a loop. Instead, you should set a breakpoint at the end of the function, and then
choose Go from the Debug menu to execute to the end of the function.

~ To run the next statement in the current function

1 Open a source file, and set a breakpoint in the function.

2 From the Debug menu, choose Go.

When the program comes to the breakpoint, the debugger pauses.

3 From the Debug menu, choose Step Over.

The debugger executes the next function, but pauses after the function returns.

4 Repeat step 3 to continue executing the program, one statement at a time.

You can stop the debugger after it has executed the return statement in a function. It
stops on the line following the function call.

~ To run the program and stop execution after'the current function returns to the
calling function

1 Open a source file, and set a breakpoint in the function.

2 From the Debug menu, choose Go.

When the program comes to the breakpoint, the debugger pauses.

3 From the Debug menu, choose Step Out.

The debugger continues until it has completed execution of the return from the
current function, then pauses.

Interrupting Your Program

292

There may be times when you cannot set a breakpoint to halt the program, such as
when your program encounters an infinite loop. In such cases, you can interrupt your
program by choosing Break on the Debug menu. This action returns control to

Chapter 17 Using the Debugger

Microsoft Developer Studio and opens the Disassembly window. You can then use the
Go, Step Into, or Step Over commands to regain control of your program.

With Win32s, you must press the CTRL+SHIFT+Fll key combination on the remote
computer to return control to Developer Studio.

Note If you interrupt execution while Windows or other system code is running, the results
can be unpredictable.

Just-in-Time Debugging
Using Microsoft Developer Studio, you can edit, compile, link, debug, and test a
program within a single integrated environment. Sometimes, however, you may want
to test a program outside of Developer Studio. With Just-in-Time debugging, you can
run a program outside Developer Studio. When an application error occurs, it calls
the Developer Studio debugger.

To use Just-in-Time debugging, you must set the Just-in-Time debugging option
before you execute your program. If you do not set this option, the debugger cannot
respond to an application error that occurs in your program.

~ To enable Just-in-Time debugging

1 From the Tools menu, choose Options.

2 Select the Debug tab.

3 Select the Just-in-Time Debugging check,box.

4 Choose OK.

5 From the Build menu, choose Build Project.exe.

Note If you are running Windows NT, you must have administrator privileges to set the Just­
in-Time option.

U sing Breakpoints
Breakpoints tell the debugger where or when to break execution of a program. When
the program is halted at a breakpoint, you can examine the state of your program,
step through your code, and evaluate expressions using the debugger windows.

The debugger supports the following types of breakpoints:

• Location breakpoints that halt the debugger at a specified location

• Data breakpoints that halt the debugger when an expression becomes true or
changes value

• Message breakpoints that halt the debugger at a WndProc function when a
message is received

293

Visual c++ User's Guide

• Conditional breakpoints that halt the debugger at a specified location when an
expression is true or changes value

The Breakpoints dialog box displays a list of all breakpoints set in the project. You
can use this dialog box to set, remove, disable, and enable breakpoints. When you
close a project, the debugger saves all breakpoints you have set as part of the project
information. The next time you open the project, the breakpoints remain as you left
them.

The debugger also provides quick methods for setting location breakpoints and data
breakpoints without using the Breakpoints dialog box.

Quick Methods for Location Breakpoints

:94

The most common type of breakpoint is a location breakpoint. With the debugger,
you can set location breakpoints:

• On a specific line of source code.

• At the beginning or the return point of a function.

• At a label.

• At a specified memory address.

You can set or remove any of these location breakpoints without using the
Breakpoints dialog box. You can disable and enable breakpoints on a source-code line
or in the Disassembly or Call Stack window.

~ To set a breakpoint at a source-code line

1 In a source window, move the insertion point to the line where you want the
program to break.·

2 Choose the InsertlRemove Breakpoint toolbar button.

A red dot appears in the left margin, indicating that the breakpoint is set.

Note If you want to set a breakpoint on a source statement extending across three or
more lines, you must set the breakpoint on the first or last line of the statement.

~ To set a breakpoint at the beginning of a function

1 In the Find box on the Standard tool bar, type the function name, and press ENTER.

2 Choose the InsertlRemove Breakpoint toolbar button.

-or-

Click the right mouse button, and choose InsertlRemove Breakpoint from the pop­
up menu.

In the source code, a red dot appears in the left margin anhe beginning of the
function, indicating that the breakpoint is set.

Chapter 17 Using the Debugger

~ To set a breakpoint at the return point of a function

1 In the Call Stack window, move the insertion point to the function where you want
the program to break.

-or-

Click the right mouse button, and choose Insert/Remove Breakpoint from the pop­
up menu.

2 Choose the Insert/Remove Breakpoint toolbar button.

A red dot appears in the left margin, indicating that the breakpoint is set.

~ To set a breakpoint at a label

1 In the Find box on the Standard toolbar, type the name of the label, and press
ENTER.

-or-

Click the right mouse button, and choose Insert/Remove Breakpoint from the pop­
up menu.

2 Choose the Insert/Remove Breakpoint toolbar button.

A red dot appears in the left margin at the line containing the label, indicating that
the breakpoint is set.

~ To set a breakpoint at a memory address

1 In the Disassembly window, move the insertion point to the line where you want
the program to break.

2 Choose the Insert/Remove Breakpoint toolbar button.

-or-

Click the right mouse button, and choose Insert/Remove Breakpoint from the pop­
up menu.

Ared dot appears in the left margin, indicating that the breakpoint is set.

~ To disable a breakpoint

1 In a source window, or in the Call Stack or Disassembly window, move the
insertion point to the line containing the breakpoint you want to disable.

2 Choose the Enable/Disable Breakpoint toolbar button.

-or-

Click the right mouse button, and choose Disable Breakpoint from the pop-up
menu.

The red dot in the left margin changes to a hollow circle.

295

Visual C++ User's Guide

~ To disable all breakpoints

• Choose the Disable All Breakpoints toolbar button.

The red dots in the left margin change to hollow circles.

~ To enable a breakpoint

1 In a source window, or in the Call Stack or Disassembly window, move the
insertion point to the line containing the breakpoint you want to enable.

2 Choose the EnablelDisable Breakpoint toolbar button.

-or-

Click the right mouse button, and choose Enable Breakpoint from the pop-up
menu.

The hollow circle in the left margin changes to a red dot.

Note If you set more than one breakpoint on a line, and some breakpoints are disabled while
others are enabled, a gray dot appears in the left margin. The first time you choose the
Enable/Disable Breakpoint toolbar button, all breakpoints on the line become disabled, and the
gray dot changes to a hollow circle. If you choose the Enable/Disable Breakpoint button again,
all breakpoints on the line become enabled, and the hollow circle changes to a red dot.

~ To remove a breakpoint

1 In a source window, or in the Call Stack or Disassembly window, move the
insertion point to the line containing the breakpoint you want to remove.

2 Choose the InsertlRemove Breakpoint toolbar button.

-or-

Click the right mouse button, and choose Remove Breakpoint from the pop-up
menu.

The red dot in the left margin disappears.

Note If a line contains enabled and disabled breakpoints, the Insert/Remove Breakpoint
button removes all enabled breakpoints. Disabled breakpoints are not affected

Quick Methods for Data Breakpoints

!96

Without using the Breakpoints dialog box, you can set two types of data breakpoints:
breakpoints that halt execution when a variable changes value, and breakpoints that
halt execution when an expression evaluates to true,

~ To set a breakpoint when a variable changes value

1 In the Find box on the Standard toolbar, type the name of the variable.

2 Choose the InsertlRemove Breakpoint toolbar button.

A red dot appears in the margin, indicating that the breakpoint is set.

Chapter 17 Using the Debugger

~ To set a breakpoint when an expression is true

1 In the Find box on the Standard toolbar, type an expression, such as Fun==3, that
evaluates to true or false.

2 Choose the Insert/Remove Breakpoint toolbar button.

A red dot appears in the margin, indicating that the breakpoint is set.

To set other types of data breakpoints, or to remove a data breakpoint, use the
Breakpoints dialog box.

U sing the Breakpoints Dialog Box
U sing the Breakpoints dialog box, accessed by the Breakpoints command on the Edit
menu, you can set, remove, disable, enable, or view:

• Location breakpoints

• Data breakpoints

• Message breakpoints

• Conditional breakpoints

The Breakpoints dialog box contains three tabs that correspond to the first three types
of breakpoints listed above. The Location tab is also used, together with the
Breakpoint Condition dialog box, to set conditional breakpoints.

Location breakpoints are set at a specific line of source code, the start of a function,
or a specified memory address. They break execution of the program when the
location counter reaches that point in the program.

Data breakpoints are set on a variable or expression. They break execution when the
value of the variable or expression changes, or (for a boolean expression) when the
value becomes true.

Message breakpoints are set on a WndProc. They break execution when a specified
message is received.

Conditional breakpoints are location breakpoints that break execution only if a
specified condition is true. (Data breakpoints can also have a length condition
attached to them, but this is not set in the Breakpoint Condition dialog box. Thus,
they are not considered conditional breakpoints for the purposes of this discussion.)

All four types of breakpoints appear in the Breakpoints list at the bottom of the
Breakpoints dialog box.

The Breakpoints List
The Breakpoints dialog box contains a list of all breakpoints currently set in your
program. You can use this list to examine all breakpoints in your program, to disable
breakpoints, or to enable breakpoints that you previously disabled. You can also use
the list to remove (delete) a breakpoint.

297

Visual C++ User's Guide

~ To view the list of current breakpoints

1 From the Edit menu, choose Breakpoints.

The Breakpoints dialog box appears.

2 Use the scroll bars to move up or down the Breakpoints list.

~ To disable a breakpoint

1 In the Breakpoints dialog box, find the breakpoint in the Breakpoints list.

2 Clear the check box corresponding to the breakpoint that you want to disable.

3 Choose OK.

For a location breakpoint, the red dot in the left margin changes to a hollow circle.

~ , To enable a breakpoint

1 In the Breakpoints dialog box, find the breakpoint in the Breakpoints list.

2 Select the empty check box corresponding to the breakpoint that you want to
enable.

3 Choose OK.

For a location breakpoint, the red dot in the left margin changes to a hollow circle.

D Tip You can also use the SPACEBAR to toggle the state of a breakpoint in the Breakpoints list.

J8

Note An asterisk (*) in the breakpoint check box indicates that the breakpoint is not supported
on the current platform.

~ To remove a breakpoint

1 In the Breakpoints dialog box, select one or more breakpoints in the Breakpoints
list.

2 Choose the Remove button.

-or-

Press the DELETE key.

3 Choose OK.

When you select a breakpoint in the Breakpoints list, the breakpoint information
automatically appears in the text box of the Location, Data, or Messages tab
(depending on the breakpoint type). You can edit the breakpoint using the procedures
descrihed in the section for that tab.

Note For a location breakpoint, you can use the Edit Code button to navigate to the source or
object code where the breakpoint is set.

Chapter 17 U sing the Debugger

~ To view the source code or disassembled object code where a breakpoint is set

1 In the Breakpoints list, select a line-number or memory-address breakpoint.

2 Choose the Edit Code button.

This action takes you to the source code for a breakpoint set at a line number, or to
the disassembled object code for a breakpoint set at a memory address.

The Location Breakpoints Tab
You can use the Location tab in the Breakpoints dialog box to set a location
breakpoint:

• On a specific line of source code.

• At a label.

• At the start of a function.

• At a specified memory address.

Note Except where noted, the following procedures work only within the current context
(function, source file, or executable). To set a breakpoint outside the current context, you must
specify the context using the Advanced Breakpoint dialog box.

~ To set a breakpoint at the current location

1 From the Edit menu, choose Breakpoints.

The Breakpoints dialog box appears.

2 Select the Location tab.

3 Select the drop-down arrow next to the Break At text box.

4 From the menu that appears, choose the current line number or memory location.

5 Choose OK to set the breakpoint.

Note If you want to set a breakpoint on a source statement extending across three or
more lines, you must set the breakpoint on the first or last line of the statement.

~ To set a breakpoint at another location

1 On the Location tab, type a source-code line number (if the current location is in a
source file) or memory address directly into the Break At text box. For source
locations, type a period immediately before the line number.

2 Choose OK to set the breakpoint.

Note If you want to set a breakpoint on a source statement extending across three or
more lines, you must set the breakpoint on the first or last line of the statement.

299

Visual C++ User's Guide

00

~ To seta breakpoint at a label

1 In the Location tab, type the name of the label in the Break At text box.

2 Choose OK to set the breakpoint.

~ To set a breakpoint at the beginning of the current function

1 In the Location tab, click on the drop-down menu next to the Break At box.

2 From the menu choose the current function name that appears.

3 Choose OK to set the breakpoint.

Note If the debugger is halted in disassembled object code, rather than source code, this
option is not available.

~ To set a breakpoint at the beginning of another function

1 In the Location tab, type the function name directly into the Break At text box.

2 Choose OK to set the breakpoint.

~ To set a breakpoint outside the current context

1 In the Breakpoints dialog box, select the Location tab.

2 Select the drop-down arrow next to the Break At text box.

3 From the menu that appears, choose Advanced. The Advanced Breakpoint dialog
box appears.

4 In the Location text box, type the location (source line number, memory address,
or function name) where you want to set the breakpoint.

5 Under Context, type any necessary information in the Function, Source File, and
Executable File text boxes. (It is not necessary to fill in all fields -only the ones
you need to qualify the context.

For example, to set a breakpoint at a line number in another source file, specify
only the source file. To set a breakpoint in a dynamic-link library (DLL), you must
specify the function, source file, and DLL. The DLL filename goes in the
Executable File tex.t box.)

6 Choose OK to close the Advanced Breakpoint dialog box.

The information that you specified appears in the Break At text box in the
Breakpoints dialog box.

7 Choose OK to set the breakpoint.

Note You can enter context information directly into the Break At text box, using the advanced
breakpoints syntax. For details, see "Advanced Breakpoint Syntax" on page 306 in this chapter.

~ To edit a location breakpoint

1 In the Location tab, select the location breakpoint in the breakpoints list.

Chapter 17 U sing the Debugger

2 Edit the location that appears in the Break At text box.

3 Choose OK to set the breakpoint.

The Data Breakpoints Tab
You can use the Data tab in the Breakpoints dialog box to set a breakpoint on a
variable or expression. A data breakpoint breaks execution of the program when the
value of the variable or expression dlanges or (for a boolean expression) when the
value becomes true. The debugger automatically knows which option ("changes" or
"becomes true") makes sense for the variable or expression you have entered - you
don't need to set this yourself.

You can set a breakpoint on any valid C or C++ expression. Breakpoint expressions
can also use memory addresses and register mnemonics. The debugger interprets all
constants as decimal numbers unless they begin with '0' (octal) or 'Ox' (hexadecimal).

Note Except where noted, the following procedures work only for variables within the current
scope. To set a breakpoint using a variable outside the current scope, you must specify the
context using the Advanced Breakpoint dialog box.

~ To break when a variable changes value

1 From the Edit menu, choose Breakpoints.

The Breakpoints dialog box appears.

2 Select the Data tab.

3 In the Enter The Expression To Be Evaluated text box, type the variable name,
such as Va r2 or obj • memo

4 Choose OK to set the breakpoint.

.. To break when an expression is true

1 In the Expression text box, type an expression that contains a boolean comparison
operator, such as x==l or y(7.

2 Choose OK to set the breakpoint.

~ To break when an expression changes value

1 In the Expression text box, type an expression such as x+y.

2 Choose OK to set the breakpoint.

~ To break on a variable outside. the current scope

1 In the Expression text box, type the variable name.

2 Select the drop-down arrow to the right of the text box.

3 From the menu that appears, choose Advanced.

The Advanced Breakpoint dialog box appears.

301

Visual C++ User's Guide

4 In the Expression text box, type the function name and (if necessary) the filename
of the variable.

5 Choose OK to close the Advanced Breakpoint dialog box.

The information that you specified appears in the Expression text box in the
Breakpoints dialog box.

6 In the Breakpoints dialog box, choose OK to set the breakpoint.

Note You can enter context information directly into the Expression field, using the advanced
breakpoints syntax. For details, see "Advanced Breakpoint Syntax" on page 306.

To set a breakpoint on an array, use the Number Of Elements text box on the Data
tab. The number you enter in this field determines how many elements of the array
the debugger will monitor. Here are some examples of how to use this field:

~ To break when the initial element of an array changes value

1 In the Expression text box, type the first element of the array (my A r ray [0 J, for
example).

2 In the Number Of Elements text box, type 1.

3 Choose OK to set the breakpoint on my A r ray [0 J.

~ To break when the initial element of an array has a specific value

1 In the Expression text box, type an expression containing the initial element of the
array (myArray[0J==1, for example).

2 In the Number Of Elements text box, type 1.

3 Choose OK to set the breakpoint on myArray [0J.

~ To break when the twelfth element of an array changes value

1 In the Expression text box, type the twelfth element of the array (my A r r ay [12 J ,
for example).

2 In the Number Of Elements text box, type 1.

3 Choose OK to set the breakpoint on my A r ray [12 J .

~ To break when any element of an array changes value

1 In the Expression text box, type the first element of the array (my A r ray [0 J).

2 In the Number Of Elements text box, type 1.

3 Choose OK to set the breakpoint on myArray.

~ To break when any of the first 10 elements of an ,array change value

1 In the Expression text box, type the first element of the array (myArray[0J, for
example).

2 In the Number Of Elements text box, type 10.

Chapter 17 Using the Debugger

3 Choose OK to set the breakpoint on my A r ray [0] through my A r ray [10].

If you set a breakpoint on a pointer variable, the debugger does not automatically
dereference the pointer. If you want to set a breakpoint on the value pointed to,
instead of the location pointed to, you must explicitly dereference the pointer, as
described in the following procedures. (These procedures also apply to structure
pointers.)

~ To break when the location value of a pointer changes

1 In the Expression text box, type the pointer variable name (p, for example).

2 Choose OK to set the breakpoint.

~ To break when the value at a location pointed to changes

1 In the Expression text box, type the dereferenced pointer variable name (*p or
p -)next, for example).

2 Choose OK to set the breakpoint.

~ To break when an array pointed to by a pointer changes

1 In the Expression text box, type the dereferenced pointer variable name (*p, for
example).

2 In the Number Of Elements text box, type the length of the array in elements. For
example, if the pointer is a pointer to double, and the array pointed to contains
100 values of type double, type 100.

3 Choose OK to set the breakpoint.

In addition to C/C++ variable names, you can use memory addresses and registers in
your breakpoint expressions. The following examples show how to use memory
addresses .and registers.

~ To break when the value at a specified memory address changes

1 In the Expression text box, type the memory address for the byte.

For a word or doubleword memory address, enclose the address in parentheses,
and precede it with a cast operator. For example, WO (00406036) for the word at
memory location 00406036. Use the cast operator BY for a byte (optional), WO for a
word, or DW for a doubleword.

2 In the Number Of Elements text box, type the number of bytes, words, or
doublewords to monitor. If you used the BY operator in the Expression field,
specify the number of bytes. If you used WO, specify the number of words. If you
used DW, specify the number of doublewords.

3 Choose OK to set the breakpoint.

~ To break when a register changes

1 In the Expression text box, type a register mnemonic, such as CS.

303

Visual C++ User's Guide

104

2 In the Number Of Elements text box, type the number of bytes to monitor.

3 Choose OK to set the breakpoint.

~ To break when a register expression is true

1 In the Expression text box, type an expression that contains a boolean comparison
operator, such as C $==0.

2 In the Number Of Elements text box, type the number of bytes to monitor.

3 Choose OK to set the breakpoint.

Note When you set a data breakpoint, the debugger places the variable or variables used into
a special debug register, if possible. The number of debug registers is limited. (Intel 80386 and
later CPUs provide four debug registers. Motorola 680XO and PowerPC chips have no debug
registers.) Furthermore, stacked-based variables (parameters) cannot be placed into debug
registers. If a breakpoint variable cannot be placed into a debug register, the debugger must
examine the variable's memory location after every instruction to determine whether the
contents have changed. These extra memory accesses reduce execution speed of the program
with the debugger. In some cases, the program may appear to hang. Performance may be
especially slow if you are debugging a remote application.

The Messages Breakpoints Tab
You can use the Messages tab in the Breakpoints dialog box to set a breakpoint on a
message received by an exported Windows function. You can select whether to break
on a specific message or on any message from a class of messages.

Note Message breakpoints work only on x86- or Pentium-based systems.

~ To set a breakpoint on a message

1 From the Edit menu, choose Breakpoints.

The Breakpoints dialog box appears.

2 Select the Messages tab.

3 In the Break At WndProc text box, type the name of the Windows function.

If you are setting a breakpoint during a debug session, the list contains the
exported functions in your project.

4 In the Set One Breakpoint For Each Message To Watch drop-down list box, select
the message.

5 To set another breakpoint, press ENTER, and then repeat steps 3 and 4.

The Breakpoints list displays the currently active breakpoints.

6 Choose OK to set the breakpoints.

Chapter 17 U sing the Debugger

Conditional Breakpoints
Conditional breakpoints are location breakpoints that break execution only if a
specified condition is met. This condition can be:

• When the value of the variable or expression changes, or

• When the value of a boolean expression i~ true.

To set conditional breakpoints, use the Breakpoint Condition dialog box. This dialog
box appears when you choose the Condition button on the Location tab.

The Breakpoint Condition dialog box looks and operates much like the Data tab, with
one additional field. The Enter The Number Of Times To Skip Before Stopping text
box allows the debugger to skip the breakpoint a specified number of times. If you
type 4 in this text box, for example, the debugger stops the fifth time your program
reaches that location and the condition is met. If you set this field to 9, the debugger
stops the tenth time your program reaches that location and the condition is met.

~ To set a conditional breakpoint

1 From the Edit menu, choose Breakpoints.

The Breakpoints dialog box appears.

2 Select the Location tab.

3 In the Break At text box, type a location as described in "Location Breakpoints
Tab" on page 299.

4 Choose the Condition button.

The Breakpoint Condition dialog box appears.

5 Fill in the Expression and Number Of Elements text boxes as you would for a data
breakpoint. (See "Data Breakpoints Tab" on page 301 of this chapter for detailed
information.)

6 In the Breakpoint Condition dialog box, choose OK to set the condition.

7 In the Breakpoints dialog box, choose OK to set the breakpoint.

~ To set a conditional breakpoint with a skip count

1 In the Breakpoints dialog box, select the Location tab.

2 In the Break At text box, type a location as described In "Location Breakpoints
Tab" on page 299.

3 Choose the Condition button.

The Breakpoint Condition dialog box appears.

305

Visual c++ User's Guide

306

4 Fill in the Expression and Number Of Elements text boxes, as you would for a
data breakpoint. (See "Data Breakpoints Tab" on page 301 of this chapter for
detailed information.)

5 Fill in the Enter The Numbers Of Times To Skip Before Stopping text box. If you
want your program to break every Nth time the condition is met at the specified
location, set the Enter The Numbers Of Times To Skip Before Stopping to N - 1.
(The debugger skips the breakpoint the first N times.)

6 In the Breakpoint Condition dialog box, choose OK to set the condition.

7 In the Breakpoints dialog box, choose OK to set the breakpoint.

You cannot set both Enter The Numbers Of Times To Skip Before Stopping and
Number Of Elements for the same breakpoint.

Advanced Breakpoint Syntax
If you want to set a breakpoint on a location or variable that is not within the current.
scope, there are two ways to do it:

• Use the Advanced Breakpoint dialog box.

• Specify the breakpoint directly on the Location or Data tab of the Breakpoints
dialog box, using advanced breakpoint syntax.

Both methods achieve the same result, but the Advanced Breakpoint dialog box
handles many details for you and does not require you to learn any special syntax.

To use advanced breakpoints syntax, you must qualify a breakpoint location or
variable with a special context operator, as follows:

• {ifunction],[source],[exe] } location

• {ifunction],[source],[exe]}variable _name

• {ifunction],[source],[exe]}expression'

The context operator is a pair of braces ({ }) containing two commas, and some
combination of function name, source filename, and executable filename. If you omit
either/unction or exe, the two commas cannot be omitted. The following syntax, for
example, is illegal:

{File.c, File.exe} .143 -Bad

If you omit both source and exe, however, you can omit the commas. The following
syntax is legal:

{Fun} .143

The location can be any line number, function, or memory addr~ at which you can
set a breakpoint. For example,

• {ifunction],[source],[exe]}.100 -A line number

Chapter 17 Using the Debugger

• {[function],[source],[exe]} Traverse -A function name

• {[function],[source],[exe]} CMyWindow::OnCall -A function name

• {[function],[source],[exe]} 00406030 -A memory address (decimal)

• {[function],[source],[exe]} Ox1002A -A memory address (hexadecimal)

If the source or exe filename includes a comma, an embedded space, or a brace, you
must use quotation marks around the filename so that the context parser can properly
recognize the string. Single quotation marks are considered to be part of a Windows
NT /Windows 95 filename, so you must use double quotation marks. For example,

{ , .. a long, long, name.c", } .143

Another form of advanced breakpoints syntax uses the exclamation point instead of
the context operator:

source !.location

This form of advanced breakpoint syntax does not include a function name or .EXE
specifier. If you use this syntax to specify a filename that contains an exclamation
point, you must surround the filename with double quotes:

"File. !e"! .115

Viewing and Modifying Variables
and Expressions

The debugger provides several ways to view the value of a variable or expression:

• DataTips Pop-up Information™

• QuickWatch

• The Watch window

• The Variables window

It also provides several ways to modify the value of a variable:

• QuickWatch

• The Watch window

• The Variables window

Using DataTips Pop-up Information
The easiest way to see the value of a variable or expression when the debugger is
stopped at a breakpoint is to use DataTips pop-up information.

You can view a DataTips pop-up information box for any variable or expression that
appears in a source window and is within the current scope. To see a pop-up box for a

307

Visual C++ User's Guide

variable, place the mouse pointer over the variable. To see a pop-up box for an
expression, select the expression.

DataTips pop-up information is not available for invalid expressions, such as a
division by zero. If you select an expression such as 1/0, no pop-up information box
appears.

Using QuickWatch

308

You can use QuickWatch to quickly examine the value of a variable or expression.
You can also use QuickWatch to modify the value of a variable or to add a variable or
expression to the Watch window.

The QuickWatch dialog box contains a text box, where you can type an expression or
variable name, and a spreadsheet field that displays the current value of the variable
or expression that you specified.

The Current Value spreadsheet field displays only one variable or expression at a
time. If you type a new variable or expression in the text box and press ENTER, the
previous variable or expression in the Current Value field is replaced.

If you type a scalar variable or expression in the text box, QuickWatch displays the
result on the first line of the spreadsheet. If you type an array, object, or structure
variable, however, QuickWatch uses the spreadsheet to show additional detail. Plus
sign (+) a.l1d minus sign (-) boxes appear. Click these boxes to expand or collapse
your view of the variable.

If the variable is an object or a pointer to an object, QuickWatch automatically
expands the variable to show the most important data at the top level. For example,
suppose you had the following object:

CString String { ... }
char * m_pchData =0x7ffdf000 "abc"

int m_nDataLength=4
int m_nAllocLength=1244628

QuickWatch would display the following:

CString String {"abc"}

If the variable is a pointer to a C++ object, QuickWatch automatically downcasts the
pointer. QuickWatch adds an extra member to the expanded object. This extra
member, which looks like another base class, indicates the derived subclass. For
example, if a variable declared as a pointer to CObject really points to CComboBox,
nl1~,....1r'l.TQt,....h OI"'An-n;'7aC'l 1-h~CI f',...,,+ ,."...,;J rlrtCl n o~+ n ~n~h.-:"t._ 11"'1'" +kn+ T7_ .. ' _n_ .."_ ~,...,,.., _ '< '-' "U.L'-'U ... 'VVV.S"'UL..'V~ UH~ "'U'VL uuu uuu~ UU ""AUU 1.1.1.""1.1.1.1;'''''1. L)V U1.at yvu ""au a""""~L)L) U1.~

CComboBox members.

QuickWatch displays values in their default format. You can change the display
format (to display Unicode characters, for example) using formatting symbols. For
details, see "Formatting Watch Variables" on page 312.

Chapter 17 U sing the Debugger

~ To view the value of a variable or expression using QuickWatch

1 Wait for the debugger to stop at a breakpoint.

-or-

Orf an x86- or Pentium-based computer, choose Break from the Debug menu to
halt the debugger.

2 From the Debug menu, choose QuickWatch.

The QuickWatch dialog box appears.

3 Type or paste the variable name or expression into the Expression text box.

4 Choose the Recalculate button.

5 Choose the Close button.

Tip The Expression drop-down list box contains the most recently used QuickWatch
expressions.

~ To quickly view the value of a variable using QuickWatch

1 When the debugger is stopped at a breakpoint, switch to a source window, and
. click the right mouse button on a variable (Var, for example).

2 From the pop-up menu, choose QuickWatch Var.

3 Choose the Recalculate button.

4 Choose the Close button.

When the program is paused at a breakpoint or between steps, you can change the
value of any non-const variable in your program. This gives you the flexibility to try
out changes and see their results in real time or to recover from certain logic errors.

~ To modify the value of a variable using QuickWatch

1 From the Debug menu, choose QuickWatch.

2 In the Expression text box, type the variable name.

3 Choose the Recalculate button.

4 If the variable is an array, object, or structure, use the + box to expand the view
until you see the value you want to modify.

5 Use the TAB key to move to the value you want to modify.

6 Type the new value, and then press ENTER.

7 Choose the Close button.

Tip To change the value of a structure or array (including strings), modify the individual fields
or elements. You cannot edit an entire array or structure at once.

309

Visual C++ User's Guide

~ To add a QuickWatch variable or expression to the Watch window

1 Use any of the procedures described previously to view the variable or expression
in QuickWatch.

2 Choose the Add Watch button.

U sing the Watch Window

310

Use the Watch window to specify variables and expressions that you want to watch
while debugging your program. You can also modify the value of a variable using the
Watch window.

The Watch window contains four tabs: Watch!, Watch2, Watch3, and Watch4. Each
tab displays a user-specified list of variables and expressions in a spreadsheet field.
You can group variables that you want to watch together onto the same tab. For
example, you could put variables related to a specific window on one tab and
variables related to a dialog box on another tab. You could watch the first tab when
debugging the window and the second tab when debugging the dialog box.

~ To add a variable or expression to the Watch window

1 From the View menu, choose Watch.

The Watch window appears.

2 Select a tab for the variable or expression.

3 Type, paste, or drag the variable name or expression into the Name column on the
tab.

4 Press ENTER.

The Watch window evaluates the variable or expression immediately and displays
the value or an error message.

If you add an array, object, or structure variable to the Watch window, plus sign (+) or
minus sign (-) boxes appear in the Name column. You can use these boxes to expand
or collapse your view of the variable, as described in "Spreadsheet Fields" on
page 286.

If the variable is an object or a pointer to an object, the Watch window automatically
expands the variable to show the most important data at the top level. For example,
suppose you had the following object:

CString String { ... }
char * m_pchData =0x7ffdf000 "abc"

int m_nDataLength=4
int m_nAllocLength=1244628

The Watch window displays the following:

String {"abc"}

a

a

Chapter 17 Using the Debugger

If the variable is a pointer to a C++ object, the Watch window automatically
downcasts the pointer. The Watch window adds an extra member to the expanded
object. This extra member, which looks like another base class, indicates the derived
subclass. For example, if a variable declared as a pointer to CObject really points to
a CComboBox, the Watch window recognizes this fact and adds an extra member so
that you can access the CComboBox members.

The Watch window displays values in their default format. You can change the
display format (to display Unicode characters, for example) using formatting
symbols. For details, see "Formatting Watch Variables" on page 312.

Tip The Watch window does not display variable type information. You can view information
for a variable type by using the window's property page.

~ To view type information for a variable .

1 In the Watch window, select the line containing the variable whose type you want
to see.

2 Click the right mouse button in the Watch window and choose Properties from the
pop-up menu.

-or-

From the Edit menu, choose Properties.

~ To remove a variable or expression from the Watch window

1 In the Watch window, select the line containing the variable or expression you
want to remove.

2 Press the DEL key. -

When the program is paused at a breakpoint or between steps, you can change the
value of any non-const variable in your program. This gives you the flexibility to try
out changes and see their results in real time, or to recover from certain logic errors.

~ To modify the value of a variable using the Watch window

1 In the Watch window, double-click the value.

-or-

Use the TAB key to move the insertion point to the value you want to modify.

2 If the variable is an array, object, or structure, use the + box to expand the view
until you see the value you want to modify.

3 Type the new value, and press ENTER.

Tip To change the value of a structure or array (including strings), modify the individual fields
or elements. You cannot edit an entire array or structure at once.

311

Visual C++ User's Guide

Formatting Watch Variables

312

You can change the display format of variables in the QuickWatch dialog box or in
the Watch window using the formatting symbols in the following table.

Symbol Format Value Displays

d,i signed decimal integer OxFOOOF065 -268373915

u unsigned decimal integer Ox0065 101

0 unsigned octal integer OxF065 0170145

x,X Hexadecimal integer 61541 (decimal) OxOOOOF065

l,h long or short prefix for: d, 00406042,hx OxOc22
i, u, 0, x, X

f signed floating-point 3./2. 1.500000

e signed scientific notation 3./2. 1.500000e+000

g signed floating-point or 3./2. 1.5
signed scientific notation,
whichever is shorter

c Single character Ox0065 'e'

s String OxOO12fde8 "Hello world"

su Unicode string "Hello world"

To use a formatting symbol, type the variable name, follO\ved by a comma and the
appropriate symbol. For example, if va r has a value of 0 x 0 06 5, and you want to see
the value in character form, type va r • c in the Name column on the tab of the Watch
window. When you press ENTER, the character-format value appears:

var.c = 'e'

You can use the formatting symbols shown in the following table to format the
contents of memory locations.

Symbol

rna

m

mb

mw

Format

64 ASCII characters

16 bytes in hexadecimal,
followed by 16 ASCII
characters

16 bytes in hexadecimal,
follO'.."ed by 16 1:\1SCrr
characters

8 words

Displays

Ox0012ffac
.4 ... 0 ... ".OW& IW&.0.:W .. 1.. .. " .. 1.JO
&.1.2 .. " .. 1...0y 1

Ox0012ffac B3 34 CB 0084309480 FF
22 8A 30 57 26 00 00 .4 ... 0 ... ".OW & ..

Ox0012ffac B3 34 CB 00 84 30 9480 FF
22 8}\ 30 57 26 00 00 .4 ... 0 ... ".O'.V & ..

Ox0012ffac 34B3 OOCB 30848094 22FF
308A 2657 0000

Chapter 17 Using the Debugger

Symbol Format

md 4 doublewords

mu 2-byte characters (Unicode)

Displays

Ox0012ffac 00CB34B3 80943084
308A22FF 00002657

Ox0012fc60 8478 77f4 ffff ffff 00000000
00000000

With the memory location formatting symbols, you can type any value or expression
that evaluates to a location.

To display the value of a character array as a string, precede the array name with an
ampersand (&):

&yourname

A formatting character can follow an expression also:

rep+l,x
alps[0],mb
xloc,g
count,d

To watch the value at an address or the value pointed to by a register, use the BY,
WO, or DW operator.

• BY returns the contents of the byte pointed to.

• WO returns the contents of the word pointed to.

• DW returns the contents of the doubleword pointed to.

Follow the operator with a variable, register, or constant. If the BY, WO, or DW
operator is followed by a variable, then the environment watches the byte, word, or
doubleword at the address contained in the variable.

You can also use the context operator { } to display the contents of any location.

To display a Unicode string in the Watch window or the QuickWatch dialog box, use
the Sll format specifier. To display data bytes with Unicode characters in the Watch
window or the QuickWatch dialog box, use the mll format specifier.

Note You can apply formatting symbols to structures, arrays, pointers, and objects as
unexpanded variables only. If you expand the variable, the specified formatting affects all
members. You cannot apply formatting symbols to individual members.

Microsoft Developer Studio has auto expand capability for Microsoft Foundation Class library
classes. The string (or other information) between the braces ({}) is automatically expanded.

313

Visual C++ User's Guide

U sing the Variables Window

314

The Variables window provides quick access to variables that are important in the
program'scurrent context. The window includes three tabs:

• The Auto tab displays variables used in the current statement and the the previous
statement. It also displays return values when you step over or out of a function.

• The Locals tab displays the variables that are local to the· current function.

• The This tab displays the object pointed to by this.

Each tab contains a spreadsheet with fields for the variable name and value. The
debugger automatically fills in these fields.

You cannot add variables or expressions to the Variables window (use the Watch
window for that), but you can expand or collapse the variables shown using the tree
controls. You can expand an array, object, or structure variable in the Variables
window if it has a plus sign (+) box in the Name field. If an array, object, or structure
variable has a minus sign (-) box in the Name field, the variable is already fully
expanded. To expand or collapse the variable, click the + or :- box, as described in
"Spreadsheet Fields" on page 286.

If the variable is an object or a pointer to an object, the Variables window
automatically expands the variable to show the most important data at the top level.
For exaulple, suppose you had the following object:

CString String { ... }
char * m_pchData =0x7ffdf000 "abc"

int m_nDataLength=4
int m_nAllocLength=1244628

The Variables window would display the following:

String {"abc"}

If the variable is a pointer to a C++ object, the Variables window automatically
downcasts the pointer. The Variables window adds an extra member to the expanded
object. This extra member, which looks like another base class, indicates the derived
subclass. For example, if a variable declared as a pointer to CObject really points to
a CComboBox, the Variables window recognizes this fact and adds an extra member
so that you can access the CComboBox members.

In addition to the tabs, the Variables window has a Context box on the toolbar that
contains a copy of the current call stack in a drop-down list box. Use this list to
specify the current scope of the vfu-iables displayed. The Content box is part of a
toolbar, which you can hide using the right mouse button.

a

Chapter 17 Using the Debugger

~ To display the Variables window

1 From the View menu, choose Variables.

The Variables window appears.

2 Select the Auto tab, Locals tab, or This tab, according to the type of variables you
want to see.

When the program is paused at a breakpoint or between steps, you can change the
value of any non-const variable in your program. This gives you the flexibility to try
out changes and see their results in real time or to recover from some logic error and
continue.

The Variables window does not display variable type information. You can view type
information for a variable by using the window's property page.

~ To view type information for a variable

1 In the Variables window, select the Auto tab, the Locals tab, or the This tab.

2 Select the line containing the variable whose type you want to see.

3 Click the right mouse button in the Variables window, and choose Properties from
the pop-up menu.

-or-

From the Edit menu, choose Properties.

Although you cannot delete variables from the Variables window, you can edit their
values.

~ To modify the value of a variable

1 In the Variables window, select the Auto tab, Locals tab, or This tab.

2 Select the line containing the variable whose·type you want to modify.

3 If the variable is an array, object, or structure, use the + box to expand the view
until you see the value you want to modify.

4 Double-click the value, or use the TAB key to move the insertion point to the value
you want to modify.

5 Type the new value, and press ENTER.

Tip To change the value of a structure or an array (including strings), modify the individual
fields or elements. You cannot edit an entire array or structure at once.

You can use the Variables window to examine function return values as well as
variables.

315

Visual c++ User's Guide

316

~ To view the return value of a function

1 Step over or out of the function.

2 In the Variables window, select the Auto tab.

3 Click the Return Value icon, which appears in the Name column, as shown in
Figure 17.1 .

The function return value appears in the Auto tab. The Name column displays the
return value as Name Returned, where Name is the name of the function.

Figure 17.1 Return Value Icon in Name Column

Current scope of variables window.

Return value from function fun ..

You can tum off the display of return values.

~ To turn off the display of return values

1 From the Tools menu, select Options.

2 In the Options dialog box, select the Debug tab.

3 Under Variables Window, clear the Return Value check box.

4 Choose OK.

Limitations on the Variables Window
Some project settings and programming practices limit the ability of the Variables
window to display variables:

• The Auto ta.b uses syntax coloring to determine which variables to display. If you
tum off syntax coloring for a file, the Auto tab cannot display any variables for
that file. To tum syntax coloring back on, select a source window, choose
Properties from the Edit menu. and set Lammae:e to C/C++ in the Source
Wi~dows property page. . :ji ~ ~ .

• All three tabs use debugging information. If you build a section of code without
debugging information, the tabs cannot display variables for that code.

• The Variables window does not expand macros and cannot display information on
variables used within macros.

Chapter 17 Using the Debugger

Navigating From the Variables Window
You can navigate to a function's source code or disassembled object code from the
Context box in the Variables window. This procedure displays the function's source
code, if it is available, in a source window. If source code for the selected function is
not available, it displays the function's object code in the Disassembly window.

~ To navigate from the Variables window to a function's source or object code

• Select the function name from the Context drop-down list box in the Variables
window toolbar.

This procedure changes the view of the program displayed in the Variables window
and other debugger windows, but does not change the next line of execution or the
value stored in the program counter.

U sing the Call Stack Window
During a debug session, the Call Stack window displays the stack of currently active
function calls. When a function is called; it is pushed onto the stack. When the
function returns, it is popped off the stack.

The Call Stack window displays the currently executing function at the top of the
stack and older function calls below that. By default, the window also displays
parameter types and values for each function call. You can display or hide parameter
types and values using the Debug tab of the Options dialog box or the right mouse
button pop-up menu.

~ To display the Call Stack window

• From the View menu, choose Call Stack.

~ To view the call stack for a function

1 Place the insertion point in the function.

2 From the Debug menu, choose Run To Cursor to execute your program to the
location of the insertion point.

The Locals tab of the Variables window is updated automatically to display the
local variables for the function or procedure.

3 From the View menu, choose Call Stack.

The calls are listed in the calling order, with the current function (the most deeply
nested) at the top.

Tip To run the program to the return address, select the function in the Call Stack window,
and choose Run To Cursor from the Debug menu.

317

Visual C++ User's Guide

a Tip To set or remove a breakpoint at a function return address, select the function in the Call
Stack window, and choose the Insert/Remove Breakpoint tool bar button.

You can navigate to a function's source code or disassembled object code from the
Call Stack window. This procedure displays the function's source code, if it is
available, in a source window. If source code for the selected function is not
availabile, it displays the function's object code in the Disassembly window.

~ To navigate from the Call Stack window to a function's source or object code

• Double-click the function name in the Call Stack window.

-or-

Select the function name, and press ENTER.

This procedure changes the view of the program shown in the Variables window and
other debugger windows, but does not change the next line of execution or the value
stored in the program counter. •

Controlling Call Stack Display

a

By default, the Call Stack window displays parameter values and types for each
function. You can tum off the display of parameter values, types, or both using the
Debug tab in the Options dialog box or by using the right mouse button pop-up menu.
You cannot tum off the display of function names.

~ To change the call stack display

1 From the Tools menu, choose Options.

2 Select the Debug tab.

3 Under Call stack window, select the check boxes for Parameter Values or
Parameter Types, according to the information you want to display.

-or-

• In the Call Stack window, click the right mouse button, and from the pop-up
menu, choose Parameter Values or Parameter Types to toggle the display of that
information. .

Tip The Context box at the top of the Variables window contains a drop-down list of call
stack functions. If you select one of these functions, the debugger window views change
accordingly.

U sing the Registers Window

318

The Registers window displays the contents of the CPU registers, flags, and floating­
point stack. Using the Registers window, you can change the value of any register or
flag while the program is being debugged.

Chapter 17 U sing the Debugger

~ To display the Registers window

• From the View menu, choose Registers.

~ To change the value of a register

1 In the Registers window, use the TAB key or the mouse to move the insertion point
to the register value you want to change.

2 Type the new value.

3 Press ENTER.

Caution Changing register values (especially in the EIP and EBP registers) can affect
program execution. .

Table 17.5 lists the flags displayed in the Registers window and their set values for
Intel x86 processors.

Table 17.5 Register Window Flags

Flag Set

Overflow 0=1

Direction D=l

Interrupt 1=1

Sign S=l

Zero Z=l

Auxiliary carry A=l

Parity P=l

Carry C=l

~ To set or clear a flag

1 In the Registers window, use the TAB key or the mouse to move the insertion point
to the left of the value you want to change.

2 Type the new value.

3 Press ENTER.

U sing the Memory Window
Using the Memory window, you can view memory contents starting at any specified
address.

~ To display the Memory window

• From the View menu, choose Memory.

319

Visual C++ User's Guide

320

U sing the scroll bars in the Memory window, you can view any memory location in
the program's available address space. Using options on the Debug tab in the Options
dialog box, you can control the starting address, numeric display format, and number
of values displayed on each line.

By default, the Memory window displays numbers in decimal (base 10) format. If you
prefer, you can change the display to hexadecimal (base 16) format.

~ To change the Memory window display format

1 From the Tools menu, choose Options.

The Options. dialog box appears.

2 Select the Debug tab.

3 In the Format drop-down list box, select the format.

4 Choose OK.

Note To view Unicode in the Memory window, set the Format option to Wide Char. To display
data bytes with Unicode characters, select the Show Data Bytes check box also.

You can set the address for the Memory window display by using drag-and-drop, by
directly editing the memory address, or by choosing Go To from the Edit menu.

~ To view memory contents at a specified location using drag-and-drop

1 In any window, select a memory address or pointer variable containing a memory
address.

2 Drag the address or pointer to the Memory window, and drop it.

~ To view memory contents at a specified location by editing

1 Select the Memory window.

2 In the Address box, select the memory address.

3 Type the new memory. address and press ENTER.

The Memory window displays the contents of memory locations beginning at the
address specified in the Address box.

~ To view memory contents at a specified location using Go To

1 Select the Memory window.

2 From the Edit menu, choose Go To.

The Go To dialog box appears.

3 In the Go To What box, select Address.

4 In the Enter AddresslExpression box, type or paste an address.

5 Choose the Go To button.

Chapter 17 Using the Debugger

You can also specify a memory address for the Memory window in the Options dialog
box. You can type an expression for the memory location that changes dynamically as
the program runs (a "live expression").

~ To specify a live expression for the memory location

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Debug tab.

3 In the Address box, type an address expression.

You can type * p P t r, for example, to display memory contents starting at the
address pointed to by p P t r.

4 Select the Re-evaluate Expression check box.

5 Choose OK.

You can view some items more easily using live expressions. On an Intel-compatible
system, for example, you can examine the top of the stack by typing ESP as a live
expression. By specifying a pointer variable, you can use the Memory window to
follow the pointer as it increments through an array.

Using the Disassembly Window
By default, the Disassembly window displays disassembled code with source-code
annotations and symbols. You can change these display options using the Options
dialog box.

~ To change the Disassembly window display options

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Debug tab.

3 Under Disassembly Window, select the appropriate check box for the display you
want.

4 Choose OK.

The Disassembly window can be especially useful for debugging optimized code, as
well as source-code lines that contain multiple statements. Consider, for example, the
following line of code:

x=l; y=7; Z=3;

The source window treats each line of code as a unit. Using the source window, you
cannot step from one statement on a source-code line to the next, or set a breakpoint
on any statement other than the first.

321

Visual C++ User's Guide

322

The Disassembly window operates on assembly-language instructions instead of
source-code statements or lines. Using the Disassembly window, you can set a
breakpoint on any instruction. If you use the Step Into or Step Over command while
the Disassembly window has focus, the debugger steps through your program
instruction-by-instruction instead of line-by-line. View.ing and stepping through your·
code by assembly-language instructions can be especially useful when you are
debugging optimized code.

Using the Disassembly window, you can display the assembly code created for the
source code being debugged.

~ To display the Disassembly window

• From the View menu, choose Disassembly.

~ To switch between corresponding locations in the source and Disassembly windows

• In the source window, click the right mouse button, and choose Go To
Disassembly from the pop-up menu.

-or-

In the Disassembly window, click the right mouse button, and choose Go To
Source from the pop-up menu.

You can set the address at which the Disassembly window begins displaying code
using drag-and-drop or by choosing Go To from the Edit menu or the right mouse
button pop-up menu.

~ To view disassembly code at a specified location using drag-and-drop

1 In any window, select a memory address or pointer variable containing a memory
address.

2 Drag the address or pointer to the Disassembly window, . and drop it.

~ To view disassembly code at a specified location using the Go To command
1 Select the Disassembly window.

2 From the Edit menu, choose Go To.

The Go To dialog box appears.

3 In the Go To What box, select Address.

4 In the Enter Address Expression box, type or paste an address.

5 Choose the Go To button.

Chapter 17 U sing the Debugger

Debugging Methods and Strategies
Debugging Compiler and Linker Errors offers some suggestions for debugging
problems that stop you from building.

How Can I. .. ?, offers some suggestions for assorted situations you may encounter
while debugging.

Suggestions for debugging specific types of code are found in:

• Debugging Assertions

• Debugging Exceptions

• Debugging Threads

• Debugging DLLs

• Debugging Optimized Code

• Debugging OLE Applications

Some advanced debugging methods are found in:

• Debugging Remote Applications

• U sing I/O Redirection

Debugging Compiler and Linker Errors
The first step in debugging is to fix language syntax errors. The Output window
displays errors that prevent a program from being built and provides the filename,
line number, and error number. The Output window behaves like a source window;
you can copy and print information from the window. If the status bar is displayed, it
gives a summary of the current error.

If you don't understand an error message, move the insertion point to the error
number, and press the Fl KEY (IN THE DEFAULT KEYBOARD MAPPING) to display online
information about it.

~ To move through the list of errors

• In the Output window, double-click the error, or select the error and press ENTER.

-or-

• Click the right mouse button in the Output window, and choose Go To Error/Tag
from the pop-up menu.

-or-

• Press F4 (in the default keyboard mapping) to select the next error.

-or-

• Press SHIFT +F4 (in the default keyboard mapping) to select the preceding error.

323

Visual C++ User's Guide

As each error is selected in the Output window, the corresponding line containing
the error is selected in the source window.

You can move to any line number in a source file.

~ To move to a specific line

1 From the Edit menu, choose Go To.

The Go To dialog box appears.

2 In the Line Number box, type a line number.

3 Choose the Go To button.

If you type a line number greater than the last line in your source file, the editor
moves to the end of the file.

How Can I ... ?

324

This section provides suggestions on how to handle some common, and some not -so­
common, debugging situations.

~ My program runs fine in the Visual C++ environment, but when I run it standalone
with Windows, it produces an access violation. How can I debug this problem?

• Use Just-in-Time debugging. If you set the Just-in-Time debugging option before
you compile, you can run your program standalone until the access violation
occurs. Then, in the Access Violation dialog box, you can choose the Cancel
button to launch the debugger. For more information, see "Just-in-Time
Debugging" on page 293.

~ I'm using the Registers window to view a function's return value, but the register
contents are hard to read. How can I format the register contents?

• Use the Variables window, instead of the Registers window, to view return values.
The Auto tab on the Variables window formats and displays the function return
value for you. For more information, see "Using the Variables Window" on
page 314.

~ My program has a window-activation problem. Stepping through the program with
the debugger interferes with my ability to reproduce the problem, because my program
keeps losing focus. Is there any way to avoid this?

• If you have a second computer, use remote debugging. You can operate your
program on the remote computer while you run the debugger on the host. For
more information, see "Remote Debugging" on page 340.

Chapter 17 U sing the Debugger

~ I'm trying to debug a screen painting problem. To observe this problem, I have to
keep my program in the foreground, which means I don't have access to the debugger
windows. What can I do?

• Again, if you have a second computer, you can use remote debugging. With a two­
computer setup, you can watch the screen painting on the remote computer while
you operate the debugger on the host.

~ I'm using remote debugging, but performance seems to be slow. What can I do to
improve this?

• Don't open all the debugger windows. Updating all the windows slows remote
debugging down, so open only those that you need.

• If you're remote debugging on a Macintosh® or Power Macintosh®, avoid using
data breakpoints unless you really need them. These computers do not have
breakpoint registers, so data breakpoints must be implemented in software, which
reduces performance.

~ I want to look at a large byte buffer, but the Watch window is too cramped to view all
of it. What can I do?

• Use the Memory window to view large buffers, strings, and other data that do not
display well in the Watch or Variables window. For more information, see "Using
the Memory Window" on page 319.

~ I think that one of my pointers may be corrupting memory at address Ox00408000.
How can I find out what is happening there?

• Use the Memory window to view memory contents starting at that address. Set a
breakpoint on that memory address. For more information, see "Using the
Memory Window" on page 319 and "Quick Methods for Location Breakpoints" on
page 294.

~ My pointer, p t r, should be pointing to a specific memory block, but it's pointing
somewhere else. How can I find out where it's getting changed?

• Set a data breakpoint on p t r. This breakpoint causes the program to halt when the
address pointed to by pt r changes. If you .set the breakpoint on *pt r instead, the
breakpoint halts the program when data at the location pointed to by ptr changes.
For more information, see "QUick Methods for Data Breakpoints" on page 296.

~ I'm trying to debug some library object code in the Disassembly window, and I want
to see the contents of certain registers. How can I do this?

• Use the Registers window to view the contents of registers and flags or to add
registers (such as @EAX) to the Watch window. For more information, see "Using
the Register Window" on page 318.

325

Visual C++ User's Guide

326

~ When my program began drawing erratically, I used the Break command in the
Debug menu to halt the program. Unfortunately, I ended up in MFC. I'm pretty sure the
problem is in my code, notMFC. How can I get back to it?

• Use the Call Stack window to navigate to the function from which MFC was
called. For more information, see "Using the Call Stack Window" on page 317.

~ I've discovered that the wrong parameter value is being passed to one of my
functions. This function is called from a" over the place. How can I find out who's
passing it the wrong value?

• U sing the Breakpoints dialog box, set a location breakpoint at the beginning of the
function. Then choose the Condition button, and use the Breakpoints Condition
dialog box to enter an expression, such as Va r==3, where Va r is the name of the
function being passed the bad value, and 3 is the bad value passed to it.

Now, run the program again. The breakpoint causes the program to halt at the
beginning of the function when Va r has the value 3. You can then use the Call
Stack window to find the calling function and navigate to its source code. For
more information, see "Quick Methods for Location Breakpoints" on page 294 and
"U sing the Call Stack Window" on page 317 of this chapter.

~ My program produces an access violation. How can I debug this?

• Use the Call Stack window to work your way back up the call stack, looking for
corrupted data being passed as a parameter to a function. If that fails, try setting a
breakpoint at a point before the location where the access violation occurs. Check
to see if data is good at that point. If so, try stepping your way toward the location
where the access violation occured. If you can identify a single action, such as a
menu command, that led to the access violation, you can try another technique:
setting a breakpoint between the action (in this example, the menu command) and
the access violation. You can then look at the state of your program during the
moments leading up to the access violation. You can use a combination of these
techniques to work forward and backward until you have isolated the location
where the access violation occurred. For more information, see "Using the Call
Stack Window" on page 317 of this chapter.

~ How can I debug inline assembly code?

• Use the Disassembly window to view the assembly instructions. Use the Registers
window to view register contents. For more information, see "Using the
Disassembly Window" on page 321 and "Using the Register Window" on
",,,,no,,, ~ 1 Q ",of i-1-.;" ,...1-. ... ""'i-,... ...
}-' 6"" oJ.l.U V.I. uu~ VUUPLV.l.

~ I set a breakpoint at a line in my source code, but I'm actively editing the code as I
debug. When I rebuild the project, I get an error message telling me that the breakpoint
has moved. How can I stop this from happening?

• If possible, set the breakpoint at the beginning of the function, by specifying the
function name, instead of setting the breakpoint on a line number. Breakpoints on

Chapter 17 U sing the Debugger

source-code lines stay on the same line number. If you edit the code, changing the
number of lines, the breakpoint may no longer be on a line with a valid statement.
Breakpoints set at the beginning of the function remain with the function,
regardless of what source-code line the function begins on. For more information,
see "Quick Methods for Location Breakpoints" on page 294.

~ My program fails on a call to a certain function, CnvtV. The program probably calls
that function a couple hundred times before it fails. If I set a location breakpoint on
C n v tV, the program stops on every call to that function, and I don't want that. I don't
know what conditions cause the call to fail, so I can't set a conditional breakpoint. What
can I do?

• You can set a conditional breakpoint without specifying a condition. Set the Skip
Count field to a value so high that it will never be reached. In this case, since you
believe the function C n v t V is called a couple hundred times, set Skip Count to
1000 or more. Then, run the program and wait for it to fail. When it does, open
the Breakpoints dialog box and look at the list of breakpoints. The breakpoint you
set on C n v t V appears, followed by the skip count and number of iterations
remaining:

at "CnvtV(ParamList)" skip 1000 times (750 remaining)

You now know that the breakpoint was skipped 250 times before the function
failed. If you reset the breakpoint with a skip count of 250 and run the program
again, the program stops at the call to C n v t V that caused it to fail last time. For
more information, see "Quick Methods for Location Breakpoints" on page 294 of
this chapter.

Debugging Assertions
An assertion statement specifies a condition at some particular point in your
program. Visual C++ supports assertion statements based on the following constructs:

• The ANSI C/C++ assert function

• The C runtime library _ASSERT macro

• The Microsoft Foundation Class (MFC) ASSERTmacro

Programs that use the MFC library should use the MFC ASSERT macro. Programs
that use the runtime library should use the runtime _ASSERT macro. Other
programs should use the ANSI assert function.

327

Visual C++ User's Guide

328

Assertion statements compile only when _DEBUG is defined. When _DEBUG is not
defined, the compiler treats assertions as null statements. Therefore, assertion
statements have zero overhead in your final release program; you can use them
liberally in your code without affecting the performance of your release version.

Assertion statements are useful for catching logic errors. If you set an assertion on a
condi~ion that must be true according to the logic of your program, the assertion has
no effect unless a logic error occurs. For example, suppose you are writing a
simulation of gas molecules in a container, and the variable numMol s represents the
total number of molecules. Obviously, this number cannot be less than zero, so you
might include an MFC assertion statement like this:

ASSERT(numMols)- 0);

This statement does nothing if your program is operating correctly. If a logic error
has caused n umMo 1 s to be less than zero, however, the statement halts the execution
of your program and displays an MFC dialog box called Assertion Failed. This dialog
box has three buttons, with the functions described in the following table.

Choose this button To do this

Retry

Ignore

Abort

Debug the assertion or get help on asserts.

Ignore the assertion and continue running the
program.

Halt execution of the program and end the
debugging session.

When the debugger halts due to an MFC or C runtime library assertion, it navigates
to the point in the source file where the assertion occured, if the source is available.
The Debug tab of the Output window displays the assertion message that appeared in
the Assertion dialog box. If you want to keep a copy of the message for future
reference, you can copy it from the Output window to a text window using copy and
paste or drag-and-drop. The Output window may contain other error messages as
well. Examine these carefully; some may provide clues to the cause of the assertion
failure.

When you add assertions to your code, avoid writing assertions that have side effects.
For example:

ASSERT(numMols++) 0); -- Don't do this!

This assertion statement changes the value of n u mM 01 s. If you write assertion
statements that have side effects like this, the debug and release versions of your code
win produce different results, because the side effects occur only when _DEBUG is
defined. Be careful using assertion statements on library or system calls, which may
have side effects.

Chapter 17 Using the Debugger

Use assertion statements when you need to check the result of an operation.
Assertions are most valuable for testing operations whose results are not obvious from
quick visual inspection. Consider, for example, the following code, which updates the
variable i Mo 1 s based on the contents of the linked list pointed to by mo 1 s:

while (mols->type <> "H20")
{

}

iMols += mols->num;
mols = mols->next;

ASSERT(iMols<=numMols);

The number of molecules counted by i Mo 1 s must always be less than or equal to the
total number of molecules, n u mM 01 s. A visual inspection of this loop does not
guarantee that this must be the case, so an assertion statement is used after the loop to
test for that condition.

Another use of assertion statements is to test for error conditions. Assertion
statements are not a subsitute for error-handling code, however. The following
example shows an assertion statement that can lead to problems in the final release
code:

myErr = myGraphRoutine(a, b);
ASSERT(!myErr); -- Don't do this!

This code relies on the assertion statement to handle the error condition. As a result,
any error code returned by my G rap h Ro uti n e will be unhandled in the final release
code.

You can, however, use assertion statements to check for error conditions at a point in
your code where any errors should have been handled by preceding code. In the
following example, a graphic routine returns zero if it succeeds and an error code if
an error (such as running out of memory) occurs. You can use an MFC assertion
statement as follows:

myErr = myGraphRoutine(a, b);

/* Code to handle errors and
reset myErr if successful */

ASS E R T (! my Err) ;

If the error-handling code works properly, any error that occurs is handled, and
my Err is restored to a value of zero, indicating no error, before the assertion
statement is reached. The assertion succeeds, and control passes to the next
statement. However, if my Err has another value, the assertion fails, the program
halts, and the MFC Assertion Failed dialog box appears.

329

Visual C++ User's Guide

330

When an assertion fails, you must examine your program to determine the cause of
the failure. If the assertion statement and the cause of the failure occur close to one
another, debugging can be relatively straightforward. Sometimes, however, an
assertion failure may provide little or no clue as to where the cause is located. For
example, suppose your code contained the following assertion statement:

ASSERT(ialloc %50 == 0);

The program in this example allocates memory in blocks of 50 bytes. This assertion
tests to see that memory is allocated in multiples of the proper size. If the assertion
fails, you know that a memory leak exists in your program. Your next task, of course,
is to find out where.

To isolate the location where the memory leak occurs, you might add copies of this
assertion· statement to other parts of your program where memory is allocated.
Another alternative is to set a data breakpoint.

~ To find the locations where a condition fails

1 From the Edit menu, choose Breakpoints.

The Breakpoints dialog box appears.

2 Select the Data tab.

3 In the Enter The Expression To Be Evaluated text box, type the· negation of the
expression that caused the asertion failure.

In general, for ASSERT (anyExpression) , you can specify a data breakpoint as
! (anyExpression).

For example, if your program failed on the assertion:

ASSERT(ialloc %50 == 0);

In the Breakpoints dialog box, you would type:

!(ialloc %50 == 0)

4 Run your program again.

Execution halts when the condition specified in the data breakpoint becomes true.
This is the point where the condition in the assertion statement becomes false.

If you choose to use a data breakpoint instead of additional assertion statements,
remember that data breakpoints significantly slow program execution on Macintosh
and Power Macintosh platforms, which do not have breakpoint registers. Assertion
statements have minimal overhead on all platforms.

Another tool that is often useful for fInding the cause of an assertion failure is the
Call Stack window. Using the Call Stack window, you can examine previous
functions and look for problems that may have caused the failure.

Chapter 17 Using the Debugger

~ To navigate from the Call Stack window to a function's source or object code

• In the Call Stack window, double-click the function name.

-or-

Select the function name, and press ENTER.

On rare occasions, you might want to look at the assertion-handling code rather than
the code that caused the assertion to fail. You can use the Call Stack window for that
purpose as well.

Debugging Exceptions
The exception-handling facility in C++ allows programs to handle abnormal and
unexpected situations in an orderly, structured manner. When a function detects an
exception that must be handled, it notifies the handler using throw.· The exception
handler receives the notification using catch. If no catch handler exists for an
exception, the program typically calls terminateO. If you are debugging a program in
Visual C++, however, the debugger notifies you that the exception was not caught.

C programs can use structured exception handling, a mechanism based on the
Win32-specific _try and _except macros rather throw and catch. For information
on writing code that uses exception handling or structured exception handling, see
"C++ Exception Handling and Structured Exception Handling" in Programming
Techniques.

When you are debugging in Visual C++, you can use the Exceptions dialog box to
specify how the debugger is to handle each specific type of exception. In this dialog
box, you can set one of two options - Stop Always or Stop If Not Handled -for
each exception type that can occur in your program.

If you select Stop If Not Handled for an exception, the debugger writes a message to
the Output window when an exception occurs, but does not halt the program and
notify you with a dialog box unless the exception handler fails to handle the
exception. At that point, it is too late to fix the problem or examine the source code to
see where the exception occured. (The program is already past the point where the
exception occurred and is executing in the exception handler.)

If you select Stop Always for an exception, the debugger stops the program and
notifies you immediately when an exception occurs, before any handler code is
invoked. When this happens, you can look at the source window to see where the
exception occured. You can use the Watch and Variables windows and QuickWatch to
see current variable contents. In some cases, you can fix the exception yourself by
modifying the variable contents. When you continue the program after the exception,
a dialog box appears asking if you want to pass the exception back to the program's
exception handlers. If you fixed the problem, choose the No button. Otherwise,
choose the Yes button, and the exception handler is invoked. If the exception handler

331

Visual C++ User's Guide

332

cannot fix the problem, the debugger halts the program and notifies you again, just as
if you had selected Stop If Not Handled.

Note The Stop Always option depends on the debug registers in Intel and Intel-compatible
processors. As a result, this option is not available when you are debugging a program on
Macintosh (including Power Macintosh) hardware.

The Exceptions list box in the Exceptions dialog box contains a default list of system
exceptions. You can remove system exceptions or add exceptions of your own. This
information is saved in the project.MDP file, which persists with the project. If an
exception is not included in this list, the debugger treats it as a Stop If Not Handled
exception.

Each exception has -a unique number. System exceptions are defined in WINBASE.H
with the prefix EXCEPTION (for example, EXCEPTION_ACCESS_ VIOLATION).

~ To add a new exception to the Exceptions list box

1 From the Debug menu, choose Exceptions.

The Exceptions dialog box appears.

2 In the Number box, type the exception number for the user-defined exception.

3 Optionally, type the name of the exception in the Name box.

4 Optionally, under Action, select the Stop Always or Stop If Not Handled option
button.

S Choose the Add button.

6 Choose OK;

You can change any parameter associated with an exception.

~ To change an exception parameter

1 From the Debug menu, choose Exceptions.

The Exceptions dialog box appears.

2 In the Exceptions list box, select the exception.

3 Change any parameter, such as the name or the action.

4 Choose the Change button.

S Choose OK.

You can remove any exception from the Exceptions list box.

~ To remove an exception from the Exceptions list box

1 From the Debug menu, choose Exceptions.

The Exceptions dialog box appears.

2 In the Exceptions list box, select the exception.

Chapter 17 Using the Debugger

3 Choose the Remove button.

When you delete an exception from the Exceptions list box, its action reverts to
Stop If Not Handled.

4 Choose OK.

If you wish to restore system exceptions to the list, choose the Reset button.

~ To restore all default system exceptions to the Exceptions list

1 From the Debug menu, choose Exceptions.

The Exceptions dialog box appears.

2 Choose the Reset button.

All default system exceptions are restored to .the Exceptions list box without
disturbing any of the user-defined exceptions that have been added.

3 Choose OK.

Debugging Threads
You can use the Microsoft Developer Studio debugger to debug multithreaded
applications.

A thread is a path of execution within a process. A process is an executing instance of
an application. Launching Notepad, for example, starts a process that has a single
thread. The startup code passes this primary thread to the operating system in the
form of a function address (usually the address of main or WinMain). When the
primary thread'terminates, so does the process.

You can create additional threads in your application code. These threads can handle
background or maintenance tasks that proceed without the user's attention.

When debugging a multithreaded program, you can select a single thread using the
Threads dialog box.

~ To display the Threads dialog box

• From the Debug menu, choose Threads.

The Threads dialog box displays a list of all threads that exist in the application.
U sing this list, you can set focus on, suspend, or resume a thread.

~ To set focus on a thread

1 In the Threads dialog box, select a thread from the Thread list.

2 Choose the Set Focus button.

333

Visual C++ User's Guide

~ To suspend a thread

1 In the Threads dialog box, select a thread from the Thread list.

2 Choose the Suspend button.

~ To resume execution of a thread

1 In the Threads dialog box, select a thread from the Thread list.

2 Choose the Resume button.

The Thread list in the Threads dialog box displays status information on each thread
as follows:

The Thread ID column contains the DWORD that uniquely identifies each thread.
When you set focus on a thread, an asterisk (*) appears next to its thread ID.

The Suspend column contains the suspension number of each thread. This number,
which can vary from 0 through 127, is incremented each time you suspend the thread
and decremented each time you resume the thread.

The Priority column contains the thread priority. A thread priority can be any of the
following: Idle, Lowest, Below Normal, Normal, Above Normal, Highest, or Time
Critical.

The Location column contains the function name or address associated with the
thread. You can choose to see either the function name or address.

~ To view the function name associated with each thread

• In the Threads dialog box, select Name.

~ To view the address associated with each thread

• In the Threads dialog box, select Address.

If Name is selected, the current function name is displayed if it is known by the
debugger. If no function is known, the address is displayed. If Address is selected, the
current address is displayed.

Note If you are displaying thread locations by Name instead of by Address, each thread is
typically shown with the function name in which its EIP currently resides. However, if the EIP is
in a location where Developer Studio has no symbols (for example, in the NT kernel), then
Visual C++ displays, in brackets, the name of the topmost function on the stack for which
Developer Studio has symbols.

Debugging DLLs

134

You can debug a dynamic-link library (DLL) in one of two ways.

If you have the source for both the DLL and the calling program, you can open the
project for the calling executable and debug the DLL from there. If you load a DLL

Chapter 17 U sing the Debugger

dynamically, you must specify it in the Additional DLLs category of the Debug tab in
the Project Settings dialog box.

If you have the source for the DLL only, you can open the project that builds the
DLL. Use the Debug tab in the Project Settings dialog box to specify the executable
that calls the DLL.

~ To debug a Dll using the project for the executable

1 From the Build menu, choose Settings.

The Project Settings dialog box appears.

2 Select the Debug tab.

3 In the Category drop-down list box, select General.

4 In the Program Arguments text box, type any command-line arguments required
by the executable.

5 In the Category drop-down list box, select Additional DLLs.

6 In the Local Name column, type the names of DLLs to debug.

If you are debugging remotely, the Remote Name column appears. In this column,
type the complete path. for the remote module to map to the local module name.

7 In the Preload column, select the check box if you want to load the module before
debugging begins.

8 Choose OK to store the information in your project.

9 From the Build menu, choose Go to start the debugger.

You can set breakpoints in the DLL or the calling program. You can open a source
file for the DLL and set breakpoints in that file, even though it is not a part of the
executable's project.

~ To debug a Dll using the project for the Dll
1 From the Build menu, choose Settings.

The Project Settings dialog box appears.

2. Select the Debug tab.

3 In the Category drop-down list box, select General.

4 In the Executable For Debug Session text box, type the name of the executable that
calls the DLL.

5 In the Category list box, select Additional DLLs.

6 In the Local Module Name column, type the name of the DLLs you want to debug.

7 Choose OK to store the information in your project.

335

Visual C++ User's Guide

8 Set breakpoints as required in your DLL source files or on function symbols in the
DLL.

9 From the Build menu, choose Go to start the debugger.

~ To debug a DLL created with an external project

1 From the Build menu, choose Settings.

The Project Settings dialog box appears.

2 Select the Debu~ tab.

3 In the Category drop-down list box, select General.

4 In the Executable For Debug Session text box, type the name of the DLL that your
external makefile builds.

5 Choose OK to store the information in your project.

6 Build a debug version of the DLL with symbolic debugging information, if you
don't already have one.

7 Follow one of the two procedures immediately preceding this one to debug the
DLL.

Debugging Optimized Code

336

To create more efficient code, the compiler can optimize, or reposition and
reorganize, instructions derived from your source code. Because of optimization, the
debugger cannot always identify the source code corresponding to a set of
instructions. This makes it more difficult to debug optimized code. This section
describes techniques for debugging optimized code.

If possible, try to debug your code without optimization.

~ To prevent the compiler from optimizing code

• When you create a new project, select the Win32 Debug target. Build and debug
the Debug target until you are ready to build a Win32 Release target. The compiler
does not optimize the Debug target.

-or-

• Use the IOd compiler option on the command line.

-or-

1 From the Build menu~ choose Settings.

The Project Settings dialog box appears.

2 Select the C/C++ tab.

3 In the Optimizations drop-down list box, select Disable (Debug).

You can enable optimizations after you finish debugging.

Chapter 17 Using the Debugger

Some bugs affect optimized code but do not affect unoptimized code. If you must
debug optimized code, use the following techniques:

• Use the /Zi compiler option to get maximum symbolic information for your
program.

• Use the Disassembly and Registers windows. Set breakpoints at the appropriate
locations using the Disassembly window.

To see why the Disassembly window is useful, consider the following example:

for (x=0; x<10; x++)

Suppose you set a breakpoint at this line. You might expect the breakpoint to be hit
10 times. But if this code is optimized, the breakpoint is only hit once, because the
compiler recognizes that the first instruction associated with this line;which assigns
the value of 0 to x, only needs to execute once. The compiler moves this instruction
out of the loop. If you set a breakpoint on this source-code line, the debugger sets the
breakpoint on the first instruction, which only executes once.

The instructions that compare and increment x remain inside the loop. To set a
breakpoint on these instructions, use the Disassembly window. By viewing the object
code the source-code line creates, you can set a breakpoint at the approriate
instruction. You can set a breakpoint at the location where the condition is checked or
the variable is incremented. You can use the Step Into or Step Over commands in the
Disassembly window to step by assembly instruction, which allows greater control
than stepping by source-code line.

Debugging an OLE Application
The Microsoft Developer Studio debugger supports debugging OLE client and server
applications. When you are debugging an application that steps into an OLE remote
procedure call (RPC), a second instance of the debugger appears. The second instance
of the debugger handles the OLE server that you are stepping into· through the RPC.
It opens the source for the server code you have stepped into, if it is available. If the
source for the server code is not available, the disassembled object code appears in the
Disassembly window. You can use all Developer Studio debugging facilities to debug
your OLE application.

~ To debug an OLE client or server application

1 Open the project for the OLE application, and build a version of the OLE
application with symbolic debugging information.

2 From the Tools menu, choose Options.

The Options dialog box appears.

3 Select the Debug tab.

337

Visual C++ User's Guide

4 Select the OLE RPC Debugging check box.

Note With Windows NT, you must have administrator privileges to select the OLE RPe
Debugging check box.

5 Choose OK.

6 Set breakpoints at the points in the source files for your OLE application where
you want to determine the state of the application.

7 From the Debug menu, choose Go to start the debugger.

Debugging Remote Applications

338

You can use Microsoft Developer Studio to debug programs running remotely on
Intel, Macintosh, and Power Macintosh platforms. During remote debugging, the
host computer controls debugging from a small remote monitor program on the
remote (target) computer. The host computer communicates with the remote
computer and sends debug commands through a serial or network connection.

There are three stages to remote debugging:

• Setting up the remote monitor

• Connecting the host and target computers

• Debugging the program

Tip To improve the speed of remote debugging, close any unneeded debugger windows to
minimize the amount of information that must be sent across the connection and minimize the
use of data breakpoints.

Setting up the Remote Debug Monitor
The remote debug monitor is a small program on the target computer that
communicates with the debugger and controls the execution of the program you are
debugging.

~ To install the remote debug monitor

• On a Windows 95 or NT computer, the remote debug monitor consists of the
following files: MSVCMON.EXE, MSVCRT40.DLL, TLNOCOM.DLL,
TLNOT.DLL, and DMNO.DLL. Copy these files to the remote computer.

• On a Win32s computer, the remote debug monitor consists of MSVCMON.EXE,
TLW3COM.DLL~ and DMW~"DT L, These files are installed automatically during
setup.

• On a Macintosh, the remote monitor is a control panel, called VC++ Debug
Monitor, installed automatically by the Visual C++ for Macintosh Setup program.

Chapter 17 Using the Debugger

• On a Power Macintosh, the remote debugger is an application, called VC++
PowerMac Remote Monitor, installed automatically by the Visual C++ for
Macintosh Setup program. Setup also installs the following files: VC++ Power
Macintosh File Utility, VC++ Power Macintosh ADSP Transport, VC++ Power
Macintosh TCP/IP Transport, and VC++ Power Macintosh Serial Transport.

Connecting the Host and Target Machines
Once remote debugging is enabled, you must specify the type of connection between
the host and target computers. The remote platform type determines the connections
available. For Intel platforms, serial and TCP/IP connections are available. For
Macintosh and Power Macintosh platforms, serial, TCP/lP, and AppleTalk
connections are available. The AppleTalk connection is available only if the host is
running Windows NT.

~ To configure a. remote connection on the host computer

1 From the Tools menu, choose Remote Connection.

The Remote Connection dialog box appears.

2 In the Platform drop-down. list box, select the appropriate platform.

3 In the Connection drop-down list box, select the appropriate connection type.

4 Choose the Settings button.

The appropriate settings dialog box appears -the Serial Communication Settings
dialog box for a serial connection, the Network (TCP/lP) Settings dialog box for a
TCP/IP network connection, or the Network (AppleTalk) Settings dialog box for
an AppleTalk network connection.

S Specify the appropriate communication settings.

For remote debugging via an AppleTalk or TCP/IP network, the settings you must
specify include a password, which must match the password set on the target
computer. For TCP/IP debugging when the remote computer is a Macintosh or
Power Macintosh, be sure to specify the TCP/IP address instead of the computer
name.

6 Choose OK.

You must also configure the remote computer at this time, if you haven't done so
previously.

~ To configure a remote connection on the remote computer (Macintosh)

1 From the Apple menu, choose the Control Panels folder.

2 In the Control Panels folder, double-click to launch the VC++ Debug Monitor
control panel.

3 In the Connection list box, select Serial, Network (AppleTalk), or Network
TCP/IP.

339

Visual C++ User's Guide

340

4 Choose the Settings button.

The appropriate settings dialog box appears. For network debugging, this is where
you set the password.

5 Specify the appropriate communication settings.

6 Choose OK.

~ To configure a remote connection on the remote computer (Power Macintosh)

1 Double-c1ick the VC++ PowerMac Remote Monitor application icon.

2 In the Connection list box, select Serial, Network (AppleTalk), or Network
TCP/IP.

3 Choose the Settings button.

The appropriate settings dialog box appears. For network debugging, this is where
you set the password.

4 Specify the appropriate communication settings.

5 Choose OK.

Note If the Macintosh or Power Macintosh fails when you try to change a setting in the debug
monitor, the preferences file (VC++ Debug Preferences) may have become corrupted. Delete
VC++ Debug Preferences (under Preferences in the System Folder), and restart the computer.

~ To configure a remote connection on the remote computer (Windows 95 or
Windows NT)

1 Launch MSVCMON.EXE.

2 In the Connection list box, select Serial or Network TCPjlP.

The appropriate. settings dialog box appears.

3 Specify the appropriate communication settings.

4 Choose OK.

Remote Debugging
After you have configured the connection on both ends, you can begin remote
debugging.

~ To begin remote debugging

1 From the Build menu, choose Settings.

The Project Settings dialug bux appears.

2 Select the Debug tab.

3 Verify that the Remote Executable Path And File Name text box contains the
correct full-path entry.

4 Choose OK.

Chapter 17 U sing the Debugger

5 Start the remote debug monitor on the remote computer, if it is not already started.

6 From the Build menu, choose Go, Step Into, or Run To Cursor to start the
debugger.

Note The remote computer must remain operational while debugging. If you are using a
Macintosh Powerbook, do not choose the Sleep button, choose the Sleep menu command, or
close the Powerbook lid while debugging.

U sing I/O Redirection
You can use input/output (I/O) redirection while debugging in Visual C++. The
debugger supports I/O redirection in the same manner as Windows NT and Windows
95.

~ To set input/output redirection

1 From the Build menu, choose Settings.

The Project Settings dialog box appears.

2 Select the Debug tab.

3 In the Program Arguments text box, specify one or more I/O redirection
commands from the following table.

4 Set any other debug options that you want.

The table below lists the format and meaning of the available I/O redirection
commands. You can combine I/O redirection commands in any order.

Command

<file

>file

»file

2>file

2»file

2>&1

1>&2

Action

Reads stdin from file

Sends stdout to file

Appends stdout to file

Sends stderr to file

Appends stderr to file

Sends stderr (2) output to same location as stdout (1)

Sends stdout (1) output to same location as stderr (2)

Note You cannot set redirection commands from the command line of Microsoft Developer
Studio.

341

C HAP T E R 1 8

Profiling Code

The profiler is a powerful analysis tool that you can use to examine the run-time
behavior of your programs. By using the information given by the profiler, you can
find out which sections of your code are working efficiently and which need to be
examined more carefully. The profiler can also give you diagnostic information that
shows areas of code that are not being executed.

Because profiling is a tuning process, you should use the profiler to make your
programs run better, not to find bugs. Once your program is fairly stable, you should
start profiling to find out where to devote your attention to optimize your code. Use
the profiler to determine whether an algorithm is effective, a function is being called
frequently (if at all), or a piece of code is being covered by software testing
procedures.

The profiler is nm from within Developer Studio, but can also be run from the
command line. For information on using the profiler from the command line, see
Chapter 27, "Profiler Reference." Chapter 27 includes descriptions of the PREP,
PROFILE, and PLIST command-line tools and the profiler batch files. To learn more
about profiling, see Chapter 12, "Advanced Profiling," in Programming Techniques.
For information on profiling your applications on Win32s, see "Profiling Under
Win32s," later in this chapter.

The following topics are covered:

• Setting up the pro filer

• Building code for profiling

• Running the profiler

• Types of profiling

• Selective profiling

• Other pro filer features

• Profiling under Win32s®

343

Visual C++ User's Guide

Setting Up the Profiler
The profiler uses the INIT environment variable to find TOOLS.INI, which contains
information used by the profiler. Typically, the Setup program creates TOOLS.INI
and sets INIT for you. If not, use the System icon in the Control Panel to set this
variable.

For information on using TOOLS.INI to narrow profiling regions, see "Modifying
TOOLS.INI" on page 350.

Building Code for Profiling

344

Before using the profiler, you must build the current project with profiling enabled
(equivalent to LINK /PROFILE). If you want to do line profiling, you also need to
include debugging information.

Note Selecting the Enable Profiling option turns off incremental linking. To re-enable
incremental linking, clear the Enable Profiling option described below.

~ To build your project for profiling

1 From the Build menu, choose Settings.

The Project Settings dialog box appears.

2 Select the Link tab.

3 In the Category drop-down list box, select General.

4 Select the Enable Profiling check box. This setting also enables map (.MAP) file
generation.

S Select the Generate Debug Info check box.

6 Select the C/C++ tab.

7 In the Category drop-down list box, select General.

8 In the Debug Info drop-down list box, select Program Database or Line Numbers
Only.

9 Choose the OK button.

10 From the Build menu, choose Build projectname.exe.

When the build is complete, the project is ready to be profiled.

Note If you are function profiling, the profiler ignores debug information, so you can skip
steps 5 through 8.

Chapter 18 Profiling Code

Running the Profiler
~ To run the profiler

1 From the Tools menu, choose Profile.

The Profile dialog box appears, as shown in Figure 18.1.

2 In the Profile Type box, select one of the following radio buttons:

• Function Timing

• Function Coverage

• Line Coverage

3 Choose the OK button.

Figure 18.1 Profile Dialog Box

Note If you haven't built your current project with profiling enabled, an error message lets you
know that you need to rebuild your project. See "Building Code for Profiling" for more
information.

From the Profile dialog box, you can also:

• Merge multiple profiling sessions

• Use Custom Settings to run a profiler batch file and perform other functions,
including:

• Function Counting

• Line Counting

• Specify additional profiler options through Advanced Settings

Types of Profiling
The profiler can analyze the execution of your code with two levels of detail: function
or line. Function profiling is good for detecting inefficient code and is faster than line
profiling, because there is less information to collect. Line profiling can be useful for
checking the validity of an algorithm, because it shows how many times each line is

345

Visual C++ User's Guide

executed in response to certain input data, and you can see which lines aren't
executed at all.

In many cases, you will want to profile only part of your project, such as a single
function or library. To learn how to specify when to start and stop profiling certain
areas, see "Selective Profiling," later in this chapter.

Function Profiling

346

The profiler provides three ways to profile by function:

• Function timing lists time spent in functions together with "hit count" - the
number of times the function was called.

• Function counting lists only hit counts, but it is faster than function timing.

• Function coverage lists functions that are or are not executed.

Debugging information is not required for function timing, function counting, or
function coverage. The profiler reads the project's .MAP file to match addresses with
function names. It also creates a modified executable module and saves it in a
temporary file with an ._XE or ._LL extension. This modified file contains thunks
(substitutions for function calls), enabling the profiler to count and time the
functions.

Caution With function timing, function counting, or function coverage, the function calls go
through thunks for the profiler to record all the relevant information, which requires modification
of the stack of the original executable (.EXE) file. As a result, it is not possible to profile
functions that modify the stack themselves.

For example, the function AfxDispatchCall in the Microsoft Foundation Class
dynamic-link library (.DLL) cannot be profiled, because it modifies the stack.
However, the rest of the application or the .DLL can be profiled by excluding the
object module that contains this offending function. (PREP automatically excludes
the object module that defines AfxDispatchCall, olecall.obj.) The module that
contains the offending function can be identified using the .MAP file (see "Generate
Mapfile" on page 419 of Chapter 21, "Setting Linker Options"). For more
information on how to exclude modules, see the /EXC option of PREP on page 594 of
Chapter 27, "Profiler Reference."

Function Timing
The Function Timing option in the Profile dialog box profiles the current project,
recording how many times each function was called (hit count) as well as how much
time was spent in each function and called functions.

Chapter 18 Profiling Code

Here is a sample of the data provided by function timing.

Func Func+Child
Ti me % Ti me % Hi t Count

2.606 48.1 2.606 48.1 2

Function Counting

Function

_SetCursor@4
user32.def)

The Function Counting option in the Profile dialog box records how many times each
function was called (hit count). To start a function counting profile run, use a custom
batch file that specifies the source module and lines to profile.

1 From the Tools menu, choose Profile. The Profile dialog box appears.

2 In the Profile Type box, select the Custom radio button.

3 In the Custom Settings box, select the FCOUNT.BAT batch file (usually found in
\MSDEV\BIN).

Function counting is similar to function timing, but only hit counts (greater than
zero) are recorded, so profiled program execution is slightly faster. Here is a sample
output line with column headings:

Hi t Count % Functi on

1 25.0 LoadCursorA@8(user32.def)

Function Coverage
The Function Coverage option in the Profile dialog box profiles the current project,
recording whether a function was called.

Function coverage profiling is useful for determining which sections of your code are
not being executed. The profiler lists all profiled functions, with an asterisk (*)
marking those that were executed. The profiling overheatl for function coverage
matches the overhead for function counting. Here is a sample function coverage
report:

Covered Function

_Initlnstance (generic.obj)
_LoadAcceleratorsA@8 (user32.def)

* _LoadCursorA@8 (user32.def)
_LoadlconA@8 (user32.def)
_SendMessageA@16 (user32.def)

* _SetCursor@4 (user32.def)
_SetDlgltemTextA@12 (user32.def)

347

Visual c++ User's Guide

Line Profiling

348

With the profiler's two line profiling options, you can see which source lines are
being executed.

• Line counting shows you how many times each line was executed.

• Line coverage shows you which lines were executed at least once.

Line profiling uses debugging information in your .EXE file to trigger the profiler, so
it does not need a .MAP file.

Line Counting
The Line Counting option in the Profile dialog box records how many times each line
was called (hit count). To start a line count profile, use a custom batch file that
specifies the source module and the lines to profile.

~ To profile by line counting

1 From the Tools menu, choose Profile. The Profile dialog box appears.

2 In the Profile Type box, select the Custom radio button.

3 In the Custom Settings box, type in the LCOUNT.BAT batch file (usually found in
\MSDEV\BIN).

4 Choose the OK button.

Here is a sample of the output of a line counting profile run:

Hit
Line count %

1 :
2 :
3:
4:

Source

II test.c

#include <windows.h>

5: void WasteTime(HANDLE hInstance. HWND hWnd)
6 : 1 0.0 {
7 : LONG lCount. 1 X;
8: HCURSOR hOldCursor;
9 : 1 0.0 hOldCursor = SetCursor(LoadCursor(NULL.

IDC_WAIT»;
10: 1 0.0 for(lCount = 0; lCount < 1000L; lCount++)
11 : 1000 49.9 lX = 57L;
12: 1000 49.9 }
13: 1 0.0 SetCursor(hOldCursor);
14: 1 0.0 }

Note that all included source lines are printed, even if they are not executed.

Line counting profiling is very slow because the profiler inserts a debugging
breakpoint for every source code line, and these breakpoints remain for the duration

{

Chapter 18 Profiling Code

of the profile session. To speed up profiling, reduce the number of lines selected for
profiling. For more information, see "Selective Profiling," later in this chapter.

Line Coverage
The Line Coverage option in the Profile dialog box profiles the current project,
recording whether a line was executed.

Line coverage profiling is useful for determining which sections of your code are not
being executed. The profiler lists all profiled lines, with an asterisk (*) marking those
that were executed. The profiling overhead for line coverage is lower than for line
counting, because the profiler only needs to stop at a line once. Here is a sample line
coverage report:

Line Covered Source

1 :
2 :
3 :
4:
5 :
6: *
7 :
8:
9 : *

10: *
11 : *
12: *
13: *
14:
15:
16: *
17 : *

II waste.c

#include <windows.h>

void WasteTime(HANDLE hlnstance, HWND hWnd)
{

}

LONG 1 Count, 1 X ;
HCURSOR hOldCursor;
hOldCursor = SetCursor(LoadCursor(NULL, IDC_WAIT»;
for(lCount = 0; lCount < 1000L; lCount++) {

lX = 57L;
}
if(lCount == 0) {

lCount = 1; II should never execute
}
SetCursor(hOldCursor);

Note that all included source lines are printed, even if they are not executed.

Line coverage profiling is much faster than line counting profiling, because the
profiler can remove the inserted breakpoints when those lines are first executed.

Selective Profiling
It usually doesn't make much sense to profile an entire program because in most
applications for Windows, the majority of the application's time is spent waiting for
messages. Often, only one section of a program, such as repagination, might be
performing poorly. Narrowing the region of code being profiled can speed up the
execution of profiler sessions.

349

Visual C++ User's Guide

To narrow the area being profiled, see the following sections:

• Modifying TOOLS.INI

• Specifying Functions to Profile

• Specifying Lines to Profile

• Choosing Starting Functions for Profiling

Modifying TOOLS.INI
When setting up the profiler, the Setup program creates a TOOLS.INI file in the
install directory (\MSDEV by default). The INIT environment variable should point
to the directory containing TOOLS.INI.

The [profi 1 erJ section of TOOLS.INI specifies libraries and object (.OBJ) files for
the profiler to ignore. By default, TOOLS.INI excludes the Win32 libraries, Microsoft
Foundation Class (MFC) libraries, and C run-time libraries.

The following lines (taken from the default TOOLS.INI) exclude the common dialog
and graphics device interface (ODI) libr~es from profiling:

[profilerJ
exclude:comdlg32.1ib
exclude:gdi32.1ib

Specifying Functions to Profile
By default, all functions in all modules are profiled, except those listed in the
[profi 1 erJ section of TOOLS.INI. You can exclude and include functions from
profiling by specifying options in the Advanced Settings text box of the Profile dialog
box. For example, to exclude all functions in MYOBJ.OBJ except the My Fun c
function, use these options:

IEXC MYOBJ.OBJ IINC MyFunc

Note Do not insert spaces in the text following liNG.

For more information on excluding and including functions, see the list of options for
PREP in Chapter 27, "Profiler Reference," on page 594.

Specifying Lines to Profile

350

By default, all lines in all modules are profiled, except those listed in the
[pro f i 1 e r J section of TOOLS .IN!. You can exclude and include areas of code from
profiling by specifying options in the Advanced Settings text box of the Profile dialog
box. For example, to include all lines in the TEST module, specify the .OBJ filename
with these options:

IEXCALL IINC test.obj

Chapter 18 Profiling Code

If you need specific lines, specify the source module with line numbers, as shown
below:

IEXCALL IINC test.c(5-14)

Note Do not insert spaces in the text following IINC.

For more information on excluding and including lines, see the list of options for
PREP in Chapter 27, "Pro~iler Reference," on page 594.

Choosing Starting Functions for Profiling
With the /SF option you can profile only a selected function and the functions it calls,
so you can easily isolate a routine and its children for analysis.

To profile only My Fun c and the functions it calls, type the following in the Advanced
Settings text box of the Profile dialog box:

ISF MyFunc

U sing function selection can give you more useful results than function
exclusion/inclusion, but function selection can be slower.

Note When you specify a C++ function name to the profiler, you must provide its decorated
name. The easiest way to get the decorated name is to look it up in the project's .MAP file. For
more information on C++ decorated names, see Appendix A, Decorated Names.

Other Profiler Features
Several other profiler features can be accessed from the Profile dialog box. With these
features, you can perform advanced operations such as:

• Merging profiler output

• Running a custom batch file

• Advanced profiler settings

Merging Profiler Output
The Merge option in the Profile dialog box starts another profiler· run of the same
type as the most recent profiler run. The results of the current profile session are
merged with those of the previous session, and the Profile tab of the Output window
shows the results of the merge.

With this option, you can obtain more accurate results by combining profiling
information from several sessions into a composite report.

For more information on merging profiler output, see "Combining Profile Sessions"
in Chapter 12 of Programming Techniques.

351

Visual C++ User's Guide

Running a Custom Batch File
When a batch file is executed using the Custom option in the Profile dialog box,
Developer Studio substitutes the project's program name for the % 1 parameter.

~ To specify your program's command-line arguments

1 From the Build menu choose Settings.

The Project Settings dialog box appears.

2 Select the Debug tab and type the arguments in the Program Arguments text box.

For more information on creating and running profiler batch files, see "Profiler Batch
Processing" in Chapter 27, "Profiler Reference," on page 591.

Advanced Profiler Settings
With the Advanced Settings text box in the Profile dialog box, you can specify
additional command-line options for PREP Phase I.

For more information, see PREP in Chapter 27, "Profiler Reference," on page 594.

Profiling Under Win32s
When developing an application for Win32s®, you may find that your code performs
differently than under Windows NT. To help optimize your code for Win32s, profile.it
using PROFW32S, a special version of the profiler that runs under Win32s.

Installing the Win32s Profiler
The Win32s Setup program (SETUP.EXE) installs all the necessary profiler files for
Win32s and correctly configures the profiler for your selected environment.

If you have already installed Win32s but did not choose to install the profiler at that
time, you can run the Setup program again and install just the profiler components.

Win32s Profiling Procedure

352

The Developer Studio Profile dialog box is not supported under Win32s. Instead, run
PREP and PLIST directly from the command line on the host (Windows NT) system,
then run the Win32s profiler, PROFW32S, from the Program Manager or File
Manager on the Win32s target system.

For more information on profiling from the command line, see Chapter 27, "Profiler
Reference. ~~

C HAP T E R 1 9

Using Spy++

Spy++ (SPYXX.EXE) is a Win32-based utility that gives you a graphical view of the
system's processes, threads, windows, and window messages. With Spy++, you can:

• Display a graphical tree of relationships among system objects, including
processes, threads, and windows.

• Search for specified windows,' threads, processes, or messages.

• View the properties of selected windows, threads, processes, or messages.

• Select a window, thread, process, or message directly from the view.

• Use the Finder Tool to select a window by mouse positioning.

• Set complex message log selection parameters.

Tip While using Spy++, in many instances you can click the right mouse button to display a
pop-up menu of frequently used commands. The commands available depend on where the
pointer is. For example, if you click while pointing at a window, and the selected window is
visible, the pop-up Highlight menu item will cause the border of the selected window to flash
so that the window can be easily located on the screen.

Working In Spy++
Spy++ has a toolbar and hyperlinks to help you work faster. It also provides a Refresh
command to update the active view, a Window Finder Tool to make spying easier,
and a Font dialog box to customize view windows. Additionally, Spy++ saves and
restores user preferences.

There are two utilities similar to Spy++: PVIEW.EXE, which shows details on
processes and threads, and DDESPY.EXE, a monitoring program for Dynamic Data
Exchange (DDE) messages. Books Online documents each utility.

353

Visual C++ User's Guide

Starting Spy++
~ To start Spy++

• From the Tools menu, choose Spy++.

-or-

Click the Spy++ icon in the Visual C++ program group.

Note You can run only one copy of Spy++. Attempting to run additional copies of Spy++ will
bring the currently running Spy++ to the front.

Spy++ is a read-only program. Using Spy++ does not change program operation, but
can slow program execution.

Viewing with Spy++
When Spy++ starts, it opens a window titled "Windows 1," which shows a tree view
of all windows and controls in the system. There are also three other "views"
available in Spy++: messages, processes, and threads.

The Spy++ Toolbar

354

The Spy++ toolbar appears beneath the menu bar. It provides shortcut commands for
opening new views, starting or stopping the message stream display, changing
message stream options, clearing message stream windows, and finding windows.
You can display or hide the toolbar with the Toolbar command on the View menu.

Button Effect

Creates a window to display a tree view of all windows and controls in the
system. See "The Windows View."

Creates a window to display a tree view of all processes in the system. See
"The Processes View."

Creates a window to display a tree view of all threads in the system. See
"The Threads View."

Creates a window to display window messages. This button calls up the
Message Options dialog box to let you select the window whose messages
will be displayed, in addition to other options. See "The Messages View."

Starts the message logging and displays the message stream. This button is
available only when a Messages window is active (has the focus). See
"Starting and Stopping the Message Log Display."

Stops the message logging and display of the message stream. This button is
available only when a Messages window is active (has the focus). See
"Starting and Stopping the Message Log Display."

Chapter 19 Using Spy++

Button Effect

Displays the Message Options dialog box. Use this dialog box to select
windows and message types for viewing. This button is available only when a
Messages window is active (has the focus). See "Choosing Message
Options."

Clears the contents of the active Messages window. This button is available
only when a Messages window is active (has the focus).

Opens the Find Window dialog box, which lets you select a window to view
messages or find properties. See "The Window Finder Tool."

Expands one level of the selected tree. See "Expanding and Collapsing
Spy++ Trees."

Fully expands the selected branch of the tree.

Fully expands every branch of the entire tree.

Collapses the selected branch of the tree.

Searches the current view for a matching window, process, thread, or
message.

Searches the current view for the next matching window, process, thread, or
message. This button (and the related menu item) is available only when
there is a valid search result that is not unique. For example, when you use a
window handle as the search criteria in the window tree, it will produce
unique results, since there is only one window with that handle in the
'.vindow tree. In this instance, Find Next is not available,

Searches the current view for the previous matching window, process, thread,
or message. This button (and the related menu item) is available only when
there is a valid search result that is not unique. For example, when you use a
window handle as the search criteria in the window tree, it will produce
unique results, since there is only one window with that handle in the
window tree. In this instance, Find Previous is not available.

Cascades the windows.

Tiles the view windows horizontally.

Tiles the view windows vertically.

Refreshing the View
Spy++ takes a "snapshot" of the system tables and refreshes a view based on this
information. It is important that you periodically refresh your system views. If you
have a Spy++ view open and have not refreshed the view, you will not see those
processes, threads, and windows that ar~ subsequently created. Also, you may see
items that no longer exist. The Refresh command is available for all views except the
Messages view.

355

Visual C++ User's Guide

~ To refresh the currently active view

• From the·Window menu, choose Refresh.

Changing Fonts
You can change the font, font style, and font size for Spy++ windows.

~ To change font options

1 From the View menu, choose Font.

The Font dialog box appears.

2 Choose a font, font sty Ie, and font size.

3 Choose the OK button.

Selecting Save Font As Default will cause all future Spy++ windows to use this font.

Expanding and Collapsing Spy++ Trees

a

356

You can expand and collapse the Windows, Processes, and Threads views using
several methods: by clicking the icons in the window, by using the Tree menu, and by
clicking the expansion toolbar buttons. The + and - icons in the tree act as they do in
the Developer Studio Project Workspace window.

The Tree menu contains four commands.

Menu command

Expand One Level

Expand Branch

Expand All

Collapse

Description

Expands the currently selected item to the next level.

Fully expands the currently selected item.

Fully expands all items in the window.

Fully collapses the currently selected item.

Tip If you expand a process, you see all the threads the process owns. If you expand a
thread, you see a list of all the windows it owns.

~ To expand or collapse Spy++ trees

1 Select one of the items in a Windows, Processes, or Threads view.

2 From the Tree menu, choose one of the expand or collapse commands.

-or-

Click the + and - icons in the tree.

Chapter 19 Using Spy++

The Windows View
The Windows view displays a tree of all windows and controls in the system. The
Windows view shows only windows.

~ To open the Windows view

• From the Spy menu, choose Windows.

Figure 19.1 shows the Spy++ representation of the Windows view with the first
level expanded.

Figure 19.1 The Spy++ Windows View

LJ Window 00000264" Shell_TrayWnd
· ·LJ Window 00000278 ,., tooltips_class32
· LJ Window 00000274 ,., tooltips_class32
· LJ Window 00000084 ,., .32771 [WinSwitch)

LJ Window 00000358 "Microsoft Spy++" Afx:8:1 4de:0:245f
· LJ Window 00000354 ,., CLlPBRDWNDCLASS Ox####'##'

LJ Window 0000030C "New Bitmap Image.bmp - Paint" MSPa
· LJ Window 00000314 "OleRpcNotifyOxffH5995" OleMainThre
· LJ Window 00000308 "DOE Server Window" DdeCommo

The current desktop window is at the top of the tree. All other windows are children
of the desktop, and are listed according to the standard window hierarchy, with
sibling windows ordered by Z-order. You can collapse or expand the whole tree by
clicking the + or - symbol for the top-level window.

The Windows view is most useful if you need to find a particular window. If you start
with a tree expanded at the second level (all windows that are children of the
desktop), then you can identify the desktop-level window that you want by its Class
name and title. Once you have found the desktop-level window, you can expand the
level to find a specific child window.

See Also The Processes View, The Threads View, The Messages View

The Window Finder Tool
With the Window Finder Tool you can find the properties of a selected window. The
Finder Tool can find disabled child windows and discern which window to highlight
if disabled child windows overlap.

~ To find a window to spy on

1 Arrange your windows so that Spy++ and the subject window are visible.

2 From the Spy menu, choose Find Window to open the Find Window dialog box.

357

Visual C++ User's Guide

a

3 Drag the Finder Tool to the window that you want.

As you drag the tool, window details appear in the dialog box.

-or-

If you know the handle of the window you want (for example, from the debugger),
type it in the Handle box.

4 Under Show, choose Properties or Messages to select what kind of information to
display.

S Choose the OK button.

Tip To reduce screen clutter, select the Hide Spy option in the Find Window dialog box. This
removes the main Spy++ window and leaves the Find Window dialog box visible on top of your
other applications. The Spy++ main window will be restored when you choose the OK or
Cancel button, or by clearing the Hide Spy option.

In Figure 19.2, the Finder Tool was dragged over the "Exploring" window.

Figure 19.2 Showing Properties with the Find Window

Searching for a Window

358

You can search for a specific window by using its handle, caption, class, or a
combination of its caption and class as search criteria. You can also specify the initial
direction of the search.

~ To search for a window

1 Arrange your windows so that Spy++, an active Wmdows view, and the subject
window are visible.

2 From the Search menu, choose Find Window.

The Window Search dialog box appears.

Chapter 19 Using Spy++

a

3 Drag the Finder Tool to the subject window that you want.

As you drag the tool, window details appear in the dialog box.

-or-

If you know the handle of the window you want (for example, from the debugger),
type it in the Handle box.

-or-

If you know the caption and/or class of the window you want, type them in the
Caption and Class box and delete the Handle box.

4 Choose Up or Down for the initial direction of the search.

5 Choose the OK button.

If a matching window is found, it is highlighted in the Windows view.

Tip To reduce screen clutter, select the Hide Spy option in the Find Window dialog box. This
removes the main Spy++ window and leaves the Find Window dialog box visible on top of your
other applications. The Spy++ main window will be restored when you choose the OK or
Cancel button, or by clearing the Hide Spy option.

Opening Window Properties
You can find out more about entries in the Windows view with the Window
Properties dialog box. .

~ To open the Window Properties dialog box, do one of the following

• Double-click an item in one of the Windows views.

• Click the item, then choose Properties from the View menu.

• Point to the item and click the right mouse button, and then choose Properties
from the pop-up menu.

Properties dialog boxes are not modal, so you can click another item in a view window and the
dialog box will show information on the selected item.

See Also Window Properties for Windows

Window Properties
The Window Properties dialog box contains five tabs, as shown in Figure 19.3:
General, Styles, Windows, Class, and Process. Click the title of the tab to display that
tab's options.

359

Visual C++ User's Guide

60

Figure 19.3 The Window Properties Dialog Box

The options on the Window Properties General tab are:

Entry

Window Caption

Window Handle

WindowProc

Rectangle

Restored Rect

Client Rect

Instance Handle

Control ID or Menu
Handle

User Data

Window Bytes

Description

The text in the window caption.

The unique ID of this window. Window handle numbers are
reused; they identify a window only for the lifetime of that window.

The virtual address of the window procedure function for this
window. This field also indicates whether this window is a
Unicode window, and whether it is subclassed.

The bounding rectangle for the window. The size of the rectangle is
also displayed. Units are pixels in screen coordinates.

The bounding rectangle for the restored window. The size of the
rectangle is also displayed. Restored Rect will differ from
Rectangle only when the window is maximized or minimized.
Units are pixels in screen coordinates.

The bounding rectangle for the window client area. The size of the
rectangle is also displayed. Units are pixels relative to the top left
of the window client area.

The instance handle of the application. Instance handles are not
unique.

If the window being displayed is a child window, the Control ID
label is displayed. Control ID is an integer that identifies this child
window's control ID.lfthe window being displayed is not a child
window, the Menu Handle label is displayed. Menu Handle is an
integer that identifies the handle of the menu associated with this
window.

Application-specific data that is attached to this window structure.

The number of extra bytes associated with this window. The
meaning of these bytes is detennined by the application. Expand
the list box to see the byte values in DWORD fonnat.

Chapter 19 Using Spy++

The options on the Window Properties Styles tab are:

Entry

Window Styles

Extended Styles

Description

A combination of window style codes.

A combination of extended window style codes.

The options on the Window Properties Windows tab are:

Entry

Next Window

Previous Window

Parent Window

First Child

Owner Window

Description

The handle of the next sibling window in the same sequence
(Z-order) shown in the window tree view ("none" if there is no
next window). Click this entry to view the properties of the next
window.

The handle of the previous sibling window in the same sequence
(Z-order) shown in the window tree view ("none" if there is no
previous window). Click this entry to view the properties of the
previous window.

The handle of this window's parent window ("none" if there is no
parent). Click this entry to view the properties of the parent
window.

The handle of this window's first child window, in the sequence
(Z-order) shown in the window tree view ("none" if there are no
child windows). Click this value to view the properties of the first
child window.

The handle of this window's owner window. An application's
main window typically owns system-modal dialog windows, for
example ("none" if there is no owner). Click this entry to view the
nroperties of the owner window.

The options on the Window Properties Class tab are:

Entry

Class Name

Class Styles'

Class Bytes

Class Atom

Instance Handle

Window Bytes

WindowProc

Description

The name (or ordinal number) of this window class.

A combination of class style codes.

Application-specific data associated with this window class.

The atom for the class returned by the RegisterClass call.

The instance handle of the module that registered the class.
Instance handles are not unique.

The number of extra bytes associated with each window of this
class. The meaning of these bytes is determined by the application.
Expand the list box to see the byte values in DWORD format.

The current address of the WndProc function for windows of this
class. This differs from Window Proc on the General tab if the
window is subclassed.

361

Visual C++ User's Guide

Entry

Menu· Name

Icon Handle

Cursor Handle

Bkgnd Brush

Description

The name of the main menu that is associated with windows of this
class ("none" if there is no menu).

The handle for the icon that is associated with windows of this
clStss ("none" if there is no icon).

The handle for the cursor that is associated with windows of this
class ("none" if there is no cursor).

The handle for the background brush that is associated with
windows of this class, or one of the predefined COLOR_ * colors
for painting the window background ("none" if there is no brush).

The options on the Window Properties Process tab are:

Entry

ProcessID

Thread ID

Description

The ID· of the process that owns the thread that created this
window. Click this value to view the properties of this process.

The ID of the thread that created this window. Click this value to
view the properties of this thread.

See Also Opening Window Properties

The Processes View

162

Microsoft Windows® supports multiple processes. Each process can have one or more
threads, and each thread can have one or more associated top-level windows. Each
top-level window can own a series of windows. A + symbol indicates that a level is
already collapsed. Click the + symbol to expand the level. The collapsed view
consists of one line per process.

Use the Processes view if you want to examine a particular system process, which
usually corresponds to an executing program. Processes are identified by module
names, or they are designated "system processes." To find a process, collapse the tree
and search the list.

~ To open the Processes view

• From the Spy menu, choose Processes.

The Processes view window appears, as shown in Figure 19.4.

Figure 19.4 The Processes View Window

I±I'''~ Process FFFEOA2D SCOUT
B··· .. Process FFFEB79D SPYXX

$" <& Thread FFFDA781 SPYXX
L. <& Thread FFFE1221 SPYXX

I±I"~ Process FFFED06D SYSTRAY
I±I"~ Process FFFF19CD EXPLORER
B'~ Process FFFF444D mmtask

8·· <& Thread FFFF4021 mmtask
L ... L:'I Window 00000174 '·'#42

See Also The Windows View, The Threads View, The Messages View

Chapter 19 Using Spy++

Searching for a Process

a

You can search for a specific process by using its process ID or module string as
search criteria. You can also specify the initial direction of the search. The fields in
the dialog box will show the attributes of the selected process in the process tree.

~ To search for a process

1 Arrange your windows so that Spy++ and an active Processes view are visible.

2 From the Search menu, choose Find Process to open the Process Search dialog box
(shown in Figure 19.5).

Figure 19.5 Process Search Dialog Box

3 Type the process ID or a module string as search criteria.

4 Choose Up or Down for the initial direction of the search.

5 Choose the OK button.

If a matching process is found, it is highlighted in the Processes view.

Tip To find all the processes owned by a module, clear the Process box and type the module
name in the Module box. Then use Find Next to continue searching for processes.

363

Visual C++ User's Guide

Opening Process Properties
You can find out more about entries in the Processes view with the Process Properties
dialog box.

~ To open the Process Properties dialog box, do one of the following

• Double-click an item in one of the Processes views.

• Click the item, then choose Properties from the View menu.

• Point to the item and click the right mouse button, and then choose Properties
from the pop-up menu.

Properties dialog boxes are not modal, so you can click another item in a view
window and the dialog box will show information on the selected item.

See Also Process Properties for Windows 95, Process Properties for Windows NT

Process Properties for Windows 95

)4

For Windows 9YM, the Process Properties dialog box contains one tab as shown in
Figure 19.6: General.

Figure 19.6 Process Properties Dialog Box for Windows 95

The options on the Process Properties General tab for Windows 95 are:

Entry

Module Name

Process ID

Description

The name of the module.

The unique TD of this process. Process ID numbers are reused, so
they identify a process only for the lifetime of that process. The
Process object type is created when a program is run. All the
threads in a process share the same address space and have access
to the same data.

Chapter 19 Using Spy++

Entry

Priority Base

Description

The current base priority of this process. Threads within a process
can raise and lower their own base priority relative to the process's
base priority.

Threads The number of threads currently active in this process.

See Also Opening Process Properties

Process Properties for Windows NT
For Windows NT, the Process Properties dialog box contains four tabs as shown in
Figure 19.7: General, Memory, Page File, and Space. Click the title of a tab to display
that tab's options.

Figure 19.7 Process Properties Dialog Box for Windows NT

The options on the Process Properties General tab for Windows NT are:,

Entry

Module Name

Process ID

Priority Base

Threads,

CPU Time

Description

The name of the module.

The unique ID of this process. Process ID numbers are reused, so
they identify a process only for the lifetime of that process. The
Process object type is created when a program is run. All the
threads in a process share the same address space and have access
to the same data.

The current base priority of this process. Threads within a process
can raise and lower their own base priority relative to the process's
base priority.

The number of threads currently active in this process.

Total CPU time spent on this process and its threads. Equal to
User Time plus Privileged Time.

365

lisual c++ User's Guide

Entry

User Time

Privileged Time

Elapsed Time

Description

The cumulative elapsed time that this process's threads have spent
executing code in User Mode in non-idle threads. Applications
execute in User Mode, as do subsystems such as the window
manager and the graphics engine.

The total elapsed time this process has been running in Privileged
Mode in non-idle threads. The service layer, the Executive
routines, and the Kernel execute in Privileged Mode. Device
drivers for most devices other than graphics adapters and printers
also execute in Privileged Mode. Some work that Windows does
for your application may appear in other subsystem processes in
addition to Privileged Time.

The total elapsed time this process has been running.

The options on the Process Properties Memory tab for Windows NT are:

)6

Entry

Virtual Bytes

Peak Virtual Bytes

Working Set

Peak Working Set

Paged Pool Bytes

Nonpaged Pool
Bytes

Private Bytes

Description

The current size (in bytes) of the virtual address space the process
is using. The use of virtual address space does not necessarily
imply corresponding use of either disk or main memory pages.
However, virtual space is finite, and using too much may limit the
ability of the process to load libraries.

The maximum number of bytes of virtual address space the process
has used at anyone time.

The set of memory pages touched recently by the threads in the
process. If free memory in the computer is above a threshold, pages
are left in the Working Set of a process even if they are not in use.
When free memory falls below a threshold, pages are trimmed
from the Working Set. If they are needed, they will be soft-faulted
back into the Working Set before they leave main memory.

The maximum number of pages in the working set of this process
at any point in time.

The current amount of paged pool the process has allocated. Paged
pool is a system memory area where operating system components
acquire space as they accomplish their appointed tasks. Paged pool
pages can be paged out to the paging file when not accessed by the
system for sustained periods of time.

The current number of bytes in the nonpaged pool allocated by the
process. The nonpaged pool is a system memory area where space
is acquired lJy operating system components as they accomplish
their appointed tasks. Nonpaged pool pages cannot be paged out to
the paging file; they remain in main memory as long as they are
allocated.

The current number of bytes this process has allocated that cannot
be shared with other processes.

Chapter 19 Using Spy++

Entry

Free Bytes

Reserved Bytes

Free Image Bytes

Reserved Image
Bytes

Description

The total unused virtual address space of this process.

The total amount of virtual memory reserved for future use by this
process.

The amount of virtual address space that is not in use or reserved
by images within this process.

The sum of all virtual memory reserved by images run within this
process.

The options on the Process Properties Page File tab for Windows NT are:

Entry

Page File Bytes

Peak Page File
Bytes

Page Faults

Description

The current number of pages that this process is using in the
paging file. The paging file stores pages of data used by the
process but not contained in other files. The paging file is used by
all processes, and lack of space in the paging file can cause errors
while other processes are running.

The maximum number of pages that this process has used in the
paging file.

The number of Page Faults by the threads executing in this
process. A page fault occurs when a thread refers to a virtual
memory page that is not in its working set in main memory. Thus,
the page will not be retrieved from disk if it is on the standby list
and hence already in main memory, or if it is being used by another
process with which the page is shared.

The options on the Process Properties Space tab for Windows NT are:

Entry

Show For Space
Marked As

Executable Bytes

Exec-Read-Only
Bytes

Exec-Read-Write
Bytes

Description

Use this list box to select the category of space (image, mapped,
reserved, or unassigned).

For the selected category, the sum of all the address space that this
process is using. Executable memory is memory that can be
executed by programs, but may not be read or written.

For the selected category, the sum of all the address space in use
with read-only properties that this process is using. Exec-read-only
memory is memory that can be executed as well as read.

For the selected category, the sum of all the address space in use
with read-write properties that this process is using. Exec-read­
write memory is memory that can be executed by programs as well
as read and modified.

367

Visual C++ User's Guide

Entry

Exec-Write-Copy
Bytes

No-Access Bytes

Read-Only Bytes

Read-Write Bytes

Write-Copy Bytes

Description

For the selected category, thesum of all the address space that can,
be executed by programs as well as read and written. This type of
protection is used when memory needs to be shared between
processes. If the sharing processes only read the memory, then they
will all use the same memory. If a sharing process desires write
access, then a copy of this memory will be made for the process.

For the selected category, the sum of all the address space that
prevents a process from using it. An access violation is generated if
writing or reading is attempted.

For the selected category, the sum of all the address space that can
be executed as well as read.

For the selected category, the sum of all the address space that
allows reading and writing.

For the selected category, the sum of all the address space that
allows memory sharing for reading but not for writing. When
processes are reading this memory, they can share the same
memory. However, when a sharing process wants to have
read/write access to this shared memory, a copy of that memory is
made for writing.

See Also Opening Process Properties

The Threads View

368

The Threads view is a flat listing of all threads with associated windows. Processes
are not included. You can easily find the process that owns a selected thread. Use the
Threads view to search for a particular thread.

~ To open the Threads view

• From the Spy menu, choose Threads.

The Threads view window appears as shown in Figure 19.8.

Figure 19.8 The Threads View Window

I±l". Thread FFFD3631 EXPLORER
• Thread FFFD8ED5 MSVC
• Thread FFFDA781 SPYXX

I±l Thread FFFDEF4D MSPAINT
g .• Thread FFFEC81D SPYXX

.. L] Window 00000468 ,., SpyxxProcessPacket

.. L] Window 0000046C "For Help. press Fl" msctls_statusbar32
.L] Window 00000474 ,., TooibarWindow32
.L] Window 00000478 ,., MDIClient

.. L] Window 000004FO ,., tooltips class32

Chapter 19 Using Spy++

See Also The Windows View, The Processes View, The Messages View

Searching for a Thread
You can search for a specific thread by using its thread ID or module string as search
criteria. You can also specify the initial direction of the search. The fields in the
dialog box will show the attributes of the selected thread in the thread tree.

~ To search for a thread

1 Arrange your windows so that Spy++ and an active Threads view are visible.

2 From the Search menu, choose Find Thread.

The Thread Search dialog box appears (shown in Figure 19.9).

3 Type the thread ID or a module string as search criteria.

4 Choose Up or Down for the initial direction of the search.

5 Choose the OK button.

If a matching thread is found, it is highlighted in the Threads view.

Figure 19.9 Thread Search Dialog Box

PJI Tip To find all the threads owned by a module, clear the Thread box and type the module
.. name in the Module box. Then use Find Next to continue searching for processes.

Opening Thread Properties
You can find out more about entries in the Threads view with the Thread Properties
dialog box.

~ To open the Thread Properties dialog box, do one of the following

• Double-click an item in one of the Threads views.

• Click the item, then choose Properties from the View menu.

• Point to the item and click the right mouse button, and then choose Properties
from the pop-up menu.

369

Visual C++ User's Guide

Properties dialog boxes are not modal, so you can click another item in a view
window and the dialog box will show information on the selected item.

See Also Thread Properties for Windows 95, Thread Properties for Windows NT .

Thread Properties for Windows 95

370

For Windows 95, the Thread Properties dialog box contains one tab as shown in
Figure 19.10: General.

Figure 19.10 Thread Properties Dialog Box for Windows 95

The options on the Thread Properties General tab for Windows 95 are:

Entry

Module Name

Thread ID

Process ID

Current Priority

Base Priority

Description

The name of the module.

The unique ID of this thread. Note that Thread ID numbers are
reused; they identify a thread only for the lifetime of that thread.

The unique ID of this process. Process ID numbers are reused, so
they identify a process only for the lifetime of that process. The
Process object type is created when a program is run. All the
threads in a process share the same address space and have access
to the same data. Click this value to view the properties of the
process ID.

The current dynamic priority of this thread. Threads within a
process can raise and lower their own base priority relative to the
base priority of the process.

The current base priority of this thread.

See Also Opening Thread Properties

Chapter 19 Using Spy++

Thread Properties for Windows NT
For Windows NT, the Thread Properties dialog box contains one tab as shown in
Figure 19.11: General.

Figure 19.11 Thread Properties Dialog Box for Windows NT

The options on the Thread Properties General tab for Windows NT are:

Entry

Module Name

ThreadID

Process ID

Thread State

Wait Reason

CPU Time

User Time

Description

The name of the module.

The unique ID of this thread. Note that thread ID numbers are
reused; they identify a thread only for the lifetime of that thread.

The unique ID of this process. Process ID numbers are reused, so
they identify a process only for the lifetime of that process. The
Process object type is created when a program is run. All the
threads in a process share the same address space and have access
to the same data. Click this value to view the properties of the
process ID.

The current state of the thread. A Running thread is using a
processor; a Standby thread is about to use one. A Ready thread is
waiting to use a processor because one is not free. A thread in
Transition is waiting for a resource to execute, such as ~aiting for
its execution stack to be paged in from disk. AWaiting thread does
not need the processor because it is waiting for a peripheral
operation to complete or a resource to become free.

This is applicable only when the thread is in the Wait state. Event
Pairs are used to communicate with protected subsystems.

Total CPU time spent on this process and its threads. Equal to
User Time plus Privileged Time.

The total elapsed time that this thread has spent executing code in
User Mode. Applications execute in User Mode, as do subsystems
such as the window manager and the graphics engine.

371

Visual C++ User's Guide

Entry

Privileged Time

Elapsed Time

Current Priority

Base Priority

Start Address

User PC

Context Switches

Description

The total elapsed time that this thread has spent executing code in
Privileged Mode. When a Windows system service is called, the
service will often run in Privileged Mode to gain access to system­
private data. Such data is protected from access by threads
executing in User Mode. Calls to the system may be explicit, or
they may be implicit, such as when a page fault or an interrupt
occurs.

The total elapsed time (in seconds) this thread has been running.

The current dynamic priority of this thread. Threads within a
process can raise and lower their own base priority relative to the
base priority of the process.

The current base priority of this thread.

Starting virtual address for this thread.

The user program counter for the thread.

The number of switches from one thread to another. Thread
switches can occur either inside a single process or across
processes. A thread switch may be caused by one thread asking
another for information, or by a thread being preempted when a
higher priority thread becomes ready to run.

See Also Opening Thread Properties

The Messages View

172

Each window has an associated message stream. You can view this message stream in
the Messages view. You can create a Messages view for a thread or process as well.
This allows you to view messages sent to all windows owned by a specific process or
thread, which is particularly useful for capturing window initialization messages.

~ To quickly open the Messages view for a window, process, or thread

1 Move the focus to either a Windows, Processes, or Threads view window.

2 Click the right mouse button to display the pop-up menu.

Note There are some windows that can't be spied on. The pop-up menu will indicate the
available selections.

3 Choose Messages.

Spy++ begins logging messages.

Note The messages that appear depend on the current message options.

4 From the Messages menu, choose Stop Logging.

Spy++ stops logging messages. .

Chapter 19 Using Spy++

The Messages view appears as shown in Figure 19.12. Note that the first column
contains the window handle, and the second column contains a message code
(explained in Message Codes). Decoded message parameters and return values are on
the right.

Figure 19.12 The Messages View Window

00000258 P WM_MOUSEMOVE fwKeys:MK_RBUTTON xPos:47 yPos:39
00000258 S WM_NCHITTEST xPos:l15 yPos:385
00000258 R WM NCHITTEST nHittest:HTCLIENT
00000258 S WM - SETCURSOR hwnd:00000258 nHittest:HTCLIENT wMou
00000258 R WM='SETCURSOR fHaltProcessing:False
00000258 P WM_MOUSEMOVE fwKeys:MK_RBUTTON xPos:115 yPos:3
00000258 S WM_NCHITTEST xPos:131 yPos:382
00000258 R WM NCHITTEST nHittest:HTCLIENT
00000258 S WM-SETCURSOR hwnd:00000258 nHittestHTCLIENT wMou
00000258 R WM='SETCURSOR fHaltProcessing:False
00000258 P WM_MOUSEMOVE fwKeys:MK_RBUTTON xPos:131 yPos:3

~ To open the Messages view for a window, process, or thread

1 Move the focus to either a Windows, Processes, or Threads view window.

2 Find the name of the window, process, or thread that you want to examine, and
select it.

3 From the Spy menu, choose Messages.

The Message Options dialog box appears.

4 Select the message options you want.

5 Choose the OK button.

Spy++ begins logging messages.

6 From the Messages menu, choose Stop Logging.

Spy++ stops logging messages.

For a more direct way to select a window for message stream viewing, use the
following procedure. .

~ To open the Messages view for a visible window using the Message Options dialog
box

1 Arrange your windows so that both Spy++ and the subject window are visible.

2 From the Spy menu, choose Messages.

The Message Options dialog box appears.

3 From the Windows tab, drag the Finder Tool to the window you want.

As you drag the tool, Window details appear in the dialog box.

4 Choose the OK button.

Spy++ begins logging messages.

373

Visual C++ User's Guide

5 From the Messages menu, choose Stop Logging.

Spy++ stops logging messages.

Tip . To reduce screen clutter, select the Hide Spy option in the Find Window dialog box. This
removes the main Spy++ window and leaves the Find Window dialog box visible on top of your
other applications. The Spy++ main window will be restored when you choose the OK OJ

Cancel button, or by clearing the Hide Spy option.

See Also The Windows View, The Processes View, The Threads View

Message Codes
Each message line in the Messages view contains a 'P,' oS,' os,' or 'R' code. These
codes have the following meanings:

Code Meaning

P The message was posted to the queue with the PostMessage function. No
infonnation is available concerning the ultimate disposition of the message.

S The message was sent with the SendMessage function. This means that the
sender doesn't regain control until the receiver processes and returns the
message. The receiver can, therefore, pass a return value back to the sender.

s The message was sent, but security prevents access to the return value.

R Each'S' line has a corresponding 'R' (return) line that lists the message return
value. Sometimes message calls are nested, which means that one message
handler sends another message.

Controlling the Messages View
With Spy++, you have considerable control over the content of the Messages view.
You can start and stop displaying the messages at any time, and you can specify:

• Which message types you want to see.

• Which windows you want to monitor.

• The display format for message lines.

These settings are available from the Message Options dialog box and apply only to
the selected Messages view.

Starting and Stopping the Message Log Display

374

When a Messages view window is active, a Start or Stop Logging choice appears on
the Spy++ Messages menu, and the Start or Stop Logging toolbar button becomes
active.

~ To stop the message log display

• From the Messages menu, choose Stop Logging.

Chapter 19 Using Spy++

~ To start the message log display

• From the Messages menu, choose Start Logging.

See Also The Messages View

Choosing Message Options
The Options command on the Messages menu opens the Message Options dialog box
(shown in Figure 19.13) with three tabs: Windows, Messages, and Output. Click the
title of a tab to display that tab's options.

Figure 19.13 Message Options Dialog Box

The Windows Tab
The Windows tab on the Message Options dialog box contains the Window Finder
Tool. Other options on the Windows tab include:

Option

Parent

Children

Windows Of Same
Thread

Windows Of Same
Process

All Windows In
System

Save Settings As
Default

Description

Display messages for the selected window and its immediate
parent window.

Display messages for the selected window and all its child
. windows, including nested child windows.

Display messages for the selected window and all other windows
owned by the same thread.

Display messages for the selected window and all other windows
owned by the same process.

Display messages for all windows.

Save the preceding settings for new message stream windows.
These settings are saved when Spy++ quits;

375

Visual C++ User's Guide

376

The Messages Tab
You can use the Messages tab in the Message Options dialog box to· select message
types for viewing. Typically, you first select message groups, and then fine-tune the
selection by selecting individual messages. The All button selects all message types,
and the None button clears all types.

Note that three entries under Message Groups do not map to specific entries under
Messages To View. These include:

• WM_ USER: with a code greater than WM_ USER

• Registered: registered with the RegisterWindowMessage call

• Unknown: unknown messages in the range 0 to (WM_USER-l)

If you select these "groups," the selection is applied directly to the message stream.

When you create a new Messages window, it can display all messages. When you
filter messages from the Messages tab, that filter only applies to new messages, not
messages that have already been displayed in the Windows view.

A grayed check box within Message Groups indicates that the Messages To View list
box has been modified for messages in that group; not all of the message types in that
group are selected.

If you select Save Settings As Default, the current settings are saved for later use as
message search options. These settings are also saved when exiting Spy++.

The Output Tab
You can use the Output tab in the Message Options dialog box to select the following
options:

Option

Message Nesting
Level

Raw Message
Parameters

Decoded Message
Parameters

Raw Return Values

Decoded Return
Values

Time

Message Mouse
Position

Description

Prefix nested messages with one period per level.

Display the hexadecimal wParam and IParam values.

Display the results of message-specific decoding of the wParam
and IParam values.

Display the hexadecimallResult return value.

Display the results of message-specific decoding of the lResult
return value.

The elapsed time sinee the Vlindows system was started (for
posted messages only).

The screen coordinates of the mouse when the message was posted
(for posted messages only).

Chapter 19 Using Spy++

Option

Lines Maximum

Also Log To File

Save Settings As
Default

Description

Limit the number of lines that are retained in the currently selected
Messages view.

Specify an output file for the message log. This output file is
written simultaneously with the message log window.

Save the preceding settings for new message stream windows.
These settings are saved when you quit Spy++.

Searching for a Message
You can search for a specific message by using its handle, type, or message ID as
search criteria. Anyone of these criteria-or a combination-is valid search criteria.
The initial direction of the search can also be specified. The fields in the Message
Search dialog box (shown in Figure 19.14) will be preloaded with the attributes of
the selected message in the message log.

Figure 19.14 Message Search Dialog Box

~ To search for a message

1 Arrange your windows so that Spy++ and an active Messages view are visible.

2 From the Search menu, choose Find Message to open the Message Search dialog
box.

3 Drag the Finder Tool to the window that you want.

As you drag the tool, window details appear in the dialog box.

-or-

If you know the window handle of the message you want, type it in the Handle
box.

-or-

377

Visual c++ User's Guide

If you know the message type and/or message ID you want, make a selection using
the Type and Message boxes and delete the Handle box.

You can clear any fields for which you do not want to specify values.

4 Type the message type, or message ID to search for.

5 Choose Up or Down for the initial direction of the search.

6 Choose the OK button.

If a matching message is found, it is highlighted in the Messages view window.

Tip To reduce screen clutter, select the Hide Spy option in the Find Window dialog box. This
removes the main Spy++ window and leaves the Find Window dialog box visible on top of your
other applications. The Spy++ main window will be restored when you choose the OK or
Cancel button, or by clearing the Hide Spy option.

Opening Message Properties
You can find out more about entries in the Messages view with the Message
Properties dialog box.

~ To open the Message Properties dialog box, do one of the following

• Double-click an item in one of the Messages views.

• Click the item, then choose Properties from the View menu.

• Point to the item and click the right mouse button,. and then choose Properties
from the pop-up menu.

See Also Message Properties

Message Properties
The Message Properties dialog box contains one tab as shown in Figure 19.15:
General.

Figure 19.15 Message Properties Dialog Box

378

The options on the Message Properties General tab are:

Entry

Window Handle

Nesting Level

Message

IRe suIt

wParam

IParam

Description

The unique ID of this window. Window handle numbers are reused;
they identify a window only for the lifetime of that window. Click this
value to view the properties of this window.

Depth of nesting of this message, where 0 is no nesting.

Number, status, and name of the selected windows message.

The value of the IResult parameter, if any.

The value of the wParam parameter, if any.

The value of the IParam parameter, if any. This value is decoded if it
is a pointer to a string or structure.

See Also Opening Message Properties

Chapter 19 Using Spy++

379

CHAPTER 20

Setting Compiler Options

This chapter describes the compiler option categories that are available from the
Category list box on the C/C++ tab o(the Project Settings dialog box.

~ To view the Project Settings dialog box

• From the Build menu, choose Settings.

The compiler option cate~ories are described in the following sections:

• General

• C++ Language

• Code Generation

• Customize

• Listing Files

• Optimizations

• Precompiled Headers

• Preprocessor

Note The compiler options that are not available as controls within option categories on the
C/C++ tab of the Project Settings dialog box are described in Chapter 25, "CL Reference."

General
General category options are the most commonly used options. All General category
options, with the exception of the Debug Info option, are also available as settings in
other option categories. Warning Level, Warnings as Errors, Debug Info,
Common/Project/Source File Options, and Reset are described in this section.

381

Visual C++ User's Guide

382

The General category on the C/C++ tab is shown in Figure 20.1.

Figure 20.1 General Category on the C/C++ Tab

Warning Level
These options control the number of warning messages produced by the compiler.
They affect only source files, not object (.OBJ) files.

None Turns off all warning messages. Command-line equivalent: /WO or /w

Levell Displays only severe warnings. Command-line equivalent: /WI

Level2 Displays less severe warnings, such as the use of functions with no declared
return type, failure to put return statements in functions that aren't void, and data
conversions that would cause loss of data or precision. Command-line equivalent:
/W2

Level3 Displays less severe warnings, such as warnings about function calls that
precede their function prototypes. Command-line equivalent: /W3

Level4 Displays least severe warnings, such as non-ANSI features and extended
keywords. Command-line equivalent: /W4

. Compiler warning messages begin with C4. Books Online describes the warnings,
indicates each warning's level, and indicates potential problems (rather than actual
coding errors) with statements that may not compile as you intend.

You can also use the warning pragma to control the level of warning reported at
compile time. For more information on the warning pragma, see "warning" in
Chapter 2 of the Preprocessor Reference.

Chapter 20 Setting Compiler Options

Warnings as Errors
This option instructs the compiler to issue an error message (and stop compilation)
rather than a warning. Command-line equivalent: jWX

Debug Info
The Debug Info options select the type of debugging information created for your
program and whether the debugging information is kept in .OBI files or in a program
database (PDB).

None Produces no debugging information, so compilation is faster. No command­
line equivalent.

Line Numbers Only Produces an .OBI file or executable (.EXE) file containing only
global and external symbol and line-number information (no symbolic debugging
information). Use this option if you want to reduce the size of the .EXE file, or if
you don't want to use the debugger's expression evaluator (requires symbolic
information). Command-line equivalent: jZd

C7 Compatible Produces an .OBI file and an .EXE file containing line numbers and
full symbolic debugging information for use with the debugger. The symbolic
information includes the names and types of variables, as well as functions and
line numbers. Command-line equivalent: jZ7

Note This option has the same effect as /Zi in Microsoft C/C++ version 7.

Program Database Produces a program database (PDB) that contains type
information and symbolic debugging information for use with the debugger. The
symbolic debugging information includes the names and types of variables, as well
as functions and line numbers. Command-line equivalent: jZi

The compiler names the program database project.PDB.lfyou compile a file
without a project, the compiler creates a database named VC40.PDB. The
compiler embeds the name of the PDB in each .OBI file created using this option,
pointing the debugger to the location of symbolic and line-number information.
When you use this option, your .OBI files will be smaller, because debugging
information is stored in the .PDB file rather than in .OBI files.

If you create a library from objects that were compiled using this option, the
associated .PDB file must be available when the library is linked to a program.
Thus, if you distribute the library, you must distribute the PDB.

Note To create a library that contains debugging information without using .PDB files, you
must select the compiler's C7 Compatible (/Z7) option and clear the linker's Use Program
Database (/PDB:NONE) option. If you use the precompiled headers options, debugging
information for both the precompiled header and the rest of the source code is placed in the
PDB. The Nd option is ignored when the Program Database option is specified.

383

Visual C++ User's Guide

Common/Project/Source File Options
The Common/project/Source File Options text box displays the compiler options that
are currently selected. The options are displayed using their command-line
equivalents.

The name of the text box changes depending on the object selected in the Settings For
pane. When a project is selected, the text box is named Project Options. When a
source file is selected, the text box is named Source File Options. When multiple
projects or files are selected, the text box is named Common Options, and it displays
the options that are common to the selections.

You cannot type in the text box when it is named Common Options. However, when
it is named Project Options or Source File Options, the text box accepts any option
that is available from the C/C++ tab. It also accepts those compiler options that are
otherwise available only from the command line.

You are responsible for the accuracy of any option you type in the text box. If an
option is recognized as one that can be set using a dialog box control, the dialog box
control is changed to reflect the option. However, if the option is not recognized, it is
left in the options string and passed to the compiler as is.

Reset
The Reset button resets the project settings of a project or a file to the settings that
existed when the project or file was created. This button is available if both of the
following conditions are met:

• A single project or a single file is selected in the Settings For pane of the Project
Settings dialog box.

• The settings of the selection have changed.

The Reset button is not available when multiple projects or files (including groups)
are selected.

c++ Language

384

The C++ Language category options (see Figure 20.2) specify an inheritance
representation for the C++ pointers to class members in your application, control
exception handling, and control the creation of hidden virtual constructor/destructor
displacement fields in classes with virtual bases.

Chapter 20 Setting Compiler Options

Figure 20.2 C++ Language Category on the C/C++ Tab

Pointer-to-Member Representation
Visual C++ supports pointers to members of any class. The number of bytes required
to represent such a pointer and the code required to interpret the representation vary
considerably, depending upon whether the class is defined with no, single, multiple,
or virtual inheritance (no inheritance being smallest and virtual inheritance largest).

Representation Method
These options select the method that the compiler uses to represent pointers to class
members. You can also use the pointers_to_members pragma in your code to specify
a pointer representation. For more information on the pointers_to _members
pragma, see "pointers_to_members" in Chapter 2 of the Preprocessor Reference.

Best-Case Always Use this option if you always define a class before you declare a
pointer to a member of the class. Command-line equivalent: /vmb

If you define a class before declaring a pointer to a member of the class using the
Best-Case Always option, the compiler knows the kind of inheritance used by the
class when it encounters the declaration of the pointer. Thus, it can use the
smallest possible representation of a pointer and create the smallest amount of
code required to operate on the pointer for each kind of inheritance.

With the Best-Case Always option, the compiler issues an error if it encounters the
pointer declaration before the class definition. In this case, you must either
reorganize your code or use the General-Purpose Always (/vmg) option. You can
also use the pointers_to _members pragma or define the class using the
_single_inheritance, _multiple ..Jnheritance, or _ virtual..Jnheritance
keyword. These keywords allow control of the code created on a per-class basis.

385

Visual C++ User's Guide

386

For information on the use of the _singleJnheritance, _multipleJnheritance,
and _ virtualJnheritance keywords, see "Representing Pointers to Members of
Classes Using Inheritance" in Chapter 7 of the C++ Language Reference.

For the Best-Case Always options, the corresponding argument to the
pointers_to _members pragma is best_case.

General-Purpose Always Use this option if you need to declare a pointer to a
member of a class before defining the class. This need can arise if you define
members in two different classes that reference each other. For such mutually
referencing classes, one class·must be referenced before it is defined. You must
then choose an inheritance model from the General Purpose Representation drop­
down list box. Command-line equivalent: /vmg

For General-Purpose Always, the corresponding argument to the
pointers_to _members pragma is full_generality.

General Purpose Representation
If you select General-Purpose Always as the representation method, you must also
specify an option to indicate the inheritance model of the not-yet-encountered class
definition. You can select one of the following three options.

List entry Command-line equivalent

Point to Any Class /vmv

Point to Single- and Multiple-Inheritance Classes /vmm

Point to Single-Inheritance Classes /vms

When you specify one of these inheritance-model options, that model is used for all
pointers to member classes, regardless of their inheritance type or whether the pointer
is declared before or after the class.

Therefore, if you always use single-inheritance classes, you can reduce code size by
selecting Point To Single-Inheritance Classes from the General Purpose
Representation drop-down list box; however, if you want to compile using the most
general case (at the expense of the largest data representation), you can select Point
To Any Class, which allows pointers to classes of all inheritance types. Point To Any
Class is the default.

Enable Exception Handling
This option controls whether destructors are called for automatic objects during a
stack unwind that is caused by either a Windows NT -based structured exception or a
C++ exception.

Select the Enable Exception Handling check box if you want the destructors of
automatic objects to be called as the stack unwinds through the exception stack
frames. Selecting this option produces code that is slightly larger than code created

Chapter 20 Setting Compiler Options

without this option. Code compiled using the /GX option can rely on the
_ CPPUNWIND predefined macro being defined. Command-line equivalent: /GX

Clear the Enable Exception Handling check box if you do not want destructors to be
called as the stack unwinds. Command-line equivalent: /GX-

For more information on C++ exception handling, see Chapter 7, "C++ Exception
Handling," in Programming Techniques.

Enable Run-Time Type Information (RTTI)
The Enable Run-Time Type Information (RTTI) option causes the compiler to add
code to check object types at run time. When the Enable Run-Time Type Information
(RTTI) check box is selected, the compiler defines the _ CPPRTTI preprocessor
macro. The option is cleared by default. Command-line equivalent: /GR

For more information on run-time type checking, see Run-Time Type Information
(RTTI) in the C++ Language Reference.

Disable Construction Displacements
Select the Disable Construction Displacements check box to suppress the vtordisp
constructor/destructor displacement member, but·only if you are certain that all class
constructors and destructors call virtual functions virtually. Command-line
equivalent: /vdO

Clear the Disable Construction Displacements check box to enable the creation of
hidden vtordisp constructor/destructor displacement members. Command-line
equivalent: /vdl

Visual C++ implements C++ construction displacement support in situations where
virtual inheritance is used. Construction displacements solve the problem created
when a virtual function, declared in a virtual base and overridden in a derived class,
is called from a constructor during construction of a further derived class.

The problem is that the virtual function may be passed an incorrect this pointer as a
result of discrepancies between the displacements to the virtual bases of a class and
the displacements to its derived classes. The solution provides a single construction

. displacement adjustment, called a vtordisp field, for each virtual base of a class.

By default, vtordisp fields are introduced whenever the code both defines user-defined
constructors and destructors and also overrides virtual functions of virtual bases.

These options affect entire source files. You can use the vtordisp pragma to suppress
and then re-enable vtordisp fields on a class-by-class basis. For more information on
the vtordisp pragma, see "vtordisp" in Chapter 2 of the Preprocessor Reference.

387

Visual C++ User's Guide

Code Generation

388

• The Code Generation category options (see Figure 20.3) specify the CPU, run-time
library, calling convention, and structure alignment.

Figure 20.3 Code Generation Category on the C/C++ Tab

x86 Specific ~

Processor
The Processor option directs the compiler to optimize code generation for the 80386,
80486, or Pentium® processors.

80386 Optimizes the code created in the same way as the Blend option. The 80386
option is retained for compatibility with previous versions of Visual C++ and to
force a value of 300 for the _M_IX86 preprocessor macro. Command-line
equivalent: 1GB or IG3

80486 Optimizes the code created in the same way as the Blend option. The 80486
option is retained for compatibility with previous versions of Visual C++.
Command-line equivalent: 1GB or /G4

Pentium Optimizes the code created to favor the Pentium. Use this option for
programs meant only for the Pentium. Code created using the Pentium option does
not perform as well on 80386- and 80486-based computers as code created using
the Blend option. Command-line equivalent: iG5

Blend Optimizes the code created to favor the 80486, but includes many Pentium
optimizations that do not seriously impact performance on the 80386 or 80486.
Both the 80386 and the 80486 options now map to the Blend option. Command­
line equivalent: 1GB

Chapter 20 Setting Compiler Options

The compiler creates a value for the _ M _ IX86 preprocessor identifier that reflects the
processor option, as shown in the following table.

Option

Blend

80386

80486

Pentium

END xa6 Specific

Value

_MJX86 = 400 (Default. Future compilers will issue a different
value to reflect the dominant processor.)

_MJX86 = 300
_MJX86 =400
_MJX86 = 500

Use Run-Time Library
With the Use Run-Time Library options, you can select either single-threaded or
multithreaded run-time routines, indicate that a multithreaded module is a dynamic­
link library (DLL), and select the retail or debug version of the library.

Note Having more than one copy of the run-time libraries in a process can cause problems,
because static data in one copy is not shared with the other copy. To ensure that your process
contains only one copy, avoid mixing static and dynamic versions of the run-time libraries. The
linker will prevent you from linking with both static and dynamic versions within one .EXE file,
but you can still end up with two (or more) copies of the run-time libraries. For example, a
dynamic-link library linked with the static (non-DLL) versions of the run-time libraries can cause
problems when used with an .EXE file that was linked with the dynamic (DLL) version of the
run-time libraries. (You should also avoid mixing the debug and non-debug versions of the
libraries in one process.)

Single-Threaded (LIBC.LIB) Causes the compiler to place the library name
LIBC.LIB into the .OBJ file so that the linker will use LIBC.LIB to resolve
external symbols. This is the compiler's default action. LIBC.LIB does not provide
multithread support.Command..;line equivalent: /ML

Multithreaded (LIBCMT.LIB) Defines _MT so that multithread-specific versions
of the run-time routines are selected from the standard header (.R) files. This
option also causes the compiler to place the library name LIBCMT.LIB into the
.OBJ file so that the linker will use LIBCMT.LIB to resolve external symbols.
Either /MT or /MD (or their debug equivalents /MTd or /MDd) is required to
create multithreaded programs. Command-line equivalent: /MT

Multithreaded DLL (MSVCRT.LIB) Defines _MT and _DLL so that both
multithread- and DLL-specific versions of the run-time routines are selected from
the standard .R files. This option also causes the compiler to place the library
name MSVCRT.LIB into the .OBJ file. Command-line equivalent: /MD

389

Visual C++ User's Guide

390

Applications compiled with this option are statically linked to MSVCRT.LIB. This
library provides a layer of code that allows the linker to resolve external
references. The actual working code is contained in MSVCRT40.DLL, which must
be available at run time to applications linked with MSVCRT.LIB.

The last three options select the debug versions of the library or DLL and define
_DEBUG. For more information on using the debug versions, see "Debug Version of
the C Run-Time Library" in Chapter 4 of the C Run-Time Library Reference.

Debug Single-Threaded (LIBCD.LIB) Defines _DEBUG and causes the compiler
to place the library name LIBCD.LIB into the .OBJ file so that the linker will use
LIBCD.LIB to resolve external symbols. LIBCD.LIB does not provide multithread
support. Command-line equivalent: /MLd

Debug Multithreaded (LIBCMTD.LIB) Defines _DEBUG and _MT. Defining
_ MT causes multithread-specific versions of the run-time routines to be selected
from the standard .R files. This option also causes the compiler to place the library
name LIBCMTD.LIB into the .OBJ file so that the linker will use LIBCMTD.LIB
to resolve external symbols. Either /MTd or /MDd (or their non-debug equivalents
/MT or MD) is required to create multithreaded programs. Command-line
equivalent: /MTd

Debug Multithreaded DLL (MSVCRTD.LIB) Defines _DEBUG, _MT, and _DLL
so that debug multithread- and DLL-specific versions of the run-time routines are
selected from the standard .R files. It also causes the compiler to place the library
name MSVCRTD.LIB into the .OBJ file. Command-line equivalent: /MDd

Applications compiled with this option are statically linked to MSVCRTD.LIB.
This library provides a layer of code that allows the linker to resolve external
references. The actual working code is contained in MSVCR40D.DLL, which
must be available at run time to applications linked with MSVCRTD.LIB.

Calling Convention
The calling convention option determines the order in which arguments passed to
functions are pushed onto the stack; which function, calling or called, removes the
,arguments from the stack; and the name-decorating convention that the compiler uses
to identify individual functions.

_cdecl Specifies the C calling convention for all functions that are not C++
member functions or are not marked as stdcall or fastcall. The called - -
function's arguments are pushed onto the stack from right to left, and the calling
function pops these arguments from the stack when control returns to the calling
function. This is the default setting. Command-line equivalent: /Gd

For C, the _ cdecl naming convention uses the function name preceded by an
underscore (_); no case translation is performed. Unless declared as extern "C",
C++ methods use a different name-decorating scheme. For more information on
decorated names, see Appendix A, "Decorated Names."

Chapter 20 Setting Compiler Options

-lastcall Specifies the _fastcall calling convention for all functions that are not
C++ member functions or are not marked as cdecl or stdcall. All_fastcall
functions must have prototypes. Command-line equivalent: /Gr

Some of a _fastcall function's arguments are passed in registers x86 Specific ~
ECX and EDX END x86 Specific,and the rest are pushed onto the stack from right
to left. The called routine pops these arguments from the stack before it returns.
Typically, /Gr decreases execution time.

Important Be careful when using the _fastcall calling convention for any function written
in inline assembly language. Your use of registers could conflict with the compiler's use. .

For C, the _fastcall naming convention uses the function name preceded and
followed by an at sign (@). The second is followed by the size of the function's
arguments in bytes. No case translation is performed. The compiler uses the
following template for the naming convention:

@function_name@number

Note Microsoft does not guarantee the same implementation of the _fastcall calling
convention between compiler releases.

When using the _fastcall naming convention, use the standard include files.
Otherwise, you will get unresolved external references.

_stdcall Specifies the _stdcall calling convention for all prototyped C functions
that do not take a variable number of arguments and are not marked as _ cdecl or
_fastcall. All_stdcall functions must have prototypes. Command-line
equivalent: /Gz

A _ stdcall function's arguments are pushed onto the stack from right to left, and
the called function pops these arguments from the stack before it returns.

For C, the _stdcall naming convention uses the function name preceded by an
underscore (_) and followed by an at sign (@) and the size of the function's
arguments in bytes. No case translation is performed. The compiler uses the
following template for the naming convention:

functionname@number

x86 Specific ~ This option has no effect on the name decoration of C++ methods
and functions. Unless declared as extern "C", C++ methods and functions use a
different name-decorating scheme. For more information on decorated names, see
Appendix A, "Decorated Names." END x86 Specific

Note x86 Specific ~By default, C++ member functions use a calling convention in cases
where the member function's this pointer is passed in the ECX register. All other arguments
are pushed onto the stack fro,m right to left, and the called routine pops the member function's
arguments from the stack. END x86 Specific A member function that is explicitly marked as
_cdecl, _fastcall, or _stdcall uses the specified calling convention. A member function
that takes a variable number of arguments always uses the _cdecl calling convention.

391

Visual C++ User's Guide

Struct Member Alignment
This option controls how the members of a structure are packed into memory and
specifies the same packing for all structures in a module. When you specify this
option, each structure member after the first is stored on either the size of the member
type or n-byte boundaries (where n is 1,2,4,8, or 16), whichever is smaller.

You should not use this option unless you have specific alignment requirements.

Command-line
List entry equivalent Result

1 Byte /Zpl Packs structures on I-byte boundaries

2 Bytes /Zp2 Packs structures on 2-byte boundaries

4 Bytes /Zp4 Packs structures on 4-byte boundaries

8 Bytes /Zp8 Packs structures on 8-byte boundaries

16 Bytes /Zp16 Packs structures on 16-byte boundaries

You can also use the pack pragma to control structure packing. For information on
the pack pragma, see "pack" in Chapter 2 of the Preprocessor Reference.

Customize

392

The Customize category options (see Figure 20.4) disable Microsoft language
extensions, enable function-level linking, eliminate duplicate strings, enable minimal
rebuild, enable incremental compilation, and suppress the startup banner and
informational messages.

Figure 20.4 Customize Category on the C/C++ Tab

Chapter 20 Setting Compiler Options

Disable Language Extensions
With the Disable Language Extensions option, you can ensure that a C program uses
ANSIConly.

Check box

Selected

Cleared

Command-line
equivalent

/Za

/Ze

Result

ANSI C compatibility. Language constructs not
compatible with ANSI C are flagged as errors.

Enables Microsoft extensions.

Note If you use the Disable Language Extensions (/Za) option, the Improve Float
Consistency (lOp) option is used to improve the consistency of floating-point tests for equality
and inequality. This use of lOp with IZa is for strict ANSI conformance and is the only situation
under which lOp is selected by default. The IOp- option is provided to override the default
selection of lOp with IZa. Specify IOp- in the Common/Project/Source File Options text box
(or on the command line), after IZa, to disable lOp. For more information, see "Generate
Intrinsic Functions" on page 403 in this chapter and "Improve Float Consistency" on page 404
in this chapter.

Disable language extensions if you plan to port your program to other environments.
The compiler treats extended keywords as simple identifiers, disables the other
Microsoft extensions, and automatically defines the _ STDC _ predefined macro for
C programs. The following are Microsoft extensions:

Keywords The keywords _based, _cdec!, _except, _fastcall, _finally,
_leave, _stdcall, _try, and _declspec are Microsoft specific.

Casts The Microsoft compiler supports the following two non-ANSI casts.

• Use of non-ANSI casts to produce I-values:

char *p;
« int *) P)++;

The preceding example could be rewritten to conform with the ANSI C
standard as follows:

p = (char *)« int *)p + 1);

• Non-ANSI casting of a function pointer to a data pointer:

int (* pfunc· ();
. i nt *pdata;

pdata = (int *) pfunc;

To perform the same cast while maintaining ANSI compatibility, you must cast
the function pointer to an i n t before casting it to a data pointer:

pdata = (int *) (int) pfunc;

393

Visual c++ User's Guide

394

Variable-Length Argument Lists The Microsoft compiler supports use of a function
declarator that specifies a variable number of arguments, followed by a function
definition that provides a type instead:

void myfunc(int x •...);

void myfunc(int x. char * c)
{ }

Single-Line Comments The Microsoft C compiler supports single-line comments,
which are introduced with two forward slash (II) characters:

II This is a single-line comment.

Scope The Microsoft C compiler supports the following scope-related features:

• Redefinitions of extern items as static:

extern int clip();
static int clip()
{}

• Use of benign typedef redefinitions within the same scope:

typedef int INT;
typedef int INT;

• Scope of function declarators is file scope:

voi d funcl()
{

extern int func2(double);
}

void main(void
{

func2(4);
}

II IZe passes 4 as type double
II IZa passes 4 as type int

• Use of block-scope variables initialized with nonconstant expressions:

int clip(int);
int bar(int);

void main(void)
{

int array[2] = { clip(2). bar(4) };
}

int clip(int x)
{

return x;
}

int bar(int x

Chapter 20 Setting Compiler Options

{

}
return x;

Dala Declarations and Definitions The Microsoft C compiler supports the
following data declaration and definition features:

• Mixed character and string constants in an initializer:

char arr[5] = {'a'. 'b'. "cde"};

• Bit fields with base types other than unsigned int or signed int.

• Declarators without either a storage class or a type:

x;

void main(void)
{

x = 1;
}

• Unsized arrays as the last field in structures and unions:

struct zero
{

char *c;
int zarray[];

} ;

• Unnamed (anonymous) structures:

struct ".
{

} ;

int i;
char *s;

• Unnamed (anonymous) unions:

union
{

} ;

int i;
float fl;

• Unnamed members:

struct s
{

}

unsigned int flag: 1;
unsigned int : 31;

395

Visual C++ User's Guide

396

Intrinsic Floating-Point Functions The Microsoft compiler supports inline
generation of the x86 Specific ~ atan, atan2, cos, exp, log, loglO, sin, sqrt, and
tan functions END x86 Specific when the Generate Intrinsic Functions (/Oi) option
is specified. For C, ANSI conformance is lost when these intrinsics are used,
because they do not set the errno variable.

Enable Function-Level Linking
This option allows the compiler to package individual functions in the form of
packaged functions (COMDATs). The linker requires that functions be packaged
separately as COMDATs to exclude or order individual functions in a DLL or .EXE
file. Command-line equivalent: IGy

You can use the linker's 10PT:REF option to exclude unreferenced packaged
functions from the .EXE file. For more information on 10PT:REF, see Chapter 26,
"LINK Reference." You can use the linker's 10RDER option to place packaged
functions in a specified order in the .EXE file. For more information on 10RDER, see
Chapter 26, "LINK Reference."

Inline functions are always packaged if they are instantiated as calls (for example, if
inlining is turned off, or you take a function address). In addition, C++ member
functions defined within the class declaration are automatically packaged; other
functions are not, and selecting the Enable Function-Level Linking option is required
to compile them as packaged functions.

Eliminate Duplicate Strings
This option enables the compiler to place a single copy of identical strings into the
.EXE file. Because identical strings are copied into a single memory location,
programs compiled with this option can be smaller than those compiled without it.
This space optimization is also called "string pooling." Using this option ensures that
string pooling occurs in most cases. Command-line equivalent: IGf

When using the Eliminate Duplicate Strings option, your program must not write·
over pooled strings. Also, if you use identical strings to allocate string buffers, the
Eliminate Duplicate Strings option pools the strings. Thus, what was intended as
multiple pointers to multiple buffers ends up as multiple pointers to a single buffer.
For example, with Eliminate Duplicate Strings, the following code causes sand t to
point to the same memory because they are initialized with the same string:

char *s "This is a character buffer";

char *t "T his i sac h a r act e r b u f fer;; ;

Enable Minimal Rebuild
The Enable Minimal Rebuild option controls minimal rebuild, which determines
whether C++ source files that include changed C++ class definitions (stored in
header (.H) files) need to be recompiled. The compiler stores dependency information

Chapter 20 Setting Compiler Options

between source files and class definitions (which source file is dependent on which
class definition stored in which .R file) in the project's .IDB file during the first
compile. Subsequent compiles use the information stored in the .IDB file to
determine whether a source file needs to be compiled, even if it includes a modified
.R file. Command-line equivalent: IGm

Note Minimal rebuild relies on class definitions not changing between include files. Class
definitions must be global for a project (there should be only one definition of a given class),
because the dependency information in the .IDB file is created for the entire project. If you
have more than one definition for a class in your project, disable minimal rebuild.

Enable Incremental Compilation
The Enable Incremental Compilation option controls the incremental compiler,
which compiles only those functions that have changed since the last compile. The
compiler saves state information from the first compile in the project's .IDB file (the
default name is project.IDB or VC40.IPB for files compiled without a project). The
compiler uses this state information to speed subsequent compiles. Command-line
equivalent: IGi

The following options prevent incremental compilation:

• Disabe Incremental Compilation (/Gi-)

• Place Debug Information in Object Modules (/Z7)

• Generate a Listing File (/FA)

• Generate Function Prototypes (/Zg)

• Preprocess the File (IE, IEP, or /P)

If the compiler cannot find the project's .PDB file or .IDB file (or either is read-only),
it cannot incrementally compile.

Note Object (.OBJ) files created with the Enable Incremental Compilation option are larger
than those with incremental compilation disabled because of padding. Padding allows the
compiler to add to the .OBJ file without recreating it. Because these .OBJ files are larger, you
should disable incremental compilation when building a version of an .OBJ file (or library) for
release.

Suppress Startup Banner and Information Messages
This option suppresses display of the sign-on banner (when the compiler starts up)
and informational messages (during compiling). Command-line equivalent: Inologo

Listing Files
The Listing Files category options (see Figure 20.5) create browse information
(.BSC) files and code listing files.

,397

Visual C++ User's Guide

198

Figure 20.5 Listing Files Category on the C/C++ Tab

Generate Browse Info
This option creates .SBR files with complete symbolic information. During the build
process, the Microsoft Browse Information File Maintenance Utility (BSCMAKE)
uses the .SBR files to create a .BSC file that you can examine in browse windows.
Command-line equivalent: /FR

For more information, see Chapter 16, "Browsing Through Symbols."

Intermediate Browse Info File Destination
Use the Intermediate Browse Info File Destination text box to specify a directory
and/or filename for the .SBR and .BSC files created by using the Generate Browse
Info option. Command-line equivalent: fFRfilename or /Frfilename

Exclude Local Variables
This option creates .SBR files with complete symbolic information, excluding
information about local variables. During the build process, BSCMAKE uses the
.SBR files to create a .BSC file that you can examine in browse windows. Command­
line equivalent: /Fr

For more information, see Chapter 16, "Browsing Through Symbols."

Listing File Type
These options specify the type of listing files to be created.

No Listing Creates no listing file. This is the default setting.

Asse11!bly-Only Listing Creates files with assembly code only. The default listing­
file extension is .ASM. Command-line equivalent: /FA

Chapter 20 Setting Compiler Options

Assembly, Machine Code, and Source Creates files containing source code,
assembly code, and machine code. The default listing-file extension is .COD.
Command-line equivalent: /PAcs

Assembly with Machine Code Creates files containing assembly code and machine·
code. The default listing-file extension is .COD. Command-line equivalent: /pAc

Assembly with Source Code Creates files containing assembly code and source
code. The default listing-file extension is .ASM. Command-line equivalent: /pAs

Listi ng File Name
Use the Listing File Name text box to specify a directory and/or filename for the
listing file selected from the Listing File Type list box. Command-line equivalent:
/PAfilename

Optimizations
The Optimizations category options (see Figure 20.6) determine how the compiler
fine-tunes the performance of your program. Four of the five optimization categories
(Default, Disable (Debug), Maximize Speed, and Minimize Size) in the
Optimizations drop-down list box require no further optimization on your part. If you
select the fifth optimization category, Customize,· you can set specific optimizations
using the selections in the Optimizations list box.

You can also use the optimize pragma to control optimization of your program. For
more information on the optimize pragma, see "optimize" in Chapter 2 of the
Preprocessor Reference.

Figure 20.6 Optimizations Category on the C/C++ Tab

399

Visual C++ User's Guide

400

Types of Optimizations
You can select one of the following optimization categories:

Default Removes all optimization options from the command line. In this case, the
compiler favors generation of faster, but possibly larger, machine code. If there is a
choice between multiple possible machine-code sequences for an expression, the
code generator chooses the fastest sequence. Command-line equivalent: lOt

Disable (Debug) Turns off all optimizations in the program and speeds compilation.
This option simplifies debugging because it suppresses code movement.
Command-line equivalent: /Od_

From the command line, this option is the default setting.

Maximize Speed Creates the fastest code in the majority of cases. Command-line
equivalent: /02

The effect of using this option is the same as specifying the following options in
the CommonlProject/Source File Options text box or on the command line:

lag 10; lOt lay lObI IGs IGf IGy

x86 Specific ~ You can use other options to improve the speed of many
applications. For example, this option doesn't use the /G5 option to produce code
that is optimized for computers based on the Pentium processor.

The Maximize Speed option implies the use of the Frame Pointer Omission (lOy)
option. If your project requires EBP-based addressing, also specify the /Oy­
option, or use the optimize pragma with the y and off arguments to gain
maximum optimization with EBP-based addressing. The compiler detects most
situations where EBP-based addressing is required (for instance, with the _ alloca
and setjmp functions, and with structured exception handling).END x86 Specific

Note The Maximize Speed option is set by default for release builds.

Minimize Size Creates the smallest code in the majority of cases. Command-line
equivalent: /01

The effect of using this option is the same as specifying the following options in
the CommonlProject/Source File Options text box or on the command line:

lag las lay lObI IGs IGf IGy

x86 Specific ~ The Minimize Size option implies the use of the Frame Pointer
Omission (lOy) option. If your project requires EBP-based addressing, also specify
the /Oy- option, or use the optimize pragma with the y and off arguments to gain
maximum optimization with EBP-based addressing. The compiler detects most
situations where EBP-based addressing is required (for instance, with the _ alloca
and setjmp functions, and with structured-exception handling).END x86 Specific

Chapter 20 Setting Compiler Options

Customize Makes a multiple-selection list box available so that you can select a
custom set of optimizations.

Customize
If you select the Customize option from the Optimizations box in the Optimizations
category, you can select one or more of the following optimizations from the list box
that becomes available. However, if you select this option from the Optimizations box
in the General category, you must select the Optimizations category in order to select
any of the following optimizations:

Assume No Aliasing Tells the compiler that your program does not use aliasing. An
alias is a name that refers to a memory location that is already referred to by a
different name. Using this option allows the compiler to apply optimizations it
couldn't otherwise use, such as storing variables in registers and performing loop
optimizations. Command-line equivalent: lOa

The following rules must be followed for any variable not declared as volatile, or
else the lOa and lOw options are ignored. In these rules, a variable is referenced if
it is on either side of an assignment, or if a function uses it in an argument:

• No pointer references a variable that is used directly.

• No variable is used directly if a pointer to the variable is being used.

• No variable is used directly if the variable's address is taken within a function.

• No pointer is used to access a memory location if another pointer is used to
modify the same memory location.

Aliasing bugs most frequently show up as corrupted data. If variables are assigned
seemingly random values, compile the program with the Disable (lOd) option. If
the program works when compiled with IOd, do not use lOa or lOw.

You can disable optimizations around code that uses aliasing (for individual
functions) by using the optimize pragma with the a or w option. For more
information on the optimize pragma, see "optimize" in Chapter 2 of the
Preprocessor Reference.

Assume Aliasing Across Function Calls Tells the compiler that no aliasing
occurs within function bodies but might occur across function calls. After each
function call, pointer variables must be reloaded from memory. Command-line
equivalent: lOw

The following rules must be followed for any variable not declared as volatile, or
else the lOa and lOw options are ignored. In these rules, a variable is referenced if
it is on either side of an assignment, or if a function uses it in an argument:

• No pointer references a variable that is used directly.

• No variable is used directly if a pointer to the variable is being used.

• No variable is used directly if the variable's address is taken within a function.

401

Visual C++ User's Guide

~02

• No pointer is used to access a memory location if another pointer is used to
modify the same memory location.

Aliasing bugs most frequently show up as corrupted data. If variables are assigned
seemingly random values, compile the program with the Disable (lad) option. If
the program works when compiled with lad, do not use lOa or Ow.

You can disable optimizations around code that uses aliasing (for individual
functions) by using the optimize pragma with the a or w option. For more
information on the optimize pragma, see "optimize" in Chapter 2 of the
Preprocessor Reference.

GlobalOptimizations Provides local and global optimizations, automatic-register
allocation, and loop optimization. Command-line equivalent: lag

• Local and global common subexpression elimination In this optimization,
the value of a common sUbexpression is calculated once. In the following
example, if the values of band C do not change between the three expressions,
the compiler can assign the calculation of b + c to a temporary variable and
substitute the variable for b + c:

a b + C;
d b + C;
e b + C;

For local common subexpression optimization, the compiler examines short
sections of code for common subexpressions. For global common subexpression
optimization, the compiler searches entire functions for common
subexpressions.

• Automatic register allocation This optimization allows the compiler to store
frequently used variables and subexpressions in registers; the register keyword
is ignored.

• Loop optimization This optimization removes invariant subexpressions from
the body of a loop. An optimal loop contains only expressions whose values
change through each execution of the loop. In the following example, the
expression x + y does not change in the loop body:

i = -100;
whil e (i < 0)
{

i += x + y;
}

After optimization, x + y is calculated once rather than every time the loop is
executed:

i = -100;
t = x + y;
whil e (i < 0)
{

Chapter 20 Setting Compiler Options

+= t;
}

Loop optimization is much more effective when the compiler can assume no
aliasing, which you set with the lOa or lOw option.

The following code fragment could have an aliasing problem:

i == -100;
whil e (i < 0)
{

}

i += x + y;
*p = i;

Without lOa or lOw, the compiler must assume that x or y could be modified by
the assignment to * p and cannot assume that x + y is constant for each loop
iteration. If you specify lOa or lOw, the compiler assumes that modifying * p
cannot affect either x or y, and x + y can be removed from the loop.

You can enable or disable global optimization on a function-by-function basis
using the optimize pragma with the g option. For more information on the
optimize pragma, see "optimize" in Chapter 2 of the Preprocessor Reference.

Generate Intrinsic Functions This option replaces some function calls with
intrinsic or otherwise special forms of the function that help your application run
faster. Programs that use intrinsic functions are faster because they do not have the
overhead of function calls, but may be larger due to the additional code created.
Command-line equivalent: IOi

x86 Specific~ If you use the Generate Intrinsic Functions option, the following
function calls are replaced with their intrinsic (inline) forms:

disable _outp abs memset

-enable _outpw fabs strcat

_inp - rotl labs strcmp

Jnpw _rotr memcp strcpy

- lrotl - strset memcpy strlen

lrotr

Note The _alloca and setjmp functions are always created as intrinsics; this behavior is
not affected by IOi.

The floating-point functions listed below do not have true intrinsic forms. If you
use the Generate Intrinsic Functions option, the listed functions are replaced with
versions that pass arguments directly to the floating-point chip rather than pushing
them onto the program stack.

acos

asin

cosh

fmod

pow

sinh

tanh

403

Visual C++ User's Guide

404

The floating-point functions listed below have true intrinsic forms when you
specify both 10i and 109 (or any option that includes 109: lOx, 101, and 102):

atan

atan2

cos

exp

log

loglO

sin

sqrt

tan

The intrinsic floating-point functions do not perform any special checks on input
values; as a result; they work in restricted ranges of input and have different
exception handling and boundary conditions-than the library routines with the
same name. Using the true intrinsic forms implies loss of IEEE exception
handling and the loss of _ matherr and errno functionality; the latter implies the
loss of ANSI conformance. However, the intrinsic forms can considerably speed up
floating-point intensive programs, and for many programs, the conformance issues
are of little practical value.

You can use the Improve Float Consistency (lOp) or the Disable Language
Extensions (lZa) option to override the creation of true intrinsic floating-point
functions. In this case, the functions are created as library routines that pass
arguments directly to the floating-point chip instead of pushing them onto the
program stack. END x86 Specific

You also use the intrinsic pragma to create intrinsic functions or the function
pragma to explicitly force a function call. For more information on these pragmas,
see Chapter 2 of the Preprocessor Reference.

Improve Float Consistency Improves the consistency of floating-point tests for
equality and inequality by disabling optimizations that could change the precision
of floating-point calculations. Command-line equivalent: lOp

By default, the compiler uses the coprocessor's 80-bit registers to hold the
intermediate results of floating-point calculations. This increases program speed
and decreases program size. However, because the calculation involves floating­
point data types that are represented in memory by less than 80 bits, carrying the
extra bits of precision (80 bits minus the number of bits in a smaller floating-point
type) through a lengthy calculation can produce inconsistent results.

With the Improve Float Consistency option, the compiler loads data from memory
prior to each floating-point operation and, if assignment occurs, writes the results
back to memory upon completion. Loading the data before each operation.
guarantees that the data does not retain any significance greater than the capacity
of its type.

A program compiled with this option may be slower and larger than one compiled
without it.

Note This option disables inline generation of floating-paint functions. The standard run­
time library routines are used instead.

Chapter 20 Setting Compiler Options

If you select the Disable Language Extensions (lZa) option from the Customize
category in order to compile for ANSI compatibility, the use of the Improve Float
Consistency (lOp) option is implied. The use of lOp improves the consistency of
floating-point tests for equality and inequality. The nature of the improved
consistency provides strict ANSI conformance and is the only situation under
which lOp is selected by default. The 10p- option is provided to override the
default selection of lOp with IZa. Specify 10p- in the Common/Project/Source File
Options text box (or on the command line), after IZa, to disable lOp.

Favor Small Code Minimizes the size of .EXE files and DLLs by instructing the
compiler to favor size over speed. The compiler can reduce many C and C++
constructs to functionally similar sequences of machine code. Occasionally these
differences offer trade-offs of size versus speed. If you do not select this option,
code may be larger and may be faster. Command-line equivalent: lOs

Favor Fast Code Maximizes the speed of .EXE files and DLLs by instructing the
compiler to favor speed over size. The compiler can reduce many .C and C++
constructs to functionally similar sequences of machine code. Occasionally these
differences offer trade-offs of size versus speed. Command-line equivalent: lOt

xa6 Specific ~ The following example code demonstrates the difference between
the Favor Small Code (lOs) option and the Favor Fast Code (lOt) option:

1* differ.c

*1

This program implements a multiplication
operator.
Compile with lOs to implement
multiply explicitly as multiply.
Compile with lOt to implement as a
series of shift and LEA instructions.

int differ(int x)
{

return x * 71;
}

As shown in the fragment of machine code below, when d iff e r . c is compiled
using the Favor Small Code (lOs) option, the compiler implements the multiply
expression in the return statement explicitly as a multiply to produce a short but
slower sequence of code:

mov eax, DWORD PTR _x$[ebp]
imul eax, 71 ; 00000047H

Alternatively, when di ffer. c is compiled using Favor Fast Code (lOt), the
compiler implements the multiply expression in the return statement as a series of
shift and LEA instructions to produce a fast but longer sequence of code:

405

Visual C++ User's Guide

406

mav eax. DWORD PTR _x$ [ebp]
mavecx. eax
shl eax. 3
1 ea eax. DWORD PTR [eax+eax*8]
sub eax. ecx

END x86 Specific

Frame-Pointer Omission Suppresses creation of frame pointers on the call stack.
This option speeds function calls, because no frame pointers need to be set up and
removed. It also frees one more register, x86 Specific ~EBP on the Intel 386 (or
later), END x86 Specific for storing frequently used variables and subexpressions.
Command-line equivalent: lOy

The Full Optimization (lOx), Minimize Size (101), and Maximize Speed (102)
options imply the use of the Frame-Pointer Omission (lOy) option. Specifying
10y- in the Common/project/Source File Options text box (or on the command
line) after the lOx, 101, or 102 option disables lOy, whether it is explicit or
implied.

Full Optimization Combines optimizing options to produce the fastest possible
program. Command-line equivalent: lOx

The effect of using this option is the same as typing the following options in the
Common/project/Source File Options text box or on the command line:

10bl 109 10; lOt lOy IGs
Note The use of the Full Optimization (lOx) option implies the use of the Frame-Pointer
Omission (lOy) option. x86 Specific ~ If your code requires EBP-based addressing, you
can specify the IOy- option after the lOx option or use the optimize pragma with the y and
off arguments to gain maximum optimization with EBP-based addressing. The compiler
detects most situations where EBP-based addressing is required (for instance, with the
_alloca and setjmp functions and with structured exception handling). END x86 Specific

In-line Function Expansion
Controls which functions become expanded. Expanding a function inline makes the
program faster because it does not incur the overhead of calling the function.

Disable Disables in-line expansion. This is the default. Command-line equivalent:
lObO

Only _inline Expands only functions marked as inline or _inline or, in a C++
member function, defined within a class declaration. Command-line equivalent:
lObI

Any Suitable Expands functions marked as inline or _inline, as well as any other
function that the compiler chooses. Command-line equivalent: IOb2

The compiler treats the inline expansion options and keywords as suggestions. There
is no guarantee that functions will be inlined, and there is no control over the inlining
of individual functions.

Chapter 20 Setting Compiler Options

You can also use the autoJnline pragma to exclude functions from being considered
as candidates for inline expansion. For more information on the auto_inline pragma,
see "auto_inline" in Chapter 2 of the Preprocessor Reference.

Precompiled Headers
The Precompiled Headers category options (see Figure 20.7) speed compile time by
allowing you to precompile any C or C++ code (including inline code).

Figure 20.7 Precompiled Headers Category on the C/C++ Tab

Programming projects typically use code that is stable (such as WINDOWS.H and
AFXWIN .H) and code that is still under development. You can speed up your build
times by precompiling .the stable code, saving the precompiled state in a precompiled
header (PC H) file, and then combining the PCH with uncompiled code in subsequent
builds. This shortens the compile time for subsequent builds because the precompiled
code is not recompiled, it is simply reused.

There are two different precompiled header systems (in order of efficiency):

• Per-File Use of Precompiled Headers (Create Precompiled Header File and Use
Precompiled Header File options)

• Automatic Use of Precompiled Headers

The Automatic Use Of Precompiled Headers option is used by default except for
projects that use the Microsoft Foundation Classes.

Not Using Precompiled Headers
This option disables the use of PCHs.

407

Visual C++ User's Guide

408

Automatic Use of Precompiled Headers
This option creates a file named project.PCH if it doesn't already exist, and compiles
only header (.H) files into this .PCH file. If you have no project open, it creates a file
named VC40.PCH. The inclusion of .H files stops when the compiler encounters the
first declaration, definition, hdrstop pragma, or #line directive in the source file
being compiled with the option, or after the .H file specified in the Through Header
text box. In subsequent compilations, the PCH is used after the compiler makes its
final consistency check. Command-line equivalent: IYX

For more information, see Consistency Rules for Automatic Use of Precompiled
Headers later in this section. For more information on the hdrstop pragma, see
"hdrstop" in Chapter 2 of the Preprocessor Reference.

Through Header When creating a PCH, the compiler compiles all code up to and
including the .H file specified in the Through Header text box. When using a PCH,
the compiler treats all code occurring before the specified .H file as precompiled. It
skips to just beyond the #include directive associated with the .H file, uses the
code contained in the .PCH file, and then compiles all code after filename.
Command-line equivalent: IYXfilename.

Consistency Rules for Automatic Use of Precompiled Headers
If a .PCR file exists, it is compared to the current compilation for consistency. The
following requirements must be met; otherwise, a new .PCH file is created, and the
new file replaces the old:

• The current compiler options must match those specified when the PCH was
created. However, if a significant portion of the source code of the currently
compiled module matches the module for which the PCH was created, the
compiler can create a new PCH for the matching part. This sub setting action
increases the number of modules for which a PCH can be used.

• The current working directory must match that specified when the PCR was
created.

• The order and values of all #include and #pragma preprocessor directives must
match those specified when the PCH was created. These, along with #define
directives, are checked as they appear during subsequent compilations that use the
PCH. The #pragma directives must be nearly identical-multiple spaces outside
of strings are treated as a single space to allow for different programming styles.

• The values of #define directives must match. However, a group of #define
directives in sequence need not occur in exactly the same order, because there are
no semantic order dependencies. for #define directives.

• The value and order of include paths specified on the command line with /I
options must match those specified when the PCH was created.

• The timestamps of all the .H files (all files specified with #include directives) used
to build the PCH must match those that existed when the PCH was created.

Chapter 20 Setting Compiler Options

Create Precompiled Header File (.PCH)
This option creates a precompiled header (.PCH) file. Only header (.H) files are
precompiled into the PCH. The creation of the PCH stops after the compiler compiles
the .H file specified in the Through Header text box or when it encounters a hdrstop
pragma. Command-line equivalent: /Y c

For more information on the hdrstop pragma, see "hdrstop" in Chapter 2 of the
Preprocessor Reference.

Through Header The compiler compiles all code up to and including the .H file
specified in the Through Header text box. Command-line equivalent:
/Y cfilename.)

Use Precompiled Header File (.PCH)
This option specifies using a precompiled header (.PCH) file during builds. The PCH
must have been created using the Create Precompiled Header File option. Command­
line equivalent: /Yu

Through Header Type the name of a header (.H) file in the Through Settings text
box. The compiler treats all code occurring before the .H file as precompiled. It
skips to just beyond the #include directive associated with the .H file, uses the
code contained in the .PCH file, and then compiles all code after filename.
Command-line equivalent: /Yufilename.

Consistency Rules for Per-File Use of Precompiled Headers
When you use a PCH, the compiler assumes the same compilation environment­
using consistent compiler options, pragmas, and so on-that was in effect when you
created the PCH, unless you specify otherwise. If the compiler detects an
inconsistency, it issues a warning and identifies the inconsistency where possible.
Such warnings do not necessarily indicate a problem with the PCH; they simply warn
you of possible conflicts. The consistency requirements for PCHs are explained in the
following list:

Compiler Option Consistency The following compiler options can trigger an
inconsistency warning when using a PCH:

• Macros created using the Preprocessor (/D) option must be the same between
the compilation that created the PCH and the current compilation. The state of
defined constants is not checked, but unpredictable results can occur if these
change.

• PCHs do not work with the fE and fEP options.

• PCHs must be created using either the Generate Browse Info (/FR) option or
the Exclude Local Variables (IFr) option before subsequent compilations that
use the PCH can use these options.

409

Visual C++ User's Guide

C7 Compatible (/Z7) If this option is in effect when the PCR is created, subsequent
compilations that use the PCR can use the debugging information.

If the C7 Compatible (/Z7) option is not in effect when the PCR is created,
subsequent compilations that use the PCR and that option trigger a warning. The
debugging information is placed in the current .OBJ file, and local symbols
defined in the PCR are not available to the debugger.

Include Path Consistency A PCR does not,contain information about the include
path that was in effect when it was created. When you use a .PCR file, the
compiler always uses the include path specified in the current compilation.

Source File Consistency When you specify the Use Precompiled Reader File (lYu)
option, the compiler ignores all preprocessor directives (including pragmas) that
appear in the source code that will be precompiled. The compilation specified by
such preprocessor directives must be the same as the compilation used for the
Create Precompiled Reader File (IY c) option.

Pragma Consistency Pragmas processed during the creation of a PCR usually affect
the file with which the PCR is subsequently used. The comment and message
pragmas do not affect the remainder of the compilation.

The following pragmas are retained as part of a PCR. They do affect the
remainder of a compilation that uses the PCR.

alloc_text

autoJnline

check_stack

code_seg

data_seg

function

include...:.. alias

inline _depth

inline recursion

init_seg

intrinsic

optimize

pack

pointers_to _members

setlocale

vtordisp

warning

Preprocessor

410

The Preprocessor category options (see Figure 20.8) control symbols, macros, and
include paths used by the C/C++ preprocessor.

Chapter 20 Setting Compiler Options

Figure 20.8 Preprocessor Category on the C/C++ Tab

Preprocessor Definitions
Specify one or more macros in the Preprocessor Definitions text box. You create these
named macros for your own purposes. Macros typed in this text box are visible only
to the preprocessor; you can use the #if or #ifdef preprocessor directives to test their
existence. The behavior of the Preprocessor Definitions text box differs from the
behavior of the /D command-line option; you cannot use either an equal sign (=) or a
number sign (#) to assign a value to symbols entered in the text box.

Undefined Symbols
Type the name of a previously defined macro in the Undefined Symbols text box to
undefine it. To undefine additional macros, type additional ones, using a space to
separate each. This option cannot be used to undefine symbols created with a #define
directive. Command-line equivalent: IV macro

When used from the command line, a space between IV and macro is optional. To
undefine additional symbols, repeat IV macro.

Undefine All Symbols
Select the Undefine All Symbols check box to undefine every previously defined
macro. This option cannot be used to undefine macros created with a #define
directive. Command-line equivalent: lu

Both the Undefined Symbols (U macro) and the Undefine All Symbols (lu) options
tum off the Microsoft-specific macros shown in the following table.

411

Visual C++ User's Guide

412

Macro

_CHAR:::' UNSIGNED

CPPRTTI

CPPUNWIND

DLL

M IX86

WIN32

MT

*x86 Specific

Function

Default char type is unsigned. Defined when the IJ option is
specified.

Defined for code compiled with the Enable Run-Time Type
Information (lGR) option.

Defined for code compiled with the Enable Exception
Handling (lGX) option.

Defined when the Multithreaded DLL (/MD or /MDd) option
is specified.

Defined as 400 for Blend (1GB), 300 for 80386 (lG3), 400 for
80486 (lG4), and 500 for Pentium (lG5).*

Defines the compiler version.·Defined as 1000 for Microsoft
Visual C++ version 4~0. Always defined.

Defined for Win32 applications. Always defined.*

Defined when the Multithreaded DLL (/MD or /MDd) or
Multithreaded (/MT or /MTd) option is specified.

Additional Include Directories
Add one or more directories to the list of directories searched for include files. Use a
space to separate directories to be searched when entering more than one directory.
Directories are searched only until the specified include file is found. You can use this
option with the Ignore Standard Include Paths (IX) option. Command-line
equivalent: /I directory

When used from the command line, a space between /I and directory is optional.

The compiler searches for directories in the following order:

1. Directories· containing the source file.

2. Directories specified with the /I option, in the order that CL encounters them.

3. Directories specified in the INCLUDE environment variable.

Ignore Standard Include Paths
Prevents the compiler from searching for include files in directories specified in the
PATH and INCLUDE environment variables. Command-,Iine equivalent: IX

You can use this option with the Additional Include Directories (/I directory) option.

CHAPTER 21

Setting· Linker. Options

You set linker options on the Link tab of the Project Settings dialog box. The settings
that you select control the Microsoft 32-bit Incremental Linker (LINK.EXE).

This chapter describes the option categories that are available on the Link tab of the
Project Settings dialog box.

~ To view the Project Settings dialog box

• From the Build menu, choose Settings.

The linker option categories are described in the following sections:

• General Category Options

• Customize Category Options

• Debug Category Options

• Input Category Options

• Output Category Options

Note The linker options that are not available as controls within option categories on the
Link tab of the Project Settings dialog box are described in Chapter 26, "LINK Reference."
Chapter 26 describes how to use the linker from the command line. It also describes module­
definition files.

General Category Options
• The General category (see Figure 21.1) summarizes the options that are most

commonly used. Each General category option, with the exception of the Enable
Profiling option, is also available in another option category. Enable Profiling,
Common/Project options, and Reset are described in this section. Setting an option
in the General category changes the same option in its other category, and
vice versa.

413

Visual C++ User's Guide

414

Figure 21.1 General Category on the Link Tab

Enable Profiling
The Enable Profiling option creates an output file that can be used with the profiler.
This option is found only in the General category on the Link tab. Command-line
equivalent: /pROFILE

A profiler-ready program has a map (.MAP) file. If it contains debugging
information, the information must be stored in the output file instead of in a program
database (.PDB) file and must be in Microsoft Format.

Selecting the Enable Profiling check box enables the Generate Mapfile option in the
General and Debug categories. If you select the Generate Debug Info check box, be
sure to select the Microsoft Format option button under Debug Info in the Debug
category.

On the command line, /pROFILE has the same effect as setting the /MAP option; if
the /DEBUG option is specified, then /pROFILE also implies the options
/DEBUGTYPE:CV and /pDB:NONE. In either case, /pROFILE implies
/INCREMENTAL: NO.

Common/Project Options
The Common/project Options text box displays the linker options that are currently
selected. The options are displayed using their command-line equivalents.

You can type in this text box when a single project is selected in the Settings For pane
of the Project Settings dialog box. When one project is selected, the text box is named
Project Options. Otherwise, the text box is named Common Options. You cannot type
in the text box when it is named Common Options.

Chapter 21 Setting Linker Options

The Project Options text box accepts any option that is available from the Link tab. It
also accepts those linker options that are otherwise available only from the command
line. For details on these options, see Chapter 26, "LINK Reference."

You are responsible for the accuracy of any option you type in the Project Options text
box. Ifan option is recognized as one that can be set using a dialog box control, the
dialog box control is changed to reflect the option. However, if the option is not
recognized, it is left in the options string and passed to the linker as is.

Reset
The Reset button resets the project settings of a project to the settings that existed
when the project was created. This button is available if both of the following
conditions are met:

• A single project is selected in the Settings For pane of the Project Settings dialog
box.

• The settings of the selection have changed.

The Reset button is not available when multiple projects are selected.

Customize Category Options
• The Customize category options (see Figure 21.2) control the linking session and

affect linker output.

Figure 21,2 Customize Category on the Link Tab

415

Visual c++ User's Guide

416

Link Incrementally
This option controls how the linker handles incremental linking. Command-line
equivalent: !INCREMENTAL: {YESINO}

By default, the linker runs in incremental mode. To override a default incremental
link, clear the Link Incrementally check box (or specify !INCREMENTAL:NO on the
command line).

An incrementally linked program is functionally equivalent to a program that is
nonincrementally linked. However, because it is prepared for subsequent incremental
links, an incrementally linked executable (.EXE) file or dynamic-link library (DLL):

• Is larger than a nonincrementally linked program due to padding of code and data.
(Padding allows the linker to increase the size of functions and data without
recreating the .EXE file.)

• May contain jump thunks to handle relocation of functions to new addresses.

Note To ensure that your final release build does not contain padding or thunks, link your
program nonincrementally.

To link incrementally regardless of the default, select the Link Incrementally check
box (or specify /INCREMENTAL: YES on the command line). When this option is
selected, the linker issues a warning if it cannot link incrementally, and then links the
program nonincrementally. Certain options and situations override the Link
Incrementally (!INCREMENTAL:YES) option.

Most programs can be linked incrementally. However, some changes are too great,
and some options are incompatible with incremental linking. LINK performs a full
link if any of the following options are specified:

• Link Incrementally is not selected (!INCREMENTAL:NO).

• COFF Format (/DEBUGTYPE:COFF) is selected.

• Both Formats (/DEBUGTYPE:BOTH) is selected.

• IOPT:REF is selected.

• IORDER is selected.

• Use Program Database is not selected (IPDB:NONE) when Generate Debug Info
(/DEBUG) is selected.

Additionally, LINK performs a full link if any of the following situations occur:

• The incremental status (.ILK) file is missing. (LINK creates a new .ILK file in
preparation for subsequent incremental linking.)

• There is no write permission for the .ILK file. (LINK ignores the .ILK file and
links nonincrementally.)

• The .EXE or .DLL output file is missing.

Chapter 21 Setting Linker Options

• The timestamp of the .ILK, .EXE, or .DLL is changed.

• A LINK option is changed. Most LINK options, when changed between builds,
cause a fulllinlc

• An object (.OBJ) file is added or omitted.

• An object that was compiled with the IYu jZ7 option is changed.

Use Program Database
This option controls how the linker produces debugging information. Command-line
equivalent: /PDB:filename

By default, when the Generate Debug Info (/DEBUG) option is specified, the linker
creates a program database (PDB), which holds debugging information. If Generate
Debug Info (/DEBUG) is not specified, the Use Program Database (/PDB) option is
ignored.

If the Use Program Database check box is not selected (or if /pDB:NONE is specified
on the command line), the linker does not create a PDB, but instead puts old-style
debugging information into the .EXE file or DLL. The linker then calls the
CVPACK.EXE tool, which must be in the same directory as LINK.EXE or in a
directory in the PATH environment variable.

Debugging information in a PDB must be in Microsoft Format (/DEBUGTYPE:CV).
If either COFF Format (/DEBUGTYPE:COFF) or Both Formats
(/DEBUGTYPE:BOTH) is selected, no PDB is created.

Incremental linking is suppressed if the Use Program Database check box is not
selected (or if /pDB:NONE is specified on the command line).

For information on overriding the default name of the PDB, see the next section,
Program Database Name.

Program Database Name
This option sets the filename for the program database (PDB). Command-line
equivalent: /PDB:filename

The linker creates a PDB when the Generate Debug Info (/DEBUG) option is
specified. The default filename for the PDB has the base name of the program and
the extension .PDB. To override the default name, type a filename in the Program
Database Name text box (or specify /PDB:filename on the command line).

Debugging information in a PDB must be in Microsoft Format (/DEBUGTYPE:CV).
If either COFF Format (/DEBUGTYPE:COFF) or Both Formats
(/DEBUGTYPE:BOTH) is selected, no PDB is created, and the Program Database
Name (/pDB:filename) option is ignored.

For information on controlling how the linker produces debugging information, see
the previous section, Use Program Database.

417

Visual C++ User's Guide

418

Output File Name
This option overrides the default name and location of the program that the linker
creates. Command-line equivalent: IOUT:filename

By default, the linker forms the filename using the base name of the first .OBJ file
specified and the appropriate extension (.EXE or .DLL).

The Output File Name option controls the default base name for a .MAP file or
import library. For details, see "Generate MapFile" on page 419 in this chapter and
the description of the /IMPLIB option in Chapter 26, "LINK Reference."

Force File Output
This option tells the linker to create a valid .EXE file or DLL even if a symbol is
referenced but not defined or is multiply defined. Command-line equivalent: /FORCE

On the command line, the /FORCE option can take an optional argument:

• Use /FORCE:MULTIPLE to create an output file whether or not LINK finds more
than one definition for a symbol.

• Use /FORCE:UNRESOLVEDto create an output file whether or not LINK finds
an undefined symbol.

A file created with this option may not run as expected. The linker will not link
incrementally when the /FORCE option is specified.

Print Progress Messages
This option displays details about the linking process. Command-line equivalent:
NERBOSE

The linker sends information about the progress of the linking session to the Output
window. On the command line, the information is sent to standard output and can be
redirected to a file.

The displayed information includes the library search process and lists each library
and object name (with full path), the symbol being resolved from the library, and a
list of objects that reference the symbol.

Suppress Startup Banner
This option prevents display of the copyright message and version number.
Command-line equivalent: /NOLO GO

The Suppress Startup Banner option also suppresses echoing of command files. For
details, see "LINK Command Files" in Chapter 26, "LINK Reference. "

By default, this information is sent by the linker to the Output window. On the
command line, it is sent to standard output and can be redirected to a file.

Chapter 21 Setting Linker Options

Debug Category Options
The Debug category options (see Figure 21.3) control the creation of debugging
information and mapfile output.

Figure 21.3 Debug Category on the Link Tab

Mapfile Name
This option overrides the default name for a mapfile. Command-line equivaleni:
/MAP:filename

By default, when the Generate Mapfile (/MAP) option is specified, the linker names
the mapfile with the base name of the program and the extension .MAP. To override
the default name, type a filename in the Mapfile Name text box (or on the command
line, type a colon (:) followed by filename).

Generate Mapfile
This option tells the linker to create a mapfile. Command-line equivalent: /MAP

The linker names the mapfile with the base name of the program and the extension
. MAP. To override the default name, use the Mapfile Name (/MAP:filename) option.

A mapfile is a text file that contains the following information about the program
being linked:

• The module name, which is the base name of the file

• The timestamp from the program file header (not from the file system)

• A list of groups in the program, with each group's start address (as section: offset) ,
length, group name, and class

419

Visual C++ User's Guide

420

• A list of public symbols, with each address (as section: offset) , symbol name, flat
address, and .OBJ file where the symbol is defined

• The entry point (as section:offset)

• A list of fixups

Generate Debug Info
This option creates debugging information for the .EXE file or DLL. Command-line
equivalent: /DEBUG

The linker puts the debugging information into a program database (PDB). It updates
the PDB during subsequent builds of the program.

An .EXE file or DLL created for debugging contains the name and path of the
corresponding PDB. The debugger reads the embedded name and uses the PDB when
you debug the program. The linker uses the base name of the program and the
extension .PDB to name the program database, and embeds the path where it was
created. To override this default, use the Program Database Name (IPDB:filename)
option.

The .OBJ files must contain debugging information. Use the compiler's Program
Database (/Zi), Line Numbers Only (/Zd), or C7 Compatible (/Z7) option (described
in Chapter 20, "Setting Compiler Options"). If an object, whether specified explicitly
or supplied from a library, was compiled with the Use Program Database
(IPDB:filename) option, its debugging information is stored in a PDB for the .OBJ
file, and the name and location of the .PDB file are embedded in the object. The
linker looks for the object's PDB first in the absolute path written in the .OBJ file,
and then in the directory that contains the .OBJ file. You cannot specify a PDB's
filename or location to the linker.

If the Use Program Database option is not selected (or if IPDB:NONE is specified on
the command line), or if either COFF Format (/DEBUGTYPE:COFF) or Both
Formats (/DEBUGTYPE:BOTH) is selected, the linker does not create a PDB, but
instead puts the debugging information into the .EXE file or DLL.

The Generate Debug Info (/DEBUG) option changes the default for the 10PT option
from REF to NOREF. For details on the 10PT option, see Chapter 26, "LINK
Reference. "

Microsoft Format
This option creates Microsoft Format debugging information. Command-line
equivalent: /DEBUGTYPE:CV

To use Microsoft Format debugging information, select the Microsoft Format option
button under Debug Info. If the Generate Debug Info check box is not selected, this
choice is unavailable. On the command line, if /DEBUG is specified, the default type
is /DEBUGTYPE:CV; if /DEBUG is not specified, /DEBUGTYPE is ignored.

Chapter 21 Setting Linker Options

COFF Format
This option creates Common Object File Format (COFF)-style debugging
information. Command-line equivalent: /DEBUGTYPE:COFF

Some debuggers require COFF debugging information. To use COFF-format
debugging information, select the COFF Format option button under Debug Info. If
the Generate Debug Info check box is not selected, this choice is unavailable. On the
command line, specify /DEBUGTYPE:COFF; if /DEBUG is not specified,
/DEBUGTYPE is ignored.

When this option is set, the linker does not create a PDB; in addition, incremental
linking is disabled.

Both Formats
This option creates both COFF debugging information and Microsoft Format
debugging information. Command-line equivalent: /DEBUGTYPE:BOTH .

To create a program with both Microsoft Format Symbolic Debugging Information
and COFF debugging information, select the Both Formats option button under
Debug Info. If the Generate Debug·Info check box is not selected, this choice is
unavailable. On the command line, specify /DEBUGTYPE:BOTH; if /DEBUG is not
specified, /DEBUGTYPE is ignored.

When this option is set, the linker does not create a PDB; in addition, incremental
linking is disabled. The linker must call the CVPACK.EXE tool to process the
Microsoft Format debugging information. CVPACK must be in the same directory as
LINK or in a directory in the PATH environment variable.

421

Visual C++User's Guide

Input Category Options

122 .

The Input category options (see Figure 21.4) control how the linker uses libraries and
stub files.

Figure 21.4 Input Category on the Link Tab

Object/Library Modules
This option passes an object file or standard library (either static or import) to the
linker. Command-line equivalent:filename

To pass a file to the linker, specify the filename in the Object/Library Modules text
box. You can specify an absolute or relative path with the filename, and you can use
wildcards in the filename. If you omit the dot (.) and filename extension, the linker
assumes .OBI for the purpose of finding the file. The linker does not use filename
extensions or the lack of them to make assumptions about the contents of files; it
determines the type of file by examining it and processes it accordingly.

Ignore Libraries
This option tells the linker to remove one or more default libraries from the list of
libraries it searches when resolving external references. Command-line equivalent:
/NODEFAULTLIB:library

The linker resolves fe[ereIll,;~S (u ~xternal definiiions by searching first in libraries
specified in the Object/Library Modules text box (or on the command line), then in
default libraries specified with the /DEFAULTLIB option, then in default libraries
named in .OBI files.

To specify mUltiple libraries, type a comma (,) between the library names.

Chapter 21 Setting Linker Options

To suppress the search in all default libraries, select the Ignore All Default Libraries
check box (or specify /NODEFAULTLIB with no arguments on the command line).

The Ignore Libraries (/NODEFAULTLIB:library) option overrides
/DEFAULTLIB:library when the same library name is specified in both.

Ignore All Default Libraries
This option tells the linker to remove all default libraries from the list of libraries it
searches when resolving external references. Command-line equivalent:
/NODEFAULTLIB

The linker resolves references to external definitions by searching first in libraries
specified in the Object/Library Modules text box (or on the command line), then in
default libraries specified with the /DEFAULTLIB option, then in default libraries
named in .OBJ files.

To suppress the search in a specific library, use the Ignore Libraries
(/NODEFAULTLIB:library) option (or specify a colon (:) and the library name on the
command line).

The Ignore All Default Libraries (/NODEFAULTLIB) option overrides
/DEFAULTLIB : library .

Force Symbol References
This option tells the linker to add a specified symbol to the symbol table. Command­
line equivalent /TNCLUDE:symho!

Type a symbol name in the Force Symbol References text box. To specify multiple
symbols, type a comma (,), a semicolon (;), or a space between the symbol names. On
the command line, specify /lNCLUDE:symbol once for each symbol.

The linker resolves symbol by adding the object that contains the symbol definition to
the program. This feature is useful for including a library object that otherwise would
not be linked to the program.

Specifying a symbol with the Force Symbol References (/lNCLUDE:symbol) option
overrides the removal of-that symbol by /OPT:REF. For details on the /OPT:REF
option, see Chapter 26, "LINK Reference."

MS·DOS Stub File Name
This option attaches an MS-DOS stub program to a Win32 program. Command-line
equivalent: /STUB :filename

A stub program is invoked if the file is executed in MS-DOS. It usually displays an
appropriate message; however, any valid MS-DOS application can be a stub program.

Specify afilename for the stub program in the MS-DOS Stub File Name text box (or
after a colon (:) on the command line). The linker checks filename to be sure that it is

423

Visual C++ User's Guide

a valid MS-DOS executable file, and issues an error message if the file is not valid.
The program must be an .EXE file; a .COM file is invalid for a stub program.

If the MS-DOS Stub File Name (jSTUB:jilename) option is not used, the linker
attaches a default stub program that issues the following message:

This program cannot be run in MS-DOS mode.

Output Category Options
The Output category options (see Figure 21.5) control the linker when producing a
Win32 project.

Figure 21.5 Output Category on the Link Tab

Base Address
This option sets a base address for the program, overriding the default location for an
.EXE file (at Ox400000) or a DLL (at OxlOOOOOOO). The operating system first
attempts to load a program at its specified or default base address. If sufficient space
is not available there, the system relocates the program. To prevent relocation, use the
/FIXED option. For details on the /FIXED option, see Chapter 26, "LINK
Reference." Command-line equivalent: /BASE: {address I@filename,key}

Type the preferred base address in the Base Address text box (or in the address
argument on the command line). The linker rounds the specified numbetup to the
nearest multiple of 64K.

On the command line, another way to specify the base address is by using the
filename preceded by an at sign (@), and a key into the file. Thefilename is a text
file that contains the locations and sizes of all the DLLs your program will use. The
linker looks for filename in either the specified path or, if no path is specified, in

Chapter 21 Setting Linker Options

directories specified in the LIB environment variable. Each line in filename
represents one DLL and has the following syntax:

key address size ;comment

The key is a string of alphanumeric characters and is not case sensitive. It is usually
the name of a DLL, but it need not be. The key is followed by a base address in
C-Ianguage, hexadecimal, or decimal notation and a maximum size. All three
arguments are separated by spaces or tabs. The linker issues a warning if the
specified size is less than the virtual address space required by the program. A
comment is specified by a semicolon (;) and can be on the same or a separate line.
The linker ignores all text from the semicolon to the end of the line. This example
shows part of such a file:

main
one
two

0x00010000
0x28000000
0x28100000

0x08000000
0x00100000
0x00300000

for PROJECT.EXE
for DLLONE.DLL
for DLLTWO.DLL

If the file that contains these lines is called DLLS.TXT, the following example
command applies this information:

link dlltwo.obj /dll /base:dlls.txt,two

You can reduce paging and improve performance of your program by assigning base
addresses so that DLLs do not overlap in the address space.

An alternate way to set the base address is with the BASE argument in a NAME or
LIBRARY statement. The /BASE and /DLL options together are equivalent to the
LIBRARY statement. For details on /DLL, NAME, and LIBRARY; see Chapter 26~
"LINK Reference."

Entry-Point Symbol
This option sets the starting address for an .EXE file or DLL. Command-line
equivalent: /ENTRY:junction

Type a function name in the Entry-Point Symbol text box (or in the function
argument on the command line). The function must be defined with the _stdcall
calling convention. The parameters and return value must be defined as documented
in the Win32 API forWinMain (for an .EXE file) or DIIEntryPoint (for a DLL). It
is recommended that you let the linker set the entry point so that the C run-time
library is initialized correctly, and C++ constructors for static objects are executed.

By default, the starting address is a function name from the C run-time library. The
linker selects it according to the attributes of the program, as shown in the following
table.

425

Visual C++ User's Guide

426

Function name

mainCRTStartup (or
wmainCRTStartup)

WinMainCRTStartup (or
wWinMainCRTStartup)

_ DllMainCRTStartup

Default for

An application using /SUBSYSTEM:CONSOLE; calls
main (or wmain)

An application using /SUBSYSTEM:WINDOWS; calls
WinMain (or wWinMain), which must be defined with

stdcall

A DLL; calls DIIMain, which must be defined with
_stdcall, if it exists

If the /DLL or /SUBSYSTEM option is not specified, the linker selects a subsystem
and entry point depending on whether main or WinMain is defined. For details on
the /DLL and /SUBSYSTEM options, see Chapter 26, "LINK Reference."

The functions main, WinMain, and DIlMain are the three forms of the user-defined
entry point.

Stack Allocations
This option sets the size of the stack in bytes. Command-line equivalent:
/S TACK: reserve [,commit]

The Reserve text box (or the reserve argument on the command line) specifies the
total stack allocation in virtual memory. The default stack size is· 1 MB. The linker
rounds up the specified value to the nearest 4 bytes.

The optional value specified in the Commit text box (or in the commit argument on
the command line) is subject to interpretation by the operating system. In Windows
NT, it specifies the amount of physical memory to allocate at a time. Committed
virtual memory causes space to be reserved in the paging file. A higher commit value
saves time when the application needs more stack space, but increases the memory
requirements and possibly the startup time.

Specify the reserve and commit values in decimal or C-Ianguage notation.

An alternate way to set the size of the stack is with the STACKSIZE statement in a
module-definition (.DEF) file. For details on STACKSIZE, see Chapter 26, "LINK
Reference." STACKSIZE overrides the Stack Allocations (ISTACK) option if both
are specified. You can change the stack after the .EXE file is built by using the
EDITBIN tool. For details on EDITBIN, see Chapter 32, "EDITBIN Reference."

Version Information
This option tens the linker to put a version number in the header of the .EXE file or
DLL. Command-line equivalent: NERSION:major[.minor]

The major and minor arguments are decimal numbers in the range 0 through 65,535.
The default is version 0.0.

An alternate way to insert a version number is with the VERSION module-definition
statement. For details on VERSION, see Chapter 26, "LINK Reference."

PAR T 2

Customizing Visual C++

Chapter 22 Customizing Microsoft Developer Studio 429

Chapter 23 Editor Emulations 461

Chapter 24 Creating Custom AppWizards 473

CHAPTER 22

Customizing Microsoft
Developer Studio

With Microsoft Developer Studio, you can customize various aspects of its layout and
operation by:

• Arranging the layout of windows and toolbars.

• Adding your favorite toolbar buttons to the toolbar.

• Assigning shortcut keys to commands.

• Adding your tools to the Tools menu.

• Specifying directories for build utilities, include files and libraries.

With Developer Studio, you can arrange the display area in the way that best suits
your preferences and work habits. Some arrangements are maintained with each
project. In a project, for instance, you can size editor windows, move them to
convenient locations, and automatically save these locations with your project.

Other arrangements are maintained globally. For instance, you can display some
windows in one layout while you are editing your files or building your project, and
another layout when you are debugging.

Some windows can either be fixed along the application window border or moved
anywhere on your screen. These windows are called docking tool windows.

Some of the commands in Developer Studio are assigned shortcut keys by default.
Other commands do not have any default shortcut key assigned to them. In Developer
Studio, you can:

• Delete existing assignments for shortcut keys.

• Replace default shortcut keys with different ones.

• Assign shortcut keys to commands that have none by default.

• Assign mUltiple shortcut keys to a command.

Using these assignments, you can choose your own set of shortcut keys- ones that
are familiar and natural for you to use, or that have some easily remembered value.

429

Visual C++ User's Guide

Microsoft Developer Studio provides FI source-file help for language keywords and
function calls. In some cases, language elements may have entries in multiple topics
or information titles (an information title is an .MVB file such as Books Online or
Microsoft Development Library). If you press FI on a source-file keyword, say
GetArcDirection, Developer Studio looks for information on the keyword in the
current title. If multiple topics exist for the keyword, Developer Studio displays the
Select Reference dialog box. The Select Reference dialog box lists not only the topics

. but also other titles with topics for the keyword. You can select another title if you
wish. For further information, see Finding Information.

Note You can also customize other aspects of Developer Studio. To find out about
customizing text editor windows and their use of fonts or colors, see Chapter 3, "Using the Text
Editor." To find out about customizing settings for debugging, see Chapter 17, "Using the
Debugger."

Working with Window Types

J30

. Microsoft Developer Studio has two types of windows, which it treats in different
ways, as shown in the following table.

Type

Document windows

Docking tool windows
and toolbars

Full-screen mode

Attributes Layout Associated With

Position and size can be Project
changed only within the
application window. Can be
maximized and minimized.

Attach to docks along the Editing or debugging
borders of the application
window, or float anywhere on
your screen. A toolbar is a type
of docking tool window. All
docking tool windows except
toolbars can convert to
document windows.

Editing window expands to the Editing or debugging
size of the entire screen.

The layout for window types-that is, their visibility, position, and size-is
associated either with a project, in the case of document windows, or with editing or
debugging operations, in the case of docking tool windows and toolbars. Once you
have chosen a layout, that layout is persistent. If you close a project and later open it
again, the document windows have the last layout that you used: The same windows
are open, and they have the same sizes and positions. When you create layouts of
docking tool windows or toolbars, either for editing, debugging, or full-screen mode,
those layouts are used for all subsequent sessions until you change them again.

Chapter 22 Customizing Microsoft Developer Studio

All window types can display pop-up menus with commands appropriate for the
window in its current state. For example, the pop-up menu for an editor window,
which is a type of document window, displays the·Cut, Copy, and Paste commands
while editing, but displays the Toggle Breakpoint and QuickWatch commands while
debugging. Click the right mouse button in the window to display the pop-up menu.

There is also a pop-up menu associated with the dock along the border of the
application window. If you click the right mouse button in the dock area or on a
toolbar, the menu displays commands to show or hide all of the docking tool
windows, and to customize the toolbars. The various pop-up menus are shown in
Figure 22.1.

Figure 22.1 Pop-up Menus Displayed with the Right Mouse Button

Working with Document Windows
The following windows are document windows:

• Editor windows, either for text or resources

• Resource browser window

Document windows are associated with the project workspace. Developer Studio
records their positions, sizes, any selections made in them, window splits, and so on
when you close a project. When 'you open the project again, these characteristics are
restored.

431

Visual C++ User's Guide

432

Document windows also can display pop-up menus with commands appropriate for
the window in its current state. Click the right mouse button in the document window
to display the pop-up menu.

See Also Positioning Document Windows, Selecting Document Windows to Display
When Opening a Project, Working with Docking Tool Windows

Positioning Document Windows
You can position the document windows for a project to suit your preferences. These
positions are then retained when you close the project. When you open the project
again, Developer Studio restores these window positions, opens the necessary files,
and displays their contents in the windows, with any window splits and selections
that you have made.

~ To move a document window

• Point to the title bar, and drag the window to the location you want.

~ To size a document window

• Point to the window border, and drag the window border to the size yu want.

~ To display the pop-up menu for a document window

• Click the right mouse button in the window.

~ To tile document windows

• From the Window menu, choose Tile Horizontally.

-or-

From the Window menu, choose Tile Vertically.

~ To overlap document windows

• From the Window menu, choose Cascade.

~ To split document windows

1 From the Window menu, choose Split.

2 Drag the splitter bars in the window to the location you want, and click the mouse
to set the location of the splitter bars.

Selecting Document Windows to Display When Opening a
Project
You can specify whether to display project documents when you open a project.

~ To display project documents when you open a project

1 From the Tools menu, choose Options.

Chapter 22 Customizing Microsoft Developer Studio

The Options dialog box appears.

2 Select the Workspace tab.

3 Select the Reload Documents When Opening Project check box.

4 Choose the OK button.

~ To not display project documents when you open a project

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Workspace tab.

3 Clear the Reload ,Documents When Opening Project check box.

4 Choose the OK button.

Working with Docking Tool Windows
With docking tool windows, you can customize the workspace by

• Showing or hiding the docking tool window.

• Changing the display mode from docked to floating.

• Resizing any floating docking tool window.

• Giving docking tool windows the display characteristics of a document.

The choice and layout of docking tool windows are always associated with either
editing or debugging, even if you have selected the characteristics of document
windows. The debugging docking tool windows are available only during the debug
process.

The following windows are docking tool windows:

• Output window

• Watch window

• Variables window

• Registers window

• Memory window

• Call Stack window

• Disassembly window

• Project Workspace window

• Info Viewer Topic window

Tip Docking tool windows can display pop-up menus with commands appropriate for the
window in its current state. Click the right mouse button in the window to display the pop-up
menu.

433

Visual C++ User's Guide

434

Showing and Hiding Docking Tool Windows
You can show or hide the Output, Project Workspace, and InfoViewer Topic windows
at any time. You can show or hide the debugging windows only during the debug
process.

~ To show a docking tool window

• From the View menu, choose the docking tool window that you want to show.

-or-

1 With the right mouse button, click the border of a docking tool window (see
"Working with Window Types" on page 430).

The pop-up menu appears. The window names with checks appearing next to
them are currently displayed.

2 Select the unchecked docking tool window that you want to show.

The window appears in its default location, or in the last location that you
assigned it.

~ To hide a docking tool window

1 Click in the window to make it active.

2 From the Window menu, choose Hide.

-or-

With the right mouse button, click inside the window, from the pop-up menu,
choose Hide.

-or-

If the docking tool window is currently displayed as a document window, double­
click the control box in the upper-left comer of the window.

Positioning Docking Tool Windows
The window positions for docking tool windows are not associated with the current
project; they remain the same no matter which project you open. However, the
locations of the docking tool windows can be different depending on whether you are
editing or debugging. You can create one layout with your choice of docking tool
windows for editing, and another layout with a different choice of docking tool
windows for debugging. When you switch from editing to debugging, the layout
automatically changes.

Docking tool windows can have either of two display modes: floating or docked.

Chapter 22 Customizing Microsoft Developer Studio

Floating Mode
In floating mode, a docking tool window has a thin title bar and can appear anywhere
on your screen. A floating window is always on top of all other windows.

Figure 22.2 Floating Variables Window

Floating Variables window

435

Visual C++ User's Guide

436

Docked Mode
In docked mode, a docking tool window is fixed to a dock along any of the four
borders of the main Microsoft Developer Studio window.

Figure 22.3 Docked Variables Window

Docked Variables window

You can specify whether tool windows appear as docked windows or as floating
windows.

~ To change a docked window to a floating window

1 Point to a blank area on the window border.

2 Drag the window away from the dock to the position that you want.

-or-

Double-click in the window border.

~ To dock a floating window

1 Point to the title bar of the docking tool window.

2 Drag the window to any of the four borders of the application window.

-or-

Double-click the window title bar to return the window to its previous docked
location.

Chapter 22 Customizing Microsoft Developer Studio

A docking tool window stretches to fill the entire border to which you drag it, as
shown in Figure 22.4. A toolbar changes to a single row or column and takes the
space required by its tool buttons.

Figure 22.4 Window in Floating and Docked Modes

Docking tool window
in its floating state

.. .in its horizontal state after docking

.. .in its vertical state after docking

~ To position a floating window over a dock

1 Point to the title bar of the window.

2 Hold down theCTRL key, and drag the window over any dock area of the
application window.

The window moves into position over the dock, but remains a floating window.

Sizing Docking Tool Windows
You can resize any floating docking tool window in any direction. You can also size
docked docking tool windows by moving their splitter bar or bars. If two or more tool
windows are in the same dock, you can size them by moving the splitter bar between
them.

~ To resize a docking tool window

1 Point to the border of a docked or floating window.

The mouse pointer turns into a sizing arrow.

2 Drag the splitter bar or border to resize the window.

437

Visual C++ User's Guide

Changing Docking Tool Window Characteristics
You can use the Options dialog box of the Tools menu to give docking tool windows
the display characteristics of document windows. Even though toolbars are docking
tool windows, you cannot give them document window characteristics.

Note A docking tool window can appear as a docked window, a floating window, or a
document window. Although a docking tool window can appear with any of these
characteristics, it remains a docking tool window.

~ To enable or disable the document characteristics of a docking tool window

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Workspace tab.

3 In the Docking Views list box, select the check box for a window to enable its
docking characteristics. Clear the check box for a window to disable its docking
characteristics.

An unselected window behaves like a document window.

Note By default, the Disassembly and InfoViewer Topic windows have the characteristics
of document windows.

4 Choose the OK button.

Alternatively, clear the check box for docking tool windows that you want to have the
characteristics of document windows.

~ To quickly switch between docking and document characteristics in a docking tool
window

1 Click the right mouse button inside the window.

2 From the pop-up menu, choose Docking View.

If the docking tool window has the display characteristics of a document window, it
changes to the display characteristics of a docked window. If the docking tool window
has the display characteristics of a docked window, it changes to the display
characteristics of a document window.

Working with Toolbars

438

Toolbars can contain buttons that correspond to menu commands in Developer
Studio. A toolbar provides a quick and convenient method tor carrying out
commands that you use often.

When Developer Studio starts up in its standard configuration after installation, it
displays the Standard toolbar and command choices. If you are not satisfied with the
standard choices, you can choose to display other toolbars, as well as which command
buttons to display on any toolbar.

Chapter 22 Customizing Microsoft Developer Studio

Note The toolbar categories that appear for the first time depend on the packages that you
have installed on your system.

Because toolbars are docking tool windows, you can either fix a toolbar along a
border of the application window, or you can turn it into a floating window that can
move anywhere on your screen.

In addition to the Standard toolbar, Developer Studio displays toolbars that reflect the
editors that are currently open. For example, if you open the resource file for your
project,and then open a bitmap resource, the toolbars associated with the Image
editor are displayed. The current state of the program determines whether the tools
on any given toolbar are enabled or disabled.

Toolbar positions are not associated with the current project, but depend on which
editors are open and whether you are editing, debugging, or using full-screen mode.
For example, you can create one layout with your choice of toolbars for editing,
another layout with a different choice of toolbars for debugging, and another layout
with different toolbars for full-screen mode. When you switch between editing,
debugging, and full-screen mode, the layout automatically changes.

Showing and Hiding Toolbars
When Microsoft Developer Studio starts up in its standard configuration after
installations, it displays the predefined toolbars on its dock. The toolbar categories
that appear depend on the software that you have installed on your system. You can
choose, however, which toolbars you want to show at any time.

~ To show or hide a toolbar using the main menu

1 From the View menu, choose Toolbars.

The Toolbars dialog box appears.

2 Select the check boxes for the toolbars that you want to show.

3 Clear the check boxes for the toolbars that you want to hide.

Each selected toolbar appears immediately, in its default location, or in the last
location that you assigned to it. Each hidden toolbar disappears immediately.

4 Choose the Close button.

~ To show or hide a tool bar using the pop-up menu

1 Click the right mouse button on a toolbar, either floating or docked.

The pop-up menu appears. The toolbar names with checks appearing next to them
are currently displayed.

2 Select the unchecked toolbars that you want to show.

3 Select the checked toolbars that you want to hide.

439

Visual C++ User's Guide

Each selected toolbar appears immediately. It appears in its default location, or in
the last location that you assigned it, if you assigned it one. Each hidden toolbar
disappears immediately.

4 Choose the Close button.

~ To hide a floating toolbar

• Click the close box in the u~per-right comer of the window.

Showing ToolTips
You can display the name of a tool when you place the cursor on the tool button. You
can also display the shortcut keys associated with the tool button.

~ To show ToolTips

1 From the View menu, choose Toolbars.

The Toolbars dialog box appears.

2 Select Show ToolTips if you want to display the name of a tool when you place the
cursor on the toolbar button.

3 Select With Shortcut Keys if you want to display in the tooltip the shortcut keys
associated with the tool button.

4 Choose the Close button.

See Also Viewing and Changing the Shortcut Keys

Creating a Custom Toolbar

440

You can create a custom toolbar and add any tool button to it. You can either name
the new toolbar with a title of your choice, or allow Developer Studio to give it the
default title "Toolbar," followed by a number.

~ To create a named toolbar

1 From the View menu, choose Toolbars.

The Toolbars dialog box appears.

2 Choose the New button.

The New Toolbar dialog box appears.

3 In the Toolbar Name text box, type the name of your custom toolbar.

Two windows appear:

• In the upper-left comer of your application window, a new toolbar window with
the name that you specified appears.

• The Customize dialog box appears.

Chapter 22 Customizing Microsoft Developer Studio

5 Select the Toolbars tab.

The Toolbars tab gives you choices for categories of toolbar buttons. These
categories are listed in the Categories list box. When you select a category, the
Buttons frame displays all the buttons in the selected category. Each button
represents a command.

6 In the Categories list box, select a category.

7 Drag the buttons that you want from the selected category onto the custom toolbar.

8 Repeat steps 6 and 7 until you have all the buttons that you want on your toolbar.

9 Choose the Close button.

~ To quickly create a toolbar with a default name

1 From the Tools menu, choose Customize.

The Customize dialog box appears.

2 Select the Toolbars tab.

The Toolbars tab gives you choices for categories of toolbar buttons. These
categories are listed in the Categories list box. When you select a category, the
Buttons frame displays all the buttons in the selected category. Each button
represents a command.

3 In the Categories list box, select a category.

4 Drag the first button from the selected category onto any area of your screen
(except an existing toolbar).

The first button creates a toolbar named Toolbarn, where n is 1,2,3,4, and so on.

5 Repeat steps 3 and 4 until you have all the buttons that you want on your toolbar,
but for step 4 drag the button onto the toolbar that you have just created.

6 Choose the Close button.

Note A tool bar with only a few buttons may be too short to fully display its name.

Modifying a Toolbar
You can easily add buttons to a toolbar, remove buttons from a toolbar, arrange
buttons on a toolbar, copy toolbar buttons, or rename a custom toolbar.

~ To add buttons to a toolbar

1 From the Tools menu, choose Customize.

The Customize dialog box appears.

441

Visual C++ User's Guide

442

2 Select the Toolbars tab.

The Toolbars tab gives ·you choices for categories of toolbar buttons. These
categories are listed in the Categories list box. When you select a category, the
Buttons frame displays all the buttons in the selected category. Each button
represents a command.

3 In the Categories list box, select a category.

4 Drag a button from the Buttons frame onto the toolbar.

5 Repeat steps 3 and 4 until you have all the buttons you want on your toolbar.

6 Choose the Close button.

~ To remove buttons from a toolbar
1 From the Tools menu, choose Customize.

The Customize dialog box appears.

2 Select the Toolbars tab. _

3 Drag the button that you want to remove away from the toolbar.

4 Choose the Close button.

~ To move buttons on a toolbar

1 From the Tools menu, choose Customize.

The Customize dialog box appears.

2 Select the Toolbars tab.

3 Drag the button that you want to move to a new location on the same toolbar or on
another displayed toolbar.

4 Choose the Close button.

~ To quickly move buttons on a displayed tool bar

• Hold down the ALT key, and drag the button that you want to move to a new
location on the same toolbar or on another displayed toolbar.

~ To copy buttons from a toolbar

1 From the Tools menu, choose Customize.

The Customize dialog box appears.

2 Select the Toolbars tab.

3 Hold down the CTRL key, and drag the button from the Buttons frame to its new
location on the same toolbar or on another displayed toolbar.

4 Choose the Close button.

Chapter 22 Customizing Microsoft Developer Studio

~ To quickly copy buttons on a tool bar

• Hold down the ALT+CTRL key combination, and drag the button that you want to·
copy from another toolbar to a new location on the same toolbar or on another
displayed toolbar. .

Note If you hold down the CTRL key, or a CTRL key combination, and drag a button onto an
area where there is no existing toolbar, Developer Studio creates a new toolbar with a
default name.

~ To insert a space between buttons on a toolbar

1 From the Tools menu, choose Customize.

The Customize dialog box appears.

2 Select the Toolbars tab.

3 Perform one or more of the following actions:

• To insert a space before a button that is not followed by a space, drag the button
to the right or down until it overlaps the next button about halfway.

• To insert a space before a button that is followed by a space that you want to
retain, drag the button until the right or bottom edge is just touching the next
button or just overlaps it.

• To insert a space before a button that is followed by a space that you want to
close, drag the button to the right or down until it overlaps the next button
about halfway.

4 Choose the Close button.

~ To close up a space between buttons on a tool bar

1 From the Tools menu, choose Customize.

The Customize dialog box appears.

2 Select the Toolbars tab.

3 Drag the button on one side of the space toward the button on the other side of the
space until it overlaps the next button about halfway.

If there is no space on the side of the button that you are dragging away from, and
you drag the button more than halfway past the adjacent button, a space is inserted
on the opposite side of the button that you are dragging.

4 Choose the Close button.

~ To resize a combo box on a tool bar

1 From the Tools menu, choose Customize.

The Customize dialog box appears.

2 Select the Toolbars tab.

3 On the toolbar, select the combo box that you want to resize.

443

Visual C++ User's Guide

4 Drag the right edge of the combo box to the size that you want.

5 Choose the Close button.

~ To rename a custom toolbar

1 From the View menu, choose Toolbars.

The Toolbars dialog box appears.

2 In the Toolbars list, select the toolbar that you want to rename.

3 In the Toolbar Name text box, type the new name for the toolbar.

4 Choose the Close button.

Resetting a Toolbar
If you have modified a predefined toolbar, either by adding or removing buttons, you
can easily restore its default settings.

~ To reset a toolbar

1 From the View menu, choose Toolbars.

The Toolbars dialog box appears.

2 In the Toolbars list box, select the toolbar that you want to reset.

3 Choose the Reset button.

4 Choose the Close button.

Deleting a Toolbar
You can delete any custom toolbar that you have created.

~ To delete a custom toolbar

1 From the View menu, choose Toolbars.

The Toolbars dialog box appears.

2 In the Toolbars list box, select the toolbar that you want to delete.

You cannot delete any of the predefined toolbars.

3 Choose the Delete button.

4 Choose the Close button.

nor k--i n 0" Tool h:lr~ - ~-~-~~~o ~~~~--~....,

444

When Developer Studio starts up in its standard configuration after installation, it
displays the Standard toolbar on the top dock of the main application window, as
shown in Figure 22.5.

Chapter 22 Customizing Microsoft Developer Studio

Figure 22.5 Standard Toolbar Layout

Toolbars can have either of two display modes: floating or docked.

Floating Mode
In floating mode, a toolbar has a thin title bar and can appear anywhere on your
screen. A floating toolbar is always on top of all other windows. You can modify the
size or position of a toolbar when it is floating.

Figure 22.6 Floating Toolbar

445

Visual C++ User's Guide

446

Docked Mode
In docked mode, a toolbar is, fixed to a dock along any' of the four borders of the
application window. You cannot modify the size of a toolbar when it is docked.

Figure 22.7 Docked Toolbar

El"'~ myproi - Win32 Debug (myproi.exe)
.. 1£1 ChildFrm.cpp
.. 1£1 MainFrm.cpp
.. I£I~
.. 1£1 myproj.rc
.. 1£1 myprojDoc.cpp
.. 1£1 myprojl/iew.cpp

! .. ~ ReadMe.t~t
[... 1£1 S td6.f~. cpp

i!! .. (ii Dependencies

Docked Browse tool bar

You can dock any of the predefined toolbars that you choose to display, or any of the
custom toolbars that you create. You can move any toolbar from its docked position,
which automatically converts it into a floating toolbar.

~ To change a docked toolbar to a floating tool bar

1 Point to a blank area in the toolbar.

2 Drag the toolbar away from the dock to the position that you want.

~ To dock a floating toolbar

1 Point to the toolbar title bar or a blank area in the toolbar.

2 Drag the toolbar to any of the four borders of the application window.

When the mouse pointer reaches the boundary of the docking area, the toolbar
window assumes a shape appropriate for the docking location. Along the top and
bottom borders. it becomes a single horizontal row of buttons; along the sides, it
becomes a single vertical row.

~ To quickly move a tool bar onto or off of the tool bar dock

• Double-click a blank area in a docked toolbar, or the title bar of a floating toolbar. .

If you double-click a docked toolbar, it moves to its previous floating position.

Chapter 22 Customizing Microsoft Developer Studio

a

If you double-click the title bar of a floating toolbar, it moves to the last toolbar
dock on which it was displayed. If the toolbar has not been docked before, it moves
to a new row in the toolbar dock below the menu bar.

~ To position a floating tool bar over a dock

1 Point to a blank area of the toolbar or its title bar.

2 Hold down the CTRL key, and drag the toolbar over any dock area of the
application window.

The toolbar moves into position over the dock, but remains a floating toolbar.

Tip The orientation of a docked tool bar generally corresponds to the orientation of the dock.
Toolbars dock vertically on vertical docks, and horizontally on horizontal docks. You can switch
a toolbar's docked orientation between horizontal and vertical by pressing or releasing the
SHIFT key as you drag and drop the tool bar.

Sizing Floating Toolbars
You can resize any floating toolbar. The toolbar changes the row and column
arrangement of its buttons to accommodate whatever new orientation you give it. The
toolbar takes the least amount of space necessary to display all of its buttons.

Note You cannot change the size or orientation of a docked toolbar.

~ To resize a floating tool bar

; Move the mouse pointer over the toolbar window border.

The mouse pointer turns into a sizing arrow.

2 Drag the border to resize the toolbar.

Customizing the Keyboard
Keyboard shortcuts offer an alternative method of performing actions for users who
prefer keyboard use over mouse use. With Microsoft Developer Studio, you can:

• Display the current keyboard shortcuts (this includes custom key settings and any
selected editor emulation).

• Assign shortcut keys to available commands.

Displaying the Keyboard Shortcuts
You can display the current keyboard shortcuts, including custom key settings and
editor emulations.

~ To display keyboard shortcuts

1 From the Help menu, choose Keyboard.

447

Visual C++ User's Guide

The Help Keyboard dialog box appears, with a list of keyboard shortcuts.

2 Perform one or more of the following actions:

• Choose the Category, Command, Keys, or Description button to sort the list
alphabetically in different ways.

• Choose the Print button to print out the contents of the dialog box.

.• Choose the Copy button to copy the contents of the dialog box to the Clipboard
so you can paste them into the word processor or the editor of your choice.

3 Double-click the Control-menu box in the upper-left comer to close the Help
keyboard dialog box.

Assigning Shortcut Keys

448

You can use the Keyboard tab on the Customize dialog box to establish your choice of
shortcut keys for any of the available commands. You can assign more than one
shortcut key for any command. You can delete or change key assignments, and you
can assign shortcut keys for each editor. You can also reset all shortcut keys to their
default settings.

Note If you use any of the incremental search commands (IncrementalSearch,
IncrementalSearchBack, IncrementalSearchRE, IncrementaISearchREBack), you can modify
the search by toggling the word mode (CTRL+W), regular expression mode (CTRL+T), and case
sensitive mode (CTRL+C). These keystrokes are not bindable and only affect the incremental
search command.

~ To assign a shortcut key

1 From the Tools menu, choose Customize.

The Customize dialog box appears.

2 Select the Keyboard tab.

3 In the Editor drop-down list box, select the editor in which you want the shortcut
key to invoke the command.

4 In the Categories list box, select the category that contains the command to which
you want to assign the shortcut key.

5 In the Commands list box, select the command to which you want to assign the
shortcut key. A description of the command's effect appears in the Description
box, and the currently assigned shortcut keys appear in the Current Keys box.

6 Click the Press New Shortcut Key box~ and press the shortcut key or key
combination that you want.

If you press a key or key combination that is invalid, no key is displayed, and the
Assign button is unavailable. You cannot assign key combinations with TAB, ESC,

FI, or combinations such as CTRL+ALT+DEL, which Windows NT uses.

Chapter 22 Customizing Microsoft Developer Studio

If you press a key or key combination that is currently assigned to another
command, that command appears under Currently Assigned To.

7 Choose the Assign button.

Any previous shortcut key assignment for the key or key combination that you
specified is replaced by the new assignment.

You can repeat steps 3 through 7 until you have made all of the key assignments
that you want.

8 Choose the Close button.

All of your shortcut key assignments are now in effect.

~ To delete a shortcut key

1 From the Tools menu, choose Customize.

The Customize dialog box appears.

2 Select the Keyboard tab.

3 In the Editor drop-down list box, select the editor in which the shortcut key
invokes the command.

4 In the Categories list box, select the category that contains the command for which
you want to delete the shortcut key.

5 In the Commands list, select the command for which you want to delete the
shortcut key.

A description of the l:ommand's effect appears in the Description box, and the
currently assigned shortcut keys appear in the Current Keys list box.

6 In the Current Keys list box, select the shortcut key to delete.

7 Choose the Remove button.

You can repeat steps 3 through 7 until you have deleted all of the key assignments
that you want.

8 Choose the Close button.

All of your shortcut key deletions are now in effect.

~ To reset all shortcut keys to their default values

1 From the Tools menu, choose Customize.

The Customize dialog box appears.

2 Select the Keyboard tab.

3 Choose the Reset All button.

4 Choose the Close button.

449

Visual C++ User's Guide

All commands now have their original, default shortcut key assignments.

See Also Displaying the Keyboard Shortcuts

Customizing the Tools Menu
You can use the Tools tab in the Customize dialog box to add, delete, and edit Tools
menu items. You can add frequently used utilities to the Tools menu and run them
from within Microsoft Developer Studio.

See Also Tools Options, Using Argument Macros

Adding Commands to the Tools Menu

450

You can add up to 16 commands to the Tools menu. A tool can be any program that
will run on your operating system.

As an example, the following procedure demonstrates how to add the Windows
Notepad accessary to the Tools menu.

~ To add a command to the Tools menu

1 From the Tools menu, choose Customize.

The Customize dialog box appears.

2 Select the Tools tab.

3 Choose Add.

The Add Tool dialog box appears.

4 In the Command text box, type NOTEPAD. EXE.

~or-

Choose the Browse button, select the appropriate drive and directory, and then
select NOTEPAD.EXE from the list of filenames.

5 In the Arguments text box, type any arguments to be passed to the program.

You can use the drop-down arrow next to the Arguments text box to display a
menu of arguments. Select an argument from the list to insert argument syntax
into the Arguments text box.

6 In the Initial Directory text box, type the file directory where the command is
located.

You can use the drop-down arrow next to the Initial Directory text box to display a
menu of directories. Select a directory from the list to insert directory syntax into
the Initial Directory text box.

7 Choose the OK button.

S Choose the Close button.

Chapter 22 Customizing Microsoft Developer Studio

The command now appears on the Tools menu. To run the program, choose it from
the menu.

You can change the default menu name of the newly added tool by editing the Menu
Text text box. You can also add arguments to be passed to the program by typing
them in the Arguments text box (see "Using Argument Macros" on page 452 later in
this chapter), or set the initial directory for your program by typing it in the Initial
Directory text box.

Note If the program you are adding to the Tools menu has a .PIF file, the startup directory
specified by the .PIF file overrides the directory specified in the Initial Directory text box.

Editing a Tools Menu Command
~ To edit a Tools menu command

1 From the Tools menu, choose Customize.

The Customize dialog box appears.

2 Select the Tools tab.

3 In the Menu Contents box, select the menu command you want to edit.

4 Perform one or more of the following actions:

• To move the selected command up one position in the menu, choose the Move
Up button.

• To move the selected command down one 'position in the menu, choose the
Move Down button.

• To change the menu text, command line (tool path and file name), command­
line arguments, or the initial directory, type the new information in the
appropriate text box.

• To specify a letter in the menu title as an access key, precede that letter in the
Menu Text text box with an ampersand (&). .

The first letter in the title is the keyboard access key by default.

• To be prompted for command-line arguments each time you run the tool, select
the Prompt For Arguments check box.

5 Choose the Close button.

~ To remove a command from the Tools menu

1 From the Tools menu, choose Customize.

The Customize dialog box appears.

2 Select the Tools tab.

3 In the Menu Contents box, select the command you want to delete.

451

Visual C++ User's Guide

4 Choose the Remove button.

5 Choose the Close button.

Tools Options
The Tools tab in the Customize dialog box includes three check boxes with which you
can customize options that apply to the tool that is selected in the Menu Contents
box. These options are described in the following table.

Option

Prompt For
Arguments

Redirect To
Output Window

Close Window
On Exiting

Result

When this check box is selected, the Tool Arguments dialog box
appears when you run the tool. The arguments you type in the
Arguments box are passed to the program.

When this check box is selected, the standard output from the tool
appears in the Output window. A separate virtual Output window is '
maintained for each tool whose output has been redirected to the
Output window. The names of these tools appear in a tab at the bott9m
of the Output window when you run,them. You can switch between
virtual Output windows by selecting the tabs at the bottom of the
Output window. See "Using Error Syntax for Tools" on page 454 later
in this chapter to learn about additional capabilities gained by
redirecting tool output to the Output window.

When this check box is selected, the command window automatically
closes when the tool has finished executing. This option applies to
character-mode applications only.

U sing Argument Macros

452

You can specify arguments for any command that you add to the Tools rpenu.

~ To specify arguments for a Tools menu command
1 From the Tools menu, choose Customize.

The Customize dialog box appears.

2 Select the Tools tab.

3 In the Menu Contents box, select the command for which you want to specify
arguments.

4 In the Arguments text box, type the arguments that you want.

-or-

Select the drop-down arrow to the right of the Arguments text box to display a list
of arguments. When you select an argument from this list, the argument is
substituted as text in the Arguments text box.

5 Choose the Close button.

Chapter 22 Customizing Microsoft Developer Studio

To help you integrate your tools with the environment, Developer Studio provides the
argument macros shown in the following table.

Table 22.1 Argument Macros

Macro Name

$(CurCol)

$(CurDir)

$(CurLine)

$(CurText)

$(FileDir)

$(FileExt)

$(FileName)

$(FilePath)

$(TargetArgs)

$(TargetDir)

$(TargetExt)

$(TargetName)

$(TargetPath)

$(WkspDir)

$(WkspName)

Expands to a String Containing

The current cursor column position within the active window.

The current working directory (defined as drive+path).

The current cursor line position within the active window.

The current text (the word under the current cursor position, or a
single-line selection, if there is one).

The directory of the current source (defined as drive+path); blank if
a nonsource window is active.

The filename extension of the current source.

The filename of the current source (defined as filename); blank if a
nonsource window is active.

The complete filename of the current source (defined as
drive+path+filename); blank if a nonsource window is active.

The command-line arguments that are passed to the application you
are developing. To set these command-line arguments, type the
argument in the Program Arguments text box on the Debug tab
accessed by the Settings command on the Build menu.

The directory of the current target (defined as drive+path).

The filename extension of the current target.

The filename of the current target (defined as filename).

The complete filename of the current target (defined as
drive+path+filename) .

The directory of the current workspace (defined as drive+path) that
contains the .MDP file; blank if no workspace is currently open.

The current workspace name (defined as filename) without the
.MDP extension; blank if no workspace is currently open.

Macro recognition is not case sensitive. All path macros end in a backslash (\).

To use a macro as an argument, type the macro name in the Arguments text box. Or,
for macros that expand to a directory, you can type the macro name in the Initial
Directory box. As an example, the following procedure demonstrates how to add the
$(FilePath) argument macro to the Windows Notepad accessory (installed in a
previous procedure).

~ To add an argument macro to an installed tool and then run it

1 From the Tools menu, choose Customize.

The Customize dialog box appears.

2 Select the Tools tab.

453

Visual c++ User's Guide

3 In the Menu Contents box, select the command that you want to edit.

In this case, select the Notepad accessory that you installed earlier.

4 In the arguments text box, type $ (F i 1 ePa t h) .

-or-

Select the drop-down arrow to the right of the Arguments text box to display a list
of Arguments. When you select an argument from this list, the argument is
substituted as text in the Arguments text box.

For example, use the drop-down arrow to the right of the Arguments text box and
select the $(FilePath) macro.

5 Choose the Close button.

6 Open any source file, or make an open source file active by clicking it.

7 For example, from the Tools menu, choose Notepad.

The Windows Notepad ac;cessory opens, with the active source file as its text file.

U sing Error Syntax for Tools

·54

When you select the Redirect To Output Window check box for a tool on the Tools tab
of the Customize dialog box, you gain access to the Output window's error parser.

The error parser detects filenames, errors, and line-number information of output
strings, and makes each line in the file a h9t link to the specified file and line
number. For example, you can double-click an error line in the Output window that
contains the error number, filename, and line number where the error occurred, and
jump directly to the referenced line in the correct source file.

The Find In Files dialog box also uses the error parser. For instance, you can double­
click any output line from a Find In Files operation to jump to the referenced file and
line ..

Error Syntax Example
For example, you could install Microsoft Macro Assembler on the Tools menu to
compile assembly code, and then jump to source-code syntax errors directly from its
error list in the Output window. The error syntax is as follows (+ denotes one or
-more; * denotes zero or more):

Error Type

error_string

file_spec

line_spec

error_spec

Description

file_spec error_spec (STRING I file_spec STRING)

FILENAME '('line_spec')' ':'

NUMBER I NUMBER '-' NUMBER

ERRORKEYWORDERRORNUMBER ':'

Chapter 22 Customizing Microsoft Developer Studio

Error Type

where:

STRING

FILENAME·

NUMBER

ERRORNUMBER

ERRORKEYWORD

Description

Null-terminated string

Valid file specification and text file

{ 1-9}{0-9}

{A-Z} + {0-9 } { 0-9 } {0-9 } { 0-9 }

"error" I "warning" I "fatal error"

Note Although the error number is part of this syntax, it is optional and not really useful to any
tool except internal build tools. The error number is used internally to link to Books Online.

Showing the Status Bar
The status bar at the bottom of the application window displays information about
Developer Studio. Its leftmost text field, for instance, describes the currently selected
menu command or the action of the button currently under the mouse pointer .

. The status bar also displays progress information about the current operation. For a
text editor window, it shows the line and column position of the insertion point, the
state of the RECORD KEYSTROKES AND COLUMN MODE, whether the editor is in
insertion mode or overstrike mode, and whether the file is set for read-only access.
Optionally, the clock can also be displayed on the status bar. Figure 22.8 depicts the
status bar as it might appear while using the text editor.

Figure 22.8 A Status Bar

Status message

static UINT indicators[]
{

ID SEPARATOR,
ID=INDIC~OR_CAPS,
ID_INDICATOR_NUM,
ID_INDICATOR_SCRl,

// status line indicat

Cursor location
Macro recorder state

Column select mode

Time

Read only
Overtype/insert mode

455

Visual C++ User's Guide

The default setting is to show the status bar.

~ To show or hide the status bar

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Workspace tab.

3 Select the Display Status Bar check box to show the status bar, or clear the Display
Status Bar check box to hide the status bar.

4 Choose the OK button.

~ To display the clock on the status bar

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Workspace tab.

3 Select the Display Clock On Status Bar check box.

4 Choose the OK button.

Setting Directories

'56

The Setup program determines the correct directory paths for several file types and
updates the Directories dialog box with these paths. The file types are:

• Executable files (build utilities)

• Include files

• Library files

• Source files

On the Directories tab, accessed by choosing Options from the Tools menu, you can
edit the directory paths where Developer Studio looks for the file types.

Directory information is stored in registry entries. The Show Directories For list box
on the Directories tab displays the directories shown in the following table.

File Type

Executable files

Include files

Path Contents

Specifies where the build utilities, such as NMAKE, CL, LINK,
and BSCMAKE, reside.

Specifies where the compiler should look for include files (files
surrounded by angle brackets « and»; for example, 1Ft n c 1 u d e
<stdi o. h».

Chapter 22 Customizing Microsoft Developer Studio

File Type

Library files

Source files

Path Contents

Specifies where the linker should look for libraries to resolve
external references.

Specifies where the debugger should look for default source files
including Microsoft Foundation Class Library and Run-Time
Library.

~ To add a directory to the Directories list

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Directories tab.

3 If necessary, select the platform from the Platform list box.

4 In the Show Directories For list box, select the category of directory.

5 In the Directories box, double-click the blankJine at the bottom of the list
(indicated by an empty rectangle), and type the directory name.

6 Choose the OK button.

Developer Studio searches directories in the order in which they appear in the list.
After adding a directory, you can move it up or down in the list by dragging it up or
down the list and dropping it in the new position.

~ To remove a directory from the Directories list

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Directories tab.

3 If necessary, select the platform from the Platform list box.

4 In the Show Directories For list box, select the category of directory.

5 In the Directories list box, double-click the directory that you want to remove.

6 Delete the text defining the directory.

7 Choose the OK button.

~ To prioritize a directory in the Directories list

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Directories tab.

3 If necessary, select the platform from the Platform list box.

4 In the Show Directories For list box, select the category of directory.

5 In the Directories box, select the directory that you want to prioritize.

457

Visual c++ User's Guide

6 Drag the selected directory to its new position.

7 Choose the OK button.

U sing Full-Screen Mode

458

You can use the text editor and other resource editors in full-screen mode. When you
initially select full-screen mode, a toolbar button with a small graphic of a computer
screen is displayed. You can toggle full-screen mode on and off by clicking this
button. If you close this toolbar button and want to restore it, follow the procedure
below to redisplay the full-screen toolbar button.

~ To begin full-screen mode

• From the View menu, choose Full Screen.

When you switch to full-screen mode forthe first time, your current standard mode
horizontal and vertical scroll bar settings are used for full-screen mode. However, you
can have different window settings for full-screen mode and standard mode.

~ To change the full-screen mode window settings

1 Begin full-screen mode.

2 From the Tools menu, choose Options.

When full-screen mode is active, you can display the Tools menu by pressing
ALT+T.

3 Select the Editor tab.

4· Check the Window Settings that you want.

5 Choose the OK button.

~ To end full-screen mode

• Press the ESC key.

-or-

• Click the full-screen toolbar button.

-or-

1 Press ALT+V to display the View menu.

2 Choose Full Screen to end full-screen mode.

~ To redisplay the full-screen toolbar button while in full-screen mode

1 Begin full-screen mode.

2 From the Tools menu, choose Customize,.

Chapter 22 Customizing Microsoft Developer Studio

D·

When full-screen mode is active, you can display the Tools menu by pressing
ALT+T.

3 Select the Toolbars tab.

4 In the Categories list box, select View.

S Drag the Toggle Full Screen button onto the full-screen application window.

6 Choose the Close button.

Tip You should open a file for editing before beginning full-screen mode. If a file is not
opened first, full-screen mode is displayed as a large, empty screen. If this happens, use the
ESC key to restore the original screen mode.

Customizing with Other Options
You can choose other options to customize editing, debugging, working with projects,
using components, and creating custom App Wizards.

See Also Setting Editor Behavior, Debugger Windows, Working with Projects,
U sing Component Gallery, Creating Custom App Wizards

459

CHAPTER 23

Editor Emulations

The Microsoft Developer Studio text editor can emulate two popular text editors:
BRIEF® and EpsilonTM. With the emulation feature, the text editor can emulate the
key bindings, text selection, caret display, window display, and most editing
commands of the selected editor. Some editor behaviors are not available, notably
those dealing with macros, shells, and other elements that have no substitute in the
text editor.

The Epsilon emulation is based on the Lugaru Epsilon editor version 6.0, and the
BRIEF emulation is based on the Borland BRIEF editor version 3.1.

Note Each editor emulation includes the use of native syntax for regular expressions during
find and replace operations. For more information on regular expression syntax, see "Using
Regular Expressions with Developer Studio," "Using Regular Expressions with BRIEF
Emulation':' and "Using Regular Expressions with Epsilon Emuiation:: in Chapter 3, "Using the
Text Editor."

See Also Setting Editor Behavior, Using Epsilon Emulation, Using BRIEF
Emulation, Viewing and Changing the Shortcut Keys

Setting Editor Behavior
You can use the Compatibility tab in the Options dialog box to set overall editor
behavior. The Compatibility tab contains a drop-down list box of the available editors
for emulation. The supported editor emulations are:

• Developer Studio

• Visual C++ version 2.0

• BRIEF

• Epsilon

The Options checklist contains the compatibility options and their default settings' for
the ~hosen editor. You can change these options to create a custom emulation model.
When you create a custom emulation model, the word "Custom" appears in the list

461

Visual C++ User's Guide

462

box with the name of the standard editor. For example, if you change some of the
options for the BRIEF emulation, "Custom (BRIEF)" appe~s in the list.

For each emulation, the following default options are set:

• Developer Studio

• Enable copy without selection

• Visual C++ version 2.0

• Enable copy without selection

• Enable virtual space

• BRIEF

• Disable backspace at ~tart of line

• Enable copy without selection

• Enable line-mode pastes

• Enable virtual space

• Include caret positioning in undo buffer

• Use BRIEF's regular expression syntax

• Epsilon

• Include caret positioning in undo buffer

~ To set an editor emulation

1 From the Tools menu, choose Options.

The Options dialog box appears.

2 Select the Compatibility tab.

3 In the Recommended Options For list box, select the editor that you wish to
emulate.

The default editor is Developer Studio.

The Options box lists the status of pre-defined editor options.

4 Choose the OK button.

~ To create a custom editor emulation

1 From the Tools menu, choose Options.

The Options dialog box appears,

2 Select the Compatibility tab.

3 In the Recommended Options For list box, select a standard editor on which to
base your custom editor.

The Options box lists the editor's current options.

Chapter 23 Editor Emulations

4 Select the options you want to create the desired editor behavior.

The name of the custom editor reflects the name of the standard editor. For
example, if-you customize the BRIEF emulation, the custom editor is named
"Custom (BRIEF)".

5 Choose the OK button.

See Also U sing Epsilon Emulation, Using BRIEF Emulation

U sing Epsilon Emulation
The Epsilon emulation provides Epsilon default key bindings, caret display, text
selection, and the following general editing commands.

Tip You can change individual shortcut keys with the Keyboard tab in the Customize dialog
box.

Category

Help

Bookmarks

Buffer

Files

Indenting

Inserting and Deleting

Epsilon Command

help

set-bookmark

jump-to-Iast-bookmark

set-named-bookmark

jump-to-named-bookmark

select-buffer

find-file

save-file

write-file

insert-file

save-alI-buffers

to-indentation

indent-previous

indent-region

center-line

tabify-region

untabify-region

indent -under

quoted-insert

open-line

backward-delete-character

delete.,.character

delete-horizontal-space

Developer Studio Command

(Common help function.)

BookmarkDrop(Epsilon)

BookmarkJumpToLast

Bookmark

Bookmark

WindowList

FileOpen

FileS ave

FileSaveAs

InsertFile

FileSaveAs

GoToIndentation

(Use the TAB key.)

IndentSelectionToPrev

WindowScrolIToCenter

TabifySelection

UntabifySelection

IndentToPrev

QuotedInsert

LineOpenAbove

(U se the BACKSPACE key.)

Delete

DeleteHorizontalSpace

463

Visual C++ User's Guide

Category Epsilon Command Developer Studio Command

delete-blank-lines DeleteBlankLines

overwrite-mode (Use the INSERT key.)

Keyboard Macros start-kbd-macro ToolsRecordKeystrokes

end-kbd-macro ToolsStopRecording

last-kbd-macro ToolsPlaybackRecording

Killing and Yanking set-mark StreamSelectExc1usive

highlight-region SelectHighlight

exchange-point -and-mark SelectSwapAnchor

kill-line LineCut

kill-region CutS election

copy-region Copy

yank Paste

append-next-kill AppendNextCut

rectangle-mode SelectColumn

Miscellaneous abort Cancel

exit FileExit

argument SetRepeatCount

goto-line GoTo

Moving Around beginning-of-line Home

end-of-line LineEnd

down-line LineDown

up-line LineUp

forward-character CharRight

backward-character CharLeft

center-window WindowScrollToCenter

next-page PageDown

previous-page PageUp

scroll-up WindowScrollUp

scroll-down WindowScrollDown

goto-beginning DocumentStart

goto-end DocumentEnd

beginning -of-window WindowS tart

end-of-window WindowEnd

Paragraphs forward-paragraph ParaDown

backward-paragraph ParaUp

mark -paragraph SelectPara

464

Chapter 23 Editor Emulations

Category Epsilon Command Developer Studio Command

Parenthetic find-delimiter GoToMatchBrace
Expressions

forward-level LevelDown

backward-level LevelUp

kill-level LevelCutToEnd

backward-kill-Ievel LevelCutToStart

Running Programs next-error GoToNextErrorTag (A default
key binding is not provided for
this command.)

previous-error GoToPrevErrorTag (A default
key binding is not provided for
this command.)

Sentences forward-sentence SentenceRight

backward-sentence SentenceLeft

kill-sentence SentenceCut

Searching and incremental-search IncrementalSearch
Replacing

reverse-incremental-search IncrementalSearchBack

regex-search IncrementalSearchRE

reverse-regex -search IncrementalSearchREBack

grep FileFindInFiles

next-match FindNext

previous-match FindPrev

replace-string FindReplace

query-replace FindReplace

regex-replace FindReplaceRE

word-mode, (These commands are available
regular-expression-mode, only in incremental search
case-sensitive-mode, and mode, not in dialog mode. The
incremental-mode commands are not key

bindable.)

Tags goto-tag Browse

pluck-tag BrowseGoToDefinition

Transposing transpose-characters CharTranspose

transpose-words WordTranspose

transpose-lines LineTranspose

Undo undo Undo

redo Redo

465

Visual C++ User's Guide

Category

Windows

Word Commands

Epsilon Command

undo-changes

redo-changes

one-window

split-window

split-window-vertically

kill-window

zoom-window

move-to-window

next-window

previous-window

forward-word

backward-word

backward-kill-word

kill-word

transpose-words

capitalize-word

lowercase-word

uppercase-word

Developer Studio Command

UndoChanges

RedoChanges

WindowSinglePane

WindowSplitHorizontal·

WindowSplit Vertical

WindowKillPane

WindowMaximize

WindowNextPane

WindowCyc1e

WindowPrevious

WordRight

WordLeft

WordDeleteToStart

WordDeleteToEnd

WordTranspose

W ordCapitalize

WordLowerCase

WordUpperCase

Note The entire set of emulation commands is available to each editor. For more information,
see "Viewing and Changing the Shortcut Keys" later in this chapter.

U sing BRIEF Emulation

a

466

The BRIEF emulation provides BRIEF default key bindings, caret display, text
selection, and the following general editing commands.

Tip You can change individual shortcut keys with the Keyboard tab in the Customize dialog
box.

Category BRIEF Command Developer Studio Command

Help Help (Common help function.)

Undo and Redo Undo Undo

Redo Redo

Saving and Exiting Exit FileExit

Write FileS ave

Write All and Exit FileSaveAllExit

Chapter 23 Editor Emulations

Category BRIEF Command Developer Studio Command

Editing Text Backspace (Use the BACKSPACE key.)

Delete (U se the DELETE key.)

Delete Line LineDelete

Delete Next Word WordDeleteToEnd

Delete Previous Word WordDeleteToStart

Delete to Beginning of Line LineDeleteToStart

Delete to End of Line LineDeleteToEnd

Enter (U se the ENTER key.)

Insert Mode Toggle EditToggleOvertype

Open Line LineOpenBelow

Quote QuotedInsert

Buffers Delete Current Buffer FileClose

Edit File FileOpen

Next Buffer WindowNext

Previous Buffer Window Previous

Read File into Buffer InsertFile

Search and Translate Case Sensitivity Toggle ToggleCaseSensitivity

Incremental Search IncrementalSearch

Regular Expressions Toggle EditToggleRE

Search Again FindRepeat

Search Backward FindPrev

Search Forward Find

Translate Again FindReplace

Translate Forward FindReplace

Windows Center Line in Window WindowScrollToCenter

Change Window WindowSwitchPaneUp,
WindowSwitchPaneDown,
WindowSwitchPaneLeft,
WindowSwitchPaneRight. (A
default key binding is not
provided for this command.)

Create Window WindowSplitHorizontal,
WindowSplitVertical

Delete Window WindowDeleteRowUp,
WindowDeleteRowDown,
WindowDeleteColLeft,
WindowDeleteColRight

Line to Bottom of Window WindowScrollToBottom

Line to Top of Window WindowScrollToTop

467

Visual c++ User's Guide

Category

Blocks and Marks

Scrap

Cursor Movement

468

BRIEF Command

Quick Window Switch

Resize Window

Zoom Window Toggle

Column Mark

Drop Bookmark

Indent Block

Jump Bookmark

Line Mark

Lower Case Block

Mark/Unmark

Noninc1usive Mark

Outdent Block

Print Block

Swap Cursor and Mark

Upper Case Block

Copy to Scrap

Cut to Scrap

Paste from Scrap

Back Tab

Beginning of Line

Cursor Movement

End of Buffer

End of Line

End of Window

Go to Line

Left Side of Window

Next Character

Next Word

Page Down

Page Up

Previous Character

Previous Word

Right Side of Window

Scroll Buffer Down in Window

Developer Studio Command

WindowSwitchPaneUp,
WindowSwitchPaneDown,
WindowSwitchPaneLeft,
WindowSwitchPaneRight

Window Split

WindowMaximize

SelectColumn

BookmarkDrop(BRIEF)

IndentSelection

Bookmark

SelectLine

LowerCaseSelection

SelectChar

SelectCharInc1usive

UnindentSelection

FilePrint

SelectSwapAnchor

UpperCaseS election

Copy

Cut

Paste

(Use the SHIFT+TAB keys.)

Home(BRIEF)

(Use the arrow keys.)

DocunientEnd

End(BRIEF)

WindowEnd

GoTo

WindowLeftEdge

(U se the right arrow key.)

WordRight

PageDown

PageUp

(U se the left arrow key.)

WordLeft

WindowRightEdge

WindowScrollUp

Chapter 23

Category BRIEF Command Developer Studio Command

Scroll Buffer Up in Window WindowScrollDown

Tab (Use the TAB key.)

Top of Buffer Home(BRIEF)

Top of Window WindowStart

Pause Recording Toggle ToolsPauseRecording

Macros, Playback, and Playback ToolsPlaybackRecording
Remember

Remember ToolsRecordKeystrokes

Go To Routine Browse

Special Commands Next Error GoToNextErrorTag

Repeat EditSetRepeatCount

Note The entire set of emulation commands is available to each editor. For more information,
see "Viewing and Changing the Shortcut Keys" below.

Editor Emulations

Viewing and Changing the Shortcut Keys
You can customize the keyboard for the selected editor and the editing commands.
Customization is stored only for the current editor. If you change emulation, you will
lose all of your custom key assignments.

Specific commands and their associated shortcut keys are available for the following
categories:

• File

• Edit

• View

• Insert

• Build

• Debug

• Tools

• Image

• Layout

• Window

• Help

Each category contains a variety of commands that you can assign to individual
keystrokes. For more information, see "Customizing the Keyboard" in Chapter 22,
"Customizing Developer Studio."

469

Visual C++ User's Guide

470

Note You can display all of the current keyboard shortcuts, including custom key settings and
editor emulations. For more information, see "Displaying the Keyboard Shortcuts" in Chapter
22, "Customizing Developer Studio."

~ To find the current shortcut key

1 From the Tools menu, choose Customize.

The Customize dialog box appears.

2 Select the Keyboard tab.

3 In the Editor drop-down list box, select Text.

4 In the Categories list box, select the category.

5 In the Commands list box, select the command.

Epsilon-specific commands contain the text "Epsilon." BRIEF-specific commands
contain the text "BRIEF."

The Current Keys box displays the current shortcut keys. Multiple assignments are
listed on separate lines.

6 Choose the Close button.

~ To change the current shortcut key

1 From the Tools menu, choose Customize.

The Customize dialog box appears.

2 Select the Keyboard tab.

3 In the Categories list box, select the category.

4 In the Commands list box, select the command.

The Current Keys box displays the current shortcut keys. Multiple assignments are
listed on separate lines.

5 Change the focus to the Press New Shortcut Key box, then press the keystroke
combination you want to assign. If you make a mistake, use the BACKSPACE key to
correct it, not the DEL key.

If the key combination is currently assigned to another command, the command is
displayed in the Currently Assigned To box.

6 Choose the Assign button.

The new keystroke combination is added to the Currt?nt Keys box.

7 Choose the Close button.

Chapter 23 Editor Emulations

~ To remove a shortcut key assignment

1 From the Tools menu, choose Customize.

The Customize dialog box appears.

2 Select the Keyboard tab.

3 In the Categories list box, select the category.

4 In the Commands list box, select the command.

The Current Keys box displays the current shortcut keys. Multiple assignments are
listed on separate lines.

5 Select the current key assignment that you want to remove.

6 Choose the Remove button.

The keystroke combination is removed from the Current Keys box.

7 Choose the Close button.

~ To reset all keystroke assignments

1 From the Tools menu, choose Customize.

The Customize dialog box appears.

2 Select the Keyboard tab.

3 In the Editor drop-down list box, select the editor.

4 Choose the Reset All button and confirm your choice.

All keystroke combinations for the selected editor revert to their default settings.

5 Choose the Close button.

471

CHAPTER 24

Creating Custom App Wizards

With App Wizard you can create Custom App Wizards to create applications for your
special needs. The topics listed below describe what custom App Wizards are, when
they are useful, and how you create them:

• Understanding Custom App Wizards

• Overview of Creating a Custom App Wizard

• Debugging Custom App Wizards

• Creating a Class Wizard Information File Template

• Providing Context-Sensitive Help

• App Wizard Programming Reference

Understanding Custom App Wizards
App Wizard is the tool to use when you need to create a new application. It quickly
generates the starter files you need for the most common application types. But what
about those special applications that are unique to your work? What do you do if you
or your clients need applications with features that the standard App Wizard can't
provide? The answer is that you can create custom AppWizards.

Custom App Wizards are useful for creating generic application project types that can
repetitively generate common functionality - application types that can be used over
and over again. Custom App Wizards are not useful for creating one-off project types.

Like App Wizard, a custom App Wizard presents the user with choices, tracks the
user's decisions, and uses those decisions to generate the code, resources, and project
files that the Visual C++ build tools require to build a skeletal, working application.

For example, if you work for a company where people commonly need special views
of database information, you can create a custom App Wizard to generate generic
dialog-based front ends to a database. You can even ensure that the dialog box is
always embellished with a company logo.

473

Visual C++ User's Guide

Possibilities for custom AppWizards are:

• Create a custom App Wizard that is based on the code and resources in an existing
project.

• Modify code in existing App Wizard templates.

• Add one or more steps to the existing AppWizard's steps.

• Create a custom set of steps.

For more information on creating a custom App Wizard, see Overview of Creating a
Custom App Wizard.

See Also U sing a Custom App Wizard, Overview of Creating a Custom App Wizard,
Understanding the Files that AppWizard Creates, Adding Functionality to Your
Custom AppWizard, Debugging Custom AppWizards, Creating a ClassWizard
Information File Template, Providing Context-Sensitive Help, AppWizard
Programming Reference

U sing a Custom App Wizard

474

Once you have created a custom App Wizard, it is launched by its user from the New
Project Workspace dialog box or the Insert Project dialog box. When the custom
AppWizard user finishes using the custom AppWizard, the New Project Information
dialog box displays the name and features of the chosen project. There is nothing new
here. The custom App Wizard functions just like App Wizard with regard to the New
Project Workspace dialog box, the Insert Project dialog box, and the New Project
Information dialog boxes.

In fact, a custom App Wizard is just an extension of existing App Wizard technology.
A running custom App Wizard uses many of the services of App Wizard to do its
work. Users of a custom AppWizard that is based on an existing application or a
custom AppWizard with no steps will not see any differences -only the New Project
Workspace dialog box or the Insert Project dialog box and the New Project
Information dialog box as usual. A user of a more complex custom App Wizard will
proceed through a sequence of steps much like they would if using App Wizard.

Both App Wizard and a custom App Wizard are implemented as two dialog boxes: an
outer one and an inner one. See Figure 24. 1. The outer dialog box contains the title
bar and the Help, Cancel, Back, Next, and Finish buttons. It serves as a master
control panel and also frames the inner dialog box.

The inner dialog box can actually be one or more dialog boxes, each representing one
step in the project generation process. See Figure 24.1.

Chapter 24 Creating Custom App Wizards

Figure 24.1 AppWizard's Structure

Outer Dialog Box Inner Dialog Box

See Also Understanding Custom AppWizards, Overview of Creating a Custom
App Wizard, Debugging Custom App Wizards, Creating a Class Wizard Information
File Template, Providing Context-Sensitive Help

Overview of Creating a Custom App Wizard
Creating a custom AppWizard requires the following steps:

1. Use the New Project Workspace dialog box or the Insert Project dialog box to
create a Custom App Wizard project.

For more information, see "How to Create a Custom App Wizard Project" on
page 478.

2. Edit two text templates, CONFIRM.INF and NEWPROIINF. Your finished
custom AppWizard uses these to create the custom AppWizard user's application.

For more information, see "Understanding CONFIRM.INF and NEWPROJ.INF"
on page 488.

3. Use the Microsoft Developer Studio to create any other templates that your custom
App Wizard requires.

For more information, see "Understanding Custom Resource Templates" on
page 484.

4. Use the Visual C++ programming tools to add functionality to your custom
AppWizard.

475

Visual c++ User's Guide

476

5. Use the AppWizard API to add calls into MFCAPWZ.DLL to create
communication between the finished custom App Wizard and App Wizard
(MFCAPWZ.DLL).

For more information, see "AppWizard Programming Reference" on page 495.

6. Use the Visual C++ programming tools to build your custom AppWizard. A
custom AppWizard is given an extension of .AWX, rather than .DLL, and is
automatically added to the MSDEv\TEMPLATE directory. Once in this directory,
your custom App Wizard becomes a project type and can be selected from the Type
drop-down list in the Insert Project dialog box and the New Project Workspace
dialog box.

You'll have to learn some of the inner workings of AppWizard to perform steps 3 and
5. But first, you need an overview of the players and the tools. The players are
described in Table 24.1; the tools in Table 24.2.

Table 24.1 The Players

Players

You

Custom App Wizard
user

User

Description

You are the custom App Wizard writer. Your job is to design and
implement a custom AppWizard. In this documentation, "you"
refers to a custom AppWizard writer.

You, or any other developer, who uses a custom AppWizard with
the purpose of creating an application for one or more end users.

The end user who uses the application created from the project
generated by the custom App Wizard. In this documentation, "user"
refers to the end user.

As you can see, creating a custom App Wizard is a layered interaction between you
(the custom AppWizard writer), the custom AppWizard user, and the end user who
ultimately uses the application.

Table 24.2 describes the tools that you use -in addition to the familiar Microsoft
Developer Studio, compiler, linker, etc. - to create a custom App Wizard for a
custom App Wizard user.

Table 24.2 The Tools

Tools

AppWizard

Custom App Wizard

Description

A tool that you use to create an application that is based on the
Microsoft Foundation Class Library (MFC).

AppWizard is composed of MFCAPWZ.DLL and all of the
dynamic-link: libraries (DLLs) containing localized resources -
those with names described by APPWZ* .DLL.

A tool that you use to create custom applications. Your custom
App Wizard is used to create an application. The custom
AppWizard appears, to its user, as one or more steps that are
embedded within a framework that looks like App Wizard.

Chapter 24 Creating Custom App Wizards

Table 24.2 The Tools (continued)

Tools

MFCApWZ.DLL

CUSTMWZ.AWX

App Wizard API

Custom resource
templates

Binary templates

Text templates

Description

The DLL that implements App Wizard. It also interacts with a
finished custom AppWizard to lend it an AppWizard-like look
and feel.

MFCAPWZ.DLL has two different interfaces: an on-screen
appearance that looks much like App Wizard (with a title bar and
Help, Cancel, Back, Next, and Finish buttons), and an
App Wizard API that you use to establish lines of communication
and control between MFCAPWZ.DLL and your custom
AppWizard.

The dynamic-link library, which is itself a custom AppWizard,
that implements the Custom App Wizard project type. You select
this project type from the New Project Workspace dialog box or
the Insert Project dialog box in order to choose the features of
your custom App Wizard. The CUSTMWZ.A WX source code is
included as a sample program in the
MSDEv\sAMPLES\APPWIZ\CUSTOMWZ directory.

The application programming interface that provides you with
calls into MFCAPWZ.DLL. You use the API to specify custom
AppWizard and MFCAPWZ.DLL behavior in reaction to a
custom AppWizard user's on-screen manipulation of the Help,
Cancel, Back, Next, and Finish buttons. For more information on
the AppWizard API, see "AppWizard Programming Reference"
on page 495.

There are two types of custom resource templates: binary and
text. A finished custom App Wizard uses these templates to create
a final application. For more information, see "Standard Custom
Resource Templates" on page 534.

Binary templates are not parsed by MFCAPWZ.DLL during the
application generation process. They are copied verbatim to a
new application. Binary templates can include, but are not
restricted to, files such as .BMP and .RTF. For more information,
see "Understanding Binary Templates" on page 493.

Text templates are parsed by MFCAPWZ.DLL during the
application generation process. They can, for example, contain
source code, macros, and directives that a custom AppWizard can
use to generate a new project's source-code files. Typically, the
new project's final application is built from these source files.
Text templates can include, but are not restricted to, files such as
.H, .CPP, .RC, .CLW, .ODL, .RTF, and .RC2. For more
information, see "Understanding Text Templates" on page 456.

See Also How to Create a Custom AppWizard Project, Understanding the Files that
AppWizard Creates, Adding Functionality to Your Custom AppWizard,

Visual C++ User's Guide

Understanding Custom Resource Templates, Understanding Text Templates, How
Macros Get Their Values, How to Specify Macros in Directives or Text,
Understanding Binary Templates, Debugging Custom AppWizards, Creating a
ClassWizard Information File Template, Providing Context-Sensitive Help,
App Wizard Programming Reference

How to Create a Custom App Wizard Project

478

You use the New Project Workspace dialog box or the Insert Project dialog box,
AppWizard, Microsoft Developer Studio, and the Visual C++ build tools to create a
custom App Wizard. You can create custom App Wizards based on one of the three
categories: an existing project, the standard App Wizard steps, or your own custom
steps. These are described below.

An Existing Project
By choosing this category, you can leverage code from a workspace that contains a
single existing project. The project's files must have originally been created by
AppWizard, and the names of the existing project's files and classes (CYourAppView,
CYourAppDoc, etc.) should be those generated by AppWizard.

The existing project's name must not contain non alphanumeric characters, such as
DBCS characters. The existing files, originally created from AppWizard, can include
minor changes or additions, but major changes can introduce flaws into your new
custom App Wizard.

If the base class's default, AppWizard-provided class, and/or filenames have been
modified, Custom App Wizard cannot convert them to macro form as it adds them to
the text templates that it generates. This is also true if you use ClassWizard to add
classes to a default App Wizard project. Custom App Wizard will still p.arse the
modified names and add them to the templates, and your custom App Wizard will
generate an application, but your custom App Wizard will not be able to modify the
names based on the project name provided by your custom App Wizard's user. You
can work around this by adding the appropriate macros to the names in the text
templates. For more information on text templates, see "Understanding Text
Templates" on page 486. For more information on macros, see "How Macros Get
Their Values" on page 491. '.

You may find it useful to examine the CUSTMWZ.AWX source code, found in the
MSDEv\sAMPLES\APPWIZ\CUSTOMWZdirectory, that is included as a sample
program.

Standard AppWizard Steps
By choosing this category, you can use one of the existing sequences of App Wizard
steps that create an executable file or a DLL. You can use the AppWizard steps by
themselves, or add your own custom steps to them.

Note You can't connect your own custom AppWizard code with existing AppWizard dialog
templates. For example, if your custom AppWizard uses the standard OLE options page,

Chapter 24 Creating Custom App Wizards

AppWizard will use its own OLE options step dialog template and dialog class; you cannot
modify the AppWizard dialog template or class.

Your Own Custom Steps
By choosing this category, you can create a custom App Wizard that presents a
completely new set of custom steps to the user.

Creating a Custom AppWizard
The procedures bel~w list the steps necessary to create a custom App Wizard based on
any of the three categories -an existing project, the standard AppWizard steps, or
your own custom steps - previously described in "How to Create a Custom
AppWizard Project." The first procedure describes how to use the Custom
App Wizard project type to create a custom App Wizard.

Note A custom AppWizard cannot run on any platform other than Win32. because Microsoft
Developer Studio runs only on Win32. A custom AppWizard can, however, generate
applications that target other platforms.

~ To create a custom AppWizard

1 Start Visual C++.

2 From the File menu, choose New.

The New dialog box appears.

3 In the New box, select Project Workspace.

4 Choose OK.

The New Project Workspace dialog box appears.

5 In the Name text box, type a name.

The name that you specify in the Name text box is used to derive the default
names for the CCustomAppWiz class and its files.

6 From the Type list, select Custom App Wizard.

7 Accept the Platform for this project.

Because your custom App Wizard will run only on a Win32 operating system,
Win32 is selected by default.

8 In the Location text box, specify the path of the project workspace. A directory
will be created if you specify one that does not exist.

-or-

Use the Browse button to select a drive and a directory.

9 Choose Create.

Custom AppWizard - Step 1 of2, appears. Figure 24.2 shows this step and
describes the three custom App Wizard types you can create.

479

Visual C++ User's Guide

480

Figure 24.2 Custom AppWizard Step 1

A project that will build a
Custom AppWizard project
that is based on an existing
Appwizard project.

--.
A project that will build a
Custom AppWizard project
that uses the existing
AppWizard steps and any
custom steps you create.

-----.
A project that will build a
Custom AppWizard project
that uses only custom steps
you create.

~ To specify a custom AppWizard type, name, and number of steps

From Step 1 of 2, you can select from three categories of custom AppWizards. You
can also specify the name that your custom App Wizard will display in the Type list
and the number of custom steps that it will need.

1 Select a custom App Wizard category:

• An existing project

Select this option if you want your custom App Wizard to generate code,
resource, and project files that are based on those found in a workspace that
contains a single existing project. For more information on this option, see
"How to Create a Custom AppWizard Project" on page 478.

r

r

r

If you select this option, the AppWizard title bar displays "Step 1 of 2," and the
Next button is activated. The text box for specifying the number of custom steps
is grayed out because the features of the resulting custom App Wizard project
are defined by the features of the existing project; you will not need to provide
any custom App Wizard steps.

• Standard App Wizard steps

Select this option if you want your custom App Wizard to use an existing
sequence of App Wizard steps. For more information on this option, see "How
to Create a Custom AppWizard Project" on page 478.

Chapter 24 Creating Custom AppWizards

If you select this option, the title bar displays "Step 1 of 2," and the Next button
is activated.

• Your own custom steps

Choose this option if you want to create an entirely new custom App Wizard.

If you select this option, the title bar changes to "Step 1 of 1" and the Next
button is deactivated.

2 Type a name under the heading "What should your custom App Wizard be called
in the drop-down list of project types?"

This name will appear in the New Project Workspace dialog box's Type list once
your custom AppWizard's DLL is moved to the MSDEv\TEMPLATE directory.

3 If you have chosen to base your custom App Wizard on either the standard
AppWizard steps or a completely custom set of steps, specify the required number
of custom steps under the heading "How many custom steps would you like?"

Note If your project is based on the standard AppWizard steps, type a number only if you
plan to create steps other than the standard ones.

For each step that you specify, MFCAPWZ.DLL will provide a resource template
that you can edit in the dialog editor, and a CApp WizStepDlg class derived from
the MFC library's CDialog class.

~ To specify the location of an existing project

If you've chosen to base your custom App Wizard on an existing project, you must
specify the location of the existing project:

1 From Step 1 of 2, choose the Next button.

AppWizard displays the second step.

2 In Step 2 of 2, type the location of the workspace that contains the existing project
on which your custom AppWizard will be based. Alternatively, you can use the
Browse button to navigate to the base project.

~ To choose the type of standard AppWizard steps

If you've chosen, from Step 1 of 2, to use standard AppWizard steps:

1 In Step 2 of 2, under the title "Which App Wizard steps would you like to include
in your custom AppWizard?" select either:

• AppWizard Executable

This sequence of App Wizard steps creates projects that will build into
executable files.

-or-

• AppWizard Dynamic Link Library

This AppWizard step creates projects that will build into DLLs.

481

Visual C++ User's Guide

482

~ To specify the language(s) that your custom AppWizard will support

If you've chosen to use standard AppWizard steps:

• In the list box under the title "Which languages will your custom App Wizard
support?" select the languages that your custom App Wizard will support.

The list box contains a language name for each language DLL in your
\MSDEV\BIN\IDE directory. The names of these DLLs take the form
APPWZ* .DLL. For example, if\MSDEV\BIN\IDE contains APPWZENU.DLL
and APPWZDEU.DLL, the list box will list both English and German.

For each language you select from the list box, App Wizard will copy language­
specific versions of the standard App Wizard resource templates from the
associated language DLL to your custom AppWizard project's template directory.
Then, after your finished custom App Wizard is copied to a custom App Wizard
user's \MSDEv\TEMPLATE directory, the custom AppWizard user can use your
custom App Wizard to generate projects that support any of the languages you
select.

Note The language DLLs (such as APPWZENU.DLL and APPWZDEU.DLL) contain only
standard AppWizard resource templates. You must supply any nonstandard resource
templates required by applications that your custom AppWizard creates. For a complete list
of the standard AppWizard resource templates, see "Standard Custom Resource
Templates" on page 534.

~ To complete the process of specifying your custom AppWizard project

1 Once you are satisfied with the features you have selected for your custom
App Wizard, choose the Finish button.

The New Project Information dialog box appears and lists the features that you
have selected.

2 Choose the OK button.

AppWizard will generate code files, resource files, and project files based on the
features listed in the New Project Information dialog box. It then automatically
opens your new custom App Wizard project in a project window.

See Also Overview of Creating a Custom AppWizard, Understanding the Files that
AppWizard·Creates, Adding Functionality to Your Custom AppWizard,
Understanding Custom Resource Templates, Debugging Custom App Wizards,
Creating a ClassWizard Information File Template, Providing Context-Sensitive
Help, App Wizard Programming Reference

Chapter 24 Creating Custom App Wizards

Understanding the Files that App Wizard
Creates

AppWizard uses the name that you specify in the Name box of the New Project
Workspace dialog box to derive names for some of its files and classes.

You'll undoubtedly want to examine the source-code files you create. If you chose to
have App Wizard add comments to the files it creates for your project, App Wizard
will also create a text file, README.TXT, in your new application directory. This
file explains the contents and uses of the other new files created by App Wizard.

See Also Understanding Custom AppWizards, Using a Custom AppWizard,
Overview of Creating a Custom AppWizard, Adding Functionality to Your Custom
AppWizard

Adding Functionality to Your Custom
AppWizard

You add functionality to your custom AppWizard in the same manner that you add
functionality to any other App Wizard project. That is, you use the resource editors to
edit your project's resources and use the WizardBar, ClassWizard, and the text editor
to edit your code. Figure 24.3 graphically illustrates these steps.

The only difference between adding functionality to an App Wizard project and to a
custom App Wizard project is dealing with custom resource templates. After
examining your project's structure, you'll note that it contains a TEMPLATE
directory. The files in this directory contain custom resource templates.
MFCAPWZ.DLL and your finished custom AppWizard will use these to create the
custom AppWizard user's application.

483

Visual C++ User's Guide

Figure 24.3 Adding Functionality to Your Custom AppWizard

r
Your new project

Build cycle

.~ Use the dialog editor and the bitmap
editor to draw any custom step
functionality.

Use Class Wizard and the text editor to
add code to your project, especially
edit CAppWizStepDlg::OnDismiss.

Use the text editor to add macros and
directives to NEWPROJ.lNF and
CONFIRM.lNF. These files must track
the choices that a user of your custom
AppWizard can select from any custom
steps.

'." Your custom DLL is copied to
MSDEv\TEMPLATE and becomes
a Custom AppWizard project type.

See Also Understanding the Files that App Wizard Creates, Understanding Custom
Resource Templates, Understanding CONFIRM.INF and NEWPROJ.INF,
Understanding Text Templates, How Macros Get Their Values, How to Specify
Macros in Directives or Text, Understanding Binary Templates, Debugging Custom
AppWizards, Creating a ClassWizard Information File Template, Providing Context­
Sensitive Help, App Wizard Programming Reference

Understanding Custom Resource Templates

~84

App Wizard obtains the building blocks for the code, resource, and project files it
creates from special files called custom resource templates. There are two types of
custom resource templates: text templates and binary templates. Text templates are
used to create the source files for a project, and binary templates usually contain
bitmaps for user-interface components, such as toolbars.

App Wizard always provides you with a copy of the CONFIRM.INF and
NEWPROJ.INF templates and, if you use existing sequences of AppWizard steps,
App Wizard copies its own custom resource templates ipto your custom App Wizard

Chapter 24 Creating Custom App Wizards

project for you to use and/or modify. You can also use Microsoft Developer Studio to
create your own templates and add them to your custom AppWizard project.

Custom resource templates are resources of type "TEMPLATE". You can see these if
you double-click your project's resource script file (.RC) in the Project Workspace
window. All custom resource templates are in the folder called "TEMPLATE".
Because these are custom resources, Microsoft Developer Studio makes no
assumptions about their content, and treats it as binary data. If you double-click a
custom resource type in the Project Workspace window, Microsoft Developer Studio
opens the associated file in a binary editor. If you want to edit a custom resource, you
II?-ust know the actual type it represents and choose that type from the Open As list in
the Open dialog box.

~ To open a custom resource type in the appropriate editor

1 From the File menu, choose Open.

The Open dialog box appears.

2 Select the drive and directories where the template is stored.

3 In the List Files Of Type box, set the types of files to display.

Files with the chosen extension are displayed in the File Name box.

This box serves as a filter to display all files with a given extension. For example,
selecting Image Files in the List Files Of Type box displays all files with * .BMP,
*.DIB, *.ICO, and *.CUR extensions in the File Name box.

4 In the File N arne box, select a filename.

5 From the Open As list, select the type of file that describes the template you wish
to open.

The Auto type will correctly recognize custom resource template file extensions
such as .BMP, .R, and .CPP and open an associated file in the correct editor. Select
the Text type from the Open As list to edit custom resource templates that
represent resource scripts (.RC files).

~ To create a custom resource template

1 Copy the file you wish to import as a custom resource template to your project's
TEMPLATE directory.

2 From the Insert menu, choose the Resource command.

The Insert Resource dialog box appears.

3 From the Resource Type pane, select the type of the custom resource template.

4 Choose the Import button.

The Import Resource dialog box appears.

5 Using the Drives and Directories lists, select your project's TEMPLATE directory.

485

Visual c++ User's Guide

6 In the List Files Of Type box, set the types of files to display. Files with the chosen
extension are displayed in the File Name box.

This box serves as a filter to display all files with a given extension. For example,
selecting Bitmaps in the List Files Of Type box displays all files with * .BMP and
*.DIB extensions in the File Name box.

7 In the File Name box, select a filename.

8 From the Open As list, select Custom.

9 Choose the Import button.

The Custom Resource Type dialog box appears.

10 From the Resource Type list, choose "TEMPLATE".

11 Choose OK.

The file is imported into your project as a custom resource type and opened in the
binary data editor.

The custom resource type is added to your project under your projects
"TEMPLATE" folder, which is available by selecting the Resource View pane in
the Project Workspace window. The custom resource template type is given an ID
ofIDR_TEMPLATE*, where * is a number that is unique within the
"TEMPLATE" folder. You can use the Properties command on the pop-up menu to
change the ID. To activate the ID's pop-up menu, place the mouse cursor on the
new custom resource template's ID in the ·"TEMPLATE" window and press the
right mouse button.

See Also Overview of Creating a Custom AppWizard, Understanding the Files that
AppWizard Creates, Adding Functiqnality to Your Custom AppWizard,
Understanding Text Templates, How Macros Get Their Values, How to Specify
Macros in Directives or Text, Understanding Binary Templates, Creating a
Class Wizard Information File Template, App Wizard Programming Reference

Understanding Text Templates

16

A text template is a type of custom resource template. App Wizard uses the content of
text templates to create the source files of a new project. Text templates typically
contain lines of source code, such as C++ code or resource-script directives. Text
templates also contain macros and directives that App Wizard uses to determine the
final content of template-generated source files.

App Wizard puts templates into the TEMPLATE directory of a generated project.
Once templates are part ofa project, you can either use them without modification or
edit them to add custom functionality to your custom AppWizard. You can also add
your own text templates to a project.

The following code-template fragment shows C++ code with embedded macros and
directives. The values of macros such as $$ROOT$$ and $$APP _ CLASS$$ control

Chapter 24 Creating Custom App Wizards

the names of files and classes. The existence of macros such as VERBOSE controls
whether flow-of-control directives, such as $$IF, evaluate to true.

For more information on macros, see "How Macros Get Their Values" on page 491.
For more information on directives, see "Standard AppWizard Directives" on page
516.

// $$root$$.h : main header file for the $$ROOT$$ application

If inc 1 u de" res 0 u r c e . h" // main symbols

//
// $$APP_ClASS$$:
// See $$root$$.cpp for the implementation of this class

class $$APP_ClASS$$: public $$APP_BASE_ClASS$$
{
public:

$$APP_ClASS$$();

II Overrides
// ClassWizard generated virtual function
// overrides
//{{AFX_VIRTUAl($$APP_ClASS$$)
public:
vi rtual Baal InitInstance();
//}}AFX_VIRTUAl

1/ Implementation

//{{AFX_MSG($$APP_ClASS$$)
$$IF(VERBOSE)

// NOTE - the ClassWizard will add and
// remove member functions here.
// DO NOT EDIT what you see in these
// blocks of generated code!

$$ENDIF

} ;

II}}AFX_MSG
DEClARE_MESSAGE_MAP()

See Also Overview of Creating a Custom AppWizard, Understanding the Files that
AppWizard Creates, Adding Functionality to Your Custom AppWizard,
Understanding Custom Resource Templates, Understanding CONFIRM.lNF and
NEWPROJ.INF, How Macros Get Their Values, How to Specify Macros in Directives
or Text, Creating a ClassWizard Information File Template, Providing Context­
Sensitive Help, App Wizard Programming Reference.

487

Visual C++ User's Guide

Understanding CONFIRM.INF and NEWPROJ.INF

488

CONFIRM.lNF and NEWPROJ.lNF are special text templates that MFCAPWZ.DLL
(AppWizard) inserts into every custom AppWizard project. They are the blueprints
that a custom App Wizard uses to construct the project files from which a final, end­
user application can be built. The content of CONFIRM.INF becomes the content of
the New Project Information dialog box. This presentation of information in the New
Project Information dialog box allows a user to examine their chosen project features.
NEWPROJ.lNF contains the instructions that AppWizard uses to construct a user's
project.

AppWizard will provide CONFIRM.lNF and NEWPROJ.lNF templates in varying
states of readiness, depending on whether you choose to base your custom App Wizard
project on:

• An existing project

In this case, the content of NEWPROJ.lNF is based on the content of the existing
project. CONFIRM.lNF is left empty; you will need to add text, macros, and
directives to CONFIRM.lNF that describe, in human-readable form, each feature a
user can choose from each of your custom AppWizard's steps.

• Standard AppWizard steps

In this case, the content of both templates is based on the existing App Wizard
steps. If you add your own custom steps to the standard AppWizard steps, you'll
need to add text, macros, and directives to CONFIRMJNF that reflect each feature
a custom AppWizard user can choose in each custom step. You will also need to
add statements, macros, and directives to NEWPROJ.lNF that can build a project
for any combination of features a custom AppWizard user can select from the
custom steps.

• Your own custom steps

In this case, both templates are empty. You must add text, macros, and directives
to CONFIRM.lNF that reflect each feature a user can choose in each custom step.
You will also need to add statements, macros, and directives to NEWPROJ.lNF so
that it can build a project for any combination of features a user can select from
the custom steps.

For more information, see CONFIRM.INF and NEWPROJ.INF.

See Also Overview of Creating a Custom App Wizard, Understanding the Files that
App Wizard Creates, Adding Functionality to Your Custom App Wizard,
CONFIRM.INf, NEWPROJ.INF, Understanding Text Templates, How Macros Get
Their Values, How to Specify Macros in Directives or Text, Creating a Class Wizard
Information File Template, Providing Context-Sensitive Help, AppWizard
Programming Reference

Chapter 24 Creating Custom App Wizards

CONFIRM.INF
CONFIRM.INF contains a human-readable description of each project component
(such as the project name and the names of its primary classes). It also contains a
description of each feature that a custom App Wizard user can select from each step.
The following code shows how macros and flow-of-control directives are used to
generalize the content of a CONFIRM.INF:

$$11 confirm.inf = the text sent to the New Project
$$11 Information dialog box
Application type of $$ROOT$$:

Dialog-Based Application targeting:
Win32

Classes to be created:
Application: $$APP_CLASS$$ in $$ROOT$$.h and $$ROOT$$.cpp
Dialog: $$DLG_CLASS$$ in $$DLG_HFILE$$.h and $$DLG_IFILE$$.cpp

Features:
+ About box on system menu

$$IF(INDENTED_BRACES)
+ Curly braces indented from previous level

$$ELSE II !INDENTED_BRACES
+ Curly braces flush with previous level

$$ENDIF II NOT_INDENTED_BRACES
$$IF(COMPANY_LOGO)

+ A company logo
$$ENDIF IICOMPANY_LOGO
$$IF(3-D)

+ 3D Controls
$$ENDIF 113-D

This example ofCONFIRM.INF contains lines of text (such as Cl asses to be
created:), macros (such as $$APP _CLASS$$ and $$ROOT$$), and flow-of-control
directives (such as $ $ I F and $ $ END I F). Once a user chooses the Finish button of a
custom AppWizard, MFCAPWZ.DLL parses CONFIRM.INF as follows:

• Each line of text is gathered into a CString object, and each encountered macro is
expanded.

• Any line beginning with $$/ / is a comment and is ignored.

• Any line of text between an $$IF and an $$ENDIF is converted to a CString if
the associated macro, such as INDENTED_BRACES and COMPANY_LOGO,
exists and thus evaluates to true.

• The resulting CStrings reflect the custom AppWizard user's choices and are
written to the New Project Information dialog box. Thus, they can view the
features of their proposed project.

For more information on how MFCAPWZ.DLL parses templates, see "Understanding
Text Template Parsing" on page 491. .

489

Visual C++ User's Guide

See Also Overview of Creating a Custom App Wizard, How to Create a Custom
AppWizard Project, Understanding the Files that AppWizard Creates, Adding
Functionality" to Your Custom AppWizard, Understanding CONFIRM.lNF and
NEWPROJ.INF, NEWPROJ.INF, Understanding Text Templates, How Macros Get
Their Values, How to Specify Macros in Directives or Text, Creating a Class Wizard
Information File Template, Providing Context-Sensitive Help, AppWizard
Programming Reference

NEWPROJ.INF

90

NEWPROJ.lNF contains the instructions that MFCAPWZ.DLL uses to construct a
custom App Wizard user's project. The instructions are statements, directives, and
macros that work together to describe the structure of a project. The following code
shows how statements and macros are used to generalize the instructions of a
NEWPROIINF file:

+dlgroot.rc .\$$ROOT$$.rc
+dlgroot.clw .\$$ROOT$$.clw
dlgroot.h .\$$ROOT$$.h
+dlgroot.cpp .\$$ROOT$$.cpp
dialog.h .\$$ROOT$$dlg.h
+dialog.cpp .\$$ROOT$$dlg.cpp
readme.txt .\readme.txt
resource.h .\resource.h
stdafx.h .\stdafx.h
+stdafx.cpp .\stdafx.cpp
IRES
=root.ico .\res\$$ROOT$$.ico
root.rc2 .\res\$$ROOT$$.rc2

In general, there are two kinds of NEWPROJ.lNF statements: those that create
directories, arid those that fill the directories witli files. In the previous example, the
I RE'S statement causes MFCAPWZ.DLL to create a project subdirectory named RES.
The +dl groat. rc . \$$ROOT$$. rc statement causes MFCAPWZ.DLL to look
for a custom resource template named D LGROOT. RC, give it a name determined by
the value of the $$ROOT$$ macro, and place the resulting file in the new project's
root directory. The plus sign (+) is a flag that marks this template for inclusion in the
project file (.MAK). For more information on the NEWPROJ.lNF statements, see
"NEWPROJ.INF Statements" on page 497.

For brevity, directives (such as $$IF, $$ELSE, and $$ENDIF) are not shown in the
previous example, but they can be used as shown in the CONFIRM.INF example. For
more information on directives, see "Standard AppWizard Directives" on page 516.
For more information on macros, see "How Macros Get Their Values" on page 491.

See Also Overview of Creating a Custom App Wizard, How to Create a Custom
AppWizard Project, Understanding the Files that AppWizard Creates, Adding
Functionality to Your Custom AppWizard, Understanding CONFIRM.lNF and
NEWPROJ.INF, CONFIRM.INF, Understanding Text Templates, Understanding Text

Chapter 24 Creating Custom App Wizards

Template Parsing, How Macros Get Their Values, How to Specify Macros in
Directives or Text, Creating a ClassWizard Information File Template, Programming
Reference

Understanding Text Template Parsing
The function CCustomAppWiz::ProcessTemplate parses a template line by line and
passes everything that is not a macro or directive directly to an output stream. If a
line contains a macro, which is not an argument to a directive, ProcessTemplate
replaces the macro with its associated value, retrieved from the dictionary, and· passes
the altered line to the output stream. For example, given a project named MyProject
and an output stream named ROOT.CPP, the following line in a text template:

#include "$$root$$.h"

becomes

#include "MyProject.h"

in a project file named MYPROJECT.CPP. For more information on macros, see
"How Macros Get Their Values" on page 491.

If a line is a directive, ProcessTemplate obeys the rules set down by the directive. For
more information on directives, see "Standard AppWizard Directives" on page 516.

ProcessTemplate passes the parsed string to MFCAPWZ.DLL. If the output stream
is directed to CONFIRM.INF or NEWPROJ.lNF, MFCAPWZ.DLL will use the files
during the project generation process. For more information on these files, see
"Understanding CONFIRM.lNF and NEWPROJ.INF'~ on page 488.

If the output stream represents a source file, MFCAPWZ.DLL does no further
processing of the file. Instead, MFCAPWZ.DLL inserts the file into a new project
structure following rules set out in NEWPROJ.INF.

See Also Overview of Creating a Custom App Wizard, Understanding the Files that
AppWizard Creates, Adding Functionality to Your Custom AppWizard,
Understanding Custom Resource Templates, Understanding CONFIRM.lNF and
NEWPROJ.INF, Understanding Text Templates, How Macros Get Their Values, How
to Specify Macros in Directives or Text, Creating a Class Wizard Information File
Template, App Wizard Programming Reference

How Macros Get Their Values
There are two kinds of macros: standard AppWizard macros and those you create.
Macros are created by adding them to a CMapStringToString dictionary named
projectaw.m_Dictionary that is declared inprojectAW.H.

AppWizard gathers the values for some of its ~tandard macros from the New Project
Workspace dialog box. It then uses these values to name a user '8 project, files, and
classes. AppWizard also uses macros that represent project features, such as 3D,
TOOLBAR, and STATUSBAR. For more information on the standard AppWizard

491

Visual C++ User's Guide

macros, see "Standard App Wizard Macros" on page 523 and
"CCustomApp Wiz::m _Dictionary" on page 509.

See Also Overview of Creating a Custom AppWizard, Adding Functionality to Your
Custom AppWizard, Understanding Custom Resource Templates, Understanding
CONFIRM.INF and NEWPROJ.INF, Understanding Text Templates, Understanding
Text Template Parsing, How to Specify Macros in Directives or Text, App Wizard
Programming Reference, CCustomApp Wiz::m _Dictionary

How to . Specify Macros in Directives or Text
A macro name that is used as an argument to a directive, such as $$IF, does not need
dollar signs ($$) to mark its beginning and end; any dollar signs found are
interpreted as part of the macro's name. For instance, the
CCustomAppWiz::ProcessTemplate function's parser treats both AMACRO and
$$AMACRO$$ as macro names in the following two directive statements:

$ $ I F (AMAC RO) ;
$$IF($$AMACRO$$);

A macro name in text, however, reQ1l:ires dollar signs ($$) to mark its beginning and
end, as shown in the following fragment extracted from one of AppWizard's custom
resource templates:

///
// $$APP_CLASS$$

BEGIN_MESSAGE_MAP($$APP_CLASS$$, $$APP_BASE_CLASS$$)
//{{AFX_MSG_MAP($$APP_CLASS$$)

$$IF(VERBOSE)
// NOTE - the ClassWizard will add and
// remove mapping macros here.
// DO NOT EDIT what you see in these
// blocks of generated code!

$$ENDIF
//}}AFX_MSG
ON_COMMAND(ID_HELP, CWinApp::OnHelp).

END_MESSAGE_MAP()

For more information on macros, see "How Macros Get Their Values" on page 49l.

See Also Adding Functionality to Your Custom AppWizard, Understanding Custom
Resource Templates, Understanding CONFIRM.INF and NEWPROJ.INF,
Understanding Text Templates, Understanding Text Template Parsing, How Macros
Get Their Values, Understanding Binary Templates, AppWizard Programming
Reference.

Chapter 24 Creating Custom App Wizards

Understanding Binary Templates
A binary template is a type of custom resource template. Binary templates usually
contain bitmaps. These bitmaps are the user-interface components, such as toolbar
buttons and icons, that App Wizard and a custom App Wizard use when generating a
project. Binary templates do not contain macros or directives and are not parsed.
They are, instead, copied verbatim into the end user's project.

See Also Adding Functionality to Your Custom AppWizard, Understanding Custom
Resource Templates, AppWizard Programming Reference

Debugging Custom App Wizards
When'MFCAPWZ.DLL generates your skeleton custom AppWizard project, it
provides you with both Release and Pseudo Debug projects. The Pseudo Debug
project is a Release project that disables optimizations and generates debugging
information using the compiler's Program Database (/Zi) option and the linker's
Generate Debug Information (/DEBUG) option. These option settings allow you to
use the debugger while you are developing your custom App Wizard.

You must use the Pseudo Debug project to debug your custom AppWizard. Release
projects (including Pseudo Debug projects) and Debug projects use two different and
incompatible memory allocators. You do not have access to the Debug versions of the
Visual C++ binarys. Using the Pseudo Debug project allows your custom AppWizard
and the Release version of the Visual C++ binarys to use the same memory allocator.

A Pseudo Debug project defines the _PSEUDO_DEBUG preprocessor symbol,
rather than the _DEBUG preprocessor symbol that signals a normal debug project,
and uses its own local copies of the ASSERT, TRACE, and VERIFY debugging
macros. You can find these macros in the generated files DEBUG.H and
DEBUG.CPP.

The ASSERT, ASSERT_VALID, TRACE, and VERIFY macros that exist in the
MFC code are not available to you because your custom App Wizard must use the
Release version of MFC. This means that these macros are not available if you
inadvertently write code that would trigger them.

~ To debug your custom AppWizard

1 With your custom AppWizard's project open, choose the Settings command from
the Build menu.

The Project Settings dialog box appears.

2 Select the Debug tab.

3 In the Executable For Debug Session box, type the location of MSDEY.EXE. For
example, C: \MSDEV\B I N\MSDEV • EX E.

493

Visual C++ User's Guide

4 Choose OK.

The next time you start the debugger, Microsoft Developer Studio will launch a
new instance of Microsoft Developer Studio.

5 Use the original instance of Microsoft Developer Studio to set breakpoints in your
custom App Wizard code and to examine its data using the Watch window and
other debugging tools as needed.

6 Use the second instance of Microsoft Developer Studio to launch your custom
AppWizard for debugging.

See Also Overview of Creating a Custom App Wizard, Adding Functionality to Your
Custom App Wizard, Creating a Class Wizard Information File Template, App Wizard
Programming Reference

Creating a Class Wizard Information
File Template

494

The Custom App Wizard project adds a custom resource template for generating a
ClassWizard Information (.CLW) file to the following types of new custom
AppWizard projects:

• Those based on an existing project, if the existing project contained a .CLW file
(which it should).

• Those based on an existing ~equence of standard App Wizard steps.

If your custom AppWizard generates a .CLW file and you alter your custom
App Wizard so that it generates projects that contain more classes. than
CUSTMWZ.AWX originally generated, then those additional classes will not
automatically appear in the .CLW file your custom AppWizard generates. The custom
App Wizard user will notice upon opening Class Wizard for the project your custom
App Wizard generated that the additional classes are not available.

To avoid this problem, edit your custom AppWizard's NEWPROJ.INF file so that it
no longer generates a default .CLW. Then, when the custom AppWizard user
attempts to use Class Wizard, Class Wizard presents a dialog box that notes that no
.CLW file exists and offers to build one. The .CLW file is built after the user chooses
Yes.

See Also Working With Classes, Rebuilding the ClassWizard (.CLW) File,
Understanding Custom Resource Templates.

Chapter 24 Creating Custom App Wizards

Providing Context-Sensitive Help
The Custom App Wizard project type provides you with the tools you need to create a
help file that describes your custom steps:

• A starter rich-text (.RTF) file, HLI"project.RTF, containing a topic for each
custom step that the Custom App Wizard project type generated for you. You can
use any rich-text format word processor, such as Microsoft Word for Windows, to
add information to each custom-step topic in your project.RTF file.

• A help project (.HPJ) file to controLcompiling your project.RTF file into a
WinHelp help file.

• A batch file, MAKEHELP.BAT, that compiles your project.RTF file into a help
(.HLP) file. Type MAKEHELP. BAT as a command from a console command line,
and MAKEHELP.BAT will use project.HPJ to create a help file from your
project.RTF file.

Note You cannot integrate your custom AppWizard's help with the Microsoft Developer Studio
help system. But if you build a custom AppWizard that uses an existing sequence of
AppWizard steps, your custom AppWizard will automatically use the Microsoft Developer
Studio help file that was created for the standard AppWizard steps. Your custom AppWizard
will use your own WinHelp help file for the custom steps. The effect is seamless to the user.

Your custom AppWizard, which has an extension of .AWX, and its help file must use
the same base filename, and both must reside in MSDEv\TEMPLATE. When the end
user clicks a custom step's Help button, MFCAPWZ.DLL invokes WinHelp and
passes it the current step's help ID and the name of your custom App Wizard's help
file.

See Also Adding Context-Sensitive Help, Help: Authoring Help Topics,
Understanding Custom AppWizards, Using a Custom AppWizard, Overview of
Creating a Custom AppWizard, Understanding the Files that AppWizard Creates,
Adding Functionality to. Your Custom AppWizard, Understanding Custom Resource
Templates, App Wizard Programming Reference

App Wizard Programming Reference
MFCAPWZ.DLL contains the code that controls the default behavior of App Wizard.
It also contains the code that controls the interactions between App Wizard and your
custom App Wizard. This reference describes the programming interface to
MFCAPWZ.DLL. You can use the interface to add funtionality to the default
behavior of your custom App Wizard. For more information, see the descriptions of
the items in the following table.

495

Visual c++ User's Guide

496

Statements

NEWPROJ.INF Statements

AppWizard C++ Classes

CApp WizStepDlg

CCustomApp Wiz

OutputStream

AppWizard C Functions

C Functions Exported by
MFCAPWZ.DLL

AppWizard Macros

The Dictionmy'

Standard App Wizard Macros

Custom Resource Templates

Custom Resource Templates

Standard Custom Resource Templates

Description

The syntax for and behavior of the statements
that MFCAPWZ.DLL uses to generate a project.

Description

The class from which custom AppWizard steps
are derived.

The class that provides communication services
between MFCAPWZ.DLL and your custom
AppWizard.

The class that wraps two member functions used
to write custom resource templates to an output
stream.

Description

MFCAPWZ.DLL and your custom AppWizard
use these C functions to communicate.

Description

Storage location for both your macros and the
standard App Wizard macros.

Macros that track the choices an App Wizard user
makes from the New Project Workspace dialog
box, from the Insert Project dialog box, and from
AppWizard's steps. MFCAPWZ.DLL uses many
of the same macros to track the choices that a
custom AppWizard user makes from the New
Project Workspace or Insert Project dialog box.

Description

The building blocks that MFCAPWZ.DLL and a
finished custom App Wizard use to create a final
application. Developer Studio allows you to
create and add your own custom resource
templates to your custom App Wizard project.

The templates that MFCAPWZ.DLL and the
DLLs containing localized resources - those
with names that take the form APPWZ* .DLL -
use to build the files and user-interface
components that compose a project.

Chapter 24 Creating Custom App Wizards

AppWizard Directives

Standard AppWizard Directives

Description

Directives, such as $$IF, $$ELIF, $$ELSE,
$$ENDIF, $$INCLUDE, $$BEGINLOOP,
$$ENDLOOP, and $$SET_DEFAULT_LANG
used by MFCAPWZ.DLL to generalize its custom
resource templates so that the templates can be
used for mUltiple project types. You will probably
need to use these directives when you write a
custom App Wizard.

See Also Overview of Creating a Custom AppWizard, Adding Functionality to Your
Custom App Wizard, CApp WizStepDlg, CCustomApp Wiz, OutputStream, C
Functions Exported by MFCAPWZ.DLL, The Dictionary, Standard App Wizard
Macros, Understanding Custom Resource Templates, Standard Custom Resource
Templates, Understanding CONFIRM.INF and NEWPROIINF

NEWPROJ.INF Statements
NEWPROJ.INF contains statements that MFCAPWZ.DLL reads to determine a
project structure. A statement in NEWPROJ.INF can use either of the following two
forms of syntax: .

/directory This statement directs MFCAPWZ.DLL to create a subdirectory of the
project directory. Note that the slash is a forward slash, not a backs lash. This is
how, for example, App Wizard creates a separate RES subdirectory under the
project directory, and hm;\/ the Custom App Wizard project type creates its
TEMPLATE subdirectory.

-or-

fflags]template-name tab-character destination-filename This statement directs
MFCAPWZ.DLL to use a custom resource template named template-name to
generate a file named by destination-filename. If destinationjilename includes a
path, all directories on the path must exist. Remember that you can use the
/directory statement to create a directory. You generate the tab-character by
pressing the TAB key.

flags A flag is any of three optional characters defined in Table 24.3. They can
appear in any order and any combination, but must appear immediately before
template-name. No characters (not even whitespace) can separate the flags from
each other or from template-name.

497

Visual c++ User's Guide

498

Table 24.3 Template Name Flags

Flag Description

+

*

Copies the template, verbatim, to destination-filename. This flag tells
MFCAPWZ.DLL to use CopyTemplate rather than ProcessTemplate.
ProcessTemplate is the default.

For example, the following line causes MFCAPWZ.DLL to call
CopyTemplate to copy the project's icon directly to the project:

=ROOT.ICO $$root$$.ico

Note that using the lowercase version of the $$root$$ macro causes the
generated filename to be lowercase. For more information on the root macro,
see "New Project Workspace and Insert Project Dialog Box Options"on
page 524.

Specifies that the generated file is a project file (such as .CPP and .ODL files)
that MFCAPWZ.DLL must add to the project makefile. This is how an
MFCAPWZ.DLL adds files to the generated project.

Forces LoadTemplate to use an App Wizard resource rather than a custom
AppWizard resource. Use this flag when you want your custom AppWizard to
bypass its own template in preference to App Wizard's copy. For example,
when the Custom AppWizard project type (CUSTMWZ.AWX) generates a
custom AppWizard that is based on an existing sequence of AppWizard steps,
it needs AppWizard's NEWPROJ.lNF, not its own. Using this flag is
unnecessary in most situations because MFCAPWZ.DLL looks for a template
in AppWizard's resources if it can't first find the template in the custom
AppWizard's resources. This flag simply bypasses the initial check in the
custom AppWizard's resources. For example, the following line causes
ProcessTemplate to add the MFCAPWZ.DLL version of DLGROOT.CPP to
the generated project's makefile:

*+DLGROOT.CPP $$root$$.cpp
Note that using the lowercase version of the $$root$$ macro causes the
generated f~lename to be lowercase. For more information on the root macro,
see "New Project Workspace and Insert Project Dialog Box Options" on
page 524.

template-name The resource ID of a custom resource template. When an end user
presses the OK button from the New Project Information dialog box,
MFCAPWZ.DLL begins parsing NEWPROJ.INF. For each template-name found
in NEWPROJ.lNF, MFCAPPWZ.DLL calls LoadTemplate with template-name to
load the custom resource template for processing. If template-name is not found,
the custom App Wizard displays an error in a message box, stops code generation,
and returns to the dialog box from which template parsing began.

destination-filename Names the file and directory in which MFCAPWZ.DLL
generates the file associated with template-name. The named directory must
already exist. If it doesn't, MFCAPWZ.DLL presents a message box to inform you
that it can't generate the. file and stops code generation.

Chapter 24 Creating Custom App Wizards

See Also Overview of Creating a Custom AppWizard, Understanding the Files That
App Wizard Creates, Adding Functionality to Your Custom App Wizard,
Understanding CONFIRM.INF and NEWPROJ.INF, CONFIRM.INF,
NEWPROJ.INF, Understanding Text Templates, How Macros Get Their Values, How
to Specify Macros in Directives or Text

CApp WizStepDlg
The CApp WizStepDlg class is the class from which custom App Wizard steps are
derived. Recall that the App Wizard and custom App Wizard user interface is
comprised of nested dialog boxes: an outer one and one or more inner ones. The outer
dialog box contains the title bar and the Help, Cancel, Back, Next, and Finish
buttons. It serves as a master control panel and also frames the inner dialog box.

The outer dialog box frames an area that can contain one or more dialog boxes called
steps. These steps, derived from CApp WizStepDlg, q:mtain controls that allow
App Wizard or a custom App Wizard to gather information from a user.

Each custom App Wizard step is a combination of a dialog template and its associated
CApp WizStepDlg-derived class. App Wizard automatically generates a dialog
template and a CApp WizStepDlg-derived class for each custom step in your custom
AppWizard.

Use the dialog editor to add controls to the dialog template, and then use Class Wizard
to add class members representing the controls to the CApp WizStepDlg-derived
class.

For more information on Class Wizard, see Chapter 14, "Working With Classes."
CApp WizStepDlg is derived from the Microsoft Foundation Class Library (MFC)
CDialog class. For more information on CDialog, see the Microsoft Foundation
C lass Library Reference.

Typically, in a custom App Wizard, instances of each CApp WizStepDlg-derived class
are constructed when AppWizard (MFCAPWZ.DLL) calls
CCustomApp Wiz: :InitCustomApp Wiz and destroyed when App Wizard calls
CCustomApp Wiz: : ExitCustomApp Wiz.

#include <customaw.h>

See Also Overview of Creating a Custom AppWizard, Adding Functionality to Your
Custom AppWizard, CAppWizStepDlg Class Members, CCustomAppWiz,
OutputStream, C Functions Exported by MFCAPWZ.DLL, The Dictionary,
Standard App Wizard Macros, Understanding Custom Resource Templates, Standard
Custom Resource Templates, Understanding CONFIRM.INF and NEWPROJ.INF.

499

Visual C++ User's Guide

500

CAppWizStepDlg Class Members
Construction

CApp WizStepDlg

Overridables

OnDismiss

Constructs a CApp WizStepDlg object.

Called whenever a custom App Wizard user chooses the Next,
Back, or Finish button. Override in order to create, update, or
remove macros from the dictionary through calls to
aw.m _Dictionary.

See Also Overview of Creating a Custom AppWizard, Adding Functionality to Your
Custom App Wizard, CApp WizStepDlg, OnDismiss, CCustomApp Wiz,
OutputStream, C Functions Exported by MFCAPWZ.DLL, The Dictionary,
Standard App Wizard Macros, Understanding Custom Resource Templates, Standard
Custom Resource Templates, Understanding CONFIRM.INF and NEWPROJ.INF

CApp WizStepDlg: :CApp WizStepDI 9
CApp WizStepDlg(UINT nIDTemplate);

Parameters
nIDTemplate Contains the ID number of a dialog box template resource.

Remarks
Accepts a template ID number, usually with an IDD _ prefix (for example,
IDD_CUSTOMl) and constructs a resource-based dialog box: a step, in the case of a
custom App Wizard.

See ·Also Overview of Creating a Custom App Wizard, Adding Functionality to Your
Custom App Wizard, CApp WizStepDlg: :OnDismiss, CCustomApp Wiz,
OutputStream, C Functions Exported by MFCAPWZ.DLL, The Dictionary,
Standard AppWizard Macros, Understanding Custom Resource Templates, Standard
Custom Resource Templates, Understanding CONFIRM.INF and NEWPROJ.INF

CAppWizStepDlg: :OnDismiss
BOOL OnDismiss();

Return Value
Nonzero if the dialog box can be dismissed; otherwise o.

Remarks
A step's OnDismiss member function is called by MFCAPWZ.DLL whenever a
custom AppWizard user performs any action that calls CCustomAppWiz::Next or
CCustomAppWiz::Back. A step's OnDismiss member function is also called if the
user chooses the Finish button.

Chapter 24 Creating Custom App Wizards

Typically, you will call UpdateData(TRUE) from OnDismiss to transfer a step's
control values to the appropriate CApp WizStepDlg member variables. You should
then use the CCustomApp Wiz::m _Dictionary member to transfer the values to the
custom AppWizard's dictionary. The values in the dictionary are the values that the
CCustomAppWiz::ProcessTemplate member function uses to map the macros it
finds while parsing a custom resource template to their actual values.

If the data is invalid, your custom App Wizard can display a dialog box and return
FALSE, in which case MFCAPWZ.DLL will not continue to the next step.

See Also CCustomAppWiz::Back, CCustomAppWiz::Next,
CCustomApp Wiz::m _Dictionary, CApp WizStepDlg: :CApp WizStepDlg,
CCustomApp Wiz: :ProcessTemplate, CCustomApp Wiz, OutputStream, C
Functions Exported by MFCAPWZ.DLL

CCustomApp Wiz
The CCustomApp Wiz class provides communication services between
MFCAPWZ.DLL and your custom App Wizard. MFCAPWZ.DLL calls these member
functions. The base-class implementations of the CCustomApp Wiz member
functions reside in MFCAPWZ.DLL, but your custom AppWizard can override them.

#include <customaw.h>

See Also CCustomApp Wiz: :Back, CCustomApp Wiz: :Next,
CCustomApp Wiz::m _Dictionary, CApp WizStepDlg: :CApp WizStepDlg,
CCustomApp Wiz: :CopyTemplate, CCustomApp Wiz: :ExitCustomApp Wiz,
CCustomApp Wiz: :InitCustomApp Wiz, CCustomApp Wiz: : GetPlatforms,
CCustomApp Wiz: :LoadTemplate, CCustomApp Wiz: : PostProcessTemp late ,
CCustomApp Wiz: :ProcessTemplate

CCustomAppWiz Class Members
Data Members

m _Dictionary

Overridables

Back

CopyTemplate

ExitCustomApp Wiz

Provides a dictionary of macros. Some of the macros are
supplied by MFCAPWZ.DLL and some by you.
ProcessTemplate uses the dictionary to map macros that
are embedded in custom resource templates to their actual
values.

Moves to the previous step. Called whenever a custom
App Wizard user chooses the Back button.

Called by MFCAPWZ.DLL to copy verbatim a binary
template into the custom App Wizard user's project.

Called by MFCAPWZ.DLL just before it unloads the
custom App Wizard. ExitCustomApp Wiz is a convenient
place to perform any cleanup required by the custom
AppWizard.

501

Visual C++ User's Guide

502

Overridables

GetPlatforms

InitCustomApp Wiz

LoadTemplate

Next

PostProcessTemplate

ProcessTemplate

Called by MFCAPWZ.DLL immediately after it loads and
initializes the custom AppWizard. Override to obtain the
list of platforms currently installed for Visual C++ and
choose those that your custom App Wizard will support.

Called by MFCAPWZ.DLL immediately after it loads the
custom App Wizard. InitCustomApp Wiz is a convenient
place to perform initialization required by the custom
AppWizard.

Called by MFCAPWZ.DLL to load custom resource
templates, such as NEWPROJ.lNF and CONFIRM.INF,
for further processing.

Moves to the next step. Called whenever a custom
AppWizard user chooses the Next button.

Called by MFCAPWZ.DLL after it finishes parsing a
template. PostProcessTemplate is a convenient place for
you to deallocate memory that you allocated for a custom
resource template. Typically you will not need to override
this function.

Called by MFCAPWZ.DLL to process a custom resource
template returned by LoadTemplate. ProcessTemplate
expands embedded macros, obeys embedded directives,
and directs the output to an output stream.

See Also CCustomAppWiz::Back, CCustomAppWiz::Next,
CCustomApp Wiz::m _Dictionary, CApp WizStepDIg: :CApp WizStepDIg,
CCustomApp Wiz: :CopyTemplate, CCustomApp Wiz: :ExitCustomApp Wiz,
CCustomApp Wiz: : GetPlatforms , CCustomApp Wiz::lnitCustomApp Wiz,
CCustomApp Wiz: :LoadTemplate, CCustomApp Wiz: :PostProcessTemplate,
CCustomApp Wiz: :ProcessTemplate

CCustomApp Wiz:: Back
virtual CAppWizStepDIg* Back(CAppWizStepDIg* pDlg);

Return Value
A pointer to the previous step. If pDlg points to the first step, Back returns NULL to
indicate that MFCAPWZ.DLL should next display the New Project Workspace dialog
box or the Insert Project dialog box. For more information on steps, see the class
CApp WizStepDlg on page 499.

Parameters
pDlg Pointer to the current step.

Remarks
Back moves to the previous step. AppWizard (MFCAPWZ.DLL) calls this function
whenever a user chooses the Back button. The Back button is located on the main,

Chapter 24 Creating Custom App Wizards

outer dialog box that MFCAPWZ.DLL displays. For more information on steps and a
description of the two-dialog-box structure of AppWizard and custom AppWizards,
see CApp WizStepDIg on page 499.

Before Back is called, MFCAPWZ.DLL calls the CAppWizStepDIg::OnDismiss
member function of the currently displayed step. You override
CAppWizStepDIg::OnDismiss to transfer data from the step's controls to the
appropriate variables and to update the appropriate dictionary values. If your custom
AppWizard returns FALSE from the call to the overridden
CApp WizStepDIg: :OnDismiss, then the current step remains active, and Back is
not called.

See Also CCustomAppWiz::Next, CAppWizStepDIg::OnDismiss,
CApp WizStepDIg: :CApp WizStepDIg

CCustomApp Wiz: :CopyTemplate
virtual void CopyTemplate(LPCTSTR lpszlnput, DWORD dwSize, OutputStream* pOutput);

Parameters
lpszlnput A pointer, returned by CCustomAppWiz::LoadTemplate, to a custom

resource template.

dwSize The size of the custom resource template. Provided by the LoadTemplate
function's rdwSize argument.

pOutput A pointer to the stream that represents the destination of the output from
CCustomApp Wiz: :CopyTemplate.

Remarks
CopyTemplate copies a binary template (a type of custom resource template)
verbatim into the end user's project. For more information on binary templates, see
"Understanding Binary Templates" on page 493.

See Also CCustomApp Wiz: :LoadTemplate, CCustomApp Wiz: :ProcessTemplate,
CCustomAppWiz::PostProcessTemplate, Understanding Custom Resource
Templates, Understanding Binary Templates

CCustomApp Wiz:: ExitCustomApp Wiz
virtual void ExitCustomAppWiz();

Remarks
AppWizard (MFCAPWZ.DLL) calls ExitCustomAppWiz just before it unloads your
custom App Wizard from memory. Use ExitCustomApp Wiz to perform any cleanup
necessary, such as de allocating instances of each of your custom App Wizard's
CApp WizStepDIg-derived steps. The base-class version of ExitCustomApp Wiz
does nothing.

See Also CCustomApp Wiz: :InitCustomAppwiz

503

Visual C++ User's Guide

504

CCustomApp Wiz: :GetPlatforms
virtual void GetPlatforms(CStringList& rPlatforms);

Parameters
rPlatforms A reference to a CStringList of ea~h platform currently installed on

Microsoft Visual C++. Platform names that rPlatforms can contain are shown in
the following table.

Platform Name

Win32 (x86)

Win32 (MIPS)

Win32 (ALPHA)

Win32 (PowerPC)

Macintosh

Power Macintosh

Remarks

Comes With

Visual C++

Visual C++ RISC edition

Visual C++ RISC edition

Visual C++ RISC edition

Visual C++ Cross Development edition for Macintosh

Visual C++ Cross Development edition for Macintosh

The GetPlatforms member function allows you to specify which operating-system
and hardware platforms your custom App Wizard will support. MFCAPWZ.DLL calls
this function with a list containing an entry for each platform currently installed on
Microsoft Visual C++. You override GetPlatforms to parse and modify this list.
Typically, you will remove those platform names from the list that your custom
App Wizard does not support.

App Wizard calls GetPlatforms after loading and initializing a custom App Wizard. It
uses the platform names in rPlatforms, which are always in English, to determine
which platform names will appear in your custom AppWizard's Platforms checklist.
For each English name in rPlatforms, AppWizard places a locale-specific platform
name into your custom AppWizard's Platforms checklist.

For each platform selected by the custom App Wizard user, MFCAPWZ.DLL sets a
corresponding target macro in the dictionary and removes those for the nonselected
platforms.

The following example shows how to traverse a platforms list and remove all strings
that don't start with "Win32", thus keeping the Intel® Win32, MIPS® Win32, and
ALPHATM Win32 as target platforms and removing the Macintosh® target platforms.

II This custom AppWizard only targets Win32 platforms.
void CSampleAppWiz::GetPlatforms(CStringList& rPlatforms)
{

POSITION pos = rPlatforms->GetHeadPosition();
while (pos 1= NULL)

Chapter 24 Creating Custom App Wizards

{

}
}

POSITION posCurr = pos;
CString strPlatform=rPlatforms-)GetNext(pos);
if (strPlatform.Left(5) != _T("Win32"))

rPlatforms-)RemoveAt(posCurr);

If you do not override GetPlatforms, MFCAPWZ.DLL will display the names of all
of the currently loaded platforms in the Platforms checklist.

Unlike the Win32 or Power Macintosh™ platforms, the 680xO Macintosh does not
support DLLs. Even if rPlatforms contains "Macintosh", this platform name will not
show up in the Platforms checklist when a custom AppWizard creates a DLL.

A custom AppWizard creates an executable file by default., If your custom AppWizard
creates a DLL, set the standard AppWizard macro "PROJTYPE_DLL" in the
InitCustomApp Wiz function as follows:

YourProjectNameaw.m_Dictionary["PROJTYPE_DLL"] = "1";

This code informs MFCAPWZ.DLL to not display the 680xO Macintosh platform
name in the Platforms checklist, and to create a project makefile that builds a DLL
rather than an executable file. AppWizard (MFCAPWZ.DLL) automatically
generates this code if you create a custom App Wizard based on the standard
AppWizard steps for creating a DLL. Note that MFCAPWZ.DLL only checks that
"PROJTYPE_DLL" exists and has a value -the actual macro value is not
important unless your custom App Wizard requires that it have meaning.

See Also target macro, The Dictionary

CCustomApp Wiz: : I n itCustomApp Wiz
virtual void InitCustomApp Wiz();

Remarks
AppWizard (MFCAPWZ.DLL) calls the InitCustomAppWiz member function just
after loading a custom AppWizard. This occurs immediately after a custom
App Wizard user has selected your custom App Wizard in the Type list in either the
New Project Workspace or the Insert Project dialog boxes.

This function provides a place for you to perform any initialization required by the
custom App Wizard, such as setting internal structures to default values and
allocating an instance of each CApp WizStepDIg class. These instances will later be
returned to AppWizard when it call,S your custom AppWizard's Next and Back
functions.

You can also override default AppWizard settings in InitCustomAppWiz by
modifying the contents of the dictionary. For example, if your company or customer
requires that context-sensitive help be a default feature, you can add "HELP" to the
dictionary, from within InitCustomAppWiz, and cause AppWizard's Context-

505

Visual C++ User's Guide

506

Sensitive Help check box to be selected by default. This example, of course, assumes
that your custom App Wizard uses the relevant standard App Wizard step and
associated templates.

The base-class version of InitCustomApp Wiz does nothing.

See Also CCustomAppWiz::ExitCustomAppwiz, CCustomAppWiz::Back,
CCustomApp Wiz: :Next, The Dictionary, CApp WizStepDlg: :CApp WizStepDlg

CCustomApp Wiz: : LoadTemplate
virtual LPCTSTR LoadTemplate(LPCTSTR IpszTemplateName, DWORD& rdwSize,

HINSTANCE hlnstance = NULL); .

Return Value
A pointer to the loaded custom resource template for use by
CCustomApp Wiz: :CopyTemplate or CCustomApp Wiz: :ProcessTemplate.

Parameters
IpszTemplateName A pointer to a string that contains the name (such as

"NEWPROJ.INF" or "RESOURCE.H") of a custom resource template. The
custom. resource has a type of "TEMPLATE".

rdwSize The size of the custom resource template is returned in this parameter.
LoadTemplate provides this value for use by CCustomApp Wiz: :CopyTemplate
and CCustomApp Wiz: :ProcessTempiate.

hlnstance A pointer that can either be NULL or be the handle of a Win32 module (a
DLL or executable file) that you specify. In either case, hlnstance informs
LoadTempiate where it can find the custom resource template named by
IpszTemplateName.

Remarks
After the user chooses the OK button in the custom AppWizard's New Project
Information dialog box, LoadTempiate finds, locks, and loads into memory the
custom resource of type "TEMPLATE" that is named by IpszTemplateName.

If hlnstance is NULL, the base-class implementation of LoadTempiate first looks in
your custom AppWizard's DLL for the custom resource template named by
IpszTemplateName, and then, if the template is not there, among AppWizard's
custom resource templates. If hlnstance is not NULL, the base-class implementation
of LoadTempiate looks in the Win32 module hlnstance.

Chapter 24 Creating Custom App Wizards

You can override Load'.femplate to load templates from sources other than your
custom AppWizard's DLL or the AppWizard DLLs. For more information on this
process, see the implementation of LoadTemplate in the sample code for
CUSTMWZ.AWX in the MSDE~AMPLES\APPWIZ\CUSTOMWZ directory.

See Also CCustomApp Wiz: :CopyTemplate,
CCustomApp Wiz: : ProcessTemplate , CCustomApp Wiz: : PostProcessTemplate ,
Understanding Custom Resource Templates, Understanding Text Templates

CCustomAppWiz: : Next
virtual CAppWizStepDIg* Next(CAppWizStepDIg* pDlg);

Return Value
A pointer to the next step.

If pDlg is NULL, your custom AppWizard should return a pointer to Step 1. This
default action, provided by CUSTMWZ.A WX, occurs when the user chooses the
Create button from either the New Project Workspace dialog box or the Insert Project
dialog box.

If pDlg is the last step, your custom AppWizard should return NULL. This default
action, provided by CUSTMWZ.A WX, occurs if SetNumberOfSteps is called
incorrectly or if your project is based on an existing project. In the first case,
MFCAPWZ.DLL assumes that there are no more steps and displays the New Project
Information dialog box. In the· second case, no steps are required, and the code
provided by CUSTMWZ.AWX for Next adds project- and class-name macros to the
dictionary.

For more information on steps, see CApp WizStepDlg.

Parameters
pDlg Pointer to the current step, or NULL if the custom AppWizard user has

chosen the Create button from either the New Project Workspace or Insert Project
dialog box.

Remarks
Next moves to the next step. AppWizard (MFCAPWZ.DLL) calls this function
whenever a user chooses either the Next button or the Create button. The Next button
is located on the main, outer dialog box that MFCAPWZ.DLL displays. The Create
button is located on both the New Project Workspace and the Insert Project dialog
boxes. If there is no next step, the Next button is inactive. For more information on
steps and a description of the two-dialog-box structure of AppWizard and custom
App Wizards, see CApp WizStepDlg on page 499.

Before Next is called, MFCAPWZ.DLL calls the CApp WizStepDIg: :OnDismiss
member function of the currently displayed step. You override OnDismiss to transfer
data from the step's controls to the appropriate variables and to update the

507

Visual C++ User's Guide .

508

appropriate dictionary values. If your custom AppWizard's call to OnDismiss returns
FALSE, then the step remains active, and Next is not called.

See Also The Dictionary, SetNumberOfSteps, CCustomAppWiz: :Back,
CApp WizStepDlg: : On Dismiss

CCustomApp Wiz:: PostProcess Template
virtual void PostProcessTemplate(LPCTSTR szTemplate);

Parameters
szTemplate A pointer to a template.

Remarks
If you override CCustomApp Wiz: : LoadTemplate to load a custom resource
template into memory (one that isn't stored in AppWizard's DLLs or your custom
AppWizard's DLL), PostProcessTemplate provides a convenient place for you to
deallocate the custom resource template's memory. MFCAPWZ.DLL calls
PostProcessTemplate after it finishes parsing a custom resource template.

See Also Understanding Custom Resource Templates,
CCustomApp Wiz: :LoadTemplate, CCustomApp Wiz: :CopyTemplate,
CCustomApp Wiz: :ProcessTemplate

CCustomApp Wiz: : Process Template
virtual void ProcessTemplate(LPCTSTR lpszlnput, DWORD dwSize, OutputStream* pOut put);

Parameters .
lpszlnput A pointer, returned by CCustomAppWiz::Lo~dTemplate, to a custom

resource template.

dwSize The size of the custom resource template. Provided by the LoadTemplate
function's rdwSize argument.

pOutput A pointer to the stream that represents the destination of the output from
ProcessTemplate.

Remarks
ProcessTemplate accepts a string, which is a custom resource template returned by
LoadTemplate, parses the string, and passes the string back to MFCAPWZ.DLL
through an output stream (pOutput).

When ProcessTemplate parses the string, it expands macros and obeys App Wizard
directives. The result is usually a source file (such as an .R, .CPP, or .RC file) that
can be placed directly into the structure of a new project or is a CONFIRM.INF file or
a NEWPROJ.INF file. For more information on template parsing, see
"NEWPROJ.INF Statements" on page 497.

The default, base-class version of ProcessTemplate uses the dictionary to expand
macros.

Chapter 24 Creating Custom App Wizards

You can implement new directives by overriding the default behavior of
ProcessTemplate to parse them. For information on the standard App Wizard
directives, see "Standard AppWizard Directives" on page 516.

See Also Understanding Custom Resource Templates, The Dictionary, Standard
AppWizard Directives, Understanding CONFIRM.INF and NEWPROJ.INF,
NEWPROJ.INF Statements, CCustomAppWiz::LoadTemplate,
CCustomApp Wiz: :CopyTemplate, CCustomApp Wiz: :PostProcessTemplate

CCustomApp Wiz: :m _Dictionary
projectaw.m _ Dictionary["macroname"] = "value";
pro jectaw.m _ Dictionary.RemoveKey("macroname");

Parameters
project The name of your project as specified in the New Project Workspace dialog

box or the Insert Project dialog box.

"macroname" Pointer to the current step. The quotations marks are required.

"value" Any value that makes sense for your application. The macro exists if it has
a value assigned to it. The quotations marks are required.

Remarks
Use the m_Dictionary data member (the dictionary), which is of the type
CMapStringToString, to create macros, remove macros, or update the value of
macros. Some macros are supplied by MFCAPWZ.DLL and some by you. The
CCustomApp Wiz: :ProcessTemplate member function uses the dictionary to map
macros that it encounters while parsing custom resource templates to their actual
values. For more information on the macros supplied by MFCAPWZ.DLL, see
"Standard AppWizard Macros" on page 516.

Typically, you will call the dictionary's member functions (which are provided by
CMapStringToString) in a custom step's On Dismiss function as follows:

Each of your custom AppWizard's custom steps is a dialog box that is represented by
a class. Each step's class has an OnDismiss member function that is called whenever
the user of a custom AppWizard chooses the Back, Next, or Finish button. After you
use the dialog resource editor to add controls to your custom steps, use Class Wizard
to add variables to each step's class. In this way, you can take advantage of the dialog
data exchange (DDX) code that ClassWizard adds to your class.

Typically, you will add code in each OnDismiss function that defines, provides values
for, or removes macros as follows:

509

Visual C++ User's Guide

BOOl CSteplDlg::OnDismiss()
{

}

if (lUpdateData(TRUE))
return FALSE;

else
{

}

if (1m_Indented)
{

myaw.m_Dictionary[nINDENTED_BRACEsn]=nn;
myaw.m_Dictionary[nNOT_INDENTED_BRACEsn]=nn;

}
else
{

}

myaw.m_Dictionary[nINDENTED_BRACEsn]=n\tn;
myaw.m_Dictionary.RemoveKey(nNOT_INDENTE'D_BRACESn);

if (m_Companylogo)
myaw.m_Dictionary[nCOMPANY_lOGOn]=nYes n;

else
myaw.m_Dictionary.RemoveKey(nCOMPANY_lOGOn);

if (m_3DControls)
myaw.m_Dictionary[n3-Dn]=nYes n;

else
myaw.m_Dictionary.RemoveKey(n3-Dn);

return TRUE; II return FALSE if the dialog
II shouldn't be dismissed

See Also CMapStringToString, CApp WizStepDlg: :OnDismiss,
CustomApp Wiz: : ProcessTemplate , Standard App Wizard Macros

OutputStream

510

The OutputStream class wraps two member functions that are used by
CCustomApp Wiz: :CopyTemplate and CCustomApp Wiz: :ProcessTemplate when
they process custom resource templates. You will only need to override the
OutputStream member functions if you override CopyTemplate and/or
ProcessTemplate.

#include <customaw.h>

See Also CCustomApp Wiz: :CopyTemplate, CustomApp Wiz: :ProcessTemplate,
Understanding Custom Resource Templates

Chapter 24 Creating Cust~m App Wizards

Class Members
Overridables

WriteLine

WriteBlock

Called in CCustomAppWiz::ProcessTemplate to write lines from a
custom resource template to an output stream.

Called in CCustomAppWiz::CopyTemplate to write a custom resource
template, usually a bitmap, to an output stream.

OutputStream: :WriteBlock
WriteBlock(LPCTSTR pBlock, DWORD dwSize);

Parameters
pBlock Points to a block of memory that usually contains a custom resource

template.

dwSize Size of the block of memory. This must be smaller than or equal to the
dwSize returned through the CCustomAppWiz::LoadTemplate argument list.

Remarks
Writes a block of memory to an output stream-usually an open file. The base-class
implementation of the CopyTemplate function calls WriteBlock to write a binary
template to the output stream specified in the argument list of CopyTemplate.

See Also CCustomApp Wiz: : LoadTemplate , CCustomApp Wiz: :CopyTemplate,
OutputStream:: WriteLine, CCustomApp Wiz: :ProcessTemplate

OutputStream: :WriteLine
WriteLine(LPCTSTR lpsz);

Parameters
lpsz Points to a null-termintated string that is a custom resource template.

Remarks
Writes the text pointed to by lpsz, up to and including the first newline character (\11),
to an output stream-usually an open file or, in the case of CONFIRM.lNF, the
display window of the New Project Information dialog box.

CCustomAppWiz::ProcessTemplate parses custom resource templates line by line
and calls WriteLine to write each processed line (which can appear as text, source
code, or resource script statements) to the output stream specified in the argument list
of ProcessTemplate.

See Also CCustomApp Wiz: : LoadTemplate , CCustomApp Wiz: :ProcessTemplate,
CCustomApp Wiz: :CopyTemplate, OutputStream:: WriteBlock

511

Visual c++ User's Guide

C Functions Exported by MFCAPWZ.DLL

512

These functions, implemented in MFCAPWZ.DLL, provide communication services
between your custom App Wizard and MFCAPWZ.DLL.

#include <customaw.h>

Exported C Functions

GetDialog

SetCustomApp WizClass

SetNumberOfSteps

ScanFor A vailableLanguages

SetSupportedLanguages

Gets a pointer to the specified standard
App Wizard step. this function is called by a
custom App Wizard that uses one of the standard
sequences of App Wizard steps.

Provides a pointer to your custom App Wizard's
CCustomApp Wiz class.

Sets the number of steps in your custom
AppWizard.

Scans for all of the localized resource DLLs -
those with names described by APPWZ* .DLL -
found in the MSDEV\BIN\IDE directory.

Sets the languages that a custom App Wizard
supports, which may be different from the
localized resource DLLs found in the
MSDEV\BIN\IDE directory.

See Also GetDialog, SetCustomApp WizClass, CCustomApp Wiz,
SetNumberOfSteps, ScanFor AvailableLanguages, SetSupportedLanguages

GetDialog
CAppWizStepDlg* GetDialog(AppWizDlgID nID);

Return Value
A pointer to the standard App Wizard step specified in the nIDargument.

Parameters
nID The enumerated value of a standard App Wizard step.

Remarks
CUSTMWZ.AWX generates calls to GetDialog in the
CCustomApp Wiz: : InitCustomApp Wiz function of every custom App Wizard that
uses one of the two standard sequences of AppWizard steps-one call for each of the
standard App Wizard steps that a custom App Wizard needs. The returned pointers are
automatically stored by the custom App Wizard and are returned in response to an
MFCAPWZ.DLL call to CCustomAppWiz::Next or CCustomAppWiz::Back.

The actual calls to GetDialog and storage of the returned pointers occurs in the
constructor of a CUSTMWZ.AWX-generated class named CDialogChooser. The
pointers are stored, sequentially, in an order determined by the original order of the

Chapter 24 Creating Custom App Wizards

standard AppWizard steps. Pointers to any custom steps you specify are automatically
added to the end of the sequence of pointers returned by the calls to GetDialog.

You will probably not add your own call to GetDialog or modify the existing calls to
GetDialog unless you want to change the default order in which your custom
App Wizard presents steps to its users.

The standard App Wizard offers two different sequences of steps to the App Wizard
user: App Wizard Executable and App Wizard Dynamic Link Library. Each step in
each sequence is represented by an enumerated value, as shown in Table 24.4.

Table 24.4 Enumerated Values of Standard AppWizard Steps

Value

APWZDLG_DATABASE

APWZDLG_DLGAPPOPTIONS

APWZDLG_DOCAPPOPTIONS

Description

Step 1, MFC App Wizard (exe)

Allows the user to choose a type of application (single
document (SDI), multiple documents (MDI), or dialog
based) and the languages into which their application's
resource strings will be translated.

Step 2, MFC App Wizard (exe)

Allows the user to specify the type of database support
for SDI and MDI applications. Possible choices are
None, Header files only, Database view without file
support, or Database view with file support.

Step 2, MFC AppWizard (exe)

Allows the user to choose standard application features
for dialog-based applications (About box, Context­
sensitive help, and 3D controls) and to name the·
application's dialog box. Also allows the user to
choose Windows sockets.

Step 3, MFC AppWizard (exe)

Allows the user to specify the level of OLE compound
document support for SDI and MDI applications
(None, Container, Mini-server, Full-server, Both
container and server). Also allows the user to choose
support for OLE compound files and OLE automation.

Step 4, MFC AppWizard (exe)

Allows the user to choose standard application features
for MDI and SDI applications (Dockable toolbar,
Initial status bar, Printing and print preview, Context­
sensitive help, and 3D controls). Allows the user to
choose MAPI (Messaging API) and Windows sockets
and to specify the number of files remembered in their
application's most recently used list.

513

Visual C++ User's Guide

514

Table 24.4 Enumerated Values of Standard AppWizard Steps (continued)

Value

APWZDLG_PROJOPTIONS

APWZDLG_CLASSES

APWZDLG_DLLPROJOPTIONS

Description

Step 5, MFC AppWizard (exe)

Allows the user to choose whether App Wizard
generates commented or uncommented MFC code in
their project and whether they want their project
linked with the static MFC library or the shared MFC
DLL.

Step 6, MFC App Wizard (exe)

Allows the user to modify the default class and file
names that App Wizard will generate.

Step 1, MFC AppWizard (dll)

Allows the user to choose whether App Wizard
generates commented or uncommented MFC code in
their project and whether they want their project
linked with the static MFC library or the shared MFC
DLL. Also allows the user to choose OLE automation
and Windows sockets support.

See Also CCustomApp Wiz::lnitCustomApp Wiz, CCustomApp Wiz: :Next,
CCustomApp Wiz: :Back

SetCustomAppWizClass
void SetCustomApp WizClass(CCustomApp Wiz pAW);

Parameters
pAW Points to your CCustomAppWiz class.

Remarks
Called in the DLLMain function of your custom AppWizard to provide
MFCAPWZ.DLL with a pointer to your custom AppWizard's CCustomAppWiz
class. The communication services between MFCAPWZ.DLL and your custom
App Wizard that are provided by the CCustomApp Wiz member functions occur
through pAW. The code that calls SetCustomAppWizClass is automatically
generated when you use the Custom App Wizard project type to generate your custom
AppWizard.

See Also CCustomApp Wiz

SetNumberOfSteps
void SetNumberOfSteps(int nSteps);

Parameters
nSteps The total number of steps that your custom App Wizard presents to its users.

Set nSteps to-1 to communicate to MFCAPWZ.DLL that you want your custom
AppWizard's title bar to display only the current step number (for example,

Chapter 24 Creating Custom App Wizards

"Step 1" rather than "Step 1 of 6"). Set nSteps to 0 to communicate to
MFCAPWZ.DLL that your custom App Wizard has no steps and only wants to use
the New Project Workspace or the Insert Project dialog boxes (for example, when'
your custom App Wizard is based on an existing project, and there are no options
for the custom App Wizard user to select.)

Remarks
Your custom AppWizard calls SetNumberOfSteps in
CCustomApp Wiz: :InitCustomApp Wiz to communicate the total number of steps to
MFCAPWZ.DLL. The resulting information allows MFCAPWZ.DLL to accurately
number the steps in your custom AppWizard's title bar and to correctly activate or
gray the Next button.

Although the initial call to SetNumberOfSteps in InitCustomAppWiz is generated
for you, you should also call it when an end user's choice will change the number of
steps the user will see.

See Also CCustomApp Wiz: : InitCustomApp Wiz

ScanForAvailableLanguages
BOOL ScanForAvailableLanguages(CStringList& rLanguages);

Return Value
TRUE if one or more localized resource DLLs are found in the MSDEV\BIN\IDE
directory, otherwise FALSE.

Parameters
rLanguages Stores strings describing each localized resource DLL -those with

names described by APPWZ* .DLL -found in the MSVDEV\BIN\IDE directory.

Remarks
The ScanForAvailableLanguages function requests that MFCAPWZ.DLL scan the
MSVDEV\BIN\IDE directory and store, in rLanguages, a descriptive string for each
localized resource DLL found. Each entry in the list takes the following form:

"language-name (AP PWZ* .DLL-name);translation-identifier"

For example:

"U.S. English (appwzenu.dll);0x040904e4"

The translation-identifier is identical to the value of the block header of the
"StringFileInfo" block in a Version resource. It's a DWORD represented in
hexadecimal format, with a high word representing the language and a low word
representing the character set (code page).

If ScanForAvailableLanguages returns FALSE, MFCAPWZ.DLL displays an error
message in a message box. Retry and Cancel buttons allow flexible recovery from this
error.

515

Visual C++ User's Guide

Your custom AppWizard will probably never call ScanForAvaiiableLanguages.
CUSTMWZ.AWX does call ScanForAvaiiableLanguages to determine which
languages App Wizard currently supports. CUSTMWZ.A WX uses the result to fill the
language list for step 2.

See Also $$SET_DEFAULT_LANG, SetSupportedLanguages,
CCustomApp Wiz: : GetPlatforms

SetSupportedLanguages
SetSupportedLanguages(LPCTSTR szSupportedLangs);

Parameters
szSupportedLangs Stores a string of the form:

"language-name# 1 (APPWZ* .DLL-name# 1);translation-identifier# 1m

language-name#2 (AP PWZ* .DLL-name#2);translation-identifier#2m ...

. .. language-name#i (AP PWZ* .DLL-name#i);translation-identifier#l'm"

The string is a series of substrings, each separated by the newline character (\11). Each
substring has the same format as each entry in the CStringList parameter in
ScanFor AvaiiableLanguages.

Remarks
The SetSupportedLanguages function reports to MFCAPWZ.DLL the languages
that are supported by your custom AppWizard. This function is only used if your
custom App Wizard uses the App Wizard Executable standard sequences of
App Wizard steps and is called in CCustomApp Wiz: :Init~ustomApp Wiz to fill the
languages checklist in AppWizard's Step 1. The code that calls
SetSupportedLanguages is automatically generated when you use the Custom
App Wizard project type to generate your custom App Wizard

See Also $$SET_DEFAULT_LANG, ScanForAvaiiableLanguages,
CCustomApp Wiz: : GetPlatforms

Standard AppWizard Directives

516

AppWizard directives, such as $$IF and $$ENDIF, are used to generalize custom
resource templates so that the content of the templates can be used for multiple
project types. Directives in a template guide the MFCAPWZ.DLL API
ProcessTemplate function as it processes a template to produce a project file or the
content Of the New Project Information dialog box. For example, based on the value
of a macro, a sequence of $$IF, $$ELIF, $$ELSE, and $$ENDIF directives can
force ProcessTemplate to selectively insert lines of C++ code into a header or an
implementation file (.R or .CPP, respectively) used by a project generated by your
custom App Wizard.

Chapter 24 Creating Custom App Wizards

ProcessTemplate recognizes the following directives:

$$IF

$$ELIF

$$ELSE

$$ENDIF

$$INCLUDE

$$BEGINLOOP

$$ENDLOOP

$$SET _DEFAULT_LANG

$$//

These directives must appear at the beginning of a line with no preceding white
space, and, other than any arguments and one optional comment, there can be
nothing else on the line.

If you wish the parser to emit "$$" literally (and not to signify that a macro or
directive will follow), use "$$$$". Occurrences of "$$$$" are translated as "$$".

See Also $$IF, $$ELIF, $$ELSE, $$ENDIF, $$INCLUDE, $$BEGINLOOP,
$$ENDLOOP, $$SET_DEFAULT_LANG, $$SET_DEFAULT_LANG, $$//

$$IF, $$ELIF, $$ELSE, and $$ENDIF
$$IF(macro-list)

text A

$$ELIF(macro-list)

textB

$$ELSE

textC

$$ENDIF

Parameters
macro-list One or more macro names. A macro name can be preceded by the logical

NOT operator (!). Multiple macro names are separated by the logical OR (II)
operator. A macro name can be one of the standard App Wizard macros or one that
you create by adding it to the dictionary.

Remarks
The $$IF directive, with the $$ELIF, $$ELSE, and $$ENDIF directives, controls
the flow of control that the ProcessTemplate function follows while parsing a custom
resource template.

When the parser encounters an $$IF directive, it searches the dictionary for each
macro name it finds in macro-list, in sequential order. The parser checks only for a
macro name's existence in the dictionary, not its value. Once a macro name is found
in the dictionary, the parser stops checking the other macro names, the $$IF
evaluates to TRUE, and textA is parsed. If the parser finds none of the macro names
in the dictionary, the $$IF evaluates to FALSE and the parser processes any

517

Visual c++ User's Guide

518

subsequent $$ELIF directive's macro-list as it did the $$IF macro-list. If an $$ELIF
evaluates to TRUE, textB is parsed. If no $$ELIF directive evaluates to TRUE, the
$$ELSE body (textC) is parsed. The $$ENDIF directive marks the end of the $$IF
construct, and normal parsing resumes with the next line.

In the $$IF and $$ELIF arguments, any macro name can be preceded by the logical
NOT operator (!) to force the parser to check for non-existence in the dictionary. For
example, the following code fragment evaluates to true if MACROl is not in the
dictionary:

$$IF(!MACROl)

Each $$IF directive in a custom resource template must be matched by a closing
$$ENDIF directive. Multiple $$ELIF directives can appear between the $$IF and
$$ENDIF directives, but at most one $$ELSE directive is allowed. That $$ELSE
directive, if present, must follow all the $$ELIFs (if any) in that $$IF -$$ENDIF
block. If a custom resource template contains an $$IF, any following $$ELIF and/or
$$ELSE is optional. An ending $$ENDIF is mandatory. $$IF constructs can be
nested up to five levels deep.

There is no logical AND (&&) operator. If you wish to have text parsed only when
MACROl and MACR02 are defined, you can accomplish this as follows:

$$IF(MACROl)
$$IF(MACR02)
text
$$ENDIF //MACR02
$$ENDIF //MACROI

See Also The Dictionary, CCustomApp Wiz: :ProcessTemplate, Standard
App Wizard Directives, Standard App Wizard Macros

$$INCLUDE
$$INCLUDE(template-name-macro);

Parameters
template-name-macro A macro name with a value that must be the name of a

custom resource template. A macro name can be one of the standard App Wizard
macros or one that you create by adding it to the dictionary.

Remarks
The parser searches for an $$INCLUDE directive's template-name-macro in the
dictionary. If template-name-macro is in the dictionary, the associated custom
resource template is loaded and parsed. Once the associated template is parsed,
parsing of the original template resumes,

Note The template associated with template-name-macro must be a text template and must
be parsed using ProcessTemplate. The base-class version of ProcessTemplate will not parse
binary templates.

Chapter 24 Creating Custom App Wizards

If template-name-macro is not in the dictionary, MFCAPWZ.DLL displays an error
message and stops the file generation process. If the template associated with
filename-macro is not found, again a message is displayed and an exception is
thrown.

You can nest $$INCLUDE directives arbitrarily deep. That is, if one template
includes a second template via $$INCLUDE, that second template may include a
third via $$INCLUDE, and so on. However, templates cannot be recursively
included. That is, if template A includes template B, which includes template C, and
so on, then template A cannot be included in the include chain. MFCAPWZ.DLL
detects recursive includes, prints an error message, and stops the file generation
process.

See Also The Dictionary, CCustomApp Wiz: :ProcessTemplate, Standard
App Wizard Directives, Standard App Wizard Macros

$$BEGINLOOP and $$ENDLOOP
$$BEGINLOOP(macro-name);

text

$$ENDLOOP;

Parameters
macro-name A macro name that you have added to the dictionary with a value that

must be a numeric string in decimal format (for example, "12"). The macro-name
argument must be the name of a macro, not a constant value.

text One or more lines of text that may include C++ code, resource script
statements, macros, directives, or whatever you parsed.

Remarks
Custom resource templates can use a $$BEGINLOOP and $$ENDLOOP construct
to force the CCustomAppWiz::ProcessTemplate function's parser to process text the
number of times specified by the value of macro-name.

The parser treats every macro that it encounters between a $$BEGINLOOP and an
$$ENDLOOP, including macro-name, in the following manner:

1. If, for example, the parser encounters a macro named VAR, it looks in the
dictionary for a macro named VAR _ n, where n is an integer that corresponds to
the number of times that the parser has iterated through text. The iterations are
numbered 0, 1, ... , n-1, so that the parser looks for macros named VAR_O,
VAR_l, and so on.

2. If the parser does not find VAR _ n in the dictionary, it looks just for VAR.

519

Visual C++ User's Guide

;20

Loops cannot be nested. A second $$BEGINLOOP before the first $$ENDLOOP is
illegal.

See Also The Dictionary, CCustomAppWiz::ProcessTemplate, Standard
App Wizard Directives, How Macros Get Their Values

$$SET_DEFAULT_LANG
$$SET_DEFAULT_LANG(macro-name);

Parameters
macro-name A macro name you add to the dictionary. The value of macro-name

must be a three-letter string that corresponds to a language previously selected by
an App Wizard or custom App Wizard user. Table 24.5 provides a partial list of
possible values for macro-name.

Table 24.5 Language Identifiers

Value Language

DEU Gennan

END English

ESP Spanish

FRA French

ITA Italian

SVE Swedish

Remarks
You use the $$SET_DEFAULT_LANG directive to specify a language-identifer for
the CCustomAppWiz::LoadTemplate function to use when it searches for a custom
resource template to load for use by CCustomAppWiz::CopyTemplate or
CCustomApp Wiz: :ProcessTemplate.

Note Code to perform the following procedure is automatically generated if your custom
AppWizard uses the existing set of AppWizard steps for generating an executable file and if
you select more than one language from the Custom AppWizard project type's language list.

If you use the $$SET_DEFAULT_LANG directive in a loop defined by the
$$BEGINLOOP and $$ENDLOOP directives, you can use $$BEGINLOOP and
$$ENDLOOP to modify macros to write code that finds, extracts, and processes
multiple language versions of a language-specific template. For information on how
$$BEGINLOOP and $$ENDLOOP.modify macros, see $$BEGINLOOP and
$$ENDLOOP on page 519.

The language identifier, which is the value of macro-name, also specifies the search
order that LoadTemplate uses to search for a DLL.

Chapter 24 Creating Custom App Wizards

Say that $$SET_DEFAULT_LANG is called with a macro-name that expands to
"DEU". LoadTempiate will go through the following algorithm to locate a template
named TEMPLATE.RC:

1. Try locating TEMPLATE_DEU.RC in the custom AppWizard's resources.

2. If not there, try locating TEMPLATE.RC in the custom AppWizard's resources.

3. If not there, try locating TEMPLATE.RC in MFCAPWZ.DLL

4. If not there, try locating TEMPLATE.RC in APPWZDEU.DLL

5. If not there, try locating TEMPLATE.RC in all the other APPWZ*.DLLs selected
by the custom App Wizard user.

6. If not there, display an error and stop file generation.

Notice that in step 1, LoadTempiate looks for the template under the localized name
(TEMPLATE_DEU .RC). If it can't find a template named TEMPLATE_DEU .RC in
the custom AppWizard's resources, it reverts back to searching for the actual name
(TEMPLATE.RC).

Note If AppWizard itself is being run rather than a custom AppWizard, MFCAPWZ.DLL starts
the search process at step 3, and thus never tries to locate the template under the localized
name.

Example
Imagine that a user of your custom App Wizard generates a project that will generate
an application for use by English-, French-, and Japanese-speaking people. To create
the user's project, your custom AppWizard must find the templates containing strings
translated into these languages. It must seach in DLLs that include, at least, your
custom AppWizard's DLL, MFCAPWZ.DLL, and possibly APPWZENU.DLL,
APPWZFRA.DLL, and APPWZJPN.DLL. For simplicity, we will examine finding
and loading one template, FILE. TXT.

Because FILE. TXT is a text file, it will probably be translated into English, French,
and Japanese. Your custom AppWizard's DLL must contain three versions of this file
named FILE_ENU.TXT, FILE_FRA.TXT, and FILE_JPN. TXT. Also, your custom
AppWizard must make the following addition to the dictionary:

myprojectaw.m_Dictionary["FILE"] = "FILE.TXT";

To track the three languages specified by the user, you add macros to the dictionary as
follows:

myprojectaw.m_Dictionary["LANG_SUFFIX_0"]
myprojectaw.m_Dictionary["LANG_SUFFIX_l"]
myprojectaw.m_Dictionary["LANG_SUFFIX_2"]

"ENU";
"FRA";
"JPN";

521

Visual C++ User's Guide

522

Then, when your customAppWizard must find and load language-specific templates,
it does so in a loop as follows:

$$BEGINLOOP(NUM_LANGS)
$$SET_DEFAULT_LANG(LANG_SUFFIX)
$$// Include text from the
$$// properly localized template:
$$INCLUDE(FILE)
$$ENDLOOP

If NUM_LANGS has the value of "3", then this loop will iterate three times. During
each iteration, MFCAPWZ.DLL will modify its lookup procedure for the
LANG_SUFFIX macro and CCustomAppwiz::LoadTemplate will modify its
template-loading procedure as follows:

• First iteration: LANG_SUFFIX fIrst becomes LANG_SUFFIX_O. The value of
FILE is extracted from the dictionary and, when $$INCLUDE causes
LoadTemplate to be called, the value of FILE is combined with the value of
LANG_SUFFIX_O to produce FILE_ENU.TXT.

• Second iteration: LANG_SUFFIX first becomes LANG_SUFFIX_I. The value of
FILE is extracted from the dictionary and, when $$INCLUDE causes
LoadTemplate to be called, the value of FILE is combined with the"value of
LANG_SUFFIX_l to produce FILE_FRA.TXT.

• Third interation: LANG_SUFFIX fIrst becomes LANG_SVFFIX_2. The value of
FILE is extracted from the dictionary and, when $$INCLUDE causes
LoadTemplate to be called, the value of FILE is combined with the value of
LANG_SUFFIX_2 to produce FILE_JPN.TXT.

Thus, the value of LANG_SUFFIX is transformed to "ENU", "FRA", and "JPN" and
LoadTemplate will know to first load APWZENU.DLL, then APWZFRA.DLL, and
finally APWZJPN.DLL if any of the templates it seeks are not in the custom
AppWizard's DLL. For more information on the transformation of macro names, see
$$BEGINLOOP and $$ENDLOOP on page 519.

Note The argument to the $$SET_DEFAULT_LANG directive must correspond to an
APPWZ*.DLL already chosen by the AppWizard or custom AppWizard user. Otherwise,
MFCAPWZ.DLL will display an error message and stop file generation immediately after
parsing the $$SET_DEFAULT_LANG directive.

See Also The Dictionary, CCustomAppwiz: : LoadTemplate ,
CCustomAppwiz: :ProcessTemplate, CCustomAppwiz: :CopyTemplate,
CCustomAppwiz::PostProcessTemplate, $$BEGINLOOP, $$ENDLOOP,
Standard App Wizard Directives, How Macros Get Their Values.

Chapter 24 Creating Custom App Wizards

$$//
Remarks
The ProcessTemplate function's parser treats a line beginning with $$// as a
comment. A comment can be preceded by just j / when it appears after a directive on
the same line. The following line is a comment:

$$// This line is a comment

The following line begins with an $$ENDIF directive and ends with a comment:

$$ENDIF //MACROI

See Also CCustomAppwiz::ProcessTemplate, Standard AppWizard Directives,
Standard App Wizard Macros

Standard App Wizard Macros
This reference describes the macros that App Wizard uses to generalize its custom
resource templates. These macros correspond to, or are related to, controls in
AppWizard's steps. You have access to these macros if your custom AppWizard uses
one of the standard sequences of AppWizard steps: AppWizard Executable (exe) or
AppWizard Dynamic-Link Library (dll).

The following macros are organized by the step (for MDI and SDI applications)
where they are used. Some of the described macros also appear on analogous steps for
dialog-based and DLL applications (for example, 3D is described with the other
MDIjSDI step 4 macros, but it is also used by the dialog-based application's step 2).

New Project Workspace and Insert Project Dialog Box Options

Step 1, Project Type Options

Step 2, Database Options

Step 3, OLE Options

Step 4, Application Options

Step 4, Advanced Options, Document Template Strings Tab

Step 4, Advanced Options, Frame Styles Tab

Step 4, Advanced Options, Macintosh-Specific Tab

Step 5, Project Options

Step 6, Class and File Names

The following catagories also exist:

Miscellaneous Macros

Language Loop Macros

523

Visual C++ User's Guide

524

New Project Workspace and Insert Project
Dialog Box Options
Macro

FULL _ DIR _PATH

ROOT

Root
root

SAFE_ROOT

TARGET INTEL

TARGET_MIPS

TARGET ALPHA

TARGET MAC

TARGET _ 68KMAC

TARGET_POWERMAC

Type

text

text

text

text

BaaL

BaaL

BaOL

BaOL

BaaL

BaOL

Description

The full path ofthe directory in which the
generated project will be placed (including the
new subdirectory), with a trailing backslash.

The project name, no extension (all uppercase).

The project name, no extension (cases as entered
by user).

The project name, entered from the New Project
Workspace dialog box or the Insert Project
dialog box, stripped of any characters that are
not alphanumeric characters (a-z, A-Z, and 0-9)
or the underscore C). The resulting value is safe
to use in the name of a preprocessor and/or a
C/C++ symbol.

The project targets the Intel Win32 operating
system.

The project targets the MIPS Win32 operating
system.

The project targets the ALPHA Win32 operating
system.

The project targets the Macintosh (set if either
680xO Macintosh or Power Macintosh is
chosen).

The project targets the 680xO Macintosh.

The project targets the Power Macintosh.

See Also The Dictionary, CCustomAppwiz: :ProcessTemplate,
CCustomAppwiz: :PostProcessTemplate, How Macros Get Their Values

Step 1, Project Type Options
Only one of the Project Type macros can be in the dictionary.

Macro Type

PROJTYPE _ MDI BaaL

PROJTYPE _ SDI BaaL

BaaL

Description

Whether the App Wizard user or custom
AppWizard user has selected a multiple
document interface.

Whether the App Wizard user or custom
App Wizard user has selected a single document
interface.

Whether the App Wizard user or custom
AppWizard user has selected a dialog-based
application.

Chapter 24 Creating Custom App Wizards

Macro Type

BOOL

PROJTYPE _ CUSTOMA W BOOL

Description

Whether the App Wizard user or custom
App Wizard user has specified that the project be
a DLL. If this macro is set, the 680xO Macintosh
platform is not listed in the New Project
Workspace or the Insert Project's Platforms
checklist, and the project makefile builds a DLL
rather than an executable file.

Whether the App Wizard user or custom
App Wizard user has selected a Custom
App Wizard project type. Note that this macro
will rarely be used in a custom App Wizard. It is
only used when CUSTMWZ.A WX is launched.

See Also The Dictionary, CCustomAppwiz: :ProcessTemplate,
CCustomAppwiz: :PostProcessTemplate, How Macros Get Their Values

Step 2, Database Options
One or more database macros may be defined.

Macro Type

DAO BOOL

DB BOOL

DB NO DETECT BOOL

DB TABLE TYPE text - -

Description

Whether the selected data source is DAO;
otherwise, it is ODBC.

Whether the App Wizard user or custom
App Wizard user has selected, at least, minimal
database support. In other words, a radio button
other than None is chosen by the user.

Whether MFC should automatically detect when
columns have been modified. TRUE means do
not auto detect.

Type of recordset class being created.

For DAO, DB_TABLE_TYPE can be one of the
following:

• dbOpenDynaset

• dbOpenSnapshot

• dbOpenTable

For ODBC, DB_TABLE_TYPE can be one of
the following:

• Snapshot

• Dynaset

525

Visual C++ User's Guide

526

Macro Type

BOOL

text

RECSET _ V AR_ BINDINGS text

RECSET RFX text

text

text

PARAM RFX text

RECSET_ VARIABLE text

Description

Whether the App Wizard user or custom
App Wizard user has specified a database
application that allows document serialization.

The CRecordView macro, documented with the
Step 6 macros, determines whether an
application includes database S1,lpport.

A string containing the declarations of a
recordset's column member variables. Used in
the rec~rdset' s header (.H) file.

A string containing the initialization of a
recordset's column member variables. Used in
the recordset's constructor, which is in the
implementation (.CPP) file for the recordset. .

A string containing the RFX statements for a
recordset's column member variables. Used in
the recordset' s DoFieldExchange member
function, which is found in the recordset's
.CPP file.

A string containing the declarations of a
recordset's parameter member variables. Used in
the recordset's header (.H) file.

A string containing the initialization of a
recordset's parameter member variables. Used in
the recordset's constructor, which is in the
implementation (.CPP) file for the record set.

A string containing the RFX statements for a
recordset's parameter member variables. Used in
the recordset's DoFieldExchange member
function, which is found in the recordset's
.CPP file .

. The application's main document class needs to
refer to this recordset. This macro expands to the
required data member variable of the document
class.

See Also The Dictionary, CCustomAppwiz: :ProcessTemplate,
CCustomAppwiz::PostProcessTemplate, How Macros Get Their Values.

Chapter 24 Creating Custom App Wizards

Step 3, OLE Options
Only one of the OLE macros can be in the dictionary.

Macro Type Description

CONTAINER

FULL SERVER

MINI SERVER

CONTAINER SERVER

BOOL Whether the AppWizard user or custom
App Wizard user has specified that the
application is only an OLE container.

BOOL Whether the App Wizard user or custom
App Wizard user has specified that the
application is an OLE full-server.

BOOL Whether the AppWizard user or custom
App Wizard user has specified that the
application is an OLE mini-server.

BOOL Whether the App Wizard user or custom
App Wizard user has specified that the
application is an OLE container-server.

More than one of the following OLE macros may be set.

Macro Type Description

APP CLSID text Struct form of the application's globally unique
identifier (OUID). Only used if the user has
chosen OLE support.

APP _ CLSID _REG text Registration form of the application's OUID.
Only used if the user has chosen OLE support.

AUTOMATION BOOL Whether the App Wizard user or custom
AppWizard user has chosen OLE Automation.

COMPFILE BOOL Whether the AppWizard user has chosen OLE
compound file support.

DISPIID _ CLSID _ ODL text OQJ..- form of the dispinterface OUID. Only used
if the user has chosen OLE Automation support.

LIB _ CLSID _ ODL text ODL form of the library'S OUID. Only used if the
user has chosen OLE Automation support.

OLECTL BOOL Whether the application supports using OLE
Controls.

See Also The Dictionary, CCustomAppwiz: :ProcessTempiate,
CCustomAppwiz: :PostProcessTempiate, How Macros Get Their Values.

527

Visual c++ User's Guide

528

Step 4, Appl ication Options
The following options are set from the Step 4 Application Options dialog box.

Macro Type Description

TOOLBAR BaaL Whether the App Wizard user or custom App Wizard user
has specified that the application have a toolbar.

STATUSBAR BaaL Whether the App Wizard user or custom App Wizard user
has specified that the application have a status bar.

PRINT BaaL Whether the App Wizard user or custom App Wizard user
has specified that the application have printing support.

HELP BaaL Whether the App Wizard user or custom App Wizard user
has specified that the application have context-sensitive
help.

3D BaaL Whether the App Wizard user or custom App Wizard user
has specified that the application use 3D controls.

ABOUT BaaL Whether the App Wizard user or custom App Wizard user
has specified that the dialog-based application include an
About box.

MAPI BaaL Whether the App Wizard user or custom App Wizard user
has specified that the application include MAPI support.

SOCKETS BaaL Whether the App Wizard user or custom App Wizard user
has specified that the project have sockets support ..

HAS MRU BaaL Whether the App Wizard user or custom App Wizard user
has specified a nonzero value in the most recently used
(MRU) text box.

SIZE MRU text The value in the MRU text box.

See Also The Dictionary, CCustomAppwiz: :ProcessTemplate,
CCustomAppwiz: :PostProcessTemplate, How Macros Get Their Values

Step 4, Advanced Options, Document Template
Strings Tab
The following macros are set from the Document Template Strings tab of the Step 4
Advanced Options dialog box.

Macro

DOC

DOC _FILENEW

DOC FILTER

DOC REGID

DOC REGNAME

HAS_SUFFIX

Type

text

text

text

text

text

BaaL

Description

The value in the Doc Type N arne text box.

The document's File New string.

The document's (Win32) filter string.

The value entered in the File Type Name text box.

The document's registration database name.

Whether the application has a document suffix
(extension) specified. .

Chapter 24 Creating Custom AppWizards

Macro Type

TITLE text

SUFFIX text

Description

The caption string for an application's main title bar or,
in a dialog-based application, the dialog's title.

If HAS_SUFFIX is defined, SUFFIX is the user­
specified document suffix for the application.

See Also The Dictionary, CCustomAppwiz: :ProcessTemplate,
CCustomAppwiz::PostProcessTemplate, How Macros Get Their Values

Step 4, Advanced Options, Window Styles Tab
The following macros are set from the Window Styles tab of the Step 4 Advanced
Options dialog box.

Macro

FRAME STYLES

SW ARG

FRAME STYLE FLAGS - -

MDICHILD

CHILD _FRAME_STYLE_
FLAGS

Type

BOOL

text

text

BOOL

BOOL

text

Description

Whether the App Wizard user or custom
App Wizard user has specified nondefault
main frame styles.

Argument to the ShowWindow function.
Normally this is "m_nCmdShow", but if the
user has chosen "maximized" or "minimized"
for the main frame, this value is
"SW SHOWMAXIMIZED" or
"SW _SHOWMINIMIZED", respectively.

If nondefault main frame styles are selected
by the AppWizard user, this macro's value
represents the selected main frame styles and
is added to the style data member of the
CREATESTRUCT passed to
PreCreate Window.

Whether the AppWizard user or custom
App Wizard user has specified splitter
windows in an MDI application and/or
chosen nondefault child frame styles.
AppWizard must generate a class derived
from CMDIChildWnd.

TRUE, if the user has chosen nondefault
child frame styles.

If nondefault child frame styles are selected
by the App Wizard user, the value of this
macro is the text that represents the selected
child frame styles, and is added to the style
data member of the CREATESTRUCT
passed to PreCreate Window.

529

Visual C++ User's Guide

530

Macro Type

SPLITTER MDI BOOL

SPLITTER SDI BOOL

Description

TRUE, if the App Wizard user has chosen
splitter windows in an MDI application.

TRUE, if the AppWizard user has chosen
splitter windows in an SDI application.

See Also The Dictionary, CCustomAppwiz::ProcessTemplate,
CCustomAppwiz: :PostProcessTemplate, How Macros Get Their Values

Step 4, Advanced Options, Macintosh-Specific Tab
The following macros are set from the Macintosh-Spe.cific tab of the Step 4 Advanced
Options dialog box.

Macro Type Description

CREATOR text The document's file creator specified in the Application
Signature text box.

FILE TYPE text The document's Macintosh file type specified in the
Document File Type text box.

MAC FILTER text The document's Macintosh filter string specified in the
Document File Name text box.

R FILE text The name of the Macintosh resource (.R) file.

See Also The Dictionary, CCustomAppwiz: :ProcessTemplate,
CCustomAppwiz: :PostProcessTemplate, How Macros Get Their Values

Step 5, Project Options
Macro Type Description

VERBOSE· BOOL

MFCDLL BOOL

TRUE, if the user chooses to include source comments
and README. TXT.

TRUE, if the project uses MFC in a DLL.

See Also The Dictionary, CCustomAppwiz: :ProcessTemplate,
CCustomAppwiz: : PostProcessTemplate , How Macros Get Their Values

Step 6, Class and File Names
App Wizard creates macros to name classes and files by combining the macro prefixes
listed in Table 24.6 with any of the macro components listed in Table 24.7. For
example, the value of a combined macro DOC_CLASS will be the name of the
application's document class -typically, something like "CProjectDoc." No single
application will use all combinations.

Chapter 24 Creating Custom AppWizards

Table 24.6 Macro Prefixes

Macro Prefix

DOC

APP

FRAME

CHILD FRAME

VIEW

DLG

RECSET

SRVRITEM

CNTRITEM

IPFRAME

Description

Refers to the application's document class.

Refers to the application's CWinApp-derived class.

Refers to the application's main frame class (derived from
CFrameWnd or CMDIFrameWnd).

Refers to the application's MDI child frame class
(CMDIChildFrameWnd).

Refers to the application's view class.

Refers to the application's main dialog class. Only used for a dialog­
based application.

Refers to the application's main recordset class.

Refers to the application's main server-iteIJ? class (derived from
CServerltem).

Refers to the application's main container-item class (derived from
CContainerltem).

Refers to the application's in-place frame class (derived from
CIPFrameWnd).

Table 24.7 Macro Components

Macro Component

_CLASS

_BASE CLASS

IFILE

HFILE

Description

Class name.

Base class name.

Class implementation filename (without the extension). Both uppercase
and lowercase versions of these macros are defined. If the macro name
is uppercase (for example, APP _IFILE), its value will be uppercase (for
example, PROJECT). If the macro name is lowercase (for example,
app_ifile), its value will be lowercase (for example, project).

Class header filename (without the extension). Both uppercase and
lowercase versions of these macros are defined. If the macro name is
uppercase (for example, APP _HFILE), its value will be uppercase (for
example, PROJECT). If the macro name is lowercase (for example,
app_hfile), its value will be lowercase (for example, project).

531

Visual C++ User's Guide

532

Only one of the following macros is defined to indicate the main view's base class.

Macro

CView

CFormView

CScrollView

CEditView

CRecordView

Type

BOOL

BOOL

BOOL

BOOL

BOOL

Description

If and only if the view derives from CView.

If and only if the view derives from CFormView.

If and only ifthe view derives from CScrollView.

If and only if the view derives from CEditView.

If and only if the view derives from CRecordView. Set if user
has selected a database view with or without file support.

See Also The Dictionary, CCustomAppwiz: :ProcessTemplate,
CCustomAppwiz::PostProcessTemplate, How Macros Get Their Values

Miscellaneous Macros
Macro Type

DLGLOC RC text

·HLPARG MAC text

HLPARG_MACPATH text

HM FILE text

LANG_LIST_SUFFIXES text

LOC RC text

MACLOC_RC text

text

MFCPath text

YEAR text

Description

This is always "DLGLOC.RC", and is used in
an $$INCLUDE directive in the DLGALL.RC
custom resource template.

Help-file macro used in the MAKEHELP.BAT
custom resource template. Always "I".

Help-file macro used in the MAKEHELP.BAT
custom resource template. Always "2".

Help-file macro used in the MAKEHELP.BAT
custom resource template. Base name of the
.HM file.

Comma-separated string containing a list of the
three-letter abbreviations of all languages

. selected by the App Wizard user (for example,
"END, FRA"). If an application supports only
one language, the list is "".

This is always "LOC.RC", and is used in an
$$INCLUDE directive in the ALL.RC custom
resource template.

This is always "MACLOC.RC", and is used in
an $$INCLUDE directive in the ALL.RC
custom resource template.

Help-file macro used in the MAKEHELP.BAT
custom resource template. Base name of the
Macintosh .HPJ file ..

Path on the AppWizard user's computer where
the MFC library resides.

The current year.

Chapter 24 Creating Custom App Wizards

See Also The Dictionary, CCustomAppwiz: : ProcessTemplate ,
CCustomAppwiz: :PostProcessTemplate, How Macros Get Their Values

Language Loop Macros
The following macros are used in a language loop, which is a block of text delimited
by the $$BEGINLOOP(NUM_LANGS) and $$ENDLOOP directives.

Macro

LANGUAGE

LANG_SUFFIX

RES _ DIR _ LOC _ DBLSLASH

LANG_PREAMBLE

Type

text

text

text

text

text

text

text

Description

Name of language (for example, "U.S. English").

Three-letter abbreviation of language (for
example, "ENU").

Name of directory to be created in the generated
project, which will contain the localized
elements of the application's context-sensitive
help (for example, "HLP\ENU"; in an application
with only one language, this is always "HLP").

Name of directory to be created in the generated
project, which will contain those files included
by the application's .RC file that are localized
(for example, "RES\ENU"; in an application with
only one language, this is always "RES").

Same as RES_DIR_LOC, except any backslashes
are doubled (for example, "RES\\ENU"; again,
this is always "RES" in an application with only
one language).

Name of directory that contains the localizable
resources the application will include from MFC.
All backslashes are doubled. (For example,
"L.FRA\\"; all English resources from MFC are
in the main include directory. This macro
expands to "" in the· case of English.)

Code that is inserted in the application's .RC file,
which precedes a localized resource. .

For example:

#if !defined(AFX_RESOURCE_DLL) I I
defined(AFX_TARG_ENU)
#ifdef _WIN32
LANGUAGE 9, 1
#pragma code_page(1252)
#endif

(In an application with only one language,
this is "".)

533

Visual C++ User's Guide

Macro Type Description

LANG_PREAMBLE_INQUOTES text Same as LANG_PREAMBLE, except each line
is tabbed and enclosed in quotes:

LANG POSTAMBLE text

For example:

"/Ii' f ! defi ned (AFX_RESOURCE_DLL)
defined(AFX_TARG_ENU)"

"Iii fdef _W I N32"
"LANGUAGE 9. 1"
"IIpragma code_page (1252)"
"/lendif"

Code that's inserted in the application's .RC file,
which follows a localized resource.

For example:

IIendi f

(In an application with only one language,
this is "".)

LANG_POSTAMBLE_INQUOTES text Same as LANG_POST AMBLE, except each
line is tabbed and enclosed in quotes:

MULTIPLE LANGS

For example:

"/lendif"

(In an application with only one language,
this is "".)

text The number of languages the user has chosen.
(Commonly used as the argument to
$$BEGINLOOP.)

BOOL Whether the user chose more than one
language. Currently, never defined. Reserved for
future, use.

See Also The Dictionary, CCustomAppwiz: :ProcessTemplate,
CCustomAppwiz: :PostProcessTemplate, How Macros Get Their Values

Standard Custom Resource Templates

534

App Wizard uses a standard set of custom resource templates to build the projects it
generates. It also copies some subset of these templates to custom App Wizard projects
that are based on the standard AppWizard steps. These templates allow custom
AppWizards to generate projects just as AppWizard does.

These standard templates provide a common look and feel to applications created
from AppWizard projects and include templates from which .H, .CPP, .RC, .CLW,
.ODL, and .RC2 files are built. They also include bitmaps of standard user-interface
components and templates that simplify generating help files.

Chapter 24 Creating Custom App Wizards

Localization of Standard Templates
The standard templates are separated into two main categories: localized and
nonlocalized. Localized templates contain strings that have been translated into
languages other than English. These strings are stored in the language DLLs -
DLLs with names described by APPWZ* .DLL, where * is a language code such as
END or JPN. The nonlocalized templates are stored in MFCAPWZ.DLL. When a
localized template is generated for a custom AppWizard project, the template's
filename will contain an embedded language code. Thus, for a custom App Wizard
that supports Japanese, the templates named DLGLOC.RC and ROOT.HPJ will be
renamed as DLGLOC_JPN.RC and ROOT_JPN.HPJ. The names of non localized
templates remain the same.

App Wizard provides a set of templates that are common to all project types and some
that are unique to each major project type. Major project types are dynamic-link
library, dialog-based, single document interface (SDI), and multiple document
interface (MDI). In addition, AppWizard provides resource templates for help files,
as well as database, OLE, and Macintosh applications. The following sections
provide details about the individual templates:

All App Wizard Projects

Dialog-Based Applications

Dynamic-Link Libraries

MDI and SDI Applications

OLE Applications

Help File Support

Custom App Wizard Help File Support

Database Applications

Macintosh Applications

AIIAppWizard Projects
App Wizard copies the following resource templates into every App Wizard project:

README. TXT Two of these templates are generated: one in a custom AppWizard
project's root directory and one in the custom AppWizard project's TEMPLATE
directory. The first describes the files that App Wizard generated for your custom
App Wizard project. The second is a template that the custom App Wizard writer
uses to create a README.TXT file for the custom AppWizard user. This file is
one of the templates provided by MFCAPWZ.DLL.

ROOT.RC2 This secondary resource script file is copied to your custom App Wizard
project's TEMPLATE directory. Its purpose is to contain those resources that are
not edited in Microsoft Developer Studio. Resources that are edited in Microsoft

535

Visual C++ User's Guide

536

Developer Studio are kept in the main .RC file. This file is one of the templates
provided by MFCAPWZ.DLL.

STDAFX.CPP This implementation file.is copied to your custom AppWizard
project's TEMPLATE directory. It is used to build a precompiled header (.PCH)
file and a precompiled types file named STDAFX.OBJ. This file is one of the
templates provided by MFCAPWZ.DLL.

STDAFX.H This header file is copied to your custom AppWizard project's
TEMPLATE directory. It is used to build a .PCH file and a precompiled types file
named STDAFX.OBJ. This file is one of the templates provided by
MFCAPWZ.DLL.

See Also Standard Custom Resource Templates, Dialog-Based Applications,
Dynamic-Link Libraries, MDI and SDI Applications, OLE Applications, Help File
Support, Custom App Wizard Help File Support, Database Applications, Macintosh
Applications

Dialog-Based Applications
DIALOG.CPP The primary implementation file for the project's main dialog box

and About dialog box. This file is one of the templates provided by
MFCAPWZ.DLL.

DIALOG.H The primary header file for the project's main dialog box and About
dialog box. This file is one of the templates provided by MFCAPWZ.DLL.

DLGALL.RC The primary resource script file that contains all resources that are
not localized (translated into languages such as French or Japanese). DLGALL.RC
includes (via $$INCLUDE directives) a resource script file, DLGLOC.RC, that
contains all of the localized templates. DLGALL.RC is one of the templates
provided by MFCAPWZ.DLL.

DLGLOC.RC The localized resource script file. A localized version of this template
resides in each of the localized-resource DLLs, those with names described by
APPWZ*.DLL, suc!). as APPWZDEU.DLL. This template is also used for DLL
projects. There is no Macintosh version of DLGLOC.RC because dialog-based
applications and DLL projects have no need for separate Macintosh resources.

DLGRES.H The primary header file for resources. This template is also used for
dynamic-link libraries. This file is one of the templates provided by
MFCAPWZ.DLL.

DLGROOT.CLW ClassWizard information file for dialog-based applications
generated by App Wizard. This file is one of the templates provided by
MFCAPWZ.DLL.

DLGROOT.CPP The primary implementation file, project.CPP, where project is the
project name entered by the end user of the custom App Wizard. This file is one of
the templates provided by MFCAPWZ.DLL. .

Chapter 24 Creating Custom App Wizards

DLGROOT.H The primary header file, project.H, where project is the project name
entered by the end user of the custom App Wizard. This file is one of the templates
provided by MFCAPWZ.DLL.

ROOT.ICO The application icon. This template is also used by MDI and SDI
applications. It is one of the templates provided by MFCAPWZ.DLL.

See Also Standard Custom Resource Templates, All App Wizard Projects, Dynamic­
Link Libraries, MDI and SDI Applications, OLE Applications, Help File Support,
Custom App Wizard Help File Support, Database Applications, Macintosh
Applications

Dynamic-Link Libraries
DLGRES.H The primary header file for resources. This template is also used for

dialog-based applications. It is one of the templates provided by MFCAPWZ.DLL.

DLLROOT.CLW The ClassWizard information file for DLLs generated by
AppWizard. This file is one of the templates provided by MFCAPWZ.DLL.

DLLROOT.CPP The primary implementation file, project.CPP, where project is the
project name entered by the end user of the custom App Wizard. This file is one of
the templates provided by MFCAPWZ.DLL.

DLLROOT.H The primary header file, project.H, where project is the project name
entered by the end user of the custom App Wizard. This file is one of the templates
provided by MFCAPWZ.DLL.

ROOT.DEF The module-definition file, project.H, where project is the project name
entered by the end user of the custom App Wizard. The module-definition file
contains the list of functi011s to be exported from the end user's DLL. This file is
one of the templates provided by MFCAPWZ.DLL.

See Also Standard Custom Resource Templates, Ali AppWizard Projects, Dialog­
Based Applications, MDI and SDI Applications, OLE Applications, Help File
Support, Custom App Wizard Help File Support, Database Applications, Macintosh
Applications

MOl and SOl Applications
AFXCORE.RTF A rich-text file for generating a help (.HLP) file. This file is one of

the resource templates provided by the localized language DLLs, such as
APPWZJPN.DLL.

ALL.RC The primary resource script file that resides in MFCAPWZ.DLL and
contains all resources that are not localized (translated into languages such as .
French or Japanese). ALL.RC includes, via $$INCLUDE directives, two localized
templates that contain all of the localized resources: LOC.RC and MACLOC.RC.
Localized versions of these templates reside in each of the localized-resource
DLLs, those with names described by APPWZ*.DLL, such as APPWZDEU.DLL.

537

Visual C++ User's Guide

538

CHILDFRM.CPP The child-frame implementation file. This file is one of the
templates provided by MFCAPWZ.DLL.

CHILDFRM.H The child-frame header file. This file is one of the templates
prbvided by MFCAPWZ.DLL.

DOC.CPP The document implementation file. This file is one of the templates
provided by MFCAPWZ.DLL.

DOC.H The document header file. This file is one of the templates provided by
MFCAPWZ.DLL.

DOC.ICO The document icon. This file is one of the resource templates provided by
the localized language DLLs, such as APPWZJPN.DLL.

FRAME.CPP The main-frame implementation file. This file is one of the templates
provided by MFCAPWZ.DLL.

FRAME.H The main-frame header file. This file is one of the templates provided by
MFCAPWZ.DLL.

LOC.RC The localized resource script file that contains all the localizable lines of
the .RC file except for the Macintosh menus and accelerators. This file is one of
the resource templates provided by the localized language DLLs, such as
APPWZJPN.DLL.

RESOURCE.H The primary header file for resources. It is one of the templates
provided by MFCAPWZ.DLL. .

ROOT.CPP The primary implementation file, project.CPP, where project is the
project name entered by the end user of the custom App Wizard. This file is one of
the templates provided by MFCAPWZ.DLL.

ROOT.H The primary header file,project.H, where project is the project name
entered by the end user of the custom App Wizard. This file is one of the templates
provided by MFCAPWZ.DLL.

ROOT.CLW The ClassWizard information file for SDI and MDI applications
generated by App Wizard. This file is one of the templates provided by
MFCAPWZ.DLL.

ROOT.ICO The application icon. This template is also used by dialog-based
applications. It is one of the templates provided by MFCAPWZ.DLL.

VIEW.CPP The view implementation file. This file is one of the templates provided
by MFCAPWZ.DLL.

VIEW.H The view header file. This file is one of the templates provided by
MFCAPWZ.DLL.

APPEXIT.BMP A bitmap, for use in help files, that creates the user interface for
closing the application. This file is one of the resource templates provided by the
localized language DLLs, such as APPWZJPN.DLL.

Chapter 24 Creating Custom App Wizards

BULLET.BMP A bitmap, for use in help files, that creates a bullet for items in a
bulleted list. This file is one of the resource templates provided by
MFCAPWZ.DLL.

CURARW2.BMP A bitmap, for use in help files, that creates the horizontal-sizing
cursor. This file is one of the resource templates provided by MFCAPWZ.DLL.

CURARW 4.BMP A bitmap, for use in help files, that creates the move cursor. This
file is one of the resource templates provided by MFCAPWZ.DLL.

CURHELP.BMP A bitmap, for use in help files, that creates the toolbar button for
SHIFT +Fl help. This file is one of the resource templates provided by
MFCAPWZ.DLL.

EDITCOPY.BMP A bitmap, for use in help files, that creates the toolbar button for
the Edit menu's Copy command. This file is one of the resource templates
provided by MFCAPWZ.DLL.

EDITCUT.BMP A bitmap, for use in help files, that creates the toolbar button for
the Edit menu's Cut command. This file is one of the resource templates provided
by MFCAPWZ.DLL.

EDITPAST.BMP A bitmap, for use in help files, that creates the toolbar button for
the Edit menu's Paste command. This file is one of the resource templates
provided by MFCAPWZ.DLL.

EDITUNDO.BMP A bitmap, for use in help files, that creates the toolbar button for
the Edit menu's Undo command. This file is one of the resource templates
provided by MFCAPWZ.DLL.

FILENEW.BMP A bitmap, for use in help files, that creates the toolbar button for
the File menu's New command. This file is one of the resource templates provided
by MFCAPWZ.DLL.

FILEOPEN.BMP A bitmap, for use in help files, that creates the toolbar button for
the File menu's Open command. This file is one of the resource templates
provided by MFCAPWZ.DLL.

FILEPRNT.BMP A bitmap, for use in help files, that creates the toolbar button for
the File menu's Print command. This file is one of the resource templates provided
by MFCAPWZ.DLL.

FILESAVE.BMP A bitmap, for use in help files, that creates the toolbar button for
the File menu's Save command. This file is one of the resource templates provided
by MFCAPWZ.DLL.

HLPSBAR.BMP A bitmap, for use in help files, that creates the status bar. This file
is one of the resource templates provided by the localized language DLLs, such as
APPWZJPN.DLL.

HLPTBAR.BMP A bitmap, for use in help files, that creates a cutaway view of the
toolbar. This file is one of the resource templates provided by MFCAPWZ.DLL.

539

Visual c++ User's Guide

540

RECFIRST.BMP A bitmap, for use in help files, that creates the toolbar button for
the Record menu's First command. This file is one of the resource templates
provided by MFCAPWZ.DLL.

RECLAST.BMP A bitmap, for use in help files, that creates the toolbar button for
the Record menu's Last command. This file is one of the resource templates
provided by MFCAPWZ.DLL.

RECNEXT.BMP A bitmap, for use in help files, that creates the toolbar button for
the Record menu's Next command. This file is one of the resource templates
provided by MFCAPWZ.DLL.

RECPREV.BMP A bitmap, for use in help files, that creates the toolbar button for
the Record menu's Previous command. This file is one of the resource templates
provided by MFCAPWZ.DLL.

SCMAX.BMP A bitmap, for use in help files, that creates the frame's maximize
button. This file is one of the resource templates provided by MFCAPWZ.DLL.

SCMENU.BMP A bitmap, for use in help files, that creates a cutaway view of the
System and File menus. This file is one of the resource templates provided by the
localized language DLLs, such as AfPWZJPN.DLL.

SCMIN.BMP A bitmap, for use in help files, that creates the frame's minimize
button. This file is one of the resource templates provided by MFC~PWZ.DLL.

TBA_.BMP A bitmap that creates the default toolbar. The toolbar does not
include a Help button. This file is one of the resource templates provided by
MFCAPWZ.DLL.

TBAH_.BMP A bitmap that creates the default toolbar and includes a Help button.
This file is one of the resource templates provided by MFCAPWZ.DLL.

TBD_.BMP A bitmap that creates the default toolbar and includes a database view
without file support. The toolbar does not include a Help button. This file is one of
the resource templates provided by MFCAPWZ.DLL.

TBDH...:.BMP A bitmap that creates the default toolbar and includes a database view
with no file support. The toolbar includes a Help button. This file is one of the
resource templates provided by MFCAPWZ.DLL.

TBR_.BMP A bitmap that creates the default toolbar and includes a database view
and file support. The .toolbar does not include Help button. This file is one of the
resource templates provided by MFCAPWZ.DLL.

TBRH_.BMP A bitmap that creates the default toolbar and includes a database view
and file support. The toolbar includes a Help button. This file is one of the
resource templates provided by MFCAPWZ.DLL.

See Also Standard Custom Resource Templates, Dialog-Based Applications,
Dynamic-Link Libraries, OLE Applications, Help File Support, Custom AppWizard
Help File Support, Database Applications, Macintosh Applications

Chapter 24 Creating Custom App Wizards

OLE Applications
AFXOLECL.RTF A rich-text file for generating a help (.HLP) file containing

information on MDI and SDI OLE containers. This file is one of the resource
templates provided by the localized language DLLs, such as APPWZJPN.DLL.

AFXOLESY.RTF A rich-text file for generating an MDI and SDI OLE server
application's help file. This file is one of the resource templates provided by the
localized language DLLs, such as APPWZJPN.DLL.

CNTRITEM.CPP The container-item implementation file for MDI and SDI OLE
container applications.

CNTRITEM.H The container-item header file for MDI and SDI OLE container
applications.

IPFRAME.CPP The in-place frame implementation file for MDI and SDI OLE
server applications.

IPFRAME.H The in-place frame header file for MDI and SDI OLE server
applications.

ROOT. REG The registry information file to contain the globally unique identifier
(GUID) that an application must expose to the registry, along with all other
information needed to register the generated application as an OLE server or the
default editor of a particular document type. All references to a GUID in this file
are through App Wizard macros whose values are set when the end user chooses
OLE server or OLE automation from the OLE Options dialog box.

ROOT.ODL The Object Description Language file to contain a GUID for each OLE
object that an application must expose through OLE automation. All references to
a GUID in this file are throughApp Wizard macros whose values are set when the
end user chooses OLE automation from the OLE Options dialog box.

SRVRITEM.CPP The server-item implementation file for MDI and SDI 'OLE server
applications.

SRVRITEM.H The server-item header file for MDI and SDI OLE server
applications.

TBA_I.BMP A bitmap file that creates an in-place frame toolbar for default OLE
server and mini-server applications. The toolbar does not include a Help button.
An OLE server application displays TBA_I.BMP, rather than TBA_.BMP, upon
activation as an in-place server from within an OLE container application. Mini­
servers only use the in-place toolbar because mini-servers can't be launched as
stand-alone applications. This file is one of the resource templates provided by
MFCAPWZ.DLL.

TBAHI.BMP A bitmap file that creates an in-place frame toolbar for default OLE
server and mini-server applications. The toolbar includes a Help button. An OLE
server application displays TBAHI.BMP, rather than TBAH_.BMP, upon
activation as an in-place server from within an OLE container application. Mini­
servers only use the in-place toolbar because mini-servers can't be launched as

541

"\

Visual C++ User's Guide

542

stand-alone applications. This file is one of the resource templates provided by
MFCAPWZ.DLL.

TBRHLBMP A bitmap file that creates a floating, dockable toolbar for the in-place
frame toolbar, which includes database view and file support. The toolbar includes
a Help button. An OLE server application with a database view displays
TBRill.BMP, rather than TBRH_.BMP, upon activation as an in-place server from
~ithin an OLE container application. Mini-servers only use the in-p'lace toolbar
because mini-servers can't be launched as stand-alone applications. This file is
one of the resource templates provided by MFCAPWZ.DLL.

TBR_LBMP A bitmap file that creates a floating, dockable toolbar for the in-place
frame toolbar, which includes database view and file support. The toolbar does not
include a Help button. An OLE server application with a database view displays
TBR_LBMP, rather than TBR_.BMP, upon activation as an in-place server from
within an OLE container application. Mini-servers only use the in-place toolbar
because mini-servers can't be launched as stand-alone applications. This file is
one of the resource templates provided by MFCAPWZ.DLL.

See Also Standard Custom Resource Templates, All AppWizard Projects,· Dialog­
Based Applications, Dynamic-Link Libraries, MDI and SDI Applications, Help File
Support, Custom App Wizard Help File Support, Database Applications, Macintosh
Applications

Help File Support
AFXDLG.RTF This rich-text file is copied to your custom AppWizard project's

TEMPLATE directory. It is used to generate a help (.HLP) file for dialog-based
applications. This file is one of the resource templates provided by the localized
language DLLs, such as APPWZJPN.DLL.

AFXPRINT.RTF This rich-text file is copied to your custom AppWizard project's
TEMPLATE directory. It contains only print and print preview topics and is used
to generate a help file for MDI and SDI applications that use printing and print
preview. This file is one of the resource templates provided by the localized
language DLLs, such as APPWZJPN.DLL.

DLGROOT.CNT Windows 95 WinHelp contents file for dialog-based applications.
This text file creates the hierarchy of help topics that is displayed on the Content~
tab of your custom AppWizard's help file. The nodes of the hierarchy are links into
the actual help file. This file is one of the templates provided by MFCAPWZ.DLL.

ROOT.CNT Windows 95 WinHelp contents file for SDI and MDI applications. This
text file creates the hierarchy of help topics that is displayed on the Contents tab of
your custom AppWizard's help file.The nodes of the hierarchy are links into the
actual help file. This file is one of the templates provided by MFCAPWZ.DLL.

ROOT.HPJ This help project file is copied to your custom AppWizardproject's
TEMPLATE directory. It is used to generate Win32 application help files and lists
all of the .RTF files that MAKEHELP.BAT must process to produce an .HLP file.

Chapter 24 Creating Custom App Wizards

This file is one of the resource templates provided by the localized language DLLs,
such as APPWZJPN.DLL.

See Also Standard Custom Resource Templates, All AppWizard Projects, Dialog­
Based Applications, Dynamic-Link Libraries, MDI and SDI Applications, OLE
Applications, Custom AppWizard Help File Support, Database Applications,
Macintosh Applications

Custom AppWizard Help File Support
AppWizard gives you the tools you need to create context-sensitive help for the
custom steps in your custom App Wizard:

• A starter file in rich-text format (.RTF) that contains a topic for each custom step
AppWizard generates. You need only use an .RTF editor (such as Microsoft Word)
to supply the text for the ready-made topics.

• A MAKEHELP.BAT that generates a header map (.HM) file and compiles the
custom AppWizard's help (.HLP) file. The .HM file defines (#define) the help IDs
of your custom custom App Wizard steps to numeric values that are readable by the
help compiler (HC30.EXE and HC31.EXE). It also invokes the help compiler to
generate the help file.

• A help project (.HPJ) file that controls compiling the .RTF file into an .HLP file.

Your custom AppWizard file, which has an extension of .AWX~ and its help file must
use the same base filename, and both must reside in MSDEv\TEMPLATE. When the
custom AppWizard user clicks a custom step's Help button, MFCAPWZ.DLL invokes
WinHelp and passes it the current step's help ID and the name of your custom
AppWizard's help file.

Note You cannot integrate your custom AppWizard's help with the Microsoft Developer Studio
help system. However, if you build a custom AppWizard that uses an existing sequence of
AppWizard steps, your custom AppWizard will automatically use the Microsoft Developer
Studio help file that was created for the standard AppWizard steps. Your custom AppWizard
will use your own Win Help help file for the custom steps. The effect is seamless to the user.

See Also Standard Custom Resource Templates, All AppWizard Projects, Dialog­
Based Applications, Dynamic-Link Libraries, MDI and SDI Applications, OLE
Applications, Help File Support, Database Applications, Macintosh Applications

Database Applications
The following resources support the database features that App Wizard offers.

AFXDB.RTF Rich text file. for generating a database-application help (.HLP) file;
This file is one of the resource templates provided by the localized language DLLs,
such as APPWZJPN.DLL.

RECSET.CPP Recordset implementation file for MDI and SDI applications. This
file is one of the templates provided by MFCAPWZ.DLL.

543

Visual C++ User's Guide

544

RECSET.H Recordset header file for MDI and SDI applications. This file is one of
the templates provided by MFCAPWZ.DLL.

TBDH_.BMP Bitmap file that creates a toolbar for database view applications
without file support. This file is one of the resource templates provided by
MFCAPWZ.DLL.

See Also Standard Custom Resource Templates, All AppWizard Projects, Dialog­
Based Applications, Dynamic-Link Libraries, MDI and SDI Applications, OLE
Applications, Help File Support, Custom App Wizard Help File Support, Macintosh
Applications

Macintosh Applications
AFXCRMAC.RTF This rich-text file is copied to your custom AppWizard project's

TEMPLATE directory. It is used to generate a Macintosh help file for MDI and
SDI applications. This file is one of the resource templates provided by the
localized language DLLs, such as APPWZJPN.DLL.

AFXPTMAC.RTF This rich-text file is copied to your custom AppWizard project's
TEMPLATE directory. It contains only print and print preview topics and is used
to generate a help (.HLP) file for Macintosh MDI and SDI applications that use
printing and print preview. This file is one of the resource templates provided by
the localized language DLLs, such as APPWZJPN:DLL.

MACCMD.BMP A bitmap, for use in help files, that creates the Macintosh
command-key symbol. This file is one of the resource templates provided by
MFCAPWZ.DLL.

MACLOC.RC A localized resource script file that contains all of the Macintosh
menus and accelerators. This file is one of the resource templates provided by the
localized language DLLs, such as APPWZJPN.DLL.

MACROOT.HPJ This help project file is copied to your custom AppWizard project's
TEMPLATE directory. It is used to generate a Macintosh help file and lists all of
the .RTF files that MAKEHELP.BAT must process to produce an .HLP file. This
file is one of the resource templates provided by the localized language DLLs, such
as APPWZJPN.DLL.

ROOT.R Resource script containing all of the Macintosh-specific resources. This
file is one of the resource templates provided by MFCAPWZ.DLL.

See Also Standard Custom Resource Templates, All App Wizard Projects, Dialog·
Based Applications, Dynamic-Link Libraries, MDI and SDI Applications, OLE
Applications, Help File Support, Custom App Wizard Help File Support, Database
Applications

PAR T 3

Command-Line Tools

Chapter 25 CL Reference 547
Chapter 26 LINK Reference 569
Chapter 27 Profiler Reference 591
Chapter 28 LIB Reference 607
Chapter 29 BSCMAKE Reference 615
Chapter 30 DUMPBIN Reference 621
Chapter 31 EDITBIN Reference 625
Chapter 32 NMAKE Reference 631

CHAPTER 25

CL Reference

CL is a 32-bit tool that controls the Microsoft C and C++ compilers and linker. The
compilers produce Common Object File Format (COFF) object (.OBJ) files. The
linker produces executable (.EXE) files or dynamic-link libraries (DLLs).

Most compiler options are available on the C/C++ tab of the Project Settings dialog
box. Each of the options on the C/C++ tab is described in Chapter 20, "Setting
Compiler Options." The description of each option includes the name of the
equivalent command-line option.

An alphabetic reference to the CL options not available as options on the C/C++ tab
of the Project Settings dialog box begins on page 552 in this chapter. Other topics
covered include:

• Description of CL syntax

• Using CL

Description of CL Syntax
The CL command line uses the following syntax:

CL [option ...] file ... [option Ifile] ... [lib ...] [@command-file] [/link link-opt ...]

The following table describes input to the CL command.

Entry

option

file

lib

Meaning

One or more CL options. See Chapter 20, "Setting Compiler
Options," and "Reference to Command-Line Only Options," later in
this chapter, for more information.

Note that all options apply to all specified source files.

The name of one or more source files, .OBJ files, or libraries. CL
compiles source files and passes the names of the .OBJ files and
libraries to the linker.

One or more library names. CL passes these names to the linker.

547

Visual C++ User's Guide

Entry

command-file

link-opt

Meaning

A file that contains multiple options and filenames. See "CL
Command Files," later in this chapter, for more information.

One or more of the linker options described in Chapter 21, "Setting
Linker Options," and Chapter 26, "LINK Reference." CL passes
these options to the linker.

You can specify any number of options, filenames, and library names, as long as the
number of characters on the command line does not exceed 1024, the limit dictated
by the operating system.

Note The command-line input limit of 1024 characters is not guaranteed to remain the same
in future releases of Windows NT.

Filename Syntax
CL accepts files with names that follow FAT, HPFS, or NTFS naming conventions.
Any filename can include a full or partial path. A full path includes a drive name and
one or more directory names. CL accepts filenames separated either by backslashes
(\) or forward slashes (/). A partial path omits the drive name, which CL assumes to
be the current drive. If you don't specify a path, CL assumes the file is in the current
directory.

The filename extension determines how files are processed. C and C++ files, which
have the extension .C, .CXX, or .CPP, are compiled. Other files, including .OBJ files,
libraries (.LIB), and module-definition (.DEF) files, are passed to the linker without
being processed.

Specifying CL Options
You can specify CL options on the command line, in command files, and in the CL
environment variable. Options specified in the CL environment variable are used
every time you invoke CL. If a command file is named in the CL environment
variable or on the command line, the options specified in the command file are used.
Unlike either the command line or the CL environment variable, a command file
allows you to use mUltiple lines of options and filenames. See "CL Command Files"
and "CL Environment Variable" laier in ihis chapier for more information.

Options are specified by either a forward slash (/) or a dash (-). If an option takes an
argument, the option's description documents whether a space is allowed between the
option and the arguments. Option names (except for the /HELP option) are case
sensitive.

Order of Options

548

Options can appear anywhere on the CL command line, except for the /link option,
which must occur last. The compiler begins with options specified in the CL

Chapter 25 CL Reference

environment variable and then reads the command line from left to right­
processing command files in the order it encounters them. Each option applies to all
files on the command line. If CL encounters conflicting options, it uses the rightmost
option.

CL Command Files
A command file is a text file that contains options and filenames you would otherwise
type on the command line or specify using the CL environment variable. CL accepts
a compiler command file as an argument in the CL environment variable or ~:m the
command line. Unlike either the command line or the CL environment variable, a
command file allows you to use multiple lines of options and filenames.

Options and filenames in a command file are processed according to the location of a
command filename within the CL environment variable or on the command line.
However, if the /link option appears in the command file, all options on the rest of the
line are passed to the linker. Options in subsequent lines in the command file and
options on the command line after th~ command file invocation are still accepted as
compiler options. For more information on how the order of options affects their
interpretation, see the previous section, Order of Options.

A command file must not contain the CL command. Each option must begin and end
on the same line; you cannot use the backslash (\) to combine an option across two
lines.

A command file is specified by an at sign (@) followed by a filename; the filename
can specify an absolute or relative path.

Example
If the following command is in a file named RESP:

109 Ilink LIBC.LIB

and you specify the following CL command:

CL IOb2 @RESP MYAPP.C

the command to CL is as follows:

CL IOb2 109 MYAPP.C Ilink LIBC.LIB

Note that the command line and the command-file commands are effectively
combined.

CL Environment Variable
Use the CL environment variable to specify files and options without giving them on
the command line. The CL environment variable has the following syntax:

SET CL=[[option] ... [file] ...] [/link link-opt ...]

549

Visual c++ User's Guide

The CL environment variable is useful if you often specify a large number of files and
options when you compile. You can define the files and options you use most often
with the CL variable and give only the files and options you need for specific
purposes on the command line. The CL environment variable is currently limited to
1024 characters-the command-line input limit in Windows NT.

You cannot use the /D option to define a symbol that uses an equal sign (=). You can
substitute the number sign (#) for an equal sign. In this way, you can use the CL
environment variable to define preprocessor constants with explicit values (for
example, I D DEB U Gil 1).

Example
The following example of a CL environment variable setting:

SET CL=/Zp2 lOx II\INCLUDE\MYINCLS \LIB\BINMODE.OBJ

is equivalent to the following CL command:

CL IZp2 lOx II\INCLUDE\MYINCLS \LIB\BINMODE.OBJ INPUT.C

The following example causes CL to compile the source files FILE1.C and FILE2.C,
and then link the object files FILEl.OBJ, FILE2.0BJ, and FILE3.0BJ:

SET CL=FILEl.C FILE2.C
CL FILE3.0BJ

This has the same effect as the following command line:

CL FILEl.C FILE2.C FILE3.0BJ

Using CL
You can use CL to compile specified source files into COFF .OBJ files, or to compile
and link source files, .OBJ files, and libraries into an .EXE file or a DLL. To compile
without linking, use the Ic option.

Fast Compilation

'50

One way to speed compilation is to use minimal rebuild and incremental compilation.
With minimal rebuild, a feature specific to C++, the compiler can recompile a source
file only if it is dependent on cha..~ges to a class in a header file. \Vith incremental
compilation, the compiler only recompiles those functions that have changed since
the last compile time.

For more information on minimal rebuild, see "Enable Minimal Rebuild" in Chapter
20. For more information on irtcremental compilation, see "Incremental
Compilation" in Chapter 20.

You can also use the precompiled header options to speed compilation. For more
information on the precompiled header options, see "Precompiled Headers" in
Chapter 20.

Chapter 25 CL Reference

Linking
CL automatically invokes the linker after compiling unless the Ic option is used. CL
passes to the linker the names of .OBJ files created during compiling and the names
of any other files specified on the command line. The linker uses the options listed in
the LINK environment variable. You can use the /link option to specify linker options
on the CL command line. Options that follow the /link option override those iI,1 the
LINK environment variable. The options in the following table suppress linking.

Option Description

Ic
IE, IEP, /p

/Zg
IZs

Compile without linking

Preprocess without compiling or linking

Generate function prototypes

Check syntax

For further details about linking, see Chapter 21, "Setting Linker Options," and
Chapter 26, "LINK Reference."

Example
Assume that you are compiling three C source files: MAIN.C, MOD1.C, and
MOD2.C. Each file includes a call to a function defined in a different file:

• MAIN.C calls the function tuncl in MOD1.C and the function func2 in
MOD2.C.

• MOD1.C calls the standard library functions printf and seanf.

• MOD2.C calls graphics functions named myli ne and myci rcl e, which are
defined in a library named MYGRAPH. LI B.

To build this program, compile with the following command line:

CL MAIN.C MODl.C MOD2.C MYGRAPH.LIB

CL first compiles the C source files and creates the object files MAIN.OBJ,
MOD1.0BJ, and MOD2.0BJ. The compiler places the name of the standard library
in each .OBJ file. For more details, see "Use Run-Time Library" in Chapter 21.

CL passes the names of the .OBJ files, along with the name MYGRAPH. LI B, to the
~linker. The linker resolves the external references as follows:

1. In MAIN.OBJ, the reference to funcl is resolved using the definition in
MOD1.0(3J; the reference to func2 is resolved using the definition in
MOD2.0BJ.

2. In MOD1.0BJ, the references to printf and seanf are resolved using the
definitions in the library that the linker finds named within MOD1.0BJ.

3. In MOD2.0BJ, the references to myl i ne and myci rcl e are resolved using the
definitions in MYGRAPH. LI B.

551

Visual C++ User's Guide

Reference to Command-Line Only Options

i52

The remainder of this chapter is an alphabetic reference to the CL command-line
options that are not available in the categories on the C/C++ tab of the Project
Settings dialog box. Theseoptions are listed in Table 25.1.

If a command-line option can take one or more arguments, its syntax is shown under
a Syntax heading before its description. For more information on these options, see
Chapter 20, "Setting Compiler Options."·

Table 25.1 CL Options Set from the Command Line

Ie IGe /P

Ie IGF

IGh /fe

/D IGs /fp

IE /H N
IEP /HELP

IYd
!F IJ

!Fd fZg
/FI /LD IZI

!Fm /LDd IZs

!Fo /link

!Fp

Table 25.2 shows all options that are available in the categories on the C/C++ tab of
the Project Settings dialog box. These options can also be used from the command
line. For more information on these options, see Chapter 20, "Setting Compiler
Options."

Table 25.2 CL Options Set from the Project Settings Dialog Box

/D IGy 10d Ivrnv
/r!~ I£'\._
I'-'L.. /V'f!,

!FA 10i Iw

!Fa II lOp, lOp- /W

/FR lOs /WX
!Fr /MD lOt

/MDd lOw IX
IG3 /ML lOx

IG4 /MLd lOy, 10y- lYe

IG5 /MT lYu

Ie

Ie

/D

Chapter 25 CL Reference

Table 25.2 CL Options Set from the Project Settings Dialog Box (continued)

/GB /MTd IV /yX

/Gd /u
/Gf /nologo /Z7

/Gi, /Gi- /vd /Za

/Gm,/Gm- /01 /vmb /Zd

/Gr /02 /vmg /Ze

/GR,/GR- lOa. /vrnm /Zi

/GX,/GX- lOb /vms /Zp

This option preserves comments during preprocessing when used with the IE, /p, or
IEP option, and is not valid if IE, /p, or IEP is not used. If you do not specify the IC
option, the preprocessor does not pass source-file comments to its output file.

This option suppresses linking; only .OBI files are created. No .EXE file or DLL is
produced.

Example
The following example creates the object files FIRST.OBI and SECOND.OBI. The
file THIRD.OBI is ignored.

CL Ie FIRST.C SECOND.C THIRD.OBJ

Syntax
/Dname[= I # [{string I number}]]

This option defines symbols or constants for your source file.

The name is the name of the symbol or constant. It can be defined as a string or as a
number. No space can separate /D and name. Enclose the string in double quotation
marks (") if it includes spaces. If you omit both the equal sign (=) and the string or
number, the name is assumed to be defined, and its value is set to 1. Note that the
name argument is case sensitive.

Defining symbols and constants with the /D option has the same effect as using a
#define preprocessor directive at the beginning of your source file. The constant is
defined until either an #Undef directive in the source file removes the definition, or
the compiler reaches the end of the file.

You cannot set the CL environment variable to a string that contains an equal sign
(=). To use /D with the CL environment variable, specify a number sign (#) instead of
an equal sign (=):

553

Visual C++ User's Guide

IE

SET CL "/OTEST/l0"

Note The action of ID differs from the Preprocessor Definitions option available in both the
General category and the Preprocessor category. These categories are on the C/C++ tab of the
Project Settings dialog box. With the ID option, you can define a symbol and use an equal sign
(:;)or a number sign (#) to assign the symbol a value.

Use the constants created by the compiler and the ID option in combination with
either the #if or #ifdef directive to compile source files conditionally.

You can redefine a keyword, identifier, or numeric constant that has been defined in a
source file. If a constant defined in a ID option is also defined within the source file,
CL uses the definition on the command line until it encounters a redefinition in the
source file.

You can undefine a previous definition. To do so, use the ID option with a keyword,
identifier, or numeric constant, and append an equal sign (=) followed by a space.

Examples
The following command removes all occurrences of the keyword _far in TEST.C:

CL 10 far= TEST.C

The following command defines the symbol DEBUG in TEST.C:

CL 100EBUG TEST.C

This option preprocesses C and C++ source files and copies the preprocessed file to
the standard output device. The output is identical to the original source file, except
that all preprocessor directives are carried out, macro expansions are performed, and
comments are removed. You can use the Ie option with IE to preserve comments in
the preprocessed output.

Unlike the IEP option, IE adds #line directives to the output. The #line directives are
placed at the beginning and end of each included file and around lines removed by
preprocessor directives that specify conditional compilation. Use the IE option when
you want to resubmit the preprocessed listing for compilation. The #line directives
renumber the lines of the preprocessed file so that errors generated during later stages
of processing refer to the line numbers of the original source file rather than to the
preprocessed file. You can use the IEP option to suppress #line directives.

The IE option suppresses compilation. It also suppresses the output files from the
/FA, /Fa, and /Fm options.

Note You cannot use precompiled headers with the IE option.

The following table summarizes the actions of the IE, IEP, and /P options.

IEP

Chapter 25 CL Reference

Option

IE
/P
IEP
IE IEP
/p IEP

Example

Result

Sends preprocessor output, including #line directives, to stdont.

Sends preprocessor output, including #line directives, to a file (.I).

Sends preprocessor output, without #line directives, to stdont.

Sends preprocessor output, without #line directives, to stdont.

Sends preprocessor output, without #line directives, to a file (.I).

The following command creates a preprocessed file from the source file ADD.C. It
preserves comments and adds #line directives. The output is displayed:

CL IE IC ADD.C

The /EP option is similar to the /E option. It preprocesses C and C++ source files and
copies the preprocessed file to the standard output device. The output is identical to
the original source file, except that all preprocessor directives are carried out, macro
expansions are performed, and comments are removed. You can use the IC option
with /EP to preserve comments in the preprocessed output. Unlike /E, however, /EP
does not add #line directives to the output.

The /EP option suppresses compilation. It also suppresses the output files from the
/FA, /Fa, and /Fm options.

The following table summarizes the actions of the /E, /EP, and /P options.

Option

IE
/P

IEP
IE IEP
/p IEP

Example

Result

Sends preprocessor output, including #line directives, to stdout.

Sends preprocessor output, including #line directives, to a file (.I).

Sends preprocessor output, without #line directives, to stdont.

Sends preprocessor output, without #line directives, to stdont.

Sends preprocessor output, without #line directives, to a file (.I).

The following command creates a preprocessed file from the source file ADD.C. It
preserves comments, but does not insert #line directives. The output is displayed:

CL IEP IC ADD.C

555

Visual c++ User's Guide

IF
Syntax
IF number

This option sets the program stack size to a specified number of bytes. If you don't
specify this option, a stack size of 1 MB is used by default. The number argument can
be in decimal or C notation. The argument can range from' a lower limit of one to the
maximum stack size accepted by your linker. A space is optional between IF and
number ..

You can also set stack size by using the linker's /STACK option or by running
EDITBIN on an .EXE file.

You may want to increase the stack size if your program gets stack-overflow
diagnostic messages.

Output-File Options

56

These output-file options create or rename output files. They affect all C or C++
source files specified in the CL environment variable, on the command line, or in any
command file. They include:

• IFd (Name the Program Database and Incremental Compilation State File)

• lFe (Name the Executable File)

• IFm (Generate a Map File)

• /Fo (Name the Object File)

• /Fp (Name or Use a Precompiled Header File)

Other output-file options are available in the Listing Files category on the C/C++ tab
of the Project Settings dialog box. They include:

• Generate Browse Info (/FR)

• Exclude Local Variables (/Fr)

• Intermediate Browse Info File Destination (/FRrJilename] or IFrrJilename])

• Listing File Type (/FA[cls])

• Listing File Name (lFarJilename])

For more information on the Generate Browse Info, Exclude Local Variables,
Intermediate Browse Info File Destination, Listing File Type, and Listing File Name
options, see "Listing Files" in Chapter 20.

Chapter 25 CL Reference

Drive, Path, and File Specifications
Each output-file option accepts afilename argument, with which you can specify a
location and a name for the output file. The argument can include a drive name, a
path specification, and/or a filename. No space is allowed between the option and the
argument.

Iffilename is a path without a filename (that is, a directory), end the path with a
backslash (\) to differentiate it from a filename. If a filename is specified without an
extension, the output file is given a default extension. If no argument is specified, the
output file is given the base name of the source file and an extension determined by
the type of output file.

Device Names for Windows

/Fd

You can append the device names AUX, CON, PRN, and NUL to the output-file
options to direct the output file to the named device. No space is allowed between the
option and the device name. Do not append a colon (:) to the device name. The
device names and their behavior ate shown in the following table.

Device name

AUX
CON

PRN
NUL

Example

Result

The listing file is sent to an auxiliary device.

The listing file is sent to the console.

The listing file is sent to a printer.

No file is created.

In the following example, appending PRN to /Fm sends a map file to the printer:

CL IFmPRN HELLO.CPP

Syntax
/Fdfilename

This option specifies a filename for a program database (PDB) other than the default
name, YC40.PDB, created by /Zi. No space is allowed between /Fd andfilename. If
you do not specify an extension to filename, the extension .PDB is used. Iffilename
ends in a backslash (to specify the name of a directory), the default filename,
YC40.PDB, is used. For information on PDBs, see "Debug Info" in Chapter 20.

Note This option also names the compiler's state or .IDB file (used by minimal
rebuild and incremental compilation).

557

Visual C++ User's Guide

/Fe

IFI

iSS

Example
The following command creates a .PDB file called·PROG.PDB that contains
debugging information and an .IDB file called PROG.IDB that contains incremental
compilation and minimal rebuild information.

CL IDDEBUG IZi IFdPROG.PDB PROG.CPP

Syntax
/Fefilename

This option names an .EXE file or DLL or creates it in a different directory. No space
is allowed between /Fe andfilename. By default, CL names the file with the base
name of the first file (source or object) on the command·line plus the extension .EXE
(or .DLL if you use the /LD option to create a dynamic-link library).

If you specify the Ic option to suppress linking, /Fe has no effect.

Examples
The following example compiles and links all C source files in the current directory.
The reSUlting executable file is named PROCESS.EXE and is created in the directory
C:\BIN.

CL IFeC:\BIN\PROCE$S *.C

The following example is similar to the first example, except that the executable file
is given the same base name as the first file compiled instead of being named
PROCESS.EXE. The .EXE file is created in the directory C:\BIN.

CL IFeC:\BIN\ *.C

Syntax
/FIfilename

The /FI option causes the preprocessor to process the header file specified by
filename. Eachfilename is included as if it were specified with double quotation
marks (") in an #include directive on line 0 of every C or C++ source file specified in
lh~ CL environment variable, on the command line, or in any command file. If
mUltiple /FI options are used, the files are included in the order they are processed by
CL. The space between /FI and filename is optional.

/Fm

/Fo

/Fp

Chapter 25 CL Reference

Syntax
/Fm[filename]

This option instructs the linker to produce a map file. No space is allowed between
/Fm andfilename. The map file contains a list of segments in the order of their
appearance within the corresponding .EXE file or DLL. By default, the map file is
given the base name of the corresponding C or c++ source file with a .MAP
extension. If you specify the Ic option to suppress linking, /Fm has no effect.

Global symbols in a map file usually have one or more leading underscores, because
the compiler adds an underscore to the beginning of variable names. Many of the
global symbols that appear in the map file are symbols used internally by the
compiler and the standard libraries.

Syntax
/Fofilename

This option names an .OBJ file or creates it in a different directory. No space is
allowed between /Fo andfilename. By default, CL names the object file with the base
name of the source file plus the extension .OBJ. You can give any name and
extension you want forfilename. However, it is recommended that you use the
conventional .OBJ extension.

Example
The following command line compiles the source file THIS.C and gives the resulting
object file the name THIS.OBJ by default. The directory specification B:\OBJEC1\
tells CL to create THIS.OBJ in an existing directory named \OBJECT on drive B.

CL IFoB:\OBJECT\ THIS.C

Syntax
/Fpfilename

Use the /Fp option with the /yX, /Y c, and -/yu options to provide a name for a
precompiled header (.PCH) file (and path) that is different from the default. You can
also use /Fp to specify the use of a .PCH file that is different from the filename
argument to the /Y c option or the base name of the source file.

No space is allowed between /Fp andfilename. If you do not specify an extension to
filename, an extension of .PCH is assumed. Iffilename ends in a backslash (to specify

559

Visual C++ User's Guide

/Ge

IGF

IGh

)60

the name of a directory), the default filename VC40.PCH is appended tofilename.
For more information, see the related options under "Precompiled Headers" in
Chapter 20.

Examples
The following command renames the default VC40.PCH file created and used by
!yX:

CL IYX IFpMYPCH.PCH PROG.CPP

The following command creates a precompiled header file DPROG.PCH for a
debugging version of a program:

CL IDDEBUG IZi lYe IFpDPROG.PCH PROG.CPP

The following command specifies the use of a precompiled header file named
MYPCH.PCH. The compiler assumes that the source code in PROG.CPP has been
precompiled through MYAPP.H, and that the precompiled code resides in
MYPCH.PCH. It uses the content of MYPCH.PCH and compiles the rest of
PROG.CPP to create an .OBJ file. Because none of these options suppresses the
linker, the output of this example is a file named PROG.EXE.

CL IYuMYAPP.H IFpMYPCH.PCH PROG.CPP

This option (and the /Gs option with a size of 0) activates stack probes for every
function call that requires storage for local variables. This mechanism is useful only
if you rewrite the functionality of the stack probe. It is recommended that you use the
/Gh option rather than rewriting the stack probe.

This option causes the compiler to pool strings and place them in read-only memory.
By placing the strings in read-only memory, the operating system does not need to
swap that portion" of memory. Instead, it can read the strings back from the image
file.

Strings placed in read-only memory cannot be modified; if you try to modify them,
you will see an Application Error dialog box.

The /GF option is comparable to the /Gf option, except that /Gf does not place the
strings in read-only memory. For more information on the /Gf option, see "Eliminate
Duplicate Strings" in Chapter 20.

This option calls _penter at the start of every method or function. The _penter
function is not part of any library. This call is a hook for your use. Use assembly
language to write the function.

IGs

/H

Chapter 25 CL Reference

Unless you plan to explicitly call_penter, you do not need to provide a prototype.
The function must appear as if it had the following prototype, and it must push the
content of all registers on entry and pop the unchanged content on exit:

void cdecl __ penter(void);

Syntax
IOssize

This option is an advanced feature with which you can control stack probes. A stack
probe is a sequence of code that the compiler inserts into every function call. When
activated, a stack probe reaches benignly into memory by the amount of space
required to store the associated function's local variables.

If a function requires more than size stack space for local variables, its stack probe is
activated. The default value of size is the size of one page (4K for 80x86 processors).
This value allows a carefully tuned interaction between an application for Win32 and
the Windows NT virtual-memory manager to increase the amount of memory
committed to the program stack at run time.

Warning The default value of size is carefully chosen to allow the program stack of
applications for Win32 to grow at run time. Do not change the default setting of /Gs unless you
know exactly why you need to change it.

Some programs, such as virtual device drivers, do not require this default stack­
growth mechanism. In such cases, the stack probes are not necessary. You can stop
the compiler from generating stack probes by setting size to a value that is larger than
any function will require for local variable storage. No space is allowed between lOs
and size.

The lOs option with a size of 0 has the same result as the IOe option.

You can tum stack probes on or off by using the check_stack pragma. Note that the
lOs option and the check _stack pragma have no. effect on standard C library
routines; they affect only the functions y~)U compile. For more information on the
check_stack pragma, see Chapter 2 of the Preprocessor Reference.

Syntax
/H number

This option restricts the length of external (public) names. The program can contain
external names longer than number characters, but the extra characters are ignored.
A space between /H and number is optional. The compiler imposes no limit on the
length of external identifiers. .

561

Visual C++ User's Guide

The limit on length includes any compiler-created leading underscore (_) or at sign
(@). The compiler adds a leading underscore (~ to names modified by the _ cdecl
(default) and _stdcall calling conventions, and a leading at sign (@) to names
modified by the _ fastcall calling convention. It appends argument size information
to names modified by the _fastcall and _stdcall calling conventions, and adds type
information to c++ names.

You may find the /H option useful when creating mixed-language or portable
programs, or when using tools that impose limits on the length of external identifiers.

/HELP

IJ

/LD

562

Syntax
/HELP
/help
/?

This option displays a listing of compiler options to standard output.

This option changes the default char type from signed char to unsigned char, and
the char type is zero-extended when widened to an int type. If a char value' is
explicitly declared signed, the /1 option does not affect it, and the value is sign­
extended when widened to an int type.

The /1 option defines _ CHAR __ UNSIGNED, which is used with #ifndef in the
LIMITS.H file to define the range of the default char type.

Neither ANSI C nor C++ requires a specific implementation of the char type. This
option is useful when you are working with character data that will eventually be
translated into a language other than English.

This option creates a dynamic-link library (DLL). The /LD option does the following:

• Passes the /DLL option to the linker. The linker looks for, but does not require, a
DlIMain function. If you do not write a DIlMain function, the linker inserts a
DlIMain function that returns TRUE.

• Links the DLL startup code.

• Creates an import library (.LIB), if an export (.EXP) file is not specified on the
command line; you link the import library to applications that call your DLL.

• Interprets /Fe as naming a DLL rather than an .EXE file; the default program
name becomes basename.DLL instead of basename.EXE. See page 558 in this
chapter for more information on /Fe.

Chapter 25 CL Reference

• Changes default run-time library support to /MT if you have not explicitly
specified /MD, /ML, or /MT. For more information on these options, see "Use
Run.:. Time Library" in Chapter 20.

Examples
The following command line:

CL fLO FILEl.CXX FILE2.CXX

tells the compiler to pass the following commands to the linker:

IOUT:FILE1.0LL
lOLL
IIMPLIB:FILEl.LIB
FILEl.OBJ FILE2.0BJ

The following command line creates both DLL\FILEl.DLL and DLL\FILEl.LIB:

CL ILO IFeOLL\ FILEl.C

If your source code contains no exported functions, the linker does not create an
import library.

/LDd
Similar to the /LD option, this option creates a dynamic-link library (DLL), except
that it:

• Defmes _DEBUG.

• Uses the debug multithreaded library.

• Changes default run-time library support to /MTd if you have not explicitly
specified /MDd, /MLd, or /MTd. For more information on these options, see "Use
Run-Time Library" in Chapter 20.

Examples
The following command line:

CL fLOd FILEl.CXX FILE2.CXX

tells the compiler to pass the following commands to the linker:

IOUT:FILE1.0LL
lOLL
IIMPLIB:FILEl.LIB
FILEl.OBJ FILE2.0BJ

563

Visual C++ User's Guide

/link

/P

564

The following command line creates both DLL\FILE1.DLL and DLL\FILE1.LIB:

CL ILDd jFeDLL\ FILEl.C

If your source code contains no exported functions, the linker does not create an
import library.

Syntax
/link option

This option passes one or more linker options to LINK. The /link option and its
linker options must appear after any filenames and CL options. A space is required
between /link and option. For more information on the linker, see Chapter 21,
"Setting Linker Options," and Chapter 26, "LINK Reference."

This optipn writes preprocessor output to a file with the same base name as the source
file, but with the .I extension. It adds #line directives to the output file at the
beginning and end of each included file and around lines removed by preprocessor
directives that specify conditional compilation. The preprocessed listing file is
identical to the original source file, except that all preprocessor directives are carried
out, and macro expansions are performed.

This option suppresses compilation; CL does not produce an .OBJ file, even if the /Fo
option is specified. The /P option also suppresses production of the alternate output
files created by the /FA, /Fa, or /Fm option.

The /P option is similar to the IE and IEP options, described earlier in this chapter.
Using IEP with /P suppresses placement of #line directives in the output file.

The following table summarizes the actions of the IE, IEP, and /P options.

Option

IE
/P

IEP
IE IEP
/p IEP

Result

Sends preprocessor output, including #line directives, to stdout.

Sends preprocessor output, including #line directives, to a file (.1).

Sends preprocessor output, without #line directives, to stdout.

Sends preprocessor output, without #line directives, to stdout.

Sends preprocessor output, without #line directives, to a file (.1).

Chapter 25 CL Reference

lTc, /Tp

N

/Yd

Syntax
rrc filename
rrp filename

The rrc option specifies thatfilename is a C source file, even if it doesn't have a .C
extension. The rrp option specifies thatfilename is a C++ source file, even if it
doesn't have a .CPP or .CXX extension. A space between the option andfilename is
optional. Each option specifies one file; to specify additional files, repeat the option.

By default, CL assumes that files with the .C extension are C source files and files
with the .CPP or the .CXX extension are C++ source files.

Example
The following CL command line specifies that MAIN.C, TEST.PRG, and
COLLATE.PRG are all C source files. CL will not recognize PRINT.PRG.

CL MAIN.C ITcTEST.PRG ITcCOLLATE.PRG PRINT.PRG

Syntax
Nstring

This option embeds a text string in the .OBJ file. This string can label an .OBJ file
with a version number or a copyright notice. Any space or tab characters must be
enclosed in double quotation marks (") if they are a part of the string. A backslash (\)
must precede any double quotation marks if they are a part of the string. A space
between N and string is optional.

You can also use the comment pragma with the compiler comment-type argument to
place the name and version number of the compiler in the .OBJ file. For more
information on the comment pragma, see comment in Chapter 2 of the Preprocessor
Reference.

This option, when used with the /Y c and /Z7 options, places complete debugging
information in all object files created from a precompiled header (.PCR) file. Unless
you need to distribute a library containing debugging information, use the /Zi option
rather than /Z7 and /Y d. The /Y d option takes no argument. For more information on
the debugging options, see "Debug Info" in Chapter 20.

Storing complete debugging information in every .OBJ file is necessary only to
distribute libraries that contain debugging information. It slows compilation and
requires considerable disk space. When /Y c and /Z7 are used without /Y d, the
compiler stores common debugging information in the first .OBJ file created from the
.PCR file. The compiler does not insert this information into .OBJ files subsequently

565

Visual C++ User's Guide

/Zg

/Zl

566

created from the .PCH file; it inserts cross-references to the information. No matter
how many .OBJ files use the .PCH file, only one .OBJ file contains the common
debugging information.

Although this default behavior results in faster build times and reduces disk· space
demands, it is undesirable if a small change requires rebuilding the .OBJ file
containing the common debugging information. In this case, the compiler must
rebuild all.OBJ files containing cross-references to the original .OBJ file. Also; if a
common .PCH file is used by different projects, reliance on cross-references to a
single .OBJ file is difficult.

Note The /Yd option is implied with use of the /yX option.

This option creates a function prototype for each function defined in the source file,
but does not compile the source file.

The function prototype includes the function return type and an argument type list.
The argument type list is created from the types of the formal parameters of the
function. Any function prototypes already present in the source file are ignored.

The list of prototypes is written to standard output. You may find this list helpful to
verify that actual arguments and formal parameters of a function are compatible. You
can save the list by redirecting standard output to a file. Then you can use #include to
make the list of function prototypes a part of your source file. Doing so causes the
compiler to perform argument type checking.

If you use the /Zg option and your program contains formal parameters that have
struct, enum, or union type (or pointers to such types), the prototype for each struct,
enum, or union type must have a tag.

This option omits the default library name from the .OBJ file. By default, CL puts the
name of the library in the .OBJ file to direct the linker to the correct library. For more
information on the default library, see "Use Run-Time Library" in Chapter 21.

You can. use /Zl to compile .OBJ files you plan to put into a library. Although
omitting the library name saves only a small amount of space for a single .OBJ file,
the total space saved is significant in a library that contains many object modules.

jZs

Chapter 25 CL Reference

This option tells the compiler to check only the syntax of the source files on the
command line. No output files are created. Error messages are written to standard
output. The /ZS option provides a quick way to find and correct syntax errors before
you compile and link a source file.

567

CHAPTER 26

LINK Reference

LINK is a 32-bit tool that links Common Object File Fonnat (COFF) object files and
libraries to create a 32-bit executable (.EXE) file or dynamic-link library (DLL).

The following tables, which summarize LINK options, are included in this reference:

• Alphabetic List of LINK Options

• Developer Studio LINK Options

• Compiler-Controlled LINK Options

The linker options available from the Link tab of the Project Settings dialog box are
described in Chapter 21, "Setting Linker Options."

LINK Input Files
You provide the linker with files that contain objects, import and standard libraries,
resources, module definitions, and command input. LINK does not use file 'extensions
to make assumptions about the contents of a file. Instead, LINK examines each input
file to detennine what kind of file it is.

Note LINK no longer takes a semicolon (or any other character) as the start of a comment in
response files and order files. Semicolons are only recognized as start of comments in module­
definition files (.DEF).

LINK uses the following types of input files:

• .OBJ files

• .LIB files

• .EXP files

• .DEF files

• .PDB files

• .RES files

569

Visual C++ User's Guide

• .EXE files

• .TXT files

• .ILK files

.OBJ Files
LINK accepts .OBJ files that are either COFF or 32-bit Object Module Format
(OMF). Microsoft's compiler creates COFF .OBJ files; LINK automatically converts
32-bit OMF objects to COFF .

. LIB Files.

570

LINK accepts COFF standard libraries and COFF import libraries, both of which
usually have the extension .LIB. Standard libraries contain objects and are created by
the LIB tool. Import libraries contain information about exports in other programs
and are created either by LINK when it builds a program that contains exports or by
the LIB tool. For information on using LIB to create standard or import libraries, see
Chapter 28, "LIB Reference." For details on using LINK to create an import library,
see the /DLL option later in this chapter.

A library is specified to LINK as either a filename argument or a default library.
LINK resolves external references by searching first in libraries specified on the
command line, then in default libraries specified with the /DEFAULTLIB option,
then in default libraries named in .OBJ files. If a path is specified with the library
name, LINK looks for the library in that directory. If no path is specified, LINK looks
first in the directory that LINK is running from, then in any directories specified in
the LIB environment variable.

LINK cannot link a library of 32-bit OMF objects created by the 16-bit version of
LIB. To use an OMF library, you must first use the 16-bit LIB (not provided in Visual
C++ for Windows NT) to extract the objects. You can then either link the OMF
objects or use the 32-bit LIB to convert them to COFF and put them in a library. You
can also use the EDITBIN.EXE tool to convert an OMF object to COFF. For details
on EDITBIN, see Chapter 31, "EDITBIN Reference."

. .EXP files contain information about exported functions and data items. When LIB
creates an import library, it also creates an .EXP file. You use the .EXP file when you
link a program that both exports to and imports from another program, either directly
or indirectly. If you link with an .EXP file, LINK does not produce an import library,
because it assumes that LIB already created one. For details about .EXP files and
import libraries, see Working with Import Libraries and Export Files in Chapter 28,
"LIB Reference."

Chapter 26 LINK Reference

.DEF Files
Module-definition (.DEF) files (described in further detail later in this chapter)
provide the linker with information about exports, attributes, and other information
about the program to be linked. Use the /DEF option to specify the .DEF filename.
Because LINK provides options and other features that can be used instead of
module-definition statements, .DEF files are generally not necessary .

. PDB Files
.OBJ files compiled using the IZi option contain the name of a program database
(PDB). You do not specify the object's PDB filename to the linker; LINK uses the
embedded name to find the PDB if it is needed. This also applies to debuggable
objects contained in a library; the PDB for a debuggable library must be available to
the linker along with the library.

LINK also uses a PDB to hold debugging information for the .EXE file or .DLL file.
The program's PDB is both an output file and an input file, because LINK updates
the PDB when it rebuilds the program .

. RES Files
You can specify a .RES file when linking a program. The .RES file is created by the
resource compiler (RC). LINK automatically converts .RES files to COFE The
CVTRES.EXE tool must be in the same directory as LINK.EXE or in a directory
specified in the PATH environment variable .

. EXE Files
The MS-DOS Stub File Name (/STUB) option specifies the name of an .EXE file that
runs with MS-DOS. LINK examines the specified file to be sure that it is a valid
MS-DOS program .

. TXT Files
LINK expects various text files as additional input. The command-file specifier (@)
and the Base Address (!BASE), /DEF, and IORDER options all specify text files.
These files can have any extension, not just. TXT .

. ILK Files
When linking incrementally, LINK updates the .ILK status file that it created during
the first incremental link. This file has the same base name as the .EXE file or .DLL
file, and it has the extension .ILK. During subsequent incremental links, LINK
updates the .ILK file. If the .ILK file is missing, LINK performs a full link and
creates a new .ILK file. If the .ILK file is unusable, LINK performs a nonincremental

571

Visual C++ User's Guide

linle For details about incrementallinking~ see the Link Incrementally
(!INCREMENTAL) option in Chapter 21, "Setting Linker Options."

LINK Output
Link output includes .EXE files, DLLs, map files, and messages.

Output Files
The default output file from LINK is an .EXE file. If the /DLL option is specified,
LINK builds a .DLL file. You can control the output filename with the Output File
Name (lOUT) option, described in Chapter 21, "Setting Linker Options."

In incremental mode, LINK creates an .ILK file to hold status information for later
incremental builds of the program. For details about .ILK files, see .ILK Files earlier
in this chapter. For more information about incremental linking, see the Link
Incrementally (!INCREMENTAL) option in Chapter 21, "Setting Linker Options."

When LINK creates a program that contains exports (usually a DLL),it also builds a
.LIB file, unless an .EXP file was used in the build. You can control the import
library filename with the !IMPLIB option, described later in this chapter.

If the Generate Mapfile (/MAP) option is specified, LINK creates a map file.

If the Generate Debug Info (/DEBUG) and Microsoft Format (/DEBUGTYPE:CV)
options are specified, LINK creates a PDB to contain debugging information for the
program. For more information about these options, see Chapter 21, "Setting Linker
Options."

Other Output

572

When you type 1 ink without any other command-line input, LINK displays a usage
statement that summarizes its options.

LINK displays a copyright and version message and echoes command-file input,
unless the Suppress Startup Banner (INOLOGO) option is used.

You can use the Print Progress Messages (NERBOSE) option to display additional
details about the build.

LINK issues error and warning messages in the form LNKnnnn. This error prefix
and range of numbers is also used by LIB, DUMPBIN, and EDITBIN. Consult Books
Online for documentation on these errors. You can control the display of warnings
with the /WARN option.

Chapter 26 LINK Reference

Running LINK on the Command Line
When you run LINK at a command prompt, you can specify input in one or more
ways:

• On the command line

• U sing command files

• In environment variables

LINK Command Line
To run LINK, use the following command syntax:

LINK arguments

The arguments include options and filenames and can be specified in any order.
Options are processed first, then files. Use one or more spaces or tabs to separate
arguments.

To pass a file to the linker, specify the filename on the command line after the LINK
command. You can specify an absolute or relative path with the filename, and you
can use wildcards in the filename. If you omit the dot (.) and filename extension,
LINK assumes .OBJ for the purpose of finding the file. LINK does not use filename
extensions or the lack of them to make assumptions about the contents of files; it
determines the type of file by examining it, and processes it accordingly.

LINK Command Files
You can pass command-line arguments to LINK in the form of a command file. To
specify a command file to the linker, use the following syntax:

LINK @commandfile

The commandfile is the name of a text file. No space or tab is allowed between the at
sign (@) and the filename. There is no default extension; you must specify the full
filename, including any extension. Wildcards cannot be used. You can specify an
absolute or relative path with the filename. LINK does not use an environment
variable to search for the file.

In the command file, arguments can be separated by spaces or tabs (as on the
command line) and by newline characters.

You can specify all or part of the command line in a command file. You can use more
than one command file in a LINK command. LINK accepts the command-file input
as if it were specified in that location on the command line. Command files cannot be
nested. LINK echoes the contents of command files, unless the /NOLO GO option is
specified.

573

Visual C++ User's Guide

Example
The following command to build a DLL passes the names of object files and libraries
in separate command files and uses a third command file for specification of the
/EXPORTS option:

link /dll @objlist.txt @liblist.txt @exports.txt

LINK Environment Variables
LINK uses environment variables as follows:

• If the LINK variable is defined, LINK processes arguments defined in the variable
before it processes the command line. The LINK environment variable can contain
any arguments to the linker.

• If the LIB variable is defined, LINK uses the LIB path when it searches for a file
(such as an object or library) specified on the LINK command line or with the
/BASE option, or for a .PDB file named in an object. The LIB environment
variable can contain one or more path specifications, separated by semicolons (;).
You can set the LIB variable within Developer Studio by selecting the Directories
tab in the Options dialog box (available from the Tools menu).

• If LINK needs to run CVPACK or CVTRES and cannot find it in the same
directory as itself, LINK uses the PATH environment variable to look for the tool.
CVPACK is required when creating Microsoft-format debugging information.
CVTRES is required when linking a .RES file.

• LINK uses the directory specified in the TMP environment variable when linking
OMF or .RES files.

LINK Options

574

You can specify options to LINK either within Developer Studio or on the LINK
command line. Chapter 21, "Setting Linker Options," describes the option categories
that are available from the Link tab in the Project Settings dialog box. The LINK
options that are not available as controls on the Link tab are summarized in the
following tables.

An option consists of an option specifier~ either a dash (-) or a forward slash (!)~
followed by the name of the option. Option names cannot be abbreviated. Some
options take an argument, specified after a colon (:).·No spaces or tabs are allowed
within an option specification, except within a quoted string in the /COMMENT
option. Specify numeric arguments in decimal or C-Ianguage notation. Option names
and their keyword or filename arguments are not case sensitive, but identifiers as
arguments are case sensitive.

LINK first processes options specified in the LINK environment variable, followed by
options in the order they are specified on the command line and in command files. If

Chapter 26 LINK Reference

an option is repeated with different arguments, the last one processed takes
precedence.

Options apply to the entire build; no options can be applied to specific input files.

Alphabetic List of LINK Options
Table 26.1 lists the LINK options, along with the equivalent Developer Studio option
if available. Options listed as command-line only are described in this section.
Developer Studio options are described in Chapter 21, "Setting Linker Options."
Options marked as specific to a target are described in the appropriate documentation
for that target.

Table 26.1 Alphabetic List of LINK Options

Command-line option

IALIGN

/BASE

ICOMMENT

/DEBUG

/DEBUGTYPE

/DEF

/DEFAUL TLIB

/DLL

/ENTRY

/EXETYPE

/EXPORT

/FIXED
/FORCE

/HEAP
/lMPLIB

/INCLUDE

/INCREMENTAL

/MACHINE

/MAP
/MERGE

/NODEFAULTLIB

/NOENTRY

/NOLOGO

IOPT

IORDER

lOUT

Developer Studio option

Output Category

Debug Category

Debug Category

Output Category

Customize <:::ategory

Input Category

Customize Category

Debug Category

Input Category

Customize Category

Customize Category

575

Visual C++ User's Guide

576

Table 26.1 Alphabetic List of LINK Options (continued)

Command-line option

/PDB

/PROFILE

/RELEASE

/SECTION

/STACK

/STUB

/SUBSYSTEM

NERBOSE

NERSION

NXD

/WARN

Developer Studio option

Customize Category

General Category

Output Category

Input Category

Customize Category

Output Category

Developer Studio LINK Options
You can set LINK options in Developer Studio by using the Link tab in the Project
Settings dialog box. Table 26.2 lists the options available in Developer Studio, along
with the equivalent command-line options.

Table 26.2 Developer Studio LINK Options

Developer Studio

General Category

Output File Name

ObjectlLibrary Modules

Generate Debug Info

Link Incrementally

Enable Profiling

Ignore All Default Libraries

Generate Mapfile

Customize Category

Use Program Database

Link Incrementally

Program Database Name

Output File Name

Force File Output

Print Progress Messages

Suppress Startup Banner

Command-line equiva!ent

/OUT:filename

filename on command line

/DEBUG

/INCREMENTAL: {YESINO}

/pROFILE

/NODEFAULTLIB

/MAP

/PDB:filename

/INCREMENTAL: {YESINO}

/pDB:filename

/OUT:jilename

/FORCE

NERBOSE

/NOLOGO

Chapter 26 LINK Reference

Table 26.2 Developer Studio LINK Options (continued)

Developer Studio

Debug Category

Mapfile Name

Generate Mapfile

Generate Debug Info

Microsoft Format

COFFFormat

Both Formats

Input Category

ObjectlLibrary Modules

Ignore Libraries

Ignore All Default Libraries

~orce Symbol References

MS-DOS Stub File Name

Output Category

Base Address

Entry-Point Symbol

Stack Allocations

Version Information

Command-line equivalent

/MAP:filename

/MAP

/DEBUG

/DEBUGTYPE:CV

/DEBUGTYPE:COFF

/DEBUGTYPE:BOTH

filename on command line

/NODEFAUL TLIB:library

/NODEFAULTLIB

/INCLUDE: symbol

ISTUB :filename

/BASE:address

/ENTRY:function

ISTACK:reserve,commit

/VERSION:major.minor

Compiler-Controlled LINK Options
The CL compiler automatically calls LINK when you do not specify the Ic option. CL
provides some control over the linker through command-line options and arguments.
Table 26.3 summarizes the features in CL that affect linking.

Table 26.3 Compiler-Controlled LINK Options

CL command-line specification

Any filename extension other than
.C, .CXX, .CPP, or .DEF

filename.DEF

/Fnumber

/Fdfilename

/Fe filename

/Fm filename

CL action that affects LINK

Passes filename as input to LINK

Passes /DEF:filename.DEF

Passes 1ST ACK:number

Passes /PDB:filename

Passes IOUT:filename

Passes /MAP:filename

577

Visual C++ User's Guide

Table 26.3 Compiler-Controlled LINK Options (continued)

CL command-line specification

/Gy

/LD

/LDd

/link

/MD, /ML, or /MT

/MDd, /MLd, or /MTd

/nologo

/Zd

/Zi or /Z7

/Zl

CL action that affects LINK

Creates packaged functions (COMDATs); enables
function-level linking

Passes /DLL

Passes /DLL

Passes remainder of command line to LINK

Places a default library name in the .OB] file

Places a default library name in the .OB] file

Passes/NOLOGO

Passes /DEBUG /DEBUGTYPE:COFF

Passes /DEBUG /DEBUGTYPE:CV

Omits default library name from .OB] file

For more information on CL, see Chapter 20, "Setting Compiler Options," and
Chapter 25, "CL Reference."

LINK Command-Line Options
/ALIGN

Syntax
IALIGN:number

This option specifies the alignment of each section within the linear address space of
the program. The number argument is in bytes and must be a power of two. The
default is 4K. The linker issues·a warning if the alignment produces an invalid
image.

/COMMENT

578

Syntax
ICOMMENT: ["]comment["]

This option inserts a comment string into the header of an .EXE file or DLL, after the
array of section headers. The type of operating system determines whether the string
is loaded into memory. This comment string, unlike the comment specified with the
DESCRIPTION statement in a .DEF file, is not inserted into the data section.
Comments are useful for embedding copyright and version information.

Chapter 26 LINK Reference

To specify a comment that contains spaces Of tabs, enclose it in double quotation
marks ("). LINK removes the quotation marks before inserting the string. If more
than one /COMMENT option is specified, LINK concatenates the strings and places
a null byte at the end of each string.

/DEF
Syntax
/DEF:filename

This option passes a module-definition (.DEF) file to the linker. Only one .DEF file
can be specified to LINK. For details about .DEF files, see Module-Definition Files.

When a .DEF file is used in a build, no matter whether the main output file is an
.EXE file or a DLL, LINK creates an import library (.LIB) and an export file (.EXP).
These files are created regardless of whether the main output file contains exports.

Do not specify this option within Developer Studio; this option is for use only on the
command line. To specify a .DEF file, add it to the project along with other files.

/DEFAULTLIB
Syntax
/DEFAULTLIB : library

This option adds one library to the list of libraries that LINK searches when
resolving references. A library specified with /DEFAULTLIB is searched after
libraries specified on the command line and before default libraries named in .OBJ
files.

The Ignore All Default Libraries (INODEFAULTLm) option overrides
/DEFAULTLIB:library. The Ignore Libraries (INODEFAULTLIB:library) option
overrides /DEFAULTLIB:library when the same library name is specified in both.

/DLL
Syntax
/DLL

This option builds a DLL as the main output file. A DLL usually contains exports
that can be used by another program. There are three· methods for specifying exports,
listed in recommended order of use:

1. The _ declspec(dllexport) keyword in the source code

2. An /EXPORT specification in a LINK command

3. An EXPORTS statement in a .DEF file

579

Visual C++ User's Guide

A program can use more than one method.

An alternate way to build a DLL is with the LIBRARY module-definition statement.
The /BASE and /DLL options together are equivalent to the LIBRARY statement.

Do not specify this option within Developer Studio; this option is for use only on the
command line. This option is set when you select either MFC AppWizard (dll) or .
Dynamic-Link Library under Type in the New Project Workspace dialog box.

/EXETYPE
Syntax
/EXETYPE: {DEV386IDYNAMIC}

This option is used when building a virtual device driver (VxD). A VxD is linked
using the NXD option.

Specify DEV386 (the default) to create a VxD that is loaded by the operating system
when it loads the program that uses it. Specify DYNAMIC to create a dynamically
loaded VxD.

/EXPORT

580

Syntax
/EXPORT:entryname[=internalname] [,@ordinal[,NONAME]][,DATA]

With this option, you can export a function from your program so that other programs
can call the function. You can also export data. Exports are usually defined in a DLL.

The entryname is the name of the function or data item as it is to be used by the
calling program. You can optionally specify the internalname as the function known
in the defining program; by default, internalname is the same as entryname. The
ordinal specifies an index into the exports table in the range 1 through 65,535; if you
do not specify ordinal, LINK assigns one. The NONAMEkeyword exports the
function only as an ordinal, without an entryname.

The DATA keyword specifies that the exported item is a data item. The data item in
the client program must be declared using extern _declspec(dllimport).

There are tp~ee methods fer exporting a definition, listed in recommended order of
use:

1. The _ declspec(dllexport) keyword in. the source code

2. An /EXPORT specification in a LINK command

3. An EXPORTS statement in a .DEF file

All three methods can be used in the same program. When LINK builds a program
that contains exports, it also creates an import library, unless an .EXP file is used in
the build.

Chapter 26 LINK Reference

LINK uses decorated forms of identifiers. The compiler decorates an identifier when
it creates the .OBJ file. If entryname or internalname is specified to the linker in its
undecorated form (as it appears in the source code), LINK attempts to match the
name. If it cannot find a unique match, LINK issues an error message. Use the
DUMPBIN tool described in Chapter 30, "DUMPBIN Reference" to get the decorated
form of an identifier when you need to specify it to the linker. For more information
on decorated names, see Appendix A, "Decorated Names."

Note Do not specify the decorated form of C identifiers that are declared _cdecl or
_stdcall.

/FIXED
Syntax
/FIXED

This option tells the operating system to load the program only at its preferred base
address. If the preferred base address is unavailable, the operating system will not
load the file. For more information, see "Base Address" in Chapter 2l.

When /FIXED is specified, LINK does not generate a relocation section in the
program. At run time, if the operating system is unable to load the program at that
address, it issues an error message and does not load the program.

Some Win32 operating systems, especially those that coexist with MS-DOS®, must
frequently relocate a program. A program created with the /FIXED option will not
run on Win32s operating systems.

Do not use /FIXED when building device drivers for Windows NT.

/HEAP
Syntax
/HEAP:reserve[,commit]

This option sets the size of the heap in bytes.

The reserve argument specifies the total heap allocation in virtual memory. The
default heap size is 1 MB. The linker rounds up the specified value to the nearest 4
bytes.

The optional commit argument is subject to interpretation by the operating system. In
Windows NT, it specifies the amount of physical memory to allocate at a time.
Committed virtual memory causes space to be reserved in the paging file. A higher
commit value saves time when the application needs more heap space but increases
the memory requirements and possibly the startup time.

Specify the reserve and commit values in decimal or C-language notation.

581

Visual C++ User's Guide

/lMPLIB
Syntax
/IMPLIB;fiZename

This option overrides the default name for the import library that LINK creates when
it builds a program that contains exports. The default name is formed from the base
name of the main output file and the extension .LIB. A program contains exports if
one or more of the following are specified:

• The _ declspec(dlIexport) keyword in the source code

• An /EXPORT specification in a LINK command

• An EXPORTS statement in a .DEF file

LINK ignores /IMPLIB when an import library is not being created. If no exports are
specified, LINK does not create an import library. If an export file is used in the
build, LINK assumes that an import library already exists and does not create one.
For information on import libraries and export files, see Chapter 28, "LIB
Reference. "

/MACHINE
Syntax
/MACHINE: {IX86IMIPSIMIPSRIOIALPHAIPPCIM68KIMPPC}

This option specifies the target platform for the program.

Usually, you do not need to specify the /MACHINE option. LINK infers the machine
type from the .OBJ files. However, in some circumstances LINK cannot determine
the machine type and issues an error message. If such an error occurs, specify
/MACHINE.

/MERGE

i82

Syntax
/MERGE;from=to

This option combines the first section (from) '.vith the second section (to), naming the
resulting section to. If the second section does not exist, LINK renames the section
from as to.

The /MERGE option is useful for creating VxDs and overriding the compiler­
generated section names.

Chapter 26 LINK Reference

/NOENTRY
Syntax
/NOENTRY

This option is required for creating a resource-only DLL.

Use this option to prevent LINK from linking a reference to _main into the DLL.

IOPT
Syntax
IOPT: {REFINOREF}

This option controls the optimizations that LINK performs during a build.
Optimizations generally decrease the image size and increase the program speed, at a
cost of increased link time.

By default, LINK removes unreferenced packaged functions. An object contains
packaged functions (COMDATs) if it has been compiled with the IGy option. This
optimization is called transitive COMDAT elimination. To override this default and
keep unreferenced COMDATs in the program, specify IOPT:NOREF. You can use
the /INCLUDE option to override the removal of a specific symbol.

If the /DEBUG option is specified, the default for IOPT changes from REF to
NOREF, and all functions are preserved in the image. To override this default and
optimize a debugging build, specify IOPT:REF. The IOPT:REF option disables
incremental linking.

IORDER
Syntax
IORDER:@filename

This option tells LINK to optimize your program by placing certain COMDATs into
the image in a predetermined .order. LINK places the functions in the specified order
within each section in the image.

Specify the order infilename, which is a text file that lists the COMDATs in the order
you want to link them. Each line infilename contains the name of one COMDAT. An
object contains COMDATs if it has been compiled with the IGy option. Function
names are case sensitive.

LINK uses decorated forms of identifiers. The compiler decorates an identifier when
it creates the .OBJ file. If the name of the COMDAT is specified to the linker in its
undecorated form (as it appears in the source code), LINK attempts to match the

583

Visual C++ User's Guide

name. If it cannot find a unique match, LINK issues an error message. Use the
DUMPBIN tool described in Chapter 30, "DUMPBIN Reference," to get the
decorated form of an identifier when you need to specify it to the linker. For more
information on decorated names, see Appendix A, "Decorated Names."

Note Do not specify the decorated form of C identifiers that are declared _ cdecl or
_stdcall.

If more than one IORDER specification is used, the last one specified takes effect.

Ordering allows you to optimize your program's paging behavior through swap
tuning by grouping a function with the functions itcalls. You can also group
frequently called functions together. These techniques increase the probability that a
called function is in memory when it is needed and will not have to be paged from
disk.

The IORDER option disables incremental linking.

/RELEASE
Syntax
/RELEASE

This option sets the checksum in the header of an .EXE file.

The operating system requires the checksum for certain files, such as device drivers.
It is recommended that you set the checksum for release versions of your programs to
ensure compatibility with future operating systems.

The /RELEASE option is set by default when the ISUBSYSTEM:NATIVE option is
specified.

ISECTION

)84

Syntax
IS ECTION :name ,attributes

This option changes the attributes of a section, overriding the attributes set when the
.OBJ file for the section was compiled.

Specify a colon (:) and a section name. The name is case sensitive.

Specify one or more attributes for the section. The attribute characters (E, R, W, and
S) are not case sensitive. You must specify all attributes that you want the section to
have; an omitted attribute character causes that attribute bit to be turned off. The
meanings of the attribute characters are shown below.

Chapter 26 LINK Reference

Character

E

R

W

S

Attribute

Execute

Read

Write

Shared

Meaning

Allows code to be executed

Allows read operations on data

Allows write operations on data

Shares the section among all processes that load the
image

Note that Win32s operating systems load all DLL data sections as "shared" even if
that attribute is not set.

A section that does not have E, R, or W set is probably invalid.

/SUBSYSTEM
Syntax
/SUBSYSTEM: {CONSOLEIWlNDOWSINATIVEIPOSIX} [,major[.minor]]

This option tells the operating system how to run the .EXE file. The subsystem is
specified as follows:

• The CONSOLE subsystem is for a Win32 character-mode application. Console
applications are given a console by the operating system. If main or wmain is
defined, CONSOLE is the default.

• The WINDOWS subsystem applies to an application that does not require a
console, probably because it creates its own windows for interaction with the user.
Win32s operating systems can oniy run WINDOWS applications. If WinMain or
wWinMain is defined, WINDOWS is the default.

• The NATIVE subsystem applies device drivers for Windows NT.

• The POSIX subsystem creates an application that runs with the POSIX subsystem
in Windows NT.

The optional major and minor version numbers specify the minimum required
version of the subsystem. The arguments are decimal numbers in the range 0 through
65,535. The default is version 4.00 for CONSOLE, WINDOWS, and NATIVE; and
version 19.90 for POSIX.

The choice of subsystem affects the default starting address for the program. For
more information, see the "Entry-Point Symbol" (/ENTRYifunction) option in
Chapter 21.

585

Visual c++ User's Guide .

NERBOSE:LIB
Syntax
NERBOSE:LIB

Adding :LIB to the NERBOSE option displays only progress messages indicating the
libraries searched.

For more information on the NERBOSE option, see "Print Progress Messages" in
Chapter 21.

NXD
Syntax
NXD

This option creates a virtual device driver (VxD). When this option is specified, the
default filename extension changes to .VXD. For details on VxDs, see the Microsoft
Windows NT Device Driver Kit.

A . VXD file is not in Common Object File Format, and it cannot be used with
DUMPBIN or EDITBIN. It does not contain debugging information. However, you
can create a map file when you link a . VXD file.

A . VXD file cannot be incrementally linked.

/WARN
Syntax
IWARN[:level]

With this option, you can determine the output of LINK warning messages. The level
parameter takes the value 0, 1,2, or 3. Currently, this option controls a limited subset
of LINK warning messages.

Note Setting level to 0 does not disable warning messages.

Module-Definition (.DEF) Files

iS6

" /

A module-definition (.DEF) file is a text file that contains statements for defining an
.EXE file or DLL. The following sections describe the statements in a .DEF file.

Because LINK provides equivalent command-line options for most module-definition
statements, a typical program for Win32 does not usually require a .DEF file. The
descriptions of the module-definition statements give the command-line equivalent
for each statement.

Chapter 26 LINK Reference

Rules for Module-Definition Statements
The following syntax rules apply to all statements in a .DEF file. Other rules that
apply to specific statements are described with each statement.

• Statements and attribute keywords are not case sensitive. User-specified identifiers
are case sensitive.

• Long filenames containing spaces or semicolons (;) must be enclosed in quotation
marks (").

• Use one or more spaces, tabs, or newline characters to separate a statement
keyword from its arguments and to separate statements from each other. A colon
(:) or equal sign (=) that designates an argument is surrounded by zero or more
spaces, tabs, or newline characters.

• A NAME or LIBRARY statement, if used, must precede all other statements.

• Most statements appear at most once in the .DEF file and accept one specification
of arguments. The specification follows the statement keyword on the same or
subsequent line(s). If the statement is repeated with different arguments later in
the file, the later statement overrides the earlier one.

• The SECTIONS, EXPORTS, and IMPORTS statements can appear more than
once in the .DEF file. Each statement can take multiple specifications, which must
be separated by one or more spaces, tabs, or newline characters. The statement
keyword must appear once before the first specification and can be repeated before
each additional specification.

• Many statements have an equivalent LINK command-line option. See the
description of the corresponding LINK option for additional details.

• Comments in the .DEF file are designated by a semicolon (;) at the beginning of
each comment line. A comment cannot share a line with a statement, but it can
appear between specifications in a multiline statement. (SECTIONS and

. EXPORTS are multiline statements.)

• Numeric arguments are specified in decimal or C-Ianguage notation.

• If a string argument matches a reserved word, it must be enclosed in double
quotation marks (").

NAME
Syntax
NAME [application] [BASE=address]

This statement specifies a name for the main output file. An equivalent way to specify
an output filename is with the lOUT option, and an equivalent way to set the base
address is with the /BASE option. If both are specified, lOUT overrides NAME. See
the "Base Address (/BASE),' and "Output File Name (jOUT)"options in Chapter 21,
for details about output filenames and base addresses.

587

Visual C++ User's Guide

)88

LIBRARY
Syntax
LIBRARY [library][BASE=address]

This statement tells LINK to create a DLL. At the same time~ LINK creates an import
library~ unless an .EXP file is used in the build.

The library argument specifies the internal name of the DLL. (Use the Output File
Name (lOUT) option to specify the DLL~s output name.)

The BASE=address argument sets the base address that the operating system uses to
load the DLL. This argument overrides the default DLL location of Ox 1 0000000. See
the description of the "Base Address (/BASE)'~ option in Chapter 21 for details about
base addresses.

An equivalent way to specify a DLL build is with the /DLL option~ and an equivalent
way to set the base address is with the /BASE option.

DESCRIPTION
Syntax
DESCRIPTION "text"

This statement writes a string into an .rdata section. Enclose the specified text in
single or double quotation marks (' or "). To use a literal quotation mark (either
single or double) in the string~ enclose the string with the other type of mark.

This feature differs from the comment specified with the /COMMENT option.

STACKSIZE
Syntax
STACKSIZE reserve[,commit]

This statement sets the size of the stack in bytes. An equivalent way to set the stack is
with the /STACK option. See the "Stack Allocations" option in Chapter 21 for details
about the reserve and commit arguments.

SECTIONS
~vnt~y -, ... _ ..
SECTIONS definitions

This statement sets attributes for one or more sections in the image file. It can be used
to override the default attributes for each type of section.

SECTIONS marks the beginning of a list of section definitions. Each definition must
be on a separate line. The SECTIONS keyword can be on the same line as the first
definition or on a preceding line. The .DEF file can contain one or more SECTIONS
statements. The SEGMENTS keyword is supported as a synonym for SECTIONS.

Chapter 26 LINK Reference

The syntax for a section definition is:

section [CLASS 'classname'] attributes

The section name is case sensitive. The CLASS keyword is supported for
compatibility, but is ignored. The attributes are one or more of the following:
EXECUTE, READ, SHARED, and WRITE.

An equivalent way to specify section attributes is with the /SECTION option.

EXPORTS
Syntax
EXPORTS definitions

This statement makes one or more definitions available as exports to other programs.

EXPORTS marks the beginning of a list of export definitions. Each definition must
be on a separate line. The EXPORTS keyword can be on the same line as the first
definition or on a preceding line. The .DEF file can contain one or more EXPORTS
statements.

The syntax for an export definition is:

entryname[=internalname] [@ordinal[NONAME]] [DATA] [PRIVATE]

For information on the entryname, internalname, ordinal, NONAME, and DATA
arguments, see the /EXPORT option.

The optional keyword PRIVATE tells IMPLIB to ignore the definition, PRIVATE
prevents entryname from being placed in the import library. The keyword has no
effect on LINK.

There are three methods for exporting a definition, listed in recommended order
of use:

1. The _ declspec(dllexport) keyword in the source code

2. An /EXPORT specification in a LINK command

3. An EXPORTS statement in a .DEF file

All three methods can be used in the same program. When LINK builds a program
that contains exports, it also creates an import library, unless an .EXP file is used in
the build.

VERSION
Syntax
VERSION major[.minor]

This statement tells LINK to put a number in the header of the .EXE file or DLL.
The major and minor arguments are decimal numbers in the range 0 through 65,535.
The default is version 0.0.

589

Visual C++ User's Guide

An equivalent way to specify a version number is with the "Version Information
(NERSION)" option described in Chapter 21.

Reserved Words

)90

The following words are reserved by the linker. These names can be used as
arguments in module-definition statements only if the name is enclosed in double
quotation marks (").

APPLOADER INITINSTANCE PRELOAD

BASE IOPL PRIVATE

CODE LIBRARY PROTMODE

CONFORMING LOADONCALL PURE

DATA LONGNAMES READONLY

DESCRIPTION MOVABLE READWRITE

DEV386 MOVEABLE REALMODE

DISCARDABLE MULTIPLE RESIDENT

DYNAMIC NAME RESIDENTNAME

EXECUTE-ONLY NEWFILES SECTIONS

EXECUTEONLY NODATA SEGMENTS

. EXECUTEREAD NOIOPL SHARED

EXETYPE NONAME SINGLE

EXPORTS NONCONFORMING STACKSIZE

FIXED NONDISCARDABLE STUB

FUNCTIONS NONE VERSION

HEAPSIZE NONSHARED WINDOWAPI

IMPORTS NOTWINDOWCOMPAT WINDOWCOMPAT

IMPURE OBJECTS WINDOWS

INCLUDE OLD

CHAPTER 27

Profiler Reference

This section provides reference information for using the components of the profiler
from the command line and analyzing profiler statistics. The following topics are
covered:

• Profiler batch processing

• Syntax and command-line options for PREP, PROFILE, and PLIST

• Exporting data from the profiler

Figure 27.1 illustrates how the profiler components interact.

For information on running the profiler in Microsoft Developer Studio, see
Chapter 18, "Profiling Code."

Pro filer Batch Processing
Profiling requires three separate programs: PREP, PROFILE, and PLIST. If you
choose a standard option (other than Custom) from the Profile dialog box, Microsoft
Developer Studio executes these programs for you automatically, passing arguments
to the PREP program.

If you want maximum profiling flexibility, including the ability to format your output
and to specify function and line-count profiling, you must write your own batch files
that invoke PREP, PROFILE, and PLIST. You can run these batch files from either
the Profile dialog box or from the command prompt. If you run the batch file from the
dialog box, the PLIST output will, by default, be routed to the Developer Studio
output window. Command-line batch output can also be routed to a file.

591

Visual C++ User's Guide

592

Figure 27.1 illustrates the profiler batch processing flow.

Figure 27.1 Profiler Batch Processing Flow

r········-···-· .. ····(~::) .. ········-·········i

Notice that the PREP program is called twice-before and after the actual profiling.
The command-line arguments govern PREP's behavior.

The .PBI, .PBO, and .PBT files are intermediate files that are used to transfer
information between profiling steps. The broken lines indicate connections that
depend on the PREP (Phase I) command-line options.

A typical profiler batch file might look like this:

PREP 10M 1FT IEXC nafxcwd.lib %1
if errarlevel 1 gat a done
PROFILE %1 %2 %3 %4 %5 %6 %7 %8 %9
if errarlevel == 1 gate done
PREP 1M %1
if errarlevel == 1 gate done
PLIST /SC %1 >%1.1st
:dane

Note When you run a profiler batch file from the Profile dialog box using the Custom option,
the PLIST standard output is routed to the Profile tab in the Output window. In the preceding
batch file, the PLIST output is redirected to a file, as it would usually be in a batch file run from
the command line.

The command-line parameters for PREP, PROFILE, and PLIST are described in
"Profiler Command-Line Options" on page 594. When the batch file is run using the
Custom option in the Profile dialog box, Developer Studio substitutes the project's
program name for the %1 parameter. You can specify your program's command-line
arguments on the Debug tab in the Project Settings dialog box.

Chapter 27 Profiler Reference

If the preceding batch file was named FTIME.BAT, and you wanted to profile the
program TEST from the Profile dialog box, you would select the Custom option, and
then specify FflME.BAT in the Custom Settings box. If you wanted to profile the
TEST program from the command prompt, you would type:

FTIME TEST.EXE

Note If you are running a profiler batch file from Developer Studio, you can use Developer
Studio to edit your batch file. Remember to save your batch files after editing, because
Developer Studio does not save them automatically.

Pro filer Batch Response Files
Similar to the linker, all three profiler programs accept .response files. As a result, the
command line:

PREP 10M 1FT IEXC nafxcwd.lib %1

can be replaced by the line:

PREP @opts.rsp %1

if you create a file OPTS.RSP that contains this text:

10M 1FT IEXC nafxcwd.lib # this is a comment

The number sign (#) in a response file defines a comment that runs through the end
of the line.

Standard Batch Files
Six standard batch files are included with the profiler:

Filename

FTIME.BAT

FCOVNT.BAT

FCOVER.BAT

LCOVNT.BAT

LCOVER.BAT

Description

Function timing

Function counting

Function coverage

Line counting

Line coverage

These batch files contain only the minimum parameters for PREP Phase I. Use them
as prototypes for your own batch files, which should contain selection parameters. If
you ran an unmodified LCOVER batch file for a Microsoft Foundation Class Library
application, for example, the output file could be thousands of lines long.

593

Visual c++ User's Guide

Profiler Command-Line Options
The next three sections describe the command-line options for the three components
of the profiler:

• PREP

• PROFILE

• PLIST

PREP

594

The PREP program runs twice during a normal profiling operation. In Phase I, it
reads an executable (.EXE) file and then creates .PBI and .PBT files. In Phase II, it
reads .PBT and .PBO files and then writes a new .PBT file for PLIST.

Syntax
PREP [options] [programnamel] [programname2 ... programname8]

PREP reads the command line from left to right, so the rightmost options override
contradictory options to the left. None of the options are case sensitive. You must
prefix options with a forward slash (/) or a dash (-), and options must be separated by
spaces.

Parameter

options

programnamel

programname2 ...
programname8

Description

See "Options" below.

Filename of primary program to profile (.DBG, .EXE, or
.DLL). PROFILE adds the .EXE extension if no extension is
given. This parameter must be specified for PREP Phase I, but
not for Phase II.

Additional programs to profile. These parameters can be
specified for PREP Phase I only.

An 'X' in the following Options table indicates that a PREP command-line option
applies to a particular phase.

Options
Option

/EXC

/EXCALL

/FC

1FT

/FV

x

x

x
X

X

II Description

Excludes a specified module from the profile (see
"Remarks" on page 595).

Excludes all modules from the profile (see "Remarks" on
page 595).

Selects function count profiling.

Selects function timing profiling. This option causes the
profiler to generate count information as well.

Selects function coverage profiling.

Chapter 27 Profiler Reference

Option

/INC X

/H[ELP] X

/10 filename

/IT filename

/LC X

/LV X

fMfilename

/NOLOGO X

101 filename X

10M X

lOT filename X

ISF function x

/? X

Environment Variable

II

X

X

X

X

X

X

X

Description

Includes in profile (see "Remarks" below).

Provides a short summary of PREP options.

Merges an existing .PBO file. Up to eight .PBO files can
be merged at a time. The default extension is .PBO.

Merges an existing .PBT file. Up to eight .PBT files can
be merged at a time. You cannot merge .PBT files from
different profiling methods. The default extension is .PBT.

Selects line count profiling.

Selects line coverage profiling.

Substitutes for the /IT, /10, and lOT options.

Suppresses the PREP copyright message.

Creates a .PBI file. The default extension is .PBI. If 101 is
not specified, the output .PBI file is programnamel.PBI.

Creates a self-profiling file with an _XE or _LL extension
for function timing, function counting, and function
coverage. Without this option, the executable code is
stored in the .PBI file. This option speeds up profiling and
is used by Developer Studio.

Specifies the output .PBT file. The default extension is
.PBT. If lOT is not specified, the output .PBT file is
programname1.PBT.

Starts profiling with/unction. The function name must
correspond to an entry in the .MAP file.

Provides a short summary of PREP options.

PREP Specifies default command-line options.

If a value for the PREP environment variable is not specified, the default options for
PREP are:

1FT 101 filename lOT filename

where filename is set to the programnamel parameter value.

Remarks
The /INC and /EXC options specify individual library (.LIB), object (.OBJ), and
application source (.C, .CPP, or .CXX) files. For line counting and line coverage, you
can specify line numbers with source files as:

IEXCALL IINC test.cpp(3-41,50-67)

This example includes only lines 3 through 41 and lines 50 through 67 from the
source file TEST.CPP. Note the absence of spaces in the source specification.

To specify all source lines in a particular module, specify the .OBJ file as:

595

Visual c++ User's Guide

IEXCALL IINC test.obj

or by using the source filename with zero line numbers like this:

IEXCALL IINC test.cpp(0-0)

The following statement profiles from line 50 to the end of the file:

IEXCALL IINC test.cpp(50-0)

PROFILE

596

PROFILE profiles an application and creates a .PBO file of the results. Use PROFILE
after creating a .PBI file with PREP.

Syntax
PROFILE [options] programname [programargs]

PROFILE reads the command line from left to right, so the rightmost options
override contradictory options to the left. None of the options are case sensitive. You
must prefix options with a forward slash (I) or a dash (-), and options must be
separated by spaces.

If you do not specify a.PBO filename on the command line, PROFILE uses the base
name of the .PBI file with a .PBO extension. If you do not specify a .PBI or a .PBO
file, PROFILEuses the base name of program name with the .PBI and .PBO
extensions.

Parameter

options

programname

programargs

Options
Option

fA

IE filename

/H[ELP]

/I filename

/NOLOGO

Description

See "Options" below.

Filename of the program to profile. PROFILE adds the .EXE
extension if no extension is given. See "Remarks" on page 597.

Optional command-line arguments for programname. See
"Remarks" on page 597.

Description

Appends any redirected error messages to an existing file. If the IE
command-line option is used without the fA option, the file is
overwritten. This option is valid only with the IE option.

Sends profiler error messages to filename.

Provides a short summary of PROFILE options.

Specifies a .PBI file to be read. This file is created by PREP.

Suppresses the PROFILE copyright message.

Chapter 27 Profiler Reference

Option

10 filename

IX
/?

Remarks

Description

Specifies a .PBO file to be created. Use the PREP utility to merge
with other .PBO files, or to create a .PBT file for use with PLIST.

Returns the exit code of the program being profiled.

Provides a short summary of PROFILE options.

You must specify the filename of the program to profile on the PROFILE command
line. PROFILE assumes the .EXE extension if no extension is given.

You can follow the program name with command-line arguments; these arguments
are passed to the profiled program unchanged.

If you are profiling code in a dynamic-link library (.DLL) file, give the name of an
.EXE file that calls it. For example, if you want to profile SAMPLE.DLL~ which is
called by CALLER.EXE, you can type:

PROFILE CALLER.EXE

assuming that CALLER.PBI has SAM P L E • 0 L L selected for profiling. For more
information, see "Profiling Dynamic-Link Libraries" in Chapter 12 of Programming
Techniques.

Environment Variable
PROFILE Specifies default command-line options.

If the PROFILE environment variable is not specified, there are no other default
options.

PLIST
PLIST converts results from a .PBT file into a formatted text file.

Syntax
PLIST [options] inputfile

PLIST reads the command line from left to right, so the rightmost options override
contradictory options to the left. None of the options are case sensitive. You must
prefix options with a forward slash (I) or a dash (-), and options must be separated by
spaces.

PLIST results are sent to STDOUT by default. Use the greater-than (» redirection
character to send these results to a file or device.

PLIST must be run from the directory in which the profiled program was compiled.

Parameter

options

inputfile

Description

See Options below.

The .PBT file to be converted by PLIST.

597

Visual C++ User's Guide

598

Options
Option

/C count

ID directory

IF
/I-I[ELP]

/NOLOGO

/PL length

/PWwidth

/SC

/SL

/SLS

/SN

/SNS

/ST

rr

/?

Description

Specifies the minimum hit count to appear in the listing.

Specifies an additional directory for PLIST to search for source files.
Use multiple ID command-line options to specify multiple directories.
Use this option when PLIST cannot find a source file.

Lists full paths in a tab-delimited file.

Provides a short summary of PLIST options.

Suppresses the PLIST copyright message.

Sets page length (in lines) of output. The length must be 0 or in the
range 15 through 255. A length of 0 suppresses page breaks. The
default length is O.

Sets page width (in characters) of output. The width must be in the
range 1 through 511. The default width is 511.

Sorts output by counts, highest first.

Sorts output in the order that the lines appear in the file. This is the
default setting. This option is available only for line profiling.

Forces line count profile output to be printed in coverage format.

Sorts output in alphabetical order by function name. This option is
available only for function profiling.

Displays function timing or function counting information in function
coverage format. Sorts output in alphabetical order by function name.

Sorts output by time, highest first.

Tab-separated output. Creates a tab-delimited database from the .PBT
file for export to other applications. All other options, including sort
specifications, are ignored when using this option. For more
information, see "Exporting Data from the Profiler" on page 599.

Provides a summary of PLIST options.

Environment Variable
PLIST Specifies default command-line options.

If the PLIST environment variable is not specified, the default options for PLIST
depend on the profile type, as shown in the following table.

Profile type Sort option Hit count option

Function timing /ST /C 1

Function counting /SC /C 1

Function coverage /SN JCO

Line counting /SL /C 0

Line coverage /SLS /C 0

Chapter 27 Pro filer Reference

Analyzing Data from the Profiler
In addition to formatted reports, the PLIST report-generation utility can produce a
tab-delimited file of profiler output. The following sections describe the data format
of the file, steps for analyzing statistics in the file, and a Microsoft Excel macro .that
uses this file format.

Exporting Data from the Pro filer
The PLIST rr command-line option causes PLIST to dump the contents of a .PBT
file into a tab-delimited format suitable for import into a spreadsheet or database.
This format can also be used by user-written programs.

For example, to create a tab-delimited file called MYPROG.TXT from
MYPROG.PBT, type:

PLIST IT MYPROG > MYPROG.TXT

Note The ASCII tab-delimited format was designed to be read by other programs; it is not
intended for general reporting.

Tab-Delimited File Format
Every piece of data stored by the profiler is available through the tab-delimited file.
Because not all aspects of the database are recorded by every profiling method,
unused fields within a record may be zero. For example, the total time of the program
will be zero if the program is profiled for counts only. Also, all included functions are
listed for function counting and timing profiles, even if those functions were not
executed.

The tab-delimited format is arranged with one record per line and two to eight fields
per record. Figure 27.2 shows how a database looks when it is loaded into Microsoft
Excel. This database was produced using the PLIST rr command-line option.

Figure 27.2 Tab-Delimited File in Microsoft Excel

Local information .{
records !l---':;-+-----=t~~::+-~~------:::::t__-__t--__j_--

~T--~~~~~~~~j_-_!--T_--

Global information {1E~J~~~~i~3~~E~jii
records t

[Data fields

599

Visual C++ User's Guide

600

The first item in each record is a format tag number. These tags range from 0 through
7 and indicate the kind of data given in the other fields of the record. The fields in
each record are described in the following sections:

• Global information records

• Local information records

Tab-delimited files are created with global information records first, organized in
numerical order by format tag. The local information records, containing information
about specific lines or functions, are created last. Local information records are
organized by line number.

If the .PBT file contains information from more than one .EXE or .DLL file, the
global information records will cover them all. Local information records include the
Exe field, which specifies the name of the executable file that each record pertains to.

Global Information Records
The global information records contain information about the entire .EXE file. The
format tag numbers for global information records are 0 through 5. The record
formats, which are illustrated in the following sections, are as follows:

Profiler Banner
o

Field

o
Version

Banner

Profiling Method

Field

Method

Description

Version Banner

Explanation

Format tag number

PLIST version number

PLIST banner

Method Description

Explanation

Format tag number

Numeric value that indicates the profiling type (see Table 27.1)

ASCII description of the profiling type given by the Method field

Chapter 27 Profiler Reference

The profiling types are listed in Table 27.1.

Table 27.1 Profiling Types

Method.

321

324

521

522

524

Field

2

Total Time

Outside Time

Call Depth

Hit Counts
3

Field

3

Total Hits

Lines/Funcs

Lines/Funcs Hit

Description

Profile: Line counting, sorted by line

Profile: Line coverage, sorted by line

Profile: Function counting, sorted by function name

Profile: Function timing, sorted by function name

Profile: Function coverage, sorted by function name

Outside Time Call Depth

Explanation

Format tag number.

Total amount of time used by the program being profiled. This
field is zero for counting and coverage profiles.

Amount of time spent before the first profiled function (with
function profiling) or line (with line profiling) was executed. This
field is zero for counting and coverage profiles.

Maximum number of nested functions found while profiling. Only
profiled functions are counted. This field is zero for line profiling.

Total Hits Lines/Funcs Lines/Funcs Hit

Explanation

Format tag number

Total number of times the profiler detected a profiled line or
function being executed

Total number of lines or functions marked for profiling

Number of marked lines or functions executed at least once while
profiling

601

Visual C++ User's Guide

602

Date/Command Line
4 I Date Command Line

Field

4

Date

Command Line

Explanation

Format tag number

Date and time that the profile was run (ASCII format)

PLIST command-line arguments

Starting Function Name
5 I Starting Function Name

Field

5

Starting Function
Name

Explanation

Format tag number

Decorated name of the starting function identified by the PREP
/SF parameter

Local Information Records
The local information records contain information about specific functions or lines
that were profiled. The format tag numbers for local information records are 6 and 7.
A file can have only one type of local information record. The file formats, which are
illustrated in the following sections, are as follows:

Function Information
6 I Exe I Source Count Time Child Func

Field

6

Exe

Source

Count

Time

Child

Func

Explanation

Format tag number.

ASCII name of the executable file that contains the function.

ASCII name of the object module (including the .OBI extension)
that contains the function.

Number of times the function has been executed.

Amount of time spent executing the function in milliseconds. This
field is zero for counting or coverage profiles.

Amount of time spent executing the function and any child
functions it calls. This field is zero for counting or coverage
profiles. .

ASCII name of the function.

Chapter 27 Profiler Reference

Line Information
7 I Exe Source Line Count

Field Explanation

7

Exe

Format tag number.

ASCII name of the executable file that contains the first line of
this function.

Source ASCII name of the source file that contains the first line of this
function.

Line

Count

Line number.

Number of times the line has been executed. For coverage profiles,
this field is 1 if the line has been executed and 0 otherwise.

Analyzing Pro filer Statistics
The profiler tab-delimited file format can contain a considerable amount of
information. You can process this data in a spreadsheet, database, or user-written
program.

Below are some steps for analyzing profiler statistics.

1. Collect the cumulative data from the global information records.

These lines begin with the numbers 0 through 5. Each of these lines appears only
once, and always in ascending order.

2. Determine the type of database by finding the value of the Method field. This field
is the second field of the first record in the tab-delimited file.

If the value in the Method field is greater than 400, the file comes from function
profiling. If it is less than 400, the file comes from line profiling. The type of
information in the local information records given later is directly related to this
value.

In anyone file, the local information records are always of the same type, either
line information or function information.

3. ·Process data from the local information records.

For example, to calculate the percentage of hits on a given function, divide the
value of the Count field in the sixth record in the file by the total number of hits
from the Total Hits field in the third record.

4. Send the results to a file or STDOUT.

Note Remember that there can be only one type of local information record (either line or
function information) in a file.

603

Visual c++ User's Guide

Processing Profiler Output with Microsoft Excel

604

PROFILER.XLM is a sample Microsoft Excel version 4.0 macro that processes the
tab-delimited file and graphs the results. The macro is in the \MSDEV\BIN directory.

Note The profiler sample code is installed when you set up Developer Studio. If the Microsoft
Excel macro and other sample code are not on your disk, run Setup again to reinstall the
Developer Studio sample code.

The PROFILER.XLM macro" is composed of four submacros. The first two macros, in
columns A and B, are helper macros that copy and preprocess the data for use by the
second pair of macros, in columns C and D. The macro in column C, labeled
CreateColumnChart, creates a graph showing the number of times that each function
or line was executed. The macro in column D is CreateColumnTimeChart; it works
like CreateColumnChart, but operates on timing information.

Using the PROFILER.XLM Macro
~ To run the PROFILER.XLM macro from within Microsoft Excel

1 From the File menu, choose Open to open PROFILER.XLM.

2 From the File menu, choose Open to open the tab-delimited file that was created
byPLIST.

3 If you have several open worksheets, activate the one containing the profiler data
by selecting it with the mouse or by choosing its title from the Window menu.

4 Run the macro:

• Press CTRL+C for a chart based on hit counts.

• Press CTRL+ T for a chart based on timing.

You cannot get a timing chart if the file contains only counting or coverage
information.

The macro typically takes only a few seconds to run. When it is complete, Microsoft
Excel displays a three-dimensional bar chart based on the results in the file (see
Figure 27.3). You can change the chart type by using the Gallery menu.

Figure 27.3 Graph Created with CreateColumnChart Macro

_memset

JSBadWritePtr@8r:~=~=~~
JSBadReadPtr@8~=~~~~~

_AfxlsValidAddress@12 ~
SafeDelete(char "')

CStringList::GetNext(void" &)

CStringList::GetAt (void "')t:=~~
CString::-CString(void)

CString::operator'char const .. (VOid)-liiiiiiii-... ..

CSlring::lnit(void)
CString::CString(void)

CSortSlringLint:CompareAndSwap(void" &)-F===:::!!:*=*==;i::===;t:===,z!:=~====;<!!:=:===i'=======?'

10000 20000 30000 40000 50000 60000 70000 80000 90000

Chapter 27 Profiler Reference

Note This macro copies the data in the file to another worksheet before processing it. The
original tab-delimited file is left untouched.

Changing the PROFILER.XLM Selection Criteria
The standard PROFILER.XLM macro displays hit counts greater than zero (for
CTRL+C) and times greater than .01 millisecond (for CTRL+T). If you need to narrow
these selections without analyzing the macro, edit the formulas in cells CI0 and DI0.

605

CHAPTER 28

LIB Reference

• The Microsoft® 32-Bit Library Manager (LIB.EXE) creates and manages a library
of Common Object File Format (COFF) object files. LIB can also be used to create
export files and import libraries to reference exported definitions.

Overview of LIB
LIB creates standard libraries,. import libraries, and export files that you can use with
LINK when building a 32-bit program. (LINK is described in Chapter 21, "Setting
Linker Options," and Chapter 26, "LINK Reference.") LIB runs from a command
prompt.

You can use LIB in the following modes:

• Building or modifying a COFF library (described on page 610)

• Extracting a member object to a file (described on page 611)

• Creating an export file and an import library (described on page 611)

These modes are mutually exclusive; you can use LIB in only one mode at a time.

LIB Input Files
The input files expected by LIB depend on the mode in which it is being used, as
shown in the following table.

Mode

Default (building or modifying a library)

Extracting a member with /EXTRACT

Building an export file and import library
with/DEF

Input

COFF object (.OBJ) files, COFF libraries
(.LIB), 32-bit Object Model Format (OMF)
object (.OBJ) files

COFF library (.LIB)

Module-definition (.DEF) file, COFF object
(.OBJ) files, COFF libraries (.LIB), 32-bit
OMF object (.OBJ) files

607

Visual C++ User's Guide

Note OMF libraries created by the 16-bit version of LIB cannot be used as input to the 32-bit
version of LIB.

LIB Output Files
The output files produced by LIB depend on the mode in which it is being used, as
shown in the following table.

Mode Output

Default (building or modifying a library) COFF library (.LIB)

Extracting a member with /EXTRACT Object (.OBI) file

Building an export file and import library Import library (.LIB) and export (.EXP) file
with/DEF

Other LIB Output
In the default mode, you can use the !LIST option to display information about the
resulting library. You can redirect this output to a file.

LIB displays a copyright and version message and echoes command files unless the
/NOLOGO option is used.

When you type 1 i b with no other input, LIB displays a usage statement that
summarizes its options.

Error and warning messages issued by LIB have the form LNKnnnn. The LINK,
DUMPBIN, and EDITBIN tools also use this range of errors. Documentation on
these errors is available in Beyond Errors Microsoft Developer Studio Books Online
(accessed from the InfoView pane of the Project Workspace window).

Structure of a Library
A library contains COFF objects. Objects in a library contain functions and data that
can be referenced externally by other objects in a program. An object in a library is
sometimes referred to as a library member.

You can get additional information about the contents of a library by running the
DUMPBIN tool with the /LINKERMEMBER option. For more information about
this option, see Chapter 30, "DUMPBIN Reference."

Running LIB

608·

Various command-line options can be used to control LIB.

LIB Command Line
To run LIB, type the command 1 i b followed by the options and filenames for the
task you are using LIB to perform. LIB also accepts command-line input in command

Chapter 28 LIB Reference

files, which are described in the following section. LIB does not use an environment
variable.

Note If you are accustomed to the LlNK32.EXE and LlB32.EXE tools provided with the
Microsoft Win32 Software Development Kit for Windows NT, you may have been using either
the command 1 in k3 2 -1 i b or the command 1 i b3 2 for managing libraries and creating
import libraries. Be sure to change your makefiles and batch files to use the 1 i bcommand
instead.

LIB Command Files
You can pass command-line arguments to LIB in a command file by using the
following syntax:

LIB @commandfile

The file commandfile is a text file. No space or tab is allowed between the at sign (@)
and the filename. There is no default extension; you must specify the full filename,
including any extension. Wildcards cannot be used. You can specify an absolute or
relative path with the filename.

In the command file, arguments can be separated by spaces or tabs, as they can on the
command line; they can also be separated by newline characters. Use a semicolon (;)
to mark a comment. LIB ignores all text from the semicolon to the end of the line.

You can specify either all or part of the command line in a command file, and you
can use more than one command file in a LIB command. LIB accepts the command­
file input as if it were specified in that location on the command line. Command files
cannot be nested. LIB echoes the contents of command files unless the /NOLO GO
option is used.

USing LIB Options
An option consists of an option specifier, which is either a dash (-) or a forward
slash (/), followed by the name of the option. Option names cannot be abbreviated.
Some options take an argument, specified.after a colon (:). No spaces or tabs are
allowed within an option specification. Use one or more spaces or tabs to separate
option specifications on the command line. Option names and their keyword or
filename arguments are not case sensitive, but identifiers used as arguments are case
sensitive. LIB processes options in the order specified on the command line and in
command files. If an option is repeated with different arguments, the last one to be
processed takes precedence.

The following options apply to all modes of LIB:

/MACHINE: {IX86IMIPSIM68K} Specifies the target platform for the program.
Usually, you do not need to specify /MACHINE. LIB infers the machine type from
the .OBJ files. However, in some circumstances, LIB cannot determine the
machine type and issues an error message. If such an error occurs, specify
/MACHINE. In /EXTRACT mode, this option is for verification only.

609

Visual c++ User's Guide

/NOLOGO Suppresses display of the LIB copyright message and version number
and prevents echoing of command files.

NERBOSE Displays details about the progress of the session. The information is
sent to standard output and can be redirected to a file.

Other options apply only to specific modes of LIB. These options are discussed in the
sections describing each mode.

Managing a Library

610

The default mode for LIB is to build or modify a library of COFF objects. LIB runs in
this mode when you do not specify /EXTRACT (to copy an object to a file) or JDEF
(to build an import library).

To build a library from objects and/or libraries, use the following syntax:

LIB [options ...] files ...

This command creates a library from one or more inputfiles. Thefiles can be COFF
object files, 32-bit OMF object files, or existing COFF libraries. LIB creates one
library that contains all objects in the specified files. If an input file is a 32-bit OMF
object file, LIB converts it to COFF before building the library. LIB cannot accept a
32-bit OMF object that is in a library created by the 16-bit version of LIB. You must
first use the 16-bit LIB to extract the object; then you can use the extracted object file
as input to the 32-bit LIB.

By default, LIB names the output file using the base name of the first object or library
file and the extension .LIB.1f a file already exists with the same name, the output file
replaces the existing file. To preserve an existing library, use the lOUT option to
specify a name for the output file.

The following options apply to building and modifying a library:

/LIST Displays information about the output library to standard output. The output
can be redirected to a file. You can use /LIST to determine the contents of an
existing library without modifying it.

/OUT:filename Overrides the default output filename. By default, the output library
has the base name of the first library or object file on the command line and the
extension .LIB.

/REMOVE:object Omits the specified object from the output library. LIB creates an
output library by first combining all objects (whether in object files or libraries),
and then deleting any objects specified with /REMOVE.

/SUBSYSTEM Tells the operating system how to run a program created by linking
to the output library. For more information, see the description of the "LINK
/SUBSYSTEM" option in Chapter 26 on page 585.

Chapter 28 LIB Reference

You can use LIB to perform the following library-management tasks:

• To add objects to a library, specify the filename for the existing library and the
filenames for the new objects.

• To combine libraries, specify the library filenames. You can add objects and
combine libraries with a single LIB command.

• To replace a library member with a new object, specify the library containing the
member object to be replaced and the filename for the new object (or the library
that contains it). When an object that has the same name exists in more than one
input file, LIB puts the last object specified in the LIB command into the output
library. When you replace a library member, be sure to specify the new object or
library after the library that contains the old object.

• To delete a member from a library, use the /REMOVE option. LIB processes any
specifications of /REMOVE after combining all input objects, regardless of
command-line order.

Note You cannot both delete a member and extract it to a file in the same step. You must first
extract the member object using IEXTRACT, then run LIB again using IREMOVE. This
behavior differs from that of the 16-bit LIB (for OMF libraries) provided in other Microsoft
products.

Extracting a Library Member
You can use LIB to create an object (.OBJ) file that contains a copy of a member of an
existing library. To extract a copy of a member, use the following syntax:

LIB library /EXTRACT:member IOUT:objectfile

This command creates an .OBJ file called objectfile that contains a copy of a member
of a library. The member name is case sensitive. You can extract only one member in
a single command. The lOUT option is required; there is no default output name. If a
file called objectfile already exists in the specified directory (or the current directory,
if no directory is specified with objectfile), the extracted objectfile replaces the
existing file.

Working with Import Libraries
and Export Files

You can use LIB with the /DEF option to create an import library and an export file.
LINK uses the export file to build a program that contains exports (usually a
dynamic-link library (DLL)), and it uses the import library to resolve references to
those exports in other programs.

611

Visual c++ User's Guide

In most situations, you do not need to use LIB to create your import library. When
you link a program (either an executable file or a DLL) that contains exports, LINK
automatically creates an import library that describes the exports. Later, when you
link a program that references those exports, you specify the import library.

However, when a DLL exports to a program that it also imports from, whether
directly or indirectly, you must use LIB to create one of the import libraries. When
LIB creates an import library, it also creates an export file. You must use the export
file when linking one of the DLLs.

Building an Import Library and Export File

612

To build an import library and export file, use the following syntax:

LIB /DEF[:deffile] [options] [objfiles] [libraries]

When /DEF is specified, LIB creates the output files from export specifications that
are passed in the LIB command. There are three methods for specifying exports,
listed in recommended order of use:

1. A _declspec(dllexport) definition in one of the objfiles or libraries

2. A specification of /EXPORT: name on the LIB command line

3. A definition in an EXPORTS statement in a deffile

These are the same methods you use to specify exports when linking an exporting
program. A program can use more than one method. You can specify parts of the LIB
command (such as multiple objfiles or /EXPORT specifications) in a command file in
the LIB command, just as you can in a LINK command.

The following options apply to building an import library and export file:

/DEBUGTYPE:{CVICOFFIBOTH} Sets the format of debugging information.
Specify CV for Microsoft Symbolic Debugging Information, required by Microsoft
Developer Studio. Specify COFF for Common Object File Format debugging .
information. Specify BOTH for both COFF debugging information and Microsoft
format debugging information.

lOUT: import Overrides the default output filename for the import library being
created. When lOUT is not specified, the default name is the base name of the first
object file or library in the LIB command and the extension .LIB. The export file
is given the same base name as the import library and the extension .EXP.

/EXPORT:entryname[=internalname] [,@ordinal[,NONAME]][,DATA] Exports a
function from your program to allow other programs to call the function. You can
also export data (using the DATA keyword). Exports are usually defined in a DLL.

The entryname is the name of the function or data item as it is to be used by the
calling program. Optionally, you can specify the internalname as the function
known in the defining program; by default, internalname is the same as
entryname. The ordinal specifies an index into the export table in the range 1

Chapter 28 LIB Reference

through 65,535; if you do not specify ordinal, LIB assigns one. The NONAME
keyword exports the function only as an ordinal, without an entry name . The
DATA keyword is used to export data-only objects.

/lNCLUDE:symbol Adds the specified symbol to the symbol table. This option is
useful for forcing the use of a library object that otherwise would not be included.

U sing an Import Library and Export File
When a program (either an executable file or a DLL) exports to another program that
it also imports from, or if more than two programs both export to and import from
each other, the commands to link these programs must accommodate circular exports.

In a situation without circular exports, when you link a program that uses exports
from another program, you must specify the import library for the exporting program.
The import library for the exporting program is created when you link that exporting
program. Therefore, you must link the exporting program before the importing
program. For example, if TWO.DLL imports from ONE.DLL, you must first link
ONE.DLL and get the import library ONE.LIB. You then specify ONE.LIB when you
link TWO.DLL. When the linker creates TWO.DLL, it also creates its import library,
TWO.LIB. You use TWO.LIB when linking programs that import from TWO.DLL.

However, in a circular export situation, it is not possible to link all of the
interdependent programs using import libraries from the other programs. In the
example discussed earlier, if TWO.DLL also exports to ONE.DLL, the import library
for TWO.DLL won't exist yet when ONE.DLL is linked. When circular exports exist,
you must use LIB to create an import library and export file for one of the programs.

To begin, choose one of the programs on which to run LIB. In the LIB command, list
all objects and libraries for the program and specify /DEE If the program uses a .DEF
file or /EXPORT specifications, specify these as well.

After you create the import library (.LIB) and the export file (.EXP) for the program,
you use the import library when linking the other program or programs. LINK
creates an import library for each exporting program it builds. For example, if you
run LIB on the objects and exports for ONE.DLL, you create ONE.LIB and
ONE.EXP. You can now use ONE.LIB when linking TWO.DLL; this step also
creates the import library TWO.LIB.

Finally, link the program you began with. In the LINK command, specify the objects
and libraries for the program, the .EXP file that LIB created for the program, and the
import library or libraries for the exports used by the program. To continue the
example, the LINK command for ONE.DLL contains ONE.EXP and TWO.LIB, as
well as the objects and libraries that go into ONE.DLL. Do not specify the .DEF file
or /EXPORT specifications in the LINK command; these are not needed, because the
export definitions are contained in the .EXP file. When you link using an .EXP file,
LINK does not create an import library, because it assumes that one was created when
the .EXP file was created.

613

CHAPTER 29

BSCMAKE Reference

The Microsoft Browse Information Maintenance Utility (BSCMAKE.EXE) builds a
browse information file (.BSC) from .SBR files created during compilation. You view
a browse information file in a browse window. For information about browse
windows, see Chapter 16, "Browsing Through Symbols."

When you build your program, you can create a browse information file for your
program automatically, using BSCMAKE to build the file. You do not need to know
how to run BSCMAKE if you create your browse information file in Microsoft
Developer Studio. However, you may want to read this topic to understand the
choices available.

If you build your program outside of Developer Studio, you can still create a custom
.BSC that you can examine in Microsoft Developer Studio. Run BSCMAKE on the
.SBR files that you created during compilation.

Building a .BSC File
BSCMAKE can build a new browse information file from newly created .SBR files. It
can also maintain an existing .BSC file using .SBR files for object files that have
changed since the last build.

Creating an .SBR File
The input files for BSCMAKE are .SBR files. The compiler creates an .SBR file for
each object (.OBJ) file it compiles. When you build or update your browse
information file, all .sBR files for your project must be available on disk.

To create an .sBR file with all possible information, specify Generate Browse Info in
the Compiler Settings dialog box (or specify the /FR option).

To create an .SBR file that doesn't contain local symbols, specify Generate Browse
Info, and then check Exclude Local Variables from Browse Info (or specify IFr on the
compiler command line). If the .SBRfiles contain local symbols, you can still omit
them from the .BSC file by using BSCMAKE's lEI option.

615

Visual C++ User's Guide

You can create an .SBR file without performing a full compile. For example, you can
specify the /Zs option to the compiler to perform a syntax check and still generate an
.SBR file if you specify /FR or /Fr.

The build process can be more efficient. if the .SBR files are first packed to remove
umeferenced definitions. The compiler automatically packs .SBR files. An unpacked
.SBR file is required if you want to use the /lu option with BSCMAKE to include
umeferenced symbols in the .BSC file. If you want to prevent packing, specify IZn on
the compiler command line.

How BSCMAKE Builds a .BSC File
BSCMAKE builds or rebuilds a .BSC file in the most efficient way it can. To avoid
potential problems, it is important to understand the build process.

When BSCMAKE builds a browse information file, it truncates the .SBR files to zero
length. During a subsequent build of the same file, a zero-length (or empty) .SBR file
tells BSCMAKE that the .SBR file has no new contribution to make. It lets
BSCMAKE know that an update of that part of the file is not required and an
incremental build will be sufficient. During every build (unless the /n option is
specified), BSCMAKE first attempts to update the file incrementally by using only
those .SBR files that have changed.

BSCMAKE looks for a .BSC file that has the name specified with the /0 option. If /0 .
is not specified, BSCMAKE looks for a file that has the base name of the first .SBR
file and a .BSC extension. If the file exists, BSCMAKE performs an incremental
build of the browse information file using only the contributing .SBR files. If the file
does not exist, BSCMAKE performs a full build using all .SBR files. The rules for
builds are as follows:

• For a full build to succeed, all specified .SBR files must exist and must not be
truncated. If an .SBR file is truncated, you must rebuild it (by recompiling or
assembling) before running BSCMAKE.

• For an increment:;tl build to succeed, the .BSC file must exist. All contributing
.SBR files, even empty files, must exist and must be specified on the BSCMAKE
command line. If you omit an .SBR file from the command line, BSCMAKE
removes its contribution from the file.

Increasing Efficiency with BSCMAKE
The building process can require large amounts of time, memory, and disk space.
However, you can reduce these requirements by creating a smaller .BSC file and by
avoiding umeferenced definitions.

Chapter 29 BSCMAKE Reference

Making a Smaller Browse Information File
Smaller browse information files take less time to build, use less disk space, reduce
the risk of BSCMAKE running out of memory, and run faster in the Browse window.
You can use one or more of the following methods to create a smaller file:

• Use BSCMAKE options to exclude information from the browse information·file.
These options are described on page 618.

• Omit local symbols in one or more .SBR files when compiling or assembling.

• If an object file does not contain information that you need for your current stage
of debugging, omit its .SBR file from the BSCMAKE command when rebuilding
the browse·information file.

Saving Build Time and Disk Space
Unreferenced definitions cause .SBR files to take up more disk space and cause
BSCMAKE to run less efficiently. The compiler automatically packs .SBR files to
remove unreferenced definitions. The /Zn (Don't Pack Info) option prevents this
packing. You can increase efficiency of disk space and BSCMAKE speed by not
using /Zn and allowing the compiler to pack the .SBR files.

BSCMAKE Command Line
To run BSCMAKE, use the following command line syntax:

BSCMAKE [options] sbrfiles

Options can appear only in the options field on the command line.

The sbrfiles field specifies one or more .SBR files created by a compiler or assembler.
Separate the names of .SBR files with spaces or tabs. You must specify the extension;
there is no default. You can specify a path with the filename, and you can use
operating-system wildcards (* and ?).

During an incremental build, you can specify new .SBR files that were not part of the
original build. If you want all contributions to remain in the browse information file,
you must specify all .SBR files (including truncated files) that were originally used to
create the .BSC file. If you omit an .SBR file, that file's contribution to the browse
information file is removed.

Do not specify a. truncated .SBR file for a full build. A full build requires
contributions from all specified .SBR files. Before you perform a full build, recompile
the project and create a new .SBR file for each empty file.

The following command runs BSCMAKE to build a file called MAIN.BSC from
three .SBR files:

BSCMAKE main.sbr filel.sbr file2.sbr

617

Visual c++ User's Guide

BSCMAKE Command File
You can provide part or all of the command-line input in a command file. Specify the
command file using the following syntax:

BSCMAKE @filename

Only one command file is allowed. You can specify a path with filename. Precede
filename with an at sign (@). BSCMAKE does not assume an extension. You can
specify additional sbrfiles on the command line after filename. The command file is a
text file that contains the input to BSCMAKE in the same order as you would specify
it on the command line. Separate the command-line arguments with one or more
spaces, tabs, or newline characters.

The following command calls BSCMAKE using a command file:

BSCMAKE @progl.txt

The following is a sample command file:

In Iv /0 main.bsc IE1
IS (
too1box.h
verdate.h c:\src\inc\screen.h
)
fi1el.sbr fi1e2.sbr fi1e3.sbr fi1e4.sbr

BSCMAKE Options

18

This section describes the options available for controlling BSCMAKE. Several
options control the content of the browse information file by excluding or including
certain information. The exclusion options can allow BSCMAKE to run faster and
may resu~t in a smaller .BSC file. Option names are case sensitive (except for !HELP
and /NOLOGO).

lEi (filename ...) Excludes the contents of the specified include files from the browse
information file. To specify multiple files, separate the names with a space and
enclose the list in parentheses. Parentheses are not necessary if you specify only
one filename. U s'e lEi along with the IEs option to exclude files not excluded
by IEs.

lEI Excludes local symbols. The default is to include local symbols. For more
information about local symbols, see Creating an .SBR File.

IEm Excludes symbols in the body of macros. Use IEm to include only the names of
macros in the browse information file. The default is to include both the macro
names and the result of the macro expansions.

IEr (symboL.) Excludes the specified symbols from the browse information file. To
specify multiple symbol names, separate the names with a space and enclose the
list in parentheses. Parentheses are not necessary if you specify only one symbol.

Chapter 29 BSCMAKE Reference

IEs Excludes from the browse information file every include file specified with an
absolute path or found in an absolute path specified in the INCLUDE environment
variable. (Usually, these are the system include files, which contain a lot of
information that you may not need in your browse information file.) This option
does not exclude files specified without a path or with relative paths or files found
in a relative path in INCLUDE. You can use the lEi option along with IEs to
exclude files that IEs does not exclude. If you want to exclude only some of the
files that IEs excludes, use lEi instead of IEs and list the files you want to exclude.

/HELP Displays a summary of the BSCMAKE command-line syntax.

/lu Includes unreferenced symbols. By default, BSCMAKE does not record any
symbols that are defined but not referenced. If an .SBR file has been packed, this
option has no effect for that input file because the compiler has already removed
the unreferenced symbols.

/n Forces a nonincremental build. Use /n to force a full build of the browse
information file whether or not a .BSC file exists and to prevent .SBR files from
being truncated. See How BSCMAKE Builds a .BSC File.

/NOLO GO Suppresses the BSCMAKE copyright message.

/0 filename Specifies a name for the browse information file. By default,
BSCMAKE gives the browse information file the base name of the first .SBR file
and a .BSC extension.

/S (filename ...) Tells BSCMAKE to process the specified include file the first time it
is encountered and to exclude it otherwise. Use this option to save processing time
when a file (such as a header, or .R, file for a.C or .CPP source file) is included in
several source files but is unchanged by preprocessing directives each time. You
may also want to use this option if a file is changed in ways that are unimportant
for the browse information file you are creating. To specify multiple files, separate
the names with a space and enclose the list in parentheses. Parentheses are not
necessary if you specify only one filename. If you want to exclude the file every
time it is included, use the lEi or IEs option.

/v Provides verbose output, which includes the name of each .SBR file being
processed and information about the complete BSCMAKE run.

/? Displays a brief summary of BSCMAKE command-line syntax.

The following command line tells BSCMAKE to do a full build of MAIN.BSC from
three .SBR files. It also tells BSCMAKE to exclude duplicate instances of
TOOLBOX.H:

BSCMAKE In IS toolbox.h /0 main.bsc filel.sbr file2.sbr file3.sbr

619

Visual C++ User's Guide

BSCMAKE Exit Codes

~o

BSCMAKE returns an exit code (also called a return code or error code) to the
operating system or the calling program.

Code Meaning

o No error

1 Command-line error

4 Fatal error during build

CHAPTER 30

DUMPBIN Reference

The Microsoft COFF Binary File Dumper (DUMPBIN.EXE) displays information
about 32-bit Common Object File Format (COFF) binary files. You can use
DUMPBIN to examine COFF object files, standard libraries of COFF objects,
executable files, and dynamic-link libraries (DLLs).

Note DUMPBIN runs only from the command line.

DUMPBIN Command Line
To run DUMPBIN, use the following syntax:

DUMPBIN [options]/iles ...

Specify one or more binary files, along with any options required to control the
information. DUMPBIN displays the information to standard output. You can either
redirect it to a file or use the lOUT option to specify a filename for the output.

When you run DUMPBIN on a file without specifying an option, DUMPBIN displays
the ISUMMARY output.

When you type the command dumpbi n without any other command-line input,
DUMPBIN displays a usage statement that summarizes its options.

DUMPBIN Options
An option consists of an option specifier, which is either a dash (-) or a forward
slash (f), followed by the name of the option. Option names cannot be abbreviated.
Some options take arguments, specified after a colon (:). No spaces or tabs are
allowed within an option specification. Use one or more spaces or tabs to separate
option specifications on the command line. Option names and their keyword or
filename arguments are not case sensitive. Most options apply to all binary files; a
few apply only to certain types of files.

621

Visual c++ User's Guide

i22

DUMPBIN has the following options:

/ALL Displays all available infonnation except code disassembly. Use /DISASM to
display disassembly. You can use IRAWDATA:NONE with /ALL to omit the raw
binary details of the file.

/ARCHIVEMEMBERS Displays minimal infonnation about member objects in a
library.

/DISASM Displays disassembly of code sections, using symbols if present in
the file.

/EXPORTS Displays all definitions exported from an executable file or DLL.

IFPO Displays frame pointer optimization (FPO) records.

/HEADERS Displays the file header and the header for each section. When used
with a library, it displays the header for each member object.

/IMPORTS Displays all definitions imported to an executable file or DLL.

/LINENUMBERS Displays COFF line numbers. Line numbers exist in an object file
if it was compiled with Program Database (lZi), C7 Compatible (lZ7), or Line
Numbers Only (lZd). An executable file or DLL contains COFF line numbers if it
was linked with Generate Debug Info (/DEBUG) and COFF Fonnat
(/DEBUGTYPE:COFF).

/LINKERMEMBER[: { 112 }] Displays public symbols defined in a library. Specify
the 1 argument to display symbols in object order, along with their offsets. Specify
the 2 argument to display offsets and index numbers of objects, and then list the
symbols in alphabetical order, along with the object index for each. To get both
outputs, specify /LINKERMEMBER without the number argument.

/OUTfilename Specifies afilename for the output. By default, DUMPBIN displays
the infonnation to standard output.

IRA WDATA[: {BYTESISHORTSILONGSINONE} [,number]] Displays the raw
contents of each section in the file. The arguments control the fonnat of the
display, as shown below:

Argument

BYTES

SHORTS

LONGS

NONE

number

Result

The default. Contents are displayed in hexadecimal bytes, and also as
ASCII characters if they have a printed representation.

Contents are displayed in hexadecimal words.

Contents are displayed in hexadecimallongwords.

Raw data is suppressed. This argument is useful to control the output
of/ALL.

Displayed lines are set to a width that holds number values per line.

/RELOCATIONS Displays any relocations in the object or image.

/SECTION:section Restricts the output to infonnation on the specified section.

Chapter 30 DUMPBIN Reference

/SUMMARY Displays minimal information about sections, induding total size.
This option is the default if no other option is specified.

/SYMBOLS Displays the COFF symbol table. Symbol tables exist in all object files.
A COFF symbol table appears in an image file only if it is linked with the
Generate Debug Info and COFF Format options under Debug Info on the Debug
category for the linker (or the /DEBUG and /DEBUGTYPE:COFF options on the
command line).

623

CHAPTER 31

EDITBIN Reference

The Microsoft COFF Binary File Editor (EDITBIN.EXE) modifies 32-bit Common
Object File Format (COFF) binary files. You can use EDITBIN to modify object files,
executable files, and dynamic-link libraries (DLLs).

Note EDITBIN runs only from the command line.

EDITBIN converts the format of an Object Module Format (OMF) input file to COFF
before making other changes to the file. You can use EDITBIN to convert the format
of a file to COFF by running EDITBIN with no options.

EDITBIN Command Line
To run EDITBIN, use ihe following syntax:

EDITBIN [options] files ...

Specify one or more files for the objects or images to be changed, and one or more
options for changing the files. '

When you type the command edi tbi n without any other command-line input,
EDITBIN displays a usage statement that summarizes its options.

EDITBIN Options
An option consists of an option specifier:, which is either a dash (-) or a forward
slash (/), followed by the name of the option. Option names cannot be abbreviated.
Some options take arguments, specified after a colon (:). No spaces or tabs are
allowed within an option specification. Use one or more spaces or tabs to separate
option specifications on the command line. Option names and their keyword or
filename arguments are not case sensitive.

625

Visual C++ User's Guide

/BIND
This option sets the addresses of the entry points in the import address table for an
executable file or DLL. Use this option to reduce load time of a program.

/BIND [:PATH=path]

Specify the program's executable file and DLLs in the files argument on the
EDITBIN command line. The optional path argument to /BIND specifies the location
of the DLLs used by the specified files. Separate multiple directories with a semicolon
(;). If path is not specified, EDITBIN searches the directories specified in the PATH
environment variable. If path is specified, EDITBIN ignores the PATH variable.

By default, the program loader sets the addresses of entry points when it loads a
program. The amount of time this process takes varies, depending on the number of
DLLs and the number of entry points referenced in the program. If a program has
been modified with /BIND, and if the base addresses for the executable file and its
DLLs do not conflict with DLLs that are already loaded, the operating system does
not ·need to set these addresses. In a situation where the files are incorrectly based, the
operating system relocates the program's DLLs and recalculates the entry-point
addresses, which adds to the program's load time.

/HEAP
This option sets the size of the heap in bytes.

/HEAP:reserve[,commit]

The reserve argument specifies the total heap allocation in virtual memory. The
default heap size is 1 MB. The linker rounds up the specified value to the nearest
4 bytes.

The optional commit argument is subject to interpretation by the operating system. In
Windows NT and Windows 95, it specifies the amount of physical memory to allocate
at a time. Committed virtual memory causes space to be reserved in the paging file. A
higher commit value saves time when the application needs more heap spac·e but
increases the memory requirements and possibly the startup time.

Specify the reserve and commit values in decimal or C-Ianguage notation.

/NOLO GO

626

This option suppresses display of the EDITBIN copyright message and version
number.

/NOLOGO

Chapter 31 EDITBIN Reference

/REBASE
This option sets the base addresses for the specified files. EDITBIN assigns new base
addresses in a contiguous address space according to the size of each file rounded up'
to the nearest 64K. For details about base addresses, see "Base Address" in
Chapter 21.

/REBASE[: modifiers]

Specify the program's executable files and DLLs in the files argument on the
EDITBIN command line in the order in which they are to be based. You can
optionally specify one or more modifiers, each separated by a comma (,):

Modifier Action

BASE=address

BASEFILE

DOWN

/RELEASE

Provides a beginning' address for reassigning base addresses to the
files. Specify address in decimal or C-Ianguage notation. If BASE is
not specified, the default starting base address is Ox400000. If
DOWN is used, BASE must be specified, and address sets the end
of the range of base addresses.

Creates a file named COFFBASE.TXT, which is a text file in the
format expected by LINK's /BASE option.

Tells EDITBIN to reassign base addresses downward from an
ending address. The files are reassigned in the order specified, with
the first file located in the highest possible address below the end of
the address range. BASE must be used with DOWN to ensure
sufficient address space for basing the files. To determine the
address space needed by the specified files, run EDITBIN with
IREBASE on the files and add 64K to the displayed total size.

This option sets the checksum in the header of an executable file.

/RELEASE

The operating system requires the checksum for certain files, such as device drivers.
It is recommended that you set the checksum for release versions of your programs to
ensure compatibility with future operating systems.

/SECTION
This option changes the attributes of a section, overriding the attributes that were set
when the object file for the section was compiled or linked.

/SECTION :name[=newname] [,attributes] [,alignment]

After the colon (:), specify the name of the section. To change the section name,
follow name with an equal sign (=) and a newname for the section.

627

Visual C++ User's Guide

To set or change the section's attributes, specify a comma (,) followed by one or more
attributes characters. To negate an attribute, precede its character with an
exclamation point (!). The following characters specify memory attributes:

Attribute Setting

c code

d discardable

e executable

initialized data

k cached virtual memory

m link remove

0 link info

p paged virtual memory

r read

s shared

u uninitialized data

w write

To control alignment, specify the character a followed by a character to set the size of
alignment in bytes, as follows:

Character Alignment size in bytes

1

2 2

4 4

8 8

p 16

32'

s 64

x no alignment

Specify the attributes and alignment characters as a string with no white space. The
characters are not case sensitive.

/STACK

628

This option sets the size of the stack in bytes and takes arguments in decimal or C­
language notation. The /STACK option applies only to an executable fIle.

/STACK:reserve[,commit]

The reserve argument specifies the total stack allocation in virtual memory. EDITBIN
rounds up the specifIed value to the nearest 4 bytes.

Chapter 31 EDITBIN Reference

The optional commit argument is subject to interpretation by the operating system. In
Windows NT and Windows 95, commit specifies the amount of physical memory to
allocate at a time. Committed virtual memory causes space to be reserved in the
paging file. A higher commit value saves time when the application needs more stack
space but increases the memory requirements and possibly startup time.

629

CHAPTER 32

NMAKE Reference

The Microsoft Program Maintenance Utility (NMAKE.EXE) is a 32-bit tool that
builds projects based on commands contained in a description file.

Running NMAKE
The syntax for NMAKE is:

NMAKE [option ...] [macros ...] [targets ...] [@commandfile ...]

NMAKE builds only specified targets or, if none are specified, the first target in the
makefile. The first makefile target can be a pseudotarget that builds other targets.
NMAKE uses makefiles specified with IF; if IF is not specified, it uses the
MAKEFILE file in the current directory. If no makefile is specified, it uses inference
rules to build command-line targets.

The command file text file contains command-line input. Other input can precede or
follow @commandfile. A path is permitted. In commandfile, line breaks are treated
as spaces. Enclose macro definitions in quotation marks if they contain spaces.

NMAKE Options
NMAKE options are described in the following table. Options are preceded by either
a slash (() or a dash (-) and are not case sensitive. Use !CMDSWITCHES to
change option settings in a makefile or in TOOLS.INI.

Option

fA

/B

Ie

Action

Forces build of all evaluated targets, even if not out-of-date with respect
to dependents. Does not force build of unrelated targets.

Forces build even if timestamps are equal. Recommended only for very
fast systems (resolution of two seconds or less).

Suppresses default output, including nonfatal NMAKE errors or
warnings, timestamps, and NMAKE copyright message. Suppresses
warnings issued by /K.

631

Visual C++ User's Guide

632

Option

/D

IE
IF filename

/HELP,/?

II

!K

/N

/NOLOGO

/P

IQ

IR

IS

rr

IX filename

Action

Displays timestamps of each evaluated target and dependent and a
message when a target does not exist. Useful with /P for debugging a
makefile. Use !CMDSWITCHES to set or clear /D for part of a
makefile.

Causes environment variables to override makefile macro definitions.

Specifies filename as a makefile. Spaces or tabs can precede filename.
Specify IF once for each makefile. To supply a makefile from standard
input, specify a dash (-) for filename, and end keyboard input with
either F6 or CTRL+Z ..

Displays a brief summary of NMAKE command-line syntax.

Ignores exit codes from all commands. To set or clear II for part of a
makefile, use !CMDSWITCHES. To ignore exit codes for part of a
makefile, use a dash (-) command modifier or .IGNORE. Overrides
!K if both are specified.

Continues building unrelated dependencies, if a command returns an
error. Also issues a warning and returns an exit code of 1. By default,
NMAKE halts if any command returns a nonzero exit code. Warnings
from !K are suppressed by IC; II overrides !K if both are specified.

Displays but does not execute commands; preprocessing commands are
executed. Does not display commands in recursive NMAKE calls.
Useful for debugging makefiles and checking timestamps. To set or
clear /N for part of a makefile, use !CMDSWITCHES.

Suppresses the NMAKE copyright message.

Displays information (macro definitions, inference rules, targets,
.SUFFIXES list) to standard output, and then runs the build. If no
makefile or command-line target exists, it displays information only.
Use with /D to debug a makefile.

Checks timestamps of targets; does not run the build. Returns a zero
exit code if all targets are up to date and a nonzero exit code if any
target is not. Preprocessing commands are executed. Useful when
running NMAKE from a batch fil~.

Clears the .SUFFIXES list and ignores inference rules and macros that
are defined in the TOOLS.lNI file or that are predefined.

Suppresses display of executed commands. To suppress display in part
of a makefile, use the @ command modifier or .SILENT. To set or
clear IS for part of a makefile, use !CMDSWITCHES.

Updates timestamps of command-line targets (or first makefile target)
and executes preprocessing commands but does not run the build.

Sends NMAKE error output to filename instead of standard error.
Spaces or tabs can precede filename. To send error output to standard
output, specify a dash (-) for filename. Does not affect output from
commands to standard error.

Chapter 32 NMAKE Reference

TOOLS.INI and NMAKE
NMAKE reads TOOLS.lNI before it reads lllakefiles, unless /R is used. It looks for
TOOLS.lNI first in the current directory and then in the directory specified by the
. INIT environment variable. The section for NMAKE settings in the initialization file
begins with [NMAKE] and can contain any makefile information. Specify a comment
on a separate line beginning with a number sign (#).

Exit Codes from NMAKE
NMAKE returns the following exit codes.

Code Meaning

o No error (possibly a warning)

1 Incomplete build (issued only when !K is used)

2 Program error, possibly due to one of the following:

A syntax error in the makefile

An error or exit code from a command

An interruption by the user

4 System error-out of memory

255 Target is not up-to-date (issued only when IQ is used)

Contents of a Makefile
A"makefile contains:

• Description blocks

• Commands

• Macros

• Inference rules

• Dot directives

• Preprocessing directives

Other features of a makefile include wildcards, long filenames, comments, and
special characters.

Wildcards and NMAKE
NMAKE expands filename wildcards (* and ?) in dependency lines. A wildcard
specified in a command is passed to the command; NMAKE does not expand it.

633

Visual C++ User's Guide

Long Filenames in a Makefile
Enclose long filenames in double quotation marks; as follows:

all: "VeryLongFileName.exe"

Comments in a Makefile
Precede a comment with a numoer sign (#). NMAKE ignores text from the number
sign to the next newline character. The following are examples of comments:

Comment on line by itself
OPTIONS IMAP # Comment on macro definition line

all.exe : one.obj two.obj # Comment on dependency line
link one.obj two.obj

Comment in commands block
copy *.obj \objects # Command turned into comment

copy one.exe \release

.obj.exe: # Comment on inference rule line
link $<

my.exe : my.obj ; link my.obj # Err: cannot comment this
Error: # must be the first character

.obj.exe: ; link $< # Error: cannot comment this

To specify a literal number sign, precede it with a caret (A), as follows:

DEF = A#define #Macro for a C preprocessing directive

Special Characters in a Makefile

634

To use an NMAKE special character as a literal character, place a caret (A) in front of
it. NMAKE ignores carets that precede other characters. The special characters are:

:;#()$A\{} !@_

A caret (A) within a quoted string is treated as a literal caret character. A caret at the
end of a line inserts a literal newline character in a string or macro.

In macros, a backslash (\) followed by a newline character is replaced by a space.

In commands, a percent symbol (%) is a file specifier. To represent % literally in a
command, specify a double percent sign (%%) in place ofa single one. In other
situations, NMAKE interprets a single % literally, but it always interprets a double
%% as a single %. Therefore, to represent a literal %%, specify either three percent
signs, %%%, or four percent signs, %%%%.

To use the dollar sign ($) as a literal character in a command, specify two dollar signs
($$). This method can also be used in other situations where A$ works.

Chapter 32 NMAKE Reference

Description Blocks
A description block is a dependency line optionally followed by a commands block:

ta rgets. .. : dependents ...
commands ...

A dependency line specifies one or more targets and zero or more dependents. A
target must be at the start of the line. Separate targets from dependents by a colon (:);
spaces or tabs are allowed. To split the line, use a backslash (\) after a target or
dependent. If a target does not exist, has an earlier timestamp than a dependent, or is
a pseudotarget, NMAKE executes the commands. If a dependent is a target elsewhere
and does not exist or is out-of-date with respect to its own dependents, NMAKE
updates the dependent before updating the current dependency.

Targets
In a dependency line, specify one or more targets, using any valid filename, directory
name, or pseudotarget. Separate multiple targets with one or more spaces or tabs.
Targets are not case sensitive. Paths are permitted with filenames. A target cannot
exceed 256 characters. If the target preceding the colon is a single character, use a
separating space; otherwise, NMAKE interprets the letter-colon combination as a
drive specifier.

Pseudotargets
A pseudotarget is a label used in place of a filename in a dependency line. It is
interpreted as a file that does not exist and so is out of date. NMAKE assumes a
pseudotarget's timestamp is the most recent of all its dependents; if it has no
dependents, the current time is assumed. If a pseudotarget is used as a target, its
commands are always executed. A pseudotarget used as a dependent must also appear
as a target in another dependency; however, that dependency does not need to have a
commands block.

Pseudotarget names follow the filename syntax rules for targets. However, if the name
does not have an extension (that is, does not contain a period), it can exceed the 8-
character limit for filenames and can be up to 256 characters long.

Multiple Targets
NMAKE evaluates multiple targets in a single dependency as if each were specified
in a separate description block.

This ...

bounce.exe leap.exe
jump.obj

echo Building ...

...is evaluated as this

bounce.exe : jump.obj
echo Building ...

leap.exe : jump.obj
echo Building ...

635

Visual C++ User's Guide

636

Cumulative Dependencies
Dependencies are cumulative in a description block if a target is repeated .

This ...

bounce.exe : jump.obj
bounce.exe :up.obj

echo Building
bounce.exe ...

.. .is evaluated as this

bounce.exe : jump.obj
up.obj

echo Building
bounce.exe ...

Multiple targets in mUltiple dependency lines in a single description block are
evaluated as if each were specified in a separate description block, but targets that are
not in the last dependency line do not use the commands block.

This ...

bounce.exe leap.exe :
jump.obj
bounce.exe climb.exe
up.obj

echo Building ...

...is evaluated as this

bounce.exe : jump.obj
up.obj

echo Building
bounce.exe ...
climb.exe : up.obj

echo Building
cl imb.exe ...
leap.exe : jump.obj
invokes an inference rule

Targets in Multiple Description Blocks
To update a target in more than one description block using different commands,
specify two consecutive colons (::) between targets and dependents.

target.lib :: one.asm two.asm three.asm
ml one.asm two.asm three.asm
lib target one.obj two.obj three.obj

target.lib :: four.c five.c
cl Ic four.c five.c
lib target four.obj five.obj

A Side Effect
If a target is specified with a colon (:) in two dependency lines in different locations,
and if commands appear after only one of the lines, NMAKE interprets the
dependencies as if adjacent or combined. It does not invoke an inference rule for the
dependency that has no commands, but instead assumes that the dependencies belong
to one description block and executes the commands specified with the other
dependency.

Chapter 32 NMAKE Reference

This ...

bounce.exe : jump.obj
echo Building

bounce.exe ...

bounce.exe : up.obj

.. .is evaluated as this

bounce.exe : jump.obj
up.obj

echo Building
bounce.exe ...

This effect does not occur if a double colon (::) is used .

This ...

bounce.exe :: jump.obj
echo Building

bounce.exe ...

bounce.exe :: up.obj

Dependents

.. .is evaluated as this

bounce.exe : jump.obj
echo Building

bounce.exe ...

bounce.exe : up.obj.
invokes an inference rule

In a dependency line, specify zero or more dependents after the colon (:) or double
colon (::), using any valid filename or pseudotarget. Separate multiple dependents
with one or more spaces or tabs. Dependents are not case sensitive. Paths are
permitted with filenames.

Inferred Dependents
An inferred dependent is derived from an inference rule and is evaluated befme
expliCit dependents. If an inferred dependent is out of date with respect to its target,
NMAKE invokes the commands block for the dependency. If an inferred dependent
does not exist or is out-of-date with respect to its own dependents, NMAKE first
updates the inferred dependent. For more information about inferred dependents, see
Inference Rules.

Search Paths for Dependents
Each dependent has an optional search path, specified as follows:

{directory[;directory ...] } dependent

NMAKE looks for a dependent first in the current directory, and then in directories in
the order specified. A macro can specify part or all of a search path. Enclose directory
names in braces ({ }); separate multiple directories with a semicolon (;). No spaces or
tabs are allowed.

637

Visual C++ User's Guide

Commands in a Makefile
A description block or inference rule specifies a block of commands to run if the
dependency is out of date. NMAKE displays each command before running it, unless
IS, .SILENT, !CMDSWITCHES, or@ is used. NMAKE looks for a matching
inference rule if a description block is not followed by a commands block.

A commands block contains one or more commands, each on its own line. No blank
line can appear between the dependency or rule and the commands block. However, a
line containing only spaces or tabs can appear; this line is interpreted as a null
command, and no error occurs. Blank lines are permitted between command lines.

A command line begins with one or more spaces or tabs. A backs lash (\) followed by
a newline character is interpreted as a space in the command; use a backslash at the
end of a line to continue a command onto the next line. NMAKE interprets the'
backs lash literally if any other character, including a space or tab, follows the
backslash.

A command preceded by a semicolon (;) can appear on a dependency line or
inference rule, whether or not a commands block follows:

projeet.obj : projeet.e projeet.h ; el Ie projeet.e

Command Modifiers

638

You can specify one or more command modifiers preceding a command, optionally
separated by spaces or tabs. As with commands, modifiers must be indented.

Modifier

@command

--[number]command

!command

Action

Prevents display of the command. Display by commands is not
suppressed. By default, NMAKE echoes all executed
commands. Use IS to suppress display for the entire makefile;
use .SILENT to suppress display for part of the makefil~.

Turns off error checking for command. By default, NMAKE
halts when a command returns a nonzero exit code. If -number
is used, NMAKE stops if the exit code exceeds number. Spaces
or tabs cannot appear between the dash and number; at least
one space or tab must appear between number and command.
Use /I to turn off error checking for the entire makefile; use
.IGNORE to turn off error checking for part of the makefile.

Executes command for each dependent file if command uses
$** (all dependent files in the dependency) or $? (all
dependent files in the dependency with a later timestamp than
the target).

Chapter 32 NMAKE Reference

Filename-Parts Syntax
Filename-parts syntax in commands represents components of the first dependent
filename (which may be an implied dependent). Filename components are the file's
drive, path, base name, and extension as specified, not as it exists on disk. Use %s to
represent the complete filename. Use %lfparts]F (a vertical bar character follows the
percent symbol) to represent parts of the filename, where parts can be zero or more of
the following letters, in any order:

Letter Description

No letter

d

p

f

e

Complete name (same as %s)

Drive

Path

File base name

File extension

For example, if the filename is c:\prog.exe:

%s will be c:\prog.exe

%:F will be c:\prog.exe

%:dF will be c

%:pF will be c:\

%:fF will be prog

%:eF will be exe

Inline Files in a Makefile
An inline file contains text you specify in the makefile. Its name can be used in
commands as input (for example, a LINK command file), or it can pass commands to
the operating system. The file is created on disk when a command that creates the file
is run.

Specifying an Inline File
The syntax for specifying an inline file in a command is:

«[filename]

Specify two angle brackets «<) in the command where the filename is to appear. The
angle brackets cannot be a macro expansion. When the command is run, the angle
brackets are replaced by filename, if specified, or by a unique NMAKE-generated
name. If specified,filename must follow angle brackets without a space or tab. A path
is permitted. No extension is required or assumed. Iffilename is specified, the file is
created in the current or specified directory, overwriting any existing file by that
name; otherwise, it is created in the TMP directory (or the current directory, if the

639

Visual C++ User's Guide

TMP environment variable is not defined). If a previous filename is reused, NMAKE
replaces the previous file.

Creating Inline File Text
The syntax to create the content of an inline file is:

inlinetext

«[KEEP I NOKEEP]

Specify inlinetext on the first line after the command. Mark the end with double
angle brackets «<) at the beginning of a separate line. The file contains all inlinetext
before the delimiting· brackets. The inlinetext can have macro expansions and
substitutions, but not directives or makefile comments. Spaces, tabs, and newline
characters are treated literally.

Inline files are temporary or permanent. A temporary file exists for the duration of
the session and can be reused by other commands. Specify KEEP after the closing
angle brackets to retain the file after the NMAKE session; an unnamed file is
preserved on disk with the generated filename. Specify NO KEEP or nothing for a
temporary file. KEEP and NOKEEP are not case sensitive.

Reusing Inline Files
To reuse an inline file, specify <<filename where the file is defined and first used,
then reusefilename without« later in the same or another command. The command
to create the inline file must run before all commands that use the file.

Multiple Inline Files
A command can create more than one inline file. The syntax to do this is:

command « «
inlinetext
«[KEEP I NOKEEP]
inlinetext
«[KEEP I NOKEEP]

For each file, specify one or more lines of inline text followed by a closing line
containing the delimiter. Begin the second file's text on the line following the
delimiting line for the. first file.

Macros and NMAKE

640

Macros replace a particular string in the makefile with another string. Using macros,
you can create a makefile that can build different projects, specify options for

Chapter 32 NMAKE Reference

commands, or set environment variables. You can define your own macros or use
NMAKE's predefined macros.

Defining an NMAKE Macro
Use the following syntax to define a macro:

macroname=string

The macro name is a combination of letters, digits, and underscores (_) up to 1024
characters, and is case sensitive. The macro name can contain an invoked macro. If
macroname consists entirely of an invoked macro, the macro being invoked cannot be
null or undefined.

The string can be any sequence of zero or more characters. A null string contains
zero characters or only spaces or tabs. The string can contain a macro invocation.

Special Characters in Macros
A number sign (#) after a definition specifies a comment. To specify a literal number
sign in a macro, use a caret e\), as in "#.

A dollar sign ($) specifies a macro invocation. To specify a literal $, use $$.

To extend a definition to a new line, end the line with a backslash (\). When the
macro is invoked, the backslash plus newline character is replaced with a space. To
specify a literal backslash at the end of the line, precede it with a caret (A), or follow
it with a comment specifier (#).

To specify a literal newline character, end the line with a caret (A), as in:

CMDS = elsA
dir

Null and Undefined Macros
Both null and undefined macros expand to null strings, but a macro defined as a null
string is considered defined in preprocessing expressions. To define a macro as a null
string, specify no characters except spaces or tabs after the equal sign (=) in a
command line or command file, and enclose the null string or definition in double
quotation marks (" "). To undefine a macro, use !UNDEF. For information, see
"Makefile Preprocessing Directives" on page 648.

Where to Define Macros
Define macros in a command line, command file, makefile, or the TOOLS.INI file.

In a make file or the TOOLS.INI file, each macro definition must appear on a separate
line and cannot start with a space or tab. Spaces or tabs around the equal sign are
ignored. All string characters are literal, including surrounding quotation marks and
embedded spaces.

641

Visual C++ User's Guide

In a command line or command file, spaces and tabs delimit arguments and cannot
surround the equal sign. If string has embedded spaces or tabs, enclose either the
string itself or the entire macro in double quotation marks (" ").

Precedence in Macro Definitions
If a macro has multiple definitions, NMAKE uses the highest-precedence definition.
The following list shows the order of precedence, from highest to lowest:

1. A macro defined on the command line

2. A macro defined in a makefile or include file

3.An inherited environment-variable macro

4. A macro defined in the TOOLS.INI file

5. A predefined macro, such as CC and AS

Use IE to cause macros inherited from environment variables to override makefile
macros with the same name. Use !UNDEF to override a command line.

U sing an NMAKE Macro
To use a macro, enclose its name in parentheses preceded by a dollar sign ($):

$ (macroname)

No spaces are allowed. The parentheses are optional if macroname is a single
character. The definition string replaces $ (macroname); an undefined macro is
replaced by a null string.

Macro Substitution
To substitute text within a macro, use the following syntax:

$(macroname:string] =string2)

When macro name is invoked, each occurrence of string] in its definition string is
replaced by string2. Macro substitution is case sensitive and is literal; string] and
string2 cannot invoke macros. Substitution does not modify the original definition.
You can substitute text in any predefined macro except $$@.

No spaces or tabs precede the colon; any after the colon are interpreted as literal. If
string2 is null, all occurrences of string] are deleted from the macro's definition
string.

Special NMAKE Macros

642

NMAKE provides several special macros to represent various filenames and
commands. One use for some of these macros is in the predefined inference rules.
Like all macros, the macros provided by NMAKE are case sensitive.

• Filename macros

Chapter 32 NMAKE Reference

• Recursion macros

• Command macros and options macros

• Environment-variable macros

Filename Macros
Filename macros are predefined as filenames specified in the dependency (not full
filename specifications on disk). These macros do not need to be enclosed in
parentheses when invoked; specify only a $ as shown.

Macro

$@

$$@

$*

$**

$?

$<

Meaning

Current target's full name (path, base name, extension), as currently
specified.

Current target's full name (path, base name, extension), as currently
specified. Valid only as a dependent in a dependency.

Current target's path and base name minus file extension.

All dependents of the current target.

All dependents with a later timestamp than the current target.

Dependent file with a later timestamp than the current target. Valid
only in commands in inference rules.

To specify part of a predefined filename macro, append a macro modifier and enclose
the modified macro in parentheses.

Modifier

D

B

F

R

Resulting Filename Part

Drive plus directory

Base name

Base name plus extension

Drive plus directory plus base name

Recursion Macros
Use recursion macros to call NMAKE recursively. Recursive sessions inherit
command-line and environment-variable macros and TOOLS.lNI information. They
do not inherit makefile-defined inference rules or .SUFFIXES and .PRECIOUS
specifications. To pass macros to a recursive NMAKE session, either set an
environment variable with SET before the recursive call, or define a macro in the
command for the recursive call, or define a macro in TOOLS.IN!.

Macro

MAKE

, MAKEDIR

MAKEFLAGS

Definition

Command used originally to invoke NMAKE.

Current directory when NMAKE was invoked.

Options currently in effect. Use as / $ (MAKE FLAGS).

643

Visual C++ User's Guide

644

Command Macros and Options Macros
Command macros are predefined for Microsoft products. Options macros represent
options to these products and are undefined by default. Both are used in predefined
inference rules and can be used in description blocks or user-defined inference rules.
Command macros can be redefined to represent part or all of a command line,
including options. Options macros generate a null string if left undefined.

Microsoft Product Command Macro Defined As Options Macro

Macro Assembler AS ml AFLAGS

Basic Compiler BC bc BFLAGS

C Compiler CC c1 CFLAGS

COBOL Compiler COBOL cobol COBFLAGS

C++ Compiler CPP c1 CPPFLAGS

C++ Compiler CXX c1 CXXFLAGS

FORTRAN Compiler FOR fl FFLAGS

Pascal Compiler PASCAL pI PFLAGS

Resource Compiler RC rc RFLAGS

Environment-Variable Macros
NMAKE inherits macro definitions for environment variables that exist before the
start of the session. If a variable was set in the operating-system environment, it is
available as an NMAKE macro. The inherited names are converted to uppercase.
Inheritance occurs before preprocessing. Use the IE option to cause macros inherited
from environment variables to override any macros with the same name in the
makefile.

Environment-variable macros can be redefined in the session, and this changes the
corresponding environment variable. You can also change environment variables
with the SET command. Using the SET command to change an environment variable
in a session does not change the corresponding macro, however.

For example:

PATH=$(PATH);\nonesuch

all :
echo %PATH%

In this example, changing PATH changes the corresponding environment variable
PATH; it appends \nonesuch to your path.

If an environment variable is defined as a string that would be syntactically incorrect
in a makefile, no macro is created and no warning is generated. If a variable's value
contains a dollar sign ($), NMAKE interprets it as the beginning of a macro
invocation. Using the macro can cause unexpected behavior.

Chapter 32 NMAKE Reference

Inference Rules
Inference rules supply commands to update targets and to infer dependents for
targets. Extensions in an inference rule match a single target and dependent that have
the same base name. Inference rules are user-defined or predefined; predefined rules
can be redefined.

If an out-of-date dependency has no commands, and if .SUFFIXES contains the
dependent's extension, NMAKE uses a rule whose extensions match the target and
an existing file in the current or specified directory. If more than one rule matches
existing files, the .SUFFIXES list determines which to use; list priority descends
from left to right. If a dependent file does not exist and is not listed as a target in
another description block, an inference rule can create the missing dependent from
another file with the same base name. If a description block's target has no
dependents or commands, an inference rule can update the target. Inference rules can
build a command-line target even if no description block exists. NMAKE may invoke
a rule for an inferred dependent even if an explicit dependent is specified.

Defining a Rule
To define an inference rule, use the following syntax:

.Jromext.toext:
commands

The fromext represents the extension of a dependent file, and toext represents the
extension of a target file. Extensions are not case sensitive. Macros can be invoked io
represent fromext and to ext; the macros are expanded during preprocessing. The
period (.) precedingfromext must appear at the beginning of the line. The colon (:) is
preceded by zero or more spaces or tabs. It can be followed only by spaces or tabs, a
semicolon (;) to specify a command, a number sign (#) to specify a comment, or a
newline character. No other spaces are allowed. Commands are specified as in
description blocks.

Search Paths in Rules
An inference rule that specifies paths has the following syntax:

{frompath} .Jromext { topath } .toext:
commands

An inference rule applies to a dependency only if paths specified in the dependency
exactly match the inference-rule paths. Specify the dependent's directory infrompath
and the target's directory in topath; no spaces are allowed. Specify only one path for
each extension. A path on one extension requires a path on the other. To specify the
current directory, use either a period (.) or empty braces ({ }). Macros can represent
frompath and topath; they are invoked during preprocessing.

645

Visual C++ User's Guide

Predefined Rules
Predefined inference rules use NMAKE-supplied command and option macros.

Rule Command Default Action

.asm.exe $(AS) $(AFLAGS) $* .asm mi $*.asm

.asm;obj $(AS) $(AFLAGS) Ic $*.asm ml/c $*.asm

.c.exe $(CC) $(CFLAGS) $*.c c1 $*.c

.c.obj $(CC) $(CFLAGS) Ic $*.c c1 Ic $*.c

.cpp.exe $(CPP) $(CPPFLAGS) $*.cpp c1 $*.cpp

.cpp.obj $(CPP) $(CPPFLAGS) Ic $*.cpp c1 Ic $*.cpp

.cxx.exe $(CXX) $(CXXFLAGS) $*.cxx c1 $*.cxx

.cxx.obj $(CXX) $(CXXFLAGS) Ie $* .cxx c1 Ic $*.cxx

.bas.obj $(BC) $(BFLAGS) $* .bas; bc $*.bas;

.cbl.exe $(COBOL) $(COBFLAGS) $*.cbI, $*.exe; cobol $*.cbI, $*.exe;

. cbl.obj $(COBOL) $(COBFLAGS) $*.cbI; cobol $* .cbI;

.f.exe $(FOR) $(FFLAGS) $*.f fl $*.f

.f.obj $(FOR) Ic $(FFLAGS) $*.f fl Ic $*.f

.f90.exe $(FOR) $(FFLAGS) $*.f90 fl $*.f90

.f90.obj $(FOR) Ic $(FFLAGS) $*.f90 fl Ic $*.f90

.for.exe $(FOR) $(FFLAGS) $*.for fl $*.for

.for.obj $(FOR) Ic $(FFLAGS) $* .for fl Ic $* .for

.pas.exe $ (PAS CAL) $(PFLAGS) $*.pas pI $*.pas

.pas.obj $(PASCAL) Ic $(PFLAGS) $*.pas pl/c $*.pas

.rc.res $(RC) $(RFLAGS) Ir $* rc Ir $*

Inferred Dependents and Rules

)46

NMAKE assumes an inferred dependent for a target if an applicable inference rule
exists. A rule applies if:

• to ext matches the target's extension.

• fromext matches the extension of a file that has the target's base name and that
exists in the current or specified directory.

• fromext is in .SUFFIXES; no other from ext in a matching rule has a higher
.SUFFIXES priority.

• No explicit dependent has a higher .SUFFIXES priority.

Inferred dependents can cause unexpected side effects. If the target's description
block contains commands, NMAKE executes those commands instead of the
commands in the rule.

Chapter 32 NMAKE Reference

Precedence in Inference Rules
If an inference rule is multiply defined, NMAKE uses the highest-precedence
definition. The following list shows the order of precedence from highest to lowest:

1. An inference rule defined in a makefile; later definitions have precedence.

2. An inference rule defined in TOOLS.INI; later definitions have precedence.

3. A predefined inference rule.

Dot Directives
Specify dot directives outside a description block, at the start of a line. Dot directives
begin with a period (.) and are followed by a colon (:). Spaces and tabs are allowed.
Dot directive names are case sensitive and are uppercase.

Directive

.IGNORE:

. PRECIOUS : targets

.SILENT:

. SUFFIXES : list

Action

Ignores nonzero exit codes returned by commands, from the
place it is specified to the end of the makefile. By default,
NMAKE halts if a command returns a nonzero exit code. To
restore error checking, use !CMDSWITCHES. To ignore the
exit code for a single command, use the dash (-) modifier. To
ignore exit codes for an entire file, use /I .
Preserves targets on disk if the commands to update them are
halted; has no effect if a command handles an interrupt by
deleting the file. Separate the target names with one or more
spaces or tabs. By default, NMAKE deletes a target if a build is
interrupted by CTRL+C or CTRL+BREAK. Each use of
.PRECIOUS applies to the entire makefile; multiple
specifications are cumulative.

Suppresses display of executed commands, from the place it is
specified to the end of the makefile. By default, NMAKE
displays the commands it invokes. To restore echoing, use
!CMDSWITCHES. To suppress echoing of a single command,
use the @ modifier. To suppress echoing for an entire file, use
IS .
Lists extensions for inference-rule matching; predefined as:
.exe .obj .asm .c .cpp .cxx .bas .cbl .for .pas .res .rc

To change the .SUFFIXES list order or to specify a new list, clear the list and specify
a new setting. To clear the list, specify no extensions after the colon:

.SUFFIXES :

647

Visual c++ User's Guide

To add additional suffixes to the end of the list, specify

.SUFFIXES : suffixlist

where suffixlist is a list of the additional suffixes, separated by one or more spaces or
tabs. To see the current setting of .SUFFIXES, run NMAKE with /P.

Makefile Preprocessing
You Can control the NMAKE session by using preprocessing directives and
expressions. Preprocessing instructions can be placed in the makefile or in
TOOLS.IN!. Using directives, you can conditionally process your makefile, display
error messages, include other makefiles, undefine a macro, and tum certain options
on or off.

Makefile Preprocessing Directives

548

Preprocessing directives are not case sensitive. The initial exclamation point (!) must
appear at the beginning of the line. Zero or more spaces or tabs can appear after the
exclamation point, for indentation.

!CMDSWITCHES {+I - } option ... Turns each option listed on or off. Spaces or tabs
must appear before the + or - operator; none can appear between the operator and
the option letters. Letters are not case sensitive and are specified without a slash (/
). To tum some options o.n and others off, use separate specifications of
!CMDSWITCHES.

Only /D, /I, IN, and /S can be used in a makefile. In TOOLS.lNI, all options are
allowed except IF, /HELP, INOLOGO, IX, and n. Changes specified in a
description block do not take effect until the next description block. This directive .
updates MAKEFLAGS; changes are inherited during recursion if
MAKEFLAGS is specified.

!ERROR text Displays text in error UI050, then halts NMAKE, even if /K, /I,
.IGNORE, !CMDSWITCHES, or the dash (-) command modifier is used.
Spaces or tabs before text are ignored.

!MESSAGE text Displays text to standard output. Spaces or tabs before text are
ignored.

!INCLUDE [<]filename[>] Reads filename as a makefile, then continues with the
current makefile. NMAKE searches for filename first in the specified or current
directory, then recursively through directories of any parent makefiles, then, if
filename is enclosed by angle brackets « », in directories specified by the
INCLUDE macro, which is initially set to the INCLUDE environment variable.
Useful to pass .SUFFIXES settings, .PRECIOUS, and inference rules to recursive
makefiles.

!IF constantexpression Processes statements between !IF and the next !ELSE or
!ENDIF if constantexpression evaluates to a nonzero value.

Chapter 32 NMAKE Reference

!IFDEF macro name Processes statements between !IFDEF and the next !ELSE ·or
!ENDIF if macroname is defined. A null macro is considered to be defined.

!IFNDEF macroname Processes statements between !IFNDEF and the next !ELSE
or !ENDIF if macro name is not defined.

!ELSE[IF constantexpression IIFDEF macroname IIFNDEF macro name] Processes
statements between !ELSE and the next !ENDIF if the prior !IF, !lFDEF, or
!IFNDEF statement evaluated to zero. The optional keywords give further control·
of preprocessing.

!ELSEIF Synonym for !ELSE IF.

!ELSEIFDEF Synonym for !ELSE IFDEF.

!ELSEIFNDEF Synonym for !ELSE IFNDEF.

!ENDIF Marks the end of an !IF, !IFDEF, or !IFNDEF block. Any text after
!ENDIF on the same line is ignored.

!UNDEF macro name Undefines macroname.

Expressions in Makefile Preprocessing
The !IF or !ELSE IF constantexpression consists of integer constants (in decimal or
C-Ianguage notation), string constants, or commands. Use parentheses to group
expressions. Expressions use C-style signed long integer arithmetic; numbers are in
32-bit two's-complement form in the range -2147483648 to 2147483647.

Expressions can use operators that act on constant values, exit codes from commands,
strings, macros, and file-system paths.

Makefile Preprocessing Operators
The DEFINED operator is a logical operator that acts on a macro name. The
expression DEFINED (macroname) is true if macroname is defined. DEFINED in
combination with !IF or !ELSE IF is equivalent to !lFDEF or !ELSE IFDEF.
However, unlike these directives, DEFINED can be used in complex expressions
using binary logical operators.

The EXIST operator is a logical operator that acts on a file-system path. EXIST
(path) is true if path exists. The result from EXIST can be used in binary
expressions. If path contains spaces, enclose it in double quotation marks.

Integer constants can use the unary operators for numerical negation (-), one's
complement ('""), and logical negation (!).

649·

Visual C++ User's Guide

550

Constant expressions can use the following binary operatoJis

Operator Description Operator

+ Addition II
Subtraction «

* Multiplication »
/ Division --
% Modulus !=

& Bitwise AND <

I Bitwise OR >
A Bitwise XOR <=

&& Logical AND >=

Description

Logical OR

Left shift

Right shift

Equality

Inequality

Less than

Greater than

Less than or equal to

Greater than or equal to

To compare two strings, use the equality (==) operator and the inequality (!=)
operator. Enclose strings in double quotation marks.

Executing a Program in Preprocessing
To use a command's exit code during preprocessing, specify the command, with any
arguments, within brackets ([]). Any macros are expanded before the command is
executed. NMAKE replaces the command specification with the command's exit
code, which can be used in an expression to control preprocessing.

PAR T 4

Appendixes

Appendix A Decorated Names 653
Appendix B Initializing and Configuring Microsoft Developer Studio 657
Appendix C DDESpy Reference 661
Appendix D PView Reference 667
Appendix E ZoomIn Reference 673
Appendix F WinDiff Reference 675

APPENDIX A

Decorated Names

Functions in C and C++ programs are known internally by their decorated names. A
decorated name is a string created by the compiler during compilation of the function
definition or prototype.

A decorated name is sometimes required when you specify a function name to LINK
or other tools. For details about the situations that require decorated names, consult
the documentation for the tool you are using.

Note The decorated naming convention for pointers to member functions changed in Visual
C++ version 4.0. C++ libraries created with Visual C++ version 2.0 should be recompiled to link
properly with source files compiled with Visual C++ version 4.0.

Using Decorated Names
In most circumstances, you do not need to know the decorated name of a function.
LINK and other tools can usually handle the name in its undecorated form.

However, certain situations require that you specify the name in its decorated form,
You must specify the decorated name of C++ functions that are overloaded and
special member functions, such as constructor and destructor functions, in order for
LINK and other tools to be able to match the name. You must also use decorated
names in assembly source files that reference a C or C++ function name.

Warning If you change the function name, class, calling convention, return type, or any
parameter, the decorated name is no longer valid. You must get the new version of the function
name and use it everywhere the decorated name is specified.

Format of a C++ Decorated Name
A decorated name for a C++ function contains the following information:

• The function name.

• The class that the function is a member of, if it is a member function. This may
include the class that encloses the function's class, and so on.

653

Visual C++ User's Guide

• The namespace the function belongs to (if it is part of a namespace).

• The types of the function's parameters.

• The calling convention.

• The return type of the function.

The function and class names are encoded in the decorated name. The rest of the
decorated name is a code that has internal meaning only for the compiler and the
linker. The following are examples of undecorated and decorated C++ names.

Undecorated Name

int a(char){int i=3;return i;};
void __ stdcall b::c(float){};

Decorated Name

?a@@YAHD@Z
?c@b@@AAGXM@Z

Format of a C Decorated Name
The form of decoration for a C function depends on the calling convention used in its
declaration, as shown below.

Calling Convention

_cdecl (the default)

_stdcall

_fastcall

Decoration

Leading underscore C)
Leading underscore C) and a trailing at sign (@)
followed by a number representing the number of bytes in
the parameter list

Same as _stdcall, but prep ended by an at sign instead of
an underscore

Viewing Decorated Names
You can get the decorated form of a function name after you compile the source file
that contains the function definition or prototype. To examine decorated names in
your program, you can do one of the following:

• Use a listing

• Use the DUMPBIN tool

U sing a Listing to View Decorated Names·

,54

To get the decorated form of a function using a compiler listing, do the following:

1. Generate a listing by compiling the source file that contains the function definition
or prototype with the Listing File Type (/PA[ds]) compiler option (described in
Chapter 20) set to one of the following: Assembly with Machine Code; Assembly
with Source Code; Assembly, Machine Code, or Source.

Appendix A Decorated Names

2. Find the line that contains the undecorated function definition in the resulting
listing.

3. Examine the previous line. The label for thePROC NEAR command is the
decorated form of the function name.

Using DUMPBIN to View Decorated Names
To get the decorated form of a function using DUMPBIN (see Chapter 30,
"DUMPBIN Reference"), run DUMPBIN on the .OBJ or .LIB file using the
jSYMBOLS option. Find the undecorated function definition in the output. The
undecorated name is followed by the decorated name, each enclosed in parentheses.

655

APPENDIX B

Initializing and Configuring
Microsoft Developer Studio

Microsoft Developer Studio stores information about initialization and configuration
within the Registry. Most of the settings in the Registry are read-write: Developer
Studio reads them at startup and writes them at the end of the session if they have
changed. Other settings are read-only: Developer Studio reads them at startup but
never writes them. The only way that you can change this read-only information is to
use the Registry editor. For Windows NT, the Registry editor is REGEDT32.EXE,
and for Windows 95, the Registry editor is REGEDIT.EXE.

The Registry is divided into "keys," which are represented as folders in the Registry
editor. Each key contains one or more entries, consisting of a value and a string or
number, which are shown in the right pane of the Registry editor. For example, the
Dialog Editor key in the Registry contains information about the startup settings for
Grid and GridSize.

Caution Microsoft Developer Studio and other applications use Registry information to
control each application's behavior. If the expected Registry information is missing or incorrect,
the application's behavior may be unpredictable. When you modify or add Registry keys, be
sure to enter the key and its values correctly.

You can customize Developer Studio by modifying existing Registry information and
adding various device descriptions and default settings.

~ To modify Registry information

1 From the MS-DOS prompt, run REGEDIT.EXE (for Windows 95) or
REGEDT32.EXE (for Windows NT).

-or-

Double-click the Registry icon in the system tools program group.

The Registry editor appears.

Note You may need to add the Registry icon to your systemJools program group.

2 Select the folder with the Registry information you want to modify.

657

Visual C++ User's Guide

3 To open a Registry key for editing, double-click the Registry key.

-or-

From the Edit menu, choose Modify, Delete, or New.

If you select New, you also select the type of new key: Key, String Value, Binary
Value, or DWORD Value.

4 Type the Value Name, Value Data, and Base (either hexadecimal or decimal).

5 Choose OK.

For more information on defining Registry keys, see the following examples:

• Setting Default Dialog Box Buttons

• Setting User Interface Fonts

• Setting the Default Magnification Factor

• Describing Mouse Pointer Devices

• Describing Icon Devices

Setting Default Dialog Box Buttons
Key Name: HKEY _CURRENT--.:USER\Software\Microsoft\Developer\Dialog Editor

Value Name: InitialButtons

Data Type: REG _ DWORD

Data: integer

This key determines if a new dialog box template is created with the OK and Cancel
buttons, where:

• If integer is 0, the dialog box templates are blank.

• Ifinteger is 1, the dialog box templates are created with the OK and Cancel
buttons.

Setting User Interface Fonts

658

Key Name: HKEY _CURRENT _ USER\Software\Microsoft\Developer\Fonts

Value Name: [Normal][Small][Fixed]

Data Type: REG_STRING

Data: font-name,size[pt]

This key determines the fonts used by various user interface elements of the system,
where:

• font-name specifies the actual font name.

Appendix B Initializing and Configuring Microsoft Developer Studio

• size defines the font size in pixels or points.

• [pt] indicates point values. If this field is blank, pixel values are assumed.

The Normal font is used by the status bar, dialog boxes, and browse windows. The
Small font is used by toolbars and other docking windows for their captions. The
Fixed font is used by the hexadecimal (raw data) editor.

The default fonts listed below are for the U.S. product running on a single-byte
character-set system. They are built into the product and do not normally appear in
the Registry.

Normal:REG_STRING:MS Sans Serif.8pt
Small :REG_STRING:SmallFonts.-9
Fixed:REG_STRING:Courier.14

Negative numbers specify the character height, and positive numbers specify the cell
height. A font's character height is the cell height minus any internal leading.

Setting the Default Magnification Factor
Key Name: HKEY _CURRENT _ USER\software\Microsoft\Developer\Graphics
Editor

Value Name: DefaultZoom

Data Type: REG_DWORD

Data: range

Sets the default value for the ratio of magnified and actual-size views in the graphic'
editor window, where:

• range is 2 through 10 (if this entry does not appear in the Registry, the default
value of 6 is used).

Describing Mouse Pointer Devices
Key Name: HKEY _ CURRENT_ USER \software \Microsoft \Developer \Mouse Pointer
Devices

Value Name: device-name

Data Type: REG _ SZ

Data: number-oJ-colors, width,heig ht

Specifies the names of display devices and the attributes of their corresponding
mouse pointer images, where:

• device-name is the name of the new mouse pointer device that appears in the New
Device Image dialog box when you add a mouse pointer image.

659

Visual C++ User's Guide

• number-oj-colors specifies the number of colors supported by the device. The
number of colors entry must be 2 or 16.

• width is the image width in pixels.

• height is the image height in pixels.

Describing Icon Devices

660

Key Name: HKEY _ CVRRENT_ USER~oftware\Microsoft\Developer\Icon Devices

Value Name: device-name

Data Type: REG _ SZ

Data: number-oJ-colors,width,height

Specifies the names of display devices and the attributes of their corresponding icon
images, where:

• device-name is the name of the new icon device that appears in the New Device
Image dialog box when you add an icon image.

• number-oj-colors specifies the number of colors supported by the device. The
number of colors entry must be 2 or 16.

• width is the image width in pixels.

• height is the image height in pixels.

APPENDIX C

DDESpy Reference

You can use DDESpy (DDESPY.EXE) to monitor dynamic data exchange (DDE)
activity in the Microsoft Windows NT operating system. To start DDESpy, double­
click its icon in the Microsoft Visual C++ 4.0 program group.

Note You may need to add the DDESpy icon to the Microsoft Visual C++ 4.0 program group.

Because DDE is a cooperative activity, DDE-monitoring applications must follow
certain guidelines for your system to operate properly while it is in use.

The following topics are covered:

• Selecting the Output

• U sing the Monitor Menu

• Tracking Options

Selecting the Output
DDESpy can display DDE information in a window or on your debugging terminal,
or it can save the displayed information in a file for later use.

You use the Output menu to select where DDESpy sends output. If you choose the
File command, you can specify the name of an output file, or choose the No File
button. After you have chosen the File command, DDESpy asks you for an output
filename every time you restart it. This prompt can be turned off by reopening the
File dialog box and choosing the No File button.

From the Output menu, you can also choose to send your output to either a debug
terminal or to the DDESpy window. If you choose a window, you can clear the
display window using the Clear Screen command. You can use the Mark command to
add marker text to the display - for example, before a DDE event to make it easier to
find the event in the output file.

661

Visual c++ User's Guide

Output Menu Command

File

Debug Terminal

Screen

Clear Screen

Mark

Description

Specifies the name of an output file.

Sends your output to a debug terminal.

Sends your output to a DDESpy window.

Clears the display window.

Marks the text.

U sing the Monitor Menu
You use the Monitor menu to specify one or more types of DDE information that
DDESpy displays. The following information can be displayed:

• String-Handle Data

• Sent DDE Messages

• Posted DDE Messages

• Callbacks

• Errors

• Filters

The DDE protocol passes information by using shared memory. The contents of the
shared memory depend on the type of DDE transaction. Several structures have been
defined to allow applications using DDE to access the information in shared memory.
DDESpy displays the contents of the appropriate structure for the DDE activity being
monitored.

String-Handle Data

662

The DDE protocol uses the MONHSZSTRUCT structure to pass string-handle data.
DDESpy displays the following information from this structure:

• Task (application instance)

• Time, in milliseconds, since you started Windows

• Activity type (create, destroy, or increment)

• String handle

• String contents

The following example shows a typical DDESpy display of string-handle data:

Task:0x94f. Time:519700. String Handle Created: c4a4(this is a test)
Task:0x94f. Time:526126. String Handle Created: c4aa(another test)

Appendix C DDESpy Reference

Sent DDE Messages
The DDE protocol uses the MONMSGSTRUCT structure to post DDE messages.
DDESpy displays the following info.rmation from this structure:

• Task

• Time

• Handle of receiving window

• Transaction type (sent)

• Message type

• Handle of sending application

• Other message-specific information

The following example shows a typical DDESpy display of DDE message activity:

Task:0x8df Time:642402 hwndTo=0x38dc Message(Sent)=Initiate:
hwndFrom=9224, App=0xc35d("Server")
Topic=*

Task:0x94f Time:642457 hwndTo=0x2408 Message(Sent)=Ack:
hwndFrom=9396, App=0xc35d("Server")status=c35d(fAck
fBusy)
Topic=Item=0xc361("System")

Posted DDE Messages
The DDE protocoi uses the MONMSGSTRUCT structure to post DDE messages.
The information displayed for posted DDE messages is similar to the information
displayed for sent DDE messages. DDESpy displays the following information from
this structure:

• Task

• Time

• Handle of receiving window

• Transaction type (posted)

• Message type

• Handle of sending application

• Other message-specific information

Callbacks
The DDE protocol uses the MONCBSTRUCT structure to pass information to
application callback functions. DDESpy displays the following information from this
structure:

• Task

663

Visual C++ User's Guide

• Time

• Transaction type

• Exchanged-data format (if any)

• Conversation handle

• String handles and their referenced strings

• Transaction-specific data

The following example shows a typical DDESpy display of callback activity:

Task:0x8df Time:2882628 Callback:
Type=Advstart. fmt=0xl("CF_TEXT"). hConv=0xc24b4.
hszl=0xc361("System") hsz2=0xc4df("xxcall"). hData=0x0.
1 Datal=0x83f0000. lData2=0x0
return=0x0

Errors
When an error occurs during a DDE transaction, the DDE protocol places the error
value and associated information in a MONERRSTRUCT structure. DDESpy uses
this structure to display the following information about the error:

• Task (the handle of the application that caused the error)

• Time

• Error value and name

Filters
You can use the Message Filters and Callback Filters options to choose the types of
DDE messages and callbacks to monitor.

Tracking Options

664

DDESpy can also display information about aspects of DDE communication in your
Windows system:

• String handles

• Conversations

• Links

• Services

You can use the.T,rack menu to specify which DDE activity DDESpy tracks. When
you choose a command from the Track menu, DDESpy creates a separate window for
the display of information in conjunction with the DDE functions. For each window
created, DDESpy updates the displayed information as DDE activity occurs. Events

Appendix C DDESpy Reference

that occurred prior to creation of the tracking window are not displayed in the
tracking window.

DDESpy can sort the displayed information in the tracking window. If you select the
heading for a particular column in the tracking window, DDESpy sorts the displayed
information based on the column you select. This feature can be useful if you are
searching for a particular event or handle.

Tracking String Handles
Windows maintains a system-wide string table containing the string, string handle,
and string usage count that applications use in DDE transactions.

~ To display the system string table

• From the Track menu, choose the String Handles command.

Tracking Conversations
The Conversations window shows the service name, current topic, and server and
client handles for each active conversation.

~ To display all active DOE conversations in your Windows system

• From the Track menu, choose the Conversations command~

Tracking Links
The Links window shows the server name, topic, item format, transaction type, client
handle, and server handle for every active advise loop in your Windows system.

~ To display all active DOE advise loops

• From the Track menu, choose the Links command.

Tracking Services
Server applications use the DdeNameService function to register with the DDE
protocol. When the DDE protocol receives the DdeNameService function call, it
adds the server name and an instance-specific name to a list of registered servers.

~ To display a list of registered servers

• From the Track menu, choose the Services command.

665

v

APPENDIX D

PView Reference

With t~e PView process viewer (PVIEW.EXE), you can examine and modify many
characteristics of the processes and threads running on your system. PView can help
you answer questions such as these:

• How much memory does the program allocate at various points in its execution,
and how much memory is being paged out?

• Which processes and threads are using the most CPU time?

• How does the program run at different system priorities?

• What happens if a thread or process stops responding to Dynamic Data Exchange
(DDE), OLE, or pipe input/output (I/O)?

• What percentage of time is spent running application program interface
(API) calls?

Warning With PView, you can modify the status of processes running on your system. As a
result, by using PView, you can stop processes and potentially halt the entire system. Make
sure you save edited files before running PView.

The following topics are covered:

• Opening PView

• Process Selection

• Process Memory Used

• Priority (base process)

• Thread Priority

• Thread Selection

• Thread Information

• Memory Details Dialog Box

667

Visual C++ User's Guide

Opening PView
To start PView, double-click its icon in the Microsoft Visual C++ 4.0 program group.
PView opens by displaying the main Process Viewer dialog box.

Note You may need to add the PView icon to the Microsoft Visual C++ 4.0 program group.

The following buttons control PView actions.

Button

Exit

Memory Details

Kill Process

Refresh

Connect

Description

Closes PView.

Opens the Memory Details dialog box.

Removes the highlighted process from the system. This is
different from choosing Close from the System menu, because
the process is not informed of the shutdown (with
WM_ DESTROY) before it is stopped.

Updates information in the Process Viewer dialog box and the
Memory Details dialog box.

Displays information about the computer specified in the
Computer text box. The Computer text box should contain the
network name of the computer you wish to view. Your ability to
connect to a remote system may be affected by security on the
target machine.

The Process Viewer dialog box displays information on active processes and threads.
You can select, modify, and view the behavior of processes and threads with the
following PView features:

• Process Selection

• Process Memory Used

• Priority

• Thread Priority

• Thread Selection

• Thread Information

Process Selection

668

The Process selection list box displays information on the accessible processes
running on the system. From this list, you can select a process for viewing. All
subsequent PView information and controls derive from the process selected in this
list.

Note Because Windows NT is a secure operating system, you may not be able to view or
alter attributes of some programs running on the system. See your Windows NT user's guide
for ,more information on security.

Appendix D PView Reference

The Process selection list box contains the following fields.

Field

Process

Processor Time

Privileged

User

Description

Name of the process on this line (usually an .EXE filename).

Amount of CPU time that this process has used.

Percentage of CPU time that was spent executing privileged
code (code in the Windows NT Executive).

Percentage of CPU time that was spent executing user code.
This time includes time running protected subsystem code.

Process Memory Used
The Process Memory Used box displays information on the memory usage of the
process selected in the Process selection list box.

Field

Working Set

Heap Usage

Priority

Description

Average amount of physical memory used by the process. The
longer a process has been running, the more accurate this
value is.

Current total heap being used by the process. Heap space is
taken by dynamically allocated data, including memory reserved
by malloc, new, LocalAlloc, HeapAlloc, VirtualAlloc, and
GlobalAlloc.

With the Priority options box, you can change the base priority of the process
. highlighted in the Process selection list box. This priority determines the activity of

all threads of the selected process.

Field

Very High

Normal

Idle

Thread Priority

Description .

Maximum priority. CPU time is split between this and other
Very High priority processes. Lower priority processes execute
only when all Very High priority processes are blocked.

Standard priority group, also known as foreground. Most
applications run with normal priority.

Lowest priority group, also known as background. Processes
with this priority execute only when the system has no higher­
priority processes that need CPU time. Screen savers run at this
priority.

The Thread Priority box shows the base priority of the thread selected in the Thread
selection list box. This is not an absolute priority, but is a range of priorities that can
be assigned by the operating system to the selected thread.

669

Visual C++ User's Guide

Priority

Highest

Above Normal

Normal

Below Normal

Idle

Description

Highest priority level allowed by the process priority.

Slightly elevated priority.

Standard priority level for the given process priority.

Reduced priority.

No CPU time will be spent on this thread unless all other
threads are blocked.

Thread Selection
The Thread selection list box displays statistics for threads of the process selected in
the Process selection list box so you can select a thread for further operations.

Field

Thread(s)

Processor Time

Privileged

User

Description

Thread ID number. This is the handle returned by
CreateThread.

Amount of time that this instance of the thread has been
running.

Percentage of CPU time that was spent executing privileged
code (code in the Windows NT Executive).

Percentage of CPU time that was spent executing user code.
This time includes time running protected subsystem code.

Thread Information
The Thread Information box displays execution information about the thread selected
in the Thread selection list box.

Field

User PC Value

Start Address

Context Switches

Dynamic Priority

Description

Value of the instruction pointer for this thread.

Address of the entry point of this thread. This information is
useful for debugging.

Number of times that this thread has received CPU attention.

Current dynamic thread priority. This number is determined by
many factors, including user activity.

Memory Details Dialog Box

670

The Memory Details dialog box gives information on the process selected in the
Process selection list box.

Appendix D PView Reference

~ To view the Memory Details dialog box

• Choose Memory Details.

-or-

Double-click on a process in the Process selection list box.

~ To update the information in the Memory Details dialog box

• Return to the Process Viewer dialog box and choose Refresh.

The Memory Details dialog box consists of the following buttons and groups.

Buttons and Groups Description

OK
Process

User Address Space for

Mapped Commit

Returns to the Process Viewer dialog box.

Displays name and process ID of the process selected in the
Process selection box of the Process Viewer dialog box.

Select a specific .EXE or .DLL file or select Total Image
Commit to display the following statistics for all
components of the selected process:

Total Sum of all user address space.

Inaccessible

Read Only

Writeable

Writeable (Not
Written)

Address space that cannot be
accessed. This includes memory
reserved by VirtualAlloc.

Read-only data and code.

. Total data address space that can be
written to.

Data address space that can be
written to, but has not been.

Executable Code in selected .EXEs and .DLLs.

Displays the following statistics for Mapped Commit
memory:

Total

Inaccessible

Read Only

Write able

Write able (Not
Written)

Executable

Sum of all mapped address space.

Address space that cannot be
accessed. This includes memory
reserved by VirtualAlloc.

Read-only data and code.

Total data address space that can be
written to.

Data address space that can be
written to, but has not been.

Code in selected .EXEs and .DLLs.

671

Visual C++ User's Guide

Buttons and Groups

Private Commit

Virtual Memory Counts

672

Description

Displays the following statistics for Private Commit
memory:

Total

Inaccessible

Read Only

Writeable

Writeable (Not
Written)

Executable

Sum of all private address space.

Address space that cannot be
accessed. This includes memory
reserved by VirtualAlloc.

Read-only data and code.

Total data address space that can be
written to.

Data address space that can be
written to, but has not been.

Code in selected·.EXEs and .DLLs.

Displays the following statistics on Virtual Memory usage:

Working Set Average amount of virtual memory
used by the process. The longer a
process has been running, the more
accurate this value is.

Peak Working Set

Private Pages

Virtual Size

Peak Virtual Size

Fault Count

Maximum value attained by the
Working Set described above.

Number of pages marked as private.

Current size of virtual memory for
this process.

Maximum size of virtual memory for
this process.

Number of page faults. Each page
fault represents an attempt to access
memory at an address that was not in
physical memory.

APPENDIX E

ZoomIn Reference

You can use the Zoomln utility (ZOOMIN.EXE) to capture and enlarge an area of the
Windows desktop.

~ To use Zoomln

1 Double-click the Zoomln icon in the Microsoft Visual C++ 4.0 program group.

Note You may need to add the Zoomln icon to the Microsoft Visual C++ 4.0 program
group.

2 Click within the Zoomln window's client area and drag the rectangle over the
target area you want to enlarge.

This target area can be anywhere in the Windows graphical desktop area. The area
over which you center the Zoomln rectangle appears in ilie Zoomln window's
client area.

3 Release the mouse button when the desired target area is visible in the Zoomln
window.

To enlarge the image, use the scroll bar to scroll down. To reduce the image to its
original size, use the scroll bar to scroll up. Each successive click on the scroll bar
enlarges or shrinks the image.

ZoomIn Menus
Edit Menu
You can use the Edit menu to copy to the clipboard and update the Zoomln window
image.

Menu Command

Copy

Refresh

Description

Copies the contents of the ZoomIn window to the Clipboard.

Updates the image in the ZoomIn window. This update is visible
only if the Windows desktop target area has changed since it was
last captured by ZoomIn.

673

Visual C++ User's Guide

674

Options Menu
You can use the Options menu to specify the update interval.

Menu Command

Refresh Rate

Help Menu

Description

Enables the automatic update of the ZoomIn window. This
dialog box also allows you to specify, in increments of one-tenth
of a second, the automatic update interval.

You can use the Help menu to display information.about ZoomIn.

Menu Command Description

About Displays copyright and version information about ZoomIn.

APPENDIX F

WinDiff Reference

The WinDiff utility (WINDIFF.EXE) graphically compares the contents of two files
or two directories. With WinD iff, you can compare and modify the contents of files
and directories using a graphical Windows interface.

~ To start WinDiff

Double-click the WinDiff icon in the Microsoft Visual c++ 4.0 program group.

-or-

Use the WinDiff command line.

Note You may need to add the WinDiff icon to the Microsoft Visual C++ 4.0 program group.

WinDiff Command Line
The full WinDiff command-line syntax is:

WINDIFF path] [path2] [-s [options] savefile]

Parameters .
path] Compares files in path] with files in current directory.

path] path2 Compares files in path] with files in path2.

options Can be any combination of the following options:

• / s: Compares files that are the same in both paths.

• !l: Compares only files in the first (left) path.

• /r: Compares only files in the second (right) path.

• /d: Compares two different files in both paths.

savefile Name of text file to which comparison results are written.

675

Visual C++ User's Guide

Using the Expand/Outline Button
You can display the filenames or the expanded contents of the selected files. When
you choose the Expand button, the contents of the files are expanded and the button
label then changes to Outline. When you choose the Outline button, only the
filenames are displayed. Files with the same name but different contents are displayed
in red text. Identical files are displayed in black text.

~ To display the expanded contents of the files

1 Select the files you want to compare.

2 From the Expand menu, choose Both Files.

3 From the View menu, choose Expand.

-or-

Choose the Expand button.

WinDiff Colors
File contents are displayed in three background colors.

Background Color

Red

Yellow

White

Description

Indicates different text from the fIrst (left) file.

Indicates different text from the second (right) file.

Indicates identical text from both files.

WinDiff Menus

676

File Menu
You can use the File menu to define selection, naming, and printing options.

Menu Command

Compare Files

Compare Directories

Abort

Save File List

Copy Files

Description

Displays the File Open dialog box, in which you can enter the
names of two files to compare.

Displays the Select Directories dialog box, in Which you can
enter the names of two directories to compare.

Terminates a file-scanning operation. This menu selection is
unavailable until a scanning operation is initiated.

Displays the Save File List dialog box, in which you can
specify the output file where the comparison results are to be
written.

Displays the Copy Files dialog box, in which you can specify
files to be copied from one directory to another.

Appendix F WinDiff Reference

Menu Command

Print

Exit

Edit Menu

Description

Prints the comparison results. '

Terminates WinDiff.

You can use the Edit menu to designate the text editor you want to use and to specify
which files to display for editing.

Menu Command

Edit Left File

Edit Right File

Edit Composite File

Set Editor

View Menu

Description

Displays the contents of the first (left) file using the default
Notepad editor.

Displays the contents of the second (right) file using the
default Notepad editor.

Displays both files using the default Notepad editor.

Displays a WinDiff dialog box, in which you can specify the
editor to be used for the preceding operations. By default,
Notepad is used.

You can use the View menu to compare both the content and graphical representation
of two files.

Menu Command

Outline

Expand

Picture

Previous Change

Next Change

Expand Menu

Description

Displays only the list of filenames (equivalent to the Outline
button).

Displays comparison of the contents of selected files
(equivalent to the Expand button).

Displays a graphical representation of the contents of the
two files.

Goes directly to previous area of the file that was changed
(if any).

Goes directly to next area of the file that was changed
(if any).

You can use the Expand menu to display changed lines in the selected file. You can
also tum off the display of line numbers.

Menu Command

Left File Only

Right File Only

Description

Expands only the first (left) file, with changed lines colored
appropriately.

Expands only the second (right) file, with changed lines
colored appropriately.

677

Visual C++ User's Guide

678

Menu Command

Both Files

Left Line Numbers

Righi Line Numbers

No Line Numbers

Options Menu

Description

Expands both files, with changed lines colored appropriately.

Displays line numbers for the first (left) file.

Displays line numbers for the second (right) file.

Turns off the line number display.

You can use the Options menu to specify file comparison criteria.

Menu Command

Ignore Blanks

Mono Colors

Show Identical Files

Show Left-Only Files

Show Right-Only Files

Show Different Files

Mark Menu

Description

Ignores blank spaces in the expanded view, so that lines
differing only in the amount of white space are shown as
identical.

Displays differences in black and white only.

In outline view, displays files that are identical.

In outline view, displays files that appear only in the first
(left) path.

In outline view, displays files that appear only in the second
(right) path.

In outline view, displays files that are in both paths, but are
different.

You can use the Mark menu to mark comparison results.

Menu Command

Mark File

Mark Pattern

Hide Marked Files

Toggle Marked State

Help Menu

Description

Marks selected comparison results.

Displays the Mark Files dialog box, in which you can specify
the file marking pattern.

Hides all marked files.

Reverses the marked status of marked and unmarked files.

You can use the Help menu to display information about WinDiff.

Menu Command Description

About Displays copyright and version information about WinDiff.

! (exclamation point) makefile syntax 638,648
! operator (NMAKE) 649
" (double quotation marks), makefile syntax 634,641,

650
(number sign)

makefile syntax 634, 641, 645
substituting for equal sign, CL 554
TOOLS.INI syntax 633

$ (dollar sign) makefile syntax 634, 641- 643
$$// directive comment 523
$$@ macro (NMAKE) 643
$* macro (NMAKE) 643
$** macro (NMAKE) 643
$< macro (NMAKE) 643
$? macro (NMAKE) 643
$@ macro (NMAKE) 643
% (percent sign) makefile syntax 634
() (parentheses) makefile syntax 642- 643,649
* (asterisk)

makefile syntax 643
wildcards 633

- (dash)
makefile syntax 638,648
NMAKE syntax 631
use 574,609

- operator (NMAKE) 649
. (period), makefile syntax 645,647
/ (slash)

CL syntax 548
NMAKE syntax 631
use 574,609

/? option
BSCMAKE 619
CL 562
NMAKE 631

: (colon), makefile syntax 635- 637,642,645- 647
; (semicolon)

makefile syntax 637- 638, 645
TOOLS.INI syntax 633
use 425,573,583,587,609

< > (angle brackets), makefile syntax 639- 640,643,
648

Index

= (equal sign), makefile syntax 641- 642
? (question mark)

makefile syntax 643
wildcards 633

@ (at sign)
makefile syntax 638, 643
NMAKE syntax 631
use 424,573

[] (brackets), makefile syntax 650
A (caret), makefile syntax 634,641
{ } (braces), makefile syntax 637,645
- operator (NMAKE) 649
32-bit Incremental Linker 413,569
32-Bit Library Manager 607

A
/ A option, NMAKE 631
Accel Properties page 179
Accelerator editor 177-178
Accelerator keys

associating with menu items 179
key name in menu caption 175

Accelerator properties page, legal entries 179
Accelerator tables 177-178
Accelerators 177, 179
Add Member Variable dialog box See ClassWizard
Adding

accelerator table entries 178
classes with ClassWizard 225-230,232
commands to Tools menu 450
components to Component Gallery 256
controls to dialog boxes 151
custom colors 201
entries in string table 183
files to project 53
member variables 239
message handlers 235
new expression to expression list 332
OLE automation methods, properties to class 230,

232

679

Index

680

Adding (continued)
OLE controls 164
OLE Events 230, 232

Advanced options, Step 4 528- 530
Airbrush tool 191-192
Aliasing bugs, compiler options 401
/ALIGN option, LINK 578
Aligning

controls 157-158
controls on guides 160

Alignment section 627
/ALL option (DUMPBIN) 622
Angle brackets « » makefile syntax 639- 640, 643,

648
Appending device names, CL 557
Application project type 37
Applications

console, building from single source file 73
creating

choosing options 13
with AppWizard 3-21

database views, defining data source 10
MDI, select App Wizard project architecture type 6
project type See Application project type
remote, debugging 338
running in integrated debugger 74
starting from Developer Studio 74

Applications options, Step 4 528
AppWizard

C functions See App Wizard exported C functions
created files 21
creating applications with 3-21
deriving custom steps 499
DLL projects, applications, creating 18
Programming Reference 495-544
projects See App Wizard projects
standard custom resource templates 534

App Wizard exported C functions
GetDialog 512
ScanForAvailableLanguages 515
SetCustomApp WizClass 514
SetNumberOfSteps 514
SetSupportedLanguages 516

App Wizard projects
all projects, resource templates 535
application options 13
architecture options, types 6
creating 4-7
data source options 10

App Wizard projects (continued)
database support options 9
makefile type options 16
OLE options 12
project options 16
README.TXT file, creating 21
resource languages 6, 19
source file comments options 16

AppWizards
database applications resources 543
enumerated values of standard steps 513
files created by, described 483
help file support 543
Macintosh applications, resources 544
macros

to name classes and files 530
how they get values 491
how to specify in directives or text 492

standard directives 516
/ARCHIVEMEMBERS option, DUMPBIN 622
Argument macros, adding to Tools menu 452
Arranging dialog box push buttons 158
AS macro, NMAKE 643
ASCII characters, adding to string 184
Assembly code 321
Assembly-language source file, specifying, CL

option 565
Associating shortcuts with menu items 179
Asterisk (*) ,

makefile syntax 643
wildcards 633

At sign (@)
fastcall naming convention 391
makefile syntax 638, 643
NMAKE syntax 631
use 573
specifying base address 424

AUX, appending to, CL 557
.AWX files 476

B
/B option, NMAKE 631
Back member function, CCustomApp Wiz class 502
Backslash (\), makefile syntax 635, 638, 641
(backslash), makefile syntax 635,638,641
Base Address option, linker 424
Base addresses 424,581,627
Base class graphs, displaying 274,276

Base Classes and Members window 276
/BASE option, LINK 424
_based keyword, compiler option 393
Batch files

profiler custom 352
profiler standard 593

Batch processing
flow, diagram 592
profiler 591,593

BC macro, NMAKE 643
$$BEGINLOOP directive 519
Binary data

editor 213-215
opening resource for editing 214
using binary data editor window 215

Binary File Dumper 621
Binary File Editor 625
Binary templates 493
/BIND option, EDITBIN 626
Bitmaps

See also Graphics
converting into toolbar resources 207
converting to toolbar resources 208
pasting Clipboard contents into 195
resizing entire 198
selecting 194
setting properties 189
shrinking, stretching 199
viewing with image editor 187

.BMP files
exporting 136
importing 135

Bookmarks, using 84
Both Formats option, linker 421
BOTH keyword, /DEBUGTYPE option 421
Braces ({ }), makefile syntax 637, 645
Brackets ([]), makefile syntax 650
Breakpoints

advanced syntax 306
data 301-304
location 299,305
setting

and clearing with toolbar 294, 296
at location 297

using 293
viewing the list 297

BRIEF emulation, valid regular expressions 96

Browse files
building, updating 271
closing 268
opening 267
querying about symbols 269

Browse information
filtering 277
files, naming 619

Browse Information Maintenance Utility 615
Browse windows

elements, functions (table) 273
filtering information for files 273
modifying display 268
moving between locations 280
overview 267
symbol codes 270

Browser See Browse windows
Browser, Symbol 139-140
Browser symbol codes (table) 270
B'rowser window resource See Resource browser

window
Browsing current browse file 269
Brush tool 191-192
Brushes, custom 197
.BSC files

described 615
making smaller 617
naming 619

BSCMAKE 615-620
BSCMAKE.EXE 267,615
Build menu, debug submenu 284
Building

See also NMAKE
projects 64-69

Buttons toolbar See Toolbar buttons
BY operator 313

c
C functions exported by MFCAPWZ.DLL 512
IC option

CL 553
NMAKE 631

Ic option, CL 553
C source file, specifying, CL 565
C++ class hierachies, viewing as graphs 274
C++ language category compiler options 384
C++ source file, specifying, CL 565
Calculated symbols, including 146-147

Index

681

Index

682

Call graphs 278
Call Stack window 317-318
Callers graph window 280
Callers graphs 279
Calling conventions, compiler options 390-391
CAppWizStepDlg class 499-500
CApp WizStepDlg member function, CApp WizStepDlg

class 500
Caret (A), makefile syntax 634,641
Cascading menu, creating 171-172
Categories managing 264
CC macro (NMAKE) 643
CCustomAppWiz, data members, m_Dictionary 509
CCustomAppWiz class 501-508
_cdecl keyword, compiler option 393
CDialog class 227
CForm View class 227
Changed source code

Class Wizard, updating for 251
rebuilding ClassWizard file 253

Changing
control, dominant 153
graphics properties 189
name ofRESOURCE.H 146
symbol header file name 146
symbol or symbol name 138
unassigned symbols 140-141

Character-mode application 585
Characters

adding ASCII or special characters to string 184
changing type, CL 562

Checksum 584, 627
CL

command files, use 549
command line 547-548
command-line options (list) 552
compiling without linking 551, 553
constants, defining 553
controlling link 577
environment variables 549-550
extensions, specifying 557
filename extensions, processing 548
files

browser, generating 398
map, object, creating 559
renaming 558
specifying for program database 557

function prototypes 566
linking 577

CL (continued)
MS-DOS device names 557
options

reference 548,553,555-567
specifying 549-550

paths, specifying 557
preprocessing

copying output 555
output file,creating 564
preserving comments 553

stacks, setting size 556
syntax checking 567
use generally 550

CLASS keyword, SECTIONS statement 589
Classes,

base 276
CDialog 227
CForm View 227
Class Wizard, types created in 225
creating new in Class Wizard 227
deleting from Class Wizard file 251
displaying graph of derived classes 274
moving in ClassWizard 252
multiple inheritance, display in graph 277
renaming in Class Wizard 252

Class Wizard
Add Member Variable dialog box 247
adding message handlers 235
adding new classes 225-230, 232
classes

adding new 225-230,232
types created in (table) 225
updating 227

.CLWfile
defined 251
rebuilding 253

data validation types (table) 250
defined 222
defining DDX Control variables 249
defining message handlers for dialog box buttons,

shortcut 238
dialog box data 246
Edit Code command 239-240,247
Edit Variables dialog box 247
importing classes 225,232
jumping to member function definition 240
message filters 236,238,244

Class Wizard (continued)
tpessage handlers

adding 235
deleting 239
editing 240

message maps 222
objects and associated messages 235
OLE automation 230,232
overriding virtual functions 241
overview 222
Repair Class Information dialog box 251
updating 251
Visual C++ toolbar button 227

ClassWizard information file templates 494
Clipboard, pasting to, from graphics editor 195
Closed figures, drawing 192
Closing project workspaces 38
.CLW file 251,253,494
!CMDSWITCHES directive 648
COBOL macro (NMAKE) 643
Code, editing from ClassWizard 239-240, 247
Code generation category compiler options 388
COFF Binary File Dumper 621
COFF Binary File Editor 625
COFF debugging information 421
COFF Format option, linker 421
COFF keyword./DEBUGTYPE option 421
COFF libraries, object files

creating and managing See Lm
linking 570

COFF line numbers 622
COFF symbol table 623
Colon (:)

makefile syntax 635-637, 642
use 574,609

Colon (\:)
appending device names, CL 557
makefile syntax 645,647

Colors
adding custom 201
changing 201
creating icons and cursors 205
inverse

changing 205
drawing with 204
using 201

palette See Colors palette
screen, changing 205
selecting 199

Colors (continued)
syntax, changing 111
transferring 200
WinDiff file contents 676
working with in graphics editor 199

Colors palette
described 187
inverse-color selector 205 .
saving or loading 202
screen-color selector 205

Combo boxes 154-155
COMDATs

creating 577
optimizing 583

Command files
BSCMAKE 618
CL 549
inline, in makefiles 639
Lm 609
LINK 418,573
NMAKE 631

Command line
BSCMAKE 617
CL 548
Lm 608
LINK 573
NMAKE 631
PREP options 594
profiler, running from 343

Command lines
CL 547
CL options (list) 552

Command-line
profiler options 594
WinDiff syntax 675

Commands
adding to Tools menu 450
Debug menu 287
makefile See Makefiles; NMAKE

/COMMENT option, LINK 578
Comments

base address files 425
command files 573
directives 523
function-order files 583
in command files 609
in headers 578
macros (NMAKE) 641
makefiles 634

Index

683

Index

684

Comments (continued)
module-definition files 587
preserving, CL 553
TOOLS.INI 633

Common. Object File Format See COFF
Common Options, linker 414
Comparing contents of files 675
Compiler directives, using 147-148
Compiler options

assembly 398-399
best-case always 385
browse info file name 398
Browser file packing, tum off 398
C language category 392
c++ language category 384
C7 compatible 383
calling conventions

options 390
registers 391

CL, activating stack probes 560
code generation category 388
consistency rules

for automatic use 408
for per-file use 409

debug multithread 390
debugging information, type 383
default include directory, ignore 412
disable

construction displacements 387
language extensions 392

eliminate duplicate strings 396
enable

exception handling 386
function-Ievellinking 396
or disable language extensions 393
run-time type information 387

exclude local variables 398
favor fast code 405
files, optimizing size 405
general category 381-384
general-purpose 386
generate

browse info 398
intrinsic functions 403

generating fast, smallest code 403
improve float consistency 404
include files, provide alternate search paths 412
incremental compiler 397
inline-function expansion 406

Compiler options (continued)
intrinsic function generation 404
line numbers only 383
listing file 398-399
Listing Files category 397
minimal rebuild 396
multithread 389
no aliasing 401
optimizations category 399-407
optimizing

file size 405
float consistency 393
intrinsic function generation 404
maximum 406

overview 381
placing debug LIBC.LIB in object file 390
placing LIBC.LIB in object file 389
pointer-to-member representation 385
precompiled headers 408-409
Precompiled Headers category 407
Preprocessor category 411
processor optimization 388
program database 383
project, source file, common 384
providing local, global optimizations, automatic­

register allocation, loop optimization 402
registers, passing arguments in 391
removing

defined preprocessor identifiers 411
optimization options from command line 400

representation method 385
reset button 384
run-time library 389
specifying

C calling convention 390
fastcall calling convention 391

standard include directory, ignore 412
standard-call calling convention 391
struct member byte alignment 392
suppress informational messages 397
s~ppress startup banner 397 '
suppressing creation of frame pointers on call stack

406
turning off all optimizations 400
undefine macros, symbols 411
vtordisp fields, enable or disable 387
warnings 382-383

Compiler options, CL
causing preprocessor to process specified header file

558
char, change default type 562
command-line help for compiler 562
compile without linking 553
controlling stack probes 561
copy preprocessor output to standard output 555
copy proprocessor file to standard output 554
creating dynamic-link libraries 562-563
creating map file 559
define symbols and constants 553
generating calls to _penter 560
language, specifying source file type 565
linker-control options 564
listing 562
names, restrict length of external 561
naming, creating executable or DLL 558
naming object file 559
naming precompiled header filename 559
output files 556
placing debugging information in object files 565
pooling strings in read-only memory 560
preprocessor output file 564
preserve comments during preprocessing 553-554
prototypes, generating 566
remove default library name from object file 566
set stack size 556
specifying program database filename 557
syntax, check only 567
version string, setting 565

Compiling
CL, generally 550
without linking, CL 553

Component Gallery
adding components to 256
changing component's icon 262
creating categories 264
creating components 257
deleting components from categories 261
described 253
importing components 256
inserting components into projects 254
rearranging category order 266

Components
creating your own 257
exporting 255
importing 256
managing 259

Components (continued)
moving between categories 260
providit:J.g descriptions 263

CON, appending to, CL 557
Conditional statements, matching 83
CONFIRM.INF 489
Consistency

Index

rules for automatic use of precompiled headers 408
rules for per-file use of precompiled headers 409

Console Application project type 37
CONSOLE keyword /SUBSYSTEM option 585
Constants, defining, CL 553
Context operator 313
Context-sensitive help 495
Controls

adding 150-152
aligning 157-158
aligning on guide 160
arranging 156
centering 158
centering in dialog box 158
changing tab order 162-163
creating, setting guides 160
dialog box, shortcut for defining member

variables 239
dialog boxes 151-152
dominant

changing 153
effect on aligning 155, 157
setting 153

formatting dialog box layout 155
location displayed 156
making same size, height, or width 155
mnemonic for controls 163
moving, aligning 159
OLE

See OLE controls
using in dialog boxes 164

selecting 153
sizing group with guides 160
sizing individual controls 154
user-defined, using 165
using Grid feature 161

Conventions, calling, compiler options 391
Converting bitmaps to toolbar resources 208
Coordinates, location of controls in dialog boxes 156
Copy corrnnand 103

685

Index

686

Copying
graphics 195
menus, menu items 173-174
preprocessor files, CL 554
resources 132, 134
text 103
toolbar buttons 209

CopyTemplate member function, CCustomAppWiz
class 503

CPP macro (NMAKE) 643
Creating

accelerator table entries 178
applications with AppWizard 3-21
App Wizard projects 4-7
cascading (hierarchical) menu 171-172
Class Wizard information file templates 494
colors, custom 201
component categories 264
components 257
Custom AppWizards 473-495
custom resource templates 485
dynamic-link libraries, CL 562-563
files 76-77
help files, context-sensitive 495
map files, CL 559
menus 170-172
new classes in Class Wizard 227
object files, CL 559
.PCH file, compiler option 409
preprocessor-output files, CL 564
projects 34
resources 131-132
symbols 140
toolbar resources 208-209
toolbars, custom 440-441

Cropping graphics 198
.CUR files, exporting and importing 135-136
Cursors

See also Graphics; Images
color 205
creating 256
editing 203
hot spot, setting 206
transparent attribute 204

CUSTMWZ.AWX 476
Custom AppWizard projects

CONFIRM.INF 489
creating 478-482
creating context-sensitive help 495

Custom AppWizard projects (continued)
NEWPROJ.INF 490 '
TEMPLATE directory 483
using custom resource templates 484

Custom App Wizards
adding functionality 483
creating 473-495
debugging 493
help file support 542-543
steps in creating 475
tool for creating 476
use described 473
using 474

Custom brush 197
Custom colors, adding 201
Custom controls 165
Custom resource templates

binary templates See Binary templates
creating 485
standard 534
text templates See Text templates
using 484 .

Custom resources
creating 213
editing in Visual C++ 213
including 147

Customize category compiler options 392
Customize category linker options 415-417
Customizing

keyboards 447
Tools menu 450

Cut command 103
Cutting graphics 195
CV keyword, /DEBUGTYPE option 420
CVPACK 421
CXX macro, NMAKE 643

D
/D option

CL 553
NMAKE 631

Dash (-)
CL syntax 548
makefile syntax 638, 648
NMAKE syntax 631
use 574,609

Data
declarations, compiler options 395
exporting 580
source options, AppWizard projects 10

DATA keyword, /EXPORT option 580
Data members

CCustomApp Wiz class 501
m_Dictionary 509
filtering information on 277

Data resources, creating 213
Database applications, App Wizard, resources 543
Database options, Step 2 525
Database support options, App Wizard projects 9
Databases program, specifying, CL 557
Ddespy, compared to Spy++ 353
DDESPY.EXE 353
DDV See Dialog Data Validation
DDX See Dialog Data Exchange
Debug category linker options 419-421
Debug menu 284

Break command 292
Call Stack command 317
Disassembly command 321
Exceptions dialog box 332
execution control commands (list) 287
stepping over, out of routines 292
Variables command 314

/DEBUG option, LINK 420, 583
Debugger

breakpoints, using 293
features 283-284
integrated, running applications in 74
overview 283-324

Debugger dialogs 286
Debugger menu items 284
Debugger toolbar, setting, clearing breakpoints 294,

296
Debugger windows

accessing through Debug menu 284
dialog boxes (list) 286
fixing language output errors 323
(list) 285
pop-up menus access 285
sizing, minimizing 285

Debugging
advanced topics 323
controlling assembly code display 321
creating live expressions 321
custom App Wizards 493

Index

Debugging (continued)
/DEBUG option, LINK 420
/DEBUGTYPE option, LINK 420-421
Disassembly window, selecting addresses in 322
displaying

contents of memory locations 312
local variables 314

DLLs 334-336
exceptions 327, 331
expressions, viewing 307
information compiler options, type 383,
just-in-time 293
makefiles 631
Memory window, selecting addresses in 320
moving

through errors list 323
to specific line 324

multiple statements 321
navigating to code 317-318
OLE applications 337
optmized code 321
Output window 323
/PDB option, LINK 417
placing information in file, IY d option 565
/pROFILE option, LINK 414
QuickWatch, viewing variables, expressions 308
remote 338-339
running, tracing 287
skipping section of code 289-290
stepping over, out of routines 292
threads 333-334
tips 324
using

breakpoints 293
Call Stack window 317
Memory windows 319
Registers window 318-319

variables, viewing, modifying 307
viewing

assembly code 321
memory at dynamic address 321

with profiler 344
/DEBUGTYPE option

Lffi 612
LINK 420-421

_declspec 579-580
_declspec keyword, compiler option 393

687

Index

688

Decorated names
and profiler 351
described 653
DUMPBIN 655
examples, and undecorated 654
format 653-654
linking 581
listing 654
using 653
viewing 654

.DEF files See Module-definition files
/DEF option, LINK 579
Default libraries 422-423, 570, 577, 579
Default library name, removing from object file,

CL 566
/DEFAULTLIB option, LINK 422-423,579
DEFINED operator, NMAKE 649
Defining constants, CL 553
Definitions, symbol, jumping to 280
Definitions and References window (table) 282
Delete command 103
Deleting

accelerator table entry 178
classes using Class Wizard 251
component categories 264
components from categories 261
entries in string table 183
graphic, selected area of 195
resources 136
symbols, unassigned 141
toolbar buttons 209
toolbars 444

Dependency
command 638
dependents

described 637
filenames 643
macros, predefined 643

described 635
macros, predefined 643
targets

described 635
filenames 643
macros, predefined 643
mUltiple description blocks 636
pseudotargets 635

updating in project 57
wildcards 633

Dependency tree 636-637

Dependents
described 637
filenames 638, 643
inferred 637; 645-646
macros, predefined 643
paths 637
pseudotargets 635

Derived class graphs, displaying 274
Derived Classes and Members window elements,

functions (table) 275
Description blocks

commands 637
described 635
reusing targets 636

DESCRIPTION statement 588
Developer Studio

applications, starting from 74
customizing 458
Standard, Resource toolbars 438
windows

application, pop-up menu 431
showing status bar 455
types 430

Device drivers 584--586
Device image cursor, icon 203
Devices display, selecting 203
Dialog box buttons, defining message handler for 238
Dialog box controls, shortcut for defining member

variables 239
Dialog Box Data 246
Dialog box units 157
Dialog boxes

See also Controls
adding

controls 151
editing controls 150
OLE controls 164

alligning controls 158
arranging push buttons 158
coordinates 156
creating, setting guides 160
debugger (list) 286
editing 162
font 157
formatting layout 155
keyboard access; defining 163
margins 159
mnemonics 163
tab ordem 163

Dialog boxes (continued)
testing 167-168
units See Dialog box units
using custom controls 165
using OLE controls 164
VB Form 166

Dialog Data Exchange
Class Wizard use 246
Control variables 247
control variables defined with Class Wizard 249
defining data members with ClassWizard 247
overview 246
Value variables 247
variable values, types (table) 248
variables 247, 249

Dialog Data Validation
Class Wizard use 246
custom 250
overview 246

Dialog editor
Align Controls command .157
arranging controls 156
control types 151
creating templates for form views 165
overview 149
position indicators 157
shortcut menUs 150
toolbar 155
using Grid 161
using OLE controls in dialog boxes 164

Dialog units 160
Dialog-based applications 6, 536
Dialogs, debugger 286
Directives

$$BEGINLOOP 519
comments 523
compiler

including 147
using 147-148

$$ENDLOOP 519
$$IF, $$ELIF, $ELSE, $$ENDIF 517
$$INCLUDE 518
makefile See Makefile; NMAKE
$$SET_DEFAULT_LANG 520
standard App Wizard 516

Directories
adding to list 457
comparing 675
editing paths for Developer Studio 456

Index

Directories (continued)
ignoring, compiler option 412
information in Windows NT registry entries 457
removing from list 457
searching, compiler options 412
setting 456

/DISASM option (DUMPBIN) 622
Disassembly 622
Display devices 203
Displaying

base class graphs 276
function information 278
symbol definitions 280
symbols in files 272

DLL
See also Dynamic-link libraries'
applications, creating with App Wizard 18
custom control 165
resources 583

.DLL files 418
/DLL option, LINK 426, 579
dllexport 579
dllimport 580
DLUs See Dialog boxes units
Docking

floating toolbars 446
toolbars 444

. Docking tool windows
changing to document window characteristics 438
Developer Studio treatment 430
display modes 434
positioning·434
showing, hiding 434
sizing 437
using 433

Docking view See Docking tool windows
Document template strings tab 528
Document windows

changing docking tool window characteristics
to 438

Developer Studio treatment 430
displaying pop-up menu 432
positioning 432
selecting when opening project 432
working with 431

Dollar sign ($),makefile syntax 634, 641-643
Dollar signs ($) 492
Dominant control alignment, effect on 157
Dot directives, makefile See Makefile; NMAKE

689

Index

690

Double quotation marks (") 579, 587
Drag and drop

adding controls to dialog box 151
editing 104
use 287

Drawing
adding controls by 152
figures, closed 192-193
tools 191
with screen and inverse colors 204
with selection 196

Drop-down combo box See Combo boxes
DUMPBIN 621-623,655
DWoperator 313
Dynamic-link libraries

E

applications See DLL
Appward resource templates 537
base address 424, 581
circular export 611
circular exports 613
creating, CL 562-563
debugging 334-336
entry point 425
linking 579
loading 424, 581
project type 37

/E option
CL 554
NMAKE 631,642,644

Edit menu
Copy command, menu items 174
Cut command

graphics 195
menu items 174

Delete command
graphics 195
strings 183

Paste command, graphics 195
Edit Variables dialog box (ClassWizard) 247
EDITBIN 625-628
Editing

accelerator tables 177-178
binary data

opening resource for editing 214
using binary data editor window 215

code, in ClassWizard 239-240,247

Editing (continued)
cursors 203
dialog boxes 162
drag-and-drop 104
from Symbol Browser 141
graphics properties 189
icons 203
OLE control property pages 164
program version information 218
resources at binary level 213
text 10 1-104
toolbar button property page 210
Tools menu commands 451
undoing, redoing actions 103
user-defined control properties 165

Editing graphical resources 189
Editor

dialog See Dialog editor
emulation, setting 106
graphics

overview 185
view, adjusting 187

image 186
string table 181
text See Text editor
toolbar See Toolbar editor
version information See Version information editor

Editors, resource See Resource editors
/Ei option, BSCMAKE 618
/El option, BSCMAKE 618
$$ELIF directive 517
$$ELSE directive 517
!ELSE directive 648
!ELSEIF directive 648
!ELSEIFDEF directive 648
!ELSEIFNDEF directive 648
/Em option, BSCMAKE 618
Embedding text strings, CL 565
Enable Profiling option, linker 414
$$ENDIF directive 517
!ENDIF directive 648
$$ENDLOOP directive 519
/ENTRY option, LINK 425
Entry points 583, 626
Entry-Point Symbol option, linker 425
Environment variables

INCLUDE 648
INIT 633
INIT used by profiler . 344

Environment variables (continued)
LID 424,570,574
LINK 574
makefiles 631, 644
PATH 574
PLIST 598
PREP options 595
PROFILE 597
SET command 643-644
specifying options, CL 549-550
TEMP 574
TMP 639

/EP option, CL 555
Epsilon emulation, using regular expressions 97
Equal sign (=)

makefile syntax 641-642
substituting for number sign, CL 554

/Er option, BSCMAKE 618
Eraser tool, drawing with 191
Erasing, freehand 191
Error codes

BSCMAKE 620
makefiles 631, 638, 647
NMAKE 633

!ERROR directive 648
Error syntax, tools 454
lEs option, BSCMAKE 619
/EXC option, PREP 595
_except keyword, compiler option 393
Exception handling, compiler option 386
Exceptions

adding to list 332
changing existing in exception list 332
debugging 327,331
removing from exception list 332

Exclamation point (I), makefile syntax 638, 64~
.EXE files 418,571-572
Executable files

See also .EXE files
base address 424,581
entry point 425
loading 424, 581
renaming, CL 558

EXECUTE keyword, SECTIONS statement 589
Executing to cursor or location 289
Execution, controlling in debugger 287
/EXETYPE option, LINK 580
EXIST operator (NMAKE) 649
Existing resource files, opening 144

Exit codes
makefiles 631,638,647
NMAKE 633

ExitCustomAppWiz member function,
CCustomApp Wiz class 503

.EXP files 570, 612
Export

circular 611
specifying 612

Export files
See also LID
creating and using 611-613

/EXPORT option
LID 612
LINK 580

Exporting
components 255
graphics files 136

Exports
circular 613
linking 570, 580
ordinals 580
specifying 579-580

Exports files, linking 570
/EXPORTS option, DUMPBIN 622
EXPORTS statement 589
Expressions

adding from QuickWatch 310
creating live 321
makefile preprocessing 649-650
regular (list) 94
regular BRIEF emulation (list) 96
regular Epsilon emulation (list) 98
viewing during debugging 307
viewing with QuickWatch 308

Extensions
processing CL 548
specifying, CL 557

External names, restricting length, CL 561
External projects

See also Projects
exclusion files 54
makefiles 35
opening 70
using 69

Index

691

Index

692

F
/F option

CL 556
NMAKE 631

/FA compiler option 398
/F Ac compiler option 399
/FAcs compiler option 399
Factor, magnification, defined 188
/FAs compiler option 399
Fast compiling, default, CL 550
_fastcall keyword

compiler calling conventions, options 391
compiler option 393

FCOUNT.BAT 347
/Fd option, CL 557
/Fe option, CL 558
/FI option, CL 558
Figures, drawing closed 192-193
File header, checksum 584
File Manager, opening files with 77
File menu, Set Includes command 146-148
File Outline browse window, elements and functions

(table) 273
Filename extensions, CL processing 548
Filenames

makefiles 634,638,643
path specification, CL 557
wildcards 633

Files
browse information files See .BSC files
browser, generating from compiler 398
building single, without project 73
command See Command files; Response files
comparing contents of 675
created by App Wizard 21, 483
creating 76-77
.DEF 571, 579
displaying symbols 272
.DLL 418
.EXE 418,571-572
.EXP 570,612
expand/outline contents of 676
finding text in 89
graphics, exporting and importing 135-136
.ILK 571
include, !INCLUDE directive 648
inline, in makefiles See Inline files
.LTIB 570,572,582,612

Files (continued)
long names in makefiles 634
make See Makefiles
MAKEFILE 631
managing 76-81
.MAP 419
map, creating, LC 559
moving around in 87
names, listing, compiler option 399
.OBI 570
object naming or creating in different directory,

CL 559
opening 77-79
optimizing size, compiler option 405
other resource files, including 147-148
.PDB 414, 420, 571
preprocessing output, creating, CL 564
printing 80:-81
profiler, tab-delimited 599-600
project See Projects
removing libary name, CL option 566
.RES 571
resource

consequences of updating to Visual C++
format 145

opening existing 144
script 129

saving 79-80
symbol header file, changing the name 146
tab-delimited 603
TOOLS.lNI, makefiles 633,641,648
.TXT 571
type, listing, compiler options 398

Fill tool 200
Filling areas 200
Filter, message (ClassWizard) 236, 238, 244
Filtering browse information for

classes 277
files 273

Filters
Data members(list) 277
function members (list) 277
message 376

_finally keyword, compiler option 393
Finding

and replacing text 88-94, 96, 98
strings in string table ·182
text strings 89

/FIXED option, LINK 424,581

Flags, register, setting and clearing 319
Flipping graphics 197
Float consistency

improving, compiler options 393, 404
optimizing, compiler option 393

Floating toolbars 445
Floating-point functions

intrinsic, compiler options 395
true intrinsic forms, compiler options 404

Floating-point math, generating intrinsic functions,
compiler options 404

/Fm option, CL 559
/Fo option, CL 559
Fonts

dialog box 157
setting 109
Spy++, changing 356

FOR macro (NMAKE) 643
Force File Output option, linker 418
/FORCE option, LINK 418
Force Symbol References option, linker 423
Form view 165
Formats

C decorated names 654
C++ decorated names 653

Formatting, adding to string 184
Formatting watch variables 312
Forward slash (/)

NMAKE syntax 631
use 574,609

/Fp option, CL 559
/FPO option (DUMPBIN) 622
/FR compiler option 398
Freehand drawing, erasing 191
Full-screen mode 458
Function

coverage 347
members, filtering information on 277
names

decorated See Decorated names
specifying 653

profiling 346
Function-Ievellinking 577
Functions

decorated names See Decorated names
displaying relationships 278
exporting 580
intrinsic, compiler option 404

Functions (continued)
message handling

G

creating 235-237, 242, 244-245
deleting 239

ordering 583
packaged, compiler options 396
prototypes, generate, CL option 566

IG3, IG4, IG5 compiler options 388
1GB compiler option 388
IGd compiler option 390
Ge option, CL 560
General category compiler options 381-384
General category linker options 413-415

. Generate Debug Info option, linker 420
Generate function prototypes, CL option 566
Generate Mapfile option, linker 419
GetDialog, exported App Wizard C function 512
GetPlatforms member function, CCustomApp Wiz

class 504 -
IGfoption

CL 560
compiler option 396

IGh option, CL 560
IGi compiler option 397
Global information records 600
IGm compiler option 396
Go To dialog box 84
IGR compiler option 387,391
Graphical resources See Graphics
Graphics

See also Bitmaps, Icons, or Cursors
backgrounds, setting 200
copying, selected area of 195
cropping 198
cutting, moving 195
files 135-136
flipping, rotating 197
moving selected area of 195
pasting graphics 195
properties 189
resizing 198
selecting 194
sizing 198
stretching, shrinking 199

Index

693

Index

694

Graphics editor
changing colors 201
creating color icons, cursors 205
cutting, copying, clearing, moving graphics 194
drawing tools 191
drawing with screen and inverse colors 204
editing graphical resources 189
image-creation devices supported 203
overview 185
pixel grid, showing, hiding 188
using image editor, tools 186
view, adjusting 187
working with colors 199

Graphics toolbar .
described 186
drawing tools, using 191
hiding, displaying 190

Graphs
base class 274, 276
call 278
call, displaying 278
callers 279
derived class 274
displaying

base class 276
relationships among functions in program 278

viewing
C++ class hierarchies as 274
classes derived from class 274

Grid, layout (dialog editor)
See also Grid, Snap to
changing size 162

Grid, pixel, showing, hiding with graphics editor 188
Grid, Snap to, using 161
Grid described 161
Grid Settings command 161-162
IGs option, CL 561
Guides

creating for controls 160
disabling 161
insertion 173

IGX compiler option 386
IGy compiler option 396
IGz compiler 391

H
/H option, CL 561
Handlers, message, and ClassWizard 235,237,

244-245
Handles, sizing 154
Headers

checksum 584
comments 578
precompiled, using in projects 64
version numbers 426

/HEADERS option (DUMPBIN) 622
/HEAP option

(EDITBIN) 626
LINK 581

Heap setting 581,626
Help, getting help on Windows messages 236, 238, 244
Help files

creating context-sensitive 495
Custom AppWizard support 542-543

/HELP option
BSCMAKE 619
CL 562
NMAKE 631

Hiding Controls toolbar 151
Hierarchical menu, creating 171-172
Hot spot, cursor 206

/l option
compiler option 412
NMAKE 631

.ICO files, exporting and importing 135-136
Icons

See also Graphics
changing component's 262
color 205
creating 203, 256
device image 203
file, in project window 46
transparent attribute 204

$$IF directive 517
!IF directive 648
!IFDEF directive 648
!IFNDEF directive 648
Ignore All Default Libraries option, linker 423
.IGNORE directive 647
Ignore Libraries option, linker 422

.ILKfiles 571
Image, device 203
Image editor

See also Graphics editor
described 186-187

Image menu
colors, changing 201
described 187
Flip Horizontal, Vertical commands 197
Hot Spot button 206
Rotate 90 command 197

Image-editor panes 187
/lMPLIBoption, LINK 582
Import address table 626
Import libraries

creating See LIB
linking 570
using 611-613

Importing
classes with ClassWizard 225,232
graphics files 135

Imports
circular 611-613
linking 570

/IMPORTS option (DUMPBIN) 622
/INC option, PREP 595
$$lNCLUDE directive 518
!INCLUDE directive 648
INCLUDE environment variable 648
Include files

BSCMAKE 618- 619
search directory, compiler option 412

INCLUDE macro (NMAKE) 648
/INCLUDE option

LIB 612
LINK 423,583

Including 146-148
Incremental Linker 413,569
/INCREMENTAL option, LINK 416
Indents, setting in text editor 107
Inference rules

command macros 643
commands 637, 645
dependents, inferred 637, 645-646
displaying 631
macros 643, 645
rules 645-647
.S~S 631,645
syntax 645

Inferred dependents 637, 645-646
Informational messages, suppressing, compiler

option 397
Inheritance, makefile described, macros 643
INIT environment variable 344, 350, 633
InitCustomApp Wiz member function,

CCustomApp Wiz class 505
Inline files 639-640
Inline-function expansion, compiler options 406
Input category linker options 422
Insert/Remove Breakpoint button 294, 296
Inserting entries in string table 183
Insertion guides 173
Installing

remote debug monitor 338
Win32s profiler 352

Inverting colors 201
IX86 keyword, /MACHINE option 582

J -
/J option, CL 562

K
IK option, NMAKE 631,633
KEEP, inline file 640
Keyboard access, dialog boxes 163
Keyboard shortcuts See Shortcut keys
Keyboards, customizing 447
Keystrokes, playing stored 104-105

L
Language extensions, compiler options 393-395
Language loop macros 533

Index

Languages, AppWizard project, selecting resource 6,
19

Layout menu
Grid Settings command 161-162
Tab Order command 162-163
Test command 168

LCOVNT.BAT 348
/LD option, CL 562-563
_leave keyword, compiler option 393
LIB

described 607
environment variable 424, 570, 574
errors 608
export files 607, 611-613

695

Index

696

LID (continued)
import libraries 607, 611-613
running 607-610

.LIB files 570,572,582,612
Libraries

creating and managing See LID
Link tab, Project Settings 422
linking 422-423, 570, 579
names, removing default from object file, CL 566

Library Manager 607
Library object modules 622
LIBRARY statement 588
Line continuation

command, makefile 638
dependency, makefile 635
macro definition, makefile 641

Line counting 348
Line coverage 349
#line directives, CL

adding to output 554-555
preprocessor-output files 564

Line numbers 622
Line profiling 344-345,348
Line vs. function profiling 345
/LINENUMBERS option (DUMPBIN) 622
Lines, drawing 192
LINK

See also Linker
aligning sections 578
base address 424,581
case sensitivity 574
circular export 611
circular exports 613
CL, running 577
command files 418,573
command line 573
comments

base address files 425
command files 573
.DEF files 587
function-order files 583
inserting 578

copyright message, suppressing 418
CVPACK 421
debugging 414,417,42~21
decorated names 581
.DEFfile

input 571
specifying 579

LINK (continued)
default libraries 422-423, 570
described 413,569
display information 418
dynamic-link libraries 579
environment variables 574
errors 572, 586
.EXP file 570
exports 579-58"0
exports file 570
external references 570
forcing output 418
forcing references 423
functions, ordering 583
header comments 578
help 572
import libraries

input 570
output 582

information 419
input 422
input files 569,573
invoking, from CL 551
LIB environment variable 570
libraries 422-423, 570, 579
listing 419 "
mapfiles 419
module-definition file 571, 579
module-definition files 586-590
MS-DOS application 423 "
naming output files 418,582
numeric arguments 574
object files 423, 570
optimizing 425, 583
options

/ALIGN 578
/BASE 424
/COMMENT 578
/DEBUG 420, 583
/DEBUGTYPE 420-421
/DEF 579
/DEFAULTLID 422-423,579
/DLL 426, 579
/ENTRY 425
/EXETYPE 580
/EXPORT 580
/FIXED 424, 581
/FORCE 418
/HEAP 581

Index

LINK (continued) LINK (continued)
options (continued) stub program 423

/lMPLID 582 subsystem 585
~CLlnDE 423,583 swap' tuning 584
~CREMENTAL 416 syntax 424, 573, 587
/MACHINE 582 version numbers 426, 585
/MAP 419 warnings 572, 586
/MERGE 582 LINK environment variable 574
/NODEFAULTLID 422-423,579 Link Incrementally option, linker 416
/NOENTRY 583 /link option, CL 564
/NOLOGO 418 Link tab, Project Settings dialog box See Linker
/OPT 420, 423, 583 options
/ORDER 583 LINK.EXE 413
lOUT 418 LINK/PROFILE 344
/PDB 417 Linker options
/pROFILE 414 Base Address 424
/RELEASE 584 Both Formats 421
/SECTION 584 COFF Format 421
/STACK 426 Common Options 414
/STUB 423 Customize category 415-417
/SUBSYSTEM 426, 585 Debug category 419-421
NERBOSE 418 Enable Profiling 414

alphabetic list 575 Entry-Point Symbol 425
CL 577 Force
described 574 File Output 418
LID 586 Symbol References 423
rules 574 General category 413-415

NERSION 426 Generate Debug Info 420
Visual C++ 576 Generate Mapfile 419
NXD 586 Ignore All Default Libraries 423
/WARN 586 Ignore Libraries 422

output, forcing 418 Input category 422
output files 572 Link Incrementally 416
paging 584 Mapfile Name 419
.PDB file 571 Microsoft Format 420
profiler 414 MS-DOS Stub File Name 423
program database 571 Object/Library Modules 422
references, forcing 423 Output category 424-426
relocation 581 Output File Name 418
.RES file 571 overview 413
reserved words 587, 590 Print Progress Messages 418
resource file 571 Program Database Name 417
rules 573-574,587 Project Options 414
running 573-575 reset button 415
sections Stack Allocations 426

aligning 578 Suppress Startup Banner 418
attributes 584 Use Program Database. 417

speed 583 Version Information 426
stack 426 /LINKERMEMBER option (DUMPBIN) 622

697

Index

598

Linking function-level, compiler options 396
/LIST option, LIB 610
Listing

compiler options, CL 562
decorated names 654

Listing Files category compiler options 397
_LL extension 346
Loading graphics files 135
LoadTemplate member function, CCustomApp Wiz

class 506
Local information records 602
Local symbols, browse information files 615
flu option, BSCMAKE 619

M
M68K keyword, /MACHINE option 582
/MACHINE option

LIB 609
LINK 582

Machine type setting 582 ,
Macintosh applications, App Wizard resources 544
Macintosh-Specific tab 530
Macro components (table) 531
Macros

AppWizard
getting values 491
specifying in directives or text 492

argument See Argument macros
CL, defining 553
class and file names 530
language loop 533
miscellaneous, described (table) 532
NMAKE

assembler 643
command 643
comments 641
compiler 643
defining 641
dependent path 637
dependents 643
described 640
displaying 631
environment variables 631, 644
escaped characters 641
extending a line 641
filename 643
ignoring 631

in resource file, including 147

Macros (continued)
NMAKE (continued)

INCLUDE 648
inference rules 645
inheriting 643
literal characters 641
Microsoft tools 643
nesting 641-642
newline character 641
null 641-642,648
precedence rules 642
predefined 642-644,648
preprocessing 641, 648
recursion 643
replacing strings 642
rules 641-642
substitution 642
syntax 641-642
targets 643
timestamps 643
TOOLS.INI 641
!UNDEF 641
undefined 641-642,648
using 642

standard AppWizard 523
undefining, compiler option 411

Magnification
factor defined 188
Windows desktop areas 673

, _main 585
MAKE macro (NMAKE) 643
MAKEDIR macro (NMAKE) 643
MAKEFILE file 631
Makefiles

See also NMAKE
characters, literal 634
command files, inline 639
command modifiers

! (repeat command) 638
\- (ignore error) 638
\@ (suppress echo) 638

commands
comments 634
dependents 638
described 637
in dependency 638
inference rules 645
inline files 639-640
macros, predefined 643

Makefiles (continued)·
commands (continued)

repeating 638
rules 637
wildcards 633

comments 634
creating for project 35
debugging 631
dependency See Dependency
dependency tree 636-637, 645
dependents

commands 638
des·cribed 637
filenames 643
inferred 637, 645-646
macros, predefined 643
paths 637
pseudotargets 635

described 633
directives

dot 647
preprocessing 648-650

error codes from commands 631,638,647
exit codes from commands 631,638,647
expressions 649-650
filenames

dependents 638
long 634
macros 643
wildcards 633

including 648
inference rules See Inference rules
inline files 639-640
literal characters 634
macros See Macros (NMAKE)
nesting 648
operators, preprocessing 649
preprocessing

See also Preprocessing, makefile
expressions 649-650
macros 641
operators 649
suppressing builds 631

pseudotargets 635
recursion 643
response files, inline 639
return codes from commands 631,638,647
rules 634
SET command 643-644

Index

Makefiles (continued)
specifying 631
targets

accumulating 636
build rules 635-636
described 635
filenames 643
keeping 647
macros, predefined 643
multiple description blocks 636
pseudotargets 635

timestamps See Timestamps
TOOLS.INI 633,641,648
wildcards 633

MAKEFLAGS macro (NMAKE) 643
Managing graphics editor workspace 187
Map, message defined 222
Map files, creating, CL 559
.MAP files

discussed 419
profiler and 346

/MAP option, LINK 419
Mapfile Name option, linker 419
Mapfiles 414, 419
Mapping messages to functions 235-237,242,244-

245
Margins

and guides for controls 159
dialog boxes 159

Matching group delimiters 82
/MD option, compiler option 389
/MDd compiler option 390
MDI, SDI applications, resource templates 537
MDI applications, creating with App Wizard 6
Member functions

CAppWizStepDlg class 500
definition, jumping to 240
OutputStream class 511

Member variables
binding 247
for dialog box controls, shortcut for defining 239
for dialog data exchange 247
updating columns 247

Memory
addresses, setting 320,322
displaying process information 669
locations, displaying 312
process details 670

699

Index

'00

Memory window
setting dynamic starting point for display 321
using for debugging 319

Menu editor
shortcut menu 169
terms defined 170
using 169-179

Menu items
associating with accelerator key, status bar 175
associating with accelerators 179
copying 173-174
creating 171
debugger 284
moving 173-174
selecting 172
styles 171

Menu resource viewing as pop-up menu 174
Menu trees, expanding, collapsing 356
Menus

copying 173-174
creating 170-172
Debug See Debug menu
image See Image menu
mnemonic key, defining 171
moving 173-174
terms 170
tools See Tools menu
WinDiff 676
Zoomin utilities 673

/MERGE option, LINK 582
Message codes (table) 374
!MESSAGE directive 648
Message filter, ClassWizard 236, 238, 244
Message handlers

editing, deleting 239.,...240
for dialog box buttons, shortcut for defining 238

Message Log display, Spy++ 374
Message map defined 222
Message Properties

dialog box 378
options (table) 379

Messages
defining with Class Wizard 235
filters 376
getting help on 236,238,244
mapping to functions 235,237,244-245
options 375
output options 376
properties options 378

Messages (continued)
searching for 377
tab, selecting types for viewing 376

Messages Properties dialog box 378
Messages view, Spy++ 372, 374
MFC AppWizard .

(dll) project type 37
(exe) project type 36

MFCAPWZ.DLL
C functions exported by 512
programming interface 495-476

Microsoft 32-bit Incremental Linker 413,569
Microsoft 32-Bit Library Manager 607
Microsoft Browse Information Maintenance Utility See

BSCMAKE
Microsoft COFF Binary File Dumper 621
Microsoft COFF Binary File Editor 625
Microsoft Developer Studio, using 266, 429
Microsoft Excel

PLIST report output macro 599
processing profiler output 604
PROFILERXLM macro 604

Microsoft Format option, linker 420
Microsoft Foundation Class Library (MFC)

applications, creating 3
resource files 145
symbol naming conventions 142

Microsoft Program Maintenance Utility See NMAKE
Microsoft Symbolic Debugging Information 421
Microsoft-style debugging information 420
Minus sign (-) See Dash (-)
MIPS keyword, /MACHINE option 582
/ML compiler option 389
/MLd compiler option 390
Mnemonic

controls 163
dialog boxes 163
menus, menu items 171

Module-definition files
comments 587
creating 586-590
linking 571, 579
reserved words 587, 590
rules 587

Moving
classes in Class Wizard file 252
document windows 432
entries in string table 183
graphic, selected area of 195

Moving (continued)
menus, menu items 173-174
strings between files 183
toolbar buttons 209

MS-DOS device names, appending, CL 557
MS-DOS Stub File Name option linker 423
MSVCINCL.DAT 54, 57
/MT compiler option 389
/MTd compiler option 390
Multiple statements, debugging 321

N
In option, BSCMAKE 619
IN option, NMAKE 631
Name restrictions, symbol 141-142
NAME statement 587
Names

class and file, AppWizard macros 530
decorated See Decorated names
restricting length, CL option 561

Naming precompiled header filenames, CL 559
NATIVE keyword, ISUBSYSTEM option 585
Navigating comands, text editor 87
Navigation in source files 81
New Project Workspace and Insert Project Dialog Box

options 524
New-item boxes, selecting 170
Newline character, makefile syntax 641,645
NEWPROJ.INF 490, 497
Next member function, CCustomAppWiz class 507
NMAKE

See also Makefiles
batch processing 631
builds

conditional 648, 650
forcing, surpressing 631
ignoring errors 631,638,647
keeping targets 647

command files 631, 639
command modifiers 638
commands

comments 634
dependents 638
described 637
displaying 631
error, exit, return codes 631,638,647
inference rules 645
inline files 639-640

NMAKE (continued)
commands (continued)

macros, predefined 643
rules 637
suppressing display 631,638-647
wildcards 633

comments 633-634,641
debugging makefiles 631
dependency See Dependency
dependency tree 636-637,645
dependents 637,643-647

commands 638
described 637
filenames 643
inferred 637, 645-646
macros, predefined 643
paths 637
pseudotargets 635

directives 631,638,641-648
environment variables

IE option 631
INCLUDE 648
INIT 633
TMP 639

error codes
from commands 631,638,647
from NMAKE 633

errors
displaying, surpressing 631
!ERROR 648

exit codes
from commands 631,638,647
from NMAKE 633

expressions 649-650
extending a line

command 638
dependency 635
macro 641

fields targets 631
filenames

dependents 638
long 634
macros 643
wildcards 633

forcing builds 635
help 631
INCLUDE environment variable 648

Index

701

Index

702

NMAKE (continued)
inference rules

See also Inference rules
displaying 631
predefined 646

information
additional 631
displaying 631
!ERROR 648
!MESSAGE 648
suppressing command echo 631,638,647
suppressing messages 631

INIT environment variable 633
inline files 639-640
input 631
KEEP 640
limits

command line 639
macro length 641
target length 635

macros
See also Macros (NMAKE)
assembler 643
command 643
compiler 643
dependent path 637
described 640
displaying 631
environment ~ariables 631, 644
filename 643
ignoring 631
inheriting 643
Microsoft tools 643
precedence rules 642
predefined 642-644,648
recursion 643
replacing strings 642
rules 642
substitution 642

MAKEFILE file 631
makefiles

See also Makefiles
debugging 631
described 633
including 648
nesting 648
specifying 631
standard input 631

NMAKE (continued)
messages

displaying 631
!ERROR 648
!MESSAGE 648
suppressing 631

NOKEEP 640
operators, preprocessing 649
options 631,633,642,644,648
output

!ERROR 648
errors from NMAKE 631
!MESSAGE 648
preprocessing 631
suppressing command echo 631,638,647

preprocessing
See also Preprocessing, makefile
expressions 649-650
macros 641
operators 649
suppressing builds 631

pseudotargets 635
recursion 643
response files, inline 639
return codes

from commands 631,638,647
fromNMAKE 633

running 631
standard input 631
syntax 631
targets

accumulating 636
build rules 635-636
building all 631
checking timestamps 631
described 635
filenames 643
keeping 647
macros, predefined 643
multiple 635
multiple description blocks 636
pseudotargets 635
specifying 631

timestamps 631,635,639,643
TMP environment variable 639
TOOLS.INI

!CMDSWITCHES directive 648
described 633

NMAKE (continued)
TOOLS.INI (continued)

ignoring 631
macros 641

touch 631
/NODEFAULTLIB option, LINK 422-423, 579
/NOENTRY option, LINK 583
NOKEEP, inline file 640
/NOLOGO option

BSCMAKE 619
EDITBIN 626

Inologo option
compiler option 397
LIB 609
LINK 418
NMAKE 631

NONAME keyword, /EXPORT option 580
NUL, appending to, CL 557
Number sign (#)

o

makefile syntax 634,641,645
substituting for equal sign, CL 554
substituting for number sign, CL 554
TOOLS.INI syntax 633

10 filename option, BSCMAKE 619
101, 102 compiler options 400
lOa compiler option 401
lObO, lObI, IOb2 compiler options 406
.OB] files 422, 570
Object files

converting from OMF to COFF 625
in libraries See LIB
linking 570
OMF, in libraries 610

Object/Library Modules option, linker 422
10d compiler option 400
109 compiler option 402
10i compiler option 403-404
OLE applications

debugging 337
resource templates 541

OLE controls 164
OLE options, 12,527

OMF
libraries linking 570
object files

in libraries 610
linking 570

lOp option, compiler 393,404
Opening

files 77-79
projects 38, 438
resource files 144
resources 135

Operators
BY 313
context 313
DW 313
WO 313

10PT option, LINK 420, 423, 583
Optimization, BSCMAKE 616, 617
Optimizations category compiler options 399-407
Optimized code debugging 321
Optimizing

base addresses 425
file size, compiler option 405
function order 583

Index

intrinsic function generation, compiler option 404
unreferenced functions 583

Options
AppWizard project 16
CL 548-567
compiler 384-412
in makefiles 648
LIB 609
LINK 574-577,586
linker 413-426
NMAKE 631
project, setting 60
text editor, setting 105
tools 452

10RDER option, LINK 583
lOs option, compiler 405
lOt compiler option 400, 405
lOUT option

DUMPBIN 622
LIB 610,612
LINK 418

Output category linker options 424-426
Output File Name option, linker 418
Output files, CL, preprocessing, creating 564
OutputStream class 510-511

703

Index

704

lOw compiler options 401
lOx compiler option 406
lOy compiler option 406

p
/p option

CL 564
NMAKE 631

Packaged functions
creating 396,577
optimizing 583

Packaged functions, creating, compiler options 396
Packing structure members, CL options 557
Paging, optimizing 584
Paint bucket tool 200
Palette, colors

adding custom color to 201
described 187
inverse-color selector 205
saving or loading 202

Palette, graphics, screen-color selector 205
Panes, image editor See Image-editor panes
Parentheses (), makefile syntax 642-643, 649
PASCAL macro (NMAKE) 643
Pasting from clipboard to graphics 195
PATH environment variable 574
.PBI files 592, 594, 596
.PBO files 592,596
.PBT files 592, 594
.PDB files 414,420,571
/PDB option, LINK 4 ~ 7
Pencil tool, drawing with 191
_penter, generating calls to, CL 560
Pentium processor, compiler option 388
Percent sign (%),makefile syntax 634
Period (.),makefile syntax 645,647
Pixel grid, displaying, hiding 188
Platform 582
Platform names 504
PLIST 597-600
Plus sign (+)

makefile syntax 648
Pointer to member of class, compiler opti?ns 385
Pop-up menus

See also Menus
debugger windows 285
Developer Studio application menu 431

Pop-up option, using 172

Positioning
docking tool windows 434
document windows 432

POSIX keyword, ISUBSYSTEM option 585
POSIX subsystem 585
PostProcessTemplate member function,

CCustomApp Wiz class 508
Pound sign (#)

makefile syntax 634, 641, 645
TOOLS.INI syntax 633

.PRECIOUS directive 647
Precompiled Headers

See also Headers
category compiler options 407
consistency rules for automatic use 408
consistency rules for per-file use 409
not using 408

PREP
command line options 594
environment variable 595

Preprocessing
copying file to standand output 554
copying output, CL 555
makefile 641, 648-650
preserving comments, CL, 553

Preprocessor category compiler options 411
Print Progress Messages option, linker 418
Printing 80-81
PRN, CL options, appending to 557
Process Properties dialog box, Windows 95 363-365
Process viewer See PView process viewer
Processes

displaying information on 668
displaying thread priorit~es 669-670
Memory Details 670
modifying 667
views of 356, 362

Processors, Pentium, compiler option 388
ProcessTemplate member function, CCustomApp Wiz

class 508
PROFILE

command line options 596
environment variable 597

/pROFILE option, LINK 414
Profiler

3-D bar chart output 604
advanced features 351
analyzing statistics 603
batch files 352, 393

Profiler (continued)
batch processing 591-593
building code for 344
choosing starting functions 351
combining sessions 351
command-line options 594
decorated names and 351
described 343
FCOUNT.BAT 347
global information record formats 600-602
hit counts 348
importing output to spreadsheets, databases 599
INIT environment variable 344, 350
LCOUNT.BAT 348
linker options 344
local information record formats 602-603
.MAP file 346
modifying TOOLS.INI 350
PLIST 597
PREP 594
PREP options 352
processing with Excel 604
PROFILE 596
PROFILER.XLM macro 604
profiling by function, line 346, 348
PROFW32S 352
report of output 599
running 345
running from command line 343

PROFILER.XLM Excel macro 604, 605
Profiling 414
Profiling code 343
PROFW32S 352
Program database, linking 571
Program Database Name option linker 417
Program databases

linking 420
specifying, CL 557

Program execution
controlling from Debug menu 287
executing to location 289
interrupting 292

Program Maintenance Utility See NMAKE
Programs

examing run-time behavior of 343
version information, accessing 217

Project workspaces 38

Projects
App Wizard See App Wizard projects
audible build messages 67
building

See also NMAKE
described 64-69
for profiling 344
single file 73

configuration files 35
creating 34-54
Custom AppWizard See Custom AppWizard

projects
external See External projects
files, adding, removing 53
inserting components 254
makefiles See External projects
opening existing 38
project

adding 52
building current 65
building multiple 68
Debug, Release 58
defining 52
definition, deleting 53

rebuilding 66
running executable programs from Developer

Studio 74
specifying 58-60
stopping build 66
types 36-37
updating dependencies in 57
using in projects 52
using precompiled headers 64
working with 74

Prompt string, menu item 171
Properties

accelerator, setting 179
graphics 189
OLE controls 164
processes 363
threads 369
toolbar buttons 210
windows, opening 359

Pseudo Debug projects 493
Pseudotargets 635
Public names, restricting length, CL optiol). 561
Public symbols 622
PView 353, 667-672
PVIEW.EXE 667

Index

705

Index

706

Q
IQ option, NMAKE 631,633
Question mark (?)

makefile syntax 643
wildcards 633

QuickWatch
adding variables, expressions from 310
supporting automatic downcast of object

pointers 308, 311, 314
viewing variables, expressions 308

Quotation marks, double (")
makefile syntax 634, 641, 650
use 579,587

R
IR option, NMAKE 631
Raw data 622
IRA WDATA option (DUMPBIN) 622
.RC files

creating 213
moving strings between 183

RC macro, NMAKE 643
RCDATA resources, including 147
READ keyword, SECTIONS statement 589
Read-only symbols, including 146-147
Reading in graphics files 135
README.TXT created by AppWizard projects 21
IREBASE option, EDITBIN 627
Rebuilding ClassWizard (.CLW) file 253
Records
. global information, record formats 600

local information 602
Recursion, makefile 643
Refresh rate, Zoomin window 674
Refreshing views in Spy++ 355
Register flags, setting and clearing 319
Registers, calling conventions, compiler options 391
Registers window 318-319

flags (list) 319
using 318

. Release Debug projects 493
/RELEASE option

EDITBIN 627
LINK 584

Relocations 622
/RELOCATIONS option (DUMPBIN) 622

Remote debugging
configuring connection 339
generally 338
setting up monitor 338

/REMOVE option, LIB 610
Removing

files from project 55
library name; CL option 566

Renaming
classes in ClassWizard 252
component categories 265
components 259
executable files, CL 558

Repair Class Information dialog box 251
Replace command 92
Reports, PLIST 599
.RES files 571
Reset button

compiler options 384
linker options 415

Resetting toolbars 444
Resizing

See also Sizing
controls 155
tool windows 437
toolbars 447

Resource browser window, viewing 130
Resource editors

common commands 131
overview 129

Resource files
advanced techniques, overview of 145-146
consequences to Visual C++ format 145
including resources from other files 147-148
linking 571
macros, including 147
opening 144
support for·Microsoft Foundation Class Library 145

Resource templates 535-537,541
RESOURCE.H, changing the name of 146
Resources .

copying 132, 134
creating 131-132
custom 147,213
data, creating 213
deleting 136
DLL 583
editing from Symbol Browser 141

Resources (continued)
graphical

See also Graphics
editing 189

opening to edit 135, 214
RCDATA 147
saving 135
shared 147
toolbar, creating 207
version infonnation, editing 218
working with 129

Response files
See also Command files
inline, in makefiles 639

Return codes
makefiles 631,638,647
NMAKE 633

Reversing colors 201
Rotating graphics 197
Rules, inference See Inference rules
Run-time

library compiler options 389
type infonnation, compiler option 387

s
jS option

BSCMAKE 619
NMAKE 631

Save options 80, 106
Saving

files 79-80
graphics files 136
project workspaces 38
resources 135

.SBR files 267,615
ScanForAvailableLanguages, exported AppWizard C

function 515
SDI applications, creating with AppWizard 6
Searching

directories, compiler options 412
for messages 377
for particular windows 358
for processes 363
for threads 368
string table 182

Index

/SECTION option
DUMPBIN 622
EDITBIN 627
LINK 584

Sections
aligning 578
attributes 584, 627

SECTIONS statement 588
Select Source Files dialog box (ClassWizard) 253
Selecting

colors, foreground, background 199
controls 153
deleting selected area 195
entire graphics 194
inverting color of selection (graphics editor) 201
menus or menu items 172
parts of graphics 194

Selection margin, setting, using 107 ,
Selective profiling 349
Semicolon (;)

comment specifier 425
makefile syntax 637-638, 645
TOOLS.INI syntax 633
use 573,583,587,609

SET command, environment variables 643-644
Set Includes command 145
$$SET_DEFAULT_LANG directive 520
SetCustomAppWizClass, exported AppWizard C

function 514
SetNumberOfSteps, exported App Wizard C

function 514
SetSupportedLanguages, exported App Wizard C

function 516
Setting

breakpoints 294-297
configuration 60
cursor hot spot 206
directories 456
graphics backgrounds 200
graphics properties 189
project options 58
selection margin 107

/SF option, profiler 351
SHARED keyword, SECTIONS statement 589
Shared resources 147
Shared symbols 146-147

707

Index

708

Shortcut keys
See also Accelerators
accelerators described 177
customizing 447-450

Shortcut menus
dialog editor 150
Graphics editor 185

Showing, hiding
docking tool windows 434
status bar 455
tool bars 439'

Shrinking graphics 199
.SILENT directive 647
Sizing

combo box drop-downs 154
handles 154
individual controls 154
toolbars 447

Slash (f)
CL syntax 548
NMAKE syntax 631
use 574,609

Snap to Grid
placing controls, affect on 152
using 161

Source browser, compiler options 398
Source code, updating ClassWizard 251,253
Source windows, controlling 113-116
Spaces, makefile syntax 641-642,645,647
Spacing toolbar buttons 210
Spreadsheet fields 286
Spy++

capabilities 353
fonts 356
message codes (table) 374
pop-up menus 353
Process Properties for Windows NT (table) 365
Processes view 362
searching for threads 368
starting 353
Thread Properties dialog box, Windows 95 369-

370
Threads view 368
toolbar commands (table) 354
Tree menu 356
utilities similar to 353
views described 354
Window Finder Tool 357-358
Window Properties dialog box 359

Spy++ (continued)
Windows tab 375
Windows view 356

SPYXX.EXE 353
Square brackets ([D, makefile syntax 650
.SRB files 616
Stack Allocations option, linker 426
/STACK option

EDITBIN 628
LINK 426

Stack probes, CL 560-561
Stack setting 426, 628
Stacks' size, specifying, CL 556
STACKSIZE statement 588
Standard App Wizard directives 516
Standard AppWizard macros 523
Starting

PView process viewer 668
Spy++ 353
WinDiff utility 675

Starting address 425
Startup banner, suppressing, compiler option 397
Static library, project type 37
Statistics, analyzing 603
Status bars

image editor 187
prompt, associating menu item with 175
prompt string 171
showing 455

~stdcall keyword, compiler option 393
String editor 181-184
String table

See also Strings
adding entries 183
changing 184
deleting entries 183
described 181
editor 181-184
finding strings in 182
inserting entries 183
moving strings between segments 183
searching for strings 182

Strings
adding formatting or special characters to 184
embedding, CL option 565
identifier 184
identifier, modifying 184
moving between files 183

Strings (continued)
table See String table
text, finding 89

/STUB option, LINK 423
Styles, menu item 171
Subsystem linking 585
/SUBSYSTEM option

LIB 610
LINK 426,585

.SUFFIXES directive
dependents 638
described 647
inference rules 645
/P option, NMAKE 631
priority 645
/R option 631

/SUMMARY option, DUMPBIN 623
Suppress Startup Banner option, linker 418
Swap tuning 584
Switches See Options, Settings
Symbol Browser 139-140
Symbol header file 146
Symbol table 623
Symbolic Debugging Information 421
Symbols

adding to symbol table 423
browse information files 615, 618-619
calculated 146-147
changing 138
codes in Brose window 270
creating new 140
definition, displaying 280
deleting unassigned 141
displaying in file 272
jumping to definition 280
name restrictions 141-142
querying current information file 269
read-only 146
shared 146
value 137-143

. /SYMBOLS option, DUMPBIN 623
Syntax

advanced breakpoint 306
changing color 111
checking with /Zs option, CL 567
CL 547,567

SYSINCL.DAT 54,57
System processes, getting graphical view of 353
System views 356, 362, 368

T
/T option

NMAKE 631
PLIST 599

Tab order, dialog box 162
Tab-delimited files 599-600,603
Table, accelerator See Accelerator tables
Tabs

makefile syntax 641, 645, 647
setting in text editor 107

Tabstop property, using 162
Target platform 582
Targets

accumulating 636
build rules 635-636
checking timestamps 631
described 635
filenames 643
forcing builds 631,635
keeping 647
length limit 635
macros, predefined 643
multiple 635
multiple description blocks· 636
pseudotargets 635

/Tc option, CL 565
TEMP environment variable 574
Template name flags 498
Templates, Class Wizard information file 494
Terms, menu editor 170
Testing

dialog boxes 167
graphic wIth inverted colors 201

Text
cutting, copying, pasting, deleting 103
editor See Text editor
finding

replacing 88, 92, 94, 96, 98
in multiple files 91

selecting 99
Text editor

changing syntax colors 111

Index

changing syntax colors for user-defined types 111
creating files 76
cutting, copying pasting, deleting text 103
editing 101
editor emulation 106
features 75

709

Index

710

Text editor (continued)
keystrokes, recording, playing 104
matching conditional statements 83
matching group delimiters 82
navigating commands 87
navigating source files 81
opening files 77
printing files 80
recording keystrokes 104
saving files 79
setting

fonts 109
options 105
save preferences 106
selection margin 107
tabs 107

setting font style 109
source window 113
undoing editing actions i 03
using

bookmarks 84
drag-and-drop 104
generally 75
GoTo 84
regular expressions for search 93,95,97
virtual space 82

Text strings, embedding, CL option 565
Text templates 486,488,491
Thread Properties dialog box 369-371
Thread Properties options, Windows 95 (table) 370
Threads

debugging 333
determining activities for selected processes 669
displaying execution information 670
displaying priorities 669
listing 368
views of 356

Timestamps 631,635,643
TMP environment variable 639
Tool tips, adding to toolbar buttons 210
Toolbar

dialog editor 155
Visual C++ Symbol Browser 140

Toolbar, graphics 186
Toolbar buttons 209-210
Toolbar editor 207-209
Toolbars

adding, moving buttons 441-443
as docking windows 439

Toolbars. (continued)
converting bitmaps to 208
creating 208
custom 440
defined 438
deleting 444
docked mode 446
floating mode 445
graphics See Graphics toolbar
modifying 441
setting breakpoints 294
showing, hiding 439
sizing 447
Spy++, commands (table) 354
working with 438

Tools
adding, running $File macros 453
closed figures 193
drawing 191-192
fill 200
options described 452
using error syntax 454

Tools menu 345, 450-452
TOOLS.INI

comments 633
makefiles 633,641,648
modifying in profiler 350
pro filer 344

Touch (timestamps), NMAKE 631
Transferring colors 200
Tree menu, commands 356
Trees, system thread 368
_try keyword, compiler option 393
{fx option, CL 565
.TXT files 571
Types, project See Projects

u
!U option, compiler option 411
!UNDEF directive

described 648
macros 641
precedence rules 642

Undo, edit actions 103
Updating ClassWizard 251
Updating dependencies in projects 57
Use Program Database option, linker 417
User-defined controls 165

v
N option

BSCMAKE 619
CL 565

Validation of dialog data 246
Values

accelerator 179
accelerator keys 179
DDX variable types 248
symbol 138-143

Variables
adding from QuickWatch 310
DDX control variables 247,249
displaying in Watch window 310
local, displaying on Debug menu 314
local, excluding, compiler option 398
member See Member variables
viewing with QuickWatch 308
watch, formatting (list) 312

VB Form dialog boxes 166
/vdO, /vdl compiler options 387
NERBOSE option

LIB 609
LINK 418,586

Version information editor 217-220
Version Information option, linker 426
Version numbers, LINK 426,585
NERSION option, LINK 426
VERSION statement 589
Viewer, process See PView process viewer
Viewing

breakpoints list 297
decorated names 654-655

Views available in Spy++ 354
Virtual device drivers 586
Virtual functions, overriding with Class Wizard 241
Virtual space, using 82
Visual C++

binary data, editing 213
debugging information 420-421
profile dialog box 345
toolbar, Symbol Browser 140

/vmb compiler option 385
/vmg compiler option 386
/vmm compiler option 386
/vmv compiler option 386
/vmw compiler option 386
VS_ VERSION_INFO 217

vtordisp fields, enabling or disabling, compiler
options 387

NXD option, LINK 586

w
/w compiler option 382
/WO, /WI, /W2, /W3, /W4 compiler options 382
/WARN option, LINK 586
Warning level, compiler options 382
Warnings as errors, compiler option 383

Index

Watch expressions displaying in Watch window 310
Watch variables, formatting (list) 312
Watch window, displaying 310
Wildcards, makefiles 633
Win32s

character-mode application 585
profiling under 352
relocations 581
subsystem 585

WinDiff
colors 676
command-line syntax 675
described 675
expand/outline contents of selected file 676
menus 676
starting 675

WINDIFF.EXE 675
Window Finder Tool, Spy++ 357-358
Window Message Log windows, starting, stopping 374
Window Properties dialog box 359
Window Properties options (table) 360
Windows

base classes and members 276
call graph 278
callers graph 280
debugger 284
Definitions and References (table) 282
derived classes and members window 275
desktop, capturing and enlarging area 673
Developer Studio types 430
docking a floating 436
document See Document windows
finding properties of 157
messages, viewing 372
process properties 363
resources, editing 129
searching for 358
source See Source windows

711

Index

712

Windows (continued)
. standard hierarchy 357

system tree 356
tool, docking See Docking tool windows
tree view of all 354
zooming 673

Windows 95
process properties 364
process properties options 365
Thread Properties 370

WINDOWS keyword, /SUBSYSTEM option 585
Windows NT

device drivers 585
thread properties options 371

Windows Styles tab 529
Windows tab, options (table) 375
WinMain 585
WizardBar 223
WO operator 313
Working with symbols 137
Workspace window

displayed when building projects 36
file icons 46

WRITE keyword, SECTIONS statement 589
WriteBlock member function, OutputStreiun class 511
WriteLine member function, OutputStream class 511
/WX option, compiler option 383

x
IX option

compiler option 412
NMAKE 631

_XE extension 346

v
IY c compiler option 409
IY d option, CL 565
YESINO keyword, /INCREMENTAL option 416
IY u compiler option 409
IYX compiler option 408

z
/Z7 compiler option 383
/Za compiler option 392
/Zd compiler option 383
/Ze compiler option 392
/Zg CL 566

/Zi compiler option 383
/Zl option, CL 566
/Zn compiler option 398
Zoom control 673
Zoomin Reference 673
ZOOMIN.EXE 673
Zooming, changing magnification factor 188
/Zp1, /Zp2, /Zp4, /Zp8, /Zp16 options, compiler 392
/Zs option, CL 567

Contributors to Visual C++ User's Guide

Robert Ackerman, Writer

Diane Berkeley, Writer

Pat Bezzio, Editor

Chris Burt, Writer

Richard Carlson, Index Editor

John Chaffms, Writer

David Adam Edelstein, Art Director

Pat Fenn, Production

Cathy Fisher, Proofreader

Barbara Haerer, Editor

Larry Happ, Proofreader

Erik Larsen, Writer

Robert Reynolds, Illustrator

Linda Robinson, Production

Terri Sharkey, Editor

Melba Wallace, Editor

Terry Ward, Writer

Edward Wright, Writer

- ~~ - .. ~~"~~~ ~ =- *- -= =.~~- ~ - ~~ £~i"'''''''

Volume On.4'-i.~.i~it:

This six-volume collection is the complete printed product documentation for Microsoft Visual (++ version 4, the development system for Win32®.
In book form, this information is portable and easy to access and browse, a comprehensive alternative to the substantial online help system in Visual (++.
Although the volumes are numbered as a set, you have the convenience and savings of buying only the volumes you need, when you need them.

Volume 1: MICROSOFT VISUAL C++ USER'S GUIDE
You'll get vital information on the Visual (++ development environment in this four-part tutorial. It provides detailed information on wizards, the
(omponent Gallery, and the Microsoft Developer Studio with its integrated debugger and code browser - all essential instruments
for building and using prebuilt applications in Visual (++. A comprehensive reference for all the
command-line tools is included.

Volume 2: MICROSOFT VISUAL C++ PROGRAMMING WITH MFC
This comprehensive tutorial gives you valuable information for programming with the Microsoft
Foundation (lass Library (MF(), and Microsoft Win32, plus details on building OLE (ontrols. You'll
find out how MF(works with an in-depth overview and a valuable compilation of over 300 articles
on MF(programming. Win32 topics cover exception handling, templates, DLLs, and multithreading
with a Visual (++ perspective.

Volume 3: MICROSOFT FOUNDATION CLASS LIBRARY REFERENCE, PART 1
Volume 4: MICROSOFT FOUNDATION CLASS LIBRARY REFERENCE, PART 2
This two-volume reference is your Rosetta stone to Visual (++, providing a thorough introduction to MF(, a class library
overview, and the alphabetical listing of all the classes used in MFC. In-depth class descriptions summarize members by category and list
member functions, operators, and data members. Entries for member functions include retum values, parameters, related classes, important comments, and
source code examples. Valuable information on macros and globals, structures, styles, callbacks, and message maps is included at the end of Volume 4.

Volume 5: MICROSOFT VISUAL C++ RUN-TIME LIBRARY REFERENCE
(ombining the information of two books, this volume contains complete descriptions and alphabetical listings of all the functions and parameters in both
the run-time and iostream class libraries, and includes helpful source code examples. You'll also get full details on the 27 new debug run-time functions.

Volume 6: MICROSOFT VISUAL C++ LANGUAGE REFERENCE
Three books in one, the (and (++ references in this volume guide you through the two languages: terminologies and concepts, programming structures,
functions, declarations, and expressions. The (++ section also covers Run-Time Type Information (RTII) and Namespaces, important new language features
added to this version of Visual (++. The fina l section of this valuable resource discusses the preprocessor and translation phases, integral to (and (++
programming, and includes an alphabetical listing of preprocessor directives.

IS BN 1-55615-9 15-3

90000
U.S.A. $29.95
U.K. £27.49
Canada $39.95

[Recommellded] Micmsoft'Press

