
Teach Yourself Microsoft- Visual C++
the Quick and Easy Way

Mark Andrews

Includes
a complete

wotfdng vfll'flion
of MIctoIIDIt

VIsual c++ 1.01

Microsoft Press

Teach Yourself Microsoft· Visual C++
the Quick and Easy Way

Mark Andrews

"

Microsoft Press

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1996 by Mark Andrews

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Andrews, Mark.

Learn Visual C++ now: the complete learning solution for Visual
C++ / Mark Andrews.

p. cm.
Includes index.
ISBN 1-55615-845-9
1. C++ (Computer program language) 2. Microsoft Visual C++.

I. Title.
QA76.73.C153A487 1996
005.26' 2- -dc20 95-26475

CIP
Printed and bound in the United States of America.

123456789 QMQM 109876

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publish­
ing Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (206) 936-7329.

Thanks to Tareh Kryger for letting us use the Beyond Ti picture.

Adobe Illustrator is a registered trademark and PostScript is a trademark of Adobe Systems,
Inc. Macintosh is a registered trademark of Apple Computer, Inc. CorelDRAW is a registered
trademark of Corel Systems Corporation. DEC is a trademark of Digital Equipment Corporation.
Intel and Pentium are registered trademarks of Intel Corporation. Macromedia Freehand is a
trademark of Macromedia, Inc. MS-DOS, Visual C++, Win32, Windows, and Windows NT are
registered trademarks of Microsoft Corporation. MIPS is a registered trademark of MIPS Tech­
nologies, Inc.

Companies, names, and/or data used in screens and sample output are fictitious unless other­
wise noted.

Acquisitions Editor: David Clark
Manuscripl E<iitor: Jennifer Harris
Technical Editor: Christina Anagnost
Project Editor: John Pierce

~'

For Lakshmi

Acknowledgments

The author wishes to thank his agent, Carole McClendon, and the many
individuals at Microsoft Press who helped to complete this book.

iii

Chapter 1

Chapter 2

Introduction

What You'll Need to Use This Book

What You Get with This Book

Getting Online Help

What's in This Book

Installing the (ompanion (D-ROM

Installing the Learn Visual C++ Now Files Under Windows 95

Installing the Learn Visual C++ Now Files in Other Environments

Installing Visual C++

Customizing Your Installation Options

Introducing Visual C++

The Visual C++ Programming Environment

The Visual C++ Editor

The Visual (++ Wizards and App Studio

Programming with Visual C++

The Visual C++ Build Process

The MFC Library

MFC: The "New Windows API"

MFC and Visual C++

Writing a Visual (++ Program

Understanding Visual C++ Projects

Writing a Visual (++ Program Step by Step

What's Next?

Introduction to Windows Programming

The World's First (-Language Program

Architecture of the" Hello, world!" Program

Windows Events and Messages: An Overview

Message Queues and Message Pumps

xv

xvi

xvii

xvii

xvii

xix

xix

xx

xx

xxi

1

2

3

5

9

10

11

11

12

12

13

14

19

21

22

23

24

25

v

Learn Visual C++ Now

The Window Procedure 25

, Message Handlers 27

Example: The HELLO Program 28

Methods of Building the HELLO Program 28

Building the HELLO Program Step by Step 29

How the HELLO Program Works 32

How the WinMain Function Works 34

Registering a Window Class 37

Creating and Displaying a Window 40

Drawing Text in a Window 42

What's Next? 47

Chapter 3 C++ Basics 49

What's Object-Oriented Programming? 50

Old Friends, New Faces 52

Type Specifiers 52

Qualifiers 60

C~+ Classes 65

Declaring Classes 65

Access Specifiers 66

Inline Member Functions 67

Example: The EMPINFO Program 67

Constructors and Destructors 71

Default Function Arguments 74

Copy Constructors 75

Example: The CPVCONST Program 77

Initializer Lists 78

The Scope Resolution Operator 79

The this Pointer 81

What's Next? 82

vi

Table of Contents

Chapter 4 Objects and Member Functions 83

Class Hierarchies and Inheritance 84

Understanding Class Hierarchies 84

How Derived Classes Work 85

Why Use Derived Classes? 85

Example: Deriving a Class 86

Rules of Inheritance in C++ 88

Declaring a Derived Class 89

Constructing Derived Classes 90

Overriding Member Functions 91

Polymorphism and Virtual Member Functions 95

Example: Using a Virtual Function 95

How the VIRTUAL Program Works 97

Virtual Functions and Nonvirtual Functions 98

Benefits of Using Virtual Functions 98

V-Tables 99

Pure Virtual Functions and Abstract Classes 104

How Abstract Classes Are Used in the EMPDATA Program 105

Virtual Functions: Pros and Cons 105

Function Overloading and Operator Overloading 106

Function Overloading 106

Operator Overloading 108

Writing Operator-Overloading Functions 109

Static Member Variables 111

Creating Static Member Variables 112

Declaring and Defining Static Member Variables 113

Accessing Static Member Variables 114

Private Static Member Variables 115

Static Member Functions 116

vii

Learn Visual C++ Now

Friendly Classes and Friendly Functions 117

One-Way Friendships 118

The new and delete Operators 121

The new Operator 121

The delete Operator 122

What's Next? 123

Chapter 5 Visual C++ Tools 125

Visual C++ Projects 126

Creating the Basic SCRAMBLE Project 127

Files and Classes in AppWizard Projects 131

Files in the SCRAMBLE Project 132

Adding a Bitmap: Managing Resources with App Studio 134

Writing Code to Display the Bitmap , 138

Working with Bitmaps 138

Building a Visual C++ Application 143

Compiling an Application 143

Linking an Application 146

Executing the SCRAMBLE Program 148

Editing Menus with App Studio 149

Creating Message Handlers with ClassWizard 152

Writing Code for Message Handlers 155

The Visual C++ Debugger 155

Setting Breakpoints ,156

Stepping T~rough a Program 156

Open'ih'g ,bebugger Windows 157

Listing: The SCRAMBLE Program 158

What's Next? 165

Chapter 6 The MFC Library 167

About the MFC Library 169

viii

A Brief History of the MFC library

MFC Version 2.0

MFC: The New Windows API

The MFC library Class Hierarchy

The MFC Framework Classes

The CObjectClass

The CCmdTargetClass

The CWinApp Class

The CWnd Class

The CFrameWnd and CMDIFrameWnd Classes

The CView, CScrollView, and CDocumentClasses

The CDocTemplate Class

How an MFC Program Works

The WinMain Function

The Initlnstance Member Function

The Run Member Function

The Pump Message Member Function

Window Procedures in MFC Programs

Using Documents and Views in MFC Programs

Document Templates

Example: The Improved SCRAMBLE Program

Experimenting with the New SCRAMBLE Program

How Windows Are Managed in the New SCRAMBLE Program

Adding Toolbar Buttons to the SCRAMBLE Program

Updating the SCRAMBLE Program's Menu Items

Creating Solid-Color Bitmaps for the SCRAMBLE Program

Adding Scrolling to the SCRAMBLE Program'sViews

Customizing a Program's Windows

What's Next?

Table of Contents

170

171

172

175

180

181

181

182

183

183

184

185

186

186

188

189

190

192

192

197

200

200

200

201

207

210

212

215

219

ix

Learn Visual C++ Now

Chapter 7 Of Mice and Messages 221

Understanding Windows Messages 222

Varieties of Windows Messages 223

How Windows API-Style
Programs Handle Command Messages 227

How MFC Programs Handle Command Messages 228

How the MFC Framework Dispatches Messages 229

Message Maps 230

Benefits of Using Message Maps 231

Binding Message Maps to Your Program 232

Declaring a Message Map 232

Implementing a Message Map 234

Messages That ClassWizard Recognizes 235

Creating Message Handlers with ClassWizard 237

The Story So Far 239

Writing Code for Message Handlers 241

Different Strokes 241

Storing Strokes in an Array 242

Writing a Message Handler Step by Step 242

Converting Device Coordinates to Logical Coordinates 244

Writing an OnMouseMove Message Handler 245

Storing Strokes in a Document 249

Redrawing Strokes in the SCRIBBLE Window 251

Creating and Managing a CPen Object 253

Understanding MFC Library Classes 253

Features of the CObjectClass 254

Files and Serialization 255

Opening Files in an MFC Program 256

Performing File I/O with the CFile Class 257

x

Table of Contents

~
The Serialization Mechanism 259

Objects and Operators Used in Stream 1/0 260

Using the« and» Operators 261

Implementing Serialization in MFC Programs 262

Implementing Serialization in AppWizard Programs 263

Implementing Serialization in the SCRIBBLE Program 264

Serializable Data Types 267

MFC's Serialization Macros 267

Opening and Closing Documents in an MFC Program 268

Clearing the SCRIBBLE Program's Window 270

Changing Pen Widths 271

What's Next? 273

Chapter 8 Dialog Boxes 275

Varieties of Dialog Boxes 277

Modal Dialog Boxes 277

Modeless Dialog Boxes 277

Message Boxes 278

Components of a Dialog Box 278

Designing a Dialog Box with App Studio and ClassWizard 279

Integrating Dialog Boxes with Applications 282

Creating and Displaying a Modal Dialog Box 282

Calling a Dialog Box Constructor 282

Calling the DoModal Function 284

Calling the OnlnitDialog Function 285

Creating and Displaying a Modeless Dialog Box 287

Constructing a Modeless Dialog Box 287

Calling the Create Function 288

Initializing a Modeless Dialog Box 289

Overriding OnOK and On Cancel 290

Calling PostNcDestroy 292

xi

Learn Visual C++ Now

Creating and Displaying a Message Box 292

Dialog Box Controls 293

Button Controls 293

Edit Controls 298

Static Text Controls 301

Radio Buttons 303

List Boxes 305

Combo Boxes 307

Check Boxes 309

What's Next? 310

Chapter 9 Managing Data 311

The DDX and DDV Mechanisms 313

The Old Way 313

Understanding DDXlDDV: The TEST APP Program 314

Creating the TESTAPP Project and Adding DDX Support 315

Implementing the DDXlDDV Mechanisms 321

Understanding the UpdateData Command 325

An Easier Way 326

Calling the UpdateData Function Step by Step 327

Running the TESTAPP Program 328

Extending DDX/DDV: The CREATION Program 329

Architecture of the CREATION Program 333

Creating a CPlayer Object 336

The Create A Character Dialog Box 338

The Mel's Bait Shop And Fashion Boutique Dialog Box 347

The Character Information Dialog Box 352

Serialization Revisited 353

The CREATION Program's Serialize Member Function 354

The CPlayerClass's Serialize Member Function 355

xii

Chapter 10

Adding Printing Support

AppWizard's Printing-Related Functions

Customized Printing in the CREATION Program

Calling the OnPrint Member Function

How the OnPrint Member Function Works

The GetStats Member Function

Calling the GetEquipmentList Member Function

What's Next?

Visual C++ Graphics

Bitmaps

Varieties of Windows Bitmaps

Device-Dependent Bitmaps (DDBs)

Creating DDBs

Loading and Saving DDBs

Copying and Displaying Bitmaps

Sprite Animation

Sprite Animation Step by Step

Using Frame Buffers in Animation Programs

Avoiding Flickering and Tearing in Bitmap-Copying Operations'

Calculating Bounding Rectangles in Animation Sequences

Step Animation

Example: The GRAFDEMO Program

How the GRAFDEMO Program Works

The GRAFDEMO Program Step by Step

Constructing Bitmaps in the GRAFDEMO Program

Getting Ready for Animation

The GRAFDEMO Program's OnDraw Function

Drawing a Background

Drawing a Player

Table of Contents

356

357

358

358

360

361

362

363

365

367

369

371

371

373

374

379

380

381

382

383

385

386

386

387

389

390

391

392

392

xiii

Learn Visual C++ Now

Moving a Sprite 394

Calculating Bounding Rectangles 396

Device-Independent Bitmaps (DIBs) 397

How DIBs Speed Copying Operations 397

Disadvantages of Using DIBs 398

DIB Architecture 400

Palettes 407

The System Palette 409

The Default Logical Palette . 409

The LogiCal Palette 410

How the DIBDEMO Program Uses Palettes 412

Mapping System Palette Colors to a Logical Palette 413

Creating and Using Logical Palettes 414

Streamlining DIB Copying with Identity Palettes 415

Creating" an Identity Palette 415

Creating and Using DIBs 416

DIB-Copying Operations 417

Using the StretchDIBits Function 418

Using the SetDIBitsToDevice Function 419

Example: The DIBDEMO Program 420

How the DIBDEMO Program Works 421

Loading DIBs into Memory 421

Copying and Displaying DIBs 423

The StretchDIBits Member Function 424

What's Next? 426

Suggestions for Further Reading 427

Index 429

xiv

Introduction
The world is full of books about Visual c++. Why is Learn Visual C++ Now
different?

One reason is that this book comes with a complete copy of the Microsoft
Visual C++ version 1.0 compiler-the same Professional Edition Visual
C++ compiler that sold for hundreds of dollars when Visual C++ was in­
troduced. Another special feature is that this book teaches you the C++
language using Microsoft Visual C++-the de facto standard for writing
Windows-based programs and the most widely used compiler for creating
and developing Windows-based programs in c++.

Learn Visual C++ Now is intended for programmers with a basic knowl­
edge of the C language who would like to learn to write Windows-based
programs in C++. And in addition to teaching you the ins and outs of Visual
C++, this book provides an introduction to the basics of programming in
Windows and a two-chapter overview of the C++ language and the prin­
ciples of object-oriented programming.

This book also provides you with the personal assistance of the best Visual
C++ teacherslon the planet-the wizards that come with Visual C++. The
Visual C++ wizards include App Wizard, which can generate a working
Visual C++ application at the touch of a menu command, and ClassWizard,

xv

Learn Visual C++ Now

xvi

which can create and manage classes in Visual C++ programs. For a per­
sonal tutoring session from either of these wizards, all you have to do is
ask. You can learn C++, Visual C++, and good programming practices
simply by examining the code that the Visual C++ wizards produce. The
wizards never write bad code,so you can rest assured that you'll get well­
behaved code that adheres to Microsoft standards.

As you become more familiar with programming in Visual C++, you can
add to your understanding of the basic principles by observing how the
wizards do the spadework needed to make your applications work. And
that's probably the most painless method yet discovered for learning both
Visual C++ and Windows programming!

What VOlUJ'~~ Need to Use lrhis Boo~(
The version of Visual C++ that comes with this book runs under Microsoft
Windows 95 and Microsoft Windows NT, as well as under earlier versions
of Windows. It generates 16-bit applications that can be executed immedi­
ately, without any editing or tweaking.

To follow the examples in this book, you'll need an Intel 386, 486, or
Pentium processor and Microsoft Windows 95, Microsoft Windows NT, or
Microsoft Windows version 3.0 or 3.1. (Windows version 3.1 is preferred.)
You'll also need a hard disk with enough disk space to install the options
that you want, and you'll need at least 4 (and preferably 16) MB of RAM
(depending on your operating system). And, of course, to install the Visual
C++ compiler included on the companion CD-ROM, you'll need a CD­
ROM drive.

~II OTE If after finishing this book you decide to upgrade to a later version of
6tr~ Visual C++, you can use your new compiler to recompile any of the sample

programs presented in this book and any programs that you built using
Visual C++ version 1.0. You can even recompile the programs presented in
this book and your own Visual C++ version 1.0 programs using Borland C++
version 5.0 or later (which supports the MFC library and source code written
using Visual C++).

Introduction

Whail: 'lou Get with Thus (Bool,
The companion CD-ROM provides the Microsoft Visual C++ version 1.0

compiler, the Visual C++ linker, and the complete Visual C++ develop­
ment environment-including the Visual C++ editor, the Source Browser,
a source code and assembly language debugger, a complete set of online
help files, and a collection of tools for creating and maintainin~ resources
and C++ classes.

The companion CD-ROM also provides a collection of notes (located in
the /MSVC/HELP directory) in Microsoft Word/Windows 95 Notepad for­
mat that contains miscellaneous information about Visual C++ and the
Visual C++ version 1.0 compiler.

A«lloTE No product support is provided for the Visual C++ software that comes
6if~ with this book.

GeltfdD1lg OD1l~iD1le ~e~rPl
You can get help at any time by consulting the online help files that come
with Visual C++ version 1.0. To access online help, all you have to do is
choose the topic for the kind of help you need from the Visual C++
editor's Help menu. Help topics include the C/C++ language, the Win­
dows Software Development Kit (SDK), and the Microsoft Foundation
Class (MFC) Library version 2.0. The Visual C++ online help files can also
provide you with information about the tools that come with the Visual
C++ software development environment.

Here is a description of the topics we'll cover in Learn Visual C++ Now.

Chapter 1, "Introducing Visual C++," acquaints you with the Visual Work­
bench, App Wizard, and other important tools and programming principles
you'll use when developing applications in Visual C++.

Chapter 2, "Introduction to Windows Programming," provides an over­
view of the construction of Windows-based programs. What you learn in
this chapter will come in handy in later chapters, when we explore how
App Wizard constructs frameworks for Visual C++ programs.

xvii

Learn Visual C++ Now

xviii

Chapter 3, "C++ Basics," looks at some of the most important features of
generic C++ and object-oriented programming. This chapter explains some
of the differences between C and C++ and shows you how to create and
implement C++ classes, member variables, and member functions.

Chapter 4, "Objects and Member Functions," like Chapter 3, is dedicated
to the study of generic C++ and the fundamental principles of object­
oriented programming. In this chapter, we take a look at how objects and
member functions are used in C++ programs and also at other important
principles of C++ programming, including inheritance, polymorphism,
virtual functions, function overloading, and friend functions.

Chapter 5, "Visual C++ Tools," describes in detail how to use the program­
ming tools in Visual C++ and shows-with the help of a straightforward
example program-how programming in Visual C++ differs from tradi­
tional Windows API-style programming.

Chapter 6, "The MFC Library," shows how the MFC library has enhanced
generic C++ and the Windows API by adding new classes and member
functions specifically designed for use by Windows programmers. Topics
covered in this chapter include the CObject class, the CWnd class, and
other important classes in the MFC library.

Chapter 7, "Of Mice and Messages," introduces the concept of mouse
events and shows how you can use mouse events to interact with the user
in Visual C++ programs. More information is provided about menus, mes­
sages, message handlers, and message maps.

Chapter 8, "Dialog Boxes," shows you how to use App Studio to design
dialog boxes and equip them with controls. This chapter explains and
demonstrates both ordinary dialog box controls and user-drawn controls.
An example program shows how you can use message boxes, modeless
dialog boxes, and modal dialog boxes with many different kinds of con­
trols in your own Visual C++ programs.

Chapter 9, "Managing Data," continues our examination of dialog boxes.
This chapter shows you how to create member variables for dialog box
classes using ClassWizard and how to use those member variables as
connection points between dialog box controls and member functions in
Visual C++ applications. The key to this magic is the Visual C++ DDX

Introduction

(dialog data exchange) and DDV (dialog data verification) mechanisms,
which you can use to pass information back and forth between your appli­
cation and dialog box controls.

Chapter 10, "Visual C++ Graphics," introduces you to Windows graphics
and animation and shows you how to incorporate exciting graphics rou­
tines into your Visual C++ applications. In this chapter, you'll learn to use
device-dependent bitmaps (DDBs), device-independent bitmaps (DIBs),
sprite graphics, step graphics, and transparent bitmap copying. This chap­
ter presents two example programs: one demonstrates the use of sprite
graphics using standard DDBs, and one performs similar magic using DIBs.

Also included is a list of additional references about Visual C++ and object­
oriented programming.

~D1lS~a~~UIrOQJ the CompanDon CD-ROM
To install the source code, sample programs, and Visual C++ software that
is included on the companion CD-ROM, follow the procedures outlined
below.

Installing the learn Visual c++ Mow
Files Under Windows 95
To install the Learn Visual C++ Now files under Windows 95, follow these
steps:

1. From the Windows 95 desktop, click the Start button.

2. Choose the Run menu item.

3. In the Run dialog box, click the Browse button.

4. In the Browse dialog box, navigate to the root directory of the com-
panion CD-ROM.

5. Click the SETUP .EXE icon.

6. Click the Open button.

7. When the Run dialog box reappears, click OK, and follow the on­
screen instructions.

xix

Learn Visual C++ Now

xx

Installing the Learn Visual C++ Now
Files in Other Environments
If you are running Windows 3.x or Windows NT version 3.5 or earlier,
you can install the Learn Visual C++ Now files by opening File Manager,
navigating to the root directory of the companion CD-ROM, and double­
clicking the SETUP.EXE icon. Alternatively, you can follow these steps:

1. From Program Manager, choose the Run item from the File menu.

2. In the Run dialog box, navigate to the root directory of the compan-
ionCD-ROM.

3. Click the SETUP.EXE iCon.

4. Click the Open button.

5. When the Run dialog box reappears, click OK, and follow the on­
screen instructions.

Installing Visual C++
The Visual C++ compiler on the companion CD-ROM generates 16-bit
Windows-based applications that will run under Windows 95, Windows
NT, or Windows 3.x.

Under Windows 95
To install Visual C++ under Windows 95, follow these steps:

1. From the Windows 95 desktop, click the Start button.

2. Choose the Run menu item.

3. In the Run dialog box, click the Browse button.

4. In the Browse dialog box, navigate to the IMSVC folder on the com-
panion CD-ROM.

5. Click the SETUP.EXE icon.

6. Click the Open button.

7. When the Run dialog box reappears, run the Installer by clicking the
OK button.

Introduction

In other environments
If you are running Windows 3.x or Windows NT version 3.5 or earlier, you
can install Visual C++ by opening File Manager, navigating to the IMSVC

folder on the companion CD-ROM, and double-clicking the SETUP.EXE
icon. Alternatively, you can follow these steps:

1. From Program Manager, choose the Run. item from the File menu.

2. In the Run dialog box, navigate to the IMSVC folder on the compan-
ionCD-ROM.

3.· Click the SETUP .EXE icon.

4. Click the Open button.

5. When the Run dialog box reappears, run the Installer by clicking the
OK button.

Customizing Your Installation Options
If you prefer, you can customize your installation using the Installation
Options dialog box, which opens when you start the Installer.

To customize your installation, follow these steps:

1. To determine whether you have enough disk space to install the
complete Visual C++ package, check the Disk Space Information
panel at the bottom of the Installation Options dialog box. In the
Disk Space Information panel, the Installer displays the name of the
disk drive on which Visual C++ is about to be installed.

2. If you want, you can click the Directories button to specify a differ­
ent disk for your Visual C++ installation. The Installer then opens
the Directory Options dialog box.

3. By specifying multiple drives in the Directory Options dialog box,
you can install different parts of the Visual C++ package on different
drives. If you have enough hard disk space, it is recommended that
you install all the items listed in the Installation Options dialog box.
If you can't find enough hard disk space to install every item, you
can uncheck the Sample Source Code check box. The Installer will
then skip the sample programs provided with Visual C++ version 1.0.

xxi

Learn Visual C++ Now

xxii

Later you can load any sample project you want directly from the
companion CD-ROM.

4. After you have specified a directory setup for your Visual C++ in­
stallation, close the Directory Options dialog box by clicking the OK
button. Once again, the Installation Options dialog box becomes the
active window.

Now that you're all set up, let's start learning about Visual C++.

Chapter

Introducing Visual C++
Learning to program with Microsoft Visual C++ is different from learning
to develop software in other computer languages. When you design a pro­
gram in an older, conventional computer language, such as C, Basic, or
Pascal, you generally have to do everything yourself; every time you want
the computer to do something, you have to write a line or a block of code.

When you write a program using Visual C++, a lot of the work is done for
you. In many cases, Visual C++ provides the general code the computer
needs to perform many of the tasks you want it to perform. You then add
to and tailor the code that Visual C++ provides to create more specific
applications.

That shortcut frees you from having to write every line of code that's
needed to perform repetitive tasks such as handling keyboard and mouse
operations and drawing windows to the screen. With Visual C++, you can
focus your attention on more creative work-such as writing the code that
implements what's really new and different about the application you are
developing.

This chapter introduces Visual C++ and familiarizes you with the tools
that make up the Visual C++ programming. environment. It also intro­
duces the Microsoft Foundation Class (MFC) Library version 2.0, a large
library of C++ classes and member functions that are designed especially

Learn Visual c++ Now

2

for developing Windows-based programs in Visual C++. At the end of this
chapter, you'll see how one Visual C++ tool, a utility named App Wizard,
uses the MFC library to generate a fully functioning Windows~based appli­
cation at the click of a menu item. In later chapters, you'll learn how to
write the code necessary to expand the application frameworks generated
by AppWizard into more sophisticated Visual C++ applications.

These are the main topics covered in this chapter:

• The Visual Workbench programming environment, which intro-
duces the Visual C++ editor and the Visual C++ wizards

• How the Visual C++ wizards help you learn Visual C++

• How to compile an~ link a Visual C++ program

• How the MFC library-the "new Windows API"-can help you
write powerful Visual C++ programs

• A step-by-step guide to writing a framework MFC program using
Visual C++

The Visual c++ Programming Environment
When you develop applications in Visual C++, you use the Visual Work­
bench, sometimes abbreviated VWB. The Visual Workbench is the pri­
mary editing and debugging tool provided with Visual C++; it serves
as the command center for Visual C++ programming and provides a host
of programming utilities, including the following:

• The App Wizard application generator

• The App Studio resource manager

• The ClassWizard class manager

• The Visual C++ Source Browser

• The Visual C++ debugger

• The Visual C++ editor

1: Introducing Visual c++

• The Visual C++ compiler

• The Visual C++ linker

Figure 1-1 shows what the Visual Workbench window looks like when it
first opens. From the main Visual Workbench window, you have access to
a number of the editing and programming components. Most of the main
compo,nents of the Visual Workbench environment are described in the
sections that follow. You'll learn more about the others as you move
through this book.

Figure 1-1. The main Visual Workbench window.

The Visual C++ Editor
When you start Visual C++, you see the Visual C++ editor window. The
Visual C++ editor is a standard Windows-based text editor equipped with
a number of special features for writing Visual C++ programs.

One of these features is a built-in. Source Browser, used to track down defi­
nitions and references to variables and C++ classes. Another is color­
coded highlighting of different keywords used in Visual C++.

3

Learn Visual c++ Now

4

The color-coded syntax feature makes it easy to spot occurrences of spe­
cial kinds of words or phrases in Visual C++ programs. For example,
C-Ianguage keywords appear in blue, C++ keywords are displayed in red,
and comments appear in green. Debugger breakpoints show up in reverse
video inside a red band. (These are default settings; if you prefer some
other convention, you can modify the Visual C++ editor's default color
settings by choosing the Color item from the Options menu.)

Other special features of the Visual C++ editor include automatic indenta­
tion of lines in functions, a search-and-replace utility, bookmarks that can
provide instant access to a selected line of text, and a built-in source code
debugger. You can access any of these tools-and many more-from the
menu bar or from the toolbar, which provides point-and-click access to
14 common menu commands.

Keystroke Shortcuts
When you write source code with the Visual C++ editor, you can use a
number of special keystrokes to edit text and to move around in your
source files. Table 1-1 lists some of the common keystroke combinations
recognized by the Visual C++ editor.

Keystroke Shortcut Editing Operation

Ctrl-Left arrow

Ctrl-Right arrow

Home

Home, Home

Ctrl-Enter

End

Ctrl-Home

Ctrl-End

Ctrl-Z or
Alt-Backspace

Move one word to the left

Move one word to the right

Move to the first indentation of the current line

Move to the beginning of the current line

Move to the first indentation of the current line

Move to the end of the current line

Move to the beginning of the file

Move to the end of the file

Undo the last edit

Table 1-1. Keystroke shortcuts for editing operations.

1: . Introducing Visual c++

Keystroke Shortcut

Ctrl-A

Ctrl-T

Ctrl-C or Ctrl-Ins

Ctrl-X or Shift-Del

Ctrl-V or Shift-Ins

Ctrl-]

Tab

Ctrl-Alt-T

Editing Operation

Redo the last edit

Delete to the end of the word

Copy selected text to the Clipboard

Cut selected text to the Clipboard

Paste text from the Clipboard

Move to the matching brace

Insert a tab

Toggle the display of tab symbols

To learn more about the Visual C++ editor and its many features and capa­
bilities, choose the Visual Workbench item from the Visual Workbench
Help menu, and then click the button labeled Using The Editor.

The Visual C++ Wizards and App Studio
The Visual Workbench comes with a set of programming tools called
wizards. In the Visual C++ development environment, wizards perform
complex sequences of tasks for you, so you don't have to remember all the
details yourself. For example, the tool named App Wizard can set up an
application at the click of a menu item. ClassWizard, another Visual C++
w~zard, lets you use dialog box controls to connect resources such as
menus and dialog boxes to the code in your Visual C++ programs. Let's
look at these wizards and a related tool, named App Studio, in a little
more detail.

AppWizard
An application generated by AppWizard is sometimes referred to as an
application framework. An application framework is a minimal Visual
C++ program that you can customize by adding whatever special-purpose
code your application requires.

Figure 1-2 on the following page shows you what App Wizard looks like
when it first starts up.

5

Learn Visual C++ Now

6

Figure 1-2. The MFC App Wizard dialog box.

To start AppWizard, you simply choose the AppWizard item from the
Visual C++ Project menu. App Wizard then displays various dialog boxes
that you can use to specify attributes of the application you want to create.
When you have finished, AppWizard generates a functioning Visual C++
application that meets your specifications and contains all the essential
ingredients of a Windows-based application, including the following:

• A main frame window and any other windows required by the kind
of application being created

• A menu bar equipped with the standard Windows menus, such as
File, Edit, and Help

• All the menu items and dialog boxes needed to open files, save files,
print files, and implement print-preview functionality

• A toolbar and a status bar

1: Introducing Visual c++

• OLE support for container and server objects

• All the source files and resource files needed to create an application
built around the Visual C++ classes provided in the MFC library

When AppWizard has generated an application framework, it's up to you
to turn that framework into the kind of Windows-based application that
you want to design.

At the end of this chapter, you'll get a chance to create an application
framework using AppWizard. In later chapters, you'll learn how to add
code to an application framework that can give the program its own set
of interesting functionality. By the time you finish this book, you'll know
how to expand App Wizard frameworks in many different ways to create
many different kinds of applications.

You will learn much more about App Wizard and the MFC App Wizard
dialog box in Chapter 5, "Visual C++ Tools."

App Studio
After you have generated a bare-bones application with AppWizard, you
can use other tools provided with Visual C++ to expand your App Wizard
framework into a more useful application. One of the Visual C++ tools
you'll use often is App Studio-a graphically based, mouse-driven resource
editor. With App Studio, you can create and design dialog boxes, menus,
bitmaps, and other kinds of resources for your Visual C++ programs.

When you create or modify a resource using App Studio, App Studio
automatically modifies your project's resource (.RC) file to reflect your
changes. To use App Studio, you select the App Studio item from the Vi­
sual Workbench Tools menu. Then you can choose from several different
kinds of resource editors that are built into App Studio, such as the dia­
log box editor shown in Figu~e 1-3 on the following page.

7

Learn Visual C++ Now

8

Figure 1-3. The App Studio dialog box editor.

You'll learn more about App Studio in Chapter 7, "Of Mice and Messages,"
and Chapter 8, "Dialog Boxes."

ClassWizard
Another important Visual C++ utility is ClassWizard, a tool that connects
resources such as menus and dialog boxes to the code that implements
your Windows-based programs. In later chapters, when you start learning
how to write object-oriented programs using C++, ClassWizard can also
help you create and manage C++ classes.

To create a new C++ class using ClassWizard, you select the ClassWizard
item from the Browse menu. Figure 1-4 on the following page shows the
ClassWizard dialog box.

ClassWizard, like AppWizard, is an expert at writing C++ code. But while
AppWizard creates a general application framework, ClassWizard is a
specialist that, at your request, can write c++ routine~ that process user­
generated events such as mouse clicks and mouse movements. Class Wizard
even inserts the code it has written at the appropriate spot in your program.
You can then add whatever code you need to make your application re­
spond to user events in whatever way you want.

1: Introducing Visual c++

"St!tt\WtW!J!;lliiMIJ •• 1!Ctilgnrwti'l0:nllf1fiftJUBIUil:lifh!::':tt>v;w[Ylhllil

:! flbject 10.·
CHellaApp ..
ID_APP_EXlT
ID_EDIT_COPY'
ID_EDIT_CUT

. ID_EDIT_PASTE
, ID_EDICUNDO
: ID FILE MRU FILE' ,
;

:: Member [unctions:

i! D,esc.iption:

J:

I'. ~COMMAND
UPDATE_COMMAND_UI

l

I ...
.' .

I' 'OK I
'~c~1 I
·'Add'ci~~:';. I
. Class tntl);'. 'I

. llelp I

Figure 1-4. Managing Visual C++ classes with Class Wizard.

You'll get a close-up look at ClassWizard in Chapter 7, "Of Mice and
Messages," and Chapter 8, "Dialog Boxes."

I?lroglrammulnlg with VislUIal (++
By freeing software developers from the ridiculous so that they can work
on the more sublime, Visual C++ is not only bringing about an enormous
change in the way people write Windows-based programs, it's also begin­
ning to change the way people study computer programming.

When you learn Visual c++, you don't have to master every detail in every
routine before you move on to the next level. Instead, you can learn at
whatever pace you want, letting the Visual C++ wizards take care of the
programming details that you haven't explored yet. Later on, in order to
get a better idea of exactly how Visual C++ works, you can go back and
take a closer look at some of the subtleties you've skimmed over.

But you don't ever have to do that unless you want to-and there are
many highly specialized areas and murky corners of Visual C++ that you
may never get around to exploring. The point is that with Visual C++, you
can learn what you need to know at the moment, and you can leave the
rest for later if you want. That's the approach we'll take as you learn to use
Visual C++.

9

Learn Visual C++ Now

10

As you study Visual C++ programming using this book, your real teachers
will be the Visual C++ wizards. They will write most of your source code for
you-and they'll always write it perfectly, which is more than ~ost flesh­
and-blood teachers of programming can do. This book will serve mainly as
a guidebook; it will show you the.code the wizards have written for you
and explain how that code works. Meanwhile, you'll have opportunities
to experiment with the code that the wizards create. You'll also be able to
modify that code and incorporate it in your own Visual C++ programs.

The Visual (++ Build Process
As you know if you are an experienced programmer, the code that you
write when you create an application is called source code. When you
compile your source code with a compiler, the compiler generates files
that contain object code-that is, binary code that your computer under­
stands. When your compiler has converted your source code to object
code, you can use a linker to link your object code files with other object
code files named libraries. Linking with libraries is an important opera­
'tion in the Visual C++ build process because most Visual C++ applications
rely on external libraries that are supplied as part of the Visual C++ devel­
opment package. You can also create libraries yourself anduse them in
your Visual C++ applications.

The process of compiling and linking a Visual C++ program is known as
building the application. During the linking phase of the build process,
several kinds of library files can be linked to your application. Some library
files have an .LIB filename extension and are known, logically enough, as
library files. Another variety of library file is the dynamic-link library, or
DLL, which often has the filename extension .DLL.

Library files and DLLs have important differences that you'll learn about in
later chapters. For now, the most important thing to knowis that both .DLL
and .LIB files are object code files that can contain implementations of C
and C++ procedures, or functions, that you can use in your applications.

When the Visual C++ linker links your application with all the library
files it needs to run properly, the result i_s an executable file that you can

1: Introducing Visual c++

run on your computer. You'll write and run many executable applications
as you study the material in this book.

In most situations, you don't have to know much about the Visual C++
build process to compile and link your Visual C++ programs. App Wizard
generates an application at the click of a menu command, so you can com­
pile and link your program without worrying much about the internal
operations of the Visual C++ linker and compiler.

As you advance to more complex Visual C++ projects, however, it might
be helpful for you to understand how the Visual C++ compiler and linker
work together to generate executable Windows-based applications. More
detailed information about the compiler, the linker, and the build process
will be presented in later chapters.

The MFC Library
Perhaps the most important feature of Visual C++ is that it works together
with the MFC library, the C++ successor to the C-language Windows appli­
cation programming interface (API). The Windows API-a large collection
of functions implemented in a set of dynamic-link libraries-was released
with Windows and has been the foundation of all Windows program­
ming. The MFC library version 2.0, which made its debut with Visual C++
version 1.0, is a C++ library that encapsulates almost all the functions im­
plemented in the Windows API.

MFC: The "New Windows API"
The MFC library is now the most widely used C++ library for writing
Windows-based programs. In fact, it has become what some Microsoft
executives call the "new Windows API."

There are good reasons for the popularity of the MFC library. The Windows
API contains many kinds of functions that are implemented in many
ways. The MFC library has rounded up almost all these functions and
organized them into class hierarchies that makethem more manageable.
Also, because the MFC library is written in C++, it equips the functions
in the Windows API with object-oriented features such as inheritance,
data abstraction, data encapsulation, and virtual functions.

11

Learn Visual C++ Now

12

You will learn more about these and other features of C++ in Chapter 3,

"C++ Basics," and Chapter 4, "Objects and Member Functions," which are
designed as a crash course in generic C++ and object-oriented program­
ming. You'll learn more about the MFC library in Chapter 6, "The MFC
Library."

MFC and Visual C++
Visual C++ is designed as a programming environment for writing MFC­
based Windows applications. When you use App Wizard to create a Visual
C++ program, App Wizard generates an application framework by using
classes and member functions implemented in the MFC library.

Every Visual C++ program that AppWizard generates is an object of an
MFC library class named CWinApp. When you examine the structure of
an AppWizard application, you find that it has a number of other MFC li­
brary classes built into its framework. For example, every application gen­
erated by AppWizard contains an MFC library class named CView, which
manages the drawing and display of the program's windows, and an MFC
library class named CDocument, which manages the program's data.

The CWinApp, CView, and CDocument classes are examined in more detail
in Chapter 6, "The MFC Library."

Writing a Visual c++ Program
The tools provided with Visual C++ are specially designed to work with
software development efforts that are organized into projects. In Visual
C++, a project is a collection of the files that are needed to build an appli­
cation. Projects simplify the creation of Visual C++ applications because
they provide an easy way to work with all the files as a group. When you
construct a Visual C++ application by creating a project, you can auto­
matically create a framework for your application by using the App­
Wizard tool. You can then manage your application's C++ classes using
ClassWizard, and you can create and manage your application's resources
using App Studio.

1: Introducing Visual C++

Understanding Visual C++ Projects
There are two ways to create a project: you can let AppWizard generate
your project for you, or you can create the project manually.

When App Wizard creates a Visual C++ project, several different kinds of
files are generated automatically. When you build a Visual C++ project,
several more files are created.

Table 1-2 lists and describes the kinds of files that are generat'ed when you
create and build a Visual C++ application.

Kind of File Filename Extension Description

Header
(Include) file

Source file

Object file

Library file

Resource file

.H

.C, .CPP, .CXX

.OB]

.LIB

.RC

A text file that contains
function declarations and class
definitions.

A text file that contains
function definitions and (in C++)
implementations of classes.

A nonexecutable object code
file; it can be linked to applica­
tions by the Visual C++ linker.

An object code file that is
linked to an executable or to
another library. *

A text file that creates and
manages Windows resources.
In Visual C++, resource files are
created and managed by App­
Studio.

* Library files, which have the filename extension .LIB, are precompiled object files containing
functions that can be called from user-written programs. Visual C++ comes with a large
collection ·of .LIB files, and you can also create your own.

Table 1-2. Kinds of files used in Visual C++ projects. (continued)

13

Learn Visual C++ Now

14

Table 1-2. continued

Kind of File Filename Extension

Module- .DEF
definition file

Browser
database file

Makefile

Executable file

.BSC

.MAK

.EXE"

Description

A text file that describes the
name, attributes, exports, im­
ports, system requirements, and
other characteristics of an appli­
cation or a DLL. In Visual C++
version 1.0, .DEF files are re­
quired for DLLs and some kinds
of MS-DOS programs. (See the
online help for details.) They
are optional but recommended
for other kinds of segmented exe­
cutable files, such as Windows­
based applications.

A database file used by the Vi­
sual C++ Source Browser.
(You'll learn more about the
Source Browser in Chapter 5,

"Visual C++ Tools.")

A text file that the compiler uses
to build your application. (See
Chapter 5.)

An executable application.

Writing a Visual C++ Program Step by Step
Now that you're familiar with the Visual C++ programming environment
and Visual C++ projects, you're ready to create your first Visual C+~ pro­
gram. To do that, follow these steps:

1. Start Visual C++ if it isn't started already.

2. Choose AppWizard from the Project menu. AppWizard starts and
displays a dialog box labeled MFC App Wizard, as shown on the
following page.

1: Introducing Visual C++

Proiect !!a~e: II.-fr_am_e_w_rkl ___ --'l I~ O ... K

Project Path --,---,-,..-,--,--~---,-,-....,. cal'lc~l·

c:\msvc \framewrk\framewrk.mak

.!lirectofY:

E5J c:\
amsvc
CJ bin
CJ hello

Help

.Qptions •.•

.c.lasses •..

3. Using the Directory list box-and the Drive list box, if you need to­
navigate to a folder in which you want to store your application,
and then select that folder.

4. In the Project Name text box, type your project's name. For this
exercise, type framewrk. As you type, notice that the filename you
give your project also appears in the New Subdirectory text box. By
default, App Wizard creates a folder inside the main folder you have
selected and gives that folder the same name you've given to your
project. Your project's files are then stored in the folder AppWizard
has created.

5. By clicking buttons along the right side of the MFC AppWizard dia­
log box, you can set a number of options that App Wizard then uses
to create your program. The buttons labeled Options and Classes
open dialog boxes that you can use to set various attributes of the
program you are creating.

When you click the Options button, AppWizard opens a dialog box
similar to the one on the following page.

15

Learn Visual C++ Now

16

You can then choose the options you need. Here are descriptions
of some of the options you'll use most often:

The Multiple Document Interface option creates a multiple­
document interface (MDI) application-that is, an application
that supports multiple child windows. If you don't check this
option, App Wizard creates a single-document interface (SDI)
program. For this exercise, leave the MDI option turned on.

The Initial Toolbar option creates a standard toolbar with sev­
eral buttons already installed. Toolbars are useful in Windows­
based programs and are easily created by AppWizard, so leave
this option selected too.

t::J The Printing And Print Preview option provides your applica­
tion with support for printing and preview operations. The pro­
gram you create in this exercise won't make use of AppWizard's
printing option, but most applications do, so you might as well
leave this selected.

The Generate Source Comments option places comments in
your source code. If you deselect this option, App Wizard gener­
ates uncommented code, which nobody-including you-is
likely to understand. It's best to leave this button in its default
(selected) state so that App Wizard will generate commented code.

6. To close the Options dialog box and leave all its options at their
default settings, click the Cancel button.

1: Introducing Visual c++

7. When the MFC AppWizard dialog box again has the focus, click the
Classes button. App Wizard opens the Classes dialog box, shown
below. The Classes dialog box gives you a chance to review the
names of certain files that AppWizard will create for your project.

New
Application
t,lanes:

: err ilm'ewikA , ,.;

Clan Name: Header File:
I CF r amewrkApp /hamewrk.h

I mplemenlation File:

I fr amewrk. cpp

'X

lI'Oi("",
lim C' ·a····n'c' .. e'·'I· I
n ..

By default, App Wizard creates a set of project files based on the
name you have given your project. If you've given your project a
short name, that's usually fine. For example, when you compile this
chapter's sample project, named FRAMEWRK, App Wizard creates a
pair of files named FRAMEDOC.CPP and FRAMEVW.CPP. In other
cases, however, AppWizard comes up with default filenames that
look odd. For example, if you created a project named HELOPROJ,
AppWizard's default names would be HELOPDOC.CPP and HELO­
PVW.CPP. To change names like those into names that look more
attractive-such as HELLODOC.CPP and HELLOVW.CPP-you can
type new filenames in the Classes dialog box's edit boxes.

8. When you've finished examining the Classes dialog box, you can
close it by clicking OK or Cancel.

9. When the MFC AppWizard dialog box again has the focus, you're
ready to generate your application. To do that, simply click OK. In
response, AppWizard opens a New Application Information dialog
box containing important information about the application you are
about to create, as shown on the following page.

17

Learn Visual C++ Now

18

Classes to be created:
Application: CFramewrkApp. in FRAMEWRK.H and FRA!;··
Frame: CMainFrame. in MAINFRM.H and MAINFRM.CPP
Document: CFramewrkDoc. in FRAMEDOC.H and FRAME
View: CFramewrkView. in FRAMEVW.H and FRAMEVW.(

Features:
+ Supports the Multiple Document Interface (MDI)
+ MSVC Compatible project file (FRAMEWRK.MAK)
+ Initialtoolbar and status bar in main frame
+ Printing and Print Preview support in view

10. Read over the specifications listed in the New Application Informa­
tion dialog box to verify that they're OK, and then click the Create
button. App Wizard generates the source code and resource files for
your application.

11. After AppWizard has generated your application, you can build it
by choosing the Build item from the Project menu. The result is an
executable file named FRAMEWRK.EXE, which you can run from
the Windows desktop or directly from Visual Workbench. To run
your program from Visual Workbench, choose Execute from the
Project menu.

When your application starts, you should see a main frame window and a
child window like those shown here:

1: Introducing Visual c++

Congratulations! Without writing a line of code, you have just created
your first Visual C++ program.

Take some time to experiment with your application to see how it works.
Notice that you can display and hide the program's toolbar and status bar
by opening th~ View menu and selecting and deselecting the Toolbar and
Status Bar items. You can also open and close files and windows, cascade
and tile windows, and display a simple, default-style About box. Also
notice that there are a few operations you can perform by clicking toolbar
buttons. Quite a bit of functionality for performing a few simple steps.

What's Next?
This chapter introduced Visual C++ and the Visual Workbench-a sophis­
ticated set of tools used to build Visual C++ programs. This chapter also
gave you a chance to use App Wizard to create a fully functional Visual
C++ application at the click of a menu command.

In later chapters, you'll learn how to add different kinds of functionalities
to the application frameworks you create. Before we do that, however, we
need to gain a little perspective. Chapter 2, "Introduction to Windows
Programming," introduces you to the Windows API, the bedrock on which
all Windows-based programs are built. Chapter 3, "C++ Basics," and
Chapter 4, "Objects and Member Functions," introduce the fundamentals
of generic C++ and the basic principles of object-oriented programming.
After that we'll return to the specifics of creating Windows-based applica­
tions in Visual C++.

19

Introduction to
Windows Programming

\

Chapter

This chapter is a blast from the past. It will show you som~thing about
the structure of a Windows-based program and how people used to write
Windows-based programs-using the Windows application programming
interface (API)-before there was any such thing as Microsoft Visual C++.
This knowledge is valuable to a Visual C++ programmer for several rea­
sons. First, knowing something about basic Windows programming is im­
portant because, behind the scenes, applications created with Visual C++
that use classes and member functions provided by the Microsoft Founda­
tion Class (MFC) Library do their work by calling raw C-Ianguage func­
tions that are implemented in-you guessed it-the Windows API. So if
you know a little about how to write a Windows-based program without
using Visual C++, you'll start your journey toward learning Visual C++
with a valuable understanding of the organization and architecture of a
Visual C++ program.

Second, knowing how to write Windows-based programs without Visual
C++ will give you a head start toward learning how to use the Visual C++
debugger. When your debugger encounters a problem in a Visual C++ pro­
gram, it often stops in an MFC source file that was not written by you. If

21

Learn Visual c++ Now

22

you have no idea what's going on in that file, things can be confusing.
Having some idea of how Windows-based programs work can ease your
confusion considerably.

And third, although the tools built into Visual C++ are useful and are be­
coming more and more widely used, Visual C++ is not the only develop­
ment environment for Windows on the market; you m,ight encounter C++
programs for Windows that are not written in Visual C++. Because C++
code is designed to be reused, you might find opportunities to incorporate
code that wasn't written in Visual C++ into your Visual C++ programs.
When that need arises, it's helpful to understand the non-Visual C++
code that you're confronted with.

The main topics covered in this chapter are:

• The differences between MS-DOS-based programs and Windows­
based applications

• How a peculiar function known as a window procedure interprets
user events such as mouse clicks and keypresses in Windows-based
programs

• How the Windows operating system builds and displays windows

• A step-by-step tutorial that shows you how to build and execute this
chapter's sample program

The World's First C-Language Program
In his classic book The C Programming Language (Prentice-Hall, 1978),

Brian Kernighan introduced the world to C by presenting the following
program for printing a line of text on the screen:

#include <stdio.h>

main()
{

pri ntf("Hello, worl d! \n");
}

2: Introduction to Windows Programming

"Hello, world!" is so short and straightforward that it's easy to understand,
but it's also so simple that it doesn't do very much. If you rushed home
after your first computer science class and demonstrated the "Hello,
world!" program, your mother might be impressed, but your friends
probably wouldn't be.

Nevertheless, the "Hello, world!" program is a complete C-Ianguage appli­
cation. And because C is an almost perfect subset of C++, you can also
compile "Hello, world!" as a Visual C++ program, so you could say that
"Hello, world!" is a fully functional C++ program too.

"Hello, world!" is not a Windows-based program, however. It lacks many
of the special routines that an application must have in order to take full
advantage of the Windows operating environment. It doesn't contain func­
tions to detect mouse movements, "manipulate windows, respond to menu
commands, or interact with other applications running in the Windows
environment. To expand the "Hello, world!" program into a full-fledged
Windows-based program, you'd have to add much more functionality.

Architecture of the "Hello, world!" Program
Understanding the simple architecture of the "Hello, world!" program will
help you to learn what's required to create a comparable program for Win­
dows and will also help you understand what happens in programs you
create with Visual C++.

You might recall that every text-based C application has one (and only
one) function named main. Text-based C++ programs also follow this rule.
In a text-based C or C++ program, the main function is always the first
function that executes when the program starts. The primary job of the
main function is to call-either directly or indirectly-all other functions
in the program. In the "Hello, world!" program, the main function con­
tains a single statement that calls the print/function, as shown here:

printf(nHello. world!\nn);

The print! function then works some magic that prints the line Hello,
world! on the screen. When the main function in a program terminates, the
program ends.

23

learn Visual C++ Now

24

Interestingly, non-Visual C++ programs written for Windows (sometimes
called Windows API-style programs) always break one fundamental rule
of C. A Windows API-style program never has a main function. Instead,
the entry function is always a function named WinMain.

In a Windows API-style program, the WinMain function performs the
same job as a traditional main function, with some Windows-specific
functionalities added. Every function in a Windows API-style program is
executed, either directly or indirectly, from the WinMain function. When
the WinMain function terminates, the program ends.

Windows Events and Messages: An Overview
Windows is sometimes referred to as an event-based, message-driven op­
erating system. During the execution of a Windows-based program, every
time the user takes an action that affects a window-such as resizing a
window or moving or clicking the mouse-the user's action triggers what
is known as an event. Each time an event is detected, the operating system
sends a message to the program so that the program can handle the event.

The idea of a message sometimes confuses novice Windows programmers.
In Windows terminology, a message is simply a block of data that Windows
generates each time it detects a user-generated event. This block of data
contains information that specifies what kind of event has been generated
and identifies the window that the event affects.

Every Windows-based program is based on events and messages and
contains a main event loop that constantly and repeatedly checks to see
whether any user events have taken place. Each time a user event is de­
tected, the program responds to the event. For example, if a user resizes
a window during the execution of an application, the application's event
loop detects the user's action and starts a series of events that causes the
window to be redrawn to the screen. As soon as the window is resized, the
application checks to see whether another user event has occurred. If one

2: Introduction to Windows Programming

has, the application handles the event and then checks for the next event.
The application repeats this process until the user terminates the program.

Message Queues and Message Pumps
When the Windows operating system detects a user-generated event and
generates a message in response" it places that message in a message queue
that belongs to the application being executed. When an application needs
to determine whether any events have been generated by the user and
what kinds of events they are, it gets the information it needs by retrieving
each message that the operating system has placed in the message queue.

To retrieve event messages, a Windows API-style application repeatedly
checks on the status of its message queue by executing a series of state­
ments that reside in its WinMain function. These statements execute in a
loop called a message pump.

The first statement in a message pump is usually a call to a Windows API
function named GetMessage. Each time an application's message pump
calls GetMessage, the GetMessage function returns information about any
message that might be waiting in the application's message queue. After
an application's message pump calls GetMessage, it generally calls a couple
of other functions that manage dialog boxes and keyboard input and out­
put. Then the message pump calls a Windows API function named
DispatchMessage.

The Window Procedure
The DispatchMessage function is an important part of the Windows event-
handling mechanism. The main job of the DispatchMessage function is to
call a function known as a window procedure, often named WndProc.

Figure 2-1 on the following page shows how the GetMessage function, the
DispatchMessage function, and a windows procedure work together dur­
ing the execution of a Windows-based program.

25

Learn Visual C++ Now,

26

User ~I event

I

I

Application
message queue

Message

Message

Message

WM PAINT
message handler

WM_DESTROY
message handler

~

I
Message pump

!
I Calls to operating

system functions

1<1

I

Figure 2-1. How the window procedure works in a Windows-based program.

WndProc is not, however, a Windows API procedure-it's a procedure
that your Windows-based application must provide. The procedure does
not have to be named WndProc; you can give a window procedure any
name. An application can have more than one window procedure, and if
an application has multiple windows, each window can have its own win­
dow procedure.

When DispatchMessage calls an application's WndProc function, it tells
WndProc what kind of event has taken place. WndProc then responds to
the event by calling still another kind of function provided by the program
being executed. This function is called a message handler.

2: Introduction to Windows Programming

Message Handlers
Each time an application receives a message from the Windows operating
system, the application's window procedure determines how the message
should be handled. The application then passes the message to a message
handler. Typically, Windows-based applications are equipped with vari­
ous kinds of message handlers that are specially designed to handle par­
ticular kinds of messages. An ~pplication that you create might handle a
mouse double click differently from the way it is handled in someone
else's application. The way your application handles a double click is
determined by your application's double-click message handler.

When you write a Windows API-style application, you are responsible for
writing most of the code that detects user even~s and dispatches the appro­
priate messages to appropriate windows. You also have to write the message
handlers that implement the responses that are appropriate to each event.
The system for handling messages and events is illustrated in Figure 2-2.

DispatchMessage I--'--__ ~_n_d_p_r_o_c _---'
WM PAINT

message handler

WM_DESTROY
message handler

Figure 2-2. How Windows processes messages and events.

As you'll see in Chapter 5, "Visual C++ Tools,"creating message-handling
mechanisms for a Visual C++ program doesn't take as much work as writing
message-handling routines for a Windows API-style program. In a Visual
C++ program, you can create most kinds of message handlers simply by
opening a ClassWizard dialog box and selecting the kind of message han­
dler you want to create from a list box. Class Wizard then generates your
message handler automatically.

27

Learn Visual C++ Now

28

Example: The HELLO Program
This chapter's sample program, named HELLO, shows how the WinMain
function and a WndProc function work in a simple Windows API-style
program. When you execute the HELLO program, it opens a blue-bordered
window that contains the familiar "Hello, world!" greeting neatly centered
in the window's client area, as shown in Figure 2-3.

Hello. world!

Figure 2-3. The HELLO program's window.

Methods of Building the HELLO Program
You can execute the HELLO program in two ways and compare how each
works. One way is simply to load the program from the companion CD­
ROM and execute it. The other way-creating a project for the program and
then building your project-is more challenging and will teach you more.

The second method is recommended because it shows you how to create
and build a Visual C++ program without using App Wizard-a useful thing
to know if you ever need to use Visual Workbench to load and build a pro­
gram that wasn't created using Visual C++.

2: Introduction to Windows Programming

Building the HELLO Program Step by Step
To build the HELLO program using Visual Workbench, follow these steps:

1. Choose the New item from the Visual Workbench Project menu.

2. In the New Project dialog box, browse to the directory in which you
want to create the new project (or type in the path to where you
want to locate the project), as shown here:

I-~~~~~~~~~I

'Ii Project Hame: :::IH=el=IO==========~-,====~
I: Proiect!vpe: I Windows application (.EXEJ
F'
I

Il

OK" 1

Cancei I
"'''Help' :1

3. For the project name, type Hello, and then click OK.

4. When the Edit dialog box appears, close it by clicking Close.

5. Open a new text-file window by choosing New from the File menu.

6. When your new window opens, type in the source code from Listing
2-1 beginning on page 31, or use the Visual C++ editor to copy the
listing from this chapter's folder on the companion CD-ROM and
paste it into the text window.

7. Save the source file you have just created as HELLO.CPP. Be sure
that you save the file in the project directory you selected in step 2.

8. Choose the Edit item from the Visual Workbench Project menu.

9. Add your new HELLO.CPP file to the project you are creating by
selecting the file's name in the File Name list box and clicking the
Add button, as shown on the following page.

29

Learn Visual C++ Now

30

10. Close the Edit dialog box by clicking the Close button.

11. Choose Build from the Project menu.

12. Visual Workbench will now display a message box asking you
whether you want to create a module-definition file. A module­
definition file is a text file that the Visual C++ linker uses to link an
application's source code to any external libraries that are required
to build the application. (For details, see Table 1-2 beginning on
page 13 in Chapter 1.) Visual C++ version 1.0 programs require
module-definition files, so click the Yes button.

13. Visual Workbench creates a module-definition file and opens it in the
Visual C++ editor window. Choose Build from the Project menu again.

14. Visual Workbench displays a message asking whether you want to
build your new files. Click the Yes button.

15. When your program is built, execute it from Visual Workbench by
choosing Execute from the Project menu.

Listing 2-1 shows the source code for the HELLO program.

2: Introduction to Windows Programming

HELLO.CPP

#include (windows.h)

long FAR PASCAL _export WndProc(HWND hwnd. UINT message.

{

}

UINT wParam.LONG lParam)

HDC hdc;
HPEN
PAINTSTRUCT
RECT

hpen. hpenOld;
ps;
rect;

switch (message) {

}

case WM_PAINT:
hdc = BeginPaint(hwnd. &ps);
GetClientRect(hwnd. &rect):
hpen = CreatePen(PS_SOLID. 6. RGB(0. 0. 255»;
hpenOld = SelectObject(hdc. hpen);
Rectangle(hdc. rect.left + 10.

rect.top + 10,
rect.right - 10.
rect.bottom - 10);

DrawText(hdc. "Hello. world!", -1, &rect.
DT_SINGLELINE : DT_CENTER : DT_VCENTER);

SelectObject(hdc. hpenOld):
DeleteObject(hpen);
EndPaint(hwnd. &ps):
return 0;

case WM_DESTROY:
PostQuit~essage(0);

return 0;

return DefWindowProc(hwnd. message. wParam. lParam):

int PASCAL WinMain(HANDLE hlnstance. HANDLE hPrevlnstance,
LPSTR lpszCmdParam. int nCmdShow)

{

static char szAppName[] = "Hello";
HWND hwnd;
MSG msg;
WNDCLASS wndclass;

Listing 2-1. The HELLO program. (continued)

31

Learn Visual C++ Now

32

Listing 2-1. continued

if (!hPrevInstance) {
wndclass.style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hInstance
wndclass.hlcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName

RegisterClass(&wndclass);

CS_HREDRAW CS_VREDRAW;
WndProc;
0;
0;
hlnstance;
Loadlcon(NULL, lDl_APPLICATION);
LoadCursor(NULL, IDC_ARROW);
GetStockObject(WHITE_BRUSH);
NULL;
szAppName;

hwnd = CreateWindow(szAppName, II, window class name
"HELLO Program",
WS_OVERLAPPEDWlNDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hInstance,
NU Ll) ;

ShowWindow(hwnd, nCmdShow);
UpdateWindow(hwnd):

II
II
II
II
II
II
II
II
II
II

window caption
window style
initial x position
initial y position
initial x size
initial y size
parent window handle
window menu handle
program instance handle
creation parameters

while (GetMessage(&msg, NULL, 0, 0» {.
TranslateMessage(&msg):
DispatchMessage(&msg):

}

return msg.wParam;
}

How the HELLO Program Works
The HELLO program contains two functions: a window function named
WndProc and a WinMain function. The WinProc function paints the win­
dow when necessary and destroys it when it's no longer needed. The
WinMain function creates the window and also contains a main message

2: Introduction to Windows Programming

loop that detects and handles two kinds of messages, WM_P AINT and
WM_DESTROY. This is the WinMain function in the HELLO program:

int PASCAL WinMain(HANDLE hlnstance, HANDLE hPrevlnstance,
LPSTR lpszCmdParam, int nCmdShow)

The WinMain function takes four parameters:

• hlnstance,;-Handle to the current instance of the executing
application.

• hPrevlnstance-Handle to the previous instance of the executing
application.

• IpszCmdParam-Pointer to a command line that can be called to
start the application.

• nCmdShow-Constant or set of constants-separated by bitwise
OR operators (l)-that can be used to specify the window's size,
its coordinates, and other attributes that specify how the window
is displayed. To obtain a list of all the constants that can be used in
this parameter, look up the WinMain function in the Visual Work­
bench online help.

If a WinMain call is successful, it returns the value returned by the Win­
dows API PostQuitMessage function. If the function does not succeed, it
terminates before it enters the message loop and returns NULL.

Using Handles in Windows .. Based Programs

The WinMaln function takes two handles as parameters: a handle to
the current instance of the executing application, and a handle to any
previous instance of the application that might exist. In Windows, a
handle is a pointer to a pointer; it points to an address stored in a
table or in a list. The address that a handle points to can be used to
access the object associated with thehandle.

In Windows, thiski:ndof indirect access is necessarybecause the
Windows Memory Manager often moves objects around in memory-

(continued)

33

Learn Visual C++ Now

34

Using Handles in Windows-Based Programs. continued

to compactmemory,for example-without notifying your' applica­
tion that the address of the object has changed. If your applications
relied on a pointerto keep track of objects created and managed;by
Windows, the result would be a lot of dangling pointers. That is why
handles were created .. ,WhenWindows moves.anobject from.one
memory lot~tion to another, the Windows Memory Managerensures
that the object's handle is still valid.·

In the Windows· operating system, many different kinds of objects are
designed to be accessed through handles. There are so many such ob­
jects, infact, that they havea special name, Windows objects. (Win;.
dows objects are not the same thing as C++ objects; they have nothing
to do with C++ or object-oriented programming. In Windows term'i­
nology, Windows objects are merely objects that can be accessed via
handles; they can be-and are-used in C-Ianguage Windows-based
programs as well asinWindows;.based programs written in C++.)

Handles.are.used so often in Wind?ws-basedprograms that you'll
quickly become accustomed to using them. Many Windows API func;.
tions return handles, and many others take handles as parameters. In
your Windows-baseciapplicatioris, you use handles in the same way
that you use any other data type~BecauseWihdowsdereferences '
handles automatically whenever it needs to, you shouldn't run into
any problems.

How the WinMain Function Worl{s
When a Windows-based program starts, its WinMain function always
checks to see whether a previous instance of the application is running.
(In Windows, multiple instances of the same application can be executed
simultaneously.) If no previous instance of the program is running, Win­
Main registers a new window class-an operation described later in this
chapter. Then WinMain executes the program's message pump, described
earlier in this chapter in the section "Message Queues and Message
Pumps" on page 25, as shown here:

2: Introduction to Windows Programming

while (GetMessage(&msg, NULL, 0, 0)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

In the HELLO program, this message pump manages the operation of the
application by repeatedly calling the GetMessage, TransiateMessage, and
DispatchMessage functions. The loop ends when the WinMain function
receives a WM_ QUIT message sent by the PostQuitMessage function. Then
the WinMain function ends, and the current instance of the application
terminates.

The GetMessage function

The GetMessage function retrieves messages dispatched by the Windows
operating system. In the HELLO program, the GetMessage function is
called with four parameters, as shown here:

GetMessage(&msg, NULL, 0, 0);

The first parameter passed to GetMessage-&msg-is the address of a C­
language struct called a MSG structure. The MSG structure is defined as
follows in the WINDOWS.H file (the #include file that defines Windows
API functions and data structures):

typedef struct tagMSG {
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

} MSG;

As you can see, a MSG struct is a short structure that the GetMessage func­
tion uses to pass along information about Windows messages. In its hwnd
and message fields, a MSG struct identifies the message being referred to
and the window that the message affects. In its wParam and IParam fields,
the MSG struct stores information about the kind of event the message re­
fers to and the source of the event-for example, if the event is caused by a
keyboard input, the MSG struct's wParam and iParam fields identify the
key being pressed and also reveal whether a command key was being
pressed at the same time.

35

Learn Visual C++ Now

36

When you call GetMessage and pass it the address of a MSG struct, the
GetMessage function responds by placing essential information about
the event it is retrieving in the MSG struct that you have provided. Your
application can then use that information to carry out an appropriate
response to the event.

In the call to GetMessage, the msg parameter is significant because it is
later accessed by TranslateMessage and DispatchMessage. It might also be
accessed by other functions in a message pump that handle the operation
of modal dialog boxes (when the message being retrieved deals with dialog
boxes) or keyboard shortcuts for menu commands.

Switch statements in window procedures.
Typically, a Windows API-style WndProc function contains a long switch
statement that analyzes each message received from GetMessage and routes
the message to an appropriate message handler. (The window procedures
used in Visual C++ programs usually look quite different-and you gener­
ally don't have to write them because App Wizard does that for you. You'll
learn how Visual C++ window procedures work in Chapter 5, "Visual C++
Tools.")

Listing 2-2 shows a portion of the switch statement used in the HELLO
program (shown in its entirety in Lising 2-1 on page 31).

switch (message) {
case WM_PAINT:

}

hdc = BeginPaint(hwnd, &ps);
GetClientRect(hwnd, &rect);

DrawText(hdc, "Hello, world!", -1, &rect,
DT_SINGLELINE : DT_CENTER : DT_VCENTER);

EndPaint(hwnd, &ps);
return 0;

case WM_DESTROY:
PostQuitMessage(0);
return 0;

Listing 2-2. A switch statement in a window procedure.

In the code fragment shown in Listing 2-2, the message parameter used by
the switch statement identifies the message that the DispatchMessage

2: Introduction to Windows Programming

function has passed to the WinProc function containing the switch state­
ment. The switch statement tests the message ID that has been passed to
it and then uses its case prefixes to implement-or call-the appropriate
message handlers.

This switch statement has only two clauses: a WM_PAINT clause, which
is executed each time the window associated with the window procedure
needs to be redrawn, and a WM_DESTROY clause, which is executed
whenever the window needs to be destroyed.

The WM_P AINT clause executes a message handler that displays the
words "Hello, world!" in the application's main window and decorates
the window with a blue border. You'll learn how the program's WM_P AINT
message handler works in the section "Drawing Text in a Window" on
page 42.

The WM_DESTROY clause calls a Windows API function named PostQuit­
Message, which informs Windows that the application is ready to terminate.
When an application posts a message to Windows by calling PostQuit­
Message, the Windows operating system performs all the housekeeping
that is necessary to let the application exit from its main message loop.

Registering a Window Class
When you execute the HELLO' program, the first thing it does is perform
a procedure call to register a window class. When you create a Windows­
based application, every window you use in the application belongs to a
particular window class.

It's important to understand that in a Windows-based program, a window
class is not the same thing as a C++ class. In Windows terminology, a win­
dow class is simply a particular kind of window that is registered for use
in a given application. Windows classes, like Windows objects, can be
(and are) used in C-Ianguage programs as well as in C++ programs.

Calling the RegisterClass function
You can use as many different window classes as you want in a Windows­
based application. Before you can create a window that belongs to a particu-
1ar class, however, you must register the window's class. In the HELLO

37

Learn Visual C++ Now

38

program, the following statement (which appears in the WinMain function)
registers a window class named szAppName:

WNDCLASS wndclass;
if (!hPrevInstance) {

}

wndclass.style CS_HREDRAW CS_VREDRAW;
wndclass.lpfnWndProc WndProc;
wndclass.cbClsExtra 0;
wndclass.cbWndExtra 0;
wndclass.hInstance hInstance;
wndclass.hIcon LoadIcon(NULL, IDI_APPLICATION);
wndclass.hCursor LoadCursor(NULL, IDC_ARROW);
wndclass.hbrBackground GetStockObject(WHITE_BRUSH);
wndclass.lpszMenuName NULL;
wndclass.lpszCl"assName = szAppName;
RegisterClass(&wndclass);

~'1I1 OTE Notice that the RegisterClass function is called from inside an if state-
011' ment. In C++, if statements work the same way they work in C. In this case, if

a previous instance of the HELLO program is running, no new window class
is created. That precaution conserves system resources because it prevents
the RegisterClass function from performing multiple registrations of the
same window class.

The WNDCLASS structure
In the preceding code fragment, the HELLO program declares a data struc­
ture named wndclass, which is a particular type of data structure called a
WNDCLASS structure, and then fills in the structure's fields with data
that can be used to set up various properties of a window.

The WNDCLASS structure is defined this way in the WINDOWS.H file:

typedef struct tagWNDCLASS {
UINT style;
WNDPROC lpfnWndProc;
int cbClsExtra;
int cbWndExtra;
HINSTANCE hInstance;
HICON hIcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCSTR lpszMenuName;
LPCSTR lpszClassName;

} WNDCLASS;

2: Introduction to Windows Programming

When the window's properties have been specified, the application
registers a window class that has those properties by calling a Windows
API function named RegisterClass and passing to it the address of the
data structure in which the attributes of the window class being created
are stored.

RegisterClass registers a window class that has the attributes you re­
quested and gives this new class the name you have specified-in this
case, szAppName. The WNDCLASS structure must also contain in the
lpfn WndProc field a pointer to the procedure or function that will be asso­
ciated with your window class. You must also define the window's style
in the WNDCLASS structure's style field, using predefined style constants
that are defined by the Windows API.

Setting window styles
In the RegisterClass function shown in the preceding example, two pre­
defined constants-separated by the bitwise OR operator (:)-are used to
set the style of the window used in the HELLO program, as shown here:

wndclass.style = CS_HREDRAW : CS_VREDRAW;

When you use predefined constants such as these in a Windows-based
program, you don't have to worry about what their exact values are. All
you have to know is what their effects are.

In this case, when you set the CS_HREDRA W constant, windows that be­
long to the class you are creating are redrawn whenever their horizontal
size changes. Similarly, the CS_ VREDRAW constant causes a window to
be redrawn whenever its vertical size changes. In the HELLO program, set­
ting these two constants ensures that the application's window is redrawn
each time its size changes. That action automatically centers the "Hello,
world!" greeting that is displayed inside the window.

The CS_HREDRA Wand CS_ VREDRA W constants are not the only style
constants available in Windows; there are many other style attributes that
you can use when you register window classes. (See the online help for a
complete list.)

39

Learn Visual C++ Now

40

Loading application resources
You can call Windows API functions to set window-class attributes in a
RegisterC]ass statement. For example, the RegisterC]ass statement used in
the HELLO program calls the Windows API functions Loadlcon and Load­
Cursor to fill in the hlcon and hCursor fields of the window class that is
being registered, as shown here:

wndclass.hlcon = Loadlcon(NULL. IDI_APPLICATION);
wndclass.hCursor = LoadCursor (NULL. IDC_ARROW);

The hlcon field identifies the class icon. This member must be a handle to
an icon resource. If this member is NULL, the application must draw an
icon whenever the user minimizes the application's window.

The hCursor field identifies the class cursor. This member must be a
handle to a cursor resource. If this member is NULL, the application
must explicitly set the cursor shape whenever the mouse moves into the
application's window.

Creating and Displaying a Window
After you have created a window class in a Windows-based application,
you can call the Windows API functions Create Window and ShowWindow
to create a window of the class you have specified and to display the win­
dow on the screen. Then you can call the Update Window function when­
ever your window needs to be redrawn.

The Create Window function can create an overlapped window, a popup
window, or a child window, depending on the parameters you pass to it.
(For descriptions of these and other kinds'ofwindows, see Chapter 5,

"Visual C++ Tools.") When you call CreateWindow, you can specify the
class, the title, the style, and (optionally) the initial position and size of
the window you are creating. You can also specify the new window's
parent (if there is one) and the new window's menu.

The Create Window function
Here is the Create Window function:

HWND CreateWindow(LPCSTR lpszClassName. LPCSTR lpszWindowName.
DWORD dwStyle. int x. int y. int nWidth. int nHeight.
HWND hwndParent. HMENU hmenu. HINSTANCE hinst.
void FAR* lpvParam)

2: Introduction to Windows Programming

The parameters expected by the Create Window function are as follows:

• IpszClassName-Address of the name of a registered window class.

• IpszWindowName-Pointer to a string that specifies the name of
the window being created.

• dwSlyle-Constant or set of constants-separated by the bitwise OR .
operator (:)-that can be used to specify various attributes of a win­
dow. You can obtain a list of all the constants that can be used in
this parameter by looking up the Create Window function in the
online help.

• x and y-Horizontal and vertical positions of the window being
created.

• n Width and nHeight-Width and height of the window being
created.

• hwndParent-Handle of the parent window of the window being
created (if there is one).

• hmenu-Parameter whose meaning depends on the style of the win­
dow being created. For overlapped or popup windows, the hmenu
parameter identifies the menu to be used with the window. If the
default menu for the window's class is to be used, this value can be
NULL. For child windows, the hmenu parameter is an integer value
that identifies the child window. For more details, look up the
Create Window function in the online help.

• hinst-Handle of the current application instance.

• IpvParam-Pointer to a value that is passed to the window through
the CREATESTRUCT structure referenced by the lParam parameter
of the WM_CREATE message. If an application is calling Create Win­
dowto create a multiple-docu'ment interface (MDI) client window,
lpvParam must point to a CLIENTCREA TESTRUCT structure.

Calling CreateWindow, ShowWindow, and Update Window
In the WinMain function of the HELLO program, the block of code shown
on the following page calls Create Window, ShowWindow, and Update­
Window.

41

Learn Visual C++ Now

42

hwnd = CreateWindow(szAppName.
"HELLO Program".
WS_OVERLAPPEDWINDOW.
CW_USEDEFAULT.
CW_USEDEFAULT.
CW_USEDEFAULT.
CW_USEDEFAULT.
NULL.
NULL.
hlnstance.
NU Ll) ;

ShowWindow(hwnd. nCmdShow);
UpdateWindow(hwnd);

II window class name
II window caption
II window style
II initial x position
II initial y position
II initial x size
II initial y size
II parent window handle
II window menu handle
II program instance handle
II creation parameters

The Sh ot-yWin dow function displays the window specified in its hwnd
parameter, using the style specified in the nCmdShow parameter. (See
the online help for a list of styles that can be passed to the ShowWindow
function.)

The Update Window procedure draws the window specified in its hwnd
parameter. It is used after the call to ShowWindowto draw the window
used in the HELLO program.

Drawing Text in a Window
,One of the first hurdles you come to in the study of Windows program­
ming is the problem of how to draw an image in a window-or, when the
time comes to print an image on paper, the problem of transferring the
image to the printed page. A Windows-based program has to be capable of
drawing many different kinds of images to many different kinds of output
devices. There are many varieties of video cards and Windows accelera­
tors that display different sets of colors in different ways, and there are
different sizes of monitors with different color capabilities, different
screen sizes, and different resolutions. And, of course, there are many
different kinds of printers-color and black-and-white, PostScript and
non-PostScript-to say nothing of pen-equipped and ink jet plotters.

2: Introduction to Windows Programming

Because there are so many kinds of output devices-and because there are
no standards that mandate any particular rules about drawing to output
devices-Windows provides a mechanism called a device context, or DC,
that can be used as a gateway between Windows-based applications and
the low-level APIs (called device drivers) that control output devices. A
device context is a Windows object that accepts drawing commands from
Windows-based applications and translates those commands into lower­
level instructions that are issued directly to device drivers.

When a Windows-based application draws an image by issuing a set of
commands to a device context, it does not have to be concerned with what
kind of output device is being used to display or print the image or with
the specific kind of device driver that is being used to control the output
device. Instead the application simply obtains a handle to a device context
and draws to that device context. The device context that is associated
with the drawing operation then performs whatever magic is necessary to
convert the application's drawing commands to lower-level device-driver
commands and dispatches them to a device driver. The device driver then
sends the device context's commands to the appropriate output device,
which does the final job of displaying the object in a window or printing it
on a page.

Along with device contexts, Windows uses another kind of object-called
a GDlobject, or graphics device interface object-to draw images in win­
dows and on the printed page.

In Windows, a device context is an object on which images can be drawn
(a kind of electronic canvas), and GDI objects serve as drawing implements,
such as brushes, pens, bitmaps, and fonts. Figure 2-4 on the following
page is a fanciful illustration that shows how Windows uses device con­
texts and GDI objects to draw images in windows and on printed pages.

43

Learn Visual c++ Now

44

BOOl Ellipse(hdc.
nleftRect.nTopRect.
nRightRect.nBottomRect) Device L...-_-,-_________

context GDlobject
(HBRUSH)

Figure 2-4. Drawing an image in a Windows-based program.

Because Windows requires the use of device contexts and GDI objects in
drawing operations, you must use both kinds of objects whenever you want
to draw an image in a Windows-based application. The specific steps that
are used to draw an image can vary from application to application, de­
pending on the requirements of the particular program being executed.
The drawing operation used in the HELLO program is fairly typical. Here
are the steps that are used to print the greeting "Hello, world!" in a window:

2: Introduction to Windows Programming

1. Call the Windows API function BeginPaint, which prepares a
specified window for painting and fills a data structure called a
P AINTSTRUCT with information about the painting. The Begin­
Paint function takes two parameters: the handle of the window in
which the painting is to take place and the address of the PAINT­
STRUCT. (The HELLO program doesn't use the information stored
in the P AINTSTRUGT that is passed to BeginPaint; see the online
help for details about the P AINTSTRUCT structure.)

2. Obtain a handle to a device context. There are a numqer of Windows
functions that you can call to obtain a DC handle. The HELLO pro­
gram obtains a DC handle when it issues the following BeginPaint
call:

hdc = BeginPaint(hwnd. &ps);

3. Call the Windows API procedure GetClientRect to retrieve the coor­
dinates of the client area of the window that is to be painted. The
client area of a window is the area inside the window's frame and
below the window's menu bar.

4. Obtain a handle to the specific kind of GDI object you plan to draw
with. The GDI object used by the HELLO program is a pen, which is
created in this statement:

hpen = CreatePen(PS_SOLID, 6, RGB(0, 0, 255));

The CreatePen function takes three parameters: a pen-style param­
eter, a width parameter, and a color parameter. In the HELLO pro­
gram, the parameters passed to the CreatePen function are PS_SOLID,
which creates a solid pen; the integer 6, which creates a pen that is
6 pixels wide; and the macro RGB(O, 0, 255), which creates a blue
pen. The RGB macro itself takes three parameters: the intensity of
the color red, the intensity of the color green, and the intensity of
the color blue. Intensities range from 0 through 255, and they can be
mixed and matched. The HELLO program passes the parameters
0, 0, and 255 to the RGB macro, so the result is a pure blue color.

45

Learn Visual C++ Now

46

5. Call a Windows function that associates the device context you have
obtained with the GDI object you are going to use. In Windows jar­
gon, this step is often referred to as selecting a GDI object into a de­
vice context. In the HELLO program, the following statement selects
a pen object into the variable hdc, the handle of the DC object that
was obtained in step 2:

hpenOld = SelectObject(hdc, hpen);

The SelectObject function returns a handle to a GDI object. This
handle can then be stowed away for safekeeping during the drawing
operation that is about to occur. The handle returned by SelectObject
is kept because it might already be in use by a previously selected
GDI object. If that is the case, the handle can be restored with an­
other call to SelectObject as soon as it is no longer needed by the
drawing operation that is about to take place. The handle is then
freed once again for use by the object that originally owned it. (In
step 7, you'll see how SelectObject can be used to restore a handle
to its original owner.)

6. Perform your drawing operation. In the HELLO program, the Rect­
angle function-is called to draw a blue border around the appli­
cation's window, as shown here:

Rectangle(hdc, rect.left + 10, rect.top + 10,
rect.right - 10, rect.bottom - 10);

After the HELLO program calls the Rectangle function, it makes a
call to the DrawText function to print the greeting "Hello, world!"
inside the window, as shown below. The DrawText function does
not require the specific use of a GDI object, but it does require five
other parameters: the handle of the window into which text is to be
printed, the address of the string to be printed, the length of the
string (or the number -1, which allows the string to be computed
automatica)ly), a pointer to the structure containing dimensions of
the window's client rectangle, and a set of text-drawing flags.

DrawText(hdc, "Hello, world!", -1, &rect,
DT_SINGLELINE : DT_CENTER : DT_VCENTER);

2: Introduction to Windows Programming

7. Restore the handle used by the Rectangle function to its original
owner by making another call to SelectObject, as shown here:

SelectObject(hdc. hpenOld);

8. Free the DC object that was obtained in step 2 by calling BeginPaint,
as shown here:

DeleteObject(hpen);

9. Call the API function EndPaint to terminate your painting opera­
tion, as shown here:

EndPaint(hwnd. &ps);

The preceding steps-with program-specific variations-are used in all
drawing operations in Windows API-style programs. In Visual C++ pro­
grams that use the Microsoft Foundation Class (MFC) Library version 2.0,

the steps vary slightly.

What's Nel('lt?
In Chapter 1, "Introducing Visual C++," you learned how to create an
application framework by using AppWizard. In this chapter, you learned
how Windows-based programs are created using functions provided by
the Windows API.

In the next two chapters, we'll take a step back and -examine some of the
basic features of generic C++ and some of the fundamentals of object­
oriented programming. Then, in Chapter 5, "Visual C++ Tools," we'll
focus our attention'once again on Visual C++ and take a detailed look
inside the AppWizard application g~nerator.

47

Chapter

(++ Basics
In Chapter 1, "Introducing Visual C++," you saw how AppWizard can
create a fully functioning Visual C++ application at the click of a menu
item. In Chapter 2, "Introduction to Windows Programming," you saw
the basics of how a Windows-based program works. In later chapters,
you'll learn how you can use Visual C++ wizards and the other tools that
come with Visual C++ to expand the simple kinds of programs presented
in Chapters 1 and 2 into powerful, customized Visual C++ applications.

Before we move on to more complex Visual C++ programs, however, it
will be helpful to look at some of the features of generic C++-the object­
oriented programming language that lies at the root of Visual C++. In this
chapter, we'll focus on C++ data structures and C++ classes, the building
blocks of all Visual C++ programs. In Chapter 4, "Objects and Member
Functions," you'll see how objects are created from classes and how C++
member functions are used in programs.

This chapter contains a number of sample programs that show how struc­
tures and classes work in C++ programs. These sample programs are com­
piled using the QuickWin utility, a Visual C++ tool that makes it easy to
write and execute text-based procedures and programs in Windows. Quick­
Win is handy for quickly testing and fine-tuning routines before you in­
corporate them into full-fledged Windows-based programs.

49

Learn Visual C++ Now

50

To create a QuickWin application, follow the steps that were outlined in
the section "Example: The HELLO Program" in Chapter 2 on page 28-

with one exception. When the New Project dialog box opens, select Quick­
Win as your project type. Then be sure to choose Edit from the Project
menu and add the appropriate source code files to your project. You can
find all the sample programs in appropriately named folders in the Chap04
folder on the companion CD-ROM.

Together, this chapter and Chapter 4 are a crash course in C++. The topics
they introduce are vital to the study of Visual C++, and many books on C++
are devoted almost entirely to the material these chapters cover. If you are
a C programmer, I guarantee that you will also be a C++ programmer by
the time you finish Chapters 3 and 4. I'm not promising that you'll be on
intimate terms with every arcane construct that is available in C++, but
you will understand how C++ works, and-even more remarkably-you
will be writing your own C++ programs.

This chapter covers a host of topics, including the following:

• Object-oriented programming: a brief explanation of the uses and
features of object-oriented programming languages.

• An overview of some C++ keywords and data types that aren't
available in C or that are used differently in C++ from how they are
used in C.

• Creating and using classes: how the C-Ianguage struct has evolved
into the C++ class, the keystone of object-oriented programming in
the C++ language.

• Other C++ programming techniques, including access specifiers,
operators for accessing member functions and member variables of
classes, constructors and destructors, copy constructors, and the
this pointer.

What's Object-Oriented Programming?
Throughout this book, you'll notice that the word "object" is used many
times. That shouldn't surprise you in a book about C++, an object-oriented
programming language. But exactly what is an object-oriented language?

3: C++ Basics

Some people assume, logically enough, that object-oriented programming
languages are used to create and manage menus, icons, and the other ele­
ments of the user interface that you encounter in Windows-based programs.
Windows programmers, however, have created and managed on-screen
objects for years using the Windows API (application programming inter­
face), and the Windows API is not an object-oriented tool.

Many people also define an object-oriented language as a language that
makes it possible to reuse code. This definition is a little closer to the
truth, but it still isn't accurate. A good C programmer, for example, can
write C functions that are reusable from one application to the next, and
a poor C++ programmer can just as easily write code that isn't reusable at
all. As an object-oriented language, C++ does offer a number of program­
ming mechanisms that make it easier to write reusable code, but those
mechanisms are not its defining features.

The most useful way to understand C++ as an object-oriented language is
to understand how C++ takes advantage of the following features:

• Inheritance-In a non-object-oriented language such as C, you can't
create a data structure that inherits characteristics from another data
structure. Every time you want to create a data structure, you have
to start from scratch. In C++, you can create a data structure that in­
herits characteristics from another data structure and then supple­
ments those characteristics with unique characteristics of its own.
Furthermore, you can create functions (known as member functions)
that "belong" to C++ data structures, and you can then create other
data structures that inherit those functions and use other functions
of their own. In C++, structures that inherit data and functions from
other structures are arranged in inheritance hierarchies. By making
use of these hierarchies, you can not only write code that is reusable,
you can also write data structures (called classes) that contain vari­
ables and functions that are also reusable, either in full or in part.

• Data encapsulation-In C++, member functions can access all mem­
ber variables of the same class. However, an object can safeguard its
member functions and member variables from being accessed or
modified by other classes. The ability that an object has to conceal

51

Learn Visual C++ Now

52

its 'data from other parts of a program is called data encapsulation. If
you've ever tried to track down a function that has modified a global
variable in a C program, you'll appreciate the benefits of C++ data
encapsulation.

• Data abstraction-When you design a C++ class, you can conceal
the details of how its data is represented and handled-that is, you
can hide this information from other classes and other functions in
your C++ program. By making use of data abstraction, C++ functions
can ignore the details of how an operation is implemented and can
concentrate instead on the jobs they want to perform.

You'll learn more about all these features of object-oriented programming
later in this chapter and in Chapter 4, "Objects and Member Functions."

Old Friends, New Faces
C++ is sometimes called a superset of C, which means that C++ contains
all the features of C along with some new features of its own. (In fact, that's
how C++ got its name. Bjarne Stroustrup, the inventor of C++, says he
named it C++ because it's an "incrementation" of C.) Also, some of the
techniques and elements that C programmers are familiar with have
changed in C++. In this section, we'll take a look at some of those changes.

Type Specifiers
To specify exactly how various kinds of data are stored in memory, the
designers of C and C++ established a number of data types. In both C and
C++, a keyword that specifies the data type of a particular piece of data is
called a type specifier. For example, the keyword int is a type specifier for
integers. Similarly, the keyword char is a type specifier for characters. Many
other type specifiers-such as float, double, and long-are used in C++.

The C++ language is equipped with several data types that are not avail­
able in C. These additions to C++ correct some deficiencies that have
always existed in C and provide C++ with some extra programming power.
The following four data types available in C++ require some specific
discussion:

3: C++ Basics

• The enum data type, which is also available in C and has been
promoted to a full data type in C++

• The struct data type, which existed in C but was not a full-fledged
data type

• The reference data type, which behaves like a pointer but can be
treated like a variable, eliminating the overhead that is ordinarily
required to dereference a pointer

• The class data type, a powerful new data type that is the keystone
of object-oriented programming in C++

We'll cover the first three of these data types in the sections that follow.
Classes are covered in detail in the section "C++ Classes," on page 65.

The enum data type
In C++, an enumeration is an integral data type that defines a list of named
constants. Enumerations, like structs and consts, are available in C but are
more flexible and more powerful in C++. In C++, the enum keyword is a
real type specifier, so it is more flexible than it is in C.

The struct data type
As a C programmer, you're familiar with structs; they have been used ex­
tensively in C programs ever since the language was invented. But there's
a difference between the way structs are implemented in C and the way
they are implemented in C++.

In C, a struct is not a full-fledged data type; it is merely a data structure
made up of data items, each of which has its own data type. In C++, a
struct is a full-fledged data type. For example, the following code defines
a new data type named Person:

struct Person {
char* name;
int height;
int weight;
int age;

} ;

You'll notice that when declaring a C++ pointer variable, the unary operator
(*) is placed immediately after the variable type rather than immediately

53

Learn Visual C++ Now

54

in front of the variable name. You can still use C-style pointer declarations
if you prefer-C++ understands both forms of pointer declarations-but
Visual C++ generates code using the C++ style of pointer declarations.

Variables of type Person are declared in the same way that other variables
are declared. For example, the following line declares a variable named
Charlie of type Person:

Person Charlie;

As with C-style structs, individual data members of a C++ struct are
accessed using the dot operator (.). Likewise, pointers to C++ structs are
accessed using the arrow operator (-».

The biggest difference between a C-style struct and a C++ struct is that
a C++ struct can contain functions as well as data. Variables that are de­
clared inside a struct definition are called member variables. Functions
that are declared inside a struct definition are called member functions.
Member functions are more closely associated with classes, however, so
they'll be covered in the section "C++ Classes," on page 65.

A C++ struct has all the power and versatility of ~ny other data type. In
fact, the C++ class-the basic building block of C++ object-oriented
programming-is based on the kind of struct used in C++.

References
A reference is a new ~ata type that C++ provides. References are not avail­
able in C. This is what a reference looks like in a C++ program:

&aReference

In C++, a reference is a hybrid data type that combines the behavior of an
ordinary variable with the behavior of a pointer. You can use a reference
in the same way that you might use any other kind of variable in C, but
with a reference, a function can change the value of a variable that is out­
side the function's scope without having to bother with the overhead of
dereferencing a pointer.

To understand how references work, it helps to view a reference as an alias
for a variable. But a reference is not just a copy of the variable it refers to.
Instead, it is the same variable made available under a different name.

3: c++ Basics

How references are used in C++ In C++, references are most often used
to pass arguments to functions and to return values from functions. To
initialize a reference, you associate it with a variable that has already been
declared. Once you have initialized a reference, it is permanently associ­
ated with its corresponding variable. You cannot reinitialize it to be an
alias for a different variable; Visual C++ returns an error if you try.

To declare a reference, you use the symbol & (the unary AND operator), as
illustrated in the following example:

int anlntVar;
int& aReference = anlntVar; II reference declaration

The first statement in this example declares an integer variable named
anlntVar. The second statement creates a reference named aReference that
is an alias for anlntVar.

Once these two operations are complete, you can use the name aReference
in exactly the same way that you would use anlntVar. When you perform
an operation on the reference named aReference, the operation has the
same result as if you had performed it on the variable named anlntVar.
Listing 3-1 shows how a variable and a reference associated with it can
be used interchangeably.

#include <iostream.h)

void main()
{

int anlntVar = lee:
int& aReference = anlntVar;

cout « '\n' « anlntVar:
cout « '\n' « aReference;
aReference++;
cout « '\n' « anlntVar;
cout « '\n' « aReference;
anlntVar++;
cout « '\n' « anlntVar:
cout « '\n' « aReference:

}

Listing 3-1. Variables and references.

55

Learn Visual C++ Now

56

The program in Listing 3-1 produc"es the output shown in Figure 3-1. As
you c.an see, the operations performed on anlntVar and on aReference in
the preceding example yield the same results.

100
100
101
101
102
102

Figure 3-1. Using a variable and a reference interchangeably.

Printing Text with cout«

In C++, the construct cout« is often used to output text, in much the
same way that theprintJfamily of functions is used to print text inC ..
In C++, text and numeric information is sent to the cout object by
means of the «symbol. The« symbol is defined using a mechanism
known as operator overloading. As you will see in Chapter 4, "Objects
and Member Functions," operator overloading is a C+,. feature that is
often used to customize operator symbols such as +, -, =, and ++.
With operator overloading, you carl make an operator symbol behave
differently when it is used with objects of different classes. Inthe
construct cout «, the« operator is overloaded to work likea com­
mand that writes the contents of a cout object to standard or diagnos­
tic output, which can he either a printed page or the screen.

Listing 3-2 provides another example of the use of a reference; it shows that
a variable and a reference to that variable have the same memory address.

3: C++ Basics

#include <iostream.h>

void main()
{

int anlntVar = 123;
int& aReference = anlntVar;

cout « "The variable address
« &anlntVar « '\n' ;

cout « "The reference address
« &aReference « '\n' ;

}

is:

is: "

Listing 3-2. Obtaining the address of a reference.

Using the & operator with variables and references The unary operator
(&) is used in two different ways in C++. When you declare a reference, as
in the following statement:

int& aReference = anlntVar;

the & operator is part of the reference's type. In contrast, when you define
an ordinary pointer, as in this example:

int anlnt;
int *pAnlnt = &anlnt;

the & symbol stands for a memory address-in this case, the address of the
pAnlnt variable.

In Listing 3-2, the & operator is used both ways. In the statement

int& aReference = anlntVar;

the name aReference is declared to be a reference to an int or a variable of
type int&-a usage that is unique to C++.

In the following statements, however, the & operator precedes the address
of the variable it is applied to. This usage is common to both C and C++.

cout « "The variable address is: "
« &anlntVar « '\n';

cout « "The reference address is: "
« &aReference « '\n';

57

Learn Visual C++ Now

58

When you run the program shown in Listing 3-2, it prints the same address
for both anlntVar and aReference, as shown in Figure 3-2. (The address
that is printed depends, of course, on the configuration of your system.)

Figure 3-2. A reference and its corresponding variable have the same address.

How references work Now that you know how references are used, it's
time to reveal how they work. What makes a reference really special is
that from the viewpoint of your Visual C++ compiler, a reference is associ­
ated with a variable's address. So although you can use a reference in ex­
actly the same way that you use a variable, Visual C++ treats the reference
as if it were a pointer.

Because references behave in this way, you can use them to get around
some of the limitations of using nonpointer variables in C. In C, when you
want to change the value of a local variable of a function from within a dif­
ferent function, you must use a pointer and follow all the manipulations
that are necessary to dereference the pointer. In C++, you can change the
value of the variable simply by associating it with a reference. Then, by
changing the value of your reference, you also change the value of its asso­
ciated variable.

Listing 3-3, a program named DSINGREF, shows how a function can use
a reference to change the value of a local variable declared in a different
function. Notice that in C++, references allow you to perform this kind of
operation without the overhead that is required to perform a similar op­
eration using a pointer in C.

3: (++ Basics

U5INGREF.CPP

#include <iostream.h>

II function prototype
void ChangeValue(int& aRef);

void main()
{

}

int anlntVar = 123;
int& aReference = anlntVar;

cout « "The value of anlntVar is
« anlntVar « '\n';

ChangeValue(aReference);

cout « "The value of anlntVar is now"
« anlntVar « '\n';

void ChangeValue(int& aRef)
{

aRef = 456;
}

Listing 3-3. Using a reference.

In the main function of the USINGREF program, a local integer variable
named anlntVar is declared and assigned a value of 123. A reference
named aReference is then declared to be an alias of anlntVar.

When anlntVar has been initialized and aReference has been defined, the
main function calls another function, named ChangeValue, that changes
the value of the reference named aReference.

Because both aReference and aRef are aliases of anlntVar, changing the
value of aRef also changes the value of anlntVar-even though anlntVar is
a local variable that is declared and defined inside another function!

To perform this kind of operation in C, you would have to declare a
pointer to anlntVar, pass the pointer to aRef, and then dereference the
pointer to obtain its new value. In C++, you can use a reference for this
task instead of a pointer. This technique eliminates the overhead of
dereferencing a pointer.

59

Learn Visual C++ Now

60

Advantages ofusfng references In a program as short and simple as the
one shown in Listing 3-3, the time and effort you save by using a reference
instead of a pointer is minimal. But if you need to use a pointer to access a
long sequence of memory locations-for example, the contents of a very
large array-you might find that you can speed up processing significantly
by using an array and eliminating the extra time and effort that derefer­
encing a pointer would require.

Dangers in using references All this power and flexibility can be danger­
ous if you don't know exactly what you're doing. In C, you can always tell
when you're working with a pointer because you have to use the derefer­
ence operator (*) to obtain the value of a variable being accessed through
a pointer. In contrast, a reference does not have to be identified using any
special kind of symbol. That means thC;lt in your source code, a reference
can look the same as a variable even though it packs a lot of extra power.

So you should not go around indiscriminately declaring and using refer­
ences. You should use them with caution, and you should always be sure
that you identify them in comments. That makes it much safer for other
developers who might be assigned to work with your source code after
you have made your millions and retired to Monaco.

Qualifiers
In C and C++, a qualifier is a keyword that either modifies a type specifier
or defines the behavior of a function. When a qualifier is used to modify a
type specifier, it is called a type qualifier. For example, the keyword canst
is used in the following statement as a type qualifier that declares a con­
stant named aeonst:

const int aConst;

The following statement shows how a qualifier can be used to define the
behavior·of a function. In this case, the keyword inline is a qualifier that
declares AFunction to be an inline function. (Inline functions are described
in more detail in the section "Inline Member Functions" on page 6 7.

inline void AFunction(int paramA);

&ff\JIOTE A function qualifier can also be referred to as a function modifier.

3: C++ Basics

As these examples illustrate, you can use both a qualifier and a type speci­
fier in the definition of a variable or a function. When you do that, the type
qualifier modifies the type spe~ifier or the function, in much the same
way that an adjective modifies a noun.

For example, when you precede the name of a variable with the canst key­
word, the variable becomes a constant. To create a canst in a C++ program,
you use a statement like this:

const int aConstVar = 100;

or a statement like this:

const float aConstVar2 = 129.95;

In C++, both of the preceding statements are called initialization state­
ments. In the first of these statements, aConstVar is declared to be a con­
stant integer and is initialized to a value of 100. In the second statement,
aConst Var2 is declared to be a constant of the float type and is initialized
to a value of 129.95.

Assignment and Initialization in c++

In C programming, "assignment" and "initialization" are two words
that mean essentially the same thing. Both describe the assignment of
a value to a constant or to a variable. The only difference in C++ is
that an initialization operation declares a variable and assigns a value
to it in a single step. Here's an example of an initialization statement:

int x = 5;

You cannot use an assignment operator to assign a value to a canst
data type. As you saw earlier in this chapter, you cancreate a canst
and assign a value to it using an initialization operation, as follows:

const int aConstVar = 100;

(continued)

61

Learn Visual C++ Now

62

Assignment and Initialization in C++. continued

But you cannot createacanst and then use an assignmentoperation
to assign a value to it. The following assignment operation is not legal
iriC++:

constint y;
y =5;

.11 illegal; generates
II a cdmpilererror!

. It is also important tounderstaIldthe difference between initializa~
tion operations and assignment operations when you create member
variables·of C++ ,classes. When you declare a member variable of a
class inside the class's declaration, you cannot assign a value tothe
member variable using an initialization operation. Instead, you must
firstinstantiate 'an object of a class and then use an assignment opera~
tiontd assign a value to a member variable of the class.·You'llleain .

. how to create classes andmell1ber variables of classes in the section
"C++ Classes" on page 65.

If the keyword canst were not used in the preceding statements, aCanstVar
and aCanstVar2 would be ordinary variables. But because they are declared
using the canst keyword, they are constants and their values cannot be
changed once they have been initialized.

Other type qualifiers that did not exist in C or have been given increased
power and versatility in C++ include the following:

• The inline qualifier, which makes it possible to embed short func­
tions inside other functions instead of calling them indirectly. This
qualifier can speed up processing at the cost of a little extra code.
(For more details on inline functions, see the section "Inline Mem­
ber Functions" on page 67.)

• The virtual qualifier, which makes it possible for derived classes to
override inherited member functions in special ways. (We'll cover
derived classes, member functions, and the virtual qualifier in
Chapter 4, "Objects and Member Functions.")

• The friend qualifier, which provides classes with special kinds of
access to member variables and member functions of other classes.
(The friend qualifier is also covered in Chapter 4.)

3: C++ Basics

The const type qualifier
In C++, the canst qualifier lets you create type-safe constants. The canst
qualifier is also available in C, but cansts are much more powerful in C++
than they are in C. In C, about all you can do with a canst is initialize it
and then use it in place of its value in your program. In C++, you can use
cansts in many different ways with pointers, references, and functions.
You can write functions that take cansts as arguments, write functions
that return canst values, and even declare entire C++ objects to be cansts.

The canst qualifier and the #define directive Most C programs define
constant values using the #define preprocessor directive, as shown here:

#define MAX_SIZE 256

That's fine, but it has one potential shortcoming: the #define directive
does not generate type-safe constants because it is just a preprocessor
directive, not a compiler statement.

When you generate a constant using #define, your constant has no data
type, so your compiler has no way to ensure that operations on the con­
stant are carried out properly-at design time, at run time, or even during
debugging. When you work with a constant created with the #define direc­
tive, you're strictly on your own; no type-checking is ever done for you.

In contrast, when you define a canst in a C++ program, you execute a real
compiler statement, such as this one:

canst int MAX_SIZE = 256;

This statement declares an integer constant named MAX_SIZE and initial­
izes it to a value of 256. Once this operation has taken place, the value of
MAX_SIZE cannot be changed.

Notice that this statement, unlike the previous #define directive, does not
begin with a # symbol and does end with a semicolon; those are your clues
that it's a real statement executed by your application, not a preprocessor
directive.

You can, however, do many things with cansts that you cannot do with
non-canst variables. You can create canst arrays, assign pointers to cansts,
create pointers that are cansts, and create canst pointers that have the
same values as references. You can also write functions that take canst
arguments and return canst values.

63

Learn Visual C++ Now

64

Creating a const pointer to a variable Many of these operations can be
mixed and matched. For example, the following statement creates a canst
pointer to an integer variable and assigns to the pointer the value of a ref­
erence, all in one step:

int *const pAnlntVar = &anlntVar; II constant pointer.
II ordinary variable

It's important to understand that in the preceding statement, the pointer
named pAnlntVar is a canst, but the variable that it points to is an ordi­
nary variable. Consequently, the address that is stored in thepAnlntVar
pointer cannot be changed later, but the value of the variable that
pAnlntVar points to can be changed.

Creating a pointer to a const variable When the variable that is pointed
to is a canst but the pointer is not a canst, just the reverse happens. In this
case, the value of the variable that is pointed to cannot be changed later,
but the address stored in the pointer that accesses the variable can be
changed, making it point to a different location, as shown here:

canst int *pAnlntVar; II constant variable.
II ordinary pOinter

Creating a const pointer to a const variable Finally, you can use the
canst qualifier to create a canst pointer to a canst integer. Then the pointer
you have created can't be changed later, and neither can the variable that
it points to, as shown here:

const int const *pAnlntVar; II constant variable.
II constant pOinter

Using the const qualifier in function definitions The canst type qualifier
is often used in function definitions. For example, the following statement
defines a function that returns a canst:

const int TestConstFunc(int x. int y);

Here's the definition of another function that returns a canst pointer to an
ordinary variable:

int *const TestConstFunc(int x. int y);

And here's a function that returns an ordinary pointer to a canst variable:

canst int *TestConstFunc(int x. int y);

3: C++ Basics

Last we have a function that returns a canst pointer to a canst variable:

const int const *TestConstFunc(int x. int y):

Passing canst arguments to functions You can also use consts as argu­
ments in function calls. In fact, you can pass canst arguments to functions
in a number of different ways, such as in the following statement:

void *TestConstFunc(const int a. int *const b.
const int *c. const int const *d):

C++ Classes
Once you know how a structworks in a C++ program, you've come a long
way toward learning how classes work in C++. In essence, a C++ class is
a C-style struct with a few simple but far-reaching enhancements. In the
following paragraphs, you'll see how structs have evolved into classes
in C++.

Declaring Classes
In a C++ program, you declare a class in the same way that you declare a
struct. To declare a simple class, all you do is write a struct definition and
substitute the keyword class for the keyword struct. For example, the fol­
lowing code fragment is a declaration of a struct:

struct Emplnfo {
char* m_name:
char* m_dept:
char* m_position:
long m_sal ary:
void Printlnfo(Emplnfo empData):

} :

,JelloTE In the preceding code fragment, notice that the Emplnfo struct has a
011" member function named Printlnfo. In C++, a struct-like a class-can contain

member functions. But this feature of a c++ struct is rarely used. The gen­
eral feeling among C++ programmers seems to be that if you're going to
create a struct with member functions, you might as well go ahead and cre­
ate a class because classes are more powerful than structs and can make
use of inheritance and other useful features that structs do not have. You'll
learn much more about the many features of classes in the remainder of this

. chapter and in Chapter 4. .

65

Learn Visual C++ Now

66

By changing the keyword struct to the keyword class, Emplnfo becomes a
class instead of a struct, as shown here:

class Emplnfo {

} ;

char* m_name;
char* m_dept;
char* m_position;
long m_salary;
void Printlnfo(Emplnfo empData);

.~~I OTE The Emplnfo class created in the preceding example has four member
Cin! variables: m_name, m_dept, m_position, and m_sa/ary. In Visual C++, the

recommended convention for writing the name of a member variable is to
precede it with the letter m followed by an underscore. This convention
helps to distinguish member variables from ordinary variables.

Declaring' a class in a C++ program has the same effect as declaring a
struct. When you declare a C++ class, no memory for the class is allocated
until you create an object from a class. Creating an object from a class is
called instantiating an object. An object created from a class is known as
an instance of that class.

Access Specifiers
c++ uses access specifiers to allow a class to control access to the class's
data members. Access specifiers can be used to permit access to specific
members of a class while restricting access to other class members. This
capability can prevent private data members from being changed inadver­
tently by functions that access them-a problem that is often caused by
the sloppy use of global variables in C programs.

There are three access specifiers in C++: public, protected, and private.
When you declare a class member to be public, it can be freely accessed
inside and outside its class. Data members that are declared as protected
are accessible from the class's member functions but cannot be accessed
by other classes or other parts of the program. When a member of a class is
declared as private, it is inaccessible not only from other classes and other
parts of the program but also from derived classes. (Derived classes are de­
scribed in Chapter 4, "Objects and Member Functions.")

3: C++ Basics

Inline Member Functions
Some c++ functions contain only a few lines of code, and some consist
of a single line of code only. For example, the following member function
sets a member variable named m_age to the value passed to t~e function:

void Person::SetAge(int age)
{

}

The overhead cost of a function call must be paid each time you want to
set the m_age member variable-quite a price for a single line of code.

To help avoid the overhead of a function call, C++ provides inline func­
tions, which are similar to C macros. An inline function is like a normal
function, but it is expanded in line. This decreases the execution time of
a program but increases its size (due to multiple inline copies of the func­
tion). Shorter member functions can be (and often should be) declared as
inline functions.

There are two methods for declaring an inline function in a C++ program.
The first is to declare and define the function using an all-in-a-row syntax
in the function's definition. Using this method, the previous example
would look like the following:

void SetAge(int age) { m_age = age; }

Notice that an inline function definition has all the ingredients of an ordi­
nary "out-of-line" function definition-namely, a function heading fol­
lowed by a function body that is enclosed in braces, or curly brackets. The
only significant difference is that in an inline function definition, all these'
ingredients appear on the same line.

The second method for declaring an inline function is to use the inline
function modifier when you create the function. You'll see an example
of using the inline function modifier in Chapter 4, "Objects and Member
Functions."

E){ample: The EMPINFO Program
Listing 3-4 on the following page-a sample program named EMPINFO-
demonstrates the three concepts we've seen in this section: classes, access
specifiers, and inline functions.

67

Learn Visual C++ Now

EMPINFO.CPP

#include <iostream.h)

class Emplnfo {
private:

char* m_name;
char* m_dept:
char* m_position:
long m_salary:

public:

} ;

void Printlnfo();
void SetName(char* name) { m_name = name; }
void SetDept(char* dept) { m_dept = dept; }
void SetPosition(char* psn) { m_position = psn;
void SetSalary(long sal) {m_salary = sal; }
const char* GetName() { return m_name; }
const char* GetDept() { return m_dept: }
const char* GetPosition() { retur'n m_position; }
const long GetSalary() { return m_salary; }

void Emplnfo::Printlnfo()
{

}

cout « "Name: "« m_name « '\n';
cout « "Department: " « m_dept « '\n';
cout « "Position: " « m_position « '\n';
cout « "Salary: " « m_salary « "\n';

void maine)
{

}

II instantiate an object
Emplnfo emplnfo:

II assign values to member variables
emplnfo.SetName("Zippy");
emplnfo.SetDept("Entertainment");
emplnfo.SetPosition("Actor n

);

emplnfo.SetSalary(35000):

II print data
~mplnfo.Printlnfo():

Listing 3-4. Using a class in a C++ program.

68

3: C++ Basics

How the EMPINFO program works
The EMPINFO program shown in Listing 3-4 is divided into the following
three parts:

• The first part of the program is a declaration of a class named
Emplnfo, shown here:

class EmpInfo {
private:

char* m_name:
char* m_dept:
char* m_position:
long m_salary:

public:

} :

void PrintInfo():
void SetName(char* name) { m_name = name: }
void SetDept(char* dept) { m_dept = dept: }
void SetPosition(char* psn) { m_position = psn; }
void SetSalary(long sal) { m_salary = sal: }
const char* GetName() { return m_name: }
const char* GetDept() { return m_dept: }
const char* GetPosition() { return m_position: }
const long GetSalary() { return m_salary: }

Notice that there are eight inline functions (SetName, SetDept,
SetPosition, SetSalary, GetName, GetDept, GetPosition, and
GetSalary) and one normal function (PrintInfo).

The member variables of the Emplnfo class are declared as private,
so member functions from another class cannot access them. The
l!mplnfo class's member functions, however, are declared as public,
which means that member functions from other classes can access
them.

• The second part of the program is the definition of the PrintInfo
function, shown here:

void EmpInfo::PrintInfo()
{

}

cout « "Name: " « m_name « '\n';
cout « "Department: " « m_dept « '\n';
cout « "Position: " « m_position « '\n';
cout « "Salary: " « m_salary « '\n';

69

Learn Visual C++ Now

70

jt?jl OTE Notice that the name of the Emplnfo class-followed by a pair of
Vlr1 colons (::)-precedes the name of the Printlnfo function. In C++, a pair of

colons used in this way is called a scope resolution operator. The scope reso­
lution operator is a standard mechanism for defining a member function of
a class. For more details, see the section "The Scope Resolution Operator"
on page 79.

• The third part of the program is the main function. In the main func­
tion, the following line of code instantiates an object of the Emplnfo
class:

Emplnfo emplnfo;

The object instantiated is named emplnfo.

After the emplnfo object has been instantiated, its member variables
are initialized, or assigned their initial values, as shown below. No­
tice that initialization operations, not assignment operations, are
used to carry out this step.

II assign values to member variables
emplnfo.SetName("Zippy");
emplnfo.SetDept("Entertainment");
emplnfo.SetPosition("Actor");
emplnfo.SetSalary(35000);

Finally, PrintInfo is called to print the contents of the emplnfo
object's member variables, as shown here:

II print data
emplnfo.PrintInfo();

Data Encapsulation

In C++, access specifiers are the key to data encapsulation. By using
access specifiers, a class can control access to member variables and
member functions. When data is protectedby encapsulation,Junc­
tionsthat call other functions can access data in the functions being
called~and reqllestactionsinvolving the data:-withputknowing
specific details about how. the data is manipulated or how the actions
are performed.

3: C++ Basics

When you execute the EMPINFO program, it produces the output shown
in Figure 3-3.

..

M$ tlttfi1!1!!tttt'i@t::'C"'J':'HvrtJntifij:ctn;;::.;;:;e:;i,ic';.!ol xl
IHallle: Zippy
~epartlllent: Entertainlllent
tosition: Actor
Salary: 35000

., .

,

Figure 3-3. Output of the EMPINFO program.

Constructors and Destructors

Ux

.,

In C++, special functions exist for instantiating and destroying objects. A
function that performs any necessary initialization-for example, allocat­
ing memory for an array-when an object is instantiated is known as a
constructor. A function that performs any housekeeping that must be
done after the object is destroyed is called a destructor. For example, a
destructor can ensure that any memory allocated to an object is deallocated.
Constructors provide an easy-and safe-way to instantiate objects. De­
structors provide an easy and safe way to destroy objects when they are
no longer needed.

Along with their primary job of constructing objects, constructors can also
perform special kinds of operations, such as converting data from one type
to another and making copies of objects. Constructors are often used, for

71

· Learn Visual C++ Now

72

example, to make copies of strings that are implemented as objects of the
Visual C++ CString class. (For more information about the CString class,
see Chapter 6, "The MFC Library.")

Creating Objects Without Constructors

When you instantiate an object in C++, the compiler always calls a
constructor. If you don't provide a constructor fora particular class,
the compiler creates a simple constructor when you declare the ob­
ject and uses the constructor to instantiate your object.

Because the compiler automatically creates a constructor when an
object is declared, you can define and use a class without explicitly
writing a constructor for the class.

But constructors that are created by the compiler are often too primi­
tive to be very useful, and good C++ programmers rarely, if ever, trust
the compiler to provide a constructor by default. The safest way to
instantiate an object is to write an explicit constructor. That doesn't
cost anything, so most experienced C++ programmers write explicit
constructors for the classes they use in their programs.

A constructor is easy to recognize because it always has the same name as
the class in which it is declared. In a class definition, a constructor can be
declared using this format:

class HighClass {
public

HighClass();

The High Class constructor takes no arguments. A constructor that takes no
arguments is called a default constructor, or a null constructor.

3: C++ Basics

A destructor, like a constructor, has the same name as the object with which
it is associated. The name of a destructor, however, is always preceded by
the tilde symbol (-), as in this example:

-HighClass() {}

A destructor takes no arguments and never returns a value.

When an object that has a destructor goes out of scope or is otherwise about
to be destroyed, the object's destructor is automatically invoked. You
never have to make an explicit call to an object's destructor when the
object is no longer needed.

ml OTE . You can see that no return values are specified for the HighClass con-
6ir~ structor and destructor. In C++, constructors and destructors never return a

value, so you are not allowed to specify a return type-not even void­
when you define a constructor or destructor. If you try to specify a return
type, the Visual C++ compiler reports an error.

Defining a constructor
Once a constructor has been declared, it must be implemented. Construc­
tors, just as other kinds of functions, are often declared in header (.H) files
and are then defined in corresponding implementation (.CPP) files. The
High Class constructor declared in the preceding example could be defined
in the corresponding implementation file in this way:

HighClass::HighClass()
{

II body of function definition
}

When you write a constructor that takes arguments, the constructor can
use the values of those arguments for any legal purpose-for example, to
perform any special kinds of assignment operations that the object being
constructed might require, such as specifying the initial values of member
functions of the object. Of course, code must be provided inside the con­
structor to make use of any arguments it requires.

73

Learn Visual C++ Now

74

Default Function Arguments
Sometimes you'll write a function that almost always uses the same value
for one of its arguments. For example, a drawing program might include a
tool that draws a square at specified xy-coordinates using a specified color.
You might write a function whose declaration looks similar to this:

void DrawSquare(int x. int Y. int color);

This function takes three arguments: an x value, a y value, and a color
value. If you know that the color will usually be black, you might be
tempted to write a second function that takes only x and y values; the
function would draw a black square at the" specified location. C++ pro­
vides a way to write a single function that will draw the square using
black but still allow you to specify a different color as needed, as
shown here:

void DrawSquare(int x. int y. int color = BLACK);

In this function, the color argument is a default argument. Default argu­
ments always appear at the end of the argument list.

When a class has a member function that provides default values for its
arguments, you can call the function without passing arguments to it. If
you don't pass any arguments to the function, the function uses the de­
fault values provided in its argument list.

Alternatively, you can choose to pass arguments to a function that is
equipped with default values for its argument list. When you pass argu­
ments to such a function, they override the default values that are pro­
vided in the function's declaration.

Listing 3-5 demonstrates a class named High Class whose constructor uses
default values.

Listing 3-5. Using constructors with default arguments.

3: C++ Basics

} ;

.... HighClass() {}
char* m_name:
int m_x;

int main()
{

}

HighClass myObject;
cout « myObject.m_name « '\n';
cout « myObject.m_x « '\n';
return 0;

Copy Constructors
A copy constructor, as you might guess from its name, is a constructor
specifically designed to copy objects. In C++, copy constructors provide a
means of copying a complex structure such as an object in a single step.

ggll OTE Copy constructors are not the only mechanisms for copying objects in
~\1 C++. You can also copy an object by overloading the assignment operator

(=). Operator overloading is described in Chapter 4, "Objects and Member
Functions. "

Custom copy constructors are often used in C++ because the C++ language
does not provide a robust generic copy constructor that can automatically
make a copy of any object. The Visual C++ compiler does have the capa­
bility of copying simple objects without requiring copy constructors, but if
you need a copy constructor that will make a copy of a more complex
object, you must provide your own copy constructor (or use one that has
been provided in a class library).

Because the default copy constructor mechanism in C++ is so limited, it is
almost never used in real-world programming. Learning to write copy con­
structors is really a part of learning to program in C++.

Declaring a copy constructor
A copy constructor always takes one argument-a reference to a class­
and, being a constructor, never returns a value.

75

Learn Visual C++ Now

76

After you have declared a copy constructor, you can define it in the same
way that you define any constructor, as in the following example:

YourClass::YourClass(YourClass& anObject);
{

II body of copy constructor
}

After you have declared and defined a copy constructor, you can invoke it
by executing statements such as the following:

YourClass objectA;
YourClass objectB = objectA;

II define an object
II copy objectA

When these two statements are executed, an object named objectA already
exists. The first statement instantiates an object of the same class named
objectB, and the second statement copies objectA to objectB.

Techniques for writing copy constructors
In rare situations, when you have a very simple object to copy, you can let
the compiler write a shallow copy constructor for you. At other times,
you'll need to write a deep copy constructor. Here are the differences:

• A shallow copy, sometimes called a memberwise copy, copies every
data member of an object but does not copy strings or pointer data.
If the object being copied contains a pointer, the pointer is copied
verbatim to the destination object, but the information pointed to by
the pointer is not copied. Shallow copying is not appropriate if the
object being copied is any more complex than a pointerless struct.
In most situations, you should forget about shallow copying.

• A deep copy copies the source object and all the data that is pointed
to by the source object's pointers and then resets the pointers in the
destination object to point to the data that has been copied. In other
words, a deep copy copies everything. A deep copy is the only safe
kind of copy, so in virtually every situation it is the kind of copy
constructor you should use.

3: C++ Basics

EJ{ample: The CPYCONST Program
The CPYCONST program shown in Listing 3-6 demonstrates how a copy
constructor can be used in a C++ program. The program's main function
instantiates an object named myMoney and then uses a copy constructor
to make a copy of myMoney. The copy of myMoney is named moMoney.

CPYCONST.CPP

#include <iostream.h>

class Money {
. i nt m_di nero. m_centavo;

public:

} ;

Money() {} I I null constructor
Money(Money&); II copy constructor
Money(int dol. int pen) : m_dfnero(dol). m_centavo(pen) {}
int GetDollars() { return m_dinero; }
int GetCents() { return m_centavo; }

Money::Money(Money& cash)
{

} ;

m_dinero = cash.m_dinero;
m_centavo = cash.m_centavo;

int main()
{

}

Money myMoney(29. 95);
Money moMoney = myMoney;
int d = moMoney.GetDollars();
int c = moMoney.GetCents();
cout « "The price is $" « d « ' , « c « ".\n";
return 0;

Listing 3-6. Demonstrating a copy constructor.

Because the CPYCONST program copies an object that contains no point­
ers, the copy constructor the program uses is quite straightforward, as
shown on the following page.

77

Learn Visual c++ Now

78

Money::Money(Money& cash)
{

} ;

m_dinero = cash.m_dinero;
m_centavo = cash.m_centavo;

When you call the preceding copy constructor, it copies the m_dinero
and m_centavo member variables from the source object to the destination
object. The Money class has only two member variables, so that completes
the copying operation.

Initializer Lists
In the course of demonstrating the use of copy constructors, Listing 3-6 in-
troduces another useful feature of C++: initializer lists in calls to construc­
tors. In Listing 3-6, an initializer list appears in the following constructor
definition:

Money(int dol, int pen) : m_dinero(dol), m_centavo(pen) {}

Notice that the argument list of the Money class's constructor is ,followed
by a colon and then by a pair of constructs that look like calls to C functions.
In this case, those constructs are not functions but serve as an initializer
list for the Money class's constructor.

The initializer list that is supplied for the Money class initializes a pair of
member variables named m_dinero and m_centavo. The operation of the
initializer list is quite straightforward: when the constructor is called, the
m_dinero member variabl~ is initialized to the value of the dol argument
that is passed to the constructor, and the m_centavo member variable is
initialized to the value of the constructor's pen argument. Thus, the con­
structor works exactly as if it were defined this way:

Money::Money(int dol, int pen) {
m_dinero = dol;
m_centavo == pen;

}

As you can see, initializer lists are optional. Many C++ programmers like
them because they take up a little less space than conventional member­
variable initializations and because they keep the initialization of member
functions separate from the rest of the code in a constructor.

3: C++ Basics

The Scope Resolution Operator
c++ provides the scope resolution operator (::) as another way to access
member functions and member variables of a class. When a scope resolu­
tion operator appears between the name of a class and the name of a func­
tion in a C++ program, as in the following example, it means that the
specified function is a member of the specified class:

Emplnfo::Printlnfo();

In C++, the scope resolution operator is always used in the headings of
member functions that are not declared in line. (Inline member functions
are described in the section "Inline Member Functions" on page 67.) The
scope resolution operator is also often used to call functions that are out­
side the scope of the calling function. For example, to call a member func­
tion named CStructView::OnDrawfrom a function that is defined outside
the definition of the CStructView class, you could execute this kind of
statement:

CStructView::OnDraw();

There are some important differences between the way the scope resolu­
tion operator works and the way the arrow and dot operators work in

. C++ programs. The main difference is that the scope resolution operator
is used to access members of classes, and the dot operator and the arrow
operator are used to access members of specific objects.

Using the scope resolution operator inside functions
You can also use the scope resolution operator inside function definitions
in C++ programs. In the following example, the scope resolution operator
is used in two different ways inside a function definition (as well as being
used in the function definition's heading):

void CMyView::Showlnfo()
{

}

::MessageBox("We are inside the Showlnfo function.");
Emplnfo::Printlnfo();

The scope resolution operator appears by itself in front of a call to a func­
tion named MessageBox and also appears in a call to the EmpInfo::Print­
Info member function.

79

Learn Visual C++ Now

80

In the first statement, shown here, there is no class name in front of the
scope resolution operator:

::MessageBox("We are inside the Showlnfo function.");

That means that the function being called-MessageBox-is not a member
of any class. (In this case, MessageBox is a function provided by the Win­
dowsAPI. When you call the function, it displays a modal dialog box con­
taining the message you have specified. When the user clicks the OK
button, the message box closes.)

There are two reasons for using a scope resolution operator. One reason is
to distinguish the function that is being called from some other function
that has the same name but is in a different scope. To illustrate a case such
as this, look again at the call to the MessageBox function, shown here:

void CMyView::Showlnfo()
{

}

::MessageBox("We are inside the Showlnfo function.");
Emp)nfo::Printlnfo();

Suppose that when you execute the MessageBox call, you know that the
CMyViewclass has a member function named Showlnfo::MessageBox. In
C++, when a function that is in scope and a function that is out of scope
have the same name and the same argument list, the version of the func­
tion that is in scope is usually called. In this kind of situation, you can use
the ::MessageBox construct to override this default scoping behavior and
call the Windows API version of the MessageBox function. If you don't use
the ::MessageBox construct, the Showlnfo::MessageBox function is the
function that is called.

The second reason for using the scope resolution operator is to let readers
of your code know that the function you are calling is not a member fu~c­
tion of the class from which the call is made. Using the scope resolution
operator in this kind of situation is not mandatory, but it can help oth~r
readers of your code understand what's going on when you're using a
class that has a lot of member functions.

3: C++ Basics

The this Pointer
One word you often see in C++ programs is "this." That's because every
object in a C++ program is equipped with a pointer to itself named this.
Whenever a program calls a nonstatic member function (most member
functions are nonstatic; static member functions are described in Chapter
4, "Objects and Member Functions"), the this pointer is passed to the
member function that is called. ,The member function can then use the
this pointer to access other members of the object's class.

In C++ programs, member functions often use the this pointer as an argu­
ment when they call other functions. The called function can then use the '
this pointer to access the calling function's object.

The sample program in Listing 3-7 shows how the this pointer works.

THIS.CPP

#include <iostream.h>

class YourClass {
public:

} :

YourClass() {}
-YourClass() {}
void* lAme) { return

int main()
{

void* pClass:
YourClass anObject;

II default constructor
II destructor

thi s: }

pClass = anObject.IAm():
cout « "pClass's pointer is

}

« pClass « '\n.':
return 0:

Listing 3-7. Using the this pointer.

In this example, the class named YourClass has a member function named
lAm that returns the this pointer of a YourClass object, as shown here:

void* lAm { return this: }

81

Learn Visual C++ Now

82

When you execute the program, its main function instantiates a YourClass
object and then calls the lAm member function. The program then stores
the this pointer returned by lAm in a pointer variable named pClass, as
shown here:

pClass = anObject.IAm():

When the YourClass object's this pointer has been stowed away for safe­
keeping, the main function prints out the pointer it has stored in the
pClass variable. The output of the program looks something like the fol-
lowing. (Of course, the actual address printed out varies.) .

pClass's pointer is 0x603f223011786

W~a'fi:'s Ne){1l:?
This chapter is the first of two chapters that focus on C++ classes, objects,
and member functions. The chapter introduces C++-style structs and C++
classes and objects .

. Other topics covered in this chapter included various type specifiers
and qualifiers, the this pointer, access specifiers, and constructors and
destructors.

In Chapter 4, "Objects and Member Functions," you'll explore the topics
introduced in this chapter in more detail, and you'll also be introduced to
other features of C++ and principles of C++ object-oriented programming.
By the time you finish Chapter 3 and 4, you'll have all the background in
C++ that you need to ·start writing object-oriented programs using the
Visual C++ development environment.

Chapter

Objects and Member Functions
You are now halfway through a crash course on the fundamental features
of generic C++ and the basic principles of object-oriented programming. In
Chapter 3, "C++ Basics," you learned how the C++ class evolved from the
humble C-Ianguage struct and how you can use classes and other kinds of
C++ constructs in your Visual C++ programs. In this chapter, you'll see in
more detail how objects are instantiated from C++ classes and how objects
and member functions are used in Visual C++ applications. This chapter
takes you deeper into the territory of object-oriented programming by
fleshing out some of the topics introduced in Chapter 3 and by providing
the rest of the background you'll need to start using classes, objects, and
member functions in your Visual C++ programs.

This chapter covers the following major topics:

• Derived classes, class hierarchies, and inheritance-the corner­
stones of C++ object-oriented programming

• Polymorphism and virtual member functions, which let you specify
the version of a member function that is executed by a derived class

83

Learn Visual C++ Now

84

• Function overloading and operator overloading-mechanisms that
make C++ more versatile

• Static member variables-a C++ feature similar to global variables

• Mechanisms known as friend classes and friend functions, which
are used for sharing protected data

• The new and delete operators-the C++ operators for allocating
memory

C~ass ~ierrallrchDeS cOlDiltdl ~D1l~errDfralnl(e
In Chapter 3, "C++ Basics," you saw how member functions and member
variables can be declared inside C++ classes. You also saw how the pri­
vate, protected, and public access specifiers can control access to member
variables and member functions.

In this chapter, you'll learn how classes can be derived from other classes
and how base classes and derived classes can be organized into architec­
tures known as class hierarchies. When you derive a class from another
class in a C++ program, the derived class inherits member variables and
member functions from its base class-also referred to as its parent
class-and can add member variables and member functions of its own.

By arranging base classes and derived classes into class hierarchies, you
can simplify software development by developing code that can be trans­
ported easily from application to application. This capability is the key to
code reusability in C++ programs.

Understanding Class Hierarchies
When a class is derived from a base class, the derived class inherits all the
member variables and member functions of its base class. Member vari­
abIes and member functions declared as private in the base class are not
accessible to derived classes, however.

When a class is derived from a base class, more classes can be derived
from the derived class. In this way, a derived class can also become a base
class. Multiple levels of classes that are derived from each other form a
class hierarchy. Each class in the hierarchy inherits the member variables
and member functions of its respective base class.

4: Objects and Member Functions

How Derived Classes Wor!,
Figure 4-1 illustrates the way a derived class works in a C++ program.
The diagram shows how a derived class inherits the member functions
and member variables of its base class. The derived class also adds mem­
ber variables and member functions of its own.

BaseC/ass
Variable 1
Variable2

Function 1
Function2

DerivedC/ass
Additional variables

Additional functions

Figure 4-1. How derived classes and base classes are related in a C++ program.

Why Use Derived Classes?
In C++, class derivation and class hierarchies are used for a number of rea-
sons, including the following:

• A base class can inherit some behaviors and originate others­
When you use a base class to derive a new class, the new class is a
new data type that inherits all the qualities of the base class without
disturbing the relationships the base class might have with other
parts of the program. If you are already using the base class in your
program, its behavior remains intact for objects that use it, but for
objects that require different behaviors, the member functions of the
derived class can be used to modify the behavior of the base class
without altering the base class's code.

• Hold the source code-You don't need access to the source code for
the base class when you want to derive a class from a base class. If
you have access to a header (.H) file that defines a base class, you

85

Learn Visual c++ Now

86

have all you need to derive classes from that base class. That means
you don't have to share your source code with developers who use
it; just supply them with your header files, and they can derive their
own classes.

• You can manage hierarchy behavior by using abstract classes­
Abstract classes are general-purpose classes that do nothing by
themselves but are specifically designed to be used as base classes.
The only purpose of an abstract class is to serve as a base for derived
classes. Derived classes can then add the implementation details.
For example, you could define an abstract class to manage objects in
a list. Then you could provide it with member functions that insert,
change, delete, reorder, and search for entries in the list without
having to know any details about objects in the list.

• You can get the benefits of polymorphism-When you set up a class
hierarchy on a foundation of base classes and derived classes, you
cail make use of other properties of the object-oriented languages,
such as polymorphism. Polymorphism lets descendants of a class
override a member function of that class with member functions
that have the same name but different effects.

As you move through the material in this chapter, you'll learn more about
all these reasons for using derived classes.

lE){amp~e: DeriYing a C~ass
Listing 4-1, a program named HIERARCH, shows how a class can be de­
rived from a base class in a C++ program and demonstrates a simple class
.hierarchy. The HIERARCH program is adapted from the EMPINFO pro­
gram presented in Listing 3-4 on page 68 in Chapter 3. It shows how the
EMPINFO program could be redesigned if the company using the program
opened branch offices abroad and hired employees in more than one
country.

To meet the needs of an international company, the designers of the HIER­
ARCH program have derived a new class, named OffshoreEmplnfo, from
the Emplnfo class that was used in the EMPINFO program.

4: Objects and Member Functions

HIERARCH.CPP

#include <iostream.h>

II base class
class Emplnfo {
public:

II constructor and destructor
Emplnfo() {}
-Emplnfo() {}

private:
char* m_name;
char* m_dept;
char* m_position;
long m_salary;

public:

} ;

void SetName(char* name) { m_name
void SetDept(char* dept) { m_dept
void SetPosition(char* position)

{ m_position = position; }
void SetSalary(long salary)

{ m_salary = salary; }
void Printlnfo();

II derived class
class OffshoreEmplnfo : public Emplnfo {
public:

II constructor and destructor
OffshoreEmplnfo() {}
-OffshoreEmplnfo() {}

private:
char* m_country;

public:

} ;

void SetCountry(char* country)
{ m_country = country; }

void Printlnfo();

void Emplnfo::Printlnfo()
{

cout « "Name: " « m_name « "\n";

name; }
dept; }

cout « "Department: " « m_dept « n\n";
cout « "Position: " « m_position « "\n";
cout« "Salary: " «m~salary « "\n";

}

Listing 4-1. Demonstrating a derived class. (contin~ed)

87

Learn Visual C++ Now

88

Listing 4-1. continued

voidOffshoreEmplnfo::Printlnfo()
{

Emplnfo::Printlnfo():
cout « "Country: " « m_country « "\n";

}

int main()
{

}

II class object instance declaration
OffshoreEmplnfo emplnfo;

II populate the Emplnfo class with data
emplnfo.SetName("Daisyduck Feliciano"):
emplnfo.SetDept("Entertainment");
emplnfo.SetPosition("Vocalist");
emplnfo.SetSalary(24000);
emplnfo.SetCountry("Bulgaria");
emplnfo.Printlnfo();
return 0;

When you execute the HIERARCH program, it displays the output shown
in Figure 4-2.

Figure 4-2. The output of the HIERARCH program.

Rules of Inheritance in C++
Because the OffshoreEmplnfo class is derived from the Emplnfo class·, it
inherits all the public member functions that are declared inside the defi­
nition of the Emplnfo class. The OffshoreEmplnfo class adds one new

4: Objects and Member Functions

member function and two new member variables that are not members of
its base class, as shown here:

private:
char* m_country;

public:
void SetCountry(char* country)

{ m_country = country; }
void Printlnfo();

Along with these new members, the OffshoreEmplnfo class can use all of its
inherited member functions in the same way that its base class uses them.

In Figure 4-1 on page 85, notice that the arrow connecting the derived class
to the base class points upward-not downward as you might expect. This
convention is used in C++ class diagrams because members of base classes
are visible to derived classes, but members of derived classes are not vis­
ible to their base classes.

Declaring a Derived Class
Here is the declaration of the OffshoreEmplnfo class:

II Derived class
class OffshoreEmplnfo : public Emplnfo {
public:

II constructor and destructor
OffshoreEmplnfo() {}
~OffshoreEmplnfo() {}

private:
char* m_country;

public:

} ;

void SetCountry(char* country)
{ m_country = country; }

void Printlnfo();

Notice that the heading of a derived-class declaration contains the names
of both the derived class and the derived class's base class. The name
of the derived class is separated from the name of the base class by two
elements: a colon and an access specifier.

Only two access specifiers-public and private-can be used in the header
of a derived-class declaration. The private access specifier is used rarely be­
cause derived classes are almost always publicly derived from their base
classes in C++ programs. You can hide a derived class from the rest of a
program by declaring it as private, but there is usually no reason to do this.

89

Learn Visual C++ Now

90

(OD1ls'fcrlUlcti.nllg lQ)ero\fed C~asses
When you instantiate an object of a derived class, the compiler executes
the constructor of the object's base class before it executes the constructor
of the derived class. This is not important in the HIERARCH program be­
cause both the Emplnfo base class and the OffshoreEmplnfo derived class
have default null constructors. But if a base class has a constructor that re­
quires arguments, they can be provided by a constructor of a derived class.

To illustrate, suppose that a base class has a constructor such as this:

BaseClass(char* nm, int x);

Then suppose that a class derived from BaseClass has a constructor some­
thing like this:

DerivedClass(char* nm, int x) : BaseClass(nm, x)
{ m_name = nm; m_x = x; }

In this kind of situation, you can provide the arguments for BaseClass at
the same time that you create an object of DerivedClass. To do that, invoke
the DerivedClass constructor using the following statement:

DerivedClass myObject("Mikey", 6);

When you invoke the DerivedClass constructor using this sort of state­
ment, the DerivedClass constructor automatically calls the BaseClass con­
structor. The result is that the m_name and m_x member functions of the
object you have instantiated are initialized to the values "Mikey" and 6.

Listing 4-2 shows how this kind of operation can work in a C++ program.

CONSTRCT.CPP

#include (iostream.h>

class BaseClass {
public:

BaseClass(char* nfu. int x)
{ m_narne = nm; m_x = x; }

--BaseClass () . {}

Listing 4-2. Constructing a derived class.

4: Objects and Member Functions

} ;

char* ITLname:
int m_x:

class DerivedClass : public BaseClass {
public:

} ;

DerivedClass(char* nm, int x) : BaseClass(nm. x)
{ m_name = nm; m_x = x; }

~DerivedClass() {}
char* m_name;
int m_x;

int maine)
{

}

DerivedClass myObject("Jackie", 24);
cout « myObject.m_name « "\n";
cout « myObject.m_x « "\n";
return 0;

OverrrrD~UD1g Member IFltHlrnc'fcnoD1lS
Derived classes can replace, or override, member functions they inherit
from their base classes~ Listing 4-3, a sample program named OVERRIDE,
shows how base-class member functions can be overridden.

OVERRIDE.CPP

#include <iostream.h>

II base class
class Emplnfo {
public:

II constructor and destructor
Emplnfo()(}
---Emplnfo{) {}

private:
char* m_name;
char* m __ dept;
char* m __ position;
long m_salary;

Listing 4-3. Overriding base-class member functions. (continued)

91

Learn Visual C++ Now

Listing 4-3. continued

92

public:

} ;

void SetName(char* name) { m_name =
void SetDept(char* dept) { m_dept
void SetPosition(char* position)

{ m_position = position; }
void SetSalary(long sal~ry)

{ m_salary = salary; }
virtual void Printlnfo();

II Derived class
class OffshoreEmplnfo public Emplnfo
{

public:
II constructor and destructor
OffshoreEmplnfo() {}
-OffshoreEmplnfo() {}

private:
char* m_country;

public:

};

void SetCountry(char* country)
{ m_country = country; }

void Printlnfo();

void Emplnfo::Printlnfo()
{

name; }
dept; }

cout « "\nName: " « m_name « "\n";

}

cout « "Department: " « m_dept « "\n";
cout « "Position: " « m_position « "\n";
cout « "Salary: " « m_salary « "\n";

void OffshoreEmplnfo::Printlnfo()
{

Emplnfo::Printlnfo();
cout « "Country: " « m_country « "\n":

}

int maine)
{

II Class object declarations
Emplnfo* emplnfol = new Emplnfo;
OffshoreEmplnfo* emplnfo2 new OffshoreEmplnfo;
OffshoreEmplnfo* emplnfo3 = new OffshoreEmplnfo:

4: Objects and Member Functions

}

II populate the Emplnfo classes with data
emplnfol->SetName("Zippy");
emplnfol->SetDept("Entertainment");
emplnfol->SetPosition("Actor");
emplnfol->SetSalary(34000);
emplnfol->Printlnfo();

emplnfo2->SetName("Daisyduck Feliciano");
emplnfo2->SetDept("Entertainment");
emplnfo2->SetPosition("Vocalist");
emplnfo2->SetSalary(24000);
emplnfo2~>SetCountry("Bulgaria");

emplnfo2->Printlnfo();

emplnfo3->SetName("Wolfgang Amadeus Mozart");
emplnfo3->SetDept("Transportation");
emplnfo3->SetPosition("Piano Mover");
emplnfo3->SetSalary(17000);
emplnfo3->SetCountry("Austria");
emplnfo3->Printlnfo();

return 0;

Figure 4-3 shows the output of the OVERRIDE program.

: Daisyduck Feliciano
Tnprl;!t"t-mpnt: Entertainment

n: Uocalist
: 24000
y: Bulgaria

Figure 4-3. Output of the OVERRIDE program.

93

Learn Visual C++ Now

94

The OVERRIDE program implements a base class named Emplnfo and a
derived class named OffshoreEmplnfo. The program's main function in­
stantiates one object of the Emplnfo class and two objects of the Offshore­
Emplnfo class. Then the program assigns data to the objects that have been
instantiated.

After each of the three objects has been created, a function named PrintInfo
is called to print the data stored in the object. It's important to note, how­
ever, that the program defines two different PrintInfo member functions.
One version is used to print the data stored in the base-class object, and a
different version is used to print data stored in objects of the derived class.

Here is the definition of the Emplnfo::PrintInfo member function that is
used to print data stored in the Emplnfo class:

void Emplnfo::Printlnfo()
{

}

cout « "\nName: " « m_name « "\n";
cout « "Department: " « m_dept « "\n";
cout « "Position: " « m_position « "\n";
cout « "Salary: " « m_salary « "\n";

The other version of the PrintInfo member function is named Offshore­
Emplnfo::PrintInfo. It overrides the base-class version of the PrintInfo
member function and prints data stored in the derived OffshoreEmplnfo
class. Here is its definition:

void OffshoreEmplnfo::Printlnfo()
{

Emplnfo::Printlnfo();
cout « "Country: " « m_country « "\n";

}

In the OffshoreEmplnfo::PrintInfo function, the OffshoreEmplnfo class
uses the scope resolution operator (::) to call its base class's PrintInfo
member function. The Emplnfo::PrintInfo member function prints four
lines of text-the name, the departinent, the position, and the salary-and
then the OffshoreEmplnfo::PrintInfo member function prints one more
line, the country.

4: Objects and Member Functions

Switch Statements and Overridden Member Functions

One way to determine whether you are making enough use of over­
ridden member functions is to consider how often you find yourself
writing switch statements-and how long and complex they are. If
you find that you're writing a lot of long switch statements, you might
find that you can implement the same functionality by replacing your
switch statements with sets of derived classes that have overridden
member functions.

This technique might require an overhaul in some of your program­
ming techniques, but it will be worth it in the long run. You'll quickly
see how much sense it makes to use overridden member functions
instead of monster switch statements in your C++ programs.

(P>(])~ym«J)rrp~Dsm allrnd VDrr"ilUla~ Memberr flUllrDcfLiOD1lS
A key concept in the world of object-oriented programming is polymor­
phism. Polymorphism is a way to give a name to an action that is per­
formed by similar objects, with each object implementing the action in a
manner appropriate to the object.

The key to polymorphism in C++ is a type of function known as a virtual
function. A virtual function is the mechanism by which derived classes
override member functions of base classes. To create a virtual function in
a C++ program-and thereby implement polymorphism-you declare the
function using the keyword virtual, as in the following statement:

virtual void Display();

ElCample: Using a Virtual Function
Listing 4-4 on the following page, the VIRTUAL program, demonstrates
the use of a virtual member function. The VIRTUAL program declares a
base class named BaseClass and a derived class named DerivedClass, each
of which defines a separate version of a member function named Display.
The BaseClass::Display function is a virtual member function, and
DerivedClass::Display is a function that overrides BaseClass::Display.

95

Learn Visual C++ Now

96

VIRTUAL.CPP

#include <iostream.h>

class BaseClass
{

II base-class members
public:

virtual void DisplayO { cout « lee « "\n"; }
} ;

class DerivedClass : public BaseClass
{

II derived-class members
public:

void Display() { cout « 2ee « "\n"; }
} ;

void Print(BaseClass* bc)
{

bc->Display();
}

int main()
{

}

BaseClass* pMyBaseClass = new BaseClass;
Der;vedClass* pMyDerivedClass = new DerivedClass;

Print(pMyBaseClass):
Print(pMyDerivedClass);

return e;

Listing 4-4. Using virtual functions.

The VIRTUAL program displays the output shown in Figure 4-4.

4: Objects and Member Functions

100
200

Figure 4-4. Executing a virtual member function.

How the VIRTUAL Program Works
In the VIRTUAL program, the virtual member function Display is defined
as follows in the declaration of Base Class:

virtual void Display() { cout « HH3 « "\n"; }

This function is overridden inside the declaration of DerivedClass, as
follows:

void Display() { cout « 200 « "\n"; }

As you can see, the virtual version of the Display member function dis­
plays the value 100. The version of the function that is overridden in the
DerivedClass declaration displays the value 200.

Calling the Print function
In the VIRTUAL program's main function, one base-class object and one
derived-class object are instantiated. The main function then calls the
Print function, as shown on the following page.

97

Learn Visual C++ Now

98

int maine)
{

}

BaseClass* pMyBaseClass = new BaseClass;
DerivedClass* pMyDerivedClass = new DerivedClass;

Print(pMyBaseClass);
Print(pMyDerivedClass);

return 0;

In turn, the Print function calls the BaseClass::Displaymember function
and the DerivedClass::Displaymember function. Be sure to notice, how­
ever, that the Print function does not call these two functions using two
different pointers. Instead, it uses the same pointer-specifically, the
pointer named be-which, as you can see by examining the Print
function's heading below, is a pointer to a BaseClass!

void Print(BaseClass* be)
{

be-)Display();
}

Virtual Functions and Nonvirtual Functions
When a derived class overrides a base-class member function that is not
declared as virtual and then calls the function using a pointer to the base
class, the results are quite different. If Display were not declared as virtual
inthe previous example, the program would execute the base-class version
of the function twice.

What happens when a derived-class object calls a base-class virtual mem­
ber function and the derived class calling the function does not have a
customized version of the function? Nothing much, really. The compiler
simply executes the base class's version of the function, behaving the
same way it would if the function were not virtual.

Benefits of Using Virtual Functions
If a member function of a base class is declared as virtual, you can derive
other classes from that class that include a member function with the same
name. When the function is called at run time, the derived class's version
of the function is the one that is executed.

4: Objects and Member Functions

The benefit of virtual functions is that objects that share a common base
class can be used in a uniform manner. For example, you might define a
base class named Shape with a virtual Draw member function and then
derive a Circle class and a Square class from Shape that contain their
own Draw member functions. Every object instantiated from these classes
can call the Draw member function; the compiler ensures that the correct
Draw function is called.

V-Tables
Until object-oriented languages came along, programs called functions in
a straightforward way. When a procedural program called a function, the
compiler knew exactly which function was being called and exactly where
in memory the function resided. Therefore, when an application called a
function, the call to the function was simply built into the program when
the program was compiled. This technique is known as early binding, or
static binding.

When a C++ program calls a nonvirtual function, the function is called
using static binding, in the same way that it would be called in a C pro­
gram. However, when a C++ program calls a virtual function through a
pointer to a class, the compiler calls the function using a technique
known as late binding, or dynamic binding.

C++ implements dynamic binding using virtual function tables, or v-tables.
A v-table is an array of function pointers that the compiler constructs for
every class that uses virtual functions. For example, in the VIRTUAL pro­
gram that appears in Listing 4-4 on page 96, the Display function is defined
as a virtual function, so the compiler creates separate v-tables for two differ­
ent versions of the Display function: one for BaseClass and one for
DerivedClass.

Here's how v-tables work: When a C++ program is compiled, the compiler
creates all the v-tables that the program uses and stores them in a memory
location that is accessible to all the objects in the program. When the pro­
gram creates a class that accesses a virtual function in a base class, the code
for each instance of the class contains a hidden pointer to the v-table used
by the base class.

99

Learn Visual C++ Now

100

When an object instantiated from a derived class calls a virtual function
declared in a base class through a pointer to a v-table used by the base
class-that is, when the object calls a base-class virtual function using
dynamic binding-the compiler doesn't know at link time which object
will be calling the virtual function. That means that the compiler doesn't
know at link time which version of the virtual function will be called when
the program is executed because the program doesn't call the function
through a pointer to a specific derived class, but rather through a pointer
to a base class that can (and usually does) have multiple derived classes.

In C++, v-tables are the mechanisms that resolve this ambiguity. The rea­
son v-tables work is that they are not built at link time by the compiler.
Instead, they are built at run time by the application in which they appear.
That means that an application using v-tables can resolve references that
make use of each v-table on the spot, when the program is executed.

Because the compiler doesn't know which version of the function will
be accessed when the program is linked, the program itself must evaluate
each calling statement at run time, when it can determine which version
of the function to call. So, when a program uses dynamic binding to call
a function through a pointer supplied by a v-table, the calling statement
IS evaluated at run time, and the correct version of the virtual function
is called.

Figure 4-5 shows how a v-table works in C++. Suppose that while a pro­
gram is running, it encounters a reference to a virtual function. When the
reference is encountered, the object on the left is in scope, and the object's
v-table pointer contains the address of an entry in the object's v-table.

Object V-table Program code

V-table pointer ~I 0 I
F============= ~I =p=r=in=t=D=at=a====~~~==========~

I Function2 I
I Function3 I
I Function4 I

Figure 4-5. How a v-table works.

4: Objects and Member Functions

Now assume that when a reference to a virtual function is encountered,
the object's v-table pointer points to the second entry in the object's v-tabl~.
I:n Figure 4-5, the second entry in the object's v-table is the PrintData func­
tion. The PrintData function, which resides in the code segment of the
program, is the function that's called. Because the call to a virtual func­
tion is indirect-through a pointer to an object-the code for the imple­
mentation of a virtual function does not have to be in the same code
segment as the caller of the virtual function.

A v-table that is set up for a class contains one function pointer for each
virtual function in the class. Listing 4-5 demonstrates how v-tables are
used in applications that make use of virtual functions.

EMPDATA.CPP

#include <stdio.h)·
#include <iostream.h>

II base class
class Employee {
public:

II constructors and destructors
Employee() {}
-Emp 1 oyee () {}
virtual void PrintDataC) = 0;
void SetName(char* name) { m_name
void SetDept(char* dept) { m_dept
void SetPosition(char* position)

{ m_position = position; }
void SetSalary(long salary)

{ m_salary = salary; }

protected:

} ;

char* m_name;
char* m_dept;
char* m_position;
long m_salary;

Listing 4-5. Using virtual functions.

name; }
dept; }

(continued)

101

Learn Visual C++ Now

Listing 4-5. continued

102

class ExemptEmp : public Employee {
II class description
public:

} :

II constructor and destructor
ExemptEmp(char* name, char* dept, char* positlon,

long salary);
.... ExemptEmp () {}
void PrintData():

class SalesEmp : public Employee {
II class description
public:

II constructor and destructor
SalesEmp(char* name. char* dept. char* position.

long salary, long sales, float commissionPercent):
.... Sal esEmp() {}
void PrintData();

private:

} :

char* m_country;
long m_sales:
long m_commission;
float m_commissionPercent;
long m_totalPay;

class OffshoreEmp : pUblic Employee {
II class description
private: •

char* m_country;
public:

} ;

II constructor and destructor
OffshoreEmp(char* m_name. char* m_country, char* m_dept,

char* m_postion, long m_salary);
.... OffshoreEmp() {}
void PrintData():

ExemptEmp::ExemptEmp(char* name. char* dept, char* position,
long salary)

{

}

m_name = name;
m_dept = dept:
m~position = position:
m_salary = salary;

4: Objects and Member Functions

OffshoreEmp::OffshoreEmp(char* name. char* country. char* dept.
char* position. long salary)

{

}

m_name = name;
m_country = country;
m_dept = dept;
m_position = position;
m_salary = salary;

SalesEmp::SalesEmp(char* name. char* dept. char* position,
long salary. long sales, float commissionPercent)

{

}

m_name = name;
m_dept = dept;
m_position = position;
m_salary = salary;
m_sales = sales;
m_commissionPercent = commissionPercent;
m_commission = (long)(m_sales* commissionPercent):
m_totalPay = m_salary + m_commission;

void ExemptEmp::PrintData()
{

}

cout «"\nName: "« m_name;
cout «"\nDepartment: "« m_dept;
cout «"\nPosition: "« m_position;
cout «"\nSalary: "« m_salary « "\n":

void OffshoreEmp::PrintData()
{

}

cout «"\nName: "« m_name;
cout «"\nDepartment: "« m_dept;
cout «"\nPosition: "« m_position:
co u t < < II \ n Sal a r y : "< < m_s a 1 a r y ;
cout «"\nCountry: "« m_country « "\n";

void SalesEmp::PrintData()
{

cout «tI\nName: "« m_name;
cout «"\nDepartment: "« m_dept;
cout «"\nPosition: "« m_position;
cout «U\nSalary: "« m_salary;

(continued)

103

Learn Visual C++ Now

104

Listing 4-5. continued

}

cout «"\nSales: "« m_sales;
cout « "\nCommission Level: "« m_commissionPercent;
cout «"\nCommission: "« m_commission:
co u t < < " \ n Tot alP a y : "< < m_ tot alP a y ;

int main()
{

Employee* emp[3];

emp[0] = new ExemptEmp("Abraham Abernathy", "Coffee Shop",
ftC EO", 22(00);

emp[1] = new OffshoreEmp("Wolfgang Amadeus Mozart",
"Transportation", "Piano Mover", 24000. "Austria");

emp[2] = new SalesEmp("Babette Baker", "Sales",
"Salesperson", 17000, 2200, .15);

for (int c =0; c < 3; c++)
emp[c]-)PrintData():

for (c = 0; c < 3; c++)
delete emp[c];

return 0;

In Listing 4-5, the ExemptEmp class, the SalesEmp class, and the Offshore­
Emp class have separate v-tables for the PrintData function. When the pro­
gram calls the PrintData function, the pointer to the function points to the
version of the function appropriate for the class that is currently in scope.
Thus, the correct function is called.

Pure Virtual Functions and Abstract Classes
A member function that not only can be overridden but must be overridden
is called a pure virtual function. When a class contains at least one pure
virtual function, the class is known as an abstract class. An abstract class
is a class from which objects cannot be created.

To turn a virtual member function into a pure virtual member function,
all you have to do is assign the function a value of 0 (effectively, a NULL
pointer). For example, in the EMPDATA program shown in Listing 4-5,

the Employee::PrintData function is a pure virtual function, as you can
see in this statement from the definition of the Employee class:

4: Objects and Member Functions

virtual void PrintData() = 0:

In C++, a statement such as this is all it takes to create an abstract class.
You can declare an entire class as an abstract class simply by placing one
pure virtual member function declaration inside the class's definition.

How Abstract Classes Are Used in the EMPDATA Program
In the EMPDATA program, the Employee class is an abstract class in
which the pure virtual function PrintData is declared.

Notice that there are no Employee objects in the program; you couldn't
create any if you wanted to because, as mentioned previously, you can't
create objects from an abstract class. But ExemptEmp, OffshoreEmp, and
SalesEmp are all derived from the Employee class. That's allowed-in
fact, that's what abstract classes are there for. The only purpose of an ab­
stract class is to serve as a base class for derived classes.

Similarly, the only purpose of a pure virtual function is to serve as a root
function for other functions. You cannot instantiate an object that belongs
to an abstract class, and you cannot directly call a pure virtual function;
you can, however, call an overridden version of a pure virtual function.

The main characteristic of a pure virtual member function is that it must
be overridden by classes derived from the class to which the function be­
longs. In the EMPDAT A program, the PrintData function is overridden' by
three derived classes: ExemptEmp, OffshoreEmp, and SalesEmp.

Virtual Functions: Pros and Cons
Although dynamic binding is a powerful feature of C++, not all functions
in a program should be virtual functions. Because virtual functions are
called indirectly, they do add some overhead (although not much) to an
application and, therefore, slow down the program's execution speed
slightly. So, when you design a class, you really should use the virtual
keyword only for functions that you expect to be overridden.

If you make a function virtual and discover later that there is little chance
of it being overridden, you can remove the virtual keyword from the decla­
ration of the function and save a little overhead. But nothing terrible will
happen if you fail to notice that the function isn't overridden and forget to
remove its virtual designation.

105

Learn Visual C++ Now

106

flUJD1c'fcnoD1l Oyer~OadDll'Dg and! Operator Overloadung
If you've ever worked as a mechanic or an electrical engineer, "overload"
is probably not a happy-sounding word. In c++, however, overloading is
the name of a very useful mechanism. C++ uses two kinds of overloading:
function overloading and operator overloading. Both of these are major­
and beneficial-features of the C++ language.

Function Overloading
When you develop applications in C++, using function overloading can
add great flexibility to your applications. To implement function over­
loading, you write two or more functions that share the same name but
have different argument lists. When a function is overloaded, the compiler
decides which version to call by using argument matching-that is, by
comparing the numbers and types of the arguments that are passed to the
function with the numbers and types of the arguments in the argument list
of the functions.

When you implement function overloading, you can execute whichever
version of the function you want by calling the function using the appro­
priate set of arguments. If the class you are using has two member func­
tions with the same name but with different argument lists, you can rest
assured that the function you want will be called.

By using function overloading, you can give the same name to member
functions that perform different, but similar, operations. You can even
give the same name to entire groups of functions. For example, suppose
you want to write two different functions to display a window-one func­
tion requiring a size provided as an argument, and another requiring no
argument but using a default size. You could write a pair of overloaded
member functions in this fashion:

void DisplayWindow();
void DisplayWindow(CRect winRect);

After you create these overloaded member functions, you could call either
one. This statement would call the first DisplayWindow function:

DisplayWindow();

4: Objects and Member Functions

The following statements would call the second DisplayWindow function:

CRECT winRect(10, 10, 50, 200);
DisplayWindow(winRect);

Function overloading is often used in C++ because it imposes almost no
run-time penalty and requires practically no overhead.

Listing 4-6 demonstrates how you can use function overloading in a C++
program.

MEMOVER.CPP

#include <iostream.h>

void P~intMsg(char* name, char* weapon, int ability)
{

}

cout « name « "\n";
cout « weapon « "\n";
cout « abil i ty « "\n\n";

void PrintMsg(int n)
{

cout « n « "\n\n";
}

void PrintMsg(char* message)
{

cout « message « "\n\n";
}

int main()
{

}

1/ calling overloaded functions
PrintMsg("ghosts", "goblins", 6);

PrintMsg(5000);
PrintMsg("How are you today?\n"):

return 0:

Listing 4-6. Using member function overloading.

Listing 4-6 contains three overloaded versions of a member function named
PrintMsg. The first version takes three arguments of varying types, the sec­
ond takes one integer argument, and the third takes one string argument.

107

Learn Visual C++ Now

108

Each of these member functions performs a similar task; each displays a
message on the screen. But in C++, because of function overloading, each
PrintMsg member function is recognized as a different function. When you
run the MEMOVER program, it displays the output shown in Figure 4-6.

Figure 4-6. Output of the MEMOVER program.

Constructor overloading
In C++, you can overload constructors as well as ordinary member func­
tions. In fact, constructor overloading is used extensively in C++. It's very
common to see a class that has two constructors, one with arguments and
one without. Many constructors have even more overloaded versions.
Here's an example of what a pair of overloaded constructors might look
like in the definition of a class:

HighClass {
HighClass();
HighClass(int paramA. int paramB);

}

Operator Overloading
Operators, as well as member functions, can be overloaded in C++. And
operator overloading, like function overloading, is a common feature of
C++ programs.

With operator overloading, you can customize operators such as the addi­
tion operator (+), the subtraction operator (-), the assignment operator (=),

4: Objects and Member Functions

and the increment and decrement operators (++ and --) to make the opera­
tors behave differently when they are used with objects of different classes.

As an illustration of how operator overloading works, consider the addition
operator. Ordinarily, you use the addition operator simply to add numbers
together. At times, however, you might want to use the addition operator
to concatenate a pair of strings, such as the following:

StringClass myString", string!, string2;
myString = string! + string2;

In fact, the addition operator is often overloaded to work as a concatenation
operator when used with string objects in C++.

Writing Operator-Overloading Functions
To overload an operator in C++, you must declare and define an operator­
overloading function (usually a member function). A function that over­
loads an operator always contains the keyword operator. For example, here
is a declaration of a member function that overloads the addition operator:

Money operator+(int);

In the declaration, you follow the operator keyword with the operator you
want to overload. Then, inside parentheses, you place the name of the data
type that you want your overloaded operator to affect.

After you have declared an operator-overloading member function inside
a class definition, you can implement your overloaded operator. Then you
can use your overloaded operator with the data type you have specified.

~~I OTE When you overload an operator, normal scope rules apply; if you
6if\i overload the operator inside a class definition-which is usually the case­

the operator is overloaded only within the scope of its class.

An example of operator overloading
Listing 4-7 on the following page shows how you can overload the addi­
tion operator to add two floating-point numbers (which represent mone­
tary values) and store the result in two member variables of a class. One
member variable is used to store the dollar value of the result, and the
other is used to store the cent value of the result.

109

Learn Visual C++ Now

OPEROVER.CPP

'include <iostream.h>
'include <math.h>
'include <stdlib.h>

class Money {
public:

double dollars;
double cents;

public:

} ;

Money() {}
~Money () {}
Money(double);
Money operator+(Money m);

II default constructor
II destructor
II conversion from double
II operator overloading

Money Money::operator+(Money m)
{

ldiv_t result;

cents += m.ce~ts;
dollars += m.dollars;

if (cents> 99) {
result = ldiv«long)cents, lee);
dollars = dollars + result.quot;
cents = (double)result.rem;

}

return *this;
}

Money::Money(double cash)
{

}

double frac, n;
frac = modf(cash, &n);
cents = frac * lee
dollars = n;

int mainO
{

double c, d:
float deposit! =
floatdeposit2

3.5e;
4.63;

II conversion constructor-­
'll converts fpto Money

II a math.h function

Listing 4-7. Operator overloading.

110

4: Objects and Member Functions

}

Money totalCash = deposit! + deposit2;

d totalCash.dollars;
c = totalCash.cents;

cout « "You now have " « d « " doll a rs. \n";
cout « "You also have" « c « " cents.\n";

return 13;

When you execute the OPEROVER program, it tells you what value is
stored in each member variable of a Money object named total Cash. The
output of the program is shown in Figure 4-7.

Figure 4-7. Output of the OPEROVER program.

Sita~uc Member "aIrDalb~es
Everyone who uses global variables knows how dangerous they can be.
The problem is that global variables are simply too vulnerable. Any func­
tion can change the value of a.global variable; all too ~ften, a global vari­
able is inadvertently modified from somewhere way out in left field by a
function that you might not even remember writing. Unexpected changes
in global variables can wreak havoc on programs and can be enormously
difficult to track down.

111

Learn Visual C++ Now

112

You can use global variables in C++, but you are strongly encouraged not
to. The recommended alternative is to use a different kind of variable that
C++ provides: a static member variable. Static member variables have
built-in safety features that make them less likely than ordinary global
variables to be changed inadvertently.

When a class has a static member variable, only one copy of the variable
exists, and that single copy is shared by all objects instantiated from the
class. Thus, a static member variable can provide a class with all the ben­
efits of a global variable, but without many of the risks.

One typical use of a static member variable in a C++ program is to keep
track of the number of objects in a list. Each time a program creates an
object in the list, you can increment the value of the static member vari­
able, and each time an object is destroyed, you can decrement the variable.
In this way, the static member variable can always provide the number of
currently active objects in the list.

Creating Static Member Variables
When you define a class, you can create a static member variable for the
class by preceding the variable's declaration with the static keyword. For
example, this statement declares a static member variable named count:

static int count:

If you do not declare a member variable as static, it is nonstatic by default.

When you declare a static member variable, a fixed memory location is al­
located for the variable at link time; that location remains the same for the
life of the program. In this sense, a static member variable works the same
as a global variable.

However, access to a static member variable is more limited than access
to a global variable. After you have initialized a static member variable,
functions outside its class can access it only by using the scope resolution
operator (::), preceded by the name of the class in which the variable is
declared. To make this technique work, of course, you must make the static
variable a public member of the class. And that act removes much of the
protection against misuse that is enjoyed by a static member variable. If

4: Objects and Member Functions

you want to make a static member variable accessible outside a"class, you
should take other precautions, such as keeping the static member variable
private and allowing it to be changed from outside the class only through
a public static member function. (Static member functions are described
later in this chapter.)

Declaring and Defining Static Member Variables
Listing 4-8 shows how a static member variable can be used in a C++
program.

STATIC.CPP

#include <iostream.h>

class SampleClass {
public:

static int staticVar; II declare static member variable
SampleClass() {}
void SetStaticVar(int a) { staticVar = a; }

} ;

int SampleClass::staticVar; II define static member variable

int main()
{

}

SampleClass myObject; II define local object
myObject.SetStaticVar(100); II initialize static data member
cout « Sampl~Class::staticVar « "\n";
SampleClass::staticVar = 200:
cout « SampleClass::staticVar « "\n";
myObject.staticVar = 300;
cout « SampleClass::staticVar « n\n";
return 0:

Listing 4-8. Using a static member variable.

In Listing 4-8, a static member variable named static Var is defined inside
the definition of a class named Sample Class. Then, between the Sample­
Class definition and the program's main function, staticVar is defined
as shown on the following page.

113

Learn Visual C++ Now

114

int SampleClass::staticVar;

Because static member variables can be shared by multiple functions,
they must be defined and declared in this peculiar way. You must declare
a static member variable inside a class definition, but you must define it
outside the definition of its class.

When a static member variable has been declared and defined, it is acces­
sible from any member function of its class. If it is a public or a protected
member variable, you can also access it from other classes-or from out­
side any class-in accordance with normal rules of accessibility.

Accessing Static Member Variables
In Listing 4-8, Sample Class has a member function named SetStaticVar
that can be called to set the value of the static member variable static Var,
as shown here:

void SetStaticVar(int a) { staticVar = a; }

In the main function, the following statement sets the value of staticVar by
calling the member function SetStaticVar:

myObject.SetStaticVar(100);

Because access to staticVar is public, the main function can also set the
value of sta tic Var by accessing the variable directly, as shown here:

SampleClass::staticVar = 200;

Notice that in this statement, the scope resolution operator-preceded by
the name of SampleClass-is used to access staticVar.

Another statement in the main function of Listing 4-8 accesses static Var
with the dot operator (.), preceded by the name of the object myObject, as
shown below. This construct is possible because a public static member
variable can be called from anywhere in its module.

myObject.staticVar = 300;

It's important to remember that because staticVar is a static member vari­
able, only one copy of the variable exists. That means that each assignment
statement in the main function assigns a value to the same memory loca­
tion, overwriting the previous value of staticVar.

4: Objects and Member Functions

Private Static Member Variables
A static member variable, like any other member variable, can be public,
protected, or private. If a static member variable is private, it cannot be
accessed from a function outside its class unless access to it is specifically
granted-for example, through friendship status (described in the section
"Friendly Classes and Friendly Functions," on page 117) or through a pub­
lic member function.

Listing 4-9 shows how a program can use a private static member variable
to keep track of objects that belong to a class.

PRIVATE.CPP

#include <iostream.h)

class LittleList {
private:

static int ct: // declare static member variable
public:

} ;

LittleList() { ct++; }
~LittleList() { ct--; }
static int GetCount() { return ct;} /1 static member

1/ function

int LittleList::ct = 0: 1/ initialize static member variable

int main()
{

}

LittleL~st objl. obj2, obj3; II define local objects
cout «"Number of objects: " « LittleList::GetCount()

« "\n";
return 0:

Listing 4-9. Using a private static member variable.

Listing 4-9 includes a static member variable named ct. Although access
to ct is private, the variable is initialized by using the same technique that
would be used to define any other static member variable-from outside
the variable's class in a statement that accesses the variable using the scope
resolution operator, as shown on the following page.

115

Learn Visual C++ Now

116

int LittleList::ct = 0:

The static member variable ct is used to keep a running count of three
objects-named objl, obj2, and obj3-in a class named LittleList. Each
time an object of the LittleList class is instantiated, the object's construc­
tor increments the ct variable, as shown here:

LittleList() { ct++: }

Similarly, each time an object's destructor is called, ct is decremented, as
shown here:

~LittleList() { ct--: }

Because ct is a private variable, the only way to access ct from outside its
class is through a member function. In Listing 4-9, ct is accessed through
a public member function named GetCount, as follows:

cout « "Number of objects: " « LittleList::GetCount() « '\n':

Static Member Functions
Now that you know about static member variables, you will probably not
be surprised to find out that C++ programs also have static member func­
tions. As you learned in Chapter 3, "C++ Basics," an ordinary, nonstatic
member function can access any member of the class in which the function
is declared. A static member function, by contrast, can access only the
static member variables defined for a class.

You declare a static member function by preceding its definition with the
static keyword. If you do not declare a member function as static, it is non­
static by default. For example, inside the definition of a class named Object­
Count, you can declare a static member function named Count this way:

class ObjectCount:
{

private:
int x:

4: Objects and MemberFunctions

prote~ted:

static int ct;
public:

static int Count(); II declare static member function
}

In this class definition, the static member function Count can access the
static member variable et, but it cannot access the nonstatic member vari­
able x. That's because a static member function can access only static
member variables and other static member functions, not nonstatic
member variables or nonstatic member functions.

Another feature of a static member function is that it has no this pointer.
As discussed in the section "The this Pointer," on page 81 in Chapter 3,

the this pointer is a hidden pointer to the current object and is secretly
passed to a member function. The member function can then use that
unseen pointer to access any other member of its class. Because a static
member function is not associated with any particular object of a class,
a static member function has no this pointer.

Frrie01ldly (~asses a01ldfrrDeD1ld~lf IFUD1lCfciOD1)S
In at least one respect, C++ is a friendly language. In a C++ program, you
can declare classes and functions to be friends of each other-and in C++,
as in life, there are special bonds between friends.

To declare friend classes and friend functions, you use the friend key­
word, usually inside a class definition. You can use friend in three ways:

• When a class declares a friend class, the class that is granted friend­
shi p status has access to all members of the class that contains the
friend declaration.

• A class can also grant friendship status to a member function of an­
other class. By preceding the declaration of the member function
with the keyword friend, you can declare that the specified non­
member function is a friend of the class being defined.

• Finally, a class can grant friendship status to a function that is not
a member of another class-that is, to a stand-alone function that
appears anywhere in a program.

117

Learn Visual C++ Now

118

Here's an example of using the friend keyword in a class declaration to
indicate that a member function of another class is a friend:

class HighClass {
private:

v 0 i d My F r i end () ;
protected:

friend int OtherClass::FriendMembFunc();
} ;

Here the member function OthetClass::FriendMembFunc is declared as a
friend of High Class.

One-Way Friendships
One important fact about friend declarations is that they are effective in
only one direction. In the preceding definition of High Class, OtherClass­

::FriendMembFunc is declared to be a friend of High Class, so that function
has access to all the members of High Class. But High Class does not have
access to members of OtherClass. If such access were granted, it would
have to be granted inside the class definition of OtherClass.

Friend functions and friend classes can be useful when you want to relax
the access rules that ordinarily apply to member variables. For example,
suppose you write a function that has to execute a public member func­
tion of a class repeatedly because the function needs access to a private
member variable of a class. In such a situation-which arises often in C++
programming-each read or write of the desired member variable requires
the overhead that normally results from a call to a function. To eliminate
this overhead, you can specify that the function requiring access is a friend
of the class that owns the desired member variable.

You can also use friend classes to prevent class descriptions from growing
to unwieldy lengths. If there is a particular set of variables and functions
that a class refers to only rarely, you can place them in a class by them­
selves and then make that class a friend of the class that refers to them from
time to time. That way, the variables and functions that are accessed infre­
quently can be kept separate from the class that sometimes accesses them.

4: Objects and Member Functions

1)'911 OTE If you find that in your applications you're using friends all over the
6t1~ place to circumvent the mechanisms for data protection and code protec­

tion built into C++, you should take a close look at your programming hab­
its. The truth is that friends, while useful at times, should not appear very
often in your C++ programs.

Listing 4-10 shows how friend classes and friend functions can be used in
a C++ program. In this program, a class named FriendClass grants friend­
ship access to a class named FriendlyClass2 and to the main function.
FriendlyClass2 then exercises its friendship rights by initializing a mem­
ber variable named privateVar2 to the value stored in privateVar, which
is a private member variable of FriendClass.

FRIENDS.CPP

#include <iostream.h>

class FriendClass {
private:

friend class FriendlyClass2;
friend main();
int privateVar;
FriendClass() : privateVar(500) {} II private constructor

public:
int GetPrivateVar() { return privateVar; }

} ;

class FriendlyClass2 {
private:

int privateVar2:
public:

} ;

FriendlyClass2(FriendClass* x) :
privateVar2(x->privateVar) {} II constructor

int GetPrivateVar2() { return privateVar2; }

int maine)
{

int x, y:
FriendClass* myFriendlyClass = new FriendClass:
FriendlyClas~2 myFriendlyClass2(my~riendlyClass);

Listing 4-10. Using friends. (continued)

119

Learn Visual C++ Now

120

Listing 4-10. continued

}

x =myFriendlyClass-)GetPrivateVar();
cout<~x « "\n":

y = myFriendlyClass2.GetPrivateVar2():
cout « y « "'n";

return 0;

Because FriendlyClass2 is declared as a friend, it has direct access to the
private member variable of FriendClass named privateVar. The private­
Varvariable is declared in the definition of FriendClass.

Listing 4-10 contains an interesting precaution that helps prevent misuse
of the friend mechanisms. The safeguard is that the constructor of Friend­
Class is designated as private. That means that only friends of FriendClass
can instantiate FriendClass objects. Another special feature of the program
is that its main function is declared as a friend of FriendClass. This per­
mits the main function to instantiate FriendClass objects, as shown in the
following:

int x. y;
FriendClass* myFriendlyClass = new FriendClass;
FriendlyClass2 myFriendlyClass2(myFriendlyClass);

x = myFriendlyClass->privateVar;
cout « x « "\n";

y = myFriendlyClass2.GetPrivateVar2();
cout « y « "\n";

When you execute the program in Listing 4-10, the main function instanti­
ates two objects: one named myFriendlyClass and one named myFriendly­
Class2.myFriendlyClass is constructed on the heap, and myFriendlyClass2
is constructed on the stack.

The FriendClass constructor uses an initializer list (see the section "Initial­
izer Lists" on page 78 in Chapter 3) to set the value of a private variable
named privateVarto 500. When an object of FriendlyClass2 is instanti­
ated, it obtains the value of FriendClass's privateVar and stores that value
in a private variable of its own, namedprivateVar2. This is permitted be­
cause FriendlyClass2 is a friend of FriendClass.

4: Objects and Member Functions

When the main function has instantiated a FriendClass object and a
FriendlyClass2 object, main obtains the values of the variables Friend­
Class::private Var and FriendlyClass2 ::private Var2 and displays them.
The main function is able to obtain the value of FriendClass::privateVar
directly because main is a friend of FriendClass. However, main is not a
friend of FriendlyClass2. Therefore, main has to obtain the value of
FriendlyClass2::privateVar2 in a more conventional way: by calling a
member function that retrieves the value of the variable.

The new and delete Operators
In many ways, C++ is a higher-level language than C. One area in which
this truth is evident is the area of memory management. In C, you're gen­
erally on your own when it comes to allocating and deallocating memory.
Because C does not allocate memory space for data when you declare a
pointer, you must allocate the memory yourself by calling the malloc
function or by performing some other action to allocate memory manually.

C++ is a little kinder than that. In C++, instead of calling a function to
allocate or deallocate memory, you invoke an operator. C++ provides two
memory management operators-new and delete-that allocate and deallo­
cate memory from the heap (also called the free store).

The new and delete operators are more reliable than the malloc and free
functions because the Visual C++ compiler performs type checking each
time a program allocates memory with new. Another advantage stems from
the fact that C++ implements new and delete as operators, not as functions.
That means that new and delete are built into the C++ language itself, so
programs can use new and delete without including any header files.

Still another important feature of the new and delete operators is that they
don't require typecasting-and that makes new and delete easier to use
than malloc and free.

The new Operator
When you call the malloc function in a C program, you pass a size to
malloc, and the function returns a void pointer, which you must cast to
whatever data type you want. Using the new operator is similar but simpler.
The new operator also returns a pointer, but it isn't a void pointer, so you

121

Learn Visual C++ Now

122

don't have to cast the pointer to the data type for which you are obtaining
memory. Instead, new returns the kind of pointer you have requested. To
illustrate, you can obtain memory for an object named memBlock by writ­
ing the following pair of statements:

MemStruct* memblock;
memblock = new Memory;

If you want to be more concise, you can write this code:

MemStruct* memBlock = new Memory;

The new operator can also allocate memory for data structures that are not
objects of classes. For example, this code fragment allocates memory for
an array of integers:

i nt* i ntArray;
intArray = new int[1000];

This more concise statement has the same effect:

int* intArray = new int[1000];

Both of the preceding examples declare a pointer named intArray and ini­
tialize it to the address returned by new. If a pointer of the requested size
is available, new returns a pointer to the beginning of a block of memory
of the specified size. If there is not enough dynamic storage available to
satisfy a request, new returns O.

Each time you compile an expression that invokes the new operator, the
compiler performs a type check to verify that the type of the specified
pointer is the correct type for the memory being allocated. If the types
don't match, the compiler issues an error message.

The delete Operator
When you allocate memory with the new operator, you can delete it with
the delete operator. The delete operator is easy to use, but, like the C free
function, it can be dangerous if you don't use it wisely. But by exercising
some commonsense precautions, you can prevent mishaps.

4: Objects and Member Functions

The delete operator is safe if the pointer to the object being deleted is
NULL or if the pointer correctly addresses allocated memory. Problems
arise, however, if a nonzero pointer does not actually have memory allo­
cated for an object at its address and a program attempts to delete at that
pointer's address.

What's Next?
You have now completed a two-chapter crash course in classes, objects,
and the fundamentals of object-oriented programming. This chapter cov­
ered many important topics, including class hierarchies, virtual member
functions, inheritance and polymorphism, and function and operator
overloading. Other topics covered included static member variables, the
friend function modifier, and the new and delete operators. Now we're
ready to shift our focus, back to Visual C++ and start creating some really
challenging Visual C++ programs. You'll start doing that next, in Chapter
5, "Visual C++ Tools."

123

Chapter

Visual C++ Tools
Microsoft Visual C++ version 1.0 is two products in one: a C++-based
software-development system and a graphics-based, user-interactive deliv­
ery system for the classes and member functions provided in the Microsoft
Foundation Class (MFC) Library version 2.0.

The first four chapters of this book introduced you to the Visual C++ de­
velopment environment, the basics of programming in Windows, and the
fundamentals of the C++ language. In this chapter, you'll learn more about
the Visual C++ prqgramming environment. You'll also take an in-depth
look at the Visual C++ compiler, the Visual C++ linker, and all the other
program-development tools built into Visual Workbench: App Studio,
ClassWizard, the Visual C++ debugger, and the Visual C++ Source Browser.
By the end of this chapter, you'll be familiar with all the tools you need to
create full-featured Visual C++ applications, and you'll get a chance to
write a customized Windows-based Visual C++ application yourself.

The main topics of this chapter include:

• Visual C++ projects and the files and classes that AppWizard creates

• Using App Studio to manage resources, including bitmaps and menus

• Building a Visual C++ application

• Creating message handlers using ClassWizard

125

Learn Visual C++ Now

126

• Using the Visual C++ debugger to help you develop error-free
applications

To demonstrate the use of Visual Workbench, this chapter presents a
sample application named SCRAMBLE. You can build the SCRAMBLE ap­
plication from scratch, or you can copy the program from the CHAP05. di­
rectory on the companion CD-ROM and simply read along. SCRAMBLE is
an MDI (multiple-document interface) application that displays a bitmap
resource. SCRAMBLE starts out simple: it displays a single bitmap image
in a child window. You can display as many child windows as you want,
but they each display the same bitmap image. Later code is added so that
each child window can be controlled separately, turning the display of the
bitmap on or off.

~Til' IP If you want to build the SCRAMBLE program from scratch instead
'\<'11 of opening the program's files and reading along, be sure to copy the

ARCHES.BMP file from the SCRAMBLE project on the companion CD-ROM
to your own SCRAMBLE application's directory.

The SCRAMBLE program isn't very complicated, but it's useful for learning
about the Visual C++ tools, and it serves as a good framework for creating a
graphics-based application. You'll add more features to the SCRAMBLE
program in Chapter 6, "The MFC Library."

If you've ever written a graphics-based program for MS-DOS, you might
think that creating the SCRAMBLE program will be a heavy burden. Fortu­
nately for us, the Visual C++ tools, in combination with the MFC library,
help lighten the load. Let's get started by reacquainting ourselves with
App Wizard, the Visual C++ project-generating tool we encountered in
Chapter 1, "Introducing Visual C++."

Visual C++ Projects
The first step in writing a Visual C++ application is to create a project. A
project is a collection of files that are needed to build an application using
the Visual C++ development environment. When you create a Visual C++
application using AppWizard, AppWizard automatically generates a
project for your application. App Wizard then places all the files that it cre­
ates for your program in the project it has created.

5: Visual C++ Tools

Every Visual C++ version 1.0 project is built around a special kind of file
known as amakefile. App Wizard automatically creates a makefile and
places it in your project. A makefile is a text file that always has the file­
name extension .MAK. It contains the names of all the files that make up
a Visual C++ project, and it describes the relationship that those files have
with each other in a language that the Visual C++ compiler and linker can
understand. A makefile also contains commands and switches for compil­
ing and linking those files. When you build a Visual C++ application by
choosing the Build or the Rebuild All item from the Project menu, Visual
C++ builds your application by executing the commands in the makefile.

A Visual C++ project can contain both source code files and precompiled
object code files known as libraries. When the Visual C++ compiler has
converted an application's source code into object code, Visual C++ links
the application's compiled object code with any precompiled object code
libraries that are included in the project.

Table 1-2 on page 13 in Chapter 1 lists the kinds of files that are generated
when you create and build a Visual C++ application. When you build this
chapter's sample program, you will create a project named SCRAMBLE.
The files that make up the SCRAMBLE project are listed in the section
"Files in the SCRAMBLE Project," on page 132.

Creating the Basic SCRAMBLE Project
The SCRAMBLE application that you'll create in this chapter is a custom­
ized App Wizard program. (SCRAMBLE is similar to SCRIBBLE, a sample
tutorial program that's also provided on the companion CD-ROM. The main
difference between the two programs is that SCRAMBLE lets you display a
bitmap and SCRIBBLE lets you draw freehand lines.)

When AppWizard creates an application framework, the framework is de­
signed using a document-and-view architecture. To support this architec­
ture, App Wizard always creates a document object that is derived from the
MFC library'S CDocument class and a view object that is derived from the
MFC library'S CViewclass. The CDocumentclass provides every document
object with special features that support the automatic loading and saving
of information stored on disk. The CView class provides every view object
with special features that support the creation and handling of images that

127

Learn Visual C++ Now

128

can be displayed in windows or printed on a printer. When you customize
an application framework created by App Wizard, most of the changes you
make are in the program's document and view files. (We'll learn more
about document and view classes later in this chapter and in Chapter 6,

"The MFC Library.")

To create a project for the SCRAMBLE application, follow these steps:

1. Open Visual Workbench.

2. Choose the AppWizard item from the Project menu to open the MFC
App Wizard dialog box, shown here:

3. In the Directory list box, select the directory in which you want to
place your new project.

4. Type a name for your project in the Project Name edit box. (To cre­
ate a project for this exercise, type the name scramble.) When you
type the name of a project in the Project Name edit box, App Wizard
displays the same name in the New Subdirectory edit box and then
places the project files in a new directory with that name.

5: Visual C++ Tools

5. AppWizard can equip a new project with a number of features. To
see these features, click the Options button. Visual Workbench dis­
plays the Options dialog box, shown here:

R:j~i'ultipie"Documenrinie[facel
rt'!;;iti~i"i~~lb~;''''''''''''''''''"''''''''''''''''''''~

1

l,.rterinting and Print Preview
r:::Cu$tomY.B~ Controls

Ii O,ContelCtSentiliveHj!lp
Ii [']'!lLE' Client

I:,·.:" , DEJit~~ri~I,'Makefile.;
I~ rt!ienerate ,Source Comment.
Ii

W "'OK"

'Cancel

This dialog box is very straightforward: select an option to include
that feature; deselect an option to skip that feature. One option does
not work as an on/offtoggle: AppWizard generates an SDI (single­
document interface) application if you deselect the Multiple Docu­
merit Interface check box. The options that are selected by
default-Multiple Document Interface, Initial Toolbar, Printing
And Print Preview, and Generate Source Comments-suit our needs
quite well for now, so click Cancel to close the Options dialog box.

i~11 aTE MOl was the preferred architecture for Microsoft Windows 3.1-based
6fr~ applications, but SOl is gaining new stature with Windows 95. There are two

reasons for this: Microsoft has determined that SOl applications are easier
for users to understand, and the Windows 95 task bar makes it easy to
switch from one window to another. {Switching between windows was the
main feature that made MOl programs useful in Windows 3.1.} So legions of
Windows programmers are now brushing up on writing SOl programs.

6. Click the Classes button to preview the file and class names that
App Wizard is about to assign to your project. App Wizard displays
the Classes dialog box, shown on the following page.

129

Learn Visual C++ Now

130

AppWizard tries to assign suitable names to the files that make up
the project and to the MFC library classes that are created for the
project, but sometimes these names are not very intuitive, and you
might want to change them. To do so, select the appropriate class
name in the New Application Classes list box, and then edit the
text in the appropriate edit box. The default names for the
SCRAMBLE files and classes are fine, so click Cancel to close the
Classes dialog box.

7. Click OK in the MFC AppWizard dialog box. AppWizard displays
the New Application Information dialog box, shown here:

to be created:
Application: C5crambleApp. in SCRAMBLE.H and S
Frame: CMainFrame. in MAINFRM.H and MAINFRM
Document: CScrambleDoc. in SCRAMDOC.H and
View: C5crambleView. in SCRAMVW.H and 5CRAMVW.

eatures:
+ Supports the Multiple Document Interface (MDI)
+ M5VC Compatible project file (SCRAMBLE.MAK)
+ Initial toolbar and status bar in main frame
+ Printing and Print Preview support in view

5: Visual C++ Tools

The New Application Information dialog box contain,s a concise
summary of the class names, filenames, and options to be generated.

8. Click the Create button, and AppWizard creates the files for the
SCRAMBLE project.

Files and Classes in AppWizard Projects
App Wizard creates four MFC library classes in each project it generates.
Chapter 6, "The MFC Library," describes the four classes, but for now,
here is a brief overview of each of these classes so that you'll have an idea
of how each one is used in a Visual C++ project:

• Every framework-based Visual C++ program has an application
class that is derived from the MFC library's CWinApp class. When
App Wizard generates a Visual C++ application, the application is
implemented as an object derived from the CWinApp class. This ap­
plication object provides member functions for initializing each in­
stance of an application that the user starts.

• Every Visual C++ program that App Wizard creates has a main win­
dow class named CMainFrame. When App Wizard creates an SDI
application, CMainFrame is derived from the MFC library's
CFrame Wnd class; when App Wizard creates an MDI application,
CMainFrame is derived from the MFC library's CMDIFrameWnd
class.

• Every project created by App Wizard has a document class that is de­
rived from the MFC library's CDocument class. A document class
contains member functions for storing, saving, and retrieving data.
All data in an MFC application should be managed by the appli­
cation's document class.

• Every project that AppWizard creates has a view class that is derived
from the MFC library'S CView class. Every CView-derived object is
"attached" to a CDocument-derived object and contains functions to
help it display data from that document.

131

Learn Visual C++ Now

132

Files in the SCRAMBLE Project
If you open the directory that contains the SCRAMBLE project-from the
Windows 95 desktop or from the Windows 3.1 File Manager-you'll see
that AppWizard has created the following files for the SCRAMBLE project:

• SCRAMBLE.H-The header file for the SCRAMBLE application's
CScrambleApp class.

• SCRAMBLE.CPP-The implementation file for the SCRAMBLE
application's CScrambleApp class.

• MAINFRM.H-The header file for the SCRAMBLE application's
CMainFrame class. (App Wizard always names this file MAINFRM.H,
no matter what you name your project.)

• MAINFRM.CPP-The implementation file for the SCRAMBLE
application's CMainFrame class. (AppWizard always names this
file MAINFRM.CPP, no matter what you name your project.)

• SCRAMVW.H-The header file for the SCRAMBLE application's
CScramble View class.

• SCRAMVW.CPP-The implementation file for the SCRAMBLE
application's CScramble View class. Of particular interest is the
OnDraw member function. OnDraw draws the client area of a CView­
derived window whenever the window needs to be updated. You'll
learn more about view classes in Chapter 6, "The MFC Library." The
SCRAMVW.CPP file is presented in Listing 5-1 on page 159.

• SCRAMDOC.H-The header file for the SCRAMBLE application's
CScrambleDoc class. The SCRAMDOC.H file is shown in Listing 5-1.

• SCRAMDOC.CPP-The implementation file for the SCRAMBLE
application's CScrambleDoc class. You'll learn more about document
classes in Chapter 6, "The MFC Library." The SCRAMDOC.CPP file
is presented in Listing 5-1.

5: Visual C++ Tools

• SCRAMBLE.DEF-The SCRAMBLE application's module-definition
file. In Visual C++, a module-definition file contains important in­
formation about an application. This information includes the name
and description of the application and the initial size of the appli­
cation's local heap. The Visual C++ version 1.0 compiler requires a
module-definition file for every application it builds, so App Wizard
creates one automatically.

• SCRAMBLE.MAK-The SCRAMBLE application's makefile. As
mentioned previously, a makefile is a text script that the Visual C++
compiler uses to compile and link a project. It specifies the relation­
ships between all the project's source files and library files, and it
provides other important information such as compiler and linker
switches.

•. SCRAMBLE.RC-A text file that defines all resources (such as
menus, dialog boxes, and bitmaps) used by the SCRAMBLE applica­
tion. When App Wizard generates a project, it automatically creates a
resource script (.RC) file that defines an initial set of resources, in­
cluding an About dialog box, a bitmap used by the application's
toolbar, an application icon, an accelerator key resource, a string­
table resource, and either one or two menus (one for an SDI applica­
tion; two for an MDI application).

• SCRAMBLE.RES-The compiled version of a resource script file.

• Resource files-When App Wizard generates a project, it creates a
directory named RES and stores several resource files in it. These
files include icon (.ICO) files for your application and a bitmap
(.BMP) file for your application's toolbar. You can edit these re­
sources using App Studio.

!I RESOURCE.H-A text file that defines the ID (identifier) numbers
assigned to your application's resources. App Studio assigns these
ID numbers to new resources automatically.

133

Learn Visual c++ Now

134

• STDAFX.H-A header file in which you can place #include direc­
tives for other header files used by your application. All the files in
your application include the STDAFX.H file, so including a header
file in the STDAFX.H file makes the header file accessible to all the
files in your project. When you create an AppWizard project, its
STDAFX.H file initially includes the AFXWIN.H file and the
AFXEXT.H file.

• STDAFX.CPP-The implementation file that accompanies the
STDAFX.H header file. When you compile your Visual C++ project,
the STDAFX.CPP and STDAFX.H files are used to build a precom­
piled header (.PCH) file named STDAFX.PCH. A precompiled
header file contains compiled code for an unchanging part of your
project, such as the Windows and MFC header files. Precompiled
header files speed up the build process considerably.

AdJ~Dll1lg a Bitmap: .
MaD1lagoln1g ResolLOlrces wufch App Studio

When you use App Wizard to develop a Visual C++ application, App Wizard
creates a resource script file (.RC) and places it in your application's
project. A resource script file is a text file that contains information about
resources such as menus, bitmaps, icons, toolbars, and dialog boxes. App­
Wizard also places information about default resources, such as an About
box and a default menu bar, in the resource script file.

When you have built a Visual C++ project with AppWizard, you can edit
the resources that App Wizard has created-and add more resources of
your own-by using a Visual C++ tool named App Studio. In Visual C++
version 1.0, App Studio is a stand-alone application that you open by
choosing the App Studio item from the Tools menu. When you execute
App Studio, it provides several graphically based resource editors that
you can use to create various kinds of resources. For example, App Studio
provides a bitmap editor for creating and editing bitmaps, a dialog editor
for creating and editing dialog boxes, and a menu editor for creating and
editing menus.

5: Visual C++ Tools

When you start App Studio from Visual Workbench, App Studio opens
the resource script file that App Wizard has created for your project. You
can then navigate to the various editors that App Studio provides and use
them to edit your project's resources.

To demonstrate how App Studio can minimize the work involved in add­
ing resources to your project, we'll use it to add a bitmap image to the
SCRAMBLE project. Open the SCRAMBLE project (if it is not already open)
and choose App Studio from the Tools menu. You'll see the App Studio
window, shown in Figure 5-1.

Figure 5-1. The App Studio window.

The Type list box displays a list of resource types; the Resources list box
displays a list of the resources of the selected type. We'll add a single
bitmap image-the ARCHES.BMP file-to the project. Follow these steps
to add the bitmap:

1. Select Bitmap in the Type list box. App Studio displays IDR_MAIN­
FRAME in the Resources list box. (This is the bitmap image used by
the project's toolbar.)

2. Choose Import from the Resource menu. The Import Resource dialog
box appears, as shown on the following page.

135

Learn Visual C++ Now

136

3. Select the ARCHES.BMP file, and click OK. (If the ARCHES.BMP
file does not appear, you must copy the file from the SCRAMBLE
project on the companion CD-ROM to your project's directory.)
The Import Resource dialog box closes, and a new window, named
IDB_BITMAPl (Bitmap), appears in App Studio; as shown here:

5: Visual C++ Tools

You'll also see the graphics palette, the untitled window shown here:

The graphics palette contains tools for manipulating images and a
color palette you can use to select foreground and background col­
ors. (You'll find complete information about the graphics palette in
the online help.)

4. Choose Properties from the Resource menu. The Properties window,
another untitled window, appears as shown here:

137

Learn Visual C++ Now

138

The Properties window is used to control the appearance and behav­
ior of the resources you create. For now, simply note the default ID
that App Studio assigned to this resource: IDB_BITMAP1. (In Visual
C++, all resources-bitmaps, menus, and so on~have ID numbers
that are assigned automatically by App Studio and are defined in
the header file RESOURCE.H.)

5. Choose Exit from the App Studio File menu, and save your changes.

Writing Code to Display the Bitmap
In Chapter 2, "Introduction to Windows Programming," you learned how
to draw in windows using DCs (device contexts) and GDI (graphical device
interface) objects such as brushes and pens. In Chapter 4, "Objects and
Member Functions," you were introduced to the Visual C++ equivalents of
DCs and GDI objects: the CDC class, which encapsulates device contexts,
and the CGdiObject family of classes, which include CGdiObject-derived
classes such as CBrush and CPen.

In Visual C++, a bitmap is an object of the CBitmap class. The CBitmap
class, like CBrush, CPen, and other graphics classes, is derived from the
MFC library's CGdiObject class. Bitmaps are used in much the same way
that other kinds of CGdiObject-derived objects are used. Using bitmaps
requires a few more steps, however, because they are usually loaded from
files or as a resource, whereas CGdiObject-derived objects such as brush
and pen objects are generally created on the fly.

Working with Bitmaps .
To load a bitmap resource and use it in a Visual C++ program, you follow
these general steps:

1. Construct an object of the CBitmap class.

2. Load the bitmap into memory using the CBitmap::LoadBitmap
member function.

3. Use the CDC::CreateCompatibleDC member function to create a
device-context object that is compatible with the output device be­
ing used.

5: Visual C++ Tools

~. Select the CBitmap object you have constructed in memory into the
device-compatible CDC object.

5. Use a CDC member function such as CDC::BitBlt or CDC::StretchBlt
to copy your CBitmap object from memory into the CDC object.

These steps are described in more detail in the sections that follow.

~~I' IP It is better to create a bitmap in memory and then to copy it to the
""~I screen than to paint the bitmap directly to the screen. Your computer's

screen refreshes itself many times each second, and if you try to paint di­
rectly to the screen during a screen refresh, you often see unsightly flashes
and other undesirable side effects. If you copy a bitmap into memory and
then transfer it to the screen using CDC::BitBlt or CDC::StretchBlt, these
types of problems are minimized.

Loading the bitmap
In Visual C++, the first step in creating and displaying a bitmap is to con­
struct an object of the CBitmap class. We need a member variable to store
the bitmap, a member function that provides access to the bitmap, and
member functions to load and unload the bitmap. All data in an MFC­
based application is stored in the application's document class, so open
the SCRAMDOC.H file and add the following lines to the CScrambleDoc
class declaration:

private:
CBitmap* m_pArches:
CBitmap* m_pBackground:

public:
CBitmap* GetBackground() { return m_pBackground: }
void LoadBackground(CBitmap*):
void UnloadBackground():

GetBackground is an inline function that simply returns a pointer to the
background bitmap. (The m_pBackground member variable and the Load­
Background and UnloadBackground member functions aren't necessary
for this version of the SCRAMBLE application, but they'll make life easier
later in this chapter, when we add menu commands to turn the back­
ground bitmap on or off.)

139

Learn Visual c++ Now

140

Now open the SCRAMDOC.CPP file, and edit the CScrambleDoc class con­
structor and destructor as shown here:

CScrambleDoc::CScrambleDoc()
{

m_pArches = new CBitmap;
if (m_pArches)
{

m_pArches-)LoadBitmap(IDB_BITMAPl);
}

m_pBackground = m_pArches;

CScrambleDoc::-CScrambleDoc()
{

}

if (m_pArches)
{

}

delete m_pArches;
m_pArches = NULL;

The LoadBitmap function instantiates a CBitmap object on the heap, stores
the object's address in the m_pArches member variable, and loads the
bitmap resource. (LoadBitmap, a member function of the CBitmap class,
has two overloaded versions: one that takes a resource ID as a parameter,
and one that takes a pointer to a resource name as a parameter.)

While you're working in SCRAMDOC.CPP, add the LoadBackground and
UploadBackground functions, as shown here:

void CScrambleDoc::LoadBackground(CBitmap* pBackground)
{

m_pBackground = pBackground;
}

void CScrambleDoc::UnloadBackground()
{

m_pBackground = NULL;
}

5: Visual C++ Tools

Drawing the bitmap
Now we need to draw the bitmap. OnDraw, a member function of the
CViewclass, is called whenever part of a window is invalidated (needs to
be redrawn). App Wizard automatically creates an OnDraw function in ev­
ery view-class implementation file it creates, but it's up to you to provide
the drawing code. Open the SCRAMVW.CPP file, and edit the CScramble­
View::OnDraw member function so that it looks like this:

void CScrambleView::OnDraw(CDC* pDC)
{

}

CScrambleDoc* pDoc = GetDocument();
CBitmap* pBitmap;
BITMAP Bitmap;-
CDC dc;

pBitmap = pDoc-)GetBackground();
if (pBitmap)
{

}

dc.CreateCompatibleDC(pDC);
CBitmap* pOldBitmap = dc.SelectObject(pBitmap);

pBitmap-)GetObject(sizeof(Bitmap), &Bitmap);
pDC-)BitBlt(e, e,

Bitmap.bmWidth,
Bitmap.bmHeight,
&dc,
e, e,
SRCCOPY) ;

dc.SelectObject(pOldBitmap);

This code is slightly more involved, but it's not too hard to understand if
you take it one step at a time. For example, the following statement returns
a pointer to the document class and stores it in the pDoc variable:

CScrambleDoc* pDoc = GetDocument();

GetDocument is a member function of the CDocument class.

After we have the pointer, we can call the CScrambleDoc::GetBackground
function with the following statement:

pBitmap = pDoc-)GetBackground();

141

Learn Visual C++ Now

142

We then create a compatible device context and select the bitmap into it
with these statements:

dc.CreateCompatibleDC(pDC);
CBitmap* pOldBitmap = dc.SelectObject(pBitmap);

We're almost ready to draw the device context using the CDC::BitBlt func­
tion, which copies a rectangular area from a bitmap to a corresponding
rectangle in the current device context. If you look up the CDC::BitBlt
function in the online help, you'll see that it is prototyped as follows:

BOOl BitBlt(int x. int y. int nWidth. int nHeight.
CDC* pSrcDC. int xSrc. int ySrc. DWORD dwRop);

The x and yarguments specify the upper left corner of the rectangle to
which the bitmap will be copied, n Width and nHeight are the width and,
height of the bitmap, pSrcDC is the device context into which the bitmap
has been selected, xSrc and ySrc specify the upper left corner of the rect­
angle in the bitmap, and dwRop is the raster operation to be performed. (A
complete list of raster operations and a description of each can be found in
the online help. We will also cover bitmap operations in more detail in
Chapter 10, "Visual C++ Graphics.") For this version of SCRAMBLE, we
need the SRCCOPYoperation, which simply copies the bitmap verbatim.

We now have all the information we need except the height and width of
the bitmap. Fortunately, the GetObject function can fill in the holes. The
following statement stores information about the bitmap in a structure
named Bitmap:

pBitmap->GetObject(sizeof(Bitmap). &Bitmap);

Armed with this information, we're ready to call BitBlt, as follows:

pDC-)BitBlt(0. 0.
Bitmap.bmWidth.
Bitmap.bmHeight.
&dc.
0. 0.
SRCCOPY) ;

That's it. Now we're ready to build the SCRAMBLE application.

5: Visual C++ Tools

Deleting GDI Objects

Under Win16, it's very important to delete GDI objects after you've
finished using them because GDI memory is owned by the system. If
you fail to delete a GDI object, the memory it is using is not free,d un­
til the user restarts Windows. Freeing GDI objects is less important
under Win32 because GDI memory is allocated to a process and is
freed when the process terminates. However, it's still good program­
ming practice to delete GDI objects after you've finished using them.

iBuilding a Visual C++ Application
After you have created an application framework-with or without
AppWizard-you can either build it (compile and link it) or simply com­
pile it without linking.

To build a program, choose Build or Rebuild All from the Project menu.
(Alternatively, you can click the Build or the Rebuild All button on the
Visual Workbench toolbar.) The Build command builds a program by
recompiling only files that have changed since the last build. To build a .
program by compiling all files, choose the Rebuild All command. To com­
pile a file without linking it, open the file and choose the Compile File
command from the Project menu.

Compiling an Application
The Visual C++ compiler is actually two compilers in one: a C compiler
and a C++ compiler. The Visual C++ compiler determines a file's language
by checking its filename extension. The job of the Visual C++ compiler is
to translate source code files (text files with the extension .C or .CPP) into
machine-readable files called object files (files with the extension .OBJ).

The compiler is integrated with the rest of the Visual C++ development
system, so you can run it without leaving the Visual C++ editor. In fact,
the compiler runs in the background, so you can do other work on your

143

Learn Visual C++ Now

144

computer-even leave the Visual C++ environment, if you want-while
your application is being compiled. When compilation is complete, Visual
C++ beeps, notifying you that you can return to the editor to verify that
your program has compiled successfully.

While the compiler is working, it displays a running summary of its
progress in an output window. Error and warning messages are displayed
as problems, and potential trouble spots are detected. The compiler stops
and displays an error message if it encounters a fatal error.

Changing the build mode
By default, App Wi.zard-generated projects are built in Debug mode. (The
other option is Release mode.) A project built in Debug mode is much·
larger than when it's built in Release mode because it contains information
such as debugging symbols used by the Visual C++ debugger. It's a good
idea to build a project in Debug mode until you're sure it is fully de­
bugged. Then you can switch to Release mode and rebuild the project. '

To build a project in Release mode, follow these steps:

1. Choose Project from the Options menu. The Project Options dialog
box appears, as shown here:

2. Click the Release option button in the Build Mode area of the Project
Options dialog box, and then click OK.

3. Click the Rebuild All button on the Visual Workbench toolbar.

5: Visual C++ Tools

The Visual Workbench Source Browser

Another important tool that you'll use when you develop applica­
tions in Visual C++ is the Visual Workbench Source Browser, a
Windows-based source code browser that uses information generated
by the compiler to help you find, examine, and edit related symbols
and study the relationships among various symbols. The browser dis­
plays a hierarchical view that you can use to examine the symbols
you are interested in. For example, you can use the browser to exam­
ine the relationships between base classes and derived classes or be­
tween calling functions and called functions. You can select any
function, variable, type, macro, or class and then see exactly where
it's defined andused in your project. You can control all the
browser's hierarchy expansions with the mouse.

By default, AppWizard enables browser information in new projects.
The Visual C++ compiler creates a browser database file-with the
filename extension .BSC-that keeps track of where each symbol in
your source code is defined and used. After a .BSC file is created, it
becomes part of your project and is updated each time you build your
project.

When the Browse dialog box opens, choose the symbol you want to
browse for. You control the parameters of your browsing operation by
selecting items from the Type, Subset, and Symbol drop-down combo
boxes. For example, to display a graph showing the base classes that
are used in your application, selectthe Base Class Graph item from
the Type combo box and then click the Display Result button. If your
application has any base classes to display,· the browser displays
them in a tree-like list.

You canalso use the browser without opening the Browse window.
When yo-qare writing or editing source code using ~he Visual C++
editor, youcan simply use the Browse menu to select a symbol in a
source file, jumpto its definition or first reference, review all refer­
ences to the symbol, and return to the original insertion point in your
source file.

(continued)

145

Learn Visual C++ Now

146

The Visual Workbench Source Browser. continued

Although the Source Browser can be avaluable tool.when you are de­
veloping complex ,C++ projects, Visual C++ programmers often dis­
able it when they don't need it. That's because when the Source
Browser is enabled, it creates a new browser database every time you
compile an application,·andthat can be a time-consuming process.
You might want to disable browser information until you start devel-
oping projects that are complex enough to make its capabilities useful.

To disable Source Browser information, follow these steps:

1. Choose the Project item from the Options menu.

2. When the Project Options dialog box appears, click the Com­
piler button.

3. Iri the C/C++Compiler Options dialog box, select Listing Files
inthe·Category listbox~

4. Deselect the Browser Information option.

5. Close theC/C++CompilerOptions dialog box by clicking OK.

6~ .. Close the proj ect 'Options dialog box by clicking OK.

You can learn moreaboutth(;} Source Browser by consulting the
online help.

Linking an Application
Although the .OBJ files produced by the Visual C++ compiler are binary
(machine-readable) files, they are not executable programs. Executable
files (executables for short) have header sections containing important
run-time information that-OBJ files do not provide. To convert an appli­
cation's .OBJ files to an executable program, you must use the Visual C++
linker.

The linker has two primary jobs. First it resolves all your application's ref-.
erences to external functions by searching through the library files that the

5: Visual C++ Tools

project accesses. Then it links the appropriate library files to your appli­
cation's object files, producing your project's executable (.EXE) file.

Linking with object code libraries
Linking with object code libraries is an important operation because most
Visual C++ applications rely on external libraries that are supplied as part
of the Visual C++ development package. You can also create libraries
yourself and access them from your Visual C++ appli~ations.

~'211 aTE Functions that are imported from libraries instead of being imple-
6if~ mented in an application's source code are sometimes referred to as exter­

nal functions. The process of tracking down functions provided in object
code libraries is sometimes referred to as resolving external references.

How the Visual C++ linker works
The Visual C++ linker links .OBI files generated by the Visual C++ com­
piler to any other object code files that an application might require. When
the .OBI files that make up an application go to the Visual C++ linker, the
linker makes a thorough search through the code it is compiling for the
names of any functions that are not implemented in the .OBI files it has
received from the compiler. If the linker encounters the names of any func­
tions that are not implemented in the source code of the application being
compiled, the linker tries to find the missing functions in any library files
that have been incorporated into the application being compiled.

~'>."!I' IP I~ the Visual c++ linker starts generating vast qu.antities of errors when
',~;!I you link a program and you know you couldn't possibly have made that

many errors in your source code, open the Project Options dialog box and
verify that the Use Microsoft Foundation Classes check box is selected. If it
isn't selected, and if you are using MFC library classes in your program, se­
lect the box and relink. That should solve your problem.

Figure 5-2 on the following page illustrates the Visual C++ build process.

147

Learn Visual C++ Now

148

..----f Visual Workbench

Module
definition
file (.DEF)

MFC
library

Source files
(.CPP, .C, .H)

Object
files

(.OBJ)

Figure 5-2. The Visual c++ build process.

Windows,
run-time,
and MFC

library
include
files (.H)

Statically
linked

libraries
(.LlB)

[Executing the 'SCRAMBlE Program

Resources
(menus, bitmaps,
icons, and so on)

Resource
script file

(.RC)

Resource compiler
(compile mode)

Binary
resource
file (.RES)

Resource compiler
(bind mode)

After you have built the SCRAMBLE application, you can execute it by
choosing Execute from Visual Workbench's Project menu. When the
SCRAMBLE program starts, you can open any number of child windows
by' choosing the New Window item from the Window menu or by clicking
the New Document button on the toolbar.

The SCRAMBLE program might not impress you because each child
window displays the same bitmap. Consider, however, that we wrote

5: Visual C++ Tools

only about 22 lines of code. In the next few sections, we'll modify the
SCRAMBLE program to add menu commands that allow the user to clear
and redraw the bitmap in each child window.

lE~D11:iIrnQJ Menus wi11:~ App Studio
One of the most important features of a Windows-based program is its
menu bar. AppWizard generates two menu bars for an MDI application:
one for its main frame window, and another for its child windows. The
application can use more menu bars if necessary.

The SCRAMBLE program has two menu bars:' a main frame window menu
bar with the resource identifier IDR_MAINFRAME, and a child window
menu bar with the resource identifier IDR_SCRAMBTYPE. SCRAMBLE
uses the default main frame window menu bar provided by AppWizard,
but its child window menu bar has one custom menu, Background. This
menu has two items-Arches and Clear-as shown in Figure 5-3.

Figure 5-3. The SCRAMBLE program's Background menu.

The easiest way to create menus and menu items for Visual C++ programs
is to use App Studio. Open App Studio, click on Menu in the Type list box,
and you'll see SCRAMBLE's two menu resources, as shown in Figure 5-4

on the following page.

149

Learn Visual C++ Now

150

Figure 5-4. The SCRAMBLE program's menu resources.

To add the SCRAMBLE application's Background menu and its menu
items, follow these steps:

1. Double-click on the IDR_SCRAMBTYPE item in the Resources list
box.

2. In the IDR_SCRAMBTYPE window, select the Window menu, as
shown here:

3. Press the Ins key. App Studio inserts a new, untitled menu between
the View and Window menus, as shown here:

5: Visual C++ Tools

Ready

4. Double-click on the new menu. App Studio opens the Properties
window, which displays the properties for the new menu.

5. In the Properties window, enter &Background in the Caption edit
box, as shown here:

t~lt] ... enu:t.t~~ulte;nj'~l:)pertie; J General lli:JL

1[):.1::.:.:;:.::: ~liF~.~~io~: 1 .. ~B.~~~.~ro~~d I:
~'i;p~~;~gt; R1f.()~~p [Jlna~tive •. ···· ••• RreBit: I No~e.. l::J1!.
fV'!·~he~Ked ,.' tjJirBl'ecJ O,~~Jp'

~r~~t::·l. ..1

6. Double-click on the blank box under the Background menu.

7. Create a new menu item named Arches by entering &Arches in the
Properties window's Caption edit box.

8. Create a second Background menu item, name<;l Clear, by following
the same procedures you used to create the Arches menu item.
(Double-click on the blank box at the bottom of the menu to insert a
new menu item.) The Background menu, with the Arches and Clear
menu items, is shown on the following page.

151

Learn Visual c++ Now

152

9. Exit App Studio, and save your changes.

l{eyboard Shortcuts

Windows-based programs often include keyboard shortcuts for users
who prefer to use the keyboard rather than the mouse. A keyboard
shortclltlets the user execute a menu command by pressing a key
while holding down the Alt key. Keyboard shortcuts are identified by
an underlined character in a menu item.

Key~oard shortcuts can be added to menu items by using App Stu­
dio; they do not require any special program code. Simply open the
Properties window for the appropriate menu resource and add an am-

e persand(&) in front of the character you'd liketo use as the keyboard
shortcut.

Creating Message HJand~ers with ClassWuzarrd
After you have added a menu item, or a set of menu items, to an applica­
tion, creating message handlers for these menu items is an easy task thanks
to ClassWizard, another Visual C++ tool.

5: Visual C++ Tools

To create message handlers for the menu items you have created in the
SCRAMBLE program, follow these steps:

1. Start ClassWizard by choosing the ClassWizard item from Visual
Workbench's Browse menu. The ClassWizard dialog box appears, as
shown here:

2. Select CScrambleDoc in the Class Name list box.

3. Select ID_BACKGROUND_ARCHES in the Object IDs list box.
(ID_BACKGROUND_ARCHES is the default ID App Studio gave to
the Arches menu item.)

4. Select the COMMAND item in the Messages list box.

5. Click the Add Function button. The Add Member Function dialog
box appears, as shown here:

6. Accept the default member function name, OnBackgroundArches,
in the Member Function Name edit box by clicking OK.

153

Learn Visual C++ Now

154

Notice that ClassWizard has now added OnBackgroundArches to
the Member Functions list box, as shown below. (As you'll see later,
ClassWizard has actually created a member function named OnBack­
groundArches and has added ilto your SCRAMDOC.CPP source
code file. When you finish creating the SCRAMBLE program, this
member function will be executed whenever the user chooses the
Arches item from the Background menu. Of course, we have not yet
written any code for this function. We'll do that in the next section.)

7. Using the same procedure you followed to create the OnBackground­
Arches member function, create a member function named OnBack­
groundClear for the ID_BACKGROUND_CLEAR object ID and add it
to the Member Functions list box.

8. Click OK to close the ClassWizard dialog box.

Your application now has a Background menu with two menu items:
Arches and Clear. You have also created message handlers for these two
menu items, but neither of your message handlers contains any executable
code, so the menu items don't do anything useful yet. You'll get a chance
to fix that now.

5: Visual C++ Tools

WrrofculrIlg Code fOIr Messa~e lHand~ers
The SCRAMBLE program is almost ready to execute. All we need to do is
add a small amount of code to the message handlers for the application's
two customized menu items, Arches and Clear. Because we added mem­
ber functions that load and unload the bitmap to the CScrambleDoc class,
the message handlers are quite simple. Open SCRAMDOC.CPP, and then
edit the OnBackgroundArches and OnBackgroundClear member functions
as follows:

void CScrambleDoc::OnBackgroundArches()
{

}

LoadBackground(m_pArches);
UpdateAllViews(NULL);

void CScrambleDoc::OnBackgroundClear()
{

}

UnloadBackground();
UpdateAllViews(NULL);

Rebuild SCRAMBLE, and execute it. Open several child windows, and
experiment with the Arches and Clear commands. You should be able to
control the image displayed in each child window. Not bad for four extra
lines of code!

The VoslUJal (++ fOeibuQJgerr
Unfortunately, even the best programmers occasionally write code that
doesn't work properly. To help swat bugs, Visual C++ includes an interac­
tive, graphically based debugging tool built right into the Visual C++ edi­
tor. With the Visual C++ debugger, you can track down bugs in programs
and correct them.

When you are designing a program, you can examine and correct compiler
and linker errors that you encounter during the build process. These errors
are usually caused by incorrect language syntax, undeclared variables, or
misspelled keywords.

155

Learn Visual C++ Now

156

You can also use the Visual C++ debugger during the execution of your
program, after all the syntax errors have been corrected and the project has
been successfully built. Then you can use the debugger to track down bugs
by setting breakpoints and examining variables. When you isolate an error
at run time, you can correct it on the spot with the Visual C++ editor and
then rebuild your program.

Setting Breakpoints
With the Visual C++ debugger, you can control the execution of your pro-
gram and examine its state at various points in its execution by setting
breakpoints that halt the execution of your program at whatever point in
your code you specify. You can also set breakpoints that stop your program
conditionally-that is, only when certain specified conditions are met.

Before you try to set a breakpoint, choose the Project item from the Tools
menu and check the Build Mode to ensure that the Debug option is se­
lected. You can then set breakpoints by choosing the Breakpoints com­
mand from the Debug menu or by clicking the Breakpoint button, shown
here, on the Visual Workbench toolbar:

After you have set a breakpoint (or a series of breakpoints), you can start
debugging your program by executing it under the control of the debugger.
To do that, you choose the Go command from the Debug menu.

Stepping Through a Program
There are other ways to run a program under the control of the debugger.
For example, you can step through your program one statement at a time,
examining the results of each statement the program executes. As you step
through a program, yo"u can select functions that you want to ,step into or
step over. When you step into a function, each line of the function is exe­
cuted separately. When you step over a function, the entire function is
executed. The debugger then stops and positions the insertion point at the
end of the function that has been stepped over.

After you have stepped into a function, you can step out of it immediately
by choosing the Step Out command, which returns you to the statement

5: Visual C++ Tools

from which the function was called. You can step into, step over, and step
out of functio~s by choosing the Step Into, Step Over, and Step Out com­
mands from the Debug menu or by clicking the associated buttons, shown
here, on the Visual Workbench toolbar:

You can also place the Visual C++ editor's insertion point on a particular
line in a source code file and run your application under the control of the
debugger up to the point at which the insertion point appears. This has the
effect of turning the insertion point into a breakpoint. To run the debugger
and stop execution at the editor's insertion point, simply choose the Step
To Cursor command from the Debug menu.

Opening Debugger Windows
The Visual C++ debugger has two windows that you can open by choosing
commands from the Debug menu and other windows that you can open by
choosing commands from the Window menu. You can open the
debugger's Watch window by choosing the Watch item from the Window
menu. To open the QuickWatch window, you choose the QuickWatch
item from the Debug menu.

The Watch window displays the values of selected variables at each break­
point. With the QuickWatch window, you can examine the values ofvari­
abIes and change them for subsequent program execution. Figure 5~5
shows the QuickWatch window.

Figure 5-5. The QuickWatch window.

157

Learn Visual C++ Now

158

Two other windows that can be opened from the Window menu also dis­
play aspects of the program's state when it is paused. When execution of a
program stops, the Registers window displays the values of your system's
microprocessor registers; the Locals window displays the value ofvari­
abIes local to the current function. The Locals window is updated every
time there is a change in the scope of variables in the application being
debugged.

The Show Call Stack item on the Debug menu displays a list of all nested
function calls. To use the debugger's call-stack feature, simply stop execu­
tion at a function, and then choose the Show Call Stack command. Visual
Workbench opens a dialog box that displays a list of all nested function
calls. The current function is the most deeply nested function; it is dis­
played at the top of the call-stack list. Less deeply nested functions appear
farther down in the list. You can double-click on a function in the list to
display the source code associated with that function.

When you terminate a debugging operation-either by exiting the program
being debugged or by choosing the Stop Debugging command-any break­
points that you have set remain in place. If you close your project, Visual
Workbench stores any breakpoints you have set and restores them when
you open the project again. That means that a debugging operation can
span editing sessions.

Debugging is an art that you can learn and master with experience. This
section has barely touched on the highlights of debugging Visual C++ pro­
grams. You can learn more about the Visual C++ debugger and how to use
it by choosing the Visual Workbench item from the Help menu and then
clicking the button labeled Debugging Your Application.

listing: The SCRAMBLE Program
This chapter's sample program, SCRAMBLE, is an MDI application that
displays a bitmap in child windows. Portions of the program described
in this chapter are presented in Listing 5-1. You can find the complete
program in this chapter's directory on the companion CD-ROM.

5: Visual C++ Tools

SCRAMDOC.H

II scramdoc.h : interface of the CScrambleDoc class
II
1111///

class CScrambleDoc : public CDocument
{

private:
CBitmap* m_pArches;
CBitmap* m_pBackground;

public:
CBitmap* GetBackground() { return m_pBackground: }
void LoadBackground(CBitmap*);
void UnloadBackground():

protected: // create from serialization only
CScrambleDoc();
DECLARE_DYNCREATE(CScrambleDoc)

// Attributes
public:

1/ Operations
public:

// Implementation
public:

virtual -CScrambleDoc():
virtual void Serialize(CArchive& ar); // overridden for

1/ document i/o
#ifdef _DEBUG

virtual void AssertValidC) const:
virtual void Dump(CDumpContext& dc)

#endif
protected:

virtual BOOL OnNewDocument();

// Generated message map functions
protected:

//{{AFX_MSG(CScrambleDoc)
afx_msg void OnBackgroundArches();
afx_msg void OnBackgroundClear();
//}}AFX_MSG
DECLARE_MESSAGE_MAP()

const:

} ;

/////I/I///////I/I///////!/I/I////////////////////////////1

Listing 5-1. The SCRAMBLE program listing. (continued)

159

Learn Visual C++ Now

Listing 5-1. continued

160

SCRAMDOC.CPP

II scramdoc.cpp : implementation of the CScrambleDoc class
II

#include "stdafx.h"
Iii ncl ude "scramble. h"

#include "scramdoc.h"

Iii fdef _DEBUG
#undef THIS_FILE
static char BASED_CODE ~HIS_FILE[] = __ FILE __ :
Ilendi f

111JI)//1//
II CScrambleDoc

IMPLEMENT_DYNCREATE(CScrambleDoc, CDocument)

BEGIN_MESSAGE_MAP(CScrambleDoc, CDocument)
//{{AFX_MSG_MAP(CScrambleDoc)
ON_COMMAND(ID_BACKGROUND_ARCHES, OnBackgroundArches)
ON_COMMAND{ID_BACKGROUND_CLEAR. OnBackgroundClear)
/ /}}AFX_MSG_MAP

END_MESSAGE_MAP()

/II//I/I/I/II/I//II/////////////I///////////!////I//////1//
1/ CScrambleDoc construction/destruction

CScrambleDoc::CScrambleDoc()
{

}

m_pArches= new CBitmap;
if (m_pArches)
{

m_pArches-)LoadBitmap(IDB_BITMAPl);
}

CScrambleDoc::~CScrambleDoc()
{

if (m..:..pArches)
{

delete m_pArches;

5: Visual C++ Tools

m_pArches NUll;
}

}

BOOl CScrambleDoc::OnNewDocument()
{

}

if (!CDocument::OnNewDocument(»)
return FALSE;

// TODO: add reinitialization code here
// (SDl documents will reuse this document)
return TRUE;

///

// CScrambleDoc serialization

void CScrambleDoc::Serialize(CArchive& ar)
{

}

if (ar.lsStoring(»
{

// TODO: add storing code here
. }
else
{

// TODO: add loading code here
}

///

// CScrambleDoc diagnostics

/fifdef _DEBUG
void CScrambleDoc::AssertValid() canst
{

CDocument::AssertValid();
}

void CScrambleDoc::Dump(CDumpContext& dc) canst
{

CDocument::Dump(dc); .
}

'fIend; f / / _DEBUG

(continued)

161

Learn Visual C++ Now

Listing 5-1. continued

162

111
II CScrambleDoc commands

void CScrambleDoc::LoadBackground(CBitmap* pBackground)
{

m_pBackground = pBackground;
}

void CScrambleDoc::UnloadBackground()
{

m_pBackground = NULL;
}
'voi d CScramb 1 eDoc: : OnBackgroundArches ()
{

}

LoadBackground(m_pArches);
UpdateAllViews(NULL);

void CScrambleDoc::OnBackgroundClear()
{

}

UnloadBackground{);
UpdateAllViews{NULL);

SCRAMVW.CPP

II scramvw.cpp : implementation of the CScrambleView class
II

4/include "stdafx.h"
4/include "scramble.hlf

4/include "scramdoc.h"
IIi ncl ude "s c ramvw. h"

IIi fdef _DEBUG
4/undef THIS_FILE
static char BASED_CODE THIS_FILE[] = _....;FILE __ ;
4/endif

111111111111111111/1/11////1//////1/1/11/1//////1/111111/1/
/1 CScrambleView

IMPLEMENT_DYNCREATE(CScrambleView, CView)

5: Visual C++ Tools

BEGIN_MESSAGE_MAP(CScrambleView, CView)
//{{AFX_MSG_MAP(CScrambleView)
/ /} JAFX_MSG_MAP
// Standard printing commands
ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePr;ntPreview)

END_MESSAGE_MAP()

///

// CScrambleView construction/destruction

CScrambleView::CScrambleView()
{

// TODO: add construction code here

CScrambleView::~CScrambleView()
{

J

///

// CScrambleView drawing

void CScrambleView::OnDraw(CDC* pDC)
{

J

CScrambleDoc* pDoc = GetDocument();
CBitmap* pBitmap;
BITMAP Bitmap;
CDC dc;

pBitmap = pDoc->GetBackground();
if (pBitmap)
{

}

dc.CreateCompatibleDC(pDC);
CBitmap* pOldBitmap = dc.SelectObject(pBitmap):

pBitmap->GetObject(sizeof(Bitmap), &Bitmap):
pDC~>BitBlt(e, e,

Bitmap.bmWidth,
Bitmap.bmHeight,
&dc,
e, e,
SRCCOPY) ;

dc.SelectObject(pOldBitmap);

(continued)

163

Learn Visual C++ Now

Listing 5-1. continued

164

111111111//////1///11///1/11//1////1/11/////1//111/11/1/1/1
/1 CScrambleView printing

BOOl CScrambleView::OnPreparePrinting(CPrintInfo* pInfo)
{

/1 default preparation
return DoPreparePrinting(pInfo);

}

void CScrambleView::OnBeginPrinting(CDC* l*pDC*/,
CPrintInfo* /*pInfo*/)

{

}
// TODO: add extra initialization before printing

void CScrambleView::OnEndPrintingCCDC* /*pDC*/,
CPrintInfo* /*pInfo*/)

{

1/ TODO: add cleanup after printing
}

//111/1/1/11111/11/111/11/11//1111//1/11111/11///11/1111111
/1 CScrambleView diagnostics

1/ifdef _DEBUG
voi d CScrambl eVi ew: :AssertVali d()' const
{

CView: :AssertValid():
}

void CScrambleView::Dump(CDumpContext& dc) const
{

CView::Dump(dc);
}

CScrambleDoc* CScrambleView::GetDocument() /1 non-debug version
/1 is inline

{

}

ASSERT(m_pDocumept-)IsKindOf(RUNTIME_ClASS(CScrambleDoc»);
return (CScrambleDoc*) m~pDocument:

lIendif II_DEBUG

5: Visual C++ Tools

Whait's Ne){1t?
In this chapter, you learned how to use the tools provided by Visual Work­
bench to create and build customized Visual C++ applications. You wrote
a program using the Visual C++ editor, added a couple of menu items to it
with App Studio, and then used ClassWizard to equip your program with
message handlers. The result was a Visual C++ application named
SCRAMBLE. With the SCRAMBLE program, you can open multiple child
windows and you can choose menu items that display or clear a bitmap
from the child windows. You can control each child window individually.

In Chapter 6, "The MFC Library," we'll look more closely at the role of the
MFC library in creating Visual C++ programs, and you'll have an opportu­
nity to add more features to the SCRAMBLE program. For example, you'll
learn how to control the initial size of each child window the program dis­
plays, and you'll learn how to add scroll bars and scrolling functionality
to the child windows. You'll also learn how to add menu items that let the
user display different bitmaps in different child windows.

165

Chapter

The M FC Library
In any object-oriented language-including Microsoft Visual C++-one of
the most important advantages of using classes is inheritance. As you
learned in Chapters 4 and 5, inheritance allows objects to be derived from
other objects. In C++, derived classes can inherit data members and func­
tions from base classes, so designers of software development systems can
create large libraries of C++ classes with specific relationships between
classes built in.

One such library is the Microsoft Foundation Class (MFC) Library version
2.0 included with Visual C++ version 1.0. The MFC library is designed to
help programmers use the power of C++ to build Windows-based applica­
tions. This is an important development in the evolution of Windows pro­
gramming because code reusability is a goal that has long eluded users of
the Windows API (application programming interface). Because the Win­
dows API is not an object-oriented development tool and does not support
inheritance, every application written under the Windows API has to be
created essentially from scratch.

To solve that problem, the MFC library provides a set of C++ classes that
are not only reusable but also transportable to a growing variety of com­
puter platforms. Programs written using Visual C++ and the MFC library
are compatible with computers based on the Intel 386/486/Pentium family
of microprocessors and with other systems, including DEC, MIPS, and

167

Learn Visual C++ Now

168

even Apple Macintosh computer systems. In addition to its portability to a
variety of platforms, the MFC library is also compiler-independent; it is
used not only by Microsoft but also by other compiler and tool vendors
(including Symantec, Watcom, MetaWare, and others). Visual C++ is not
the only software development platform that supports the MFC library.

When you create an application using AppWizard, AppWizard generates a
skeleton program using classes and member functions provided in the MFC
library. Your main job as a Visual C++ programmer is to add functionalities
specific to your application. In this chapter, you'll see how AppWizard
uses classes and member functions provided by the MFC library to create
Visual C++ applications and how you can build on AppWizard's applica­
tion frameworks to create specialized MFC applications. The following
topics are covered:

• How the MFC library can be used with Visual C++ to create well­
behaved programs

• How the classes and member functions implemented in the MFC
library work together in Visual C++

• How App Wizard constructs application frameworks using MFC
library classes

• How MFC applications handle events, messages, and other features
of Windows-based programs

The chapter includes a new version of the SCRAMBLE program that dem­
onstrates many of the topics introduced in the text. Using the SCRAMBLE
program, we'll also look at how you can easily add some new features to
an application by using Visual C++ tools. Here are some of the features of
the SCRAMBLE program:

• It can display multiple background bitmaps in individual document
windows simultaneously.

• It can create and display backgrounds in solid colors-even custom­
designed colors-using a predefined Color dialog box provided by
the MFC library.

• It lets you execute menu commands using custom-designed toolbar
buttons.

6: The MFC Library

• It places check marks next to currently active menu items.

• It lets you specify the initial size and many other characteristics of
its main frame window and its child windows.

• Its child windows contain scroll bars and support scrolling.

Figure 6-1 shows the output of this chapter's SCRAMBLE program.

Figure 6-1. Output of the SCRAMBLE application.

About the MfC Library
As you learned in Chapter 5, "Visual C++ Tools," Visual C++ is a graphics­
based, user-interactive delivery system designed to support MFC applica­
tions. AppWizard and the other tools included with Visual C++ help you
build MFC applications as quickly and easily as possible, using graphics­
based interfaces that take advantage of dialog boxes, drop-down menus,
and mouse-generated commands.

The MFC library encapsulates most of the Windows API to take advantage
of the object-oriented features of C++ programs. The MFC library calls
functions implemented in the Windows API to create windows, dialog
boxes, device contexts, controls, common GDI objects such as brushes and
pens, and other standard Windows items. The classes that are used to cre­
ate these kinds of objects provide MFC users with a convenient C++ inter­
face to the structures in Windows that the classes encapsulate.

169

Learn Visual C++ Now

170

The single characteristic that sets the MFC library apart from other class
libraries that are available for Windows is its very close mapping to the
Windows API. When you need more direct access to the Windows API than
the MFC library provides-for example, when you want to make an API
call-you can call the API function directly. In fact, you can generally mix
calls to the MFC library quite freely with direct calls to the Windows API.

The MFC library is designed to be used as a tool for developing with the
Windows API, not as a substitute for the Windows API. It encapsulates
Windows functions only when there is a clear advantage in doing so. Be­
cause the MFC library makes as much use as possible offunctionalities
that are already built into the Windows API, MFC programs are relatively
small and fast-an accomplishment that many critics of C++ claimed was
impossible in the early days, when the C++ language was struggling to get
off the ground.

~I OTE During the early days of C++, some detractors leveled charges that
6f[~ C++ applications had to be big and slow. That never was true, and the MFC

library is one of many well-designed C++ class libraries that have become
showpieces of small, fast C++ code packages.

A. Brnef ~Dsfcorrlf of the MIFC library
Although the original designers of the MFC library might not have known
it, from the beginning the MFC library was destined to become what
Microsoft spokespeople now call the C++ API for Windows, or the "new
Windows API." The MFC library was designed from the ground up to use
only a subset of C++, which means that the MFC library does not attempt
to exploit every feature available in C++. For example, it does not support
multiple inheritance because this feature does not seem to fit in well with
the overall architecture of the MFC library.

Version 1.0 of the MFC library shipped with Microsoft C/C++ version 7.0-

the last version of C++ that Microsoft made available before the introduc­
tion of Visual C++. MFC version 1.0 contained just over 50 classes that
provided a basic encapsulation of the Windows API.

6: The M FC Library

MFC version 1.0 wasn't nearly as large or complex as its successors, but it
was designed with expandability in mind, so it was a good foundation for
future versions of the MFC library. MFC version 1.0 got C++ programmers
started with the MFC library by providing the following:

• Diagnostic classes

• Support for collections and strings

• A proprietary method of exception handling that could be modified
to accommodate future growth

• Basic Windows API classes for windowing and building simple
applications

MFC Version 2.0
MFC version 2.0, which was introduced along with Visual C++ version
1.0, is provided on the companion CD-ROM. MFC version 2.0, like MFC
version 1.0, is designed to be easily expandable and is a good foundation
for the future growth of the MFC library.

MFC version 2.0 added a great deal of new support for Windows-based
programming, including the following features:

• Support for a new document-and-view architecture. When you use
App Wizard to generate a Windows-based program, the application
framework created by App Wizard supports documents that can be
displayed in multiple views. For more information, see the section
"Using Documents and Views in MFC Programs" on page 192.

• A new set of architecture classes, including command classes, docu­
ment and view classes, dialog box classes, and form-view classes.
All these varieties of classes are described later in this chapter and
in subsequent chapters.

• Seamless integration with a new set of GUI (graphical user interface)
programming tools supported by Visual C++. These new tools in­
clude AppWizard, ClassWizard, arid the other graphics-based utili­
ties described in this chapter and in other chapters in this book.

171

Learn Visual C++ Now

172

MFC: The New Windows API
From the outset, the MFC library was designed in a more orderly way
than the traditional Windows API (which has been criticized-quite
justly-for being ,designed in some awkward and peculiar ways), and it
has a more orderly architecture. It neatly encapsulates functions provided
by the Windows API, arranges them in a structured and much more com­
prehensible order, and provides support for almost all Windows API pro­
cedures, including the following:

• Message management using message maps (which are covered in
Chapter 7, "Of Mice and 'Messages")

• Memory management, including both memory allocation and
cleanup operations after objects are destroyed

• Graphics, screen, and device I/O using simple encapsulation mecha­
nisms

.' Management of windows and controls using C++ classes

• Tasking operations

The MFC library's role in Windows-based applications
When you write an MFC application, you can let the MFC library handle
all your window management, messaging, and resource management.
The MFC library is equipped with C++ classes that encapsulate both
MDI (multiple-document interface) and SDI (single-document interface)
applications.

The MFC library also supports message management. MFC is equipped with
a powerful message-handling mechanism that can automatically map mes­
sages to member functions in C++ classes that you use in your application.
MFC also provides default responses for many commonly used messages.
This means that you don't have to write a handler for every message your
application uses. However, if you want a particular message handled in a
way that differs from the way that the MFC library handles it, you can al­
ways override MFC's default behavior and write your own message handler.

6: The MFC Library

In an MFC program, these are some of the tasks that MFC library classes
and member functions can perform:

• Trackmemory allocation.

• Report memory leaks.

• Track and report unfreed resources.

• Handle common types of I/O. The MFC library has a mechanism for
routing screen I/O to a particular part of an AppWizard-generated
application framework, where the application can implement its
own behavior.

• Provide built-in support for common types of file I/O operations,
such as the New, Open, and Save commands on the File menu.

The MFC library carries out these operations using member functions,
many of which encapsulate Windows API calls. These MFC member func­
tions can make your applications simpler and safer, at a cost of almost no
additional overhead.

The MFC library also simplifies the handling of Windows objects by tak­
ing on many data management chores. For example, many MFC library
classes use the this pointer provided by the C++ language to perform tasks
that rely on Windows handles in Windows API programs.

Handles, pointers, and the MFC library
In Windows API applications, handles are used to access various kinds of
Windows objects-windows, menus, icons, controls-and even items that
don't represent visible objects, such as instances of applications. In MFC
programs, these objects are not usually accessed with handles. More often,
they are accessed using pointers to C++ objects.

Suppose that an MFC application calls an MFC member function to create
a new Windows object. In turn, the MFC library calls a Windows API func­
tion, which creates the object and returns a handle to the object. When the
MFC function that called the Windows API function obtains a handle to
the object created, the handle is automatically stored in a public member
variable of the newly created object. Later, if the application that created

173

Learn Visual c++ Now

174

the object needs the new object's handle for some reason, the program can
retrieve the handle by accessing the public member variable in which the
handle has been stored.

In the sample code presented in this book, you'll see many examples of
how C++ pointers are used instead of handles in MFC programs. After you
become familiar with MFC programming, you'll rarely need to access the
handles of the objects that you use in your Visual C++ programs. But in
rare situations when you need access, it will be there.

Other parameters that are used in calls to Windows API functions are not
used in calls to MFC functions. Often the MFC library doesn't need the ex­
tra arguments because it already has the information that those arguments
would provide.

Although MFC applications and Windows API-style applications are
equipped with different sets of functions, the functions provided in the
MFC library have a familiar look if you're used to working with the Win­
dows API. The parameters that Visual C++ programs pass to MFC member
functions are similar to the parameters that are expected by corresponding
Windows API functions, with certain fairly consistent exceptions-such
as the fact that handle parameters are usually not required in calls to MFC
functions.

Secrets of the MFCGurus .

The designers of the MFC library used many clever tricks' to make
MFC small and fast. Here are a few:

·UsingWindows·data.handling-TheMFClibraryneverdupli­
cates any data that's' already used by Windows. '. Instead,MFC

. simply uses the data from Windows.

Calling Windows code7TheMFC library]J.evercl~plicates
operations that.Windows .• alrefidy .. provides; Therefo~~,MFC .

...... doesn't reinvent the wheel by re.~creating .0pe:rationsthatWi;n~
dowsalready hascode.tohandle.

6: The MFC Library

• Using inline functions to call the Windows API-As noted in
Chapter 3, "C++ Basics," C++ inline functions are short func­
tions that are embedded in your application at design time in­
stead of being called in the traditional way each time they are
accessed. In the MFC library, many calls to Windows API func­
tions are implemented as inline functions. This means that
when your MFC application is compiled and executed, it calls
Windows API functions directly whenever possible, instead of
calling an MFC function that calls a Windows API function.
Using inline code in this way increases the speed and effi­
ciency of MFC applications.

• Using macros when it makes sense to use them-C-language
macros are often handy and efficient substitutes for short func­
tions, but macros have received a lot of bad press because they
don't perform type checking. In C++, inline functions offer the
same advantages as C macros, with the added benefit of type
checking, so C++ programmers have even less reason to use
macros. However, there are times when it makes sense to use
them. For example, as you'll see in Chapter 7, "Of Mice and
Messages," the MFC libraryuses macros to map messages to
message handlers by embedding direct calls to message handlers
in your source code at design time. In this kind of message map­
ping, the lack of type checking that macros have been criticized
for poses no danger because all the macros used in the MFC
message-mapping system are thor01.~ghly debugged and are
placed in your code automatically. Used in this way, macros
are probably the speediest r:nessage-handling mechanism that
could be incorporated into a Windows-based prpgram.

The MFC Library Class Hierarchy
The MFC library is a set of more than 100 classes that are implemented in
more than 60,000 lines of code. Most of this code is encapsulated in C++
classes, and all of it is optimized, pretested, and ready to use in your Vi­
sual C++ programs.

175

Learn Visual c++ Now

176·

MFC's Afx Functions

The only functions in the MFC library that aren't encapsulated in
C++ classes are the Visual C++ application framework functions­
a special group of global functions. Afx functions, which begin with
the letters Afx,' are global functions that are provided to interface as
seamlessly as possible between the MFC library and the C-Ianguage
Windows API.

There are many Afx functions in the MFC library. For example, Afx­
MessageBox is a global function that displays a message dialog box.
Another Afx function is AfxWinMain, the MFC equivalent of the
WinMain function used in traditional Windows API-style programs.
You'll learn more about the WinMain function in the section "The
WinMain Function" on page 186.

Most classes in the MFC library are descended from a root class named
CObject, which some pundits have referred to as "the mother of all classes."
All classes descended from CObject inherit important capabilities, such as
built-in diagnostic capabilities and the ability to serialize files-that is, to
store them on disk and read them from disk automatically.

Some MFC library classes, such as CString and CTime, are not derived
from the CObject class because they do not require serialization capabili­
ties or the other features that derivation from CObject provides. (Both
CString and CTime are described in more detail in Chapter 7, "Of Mice
and Messages.")

~'Jil' IP By convention, the names of all classes provided in the MFC library be­
~4:!1 gin with a capital C. So if you create classes of your own that are not derived

from MFC library classes, it might be a good idea to start their names with
some other letter.

The classes in the MFC library can be divided into the categories listed in
Table 6-1. Many of the classes listed in the table are described in more de­
tail in later sections of this chapter and in Chapter 7.

Class Category

MFC framework classes

CObject (the MFC
library root class)

Windows application
class (CWinApp)

File classes

Collection classes

6: The MFC Library

Description

The MFC framework classes contribute to
the architecture of an application frame­
work. They are diagrammed in Figure 6-2

on page 181.

CObject is the root class of almost all
other classes in the MFC library.

Every Visual C++ application built with
the MFC framework has a single applica­
tion object. This object is always an
instance of the CWinApp class.

The MFC library provides file classes that
you can use to write functions for 110
processing. You won't have to use these
classes much if you let MFC handle file 110
for you. The four file classes provided by
the MFC library are CFile, CMemFile,
CStdioFile, and CArchive. They encapsu­
late functions that handle disk-file stor­
age, files stored in memory, file liD

operations, and file archiving.

Visual C++ supplies a large set of collec­
tion classes for handling aggregates of
data such as arrays, lists, string lists, and
collections of mapped data. These classes,
all derived from CObject, include
CObArrayand CObList (for C++ objects),
CStringList (for strings), and various
mapping objects such as CMapPtrTo Word,

. CMapWordToOb, and CMapStringToPtr.

Table 6-1. Categories of MFC library classes. (continued)

177

Learn Visual C++ Now

178

Table 6-1. continued

Class Category

Diagnostic classes

Exception classes

Miscellaneous support
classes

Command-related classes

Document classes

Description

The MFC library's diagnostic classes can
help you debug your application. The
diagnostic classes are CDumpContext
and CMemoryState.

The MFC library exception classes pro­
vide a set of exception-handling mecha­
nisms that are described in the Visual C++
Class Library Reference. The base class in
this group is CException. Other exception
classes include CArchiveException, CFile­
Exception, and CMemoryException.

The miscellaneous group of classes en­
capsulates strings, graphics coordinates,
and time and date information. It includes
the classes CPoint, CRect, CSize, CString,
CTime, and CTimeSpan.

These classes, and their descendants,
provide objects that encapsulate messages
to windows. There are two command­
related classes. One is CCmdTarget, which
serves as the base class for all classes of
objects that can receive and respon.d to
messages. The other class in this category,
CCmdUI, provides objects that can be
used to update user-interface objects such
as menu items and toolbar buttons.

Document classes are related to documents
and, indirectly, to views. (View classes
are described later in this table.) CDoc­
Template is the base class for document
templates, which are described in the
section "Using Documents and Views in
MFC Programs" on page 192. Other

Class Category

Visual object classes

Window classes

Dialog classes

View classes

6: The MFC Library

Description

classes in the document group include
CDocument, the base class for user-defined
document classes; CSingleDocTemplate,
used to create SDI applications; and
CMultiDocTemplate, used to create MDI
applications.

The visual object classes in the MFC
library provide user-interface objects such
as windows, dialog boxes, controls, and
menus.

All window classes are derived from
CWnd, the largest class in the MFC library.
Classes derived from CWnd include
CFrame Wnd, the base class for the main
frame window of SDI applications; CMDI­
Frame Wnd, the base class for the main
frame window of MDI applications; and
CMDIChildWnd, the base class for docu­
ment windows in MDI applications.

The base class CDialog and its descen­
dants encapsulate the implementations
of dialog boxes. Descendants of CDialog
include several classes that provide
standard dialog boxes for common opera-'
tions. Common-dialog classes include
CFileDialog, CPrintDialog, CFontDialog,
CColorDialog, and CFindReplaceDialog.

Objects created from the MFC library view
classes draw the client areas of frame
windows and provide input and output
for information stored in documents.
View classes include CView, CScrollView,
CEditView, and CForm View.

(continued)

179

Learn Visual C++ Now

180

Table 6-1. continued

Class Category

Control classes

Device-context classes

Drawing object classes

Menu class

The MFC Framework Classes

Description

The MFC library control classes encapsu­
late the functionality of common dialog
box controls. Control classes include
CStatic (for static controls), CEdit (for edit
controls), and CButton (for dialog box
button controls).

The MFC library device-context classes
encapsulate device-context objects pro­
vided in the Windows API. The base class
in the DC group is the CDC class, which
'encapsulates the graphical objects known
as HDC objects in C-language programs.
Other classes in the device-context group
include CClientDC, CPaintDC, CWindow­

DC, and CMetaFileDG. Chapter 10, "Visual
C++ Graphics," explains and illustrates
the use of the CDC class.

The MFC library drawing object classes
encapsulate handle-based GDI objects.
They are designed to be used with CDC

objects. The MFC library'S drawing object
classes are described in Chapter 10,

"Visual C++ Graphics."

CMenu encapsulates the functionality of
both drop-down and popup menus.

The MFC framework classes include a set of 10 classes that AppWizard
uses to instantiate objects every time it creates an application framework.
These classes are diagrammed in Figure 6-2.

6: The MFC Library

(View

Figure 6-2. The MFC framework class hierarchy.

The CObject Class
As mentioned, most of the classes in the MFC library-and alI'the classes
that App Wizard uses when it generates an application framework-are de­
rived from the CObject class. You can also derive your own objects from
the CObject class-and that is often a very good idea. Deriving your own
classes from the CObject class (or from MFC library classes derived from
CObject) can provide your classes with many useful features, such as sup­
port for serialization, availability of C++ class information at run time, and
retrieval of diagnostic information while you're debugging your programs.

These advantages don't cost much; the only overhead added by a CObject­
derived class is a few virtual functions and a single CRuntimeCiass struc­
ture. (The CRuntimeCiass structure makes it possible to create objects of
specified classes at run time and lets you retrieve information about ob­
jects and classes at run time.)

The CCmdTarget Class
CCmdTarget is a class with special capabilities for handling messages
and commands that are triggered by the user or originated by the system.
When Windows detects such an event, it dispatches an appropriate mes­
sage or command that is then passed to an object derived from the
CCmdTarget class.

Objects derived from CCmdTarget are the only kinds of objects that can
handle messages. If a message is dispatched and no CCmdTarget object
can be found to handle it, the system eventually handles the message by
executing a CWnd member function named DefWindowProc, wh,ich

181

Learn Visual c++ Now

182

handles the default processing of messages. The DefWindowProc proce­
dure is explained in more detail in Chapter 7, "Of Mice and Messages."

MFC library classes derived from CCmdTarget include CWinApp, CWnd,
CFrame Wnd, CView, and CDocument. Because all these classes are de­
rived from CCmdTarget, they al~ have built-in capabilities for handling
messages and commands. So whenever you create an application object, a
window object, a view object, or a document object in an MFC applica­
tion, your object has message-handling capabilities.

When you want to create a new class that needs to handle messages, you
can derive your class from one of the MFC library classes derived from
CCmdTarget. MFC applications don't often derive classes directly from
the CCmdTarget class, but they often instantiate objects from CCmd­
Target's child classes.

The CWinApp Class
In an MFC application, the CWinApp class encapsulates all functions that
make the application run and terminate. When an MFC framework appli­
cation starts up, one of the first things it must do is construct a CWinApp­
derived object. Before an MFC program creates any windows or other
objects, it must instantiate a CWinApp object. Only then can the program
perform any other kinds of actions.

In an MFC application, the most noteworthy feature of the program's
CWinApp-derived class is that it always overrides a CWinApp member
function named InitInstance. The CWinApp::lnitInstance member func­
tion initializes an MFC program by performing the following tasks:

• Loading standard file options from an .INI file, including the names
of the most recently used (MRU) files

• For an MDI application, creating a main frame window

• Processing the command line to open a document specified on the
command line or to open a new, empty document

• Creating document templates, which manage documents, views,
and frame windows

• Registering document templates that you have created

6: The MFC Library

Every MFC framework application overrides InitInstance to provide its
own particular set of functionalities. Typically, an MFC program overrides
InitInstance to construct its main window object and to set a CWinApp
member variable named m_pMainWnd to point to that window. When the
window that is pointed to by an application's m_pMainWnd member vari­
able is closed, the Visual C++ framework automatically terminates the
application.

The CWnd Class
When you create an MFC application, its main frame window and all its
child windows are instantiated either from the CWnd class or from its sub­
classes, such as CFrameWnd, CMDIFrameWnd, and CView. The dialog
boxes and -controls used in an MFC program are also instantiated from
classes derived from CWnd, such as CDialog, CButton, CControlBar, and
CToolbar. (Dialog box and control classes are covered in detail in Chapter
8, "Dialog Boxes," and Chapter 9, "Managing Data.")

Because the CWnd class is itself derived from the CCmdTarget class, ob­
jects derived from the CWnd class have message-handling capabilities _
built in. That means that CWnd-derived objects can implement message­
handler functions that are activated through message maps. In fact, most
messages in your MFC applications will generally be handled by objects
derived either directly or indirectly from the CWnd class.

When App Wizard creates an MFC framework, two CWnd-derived classes
are created: a class named CMainFrame that serves as the program's main
frame window, and a CViewclass from which the program's CViewobject
is created.

The CFrameWnd and CMDIFrameWnd Classes
CFrame Wnd, a child class of CWnd, is the base class of the main frame
window object used in every MFC application. When App Wizard creates
an SDI application, the program's only window is a main frame window
instantiated from the CWnd class. When you use App Wizard to create an
MDI application, the program's main frame window is an instance of the
CMDIFrame Wnd class, which is derived from CFrame Wnd. When App­
Wizard generates the framework for an MDI application, a class named
CMainFrame is automatically derived from the CMDIFrameWnd class.

183

Learn Visual C++ Now

184

The CView, CScrollView, and CDocument Classes
Every framework-based MFC application contains at least one object
derived from the poetic-sounding CView class. Objects derived from the
CView class have a special kind of relationship with objects derived
from the CDocument class. This relationship is based on the fact that
CDocument-derived classes are specially designed to help applications
store and manage data, whereas CView-derived classes are specially
designed to display that data in windows.

Because CView-derived objects and CDocument-derived objects work
together, every framework-based MFC application has at least one
CDocument-derived class as well as at least one CView-derived class.
Objects instantiated from CDocument-derived classes are often called
document objects, and objects instantiated from CView-derived classes
are often referred to as view objects.

In an MFC program, a single document class object can be associated with
multiple view objects. For example, a document used in a spreadsheet
program might have two kinds of view objects: one view object for dis­
playing spreadsheet data in cells on a grid, and another view object for
storing the same information in a graph.

The reverse is not true, however: an MFC program cannot associate mul­
tiple document objects with the same view object. When a view object in
an MFC program displays information, that information must always come
from the same document object; if information from a different document
object is to be displayed, it must be displayed using a different view object.

Because information stored in CDocument objects is often displayed in
windows, the CDocument class has a function named GetDocument,
which CView objects can use to access data stored in CDocumeizt objects.
To help applications print information stored in CDocument objects, the
CDocument class also has member functions that can automatically inter­
face applications with printers.

When App Wizard creates an MFC application, a view class derived from
CViewand a document class derived from CDocument are always created,
and files defining and implementing both classes are automatically cre­
ated and added to the project. The SCRAMBLE program introduced in

6: The MFC Library

Chapter 5 has a CView-derived class named CScramble View and a
CDocument-derived class named CScrambleDoc. The CScramble View
class is defined and implemented in a pair of files named SCRAMVW.H
and SCRAMVW.CPP, and the files that define and implement the
CScrambleDoc class are named SCRAMDOC.H and SCRAMDOC.CPP.

In the Chapter 5 version of the SCRAMBLE program, the CScramble View
class was derived from the CViewclass. In this chapter's version of the
program, CScrambleViewis derived from CScrollView, which is in turn
derived from the CView class. CScrollView is a class that includes scroll­
ing capabilities and all the capabilities of the CView class. We'll examine
the scrolling capabilities of the CScrollView class in the section "Adding
Scrolling to the SCRAMBLE Program's Views" on page 212.

The CDocTempiate Class
To associate document objectswith their corresponding view objects and
with the main frame window of your application, the MFC library provides
an object called a document template. Document templates provide infor­
mation that describes all the relationships that an MFC application has
with its main frame window, its documents, and its views. Document
templates are derived from the CDocTemplate class.

In an MFC application, each document that is created is associated with a
different document template. To keep track of the document template with
which a document is associated, the MFC framework uses a constant
called a document type.

When App Wizard generates an application fraffiework, App Wizard assigns
a type identifier to the one document type it creates. For example, this
chapter's SCRAMBLE program contains one type of document, which has
the type identifier IDR_SCRAMBTYPE. If an application creates additional
document types, it must create a new document template for each new
document type.

A document template identifies the resources (such as menu, icon, and
accelerator-table resources) that are used by the framework with that
document type. A document template also stores strings containing addi­
tional information about the document, including those listed on the
following page.

185

Learn Visual C++ Now

186,

• The name of the document type (for example, "Worksheet")

• The filename extension used to identify documents of the type
being created (for example, ". TXT")

• Other strings that might be needed to provide information about the
document type being created

How an MFC Program Works
One of the most puzzling problems that can confront an MFC novice is fig­
uring out exactly what happens when an MFC program starts. No matter
how'many times you search through the code that AppWizard creates for
an MFC framework, you'll never find a WinMain function, a WndProc
function, or any of the other kinds of functions that traditional Windows­
based programs have. In the framework code that AppWizard generates,
you also won't find a function that calls the program's InitInstance mem­
ber function. But we know that InitInstance has to be called in order for an
MFC program to execute. So how does InitInstance get called, anyway?

As you'll soon see, the answer is quite simple. Although AppWizard
doesn't generate any source code for a WinMain function or a window
procedure function when it generates an application framework, the object
code that's generated when you build a framework application does con­
tain a WinMain-style function and a WndProc-style function-and both
those functions work in exactly the same way that they work in traditional
Win~ows-based applications. You never see WinMain or WndProc in the
source code that App Wizard creates because those functions are not cre­
ated by AppWizard; instead, they're provided in object code libraries that
are linked with your application, and they're pulled into your application
from those libraries at link time.

The WinMain Function
In an MFC application, just as in a Windows API-style program, the Win­
Main function is the first function that executes. All other functions are
called, either directly or indirectly, from WinMain. When the WinMain
function ends, the application terminates.

6: The MFC Library

Where's My WinMain Function?

Although every MFC application function contains a WinMain func­
tion, you don't have to write.it, and neither does AppWizard. That's
because the WinMain function is prewritten and precompiled and is
provided in a statically linked library that's shipped with Visual C++.
When you build a framework-based MFC application, the Visual C++
compiler binds the WinMain function's object code to the executable
code of the application itis building. S~ no one has to write (or gen­
erate) any source code to implement the MFC library's WinMain
function.

Because the WinMain function is provided in an object code library
and is bound to your application's code at link time, you can't find it
by searching through the files that AppWizard has created for your
application-it simply isn't there. Fortunately, though, the MFC li­
brary does provide a way for you to examine an application's WinMain
function so that you can see how it works. In fact, Microsoft provides
the complete source code for all MFC library classes and member
functions in every copy of Visual C++ it distributes. That's a big bene­
fit to developers of MFC programs. In fact, it's vital; neither the Vi­
sual G++ debugger nor the Vis,ual C++ Source Browser would work
properly if Microsoft did not provide the source code for all the classes
and global functions tha.t are implemented in. the MFC library.

You can track down the MFC source code by opening the MSVC
folder on the companion CD-ROM and then opening the MFC sub­
folder. Inside theMFC folder, you'll find the SRC folder, which con­
tains all the MFC implementation files. The source code for the MFC
library's WinMainmemberfunction is in a file named WINMAIN. CPP.
Qtherimportant functions are defined in the APPCORE.CPP file, in­
cluding CWinApp::Run andCWinApp::PumpMessage, which are dis­
cussed later in this section.

(continued)

187

Learn Visual C++ Now

188

Where's My WinMain Function? continued

The header files thatdefinetheMFCdassesarealsoprcrvided inthe
MSVC\MFC folder. To find therrt, look insidetheINCLlJDEfolder.
The object code libraries that your application links ~ith toaqqess
the MFC library are theretoo; to locate the object code libraries,lo()k
in the MSVC\MFC\LIB folder.

The MFC sourcecodethatis.provid~dintheMSVC\:MFC\SRC and
MSVC \MFC\INCLUPE Jolders can be very usefulinIllany different
kinds·of situations. F6rexample, when you'redebllgginganMFC
program and an error halts yourdebuggerata line of code.ina source'
file, you'll often findthat the function in wbjchthe debugger has '
halted is one that you didn't write andthat you knowabs9lutely,
nothing about. When'thathappens,Visual C++novic~~areoften "
puzzled (or panic-stricke~!)because they don'tre~liz~that this\func­
tion is anMFC function that is definedinMSVC\MFC\INCLUDE
and implementedin MSVC\MFC\SRC:To helpp~~venfthiskilld of
confusion, it's a good idea to learn, what kinds of source files ,are kept
in the MSVC\MFC\SR<:; and MSVC\MFC\INCLUDE folder:s:and" '
what the most common functions in those .foldersd6.

When a framework-based MFC application starts, its WinMain function
creates a CWinApp-derived object for the application that is being exe­
cuted. WinMain creates this object by calling the global function AfxGet­
App to obtain a pointer to the current instance of the application. Then
WinMain calls the global function AfxWinlnit to perform some important
initialization procedures such as obtaining an instance handle and setting
the CWinApp::m_nCmdShowmember variable, which specifies some dis­
play settings for the application's main frame window. After creating the
CWinApp-derived object, WinMain calls CWinApp::lnitInstance to initial­
ize the application.

The Initlnstance Member Function
The InitInstance function performs a number of tasks. First it calls a CWin­
App member function named SetDialogBkColor to set the background color
of the program's dialog boxes to gray. Then InitInstance calls a member

6: The MFC Library

function named LoadStdProfileSettings to enable and load the program's
most recently used file list and the last preview state. After that the Init­
Instance member function calls the CWinApp::AddDocTemplate function
to create a document object for the application and to associate that docu­
ment with the program's main frame window class and view class. (You'll
learn more about the AddDocTemplate function in the section "Document
Templates" on page 197.)

When all that processing is complete, InitInstance executes a series of
statements to create and open a main frame window and then calls a mem­
ber function named OnFileNewto create a document. When that is done,
the InitInstance function provides an if clause in which you can place any
command-line processing statements you need and then returns TRUE.

Next WinMain calls another CWinApp member function, named Run,
which contains the main message loop of the program being executed. The
message loop inside t?e Run member function cycles repeatedly until the
user terminates the application. Run then returns control to WinMain,
which terminates the program.

When all that is done, WinMain checks to see whether the application has
any global initializations to be performed (a rare requirement).

The Run Member Function
One of the most important statements in an MFC application's WinMain
function is the following:

nReturnCode = AfxGetApp()->Run();

When this statement executes,WinMain calls a CWinApp member func­
tion named Run, which is defined in the APPCORE.CPP file. Listing 6-1

shows the source code for the CWinApp::Run member function.

int CWinApp::Run()
{

if (m_pMainWnd == NULL)
{

}

TRACE0("Warning: 'm_pMainWnd' is NULL in CWinApp::Run"
" - quitting application\n");
::PostQuitMessage(0);

Listing 6-1. The CWinApp::Run member function. (continued)

189

Learn Visual C++ Now

190

Listing 6-1. continued

Iii fdef _DEBUG
if (lafxData.bWin31 && !afxData.bWin30Compat)
{

}

TRACE0("Warning:running program under Win3.0 but without\n"
"the 'AfxEnableWin30Compatibility(), API being called\n"
"Program may not behave correctly under Win3.1\n"
"Pl ease refer to MFC Techni ca 1 Note TN034 \n") ;

I!endif II_DEBUG

}

II acquire and dispatch messages until
II a WM_QUIT message is received

for (; ;)
{

}

LONG lIdleCount = 0;
II check to see if we can do idle work
while (!::PeekMessage(&m_msgCur. NULL. NULL. NULL.

{

}

PM_NOREMOVE) && OnIdle(lIdleCount++»

II more work to do

II either we have a message. or OnIdle returned false

if (!PumpMessage(»
break;

return ExitInstance();

An MFC framework application spends most of its time in its WinMain
function, and WinMain spends most of its time executing the Run member
function of the CWinApp class.

After the Run member function does some error checking, it calls a mem­
ber function named OnIdie, which your application can override if it needs
to do some processing during idle CPU time. Operations that make use of
timers are often carried out inside overrides of the OnIdie member function.

The Pump Message Member Function
When OnIdie has been called, Run calls the CWinApp member function
named PumpMessage. The PumpMessage member function, as its name

6: The MFC Library

implies, is a message pump-a loop that retrieves event messages from
the Windows message queue one by one and dispatches them to message
handlers.

Message pumps are not unique to MFC programs; they are also used in
traditional Windows API-style programs. (API-style message pumps were
introduced in Chapter 2, "Introduction to Windows Programming.") The
PumpMessage member function in a framework-based MFC application is
a little longer than a conventional API-style message pump, but it does es­
sentially the same kind of work. Listing 6-2 shows the source code for the
PumpMessage function in the MFC library's APPCORE.CPP file. Pump­
Message does more error checking than a conventional API-style message
pump, but it too winds up calling TranslateAccelerator, TranslateMessage,
and DispatchMessage, the same functions called in an old-fashioned Win­
dows API message pump.

Baal CWinApp::PumpMessage()
{

lIifdef _DEBUG
if (m_nDisablePumpCount != 0)
{

}

lIendif

TRACE0("Error: CWinApp::PumpMessage() called when"
"not permitted\n");
ASSERT(FAlSE);

if (!::GetMessage(&m_msgCur. NUll. NUll. NUll»
{

lIifdef _DEBUG

lIendif

}

if (afxTraceFlags & 2)
TRACE0("PumpMessage - Received WM_QUIT\n");

m_nDisablePumpCount++; II application must die
II NOTE: prevents calling message loop;
II things in 'Exitlnstance'
II will never be decremented

return FALSE;

Listing 6-2. The MFC PumpMessage member function. (continued)

191

Learn Visual C++ Now

192

Listing 6-2. continued

lIifdef _DEBUG
if (afxTraceFlags & 2)

_AfxTraceMsg("PumpMessage". &m_msgCur);
lIendif

}

II process this message
if (!PreTranslateMessage(&m_msgCur))
{

}

::TranslateMessage(&m_msgCur);
::DispatchMessage(&m_msgCur);

return TRUE;

Window Procedures in MFC Programs
As mentioned in Chapter 2, "Introduction to Windows Programming," ev­
ery Windows API-style program has one window procedure function­
usually named something like WndProc-for each type of window the
program uses. These functions typically contain a long switch statement
that analyzes each message received from a function named GetMessage
and routes the message to an appropriate message handler.

In Visual C++, you'll be happy to hear, you'll never have to write another
window procedure or another monster switch statement for routing mes­
sages to the proper message handlers. In framework-based MFC applica­
tions, the framework creates all the window procedures it needs without
any help from you. And instead of using long switch statements to route
messages, Visual C++ uses a mechanism called a message map, which
you'll learn all about in Chapter 7, "Of Mice and Messages."

Using Documents and Views in MFC Programs
At the heart of every framework-based Visual C++ application is a pair of
objects called a document and a view. As mentioned, a document is an ob­
ject that manages the data used by an application, and a view is an object
that manages the display of that data on the screen.

In an MFC program, a document is always an object that is derived from
the CDocument class, and a view is always an object derived from the
CView class or from a child class of the CView class, such as CScrollView,
CFormView, or CEditView. Figure 6-3 shows how a document and a view
work together in an MFC application.

6: The MFC Library

Document

I Portion of documentl
currently visible I

1

-~-- ------------------------------...... -..

Figure 6-3. How a document and a view work together in an MFC application.

Document objects
As Figure 6-3 illustrates, documents and views are very closely linked in
Visual C++ applications. The CDocument class provides CDocument­
derived objects with member functions that can automatically read docu­
ments from a disk, save documents on a disk, and perform other kinds of
document-related operations. To load a,nd save data, CDocument-derived
objects use serialization, which is described in more detail in Chapter 7,

"Of Mice and Messages."

View objects
In an MFC application, the view object is the user's window into data
stored in a document. When a window contains text or graphics data that
can be updated by the user and stored on a disk, a well-behaved Visual
C++ program stores that data in a document object and displays it using
the view object that the application derives from the CView class or from
a child class of CView. In an MFC program, a view object determines how
the data in a document object is displayed and provides GUI tools that let
the user interact with that data.

193

Learn Visual C++ Now

194

Creating views for SOl and MOl applications
When you generate a Visual C++ framework using AppWizard, the App­
Wizard utility displays a dialog box that lets you specify whether you
want to create an SDI program or an MDI program. (For details, see Chap­
ter 5, "Visual C++ Tools.") If you tell AppWizard to create an SDI applica­
tion, AppWizard derives your application's main frame window from
MFC's CFrameWnd class. If you tell AppWizard to build an MDI applica­
tion, AppWizard derives your program's main frame window from the
CMDIFrame Wnd class.

This chapter's SCRAMBLE program is an MDI application, so its
CMainFrame window is derived from the CMDIFrame Wnd class. The
MAINFRM.H file that defines the SCRAMBLE program's CMainFrame
class is shown in Listing 6-3.

MAINFRM.H

// mainfrm.h : interface of the CMainFrame class
//
////////////////////!!////////////////////////////!///III/III/II

classCMainFrame : public CMDIFrameWnd
{

DECLARE_DYNAMIC(CM~inFrame)

public:
CMainFrame();

// Attributes
public:

/1 Operations
publ i c: '

/f Implementation
public:

virtual -CMainFrame();
ffoifdef_DEBUG

virtual void AssertValid() const;
vi~tual void Dump(CDumpContext& dc) const~

flendif

Listing 6-3. The MAINFRM.H file.

6: The MFC Library

protected: // control bar embedded members
CStatusBar m_wndStatusBar:
CToolBar m_wndToolBar:

// Generated message map functions
protected:

} :

//{{AFX_MSG(CMainFrame)
afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);

// NOTE - the ClassWizard will add and remove member
// functions here.
// DO NOT EDIT what you see in these blocks of
// generated code

//}}AFX_MSG
DECLARE_MESSAGE_MAP()

///

If your program uses multiple views, you can derive more document frame
window objects from the document class that App Wizard creates for you.
To do that, you modify the CDocTemplate object that AppWizard creates.
For more information about CDocTemplate objects, see the section "Docu­
ment Templates" on page 197.

Creating scrolling views
The CView class is derived from the MFC library's CWnd class. Because
CScrollView, 'CFormView, and CEdit Vie w are derived from CView, they
also inherit member functions from the CWnd class.

In Chapter 5's SCRAMBLE application, the program's view object was
derived from the CView class. In this chapter's SCRAMBLE program, as
you'll see in the section "Adding Scrolling to the SCRAMBLE Program's
Views" on page 212, the view object used by the application is derived
from the CScrollView class.

The OnlnitialUpdate member function
In an MFC application, the best place to initialize a view is in an override
of a virtual member function of the CView class, named OnlnitialUpdate.
When you execute a framework-based MFC application, the program's
framework calls the CView::OnlnitialUpdate member function after the

195

Learn Visual C++ Now

196

application's view has been created and has been attached to its corre­
sponding document object but before any other view-related processing
takes place. That makes the OnlnitialUpdate member function a good place
to perform many different kinds of view-object initialization operations.

When a view is derived from CScrollView rather than from CView-as the
view in this chapter's SCRAMBLE program is-it is usually a good idea to
specify the size of the view in your application's override of the Onlnitial­
Update member function. Why? Because the size of a view is often based
on the size of the document object that is associated with the view. Be­
cause OnlnitialUpdate is called after the document associated with a view
has been created but before any other view-object initialization takes
place, OnlnitialUpdate is an ideal place to set the size of a view when that
size depends on the size of the associated document object.

To override the CView::OnlnitialUpdate member function, an MFC appli­
cation must declare its overridden function in the header file associated
with its view object. In this chapter's version of the SCRAMBLE program,
an overridden OnlnitialUpdate member function is defined in the SCRAM­
VW.H file, the include file that defines the program's CScrambleView
class. Here is the OnlnitialUpdate function definition that appears in
the SCRAMVW.H file:

void OnlnitialUpdate();

This chapter's SCRAMBLE program implements its OnlnitialUpdate over­
ride in its SCRAMVW.CPP file-the implementation file for the program's
CScramble View objects. The following code shows what the implementa­
tion of the OnlnitialUpdate function looks like in the SCRAMVW.CPP file:

void CScrambleView::OnlnitialUpdate();
{

}

CScrollView::OnlnitialUpdate()
SetScrollSizes(MM_TEXT, CSize(500, 500»;

The OnlnitialUpdate function shown above sets the logical size of MDI
child windows to 500 pixels high by 500 pixels wide. If a child window
is physically smaller than one of these dimensions, a corresponding scroll
bar appears in the window. If a child window is physically larger than
these dimensions, it will contain no scroll bars.

6: The MFC Library

MI OTE In the MFC library, a CSize object is an object that can be used to de­
CiI'-i fine the width and height of any rectangular object. A CSize object has two

member variables: ex, which defines the object's width, and ey, which de­
fines the object's height.

Document Templates
As mentioned, a framework-based Visual C++ program manages docu-
ments using an MFC object called a document template. A document tem­
plate is an object of the MFC CDocTemplate class. In an MFC application,
a document template creates and manages all open documents of a par­
ticular type. Different types of documents require different document tem­
plates. For example, if an application supports both spreadsheets and text
documents, a document template for each kind of document must be cre­
ated. When a document template is created for a particular type of docu­
ment, that document template handles the creation of all documents of
that type and manages the views and frame windows that are associated
with those documents.

I~I OTE A Visual C++ document template is not the same as a C++ template. A
ctr~ C++ template is a container-class construct that Visual C++ version 1.0 does

not support (although later versions do). A Visual C++ document template is
quite different-it's an MFC object that manages documents in a Visual C++
program.

To create the document templates that are to be used in an MFC applica­
tion, you call the CWinApp member function AddDocTemplate. In the
SCRAMBLE program, the following statement in the SCRAMBLE.CPP file
calls the CWinApp:: AddDocTemplate member function:

AddOocTemplate(new CMultiOocTemplate(lOR_SCRAMBTYPE.
RUNTlME_CLASS(CScrambleOoc).
RUNTlME_CLASS(CMOlChildWnd). II standard MOl child frame
RUNTlME_CLASS(CScrambleView)));

In the code above, it looks as if AddDocTemplate takes multiple parame­
ters, but that's because the one parameter that the AddDocTemplate mem­
ber function takes is constructed inside the function's argument list.
There's only one argument being passed to AddDocTemplate: a pointer to
an object of a CDocTemplate-derived class named CMultiDocTemplate.

197

Learn Visual C++ Now

198

In an MDI application, the argument passed to AddDocTemplate is a
pointer to a CMultiDocTemplate object. In an SDI program, the pointer
that is passed to AddDocTemplate is a pointer to an object of the
CSingleDocTemplate class.

A CSingleDocTemplate object can create and store one document of one
type at a time. In contrast, a CMultiDocTemplate object can maintain a list
of many open documents of the same document type. The SCRAMBLE
program is an MDI application, so the pointer pas~ed to AddDocTemplate
in the preceding code is a pointer to a CMultiDocTemplate object.

Some applications support multiple document types. For example, an ap­
plication might support text documents and graphics documents. In such
an application, when the user chooses the New command from the File
menu, a dialog box is displayed that shows a list of possible new docu­
ment types to open. For each supported document type, the application
uses a distinct document template object.

If your application needs to support two or more document types, you
must add an extra call to AddDocTemplate for each document type.

Passing arguments to AddDocTempiate
Although the CWinApp::AddDocTemplate member function takes just one
argument, the constructor of the CMultiDocTemplate class-which is called
inside the argument list in the preceding code-takes four arguments. Those
four arguments are a resource identifier and three objects of a class named
CRuntimeClass. (CRuntimeClass is a class in which you can store impor­
tant information about a dynamically created class.)

The resource ID number passed to the CMultiDocTemplate constructor is a
constant that identifies a string resource. This string resource is made up
of a series of strings that provide various kinds of information about the
resources used by the type of document that is associated with the docu­
ment template's resource. Information stored in a document template's
string resource can include information about menus, icons, accelerator
tables, and other string resources.

If you're interested in seeing exactly what kinds of substrings are included
in a document template's string resource, you can obtain such a list by

6: The MFC Library

consulting the CDocTemplate entry in the Visual C++ online help. Alter­
natively, you can call the CDoc Templa te::GetDocString member function,
which returns the string resource of whatever CDocTemplate you specify.

How document templates work
Whereas the user of an MFC application creates a new document by
choosing the New or Open command from the File menu, the application's
document template creates not only a document but also a frame window
in which the document can be viewed.

The constructor of a document template specifies what types of documents,
windows, and views the template can create. This capability is determined
by the arguments you pass to the document-template constructor. Look
again at the call to the AddDocTemplate function in the SCRAMBLE
application, shown here:

AddDocTemplate(new CMultiDocTemplate(IDR_SCRAMBTYPE,
RUNTIME_CLASS(CScrambleDoc),
RUNTIME_CLASS(CMDIChildWnd)
RUNTIME_CLASS(CScrambleView»);

In this example, a pointer to a new CMultiDocTemplate object is passed as
an argument to CWinApp::AddDocTemplate. Arguments to the CMulti­
DocTemplate constructor include the resource ID associated with the
document type's menus and accelerators and three uses of the RUNTIME­
_CLASS macro. RUNTIME_CLASS returns the CRuntimeClass object for
the C++ class named as its argument. The three CRuntimeClass objects
passed to the document-template constructor in the preceding code sup­
ply the information needed to create new objects of the specified classes
during the document creation process-in this case, CScrambleDoc ob­
jects with CScrambleViewobjects attached. The views are framed by stan­
dard MDI child frame windows.

When a Visual C++ application is running, its document 'templates contain
pointers to the CRuntimeClass objects used by the application's document,
view, and frame window classes. To obtain a pointer to a CRuntimeClass
object, an application must call the Visual C++ macro RUNTIME_CLASS.

199

Learn Visual C++ Now

200

Example: The Improved SCRAMBLE Program
Many of the topics we have examined up to now are demonstrated in this
chapter's version of the SCRAMBLE program-a sample application that
builds on the SCRAMBLE application introduced in Chapter 5.

SCRAMBLE has some pretty fancy features, and they are all described and
demonstrated in this section.

Experimenting with the New SCRAMBLE Program
The SCRAMBLE program presented in Chapter 5 displayed only one
bitmap, but this chapter's version of the program can open and display
many bitmaps, in individual document windows, simultaneously. Amaz­
ingly, about all that was needed to add this new capability was to provide
some additional bitmaps and create some new menu items and message
handlers to display them. Once that was done, the application's MDI
framework took over the job of opening and displaying all these bitmaps
and managing their individual views and windows.

You can see how well the framework did its part of the work by executing
the program and playing around with it a little. In this new version of the
SCRAMBLE program, you can open as many windows as you want by
choosing the New Window item from the Window menu, and you can close
windows in any order by choosing the Close item from the File menu or by
clicking the Close box of any window you want to close. You can move
windows in front of each other, resize them, and scroll them, and you can
clear any bitmaps that are displayed in the program's various windows by
choosing the Clear item from the Background menu. You can also change
the bitmap shown in any window to another bitmap simply by bringing a
window to the front and choosing a different Background menu item.

And you can use a slick-looking Color dialog box to place solid-color
bitmaps in windows-even bitmaps displayed in custom colors that you
design. But that's a different topic, coveredlater in this chapter.

How Windows Are Managed
in the New SCRAMBLE Program
Although this chapter's SCRAMBLE program can handle multiple win­
dows, it didn't take much work to write the code that creates and manages

6: The MFC Library

them. In Chapter 5, "Visual C++ Tools," you learned how to load and dis­
play bitmaps in a Visual C++ application. You also learned how to create
menu items using App Studio and how to connect menu items to message
handlers using ClassWizard. In this chapter's version of the SCRAMBLE
program, if you've displayed one bitmap, you've displayed them all. All
the other bitmaps used in SCRAMBLE are displayed using the same tech­
niques described in Chapter 5.

Adding Toolbar Buttons to the SCRAMBLE Program
A toolbar is a cool gadget that you can create with little effort when you
program in Visual C++. When you generate a Visual C++ program using
AppWizard, AppWizard automatically creates a toolbar that contains a
standard set of toolbar buttons for file-management operations, editing
operations, printing functions, and help files. To learn more about the
standard toolbar buttons created by AppWizard, choose the Visual Work­
bench item from Visual Workbench's Help menu.

The SCRAMBLE program's toolbar
This chapter's SCRAMBLE program's toolbar is shown in Figure 6-4. Along
with the standard toolbar buttons created by AppWizard, SCRAMBLE has
five additional toolbar buttons, one for each bitmap that you can open
when you run the program. The bitmaps are named Arches, Oldwest,
Castle, Space, and Color.

Figure 6-4. The SCRAMBLE program's toolbar.

When you create a program using AppWizard, you don't have to do any­
thin"g to create a toolbar; AppWizard does it for you. All you have to do is
add whatever buttons you need to the toolbar App Wizard has provided.
Follow these steps:

1. Open Visual Workbench if it isn't already open.

2. Open a project that AppWizard has generated.

3. Open App Studio by choosing the App Studio item from the Tools
menu.

201

Learn Visual C++ Now

202

4. Open the toolbar bitmap for your project's main frame window by
clicking on Bitmap in App Studio's Type list box and then double­
clicking on IDR_MAINFRAME, as shown here:

5. When you edit a toolbar bitmap in App Studio, App Studio's graphics
editor uses a splitter window (a window that can be divided into two
or more panes) that displays a toolbar in two different sizes. If nec­
essary, move the splitter window's divider to display at least part of
the large bitmap in the window's right-hand panel, as shown here:

6: The M FC Library

6. Choose the graphic editor's Grid Settings item from the Image menu,
and then check the Tile Grid check box, as shown below, to divide
the editor's large toolbar bitmap into a series of tiled grids separated
by thin blue lines. By default, each grid measures 16 pixels wide by
15 pixels high-just the right size for a row of tool bar buttons. Click
the OK button.

7. Scroll to the end of the toolbar bitmap. Position the cursor over the
middle handle on the right edge of the large bitmap, and slide the
handle to the right, opening up a new space on the large bitmap dis­
played in the graphics editor, as shown here:

8. Select the Pick tool (the dotted rectangle) in the graphics palette, as
shown on the following page. (If the graphics palette is not dis­
played, open it by choosing the Show Graphics Palette item from
the Window menu.)

203

Learn Visual c++ Now

204

9. Scroll the bitmap until the printer and help images appear in the
window. Using the mouse, select the printer and help images on the
toolbar bitmap, and then move both images one tile to the right, open­
ing up a space for a new toolbar button just to the left of the printer
image. When you have completed this step, your toolbar should
look something like the one shown here:

6: The MFC library

Now you can use the graphics palette to draw a new button inside the
space you have opened up on your application's toolbar. Repeat steps 7

through 9 to add one button for each bitmap.

Adding bitmaps to the Background menu
After you have created the new bitmaps, create new menu items that
correspond to your new bitmaps on the toolbar by following these steps:

1. Open App Studio from the Tools menu.

2: Select Menu from the Type list box, and then select IDR_SCRAMB­
TYPE from the Resources list box.

3. Click on the Background menu to add the bitmaps, and then click
on the Clear option of the Background menu.

4. Press the Ins key, type the name that you want to give the bitmap
(such as Oldwest), and then press Enter.

5. Repeat these steps for all your new bitmaps. (For SCRAMBLE, you
would also add the Castle, Space, and Color bitmaps.)

6. Use Class Wizard to add functions that respond to the menu item
being opened. In this example, you would add OnBackground­
Castle, OnBackgroundOldwest, and OnBackgroundSpace by follow­
ing the same steps you used to add OnBackgroundArches in the
section "Creating Message Handlers with ClassWizard" on page 152

in Chapter 5.

Connecting toolbar buttons to menu commands
After you have created the toolbar buttons and added menu items for
them, your next job is to associate the buttons with the menu items. That's
a much easier job than creating the buttons. To wire your toolbar button to
menu commands, follow these steps:

1. Open your project's MAINFRM.CPP file, and find a block of code
that looks like that shown on the following page.

205

Learn Visual C++ Now

206

II tool bar buttons - IDs are command buttons
static UINT BASED_CODE buttons[] =
{

} ;

II same order as in the bitmap 'toolbar.bmp'
I D_FI LE_N EW ,
ID_FILE_OPEN,
ID_FILE_SAVE,

ID_SEPARATOR,
ID_EDIT_CUT,
ID_EDIT_COPY,
ID_EDIT_PASTE,

ID_SEPARATOR,
ID_FILE_PRINT,
ID_APP_ABOUT,

If you think that looks like a set of menu items, you're right. It's a
block of code that AppWizard generates when it creates the default
menu items and toolbar buttons for an application framework. Its
purpose is to associate the menu items that App Wizard has created
with their corresponding toolbar buttons. (Notice that spaces be­
tween toolbar buttons are indicated by the ID_SEPARATOR con­
stant.) When you want to insert a new button in a toolbar that
App Wizard has created, you simply add an entry for your new
toolbar button in this block of code.

2. Modify the block of code in step 1 to look like the code below. (In
this example, taken from this chapter's SCRAMBLE program, one
separator and four new buttons have been added to the program's
toolbar.)

II toolbar buttons - IDs are command buttons
static UINT BASED_CODE buttons[] =
{

II same order as in the bitmap 'toolbar.bmp'
I D_FI LE_N EW ,
ID_FILE_OPEN,
ID_FILE_SAVE,

ID_SEPARATOR,
ID_EDIT_CUT,
ID_EDIT_COPY,
ID_EDIT_PASTE,

ID_SEPARATOR,
ID_BACKGROUND_ARCHES,
ID_BACKGROUND_OLDWEST,
ID_BACKGROUND_CASTLE

6: The MFC Library

} ;

ID_BACKGROUND_SPACE.
ID_BACKGROUND_COLOR.

ID_SEPARATOR.
ID_FILE_PRINT.
ID_APP_ABOUT.

When you create new toolbar buttons and add them to your appli­
cation's code, it's important to remember that the entries you make
in your code must match the order of the toolbar buttons. Otherwise
the toolbar buttons will match the wrong entries in your code, and
your toolbar won't work properly. It's also important to remember
that before you try to connect a toolbar button to a menu item, you
must have a menu item to connect it with. So before you start creat­
ing toolbar buttons, be sure you have already created their corre­
sponding menu items and have connected each menu item with a
message handler. That way, as soon as you create a toolbar button, it
will be ready to use.

3. Recompile your application and run it. That's all there is to it. Your
new toolbar buttons should work just fine.

Updating the SCRAMBLE Program's Menu Items
One neat feature of this chapter's SCRAMBLE program is that its menu
items update themselves; each time you open a bitmap in a window or
bring a window containing a bitmap to the front, a check mark appears
next to the menu item bearing the name of the bitmap in the window. It's
easy to add this feature to a framework-based MFC program. Here's how:

1. Open a project in Visual Workbench.

2. Open ClassWizard by choosing the ClassWizard command from the
Browse menu.

3. Verify that the name of the class associated with your menu item
appears in the Class Name list box. (In this case, the CScrambleDoc

class is selected because it's the class that contains the message han­
dler for the selected menu command.)

4. Click the Object ID you want to work on, and then double-click the
UPDA TE_ COMMAND _ UI message in the Messages list box.

207

Learn Visual C++ Now

208

5. Assign a name to your menu-updating command when ClassWizard
prompts you for one ,(the default name is usually sufficient), and

then click OK.

6. Open the implementation file associated with your menu item by
clicking the Edit Code button. ClassWizard then opens your imple­

mentation file at the spot at which it has inserted the menu-update
command you requested. For example, to create an updating func­

tion for the Arches menu item in the SCRAMBLE program, Class­

Wizard inserted the following function, which it named
On UpdateBackgroundArches:

void CScrambleDoc::OnUpdateBackgroundArches(CCmdUI* pCmdUI)
{

II TODO: add your command update UI handler code here
}

7. Add m_uBkgID to the public section of the SCRAMDOC.H file as
follows:

UINT m_uBkgID;

8. Write the code that carries out whatever updating operation you

~ant to execute. For example, in the SCRAMBLE program, here is
the menu-updating function:

void CScrambleDoc::OnUpdateBackgroundArches(CCmdUI* pCmdUI)
{

}

if (m_uBkgID == IDB_BITMAP!)
pCmdUI-)SetCheck(TRUE);

else (pCmdUI-)SetCheck(FALSE»;

9. Add the following line at the beginning of the OnBackgroundArches
function:

m_uBkgID = IDB_BITMAP!;

10. Repeat steps 8 and 9 for each background type. In SCRAMBLE, you
would replace IDB_BITMAPl with the following:

~ IDB_BITMAP2 in functions pertaining to the Oldwest bitmap

m IDB_BITMAP3 in functions pertaining to the Castle bitmap

m IDB_BITMAP4 in functions pertaining to the Space bitmap

6: The MFC Library

The On Update function might look a little cryptic at first, but it is actually
quite simple. The most important thing to remember is that every time the
user opens a menu, the Visual c++ framework checks to see whether the
class associated with the menu item has any menu-updating member func­
tions. If the application,has any such member functions, the framework
executes them.

For example, when the user of the SCRAMBLE program opens a menu, the
application executes the On Up da teBackgroun dArches member function,
along with any other menu-updating member functions that might exist in
the CScrambleDoc class. As it turns out, the CScrambleDoc class has five
menu-updating member functions-one for each of its bitmaps. And the
application's framework executes that entire group of menu-updating
member functions every time the Background menu is opened.

As mentioned, when the SCRAMBLE program loads and displays the
Arches bitmap, it sets an integer member variable named m_uBkgID to a
value represented by the constant IDB_BITMAP1. Subsequently, when the
OnUpdateBackgroundArches member function is executed, it checks to
see whether the value of the m_uBkgID member variable is set to the value
of the constant IDB_BITMAP1. If true, the application places a check mark
next to the Arches menu item by calling an MFC member function named
SetCheck and passing the function a parameter of TRUE. If the m_uBkgID
member variable is not set to the value IDB_BITMAP1, SetCheck is called
with a FALSE parameter, and if a check mark already appears beside the
Arches menu item, it is removed.

Each time the Background menu item is opened, this process is carried out
not only for the Arches menu item, but also for every menu item that is as­
sociated with an update UI command message handler. The result of this
is that all the appropriate Background menu items are checked and un­
checked each time the Background menu opens.

The MFC library contains similar functions for activating and deactivating . .

menu items and for performing other similar kinds of operations. For de-
tails, consult the online help.

209

Learn Visual C++ Now

210

Creating Solid-Color Bitmaps for the SCRAMBLE Program
If you've experimented with this chapter's version of the SCRAMBLE pro­
gram, you might have noticed that it has a Color item on the Background
menu that creates solid-color bitmaps. When you choose the Color item,
the program displays an impressive dialog box called the common Color
dialog box. In Windows 95, the common Color dialog box is similar to the
one shown in Figure 6-5. It might look slightly different in other versions
of Windows.

Figure 6-5. The common Color dialog box.

The Color dialog box shown in Figure 6-5 is called a common dialog box
because the Windows operating system shares it with user-written appli­
cations. It is one of several common dialog boxes that the MFC library pro­
vides. Other common dialog boxes that are often used in Visual C++
programs are the Open and Save As dialog boxes. Y ou'lllearn how to use
the common Open and Save As dialog boxes in Chapter 7, "Of Mice and
Messages."

The common Color dialog box is another case in which the MFC library
does almost all the work and lets your application take the credit. To use

6: The MFC Library

the common Color dialog box, all your application has to do is perform the
following three actions:

1. Create a CColorDialog object.

2. Display the object by calling a CDialog member function named
DoModal.

3. Call a CColorDialog member function named GetColor to retrieve
whatever color value the user has selected.

In this chapter's SCRAMBLE program, the common Color dialog box is
displayed when the user chooses the Color item from the Background
menu. A message handler named OnBackgroundColor-created by
Class Wizard in the usual way-is then called, as shown here:

void CScrambleDoc::OnBackgroundColor()
{

}

CColorDialog dlgColor;

int iRet = dlgColor.DoModal();
if (iRet 1= IDCANCEL)
{

}

m_cBkg = dlgColor.GetColor();
m_uBkgID = IDB_COLOR
UnloadBackground();
UpdateAllViews(NULL);

To add the Color dialog box to your application, follow these steps:

1. Add the preceding code to the OnBackgroundColor function in the
SCRAMDOC.CPP file.

2. Add the following line to the public section of the SCRAMDOC.H
file:

COLORREF m_cBkg;

3. Add the following line to the RESOURCES.H file:

#define IDB_COLOR 101

211

Learn Visual C++ Now

212

4. Replace the code in the OnDraw function that appears in the
SCRAMVW.CPP file. The function should appears as follows:

void CScrambleView::OnDraw(CDC* pDC)
{

}

CScrambleDoc* pDoc = GetDocument():
CBitmap* pBitmap;
BITMAP Bitmap;
CDC dc;

if (pDoc-)m_uBkgID == IDB_COLOR)
{

}

CBrush brushColor(pDoc-)m_cBkg);
CRect rectScreen(0. 0. 0. 0);

rectScreen.right = ::GetSystemMetrics(SM_CXSCREEN);
rectScreen.bottom = ::GetSystemMetrics(SM_CYSCREEN);

pDC-)FillRect(&rectScreen. &brushColor);
return;

pBitmap ~ pDoc-)GetBackground();
if (pBitmap)
{

}

dc.CreateCompatibleDC(pDC);
CBitmap* pOldBitmap = dc.SelectObject(pBitmap);

pBitmap-)GetObject(sizeof(Bitmap). &Bitmap);
pDC-)BitBlt(0. 0.

Bitmap.bmWidth.
Bitmap.bmHeight.
&dc.
0. 0.
SRCCOPY) ;

dc.SelectObject(pOldBitmap);

Adding Scrolling to the SCRAMBLE Program's Views
You know what a scrolling view is; you've used various kinds of scrolling
views in various kinds of programs. In the SCRAMBLE program, a scroll­
ing view is a window-size view that scrolls over a larger bitmap, as shown
in Figure 6-6.

6: The M FC Library

Current scrolled position

Figure 6-6. A scrolling view enables you to view different parts of a large

document.

In Chapter 5's SCRAMBLE program, there was no way to view a particular
part of a background in a window. In this chapter's version of the program,
you can scroll to any part of a bitmap you want because SCRAMBLE now
supports scrolling.

For some reason, the Visual C++ version 1.0 App Wizard has no setting for
generating programs with scrolling views; if you want your views to scroll,
you must set them up for scrolling yourself. This is not a very difficult
task-once again, the MFC library does most of the work for you. All you
have to do is follow these steps:

1. Open the header file for your application's view class, and change
the derivation specified in the heading of your class's definition
from CView to CScrollView. In the SCRAMBLE program, you can

213

Learn Visual c++ Now

214

find that change in the SCRAMVW.H file, where the original class­
definition header

class CScrambleView public CView

has been changed to

class CScrambleView : public CScrollView

2. Find your view class's IMPLEMENT_DYNCREATE and BEGIN­

_MESSAGE_MAP macros, located in SCRAMVW.CPP, and modify
them to refer to your view object as a CScrollView-derived object in­
stead of a CView-derived object. In the SCRAMBLE application,
both these macros appear in the SCRAMVW.CPPfile and have been
modified to look like this:

IMPLEMENT_DYNCREATE(CScrambleView, CScrollView)

BEGIN_MESSAGE_MAP(CScrambleView, CScrollView)
11{{AFX_MSG_MAP(CScrambleView)

I/} }AFX_MSG_MAP
II Standard printing commands
ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)

END_MESSAGE_MAP()

3. In the SCRAMVW.CPP file, add the following code to override the
OnlnitiaJUpdate function:

void CScrambleView::OnInitialUpdate()
{

}

CScrollView::OnInitialUpdate();
SetScrollSizes(MM_TEXT, CSize(

::GetSystemMetrics(SM_CXSCREEN),
::GetSystemMetrics(SM_CYSCREEN)));

4. Add the following line to the public section of the SCRAMVW.H
file:

void OnInitialUpdate();

5. Recompile and execute your program. Your program's view window
should now have a pair of scroll bars that work just the way you
have specified.

6: The M FC Library

~'911 OTE The first parameter passed to SetScrollSizes is a mapping mode-that
6ff~ is, a definition of the unit of measure that is used to convert logical display

units to units that match the display specifications of the current display de­
vice. The MM_TEXT mapping mode allows applications to work with device
pixels by regarding one unit as being equal to one screen pixel. Windows
uses mapping modes to perform this kind of conversion because the physi­
cal size of a pixel varies from device to' device. Several other mapping
modes-MM_HIENGLlSH, MM_HIMETR/c, MM_LOENGLlSH, MM_LOMETRIC,
and MM_TWIPS-are useful because they deal with device-independent
units such as inches or millimeters, which are perfect for dealing with other
display devices such as printers. For more details, see the GetDocSize entry
in online help.

Customizing a Program's Windows
When App Wizard generates a framework for an application, its default
behavior is to give the program a main frame window that covers about
two-thirds of the screen. This window can appear in various locations,
depending on where it was the last time you closed your application.

When a main frame window has a child window, the Visual C++ frame­
work gives the child window a default size that is somewhat smaller than
the size of its parent window. By default, the upper left corner of this child
window is placed in the upper left corner of the client area of its parent
window.

The MFC library does not provide an easy way to change the default sizes
or the default placements of child or parent windows. However, here are
some tips and tricks that you can use to control the sizes, locations, and
styles of your application's windows.

Changing window characteristics with SetWindowPlacement
One way to modify the characteristics of a window is the CWnd member
function GetWindowPlacement, which returns a structure containing a
specified window's size and location. You can obtain a window's proper­
ties (including its size) by calling CWnd::GetWindowPlacement, and you
can then call \he CWnd member function SetWindowPlacement to modify
the window's size. When all that is done, call ShowWindow to implement
your changes.

215

Learn Visual C++ Now

216

This technique can come in handy when you want to specify an exact size
for an application's main frame window, and it is especially useful when
your main frame window is a special kind of window-for example, a
CForm View-derived window in which data is displayed.

~\1iI' IP To set up a CFormView window, you derive the window from the
""\;~I CFormView class instead of from the CView class, following the same steps

as were used in the preceding exercise to derive a scrolling window from
the CScrollView class.

To change a window's size by calling GetWindowPlacement, open your
application's MAINFRM.CPP file, and place a series of statements similar
to this in your program's OnCreate member function:

II adjust main frame window's size and placement
wpl.length = sizeof (WINDOWPLACEMENT)
GetWindowPlacement(&wpl):
wpl.rcNormalPosition.top = 0:
wpl.rcNormalPosition.left = 0:
wpl.rcNormalPosition.right = wpl.rcNormalPosition.right I 2:
wpl.rcNormalPosition.bottom = wpl.rcNormalPosition.bottom I 3:
SetWindowPlacement(&wpl):
ShowWindow(SW_SHOWNORMAL):

This code fragment calls GetWindowPlacementto set the size of a program's
main frame window to one-half its original width and one-third its origi­
nal height.

For the preceding code to compile without errors, you must add the fol­
lowing line to the public section of your MAINFRM.H file:

WINDOWPLACEMENT wpl:

In the next section, another technique for setting the position and location
of the window is described. If you want to try this technique, remove any
code that you added in this section.

Changing the value of the m_nCmdShow member variable
When you are creating an MDI application, an alternative way to change
the size of its main frame window is to change the value of the application's
m_nCmdShowvariable, a member variable of the CWinApp class. The
m_n CmdSh ow variable corresponds to the nCmdShowvariable that

6: The MFC Library

Windows passes to WinMain to start an application. When an application
starts, the m_nCmdShow variable holds a default value that determines
the size, location, and style of the main frame window that is being created.

When AppWizard generates a framework for a Visual C++ application, the
InitInstance function initializes the application's main frame window by
calling the CWn d::ShowWin dow member function". When this call is made,
the value of the m_nCmdShowvariable is passed as an argument to
CWn d::ShowWin dow.

To use this technique in a framework-based MFC program, you modify a
block of code that-appears in the application's override of the CWinApp­
::InitInstance member function. In a framework application, you can find
CWinApp::InitInstance in the program's primary implementation file-in
SCRAMBLE's SCRAMBLE.CPP file. When AppWizard generates an Init­
Instance member function for a program, it creates a code sequence that
looks something like this to display the application's main frame window:

II create main MOl frame window
CMainFrame *pMainFrame = new CMainFrame;
if (!pMainFrame-)LoadFrame(lDR_MAlNFRAME»

return FALSE;
pMainFrame-)ShowWindow(m_CmdShow);
pMainFrame-)UpdateWindow();
m_pMainWnd = pMainFrame;

When an application executes a code sequence such as this one, the result
is a main frame window with a rather odd size, which Microsoft has, for
some reason, set up as the standard size for a main frame window. If you
want to customize the size of a main frame window, you can do so by
making one small modification to the preceding block of code. By adding
one line of code, you can expand the size of your application's main frame
window to exactly the size of your monitor screen. Here is the code se­
quence that does this trick:

II create main MOl frame window
CMainFrame *pMainFrame = new CMainFrame;
if (!pMainFrame-)LoadFrame(lDR_MAlNFRAME»

return FALSE;
m_nCmdShow := SW_SHOWMAXlMlZED;
pMainFrame-)ShowWindow(m_CmdShow);
pMainFrame-)UpdateWindow();
m_pMainWnd = pMainFrame;

217

Learn Visual C++ Now

218

This is the line of code that has been added:

m_nCmdShow l= SW_SHOWMAXIMIZED;

Calling the Pre Create Windo w member function
Another way to modify the size of a window in a Visual C++ application is
to override the CWnd member function Pre Crea te Window. This technique
is a little more complicated, but it is also more versatile. It works in MDI
and SDI applications, and it works with child windows as well as with
main frame windows. It is the technique that has been used to modify the
windows used in this chapter's SCRAMBLE program.

The CWn d::PreCrea te Win dow member function gives applications access
to a window-creation process that Windows normally carries out automati-

. cally. When App Wizard generates the framework for a Visual C++ applica­
tion, the framework calls PreCreateWindow every time the program is
about to create a window, and the program always passes to PreCreate­

Window a reference to a structure named CREATESTRUCT. By changing
some of the information stored in CREATESTRUCT, your application can
change a number of the attributes (including the size) of the window that
is about to be created.

Calling Pre Create Window in SDI applications
To change the window attributes in an SDI application, you can override
the Pre Create Win dow function in the source file that creates the program's
main frame window. For example, in this chapter's SCRAMBLE program,
the following code sequence appears in the MAINFRM.CPP file. It reduces
the size of the program's main frame window to 640 by 480 pixels and
then centers the window in the monitor display. Then, when the program
is executed using a standard-size screen, its main frame window fills the
screen. When the application is executed using a larger display, it displays
a 640-by-480-pixel main frame window that is placed in the exact center
of the screen:

BOOl CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{

II override of the CWnd::PreCreateWindow function
cs.cx = 640;
cs.cy = 480;

6: The M FC Library

}

UINT m_screenWidth = GetDC()-)GetDeviceCaps(HORZRES);
UINT m_screenHeight = GetDC()-)GetDeviceCaps(VERTRES);

II center main frame window
cs.x = (m_screenWidth I 2) - (640 I 2);
cS.y = (m_screenHeight I 2) - (480 I 2);

return CMDIFrameWnd::PreCreateWindow(cs);

Before you try to compile this program, add the header for the PreCreate­
Window function to the MAINFRAM.M file. The member function CDC­
::GetDeviceCaps is called to obtain the size of the monitor currently being
used. Then the CREATESTRUCT member variables cs.x and cs.yare set to
display the window in the center of the monitor's screen. Because the
Pre Crea te Win dow member function is called just before the application's
main frame window is created, these are the sizes that are used by the Cre­
ate and Show Win dow member functions when they are called to create
and display the window.

Calling Pre Create Window in MDI applications
With just a little more effort, you can use the PreCreate Window member
function to customize child windows in MDI applications. To modify the
size of an MDI child window, you must derive a new class from CMDI­

ChildWnd. Then you must search through your application and replace
all references to CMDIChildWnd with references to your new class.

That is not usually as difficult as it sounds because a typical application
contains only one reference to CMDIChildWnd. You can find that refer­
ence in the application's InitInstance member function.

To customize the attributes of an MDI application's child windows, you
must change the class derivation of your application's child windows, and
you must then override the Pre Crea te Window member function to imple­
ment your changes.

What's Next?
In this chapter, you saw a brief overview of how an MFC program works,
and you got a chance to add an impressive set of features to the SCRAMBLE
program. You learned how to create a program that can open and display

219

Learn Visual C++ Now

220

multiple windows with different background bitmaps simultaneously,
and you learned how to create and display bitmaps in customized solid
colors using the common Color dialog box provided by the MFC library.
You learned how to create a program with toolbar button shortcuts for
menu commands and how to update the appearance of menu items auto­
matically. Finally, you learned how to add scroll bars and scrolling capa­
bilities to windows, and how to use some operations that are not very well
documented to specify the initial sizes and positions of main frame win­
dows and child windows in Visual C++ programs.

In Chapter 7, "Of Mice and Messages," you'll get a chance to add even
more enhancements to the SCRAMBLE application. By the time you finish
Chapter 7, your application will be responding to mouse commands, and
the user of the application will be able to use the mouse to draw in the
windows that the program displays', The program will be able to display
screen drawings with and without bitmap backgrounds and bitmap back­
grounds with'and without screen drawings superimposed over them.' And
the SCRAMBLE program will use the MFC library'S common Open and
Save As dialog boxes to open and save files and will support serialization.

Chapter

Of M ice and Messages
This is the second of two chapters about the Microsoft Foundation Class
(MFC) Library version 2.0 and the way it works in framework-based
Visual C++ applications. Chapter 6, "The MFC Library," introduced the
MFC library and explained some of the fundamental principles of frame­
work-based MFC programming. This chapter sheds some light in some of
the murkier corners of MFC operations and introduces several topics that
are important to know about in the world ofMFC programming.

The following topics are explained and demonstrated in this chapter:

• Message maps-how MFC message maps work and exactly how
they are used in Visual C++ programs

• Mouse input-how to use the mouse-handling features provided by
Visual C++ and the MFC library

• Collection classes-how collection classes can be used to store MFC
objects

• Features of CObject-derived classes-how to use member functions
provided by the CObject class by deriving your own classes from
CObject

221

Learn Visual C++ Now

222

To help you understand the features of the MFC library covered in this
chapter, we will use a program named SCRIBBLE. A full copy of the
SCRIBBLE program, which is developed in seven steps, appears in the
MSVC\MFC\SAMPLES\SCRIBBLE folder of the Visual C++ software
provided on your companion CD-ROM. SCRIBBLE is a fairly sophisticated
Visual C++ program, so if you want to observe the output of this program
at its various stages of development, feel free to open the projects defined
in each of the seven subfolders of the MSVC\MFC\SAMPLES\SCRIBBLE
folder. In this chapter, we will be using step 5 of the SCRIBBLE program to
illustrate how to incorporate mouse-handling capabilities into a Visual
C++ program. The Step5 folder is available in the CHAP07 folder on the
companion CD-ROM. Figure 7-1 shows the output of the SCRIBBLE pro­
gram presented in this chapter.

Figure 7-1. Output of the SCRIBBLE program.

UJndJerrstallrndull1g Windows Messages
As you know, every time the user of a Windows-based application ini­
tiates a Windows event by performing an action such as clicking a mouse
button or pressing a key, the Windows operating system generates a mes­
sage and dispatches it to the program being executed. The application
then attempts to handle the message by performing the operation speci­
fied in the parameters passed with the message. If the application cannot
handle the message, it sends the message back to the Windows operating

1: Of Mice and Messages

system, which then disposes of the message by calling a default function
named DefWindowProc.

The Windows API defines more than 400 kinds of messages, and a well­
behaved Windows-based application can handle just about any kind of
message that the system might send it. The behavior of a Windows-based
application depends on the kinds of messages it responds to and how it
responds to each kind of message it receives. This fact of life holds true in
framework-based MFC programs as well as in traditional Windows
API-style applications.

In the bygone era of Windows API-style programming, Windows develop­
ers had to account for many different kinds of messages and had to write
all the code that was needed to handle them. They even had to include
calls to DefWindowProc in their programs to ensure that the system would
take care of any messages that their programs weren't equipped to handle.

Today, in the age of Visual C++, it's much easier to handle messages in
Windows-based applications. Now when you generate an MFC program
using App Wizard, your application has to account for only a handful of
the different kinds of messages that traditional Windows API-styleappli­
cations had to handle. The MFC library performs this bit of magic using a
mechanism called a message map.

Varieties of Windows Messages
The more than 400 kinds of messages that exist in Windows can be divided
into three main categories: standard Windows messages, control notifica­
tion messages, and command messages. Each is handled in a different way
by the Windows operating system.

Standard Windows messages
All Windows messages that begin with the WM_ prefix-with the exception
of the WM_COMMAND message-are known generically as standard
Windows messages, or Windows messages. Standard Windows messages
are messages that the Windows operating system dispatches in response to
events that affect windows and views.

223

Learn Visual C++ Now

224

For example, when the user of an application takes an action that creates
a new window, the Windows operating system sends a message named

WM_CREATEto the application that is being executed. Similarly, Windows

dispatches a WM_DESTROY message when a window is about to he

destroyed.

Any MFC library class derived from the CWnd class can handle a standard
Windows message. This means that standard Windows messages can be

handled by CFrame Wnd objects, CMDIFrame Wnd objects, CMDIChildWnd

objects, CViewobjects, CDialog objects, and any classes that you might de­
rive from these base classes.

Handling Windows messages in Windows API-style programs In a

traditional Windows API-style application, functions that handle Win­

dows messages are typically called from a monster switch statement that
usually appears inside a special kind of function called a window proce­

dure. (As you saw in Chapter 2, "Introduction to Windows Programming,"

window procedures are provided by Windows applications but are called
by the Windows operating system.) For example, a WM_DESTROYWin­

dows message is called at the end of the switch statement shown here.

long FAR PASCAL _export WndProc(HWNO hwnd, UINT message, UINT wParam,
LONG 1 Pa ram)

{

static int wColorIO [5] = {WHITE_BRUSH, LTGRAY_BRUSH, GRAY_BRUSH,
OKGRAY_BRUSH, BLACK_BRUSH};

static WORD wSelection = 10M_WHITE;
HMENU hMenu;

switch (message)
{

case WM_COMMANO:
hMenu = GetMenu(hwnd);
swi tch (wPa ram)

{

case 10M_NEW:
case 10M_OPEN:
case 10M_SAVE:
case IOM_SAVE_AS:

MessageBeep(0);
return 0;

7: Of Mice and Messages

}

case 10M_EXIT:
SendMessage(hwnd, WM_CLOSE, e, eL);
return e;

break;

case WM_TIMER:
MessageBeep (e);
return e;

case WM_OESTROY:
PostQuitMessage(e);
return e;

return OefWindowProc(hwnd, message, wParam, lParam);

Handling Windows messages in Visual c++ In a framework-based Visual
c++ program, you don't have to write a switch statement such as the one
shown in the preceding example to handle Windows messages. You can
accomplish the same thing interactively, in a much easier way, by using
the Visual C++ ClassWizard utility.

When you develop a program using Visual C++, you can create a handler
for a Windows message by opening ClassWizard and selecting the name of
a view class in the Class Name drop-down list box. Then you select the
ID of the view class in the Object IDs list box and the Windows message
you want to handle in the Messages list box, as shown in Figure 7-2 on the
following page.

After you have selected a Windows message in ClassWizard's Messages list
box, click the Add Function button. ClassWizard then creates a skeletal
message-handler function for the Windows message you have selected
and inserts it into your application's source code. It's then up to you to
equip your new message-handler function with the code you want to exe­
cute whenever your application receives the kind of message you have se­
lected. To do that, you simply click ClassWizard's Edit Code button, and
ClassWizard takes you to the spot in your source code at which it has in­
serted your new message-handler function.

You've already seen what MFC message handlers look like. You'll learn
more about how they are called and how they work in the section "Mes­
sage Maps" on page 230.

225

Learn Visual C++ Now

226

Figure 7-2. Windows messages displayed in ClassWizard's Messages list box.

Control-notification messages
As mentioned, the only WM_ message that is not a standard Windows
message is the WM_COMMAND message. Actually, WM_COMMAND is
used to identify two different kinds of messages: control-notification mes­
sages and command messages.

Control-notification messages, or control notifications, are messages that
controls and other kinds of child windows send to their parent windows.
For example, when the user of an. application changes the text displayed
in an edit control, the edit control that is being modified sends its parent
window a special kind of control-notification message, which is called an
EN_CHANGE message. It is then up to the control's parent window to
handle the message.

A control-notification message, like a standard Windows message, can be
handled by any MFC class derived from the CWnd class. There is one im­
portant difference, however, between a control-notification message and a
standard Windows message. Because control-notification messages are au­
tomatically generated by controls, they don't appear in message maps, and
you don't use ClassWizard to add them to applications. So you won't find
any control-notification messages in the ClassWizard dialog box.

7: Of Mice and Messages

Command messages
A command message is a message that is triggered by a user-interface event
such as selecting a menu item, clicking a toolbar button, or pressing an
accelerator key. To create a command message using ClassWizard, you
select the ID of a menu item in ClassWizard's Object IDs list box, and then
you select the COMMAND item in ClassWizard's Messages list box. If you
click the Add Function button, ClassWizard then creates a message-handler
function for the command you have specified and places it in the source
code of the class whose name appears in the Class Name list box.

How Windows API-Style
Programs Handle Command Messages
Command messages are different from standard Windows messages and
control-notification messages in two main ways: they are handled differ­
ently by the Windows operating system, and they can be handled by a
wider variety of objects. Handlers for command messages can be defined
not only by windows and view objects but also by documents, document
templates, and even Windows applications themselves (that is, by objects
derived from the CWinApp class). You'll learn more about how command
messages work in MFC programs in the section "Message Maps" on page
230. First let's take a closer look at how they wor~ in traditional Windows
API-style programs.

The switch statement on page 224 began like this:

switch (message)
{

case WM_COMMANO:
hMenu = GetMenu(hwnd);
swi tch (wPa ram)

{

case 10M_NEW:
case 10M_OPEN:
case 10M_SAVE:
case 10M_SAVE_AS:

MessageBeep(0);
return 0;

(continued)

227

Learn Visual C++ Now

228

}

case IDM_EXIT:

}

SendMessage(hwnd, WM_CLOSE, 0, 0L):
return 0:

In this part of the switch statement, a variable named message is checked
to see whether it is equal to the constant WM_COMMAND. Hit is, another
variable, named wParam, is checked to see whether it contains a menu
item ID such as IDM_NEW, IDM_ OPEN, IDM_SA VE, IDM_SA VE_AS, or
IDM_EXIT. If the wParam variable does contain the ID of a menu item,"an
appropriate menu-item message-handler function is called.

Because the switch statement appears in a window procedure (WndProc),
the message and wParam arguments that it checks are parameters that
have been triggered by events and have been passed directly to it from the
Windows operating system.

How MFC Programs Handle Command Messages
Now that you know how a Windows API-style program handles command
messages, it's time to take a look at how command messages are handled
in framework-based MFC programs.

As mentioned in Chapter 6, "The MFC Library," every Visual C++ version
1.0 program has a WinMain function that is defined in an MFC source file
named APPCORE.CPP. Near the end of this WinMain function is a call
to an MFC member function named CWinApp::Run. The heart of this Run
member function is a while loop (nested inside afar loop) that repeatedly
checks for CPU idle time (to give background processes a chance to exe­
cute). The for loop then calls another CWinApp member function named
PumpMessage. The following code shows the for loop that appears in the
MFC framework's CWinApp::Run member function:

II acquire and dispatch messages until a WM_QUIT message is received
for (: :)
{

LONG lIdleCount = 0:
II check to see whether we can do idle work
while (!::PeekMessage(&m_msgCur, NULL, NULL, NULL, PM_NOREMOVE)

&& OnIdle(lIdleCount++»

7: Of Mice and Messages

}

{

II more work to do
}

II either we have a message, or Onldle returned false
if (!PumpMessage(»

break;

PumpMessage is a CWinApp member function that is implemented in the
APPCORE.CPP source file. The heart of the CWinApp"::PumpMessage
member function is shown here:

II process this message
if (!PreTranslateMessage(&m_msgCur»
{

}

::TranslateMessage(&m_msgCur);
::DispatchMessage(&m_msgCur);

How the MFC Framework Dispatches Messages
In the preceding sections, you have seen how Windows API-style pro­
grams and framework-based MFC programs handle Windows messages.
Now let's see how the MFC framework detects events, constructs messages
to handle those events, and passes those messages on to MFC applications.

When a WM_COMMAND message is dispatched to a framework-based
MFC application, the MFC framework responds to the message by calling
a CCmdTargetmember function named OnCmdMsg. In the MFC library,
the CCmdTarget::OnCmdMsgmember function is the main message­
implementation routine provided by the framework command architec­
ture. The MFC framework implements a number of On CmdMsg member
functions, each designed for a particular kind of window. When Windows
detects an event and dispatches a message for it, the message is received
and handled by the On CmdMsg member function of the window that re­
ceives the message.

Unless you're the sort of person who needs to know how an internal com­
bustion engine works before you get behind the wheel of a car, it's not
very important at this stage of your Visual C++ programming career for
you to remember every detail of how all messages are processed by the
CCmdTarget::OnCmdMsg member function. The On CmdMsg member

229

Learn Visual C++ Now

230

functions that the MFC library provides for various kinds of window ob­
jects are very complex and intricate functions that you can research for
yourself, if you want, by poring through MFC library source files such as
WINFRM.CPP, VIEWCORE.CPP, CMDTARG.CPP, and others.

If you aren't interested in doing that, it's sufficient-at least for now-
to know that when the MFC framework receives a command message from
the operating system, it first determines which CCmdTarget-derived object
should receive the message and then calls the appropriate CCmdTarget­
::OnCmdMsg member function.

When a CCmdTarget-derived class defined in an MFC application receives
a WM_COMMAND message from the MFC framework, the class's OnCmd­
Msg member function either dispatches the command to an object that is
equipped to handle it or handles the command itself by calling its root
class's CCmdTarget::OnCmdMsg member function.

Message Maps
As you've seen in previous chapters, a message map is a mechanism for
mapping messages to member functions of an MFC library class. In an
MFC application, message maps can be used by any MFC library class
that's derived from the MFC CCmdTarget class or from one of the descen­
dants of the CCmdTarget class. In a framework-based Visual C++ applica­
tion, the program's main frame window class, document class, and view
class are all derived from the CCmdTarget class, so Windows can dispatch
messages to all three'ofthese classes, as well as to any of your own classes
that are derived from CCmdTarget or any of its descendants.

The CCmdTarget class (which was introduced in Chapter 6, "The MFC
Library") provides the basic support for MFC messaging. In an MFC appli­
cation, the CCmdTarget class ensures that any unhandled messages dis­
patched to it are passed to the DefWindowProc function-the default
message-handling function in the Windows API. (In a traditional Win­
dows API-style program, you must call DefWindowProc yourself from
your program's message-handling switch statement, as you sawearlier.)

7: Of Mice and Messages

Benefits of Using Message Maps
In the MFC library, a message map is a macro-based mechanism that
works much like a virtual-function override in C++ but requires less pro­
cessing overhead to implement. The message map calls your application's
message handlers in much the same way you would call them yourself in
a Windows API-style message-handling switch statement. The biggest dif­
ference is that you don't have to do all the work of writing a message­
handling switch statement because App Wizard does it all for you.

A message map-like a virtual function-overrides the message-handling
features of the CCmdTarget base class. But because message maps are
converted to inline code by the Visual C++ preprocessor, they do not use
v-tables.

As you saw in Chapter 4, "Objects and Member Functions," v-tables are
indirect-reference mechanisms that base classes use to override inherited
functions in C++ programs. V-tables are ingenious mechanisms that fulfill
their tasks admirably for C++ functions, and the designers of the MFC
library could have used virtual functions instead of macros to implement
message maps. They decided not to because macros are much better dis­
patchers of messages than virtual functions would have been.

The problem with using virtual functions to dispatch Windows messages
is that messages are dispatched at so fast and furious a pace in a Windows­
based program that virtual functions-with all the v-table indirection they
require-would never be able to do their work fast enough to keep up with
the speed of the Windows messaging system. All the indirection that
virtual-function v-tables require would be too costly in terms ·of process­
ing overhead. By implementing message maps as macros that are resolved
in line at compile time, the MFC library has kept its application frame­
work lean and mean while freeing Windows programmers from the burden­
some task of writing code to account for every message received by every
target window.

231

Learn Visual C++ Now

232

Binding Message Maps to Your Program
In an MFC program, message maps are called by window procedures that
App Wizard imports from object code libraries when it generates your
program. The MFC framework supplies a number of different window
procedures for various kinds of windows, and AppWizard imports the
window procedures it needs from the MFC library when you build your
program.

When you link your program, the Visual C++ linker binds the MFC win­
dow procedures that App Wizard has selected to your application. You
rarely, if ever, have to worry about writing a window procedure of your
own when you use App Wizard to generate your Visual C++ programs.

Declaring a Message Map
When you use App Wizard to create a source file for a CCmdTarget-
derived class, the ClassWizard utility declares a message map for your
class in your class's header file and creates the message map in the source
code file that implements the class's member functions. This means that for
every message map that appears in a class's implementation file, there is a
message-map declaration in a corresponding header file.

This message-map declaration is easy to spot because it is bracketed by a
set of special symbols: II{{ and II}}. An additional clue is that the II{{ and
I I}} symbols in the class's header file enclose one or more message-handler
declarations preceded by the keyword afx_msg. For example, the follow­
ing class definition contains a message-map declaration that in turn con­
tains definitions for the message handlers OnLButtonDown, OnLButton Up,
OnFilePrint, and OnFilePrintPreview:

class CNewprojView: public CView {
{

protected:
11{{AFX_MSG(CNewprojView)
afx_msg void OnLButtonDown(UINT nFlags, CPoint paint);
afx_msg void OnLButtonUp(UINT nFlags, CPoint paint);
afx_msg void OnFilePrint();
afx_msg void OnFilePrintPreview();
I/}} AFX_MSG

DECLARE_MESSAGE_MAP()
} ;

7: Of Mice and Messages

As the preceding example shows, the DECLARE_MESSAGE_MAPmacro
is always declared inside the definition of a class that is equipped with a
message. By convention, this macro declaration appears at the end of the
class's definition.

All four of the message-handler declarations that appear in this message­
map declaration work the same way-for example, OnLButtonDown
defines a message handler that is executed whenever Windows sends a
WM_LBUTTONDOWN message to the CCmdTarget-derived class in which
the message map is defined.

The last two message-handler declarations in the message map call printing­
related message handlers when the user chooses their corresponding
menu commands.

The Off-Limits Zone in a Message-Map Declaration

In the declaration of a class that contains a message map, the code
nested inside the symbols I I {{ and I I}} is code that is generated auto­
maticallyby ClassWizard.·Although you are sometimes permitted
to make minor editing changes inside this block of code, you should
never manually delete any functions that are delimited by the I I {{ and
II}} symbols, and you should never manually insert any code into
that portion of a message-map declaration. ClassWizard provides all
the mechanisms you need to make substantive changes in that block
of code.

You can, however, write message.:.handler functions manually in
framework-based MFC programs; There are many Windows messages
that ClassWizard does not recognize, and whenyourapplication
needs a handler for such a message, you must write it yourself. In this
situation, all youhavetodo to make your message-handler declara­
tion legal is to place it outside the II {{ and I I} } delimiters in the decla~
ration of your message. map.

233

Learn Visual C++ Now

234

Implementing a Message Map
When you create a source file for a class by using AppWizard, the App-
Wizard utility places the class's message map in the .CPP source code file
that implements the class's member functions.

When a message map appears in a .CPP file, it is always bracketed by
the macros BEGIN_MESSAGE_MAP and END_MESSAGE_MAP, as shown
here:

BEGIN_MESSAGE_MAP(CNewprojView, CView)
11{{AFX_MSG_MAP(CNewprojView)
ON_WM_LBUTTONDOWN()
ON_WM_LBUTTONUP()
ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)
I/} lAFX_MSG_MAP

END_MESSAGE_MAP()

Jell OTE When you define a macro that implements a message-handler function, 611" don't place a semicolon at the end of each line. That's because a message
map implements calls to message handlers as preprocessor macros, not as
C++ statements.

This message-map implementation corresponds to the message-map
declaration shown in the previous example. It contains four macros that
respond to Windows messages. The first two macros in the message map­
ON_ WM_LBUTTONDOWN and ON_ WM_LBUTTONUP-correspond to a
pair of standard Windows messages that Windows dispatches in response
to mouse clicks.

The last two entries in the message map that begin with ON_COMMAND

are called in response to command messages. The ID_FILE_PRINTmacro

is called when the user chooses the Print item from the File menu, and the
ID_FILE_PRINT_PREVIEWmacro is called when the user chooses the
Print Preview item from the File menu.

If you look closely, you'll notice that the syntax of the two printing-related
macros that appear in the message map is a little different from that of the
mouse-related macros. That's because the two printing-related macros are
activated by command messages, whereas the two mouse-related macros
are activated by standard Windows messages.

7: Of Mice and Messages

Messages That ClassWizard Recognizes
. ClassWizard is not equipped to handle all the varieties of messages that
a Windows application can encounter, but it can create message handlers
for quite a few of them. Table 7-1 lists some of the most important stan­
dard Windows messages for which ClassWizard can create handlers.
To see a complete list, open Class Wizard and select the class name dis­
played in the Object ID list box. The messages that Class Wizard can man­
age for the class that you have selected appear in the Messages list box. If
your application needs to handle a message that isn't on the list, you can
simply write a message handler yourself, using the information you have
learned in this chapter and referring to the online help as required.

Windows Message
and Corresponding
MFC Member Function

WM_CANCELMODE
On Can celMo de

WM_CHAR
On Char

WM_CLOSE
On Close

WM_CREATE
On Create

WM_DESTROY
OnDestroy

WM_DROPFlLES
OnDropFiles

WM_ERASEBKGND
OnEraseBkgnd

WM_HSCROLL
OnHScroll

WM_KEYDOWN

OnKeyDown

WM_KEYUP

OnKeyUp

Description

Notifies a window to cancel internal modes

Passes keyboard events to the currently
active window

Cleans up the window and closes it

Indicates that a window is being created

Indicates that a window is about to be
destroyed

Indicates that a file has been dropped

Indicates that a window's background needs
erasing

Indicates a click in a horizontal scroll bar

Indicates that a non system key has been
pressed

Indicates that a non system key has been
released

Table 7-1. MFC message-handler member functions. (continued)

235

Learn Visual C++ Now

236

Table 7-1. continued

Windows Message
and Corresponding
MFC Member Function

WM_KILLFOCUS
OnKillFocus

WM_LBUTTONDBLCLK
OnLButtonDblClk

WM LBUTTONDOWN
fJLButtonDown

WM_LBUTTONUP
OnLButton Up

WM_MOUSEMOVE
OnMouseMove

WM_MOVE
OnMove

WM_PAINT
OnPaint

WM_RBUTTONDBLCLK
OnRButtonDblClk

WM_RBUTTONDOWN
OnRButtonDown

WM_RBUTTONUP
OnRButton Up

WM_SETCURSOR
OnSetCursor

WM_SETFOCUS
OnSetFocus

WM_SHOWWINDOW
OnShowWindow

WM_SIZE
On Size

WM_TIMER
On Timer

WM_VSCROLL
OnVScroll

Description

Indicates that a window is about to lose the
input focus

Indicates a double click of the left mouse
button

Indicates that the left mouse button has been
pressed

Indicates that the left mouse button has been
released

Indicates movement of the mouse cursor

Indicates that the position of a window has
changed

Indicates that a window needs repainting
(but use OnDrawfor views)

Indicates a double click of the right mouse
button

Indicates that the right mouse button has
been pressed

Indicates that the right mouse button has
been released

Displays the appropriate mouse cursor shape

Indicates that a window has gained the
input focus

Indicates that a window is about to be
hidden or shown

Indicates a change in window size

Indicates that an interval set on a timer has
elapsed

Indicates a click in a vertical scroll bar

7: Of Mice and Messages

"Must-handle" windows messages
Of the Windows messages in Table 7-1, a few must be handled by all
Windows-based applications. Table 7-2 lists that subset of "must-handle"
Windows messages.

Message

WM_CREATE

WM_DESTROY

WM_PAINT

WM_CLOSE

Event

Initialization immediately after a window is created

Cleanup when a window object is being destroyed

Painting or updating a window's client area

Cleanup when a window is being closed

Table 7-2. Messages that every Windows-based application must handle.

Some of the Windows messages listed above are sent to your application
when an event takes place, some are sent from a control in a dialog box or
window to that dialog box or window, and some are sent from a dialog box

or window back to the button or control.

(reatOD1lg Message ~and~errs with C~assWizard
Sometimes you have to create a handler yourself for a message that Class­
Wizard doesn't recognize. In most cases, however, you can let ClassWizard
do all that work for you.

To create a message handler using ClassWizard, follow these steps:

1. From Visual Workbench, open a project.

2. Choose ClassWizard from the Browse menu.

3. In the Object IDs list box, select the same class name as appears in
the Class Name drop-down list box (in this example, CScribView).

ClassWizard displays a list of Windows messages that your view
can receive in the Messages list box, shown on the following page.

237

Learn Visual C++ Now

238

4. In the Messages list box, select the name of a Windows message
for which you want to define a message-handler function (in this ex­
ample, WM_LBUTTONDOWNj.

5. To define a message-handler function for the message you have
selected, click the Add Function button. Class Wizard then creates
a message-handler function and places the name of that function,
along with the name of a message-map macro, in the Member Func­
tions list box. (In this example, the name of the message-handler
member function that ClassWizard has created is OnLButtonDown,
and the name of the corresponding message-map macro is ON-
_ WM_LBUTTONDOWN.) When a new message-handler function
has been created, ClassWizard displays a small hand iconin the
Messages list box next to the name of the message that corresponds
to the new message-handler function.

6. Close ClassWizard by clicking the OK button.

~I MPORTANT If you use ClassWizard to delete a message-handler function,
'I ClassWizard removes the handier's message-map entry but does not remove

the message-handler function associated with the message or any other
references that you have made to the message-handler function in your
other code. If such items exist, you must delete them by hand. ClassWizard
warns you about this every time you attempt to delete a message-handler
function. Heed the warning-if you don't, ClassWizard can lose track of what
it's doing and break your application.

7: Of Mice and Messages

The Story So Far
At this point, if you examine the definitions and implementation files for
the class you're working on, you'll see that ClassWizard has taken the
liberty of writing some code for you. For example, ifyou,worked through
the preceding exercise to create an OnLButtonDown message handler for
the SCRIBBLE program's CScribViewclass, you'll find that ClassWizard
has updated the SCRIBVW.H and SCRIBVW.CPP files as follows:

• When ClassWizard creates a message-handler function for a Win­
dows message, it declares the function in the appropriate class's
header file. In this example, ClassWizard has placed the following,
declaration of an OnLButtonDown member function in the
SCRIBBLE application's SCRIBVW.H file:

11{{AFX_MSG(CScribView)
'afx_msg void OnLButtonDown(UINT nFlags. CPoint point);
I/}} AFX_MSG

Notice that ClassWizard has placed the declaration inside the II{{
and I I}} delimiters that always enclose message-map definitions
created by ClassWizard. Also notice that ClassWizard has provided
your new OnLButtonDown member function with a set of parame­
ters that the system will automatically pass to OnLButtonDown
whenever a WM_LBUTTONDOWNmessage is dispatched.

You won't ever have to worry about passing these parameters to the
OnLButtonDown member function. In fact, in most situations, you
won't ever have to be concerned with exactly how OnLButton­
Down gets called or exactly how it is connected to the dispatching
of the WM_LBUTTONDOWN message~ The MFC framework takes
care of all those details automatically in the WinMain function, the
message pump, and all the window procedures that it creates for
you and embeds in your application. All you have to do is write the
code that is executed when the user presses the left mouse button
and place it in the body of the message-handler member function.

• ClassWizard places a corresponding definition of the member func­
tion in the class's implementation file. In the SCRIBBLE program,
ClassWizard places the declaration shown on the following page in
the SCRIBVW.CPP file.

239

Learn Visual c++ Now

240

void CScribView::OnLButtonOown(UINT nFlags. CPoint point)
{

}

II TOOO: add your message handler code here
II and/or call default
CView::OnLButtonOown(nFlags. point):.

ClassWizard places a member function such as this in your source code
each time you call on it to create a message-handler function, but it
is up to you to write the code inside the brackets that will provide
your new handler with its functionality. When you write a program
that uses an OnLButtonDown message-handler function, for example,
you have to supply the code that will make your application do
what you want it to in response to a click of the left mouse button.

ClassWizard does take care of a couple of other details for you, how­
ever. For instance, notice that ClassWizard has again provided the
OnLButtonDown message-handler function with a pair of para me­
ters (nFlags and point) that will be passed to it automatically when­
ever a WM_LBUTTONDOWN message is dispatched. Although your
application does not have to be concerned with how these parame­
ters are passed, the code that you write for your message handler is
free to make use of them in any way you want.

The nFlags argument tells OnLButtonDown whether a special key,
such as the Ctrl key or the Shift key, was held down when the user
pressed the left mouse button. The point argument is a CPoint struc­
ture that specifies the window coordinates at which the mouse but­
ton was pressed. You can use the coordinate information passed to
OnLButtonDown when you write your application's custom
OnLButtonDown message handler.

• Class Wizard connects the message handler it has created with the
appropriate Windows message by writing a message-map entry that
corresponds to the new message handler. It places this message-map
entry in the implementation file of the class for which it has created
a message handler. In this example, ClassWizard added an ON_WM­
_LBUTTONDOWN entry to the message map in the SCRIBVW.CPP
file, as shown on the following page.

7: Of Mice and Messages

BEGIN_MESSAGE_MAP(CScribView. CScrollView)
11{{AFX_MSG_MAP(CScribView)
ON_WM_LBUTTONDOWN()
I/}} AFX_MSG_MAP

END_MESSAGE_MAP()

Wlri1tOD1lg Code fOIr Message lHa01)d~elrs
This section uses the SCRIBBLE program to show how you can write code
for messages in framework-based MFC applications. The SCRIBBLE appli­
cation is a simple drawing program that contains member functions that
let the user draw on the screen by moving the mouse. It also has a docu­
ment class in which it can store the lines, or strokes, that make up a draw­
ing. Because a drawing is typically made up of many strokes, the SCRIBBLE
document uses an object instantiated from the CObList collection class to
store a list of all the strokes the user has drawn. In the MFC library, a
collection class is a class that can store and manipulate objects stored in
lists or arrays. To learn how collection classes can be used to store MFC
objects, see "Storing Strokes in a Document" on page 249.

Different Strol<es
In the SCRIBBLE program, a stroke is made up of a list of points. As the
user draws in a window by dragging the mouse, the program keeps·track of
points in the window as the mouse passes over them and stores those points
in an array. The array in which the points are stored is an object of an MFC
library class named CDWordArray. The CDWordArrayclass is a collection
class in which DWORD variables can be stored.

The SCRIBBLE program begins constructing a stroke as soon as the left
mouse button is pressed. The program adds points to the stroke's CDWord­
Array object until the mouse button is released. Then it stores the stroke it
has collected and adds the stroke to the list of strokes that it maintains.
Each time the left mouse button is pressed, SCRIBBLE begins constructing
a new stroke; this process continues until the user terminates the program.
When the program ends, the user is given an opportunity to save the draw­
ing that has been created.

Figure 7-3 on the following page shows a SCRIBBLE window in which the
user has used the mouse to draw some strokes.

241

Learn Visual c++ Now

242

Figure 7-3. Strokes drawn in a SCRIBBLE window.

Storing Strokes in an Array
As the user draws a stroke in a window, SCRIBBLE's document object
stores the stroke in a member variable named m_pointArray. In the
SCRIBBLE program, the m_pointArray variable is an object of the CD­
WordArray class.

When the user finishes drawing a stroke and releases the left mouse but­
ton, SCRIBBLE stores the stroke in a member variable named m_strokeList.
In SCRIBBLE, m_strokeList is a member variable of type CObList. CObList
is an MFC collection class that can create and maintain a list of any collec­
tion of CObject-derived objects.

Writing a Message Handler Step by Step
Earlier in this chapter, you learned how to use ClassWizard to create a
message-handler member function named OnLButtonDown for the
SCRIBBLE program. You also saw how the OnLButtonDown message han­
dler is called through the CScrib View's message map when Windows dis­
patches a WM_LBUTTONDOWN message to the view object.

Here are the steps taken to add the OnLButtonDown message handler to
the SCRIBBLE program. (This code was added before step 5.)

1. Add an empty OnLButtonDown member function to the SCRIBBLE
program by following the step-by-step exercise presented on page
237 in the section "Creating Message Handlers with ClassWizard."

7: Of Mice and Messages

2. Add the code shown below to OnLButtonDown. (You can find this
code in the CSCRIBVW.CPP file in this chapter's sample-code folder
on the companion CD-ROM.)

void CScribView::OnLButtonDown(UINT nFlags, CPoint point)
{

}

II When the user presses the left mouse button, he or
II she might be starting a new stroke or selecting or
II deselecting a stroke.
II CScrollView changes the viewport origin and the
II mapping mode~ It's necessary to convert the point
II from device coordinates to logical coordinates,
II such as those stored in the document.
CClientDC dc(this);
OnPrepareDC(&dc);
dc.DPtoLP(&point);

m_pStrokeCur = GetDocument()-)NewStroke();
m_pStrokeCur->AddPoint(point): II add first point to

II the new stroke

SetCapture();

m_ptPrev = point;

return;

II capture the mouse coordinates
II until button is released
II serves as the MoveTo anchor point
II for the LineTo as the user drags
II the mouse

3. Remove the first parameter name (nFlags) from the implementation
of the OnLButtonDown member function. The SCRIBBLE program
doesn't use the information passed to OnLButtonDown in this
argument, and removing the name of the parameter from the OnL­

ButtonDown function's argument list avoids a compiler warning
that the parameter is not referenced. The revised OnLButtonDown

declaration looks like this:

void CScribView::OnLButtonDown(UINT, CPoint pOint)

When the SCRIBBLE program's OnLButtonDown message handler is com­
plete, the user can start drawing a stroke on the screen by pressing the left
mouse button. As the user draws this new stroke, the SCRIBBLE program
stores it in a document that can later be transferred to a storage medium
such as a disk. For details on how the SCRIBBLE program stores strokes in
a document, see the section "Storing Strokes in a Document" on page 249.

243

Learn Visual C++ Now

244

Converting Device Coordinates to Logical Coordinates
As shown in the previous example, when the left mouse button is pressed,
the OnLButtonDown member function calls a CScribDoc member function
named NewStroke to start the actual drawing. Also notice that the OnL­
ButtonDown member function calls two other MFC member functions,
OnPrepareDC and DPtoLP. Here are the statements in which OnPrepareDC
and CDC::DPtoLP are called:

OnPrepareDC(&dc):
dc.DPtoLP(&point):

Why does OnLButtonDown call OnPrepareDC and DPtoLP? Because the
Windows operating system and the SCRIBBLE program use different
kinds of coordinates to track the movements of the mouse as a stroke is
being drawn. Windows uses window coordinates (sometimes called de­
vice coordinates) to inform the OnLButtonDown member function of the
current position of the mouse. But when the SCRIBBLE program stores the
coordinates of the user's strokes in an array, it expresses them in logical
coordinates-that is, coordinates that describe points on the document
that is being drawn on, not coordinates that describe points in the window
that is being displayed.

This difference is important in the SCRIBBLE program because the win­
dow in which SCRIBBLE displays strokes is a scrolling window. Because
SCRIBBLE windows can be scrolled, a stroke drawn in a SCRIBBLE
window can appear in various places within the view, depending on
where the view is positioned on the document. So, before a dot drawn on
the screen with the mouse is stored in the document being displayed, the
device coordinates that are used to track mouse movements must be con­
verted to the logical coordinates that the SCRIBBLE program uses to store
strokes in documents.

Fortunately, Windows can perform that calculation for you. First you call
OnPrepareDC to notify the current device context that some coordinates
are being changed. Then you call the CDC::DPtoLP member function to
change the OnLButtonDown function's device coordinates (expressed asa
device point, or DP) to a pair of logical coordinates (expressed as a logical
point, or LP) that can be stored in the SCRIBBLE program's document.

7: Of Mice and Messages.

You call another MFC member function, named LPtoDP, to convert logical
coordinates to device coordinates. SCRIBBLE calls LPtoDP in its OnDraw
and On Update member functions before it transfers strokes that have been
stored in a document to a window to be displayed on the screen.

Writing an OnMouseMove Message Handler
In the SCRIBBLE application, from the time the left mouse button is
pressed to the time it is released, a message handler named OnMouseMove
tracks the path of the mouse and provides the SCRIBBLE program with the
information it needs to draw that path in the program's view window.
Once the OnLButtonDown message handler has received a message from
the mouse indicating that the left mouse has been pressed, the OnMouse­
Move message handler is called repeatedly (every time the user moves the
mouse) until the left mouse button is released. Each time OnMouseMove is
called, it connects the previous mouse location with the current mouse
location and saves the new location. That location is then used as the pre­
vious location the next time OnMouseMove is called.

As the OnMouseMove message handler is called repeatedly, the SCRIBBLE
program uses a local CClientDC object (an object derived from the MFC
library's CDC class) to draw the path of the mouse in the client area of the
currently active window.

Writing an OnMouseMove message handler step by step
Here are the steps taken to add the OnMouseMove member function to the
SCRIBBLE program.

1. Add an OnLButtonDown message handler to the SCRIBBLE program,
as outlined earlier, and add the SCRIBBLE program's functionality
to the OnLButtonDown member function.

2. Following the steps outlined in the section "Creating Message
Handlers with ClassWizard," on page 237, replace the default
implementation of the OnMouseMove member function with the
code shown on the following page. (This code has already been
added to the version of the SCRIBBLE program presented in this
chapter.)

245

Learn Visual C++ Now

246

void CScribView::OnMouseMove(UINT nFlags, CPoint point)
{

}

II mouse movement is interesting in the SCRIBBLE
II application only if the user is currently drawing a
II new stroke by dragging the captured mouse

if (GetCapture() != this)
return; II if this window (view) didn't capture

II the mouse, the user isn't drawing in
II this window

CClientDC dc(this);
II CScrollView changes the viewport orlgln and mapping
II mode. It's necessary to convert the point from
II device coordinates to logical coordinates, such as
II are stored in the document.
OnPrepareDC(&dc);
dc.DPtoLP(&point);

m_pStrokeCur-)AddPoint(point);

II draw a line from the previous detected point
II in the mouse drag to the current point
CPen* pOldPen = dc.SelectObject(

GetDocument()-)GetCurrentPen(»;
dc.MoveTo(m_ptPrev);
dc.LineTo(point);
dc.SelectObject(pOldPen);
m_ptPrev = point;
return;

3. Remove the first parameter name (nFlags) from the declaration of
OnMouseMove to avoid a compiler warning that this parameter
is not referenced. The OnMouseMove declaration should then look
like this:

void CScribView::OnMouseMove(UINT, CPoint point)

When SCRIBBLE calls the OnMouseMove message handler, OnMouse­

Move checks to see whether the left mouse button is being held down. If it
is, OnMouseMove calls the CDC::MoveTo and CDC::LineTo member func­
tions to draw anew line in the currently active window.

OnMouseMove also calls the CView::OnPrepareDC and CDC::DPtoLP

member functions to convert the current mouse location to a set of logical

7: Of Mice and Messages

coordinates and then calls the CStroke::AddPoint member function to add
the newest point to the stroke that is being drawn. For more information
about how the CStroke::AddPoint member function works, see the section
"Adding a Point to a Stroke" on page 249.

Writing an OnLButtonUp message handler step by step
In the SCRIBBLE application, the OnLButtonUp message handler ends any
stroke that is currently in progress when the user releases the left mouse
button. The OnLButtonUp member function draws a line to connect the
current stroke to its last point-that is, the point where the user has re­
leased the mouse. Then the OnLButton Up member function relinquishes
control of the mouse, freeing it for more drawing or for other uses by your
application.

To add an OnLButtonUp member function to the SCRIBBLE program,
follow these steps:

1. Add an OnLButtonUp member function and an OnMouseMove
member function to the SCRIBBLE program by following the step­
by-step procedures presented earlier.

2. Remove the first parameter name, nFlags, from the declaration of
OnLButtonUp in order to avoid a compiler warning that this parame­
ter is not referenced. The OnLButton Up declaration then looks like
the following:

void CScribView::OnLButtonUp(UINT, CPoint point)

3. Following the same procedures you used to fill in the code for your
OnLButtonDown message handler and your OnMouseMove message
handler, add the code below to the CScribViewclass's SCRIBVW.H
and SCRIBVW.CPP files. (This code has already been added in the
version of the SCRIBBLE program presented in this chapter.)

void CScribView::OnLButtonUp(UINT, CPoint point)
{

II mouse button up is interesting in the SCRIBBLE
// application only if the user is currently drawing
1/ a new stroke by dragging the captured mouse

(continued)

247

Learn Visual C++ Now

248

}

if (GetCapture() != this)
return: II if this window (view) didn't capture

II the mouse. the user isn't drawing
II in this window

CScribDoc* pDoc = GetDocument():
CClientDC dc(this):

II CScrollView changes the viewport orlgln and mapping
II mode. It's necessary to convert the point from device
II coordinates to logical coordinates. such as are
II stored in the document.
OnPrepareDC(&dc): II set up mapping mode and

II viewport origin
dc.DPtoLP(&point):

CPen* pOldPen = dc.SelectObject(pDoc-)GetCurrentPen(»:
dc.MoveTo(m_ptPrev):
dc.LineTo(point):
dc.SelectObject(pOldPen):
m_pStrokeCur-)AddPoint(point):

II Tell the stroke item that we've finished adding points
II to it. This is so that it can finish computing its
II bounding rectangle.
m_pStrokeCur-)FinishStroke():

II tell the other views that this stroke has been added
II so that they can invalidate this stroke's area in
II their client area
pDoc-)UpdateAllViews(this. 0L. m_pStrokeCur):

ReleaseCapture():

return:

II release the mouse capture
II established at the beginning
II of the mouse drag

OnLButtonUp calls the CDC::MoveTo and CDC::LineTo member functions
to draw a new point in the currently active window.

The OnLButton Up member function also calls the CView: :OnPrepareDC
and CDC::DPtoLP member functions to convert the current mouse location
to a set of logical coordinates and then calls the CStroke::AddPoint
member function to add the newest point to the current stroke. Finally,
OnLButtonUp calls the CStroke::FinishStroke member function to com­
plete the current stroke.

7: Of Mice and Messages

Storing Strokes in a Document
As the user of the SCRIBBLE application uses the mouse to draw on
the screen, the program's document object (named CScribDoc) stores all
the coordinates that make up each completed stroke in an array and cre­
ates and maintains a list of all the strokes the user has drawn. The
program's document object also keeps track of the properties of the pen
that is being used to create the drawing.

Starting a new stroke
As you saw earlier, the CScribDoc::OnLButtonDown member function
begins each new stroke by calling a member function named CScribDoc­
::NewStroke. The NewStroke member function is defined as follows in the
SCRIBDOC.CPP source file:

CStroke* CScribDoc::NewStroke()
{

}

CStroke* pStrokeltem = new CStroke(m_nPenWidth):
m_strokeList.AddTail(pStrokeltem):
SetModifiedFlag(); II mark the document as having been

II modified, for purposes of
II confirming File Close

return pStrokeltem:

The NewStroke member function uses the C++ new operator to construct a
new CStroke object dynamically, initializing it with the current pen width
(which is stored in a member variable named m_nPenWidth). NewStroke
calls a CObList member function named AddTail to add the new stroke to
the list. Then NewStroke calls a CDocument member function named
SetModifiedFlag to notify the SCRIBBLE program that a change has been
made in the document. Finally, NewStroke returns a pointer to the new
stroke that has been added to the list of strokes.

Adding a point to a stroke
When the user holds down the left mouse button and moves the mouse,
the CScribView::OnMouseMove member function calls AddPoint, a mem­
ber function of the CStroke class. The CStroke class, a class derived from
CObject, is defined in the SCRIBDOC.H source file and is implemented in
SCRIBDOC.CPP. The CStroke::AddPointmember function is defined in
the SCRIBDOC.CPP file as shown on the following page.

249

Learn Visual C++ Now

250

void CStroke::AddPoint(CPoint pt)
{

m_pointArray.Add(MAKELONG(pt.x. pt.y»:
}

The CStroke: :Ad dPoint member function calls a CDWordArray member
function named Add to add a new point to the current stroke. This new
point is added to the stroke currently stored in the member variable
named m_pointArray, which is an objectofthe CDWordArrayclass.

Finishing a stroke
When the user finishes drawing a stroke by releasing the left mouse but­
ton, the CScribView::OnLButtonUp message handler is called. The
OnLButton Up member function completes the stroke and then calls the
CStroke::AddPoint member function to add the new point to the current
point array. Then OnLButtonUp calls a CStroke member function named
FinishStroke. The following code shows how the CStroke::FinishStroke
member function is defined in the SCRIBDOC.CPP file:

void CStroke::FinishStroke()
{

II Calculate the bounding rectangle. It's needed for smart
II repainting.

if (m_pointArray.GetSize()==0)
{

}

m_rectBounding.SetRectEmpty():
return:

CPoint pt = GetPoint(0):
m_rectBounding = CRect(pt.x. pt.y. pt.x. pt.y):

for (int i=l: i < m_pointArray.GetSize(): i++)
{

}

II if the point lies outside the accumulated bounding
II rectangle. inflate the bounding rectangle to include it
pt = GetPoint(i):
m_rectBounding.left = min(m_rectBounding.left. pt.x):
m_rectBounding.right = max(m_rectBounding.right. pt.x):
m_rectBounding.top = max(m_rectBounding.top. pt.y):
m_rectBounding.bottom = min(m_rectBounding.bottom. pt.y):

II Add the pen width to the bounding rectangle. This is necessary
. II to account for the width of the stroke when invalidating

II the screen.

7: Of Mice and Messages

m_rectBounding.InflateRect(CSize(m_nPenWidth,-(int)m_nPenWidth»:
return:

The FinishStroke member function calculates the bounding rectangle of
the stroke that has just been finished so that the stroke can later be drawn
to the screen or in a document as efficiently as possible. That's all Finish­
Stroke has to do because the CStroke::AddStroke function has taken care
of all necessary stroke-drawing and stroke-storing details.

Redrawing Strokes in the SCRIBBLE Window
When the SCRIBBLE program needs to redraw all the strokes in a window­
for example, when a window is created or resized, or when it becomes
active after being partly or completely obscured by another window­
the MFC framework calls the CScribView::OnDrawmember function. The
following code shows how the OnDraw member function is defined in the
SCRIBVW.CPP file:

void CScribView::OnDraw(CDC* pDC)
{

}

CScribDoc* pDoc = GetDocument():

II get the invalidated rectangle of the view or, in the case
II of printing, the clipping region of the printer dc
CRect rectClip:
CRect rectStroke:
pDC-)GetClipBox(&rectClip):
pDC-)LPtoDP(&rectClip):

II Note: CScrollView::OnPaint will "have already adjusted the
II viewport origin before calling OnDraw, to reflect the
II currently scrolled position.
II The view delegates the drawing of individual strokes to
II CStroke::DrawStroke.
for (POSITION pos = pDoc-)GetFirstStrokePos(): pos != NULL:)
{

}

CStroke* pStroke = pDoc-)GetNextStroke(pos):
rectStroke = pStroke-)GetBoundingRect():
pDC-)LPtoDP(&rectStroke):
if (!rectStroke.IntersectRect(&rectStroke, &rectClip»

continue;
pStroke->DrawStroke(pDC);

251

Learn Visual C++ Now

252

How the OnDraw member function works
The first thing the CScrib View: :OnDraw member function does is calculate
the bounding rectangle of the current window by calling the MFC library's
CDC::GetClipBox member function. GetClipBox retrieves the dimensions
of the current boundaries of the current window and places these dimen­
sions in the CRect object whose pointer is passed to it in the rectClip
parameter.

When this work is complete, the OnDraw member function uses a for loop
to draw the current stroke array in the active window. This for loop re­
peatedly calls the CScribDoc::GetNextStroke function to get the next stroke.
It then calls CStroke::GetBoundingRect to ensure that only the areas of the
window that need redrawing are redrawn, and then calls CStroke::Draw­
Stroke to do the drawing. Also, the CDC::LPtoDP member function is
called to convert the logical coordinates stored in SCRIBBLE's document
object to the device coordinates that are needed to draw inside the cur­
rently active window.

Drawing the first stroke
As you've seen, the OnDraw member function draws strokes by calling
a pair of CStroke member functions named GetFirstStrokePos and Get­
NextStroke. The GetFirstStrokePos member function is defined this way
in the SCRIBDOC.CPP file:

POSITION CScribDoc::GetFirstStrokePos()
{

return m_strokeList.GetHeadPosition();
}

The CStroke::GetFirstStrokePos member function obtains the position of
the first stroke stored in a CObList object by calling a CObList member
function named GetHeadPosition. GetFirstStrokePos returns a pointer to
the first stroke object in the list. (The positions of objects stored in a COb­
List object are expressed using a data type named POSITION, which is de­
fined in the MFC library.

Drawing the next stroke
The CStroke::GetNextStroke function returns the CStroke object that is
stored at a specified position in a stroke list. It is defined this way in the
SCRIBDOC.CPP file:

7: Of Mice and Messages

CStroke* CScribDoc::GetNextStroke(POSITION& pos)
{

return (CStroke*)m_strokeList.GetNext(pos);
}

The GetNextStroke member function calls the GetNext member function
of the CObList class, which returns a pointer to a CObject-derived ob­
ject stored in the list.

Creating and Managing a CPen Object
In the OnLButtonUp member function shown on page 247, a CScribDoc
member function named GetCurrentPen is used to retrieve a pointer to
the CPen object that is currently being used to draw strokes on the screen.
GetCurrentPen is an application-defined helper function that provides re­
stricted, type-safe public access to the protected data member m_penCur.
In a similar way, the NewStroke, GetFirstStrokePos, and GetNextStroke
member functions provide public access to the protected data structure
stored in the m_strokeList member variable.

CDocument::GetCurrentPen is an inline member function that is defined
as follows in the SCRIBDOC.H file:

public:
CPen* GetCurrentPen() { return &m_penCur; }

GetCurrentPen simply returns a pointer to the current CPen object, which
is defined as a protected member variable of the CScribDoc class.

Understanding MIFC library Classes
As noted at the beginning of this chapter, most MFC library classes are
derived from a root class named CObject. It's important for you to learn as
much about the CObject class as you can because it contains many useful
member functions that can add an enormous amount of power to the
classes and objects that you create in your MFC programs.

To use the member functions provided by the CObject class, you have
to derive your own classes from CObject or from a class derived from
CObject. Because most of the classes in the MFC library are derived from
CObject, deriving a class from almost any class in the MFC library gives
you access to all member functions that can be inherited from CObject.

253

Learn Visual C++ Now

254

The only MFC library classes that aren't derived from CObject, and there­
fore don't inherit from it, are special-purpose classes such as CString,
CTime, CRect, CPoint, and CSize. Other classes that are not derived from
CObject include G,Archive, CDumpContext, CFileStatus, CMemoryState,
CRect, CRuntimeClass, and CTimeSpan. For a complete list of classes that
aren't derived from CObject, as well as those that are, see the Microsoft
Foundation Class Library Reference topic in the online help.

All the topics discussed in this chapter relate in one way or another to fea­
tures that classes and objects in MFC applications can inherit from the
CObject class. Objects derived from CObject or its descendants are the only
kinds of objects that can implement message maps and handle mouse
events using ClassWizard message handlers. In this section, we'll take a
look at some of the most important features of the CObject class.

Features of the CObject Class
Objects instantiated from the CObject class or its descendants inherit
CObject features such as the following:

• Support for serialization-An object from the CObjectclass or
anyone of its descendants can automatically load and save informa­
tion by using a CObject mechanism called serialization. To take ad­
vantage of this feature, all you have to do is override the CObject
member function Serialize by writing a small amount of code. You'll
learn how to add serialization to CObject-derived classes in the sec­
tion "Files and Serialization" on page 255.

• Diagnostic support-When you create a program using App Wizard,
you can build two versions of your application: a debug version and
a release version. The debug version of an App Wizard application
contains debugging information that the Visual C++ debugger re­
quires. The release version of a program-the version you build .
when your application is ready to ship-contains no debugging in­
formation and takes up considerably less disk space.

7: Of Mice and Messages

When your Visual C++ application is in the development and de­
bugging stage, the MFC library provides a number of features that
can help. For example, when you use the C++ new operator to
instantiate a CObject-derived object on the heap, the MFC library
provides a macro named ASSERT_VALID that you can call to deter­
mine whether your object has been successfully created. There
is also a slightly less powerful macro, ASSERT, that you can call to '
test the value of an expression. One common use of the ASSERT
macro is to test a value returned by a function to see whether the
function has returned an error.

• Support for MFC collection classes.,....-The MFC library contains sev­
eral collection classes-that is, classes in which arrays or lists of
objects (or pointers to objects) can be stored. MFC collection classes
have many special features that make them easy to create, traverse,
and manage. MFC collection classes include CObList (for storing
lists of objects), CStringList (for storing lists of strings), CPtrList
(for storing lists of pointers), and more. The MFC library also pro­
vides collection classes for storing arrays. Array-style collection
classes include CObArray, CStringArray, CByteArray, CPtrArray,
and others. To take full advantage of the MFC collection classes, the
objects you store in them must be objects that are derived from the
CObject class or one of its descendant classes. For information about
how collection classes can be used to store MFC objects, see the sec­
tion "Storing Strokes in a Document" on page 249.

IFD~es and SerialozatioD1l
As a user of Windows, you have at least a general understanding of how
Windows-based applications typically handle files. Usually, a Windows­
based application creates a document object when the user of the program
selects the New command from the File menu. In a framework-based
Visual C++ program, as soon as a document is created, a view that is asso­
ciated with the document is displayed on the screen.

255

Learn Visual C++ Now

256

To open an existing document, a Windows user typically chooses the
Open command from the File menu. The application then displays a com­
mon Open dialog box that allows the user to navigate to an existing file
and open it.

The MFC library provides several mechanisms to help you create and
manage files in your Visual C++ applications in response to user com­
mands. Three of these mechanisms are listed here:

• User-interface objects, such as menu items, that can help the user of
your application perform file-related operations

• A CFile class and two CFile-derived classes (CStdioFile and
CMemFile) that are equipped with member functions for creating,
deleting, and managing files

• A higher-level file-related mechanism called serialization, which
lets you equip your programs with automatic file-loading and file­
saving capabilities by writing just a few lines of code

These three MFC mechanisms for dealing with file I/O are covered in more
detail in the sections that follow.

Opening Files in an MFC Program
To open an existing document in a Windows-based application, the user
customarily chooses the Open command from the File menu. AppWizard
does not automatically provide a message-handler function for opening
files in response to this command, but you can easily create one-and
if your application uses the MFC serialization mechanism described later
in this chapter, you can supply a small amount of code that will open files
automatically.

If your application doesn't use serialization, you can support the Open
command by using Class Wizard to create a message-handler function for
the ID_FILE_OPENmessage. In an MFC application, choosing the Open.
command causes Windows to issue an ID_FILE_OPENmessage, which is
one of the menu commands that ClassWizard can automatically create
message handlers for.

7: Of Mice and Messages

To create an item on the File menu by using ClassWizard, you follow the
general steps for creating message handlers that were outlined earlier, in
the section "Creating Message Handlers with ClassWizard" on page 237.

ClassWizard automatically equips your application's document class with
an ID _FILE_ OPEN message handler.

When App Wizard generates a Visual C++ framework, Save and Save As
commands on the File menu are also provided automatically. You can also
create message-handler functions for these commands using ClassWizard.

Performing File 110 with the CFile Class
The CFile class is a convenient interface for general-purpose binary file
operations. It is equipped with a number of member functions that you
can use to open and close files and to read and write file data.

To supply more specialized file services, the MFC library provides two
other classes-the CStdioFile and CMemFile. Both CStdioFile and CMem­

File are derived from the CFile class.

Opening a file using a CFile object
To open a file using a CFile object, follow these general steps:

1. Instantiate the file object from the CFile class, without specifying a
path or permission flags. File objects are usually created on the
stack rather than on the heap.

2. Open the file object you have created by calling the CFile::Open
member function, supplying a path and permission flags as argu­
ments with your Open call. CFile::Open returns a nonzero value if
the file is opened successfully. If the specified file cannot be

. opened, a zero v~lue is returned.

The following code shows how to create a new file with read/write per­
mission (replacing any previous file with the same path):

char* pszFileName = "\\test\\myfile.dat";
C File my File;

if (!myFile.Open(pszFileName.

}

CFile: :modeCreate : CFile: :modeReadWrite)) {
T RA C E ("C an' t open f i 1 e% s \ n" • p s z File N a me) ;

257

Learn Visual C++ Now

258

Reading from a file using a CFile object
To read data from files and write data to files, you can call the CFile::Read
~nd CFile::Write member functions. The MFC library also provides a
CFile::Seek member function for moving to a specific location within a file.

The prototype of the CFile::Read member function is shown here:

virtual urNT Read(void FAR *lpBuf. UrNT nCount)
throw(CFileException): .

The first argument to CFile::Read is a pointer to a text buffer. The second
argument is an unsigned integer (UINT) variable specifying the number of
bytes to read. The Read member function returns a UINT variable specify­
ing the number of bytes that were actually read. If the requested number of
bytes cannot be read because an end-of-file (HOP) marker is reached, Read

returns the actual number of bytes read. If a read error occurs, an excep­
tion is thrown. (In the MFC library, an exception is an error that can be
handled using a special kind of mechanism called an exception handler.)

Writing to a file using a CFile object
You can write to a file using a CFile object by calling the CFile::Write

member function. The prototype of the Write member function is shown
in this code fragment:

virtual void Write(void FAR *lpBuf. UrNT nCount)
throw(CFileException):

As you can see, the prototype of the CFile::Write member function is iden­
tical to the prototype of CFile::Redd, with one exception: Write does not
return an integer specifying a number of bytes. If a CFile::Write call results
in an error, the function simply throws an exception. The following code
fragment shows how an MFC program can write to and read from a file
using a CFile object:

char szBuffer[256]:
UrNT nActual = 0:

myFile.Write(szBuffer. sizeof(szBuffer»:
myFile.Seek(0. CFile::begin):
nActual = myFile.Read(szBuffer. sizeof(szBuffer»:

7: Of Mice and Messages

Closing a file using a CFile object
To close a file using a CFile object, call the CFile::Close member function.
CFile::Close closes the file and flushes buffers if necessary.

If you have created a CFile object on the stack, the object is automatically
closed and then destroyed when it goes out of scope. It is important to
note that calling the CFile::Close member function does not delete the
physical file associated with the CFile object. To remove a file associated
with a CFile object from the system, call CFile::Remove. For details on
how to call CFile::Remove, see the online help.

Retrieving a file's status using a CFile object
To get and set information about a file associated with a CFile object, you
can call the CFile::GetStatus member function. You can also call CFile­
::GetStatus to determine whether a file exists. If the specified file does not
exist, GetStatus returns O.

For more information about GetStatus and an example showing how it is
used, see the online help for Visual C++.

The SerrDa~Dla'U:DolrO Mechanosm
When you derive an object from the CObject class, the Visual C++ frame­
work automatically gives your object the ability to read and write file
information. As mentioned, the process of automatically writing an object
to or reading an object from a storage medium such as a disk file is called
serialization. By taking advantage of the serialization capabilities of the
CObject class, you can serialize all your application's data by writing a
few lines of code.

The serialization mechanism is based on an I/O technique called stream­

ing. In the MFC library, streaming lets applications use the same kinds of
procedures to perform many different kinds of I/O operations. MFC appli­
cations can use streaming to transfer information to and from files, print­
ers, standard I/O devices such as the monitor and the keyboard, and even
different computer systems connected across a network.

259

Learn Visual C++ Now

260

The MFC serialization mechanism uses data streaming in a specialized
way that is a little different from most other kinds of streaming operations.
The main difference is that the serialization mechanism reads and writes
binary data, whereas other kinds of streaming operations read and write
character data. But in other respects, serialization and ordinary data
streaming use exactly the same kinds of operations. So once you under­
stand the general principles of how data streaming works in C++, it's easy
to understand MFC serialization.

Objects and Operators Used in Stream 1/0
In conventional C++ stream-based I/O, both output and input are hand~ed
as streams of bytes. Most C++ programs send output to files, disk drives,
and other devices using a C++ I/O connection named cout and receive
input from files, disk drives, and other devices using a C++ 1/0 connection
named cin.

The cin and cout I/O connections are generally used with a pair of over­
loaded operators called the insertion operator «<) and the extraction
operator (») in order to perform the same kinds of operations that the
print/and scan/functions perform inC. The extraction operator, an over­
loaded version of the bitwise » operator, is used with the cin I/O connec­
tion to retrieve input from the user and also to retrieve input from files.
The insertion operator, an overloaded version of the bitwise « operator,
is used with the cout I/O connection to send output to devices such as
monitors and printers as well as to files.

In a text-based C++ program, for example, the following statement prints
the text "Hello, world!" to standard output (ordinarily the screen):

cout « "Hello, world!";

Executing this statement has the same effect as executing the following
print! statement in C:

printf("Hello, world!");

C++ programs can use the cin 1/0 connection and the extraction operator
to retrieve information from the keyboard. For example, a text-based C++
program could use the following statements to create an integer variable
named x, prompt the user to type in a value, and set x to the value typed in
by the user.

7: Of Mice and Messages

int x;
cout « "Input a value for x:";
cin » x;

C++ programs can also use cin » statements with CString objects and
other kinds of variables.

1\.'«11 OTE The insertion and extraction operators are not extensively used for key-
6if\t board and screen 110 in Visual c++ applications because most Visual C++

programs are graphics-based and generally use graphics-based objects, such
as dialog box controls, to manage screen and keyboard 110. (You'll learn much
more about how MFC programs use dialog box controls as user-interface
devices in Chapter 8, "Dialog Boxes," and Chapter 9, "Managing Data.") But
it's still important for Visual C++ programmers to learn about the cin and
cout 110 connections and the insertion and extraction operators because spe­
cialized versions of all those devices are often used for other purposes-such
as serialization-in Visual C++ programs.

Using the « and » Operators
The insertion operator «<) and the extraction operator (») are not techni­
cally part of the C++ language, but Visual C++ defines them in a file named
ISTREAM.H, in the same way that all major implementations of C provide
a STDIO.H library that defines the printJandscanffamily of functions.

Many C++ programmers like the stream-based I/O mechanisms provided
by C++ better than the printfand scanJfamily ofC-language functions be­
cause the stream-based I/O mechanisms used in C++ have syntax rules
that are much easier to master. For example, in C++, the« and» opera­
tors can be used with either strings or numeric variables, without the need
for any formatting characters. Consider the following short (but complete)
text-based C++ application:

#include <iostream.h>
int maine)
{

}

int price = 5;
cout « "The price is $" « price « ".\n";
return 13;

The output of this short and sweet program is shown here:

The price is $5.

261

Learn Visual C++ Now

262

Once you get accustomed to using the« and» operators, you might find
that they are easier to use than the print! and scanf functions because
they do not require the use of formatting characters or the contorted syn­
tax that formatting characters often require.

Implementing Serialization in MFC Programs
As noted earlier in this chapter, the MFC library's CObject class provides
built-in support for the serialization mechanism. Any class derived from
CObject has the CObject class's serialization capabilities built in.

The CObject class supports serialization by overriding the insertion
operator «<) and the extraction operator (») in order to write and read
object data to and from storage media. Because the CObject class overrides
the insertion and extraction operators in this way, any object derived from
CObject or one of its descendant classes can perform serialization opera-,
tions by making use of CObject's overridden« and» operators.

Before an MFC application can use the serialization mechanism, however,
it must instantiate two other kinds of objects: a CFile-derived object and
an archive object. An archive object is an object that is instantiated from
an MFC class named CArchive. It is essential to create a CObject-derived
object before you can use the serialization mechanism because seriali­
zation is handled by a CObject member function named Serialize. It is also
essential to create a CArchive-derived object because the CObject::Serialize
member function takes a reference to a CArchive-derived object as a pa­
rameter. In the SCRIBBLE application presented in this chapter, for ex­
ample, the following member function declaration appears in the definition
of the CScribDoc class:

virtual void Serialize(CArchive& ar):

After you have constructed a CFile-derived object and a CArchive object,
you can open a file object for reading and writing and attach it to your
archive object. Because the serialization mechanism can handle both in­
put and output, you must specify whether you want to use the archive for
loading or for storing information. Then you can use the CArchive member
function Serialize to read data from or write data to your file, depending
on whether you have opened it for reading or for writing.

7: Of Mice and Messages

Implementing Serialization in AppWizard Programs
As mentioned, in a framework-based MFC application, you don't have
to write the code that creates the classes and member functions required to
support serialization because AppWizard does all that for you. In an appli­
cation generated by AppWizard, the CObject-derived class that is used to
support serialization is the program's CDocument object.

As you know, AppWizard creates a CDocument object for every applica­
tion framework it generates. When AppWizard creates a CDocument
object for an application it is generating, it also creates a CFile-derived
object and a CArchive object and performs all the work that is needed to
make sure that all three of these objects work together to support serializa­
tion. AppWizard even creates a CArchive::Serialize member function and
places it in the source file that implements the program's CDocument ob­
ject. The application can then implement serialization by adding some
code to the Serialize member function that App Wizard has created.

When App Wizard creates a Serialize member function for a CDocument­
derived class, the function looks like the one shown here:

void CScribDoc::Serialize(CArchive& ar)
{

}

if (ar.lsStoring(»
{

}

else
{

}

II TODO: add storing code here

II TODO: add loading code here

As you can see, a Serialize member function created by App Wizard is
capable of both saving and loading information. You must decide what
kinds of data and objects you want your program to retrieve when it
restarts and store when it terminates. It's up to you to write the code that
does the job, but you don't have to make an explicit call to the Serialize
member function that App Wizard has created. Once App Wizard has
equipped an application with a Serialize member function, the program's
framework calls Serialize at the appropriate times.

263

Learn Visual C++ Now

264

Implementing Serialization in the SCRIBBLE Program
In the SCRIBBLE application presented in this chapter, three line.s of code
have been added to the CScribDoc::Serialize member function that ap­
pears in the SCRIBDOC.~PP file, as shown here:

void CScribDoc::Serialize(CArchive& ar)
{

}

if (ar.IsStoring(»
{

}

else
{

}

ar « m_sizeDoc;

ar » m_sizeDoc;

m_strokeList.Serialize(ar);

Once you have a general idea of how the « and » operators work, it isn't
hard to figure out what's going on here. The CObject::Serialize member
function always takes one parameter: a reference to a CArchive object. In
this example, the name of the CArchive object is ar. When the SCRIBBLE
application's framework calls Serialize, the application's framework
automatically passes a reference to the ar object to the Serialize member
function.

The IsStoring function is used to determine whether the function is saving
or loading -data. If IsStoring returns TRUE, the Serialize function is being
used to store information, so the« operator is used to store whatever
information is being saved in an archive. If IsStoring returns FALSE, the
Serialize member function is being used to retrieve information, so the >>:
operator is used to load data into memory.

In the preceding example, two things are serialized: a piece of data and
an MFC object. The piece of data is a member variable named m_sizeDoc,
which contains the size of a SCRIBBLE document. The Serialize function
is used to save this value when a SCRIBBLE document is closed and to re­
trieve the same value whenever the same document is reopened.

The MFC object that the SCRIBBLE application serializes is an instantiation
of a class named CStroke. In the preceding example, the following state­
ment serializes a CStroke object:

7: Of Mice and Messages

m_strokeList.Serialize(ar);

This statement demonstrates one of the most powerful features of the MFC
serialization mechanism: the ease with which you can serialize a com­
plete MFC object in a Visual C++ program. An MFC object derived from
the CObject class is serialized by calling its Serialize member function. In
this case, a Serialize member function that AppWizard has created for a
CDocument-derived object calls the Serialize member function of the
m_strokeList object.

In the SCRIBBLE application, the m_strokeList member variable is an
instantiation of an MFC library class named CObList. It is declared as fol­
lows in the SCRIBDOC.H file:

protected:
CObList m_strokeList; II each member of the list is a CStroke

As mentioned, the CObList class is an MFC collection class that provides a
mechanism for storing lists of other MFC objects. In the SCRIBBLE appli­
cation, a stroke that the user draws is stored in an object instantiated from
the CStroke class. CStroke objects are stored in the m_strokeList object,
which is instantiated from the CObList collection class.

Because the CObList class is derived from the CObject class, the SCRIBBLE
program doesn't have to do anything to serialize its m_strokeList object
except execute the following statement:

m_strokeList.Serialize(ar);

Things get a little tricky here, however, because the m_strokeList object
in the SCRIBBLE program is derived from the CObject collection class that
is used to sto~e other' objects-in this case, strokes that are drawn in a win­
dow by the user.

What makes this tricky is that the CObList object in the SCRIBBLE pro­
gram stores CStroke objects. Because a CStroke object is an application­
defined object, not an MFC-defined object, the MFC library has no way of
knowing exactly how to store it in an archive.

For this reason, the SCRIBBLE program has to override the Serialize mem­
ber function that the MFC library provides to all objects derived directly

265

Learn Visual c++ Now

266

or indirectly from the eObjectclass. In the SCRIBBLE application, the
eStroke class's Serialize member function is overridden as shown here:

void CStroke::Serialize(CArchive& ar)
{

}

if (ar.lsStoring(»
{

}

else
{

}

ar « m_rectBounding:
ar « (WORD)m_nPenWidth:
m_pointArray.Serialize(ar):

ar » m_rectBounding:
WORD w:
ar » w:
m_nPenWidth = w:
m_pointArray.Serialize(ar):

The SCRIBBLE program's eStroke class serializes three kinds of objects,
listed below. You can probably guess what these objects do and why
they have to be serialized when a SCRIBBLE document is to be saved or
retrieved.

• A eRect object named m_rectBounding, which describes the bound­
ing rectangle that surrounds the stroke.

• A UINT object named m_nPen Width (cast here to a WORD data type,
for reasons that will be explained in the next section). The m_n~en­
Width object defines the width of the pen that is used to draw the
stroke.

• A eDWordArrayobject named m_pointArray, which can be serial­
ized with an unadorned call to its own Serialize member function
because it is a direct instantiation of an MFC library class. The
m_pointArray object contains the coordinates of all the points that
are needed to draw the stroke in a SCRIBBLE window.

Because each stroke drawn in a SCRIBBLE window has all three of these
properties, all three properties have to be serialized to provide a complete
description of each stroke used in the SCRIBBLE program.

7: Of Mice and Messages

Serializable Data Types
Although the MFC library defines an enormous number of data types,
Microsoft has kept the implementation of the MFC serialization mecha­
nism simple by equipping it to recognize only a small number of data
types. The six data types that you can use in a Serialize member function
are listed in Table 7-3.

Data Type Description

BYTE 8 bits unsigned

WORD 16 bits unsigned

LONG 32 bits unsigned

DWORD 32 bits unsigned

float 32 bits

double 64 bits, IEEE standard

Table 7-3. Serializabledata types.

Although the number of data types recognized by the serialization mecha­
nism seems limited, you can actually serialize data of any data type by
casting unrecognized 9.ata types to one of the types shown in Table 7-3.

For example, the following statement in the CStroke class's Serialize
definition casts a UINT data type, which Serialize does not recognize, to a
WORD data type, which is recognized by the MFC serialization mechanism: '

ar « (WORD)m_nPenWidth;

MFC's Set'ialization Macros
When you derive an object from, the CObject class or one of its descendant
classes, you must invoke a pair of MFC macros: the DECLARE_SERIAL
macro and the IMPLEMENT_SERIAL macro. The DECLARE_SERIAL macro
is always placed in the definition of a class, and the IMPLEMENT_SERIAL

macro is placed inthe class's implementation file. Subsequently, when
the Visual C++ macro preprocessor encounters these two macros, it re­
places them with MFC-generated source code that defines and implements
various functions that are needed to implement serialization in the class
for which they are defined.

267

Learn Visual C++ Now

268

A?11 OTE You don't have to place the DECLARE_SERIAL and IMPLEMENT_SERIAL
6If\i macros in the header and implementation files of your application's docu­

ment class. The document class that is generated for a framework applica­
tion is created using serialization, so it already has all the serialization
support it requires, and it doesn't need any more. When you derive a class
of your own from CObject or one of its descendants, however, you must use
the DECLARE_SERIAL and IMPLEMENT_SERIAL macros to implement your
class's built-in serialization capabilities. .

The DECLARE_SERIAL macro is straightforward. It takes just one parame­
ter: the name of the class that will be calling the Serialize member func­
tion. In the SCRIBBLE program, the CStroke class's DECLARE_SERIAL

macro is declared as follows in the SCRIBDOC.H file:

DECLARE_SERIAL(CStroke)

In the SCRIBBLE application, the IMPLEMENT _SERIAL macro for the
CStroke class is defined this way in the SCRIBDOC.H file:

IMPLEMENT_SERIAL(CStroke. CObject. 2)

As shown, the IMPLEMENT _SERIAL macro takes three parameters. The
first two arguments to the IMPLEMENT _SERIAL macro are the name of
the class and the name of its base class. The third argument-the schema
number-is essentially a version number for objects of the class being
equipped with serialization. A schema number is always an integer greater
than or equal to o. When the MFC library's serialization code reads an object
into memory, it checks the schema number of the object's class. If the
schema number of the object that is stored on disk does not match the
schema number of the class, MFC throws a CArchiveException, prevent­
ing your application from reading an incorrect version of the object.

Opening and Closing Documents in an MFC Program
The MFC framework automatically calls a member function named
CDocument::OnNewDocument when a new document is created. It calls
a member function named CDocument::OnOpenDocument when a docu­
ment is opened. When AppWizard generates an application fr~mework, it
automatically creates a skeletal OnNewDocument member function for you.
But,if you want to use an OnOpenDocument member function, you must
supply it yourself.

7: Of Mice and Messages

Because a document can be created with either the New command or the

Open command on the File menu, the SCRIBBLE program's CScribDoc

class overrides both the OnNewDocument and the OnOpenDocument

member functions of CDocument to perform necessary document initial­

ization. Both these initializations are the same in SCRIBBLE, however, so

both overrides call an application-specific member function named
InitDocument.

The following code shows the override of the OnNewDocument member

function that appears in the SCRIBDOC.CPP file:

BOOl CScribDoc::OnNewDocument()
{

}

if (!CDocument::OnNewDocument(»
return FALSE;

InitDocument();
return TRUE;

The override of the OnOpenDocument member function is shown here:

BOOl CScribDoc::OnOpenDocument(const char* pszPathName)
{

}

if (!CDocument::OnOpenDocument(pszPathName»
return FALSE;

InitDocument();
return TRUE;

And the InitDocument member function is defined in the SCRIBDO'C.CPP
file as shown here:

void CScribDoc::lnitDocument()
{

}

m_bThickPen = FALSE;
m-.:.nThinWidth = 2; II default thin pen is 2 pixels wide
m_nThickWidth = 5; II default thick pen is 5 pixels wide
ReplacePen(); II initialize pen according to current width
II default document size is 8 by 9 inches, with one logical unit
II mapped to 0.01 inch (MM_LOENGlISH mapping mode)
m_sizeDoc = CSize(800,900);

269

Learn Visual C++ Now

270

j\(ii OTE The InitDocument member function also sets the initial size of.docu-
61r~ ments created by the SCRIBBLE program to 800 units by 900 units, measured

in a mapping mode called MM_LOENGLISH. MFC document objects can
be measured in several different mapping modes, some of which are suit­
able for screen displays and others of which are more suitable for printing.
The MM_LOENGLISH mapping mode specified in the SCRIBBLE program's
InitDocument member function is a mode that works best with screen displays.
For more details about MFC mapping modes, see the companion CD-ROM
online help files.

The SCRIBBLE program's InitDocument member function initializes a set
of default properties for a pen object and then calls a member function
named ReplacePen. The ReplacePen member function calls an MFC mem­
ber function named DeleteObject to free any system storage that SCRIBBLE
mightbe using for the pen object being created. Then ReplacePen creates a
new pen by calling a member function named CPen::CreatePen.

In the SCRIBDOC.CPP file, the ReplacePen member function is defined as
shown here:

void CScribDoc::ReplacePen()
{

}

m_nPenWidth = m_bThickPen? m_nThickWidth : m_nThinWidth:
II change the current pen to reflect the new user-specified width
m_penCur.DeleteObject():
m_penCur.CreatePen(PS_SOLID. m_nPenWidth. RGB(0.e.0)):
II solid black

Clearing the SCRIBBLE Program's Window
When you execute the SCRIBBLE program, you can clear all strokes from a
window by choosing the Clear All command from the 'Edit menu.
SCRIBBLE then executes the m'essage-handler function shown here:

void CScribDoc::OnEditClearAll()
{

}

DeleteContents():
SetModifiedFlag(): 'II mark the document as having been modified.

II for purposes of confirming File Close
UpdateAllViews(NULL):

7: Of Mice and Messages

The OnEditClearAll member function calls a CDocument member function
named DeleteContents to delete all the CScribDoc class's data and then
calls another CDocumentmember function, named SetModifiedFlag, to
notify the SCRIBBLE program that the contents of its document object
have been changed. After that, OnEditClearAll calls a third CDocument
. member function, named UpdateAllViews, to update all the views of the
. program's CScribDoc object.

Overriding the DeleteContents member function
CDocument::DeleteContents is an MFC member function that provides
a convenient way to destroy a document's data. The MFC framework auto­
matically calls the DeleteContents member function whenever it is neces­
sary to delete a document's contents without destroying the document
itself. For example, the framework automatically calls an SDI application's
DeleteContents function when the user chooses the New command from
the File menu.

The SCRIBBLE program overrides the DeleteContents member function by
iterating through the CObList object in which strokes are stored. The fol­
lowing code shows how SCRIBBLE overrides DeleteContents:

void CScribDoc::DeleteContents()
{

}

while (!m_strokeList.IsEmpty(»
{

delete m_strokeList.RemoveHead();
}

For each stroke object in the SCRIBBLE program's list of strokes, the
DeleteContents function calls RemoveHead, a member function of the
MFC library's CObList class, and then invokes the C++ delete operator.
This action destroys all strokes stored in the list.

Changing Pen Widths
When you execute the SCRIBBLE program, you can change the width of
the pen used for stroke drawing by choosing the Pen Widths item from the
Pen menu. SCRIBBLE then displays a Pen Widths dialog box similar to the
one shown in Figure 7-4 on the following page.

271

Learn Visual C++ Now

272

Figure 7-4. The Pen Widths dialog box.

The Pen Widths dialog box lets you set two pen widths: a thick pen width,
which is used when the user selects the Thick Line item from the Pen
menu, and a thin pen width, which is used when the user deselects the
Thick Line item. When you program with Visual C++, you can use App
Studio to create dialog boxes such as the one shown in Figure 7-4, and you
can use ClassWizard to connect dialog box controls to message handlers
and to pass information back and forth between dialog box controls and
class member functions.

1((IIOTE Chapter 8, "Dialog Boxes," shows how to design dialog boxes. Chap-
6if\i ter 9, "Managing Data," shows how to pass data back and forth between

dialog box controls and class member functions by using an MFC mechanism
called DDXlDDV (dialog data exchange and dialog data verification).

When you select the Thick Line menu item, SCRIBBLE executes the
OnPenThickOrThin member function shown here:

void CScribDoc::OnPenThickOrThin()
{

}

II toggle the state of the pen between thin and thick
m_bThickPen = !m_bThickPen;

II change the current pen to reflect the new user-specified
II width
ReplacePen();

The OnPenThickOrThin member function sets the current pen width by
toggling a Boolean member variable named m_bThickPen, which keeps
track of whether a thin pen or a thick pen is being used, and then calls a
member function named ReplacePen.

7: Of Mice and Messages

SCRIBBLE then executes the following On Up da tePen ThickOrThin mem­
ber function, which places or removes a check mark next to the Thick Line
menu item to show whether the pen currently being used is a thick pen:

void CScribDoc::OnUpdatePenThickOrThin(CCmdUI* pCmdUI)
{

}

II add check mark to Thick Line menu item if the current
II pen width is "thick"
pCmdUI-)SetCheck(m_bThickPen);

The ReplacePen member function calls the CPen::DeleteObject member
function. The DeleteObject function destroys the current pen and then
calls the CPen::CreatePen member to create a new pen with the width that
the user has specified.

In this chapter, you learned how message maps work in Visual c++ pro­
grams, and you learned how Visual c++ programs recognize and respond
to mouse events. In Chapter 8, "Dialog Boxes," you'll learn how to use
App Studio and ClassWizard to create dialog boxes and many different
dialog box controls. In Chapter 9, "Managing Data," you'll learn how to
transfer information back and forth between dialog box controls and the
member functions used in Visual C++ programs. Then in Chapter 10, "Vi­
sual C++ Graphics," you'll learn how to develop a program that creates
screen displays using device-independent bitmaps. You'll also learn how
to create lightning-fast animation using small DIB objects called sprites.

273

Chapter

Dialog Boxes
Dialog boxes are one of the most important features of Windows-based
applications. No matter what kind of Windows-based program you decide
to create, chances are better than even that you will need to create and
manage at least a few dialog boxes. And the more sophisticated your
application becomes, the more different kinds of dialog boxes it is likely
to require.

This chapter explains how to create and use the three most important varie­
ties of dialog boxes: modal dialog boxes, modeless dialog boxes, and mes­
sage boxes. Topics covered in this chapter include the following:

• Creating and implementing modal and modeless dialog boxes

• Designing and 'using dialog box controls

• Using message boxes in your applications

• Creating user drawn dialog box controls

• Creating combo boxes and list boxes and supplying them with text

The sample program presented in this chapter, DLGDEMO, shows you
how to create and use several different kinds of controls, including static
text controls, edit controls, radio button controls, and owner drawn con­
trols. It also demonstrates how to populate list boxes and combo boxes.

275

Learn Visual C++ Now

276

The modal dialog box shown in Figure 8-1 is one of the dialog boxes dis­
played by the DLGDEMO program.

Figure 8-1. A modal dialog box.

Creating Dark Gray Baclcgrounds for Dialog BOlces

Iri programs written for Window~ 95 and Windows NT, "fashionable"
dialog boxes have dark gray backgrounds instead of the white back­
grounds that date back to the days of Windows 3.0. To create default
dark gray backgrounds for your dialog boxes so that they'll look crisp
and up-to-date, all you have to do is call the MFC library's SetDialog­
BkColor member function in your program's InitInstance function ..
For example, as shown in the DLGDEMO.CPP file on the companion
CD-ROM, the InitInstance function of the CDIgDemoApp class makes
this call to, SetDialogBkColor:

II make dialog backgrounds dark gray
SetDialogBkColor();

The SetDialogBkColor member function accepts two optional COLOR­
REF arguments: one that specifies the background color for the ap­
plication, and another that specifies the background color for the
program's dialog boxes. Ifyouomit both arguments, SetDialogBk­
Color sets the hackground color of your program's. dialog boxes to
standard Windows 95 dark gray.

8: Dialog Boxes

j'2ll aTE The modal dialog box displayed by the DLGDEMO program demon­
(l11~ strates the use of dialog controls but doesn't do much else. When you ,close

the dialog box, the information entered in its controls is not saved; it simply
disappears. Chapter 9, "Managing Data," explains how to create dialog
boxes that write information to a database and read information from a
database.

Varroeitnes of lQ)oa~([J)Q1l8oJ{es
Dialog boxes fit into two general categories: modal dialog boxes and mode­
less dialog boxes. A modal dialog box does not allow the user to perform
actions in the application until the dialog box is closed. A modeless dialog
box, on the other hand, lets users perform other actions in the application
while the dialog box is displayed. A third variety of dialog box, the mes­
sage'box, is itself a modal dialog box.

Modal Dialog Bo}{es
Most dialog boxes used in Windows-based programs are modal dialog
boxes. Typically, a user closes a modal dialog box by clicking the OK or
Cancel button. (Some dialog boxes, including the dialog boxes in this
chapter's sample program, also have Close boxes in their title bars.) In a
well-behaved Windows-based application, clicking the OK button dis­
played in a modal dialog box confirms any entries the user has made in the
dialog box's controls. Often, clicking the OK button writes data to files or
modifies data being used by the application. The Cancel button (and the
Close box, if there is one) closes a dialog box without taking any other
actions.

Modeless Dialog Bo){es
Modeless dialog boxes are somewhat more difficult to implement than
modal dialog boxes, but modeless dialog boxes are more versatile. Modeless
dialog boxes give the user more control over an application and are particu­
larly useful in situations that require a dialog box to remain on the screen
while the user performs other actions in the application. Tool palettes and
find-and-replace dialog boxes, for example, are often implemented as
modeless dialog boxes. In contrast to a modal dialog box, you typically
close a modeless dialog box by clicking its Close box (rather than clicking

277

Learn Visual C++ Now

278

the OK or Cancel button) in the same way that you close any document
window. Until you close a modeless dialog box, it remains on the screen.

Message Boxes
One popular kind of modal dialog box is the message box. Message boxes
are so easy to create and implement that many software designers use them
to display error messages during the creation and·debugging of programs.

You can implement a message box with one simple command: a call to the
Microsoft Foundation Class (MFC) Library version 2.0 member function
MessageBox. In Visual C++, the MessageBox function takes one to three
parameters. The three parameters are a message string, a title string, and a
flag parameter that controls the appearance, behavior, and other character­
istics of the message box being displayed. More information about message
boxes is provided later in this chapter.

(omrPOD11eD1ts of a Dialog BO)t
In programs created with the AppWizard framework, every dialog box has
two components:

• A resource that identifies the dialog box and specifies the dialog
box's controls and their placement in the dialog box window.

• A C++ class derived from the MFC library's CDialog class. This class
provides an interface for managing the dialog box ..

The resource component of a dialog box supplies a template that Windows
uses to create and display the dialog box. A dialog box template specifies a
dialog box's characteristics, including its size, its location, its style, and the
types and positions of its controls. It is possible to create a dialog box with­
out using a template. However, dialog box templates are the usual method
for implementing dialog boxes, especially in Visual C++ programs.

8: Dialog Boxes

From a C++ point of view, a dialog box is implemented as an object of the
CDialog class. The CDialog class is derived from the CWnd class and is,
therefore, at its core, a window. Ordinarily, a dialog box window has a
parent window to which it is attached whenever it is open and visible on
the screen.

The controls that appear inside a dialog box are objects of various MFC li­
brary classes, such as CEdit, CButton, and CScrollBar. All these classes are
also descendants of the CWnd class, so it should not be surprising to learn

. that dialog box controls are implemented as child windows.

lDesigD1luD1g a [)ua~og BO}t
with AIPP Studio and (laSSWOlarrd

In a Visual C++ program, the easiest way to design a dialog box and equip
it with controls is to use the App Studio dialog box editor. When you design
a dialog box with the dialog box editor, App Studio stores your dialog box
template resource as a resource script file. Then you can use ClassWizard
to create a CDialog-derived class for your dialog box and to link a message
map and a set of variables to its controls.

To create a dialog box, follow these general steps:

1. From Visual Workbench, open App Studio by choosing the App
Studio item from the Tools menu.

2. When the main App Studio window opens, double-click the Dialog
icon that appears in the Type list box (or double-click the dialog box·
icon on the App Studio toolbar). App Studio opens a dialog box edi­
tor, as shown on the following page, that you can use to create your
dialog boxes. (To display the dialog box shown here, double-click
the IDD_STUDENT_RECORD item.in the Resources list box.) The
dialog box editor is equipped with a· default modal dialog box that
contains an OK button and a Cancel button.

279

Learn Visual C++ Now

280

fJl
Major L----'--___ -"'~::o!J1

Classes

I
Class----.

o Freshman

o Sophomore

o Junior

o Senior

3. When App Studio opens the dialog box editor, you can add other
kinds of controls by using the control palette that the dialog editor
provides. If you don't see the control palette, shown below, when
you open the dialog box editor, you can display it by pressing F2 or
by choosing Show Control Palette from the Window menu:

To place a control in a dialog box, simply select the control you
want from the control palette, and then click the mouse inside the
client area of the dialog box you are creating. A pp Studio responds

8: Dialog Boxes

by placing a control of the type you have selected into the dialog
box's client area in the location you have chosen.

ii?11 OTE Each dialog box control shown in the control toolbar can be created
6iI" from a class defined in the MFC library. However, when you create a dialog

box control using App Studio, App Studio does not automatically create a
c++ class from which objects can be instantiated. The easiest way to create a
class fO'r the control is to use ClassWizard; this technique is described in the
next section.

4. To configure the tab layout of a dialog box using the App Studio dia­
log box editor, you choose the Set Ta~ Order item from the Layout
menu. App Studio then displays a set of consecutive numbers on
the controls inside the dialog box, as shown here:

m .. :: .. :.:.: .. ' ::: ... : : .. ·::.::.:: .. : i •. ,.:.: .•. :::.:.::".:.:.:::'.': •. :.::.:' .•• :'.1 :!,ean~

To change the tab order of the dialog box's controls, you simply click
each control in the tab order you want to set, beginning with the
control that you want as the default control when your application
opens the dialog box. The control that you designate to be first in the
dialog box's tabbing order has the focus when your dialog box
opens-and if it is an edit control, it contains a cursor.

281

Learn Visual C++ Now

282

~ntegratiD1g lOoaiog BOlteS with Applications
After you have designed a dialog box for a Visual C++ application, you can
use the Visual C++ ClassWizard utility to connect, or "bind," your dialog
box and its controls to the member functions in your application that give
your program's resources their functionality. You can also use ClassWizard
to add member variables to dialog box classes and determine how t?ose
variables are initialized· and displayed.

In Chapter 9, in the section "Creating the TESTAPP Project and Adding
DDX Support" on page 315, you'll getan opportunity to create a dialog
box with App Studio and then connect its controls to an application using
Class Wizard.

When ClassWizard creates a CDialog-derived class, it generates both an
implementation (.CPP) file and a header (.H) file for the new class. The .H
file contains the definition of your dialog class. Be sure to include this
header file in any other source files that access your dialog box. The .CPP
file contains a message map, a standard constructor, and an override of a
CWnd member function named DdDataExchange. The DoDataExchange
member function uses a mechanism named DDX (dialog data exchange) to
move information back and forth between C++ variables and dialog box
controls. DDX is described later in this chapter and in Chapter 9.

Creating alD1ld [)Dsp~alfDInlQJ a Mo~a~ lOoalog BOlt
To create and display a modal dialog box, you need to perform two steps.
First you must instantiate a dialog box object by calling its constructor.
Then you must open the dialog box by calling the CDialog function
DoModal.

Calling a Dialog BOl(Constructor
In the DLGDEMO program, both these operations take place in a member
function named OnDialogsModal. The OnDialogsModal function is exe­
cuted when the user chooses the Modal item from the Dialogs menu.

8: Dialog Boxes

j}9il OTE In a Visual c++ program, the easiest way to open a dialog box when
Oil'! the user chooses a menu command is to write a message handler using

ClassWizard. In the DLGDEMO program, ClassWizard was used to link the
OnDia/ogsModa/ function to a menu item. For more information about
using ClassWizard to create message handlers for menu items, see Chapter
5, "Visual C++ Tools," and Chapter 7, "Of Mice and Messages."

The OnDialogsModal member function is defined as follows in the
MAINFRM.CPP file:

void CMainFrame::OnDialogsModal()
{

J

CModalDlg modalDlg;
modalDlg.DoModal();

The OnDialogsModal function calls the constructor CModalDlg to instan­
tiate a GModalDlg object named modalDlg on the stack. OnDialogsModal
then calls a member function named modalDlg.DoModal to display a
modal dialog box.

The constructor that is called from the OnDialogsModal member function
is implemented in the MODAL.CPP file. Here is the definition of the con­
structor CModalDlg:

CModalDJg::CModalDlg(CWnd* pParent /*=NULL*/)

{

J

: CDialog(CModalDlg::IDD, pParent),NR_OF_CLASSES(6)

//{{AFX_DATA_INIT(CModalDlg)
m_c 1 ass Li s t = (" Eng 1 ish") :
m_campus = ("Berkeley");
m_major = ("Physics");
m_name = ("Tanya Winger");
m_freshman = 0;
//JJAFX_DATA_INIT

This constructor contains a block of code that initializes a set of member
variables associated with dialog box controls. All these variables were
created using ClassWizard. As you can see, they appear inside an AFX
data block enclosed by the / / {{ and / /}} delimiters; they are designed to
exchange data with dialog box controls using the DDX mechanism.

283

Learn Visual C++ Now

284

The DDX Mechanism

The DDXmechanismis examined in detail in Chapter 9, "Managing
Data." For now, it's sufficient to know that the DDX system moves
. data back and forth between controls and variablesby calling a CWnd .
member function named· UpdateData. The UpdateData member func­
tion takes one parameter: a Boolean variable that specifies the direc­
tionin which data is to be moved. If the parameter is set to TRUE,
data is retrieved from the controls and is stored in variables; if the
parameter is set toF ALSE, the controls of the dialog box are initialized
by values stored in the variables associated with the controls. For ex­
ample, if CTRL2VAR is TRUE, the following function call moves data
from a control to a variable:

Upd~teData(CTRl2VAR):
. -

Conversely, if VAR2CTRLisFALSE, the following function call
moves information from a variable to a control:

UpdateData(VAR2CTRl);

Calling the DoModal Function
When an application calls the CDialog::DoModal member function, a dia­
log resource associated with the specified dialog box object must already
exist. The DoModal member function loads the appropriate dialog resource
and then displays the dialog box associated with the resource.

When the DoModal member function opens a dialog box window, the user
is not permitted to perform any other action in the application until the
dialog box is closed.

While a modal dialog box is open, messages and events related to the con­
trols in the dialog box are typically handled by message maps generated
by Class Wizard. The DDX mechanism handles the exchange of data be­
tween variables and the dialog box controls.

In the DLGDEMO prograII?-' the DoModal member function is called in a
file named MAINFRM.CPP. When the user clicks the OK button, the appli­
cation calls the CDialog member function OnOK. If the user clicks the

8: Dialog Boxes

Close box, the OnClose member function is called, and the dialog box
closes. When the user clicks the Cancel button, the OnCancel function is
called, and the dialog box closes. (The modeless dialog box in DLGDEMO
does not have a Cancel button.)

When a Visual C++ application uses the MFC library-as DLGDEMO
does-the MFC library's On OK member function calls the UpdateData
function to copy any data that has been input by the user into any vari­
ables that might be associated with the dialog box's controls. UpdateData
then calls CDialog::EndDialog, a function that makes the dialog box invis­
ible. The DoModal function then returns. The dialog box is not actually
destroyed until the function that called DoModal terminates. Then, if the
dialog box was instantiated on the st~ck, its destructor is called, and it is
officially destroyed.

Calling the OnlnitDiaiog Function
Between the time a dialog box is created and the time it is displayed on
the screen, the application framework calls a CDialog member function
named OnlnitDialog. The OnlnitDialog member function is a handy place
to put various kinds of initializations used in a dialog box.

To make use of the OnlnitDialog function, you must override.it in your
application. The first statement in your override should call its parent
function, CDialog::OnlnitDialog, to ensure that the dialog box's controls
are initialized. The OnlnitDialog member function must return a Boolean
value, so be sure your override ends with a return statement that is either
TRUE or FALSE. Under ordinary circumstances, it should return a value
of TRUE.

Listing 8-1 shows how the OnlnitDialog function is overridden in the
DLGDEMO program.

BOOl CModalDlg::OnlnitDialog()
{

II first call the parent function
CDialog: :OnlnitDialog();

II initialize array for the Classes list box
char *m_classes[] = {

Listing 8-1. Overridi~g the OnInitDialog function. (continued)

285

Learn Visual C++ Now

286

Listing 8-1. continued

"English",
"History",
"Typing",

}

} :

"Quantum Physics",
"Auto Shop",
"Home Economics"

II populate the Classes list box
for (int i = 0: i < NR_OF_CLASSES: i++)

ListBoxl().AddString(m_classes[i]):

II load the owner drawn bitmaps
VERIFY(m_OK.AutoLoad(IDOK, this)):
VERIFY(m_cancel.AutoLoad(IDCANCEL, this)):
VERIFY(m_faceButton.AutoLoad(IDC_FACE, this):

II highlight the Freshman radio button
«CButton *)GetDlgltem(IDC_FRESHMA~»->SetFocus():

UpdateData(VAR2CTRL):
return -TRUE:

The OnlnitDialog function shown in Listing 8-1 performs the following
operations:

• Calls the parent CDialog::OnlnitDialog member function.

• Initializes an array of strings named m_classes. The strings in this
- array will appear inside a list box labeled Classes when the dialog
box opens.

• Copies the strings in the m_classes array into the Classes list box.
This action takes place in a for loop that repeatedly calls a member
function named CListBox::AddString until all the strings in the ar:..

. ray are copied.

• Calls the CBitmapButton::AutoLoad member function to load the
bitmaps used in the OK and Cancel buttons and in the owner drawn
Face button. You'll learn more about the AutoLoad function in the
section "Calling the AutoLoad function" on page 297.

8: Dialog Boxes

(rreaitiD1lg arnd lDusplayoD19 a Modle~ess Dialog !BOl{
Modeless dialog boxes are easier to use-but slightly more difficult to
create-than modal dialog boxes. Actually, a modeless dialog box requires
only a few more lines of code than a modal dialog box.

The DLGDEMO program contains an example of a modeless dialog box. To
display it, simply choose the Modeless item from the Dialogs menu. You
can open as many modeless dialog boxes as you want, and you can posi­
tion them any way you want on the screen. You can also compare the way
the modeless and modal dialog boxes work. The difference is obvious­
and dramatic.

Figure 8-2 shows the modeless dialog box displayed by the DLGDEMO
program.

'I' Thisiso mo~el~S$djal~g b~~'Y~~.c~nopena$
many copies of it as,Vou like/and you can keep
them op~nnomatter what else. is. happening on
thetcreen.· .

Figure 8-2. A modeless dialog box.

To implement its modeless dialog box, the DLGDEMO program instanti­
ates an object of the CMod'eiessDiaiog class. CModeiessDiaiog is derived
from the MFC library's CDiaiog class, which has all the special require­
ments of modeless dialog boxes built in.

Constructing a Modeless Dialog Bo){
Microsoft C/C++ version 7-the immediate predecessor of Visual C++­
defined separate classes for modal dialog boxes and modeless dialog
boxes. In Visual C++, however, modal and modeless dialog boxes are ob­
jects of the same class: the CDiaiog class. That change simplifies the deri­
vation of dialog box objects, but it complicates the creation and handling
of modal and modeless dialog boxes because the two kinds of dialog boxes
have different characteristics and must be created and managed in differ­
ent ways. That's why the DLGDEMO program defines a separate class,
named CModeiessDiaiog, for modeless dialog boxes.

287

Learn Visual C++ Now

288

To instantiate a modeless dialog box, you must call an overloaded CDialog
constructor and then call the member function CDialog::Create. (Usually, as
you will soon see, the CDialog::Create member function is called from in­
side the constructor of the modeless dialog box.)

. In the DLGDEMO program file MAINFRM.CPP, a class named CModeless­
Dialog is derived from the MFC library's CDialog class. Then, when the
user chooses the Modeless item from the Dialogs menu, the OnDialogs­
Modeless function is executed to create a CModelessDialog object, as
shown here:

void CMainFrame::OnDialogsModeless()
{

}

GetMenu()->EnableMenultem (ID_DIALOGS_MODELESS, MF_GRAYED);
m_pModeless = new CModelessDialog(this);

The constructor that creates a modeless dialog box in the DLGDEMO pro­
gram takes one parameter: a this pointer. Notice also that the constructor
uses the new operator to create a dialog box object on the heap. (In con­
trast, the CMainFrame::OnDialogsModal function, which instantiates a
modal dialog box, uses a form of the CDialog constructor that places a dia­
log box object on the stack.)

Calling the Create Function
After you have constructed a modeless dialog box by calling its construc­
tor, you must create the object by calling the CDialog::Create function. In
the DLGDEMO program, the Create member function is called from inside
the CModelessDialog constructor, as shown here:

CModelessDialog::CModelessDialog(CWnd* pParent)
{

Create(IDD_MODELESSl, pParent);
}

When a Visual C++ program calls the CDialog::Create member function,
the framework loads the dialog resource for the specified dialog box ob­
ject. The dialog box then appears when the parent window is created if its
WS_ VISIBLE property is set. Otherwise, your application must call the
CWnd::ShowWindowmember function to make the dialog box visible.

8: Dialog Boxes

Initializing a Modeless Dialog Bo)(
After a modeless dialog resource is loaded, but before the dialog box ap­
pears on the screen, the Visual C++ framework calls the CDialog::Onlnit­
Dialog member functio~. When an application is creating a modal dialog
box, OnlnitDialog is called from inside the DoModal function. However,
when a modeless dialog box is being created, OnlnitDialog is called from
inside the Create member function.

As mentioned, applications that create modal dialog boxes often over­
ride OnlnitDialog to initialize dialog box controls. You can also override
OnlnitDialog to initialize the controls inside a modeless dialog box.

In the DLGDEMO program, the OnlnitDialog function is overridden to
placemodeless dialog boxes on the screen in a cascading pattern, as
shown in Listing 8-2.

BOOl CModelessDialog::OnlnitDialog()
{

}

II cascade modeless dialog boxes
RECT wndRect;
static int x = 10;
static int y = S0;

GetParent()->GetWindowRect(&wndRect);

SetWindowPos(GetParent(). wndRect.left + x.
wndRect.top + Y. 0. 0. SWP_NOSIZE);

if (y > 400) {

x = 10;
y = S0:

} else {

x += 20;
y += 20;

}

return TRUE;

Listing 8-2. Overriding OnlnitDialog to cascade dialog boxes.

To observe this pattern, simply choose the Modeless command from the
Dialogs menu several times. As you open modeless dialog boxes in the
DLGDEMO program, the program cascades them, as shown in Figure 8-3

on the following page.

289

Learn Visual C++ Now

290

Figure 8-3. Cascading modeless dialog boxes.

The CenterWindow Member Function

Inthe DLGDEMO. program, themodeless dialog boxes. are cascaded:
Fora completely different look, you can center a dialog box neatly·
inside a window by calling the CWnd::CenterWindow function from
inside the OnlnitDialog function. The CenterWindow member fune-·
tion is prototyped as shown here:

CenterWindow(CWnd* pAlternateOwne~ = NULL);

If you call the CenterWindow function without any parameters, the
dialog box you create is centered inside its parent window. To center
it insideanother window, specify a pointer tothe wi.!ldow of your
choice in the pAlternateOwner parameter.

Overriding OnDI(and DnCancel
One difference between modal and modeless dialog boxes is that code
implementing a modeless dialog box must override the CDialog::OnOK
and CDialog::OnCancel member functions. If a modeless dialog box has a
Close box, you must also override the CDialog::OnClose member function.

Why must these member functions be overridden when a modeless dialog
box is closed? The main reason is that in their default CDialog versions, all
three of these functions close dialog boxes by calling the CDialog function·
EndDialog. One important feature of the CDialog::EndDialog member

8: Dialog Boxes

function is that it removes a dialog box from the screen but does not free
the memory used by the dialog box's resource. As mentioned, that is not
important when a modal dialog box is being closed. However, to release
the memory used by a modeless dialog resource, an application must call
the CWnd member function DestroyWindow, which frees the memory
used by the.window (or the dialog box) that is destroyed.

The default versions of the CDialog member functions OnOK, On Can eel,

and OnClose do not call CWnd::DestroyWindow. When you want to de­
stroy a modeless dialog box and free the memory that it uses, you must
override these member functions to call CWn d::DestroyWin dow instead of
CDialog::EndDialog. Because you don't want EndDialog to be called when
a modeless dialog box is being closed, your overrides of these three func­
tions should not call their default EndDialog member functions.

Unfortunately, when you do not call the default version of CDialog::OnOK,

you can create another problem. When CDialog::OnOK closes a dialog box,
it calls the CDialog::UpdateData member function to perform any DDX
functions that the dialog box might require. If your application contains
a modeless dialog box that needs to save any information entered by the
user before it closes, you need to call UpdateData yourself from your over­
ride of the On OK member function.

In the DLGDEMO program, the modeless dialog box has an OK button and
a Close box, but it does not have a Cancel button, so the MODELESS.CPP
file contains functions that override On OK and OnClose but does not con­
tain an override for OnCaneel. The code that overrides On OK and OnClose
looks like this:

void CModelessDialog::OnOK()
{

DestroyWindow();
}

void CModelessDialog::OnClose()
{

DestroyWindow();
}

Note that the UpdateData function is not called in these functions because
the modeless dialog box of the DLGDEMO program does not contain any
input fields, and hence, no data needs to be saved.

291

Learn Visual c++ Now

292

Calling Post/\/cDestroy
After you have written code that creates a modeless dialog box and have
overridden the functions that close it, you must take one more action to
ensure that your dialog box operates properly. If you instantiate your'
CDialog-derived object by invoking the new operator-which is the usual
(and recommended) technique-you should invoke the delete operator
with the this pointer that references your modeless dialog box object to
ensure that any objects created by your CDialog':derived object are also
destroyed.

To invoke the delete operator when a modeless dialog box is closed, appli­
cations generally override the CWnd member function PostNcDestroy.
Pos tNcDes troy is called by the default CWnd::OnNcDestroymember func­
tion when a window has been destroyed. To override the PostNcDestroy
member function to make it invoke delete, all you have to do is define
PostNcDestroyin your dialog box object's .R file and then implement the
function in the .CPP file that implements your dialog box object.

In the DLGDEMO program, the following statement in the MODELESS.CPP
file overrides PostNcDestroy and then invokes the delete operator:

void CModelessDialog::PostNcDestroy()
{

delete this;
}

Creating and Displaying a Message BOl{
In a Visual C++ application, you can create and display a message box with
just one statement: a call to the GWnd member function MessageBox. The
CWnd::MessageBoxmember function takes one, two, or three parameters:
a message string, an optional caption string that is displayed in the mes­
sage box's title bar, and an optional flag that describes the message box's
appearance and behavior. (You don't have to specify a handle to a win­
dow, as you did in pre-Visual C++ applications, because the Visual C++
MessageBox member function is a member function of the CWnd-derived
class from which it is called.)

8: Dialog Boxes

A message box can contain from one to three labeled buttons. To specify
how many buttons a message box contains and how they are labeled, you
place the flag of your choice in the third parameter of your MessageBox
call. You can also specify what kind of icon will be displayed in your
message-for example, a picture of a stop sign or an exclamation point.
For details, see the description of the global AfxMessageBox function in·
the online help.

If you don't specify a caption-string argument, the string "Error" is used by
default. If you don't specify a flags argument, the message box you create
has only one button-an OK button.

The DLGDEMO program displays a one-button message box when the user
chooses the Message item from the Dialogs menu. To display a message
box, the MAINFRM.CPP file contains the following function:

void CMainFrame::OnDialogsMessage()
{

MessageBox("Message for you; sign here. please.". "UPS Yes".
MB_ICONEXCLAMATION);

}

lOoalog B01((OD1l'iro~s
The dialog boxes displayed in this chapter contain various kinds of con­
troIs. The following sections describe these controls and explain how each
control works. As you read about each control, you can see how it works by
running the DLGDEMO program and displaying the appropriate dialog box.

All the controls used here were created with the App Studio dialog box
editor. Modal and modeless dialog boxes can be equipped with the same
kinds of controls.

Button Controls
The simplest kind of dialog box control is the plain button control, or
pushbutton control. When you have placed a button control in a dialog
box using App Studio, you can display the Properties window, as shown
in Figure 8-4 on the following page, by choosing Show Properties from the

293

Learn Visual C++ Now

294

Window menu or by double-clicking the button you have just created.
From the Properties window, you can set any, sorrie, or all of the proper­
ties listed in Table 8-1.

Figure 8-4. The button. control Properties window.

A button control created in the source code of a program is a member of
the MFC library's CButton class. However, App Studio does not automati­
cally instantiate a CButton-derived object every time it creates a button
control. If you want to instantiate a C++ object for a button control created
by App Studio, you must do it yourself.

Property Description

ID Resource's
identifier (ID).

Property Type

Integer or symbol
defined by App
Studio in the file
RESDURCE.H

Caption Text that appears CString

inside the control.

Visible Determines Boolean
whether the con-
trol is visible
when the dialog
box; opens.

Table 8-1. Properties of button controls.

Default

The string IDC­

_BUTTON followed
by a number (for
example,IDC­

_BUTTON1,IDC­

_BUTTON2)

The string Button

followed by a num­
ber, starting with 1

(for example,
Buttonl, Button2)

TRUE

8: Dialog Boxes

Property Description Property Type Default

Disabled Determines Boolean FALSE

whether the con-
trol is disabled
when the dialog
box opens.

Group Specifies whether Boolean FALSE

the control is the
first control in a
group of controls.

Tabstop If TRUE, the user Boolean TRUE

can move the focus
to this control with
the Tab key.

Default If TRUE, the con- Boolean FALSE

Button trol is the default
button in the dia-
log box ..

Owner Customizes the Boolean FALSE

Draw appearance of a
control.

Most of these properties are self-explanatory, but two deserve special atten­
tion: Group and Owner Draw.

The Group property
When you set the Group property of a button control to TRUE, your appli­
cation recognizes the button as the first button in a group. In the DLGDEMO
program, the four radio buttons labeled Class are members of a group. No­
tice that when you select one button in the group, the other buttons are
automatically deselected.

Each subsequent control in the dialog box's tabbing order belongs to the
same group. This grouping procedure continues until the user tabs to an­
other control whose Group property is set to TRUE. Then the previous
control group ends, and another control group begins.

295

Learn Visual C++ Now

296

When you create a dialog box that contains only simple buttons-for
example, an OK button and a Cancel button-the setting of the Group
property generally has little, if any, effect on the overall operation of the
dialog box. However, when you design a dialog box that has other kinds of
controls-such as radio buttons and check boxes-the Group properties of
your dialog box's controls become more important. (Radio buttons and
check boxes are' discussed in greater detail later in this chapter.)

When you arrange a cluster of radio buttons in a group, you can link them
visually by placing them inside a group box control. A group box control
is simply a labeled frame. In the DLGDEMO program, the Freshman,
Sophomore, Junior, and Senior radio buttons are grouped and placed
inside a group box control labeled Class.

The Owner Draw property
In a Windows-based program, an owner drawn button is a button that con­
tains a bitmap provided by the developer of an application. Owner drawn
buttons are often used in dialog boxes that require customized controls.

An owner drawn button does not have to look like an ordinary Windows­
style pushbutton. Instead, the Visual C++ framework lets you display any
bitmap you choose inside the button. '

If you want to, you can display different bitmaps inside the same button to
denote when the button is in different states. An owner drawn button can
display up to four application-supplied bitmap states, listed here:

• A bitmap that is displayed 'when the button is the default button in a
dialog box., In this state, the button appears to be in an up position
and has a heavy border.

• A bitmap that is displayed when the button is in the up position but
is not the default button. In this state, the button appears to be up
but does not have a heavy border.

• A bitmap that is displayed when the button is in the down position.

• A bitmap that is displayed when the button is disabled.

8: Dialog Boxes

Three of the buttons in the DLGDEMO program-the OK button, the Can­
cel button, and the Face button-are owner drawn buttons. If you click
each of these buttons, you'll see that the button's appearance changes
while the mouse button is down. That's because when the user clicks an
owner drawn button, the CWnd::OnDrawItem function automatically
switches its bitmap, thus changing its appearance.

Calling the AutoLoad function
The MFC library provides two techniques for creating owner drawn but­
tons: one technique is to call the CBitmapButton::LoadBitmaps member
function; the other method is to call the CBitmapButton::AutoLoad mem­
ber function. The LoadBitmaps function is usuaJly used to load a bitmap
when you are creating a bitmap button that is not part of a dialog box; the
AutoLoad function is used when you create an owner drawn button in a
dialog box.

In the DLGDEMO program, the AutoLoad member function is called three
times to load the bitmaps for the three owner drawn buttons in the Stu­
dent Record dialog box. The following three function calls appear in the
modal dialog box's implementation file, MODAL.CPP:

II load the owner drawn bitmaps
VERIFY(m_OK.AutoLoad(IDOK, this»;
VERIFY(m_cancel.AutoLoad(IDCANCEL, this»;
VERIFY(m_faceButton.AutoLoad(IDC_FACE, this»;

As the preceding code fragment illustrates, the AutoLoad member func­
tion takes two parameters: the ID of the bitmap displayed in the control,
and a pointer to the parent window of the control-in this case, a pointer
to the dialog box in which the control appears.

Although the bitmap's resource ID (identified in the Properties dialog box)
is passed as a parameter to the AutoLoad function, the reference IDs of the
bitmaps-themselves are not required. The AutoLoad function automati­
cally associates the button with the bitmap. The AutoLoad function does

297

Learn Visual C++ Now

298

this using names based on the caption for the button followed by a one­
letter identifier. Four identifiers are possible: U (for a button in the up po­
sition), D (for a button in the down position), X (for a disabled button), and
F (for a focused button). Although you do not need to specify the bitmap
names in the call to the AutoLoad function, you need to name the bitmaps
using the convention described. For example, in the DLGDEMO program,
the names of bitmaps used for the Face button are"FACED", "FACEF",

"FACEU", and "FACEX", as shown in Figure 8-5.

Figure 8-5. Names of bitmaps used by an owner drawn control.

When the AutoLoad member function finishes loading the bitmaps, it
sizes the control to match the size of its bitmaps. (Of course, AutoLoad
expects all the bitmaps to be the same size.) Then AutoLoad subclasses the·
control (that is, it passes messages that it has received back to its parent
window) so that the specified window can display the appropriate
bitmaps when it appears on the screen.

Edit Controls
The easiest way to create a CEdit class for an edit control is to use Class-
Wizard, which was the method used to create the edit controls for the
DLGDEMO program.

8: Dialog Boxes

Every edit control has a standard set of properties and a standard set of
styles that you can set from the App Studio dialog box editor. The standard
properties that you can set using the App Studio dialog box editor are
listed in Table 8-2.

Property Description Property Type Default

ID Resource's Integer or symbol The string IDC_EDIT

identifier (ID). defined by App followed ~y a num-
Studio in the file ber (for example,
RESQURCE.H IDC_EDIT1, IDC-

_EDIT2)

Visible Determines Boolean TRUE

whether the con-
trol is visible
when the dialog
box opens.

Disabled Determines Boolean FALSE

whether the con-
trol is disabled
when the dialog
box opens.

Group Specifies whether Boolean FALSE

the control is the
first control in a
group of controls.

Tabstop If TR UE, the user Boolean TRUE

can move the focus
to this control
with the Tab key.

Ta~le 8-2. Properties of edit controls.

Edit control styles that you can set from the App Studio Properties win-
dow are listed in Table 8-3 on the following page.

299

Learn Visual C++ Now

Style Description Style Type Default

Align Specifies whether text is aligned left Boolean Left
Text centered, or aligned right. (In a

multiline control, text is always
aligned left.)

Multiline Creates a multiline edit box control. Boolean FALSE

Horiz Provides a horizontal scroll bar for Boolean FALSE

Scroll a multiline control.

Auto Automatically scrolls text to the Boolean TRUE

HScroll left when the user types a character
at the right end of the box.

Vert Provides a vertical scroll bar for a Boolean FALSE

Scroll multiline control.

Auto Automatically scrolls text up one Boolean FALSE

VScroll line when the user presses En~er on
the last line of a multiline control.

Password Displays all characters as asterisks Boolean FALSE

(*) as they are typed into the edit
box control. This property is not
available in multiline controls.

No Hide Changes the way text is displayed Boolean FALSE

Sel when an edit box control loses and
regains focus. If No Hide Sel is set to
TR UE, selected text in an edit box is
displayed as selected at all times.

Border Creates a border around an edit box Boolean TRUE

control.

Uppercase Converts all characters to uppercase Boolean FALSE

as they are typed in an edit box.

Lowercase Converts all characters to lowercase Boolean FALSE

as they are typed in an edit box.

Table 8-3. Styles of edit controls.

300

8: Dialog Boxes

Style

OEM
Convert

Want
Return

Description

Converts text typed in an edit box
control from the Windows character
set to the OEM character set and then
back again. This ensures proper
character conversion when the
application calls the AnsiToOem
function to convert a Windows
string in the edit box control to OEM
characters. This style is most useful
for edit box controls that contain
filenames.

Specifies that a carriage return be
inserted when the user presses the
Enter key while typing text in a multi­
line edit box control. If this style is not
specified, pressing the Enter key has
the same effect as clicking the dialog
box's default pushbutton. This style
has no effect on a single-line edit box
control.

Read-Only Prevents the user from typing or
editing text in an edit box.

Static Te){t Controls

Style Type Default

Boolean FALSE

Boolean FALSE

Boolean FALSE

As you know, static textcontrols are controls that the user can't edit or
otherwise modify. However, the information displayed by a static text
control can be dynamically changed at run time. In dialog boxes in Win­
dows, static text controls are used mainly to label other kinds of controls.

In theDLGDEMO program, all the labels in the gray part of the Student
Record dialog box are· static text controls.

Table 8-4 on the following page lists the main properties of static text
controls.

301

Learn Visual C++ Now

Property Description Property Type Default

ID Resource's Integer or symbol The string IDC-
identifier (ID). defined by App - STATIC without a

Studio in the file number appended
RESQURCE.H

Caption Text displayed by CString The string Text fol-
the control. lowed by a number,

starting with 1> (for
example, Textl,
Text2)

Visible Determines Boolean TRUE
whether the control
is visible when the
dialog box opens.

Disabled Determines Boolean FALSE
whether the con-
trol is disabled
when the dialog
box opens.

Group Specifies whether Boolean FALSE
the control is the
first control in a
group of controls.

Tabstop If TRUE, the user Boolean TRUE
, can move the focus

to this control with
the Tab key.

No Prefix Allows an amper- Boolean FALSE
sand (&) to be
displayed in the
control's text
string instead of
being used as an
indication of a
keyboard shortcut.

Table 8-4. Properties of static text controls.

302

8: Dialog Boxes

Property Description Property Type Default

No Wrap Prevents lines that Boolean FALSE
extend beyond the
end of the line
from being carried
over to the next
line by truncating
the text.

Text Identifies whether LEFT
Align text is aligned left,

aligned right,
or centered.

Simple Disables No Wrap Boolean FALSE

and Text Align.

Radio Buttons
When you use radio buttons in an application, you should always place
them in groups, and you should expect only one radio button to be selected
at a time. If you want the user to be able to select more than one button in a
group at a time, you should construct your group using a different kind of
control. The most likely alternative is a group of check boxes; check boxes
are similar to radio buttons, but multiple check boxes in a group can be
checked at the same time. Check boxes are discussed later in this chapter.

Creating a group of radio buttons
The easiest way to create a group of radio buttons, as you might guess, is to
use App Studio. When you use App Studio to create a group of radio but­
tons, you should verify that the buttons you create are in sequential order in
your dialog box's tab order. (For information about setting the tab order, see
"Designing a Dialog Box with App Studio and ClassWizard," on page 279.)

When you set the tab order of a group of radio buttons, be sure that the
first radio button in the group has its Group property set. Then check to
see that each of the other buttons in the group has its Group property
turned off.

303

Learn Visual c++ Now

304

Finally, mark the end of your group of radio buttons by turning on the
Group property of the first button control that follows your radio button
group in your dialog box's tab order.

Table 8-5 lists the properties you can assign to radio button controls using
the App Studio Properties window.

Property Description Property Type Default

ID Resource's Integer or symbol
identifier (ID). defined by A pp

, Studio in the file
RESQURCE.H

Caption Text that labels a CString

radio button.

Visible Determines Boolean
whether the control
is visible when the
dialog box opens.

Disabled Determines Boolean
whether the control
is disabled when
the dialog box opens. '

Group Specifies whether
the control is the
first control in a
group of controls.

Tabstop If TRUE, the user
can move the focus
to this control with
the Tab key.

Boolean

Boolean

Table 8-5. Properties of radio buttons.

The string IDC-
_RADIO followed
by a numbe'r (for
example,IDC-
_RADIO 1 , IDC-
_RADI02)

The string Radio
followed by a num-
ber, starting with 1

(for example,
Radial, Radio2)

TRUE

FALSE

FALSE

FALSE

8: Dialog Boxes

Property Description Property Type Default

Auto When a: radio button Boolean TRUE
with this property
is selected, any
other radio buttons
in the same group
are automatically
cleared (deselected).
You must set this
property to TRUEif
you are using a group
of radio buttons with
DDX capabilities.

Left Text Places the radio Boolean FALSE
button's caption

. text to the left of the
button rather than
to the right.

List Boxes
Unfortunately, the Properties window that App Studio supplies for list
boxes does not contain a tool for populating a list box with strings. You
have to do that in the source code of your application.

A list box stores its strings in a list of CString objects, so you can populate
a list box by setting up a CListBox object and then calling a member func­
tion named CListBox::AddStringto add string objects to the list one by one.

An easier way to populate a list box is to create an array of strings and then
copy them into your list box by calling AddString repeatedly inside a loop.
That is the technique used to populate the list box in the DLGDEMO pro­
gram. Listing 8-3 on the following page shows how this technique works.

305

Learn Visual c++ Now

306

II initialize array for the Classes list box
char'*m_classes[] {

} ;

"English",
"History",
"Typing",
"Quantum Physics",
"Auto Shop",
"Home Economics"

II populate the Classes list box
for (int i = 0; i < NR_OF_CLASSES; i++)

ListBoxl().AddString(m_classes[i]);

Listing 8-3. Populating a list box.

The code fragment in Listing 8-3 is divided into two sections. The first
section defines an array of strings that will be used to populate ListBox1.

The second section populates ListBox1 by calling CListBox::AddString re­
peatedly in a for loop. To observe the results, run the DLGDEMO program,
and choose the Student Record command from the Dialogs menu.

The standard properties of list boxes are listed in Table 8-6.

Property Description Property Type Default

ID Resource's
identifier (ID).

Visible Determines
whether the con-
trol is visible when
the dialog box
opens.

Disabled Determines
whether the con-
trol is disabled
when the dialog
box opens.

Table 8-6. Properties of list boxes.

Integer or symbol
defined by App
Studio in the file
RESOURCE.H

Boolean

Boolean

The string IDC_LIST

followed by a num­
ber (for example,
IDC_LIST1, IDC­

_LIST2)

TRUE

FALSE

8: Dialog Boxes
--''''''"~.'''''' ,------......... ---................. ---........ ---......................... --........ -----................ ---.....

Property Description Property Type Default

Group Specifies whether Boolean FALSE
the control is the
first control in a
group of controls.

Tabstop If TRUE, the user Boolean TRUE
can move the focus
to this control
with the Tab key.

For list box styles that you can set from App Studio, see the online help
for Visual C++ on the companion CD-ROM.

Combo Boxes
A combo box is an edit box combined with a drop-down list box that con-
tains CStrings. When you create a combo box with App Studio, you can
populate it easily by specifying the strings you want in the App Studio
Properties window, as shown in Figure 8-6.

Figure 8-6. The combo box Properties window.

In the DLGDEMO program's Student Record dialog box, the Campus and
Major boxes are examples of combo boxes.

To create t4e string that is displayed by a combo box when it opens, you
can initialize the string in the combo box's constructor inside the AFX
data block that ClassWizard generates in your dialog box object's .CPP file.
When the user opens a combo box and selects a different string, the combo
box collapses, and the selected string becomes the displayed string.

Table 8-7 on the following page lists the properties of combo boxes.

307

Learn Visual C++ Now

Property Description Property Type Default

ID Resource's Integer or symbol The string IDC-
identifier (ID). defined by App - COMBO followed

Studio in the file by a number (for
RESOURCE.H example,IDC-

_GOMB01,IDC-
_COMB 02)

Visible Determines Boolean TRUE
whether the con-
trol is visible when
the dialog box
opens.

Disabled Determines Boolean FALSE
whether the con-
trol is disabled
when the dialog
box opens.

Group Specifies whether Boolean FALSE
the control is the
first control in a
group of controls.

Tabstop If TRUE, the user Boolean TRUE
can move the focus
to this control with
the Tab key.

Enter List Allows the user to CString None
Choices enter choices in

the combo box.

Table 8-7. Properties of combo boxes.

For combo box styles that you can set from App Studio, see the online
help for Visual C++ on the companion CD-ROM.

308

8: Dialog Boxes

Check Boxes
Check boxes, like radio buttons, can be arranged in groups. Unlike a radio
button, however, a check box can stand alone. The DLGDEMO program
doesn't implement any check boxes, but you can find plenty of them in
other Windows-based applications.

The standard controls for check boxes are listed in Table 8-8.

Property Description Property Type Default

ID Resource's Integer or symbol The string IDC-

identifier (ID). defined by App _CHECK followed by
Studio in the file a number (for ex-
RESOURCE.H ample, IDC_CHECK1,

IDC_CHECK2)

Caption Text that labels a CString The string Check

check box. followed by a num-
ber, starting with 1

(for example, Checkl,

Check2)

Visible Determines Boolean TRUE

whether the con-
trol is visible when
the dialog box
opens.

Disabled Determines Boolean FALSE

whether the con-
trol is disabled
when the dialog
box opens.

Group Specifies whether Boolean FALSE

the control is the
first control of a
group of controls.

Table 8-8. Properties of check boxes. (continued)

309

Learn Visual C++ Now

310

Table 8-8. continued

Property Description Property Type Default

Tabstop If TRUE, the user Boolean TRUE
can move the focus
to this control with
the Tab key.

Left Text Places the caption Boolean FALSE
of the check box
to the left of the
check box, rather
than to the right.

Tri-State Creates a three- Boolean FALSE
state check box,
which can be
grayed as well
as. checked or .
not checked. A
grayed 'check box
indicates that the
state represented
by the control
is undetermined.

What's Ne){t7
You might feel as.ifyou have learned everything there is to know about
dialog boxes in this chapter. But wait-there's more. In Chapter 9, "Man­
aging Data," you'll learn how to retrieve information from dialog box con­
trols and use it in your application's member functions. You'll also learn
how to move data in the other direction-from your application into a dia­
log box control.

The mechanisms that make these kinds of data exchanges possible are
DDX (dialog data exchange) and DDV (dialog data verification). In Chapter
9, you'll get a chance to experiment with a sample application that shows
how you can use the DDXand DDV mechanisms in your own Visual C++
applications.

Chapter

Managing Data
After you have created and implemented a dialog box, your job is about
half done. The next step is usually to find some way to integrate the dialog
box with the rest of your application.

When the user of your application opens a dialog box you have created
and types some text or selects a list box item, your application needs to be
able to detect that a change has been made in the dialog box. If the dialog
box controls are not equipped to communicate with the rest of your appli­
cation, your application has no way of responding to the user's action.

In this chapter, you'll learn how to use a pair of Microsoft Foundation
Class (MFC) Library features named DDX (dialog data exchange) and DDV
(dialog data verification) to manage data in a Visual C++ application.

With the DDX mechanism, when a user makes a change in a text box, a list
box, or a combo box, the application retrieves the information from the con­
trol that has been modified and stores it in member variables that belong
to an MFC-derived object. Later the information that has been retrieved
and stored can be· displayed in a different dialog box, stored on a disk, or
printed.

311

Learn Visual C++ Now

312

You can also move information in the other direction-from an applica­
tion to controls in the dialog boxes that it displays. Once this link has been
set up, you'll be able to initialize the controls in a dialog box by placing
data in them before the dialog box opens.

Along with the MFC library's DDX mechanism, this chapter introduces the
DDV mechanism, which can perform verification tests on the data that the
user enters in a dialog box control. For example, you can use DDV to con­
firm that a number typed by the user falls within a predetermined range or
that a string does not exceed a particular length.

This chapter also expands on the discussion of serialization begun in
Chapter 7, "Of Mice and Messages," and shows how you can add printing
support to a Visual C++ application. Why are serialization and printing
covered in this chapter? Because information that has been retrieved by
the DDX mechanism and validated by the DDV mechanism often finds its

. way to disk storage or to a printer through the MFC library's serialization
and printing functions. .

The topics we'll cover in this chapter include the following:

• Displaying and manipulating information using edit boxes, combo
boxes, and list boxes

• Initializing edit controls with random numbers

• Copying information back and forth between list boxes

• Creating customized DDV functions

• Changing the information displayed in a control when information
shown in another control is changed

• Preventing endless loops from hanging up programs that make use
of DDV functions

• Verifying user-supplied information automatically

To show you how the DXX and DDV mechanisms work, this chapter pre­
sents two sample programs: a simple application named TEST APP, and a
more ambitious sample application named CREATION. The TESTAPP

9: Managing Data

program is designed strictly for instruction; it offers a trivial-but clear­
demonstration of how input can be retrieved from a dialog box control.
When you execute the progr~m, you can type information in an edit box
and then click a button that retrieves what you have typed and displays it
in another edit box. That's all the TESTAPP program does.

The CREATION application is more sophisticated. It simulates generating
a character for an adventure game. It makes use of a complex collection of
controls that can be read from and written to.

The DDX and DDV Mechanisms
The DDX and DDV mechanisms are built into the MFC library and are in­
tegrated with ClassWizard and other Visual C++ utilities. To illustrate
how the DDX mechanism works, imagine that a dialog box in your appli­
cation contains an edit control that prompts the user to type a number. If
you equip the control with DDX capabilities, your application can move
information easily from the control to a C++ member variable.

When you add DDX support to a control, it also gets DDV support. A
control with DDV support can verify the information that a user enters in
a control. For example, a control with DDV support can verify that a num­
ber entered in a c·ontrol falls within a specified range. If the control is de­
signed to accept character strings, it can verify that the length of a string
does not exceed a specified number of characters.

When information entered by a user fails a DDV test,)lour application can
either display a default message box generated by the DDV mechanism or
determine for itself what should be done. Typically, when a control with
DDV support rejects data input by the user, the application displays a
default message box describing the error and requesting valid input. As
you will see in the sample programs presented-later in this chapter, you
can override this default message and substitute your own warning message
or take some other action entirely.

The Old Way
Before the advent ofDDX/DDV, transferring data from a dialog box control
to a variable was a cumbersome process. The usual technique for retrieving

313

Learn Visual C++ Now

314

data from a control was to call a functi9n such as GetDlgItemInt or GetDlg­
Item Text.

If you want to manage dialog box controls the hard way, you can use this
same data-transfer technique in a Visual C++ application. The following
code fragment shows how a Visual C++ program can retrieve data from a
control by calling GetDlgItemTextinstead of by using the DDX mechanism:

void CCreateCharDlg::OnOK()
{

}

GetDlgltemText(IDC_EDIT_NAME. m_PlayerName. sizeof(m_PlayerName»;
,CDialog::OnOK();

The GetDlgItemText function retrieves a value from a control named
IDC_EDIT_NAME and stores the value in a member variable named
m_PlayerName.

All in all, this is a fairly clumsy way to move information back and forth
between variables and dialog box controls.

Understanding DDX/DDV: The TESTAPP Program
When you add DDX/DDV support to one or more controls, App Studio
andClassWizard do most of the work for you. First you use App Studio
to create a dialog box and place your controls in it. Then you use Class­
Wizard to add DDX/DDV capabilities to your controls.

It's as easy to use controls that have DDX/DDV support as it is to create
them. To use the DDX/DDV mechanisms, all you need is one function:
a CWnd member function named UpdateData.

The UpdateData function takes just one parameter: a Boolean value that
specifies whether you want to copy information from a control to a variable
or from a variable to a control. As this process takes place, the data being
copied can be verified automatically by the Visual C++ DDV mechanism.

You'll learn more about the UpdateData function in the section "Under­
standing the UpdateData Command" 'on page 325.

9: Managing Data

1~11 OTE If you don't want to work through this exercise but would prefer to
611" read along, open the TESTAPP folder in this chapter's folder on the compan­

ion CD-ROM, and then open the TESTAPP projec~ from Visual Workbench.

Creating the TESTAPP Project and Adding DDX Support
To create the TESTAPP project and add DDX capabilities to its controls,
follow these steps:

1. From Visual Workbench, create and build a new AppWizard project
. named TESTAPP. Then launch App Studio by choosing App Studio

from Visual Workbench's Tools menu.

2. Select Dialog from the Type list box, and then click the New button ..
Select Dialog from the Resource Type list box, and then click the OK
button. To display the Properties box for the dialog box, double­
click on the dialog box. Type IDD _ TEST APP in the Res·ource ID box,
and type Test App in the Caption box.

3. Use the tool palette to create two static edit boxes. Position one
static edit box in the top half of the screen, and position the other
below it. Double-click on the top static edit box and enter Edit

Name: in the Caption box. Double-click on the bottom static edit
box, and enter Show Name: in the Caption box. Expand both boxes
so that the entire text string appears on the screen.

4. Use the tool palette to create two text boxes, and position the boxes
to the right of the static edit boxes you created in step 3. Type IDC­

_EDIT _NAME in the Properties box of the top text box, and type
IDC_SHOW_NAME in the Properties box of the bottom text box.

5. Use the tool palette to create a button, and position the button be­
tween the two text boxes that you created in step 4. Double-click on
the button to display the Properties box. Type IDC_COPYin the ID
box, and type Copy in the Caption box.

315

· Learn Visual C++ Now

316

6. Position the controls and expand the boxes as necessary so that your
dialog box appears similar to the following:

7. Without leaving App Studio, open ClassWizard by choosing the
ClassWizard item from the Resource menu. The Add Class dialog
box appears.

8. Enter CTestDiaiogin the Class Name edit box. ClassWizard suggests
the default names TESTDIAL.H and TESTDIAL.CPP for the class
header and implementation files, as shown here:

9. Click the Create Class button. The ClassWizard dialog box appears,
with the new class name, CTestDiaiog, in the Class Name drop-down
list box, as shown here:

9: Managing Data

10. Click the Edit Variables button to open the Edit Member Variables
dialog box. Select the IDC_EDIT _NAME item in the Control IDs
list box.

11. Click the Add Variable button to open the Add Member Variable
dialog box.

12. Specify a name for the variable that will be associated with (or
bound to) the control. For this example, type m_editName in the
Member Variable Name edit box, as shown here:

317

Learn Visual C++ Now

318

13. Verify that the Value item is selected in the Property drop-d<?wn list
box and that the CString item is selected in the Variable Type drop­
down list box. Then close the Add Member Variable dialog box by
clicking OK.

14. When the focus returns to the Edit Member Variables dialog box,
you can then enter more information about the variable you are cre­
ating. The kind of information you can enter depends on the data
type that appeared in the Variable Type edit box in step 13.

If you were creating a numeric variable, such as an integer, a pair of
edit boxes labeled Minimum Value and Maximum Value would ap­
pear near the bottom of the Edit Member Variables dialog box. To
specify a range for the value of the variable, you would type mini­
mum and maximum values in these two edit boxes.

Because the variable you are creating is a string, however, the Edit
Member Variables dialog box contains an edit box labeled Maxi­
mum Characters. In the Maximum Characters edit box, type the
number 28, as shown here:

9: Managing Data

15. In the Edit Member Variables dialog box, select the IDC_SHOW­
_NAME item from the Control IDs list box, and repeat steps 10

through 12 for the IDC_SHOW~NAME control. When the Add Mem­
ber Variable dialog box opens, assign the name m_showName to the
variable associated with the IDC_SHOW_NAME control, and click
OK. Do not type a Maximum Characters value for the IDC_SHOW­
_NAME control.

16. Select the IDC_COPY item in the Control IDs list box, and repeat
steps 10 through 12 for the IDC_COPY control. When the Add Mem­
ber Variable dialog box opens, assign the name m_btnCopyto the
variable associated with the IDC_COPY control. Be sure that the Con­
trol item is selected in the Property drop-down list box and that the
CButton item is selected in the Variable Type drop-down list box.

17. Close the Add Member Variable dialog box by clicking OK.

18. Close the Edit Member Variables dialog box by clicking Close.

19. Select the CTestappViewclass in ClassWizard's Class Name drop­
down list box and Object IDs list box, and then select WM_LBUT­
TONDOWN in the Messages list box. Click the Add Function button
to add a message handler for the WM_LBUTTONDOWN message,
and then exit ClassWizard by clicking the Edit Code button.

20. Edit the CTestappView::OnLButtonDown function as shown here:

void CTestappView::OnLButtonDown(UINT nFlags. CPoint pOint)
{

}

CTestDialog dlgTest;
dlgTest.DoModal();

And edit the CTestapp View::OnDraw function as shown here:

void CTestappView::OnOraw(COC* pOC)
{

pOC->TextOut(0. 0.
"Click here to open the TestApp dialog box.");

}

319

Learn Visual C++ Now

320

21. Move to the top of the TESTAVW.CPP file, and add this line near
the top, after the other #incJude directives:

/linclude "testdial.h"

22. To create a member function that copies the information from the
Edit Name text box to the Show Name text box, select the CTest­
Dialog class from ClassWizard's Class Name drop-down list box. Se­
lect the IDC_COPY item from the Object IDs list box, and then select
the BN_CLICKED item from the Messages list box.

23. Click the Add Function button to add a message handler for the
BN_CLICKED message. Click OK to accept the default member func­
tion name OnCopyClicked, and then click the Edit Code button and
add the following code:

void CTestDialog::OnClickedCopy()
{

}

UpdateData(CTRL2VAR);
if«m_editName.GetLength()) < 28)

m_showName = m_editName;
UpdateData(VAR2CTRL);

24. To declare the Boolean values passed to the UpdateData function,
add the following declarations to the TESTDIAL.H file:

/ldefine VAR2CTRL FALSE II these /ldefines make DDX clearer
/ldefine CTRL2VAR TRUE

25. Build the TESTAPP program by choosing the Build command from
the Project menu.

26. Execute your new application by choosing the Execute item from
the Project menu. Then open the TestApp dialog box by clicking in
the client area of the window. The TestApp dialog box appears, as
shown here:

9: Managing Data

Thanks to the MFC library, you now have a working dialog box equipped
with a pair of edit controls with DDX/DDV support named IDC_EDIT­

_NAME and IDC_SHOW_NAME. But at this stage of the TEST APP program's
development, these controls are not yet bound to any particular DDX or

DDV functions.

Implementing the DDX/DDV Mechanisms
When you create a class for a dialog box, ClassWizard automatically
generates three blocks of code that are used to define and initialize vari­
ables that are bound to the controls in the dialog box. Two of these blocks
of code, identified in source code by the words AFX_DAT A_INIT and AFX­

_DATA_MAP, are created in the dialog box's .CPP file. The third code
block, identified by the word AFX_DAT A, is placed in the dialog box's .R
file. (In our example, ClassWizard placed an AFX_DA TA_INIT block and
an AFX_DA T A_MAP block in the TESTDIAL.CPP file and an AFX_DA T A

block in the TESTDIAL.R file.)

The AFX_DAT A, AFX_DA T A_IN IT, and AFX_DA T A_MAP code blocks
work in much the same way as the AFX_MSG and AFX_MSG_MAP code
blocks found in every framework-based Visual C++ program: Whenever'a
DDX or DDV message is dispatched during the execution of an applica­
tion, the application uses information in the AFX_DAT A, AFX_DAT A­

_INIT, and AFX_DA T A_MAP code blocks to locate and then execute the
specified code.

321

Learn Visual C++ Now

322

The AFX.;...DATA code block
The AFX_DA T A code block is where Class Wizard declares the variables
that are bound to controls. In the TESTDIAL.H file, the AFX_DAT A block
appears in the declaration of the CTestDialog class, as shown here:

II dialog data
11{{AFX_DATA(CTestDialog)
enum { IDD = IDD_TESTAPP J;
CButton m_btnCopy;
CString m_editName;
CString m_showName;
I/} JAFX_DATA

Notice that this code block begins with the construct

11{{AFX_DATA(CTestDialog)

and ends with the construct

I/} JAFX_DATA

These two delimiters-similar to those used in the AFX_MSG and AFX­

_MSG_MAP code blocks-identify the AFX_DAT A code block as a section
of code that has been generated by ClassWizard. As such, it should sel­
dom, if ever, be edited. (As you'll see, you can violate this rule sometimes,
if you are very careful.)

The AFX_DATA_INITcode block
The AFX_DA T A_INIT code block initializes variables bound to controls.
In the TESTDIAL.CPP file, the AFX_DATA_INIT code block appears in the
constructor of the CTestDialog class, as shown here:

CTestDialog::CTestDialog(CWnd* pParent I*=NULL*/)
: CDialog(CTestDialog::IDD, pParent)

{

J

11{{AFX_DATA_INIT(CTestDialog)
m_editName = "";
m_showName = "";
IIJJAFX_DATA_INIT

The edit boxes to which the m_editName and m_showName variables are
bound are initialized as empty text strings. You can easily initialize them
in some other way, however, by slightly modifying their definitions.

9: Managing Data

This is one instance in which you can bend ClassWizard's hands-off rule
and modify some material inside the II{{ and I/}} delimiters. To change
the initialization of a dialog box control variable that appears between the
I I {{AFX_DA T A_INIT and I I} }AFX_DA T A_INIT delimiters, type something
between the quotation marks that initialize one of the variables in the
AFX_DA T A_IN IT block.

For example, you can initialize the IDC_EDIT_NAME control associated
with the m_editName variable to the word "Bardot" by simply typing the
word between the quotation marks in the m_editName definition, as
follows:

m_editName = "8ardot";

Then, when the TestApp dialog box opens, the word "Bardot" will appear
in the IDC_EDIT _NAME control.

The AFX_DATA_MAP code block
The AFX_DAT A_MAP code block in the TESTAPP application's TESTDIAL
.CPP file is shown here:

void CTestDialog::DoDataExchange(CDataExchange* pDX)
{

1

CDialog::DoDataExchange(pDX);
11{{AFX_DATA_MAP(CTestDialog)
DDX_Control(pDX. IDC_COPY. m_btnCopy);
DDX_Text(pDX. IDC_EDIT_NAME. m_editName);
DDV_MaxChars(pDX. m_editName. 28);
DDX_Text(pDX. IDC_SHOW_NAME. m_showName);
I/} lAFX_DATA_MAP

The AFX data map always appears in a function named DoDataExchange.

DoDataExchange is a CWnd member function that is always overridden.
In the TEST APP application, DoDataExchange is prototyped as follows in
the TESTDIAL.H file:

II DDX/DDV support
virtual void DoDataExchange(CDataExchange* pDX);

As you will see shortly, in the section "Understanding the UpdateData

Command" on page 325, the UpdateData function mentioned earlier

323

Learn Visual C++ Now

324

handles data exchanges between controls and variables by calling the Do­

DataExchange function.

From the DoDataExchange function, ClassWizard can call various kinds
ofDDX-related and DDV-related functions. Many such functions are sup­
plied by the MFC library. If you want to handle data exchanges or data
validation in some special way, you can also write customized DDX and
DDV functions and call them from inside the DoDataExchange function.
But you must take care to place them outside the I I {{AFX_DA T A_MAP and
I IJ JAFX_DA T A_MAP delimiters.

DDX/DDV calls examined
From the DoDataExchange function that ClassWizard has placed in your
CTestDiaiog implementation file, four calls are made to other functions
supplied by the MFC library, as shown here:

void CTestDialog::DoDataExchange(CDataExchange* pDX)
{

}

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CTestDialog)
DDX_Control(pDX. IDC_COPY. m_btnCopy);
DDX_Text(pDX. IDC_EDIT_NAME. m_editName);
DDV_MaxChars(pDX. m_editName. 28);
DDX_Text(pDX. IDC_EDIT_SHOW_NAME. m_showName);
//}}AFX_DATA_MAP

In the line of code between the two DDX_Text calls, the DoDataExchange

function calls a DDV function named DDV _MaxChars. This function sets
the maximum length of the m_editName variable to 28 characters.

As you can see, each of these calls takes three parameters. The first param­
eter, pDX, is a pointer to a data-exchange object-that is, an MFC object
that belongs to the CDataExchange class. The other parameters passed to
functions that are called from DoDataExchange can vary, depending on
the function being called.

When UpdateData calls the DoDataExchange function, the data-exchange
object pointed toby the pDX parameter supplies important information
about the data exchange that is to be executed-for example, whether data
is to be transferred from a control to a variable or fr"om a variable to a
control.

9: Managing Data

Understanding the UpdateOata Command
As mentioned, all DDX and DDV operations depend on a single MFC func­
tion: the CWnd member function UpdateData. The UpdateData function
can carry out three kinds of operations. It can copy information from a dia­
log box control to a C++ variable or from a variable to a control. It can also
validate information that the user enters in a dialog box control.

DoDataExchange and the CDataExchange object
The UpdateData member function takes a single parameter: a Boolean
value that specifies whether data is to be copied from a variable to a con­
trol or from a control to a variable. If you call UpdateData with a FALSE

variable, as shown here, the function copies data from all bound member
variables to their associated controls:

UpdateData(FALSE);

Conversely, if you pass UpdateData a TRUE value, as shown here, the
UpdateData function copies data .from all controls to their bound variables:

UpdateData(TRUE);

Although the UpdateData function is in charge of handling all DDX and
DDV operations associated with a particular dialog box, it does not di­
rectly perform all the operations that the DDX/DDV mechanisms require.
Instead, it calls another function: DoDataExchange. In turn, the DoData­

Exchange function calls the DDX/DDV functions that actually perform all
the DDX and DDV operations that the dialog box requires. Each time Do­
DataExchange calls a set ofDDX/DDV functions, it passes a pointer to a
CDataExchange object-that is, an object that belongs to the MFC library's
CDataExchange class.

A CDataExchange object is similar to the CArchive object used by the
Serialize member function. (The Serialize function was introduced in .
Chapter 7, "Of Mice and Messages," and is examined more closely in the
section "Serialization Revisited" on page 353.) A CDataExchange object,
like a CArchive object, has a member variable named m_bSaveAnd­
Validate, which is a Boolean variable that is used as a direction flag.

325

Learn Visual C++ Now

326

When the DoDataExchange function calls a DDX or a DDV function, it
passes the TRUE or FALSE argument that DoDataExchange has received
from the Up dateDa ta function.

Other parameters of the DoDataExchange function
When DoDataExchange calls a DDX or a DDV function, it passes to the
function not only a pointer to a CDataExchange object but also any other
arguments that the function being called might require. For example, when
DoDataExchange calls the DDX_ Text function, the DoDataExchange func­
tion passes to DDX_Text the resource ID of an edit control and the name of
the member variable that is bound to the control, as in this example:

DDX_Text(pDX. IDC_EDIT_NAME. m_editName);

An Easier Way
Although the system described above works well, it is not very intuitive.
In fact, passing a TRUE or FALSE value to UpdateData does not seem to
make much sense. Even if you pass the UpdateData function a FALSE
value, it still updates data-it just moves the data in a different direction!
So it can be difficult to remember which direction is indicated by a TRUE
value and which direction is indicated by a FALSE value.

Fortunately, this bit of potential confusion is easy to clear up. All you
have to do is set this pair of #defines:

#define VAR2CTRL FALSE II these #defines ~ake DDX clearer
#define CTRL2VAR TRUE

~I MPORTANT Be sure to place the two preceding statements in the TESTAPP
I program's TESTDIAL.H file. If you don't, you'll get a compiler error because

your program won't be aware of the meanings of the VAR2CTRL and
CTRL2VAR constants.

When you have redefined the TRUE and FALSE variables as sho:wn in the
preceding example, you can execute the call

UpdateData(VAR2CTRL);

9: Managing Data

when you want to move data from a variable to a control, and you can exe­
cu te the call

UpdateDataCCTRL2VAR):

when you want to move data from a control to a variable.

In the sample programs presented in this chapter, the VAR2CTRL and
CTRL2 V AR constants are used in place of TR UE and FALSE each time
UpdateData is called.

Calling the UpdateData Function Step by Step
Now that you know how the UpdateData function works, you are ready to
write a pair of UpdateData calls that add DDX and DDV capabilities to the
TESTAPP program you started developing earlier in this chapter. To call
UpdateData from your application, follow these steps:

1. Open the TESTAPP project, and launch ClassWizard by choosing
ClassWizard from the Browse menu.

2. In the Class Name drop-down list box, select the CTestDialog class.

3. Select the IDC_COPYresource ID from the Object IDs list box, and
then select the BN_ CLICKED message from the Messages list box ..

4. Click the Add Function button. ClassWizard displays the Add Mem­
ber Function dialog box, which prompts you for the name of a func­
tion. In the Member Function Name edit box, ClassWizard suggests
a name for your new function. Accept this function name, and close
the Add Member Function dialog box by clicking the OK button.
ClassWizard creates anew function with the default name On­
ClickedCopy in your application's TESTDIAL.CPP file.

5. When the ClassWizard dialog box regains the focus, click the Edit
Code button. ClassWizard then opens the TESTDIAL.CPP file and
navigates to the OnClickedCopymember function it has generated.
At this point, the OnClickedCopy function is merely a stub, waiting
for you to write a block of code that gives it functionality.

327

· Learn Visual C++ Now

328

6. Modify the On Clicked Copy member function as shown here:

void CTestDialog::OnClickedCopy()
{

}

UpdateData(CTRL2VAR);
if «m_editName.GetLength(» < 28)

m_showName = m_editName;
UpdateData(VAR2CTRL);

You have completed the job of adding DDX and DDVcapabilities to the
TESTAPP program. Now when the user types an entry in the IDC_EDIT­

_NAME control and clicks the Copy button, the if statement checks to see
whether the user's string exceeds the program's limit of 28 characters. If
the string is legal, it is copied to the IDC_SHOW_NAME edit box.

Running the TEST APP Program
To see how the TESTAPP program now works, rebuild it and then run it
by choosing the Execute item from Visual Workbench's Project menu.
When the application starts, click in the window to open the TestApp dia­
log box, which now has full DDX/DDV capabilities. If you type a string in
the Edit Name edit box and then click the Copy button, the application
copies the text you have entered to the Show Name edit box, as shown in
Figure 9-1.

Figure 9-1. Typing an entry in the TestApp dialog box.

9: Managing Data

Here's how it works. When you type a string in the Edit Name edit box and

click the Copy button, the OnClickedCopy member function carries out
the following two operations in quick succession:

1. With the help of the DDX mechanism, OnClickedCopy updates all

DDX-aware controls in the TestApp dialog box by copying the infor­
mation that each control contains to the DDX variable that is bound

to the control. At the same time, the DDV mechanism verifies that

the user has entered no more than 28 characters in the IDC_EDIT­

_NAME control. If the information that the user has entered in the
IDC_EDIT_NAME control is less than 28 characters, it is copied from

the m_editName variable to the m_showName variable.

2. All information now stored in DDX-aware variables (including the
m_showName variable) is copied to the appropriate controls.

Extending IDDX/DDV: The CREATION Program
The TEST APP program is a good elementary example of how the DDX and
DDV mechanisms work. In this section, we'll use a program named CRE­
ATION to illustrate how these mechanisms can be used in a more sophisti­
cated application. The CREATION program illustrates the kind of coding
you might do if you were designing an adventure game. CREATION is an
MDI (multiple-document interface) application that can display three re­
lated dialog boxes, all of which can be selected from the Character menu,
as shown in Figur.e 9-2.

Figure 9-2. The CREATION program '8 Character menu.

When you choose the Edit item from the Character menu, CREATION dis­
plays a modal dialog box named Create A Character, as shown in Figure 9-3

on the following page, in which you can either create a new game charac­

ter or edit the properties of an existing character.

329

Learn Visual C++ Now

330

Figure 9-3. The Create A Character dialog box.

The Create A Character dialog box contains the following controls:

• 'Roll Dice-When you click this button, the CREATION program
executes an algorithm that simulates six rolls of three standard six­
sided dice. CREATION uses the sum of a roll of the three dice to set
one of six qualities (known in adventure games as stats) of a charac­
ter. In role-playing adventure games, stats are used to determine
how well a character is likely to do in combat. They can also affect
other kinds of interactions among characters. In the CREATION pro­
gram, a member function named CRollDice::RollDice is used to roll
the virtual dice that set a character's stats. The CRollDice::RollDice
member function is examined in the sidebar "The RollDice Member
Function" on page 342.

• ,Name-Edit control in which you specify the name of a character.
The user can't close the Create A Character dialog box by clicking OK
until he or she types an entry in this box. (The user can always close
the dialog box by clicking Cancel, however.)

• Race-Combo box that the user can use to select the race of a char­
acter. Race options are dwarf, elf, gnome, half-elf, haUling, and human;
human is the default.

• Class-Drop.;.down list box that the user can use to select a character's
class. Class options are cleric, rogue, warrior, and wizard; warrior is
the default.

9: Managing Data

• Funds-Edit box that specifies how much cash a character has on
hand. When the user changes the setting in the Class combo box, the
value displayed in the Funds edit box also changes. As the game
progresses, this value will fluctuate as the character spends or acquires
money by selling goods or buying equipment.

•. Align-Combo box that specifies the alignment (moral qualities) of
a character.

• Age-Ed~t box that displays the age of a character. The MFC library's
DDV mechanism is used to verify that the age typed in this control
is a reasonable value.

• Icon-Button that does nothing at present but that will display a dia­
log box in the final version of the game. This dialog box will allow
the user to select a bitmap to represent a character.

• Cancel, Help, and OK-Standard Cancel, Help, and OK buttons. In
the CREATION program, the Help button is not activated.

When you close the Create A Character dialog box by clicking OK, the
CREATION application remembers the values you have entered, so you
can save your entries on disk, print them out, or display them in another
CREATION dialog box named Character Information. The Character Infor­
mation dialog box is described in the section "The Character Information
Dialog Box" on page 352.

In CREATION, choosing the Shop item from the Character menu takes the
user's character on a shopping spree in the Mel's Bait Shop And Fashion
Boutique dialog box, shown in Figure 9-4 on the following page. At Mel's,

. the user can equip his or her character for any quest.

At Mel's, the user purchases an item by moving it from the Items Available
list box to the Items Being Purchased list box. To do that, he or she clicks
on the item in the Items Available list box and then clicks the» button .
. Ifthe user changes his or her mind about an item, he or she can return it to
the shelf by clicking on the item in the Items Being Purchased list box and
then clicking the« button.

331

Learn Visual C++ Now

332

Backpack
Blanket
Candle
Fishhook
Fishing net
Flint and steel
Ink. 1 vial

Figure 9-4. Mel's Bait Shop And Fashion Boutique dialog box.

When the user closes the Mel's Bait Shop And Fashion Boutique dialog box
by clicking OK, the CREATION program records the items he or she has
purchased so that they can be printed or displayed in another dialog box.

After the user has created and outfitted a character, he or she can display
information about the character and his or her belongings by choosing the
Info item from the Character menu. The application then displays a Char­
acter Information dialog box similar to the one shown in Figure 9-5.

Figure 9-5. The Character Information dialog box.

9: Managing Data

The Character Information dialog box displays all the information the
user specified in the Create A Character dialog box, as' well as all the pur­
chases made at Mel's. All the controls in the Character Information dialog
box are read-only; in order to edit the information, the user must open
other dialog boxes.

~\1iI' IP To make a control read-only, create the 'control in App Studio, and then
'\~I choose the Properties item from the Resource menu. When the Properties

window appears, click on the control, and select the Styles item in the drop­
down list box in the upper right corner. Then check the Read Only check
box, as shown here:

Styles

Align'r,ext:::, ., .. ~!HQ1ig;.s,cipJI ,'d"e~~swrii~i:: : ~,i~fd~1 :
I l&:J1·: .~,Aul;HScl~II' ,o.N()t:lid~~el '[),.uP~e~c~$t}<'
<:""., '., (:"",If?:!¥~I~§srp!l;: ; DOEM~onV~ftlJ,t.9.Yle'c#$e
oj~~I~*~F "V~tii~1l 'IJ:WantR~tufri. '.: ~!R~~.!loriii:

Architecture of the CREATION Program
CREATION is an AppWizard-framework application, so it has AppWizard's
standard document-and-view architecture and makes use of all the stan­
'dard document-and-view files. It also has the following five classes:

• Three classes that encapsulate each of the program's three dialog
boxes: CDlgCreate (implemented in the DLGCREAT.CPP file), CDlg­

Equipment (implemented in the DLGSUPP.CPP file), and CDlglnfo
(implemented in the DLGINFO.CPP file).

• A CRollDice class, also derived from the MFC library's CObject class,
which encapsulates an algorithm that can simulate throws ofvari­
ous kinds of dice. (Adventure-style board games often come with
various kinds of specially shaped dice that don't have the standard
six sides, so the CRollDice class can simulate throws of any number
of dice that have any number of sides.) The CRollDice class is imple­
mented in a source file named DICE.CPP.

333

Learn Visual C++ Now

334

• A CObject-derived class named CPlayer, which encapsulates all the
information that the Create A Character dialog box collects. The
CPlayer class is implemented in a source file named PLA YER.CPP.

Once the CREATION program is initialized and its main window and a
child window have been created, most of the action takes place in the
application's document and view objects and in the application-generated
classes listed above. Figure 9-6 illustrates the architecture of these seven
parts of the CREATION 'program.

CCreation View CCreationDoc

CDlgCreate CDlg£quipment CDlglnfo CPlayer

CRolIDice

Figure 9-6. Architecture of the CREATION program.

9: Managing Data

Even though the CREATION application's document class (CCreationDoc)
handles the program's data, the data is actually stored in the application's
CPlayer object and is accessed by the CCreationDoc class only indirectly.
To access the data associated with a particular character, the program's
document object instantiates a CPlayer object each time a character is cre­
ated. Then the document object uses Get and Set functions provided by
the CPlayer class to set and retrieve information about a character.

This arrangement makes sense in the CREATION program because a situ­
ation could arise in which several different characters are instantiated and
active at the same time. If this happens, the program can easily keep each
character's data separate while still maintaining overall control of the data
through its document object by using the Get and Set functions provided
by the CPlayerclass.

The application's view class (CCreationView) object must access character
data even more indirectly because it 'is one step further away from the data
than the document object is. To illustrate this, suppose that the user has
opened the Create A Character dialog box and is creating a character named
Zalthar. When the user types Zalthar in the Name edit box and then closes
the dialog box by clicking OK, the program's CDlgCreate object uses the
DDX mechanism to retrieve the name from the Name edit box.

The CDlgCreate object then executes the following function call to pass
the name to the active character object:

pDoc-)m_pPlayer-)SetName(m_editName);

As you can see, this statement passes the ~ame to a CPlayer member func­
tion named SetName. The parameter that is passed to the program's
CPlayer object in this statement is a CDlgCreate member variable named
m_editName. And the m_editName member variable is used to store the
name that the user has typed in the Create A Character dialog box's
Name edit box. Figure 9-7 on the following page illustrates this process.

335

Learn Visual C++ Now

336

CCreation View CCreationDoc

SetStats

CDlgCreate

SetName

CPlayer

Figure 9-7. Sending data'to a CPlayer object through a CCreationDoc object.

Creating a CPlayer Object
When the CREATION application opens, code generated by App Wizard
creates a view object and a document object in the usual manner. (For a
review of how App Wizard creates programs using view and document ob­
jects, see the section "Using Documents and Views in MFC Programs" on
page 192 in Chapter 6.)

When the CREATION program's document object is created, the
document's constructor instantiates a CPlayer object. A pointer to this
CPlayer object is stored in a CCreationDoc member variable named
m_pPlayer. The CCreationDoc constructor that initializes the m_pPlayer
member variable is implemented as follows in the CREA TDOC.CPP file:

CCreationDoc::CCreationDoc()
{

m_pPlayer = new CPlayer;

The definition of the CPlayer class, which appears in the PLA YER.H file,
is shown in Listing 9-1.

9: Managing Data

class CPlayer : public CObject {

DECLARE_SERIAL(CPlayer)

II member variables
private:

WORD ffi-strength. ffi-dexterity. ffi-constitution. ffi-intelligence. ffi-wisdom.
m_charisma;

enum Classes { WARRIOR. WIZARD. PRIEST. ROGUE };

enum Races { DWARF. ELF. GNOME.
HALF_ELF. HALFLING. HUMAN };

enum Abils { STRENGTH, DEXTERITY. CONSTITUTION.
INTELLIGENCE. WISDOM. CHARISMA };

private:
CStringList *m_pEquipList;

public:
void SetEquipList(CStringList* pEquipList);
const CStringList* GetEquipList()

{ return m_pEquipList; }
void Serialize(CArchive& ar);

public:
II constructor and destructor
CPlayer() { ASSERT_VALID(m_pEquipList

new CStringList); }

~CPlayer() { delete m_pEquipList; }

CString GetName() { return m_name; }
void SetName(CString n) { m_name = n; }

CString GetRace() { return m_race; }
void SetRace(CString r) { m_race = r; }

CStri ng GetCl ass (") { return m_cl ass; }
void SetClass(CString c) {m_class c;}

Listing 9-1. Definition of the CPlayer class. (continued)

337

Learn Visual C++ Now

338

Listing 9-1. continued

} :

CString GetAlignment() { return m_alignment: }
void SetAlignment(CString a) {m_alignment a:}

int GetFunds() { return m_funds: }
void SetFunds(int f) { m_funds = f: }

int GetStrength() { return m_strength: }
int GetDexterity() { return m_dexterity: }
int GetConstitution() { return m_constitution: }
int GetIntelligenceO {.return m_intelligence: }
int GetWisdom() { return m_wisdom: }
int GetCharisma() { return m_charisma:

void SetStrength(int s) { m_strength = s: }
void SetDexterity(int d) { m_dexterity = d: }
void SetConstitution(int c) {m_constitution c:}
void SetIntelligence(int i){ m_intelligence i:}
void SetWisdom(int w) { m_wisdom = w: }
void SetCharisma(int c) { m_charisma = c: }

II copy constructor
CPlayer& operator=(const CPlayer& b):

II member functions

II get information about player
void SetAbils(WORD strength, WORD dexterity, WORD constitution,

WORD intelligence, WORD wisdom. WORD charisma):

Most of the member functions of the CPlayer object are Get and Set func­
tions that the CREATION program uses to retrieve and set character data.

The Create A Character Dialog Box
As you have seen, the CREATION program has the Create A Character dia-
log box, shown in Figure 9-8, for the creation and editing of game charac­
ters: When the user finishes entering character information and clicks the
OK button, the CDIgCreate object uses the MFC library's DDX mechanism
to pass the information along to the program's CCreationDoc object. The
CDIgCreate object then calls some Set functions provided by the CPlayer
object to store the information in the appropriate CPlayer member variables.

9: Managing Data

r-----'"-~~: 1*1,
'--__ -,-....JI>:::I~~~':::I

Align: ".',1 ~~~f~ijJ~~dmmtJl

1, .• · .. ·.: .. ,i,.'.F.i ... '.' ..•. : .•. ' •...•.•.•. ·.'· .• ·.":.·~:I2o.·.:.·.'t.·.· ..•. '· .•. :.:": .. ·.:·.]·.:'.:.' . :,:' .•. !'}E~~~~I'I!(::Ii~,;::: . [2ZJ,

Figure 9-8. The Create A Character dialog box.

Opening the Create A Character dialog box
To open the Create A Character dialog box, the user chooses the Edit item
from the Character menu. CREATION then executes a message handler
named CCreation View::OnCharacterEdit. Here's how the OnCharacterEdit
message handler is implemented in the CREA TVW .CPP file:

void CCreationView::OnCharacterEdit()
{

}

CCreationDoc *pDoc = GetDocument(); 1/ get pOinter to
II document object

CDlgCreate dlgCreate: II instantiate CDlgCreate dialog box
dlgCreate.DoModal(); II your basic DoModal function
·dlgCreate.SetStats(pDoc):

How the Create A Character dialog box works
The OnCharacterEdit message handler calls the MFC library'S CDialog::­
DoModal member function to display the Create A Character dialog box.
Then, when the dialog box closes, OnCharacterEdit calls a member func­
tion named CDlgCreate::SetStats to copy all the information entered or
selected by the user to the CPlayer member functions. The SetStats mem­
ber function accomplishes this task with the help of the MFC library's DDX
and DDV mechanisms.

339

Learn Visual C++ Now

340

The source code for the CDlgCreate::SetStats member function that passes
the user's data on to the program's CPlayer object is shown here:

void CDlgCreate::SetStats(CCreationDoc*pDoc)
{

}

II move information from dialog controls
II to pDoc-~m_pPlayerobject
ASSERT_VALID(pDoc):
ASSERT_VALID(pDoc-)m_pPlayer):

II record new player's name
pDoc-)m_pPlayer-)SetName(m_editName):
II record new player's race
pDoc-)m_pPlayer-)SetRace(m_comboRace):
II record new player's class
pDoc-)m_pPlayer-)SetClass(m_comboClass):

II record new player's abilities
pDoc-)m_pPlayer-)SetStrength(m_strength):
pDoc-)m_pPlayer-)SetDexterity(m_dexterity):
pDoc-)m_pPlayer-)SetConstitution(m_constitution):
pDoc-)m_pPlayer-)Setlntelligence(m_intelligence):
pDoc-)m_pPlayer-)SetWisdom(m_wisdom):
pDoc-)m_pPlayer-)SetCharisma(m_charisma):

II record other stuff
pDoc-)m_pPlayer-)SetFunds(m_editFunds):
pDoc-)m_pPlayer-)SetAlignment(m_alignment):

DDX operations in the charader creation process
The Create A Character dialog box makes extensive use of the MFC library's
DDX mechanism. For example, before the Create A Character dialog box
opens, the CDlgCreate class uses DDX to initialize the dialog box's con­
trols. This initialization takes place in an override of the CDialog::Onlnit­
Dialog member function, which the MFC framework calls after a dialog

. box is created but before it opens.

The CDlgCreate class also uses the DDX mechanism to change the contents
of the dialog box's stat boxes each time the user clicks the Roll Dice button.

The following code shows how the CDlgCreate class uses DDX in the
OnlnitDialog member function:

9: Managing Data

II do the initial dice roll and"so on
BOOl CDlgCreate::OnlnitDi'alog()
{

CRoll Dice rollDice; II instantiate a CRollDice object

}

II roll dice for ability scores
rollDice.SetRandomSeed(); II seed random number generator
for (int c = 0; c < 6; c++)

II three rolls of 6-sided dice
m_abils[cJ = rollDice.RollDi"ce(3. 6);

II move rolled scores from ~ariables
II into the ability controls
m_strength = m_abils[0J;
m_dexterity = m_abils[lJ;
m_constitution = m_abils[2J;
m_intelligence = m_abils[3J;
m_wisdom = m_abils[4J;
m_charisma = m_abils[5J;

II update other controls
m_editFunds = m_warriorFunds;
m_comboRace = "Human";
m_comboClass = "Warrior";

II move ability variables into dialog controls
UpdateData(VAR2CTRl);
return (CDialog::OnlnitDialog(»;

At the end of this code fragment, the CDIgCreate::OnlnitDialog member
function calls the UpdateData ~ember function with a VAR2CTRL param­
eter to initialize the Create A Character dialog box's controls.

The following code shows how DDX is used to change the contents of the
Create A Character dialog box's stat boxes:

void CDlgCreate::RollTheDice()
{

CRoll Dice roll Dice; II instantiate a CRollDice object

II roll dice for ability scores
rollDice.SetRandomSeed(); II seed random number generator
for (int c = 0; c < 6; c++)

II three rolls of 6-sided dice
m_abils[cJ = rollDice.RollDice(3. 6);

(continued)

341

Learn Visual c++ Now

}

342

UpdateData(CTRL2VAR): II copy values into variables

II move rolled scores from variables
II into the ability controls
m_strength = m_abils[0J:
m_dexterity = m_abils[lJ:
m_constitution = m_abils[2]:
m_intelligence = m_abils[3J:
m_wisdom = m_abils[4J:
m_charisma = m_abils[5J:

II move ability variables into dialog controls
UpdateData(VAR2CTRL)

The RollDite Member Function

The CRollDice::RollDice function, implemented in theDICE.CPP file,
can emulate any number of throws of a die with any number of sides.
When you call RollDice, you can specify how many dice you want
to roll, and how ma,ny sides each die has, in the arguments you pass
to the function. For example, the RollDice function in the code above
emulates three rolls of a standard six-sided die as shown here:

rollDice.RollDice(3. 6):

One,noteworthy feature of the RollDice member function is that it pre­
cisely calculates the .. correct odds for whatever kind of dice roll is
specified. For example, when you roll apair of standard six-sided
dice, the numbers least likely to come up are 2 and 12,thenext least
likely numbers are 3· and 11, and so on. ·The RollDice member func ..
tion duplicatesthe real odds precisely.

How does RollDice perform these calculations? It's easier than you
might expect. To calculate the odds for rolling two standard six-sided
dice, the RollDice member function simply generates a pair of random
. numbers from 1 through 6 and then adds them together. The same
khid·of calculation works for all other combinations you can specify
whenyouc;all the RollDicefunction.

9: Managing Data

Here the CDlgCreate class makes two calls to the UpdateData function.
After the CRollDice::RollDice function has been called to set the character's
stats, a call is issued to UpdateData to copy the dice scores into the Create
A Character dialog box's variables. At the end of the function, UpdateData
is called again to move the character's stats to the dialog box's controls.

Using the DDV mechanism
The CDlgCreate class uses the DDV mechanism in only one member
function-CDlgCreate::DDV_AgeCheck, as shown here:

void COlgCreate::OOV_AgeCheck(COataExchange *pOX, int editAge)
{

}

if (editAge < m_minAge)
MessageBox("You're too young to play this game!",

"Let's see your 10!", MB_ICONEXCLAMATION);
if (editAge > m_maxAge)

MessageBox("You're too old to play!",
"Sorry, old-timer!", MB_ICONEXCLAMATION);

The Age edit box The DDV_AgeCheck function is executed when the
user enters a value in the Age edit box. Here's how the function works.
When the Create A Character dialog box opens, the value displayed in the
Age edit box is initialized to 18. In the DoDataExchange function that ap­
pears in the DLGCREAT.CPP file, two other variables are also linked to the
Age edit box: a variable named m_minAge, which is initialized to 10, and
a variable named m_maxAge, which is initialized to 109, as shown below.
(Both these initializations take place in the CDlgCreate::DoDataExchange
member function.)

II set min and max ages for the m_editAge variable
m_minAge = 10;
m_maxAge = 109;

The Create A Character dialog box's DoDataExchange function also con­
tains a customized DDV mapping that affects the Age edit box and its asso­
ciated m_editAge member variable. First the DDX_ Text function is called
to bind the m_editAge variable to the Age edit box. Then t,he DDV_Age­
Check function is called to validate the text that the user enters in the Age
edit box.

343

Learn Visual c++ Now

344

Because DDV_AgeCheck is a function that ClassWizard knows nothing
about, the declara~ion of the DDV_AgeCheck function appears outside the
AFX data map in the DoDataExchange function.

1~11 OTE Although the call to DDX_Text that appears just before the call to
6if'\! DDV_AgeCheck in the DoDataExchange function was actually generated by

ClassWizard, it has been moved out of the AFX data map section of the Do­
DataExchange function because DDV functions immediately follow any DDX
function with which they are associated. Of course, when a DDX or a DDV
function is moved out of the AFX data map code block managed by Class­
Wizard, you can no longer use ClassWizard to edit or modify the function.

The CDIgCreate::DDV_AgeCheck function called by the DoDataExchange
function is shown on the previous page. As you can see, the function sub­
stitutes a pair of custom message boxes for the default message box that is
normally displayed when a dialog box control entry fails a DDV test.
When the DDV_AgeCheck member function is called, it displays one kind
of message box when the user enters an age that is too low and another
kind of message box when the user enters an age that is too high.

Another kind of data verification The CREATION application provides
an additional kind of data validation for the Age edit box. When the user
types an entry in the Age edit box and then moves on to another action,
the Age control loses the input focus, and a function named OnKillfocus­
EditAge is called.

The implementation of the CDIgCreate::OnKillfocusEditAge function used
in the CREATION application is shown below. The function appears in
the DLGCREAT.CPP file.

II this function executes when the Age control
II loses the input focus
void CDlgCreate::OnKillfocusEditAge()
{

UpdateData(CTRL2VAR); II be sure DDV routine gets called
I I when thi s control loses focus'

II check the value of the m_editAge variable
if (m_ed i tAge < m_mi nAge :: m_ed i' tAge > m_maxAge) {

m_editAge = 18; II must be m_minAge or older to play
UpdateData(VAR2CTRL); II correct the situation

9: Managing Data

}
}

II as a convenience for the user. be sure
II that the cursor appears in the Age control
/1 when this function returns
«CEdit*) (GetDlgltem(IDC_EDIT_AGE)"»-)SetFocus():
«CEdit*) (GetDlgltem(IDC_EDIT_AGE»)-)SetSel(0. -1):

The UpdateData function is called with a CTRL2VAR parameter to move
information from the Age edit box to the m_editAge member variable.
Then the value of the m_editAge variable is checked to see whether it is
under the limit specified by the m_minAge variable or over the limit speci­
fied by the m_maxAge variable.

This check is made because the DoDialogExchange function never calls
just one DDX or DDV function; every time DoDialogExchange is executed,
it calls every DDX/DDV function that it is associated with-and that opens
up many possibilities for endless loops. If DoDialogExchange calls a DDV
function that reports the failure of a validation check, and if DoDialog­
Exchange does not give the user an opportunity to change the offending
entry before DoDialogExchange is called again, the result is an endless
loop that can hang your application.

To prevent endless loops, the OnKillfocusEditAge function first calls Up­
dateData(CTRL2VAR) and then checks to see whether the entry in the Age
edit box is valid. If the value in the Age edit box is not valid, OnKillfocus­
EditAge immediately changes the value of the m_editAge variable to a
valid value-18-and then calls UpdateData(VAR2CTRL) to place that
value in the Age edit box. Because this change is made as soon as an invalid
value is detected, it prevents an endless loop.

When OnKillfocusEditAge has detected and corrected any invalid infor­
mation that might have been entered in the Age control, it calls the Set­
Focus function to restore the input focus to the Age edit box and then calls
the member function SetSel to select the value (18) that it has just placed
in the control. Note that when GetDlgltem is called, it must be cast from a
CWnd member function to a CEdit function. This kind of casting was often
needed in dialog box routines before the introduction of Visual C++, but it
is needed much less often now.

345

Learn Visual C++ Now

346

Calculating values displayed in controls
The Funds edit box demonstrates a technique for displaying calculated
values in a dialog box control. When the Create A Character dialog box
opens, a random number is generated and placed in the Funds edit box.
The amount of cash that is allotted to the character depends on the
character's class. The allotment specified for each class is calculated in the
constructor of the CDIgCreate class. To set these allotments, the RollDice

member function is called four times, as shown here:

II calculate character's initial cash allotment and
II initialize the m_editFunds variable
rollDice.SetRandomSeed(); II seed random number generator
m_warriorFunds = rollDice.RollDice(5. 4) * Ie;
m_wizardFunds = (rollDice.RollDiceO. 4) + 1) * Ie;
m_rogueFunds = rollDice.RollDice(2. 6) * Ie;
m_clericFunds = rollDice.RollDice(3. 6) * Ie;

When the user changes the selection displayed in the Class drop-down list
box, the value displayed in the Funds edit box is updated to correspond
to the initial allotment that has been calCulated for a character of the se­
lected class.

Closing the Create A Character dialog box
The OK button in the Create A Character dialog box also performs some
data validation-without any official help from the DDX/DDV mechanisms.
When the user clicks OK, the CREATION application calls an overridden
On OK member function, defined below, to verify that the user has typed a
name for a character in the Name edit box. If no name has been entered
when OK is clicked, the program prompts the user for one.

II be sure the user has typed a new character's name
if (m_editName == "") {

}

MessageBox ("Please give your character a name!".
"Excuse me ... ". MB_ICONEXCLAMATION);

II put the cursor in the appropriate edit control
«CEdit*) (GetDlgltem(IDC_EDIT_NAME»)-)SetFocus();
«CEdit*) (GetDlgltem(IDC_EDIT_NAME»)-)SetSel(e. -1);
return;

9: Managing Data

The Mel's Bait Shop And Fashion Boutique Dialog Bo){
Applications can use the DDX/DDV mechanisms to manipulate data dis­
played in list boxes, but the procedure is a little more complicated than
most other kinds of DDX/DDV operations. In the CREATION program, the
Mel's Bait Shop And Fashion Boutique dialog box shown in Figure 9-9

demonstrates the use of DDX commands in list box operations.

Fishhook
Fishing net
Flint and steel
Ink. 1 vial
Lantern
Map case
Minnows

Figure 9-9. TheMel's Bait Shop dialog box's list boxes.

The list boxes in the Mel's Bait Shop dialog box
The Mel's Bait Shop dialog box contains a pairof list, boxes: Items Available
and Items Being Purchased. The user can add or delete items from the
Items Being Purchased list box by clicking the« and» buttons. When
the user selects an item in one list box and clicks one of these buttons, the
program uses the DDX mechanism to copy the selected string to the other
list box.

To display items in the Items Available list box and the Items Being Pur­
chased list box, the CDIgEquipment class uses a pair of CStringList objects
declared in the DLGSUPP.R file. (As you might recall from Chapter 6,

"The MFC Library," the CStringList class is a serializeable MFC library
class that belongs to a group of classes called collection classes. In C++, a
collection class is a class designed to facilitate the creation and management
of collections of objects such as lists and arrays.) The CStringList object
that stores items listed in the Items Available list box is named m_pString­
Listl. The CStringList object that stores items listed in the Items Being Pur­
chased list box is named m_pStringList2.

347

Learn Visual c++ Now

348

Copying data into list boxes
When the Mel's Bait Shop dialog box opens, the CREATION program fills
the Items Available list box with a list of strings obtained from a struct
named m_suppJyList. The m_suppJyList struct is declared in the
DLGSUPP.H file, as shown here:

struct StructSupplies {
int quantity;

} ;

char item[NAME_SIZE];
double price;
double weight;

It is implemented in the DLGSUPP.CPP file, as shown here:

StructS.uppl i es m_supplyList[] = {
{ 0, "Backpack", 2, 2 }.
{ 0, "Candle", .01. .10 }.

{ 0, "Fishhook", .60, 0 }.
{ 0, "Fishing net", 4, 5 }.
{ 0, "Flint and steel", .50, .10 }.
{ 0, "Red worms", .01. 0 }.

{ 0, "Minnows", .01. 0 }.
{ 0, "Pot, iron" , . 50, 2 }.
{ 0, "Pot, copper", 2, .20 }.

{ 0, "Lantern", 7, 2 }.
{ 0, "Map case", .B, .5 }.
{ 0, "Mirror, small metal", 10, .10 }.
{ 0, "Oi 1 , 16-oz. flask", .06, 1 }.
{ 0, "Quiver", .B, 1 }.
{ 0, "Scroll case", .B, .5 }.
{ 0, "Parchment, 1 sheet", 2, 0 }.
{ 0, "Rope, 50 ft. " 1. 20 }. ,
{ 0, "Rope, 10 ft. " .25, 4 }. ,
{ 0, "Sack, large", .2, ~ 5 }.
{ 0, "Sack, small", .05, .10 }.
{ 0, "Soap, 1/4 pound", .1. .10 }.
{ 0, "Tent, small", 5, 10 }.
{ 0, "Torch", .01 , 1 }.
{ 0, "Pick, thief's", 30, 1 }.
{ 0, "Whetstone", .02, 1 }.
{ 0, "Wineskin", .B, 1 }.
{ 0, "Blanket, wool"" .5, 3 }.
{ 0, "Quilt", .1, 1.5 }.

{ 0, "Ink, 1 vial", B, .10 }

} ;

9: Managing Data

Using references to access list box items
To access the strings in the Items Available and Items Being Purchased list
boxes, the DLGSUPP.H file defines a pair of member functions named
ListBoxl and ListBox2. These two member functions use references and
pointers to functions to provide access to the Items Available and Items
Being Purchased list boxes, as shown here:

II get references to the list boxes
CListBox& ListBoxl()

{ return *(CListBox*) GetDlgItem(IDC_LISTl);
CListBox& ListBox2()

{ return *(CListBox*) GetDlgItem(lDC_LIST2); }

When the Mel's Bait Shop dialog box opens, an override of the CDialog::­
OnlnitDialog function is used to copy all the strings in the m.: ... pStringListl
string list to the Items Available list box. To perform the copying opera­
tion, the OnlnitDialog function calls the ListBoxl member function. Then
UpdateData is called to copy the contents of the m_pStringListl variable
into the Items Available list box, as shown here:

II populate the Items Available list box
for (int i = 0; i < NR_OF_ITEMS; i++)

ListBoxl().AddString(m_supplyList[i].item);

II initialize the Funds edit box
UpdateData(VAR2CTRL);

Copying data from one list box to another
To copy the names of items from the Items Available list box to the Items
Being Purchased list box, the CDIgEquipment class uses a member function
named OnAvail2bought. The OnAvai12bought member function uses a
CStringList member function named AddString-along with the DDX
function UpdateData-to add the selected string to the Items Being Pur­
chased list box. (OnAvail2bought also calls the CStringList::FindString
function to search the Items Being Purchased list box to confirm that a du­
plicate string is not being added.)

The CDlgEquipment::OnAvail2bought member function, as implemented
in the DLGSUPP.CPP file, is shown on the following page.

349

Learn Visual C++ Now

350

void CDlgEquipment::OnAvai12bought()
{

}

II copy selected item from Items Available list box
II to Items Being Purchased list box
UpdateData(CTRL2VAR):

II Duplicate entries not allowed. Search ListBox2
II for the string being added: if found. don't
II add it again.
int retVal = ListBox2().FindString(-1. m_obStrl):
if (retVal == LB_ERR) II LB_ERR means no duplicate found

ListBox2().AddString(m_obStrl):

Removing items from the Items Being Purchased list box
When the user selects an item in the Items Being Purchased list box and
clicks the « button, the CREATION application's CDlgEquipment object
executes a member function named onBought2avail to remove the se­
lected item. Here.is the onBought2avail member function, as imple­
mented in the DLGSUPP .CPP file:

void CDlgEquipment::OnBought2avail()
{

}

II delete selected item from Items Being Purchased list box
UpdateData(CTRL2VAR):
int index = ListBox2().GetCurSel():
ListBox2().DeleteString(index):

Closing the Mel's Bait Sh~p dialog box
When the user closes the Mel's Bait Shop dialog box by clicking ~he OK
button, an On OK message' handler is called to record and store the items
the user has purchased. Just before the dialog box closes, a for loop in the

On OK message handler is used to copy all the items in the Items Being
Purchased list box into a CDIgEquipment member variable named
m_equipList. The m_equipList member variable is an object of the
CStringList class.

The On OK message handler that copies all the items the character has
purchased to the m_equipList member variable is shown here:

9: Managing Data

void CDlgEquipment::OnOK()
{

}

CString tempStr:

int nrOfStrings = ListBox2().GetCount():

for (int c = 0: c < nrOfStrings: c++) {
ListBox2().GetText(c, tempStr):
m_equipList.AddTail(tempStr):

CDi al og: :OnOK():

When the Mel's Bait Shop dialog box closes, the CCreation View's On­
CharacterShop message handler calls a CCreationDoc member function
named GetEquipList to retrieve the information that has been stored in the
CDlgEquipment's m_equipList member variable. Then OnCharacterShop
calls a CCreationDoc member function named SetEquipList to copy the
same data into the CPlayer's m_pEquipList member variable, as shown here:

pEquipList = dialogSupplies.GetEquipList():
pDoc->SetEquipList(pEquipList):

Initializing Controls in Ol1lnitDia/og

When ClassWizard creates a dialog box, it always places the initiali­
zations of the dialog box's controls inside the constructor of the dia­
log box's class. But you should perform most of the initialization
functions for your own dialog box controls in an override of the MFC
library's CDialog::OnlnitDialog function. To do that, you must over­
ride the CDialog class's OnlnitDialog function.

When you override the OnlnitDialog member function, you should
call the base class OnlnitDialog member function in your own Onlnit­
Dialog member function. Then, just before a dialog box is displayed,
the DDX mechanism copies the latest values in your dialog box class's
member variables to the controls in the dialog box, where they appear
when the dialog box opens.

When a dialog box opens, the default implementation of CDialog::­
OnlnitDialog calls the UpdateData function to initialize the dialog
box's controls.

351

Learn Visual C++ Now

352

The Character Information Dialog Box
To display information stored in the CPlayer object's m_pEquipList mem­
ber variable, the CREATION application provides a simple, read-only
dialog box named Character Informati9n, shown in Figure 9-10. To open
the Character Information dialog box, the user of the CREATION appli­
cation selects the Info command from the Character menu.

Backpack
-----.:1/:: Blanket. wool

Candle
'?~t!~~i,~f::U":':" ••• ~2~ •. ·.li:·i Flint and steel

Map case
Minnows

,-;rQi~;f;"'~~,Ii:\tl Pot. copper
Rope, 50 ft.

Figure 9-10. The Character Information dialog box.

The Character Information dialog box is an object of class CDlgInfo. The
CDlgInfo class is defined in the DLGINFO.H file and is implemented in the
DLGINFO.CPP file.

Before the Character Information dialog box opens, the class's OnChar­
acterInfo message handler calls the CDlgInfo::GetStats member function to
retrieve the current character's stats. The Character Information dialog box
object then uses the DDX mechanism to copy character information from
member variables into a set of read-only edit boxes.

Here is the definition of the CCreation View class's OnCharacterInfo
message handler:

9: Managing Data

void CCreationView::OnCharacterInfo()
{

}

CCreationDoc* pDoc = GetDocument():

CDlgInfo pDlgInfo:
pDlgInfo.GetStats(pDoc):

II ye olde DoModal function
pDlgInfo.DoModal():

In Chapter 7, "Of Mice and Messages," you saw how the MFC serialization
mechanism can automatically save information on disk and retrieve in­
formation from disk. Serialization was used to store graphics objects­
specifically, lines drawn in a window. In this section, you'll see how seriali­
zation can be used to store and retrieve text data.

Serialization, as you might recall, makes use of an MFC member function
named CObject::Serialize. When you use App Wizard to generate an MFC
application framework, AppWizard automatically implements serializa­
tion in the program's CDocument-derived class. AppWizard even equips
the document class with an empty Serialize member function that you can
modify any way you want to serialize whatever data you want in your ap­
plication.

When you implement serialization, the MFC framework automatically
saves whatever data your application specifies when the user chooses the
Save or Save As item from the File menu and loads whatever data you
specify when the user chooses Open from the File menu. Also, if the user
modifies a document and then attempts to quit the application, the seriali­
zation mechanism displays a prompt asking the user whether the modified
data should be saved.

If you want to take advantage of the serialization mechanism in any classes
that-you define, you must implement serialization yourself. To do so, you
must derive the class from the MFC library's CObject class, and you must
also invoke a pair of macros: a DECLARE_SERIAL macro in your class's
declaration, and an IMPLEMENT _SERIAL macro in the .CPP file that

353

Learn Visual C++ Now

354

implements your class. (If you need a refresher on how this is done, take
another look at the section "Files and Serialization" on page 255 in
Chapter 7.)

In the CREATION program, serialization of the CCreationDoc class is
implemented automatically. However, there is some extra serialization to

. be taken care of in CREATION, so there is a little extra work to be done.

The CREATION Program's Serialize Member Function
The following code shows the Serialize member function that AppWizard
placed in the CREATDOC.CPP file when the CREATION program was
built:

II CCreationOoc serialization

void CCreationOoc::Serialize(CArchive& ar)
{

}

if (ar.lsStoring(»
{

}

else
{

}

II TODD: add storing code here

II TODD: add loading code here

If you examine the Serialize function inthe CREATDOC.CPP file, you'll
notice that only one line has been added to the original version of the
function created by App Wizard, shown here:

m_pPlayer-~Serialize(ar);

This line has been added to the CCreationDoc::Serialize member function
because all character data in the CREATION program is stored in mem­
ber variables of the CPlayer class; not in member variables of the CCrea­
tionDoc class. If the CCreationDoc class managed all the program's data
directly by storing it in CCreationDoc member variables, the CCreationDoc::­
Serialize member function would take care ·of serializing all the program's
data-and would probably be considerably longer.

In the CREATION program, however, the CCreationDoc class manages the
program's data only indirectly, by calling GetEquipList and SetEquipList
functions provided by the CPlayer class.

9: Managing Data

The line of code added to the Serialize· member function of the
CCreationDoc class calls the Serialize member function of the CPlayer
class. That leaves it up to the CPlayer class to take care of the actual seriali­
zation of the program's data.

The CPlayer Class's Serialize Member Function
Because the CPlayer class is expected to take care of the serialization needs
of the CREATION program, the DECLARE_SERIAL macro is invoked on
behalf of CPlayer in the PLA YER.H file and the IMPLEMENT_SERIAL
macro is invoked for the CPlayer class in the PLA YER.CPP file. Because
CPlayer is derived ~om CObject, those two macros are all the CREATION
program requires to make CPlayer a serializable class.

To perform the actual work of serializing the CREATION program's char­
acter data, an overridden CObject::Serialize member function is placed in
the PLA YER.CPP file. The following code shows how the CPlayer class
overrides the CObject::Serialize member function:

void CPlayer::Serialize(CArchive& ar)
{

II Only CObject-derived objects and six data-type
II primitives are serializable. However. you
II can cast any data type to a serializable data type.
II and then you can serialize your data. The serializable
II data types are

II BYTE: 8 bits unsigned
II WORD: 16 bits unsigned
II LONG: 32 bits unsigned
II DWORD: 32 bits unsigned
II float 32 bits
II double 64 bits. IEEE standard

int nop = 1 ;

if (ar.IsStoring(»
{

ar « m_strength;
ar « m_dexterity;
ar « m_constftuti on;
ar « m_intelligence;
ar « m_wisdom;
ar « m_charisma;
ar « m_funds;

(continued)

355

Learn Visual C++ Now

356

ar « m_name « m~race « m_class
« m_alignment:

}
else
{

ar » m_strength:
ar » m_dexterity:
ar » m_constitution:
ar » m_intelligence:
ar » m_wisdom:
ar » m_charisma:
ar » m_funds:
ar » m_name » m_race » m_class

» m_alignment:
}
m_pEquipList->Serialize(ar):

}

Notice that comments have been inserted to specify the data types that the
Serialize function recognizes. Those comments are useful because they
eliminate the necessity of looking up the Serialize function in a reference
manual or in online help every time you need to use it.

Fortunately (actually, by design), the character stats in the CREATION
program are defined as WORD data types, so they can all be serialized
without any need for casting. Four other member variables of the CPlayer
class--m_name, m_race, m_class, and m_alignment-are also serializable
without any casting. That's because they are members of the CString class,
which can be serialized simply by using the Serialize function's overrid­
den input operator (») and output operator «<).

The m_pEquipList variable can also be serialized without modification be­
cause it is an instantiation of the CStringList class, which is serializable
because it is an MFC library CObject-derived class. So the entire m_pEquip­
List member variable--no matter how many CString objects it might
contain-can be serialized with just this one line:

m_pEquipList->Serialize(ar):

Adding Printing Support
When App Wizard generates the framework for an MFC application, it
provides the program with simple printing capabilities. When the user
chooses the Print command from the File menu, the default behavior of an

9: Managing Data

AppWizard application is to call the program's OflDraw function from the
OnPrint function by using ~ special device context that sends the output of
the OnDraw function to a printer. The result is that the application prints
a hard copy of whatever is on the screen.

If your application has more complex printing requirements, the MFC li­
brary provides solutions. When App Wizard creates a framework applica­
tion, it inserts three message handlers related to printing in the source file
that implements the program's view class. If you want your application to
respond to a Print command by doing something other than printing what­
ever is on the screen, you can implement whatever kind of alternative
functionality you want by adding customized code to any or all of these
message handlers. If your requirements are still not met, you can add still
more printing-related functions.

AppWizard's Printing-Related Functions
Here are the three printing-related message handlers that App Wizard
generates:

• CView::OnPreparePrinting-Message handler that every fr'ame­
work application calls just before a document is printed or pre­
viewed. The .default implementation of the OnPreparePrinting
message handler does nothing; you must override the function to
add various kinds of functionalities to your application's printing
operations. To implement printing, OnPreparePrinting generally
calls another member function, named DoPreparePrinting, which
displays the Print dialog box and then takes care of whatever print­
ing operations the user requests. You'll see exactly how all this
works later in this section.

• CView::OnBeginPrinting~Message handler that can perform any
initialization operations that a print job might require.

• CView::OnEndPrinting-Message handler that can perform various
kinds of cleanup operations following a print job, such as freeing
device contexts.

357

Learn Visual C++ Now

358

~TlI' IP If you know the length of the document you will be printing, you can
"~I call a member function named CPrintlnfo::SetMaxPage from your override

of the OnPreparePrinting member function to display the maximum page
number you specify in the Print dialog box. The CREATION application's
OnPreparePrinting function calls SetMaxPage to set the maximum number
of pages that ca n be pri nted to .1.

Customized Printing in the CREATION Program
Different kinds of Visual C++ programs require different kinds of printing
support. The CREATION application, for example, never displays any­
thing on the screen; it interacts with the user solely through dialog boxes.
Consequently, the CREATION application has to take an approach to
printing that's entirely different from the approach that AppWizard offers.
When the user issues a Print command, the program executes an override
of a CViewmember function namedOnPrint. In its overridden version of
the OnPrint member function,-CREATION obtains information about a
character from its document object and then calls a member function
named CDC::TextOut to send that information to a printer.

Calling the OnPrint Member Function
The OnPrint member function is the function that the MFC library calls
when the user of a framework application chooses the Print command. The
default implementation of OnPrint simply calls OnDraw, passing a printer
device context, to print whatever is.on the screen. But if your application
has special printing needs, you can override OnPrint to carry out whatever
printing operations your program requires.

The CREATION program is equipped with a fairly complex override of the
CView::OnPrint member function. The CREATION version of the OnPrint
member function-which you can find in the CREATVW.CPP-is shown
in Listing 9-2.

void CCreationView::OnPrint(CDC* pDC. CPrintInfo* pInfo)
{

char buffer[20]:
CString tempStr;

Listing 9-2. The CCreationView::OnPrint member function.

HDC hdc = pInfo-)m_pPD-)GetPrinterDC();
CDC* pPrDC = pDC-)FromHandle(hdc);

II get character'S stats
GetStats();

CString name = "Name: " + m_name;
CString race = "Race: " + m_race;
CString klass = "Class: " + m_class;

II stats require int-to-CString conversions
tempStr = itoa(m_strength, buffer, 10);
CString strength = "Strength: " + tempStr;

tempStr = itoa(m_dexterity, buffer, 10);
CString dexterity = "Dexterity: " + tempStr;

tempStr = itoa(m_constitution, buffer, 10);
CString constitution = "Constitution: " + tempStr;

tempStr = itoa(m_intelligence, buffer, 10);
CString intelligence = "Intelligence: "+ tempStr;

tempStr = itoa(m_wisdom, buffer, 10);
CSt ri ng w·i sdom = "Wi sdom: " + tempSt r;

tempStr = itoa(m_charisma, buffer, 10);
CString charisma = "Charisma: " + tempStr;

II finally, we print it;
II use current position for text
pPrDC-)TextOut(100, 300. "CHARACTER INFORMATION");

pPrDC-~TextOut(200. 500. name);
pPrDC-)TextOut(200. 600. race);
pPrDC-)TextOut(200. 700. klass);

pPrDC-)TextOut(100. 900, "STATS");

if (m_strength <= 0)
pPrDC-)TextOut(200, 1100. "No Stats");

else {

}

pPrDC-)TextOut(200, 1100. strength);
pPrDC-)TextOut(200, '1200. dexterity);
pPrDC-)TextOut(200. 1300, constitution);
pPrDC-)TextOut(200. 1400, intelligence);
pPrDC-)TextOut(200, 1500, wisdom);
pPrDC-)TextOut(200. 1600, charisma);

9: Managing Data

(continued)

359

Learn Visual C++ Now

360

Listing 9-2. continued

}

pP rDC -)TextOut (100. 1800. "EQU I PMENT") ;

. II print character's equipment
const CStringLis~ *pEquipList;
CString strTemp;
POSITION psn;
int y = 2000;

pEquipList = GetDocument()-)GetEquipList();

if (pEquipList-)IsEmpty(»
pPrDC-)TextOut(200. y. "No Equipment");

else {

}

for (psn ~ pEquipList-)GetHeadPosition();
psn != NULL;. y += 1(0) {

strTemp = pEquipList-)GetNext(psn);
pPrDC-)TextOut(200. y. strTemp);

How the OnPrint Member Function Worl{s
In the MFC library, a printing operation works, in most respects, like any
other graphics operation. To perform a printing operation in an MFC pro­
gram, you must first obtain a pointer to a device-coJ?text object (a CDC ob­
ject). Then you must associate that device context with a particular kind of
output device-in this case, a printer. When you have done all that, you
cal). call an MFC member function such as CDC::TextOut to write text out­
put to a printer.

In an MFC application, you can obtain a device context for a print job
when you override the CView::OnPrint member function. But to under­
stand where the device context comes from, you have to trace your way
through a rather complex maze of function calls.

Here's how it works. Refer back to Listing 9-2, and you'll see that this is
the first executable statement in the OnPrint member function:

HDC hdc = plnfo-)m_pPD-)GetPrinterDC();

In this statement, the pInfo parameter is a pointer toa CPrintInfo structure
that contains a ·member variable named m_pPD. This m_pPD variable is a

9: Managing Data

pointer to a CPrintDialog object that has just been used to implement a
Print dialog box-in this case, the Print dialog box displayed by the CRE­
ATION program's OnPreparePrintingmember function. Before this Print
dialog box closes, it obtains a handle to a device context that can be. used
for printing. To obtain this handle, an application can call a member func­
tion named CPrintDialog::GetPrinterDG. And that is exactly what the CRE-

. ATION program's OnPrint function does in the preceding code.

One unusual feature of the CPrintDialog::GetPrinterDC member function is
that it returns a handle to a device context instead of returning an MFC­
style pointer. But that is not a difficult problem to remedy. To convert the
handle returned by GetPrinterDCto a pointer, OnPrint simply calls the
CDC::FromHandle member function, as shown here:

CDC* pPrDC = pDC-)FromHandle(hdc);

The GetStats Member Function
From this point on, understanding the CREATION program's OnPrint
member function is a snap. First OnPrint calls a CCreation View member
function named GetStats, as shown below. The GetStats member function
obtains player information from the application's document object using
the same Get and Set functions that you encountered earlier. Then the
CDC::TextOut member function is used to send the information that has
just been obtained to a printer.

void CCreationView::GetStats()
{

CCreationDoc* pDoc = GetDocument()~

II get name, race, class, and so on
m_name = pDoc-)m_pPlayer-)GetName();
m_race = pDoc-)m_pPlayer-)GetRace();
m_class = pDoc-)m_pPlayer-)GetClass();

II get abilities
m_strength = pDoc-)m_pPlayer-)GetStrength();
m_dexterity = pDoc-)m_pPlayer-)GetDexterity();
m_constitution = pDoc-)m_pPlayer-)GetConstitution();
m_intelligence = pDoc-)m_pPlayer-)Getlntelligence();
m_wisdom = pDoc-)m_pPlayer-)GetWisdom();
m_charisma = pDoc-)m_pPlayer-)GetCharisma();

(continued)

361

Learn Visual C++ Now

362

}

II get other stuff
m_cash = pDoc-)m_pPlayer-)GetFunds();
m_class = pDoc-)m_pPlayer-)GetClass();
m_race = pDoc-)m_pPlayer-)GetRace();
m~alignment = pDoc-)m_pPlayer-)GetAlignment();

. Calling the GetEquipmentList Member Function
To obtain information about the equipment that a character has pur~
chased, the OnPrint member function calls the CCreationDoc::GetEquip­
List member function-the same member function that the Mel's Bait
Shop dialog box uses to obtain lists of supplies. But instead of placing the
list that it obtains in a list box, OnPrint calls the CDC::TextOut function in
a for loop to send the list to a printer, as shown here:

pEquipList = GetDocument()-)GetEquipList();

if (pEquipList-)IsEmpty(»
pPrDC-~TextOut(200. y. "No Equipment");

else {

}

for (psn = pEquipList-)GetHeadPosition();
psn != NULL; Y += 100) {

}

strTemp = pEquipList-)GetNext(psn);
pPrDC~)TextOut(200. y. strTemp);

The CDC::TextOut member function, which is called several times from
the CREATION program's OnPrint member function, is straightforward. It
takes three parameters: a pair of page coordinates and a CString object. It
then prints the specified CString at the specified location on a page.

This ends our quick discussion of printing text on a page in a Visual C++
program. There are many other things that could be said, of course; there
are various mapping modes that determine how text and graphics are writ­
ten to windows and to printers, and there are many different functions
that can be called to specify what fonts are used for printing, how text is
styled, and what kind of spacing and positioning are to be used when text
is printed and displayed.

Also there are differences between the way text-based printing is handled
in MFC programs and the way things are done when you want to send a

9: Managing Data

printer exactly what is being displayed in a window-an operation known
as WYSIWYG (what you see is what you get) printing.

If you'd like to see an example of how WYSIWYG printing can work in an
MFC program, you can find one by examining the source code of the
SCRIBBLE program presented in Chapter 7, "Of Mice and Messages." The
printing procedures that the SCRIBBLE program uses are more compli­
cated than those that are used in the CREATION program, but with the
online help, you should be able to figure out how they work.

You've learned a lot in this chapter. You've learned how to use the MFC
library's DDX and DDV mechanisms to pass data back and forth between
dialog box controls and variables, and you've learned how to use the MFC
library's serialization mechanism to save and load data retrieved from dia­
log box controls. You've also learned how to place strings in list boxes,
how to remove strings from list boxes, how to copy strings from one list
box to another, and how to move strings back and forth between list boxes
and CStringList objects.

This chapter also gave you a taste of how MFC collection classes can
be used in Visual C++ programs. You saw how CStringList objects can be
used to create items displayed in list boxes, and you saw how serialization
can be used to store collection class objects on disk and retrieve collection
class objects from disk.

Last you saw how MFC library classes and member functions can be used
to perform printing operations.

The last chapter in this book is the best one. Chapter 10, "Visual C++
Graphics," is all about graphics and computer animation. Read on.

'"

363

Chapter

Visual C++ Graphics
You've now seen how you can create an application framework in Visual
C++, add to and extend the framework using Visual C++ tools and the
Microsoft Foundation Class (MFC) Library version 2.0, and manage the data
an application uses. In this chapter, the last in the book, we'll create more
sophisticated applications-programs with eye-catching graphics and ani­
mation-and build on the knowledge you've gained so far.

The topics covered in this chapter include the following:

• Understanding Windows bitmaps, both device-dependent bitmaps
(DDBs) and device-independent bitmaps (DIBs)

• Loading, saving, copying, and displaying device-dependent bitmaps

• Displaying and moving characters over complex backgrounds, a
technique known as transparent-background copying

• Creating complex animation sequences using step animation and
sprites

• Understanding the architecture of device-independent bitmaps and
how to create and use them

To demonstrate graphics and animation in Visual C++ applications, this
chapter presents two sample programs: GRAFDEMO and DIBDEMO. The

365

Learn Visual C++ Now

366

GRAFDEMO program illustrates the use ofDDBs, and the DIBDEMO pro­
gram introduces DIEs.

Both GRAFDEMO and DIBDEMO demonstrate sprite animation: a flicker­
free animation technique that is often used in games and multimedia appli­
cations. By using sprite animation, you can move irregularly shaped bitmap
images-for example, game characters-over complex backgrounds.

The GRAFDEMO program implements sprite animation using conventional
Windows objects, such as GDI (graphics device interface) objects and DC
(device-context) objects, and conventional bitmaps. GRAFDEMO also
shows how graphics classes implemented in the MFC library can be used
to create animation sequences in Visual C++ programs.

Version 2.0 of the MFC library-the version that comes with Visual C++
version 1.0-does not provide a class for creating DIBs, so the DIBDEMO
application provides its own DIB class and instantiates objects of that class
to create, display, and animate DIBs.

The GRAFDEMO program's screen display is shown in Figure 10-1.

Figure 10-1. The GRAFDEMO program's screen display.

Bitmaps

10: Visual C++ Graphics

In a bitmap, each dot on the, screen, or pixel, corresponds to one or more
locations in memory. Figure 10-2 shows a close-up of a bitmap image­
specifically, the figure in the GRAFDEMO program.

II M

~It
i-

Figure 10-2. Close-up of a bitmap.

1€11 OTE Strictly speaking, bitmaps haven't been used in graphics program-
6II~ ming for years. The word "bitmap" dates back to the days of monochrome

monitors, in which each screen pixel corresponded to a single bit in memory.
To a purist, a bitmap is a map of bits, and a bit cannot display colors because
it has just two settings: off and on. On a color monitor, it takes more than
one bit to rep'resent a screen pixel, but old habits die hard, and even brilliant
assembly language programmers continue to use the word "bitmap" to refer
to pixel maps. This common usage is followed, reluctantly, throughout this
chapter.

How Bitmaps Are Disp~ayed

~he first IBM~compatiblepersonal computers had monochrome
monitors that Gould display just one primary color-usually green,
white, or amber-onthe screen. Screen displays were created by
tur~ing individualpixels on and off, so ittookonly one bit of

, memory to represent each pixel displayed on the screen.

(continued)

367

Learn Visual c++ Now

How Bitmaps Are Displayed. continued

368

When you use a scheme that requires a single bit of memory to store
the value of a pixel, a 640-by-480-pixel screen requires 307,200 bits
of memory, or 38,400 bytes. If you switch to a color monitor, the
memory requirements of your screen graphics jump significantly.
Many color graphics cards are in use today, and their memory re­
quirements vary-from 1 megabyte (MB) of video memory for a low­
end card up to 4 MB (or more) for serious graphics work.

The first color graphics card to come into general use was the color
graphics adapter (CGA) card, which could simultaneously produce
only 4 colors on a screen with a resolution of 320 by 200 pixels. (A
CGA graphics card has three built-in 4-color palettes.) Next came the
enhanced graphics adapter (EGA) card, which could produce up to
16 screen colors at a time and offered 64 colors to choose from.

The video graphics adapter (VGA) card, like the EGA card, could pro­
duce 16 screen colors simultaneously. Unlike the EGA card, however,
the VGA card could select its 16 screen colors from what was at the
time a dazzling array of 262,144 colors.

The VGA card-sometimes referred to as the standard VGA card­
was succeeded by two newer models, named the 8514 card and the
super VGA (SVGA) card. A number of different kinds of SVGA cards
have been produced, and several different SVGA resolutions are avail­
able. Some SVGA cards can display more than 16 million colors at
screen resolutions of up to 1280 by 1024 pixels or more.

The first video card that could produce more than 4 colors simulta­
neously was the EGA card, which uses 4 bits of memory for each
pixel displayed on the screen. Only one of 16 integers (0 through 15)
can be stored in 4 bits of memory, and an EGA card assigns each of
those 16 integers to a predetermined color. Although some EGA cards
might still be in use today, you wouldn't want to write graphics pro­
grams using them; they offer dismal color displays.

An SVGA card is not limited to 256 specific colors. In 8-bit color
mode, an SVGA card uses a mechanism called a color lookup table, or
CLUT, to select 256 colors from a collection of262,144 possible colors.

10: Visual c++ Graphics

The 8-bit color display produced by early SVGA cards was fairly
spectacular in its day, but it's not remarkable by today's standards.
Modern SVGA cards have 15-bit, 16-bit, 24-bit, and 32-bit color modes.

A 24-bit graphics'card can show 16,777,216 colors on the screen at
one time-limited by the number of pixels on screen, of course. This
is more colors than the human eye can distinguish and far more colors
than any PC monitor now on the market can display. And a 32-bit
graphics card can generate more than 4 billion colors at a time.

The 24-bit and 32-bit color modes require a considerable amount of
video memory, especially if combined with a high screen resolution.
The Microsoft Windows 95 operating system supports screen resolu­
tions of up to1600 pixels wide by 1200 pixels high. That's 1,920,000
pixels, and if you dedicate 32 bits of memory to displaying each pixel,
the display takes 6 MB of memory.

But generally speaking, you probably don't want to restrict yourself
to writing applications for such ultra-high-end systems. If you take
that route, you won't be able to find enough customers to make the
task worthwhile. For now, and in the immediate future, it's probably
best to assume that the people who buy your programs have graphics
cards that are at least in the SVGA league (256-color displays with a
few million colors to choose from) but not to assume anything more.

Varieties of Windows Bitmaps
In Chapter 5, "Visual C++ Tools," and Chapter 6, "The MFC Library," you
learned how to use bitmaps, and in Chapter 7, "Of Mice and Messages,"
you also learned how to draw lines directly to the screen. To create the
graphics in these chapters, you used a kind of bitmap called a device­
dependent bitmap, or DDB-which was the only kind of bitmap available
to Windows programmers until about 1989.

Since then, device-dependent bitmaps have been falling out of favor, and a'
new kind of bitmap, called a device-independent bitmap, or DIB, has been
replacing the DDB in graphics-intensive applications.

369

Learn Visual C++ Now

370

A<11 O,TE There are actually two kinds of device-independent bitmaps: Windows
~" DIBs, which are used by Windows, and Presentation Manager DIBs, which

were designed for use with the Microsoft Presentation Manager. Presentation
Manager DIBs are obsolete"and as time passes, there is less need to be con­
cerned with them. All the DlBs used in this chapter's sample programs~and
in any other Windows-based programs that you're likely to encounter these
days-are Windows DIBs.

-Ordinary DDBs are easier to create and use than DIBs, so DDBs are still
widely used for situations in which highly precise color rendering is not
an issue and lightning-fast animation is not required. But DIBs can produce
truer colors on a wider variety of output devices than ordinary DDBs can,
and the colors that they produce can be controlled more precisely.'

Another advan.tage that DIBs have over traditional DDBs is that a number
of superfast bitmap-copying operations are av~ilable for use with DIBs, so
applications that use turbocharged DIB-based graphics are starting to leave
old-fashioned DDB-based programs in the dust.

DIBs have one feature that can be considered both a blessing and a curse:
they have a more complicated architecture than DDBs have. A DIB object
is equipped with several kinds of data structures in which it stores impor­
tant information about itself. When you create a DIB, you can provide it
with many kinds of attributes that cannot be set when you create a DDB.
Consequently, you have more control over what a DIB looks like when
you use it in an application.

Along with the color information needed to display each pixel ina bitmap,
a DIB structure has fields for storing other important information about a
bitmap~including its size, its color resolution, and a color table that holds
values representing each color that the DIB can display.

The'size of a DIB's color table can vary, depending on the color resolu­
tion of the DIB. For example, a 256-color DIB has a color table that's large
enough to hold 256 color codes. DIBs that display more colors can have
much larger color tables. You'll learn more about the structures and sizes
of different kinds of DIBs in the section "Palettes" on page 407.

To add animation to the sample programs in this chapter, we'll use sprites­
small bitmaps that can be moved on top of complex backgrounds without

10: Visual C++ Graphics

destroying the backgrounds. Sprites are the most popular kind of animated
\ .

figures used in Windows-based programs.

Device-Dependent Bitmaps (10108s)
The device-dependent bitmap format has been around since the early days
of Windows and has many limitations. Besides being highly dependent on
the output device for which it was created, a DDB does not have any built-in
mechanisms for storing a table of available colors or for storing any infor­
mation about its color resolution or even its size.

Despite their limitations, DDBs are still used extensively in Windows-based
programs. When you need a bitmap that will be used only in the program
in which it is created, it is often better to use a DDB. One reason for this is
that the MFC library has a class that encapsulates DDBs but does not have
a class that encapsulates DIBs.

Creating DDBs
The MFC library encapsulates traditional DDBs in a CGdiObject-derived
class named CBitmap. The CBitmap class provides four member functions
for creating CBitmap objects: CreateBitmap, CreateBitmaplndirect, Create­
CompatibleBitmap, and CreateDiscar:dableBitmap. You can forget about
the CreateDiscardableBitmap function right away; it is rarely seen and is
.not recommended for use in today's programs. The other three functions
are used frequently in Windows-based applications.

The CreateBitmap member function
The CreateBitmap member function creates a bitmap using a set of attri­
butes specified by five parameters, as shown here:

BOOl CreateBitmap(int nWidth. int nHeight. UINT nPlanes.
UINT nBitcount. const void FAR* lpBtts);

The n Width and nHeight parameters specify the width and height-in
pixels-of the bitmap being created. The nPlanes parameter specifies the
number of color planes to be used in the bitmap; nBitcount is the number
of color bits per pixel. The IpBits parameter points to a short-integer array
that contains the initial bitmap bit values. If IpBits is NULL, the new
bitmap is left uninitialized and contains random data.

371

Learn Visual C++ Now

372

Because a DDB works best when it is created and displayed using the same
output device, it is usually not a good idea to call CreateBitmap to create
and initialize color bitmaps. A bitmap created by CreateBitmap will look
different on various display devices because a DDB contains no color in­
formation. If you use CreateBitmap, there is no guarantee that the correct
colors will be displayed.

The CreateBitmaplndirect member function
The CreateBitmaplndirect member function initializes a bitmap by using
values supplied in a BITMAP data structure instead of by using a detailed
set of parameters. The CBitmap::CreateBitmaplndirect member function is
shown here:

Baal CreateBitmapIndirect(lPBITMAP lpBitmap);

The lpBitmap parameter is a pointer to a BITMAP structure. The Windows
API defines the BITMAP structure as follows:

typedef struct tagBITMAP { /* bm */
int bmType;
int bmWidth;
int bmHeight;
int bmWidthBytes;
BYTE bmPlanes;
BYTE bmBitsPixel;
void FAR* bmBits;

} BITMAP;

CreateBitmaplndirect also has no way of ensuring color accuracy, so you
gene~ally shouldn't use it to create and initialize color bitmaps. Instead,
you should call CreateCompatibleBitmap.

The CreateCompatibleBitmap member function
The best way to create a bitmap is to use the CreateCompatibleBitmap
member function, shown here:

Baal CreateCompatibleBitmap(COC* pOC. int nWidth.
int nHeight);

When you create a bitmap by calling CreateCompatibleBitmap, the bitmap
you construct is guaranteed to be compatible with the device context (DC)

10: Visual C++ Graphics

specified in the function's pDCparameter. That means that the bitmap you
are creating will use the same number of colors as the specified DC and
will be displayed using the same number of bits per pixel. Your applica­
tion can then select the bitmap you have created as the current bitmap for
any memory device that is compatible with the DC specified in the pDC
parameter.

You can select your new bitmap into the DC specified in the pDC param­
eter by calling the CBitmap::SeiectObject member function. You'll see how
this can be done in the GRAFDEMO sample program presented later in
this chapter. If the pDC parameter that you pass to CreateCompatibleBit­
map points to a memory device context, the bitmap that you create has the
same format as the bitmap that is currently selected in that device context.

When you call CreateCompatibieBitmap to create a bitmap, Windows auto­
matically creates a stock monochrome bitmap as a placeholder and selects
it into the device context pointed to by the pDC parameter. You can then
copy any bitmap image you want into the device context that has been ini­
tialized. The image that you copy into the device context replaces the
monochrome placeholder bitmap that Windows has created.

loading and Saving DDBs
Device-dependent bitmaps are not designed to be saved on disk and passed
from one application to another. So even though the MFC library supplies
a CBitmap::LoadBitmap function, it doesn't provide any particular func­
tion for saving DDBs on disk.

If you insist on saving a DDB on disk, it is possible to do so by calling the
CBitmap::GetBitmapBits function and the CBitmap::GetBitmapDimension
function to cobble together a procedure. But when you need a bitmap that
you want to save and reload so that it can be used in more than one appli­
cation, it is usually a better idea to use a DIB.

g~11 OTE DIBs are not supported by the MFC library, so there aren't any MFC
~\1 member functions for loading or saving DIBs either. But many people have

written routines for loading and saving DIBs, and those routines are widely
available.

373

Learn Visual C++ Now

374

Copying and Displaying Bitmaps
One reason that device-dependent bitmaps aren't dead yet, despite the
obviously superior capabilities of DIBs, is that the MFC library provides a
pair of versatile CDC member functions for working with DDBs: CDC::Bit­
BIt and CDC::StretchBlt.

The CDC::BitBItmember function copies a bitmap from one block ofmem­
ory to another; the CDC::StretchBlt member function copies a bitmap and
resizes it to fit its destination. StretchBlt works just like BitBIt except that
it can increase or reduce the size of the bitmap during the copying process
to make the destination bitmap fit in the area into which it is being copied.

A?l1 OTE The Windows API also provides a pair of functions for copying DIBs-
6If\t and these DIB-copying functions are actually faster than the MFC library's

DDB-copying functions. Butthe MFC library functions for copying DDBs of­
fer a large and rich set of copying modes that the DIB-copying functions
provided by the Windows API lack. These copying modes support an anima­
tion technique called masking, which is easier to use than most DIB-based
animation techniques, although it is not as fast.

The BitBlt and StretchBlt member functions
When you use BitBlt or StretchBlt to copy a bitmap to a location that is
already occupied by another bitmap, you can compare each pixel of the
source bitmap with the corresponding pixel in the destination bitmap, and
you can use the result of this comparison to determine how the pixel being
copied should be treated.

By taking advantage of this capability, you can use the BitBlt and Stretch­
BIt member functions to perform many different kinds of copying opera­
tions. You can invert the color of each pixel in either the source bitmap or
the destination bitmap, or you can compare each source and destination
pixel using a logical OR, XOR, or AND operation. These operations are
controlled by a parameter whose possible values are known as raster op­
eration codes, or ROP codes.

Transparent-background bitmap-copying operations
'By calling BitBlt or StretchBlt multiple times using different ROP codes,
you can perform bitmap-copying operations in which irregularly shaped

10: Visual c++ Graphics

bitmaps (sprites) are "stamped" onto a complex background without dis­
turbing the surrounding background. This kind of copying operation is
sometimes called a transparent-background copy-or, more commonly, a
transparent copy-because it treats the background pixels of the sprite be­
ing copied as though they were transparent. When a transparent copy is
performed, these transparent background pixels are not copied to the des­
tination bitmap with the sprite that they surround.

Figures 10-3 and 10-4 illustrate the results of nontransparent and transpar­
ent bitmap-copying operations.

Figure 10-3. Result of a nontransparent bitmap-copying operation.

Figure 10-4. Result of a transparent bitmap-copying operation.

To understand how the sprite-copying procedures shown in Figures 10-3

and 10-4 work, it helps to know something more about the syntax of the
BitBlt and StretchBlt member functions. The BitBlt member function is
shown on the following page.

375

Learn Visual C++ Now

376

BOOl BitBlt(int x. int y. int nWidth. int nHeight. CDC* pSrcDC.
int xSrc. int ySrc. DWORD dwROP);

The first seven parameters of the BitBlt member function are straightfor­
ward. The BitBlt function can be used to copy a whole bitmap or a rectan­
gular portion of a bitmap from the device context specified by the pSrcDC
parameter to the device context that is calling the function. The xSrc and
ySrc parameters provide the left and top coordinates of the source rect­
angle, and the x and y parameters specify the left and top coordinates of
the destination rectangle. The n Width and nHeight parameters specify the
size of the rectangle being copied.

The CDC::StretchBlt member function is similar to CDC::BitBlt but has two
additional parameters, nSrcWidth and nSrcHeight, that specify the width
and height of the source rectangle. Here is the StretchBlt member function:

BOOl StretchBlt(int x. int y. int"nWidth. int nHeight.
CDC* pSrcDC. int xSrc. int ySrc. int nSrcWidth.
int nSrcHeight. DWORD dwROP);

The most interesting parameter of the BitBlt and StretchBlt member func­
tions is the dwROP parameter, which is the last parameter passed to both
functions. When an application calls BitBlt or StretchBlt, the dwROP param­
eter is used to specify the raster operation to be performed. Table 10-1 pro­
vides a list of ROP codes that you can specify in the dwROP parameter
when you call the BitBlt or StretchBlt member function.

ROP Code Result

BLACKNESS

DSTINVERT

MERGECOPY

MERGEPAINT

Turns all output black

Inverts the destination bitmap

Combines the pattern (brush) and the source bitmap
using the logical AND operator

Combines the inverted source bitmap with the destina­
tion bitmap using the logical OR operator

Table 10-1. ROP codes used by the BitBlt and StretchBlt member functions.

10: Visual C++ Graphics

ROP Code

NOTSRCCOPY

NO TSRCERA SE

PATCOPY

PATINVERT

PATPAINT

SRCAND

SRCCOPY

SRCERASE

SRCINVERT

SRCPAINT

WHITENESS

Result

Inverts the source bitmap and copies it to the destina­
tion rectangle

Inverts the result of combining the destination and
source bitmaps using the logical OR operator

Copies the pattern (brush) to the destination bitmap

Combines the destination bitmap with the pattern
(brush) using the logical XOR operator

Combines the inverted source bitmap with the pattern
(brush) using the logical OR operator; combines the
result of this operation with the destination bitmap
using the logical OR operator

Copies a bitmap to a destination rectangle using the
logical AND operator

Copies the source bitmap to the destination bitmap

Inverts the destination bitmap, and combines the result
with the source bitmap using the logical AND operator

Combines the pixels of the destination and source
bitmaps using the logical XOR operator .

Combines the pixels of the destination and source
bitmaps using the logical OR operator

Turns all output white

One common way to perform a transparent copy of a sprite is shown in
Figure 10-5 on the following page. First create a black or white mask that
has the exact shape of the sprite you are animating (Start), and then copy
that mask over a destination background to cut out a sprite-shaped portion
of the destination background (Step 1). You can draw the sprite inside the
masked area without disturbing the surrounding background in the desti­
nation bitmap (Step 2).

377

Learn Visual C++ Now

378

This mask is
ANDed with the
background .
using a SRCAND
ROP code to "cut
out" a hole in
the background

The sprite is
ORed with the
background
using a SRCPAINT
ROP code to
produce the final
image

Figure 10-5. Performing a sprite-copying operation.

There are several methods for using masking operations to transparently
copy sprites onto bitmap backgrounds. One easy way is to draw the bitmap
on a black background and then stencil it onto the screen through a solid­
color mask. That is the technique used to create the sprite-animation action
in the GRAFDEMO program. Figure 10-6 shows a sprite bitmap and a mask
cutout used in the GRAFDEMO application's bitmap-copying operations.

10: Visual C++ Graphics

Figure 10-6. Sprite bitmap and mask used in the GRAFDEMO program.

Sprrite AD1lomatuon
Once you know how to copy a sprite transparently to a destination back­
ground, it isn't difficult to add animation to your sprite-copying operation.
You animate the sprite by moving it across its destination background in
small incremental steps, in exactly the same way that an object-for ex­
ample, an automobile-moves across a background in the sequential
frames of a movie.

Figure 10-7 shows a sprite animated in this step-by-step fashion in a Visual
C++ program.

Figure 10-7. Animating a sprite.

It takes a few ~teps to implement this kind of sprite animation. You must
erase the sprite from its original location, make a slight change in its desti­
nation coordinates, and copy it transparently to its next location. You must

379

Learn Visual C++ Now

380

repeat this process as many times as it takes to complete your animation
sequence. Thi~ is the technique used to implement the animation sequences
in GRAFDEMO and DIBDEMO.

Sprite Animation Step by Step
In the CGrafView::DrawPlayer function of the GRAFDEMO application,
these steps are followed each time a sprite is drawn transparently over the
Arches background:

1. A portion of the background is copied to a temporary device context
named m_dcTemp, using the NOTSRCCOPYROP code to invert the
colors being copied, as shown here:

II copy portion of background to m_dcTemp, inverting colors
m_dcTemp.BitBlt(0, 0,

m_zoomRect.right. m_zoomRect.bottom. &m_dcMem,
m_invalidRect.left, m_invalidRect.top,
NOTSRCCOPY) ;

2. A mask bitmap is combined with the temporary device context, using
the SRCAND ROP code to perform a logical AND operation, as
shown here:

II draw mask to m_dcTemp
m_dcTemp.StretchBlt(0, 0,

m_zoomRect.right, m_zoomRect.bottom. &m_dcMask,
0, 0, m_bmRect.right. m_bmRect.bottom,
SRCAND) ;

ml OTE When you use the SRCAND ROP code, black areas of the source
6if\i bitmap have no effect on the destination rectangle, so if a source bitmap has

a black background (or a white background that has been inverted to
black), that area of the destination bitmap is left undisturbed. If a portion
of the destination bitmap has be'en painted white and the corresponding
area of the source bitmap is colored, the colors in that area of the source
bitmap are copied directly onto the white area of the destination bitmap.

3. A sprite bitmap is combined with the temporary device context, us­
ing the SRCINVERT ROP code to invert the colors in the temporary
device context, as shown here:

10: Visual C++ Graphics

II draw player to m_dcTemp, and invert destination
m_dcTemp.StretchBlt(0, 0,

m_zoomRect.right, m_zoomRect.bottom, &m_dcPlayer,
0, 0, m_bmRect.right, m_bmRect.bottom,
SRCINVERT) ;

After this operation, the part of the Arches background stored in the
temporary device context is restored to its original colors.

gell OTE When you copy a colored image to a destination rectangle using the 611" XOR operator, the colors in the image are reversed, which makes the desti­
nation rectangle look like a color negative of the original image.

4. The temporary device context is copied to the GRAFDEMO program's
main window using a SRCCOPY ROP code, as shown here:

II copy m_dcTemp to screen
pDC-)BitBlt(m_invalidRect.left, m_invalidRect.top,

m_invalidRect.right, m_invalidRect.bottom, &m_dcTemp,
0, 0, SRCCOPY);

Using Frame Buffers in Animation Programs
The step-by-step operation described above illustrates the use of a frame
buffer-that is, an area of memory that holds a copy of a screen bitmap so
that portions of that bitmap can be copied to the screen whenever they are
needed. (Both example programs in this chapter make use of frame buffers.)
The appearance of the program's screen display might change constantly
during its animation sequence, but the copy of the background bitmap that
is stored in a frame buffer is never written to, so its appearance is never
altered.

Although sprite bitmaps might obscure various portions of the background
bitmap displayed on the screen, and although different portions of that
bitmap might be covered by sprites at various times, the copy of the bit­
map stored in the program's frame buffer remains unchanged from the
time it is loaded until the time it is no longer needed. You can erase a
sprite from the screen cleanly, at any time you want, using the copy of the
screen background that is stored in your frame buffer. All you have to do

381

Learn Visual C++ Now

382

is copy a portion of the bitmap stored in your frame buffer into the corre­
sponding area of the screen. If a sprite is in this area of the screen, the image
from the frame buffer is copied over the sprite, erasing the sprite from the
screen and restoring the part of the background that the sprite previously
obscured.

Figure 10-8 illustrates this kind of sprite-removing operation.

Background to
be restored

The frame buffer
is copied over
the background
to restore the
background

Frame buffer

Restored background

Figure 10-8. Erasing a sprite but leaving its background intact.

Avoiding Flickering and
Tearing in Bitmap-Copying Operations
To store a background bitmap in a frame buffer, a sprite-animation program
typically loads the bitmap into its buffer directly from a disk and then cop­
ies the bitmap from its frame buffer to screen memory by calling either the
CBitmap: :BitBlt or the CBitmap: :StretchBlt member function.

10: Visual C++ Graphics

When you use this technique to load a background bitmap from disk, you
accomplish two things: you immediately store your background bitmap
in a frame buffer that can be used later in animation sequences, and you
prevent unsightly flickering and tearing effects as your bitmap is being
copied to the screen. That's because the BitBlt and StretchBlt member func­
tions, like other screen-drawing functions managed by the MFC library
and the Windows operating system, take place only during vertical blank
interrupts-those brief blackout periods between frames during which
nothing is being drawn to the screen because the electron beam is moving
from the lower right corner back to the upper right corner of the screen.

When you create a Windows-based program, it's very important to draw
to the screen only during vertical blank interrupts because that's the only
way to ensure that a frame change won't corne along midway through a
screen-drawing operation and rip through the display you are creating,
causing an annoying flicker or even tearing your display into two pieces.

When you load a bitmap from disk and draw it directly to the screen, you
never know exactly what your video hardware will be doing when the op- .
eration takes place, so you always run the risk of carrying out a sloppy­
looking bitmap transfer. But when you load a bitmap into memory and
copy it from there to the screen using a BitBlt or StretchBlt function, the
Windows operating system ensures that your bitmap-copying operation is
carried out during a vertical blank interrupt, so you can rest assured that
your screen-drawing operation will perform smoothly, without any rip­
ping, tearing, or flickering.

Calculating Bounding Rectangles in Animation Sequences
As mentioned, when you animate a sprite by erasing it from one part of a
window and repainting it in another, you must be sure to repaint all of the
background area that the sprite occupied in its original position. In the
GRAFDEMO program, this is accomplished quite easily because the pro­
gram always knows exactly where the sprite will be situated the next time
it moves.

Most sprite-animation programs contain routines to calculate the bound­
ing rectangle around a sprite's new position and its old position so that
backgrounds can be repainted efficiently. Consider, for example, the ani­
mation sequence shown in Figure 10-9 on the following page.

383

Learn Visual C++ Now

384

Figure 10-9. Calculating bounding rectangles of sprites.

In this animation sequence-demonstrated later in this chapter in the DIB­
DEMO program-the routine that handles background repainting must re­
draw the entire background in rectangle A and the background in rectangle
B. Then the sprite that is moved from rectangle A to rectangle B can be
drawn over the restored background.

The easiest way to repaint a background in this kind of animation is to cal­
culate a bounding rectangle (rectangle C) that encompasses the sprite's old
and new positions and to redraw that section of the window's background.
You can construct a bounding rectangle by calling the MFC member func­
tion GRect::UnionRect. The UnionRect member function takes pointers to
two GRect objects as parameters and constructs a bounding rectangl~ that
encompasses both smaller rectangles.

You'll see how this kind of operation works in the GRAFDEMO program
in the section "Drawing a Background" on page 392.

10: Visual c++ Graphics

Step Animatio~
The GRAFDEMO program uses a technique called step animation to simu-

. late lifelike motion. The program uses multiple sprite bitmaps and multiple
mask bitmaps; each sprite bitmap portrays a different view of a walking
character. When the sprites are displayed in sequence, the character appears
to be walking.

In the program's source code, the member variables that are used to access
the sprites and masks are implemented as arrays. The arrays that hold the
sprites and masks are initialized inside the constructor of the program's
CView-derived class, named CGrafView, as shown here:

CGrafView::CGrafView()
{

II TODD: add construction code here
II create player and mask bitmaps
for (int n = 0; n < 5; n++) {

}

m_bmRtBoy[n] = new CBitmap;
ASSERT_VALID(m_bmRtBoy[n]);

for (n = 0; n < 5; n++) {
m_bmRtBoyM[n] = new CBitmap;
ASSERT_VALID(m_bmRtBoyM[n]);

}

for (n = 0; n < 5; n++) {
m_bmLfBoy[n] = newCBitmap;"
ASSERT_VALID(m_bmLfBoy[n]);

}

for (n = 0; n < 5; n++) {
m_bmLfBoyM[n] = new CBitmap;
ASSERT_VALID(m_bmLfBoyM[n]);

}

Along with the sprite and mask bitmaps used for step animation, GRAF­
DEMO uses an additional bitmap (associated with a member variable
named m_hmRiseBoy), shown on the following page, that is a figure of a
character holding a balloon. The balloon lifts the character from one floor
of a structure to the next higher floor each time the player presses the Up
arrow key; when the player presses the other keys, the character moves in
th~ corresponding direction.

385

Learn Visual C++ Now

386

1E){ample: The GRAFIOIEMO Program
GRAFDEMO is a Visual C++ application that is based on a framework gen­
erated by AppWizard and uses AppWizard's conventional document-and­
view architecture.

The GRAFDEMO program's view class, CGrafView, is implemented in a
file named GRAFVIEW.CPP. The program's document class, named CGraf­
Doc, is implemented in a file named GRAFDOC.CPP.

The constructor of the CGrafViewclass initializes two arrays of bitmaps
using the C++ new operator. One set of bitmaps shows the figure of a player
in an adventure game. The other array is set of black masks that outline
the player so that the figure can be displayed properly against a complex
background without corrupting the background. The bitmaps are stored in
arrays so that the program can cyc,le through the two arrays simultaneously,
creating step animation.

GRAFDEMO also uses a third bitmap: a background against which the fig­
ure of the character is displayed.

How the GRAFDEMO Program Works
When you start the GRAFDEMO program and select New from the File
menu, the program draws a character on the screen. You can then move
the character by pressing the arrow keys on your keyboard.

The GRAFDEMO application implements animation by calling the CDC
member functions BitBlt and StretchBlt. Although the GRAFDEMO pro­
gram uses the BitBlt member function to copy its background bitmap into

10: Visual C++ Graphics

a frame buffer and to the screen, the application calls StretchBlt in some of
its sprite-copying and mask-copying operations. That's because the appli­
cation stores its sprite bitmap as a 32-by-32-pixel bitmap-the same kind
of bitmap that Windows uses to create cursors and icons. But when the
sprite is displayed, the StretchBlt function is used to enlarge the figure to
64 by 64 pixels-four times larger than when it is loaded into memory.

When you call StretchBlt to increase the size of a bitmap, the result is a
bitmap with a jagged-edged appearance. To avoid this effect, create a sprite
bitmap that is the same size it will be when it is displayed. You can then
transfer your sprite t~ the screen by calling BitBlt instead of StretchBlt,
and the result will be cleaner.

In the GRAFDEMO program, the player sprite was created by enlarging
an icon bitmap and using that bitmap as a sprite. That saved a miniscule
amount of memory and allowed the same image to be used as the icon for
the application and as its sprite.

The GRAFDEMO Program Step by Step
Most of the action in the GRAFDEMO application takes place in the
program's CGrafViewclass, which is derived from the MFC library's
CViewclass.'The following steps trace what happens in the program's
CGrafView object when you execute the application:

1. The program builds its arrays of sprite and mask bitmaps inside the
constructor of the CGrafViewobject. The CGrafView: :On In itial Up­
date function is then invoked, which calls the CGrafView::Prepare­
Animation function.

2. For each of the sprite, mask, and background bitmaps that the pro­
gram uses, it creates a CDC object that is compatible with the current
device context. The PrepareAnimation function creates this CDC
object by calling CreateCompatibleDC, as shown here:

II create some device contexts that are
II compatible with the current device context
m_dcPlayer.CreateCompatibleDC(pDC);
m_dcMask.CreateCompatibleDC(pDC);
m_dcMem.CreateCompatibleDC(pDC);
m_dcBackdrop.CreateCompatibleDC(pDC);
m_dcTemp.CreateCompatibleDC(pDC);

387

Learn Visual C++ Now

388

3. The PrepareAnimation function then calls the CreateCompatible­
Bitmap function to create a background bitmap and a sprite bitmap
that are compatible with theoutput device currently being used.
For example, the following code fragment creates a CBitmap object
named m_bmBackdrop that is compatible with the current device
context (specified in the pDCparameter):

II create a screen-size background bitmap
m_bmBackdrop.CreateCompatibleBitmap(pDC,

pDC-)GetDeviceCaps(HORZRES),
pDC-)GetDeviceCaps(VERTRES»;

4. The PrepareAnimation member function then calls SelectObject to
select the bitmaps into the device contexts. For example, these two
statements select bitmaps into current device contexts and store the
previous contents of the DCs for safekeeping:

II select bitmaps into current device context,
II and save previous bitmaps
m...:.pOldMapMem = m_dcMem.SelectObject(m_bmMem);
m_dcBackdrop.SelectObject(&m_bmBackdrop);

5. 'Each time the program's main window needs to be redrawn, the
MFC framework sends the OnDraw member function a pointer to '
the current view's private device context. In an MFC framework
program, the Visual c++ framework supplies a DC pointer named
pDC and passes it as a parameter to the CGrafView::OnDraw mem­
ber function. You can then use that device-context pointer to draw
to your CGrafViewobject's window.

6. During each redrawing operation, the OnDraw function calls the
CGrafView::DrawPlayer function. The DrawPlayer function then
calls the BitBlt function to copy the bitmap associated with m_dc­
Mem to the bitmap that has been selected into a temporary device.
context named m_dcTemp, as shown here:

II copy portion of background to m_dcTemp, inverting colors
m_dcTemp.BitBlt(e, e,

m_zoomRect.right, m_zoomRect.bottom, &m_dcMem~

m_invalidRect.left, m_invalidRect.top,
NOTSRCCOPY) ;

10: Visual C++ Graphics

Notice that when BitBlt is called, the bounding rectangle of the source
bitmap is named m_invalidRect. The bounding rectangle of the des­
tination bitmap is named m_zoomRect.

7. The bitmap that has been created in m_dcTemp is transferred to the
screen, as shown here:

II copy the changed portion of m_dcTemp to screen
pDC-)BitBlt(m_invalidRect.left, m_invalidRect.top.

m_invalidRect.right. m_invalidRect.bottom, &m_dcTemp,
0, 0, SRCCOPY):

Constructing. Bitmaps in the GRAFDEMO Program
All the bitmaps used in the GRAFDEMO application are created inside the
constructor of the program's CViewclass. Listing 10-1 shows the definition
of the bitmap constructors used in the GRAFDEMO program.

II CView construction/destruction

CGrafView::CGrafView()
{

II TODO: add construction code here
II create player and player mask bitmaps
for (int n = 0: n < 5: n++) {

}

m_bmRtBoy[n] = new CBitmap;
ASSERT_VALID(m_bmRtBoy[n]):

for (n = 0; n < 5: n++) {
m_bmRtBoyM[n] = new CBitmap;
ASSERT_VALID(m_bmRtBoyM[n]);

}

for (n = 0; n < 5: n++) {
m_bmLfBoy[n] = new CBitmap;
ASSERT_VALID(m_bmLfBoy[n]);

}

for (n = 0: n < 5; n++) {
m_bmLfBoyM[n] = new CBitmap;
ASSERT_VALID(m_bmLfBoyM[n]);

}

m_bmRiseBoy = new CBitmap;
ASSERT_VALID(m_bmRiseBoy):

Listing 10-1. Bitmap constructors in the GRAFDEMO program. (continued)

389

Learn Visual C++ Now

390

Listing 10-1. continued
m_bmRiseBoyM = new CBitmap;
ASSERT_VALID(m_bmRiseBoyM);

}

II create a bitmap for the background
m_bmMem = new CBitmap;
ASSERT_VALID(m_bmMem);

Getting Ready for Animation
After the GRAFDEMO program has created all the bitmaps it uses, a func-
tion named PrepareAnimation loads the bitmaps into memory and sets
their sizes and screen locations. Listing 10-2 gives the source code for the
PrepareAnimation function.

void CGrafView::PrepareAnimation(CDC* pDC)
{

II this is the floor that the player starts on
m_currentFloor = m_startY;

II player starts walking to the right
m_moveDir = RIGHT;

II stepCount controls step animation
m_stepCount =3;

m_fFirstKeyPress = TRUE;

int retVal = m_bmRtBoy[0]-)LoadBitmap(IDB_RTBOYl);
ASSERT (retVal 1= 0);
retVal = m_bmRtBoy[1]-)LoadBitmap(IDB_RTBOY2);
ASSERT (retVal 1= 0);
retVal = m_bmRtBoy[2]-)LoadBitmap(IDB_RTBOY3);
ASSERT (retVal 1= 0);
retVal = m_bmRtBoy[3]-)LoadBitmap(IDB_RTBOY4);
ASSERT (retVal 1= 0);
retVal = m_bmRtBoy[4]-)LoadBitmap(IDB_RTBOY5);
ASSERT (retVal 1= 0);
retVal = m_bmRtBoyM[0]-)LoadBitmap(IDB_RTBOYMl);
ASSERT (retVal 1= 0);

Listing 10-2. The PrepareAnimation member function.

10: Visual C++ Graphics

}

retVal = m_bmRiseBoyM-)LoadBitmap(IDB_RTUPBOYMl):
ASSERT (retVal 1= 0):

retVal = m_bmMem-)LoadBitmap(IDB_ARCHES):
ASSERT (retVal 1= 0):

II create a rectangle the size of the player bitmap
m_bmRect.SetRect(0. 0. m_bmWidth. m_bmHeight):

II create a rectangle the size of the zoomed bitmap
m_zoomRect.SetRect(0. 0. m_zoomWidth. m_zoomHeight):

II create a background bitmap the size of the player bitmap
m_bmPlayer.CreateCompatibleBitmap(pDC. m_zoomRect.right.

m_zoomRect.bottom):

II create some device contexts that are
II compatible with the current device context
m_dcPlayer.CreateCompatibleDC(pDC):
m_dcMask.CreateCompatibleDC(pDC):
m_dcMem.CreateCompatibleDC(pDC):
m_dcBackdrop.CreateCompatibleDC(pDC):
m_dcTemp.CreateCompatibleDC(pDC):

II create a screen-size background bitmap
m_bmBackdrop.CreateCompatibleBitmap(pDC.

pDC-)GetDeviceCaps(HORZRES).
pDC-)GetDeviceCaps(VERTRES»:

II select bitmaps into current device context.
II and save previous bitmaps
m_pOldMapMem =om_dcMem.SelectObject(m_bmMem):
m_dcBackdrop.SelectObject(&m_bmBackdrop):

The sprite and the mask are loaded into memory as bitmaps that measure
32 pixels wide by 32 pixels high-the standard size for an icon. Later in
the program, the StretchBlt function increases the player bitmap size to 64

by 64 pixels when the figure is drawn to the screen.

The GRAFDEMO Program's OnDraw Function
Each time the GRAFDEMO program's main window needs to be drawn,
the framework calls the CGrafView: :OnDraw member function to draw the
program's background and sprite to the screen. To draw the background,

391

Learn Visual C++ Now

392

OnDraw calls a CGrafViewmember function named DrawBackdrop. To
draw the player, OnDraw calls a member function named DrawPlayer, as
shown in Listing 10-3.

void CGrafView::OnDraw(CDC* pDC)
{

}

CGrafDoc* pDoc = GetDocument();

II TODO: add draw code here
if (m_needsRedraw) {

}

II paint background DIB to the screen
DrawBackdrop(pDC);

II copy player bitmap from memory to screen
DrawPlayer(pDC);

II reset redraw flag
m_needsRedraw = FALSE;

Listing 10-3. The OnDraw member function.

Drawing a Background
The DrawBackdrop function uses the BitBlt function to draw its view
window's background, as shown in Listing 10-4.

II paint bitmap to screen
void CGrafView::DrawBackdrop(CDC* pDC)
{

}

if (m_needsRedraw) {

}

int screenWidth = pDC-)GetDeviceCaps(HORZRES);
int screenHeight = pDC-)GetDeviceCaps(VERTRES);

pDC-)BitBlt(0, 0, screenWidth, screenHeight, &m_dcMem,
0, 0, SRCCOPY);

m_needsRedraw = FALSE;

Listing 10-4. Drawing a background with the BitBlt function.

Drawing a Player
The GRAFDEMO program's DrawPlayer member function draws a figure
to the screen, as shown in Listing 10-5.

10: Visual C++ Graphics

void CGrafView::DrawPlayer(CDC* pDC)
{

CRect recto winRect. updateRect. tempRect:
CBitmap* pOldMapMem;

II m_stepCount controls the step animation
if (m_stepCount == 4)

m_stepCount = 0:
else m_stepCount++;

II select bitmaps into current device context.
II and save previous bitmaps

switch (m_moveDir) {
case LEFT: {

m_pOldMapZ
m_dcPlayer.SelectObject(m_bmLfBoy[m_stepCount]):

m_pOldMapMask =
m_dcMask.SelectObject(m_bmLfBoyM[m_stepCount]):

break:

}

}

case RIGHT: {

}

m_pOldMapZ
m_dcPlayer.SelectObject(m_bmRtBoy[m_stepCount]):

m_pOldMapMask =
m_dcMask.SelectObject(m_bmRtBoyM[m_stepCount]):

break:

case UP: {

}

m_pOldMapZ
m_dcPlayer.SelectObject(m_bmRiseBoy):

m_pOldMapMask =
m_dcMask.SelectObject(m_bmRiseBoyM):

break:

case DOWN: {

}

m_pOldMapZ
m_dcPlayer.SelectObject(m_bmRtBoy[4]):

m_pOldMapMask =
m_dcMask.SelectObject(m_bmRtBoyM[4]):

break:

II m_bmPlayer is the player-size bitmap defined earlier
pOldMapMem = m_dcTemp .. SelectObject(&m_bmPlayer):

Listing 10-5. Functions for drawing a player. (continued)

393

Learn Visual C++ Now

394

Listing 10-5. continued

}

II Set smallest clipping recto '(m_invalidRect is
II player's old bounding rectangle + player's
II new bounding rectangle. It was set by the
II functions MoveLeft, MoveRight, MoveUp, and MoveDown.)

pDC-)IntersectClipRect(&m_invalidRect);

II copy portion of background to m_dcTemp, inverting colors
m_dcTemp.BitBlt(0, 0,

m_zoomRect.right, m_zoomRect.bottom, &m_dcMem,
m_invalidRect.left. m_invalidRect.top,
NOTSRCCOPY) ;

/1 draw mask to m_dcTemp
m_dcTemp.StretchBlt(0, 0.

m_zoomRect. ri ght, m_zoomRect. bottom, &m_dcMa s k.
0, 0, m_bmRect.right. m_bmRect.bottom,
SRCAND);

II draw player to m_dcTemp, and invert destination
m_dcTemp.StretchBlt(0, 0,

m_zoomRect.right, m_zoomRect.bottom. &m_dcPlayer,
0, 0, m_bmRect.right, m_bmRect.bottom,
SRCINVERT) ;

II copy the changed portion of m_dcTemp to screen
pDC-)BitBlt(m_invalidRect.left, m_invalidRect.top,

. m_ i nva 1 i dRect. right, m_ i nva 1 i dRect. bottom, &m_dcTemp,
0. 0, SRCCOPY);

if (m_fFirstKeyPress == TRUE) {
m_needsRedraw = FALSE;.
m_fFirstKeyPress = FALSE;

}

II restore m_dcTemp to its previous use
m_dcTemp.SelectObject(pOldMapMem);

. Moving a Sprite
The GRAFDEMO program ex~cutes a member function named MoveLeft
when the user presses the Left arrow key and executes a member function
named MoveRight when the user presses the Right arrow key. For up and
down movement, functions named MoveUp and MoveDown are provided.

10: Visual C++ Graphics

In the GRAFDEMO program, a balloon lifts the character sprite from floor
to floor when the user presses the Up arrow key.

Listing 10-6 shows the source code for the MoveLeft and MoveRight func­
tions used in the GRAFDEMO program.

void CGrafView::MoveLeft(CRect clientRect)
{

II TODO: add your command-handler code here
CRect oldRect. newRect. tempRect;

m_moveDir = LEFT;

II don't allow player to walk off the left edge
if (m_startX <= 0) {

m_startX = 0;
return;

}

oldRect.SetRect(m_startX. m_startY. m_startX + m_zoomWidth.
m_startY + m_zoomHeight);

}

II move player 1 pixel to the left
m_startX--;

newRect.SetRect(m_startX. m_startY.
m_startX + m_zoomWidth - 2. m_startY + m_zoomHeight);

II invalidate changed area
tempRect.UnionRect(oldRect. newRect);
m_invalidRect.lntersectRect(tempRect. clientRect);
InvalidateRect(m_invalidRect. FALSE);

if (m_fFirstKeyPress == TRUE) {
m_needsRedraw = FALSE;
m_fFirstKeyPress = FALSE;

}

II now draw the player. and update the window
DrawPlayer(GetDC(»;
UpdateWi ndow();

Listing 10-6. The MoveLeft and MoveRight member functions. (continued)

395

Learn Visual C++ Now

396

Listing 10-6. continued
void CGrafView::MoveRight(CRect clientRect)
{

}

II TODO: add your command-handler code here
CRect oldRect. newRect. tempRect;
int rightCoord = m_startX + m_zoomWidth:
int bottomCoord = m_startY + m_zoomHeight;

II don't allow the player to walk off the right edge
if (m_startX)= 576) {

m_startX = 576;
return;

}
m_moveDir = RIGHT;

II oldRect is the player's current bounding rectangle
oldRect.SetRect(m_startX. m_startY. rightCoord. bottomCoord);

II move player 1 pixel to the right
m_startX++;
rightCoord++:

II newRect is the player's bounding rectangle after moving
newRect.SetRect(m_startX. m_startY. rightCoord. bottomCoord);

II invalidate entire changed area (oldRect + newRect)
tempRect.UnionRect(oldRect. newRect);
m_invalidRect.IntersectRect(tempRect. clientRect);
InvalidateRect(m_invalidRect. FALSE);

II keeps action smooth the first time a key is pressed
if (m_fFirstKeyPress == TRUE) {

m_needsRedraw = FALSE;
m_fFirstKeyPress = FALSE;

}

II now draw the player. and update the window
DrawPl ayer (GetDC ()) ;'
UpdateWindow();

Calculating Bounding Rectangles
In the MoveLeft and MoveRight member functions, rectangles surrounding
the old and new locations of the animated character sprite are combined
in a single bounding rectangle named m_invalidRect. The Windows func­
tion InvalidateRect is called to invalidate this rectangle. In Windows-based
programs, invalidating a rectangle in a window causes that rectangle to be
redrawn the next time the window is updated.

10: Visual C++ Graphics

When the InvalidateRect function returns, a drawing sequence named
DrawPlayer is called to redraw the portion of the screen that needs to be
updated. The DrawPlayer function uses the m_invalidateRect rectangle to
ensure that it redraws only the portion of the screen that contains changes.

To keep the animation flicker-free, DrawPlayer performs its drawing opera­
tions in memory and then copies the redrawn areas to the screen. That
prevents the flickering and flashing that can take place when screen re­
freshes occur during drawing operations.

Each time the DrawPlayer function redraws the animated sprite, Draw­
Player calls the BitBlt and StretchBlt member functions to remove the
sprite from its background, advance the sprite to its next position, and
redraw the sprite in its new location transparently, using the sprite and
mask bitmap-copying operations described earlier.

[f)evDce-llh)(depe01deni1: Bitmaps (lDlBs)
The most significant difference between a DIB and an ordinary DDB is that
a DIB has a built-in color table that can be used to display the DIB using
exactly the same colors that were used to create it, no matter what kind of
output device was used in designing the original DIE.

Another useful characteristic ofDIBs is that every DIB comes with a built­
in set of data structures that contain vital information about the DIB, in­
cluding its size, the number of colors it can use, and its color resolution.
When you load a DIB from a disk or use a DIB in an application, you can
easily get yourhands on all the important details you might need in order
to perform various kinds o'fbitniap operations.

Still another advantage of using DIBs is that a number of very fast bitmap­
copying procedures have become available over the past few years. Some··
of these operations are provided in the Windows Software Development
Kit (SDK), and others have been made available in other SDKs and from
other sources. But they all have one thing in common: they can be used
only with DIBs, not with traditional DDBs.

How DIBs Speed Copying Operations
One reason that DIB-copying operations can be supercharged to such
high speeds is that the DIB construct gives applications direct access to

397

Learn Visual C++ Now

398

the actual image bits used to display DIBs. In contrast, when you use a DDB
in an application, Windows does not give you direct access'to the bitmap's
image bits. That means that you cannot directly copy the image bits used
in a DDB from one memory location to another. Instead, when you want to
copy a DDB, you must call BitBlt or StretchBlt and let the Windows API or
the MFC framework do your copying for you.

When you want to copy a DIB from one part of memory to another, you do
riot face this restriction. Instead of using BitBlt and StretchBlt, which are
versatile but somewhat slow, you can simply call a function that can copy
a block of memory from one place to another and use that function to copy
your bitmap image.

While you're at it, you can write a bitmap-copying operation that does not
copy pixels of a specified color, and you can use that operation to perform
transparent sprite-copying operations without using masks. That can cut
the time required by your program's sprite-copying operations in half be­
cause you won't have to copy a mask every time you want to copy a sprite.
And if you need still more speed, you can even get out the old assembler
and write your bitmap-copying operation using assembly language.

The fast bitmap-copying operations that are available for DIBs include the
StretchDIBits function now provided in the Windows API; the WinGBitBlt
and Win GStretchBlt functions, two DIB-copying procedures that Microsoft
supplies in a game-oriented software development kit called WinG; and
various assembly language copying routines-one of which is available in
the WinG package-for performing transparent bitmap-copying operations.

Disadvantages of Using DU3s
Unfortunately, there are also some disadvantages of using DIBs instead of
DDBs in your application. One shortcoming ofDIBs is that they are not en­
capsulated in an MFC library class. When you want to use a DIB in an ap­
plication, you must either iinplement it with raw Windows API calls or
use some kind of homemade, non-MFC DIB class.

This chapter demonstrates the use of DIBs using a homemade CObject­
derived class named MDib.The MDib class is not complex because the
functionality of the sample application'that uses it, DIBDEMO, is limited.

10: . Visual C++ Graphics

Listing 10-7 shows the definition of the MDib class that is used to create
the DIB used in the DIBDEMO program. You can find the code shown in
Listing 10-7 in the MDIB.H file on the companion CD-ROM.

MDIB.H

#ifndef _INC_MOIB
#define _INC_MOIB

// OIB constants
#define PALVERSI0N 0x300

// OIB Macros
#define IS_WIN30_0IB(lpbi) «*(LPOWORO)(lpbi» == sizeof(BITMAPINFOHEAOER»
#define RECTWIOTH(lpRect) «lpRect)-)right - (lpRect)-)left)
#define RECTHEIGHT(lpRect) «lpRect)-)bottom - (lpRect)-)top)
#define OIB_HEAOER_MARKER «WORD) ('M' « 8) : 'B')
#define WIOTHBYTES(bits) «(bits) + 31) / 32 * 4)

1/ declare handle to a OIB
OECLARE_HANOLE(HOIB):

class MOIB : public CObject
{

public:
HOIB m_hOIB;

private:
CPalette *m_pPalette;
HPALETTE m_hPalette;
HPALETTE m_hOldPal;
HPALETTE m_hPal; 1/ this OIB's palette
UINT m_cScanLines;
LPSTR m_lpBits;
LPBITMAPINFO m_lpBitsInfo:
OWORO m_DIBWidth:
OWORO m_DIBHeight;

public:
MOIB() {}
---MOIBO {}

1/ inline member functions
UINT GetNrScanLines() {return m_cScanLines; }
LPSTR GetPVBi ts O{ return m_J pSi ts;}
LPBITMAPINFO GetBitsInf6() { return m_lpBitslnfo; }

Listing 10-7. Definition of the MDib class. (continued)

399

Learn Visual C++ Now

400

Listing 10-7. continued

1:

OWOROGetOIBWidth() { return m_OIBWidth: }
OWORD GetDI BHei ghtO { return m_DI BHe; ght: l

II noninline member functions
BOOl SetOIBlnfo(); .
BOOl GetOIB Info (U I NT *pSca nLi nes. LPSTR 1 pBi ts,·

lPBITMAPINFO lpBitslnfo, DWORD*pWidth, .
DWORO *pHeight);

BOOl PaintOIB (HDC,lPRECT. HOIB. LPRECT.CPalette* pPal.
DWORD copyMode):

BOOl CreateDIBPal~tte(HDIB hDIB. CPalette* cPal):
LPSTR FindDIBBits (LPSTRlpbi):
DWORD DIBWidth(lPSTR lpOIB);
DWORD DIBHeight (lPSTR lpDIB);
WORD Palette5ize (LPSTR lpbi);
WORD DI BNumCol ors: (lPSTR 1 pbi) ; .
HDIB ReadDIBFile(CFile&file);

DIB Architecture
A DIB can be divided into four parts, and two of those parts (the BITMAP­

INFOHEADER structure and the color table) can be combined to form a
fifth part, the BITMAPINFO structure. Figure 10-10 shows the structure of
a device-independent bitmap.

The BITMAPFILEHEADER structure in a DIB file contains information
about the bitmap file itself, and the BITMAPINFO structure contains infor­
mation about the DIB. The color table consists of either an array of
RGBQUAD structures (containing color combinations composed of vary­
ing intensities of red, green, and blue) or an array of colors (each associ­
ated with a specific index) called a color palette.

The biggest section of memory in a DIB file is usually the image bits sec­
tion. This section contains a block of pixels stored in memory as an array
of bytes. The pixels in a DIB's image bits array are laid out in exactly the
same way the DIB's pixels will be laid out when the DIB is displayed in a
window. The bigger a bitmap is, the larger its image bits section.

10: Visual c++ Graphics

DIB

-i> Image bits <1- - -(bitmap data). - - - - - - - - - - - - - - -I
typedef struct tagBITMAPFILEHEADER { 1

UINT bfType; 1
DWORD bfSize;
UINT bfReservedl; 1
UINT bfReserved2; 1
DWORD bfOffBits;- - - - - - -

~ BITMAPFILEHEADER ~ } BITMAPFI LEHEADER;

~ BITMAPINFOHEADER 1 BITMAPINFO

typedef struct tagBITMAPINFO {

r BITMAPINFOHEADER bmiHeader;
RGBQUAD bmiColors[l];

Color table } BITMAP INFO;
4 (RGBQUAD structures)

typedef struct tagBITMAPINFOHEADER {
DWORD biSize;
LONG biWidth;
LONG biHeight;
WORD biPlanes;
WORD biBitCount;
DWORD biCompression;
DWORD biSizelmage;
LONG biXPelsPerMeter;
LONG biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrImportant;

} BITMAPINFOHEADER;

typedef struct tagRGBQUAD {
BYTE rgbBl ue;
BYTE rgbGreen;
BYTE rgbRed;
BYTE rgbReserved;

} RGBQUAD;

Figure 10-10. Structure of a DIE.

Varieties of color tables
DIB files can use two varieties of color tables. After you have created a
DIB, you can call a Windows API function named SetDIBits to specify
what kind of color table you want your DIB to use.

One kind of DIB color table is implemented as an array of 16-bit indexes
into a specified color palette. A color palette, often called simply a palette,
is a block of memory that provides a DIB's color table with a set of colors.

401

Learn Visual C++ Now

402

These colors can come from a palette used by another DIB, or they can come
from the system palette-that is, a palette containing colors supported by
the computer system that is currently being used. (For more information
about how DIBs use palettes, see the section "Palettes" on page 407.)

The other kind ofDIB color table contains a set of literal RGB color vari­
ables, or RGBQUAD structures. When a DIB uses this kind of color table,
it doesn't obtain colors from a particular palette but generates its own
color set using varying intensities of red, green, and blue.

Splitting a DIB file
One important feature of a DIB file is that its header section can be split
from its image bits section. In Figure 10-10 on the preceding page, notice
that the image bits block is separate from the three header blocks that
make up the rest of the DIB. Also notice that the bfOffBits field in the
BITMAPFILEHEADER structure is connected to the image bits section by a
dotted arrow. That's because the BITMAPFILEHEADER bfOffBits field is
an offset to the image bits section. When you use a DIB in an application,
you can always determine where its image bits begin by accessing the
bfOffBits field.

When you create a DIB, you can physically join its header section to its
image bits section if you want, but you don't have to. All you must do is be
sure that the offset to the image bits section in your DIB is specified in the
bfOffBits field of your DIB' s BITMAPFILEHEADER structure.

The BITMAPFILEHEADER structure
As Figure 10-10 illustrates, a DIB file begins with a BITMAPFILEHEADER

structure that contains information about the DIB file itself, such as the
type, size, and layout of the file. Table 10-2 lists the fields contained in a
BITMAPFILEHEADER structure.

Field

bfType

Description

Specifies the type of file. The entry in this field must be
BM, or Ox424d in hexadecimal notation. Before you load a
DIB file into memory, your application can check this
field to see whether the file being loaded is a DIB file.

Table 10-2. The BITMAPFILEHEADER structure.

10: Visual C++ Graphics

Field Description

bfSize Specifies the size of the file (not the bitmap) in bytes.
The total size of a DIB is the size of the DIB file minus the
size of the file header.

Reserved~for future use; must be set to O.

Reserved for future use; must be set to O.

bfReservedl

bfReserved2

bfOffBits Specifies the offset, in bytes, from the beginning of the
BITMAPFILEHEADER structure to the beginning of actual
bitmap data in the file. As shown in Figure 10-10, this
offset refers to the image bits section.

Finding a DIB's image bits
As mentioned, the bfOffBits· field contains an offset that you can use to
locate the image bits in your DIB. The easiest way to keep track of where a
DIB's image bits begin is to ignore the fact that a DIB can be split into two
parts and store the DIB's image bits immediately following the color table.
Then you can calculate the start of your DIB' s bitmap data by calculating
the difference between the DIB' s starting address and the starting address
of the DIB's bitmap data. The DIBDEMO program uses a pair of member
functions named GetDIBlnfo and SetDIBlnfo to get and set a number of im­
portant DIB attributes, including the starting address of a DIB's bitmap
data. The SetDIBlnfo member function is implemented as follows in the
MDIB.CPP file:

BOOl MDIB::SetDIBInfo()
{

if (m_hDIB == NULL)
return FALSE;

LPSTR lpDIBHdr;
LPSTR lpDIBBits;

II pointer to BITMAPINFOHEADER
II pointer to DIB bits

lpDIBHdr = (LPSTR) ::GlobalLock((HGLOBAL) m_hDIB);
lpDIBBits = FindDIBBits(lpDIBHdr);

m_cScanLines = (UINT)DIBHeight(lpDIBHdr); II number of scan lines
m_lpBits = lpDIBBits; II bit array address
m_lpBitslnfo = (LPBITMAPINFO) lpDIBHdr; II BITMAPINFO address

(continued)

403

Learn Visual C++ Now

404

}

m_DIBWidth = DIBWidth(lpDIBHdr);
m_DIBHeight = DIBHeight(lpDIBHdr);

::GlobalUnlock«HGLOBAL) m_hDIB);

return TRUE;

Upside-Down DIBs

One odd feature ofDIBarchitecture is that the scan linesin the bit
array are arranged upside down with respect to the address of each
bit in the DIB file-that is, the bits that make up the last scan line
in the file appear. first in the bit array, and the bits that make up the
first scan line appearlast. This curious setup requires some thought
and can sometimes lead to surprises when you manipulate bits in
your code.

Figure 10-11 shows the upside-down (relative to standard bitmaps)
structure of a DIB.

DIB display
DIB
in memory

Figure 10-11. The upside-down structureofa DIB.

Calculating the size ofa DIS's color table
As shown in Figure 10-10 on page 401, a DIB color table is made up of an
array of RGBQUAD structures. An RGBQUAD structure is a simple struct
made up of 3 bytes plus a 1-byte reserved field. Each of the 3 defined bytes
in an RGBQUAD structure stores a value ranging from 0 through 255. The

10: Visual C++ Graphics

first byte holds an intensity value for the color red, the second byte holds
an intensity value for green, and the third byte holds an intensity value for
blue. Together, these 3 bytes can describe 2563~or 16,777,216-individual
colors. You can get or set the values of all 3 bytes in an RGBQUAD struc­
ture in a single step by invoking the Windows macro RGB(rgbBlue, rgb­
Green, rgbRed}.

The length of a DIB's RGBQUAD array can vary because DIBs with differ­
ent color resolutions have color tables of different sizes. The more colors a
DIB is capable of displaying, the larger its color table is.

For more information about the RGBQUAD array in a DIB's BITMAPFILE­
HEADER structure, see the section "The RGBQUAD array" on page 407.

The BITMAPINFOHEADERstructure
The BITMAPINFOHEADER structure in a DIB file contains a wealth of
information about the DIB, including the size, width, and height of the
DIB; the number of colors used in the DIB; and the size of the DIB's image
bits array. Table 10-3 lists the fields that make up the BITMAPINFO­
HEADER structure.

Field

biSize

biWidth

biHeight

biPlanes

biBitCount

biCompression

Description

Specifies the number of bytes required by the
BITMAPINFOHEADER structure.

Specifies the width of the bitmap, in pixels.

Specifies the height of the bitmap, in pixels.

Specifies the number of planes for the target device.
This value must be set to 1.

Specifies the number of bits per pixel. This value
must be 1,4, 8, or 24.

Specifies the type of compression used for a com­
pressed bitmap. For details, see the BITMAPINFO­

HEADER entry in the Windows SDK section of the
online help.

Table 10-3. The BITMAPINFOHEADER structure. (continued)

405

Learn Visual C++ Now

406

Table 10-3. continued

Field

biSizelmage

bi)(}Jels}JerJv.feter

biY}Jels}JerJv.feter

biClrUsed

biClrlmportant

Description

Specifies the size, in bytes, of the image. You can set
this value to 0 if the bitmap is in the BI_RGB format.

Specifies the horizontal resolution, in pixels per
meter, of the target device for the bitmap. An applica­
tion can use this value to select from a"resource group
a bitmap that best matches the characteristics of the
current device.

Specifies the vertical resolution, in pixels per meter,
of the target device for the bitmap.

Specifies the number of color indexes in the color
table actually used by the bitmap. If this value is 0,

the bitmap uses the maximum number of colors
corresponding to the value of the biBitCount field. If
the biClrUsed value is nonzero and the value of the
biBitCount field is less than 24, biClrUsed specifies
the actual number of colors that the current graphics
device driver will access. If the biClrUsed value is
nonzero and the value of the biBitCount field is 24,

biClrUsed specifies the size of a color index table that
is used to optimize performance of Windows color
palettes. (Windows palettes are examined in detail in
the section "Palettes" on the facing page.)

Specifies the number of color indexes that are consid­
ered necessary for displaying the bitmap. If this value
is 0, all colors are used.

The BITMAPINFO structure
A BITJv.fA}JINFO structure is not a separate entity; it's merely a structure
that combines the information in a DIB's BITJv.fA}JINFOHEADER structure
with all the color information that's stored in the DIB's color table.

10: Visual C++ Graphics

The purpose of the BITMAPINFO structure is to provide a convenient way
of handling all the information in a DIB's BITMAPINFOHEADER structure
and all the color data in its color table without having to calculate the
length of the color table every time you need to access it.

f,g~1 OTE Because the BITMAPINFOHEADER structure used by a DIB has the
6il'J same starting address as the DIB's BITMAPINFO structure, some applications

use the same pointer variable to access this address. Some applications use a
void pointer for this purpose; others perform whatever kinds of casting op­
erations are necessary to access the desired structure. These kinds of prac­
tices result in obscure code and are not recommended.

The RGBQUAD array
An RGBQUAD a~ray is stored in memory as an array of color indexes. It
describes a color in terms of relative intensities of red, green, and blue.
Each color index in an RGBQUAD array maps to a specific pixel in the
bounding rectangle that encloses the bitmap. The size of the array, ex­
pressed in bits, is equivalent to the width of this rectangle (expressed in
pixels) times its height (also expressed in pixels) times the number of
color bits associated with the current display device.

Here is the Windows typedef function that defines an RGBQUAD structure:

typedef struct tagRGBQUAD {
BYTE rgbBlue;
BYTE rgbGreen;
BYTE rgbRed;
BYTE rgbReserved;

} RGBQUAD:

In an RGBQUAD structure, the rgbRed, rgbGreen, and rgbBlue bytes
specify the intensities of the red, green, and blue colors in each pixel of
the DIB being displayed.

As mentioned, the colors used by a DIB are determined by an array of
color codes called a color palette. The five kinds of palettes that deter­
mine the colors used by Windows-based applications are listed on the
following page.

407

Learn Visual C++ Now

408

• Hardware palette-Color lookup table that is built into a video dis­
play card. When you use a palette-based display adapter (which is
what most video cards are) and specify the DIB_PAL_COLORS dis­
play mode in your application, the pixels you see on the screen are
indexes to the colors that have been placed in your video card's
hardware palette.

• System palette-Copy of the hardware palette maintained by the
Palette Manager, a system utility used by the Windows operating
system to set the colors of the system palette and make them available
to Windows.:based programs. The system palette provides all the
colors that can appear on a particular output device at a particular
time. Because the number of colors that a video system can display
at one time is limited, the system palette is designed to hold a maxi­
mum of 256 colors.

1~11 OTE The term "system palette" can be confusing because it is sometimes
6ii" used instead of the term "hardware palette" to refer to the hardware palette

provided by the system's video display hardware.

• Logical palette-Palette object created by an application. A logical
palette is implemented as an array of colors that an application can
use for drawing graphics using a particular device context. When an
application has created a logical palette, it can pass those colors to
the Palette Manager for use in the system palette.

• Default logical palette-DEFAULT_PALETTE stock object provided
by the GDI (graphics device interface). The default logical palette
contains the VGA colors and is used for supportIng applications
that do not explicitly use palettes.

• Identity palettes-Logical palette that contains a set of colors laid out
in exactly the same order as the colors in the system palette. By set­
ting up an identity palette, an application can avoid time-consuming
,index lookups, significantly decreasing processing time.

10: Visual C++ Graphics

The System Palette
The system palette is divided into two parts: one for 20 colors that are fixed,
or static, and one for a collection of colors that applications can modify.

The total number of colors provided by the system palette can vary, de­
pending on the kind of display device being used. However, every system
palette has exactly 20 static colors that applications cannot change. Appli­
cations can set the remaining colors in the system palette using the Palette
Manager.

Sixteen of the 20 static colors in the system palette correspond to the 16
colors used by a standard VGA display. The other 4 static colors were cho­
sen for their visual appeal and are used by the Windows operating system.

~II OTE An application can retrieve the size of a device's system palette by call-
6iI~ ing the GetDeviceCaps function and specifying the NUMCOLORS constant

as the second parameter. To retrieve the horizontal and vertical resolution
of a video display or a printer (expressed in pixels per meter), an application
can call GetDeviceCaps and specify HORZSIZE or VERTSIZE as the second
parameter.

The Default logical Palette
For applications that need to use only the standard VGA colors, the Win­
dows operating system maintains a default 16-color system palette called
the default logical palette. If you want to use the default logical palette in
an application, you can access it by selecting the DEFAULT _PALETTE

stock object into a device context. Then you can use any of the 16 colors
provided without being concerned with color tables.

The Window Manager component of the Windows operating system is an
example of an application that uses the default logical palette. It uses the
default logical palette's 16 static colors to draw window borders and other
standard Windows objects.

409

Learn Visual C++ Now

410

The Logical Palette
To set up a system palette that can be used to display the colors in a par-
ticular DIB, an application must use the colors in the DIB's color table to
set up a private palette called a logical palette. The application can then
pass these colors to the Palette Manager for incorporation into the system
palette.

To create a logical palette, an application must call a Windows API func­
tion named CreatePalette. Then the application must select the palette
into a device context by calling the Windows API SelectPalette function.
(The SelectObject function does not.work with palettes.) When all this has
been done, the application can call a Windows API function named Realize­
Palette to transfer the colors in its logical palette to the system palette.
Only then can the colors specified by the application be used to create
screen displays.

Here is the CreatePalette function:

HPAlETTE CreatePalette(const lOGPAlETTE FAR* lplgpl);

The lplgpl argument points to a LOGPALETTE structure that contains infor­
mation about the colors in the logical palette being created.

The SelectPalette function is shown here:

HPAlETTE SelectPalette(HDC hdc, HPAlETTE hpal, BOOl fPalBak);

In a call to SelectPalette, the hdc parameter is a handle to the device con­
text into which the logical palette is to be selected, and the hpal parameter
is a handle to the logical palette. The fPalBak parameter specifies whether
the palette is a background palette. When a window is associated with a
background palette, the setting of the fPalBak flag determines whether the
window's palette becomes a foreground palette when the window gains
the input focus.

The RealizePalette function is shown here:

UINT RealizePalette(HDC hdc);

The hdc parameter is the handle of the palette being realized.

The SelectPalette and RealizePalette functions are usually called in suc­
cession, as in the following example:

10: Visual c++ Graphics

SelectPalette(hDC. hBluePal. FALSE):
Real;zePalette(hDC);

Figure 10-12 shows the process of obtaining a logical palette for a DIB
from the Palette Manager.

DIB LO~ical .. pa ette
I I

-"_Green: Blue I n DIB color table

System
palette

i !
DIB pixels (bytes)

Hardware
IlPixel palette

n
DPixel

Output
device

Figure 10-12. Obtaining a logical palette.

~II OTE Palette objects follow most of the same rules as other graphics objects.
6f1' They should be deleted when no longer needed by using the De/eteObject

function, and they must be deselected from all DCs before being deleted (by
using SelectPalette to select a different palette into the DC). One notable
difference is that an application can select a palette object into more than
one DC (belonging to a single device) at a time, but the mapping of palette
entries from the current logical palette to the system palette remains con­
stant for all of the DCs.

411

Learn Visual C++ Now

412

Whenrnultfplewindowsaredisplayed all the screen, the a.cti ve, or
topmost; window has the highest pr~ority inobtairifng the colors it .
needs foritsdisplfiyfrom the Palette Manager. If the topmost window
does notuseallavailablenonstatic colors to create its display, any

· colors it does notneed can be claimed by the other windows on the
· screen. ThoseotherwiIidows are sometimes referred to as back­
.. ground windows.

· If the topmost window has laid claim to allnonstatic colors in the
system ·palette, none of the background windows can set. any system
. pa.lettecolors to suittheirownrequiieIllents.Instead, they must
choosethe.nearestcolor they c8.:rlfind fromthenonstatic colors that
the. topmost window has placed in itslogiCal pa.lette. .

, -." ."..'.. '

When.multiplewindowsrequest~olors from the Palette Manager ,the
· Palette Manager considers each window's request using a priority
.. based ontheorderinwhich the windows were active, with the most
recently.activewindowreceivingthehighest priority .. As·the requests
ofvqr~ous\Vindows aregrante~;thenumber of colors. available from·
th~systeln palettedec~~ases.Wh.en all nonstatic colors have be~n
used,anyremaining~indows Illustsettle for using colors that have

·alreadYl:>eenusedbyhigh~r-prioritywindowsor; in a worst-case
sCE}nario, using the 20 static colors.

How the DIBDEMO Program Uses Palettes
In the DIBDEMO application, both RealizePalette and SelectPalette are
called to display the colors in the background DIB's color array. Both these
procedures are called from a member function named CDIBDemo View::On­
DoRealize. The OnDoRealize member function is called whenever a win­
dow is activated.

Before either RealizePalette or SelectPalette is called, the OnDoRealize
member function retrieves a pointer to the background DIE's palette by

. executing the following statement:

10: Visual C++ Graphics

m_pBkgPal = pDoc-)GetDocPalette();

This statement stores a pointer to the background DIB's palette in a vari­
able named m_pBkgPal. Then the OnDoRealize function executes the fol­
lowing statement:

CClientDC appDC(pAppFrame);

This statement constructs an object of an MFC library class named CClient­
DC, which is a subclass of CDC. A CClientDC object is a special kind of
CDC object that is associated with the client area of a window. It takes care
of calling GetDCwhen a window object is constructed and calling Release­
DC when the window is destroyed.

In the preceding statement, a CClientDC object named appDC is created
and associated with a window referred to as pAppFrame. This window
is defined earlier in the OnDoRealize function as the application's main
frame window.

When the CClientDC object appDC has been constructed, the following
statement is executed:

m_pBkgOldPal = appDC.SelectPalette(m_pBkgPal.
«HWND)wParam) != m_hWnd);

It selects the m_pBkgPal palette-that is, the background DIB's palette­
into the application's main frame window. This makes the background
DIB's palette the default palette for the DIBDEMO program.

Mapping System Palette Colors to a Logical Palette
When a window displayed by an application is on the desktop, the appli­
cation can map the colors in the system palette to a logical palette by calling
the Windows function RealizePalette. Then the colors in the logical palette
are displayed.

The AnimatePalette member function can be useful when you want an
application to display a window and a set of new colors simultaneously.
When you want to delay the display of a new set of colors until a particu­
lar window opens, you can call SetPaletteEntries to set up your new colors
and then call RealizePalette when the window associated with those colors
becomes active.

413

Learn Visual C++ Now·

414

Creating and Using Logical Palettes
When an application has created and realized a logical palette that matches
a DIB's color table, the application can call the StretchDIBits function to
copy the DIB to the screen using the appropriate colors. When an applica­
tion calls StretchDIBits, Windows performs the requested DIB-copying
operation using the process shown in Figure 10-13.

DIB Logical System
RGB to system palette index

DPixel
I I index map

-~I jn:j~!Green Bluel Output
DIB color table device

Logical
palette

DIB pixels (bytes)

DPixel

Figure 10-13. DIB-copying operation resulting from a call to StretchDIBits.

The DIB-copying operation shown in Figure 10-13 is a roundabout opera­
tion that requires a lot of index lookups and consumes a considerable
amount of processing time. Every time an application calls StretchDIBits,
Windows retrieves a color value for each pixel in the DIB and converts
that color to an RGB value by looking it up in the DIB's color table. When
the system has obtained the RGB value of each pixel from the DIB's color
table, it tries to match that color to a color that is defined in the currently
selected logical palette. Each logical palette index value the system finds
is then translated to an ~ndex into the system palette index values. The re­
sulting system palette index value is then passed to the device driver that
handles the current output device so that the pixel that has been looked
up can be written to the display video memory.

10: Visual C++ Graphics

Every' time an application calls StretchDIBits to copy a DIB to the screen,
the system performs this entire operation on every pixel in the DIB.

Streamlining DIS Copying with Identity Palettes
There's got to be a better way. Fortunately, there is: dispensing with the
logical-to-system index translation table and letting the system write all
the necessary DIB pixel values directly to video memory.

The secret formula for this shortcut is simple: all that is required is that
the logical and system palettes being used are identical. In other words,
what is needed is an identity palette.

An identity palette is a logical palette that contains a set of colors laid out
in exactly the same order as the colors in the system palette. By setting up
an identity palette, an application can avoid time-consuming index look­
ups, significantly decreasing processing time.

Creating an Identity Palette
The best way to create an identity palette is to create a logical palette for
the entire color table of the DIB you want to copy and then select that logi­
cal palette into the screen DC and realize it. Windows then takes your set
of colors and maps them or inserts them into the system palette as it sees
fit. This process requires a bit of fancy color-shuffling, but it's worth it be­
cause in the long run it speeds up your application's DIB-copying opera­
tions considerably.

To perform the color-shuffling that the process depends on, follow these
steps:

1. Create a logical palette.

2. Call the Windows API function GetSystemPaletteEntries to obtain
all system color codes from the system palette.

3. Use these values to define your logical palette by calling the Win­
dows API function SetPaletteEntries. If your call to SetPalette­
Entries is successful, your new logical palette exactly matches the
system palette when the call returns. But there is one problem: the

415

Learn Visual C++ Now

416

colors in the DIB that you're copying are now all shuffled around be­
cause the DIB's pixel values no longer index the correct colors in the
logical palette.

4. To repair this damage, for each color in your DIB's color table, call
. the Windows function GetNearestPaletteIndex. This function finds
an entry in your new logical palette that matches (or is at least cl.ose
to) the color in your DIB's color table.

5. Use this information to create a translation table for the DIB pixel
values.

6. For each pixel in your DIB, look up the new index value of each
pixel in your translation table and write it back to your DIB. If this
operation is successful, your DIB's pixels now map correctly to your
logical palette. The only possible problem at this point is that some
color information might be lost if the original logical palette does
not map well to the system palette-but this is unlikely.

7. Reshuffle your DIB's color table in such a way that it contains ex­
actly the same RGB values as your new logical palette, arranged in
exactly the same order. This final step is not really essential unless
you want to use the new RGB values in your DIB's header later, and
this is not often the case in animation programs. If your DIB never
gets saved, you probably don't care whether its color table winds up
arranged differently from when you started. But be aware that if you
ever want to save your DIB back to its original file, the colors in its
color table will have a different arrangement from the one that they
had when you first loaded the DIB.

Creating and Using DIBs
One way to create a DIB is to call a Windows API function named Create­
DIBitmap. You can then call the Windows API function named SetDIBits
to set the image bits of the DIB you have created and to indicate how you
want your DIB to produce its colors. If you set the SetDIBits parameter fu­
ColorUseto a constant named DIB_PAL_COLORS, the Windows API creates

10: Visual C++ Graphics

a color table that consists of an array of 16-bit indexes into a specified pal­
ette. If you set thefuColorUse parameter to the constantDIB_RGB_COLORS,
Windows gives you a color table that contains literal RGB color values.

Another way to create a DIB is to allocate memory for it, load it into memory
using ordinary file liD functions (such as the MFC library's CFile::Read
function), and then copy its color table, its image bits, and its header infor­
mation into memory in any way you want.

gell OTE Creating DIBs from scratch is a complicated and tricky business, and.
6if'-i unless you're planning to write a painting or drawing program, you'll prob­

ably never need to do so. In the real world of graphics programming,
bitmaps are usually created and saved to disk using commercially available
applications such as Adobe Illustrator, Macromedia Freehand, or CoreIDRAW.
They can then be loaded from disk as needed and used in applications such
as animation programs and games.

DIB-Copying Operations
After you have copied a DIB into memory and have stored its image bits in
a frame buffer, there are two Windows API functions that you can use to
transfer your DIB' s image bits to the screen. One of these functions is
named StretchDIBits, and the other is named SetDIBitsToDevice.

The StretchDIBits function works much like the DDB-copying function
StretchBlt. It copies the image bits of a DIB from one memory location to
another, optionally resizing the bitmap being copied to fit into its destina­
tion area. The SetDIBitsToDevice function, despite its odd name, is the
DIB equivalent of the BitBlt function. It copies a bitmap's image from one
memory location to another without resizing.

The StretchDIBits Controversy

In early versions' of Windows NT, StretchDIBits was the fastest and
most efficient function to use when you wanted to copy a DIB from
one block of memory to another-even when you didn't want to resize
your DIB-hecauseifwas coded more efficiently than the SetDIBits­
ToDevice function.

(continued)

417

Learn Visual c++ Now

418

The StretchDIBits Controversy. continued

To copy a bitmap at a .1-to-1 size ratio with StretchDIBits, you need to
set the source and destination bitmaps to the same size when you call ..
·StretchDIBits. The function checks the sizes you have specified to·see .
whether they are the same, and then it performs the mdst efficient
. bit':copying operation possible, whether ornot scaling is required.

In current versions of Windows 95 and Windo'Ys NT; Microsoft engi~
neers reportedly have rework~d the SetDIBi~sToDevicefunction to
make it j~st as fast as StretchDIBits.But some Visual c++ programmers
haveabaridoned the SetDIBitsToDevice function·because it used to be
slow and still use StretchDIBits exclusively.

Using the StretchDIBits Function
As noted earlier, one advantage of using DIEs is that an application can
display them directly, without having to create an intermediate memory
bitmap. The StretchDIBits and SetDIBitsToDevice functions can copy all
or part of a DIE directly to the specifications of a particular output device,
significantly reducing the memory required to display the bitmap.

The StretchDIBits function is shown here:

int StretchDIBits(HDC hdc. int XDest. int YDest. int cxDest.
int cyDest. int XSrc. int YSrc. int cxSrc. int cySrc.
const void FAR* lpvBits. LPBITMAPINFO lpbmi.
UINT fuColorUse. DWORD fdwRop) .

StretchDIBits is a Windows API function, not an MFC member function,
so you must pass it a handle to a device context in its hdc parameter. This
DC handle can be associated with either a screen surface or an area of
screen m~mory that's big enough to hold the destination bitmap.

You must also provide StretchDIBits with the usual bitmap-copying param­
eters, such as the size of the source bitmap, the size of the destination bit­
map, and the upper left coordinates of the source and destination bitmaps.
To copy a complete bitmap from one memory location to another, you
simply pass the coordinates (0, 0) in both parameters.

The StretchDIBits function also has an fdwRop parameter in which you
can specify a raster operation (ROP) code. StretchDIBits recognizes the

10: Visual C++ Graphics

same ROP codes as the BitBlt and StretchBlt functions. (For details, see
Table 10-1 on page 376.)

In addition to the standard bitmap-copying parameters, the StretchbIBits

function expects three parameters that the BitBlt and StretchBlt functions
do not require, as follows:

• The IpvBits parameter, which points to the DIB bits. These bits are
stored in memory as an array of bytes.

• The lpbmi parameter, which points to a BITMAPINFO structure that
contains information about the DIB.

• The fuColorUse parameter, which specifies whether the DIB's
color table (the bmiColors member of the lpbmi parameter) contains
explicit RGB values or indexes into the currently realized logical
palette. The fuColorUse parameter can have one of two values: a pre­
defined constant named DIB _P AL_ COLORS, or a predefined constant
named DIB_RGB_COLORS. If you specify DIB_PAL_COLORS in the
fuColorUse parameter, the DIB's color table is implemented as an
array of 16-bit indexes into the currently realized logical palette. If
you specify DIB_RGB_COLORS, the DIB's color table contains literal
RGB values.

The syntax of the SetDIBitsToDevice function is identical to that of the
StretchDIBits function, except that it does not require a pair of parameters
specifying the size of the destination bitmap. Here is the SetDIBitsTo­
Device function:

int SetDIBitsToDeviee(HDC hde, int XDest, int YDest, int ex,
int ey,int XSre, int YSre, UINT uStartSean, UINT eSeanLines,
void FAR* lpvBits, BITMAPINFO FAR* lpbmi, UINT fuColorUse)

Using the SetDIBitsToDevice Function
The following example shows how an application can call SetDIBits-

ToDevice:

SetDIBitsToDeviee(hde, 0, 0, lpbi-)bmeiHeader.beWidth,
lpbi~)bmeiHeader.beHeight, 0, 0, 0,
lpbi-)bmeiHeader.beHeight,
pBuf, (BITMAPINFO FAR*) lpbi,
DIB_RGB_COLORS);

419

Learn Visual C++ Now

420

The hdc parameter identifies the device context of the target output de­
vice; SetDIBitsToDevice uses this information to identify the screen and
determine the correct color format for the device bitmap.

The next two parameters specify the point on the display surface at which
Se~DIBitsToDevice will begin drawing the bitmap-in this case, the origin
of the device context itself. The fourth and fifth parameters supply the
width and height of the bitmap.

The sixth and seventh parameters specify the first pixel in the source
bitmap to be set on the display devic~-in this case, both are 0, so SetDI­
BitsToDevice begins with the first pixel in the bitmap buffer.

The next two parameters are used to define the number of bands in the bit­
map. The uStartScan parameter is set to 0, indicating that the beginning
scan line should be the first in the buffer; the cScanLines parameter is set
to the height of the bitmap. As a result, the entire source bitmap will be
set on the display surface in a single band.

The image bits are contained in the pBufbuffer, and the lpbi parameter
supplies the BITMAPINFO data structure that describes the color format of
the source bitmap.

The last parameter is a usage flag that indicates whether the bitmap color
table contains actual RGB color values or indexes into the currently real­
ized logical palette-in this case, the DIB_RGB_COLORS argument specifies
that the color table contains explicit color values.

Example: The DIBIDEMO Program
This chapter's second sample program, named DIBDEMO, uses device­
independent bitmaps to create an animated screen display. Figure 10-14

shows the window that opens when you run the DIBDEMO program.

The DIBDEMO program uses sprite animation to move a balloon image
over a complex background. Both the balloon sprite and the background

10: Visual C++ Graphics

bitmap are implemented as DIBs. You move the balloon sprite by pressing
the arrow keys.

Figure 10-14. The DIBDEMO program's screen display.

How the DIBDEMO Program Works
The DIBDEMO program, like the GRAFDEMO program presehted earlier
in this chapter, is-built on a framework generated by AppWizard and uses
AppWizard's conventional document-and-view architecture. Most of
DIBDEMO's drawing operations take place in the DIBVIEW.CPP and DIB­
DOC.CPP files. The DIBVIEW.CPP file implements the program's view ob­
ject, and the DIBDOC.CPP file implements the program's document object.

The DIBDOC.CPP file contains some of the procedures for loading, initial­
izing, and manipulating DIB files. The rest of the program's DIB-related
functions are defined and implemented in a pair of files that define and
implement a DIB class. These two files are named MDIB.H and MDIB.CPP.

Loading DIBs into Memory
In a Visual C++ program, you can load conventional DDBs into memory by
calling the member function CBitmap::LoadBitmap. Loading a DIB into
memory takes a little more work: first you must initialize a BITMAPINFO
structure, and then you must create a file in which you can store the DIB.

421

Learn Visual C++ Now

422

Next you must open your DIB file, compute the size of the file, and then
copy the file into memory. Last you must close your DIB file.

The DIBDEMO program loads DIBs into memory by executing three func­
tions that are implemented in the program's DIBVIEW.CPP file. A function
named LoadBkgDIB loads the program's background bitmap, a function
named Loa dIm age loads a sprite into memory, and a function named Load­

MaskDIB loads a bitmap mask used for transparent copying.

Listing 10-8 shows how the LoadBkgDIB, Loa dIm age, and LoadMaskDIB

functions work in the DIBDEMO program.

void CDIBDemoView::LoadBkgDIB(CDC *pDC)
{

}

CDIBDemoDoc* pDoc = GetDocument();

II copy background DIB from disk
BaaL bRetVal = pDoc-)LoadBkgDIB(m_pDIBBkg. "res\\space.bmp");
ASSERT(bRetVal) ;
ASSERT_VALID(m_pDIBBkg);

II set background DIB's attributes
m_pDIBBkg-)SetDIBInfo();

II get some of those attributes
m_bkgScanLines = m_pDIBBkg-)GetNrScanLines();
m_lpBkgBits = m_pDIBBkg-)GetPVBits();
m_lpBkgBitsInfo = m_pDIBBkg-)GetBitsInfo();
m_bkgDIBWidth = m_pDIBBkg-)GetDIBWidth();
m_bkgDIBHeight = m_pDIBBkg-)GetDIBHeight();

void CDIBDemoView::LoadImageDIB(CDC *pDC)
{

CDIBDemoDoc* pDoc = GetDocument();

II copy background DIB from disk
BaaL bRetVal = pDoc-)LoadImageDIB(m_pDIBImage.

"res\\balloons.bmp");
ASSERT(bRetVal);
ASSERT_VALID(m_pDIBImage);

II set background DIB's attributes
m_pDIBImage-)SetDIBInfo()
II get some of those attributes
m_im'ageScanLines = m_pDIBImage-)GetNrScanLines();

Listing 10-8. The LoadBkgDIB, Loadlmage, and LoadMaskDIB functions.

10: Visual C++ Graphics'

}

m_lpImageBits = m_pDIBImage->GetPVBits();
m_lpImageBitsInfo = m_pDIBImage->GetBitsInfo();
m_imageDIBWidth = m_pDIBImage->GetDIBWidth();
m_imageDIBHeight = m_pDIBImage->GetDIBHeight();

m_bmWidth = m_imageDIBWidth;
m_bmHeight = m_imageDIBHeight;

void CDIBDemoView::loadMaskDIB(CDC *pDC)
{

}

CDIBDemoDoc* pDoc = GetDocument();

II copy background DIB from disk
BOOl bRetVal = pDoc->loadMaskDIB(m_pDIBMask.

"res\\balloonm.bmp");
ASSERT(bRetVal);
ASSERT_VAlID(m_pDIBMask);

II set background DIB's attributes
m_pDIBMask->SetDIBInfo();

II get some of those attributes
m_maskScanlines = m_pDIBMask->GetNrScanLines();
m_lpMaskBits = m_pDIBMask->GetPVBits();
m_lpMaskBitsInfo = m_pDIBMask->GetBitsInfo();
m_maskDIBWidth = m_pDIBMask->GetDIBWidth();
m_maskDIBHeight = m_pDIBMask->GetDIBHeight();

Each of these three functions loads a DIB by calling another function. The
three functions called in Listing 10-8 are implemented in the CDIBDEMO­
DOC .CPP files. These three functions are named CDIBDemoDoc::Load­

BkgDIB, CDIBDemoDoc::LoadlmageDIB, and CDIBDemoDoc::LoadMaskDIB.

Copying and Displaying DIBs
The DIBDEMO program displays DIBs by executing a function named
DrawPlayer. The DrawPlayer function is similar in many ways to the
function of the same name used in the GRAFDEMO program. The main
difference, as you might guess, is that DIBDEMO moves DIBs to and from
memory by calling DIB-related member functions, and it displays them by
calling DIB-related functions.

423

Learn Visual C++ Now

424

The StretchDIBits Member Function
Each time the DIBDEMO program opens a window, it draws a background
bitmap by calling the Windows API function StretchDIBits. Then it uses a
mask-copying operation to draw a figure over the background bitmap. It
animates the figure using an animation sequence similar to the one used in
the GRAFDEMO program.

In the DIBDEMO program's DrawPlayer member function, the StretchDIBits
function is called several times. For example, in the CDIBDemo Vie w::Dra w­

Backdrop member function, the StretchDIBits function copies a sprite into
another bitmap, reversing the sprite's colors, as shown here:

II paint bitmap to screen
void CDIBDemoView::DrawBackdrop(CDC* pDC)
{

}

CDIBDemoDoc* pDoc = GetDocument();

if (m_needsRedraw) {

}

int retVal = ::StretchDIBits(pDC->m_hDC,
0, 0, 640, 480,
0, 0, (int) m_bkgDIBWidth, (int) m_bkgDIBHeight,
(const void far*) m_lpBkgBits,
(LPBITMAPINFO) m_lpBkgBitslnfo,
DIB_RGB_COLORS, SRCCOPY);

ASSERT(retVal = m_bkgScanLines);
m_needsRedraw = FALSE;

The DIBDEMO program's DrawPlayer member function also uses the stan­
dard bitmap-copying function BitBlt. When a sprite has moved, this BitBlt
function copies the changed portion of a memory bitmap to the screen.

The DIBDEMO program implements the DrawPlayer member function in
the file DIBVIEW.CPP, as shown in Listing 10-9.

void CDIBDemoView::DrawPlayer(CDC *pDC)
{

CRect rect, winRecti updateRect, tempRect;
CBitmap *pOldMapMem;

CDIBDemoDoc* pDoc = GetDocument();

Listing 10-9. The DrawPlayer member function.

10: Visual C++ Graphics

II select bitmaps into current device context,
II and save previous.bitmaps
m_pOldMapZ = m_dcPlayer.SelectObject(m_bmlmage);
m_pOl/dMapMask = m_dcMask. Sel ectObject(m_bmMask);
m_pOldMapBkg = m_dcBkg.SelectObject(m_bmBackground);

II m_bmBkg is a player-size bitmap defined earlier
pOldMapMem = m_dcBackdrop.SelectObject(&m_bmBkg);

II set smallest clipping rectangle
pDC->IntersectClipRect(m_invalidRect.left, m_invalidRect.top,

m_invalidRect.right, m~invalidRect.bottom);

II (1) copy portion of background to m_dcBackdrop
SetDIBitsToDevice(m_dcBackdrop.m_hDC,

0, 0, m_bigRect.right, m_bigRect.bottom, m_invalidRect.left,
480 - (m_invalidRect.top) - m_zoomHeight, 0, m_bkgScanLines,
m_lpBkgBits, m_lpBkgBitslnfo, DIB_RGB_COLORS);

II invert colors in bitmap
m_dcBackdrop.BitBlt(0, 0, m_bigRect.right, m_bigRect.bottom,

NULL, 0, 0, DSTINVERT);

II (2) draw mask to m_dcBackdrop
StretchDIBits(m_dcBackdrop.m_hDC,

0, 0, (int) m_bigRect.right, (int) m_bigRect.bottom,
0, 0, (int) m_maskDIBWidth, (int) m_maskDIBHeight,
(const void far*) m_lpMaskBits, (LPBITMAPINFO) ffi-lpMaskBitslnfo,
DIB_RGB_COLORS, SRCAND);

II (3) draw player to m_dcBackdrop and .invert destination
StretchDIBits(m_dcBackdrop.m_hDC,

0, 0, (int) m_bigRect.right, (int) m_bigRect.bottom,
0, 0, (int) m_imageDIBWidth, (int) m_imageDIBHeight,
(const void far*) m_lplmageBits,
(LPBITMAPINFO) m_lplmageBitslnfo, DIB_RGB_COLORS,
SRCINVERT) ;

II .(4) copy changed portion of m_dcBackdrop to screen
pDC->BitBlt(m_invalidRect.left, m_invalidRect.top,

m_invalidRect.right, 480 - (m_invalidRect.top) -
m_zoomHeight,

&m_dcBackdrop, 0, 0, SRCCOPY);

II restore m_dcBackdrop to its previous use
m_dcBackdrop.SelectObject(pOldMapMem);

(continued)

425

Learn Visual C++ Now

426

Listing 10-9. continued

}

II return old bitmaps to current device contexts
m_dcPlayer.SelectObject(m_pOldMapZ);
m_dcMask.SelectObject(m_pOldMapMask);
m_dcBkg.SelectObject(m_pOldMapBkg);

What's Next?
This completes your quest to learn Visual C++. You haven't learned all
there is to know, but if you have absorbed even half of what you have en­
countered in these chapters, you certainly have a good start.

What's next? That's up to you. Visual C++ 1.0 is a 16-bit programming
package that has been vastly improved in many areas since it was intro­
duced in 1994. The newest versions of Visual C++ are 32-bit programming
packages with an enormous number of new features, including a new
Developer Workshop environment that has replaced Visual Workbench;
a Component Gallery, which makes Visual C++ code even more reusable
by encapsulating classes and objects into portable components; and OLE
controls, which leave the old 16-bit VBX controls in the dust.

If you don't want to rush right out and buy a 32-bit version of Visual C++
just yet, that's fine; you can while away many a rainy afternoon with ver­
sion 1.0 on the companion CD-ROM. But if you like what you've seen so
far and want to move on to something even more challenging and even
more fun-well, you know what to do.

Happy programming!

To help you continue your study of Visual C++ and object-oriented pro­

gramming, here is a list of suggestions for further reading. The titles in the

list cover a broad range of topics, including the C and C++ programming

languages, game programming, and application development.

Andrews, Mark. C++ Windows NT Programming. New York: M & T Books,
1995.

---. Migrating to Windows 95. Boston: Academic Press, 1996.

---. Visual C++ Object-Oriented Programming. Carmel, Ind.: Sams, 1993.

Atkinson, Lee, Mark Atkinson, and Ed Mitchell: Using Microsoft C/C++ 7.
Carmel, Ind.: Que, 1992.

Barkakati, Nabajyoti. Microsoft C/C++ 7 Developer's Guide. Carmel, Ind.:
Sams, 1992.

---. Object-Oriented Programming in C++. Carmel, Ind.: Sams, 1989.

Booch, Grady. Object Oriented Design. Redwood City, Calif.: Benjamin/
Cummings, 1991.

Christian, Kaare. The Microsoft Guide to C++ Programming. Redmond,
Wash.: Microsoft Press, 1992.

Custer, Helen. Inside Windows NT. Redmond, Wash.: Microsoft Press, 1992.

Dewhurst, Stephen C., and Kathy T. Stark. Programming in C++. Upper
Saddle River, N.J.: Prentice Hall PTR, 1995.

Ellis, Margaret A., and Bjarne Stroustrup. The Annotated C++ Reference
Manual. Reading, Mass.: Addison-Wesley, 1990.

Finlay, Mark. Getting Graphic. New York: M & T Books, 1993.

Hansen, Augie. C Programming: A Complete Guide to Mastering the C
Language. Reading, Mass.: Addison-Wesley, 1989.

---. Learn C Now. Redmond, Wash.: Microsoft Press, 1988.

Hansen, Tony 1. The C++ Answer Book. Reading, Mass.: Addison-Wesley,
1990.

Hunter, Brute H. Understanding C. Berkeley, Calif.: Sybex, 1984.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language,
2d ed. Englewood Cliffs, N.J.: Prentice-Hall, 1985.

King, Adrian. Inside Windows 95. Redmond, Wash.: Microsoft Press, 1994.

Klein, Mike. DLLs and Memory Management. Carmel, Ind.: Sams, 1992.

427

Learn Visual C++ Now

428

Kruglinski, David. Inside Visual C++, 3d ed. Redmond, Wash.: Microsoft
Press, 1995.

Lafore, Robert. Object-Oriented Programming in Microsoft C++. Corte
Madera, Calif.: The Waite Group, 1995.

Lampton, Christopher. Gardens of Imagination. Corte Madera, Calif.: The
Waite Group, 1992.

Lippman, Stanley B. C++ Primer. Reading, Mass.: Addison-Wesley, 1990.

Lyons, Eric R. The Black Art of Windows Game Programming. Corte Madera,
Calif.: The Waite Group, 1995.

Microsoft Corporation. Microsoft Foundation Class Library Reference.
Redmond, Wash.: Microsoft Press, 1994.

---. Microsoft Visual C++ Language Reference. Redmond, Wash.:
Microsoft Press, 1994.

---. Microsoft Visual C++ Programming with MFC and Win32. Redmond,
Wash.: Microsoft Press, 1994.

---. Microsoft Visual C++ Run-Time Library Reference. Redmond, Wash.:
Microsoft Press, 1994.

---. Microsoft Visual C++ User's Guide. Redmond, Wash.: Microsoft
Press, 1994.

---. Microsoft Win32 Programmer's Reference. Vols. 1-5. Redmond,
Wash.: Microsoft Press, 1993.

Murray, William H. III, and Chris H. Pappas. Microsoft C/C++ 7: The Com­
plete Reference. Berkeley, Calif.: Osborne McGraw-Hill, 1992.

Perry, Greg. Absolute Beginner's Guide to C Programming. Carmel, Ind.,
1994;

Rector, Brent E. Developing Windows 3.1 Applications with Microsoft C/C++,
2d ed. Carmel, Ind.: Sams, 1992.

Schildt, Herbert. C++: The Complete Reference. Berkeley, Calif.: Osborne
McGraw-Hill, 1991.

Siegel, Charles. Teach Yourself C, 2d ed. Portland, Oreg.: MIS Press, 1993.

Stevens, AI. Teach Yourself C++, 3d ed. New York: MIS Press, 1993.

Thompson, Nigel. Animation Techniques in Win32. Redmond, Wash.:
Microsoft Press, 1995.

Walnum, Clayton. Dungeons of Discovery. Indianapolis: Que Corporation, n.d.

Wiener, Richard S., and Lewis J. Pinson. The C++ Workbook. Reading, Mass.:
Addison-Wesley, 1990.

SIP.ecDa~ Chan-aciters
alrnd ~\h.!I m Iblelrs __ ~_
+ (addition operator), 108, 109-11
&. (ampersand symbol), 55, 57-58, 152, 302
-> (arrow operator), 54
« (arrow symbols), 56
= (assignment operator), 108
* (asterisk symbol), 53-54, 60
-- (decrement operator), 109
. (dot operator), 54, 114
» (extraction operator), 260-62
++ (increment operator), 109
« (insertion operator), 260-62
//{{ and /I}} (message map declarations), 232, 233
(preprocessor symbol), 63
:: (scope resolution operator), 70, 79-80,112-13
; (semicolon character), 234
- (subtraction operator), 108
- (tilde symbol), 73
8-bit to 32-bit color modes, 368-69
16-bit or 32-bit programming environments, 143

A
About dialog box (application frameworks), 134
abstract classes, 86, 104-5
accelerator keys, 152, 227
access specifiers, 66, 67-71, 89
Add Class dialog box (ClassWizard), 316
AddDocTemplate function, 189, 197, 198
Add function, 250
Add Function button (ClassWizard), 225
addition operator (+), 108, 109-11
Add Member Function dialog box (ClassWizard),

153
Add Member Variables dialog box (ClassWizard),

317
AddPoint function, 246, 248, 249-50
addresses

bitmap data, 403
bitmap objects, 140
obtaining for references,58-60

AddString function, 286, 305, 349
AddTail function, 249
AFX DATA code block, 321, 322
AFX-DATA INIT code block, 321, 322-33
AFX=DATA=MAP code block, 321, 323-24
AFXEXT.H file, 134

Afx functions, 176
AfxGetApp function, 188
afx_msg keyword, 232
AFXWIN.H file, 134
AfxWinlnit function, 188
aligning text in controls, 300, 303, 310
Align Text edit control style, 300
ampersand symbol (&), 55, 152, 302
AND operators, 55, 57-58, 376-77, 378
AnimatePalette function, 413
animation. See sprite animation
AnsiToOem function, 301
APPCORE.CPP file, 187, 189, 191
application frameworks

classes, 131, 180-86
creating, 5-7
document and view objects, 127-28
functions, 176, 182-83
resources, 7-8
running programs, 18
sending messages, 229-30
WinMain function, 186

application .objects, 131, 182. See also applications;
CWinApp class

application programming interface. See Windows
API

application resources. See resources
applications. See also building applications;

compiling applications; debugging
checking for running instances, 34
color palettes, 408
common dialog boxes, 210
compiling and linking, 143
customizing window size and location, 215-19
debug and release versions, 144, 254
handles for instances, 33-34
linking, 146-48
makefile files, 127
MDI and SDI applications (see MDI applications;

SDI applications)
module-definition files, 133
resources, 133
role of MFC library in, 172-74
running and terminating functions, 182-83
starting MFC programs, 185-87
stepping through, 156-57

App Studio, 7-8
adding bitmaps to projects, 134-38
dialog box controls, 293, 298-301
dialog box creation, 314

429

Learn Visual c++ Now

430

App Studio, continued
dialog box design, 279-82
editing menus, 149-52
toolbar button coding, 200-207

App Studio dialog box, 8
AppWizard,5-7

building programs without AppWizard, 28-32
building projects, 144
classes, 131, 180-86
creating projects, 12-14, 126-34
document and view objects, 127-28, 184
printing functions, 357
project files for typical project, 132-34
serialization support, 263
wri ting programs, 14-19

AppWizard dialog box, 6, 15, 128
ARCHES.BMP, 126, 135
archive objects, 262-63. See also CArchive class
arguments

argument matching, 106
const arguments, 63, 64
default function arguments, 74-75

arrays
allocating memory, 122
bitmap arrays in GRAFDEMO program, 386
classes, 177
collection classes, 255
const arrays, 63
image bits arrays, 400-401
RGBQUAD structure, 407
sprite and mask arrays, 385-86
strings for list boxes, 305

. stroke data arrays, 241, 242, 252
arrow operator (-», 54
arrow symbols(«), 56
ASSERT macros, 255
assignment operations in C and C++, 61-62
assignment operator (=), 108
Auto HScroll edit control style, 300
AutoLoad function, 286, 297-:-98

. Auto radio button property, 305
Auto VScroll edit control style, 300

B
background bitmaps. See also bitmaps

erasing sprites, 381-82
loading, 139,422-23
masking bitmaps, 377-79
repainting, 383-84, 391-92

background color of dialog boxes, 276
background windows, 412
bands in bitmaps, 420
base classes, 84

abstract classes as, 86, 105
constructing derived classes, 90-91
derived class example (Listing 4-1), 86-88
examining in Source Browser, 145
hierarchies of classes, 85-86
nonvirtual functions and, 98
rules of inheritance, 88-89

BEGIN_MESSAGE_MAP macro, 214, 234
BeginPaint Windows API function, 45
bfOffBits field, 403
bfReservedl and 2 fields, 403
bfSize field, 403
bfType field, 402
biBitCount field, 405
biC1rImportant field, 406
biC1rUsed field, 406
biCompression field, 405
biHeight field, 405
binary code, 10
binary files, 146
binding

bind mode in build process, 148
types of binding, 99, 100

biPlanes field, 405
biSize field, 405
biSizeImage field, 406
BitB1t function

background bitmaps, 392
copying and displaying bitmaps, 142, 374-79,

381-82
in DIBDEMO program, 424
in GRAFDEMO program, 386-87

BITMAP data structure, 372
Bitmap editor (App Studio), 134
BITMAPFILEHEADER structure, 400-401, 402-3
BITMAPINFOHEADER structure, 400-401, 405-7
BITMAPINFO structure, 400-401, 406-7, 419, 421
bitmaps

animation
masking, 377-79
moving onscreen, 394-96
sprite animation, 379-80
step animation, 385-86

arrays, 386
CBitmap class, 138, 139-40, 371

bitmaps, continued
compression, 405
constructors and destructors, 140, 389-90
copying and displaying, 138-43

avoiding flickering, 382-83
copying speed, 370
displaying on screen, 374-79, 392-94,

414-15,423
drawing in windows, 141-42
monitors and resolution, 367-69
raster operations, 374

creating
with AppWizard, 133
with commercial applications, 417
in memory, 139

DDBs (see DDBs)
DIBDEMO program, 420-26
DIBs (see DIBs)
file size, 403
file types, 402
frame buffers, 381-82
importing, 135-36
loading into memory, 373, 390-91,421-23
resources

adding to projects, 134-38
dialog box buttons, 286
loading resource bitmaps, 139-40
owner drawn buttons, 296:-98

saving, 373
selecting into device contexts, 388
size and color information, 403, 405

bands, 420
bounding rectangles, 383-84, 396-97
color planes, 371
coordinates, 418
height and width, 142
inverting colors, 380
solid-color bitmaps, 210-12

biWidth field, 405
biXPelsPerMeter field, 406
biYPelsPerMeter field, 406
BLACKNESS ROP code, 376
blackout periods in screen display, 383
blue values in bitmaps. See RGBQUAD structure
.BMP files, 133. See also bitmaps
borders

on edit controls, 300
on windows, 46

bounding rectangles, 252, 383-84, 396-97

breakpoints, 4, 156
Breakpoints command (Workbench), 156
Browser, Source, 145-46
Browser database files (.BSC), 14, 145
brush patterns in bitmaps, 376-77
.BSC files, 14, 145
Build command (Workbench), 127, 143
building applications, 10-11

AppWizard application frameworks, 18
compiling, 143
debug and release modes, 144
linking, 143, 146-48
makefile files in process, 127
method overview, 28-32

button controls in dialog boxes, 180, 293-96
buttons ~n toolbars, 201-7
BYTE data type, 267

c
C++ programming language. See also Microsoft

Visual C++
allocating and deallocating memory, 121-22
assignment operations, 61-62
classes, 65-82
compiler, 143-44
const qualifier, 63
data abstraction, 52
data encapsulation, 51-52
if statements, 38
inheritance, 51
initialization statements, 61-62
as object-oriented, 50-52
operator overloading, 56
polymorphism, 95
qualifiers, 60-65
transporting code to other platforms, 167-68
type specifiers and data types, 52-60
window classes and C++ classes compared, 37
Windows-based programs and C++ compared, 51

call-stack debugging feature, 158
Cancel button (application frameworks), 285, 286
Caption edit box (App Studio), 151
Caption property, 294, 302, 304, 309
captions on message boxes, 292
CArchive class, 177, 254,262-63
CArchiveException class, 178, 268
carriage return settings, 301
cascading dialog boxes, 289-90

Index

431

Learn Visual C++ Now

432

casting
data types, 267; 356
GetDlgltem function, 345

CBitmap class, 138, 139-40, 371
CButton class, 180, 183, 294
CByteArray class, 255
CClientDC class, 180, 245,413
CCmdTarget class, 178, 181-82, 230
CCmdUI class, 178
CColorDialog class, 179, 211
CControlBar class, 183
CCreationDoc class (CREATION program), 334-36,

338,354
CCreationView class (CREATION program), 334-36
CDataExchange class, 324, 325-26
CDC class, 180, 360-61, 374-79
CDialog class, 179

dialog box support, 278-79
header and implementation files, 282
instantiating dialog boxes and controls, 183
message handling, 224
modal and modeless dialog boxes, 287

CDlgCreate class (CREATION program), 333-36,
338,340

CDlgEquipment class (CREATION program),
333-36,347

CDlglnfo class (CREATION program), 333-36, 352
CDocTemplate class, 178-79, 185-86, 197. See also

document templates
CDocument class, 12, 179, 184-85. See also

document objects; documents
creating document objects, 127-28
data management functions, 131
implementing serialization, 263
message handling, 182

CD-ROM contents and installation, xv, xvii-xx
CDumpContext class, 178, 254
CDWordArray class, 241, 242, 250, 266
CEdit class, 180, 298
CEditViewclass, 179, 195
CenterWindow function, 290
CException class, 178
CFile class, 177

file 1/0, 257-59
file management, 256
serialization mechanism, 262-63

CFileDialog class, 179
CFileException class, 178
.C files, 13, 143, 148. See also implementation files;

source files

CFileStatus class, 254
CFindReplaceDialog class, 179
CFontDialog class, 179
CFormView class, 179, 195, 216
CFrameWnd class, 179, 183. See also window

classes
instantiating windows, 183
main frame windows, 194
message handling, 182, 224
in SDI applications, 131

CGA cards, 368
CGdiObject class, 138, 371
Character Information dialog box, 332-33, 352-53
characters (CREATION program)

age validation, 331, 342-44
Character Information dialog box, 332-33,

352-53
character names, 330
Create A Character dialog box, 338-46
stats,356

characters (text)
edit control text, 300
OEM character set, 301

check boxes, 309-10
check marks on menus, 207-9
child windows

creating, 40
CWnd class, 183
menus and menu items, 149-52
messages, 226
size and location, 196, 215, 218, 219

cin 1/0 connection, 260
class data type, 53. See also classes
classes. See also ClassWizard; names of individual

classes
access specifiers, 66
AppWizard class creation, 131, 170, 180-86
C++ classes, 37
class code example (Listing 3-4), 67-71
ClassWizard overview, 8-9
collection classes, 241, 255, 265, 347
constructors and destructors, 71-78, 90-91
CREATION program classes, 333-36
declaring, 65-66, 69, 89
derived classes, 84-86, 85-86

abstract classes, 86, 104-5
base classes, 84
CObjectclass,253-55

classes, derived classes, continued
constructing (Listing 4-2), 90-91
declaring, 89
hierarchy example (Listing 4-1), 86-88
MFC library class hierarchy, 11, 175-86
overriding member functions, 91-95
parent classes, 84
root classes, 176, 177
rules of inheritance, 88-89

examining in Source Browser, 145
friend classes, 117-21
functions

friend classes and functions, 117-21
inline member functions, 67
nonvirtual functions, 98
overriding member functions, 91-95
pure virtual functions, 104-5
static member functions, 116-17
virtual functions, 95-105

initializer lists, 78
message handlers, 237-41
message maps for classes, 234
MFC library classes, 11, 175-86
MFC library class source code, 187-88
naming conventions, 130, 176
scope resolution operator, 79-80
static member variables, 111-15
structs compared to classes, 65
this pointer, 81-82
window classes, 37-40, 131, 179
writing reusable code, 51

Classes dialog box (AppWizard), 17, 129-30
class libraries. See library files CLIB); MFC library
ClassWizard,8-9

code inside message-map symbols, 233
DDX/DDV support, 314
dialog box design, 282
dialog box edit controls, 298
editing code, 208
menu and menu item functions, 205, 207
message handlers, 152-54

command messages, 227
compared to switch stateme:q.ts, 225
creating handlers, 237-41
recognized messages, 235-37

message maps, 232, 240-41
uneditable functions, 344

Class Wizard dialog box, 9, 153
clearing windows, 270-71

client areas of windows, 45
CClientDC class, 413
updating, 237
view classes, 179

CListBox class, 305
Close function, '259
closing

Close boxes, 285
dialog boxes, 291, 350-51
files, 259, 268-70
windows, 237

CLUT (color lookup tables), 368, 408
CMainFrame class, 131, 132, 183
CMDIChildWnd class, 179, 219, 224. See also

window classes
CMDIFrameWnd class, 179, 183. See also window

classes
instantiating windows, 183
main frame windows, 194
in MDI applications, 131
message handling, 224

CMemFile class, 177, 256, 257
CMemoryException class, 178
CMemoryState class, 178, 254
CMenu class, 180
CMetaFileDC class, 180
CModalDlg class (DLGDEMO program), 283
CModelessDialog class, 287
CMultiDocTemplate class, 179,197-98, 199
CObArray class, 177, 255. See also collection

classes
CObject class, 181, 253-55

DIB functionality, 398
as root class, 176, 177
serialization support, 262, 353

CObList class, 241. See also collection classes
as collection class, 177, 255
position of objects in, 252
storing lists, 242
storing stroke data, 265

code
duplication in Windows API and MFC library,

174-75
reusability, 167
types of code defined, 10

collection classes, 177, 241. See also CObList class;
CStringList class

list box operations, 347
MFC library support for, 255
in SCRIBBLE program, 265

Index

433

Learn Visual C++ Now

434

color. See also color bitmaps; color palettes; color.
tables (DIEs)

dialog box background color, 188
displaying

bits per display pixel, 371
device contexts and bitmaps, 372-73
monitor resolutions, 367-69
screen colors in DDBs and DIEs, 370

window background color, 210-11
color bitmaps

creating, 372 .
inverting color, 380-81
number of colors in bitmaps, 405
screen colors in DDBs and DIEs, 370

solid-color bitmaps, 210-12
Color dialog box (Windows), 210-11
color graphics adapter cards, 368
color indexes, 406
color lookup tables (video cards), 368, 408. See also

color tables (DIEs)
color palettes, 407-8

App Studio palette, 137
default logical palettes, 409
deleting palette objects, 411
in DIE DEMO program, 412-13
in DIEs, 400-402
identity palettes, 415-16
logical palettes, 410-11, 414-15
for multiple windows, 412
selecting into device contexts, 410
system palettes, 409

color planes, 371, 405

color tables (DIEs), 397, 400-401. See also color
lookup tables (video cards)

in BITMAPINFO structure, 406-7
calculating size, 404-5
color indexes, 406
color palettes, 401-2
matching to logical palettes, 414
parameters for DIEs, 419, 420

RGBQUAD structures in, 407
sorting for identity palettes, 416
types, 401-2

combo boxes, 307-8
command lines, 182, 189
command messages, 227-30
command-related classes, 178
commands on menus

adding, 205
handling messages, 181-82
keyboard shortcuts, 152

commenting code, 4, 16
common Windows dialog boxes, 179, 210-11

compatibility of code across platforms, 167-68
compiled resource script files (.RES), 133
Compile File command (Workbench), 143

compiling applications, 143
. in build process, 10, 148

compile modes, 148
compiler-created constructors, 72
debug and release modes, 144
without linking, 143
makefile files, 133
MFC library compiler independence, 168
Microsoft Visual C++ compiler, 143-44

virtual functions and compilers, 100
compressed bitmaps, 405
concatenation operator, 109
constants

lists of named constants, 53
predefined constants, 39

canst qualifier, 61-62, 63-65

CONSTRCT.CPP (Listing 4-2), 90-91
constructors, 71-78

bitmaps, 140, 389-90
copy constructors, 75-78
in CREATION program, 336-38
default function arguments example (Listing

3-5),74-75
default or null constructors, 72
defining, 73
derived classes example (Listing 4-2), 90-91
document templates, 199
explicit constructors, 72
friend classes, 120
modal dialog boxes, 282-83
modeless dialog boxes, 287-88
overloading, 108

control classes, 180

control-notification messages, 226
Control palette (App Studio), 280-81
controls in dialog boxes

adding, 280-81

binding to variables, 324
button controls, 293-96
calculating values, 346
check boxes, 309-10
classes, 179, 180, 279

combo boxes, 307-8
control-notification messages, 226
edit controls, 298-301

controls in dialog boxes, continued
initializing, 284, 341-42, 351
instantiating, 183
list boxes, 305-7,347-51
managing data (see DDX/DDV mechanisms)
owner drawn buttons, 296-98
radio button controls, 303-5
read-only controls, 333
static text controls, 301-3
tab order, 281-82

coordinates
device and logical coordinates, 244-45
portions of bitmaps, 376, 418

copy constructors, 75-78

copying
bitmaps, 374-79

avoiding flickering, 382-83
DIBs, 397-98,417-18
in GRAFDEMO program, 386-87
ROP options, 377
to screen, 139,414-1~,417-19,423

data (see also DDX/DDV mechanisms)
control data to variables, 325-27
list box data, 349-50

values to controls, 351, 352-53
variable data to controls, 325-27

cout« construct, 56, 260
CPaintDC class, 180
CPen class, 253

CPlayer class (CREATION program), 334-36
character information, 338
constructing objects, 336-38
serialization, 354-56

CPoint class, 178, 240, 254
.CPP files, 13, 143. See also implementation files;

source files
APPCORE.CPP, 187, 189, 191

in build process, 148
created and named by AppWizard, 17
in SCRAMBLE project, 132-34
typing in source code, 29
WINMAIN.CPP, 187

CPrintDialog class, 179, 361
CPrintInfo class, 360-61
C programming language

allocating and deallocating memory, 121, 122
assignment operations, 61-62
C and object-oriented programming compared,

51-52
compiler, 143

C programming language, continued
const qualifier, 63
derefencing pointers, 60
"Hello, world!" program, 22-24
initialization statements, 61-62
inline member functions and macros compared,

67
macros, 67, 175
nonpointer variables and references compared,

58
qualifiers, 60-65
Windows-based programs and C compared, 23

CPtoLP function, 244
CPtrArray class, 255
CPtrList class, 255
CPYCONST.CPP (Listing 3-6), 77-78

CREATDOC.CPP file, 336, 353
CreateBitmap function, 371-72
CreateBitmaplndirect class, 372

CreateCompatibleBitmap function, 372-73, 388
CreateCompatibleDC function, 387
CreateDIBitmap Windows API function, 416

CreateDiscardableBitmap class, 372
Create function, 288
CreatePalette Windows API function, 410
CreatePen Windows API function, 45,273
CREATESTRUCTstructure, 218
Create Window Windows API function, 40-41
CREATION program, 329-53

Character Information dialog box, 332-33,
352-53

classes and views, 333-36
Create A Character dialog box, 330-31, 338-46
data storage, 335
list box operations, 347-51
Mel's Bait Shop dialog box, 331-33, 347-51
printing support, 356-63
Serialize function, 353-56

CREATVW.CPP file, 339, 358-60
CRect class, 178, 254, 266
CRollDice class (CREATION program), 333-36

CRuntimeClass class, 198, 199, 254
CRuntimeClass structure, 181
CScrollView class, 179, 184-85, 195, 213
CS_HREDRAW constant, 39
CSingleDocTemplate class, 179, 198

CSize class, 178, 197, 254
CStatic class, 180
CStdioFile class, 177, 256, 257
CStringArray class, 255

Index

435

Learn Visual C++ Now

436

CString class, 178, 254, 305
CStringList class, 177, 255, 347. See also collection

classes
CStroke class, 249-50, 264-66
CS_ VREDRA W constant, 39
CTime class, 178, 254
CTimeSpan class, 178, 254
CToolbar class, 183
cursor shape, 40
cutout masks, 378
CView class, 12, 184-85. See also view classes

AppWizard printing functions, 357
creating view objects from, 127-28, 131
deriving from CWnd class, 183
drawing bitmaps in windows, 141
instantiating windows, 183
message handling, 182, 224
scrolling views, 195
as view class, 179

CWinApp class, 12, 177, 182-83
creating application objects from, 131
InitInstance member function, 188-89
message handling, 182
viewing MFC library source code, 187

CWindowDC class, 180
CWnd class, 179, 182, 183, 224. See also window

classes
.CXX files, 13. See also implementation files;

source files

--_ .•. _ .. _------
data

copying with copy constructors, 76
data display, 127-28, 131, 184-85, 192-97
data management classes, 184-85
document object management, 131, 192-93
managing in applications, 131
managing in dialog boxes (see DDX/DDV mecha­

nisms)
storing and retrieving text, 353-56

data abstraction, 52
data encapsulation, 51-52, 70
data-exchange objects, 324
data streaming, 259-61
data structures, 51, 75. See also struct data type
data types, 52-60, 267. See also names of

i!ldividual data types
date information, 178
D bitmap identifier, 298

DC handles, 45
DCs. See device contexts
DDBs, 369, 371

animating, 394-96
attributes, 371
bounding rectangles, 383-84, 396-97
color representations, 370
constructors, 389-90
copying bitmaps, 374-79
creating, 371-73
drawing on screen, 374-79, 392-94
frame buffers, 381-82
GRAFDEMO program, 386-97
loading and saving, 373

DDV_AgeCheck function (CREATION program),
342-44

DDX/DDV mechanisms, 282, 284, 313
in CREATION program, 339-42
endless loop problems, 345
implementing support, 321-25
list box operations, 347-51
in TESTAPP program, 315-21, 327-28
UpdateData function, 325-28
validating data, 342-45

DDX_Text function, 324, 343, 344
debugging, 155-58

breakpoints, 4, 156
call-stack feature, 158
diagnostic classes, 178
opening debugger windows, 157-58
problems in source files, 21
stepping through programs, 156-57
viewing MFC library source code, 188

debug versions of applications, 144, 254
DECLARE_MESSAGE_MAP macro, 233
DECLARE_SERIAL macro, 267-68, 353, 355
declaring

classes, 69
control variables, 322
copy constructors, 75-76
derived classes, 89
inline member functions, 67
message-handler functions, 239
pointer declarations, 53-54
reference data type, 55
static member functions, 116
static member variables, 113-14

decrement operator (--), 109
deep copy constructors, 76
default button position, 296

Default Button property, 295
default constructors, 72
DEFAULT.CPP (Listing 3-5),74-75
default function arguments (Listing 3-5), 74-75
default logical palettes,. 408, 409
default menu bars, 134
DEFAULT_PALETTE objects, 408, 409

.DEF files, 14, 133, 148. See also module-definition
files (.DEF)

#define directives, 63, 326
defining

constructors, 73
copy constructors, 75-76
examining definitions in Source Browser, 145
static member variables, 113-14

DefWindowProc function, 181-82, 223
DeleteContents function, 271
DeleteObject function, 411
delete operator, 121, 122, 292

deleting
color palette objects, 411
document contents, 271
GDr objects, 143
items in list boxes, 350

message-handler functions, 238
dereference operator (*), 60

dereferencing handles, 34
derived classes, 84, 85-86

abstract classes, 105
compared to switch statements, 95
constructing (Listing 4-2), 90-91

declaring, 89
deriving classes example (Listing 4-1), 86-88
examining in Source Browser, 145
nonvirtual functions, 98
overriding member functions, 91-95
rules of inheritance, 88-89
virtual functions, 95-105
v-table example (Listing 4-5), 101-4

deselecting button controls, 295, 305
destroying
. destructors, 71-73, 140

dialog boxes, 285, 292
windows, 37,224,237

DestroyWindow function, 291
destructors, 71-73, 140
device and logical coordinates, 244-45
device-:context classes, 180. See also CClientDC

class; CDC class; device contexts
device-context handles, 45

device contexts, 43
bitmaps

compatible bitmaps, 372-73
creating DCs for bitmaps, 142
drawing images on screen, 43-47
selecting bitmaps into DCs, 388

classes, 180
device coordinates, 244
handles, 361

printing operations, 360-61
selecting objects into

bitmaps, 388
color palettes, 410
CDr objects, 46

device-dependent bitmaps. See DDBs
device drivers, 43
device-independent bitmaps. See DIBs
device points, 244
diagnostic classes, 178, 181

dialog boxes, 275
App Studio resource management, 134
background color, 188, 276
calculating values, 346
cascading dialog boxes, 289-90
classes, 179
common dialog boxes, 210
components, 278-79
controls (see controls in dialog boxes)
designing with App Studio and ClassWizard,

279-82
instantiating dialog boxes and controls, 183
managing 'data (see DDX/DDV mechanisms)
message boxes, 278, 292-93
modal dialog boxes, 277,282-86
modeless dialog boxes, 277-78, 287-92
tab order, 281-82
templates, 278
types, 277-78

dialog classes, 179. See also CDialog class
dialog data exchange. See DDX/DDV mechanisms
Dialog editor (App Studio), 134
DIBDEMO program, 420-21

bitmap attribute functions, 403-4
bounding rectangles, 384
color palettes, 412-13
copying bitmaps to screen, 423
loading bitmaps into memory, 421-23
MDib class, 398-400
StretchDIBits function, 424-26

DIBDOC.CPP file, 421

Index

437

Learn Visual C++ Now

438

DIB_PAL_COLORS mode, 408, 416, 419
DIB_RGB:....COLORS constant, 416, 419
DIBs, 369-70, 397

bands, 420
color palettes, 412-13
color representations, 370
components, 400-407

BITMAPFILEHEADER structure, 402-3.
BITMAPINFdHEADER structure, 405-6
BITMAPINFO structure, 406-7
color tables, 401-2, 404-5, 414
RGBQUAD structure, 407
splitting sections, 402

copying, 374
bitmap-copying operation speed, 37'0
operations, 397-98
toscreen,417-19,423
writing color values to screen memory,

415-16
creating, 416-20
DIBDEMO program,. 420-26
disadvantages, 398
frame buffers, 381-82
loading, 373,421-23
logical palettes, 410-11, 414
RGB color variables, 402
saving, 373
scan line position, 404
size and color information, 405

DIBVIEW.CPP file, 421, 422-23
DICE.CPP file, 333, 343
direction of friendship declarations, 118
directories

RES directory, 133
storing new projects, 15, 128

disabled button position, 297, 298
Disabled property

button controls, 295
check boxes, 309
combo boxes, 308
edit controls, 299
list boxes, 306
radio button controls, 304
static text controls, 302

disabling Source Browser, 146
disk space for installation, xix
dispatching messages, 229-30
DispatchMessage Windows API function, 25-26, l

191 -

displaying
bitmaps, 138-43, 374-79

onscreen, 367-69
vertical blank interrupts, 383

data
CView class, 127-28, 184-85
view objects, 131, 192-97

windows, 40-42
display units, 215
DLGCREAT.CPP file, 333,342,344
DLGDEMO program

combo boxes, 307
dialog box constructors, 282-83
DoModal function, 284-85
list box strings, 305-6
message boxes, 293
modal dialog boxes, 276, 282-83
modeless dialog boxes, 287-92
OnlnitDialog function, 285-86
owner drawn buttons, 297
static text controls, 301

DLGINFO.CPP file, 333,352
DLGINFO.H file, 352
DLGSUPP.CPP file, 333, 348, 349
DLGSUPP.H file, 347, 348
DLLs, 10, 147-48
document-and-view architecture, 127-28
document classes, 131, 139, 178-79. See also

CDocTemplate class; CDocument class;
CMultiDocTemplate class

document objects, 192-93. See also CDocument
class; documents

AddDocTemplate function, 189
documents and view objects, 193
document templates (see document templates)
file 110 and serialization, 255-59
measurements, 270
message handling, 182

documents. See also document objects; document
templates

closing, 268-70
document objects and view objects, 193
document templates (see document templates)
file 110 and serialization, 255-59
initial size, 270
OnFileNew function, 189
opening, 256-57,268-70
opening more than one, 198
sizes of documents and views, 196
supporting multiple types, 198

document templates, 197-99. See also
CDocTemplate class

associating view and document objects, 185
classes, 179
document type constants, 185
InitInstance function, 182
registering, 182
resource ID numbers, 198-99

document type constants, 185
DoDataExchange function, 323-26, 342-44
DoModal function, 211, 284-85
DoPreparePrinting function, 357
dot operator (.),54,114
double data type, 267
down button position, 297, 298
DPs (device points), 244
DrawBackdrop function (GRAFDEMO program),

392
drawing

bitmaps in windows, 141-42
drawing tools, 137
images in windows, 42-47
strokes, 241, 245-48
toolbar button graphics. 205

drawing object classes, 180
DrawPlayer function (DIBDEMO program), 423,

424-26
DrawPlayer function (GRAFDEMO program),

388-89,392-94,397
DrawStroke function, 252
DrawText Windows API function, 46
drivers, device. 43
drop-down list boxes (combo boxes), 307-8
drop-down menu classes, 180
DSTINVERTROP code, 376
DWORD data type, 241, 267
dwStyle parameter, 41
dynamic binding, 99, 100, 105
dynamic-link libraries, 10, 147-48

E
early binding, 99
Edit Code button (ClassWizard), 208, 225
edit controls, 180, 298-301. See also DDX/DDV

mechanisms
Edit dialog box (Workbench),29-30
editing

menus and menu items, 149-52
resources, 134
variables, 318

Edit Member Variables dialog box (CI~ssWizard),
318

EGA cards, 368
EMPDATA.CPP (Listing 4-5), 101-4, 105
EMPINFO.CPP (Listing 3-4), 67-71
EndDialog function, 285, 290-91
END_MESSAGE_MAP macro, 234
end-of-file markers, 258

. En dPain t Windows function, 47
enhanced graphics adapter cards, 368
Enter List Choices property, 308
enum data type, 53
EOF markers, 258
erasing screen images, 381-82
error messages. displaying in message boxes, 278
errors

compiler error messages, 144
const data type, 62
constructor or destructor return types. 73
exceptions, 258
linker-related errors, 147
type checks on pointers, 122

events
event loops, 24
event messages (see messages)
parameters in MSG structures, 35
sending messages, 222
in Windows-based programs, 24-27

exception classes, 178
exceptions, 178,258
executable files (.EXE), 14

building application frameworks, 18 .
in build process, 10-11, 148
compared to binary files, 146

Execute command (Workbench), 148
.EXE files, 14. See also executable files (.EXE)
extensions, 143, 186. See also individual file

extensions
external functions, 147
external libraries, 10, 147-48. See also library files

(.LIB); MFC library
extraction operator (»), 260-62

F
faster performance. See speed
F bitmap identifier, 298
file classes, 177. See also CArchive class; CFile

class; CMemFile class; CStdioFile class; 1/0
mechanisms

Index

439

Learn Visual C++ Now

440

file extensions, 143, 186. See also individual file
extensions

file VO operations. See I/O mechanisms
filenames

extensions, 143, 186
project filenames, 17

files
bitmap files (see bitmaps)
.BSC files, 145
CFile class, 257-59
closing, 259, 268-70
creating, 189
DLLs, 10, 147-48
executable files, 10, 14, 18, 146
file management classes, 177
header files, 132, 134
icon files, 133
implementation files, 132, 134
I/O and serialization, 255-59
library files, 10
makefile files, 127, 133
module-definition files, 30, 133
object files, 127, 143
opening, 127,256-57, 268-70
project files, 126

adding files to projects, 29
creating project files with AppWizard, 17
naming in projects, 130
organizing projects, 12-14
SCRAMBLE project files, 132-34
subdirectories, 15

reading from, 258
resource script files, 133
saving, 127
source code files, 127, 143
status, 259
types of files, 13-14
writing to, 258

FinishStroke function, 248, 250-51
flickering in bitmap display, 139, 382-83
float data type, 267
for loop, 228-29
frame buffers, 381-82
framework-based applications. See application

frameworks
framework classes, 177, 180-86
free function, 121, 122. See also delete operator
freeing memory

dialog box memory, 291

freeing memory, continued
GDI memory, 143
new and delete operators, 121-22

free store (heap), 121
friend classes and functions, 117-21
friend keyword, 62,117
FromHandle function, 361
function modifiers (function qualifiers), 60-65
function pointers, 99, 101
function qualifiers, 60-65
functions. See also member functions; names of

individual functions
Afx functions, 176
API functions, 170
application framework functions,. 176
argument lists, 106
binding, 99
calling functions outside classes, 80
call-stack debugging feature, 158
consts usage, 63-64
default function arguments, 74-75
external functions, 147
friend classes and functions, 117-21
inline member functions, 67
linking to external functions, 147-48
mapping messages to functions, 230-37
member functions, 51, 54
message handlers, 26-27, 233, 237-41
in MFC library, 11
MFC library source code, 187-88
operator-overloading functions, 109
overloading, 106-8
overriding in derived classes, 91-95
qualifiers, 60-65
reference data type, 55
references to functions, 146
scope resolution operator (::), 79-80
Source Browser viewing, 145
static member functions, 116-17
stepping into or over, 156-57
in text-based C programs, 23
this pointers, 81-82
virtual functions, 95-105

benefits,98-99,105
nonvirtual functions, 98
pure virtual functions, 104-5
virtual function example (Listing 4-4),95-98

v-tables, 99-105
WinMain function in MFC library, 187-88

G
GDI objects, 43-47

CGdiObject class, 138, 371
classes, 180
default logical palettes, 408
deleting, 143
handles, 45
selecting into device contexts, 46

Generate Source Comments option (AppWizard), 16
generic base classes (abstract classes), 86, 104-5

GetBackground function, 139
GetBitmapBits function, 373
GetBitmapDimension function, 373
GetBoundingRect function, 252
GetClientRect Windows API function, 45
GetClipBox function, 252
GetCo10r function, 211
GetCurrentPen object, 253
GetDeviceCaps function, 219,409
GetDIBlnfo function (DIE DEMO program), 403-4
GetD1gItem function, 345
GetD1gItemlnt function, 314
GetD1gItemText function, 314
GetDocString function, 199
GetDocument function, 184
GetEquipmentList function, 362-63
GeWirstStrokePos function, 252
GetHeadPosition function, 252
GetMessage Windows API function, 25, 26, 35-36,

192
GetNearestPa1ettelndex function, 416
GetNext function, 253
GetNextStroke function, 252
GetObject function, 142
GetPrinterDC function, 361
GetStats function (CREATION program), 361-62

GetStatus function, 259
GetSystemPa1etteEntries Windows API function,

415
GetWindowP1acement function, 215, 216
global variables (static member variables), 111-16
Go command (Workbench), 156
GRAFDEMO program, 386-87

bitmap masks, 378-89
bounding rectangles, 383-84, 396-97
constructors, 389-90
drawing bitmaps on screen, 392-94
preparing animation, 390-91
repainting screen, 391-92

GRAFDEMO program, continued
sprite animation, 380-81
step animation, 385-86

GRAFDOC.CPP file, 386
GRAFVIEW.CPP file, 386
graphics. See bitmaps; DDBs; DIEs
graphics cards, 368-69
graphics device interface objects. See GDI objects
Graphics palette (App Studio), 137, 203-4
gray backgrounds in dialog boxes, 276
green values in bitmaps. See RGBQUAD structure
grid settings (App Studio), 203
grouped controls (Group property), 296

button controls, 295-96
check boxes, 309
combo boxes, 308
edit controls, 299
list boxes, 307
radio buttons, 303-5
static text controls, 302

IH

Index

---" --.... -,-.-... "'-----.. -.. ------'~ ... --.. --"".,------."-
handle-based GDI objects, 180
handlers, message. See message handlers
handles, 173-74. See also pointers

accessing Windows objects, 34
device contexts, 45, 361, 410
GDI objects, 45, 180
in Windows-based programs, 33-34

handling messages. See message handlers
hardware palettes, 408, 411
~ardware platforms, 167-68
hardware requirements for Microsoft Visual C++,

xiv
hCursor field, 40
HDC objects. See CDC class
header files (.H), 13

base class definitions, 85-86
in build process, 148
constructor declarations, 73
created by AppWizard, 132-34
dialog box classes, 282
#include directives, 134
ISTREAM.H file, 261
message-handler declarations, 239
precompiled header files, 134
in SCRAMBLE project, 132-34
tracking all header files, 134

441

Learn Visual C++ Now

442

header files (.H), continued
viewing MFC library source code, 188
WINDOWS.H file, 35

header sections in DIBs, 402
heap, 121
height of bitmaps, 142, 371
HELLO program (Windows API), 28-47

building, 28-32
code listing (Listing 2-1), 31-32
displaying windows, 40-42
drawing text in windows, 42-47
registering window classes, 37-40
switch statement example (Listing 2-2), 36-37
WinMain function, 32-35

"Hello, world!" C program, 22-24
.H files, 13, 148. See also header files (.H)
hlcon field, 40
HIERARCH.CPP (Listing 4-1), 86-88
hierarchies of classes, 84-88
hlnstance parameter, 33
hinst parameter, 41
history of MFC library, 170-71
hmenu parameter, 41
Horiz Scroll edit control style, 300
housekeeping functions, 71-73
hPrevlnstance parameter, 33
hwndParent parameter, 41

I
icons

icon files (.lCO), 133
managing with App Studio, 134
in message boxes, 293
window class icons, 40

identity palettes, 408, 415-16
ID_FILE_OPEN message, 256
ID_FILE_PRINT macro, 234
ID_FlLE_PRINT_PREVIEW macro, 234
idle CPU time, 190
ID numbers for bitmaps, 297
ID numbers for resources, 133, 138
ID property

button controls, 294
check boxes, 309
combo boxes, 308
edit controls, 299
list boxes, 306
radio button controls, 304
static text controls, 302

IDR_MAINFRAME resource, 135, 201. See also
tools and toolbars

ID_SEPARATOR constant. 206
if statements, 38
image bits section of DIBs, 400-401

copying DIBs to screen, 419, 420
offset, 402, 403
splitting, 402

implementation files. See also source files
APPCORE.CPP, 187, 189, 191
constructor definitions, 73
created by AppWizard, 132-34
creating and saving, 29
dialog box classes, 282
editing code in ClassWizard, 208
message-handler declarations, 239
typing in source code, 29
WINMAIN.CPP, 187

IMPLEMENT_DYNCREATEmacro, 214
IMPLEMENT_SERIAL macro, 267-68, 353, 355
importing bitmap images, 135-36
Import Resource dialog box (App Studio), 135-36
#include directives and files, 35, 134. See also

header files (.H)
increment operator (++), 109
inheritance, 51, 84-86

building into external libraries, 167
hierarchies of classes, 51
multiple inheritance, 170
overriding member functions, 91-95
rules of inheritance, 88-89

InitDocument function, 269-70
ini tializing

abstract classes, 105
bitmap objects, 140
C and C++ initialization statements, 61-62
constructor functions, 71-78
constructors, 71-78
controls in dialog boxes, 322-23, 351
dialog boxes, 285-86
initializer lists, 78
instantiating defined, 66
modeless dialog boxes, 289-90
reference data type, 55
variables, 70, 322-23

Initial Toolbar option, 16
InitInstance function, 188-89

initializing windows, 217
overriding, 182-83
tasks in MFC programs, 182-83

inline member functions, 62, 67-71, 175
inline qualifier, 62, 67

input. See I/O mechanisms
. input focus, 236

insertion operator «<), 260-62
insertion points as breakpoints, 157
installation of CD-ROM, xvii-xx
instances of applications, 33-34
instances of classes, 66
instantiating objects, 66. See also initializing
invalidated windows, 141
InvalidateRect Windows API function, 396-97
inverting bitmaps, 376-77, 380
I/O mechanisms

file classes, 177
management functions in MFC library, 173
operators and objects, 260-61
printing text with cout« construct, 56
stream-based, 259-60

Ipfn WndProc field, 39
IpszClassName parameter, 41
IpszCmdParam parameter, 33
IpszWindowName parameter, 41
IpvParam parameter, 41
IsStoring function, 264

ISTREAM.H file, 261

J-l
jagged bitmaps, 387
Kernighan, Brian, 22
keyboard events, 235-37, 260
keyboard shortcuts, 4-5, 152

labels in dialog boxes, 301
late binding, 99
Left Text property, 305, 310
library files (.LIB), 10, 13. See also MFC library

in build process, 148
linking to object files, 147
MFC library, 11-12
references to functions, 146

lines, drawing. See strokes
LineTo function, 246, 248
line wrapping in dialog box text, 303
linker. See linking applications
linking applications, 143, 146-48

functions, 146-48
linker errors, 147
makefile files, 133
overview of build process; 10
virtual functions, 100

list boxes, 305-7
accessing items, 349
copying data, 348, 349-50
DDX/DDV mechanisms, 347-51
deleting items, 350
Mel's Bait Shop dialog box, 532

lists
classes, 177
storing in arrays, 255

tracking number of items, 112
LoadBackground function, 139, 140
LoadBitmap function, 140, 297, 373,421
LoadBkgDIB function (DIBDEMO program), 422-23
LoadCursor Windows API function, 40
LoadIcon Windows API function, 40
LoadImage function (DIBDEMO program), 422-23
LoadMaskDIB function (DIBDEMO program),

422-23
LoadStdProfiJeSettings function, 189
Locals window, 158
location of windows, 215-19
logical anddevice coordinates, 244-45
logical palettes, 408, 410-11

creating and using, 414-15
identity palettes, 415-16
mapping system palette colors, 413

logical points, 244
LOGPALETTE structure, 410

LONG data type, 267
loops

endless loops, 345
message pumps, 34-36

Lowercase edit control style, 300
LPs (logical points), 244
LPtoDP function, 252

M
macros. See also names of individual macros

C language macros, 175 (see also inline member
functions)

examining in Source Browser, 145
message maps, 231, 232-34
semicolons (;) at end, 234
serialization, 267-68, 353

main frame windows
CFrameWnd class, 183
classes, 179, 194
CWnd class, 183
document templates, 185

Index

443

Learn Visual C++ Now

444

main frame windows, continued
editing menus and menu items, 149-52
size and location, 215-19, 218
view and document objects, 185

MAINFRM.CPP file, 132, 205-7
MAINFRM.H file, 132, 194-95
main function, 23, 70. See also WinMain function
main window class. See CMainFrame class
-makefile files (.MAK), 14, 127, 133
malloc function, 121-22. See also new operator
mapped data classes, 177
mapping colors, 413
mapping messages, 230-37

II{{ and / I}} symbols, 232, 233
benefits, 231
binding maps to programs, 232
C language macros, 175
classes, 254
control-notification messages, 226
creating message maps with ClassWizard,

240-41
declaring message maps, 232-33
deleting message maps, 238
implementing message maps, 234
modal dialog boxes, 284

mapping modes, 215, 270
masking bitmaps, 377-79

bitmap arrays, 386
loading masks, 391,422-23
step animation, 385-86

matching function arguments, 106
MDI applications, 16

child windows, 196
CMainFrame class, 131
color palettes in multiple windows, 412
creating, 129
CREATION program, 329-53
document classes, 179
document templates, 198
editing menus and menu items, 149-52
main frame windows, 182, 183
view objects, 194-95
window classes, 179
window size and placement, 196, 216-18, 219

MDib class (DIBDEMO program), 398-400
MDIB.CPP file, 421
MDIB.Hfile, 399,421
MDI option, 16
measurements in mapping modes, 270

Mel's Bait Shop dialog box, 331-33, 347-51
member functions, 51

access specifiers, 66
adding in ClassWiza~d, 153
in classes, 65
coding message handlers, 155
defined,54
friend classes and functions, 117-21
inheritance in derived classes, 84
inline member functions, 67
operator-overloading functions, 109
overloading, 106-8
overriding derived member functions, 86, 91-95
rules of inheritance, 88-89
scope resolution operator (::), 79-80
static member functions, 116-17
in structs, 65
switch statements and derived classes compared,

95
this pointers, 81-82
virtual functions, 95-105

member variables, 54
assignment and initialization operations, 62
inheritance in derived classes, 84
initializing, 78
naming conventions, 66
private, protected, and public variables, 66,

112-13,115-16
scope resolution operator (::), 79-80
static member variables, 111-15

memberwise copy constructors, 76
memory

allocating memory, 121-22
color screen display requirements, 368
deallocating memory, 121-22, 143, 291
frame buffers, 381-82
GDI memory, 143
loading bitmaps, 390-91, 417, 421-23
management functions in MFC library, 173
screen memory, 382-83
storing pixels, 367
writing color values to screen memory, 415-16

MEMOVERCPP (Listing 4-6), 107-8
Menu class, 180
Menu editor (App Studio), 134
menus and menu items

adding menu items, 205
check marks on items, 207-9
classes, 179, 180

menus and menu items, continued
editing menus and menu items, 149-52
keyboard shortcuts, 152
managing resources with App Studio, 134
menu item messages, 227
message handlers, 152-55
separators, 206
updating menu items, 207-9

MERGECOPYROP code, 376
MERGEPAINTROP code, 376
message boxes, 278, 292-93
MessageBox function, 278, 292-93
message handlers, 26-27. See also messages

CCmdTarget class, 181-82
coding, 155
creating with ClassWizard, 152-55
CWnd class, 183
DefWindowProc function, 181-82
generating with ClassWizard, 27
managing with MFC library, 172
menu updating, 207

message loops, 189-90
message maps. See mapping messages
message pumps, 25, 34-36,190-92. See" also

PumpMessage function
messages. See also mapping messages; message

handlers
CCmdTarget class, 181-82
ClassWizard message handlers, 225, 235-41
command messages, 227-28, 228-29
control-notification messages, 226
DefWindowP!oc function, 181-82, 223
encapsulating messages to windows, 178
error messages, 278
managing with MFC library, 172
mapping messages (see mapping messages)
message-handler declarations, 239
message queues, 25
must-handle messages, 237
passing to handlers, 27
sending messages, 229-30
switch statements, 36-37, 192
types of messages, 223-27
in Windows-based programs, 24-27
Windows messages, 222-30
writing handler functions manually, 233

MFC AppWizard dialog box, 6, 15, 128
MFC library, 11-12, 167-70

AppWizard classes, 138

MFC library, continued
class hierarchy, 175-86
compared to Windows API, 172-74
DDB support, 371
DDX/DDV support, 313 (see also DDX/DDV

mechanisms)
documents and views, 192-97
handles compared to pointers, 173-74
library files in build process, 148
mapping to Windows API, 170
message handlers, 228-29
message pumps, 190-92
MFC framework classes, 177, 180-86
Run function, 189-90
source code for classes and functions, 187-88
version history, 170-71
window procedures, 192
WinMain function, 186-89

microprocessor registers, 158
microprocessors, 167-68
Microsoft Foundation Class Library. See MFC

library
Microsoft Visual C++

App Studio, 7-8
App Wizard, 5-7
build process, 10-11
C++ and Windows-based programming

compared, 21, 27
C++ versions, xiv
ClassWizard, 8-9
companion CD-ROM, xv
compiler, 143-44
components of Visual C++ system, 125
Debugger, 155-58
Editor, 3-5
installation, xvii-xx
Linker, 146-48
MFC library versions, 171
overview of writing programs, 14-19
polymorphism, 95
programming environment, 2-10
QuickWin utility, 49-50
Source Browser, 3, 145-46
Visual Workbench, 2-3, 148

Microsoft Windows
common dialog boxes, 210
default color palette, 409
events and messages, 24-27
Palette Manager, 408

Index

445

Learn Visual C++ Now

446

Microsoft Windows, continued
Window Manager, 409
Windows 3.x Visual C++ installation, xviii, xix
Windows 95

SDI application development, 129

supported screen resolutions, 369
Visual C++ installation instructions, xvii, xviii

Windows NT Visual C++ installation, xviii, xix
MIPS computer systems, 167-68
miscellaneous support classes, 178
MM_HIENGLISH mapping mode, 215
MM_HIMETRIC mapping mode, 215

MM_LOENGLISH mapping mode, 215, 270
MM_LOMETRIC mapping mode, 215
MM_TEXT mapping mode, 215
MM_TWIPS mapping mode, 215
m_ naming convention, 66
m_n CmdSh ow variable, 216-18

m_nPen Width object, 266
modal dialog boxes, 277, 282-86
modeless dialog boxes, 277-78, 287-92
modes, build, 144
module-definition files (.DEF), 14, 30, 133, 148

monitors
color and resolution, 367-69
GDI objects and onscreen drawing, 42-43
getting resolution information, 409
getting size, 219
,hardware color palettes, 408
mapping display units, 215

monochrome monitors, 367
most recently used files, 182, 189
mouse events and movements

button events, 245-48
classes for handling, 254

messages, 236
tracking coordinates, 244, 245-46

MoveDown function (GRAFDEMO program), 394
MoveLeft function (GRAFDEMO program), 394-96
MoveRight function (GRAFDEMO program), 394-96
MoveTo function, 246, 248
MoveUp function (GRAFDEMO program), 394
m_pMainWnd variable, 183

m_pointArrayvariable, 242, 266
m_rectBounding object, 266
MRU list, 182, 189
&msg parameter, 35, 36
MSG structure, 35
m_strokeList variable, 242, 265

m_uBkgJd variable, 209
Multiline edit control style, 300
Multiple Document Interface applications. See MDI

applications

N
names

class naming conventions, 176
constructors, 72

document names in templates, 186
functions, 80, 106, 153
member variable naming conventions, 66
projects, 15, 17, 128
window procedure names, 26

nCmdShow variable, 33, 216
New Application Information dialog box

(AppWizard), 17, 130-31
New command (application frameworks), 255, 269
new operator, 121-22, 249, 292

New Project dialog box (Workbench), 29
. NewStroke function, 249

nHeight parameter, 41
No Hide Sel edit control style, 300
nonpointer variables, 58
nonstatic'member functions, 81-82
nonstatic variables, 112
nontransparent copies of bitmaps, 375
nonvirtual functions, 98, 99
No Prefix property, 302
NOTSRCCOPYROP code, 377, 380
NOTSRCERASE ROP code, 377
No Wrap property, 303
null constructors, 72
numbers, schema, 268

numeric variables, 318
nWidth parameter, 41

o
object code, 10
object code libraries, linking, 147-48. See also MFC

library
object files COBn, 13, 143

in build process, 148
compared to executables, 146
linking to external library files, 147-48
in projects, 127

object-oriented programming, 50-52

objects
constructors and destructors, 71-78
copying with copy constructors, 75
creating from classes, 66
device contexts and GDI objects, 43-47

generic constructors, 72
objects used in stream-based 1/0, 260-61
storing lists in arrays, 255
this pointer, 81-82

virtual functions and objects, 100
Windows objects, 34

.OBI files, 13, 143. See also object files (,OBJ)
OEM Convert edit control style, 301
'offset to DIB image bits section, 402, 403

OK button (application frameworks), 277
data validation functions, 346
loading bitmaps, 286
On OK function, 284-85
recording and storing data, 350

OnBackgroundColor function, 211
OnBeginPrinting function, 357
OnCancel function, 285, 290-91
OnCancelMode function, 235
OnCharacterEdit function (CREATION program),

339
OnCharacterInjo function (CREATION program),

352-53
OnCharacterShop function (CREATION program),

351
OnChar function, 235
OnClose function, 235, 285, 290-91
OnCmdMsg function, 229-30
OnCreate function, 235

OnDestroy function, 235
OnDialogsModal function, 282-83
OnDialogsModeless function, 288
OnDoRealize function (DIBDEMO program), 412-13

OnDraw function
adding color capabilities, 212
default behavior, 357
drawing bitmaps in windows, 141,388
drawing strokes, 251-52
repainting screen, 391-92

updating windows, 132
OnDrawItem function, 297
OnDropFiles function, 235
OnEndPrinting function, 357

OnEraseBkgnd function, 235
OnFileNew function, 189
OnFilePrint function, 232

OnFilePrintPreview function, 232
OnHScroll function, 235
On Idle function, 190
OnInitDialog function

copying items into list boxes, 349
DDX mechanism, 340-41
initializing controls in dialog boxes, 351
modeless dialog boxes, 289~90
overriding in DLGDEMO program, 285-86

OnInitialUpdate function, 195-97, 214, 387
OnKeyDown function, 235
OnKeyUp function, 235
OnKillFocus function, 236
OnLButtoriDblClick function, 236
OnLButtonDown function, 232, 233, 236, 242-43
OnLButtonUp function, 232, 236, 247-48, 250
online help, xv
OnMouseMove function, 236, 245-48
OnMove function, 236
OnNewDocument function, 268-69

OnOK function
data validation functions, 346
in DLGDEMO program, 284-85
overriding, 290-91
recording and storing data, 350-51

OnOpenDocument function, 268-69
OnPaint function, 236

OnPrepareDC function, 244
OnPreparePrinting function, 357
OnPrint function, 358-61

OnRButtonDblClick function, 236
OnRBuitonDown function, 236
OnRButtonUp function, 236
OnSetCursor function, 236
OnSetFocus function, 236
OnShowWindow function, 236
OnSize function, 236

On Timer function, 236
On VScroll function, 236
ON_ WM_LBUTTONDOWN macro, 234
ON_WM_LBUTTONUP macro, 234
Open command (application frameworks), 256, 269
Open function, 257

opening
debugger windows, 157-58

dialog boxes, 339
documents, 256-57, 268-70

command line processing, 182
support in applications, 127

resource script files, 135

Index

447

Learn Visual C++ Now

448

operator keyword, 109
operators. See also names of individual operators

in bitmap rasteroperations, 376-77
operator overloading, 56, 106, 108-11
overloading example (Listing 4-7), 109-11
stream-based 1/0, 260-61

OPEROVER.CPP (Listing 4-7),109-11
Options dialog box (AppWizard), 16-17, 129
OR operator, 377
output. See I/O mechanisms
output devices, 42-43
overloading

constructors, 108
functions, 106-8, 140
operators, 106, 108-11

OVERRIDKCPP (Listing 4-3), 91-93
overriding

default values for functions, 74
derived member functions, 86
identical function names, 80
member functions, 91-95
pure virtual functions, 104-5

owner drawn buttons, 296-98
Owner Draw property, 295, 296-98

PAINTSTRUCT structure, 45
Palette Manager, 408-12
palettes

App Studio color palette, 137
App Studio, control palette, 280-81
App Studio graphics palette, 137, 203-4
color palettes, 401-2, 407-16
default logical palette, 408
hardware palettes, 408
identity palettes, 408
logical palettes, 408
as modeless dialog boxes, 277
system palettes, 408

parent classes. See base classes
passing messages, 229-30
Password edit control style, 300
PATCOPYROP code, 377
PATINVERTROP code, 377
PATPAINTROP code, 377
patterns in bitmaps; 376-77
.PCH files, 134
pens,45,253,271-73

permitting class member access, 66
pixels

color bits per display pixel, 371
comparing in bitmap copying, 374
copying specific pixels, 398
in image bits arrays, 400
inverting in bitmaps, 376-77
mapping display units, 215
in screen displays, 367

placement of windows, 215-19
PLAYER.CPP file, 355
PLA YER.H file, 336-38, 355
pointers

compared to references, 54, 59-60
consts and, 63, 64
copying with copy constructors, 76
declaring, 53-54
delete operator and, 122
function pointers, 99
handles as, 33
,memory management and, 33-34
returned by new operator, 121-22
storing lists in arrays, 255
this pointer, 81-82, 117
virtual functions and, 98

points
device and logical points, 244
in drawn strokes, 241, 249-50

polymorphism; 86, 95. See also virtual functions
populating list boxes, 305, 348
popup menu classes, 180 '
POSITION data type, 252
PostNcDestroy function, 292
PostQuitMessage Windows API function, 33, 37
precompiled header files, 134
precompiled object code files. See library files

(.LIB)
PreCreateWindow function, 218
predefined window style constants, 39
PrepareAnimation function (GRAFDEMO program),

387,390-91
Print dialog box (application frameworks), 356-63
printers, 42-43
print/C function, 56, 260-62
printing

AppWizard functions, 357
AppWizard support, 16
CDocument functions, 184

printing, continued
cout« construct, 56
in CREATION program, 356-63
image printing support in applications, 128
mapping modes, 362
printer types, 42-43
setting maximum pages, 358
WYSIWYG printing, 363

Printing And Print Preview option (AppWizard), 16
print preview support, 16
private access specifier, 66

constructors for friend classes, 120
derived-class declarations, 89
inheritance and, 84
static member variable example, 115-16

programming
Microsoft Visual C++ overview, 14-19
object-oriented programming, 50-52
Windows-based programs, 21-22

programs. See application frameworks
project definition files, 148. See also module­

definition files (.DEF)
Project Options dialog box (Workbench), 144
projects, 12-14, 126-27

adding files to projects, 29
classes in AppWizard projects, 131
creating with AppWizard, 17, 29
file and class names, 130
naming, 15, 128
RES directory, 133
SCRAMBLE project, 126-34
source code and object code files, 127

properties
button controls, 294-96
check boxes, 309-10
combo boxes, 308
edit controls, 298-301
list boxes, 306-7
radio buttons, 304-5
static text controls, 302-3

Properties window (App Studio), 137-38, 151,293
protected access specifier, 66, 115
protecting variables (data encapsulation), 51-52, 70
public access specifier, 66, 88-89, 112-13, 115
PumpMessage function, 187, 190-92, 228-29. See

also message pumps
pure virtual functions, 104-5
pushbutton controls, 293-96

qualifiers, 60-65
queues, message, 25
QuickWatch window, 157
QuickWin utility, 49-50
radio button controls, 303-5
raster operation codes, 374, 376-77,418
raster operations, 142
.RC files, 13, 133, 134, 148. See also resource script

files (.RC)
Read function,258
reading documents from disk, 193
reading from files, 258, 259-60. See also

serialization
read-only controls, 333
Read-Only edit control style, 301
RealizePalette Windows API function, 410, 412-13
Rebuild All command (Workbench), 127, 143
Rectangle Windows API function, 46
redrawing screen and windows

backgrounds,383-84
clearing screen, 270-71
copying bitmaps to screen, 139
GRAFDEMO program, 391-92
invalidated windows, 141
OnDraw function, 388
strokes in window, 251-53
switch statements, 36-37

red values in bitmaps. See RGBQUAD structure
REF _ADDR.CPP (Listing 3-2), 56-57
reference data type, 53, 54-60. See also references
references

accessing list box items, 349
advantages and dangers, 60
compared to C nonpointer variables, 58
compared to C pointers, 60
obtaining addresses (Listing 3-2), 56-57
&' operator, 57-58
references example (Listing 3-1), 55-56
values of variables example (Listing 3-3), 58-59
variable addresses and, 58-60

RegisterClass function, 37-38, 39
registering document templates, 182
Registers window (Debugger), 158
release versions of applications, 144, 254
Remove function, 259
RemoveHead function, 271
removing. See deleting

Index

449

Learn Visual C++ Now

450

repainting screen. See redrawing screen and
windows

RepiacePen function, 270, 272
. RES directory, 133
.RES files (binary resource files), 133, 148
resizing bitmaps, 374, 387
resizing windows, 215-18
resolution, 215, 218

color and monitor resolution, 367-69
drawing to screen with GDI objects, 42-43
getting resolution information, 409
target devices for bitmaps, 406
Windows 95-supported screen resolutions, 369

resource editors. See App Studio'
resource files (biliary .RES files), 133, 148
RESOURCE.H file, 133
resources

adding bitmaps to projects, 134-38
in build process, 148
defining for projects, 133
dialog box resources, 278
IDnumbers, 133, 138, 198-99, 297
information in document templates, 185
loading bitmaps, 40, 139-40
managing with MFC library, 172
menu resources, 149-50
Properties window (App Studio), 137-38
type list, 135

resource script files (.RC), 13
adding bitmaps to projects, 134
in build process, 148
creating, 133
dialog box resources, 279
opening, 135

restricting access to class members, 66
reusability of code, 167
reversing colors in bitmaps, 380-81
RGB color variables. See RGBQUAD structure
RGBQUAD structure

as array of color indexes, 407
calculating size of color tables, 404-5
in color tables; 400-401

RGB Windows macro, 405
RollDice function (CREATION program), 343, 346
root classes, 176, 177
ROP codes, 374, 376-77,418
Run function, 187, 189-90,228-29
running applications, 18, 182-83
RUNTIME_CLASS macro, 199
run-time information on objects and classes, 181

s
Save As command (application frameworks), 257
Save command (application frameworks), 257
saving

bitmaps, 373
data, 353-56
documents to disk, 193
source files, 29
stroke data, 249-51
support for saving, 127

scanfC function, 260-62
schema numbers, 268
scope

calling functions outside scope, 79
overloading operators, 109

scope resolution operator (::), 70, 79-80, 112-13
SCRAMBLE.CPP file, 132
SCRAMBLE.DEF file, 133
SCRAMBLE.H file, 132
SCRAMBLE.MAK file, 133
SCRAMBLE program

adding bitmap images, 134-38
AppWizard files, 132-34
CMainFrame class, 194-95
color backgrounds, 210-12
creating projects, 127-31
executing, 148-49
MDI applications and windows, 194, 200-201
scrolling functionality, 212-15
source code (Listing 5-1), 158-65
toolbar and buttons, 200-207
updating menu items, 207-9
view and document classes, 184-85

SCRAMBLE.RC file, 133
SCRAMBLE.RES file, 133
SCRAMDOC.CPP file, 132, 140, 154, 155
SCRAMDOC.H file, 132, 139, 185
SCRAMVW.CPP file, 132, 141, 185, 196
SCRAMVW.H file, 132, 185, 196
screen display

avoiding flickering, 382-83
clearing screen, 270-71
copying bitmaps to screen, 139
device coordinates, 244
GDI objects, 42-43
graphics support in applications, 127-28
hardware color palettes, 408
I/O management functions in MFC library, 173

screen display, continued
mapping display units, 215
redrawing screen, 251-53, 391-92
resolution

color and resolution, 367-69
monitor information, 409
monitor size, 219
Windows 95-supported screen resolutions,

369
vertical blank interrupts, 383
writing color values to screen memory, 415-16

screen memory, 382-83,415-16
SCRIBBLE program, 222

clearing window, 270-71
device and logical coordinates, 244-45
implementing serialization, 264-66
message handlers, 241-53
OnLButtonDown function, 242-43
OnMouseMove function, 245-48
opening and closing documents, 268-70
pen objects, 253
pen widths, 271-73
redrawing screen, 251-53
storing strokes, 241-42, 249-51

scrolling functionality, 195
CScrollView class, 179, 184-85, 213
in edit controls, 300
in SCRAMBLE program, 212-15
scroll bar messages, 235-37

SDI applications, 16
CMainFrame class, 131
creating, 129
document classes, 179
document templates, 198
main frame window classes, 183
view objects, 194-95
window classes, 179
Windows 95 application development, 129
window size and location, 218-19

Seek function, 258
selecting

bitmaps into DCs, 142, 373, 388
GDI objects into DCs, 46

SelectObject Windows API function, 46, 373, 388
SelectPalette Windows API function, 410, 412-13
semicolons (;) in macros, 234
sending messages, 229-30
separator bars in menus, 206

serialization, 259-60
« and » operators, 261-62
AppWizard implementation, 263
casting WORD data types, 356
CObject class support, 181, 254
data types, 267
files and, 255-56
macros, 267-68
MFC library implementation, 262
SCRIBBLE program implementation, 264-66
storing and retrieving text data, 353-56

Serialize function, 254, 262-66, 353-56
SetCheck function, 209
SetDialogBkColor function, 188, 276
SetDIBlnfo function (DIBDEMO program), 403-4
SetDIBits Windows API function, 401, 416
SetDIBitsToDevice Windows API function, 417-20
SetMaxPage function, 358
SetModifiedFlag function, 249, 271
SetName function"(CREATION program), 335-36
SetPaletteEntries Windows API function, 413, 415
SetScrollSizes function, 215
SetStats function (CREATION program), 339-40
Set Tab Order command (App Studio), 281
setting breakpoints, 156
SetWindowPlacement function, 215-16
shallow copy constructors, 76
shared dialog boxes, 210
shared variables (static member variables), 111-16
shortcuts, keyboard, 4-5, 152
Show Call Stack command (Workbench), 158
Show Control Palette command (App Studio), 280
Show Graphics Palette command (App Studio), 203
Show Properties command (App Studio), 293
ShowWindowfunction, 40, 41-42,215,217
Simple property, 303
single-document interface programs. See SDI

applications
size

bitmap size, 403, 405, 406
C++ application size, 170, 174
color table size, 404-5
document and view size, 196
monitor screen size, 219
pixel size, 215
window size, 215-19

solid-color bitmaps, 210-12
Source Browser, 145-46

Index

451

Learn Visual c++ Now

452

source code, 10
commenting, 16
viewing MFC library code, 187-88
viewing with Source Browser, 145-46

source files, 13, 143. See also header files (.H);
implementation files

in build process, 148
in projects, 127
in SCRAMBLE project, 132-34

speed
bitmap-copying operations, 370, 397-98
building with precompiled header files, 134
C++ applications, 170, 174
disabling Source Browser, 146
identity palettes, 415-16
virtual functions performance overhead, 105

sprite animation, 366, 370-71, 379-80
avoiding flickering, 382-83
bounding rectangles, 383-84, 396-97
copying specific pixels, 398
DIBDEMO program, 420-26
drawing bitmaps on screen, 392-94
frame buffers, 381-82
GRAFDEMO program, 380-81, 386-87
loading sprite bitmaps, 422-23
masking bitmaps, 377-79
moving sprites, 394-96
PrepareAnimation function, 390-91
step animation, 385-86
StretchDIBits function, 424-26
transparent-background copying, 374-79

SRCAND ROP code, 377, 378, 380
SRCCOPYROP code, 142, 377, 381
SRCERASE ROP code, 377
SRCINVERTROP code, 377, 380-81
SRCPAINTROP code, 377
standard VGA displays, 368, 409
standard Windows messages, 223-26
statically linked library files, 148. See also library

files (.LIB)
static binding, 99
static colors, 409
static keyword, 112, 116
static member functions, 116-17
static member variables, 111-16
static text controls, 180, 301-3
STDAFX.CPP file, 134
STDAFX.H file, 134
STDAFX.PCH file, 134

STDIO.H library, 261
step animation, 385-86
Step Into command (Debugger), 157
Step Out command (Debugger), 156-57
Step Over command (Debugger), 157
stepping through programs, 156-57
Step To Cursor command (Debugger), 157
Stop Debugging command (Debugger), 158
streaming, 259-61
StretchBlt function, 374-79, 381-82, 386-87
StretchDIBits Windows API function, 398,414,

417-19,424-26
strings

classes, 177, 178
in list boxes, 305, 348, 349
in message boxes, 292
passing resources to document templates,

198-99
storing lists in arrays, 255

string variables, 318
strokes

adding points, 249-50
completing, 250-51
drawing, 241, 245-48
pen objects, 253
pen widths, 271-73
redrawing on screen, 251-53
storing data, 242, 249-51

Stroustrup, Bjarne, 52
struct data type, 53-54

compared to classes, 65
compared to C struct, 53-54
declaring, 65-66

structures, 51, 75
styles

dialog box edit controls, 299-301
windows, 39, 40

subdirectories, 15, 128
subtraction operator (-), 108
Super VGA cards, 368
support classes, 178
SVGA cards, 368
switch statements

compared to ClassWizard message handling, 225
compared to derived classes, 95
compared to message maps, 231 (see also

mapping messages)
handling messages, 224
Listing 2-2, 36-37

switch statements, continued
in MFC library, 192
overridden member functions and, 95
in windows procedures, 36-37

system palettes, 408, 409
identity palettes, 415-16
logical palettes compared to, 410, 411
mapping colors, 413

system requirements for Visual C++, xiv

1
tables, v-tables, 9.9
tab order, 281-82, 303. See also Tabstop property
Tabstop property

button controls, 295
check boxes, 310
combo boxes, 308
edit controls, 299
list boxes, 307
radio button controls, 304
static text controls, 302

templates, dialog boxes, 278
templates, document. See document templates
terminating applications, 182-83
TESTAPP program, 315-21, 327-29
TESTA VW.CPP file, 320
TESTDIAL.CPP file, 323
TESTDIAL.H file, 320
testing routines, 49-50

text
alignment in dialog bcix controls, 300, 303, 310
drawing in windows, 42-47
editing shortcuts, 4-5
in message boxes, 292
printing withcout construct, 56
storing and retrieving data, 353

Text Align property, 303
text box data management. See DDX/DDV

mechanisms
TextOut function, 358, 360, 361, 362
THIS.CPP (Listing 3-7), 81-82
this pointer, 81-82, 117
three-state check boxes, 310
tilde symbol (~), 73

Tile Grid option (App Studio), 203
time information classes, 178
timers for messages, 236

tools and toolbars
App Studio resource management, 134
bitmap files for toolbars, 133, 135
creating with AppWizard, 16
editing and coding buttons, 200-207
toolbar button messages, 227
tool palettes, 277

TranslateAccelerator function, 191
TranslateMessage function, 191

tri;lnsparent copies, 374-81, 398
transportable code, 167-68
Tri-State property, 310
type qualifiers, 60-65
type-safe constants (const qualifier), 60-65

types in Source Browser, 145
type specifiers, 52, 60-65

u
U bitmap identifier, 298
unary operators, 53-54, 55, 57-58
UnionRect function, 384
UNIT data type, 258,266,267
units, display, 215
UnloadBackground function, 139, 140
up button position, 296, 298
UpdateAllViews function, 271

. UPDATE_COMMAND_UImessage, 207
UpdateData function, 314-15, 325-28

DDX mechanisms, 284
direction of copying, 325-27
initializing controls, 341-42
in TESTAPP program, 327-28
updating dialog box contents, 291

Update Window Windows API function, 40, 41-42
uppercase edit control style, 300
upside-down DIEs, 404
user-entered data in combo boxes, 308
user interface object classes, 179
USINGREF.CPP (Listing 3-3), 58-59

v

Index

--_._------_._._--_._-_ .. _--
validating data, 325, 342-45
values

const values, 63
default values for functions, 74-75
during debugging, 157-58

453

Learn Visual C++ Now

454

variables. See also member variables
breakpoint values, 157
C nonpointer variables, 58
consts, 63
for controls (see also DDX/DDV mechanisms)

binding, 324
declaring, 322
initializing, 322-23

examining in Source Browser, 145
global variable problems, 111-12
initializing, 70, 322-23
local variable values, 158
member variables, 54, 66
& operator, 57-58
public, private, and protected, 115-16

references, 58-60
changing values (Listing 3-3), 58-59
reference addresses (Listing 3-2), 56-57
reference data type compared to, 54
reference example (Listing 3-1), 55-56

scope resolution operator (::), 79-80
static member variables, 111-15
type qualifiers, 60-65
unary operator in pointer declarations, 53-54
values during debugging, 157-58'

VAR_REF.CPP (Listing 3-1), 55-56
verifying data, 325, 342-45
versions of MFC library, 170-71
vertical blank interrupts, 383
Vert Scroll edit control style, 300
VGA displays, 368, 409
video cards, 42-43,368,408
view classes, 131, 179, 214. See also CScrollView

class; CView class
view objects, 192-97. See also CView class

associating with document templates, 185
document objects and documents, 193
initializing views, 195-97
message handling, 182
scrolling views, 195

views
initializing views, 195-97
redrawing screen display, 251-53
scrolling functionality;195, 212-15
size of views and documents, 196
tracking' coordinates, 244

VIRTUAL.CPP (Listing 4-4), 95-98
virtual functions, 95-105

benefits,98-99,105
binding, 99

virtual functions, continued
compared to nonvirtual functions, 98
example (Listing 4-4),95-98
messaging systems and, 231
pure virtual functions, 104-5
v-tables, 99-104, 231

virtual function tables, 88-104, 231
virtual qualifier, 62, 95
Visible property

button controls, 294
check boxes, 309
combo boxes, 308
edit controls, 299
list boxes, 306
radio button controls, 304
static text controls, 302

visual object classes, 179
VisualVVorkbench, 2-8, 145-46, 148
v-tables, 99-104, 231
VVVB (Visual VVorkbench), 2-8, 145-46, 148

w
VVant Return edit control style, 301
VVatch window (Debugger), 157
WHITENESS ROP code, 377
width of bitmaps, 142, 371
VVin16 and VVin32 GDI memory, 143
window classes. See also CFrameWnd class;

CMainFrame class; CMDIFrame Wnd class;
windows

constructing objects, 183
CWnd class, 183
loading resources, 40
message handling, 182
MFC library classes, 131, 179
in VViridows API-style programs, 37-40

VVindow Manager palettes, 409
window objects, 34
window procedure functions, 25-26, 27

calling message maps, 232
MFC library, 192
registering WNDCLASS structure, 39
switch statements, 36-37, 224

windows. See also child windows; views; window
classes'

bounding rectangle, 252
child windows, 40
clearing, 270-71
client area, 45,179,237,413

windows, continued
color palettes in multiple windows, 412
compiler output window, 144
coordinates, 244
creating, 37, 40-42
CWnd class, 183
destroying, 37
dialog boxes, 289-90
displaying images in, 40-42, 127-28
drawing in, 141-42, 241
getting and setting properties, 38-39, 215
invalidated,141
main frame windows, 183
managing with MFC library, 172
messages, 224, 235-37
multiple windows, 200-201
must-handle messages, 237
redrawing, 37,39,251-53,391-92
registering window classes, 37-40
scrolling functionality, 185, 212-15
size and location, 215-19
styles, 39
views and documents, 192-97, 196
visual object classes, 179
window procedures, 25-26, 27

Windows, Microsoft. See Microsoft Windows
Windows API

command message handlers, 227-28
compared to MFC library, 11, 172-74
device drivers, 43
encapsulating in MFC library, 169
handles compared to pointers, 173-74
handling messages, 224-25
integration with MFC library, 174-75
messages, 223-27
programs, 24

windows application class, 177. See also CWinApp
class

Windows-based programming, 21-22, 23
compared to C programs, 23
compared to object-oriented programs, 51
events and messages, 24-27
GDI objects, 42-47
handles, 33-34
HELLO program overview, 28-47
messages, 222-30
WinMain function, 32-35

Windows bitmaps. See DDBs; DIEs
windows messages, 223-27, 237

Windows programming. See Windows-based
programming

WINMAIN.CPP file, 187
WinMain function, 24, 32-35, 33, 186-88
WM_CANCELMODE message, 235
WM_CHAR message, 235
WM_CLOSE message, 235, 237
WM_COMMAND message, 223, 226, 229-30
WM_CREATE message, 224, 235, 237
WM_DESTROYmessage, 37,224,235,237
WM_DROPFILES message, 235
WM_ERASEBKGND message, 235
WM_HSCROLL message, 235
WM_KEYDOWNmessage, 235
WM_KEYUP message, 235
WM_KILLFOCUS message, 236
WM_LBUTTONDBLCLK message, 236
WM_LBUTTONDOWNmessage, 233, 236. See also

OnLButtonDown function
WM_LBUTTONUP message, 236. See also

OnLButton Up function
WM_MOUSEMOVE message, 236
WM_MOVE message, 236
WM_PAINTmessage, 37, 236, 237
WM_ prefix, 223
WM_QUIT message, 35
WM_RBUTTONDBLCLK message, 236
WM_RBUTTONDOWN message, 236
WM_RBUTTONOP message, 236
WM_SETCURSOR message,236
WM_SETFOCUS message, 236
WM_SHOWWINDOW message, 236
WM_SIZE message, 236
WM_TIMER message,236
WM_ VSCROLL message, 236
WNDCLASS structure, 38-39
WndProc function, 25, 27, 192. See also window

procedure functions
WORD data type, 267, 356
Write function, 258
writing data to files, 258, 259-60. See also

serialization
WS_ VISIBLE property, 288
WYSIWYG printing, 363

x
X bitmap identifier, 298
XOR operator, 377, 381

Index

455

About the Author

Mark Andrews is an author and a game designer who writes
documentation for system and graphics software for the 3DO
company, a game hardware and software manufacturer located
in Redwood City, California. Mark has written more than two
dozen books about computers, computer languages, and com­
puter games, including c++ Windows NT Programming (M &

T Books, 1995) and Migrating to Windows 95 (Academic Press,
1996). He is currently working on NetWarriors '96, a book
about Internet games, scheduled for spring publication by
Wiley & Sons.

-,r he manuscript for this book
U was prepared and submitted

to Microsoft Press in electronic
form. Text files were prepared using
Microsoft Word 6.0 for Windows.
Pages were composed by Microsoft
Press using Adobe PageMaker 6.0 for
Windows, with text in Melior and
display type in Frutiger Condensed.
Composed pages were delivered to the
printer as electronic prepress files.

Cover Designer
Robin Hjellen

Interior Graphic Designer
Kim Eggleston

Interior Graphic Artists
Michael Victor, Lori Campbell

Principal Compositor
Barbara Remmele

Indexer
Jan Wright

IMPORTANT-READ CAREFULLY BEFORE OPENING SOFTWARE PACKET(S). By opening the sealed packet(s) containing the
software, you indicate your acceptance of the following Microsoft License Agreement.

MICROSOFT LICENSE AGREEMENT
(Book Companion CD)

This is a legal agreement between you (either an individual or an entity) and Microsoft Corporation. By opening the sealed software packet(s)
you are agreeing to be bound by the terms of this agreement. If you do not agree to the terms of this agreement, promptly return the unopened
software packet(s) and any accompanying written materials to the place you obtained them for a full refund.
MICROSOFT SOFTWARE LICENSE
1. GRANT OF LICENSE. Microsoft grants to you the right to use one copy of the Microsoft software program included with this book (the
"SOFTWARE") on a single terminal connected to a single computer. The SOFfW ARE is in "use" on a computer when it is loaded into the
temporary memory (i.e., RAM) or installed into the permanent memory (e.g., hard disk, CD-ROM,. or other storage device) of that computer.
You may not network the SOFfWARE or otherwise use it on more than one computer or computer terminal at the same time.
2. COPYRIGHT. The SOFfW ARE is owned by Microsoft or its suppliers and is protected by United States copyright laws and international
treaty provisions. Therefore, you must treat the SOFfW ARE like any other copyrighted material (e.g., a book or musical recording) except that
you may either (a) make one copy of the SOFfW ARE solely for backup or archival purposes, or (b) transfer the SOFfW ARE to a single hard
disk provided you keep the original solely for backup or archival purposes. You may not copy the written materials accompanying the SOFfW ARE.
3. OTHER RESTRICTIONS. You may not rent or lease the SOFfW ARE, but you may transfer the SOFfW ARE and accompanying written
materials on a permanent basis provided you retain no copies and the recipient agrees to the terms ofthisAgreement. You may not reverse engineer,
decompile, or disassemble the SOFfW ARE. If the SOFfW ARE is an update or has been updated, any transfer must include the most recent
update and all prior versions.
4. DUAL MEDIA SOFTWARE. If the SOFfW ARE package contains more than one kind of disk (3.5", 5.25", and CD-ROM), then you may
use only the disks appropriate for your single-user computer. You may not use the other disks on another computer or loan, rent, lease, or transfer
them to another user except as part of the permanent transfer (as provided above) of all SOFfWARE and written materials.
5. SAMPLE CODE. If the SOFfW ARE includes Sample Code, then Microsoft grants you a royalty-free right to reproduce and distribute the
sample code ofthe SOFfW ARE provided that you: (a) distribute the sample code only in conjunction with and as a part of your software product;
(b) do not use Microsoft's or its authors' names, logos, or trademarks to market your software product; (c) include the copyright notice that appears
on the SOFfW ARE on your product label and as a part of the sign-on message for your software product; and (d) agree to indemnify, hold harmless,
and defend Microsoft and its authors from and against any claims or lawsuits, including attorneys' fees, that arise or result from the use or distribution
of your software product.

DISCLAIMER OF WARRANTY
The SOFTWARE (including instructions for its use) is provided "AS IS" WITHOUT WARRANTY OF ANY KIND. MICROSOFT
FURTHER DISCLAIMS ALL IMPLIED WARRANTIES INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK ARISING OUT OF THE USE
OR PERFORMANCE OF THE SOFTWARE AND DOCUMENTATION REMAINS WITH YOU.

IN NO EVENT SHALL MICROSOFT, ITS AUTHORS, OR ANYONE ELSE INVOLVED IN THE CREATION, PRODUCTION,
OR DELIVERY OF THE SOFTWARE BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITA·
TION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION,
OR OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE OR
DOCUMENTATION, EVEN IF MICROSOFT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE
SOME STATES/COUNTRIES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL
OR INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

U.S. GOVERNMENT RESTRICTED RIGHTS
The SOFfWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer Software clause at DFARS 252.227-7013
or subparagraphs (c)(1) and (2) of the Commercial Computer Software - Restricted Rights 48 CFR 52.227-19, as applicable. Manufacturer
is Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399.
If you acquired this product in the United States, this Agreement is governed by the laws of the State of Washington.
Should you have any questions concerning this Agreement, or if you desire to contact Microsoft Press for any reason, please write: Microsoft
Press, One Microsoft Way, Redmond, WA 98052-6399.

097 -000-680

And learn it fast! If you have a basic understanding of C,
LEARN VISUAL C++ Now will help you discover the world of pro­
gramming for Windows· with Microso Visual C++. The book's
ten fast-moving chapters will help you master the powerful visual
tools and automated features in Visual C++. On CD, you get a
complete working Visual C+ + compiler (version 1.0)- a valuable
addition that will equip you to create your own applications.

LEARN V ISUAL C++ Now
will t each you to:
• Use the tools in the Visual C++ development

environment to create your first C++ program

You get this ...
== __ ,,"1.

1'=!-4I~ =::..-:=.::::
__ "' __ ,,"11_ _ ------_-.., __ .-
...,.--._"' _ . .., ,...."' .. __ .. _-... -

////////

1 ••• CScr_bhtVlev pubhc C5croll Vlev
I
prclec:led creel. fre. se%'lall,z-a.L10ll only • Use programming tools such as App Studio and

ClassWizard to make repetitive and complex
programming tasks easier

~~~l~!!~~!,",/I"'C_~"""'_U''''_' _______ _ 

• Use the classes and mernb~r functions designed for 
Windows programmers in the Microsoft Foundation 
Class (MFC) Library 

• Understand and use object-oriented programming 
techniques 

CScraableDc::Jc- pDoc. GetDocuaent() , 
eBl t_ap- pEl leap . 
8IntAP 81 tuP. 
eoc de ; 

o warnlDg(s) 

• Incorporate dazzling sprite graphics into your 
Windows-based applications 

You can do this ... 

On the companion CD, in addition to the working version of Microsoft Visual C++, you get 
hundreds of lines of ready-to-use sample code and the Visual C++ online help. Combine all 
those tools with the information in LEARN VISUAL C++ Now, and you'll be ready to put 
Visual C++ to work in a remarkably short time. 

Go for it-LEARN VISUAL C++ NOW! 

Programming/Visual c++ / Wlndows 

7 901 459 

U.S.A. 
U.K. 
Canada 

$ 3 9 .9 5 
£37.49 [VAT. includedl 

$53.95 
[Recommended ] 

Microsoft Press 

ISBN 1-556 15-845-9 

Tr 


