o o
Microsoft®
Windows™95

Teach Yourself Microsoft” Visual C++
the Quick and Easy Way

Mark Andrews

Microsoft Press

Teach Yourself Microsoft’ Visual C++
the Quick and Easy Way

| Le@rp ‘
isual

2 e

-~ Now

Mark A'ndrews |

Microsoft Press

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1996 by Mark Andrews

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Andrews, Mark.
Learn Visual C++ now : the complete learning solution for Visual
C++ / Mark Andrews.
p- cm.
Includes index.
ISBN 1-55615-845-9 :
1. C++ (Computer program language) 2. Microsoft Visual C++.
1. Title.
QA76.73.C153A487 1996
005.26'2--dc20 95-26475
CIP
Printed and bound in the United States of America.

123456789 QMQM 109876

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publish-
ing Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or
contact Microsoft Press International directly at fax (206) 936-7329.

Thanks to Tareh Kryger for letting us use the Beyond Ti picture.

Adobe Ilustrator is a registered trademark and PostScript is a trademark of Adobe Systems,
Inc. Macintosh is a registered trademark of Apple Computer, Inc. CorelDRAW is a registered
trademark of Corel Systems Corporation. DEC is a trademark of Digital Equipment Corporation.
Intel and Pentium are registered trademarks of Intel Corporation. Macromedia Freehand is a
trademark of Macromedia, Inc. MS-DOS, Visual C++, Win32, Windows, and Windows NT are
registered trademarks of Microsoft Corporation. MIPS is a registered trademark of MIPS Tech-
nologies, Inc.

Companies, names, and/or data used in screens and sample output are fictitious unless other-
wise noted.

Acquisitions Editor: David Clark
Manuscript Editor: Jennifer Harris
Technical Editor: Christina Anagnost
Project Editor: John Pierce

For Laksbmi

Acknowledgments

The author wishes to thank his agent, Carole McClendon, and the many
individuals at Microsoft Press who helped to complete this book.

Chapter 1

Chapter 2

Introduction

What You'll Need to Use This Book
What You Get with This Book
Getting Online Help

What's in This Book

Installing the Companion CD-ROM

Installing the Learn Visual C++ Now Files Under Windows 95
Installing the Learn Visual C++ Now Files in Other Environments
Installing Visual C++ ‘

Customizing Your Installation Options

‘Introducing Visual C++

The Visual C++ Programming Environment
The Visual C++ Editor
The Visual C++ Wizards and App Studio
Programming with Visual C++
The Visual C++ Build Process
The MFC Library
MFC: The “New Windows API”
MFC and Visual C++
Writing a Visual C++ Program
Understanding Visual C++ Projects
Writing a Visual C++ Program Step by Step
What's Next?

Introduction to Windows Programming

The World's First C-Language Program
Architecture of the “Hello, world!" Program
Windows Events and Messages: An Overview

Message Queues and Message Pumps

Xv
Xvi
xvii
Xvii
Xvii
Xix
Xix
XX
XX

XXi

U1 W N =

10
1"
1"
12
12
13
14
19

21
22
23

24
25

:Learn Visual C++ Now

The Window Procedure
‘ bMessage Handlers
Example: The HELLO Program
Methods of Building the HELLO Program
Building the HELLO Program Step by Step
How the HELLO Program Works
How the WinMain Function Works
Registering a Window Class
Creating and Displaying a Window
Drawing Text in a Window
What's Next?

Chapter3 C++ Basics ‘
What's Object-Oriented Programming?
Old Friends, New Faces

Type Specifiers
Qualifiers
C++ Classes

Déclaring Classes
Access Specifiers
Inline Member Functions

“Example: The EMPINFO Program
Constructors and Destructors
Default Function Arguménts
Copy Constructors
Example: The CPYCONST Program

 Initializer Lists
The Scope Resolution Operator
The this Pointer

- What's Next?

Vi

25
27
28
28
29
32
34
37
40
42
47

49
50
52
52
60
65

65

66
67
67
71
74

75

77

78

.
81

82

Table of Contents

Chapter 4 Objects and Member Functions 83
Class Hierarchies and Inheritance 84
Understanding Class Hierarchies | 84

How Derived Classes Work 85

Why Use Derived Classes? ' 85
Example: Deriving a Class 86
Rules of Inheritance in C++ 88
Declaring a Derived Class 89
Constructing Derived Classes 90
Overriding Member Functions 91
Polymorphism and Virtual Member Functions 95
Example: Using a Virtual Function . 95

How the VIRTUAL Program Works ' | 97
Virtual Functions and Nonvirtual Functions 98
Benefits of Using Virtual Functions 98
V-Tables 99

Pure Virtual Functions and Abstract Classes 104

How Abstract Classes Are Used in the EMPDATA Program 105
Virtual Functions: Pros and Cons 105
Function Overloading and Operator Overloading 106
Function Overloading 106
Operator Overloading _ 108
Writing Operator-Overloading Functions 109
Static Member Variables : ' 11
Creating Static Member Variables 112
Declaring and Defining Static Member Variables : 113
Accessing Static Member Variables : 114
Private Static Member Variables 115
Static Member Functions : ‘ 116

vii

Learn Visual C++ Now

Chépter 5

Chapter 6

viii

Friendly Classes and Friendly Functions
One-Way Friendships

The new and delete Operators
The new Operator
-The delete Operator

What's Next?

Visual C++ Tools

Visual C++ Projects
Creating the Basic SCRAMBLE Project -
Files and Classes in AppWizard Projects
Files in the SCRAMBLE Project ‘
Adding a Bitmap: Managing Résources with App Studio
Writing Code to Display the Bitmap
- Working with Bitmaps
Building a Visual C++ Application
Compiling an Application
Linking an Application
Executing the SCRAMBLE Program
Editing Menus with App Studio

Creating Message Handlers with ClassWizard

Writing Code for Message Handlers
The Visual C++ Debugger
Setting Breakpoints
Step;ﬁiﬁg Through a Program
: 0pen’i'ﬁ‘g~bebugger Windows
Listing: The SCRAMBLE Program '
What's Next? \

The MFC Library

‘About the MFC Library

117
118
121
121
122
123

125
126

127 =

131
132
134

- 138

138
143

143

146
148
149
152
155
155

156

156
157
158
165

167

169

Table of Contents

A Brief History of the MFC Library 170
MFC Version 2.0 : 17

MFC: The New Windows API 172

The MFC Library Class Hierarchy 175
The MFC Framework Classes | 180
The CObject Class 181

The CCmdTarget Class 181

The CWinApp Class 182

The CWnd Class 183

The CFrameWnd and CMDIFrameWnd Classes 183

The CView, CScrollView, and CDocument Classes 184

The CDocTemplate Class | 185

How an MFC Program Works ' 186
The WinMain Function 186

The Initinstance Member Function 188

The Run Member Function 189

The PumpMessage Member Function 190
Window Procedures in MFC Programs 192
Using Documents and Views in MFC Programs 192
Document Templates ; 197
Example: The Improved SCRAMBLE Program | , 200
Experimenting with the New SCRAMBLE Program ' _ 200

How Windows Are Managed in the New SCRAMBLE Program 200
Adding Toolbar Buttons to the SCRAMBLE Program ’ 201
Updating the SCRAMBLE Program's Menu ltems , 207
Creating Solid-Color Bitmaps for the SCRAMBLE Program 210
Adding Scrolling to the SCRAMBLE Program'’s Views 212
Customizing a Program's Windows : 215

~ What's Next? | 219

Learn Visual C++ Now

Chapter 7

Of Mice and Messages

Understanding Windows Messages
Varieties of Windows Messages

How Windows API-Style
Programs Handle Command Messages

How MFC Programs Handle Command Messages
How the MFC Framework Dispatches Messages
Message,Maps
Benefits of Using Message Maps
Binding Message Maps to Your Program
Declaring a Message Map
Implementing a Message Map
Messages That ClassWizard Recognizes
Creating Message Handlers with ClassWizard
The Story So Far
Wiriting Code for Message Handlers
Different Strokes
Storing Strokes in an Array
Writing a Message Handier Step by Step
Converting Device Coordinates to Logical Coordinates
Writing an OnMouseMove Message Handler
Storing Strokes in a Document
Redrawing Strokes in the SCRIBBLE Wmdow
Creating and Managing a CPen Object
Understanding MFC Library Classes
Features of the CObject Class
Files and Serialization
Opening Files in an MFC Program
Performing File I/0 with the CFile Class

221

22

223

227
228
229
230
231
232
232
234
235
237
239
241
241
242
242
244
245
249
251
253
253
254
255
256
257

Table of Contents

Chapter 8

The Serialization Mechani?m
Objects and Operators Used in Stream 1/0
Using the << and >> Operators
Implementing Serialization in MFC Programs
Implementing Serialization in AppWizard Programs
Implementing Serialization in the SCRIBBLE Program
Serializable Data Types
MFC's Serialization Macros
Opening and Closing Documents in an MFC Program
Clearing the SCRIBBLE Program’s Window
Changing Pen Widths

What's Next?

Dialog Boxes

Varieties of Dialog Boxes
Modal Dialog Boxes
Modeless Dialog Boxes
Message Boxes
Components of a Dialog Box
Designing a Dialog Box with App Studio and ClassWizard
Integrating Dialog Boxes with Applications
Creating and Displaying a Modal Dialog Box
Calling a Dialog Box Constructor
Calling the DoModal Function
Calling the OnlnitDialog Function
Creating and Displaying a Modeless Dialog Box
Constructing a Modeless Dialog Box
Calling the Create Function
Initializing a Modeless Dialog Box
Overriding OnOK and OnCancel
Calling PostNcDestroy |

259

260
261
262
263
264
267
267
268
270
27
273

275

277
. 277
277
278
278
279
282
282

282

284
285
287
287
288
289
290
292

S X

Learn Visual C++ Now

Creating and Displaying a Message Box 292
Dialog Box Controls : 293
Button Controls 293

Edit Controls : 298

Static Text Controls ‘ 301

Radio Buttons ! 303

List Boxes 305
Combo Boxes ' 307
Check Boxes 309
What's Next? 310
~ Chapter9 Managing Data 311
The DDX and DDV Mechanisms - 313
" TheOld Way | 313
Understanding DDX/DDV: The TESTAPP Program 314
Creating the TESTAPP Project and Adding DDX Support 315

, Implementihg the DDX/DDV Mechanisms : 321
Understanding the UpdateData Command 325

_ An Easier Way ‘ 326

Calling the UpdateData Function Step by Step 327
‘Running the TESTAPP Program - 328
Extending DDX/DDV: The CREATION Program ’ . 329
Architecture of the CREATION Program 333
Creating a CPlayer Object : : . 336

The Create A Character Dialog Box ; ‘ ; ; 338

The Mel's Bait Shop And Fashion Boutique Dialog Box : 347

The Character Information Dialog Box ~ 352
Serialization Revisited : 353
The CREATION Program'’s Serialize Member Function 354

The CPlayer Class's Serialize Member Function : 355

Xii

Table of Contents

Chapter 10

Adding Printing Support
AppWizard's Printing-Related Functions
Customized Printing in the CREATION Program
Calling the OnPrint Member Function '
How the OnPrint Member Function Works
The GetStats Member Function
Calling the GetEquipmentList Member Function
What's Next?
Visual C++ Graphics
Bitmaps
Varieties of Windows Bitmaps
Device-Dependent Bitmaps (DDBs)
Creating DDBs
Loading and Saving DDBs
Copying and Displaying Bitmaps
Sprite Animation
Spfite Animation Step by Step

Using Frame Buffers in Animation Programs

Avoiding Flickering and Tearing in Bitmap-Copying Operations -

Calculating Bounding Rectangles in Animation Sequences
Step Animation '

Example: The GRAFDEMO Program

~ How the GRAFDEMO Program Works

The GRAFDEMO Program Step by Step
Constructing Bitmaps in the GRAFDEMO Program
Getting Ready for Animation
The GRAFDEMO Program’s OnDraw Function
Drawing a Background

Drawing a Player

356
357
358
358
360
361
362
363

365

367
369
371
371
373
374
379
380
381
382
383
385
386
386
387
389
390
391
392

392 -

Xiii

Learn Visual C++ Now

Xiv

Moving a Sprite

Calculating Bounding Rectangles
Device-Independent Bitmaps (DIBs)

How DIBs Speed Copying Operations

Disadvantages of Using DIBs

DIB Architecture
Palettes

The System Palette

The Default Logical Palette

The Logical Palette

- How the DIBDEMO Program Uses Palettes

Mapping System Palette Colors to a Logical Palette

Creating and Using Logical Palettes

Streamlining DIB Copying with Identity Palettes

- Creating an Identity Palette

Creating and Using DIBs

DIB-Copying Operations

Using the StretchDIBits Function

Using the SetDIBitsToDevice Function
Example: The DIBDEMO Program

How the DIBDEMO Program Works

Loading DIBs into Memory

Copying and Displaying DIBs

The StretchDIBits Member Function
What's Next? | '

Suggestions for Further Reading

Index

394
396
397
397
398
400
407
409
409
410
412
413
414

- 415

415
416
417
418
419

- 420

421
421
423

24

426
427

429

“Introduction

The world is full of books about Visual C++. Why is Learn Visual C++ Now
different?

One reason is that this book comes with a complete copy of the Microsoft
Visual C++ version 1.0 compiler—the same Professional Edition Visual
C++ compiler that sold for hundreds of dollars when Visual C++ was in-
troduced. Another special feature is that this book teaches you the C++
language using Microsoft Visual C++—the de facto standard for writing
Windows-based programs and the most widely used compiler for creating
and developing Windows-based programs in C++.

Learn Visual C++ Now is intended for programmers with a basic knowl-
edge of the C language who would like to learn to write Windows-based
programs in C++. And in addition to teaching you the ins and outs of Visual
C++, this book provides an introduction to the basics of programming in
Windows and a two-chapter overview of the C++ language and the prin-
ciples of object-oriented programming.

This book also provides you with the personal assistance of the best Visual
C++ teachers on the planet—the wizards that come with Visual C++. The
Visual C++ wizards include AppWizard, which can generate a working
Visual C++ application at the touch of a menu command, and ClassWizard,

Xv

Learn Visual C++ Now

Xvi

which can create and manage classes in Visual C++ programs. For a per-
sonal tutoring session from either of these wizards, all you have to do is
ask. You can learn C++, Visual C++, and good programming practices
simply by examining the code that the Visual C++ wizards produce. The
wizards never write bad code, so you can rest assured that you'll get well-
behaved code that adheres to Microsoft standards.

As you become more familiar with programming in Visual C++, you can
add to your understanding of the basic principles by observing how the

wizards do the spadework needed to make your applications work. And
that’s probably the most painless method yet discovered for learning both . -
Visual C++ and Windows programming!

What You'll Need to Use This Boolg

The version of Visual C++ that comes with this book runs under Microsoft
Windows 95 and Microsoft Windows NT, as well as under earlier versions
of Windows. It generates 16-bit applications that can be executed immedi-
ately, without any editing or tweaking.

To follow the examples in this book, you’ll need an Intel 386, 486, or
Pentium processor and Microsoft Windows 95, Microsoft Windows NT, or
Microsoft Windows version 3.0 or 3.1. (Windows version 3.1 is preferred.)
You'll also need a hard disk with enough disk space to install the options
that you want, and you’ll need at least 4 (and preferably 16) MB of RAM
(depending on your operating system). And, of course, to install the Visual
C++ compiler included on the companion CD-ROM, you’ll need a CD-
ROM drive. ‘

(é‘&‘ OTE [f after finishing this book you decide to upgrade to a later version of

Visual C++, you can use your new compiler to recompile any of the sample
programs presented in this book and any programs that you built using
Visual C++ version 1.0. You can even recompile the programs presented in
this book and your own Visual C++ version 1.0 programs using Borland C++
version 5.0 or later (which supports the MFC library and source code written
using Visual C++). ’ ‘

Introduction

What You Get with This Boolk

The companion CD-ROM provides the Microsoft Visual C++ version 1.0
compiler, the Visual C++ linker, and the complete Visual C++ develop-
ment environment—including the Visual C++ editor, the Source Browser,
a source code and assembly language debugger, a complete set of online
help files, and a collection of tools for creating and maintaining resources .
and C++ classes.

The companion CD-ROM also provides a collection of notes (located in
the /MSVC/HELP directory) in Microsoft Word/Windows 95 Notepad for-
mat that contains miscellaneous information about Visual G++ and the
Visual C++ version 1.0 compiler.

m OTE No product support is provided for the Visual C++ software that comes
with this book.

Getting Online Help

You can get help at any time by consulting the online help files that come
with Visual C++ version 1.0. To access online help, all you have to do is
choose the topic for the kind of help you need from the Visual C++
editor’s Help menu. Help topics include the C/C++ language, the Win-
dows Software Development Kit (SDK), and the Microsoft Foundation
Class (MFC) Library version 2.0. The Visual C++ online help files can also
provide you with information about the tools that come with the Visual
C++ software development environment.

What's in This Book
Here is a description of the topics we’ll cover in Learn Visual C++ Now.

Chapter 1, “Introducing Visual C++,” acquaints you with the Visual Work-
bench, AppWizard, and other important tools and programming principles
you’ll use when developing applications in Visual C++.

Chapter 2, “Introduction to Windows Programming,” provides an over-
view of the construction of Windows-based programs. What you learn in
this chapter will come in handy in later chapters, when we explore how
AppWizard constructs frameworks for Visual C++ programs.

XVii

Learn Visual C++ Now

Xviii

Chapter 3, “C++ Basics,” looks at some of the most important features of
generic C++ and object-oriented programming. This chapter explains some
of the differences between C and C++ and shows you how to create and
implement C++ classes, member variables, and member functions.

Chapter 4, “Objects and Member Functions,” like Chapter 3, is dedicated
to the study of generic C++ and the fundamental principles of object-
oriented programming. In this chapter, we take a look at how objects and
member functions are used in C++ programs and also at other important
principles of C++ programming, including inheritance, polymorphism,
virtual functions, function overloading, and friend functions.

Chapter 5, “Visual C++ Tools,” describes in detail how to use the program-
ming tools in Visual C++ and shows—with the help of a straightforward
example program—how programming in Visual C++ differs from tradi-
tional Windows API-style programming.

Chapter 6, “The MFC Library,” shows how the MFC library has enhanced
generic C++ and the Windows API by adding new classes and member
functions specifically designed for use by Windows programmers. Topics
covered in this chapter include the CObject class, the CWnd class, and
other important classes in the MFC library.

Chapter 7, “Of Mice and Messages,” introduces the concept of mouse
events and shows how you can use mouse events to interact with the user
in Visual C++ programs. More information is provided about menus, mes-
sages, message handlers, and message maps.

Chapter 8, “Dialog Boxes,” shows you how to use App Studio to design
dialog boxes and equip them with controls. This chapter explains and
demonstrates both ordinary dialog box controls and user-drawn controls.
An example program shows how you can use message boxes, modeless
dialog boxes, and modal dialog boxes with many different kinds of con-
trols in your own Visual C++ programs.

Chapter 9, “Managing Data,” continues our examination of dialog boxes.
This chapter shows you how to create member variables for dialog box
classes using ClassWizard and how to use those member variables as
connection points between dialog box controls and member functions in
Visual C++ applications. The key to this magic is the Visual C++ DDX

Introduction

(dialog data exchange) and DDV (dialog data verification) mechanisms,
which you can use to pass information back and forth between your appli-
cation and dialog box controls.

Chapter 10, “Visual C++ Graphics,” introduces you to Windows graphics
and animation and shows you how to incorporate exciting graphics rou-
tines into your Visual C++ applications. In this chapter, you’ll learn to use
device-dependent bitmaps (DDBs), device-independent bitmaps (DIBs),
sprite graphics, step graphics, and transparent bitmap copying. This chap-
ter presents two example programs: one demonstrates the use of sprite
graphics using standard DDBs, and one performs similar magic using DIBs.

Also included is a list of additional references about Visual C++ and object-
oriented programming.

Installing the Companion CD-ROM
To install the source code, sample programs, and Visual C++ software that
is included on the companion CD-ROM, follow the procedures outlined
below.

Installing the Learn Visual C++ Now
Files Under Windows 95

To install the Learn Visual C++ Now files under Windows 95, follow these-
steps:

From the Windows 95 desktop, click the Start button.
Choose the Run menu item.

In the Run dialog box, click the Browse button.

Ll S

In the Browse dialog box, navigate to the root directory of the com-
panion CD-ROM.

Click the SETUP.EXE icon.
6. Click the Open button.

o

7. When the Run dialog box reappears, click OK, and follow the on-
screen instructions. '

Xix

Learn Visual C++ Now

XX

Installing the Learn Visual C++ Now

Files in Other Environments

If you are running Windows 3.x or Windows NT version 3.5 or earlier,
you can install the Learn Visual C++ Now files by opening File Manager,
navigating to the root directory of the companion CD-ROM, and double-
clicking the SETUP.EXE icon. Alternatively, you can follow these steps:
1. From Program Manager, choose the Run item from the File menu.

2. In the Run dialog box, navigate to the root directory of the compan-
ion CD-ROM.

3. Click the SETUP.EXE icon.
4. Click the Open button.

5. When the Run dialog box reappears, click OK, and follow the on-
screen instructions.

Installing Visual C++

The Visual C++ compiler on the companion CD-ROM generates 16-bit
Windows-based applications that will run under Windows 95, Windows
NT, or Windows 3.x. '

Under Windows 95
To install Visual C++ under Windows 95, follow these steps:

1. From the Windows 95 desktop, click the Start button.
2. Choose the Run menu item.

3. In the Run dialog box, click the Browse button.

4

. In the Browse dialog box, navigate to the /MSVC folder on the com-
panion CD-ROM.

Click the SETUP.EXE icon.
6. Click the Open button.

o

7. When the Run dialog box reappears, run the Installer by clicking the
OK button. '

Introduction

In other environments

If you are running Windows 3.x or Windows NT version 3.5 or earlier, you
can install Visual C++ by opening File Manager, navigating to the /MSVC
folder on the companion CD-ROM, and double-clicking the SETUP.EXE
icon. Alternatively, you can follow these steps:

1.
2.

From Program Manager, choose the Run item from the File menu.

In the Run dialog box, navigate to the /MSVC folder on the compan-
ion CD-ROM.

. Click the SETUP.EXE icon.

Click the Open button.

. When the Run dialog box reappears, run the Installer by clicking the

OK button.

Customizing Your Installation Options
If you prefer, you can customize your installation using the Installation
Options dialog box, which opens when you start the Installer.

- To customize your installation, follow these steps:

1.

To determine whether you have enough disk space to install the
complete Visual C++ package, check the Disk Space Information
panel at the bottom of the Installation Options dialog box. In the
Disk Space Information panel, the Installer displays the name of the
disk drive on which Visual C++ is about to be installed.

If you want, you can click the Directories button to specify a differ-
ent disk for your Visual C++ installation. The Installer then opens
the Directory Options dialog box.

. By specifying multiple drives in the Directory Options dialog box,

you can install different parts of the Visual C++ package on different
drives. If you have enough hard disk space, it is recommended that
you install all the items listed in the Installation Options dialog box.
If you can’t find enough hard disk space to install every item, you
can uncheck the Sample Source Code check box. The Installer will
then skip the sample programs provided with Visual C++ version 1.0.

XXi

Learn Visual C++ Now

Later yoil can load any sample project you want directly from the
companion CD-ROM.

4. After you have specified a directory setup for your Visual G++ in-
stallation, close the Directory Options dialog box by clicking the OK
button. Once again, the Installation Options dialog box becomes the
active window.

Now that you’re all set up, let's start learning about Visual C++.

XXii

Introducing Visual C++

Learning to program with Microsoft Visual C++ is different from learning
to develop software in other computer languages. When you design a pro-
gram in an older, conventional computer language, such as C, Basic, or

Pascal, you generally have to do everything yourself; every time you want
the computer to do something, you have to write a line or a block of code.

When you write a program using Visual C++, a lot of the work is done for
you. In many cases, Visual C++ provides the general code the computer
needs to perform many of the tasks you want it to perform. You then add
to and tailor the code that Visual C++ provides to create more specific
applications.

That shortcut frees you from having to write every line of code that’s
needed to perform repetitive tasks such as handling keyboard and mouse
operations and drawing windows to the screen. With Visual C++, you can
focus your attention on more creative work—such as writing the code that
implements what’s really new and different about the application you are
developing.

This chapter introduces Visual C++ and familiarizes you with the tools
that make up the Visual C++ programming environment. It also intro-
duces the Microsoft Foundation Class (MFC) Library version 2.0, a large
library of C++ classes and member functions that are designed especially

Learn Visual C++ Now

for developing Windows-based programs in Visual C++. At the end of this
chapter, you’ll see how one Visual C++ tool, a utility named AppWizard,
uses the MFC library to generate a fully functioning Windows-based appli-
cation at the click of a menu item. In later chapters, you’ll learn how to
write the code necessary to expand the application frameworks generated
by AppWizard into more sophisticated Visual C++ applications.

These are the main topics covered in this chapter:

B The Visual Workbench programming environment, which intro-
duces the Visual C++ editor and the Visual C++ wizards

® How the Visual C++ wizards help you learn Visual C++
How to compile and link a Visual C++ program

How the MFC library—the “new Windows API”—can he‘lp you
write powerful Visual C++ programs

B A step-by-step guide to writing a framework MFC program using
Visual C++

'ﬁ'he Visual C++ Programming Environment

When you develop applications in Visual C++, you use the Visual Work-
bench, sometimes abbreviated VWB. The Visual Workbench is the pri-
mary editing and debugging tool provided with Visual C++; it serves

as the command center for Visual C++ programming and provides a host
of programming utilities, including the following:

The AppWizard application gen.erator

The App Studio resource manager

The ClassWizard class manager

The Visual C++ Source Browser

The Visual C++ debugger

The Visual C++ editor

1 Introducing Visual C++

B The Visual C++ compiler

L] The Visual C++ linker

Figure 1-1 shows what the Visual Workbench window looks like when it
first opens. From the main Visual Workbench window, you have access to
a number of the editing and programming components. Most of the main
components of the Visual Workbench environment are described in the
sections that follow. You’ll learn more about the others as you move
through this book.

Figure 1-1. The main Visual Workbench window.

The Visual C++ Editor

When you start Visual C++, you see the Visual C++ editor window. The
Visual C++ editor is a standard Windows-based text editor equipped with
a number of special features for writing Visual C++ programs.

‘One of these features is a built-in Source Browser, used to track down defi-
nitions and references to variables and C++ classes. Another is color-
coded highlighting of different keywords used in Visual C++.

Learn Visual C++ Now

The color-coded syntax feature makes it easy to spot occurrences of spe-
cial kinds of words or phrases in Visual C++ programs. For example,
C-language keywords appear in blue, C++ keywords are displayed in red,
and comments appear in green. Debugger breakpoints show up in reverse
video inside a red band. (These are default settings; if you prefer some
other convention, you can modify the Visual C++ editor’s default color
settings by choosing the Color item from the Options menu.)

Other special features of the Visual C++ editor include automatic indenta-
tion of lines in functions, a search-and-replace utility, bookmarks that can
provide instant access to a selected line of text, and a built-in source code
debugger. You can access any of these tools—and many more—from the
menu bar or from the toolbar, which provides point-and-click access to
14 common menu commands.

Keystroke Shortcuts

When you write source code with the Visual C++ editor, you can use a
number of special keystrokes to edit text and to move around in your
source files. Table 1-1 lists some of the common keystroke combinations
recognized by the Visual C++ editor.

Keystroke Shortcut Editing Operation

Ctrl-Left arrow Move one word to the left

Ctrl-Right arrow Move one word to the right

Home Move to the first indentation of the current line
Home, Home Move to the beginning of the current line
Ctrl-Enter Move to the first indentation of the current line
End . Move to the end of the current line

Ctrl-Home Move to the beginning of the file

Ctrl-End Move to the end of the file

Ctrl-Z or Undo the last edit

Alt-Backspace

Table 1-1. Keystroke shortcuts for editing operations.

1: - Introducing Visual C++

Keystroke Shortcut Editing Operation

Ctrl-A Redo the last edit

Ctrl-T Delete to the end of the word
Ctrl-C or Ctrl-Ins Copy selected text to the Clipboard
Ctrl-X or Shift-Del Cut selected text to the Clipboard
Ctrl-V or Shift-Ins Paste text from the Clipboard

Ctrl-] Move to the matching brace
Tab Insert a tab
Ctrl-Alt-T Toggle the display of tab symbols

To learn more about the Visual C++ editor and its many features and capa-
bilities, choose the Visual Workbench item from the Visual Workbench
Help menu, and then click the button labeled Using The Editor.

The Visual C++ Wizards and App Studio

The Visual Workbench comes with a set of programming tools called
wizards. In the Visual G++ development environment, wizards perform
complex sequences of tasks for you, so you don’t have to remember all the
details yourself. For example, the tool named AppWizard can set up an
application at the click of a menu item. ClassWizard, another Visual C++
wizard, lets you use dialog box controls to connect resources such as
menus and dialog boxes to the code in your Visual C++ programs. Let’s
look at these wizards and a related tool, named App Studio, in a little
more detail.

AppWizard

An application generated by AppWizard is sometimes referred to as an
application framework. An application framework is a minimal Visual
C++ program that you can customize by adding whatever special-purpose
code your application requires.

Figure 1-2 on the following page shows you what AppWizard looks like
when it first starts up.

Learn Visual C++ Now

Figure 1-2. The MFC AppWizard dialog box.

.

To start AppWizard, you simply choose the AppWizard item from the
Visual C++ Project menu. AppWizard then displays various dialog boxes
that you can use to specify attributes of the application you want to create.
When you have finished, AppWizard generates a functioning Visual C++
application that meets your specifications and contains all the essential
ingredients of a Windows-based application, including the following:

B A main frame window and any other windows required by the kind
of application being created

B A menu bar equipped with the standard Windows menus, such as
File, Edit, and Help

m All the menu items and dialog boxes needed to open files, save files,
print files, and implement print-preview functionality

B A toolbar and a status bar

1: Introducing Visual C++

M OLE support for container and server objects

m All the source files and resource files needed to create an application
built around the Visual C++ classes provided in the MFC library

When AppWizard has generated an application framework, it’s up to you
to turn that framework into the kind of Windows-based application that
you want to design.

At the end of this chapter, you’ll get a chance to create an application
framework using AppWizard. In later chapters, you’ll learn how to add
code to an application framework that can give the program its own set
of interesting functionality. By the time you finish this book, you’ll know
how to expand AppWizard frameworks in many different ways to create
many different kinds of applications. '

You will learn much more about AppWizard and the MFC AppWizard
dialog box in Chapter 5, “Visual C++ Tools.”

App Studio

After you have generated a bare-bones application with AppWizard, you
can use other tools provided with Visual C++ to expand your AppWizard
framework into a more useful application. One of the Visual C++ tools
you’ll use often is App Studio—a graphically based, mouse-driven resource
editor. With App Studio, you can create and design dialog boxes, menus,
bitmaps, and other kinds of resources for your Visual C++ programs.

When you create or modify a resource using App Studio, App Studio
automatically modifies your project’s resource (.RC) file to reflect your
changes. To use App Studio, you select the App Studio item from the Vi-
sual Workbench Tools menu. Then you can choose from several different
kinds of resource editors that are built into App Studio, such as the dia-
log box editor shown in Figure 1-3 on the following page.

Learn Visual C++ Now

HELLO Application Version 1.0
Copyright © 1996

Figure 1-3. The App Studio dialog box editor.

Youw’ll learn more about App Studio inFChapter 7, “Of Mice and Messages,”
and Chapter 8, “Dialog Boxes.”

ClassWizard

Another important Visual C++ utility is ClassWizard, a tool that connects
resources such as menus and dialog boxes to the code that implements
your Windows-based programs. In later chapters, when you start learning
how to write object-oriented programs using C++, ClassWizard can also
help you create and manage C++ classes.

To create a new C++ class using ClassWizard, you select the ClassWizard
item from the Browse menu. Figure 1-4 on the following page shows the
ClassWizard dialog box. ‘

ClassWizard, like AppWizard, is an expert at writing C++ code. But while
AppWizard creates a general application framework, ClassWizard is a
specialist that, at your request, can write C++ routines that process user-
generated events such as mouse clicks and mouse movements. ClassWizard
even inserts the code it has written at the appropriate spot in your program.
You can then add whatever code you need to make your apphcatlon re-
spond to user events in whatever way you want.

1: Introducing Visual C++

[© COMMAND
UPDATE_COMMAND_UI

nAppAbout ON_ID_APP_ABOUT:COMMAND

Figure 1-4. Managing Visual C++ classes with ClassWizard.

You'’ll get a close-up look at ClassWizard in Chapter 7, “Of Mice and
Messages,” and Chapter 8, “Dialog Boxes.”

Programming with Visual C++
By freeing software developers from the ridiculous so that they can work
on the more sublime, Visual C++ is not only bringing about an enormous
change in the way people write Windows-based programs, it’s also begin-
ning to change the way people study computer programming.

When you learn Visual C++, you don’t have to master every detail in every
routine before you move on to the next level. Instead, you can learn at
whatever pace you want, letting the Visual C++ wizards take care of the
programming details that you haven’t explored yet. Later on, in order to
get a better idea of exactly how Visual C++ works, you can go back and
take a closer look at some of the subtleties you’ve skimmed over.

But you don’t ever have to do that unless you want to—and there are
many highly specialized areas and murky corners of Visual C++ that you
may never get around to exploring. The point is that with Visual C++, you
can learn what you need to know at the moment, and you can leave the
rest for later if you want. That’s the approach we’ll take as you learn to use
Visual C++.

Learn Visual C++ Now

10

As you study Visual C++ programming using this book, your real teachers
will be the Visual C++ wizards. They will write most of your source code for
you—and they’ll always write it perfectly, which is more than most flesh-
and-blood teachers of programming can do. This book will serve mainly as
a guidebook; it will show you the code the wizards have written for you
and explain how that code works. Meanwhile, you’ll have opportunities
to experiment with the code that the wizards create. You’ll also be able to
modify that code and incorporate it in your own Visual C++ programs.

The Visual C++ Build Process

As you know if you are an experienced programmer, the code that you
write when you create an application is called source code. When you
compile your source code with a compiler, the compiler generates files
that contain object code—that is, binary code that your computer under-
stands. When your compiler has converted your source code to object
code, you can use a linker to link your object code files with other object
code files named libraries. Linking with libraries is an important opera-

tion in the Visual C++ build process because most Visual C++ applications

rely on external libraries that are supplied as part of the Visual C++ devel-
opment package. You can also create libraries yourself and use them in
your Visual C++ applications. ' ‘

The process of compiling and linking a Visual C++ program is known as
building the application. During the linking phase of the build process,
several kinds of library files can be linked to your application. Some library
files have an .LIB filename extension and are known, logically enough, as
library files. Another variety of library file is the dynamic-link library, or
DLL, which often has the filename extension .DLL.

Library files and DLLs have important differences that you’ll learn about in
later chapters. For now, the most important thing to know is that both .DLL

-and .LIB files are object code files that can contain implementations of C

and C++ procedures, or functions, that you can use in your applications.

When the Visual G++ linker links your application with all the library
files it needs to run properly, the result is an executable file that you can

1: Introducing Visual C++

run on your computer. You’ll write and run many executable apphcatlons
as you study the material in this book.

In most situations, you don’t have to know much about the Visual C++
build process to compile and link your Visual C++ programs. AppWizard
generates an application at the click of a menu command, so you can com-
pile and link your program without worrying much about the internal
operations of the Visual C++ linker and compiler.

As you advance to more complex Visual C++ projects, however, it might
be helpful for you to understand how the Visual C++ compiler and linker
work together to generate executable Windows-based applications. More
detailed information about the compiler, the linker, and the build process
will be presented in later chapters.

The MFC Library

Perhaps the most important feature of Visual C++ is that it works together
with the MFC library, the C++ successor to the C-language Windows appli-
cation programming interface (API). The Windows API—a large collection
of functions implemented in a set of dynamic-link libraries—was released
with Windows and has been the foundation of all Windows program-
ming. The MFC library version 2.0, which made its debut with Visual C++
version 1.0, is a C++ library that encapsulates almost all the functions im-
plemented in the Windows API.

MFC: The “New Windows API”

The MFC library is now the most widely used C++ library for writing
Windows-based programs. In fact, it has become what some Microsoft
executives call the “new Windows APL.”

There are good reasons for the popularity of the MFC library. The Windows
API contains many kinds of functions that are implemented in many
ways. The MFC library has rounded up almost all these functions and
organized them into class hierarchies that make them more manageable.
Also, because the MFC library is written in C++, it equips the functions
in the Windows API with object-oriented features such as inheritance,
data abstraction, data encapsulation, and virtual functions.

"

Learn Visual C++ Now

12

You will learn more about these and other features of C++ in Chapter 3,

- “C++ Basics,” and Chapter 4, “Objects and Member Functions,” which are

designed as a crash course in generic C++ and object-oriented program-
ming. You’ll learn more about the MFC hbrary in Chapter 6, “The MFC
Library.”

MFC and Visual C++

Visual C++ is designed as a programming environment for writing MFC-
based Windows applications. When you use AppWizard to create a Visual
C++ program, AppWizard generates an application framework by using
classes and member functions implemented in the MFC library.

Every Visual C++ program that AppWizard generates is an object of an
MFC library class named CWinApp. When you examine the structure of
an AppWizard application, you find that it has a number of other MFC li-
brary classes built into its framework. For example, every application gen-
erated by AppWizard contains an MFC library class named CView, which
manages the drawing and display of the program’s windows, and an MFC
library class named CDocument, which manages the program’s data.

The CWinApp, CView, and CDocument classes are examined in more detail
in Chapter 6, “The MFC Library.”

Writing a Visual C++ Program

The tools provided with Visual C++ are specially designed to work with
software development efforts that are organized into projects. In Visual
C++, a project is a collection of the files that are needed to build an appli-
cation. Projects simplify the creation of Visual C++ applications because
they provide an easy way to work with all the files as a group. When you
construct a Visual C++ application by creating a project, you can auto-
matically create a framework for your application by using the App-
Wizard tool. You can then manage your application’s C++ classes using
ClassWizard, and you can create and manage your application’s resources
using App Studio.

1: Introducing Visual C++

Understanding Visual C++ Projects
There are two ways to create a project: you can let AppWizard generate
your project for you, or you can create the project manually.

When AppWizard creates a Visual C++ project, several different kinds of
files are generated automatically. When you build a Visual C++ project,
several more files are created.

Table 1-2 lists and describes the kinds of files that are generated when you
create and build a Visual C++ application.

Kind of File Filename Extension Description

Header H ‘ A text file that contains

(include) file function declarations and class
definitions.

Source file .G, .CPP, .CXX A text file that contains

function definitions and (in C++)
implementations of classes.

Object file .OBJ A nonexecutable object code
file; it can be linked to applica-
tions by the Visual C++ linker.

Library file .LIB An object code file that is
linked to an executable or to
another library.* '

Resource file .RC A text file that creates and
manages Windows resources.
In Visual C++, resource files are
created and managed by App-
Studio.

* Library files, which have the filename extension .LIB, are precompiled object files containing
functions that can be called from user-written programs. Visual C++ comes with a large
collection of .LIB files, and you can also create your own.

Table 1-2. Kinds of files used in Visual C++ projects. (continued)

13

Learn Visual C++ Now

Table 1-2. continued

Kind of File Filename Extension

Description

Module- .DEF
definition file

Browser .BSC
database file
Makefile

MAK

Executable file .EXE

A text file that describes the
name, attributes, exports, im-
ports, system requirements, and
other characteristics of an appli-
cation or a DLL. In Visual C++
version 1.0, .DEF files are re-
quired for DLLs and some kinds
of MS-DOS programs. (See the
online help for details.) They
are optional but recommended
for other kinds of segmented exe-
cutable files, such as Windows-
based applications.

A database file used by the Vi-
sual C++ Source Browser.
(You’ll learn more about the
Source Browser in Chapter 5,
“Visual C++ Tools.”)

A text file that the compiler uses
to build your application. (See
Chapter 5.)

An executable application.

Writing a Visual C++ Program Step by Step
Now that you’re familiar with the Visual C++ programming environment
and Visual C++ projects, you’re ready to create your first Visual C++ pro-

gram. To do that, follow these steps:

1. Start Visual C++ if it isn’t started already.

2. Choose AppWizard from the Project menu. AppWizard starts and
displays a dialog box labeled MFC AppWizard, as shown on the

following page.

1: Introducing Visual C++

3. Using the Directory list box—and the Drive list box, if you need to—
navigate to a folder in which you want to store your application,
and then select that folder.

. In the Project Name text box, type your project’s name. For this
exercise, type framewrk. As you type, notice that the filename you
give your project also appears in the New Subdirectory text box. By
default, AppWizard creates a folder inside the main folder you have
selected and gives that folder the same name you’ve given to your
project. Your project’s files are then stored in the folder AppWizard
has created.

. By clicking buttons along the right side of the MFC AppWizard dia-
log box, you can set a number of options that AppWizard then uses
to create your program. The buttons labeled Options and Classes
open dialog boxes that you can use to set various attributes of the
program you are creating. '

When you click the Options button, AppWizard opens a dialog box
similar to the one on the following page.

15

Learn Visual C++ Now

16

You can then choose the options you need. Here are descriptions

of some of the options you’ll use most often:

]

The Multiple Document Interface option creates a multiple-
document interface (MDI) application—that is, an application
that supports multiple child windows. If you don’t check this
option, AppWizard creates a single-document interface (SDI)
program. For this exercise, leave the MDI option turned on.

The Initial Toolbar option creates a standard toolbar with sev-
eral buttons already installed. Toolbars are useful in Windows
based programs and are easily created by AppWizard, so leave
this option selected too.

The Printing And Print Preview option provides your applica-
tion with support for printing and preview operations. The pro-
gram you create in this exercise won’t make use of AppWizard’s
printing option, but most applications do, so you might as well
leave this selected.

The Generate Source Comments option places comments in
your source code. If you deselect this option, AppWizard gener-
ates uncommented code, which nobody—including you—is
likely to understand. It’s best to leave this button in its default
(selected) state so that AppWizard will generate commented code.

To close the Options dialog box and leave all its options at their
default settings, click the Cancel button.

1: Introducing Visual C++

7. When the MFC AppWizard dialog box again has the focus, click the
Classes button. AppWizard opens the Classes dialog box, shown
below. The Classes dialog box gives you a chance to review the
names of certain files that AppWizard will create for your project.

CM ainFrame
CFramewrkDoc
CFramewrkView

By default, AppWizard creates a set of project files based on the
name you have given your project. If you've given your project a
short name, that’s usually fine. For example, when you compile this
chapter’s sample project, named FRAMEWRK, AppWizard creates a
pair of files named FRAMEDOC.CPP and FRAMEVW.CPP. In other
cases, however, AppWizard comes up with default filenames that
look odd. For example, if you created a project named HELOPROY],
AppWizard’s default names would be HELOPDOC.CPP and HELO-
PVW.CPP. To change names like those into names that look more
attractive—such as HELLODOC.CPP and HELLOVW.CPP—you can
type new filenames in the Classes dialog box’s edit boxes. '

8. When you’ve finished examining the Classes ’dialog box, you can
close it by clicking OK or Cancel.

9. When the MFC AppWizard dialog box again has the focus, you're
ready to generate your application. To do that, simply click OK. In
response, AppWizard opens a New Application Information dialog
box containing important information about the application you are
about to create, as shown on the following page.

17

Learn Visual C++ Now

+ Suppotts the Multiple Document Interface (MDI)

{ + MSVC Compatible project file (FRAMEWRK.MAK)
+ Initial toolbar and status bar in main frame
{ + Printing and Print Preview support in view

10. Read over the specifications listed in the New Application Informa-
tion dialog box to verify that they’re OK, and then click the Create
button. AppWizard generates the source code and resource files for
your application.

11. After AppWizard has generated your application, you can build it
by choosing the Build item from the Project menu. The result is an
executable file named FRAMEWRK.EXE, which you can run from
the Windows desktop or directly from Visual Workbench. To run
your program from Visual Workbench, choose Execute from the
Project menu.

When your application starts, you should see a main frame window and a
child window like those shown here:

18

1: Introducing Visual C++

Congratulations! Without writing a line of code, you have just created
your first Visual C++ program.

Take some time to experiment with your application to see how it works.
Notice that you can display and hide the program’s toolbar and status bar
by opening the View menu and selecting and deselecting the Toolbar and
Status Bar items. You can also open and close files and windows, cascade
and tile windows, and display a simple, default-style About box. Also
notice that there are a few operations you can perform by clicking toolbar
buttons. Quite a bit of functionality for performing a few simple steps.

What's Next?

This chapter introduced Visual C++ and the Visual Workbench—a sophis-
ticated set of tools used to build Visual C++ programs. This chapter also
gave you a chance to use AppWizard to create a fully functional Visual
C++ application at the click of a menu command.

In later chapters, you’ll learn how to add different kinds of functionalities
to the application frameworks you create. Before we do that, however, we
need to gain a little perspective. Chapter 2, “Introduction to Windows
Programming,” introduces you to the Windows API, the bedrock on which
all Windows-based programs are built. Chapter 3, “C++ Basics,” and ‘
Chapter 4, “Objects and Member Functions,” introduce the fundamentals
of generic C++ and the basic principles of object-oriented programming.
After that we’ll return to the specifics of creating Windows-based applica-
tions in Visual C++.

19

Chapter

Introduction to
Windows Programming

This chapter is a blast from the past. It will show you something about
the structure of a Windows-based program and how peopie used to write
Windows-based programs—using the Windows application programming
interface (API)—before there was any such thing as Microsoft Visual C++.
This knowledge is valuable to a Visual C++ programmer for several rea-
sons. First, knowing something about basic Windows programming is im-
portant because, behind the scenes, applications created with Visual C++
that use classes and member functions provided by the Microsoft Founda-
tion Class (MFC) Library do their work by calling raw C-language func-
tions that are implemented in—you guessed it—the Windows API. So if
you know a little about how to write a Windows-based program without
using Visual C++, you’ll start your journey toward learning Visual C++
with a valuable understanding of the organization and architecture of a
Visual C++ program.

Second, knowing how to write Windows-based programs without Visual
C++ will give you a head start toward learning how to use the Visual C++
debugger. When your debugger encounters a problem in a Visual C++ pro-
gram, it often stops in an MFC source file that was not written by you. If

Learn Visual C++ Now

22

you have no idea what’s going on in that file, things can be confusing.
Having some idea of how Windows-based programs work can ease your
confusion considerably.

And third, although the tools built into Visual C++ are useful and are be-
'coming more and more widely used, Visual C++ is not the only develop-
ment environment for Windows on the market; you might encounter C++
programs for Windows that are not written in Visual C++. Because C++
code is designed to be reused, you might find opportunities to incorporate
code that wasn’t written in Visual C++ into your Visual C++ programs.
When that need arises, it’s helpful to understand the non—Visual C++
code that you're confronted with.

The main topics covered in this chapter are:

B The differences between MS-DOS-based programs and Windows-
based applications

B How a peculiar function known as a window procedure interprets
user events such as mouse clicks and keypresses in Windows-based
programs

How the Windows operating system builds and displays windows

B A step-by-step tutorial that shows you how to build and execute this
chapter’s sample program

The World’s First C-Language Program

In his classic book The C Programming Language (Prentice-Hall, 1978),
Brian Kernighan introduced the world to C by presenting the following
program for printing a line of text on the screen:

ftinclude <stdio.h>

main()
{

printf("Hello, world!\n");
}

2: Introduction to Windows Programming

“Hello, world!” is so short and straightforward that it’s easy to understand,
but it’s also so simple that it doesn’t do very much. If you rushed home
after your first computer science class and demonstrated the “Hello,
world!” program, your mother might be impressed, but your friends
probably wouldn’t be.

Nevertheless, the “Hello, world!” program is a complete C-language appli-
cation. And because C is an almost perfect subset of C++, you can also
compile “Hello, world!” as a Visual C++ program, so you could say that
“Hello, world!” is a fully functional C++ program too.

"Hello, world!” is not a Windows-based program, however. It lacks many
of the special routines that an application must have in order to take full
advantage of the Windows operating environment. It doesn’t contain func-
tions to detect mouse movements, manipulate windows, respond to menu
commands, or interact with other applications running in the Windows
environment. To expand the “Hello, world!” program into a full-fledged
Windows-based program, you’d have to add much more functionality.

Architecture of the “Hello, world!” Program
Understanding the simple architecture of the “Hello, world!” program will

help you to learn what’s required to create a comparable program for Win-
dows and will also help you understand what happens in programs you
create with Visual C++.

You might recall that every text-based C application has one (and only
one) function named main. Text-based C++ programs also follow this rule.
In a text-based C or C++ program, the main function is always the first
function that executes when the program starts. The primary job of the
main function is to call—either directly or indirectly—all other functions
in the program. In the “Hello, world!” program, the main function con-
tains a single statement that calls the printffunction, as shown here:

printf("Hello, world!\n");

The printf function then works some magic that prints the line Hello,
world! on the screen. When the main function in a program terminates, the
program ends.

23

Learn Visual C++ Now

24

Interestingly, non—Visual C++ programs written for Windows (sometimes
called Windows API-style programs) always break one fundamental rule
of C. A Windows API-style program never has a main function. Instead,
the entry function is always a function named WinMain.

In a Windows API-style program, the WinMain function performs the
same job as a traditional main function, with some Windows-specific
functionalities added. Every function in a Windows API-style program is
executed, either directly or indirectly, from the WinMain function. When
the WinMain function terminates, the program ends.

Windows Events and Messages: An Overview

Windows is sometimes referred to as an event-based, message-driven op-
erating system. During the execution of a Windows-based program, every
time the user takes an action that affects a window—such as resizing a
window or moving or clicking the mouse—the user’s action triggers what
is known as an event. Each time an event is detected, the operating system
sends a message to the program so that the program can handle the event.

The idea of a message sometimes confuses novice Windows programmers.
In Windows terminology, a message is simply a block of data that Windows
generates each time it detects a user-generated event. This block of data
contains information that specifies what kind of event has been generated
and identifies the window that the event affects.

Every Windows-based program is based on events and messages and
contains a main event loop that constantly and repeatedly checks to see
whether any user events have taken place. Each time a user event is de-
tected, the program responds to the event. For example, if a user resizes
a window during the execution of an application, the application’s event
loop detects the user’s action and starts a series of events that causes the
window to be redrawn to the screen. As soon as the window is resized, the
application checks to see whether another user event has occurred. If one

2: Introduction to Windows Programming

has, the application handles the event and then checks for the next event.
The application repeats this process until the user terminates the program.

Message Queues and Message Pumps
When the Windows operating system detects a user-generated event and

generates a message in response, it places that message in a message queue

that belongs to the application being executed. When an application needs

to determine whether any events have been generated by the user and
what kinds of events they are, it gets the information it needs by retrieving
each message that the operating system has placed in the message queue.

To retrieve event messages, a Windows API-style application repeatedly
checks on the status of its message queue by executing a series of state-
ments that reside in its WinMain function. These statements execute in a
loop called a message pump.

The first statement in a message pump is usually a call to a Windows API

function named GetMessage. Each time an application’s message pump
calls GetMessage, the GetMessage function returns information about any
message that might be waiting in the application’s message queue. After
an application’s message pump calls GetMessage, it generally calls a couple
of other functions that manage dialog boxes and keyboard input and out-
put. Then the message pump calls a Windows API function named
DispatchMessage.

The Window Procedure
The DispatchMessage function is an important part of the Windows event-

handling mechanism. The main job of the DispatchMessage function is to
call a function known as a window procedure, often named WndProc.

Figure 2-1 on the following page shows how the GetMessage function, the
DispatchMessage function, and a windows procedure work together dur-
ing the execution of a Windows-based program.

25

Learn Visual C++ Now

26

Application , | “' A
message queue :

, Message pump
User N :
event » Message l
Message Calls to operating
system functions
Message N - GetMessage
DispatchMessage
\2
WM_PAINT P
message handler |~ WndProc
WM_DESTROY Application l
- functions
message handler |

Figure 2-1. How the window procedure works in a Windows-based program.

WndProc is not, however, a Windows API procedure—it’s a procedure
that your Windows-based application must provide. The procedure does
not have to be named WndProc; you can give a window procedure any
name. An application can have more than one window procedure, and if
an application has multiple windows, each window can have its own win-
dow procedure.

When DispatchMessage calls an application’s WndProc function, it tells
WndProc what kind of event has taken place. WndProc then responds to
the event by calling still another kind of function provided by the program
being executed. This function is called a message handler.

2: Introduction to Windows Programming

Message Handlers
Each time an application receives a message from the Windows operating

system, the application’s window procedure determines how the message
should be handled. The application then passes the message to a message
handler. Typically, Windows-based applications are equipped with vari-
-ous kinds of message handlers that are specially designed to handle par-
ticular kinds of messages. An application that you create might handle a
mouse double click differently from the way it is handled in someone
else’s application. The way your application handles a double click is
determined by your application’s double-click message handler.

When you write a Windows API-style application, you are responsible for
writing most of the code that detects user events and dispatches the appro-
priate messages to appropriate windows. You also have to write the message
handlers that implement the responses that are appropriate to each event.
The system for handling messages and events is illustrated in Figure 2-2.

WM_PAINT
message handler

DispatchMessage > WndProc >

WM_DESTROY
message handler

Figure 2-2. How Windows processes messages and events.

As you’ll see in Chapter 5, “Visual C++ Tools,” creating message-handling
mechanisms for a Visual C++ program doesn’t take as much work as writing
message-handling routines for a Windows API-style program. In a Visual
C++ program, you can create most kinds of message handlers simply by
opening a ClassWizard dialog box and selecting the kind of message han-
dler you want to create from a list box. ClassWizard then generates your
message handler automatically.

2]

Learn Visual C++ Now

28

Example: The HELLO Program

This chapter’s sample program, named HELLO, shows how the WinMain
function and a WndProc function work in a simple Windows API-style
program. When you execute the HELLO program, it opens a blue-bordered
window that contains the familiar “Hello, world!” greeting neatly centered
in the window’s client area, as shown in Figure 2-3.

Hello, world!

Figure 2-3. The HELLO program’s window.

Methods of Building the HELLO Program

You can execute the HELLO program in two ways and compare how each
works. One way is simply to load the program from the companion CD-

ROM and execute it. The other way—creating a project for the program and
then building your project—is more challenging and will teach you more.

The second method is recommended because it shows you how to create
and build a Visual C++ program without using AppWizard—a useful thing
to know if you ever need to use Visual Workbench to load and build a pro-
gram that wasn’t created using Visual C++.

2: Introduction to Windows Programming

Building the HELLO Program Step by Step
To build the HELLO program using Visual Workbench, follow these steps:

1.
2.

N

Choose the New item from the Visual Workbench Project menu.

In the New Project dialog box, browse to the directory in which you
want to create the new project (or type in the path to where you
want to locate the project), as shown here:

Windows épﬁlicalion EXE)

For the project name, type Hello, and then click OK.
When the Edit dialog box appears, close it by clicking Close.
Open a new text-file window by choosing New from the File menu.

When your new window opens, type in the source code from Listing
2-1 beginning on page 31, or use the Visual C++ editor to copy the
listing from this chapter’s folder on the companion CD-ROM and
paste it into the text window.

Save the source file you have just created as HELLO.CPP. Be sure
that you save the file in the project directory you selected in step 2.

. Choose the Edit item from the Visual Workbench Project menu.

. Add your new HELLO.CPP file to the project you are creating by

selecting the file’s name in the File Name list box and clicking the
Add button, as shown on the following page.

29

Learn Visual C++ Now

& leamvyc

c:\learnvc\chap02\hello\hello.cpp

10. Close the Edit dialog box by clicking the Close button.
11. Choose Build from the Project menu.

12. Visual Workbench will now display a message box asking you
whether you want to create a module-definition file. A module-
definition file is a text file that the Visual C++ linker uses to link an
application’s source code to any external libraries that are required
to build the application. (For details, see Table 1-2 beginning on

~ page 13 in Chapter 1.) Visual C++ version 1.0 programs require
module-definition files, so click the Yes button. '

13. Visual Workbench creates a module-definition file and opens it in the
Visual C++ editor window. Choose Build from the Project menu again.

14. Visual Workbench displays a message asking whether you want to
build your new files. Click the Yes button.

15. When your program is built, execute it from Visual Workbench by
choosing Execute from the Project menu.

Listing 2-1 shows the source code for the HELLO program.

30

2: Introduction to Windows Programming

HELLO.CPP

ftinclude <windows.h>

Tang FAR PASCAL _export WndProc(HWND hwnd, UINT message,
UINT wParam,LONG 1Param)

{
HDC " hdc;
HPEN hpen, hpen01d;
PAINTSTRUCT ps;
RECT rect;

switch (message) {
case WM_PAINT:
hdc = BeginPaint(hwnd, &ps);
GetClientRect(hwnd, &rect);
hpen = CreatePen(PS_SOLID, 6, RGB(O, 0, 255));
hpen01d = SelectObject(hdc, "hpen);
Rectangle(hdc, rect.left + 10,
' rect.top + 10, '
rect.right - 16
, rect bottom -10);

‘DrawText(hdc, "He11o wor]d'" -1, ‘&rect,
DT_ SINGLELINE t DT_CENTER i DT_VCENTER);

Se1ect0b3ect(hdc. hpen01d).,k,,
DeleteObject(hpen);. o
*EndPa1nt(hwnd"&ps). e
L return @; o o
g case WML DESTROY::::*"
Lokl Post0u1tMessage(0)
- return 0; ; Ay

i e

Listing 2-1. The HELLO program. (continued)

31

Learn Visual C++ Now

32

hﬂmgz1cmmmw

] 1f ('hPrevInstance) {
, iwndc]ass.sty1e .

cs_ HREDRAW CS;VREDRAW:

~wndclass.TpfnindProc = WndProc;. ;V

~ wndclass.cbClsExtra S
wndclass.cbWndExtra A Gt
wndclass.hInstance hinstance;

~LoadIcon(NULL, IDI_APPLICATION);
~LoadCursor(NULL, IDC_ARROW); '

'GetstockObJect(WHITE BRUSH).~,‘V”
NULL;

szAppName;~f~

wndclass.hIcon
‘wndclass.hCursor
: wndclass.herackground
- wndclass.1pszMenuName
~wndclass.1pszClassName

TR TE T H i H:H‘H;HHIE

§ ~gRegfsterC1ass(&wndé1ass5§
”} ‘ :

hwnd CreateW1ndow(szAppName,' ‘//lwindow c1assjname}:
" "HELLO Program", e 1 window caption

~ WS_OVERLAPPEDWINDOW, ~ // window style
“CW_USEDEFAULT, . “initial x pos1t10n
initial y pos1t1on
// initial x size
initial y size
// parent window hand]e s

CW_USEDEFAULT,

 CW_USEDEFAULT, =~
W USEDEFAULT ol

NULL, i

CNULLL // window menu handle
- hInstance ~// program instance handle
NULL)Y; // creation parameters

‘”*f;jShoww1ndow(hwnd. nCmdShow) e
v datew1ndow(hwnd) Ty

:; wh11e (GetMessage(&msg. NULL
,‘~"“TranslateMessage(&msg) HE
D1spatchMessage(&msg)‘

,’)L) e
}return msg wParam

How the HELLO Program Works

The HELLO program contains two functions: a window function named
WndProc and a WinMain function. The WinProc function paints the win-
dow when necessary and destroys it when it’s no longer needed. The
WinMain function creates the window and also contains a main message

2: Introduction to Windows Programming

loop that detects and handles two kinds of messages, WM_PAINT and
WM_DESTROY. This is the WinMain function in the HELLO program:

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,

LPSTR 1pszCmdParam, int nCmdShow)

The WinMain function takes four parameters:

hInstance—Handle to the current instance of the executing
application.

hPrevinstance—Handle to the previous instance of the executing
application.

IpszCmdParam—Pointer to a command line that can be called to
start the application.

nCmdShow—Constant or set of constants—separated by bitwise
OR operators (1)—that can be used to specify the window’s size,
its coordinates, and other attributes that specify how the window
is displayed. To obtain a list of all the constants that can be used in
this parameter, look up the WinMain function in the Visual Work-
bench online help.

If a WinMain call is successful, it returns the value returned by the Win-
dows API PostQuitMessage function. If the function does not succeed, it
terminates before it enters the message loop and returns NULL.

; Usmg Handles in Wlndows Based Programs

‘The WmMam functlon takes two handles as parameters a handle to-

the current 1nstance of the executmg apphcatlon and a handle to any

2 prevrous instance of the apphcatlon that mlght exist. In Wmdows a
,handle is a pomter toa pomter, it pomts to an address stored i ina

. table or in a list. The address that a handle pomts to can be used to

access the ob)ect assoc1ated w1th the handle. 5 f o “ .

5 \,In Wmdow thls kmd of 1nd1rect access 1s necessary because the
& §W1ndows Memory Manager cften moves ob]ects around in memory— .

(continued)

33

Learn Visual C++ Now

34

Usmg Handles in Wmdows Based Programs continued

to compact memory, for example—w1thout nottfymg your apphca- L
“\ftlon that the address of the object has changed If your apphcatlon
¢ "rehed ona pomter to keep track of ob]ects created and managed by

o Wmdows the result would be ¢ a 1ot of danghng pomters That is why
o ’handles were created When Wmdows moves an, ob]ect from one o
f“memory locatlon to anothe r, th e?\Wmdows Memory Manager ensures
: \that the ob]ect s handle is stlll vahd : :

" In the Wmdows operatmg system many dlfferent kmds of ob]ects are\ “
.*desrgned to be accessed through handles There are s0 many ¢ such ob-; .
jects, in fact, that they have a specral name Wmdows ob]ects (Wln- 2

o dows ob]ects are not the same thing as C++ ObJECtS they have nothing

~ todo with C++or ob]ect—orlented programmmg In W1ndows termi-
»‘nology, Wlndows ob]ects are merely ob]ects that can be accessed via
handles; they can be——-and are-—used in C- language Wlndows-based

'programs as well as in Wmdows—based programs wrltten in C++)

;“‘:Handles are used 50 often in Wmdows ased programs that you ll o
= qurckly become accustomed to usmg the» tjMany WlIlClOWS API func-;*‘;
o trons return handles and many others take handles as parameters In
: your Wmdows-based apphcatlons you use handles 1n the same way B

\{\handles automatlcally whenever 1t needs to you’(shou ldn t run
. a any problems \ e ’

How the WinMain Function Works

When a Windows-based program starts, its WinMain function always
checks to see whether a previous instance of the application is running.
(In Windows, multiple instances of the same application can be executed
simultaneously.) If no previous instance of the program is running, Win-
Main registers a new window class—an operation described later in this
chapter. Then WinMain executes the program’s message pump, described
earlier in this chapter in the section “Message Queues and Message
Pumps” on page 25, as shown here:

2: Introduction to Windows Programming

while (GetMessage(&msg, NULL, @, 9)) {

TranslateMessage(&msg); '

DispatchMessage(&msg);
}
In the HELLO program, this message pump manages the operation of the
application by repeatedly calling the GetMessage, TranslateMessage, and
DispatchMessage functions. The loop ends when the WinMain function
receives a WM_QUIT message sent by the PostQuitMessage function. Then
the WinMain function ends, and the current instance of the application
terminates.

The GetMessage function

The GetMessage function retrieves messages dispatched by the Windows
operating system. In the HELLO program, the GetMessage function is
called with four parameters, as shown here:

GetMessage(&msg, NULL, @, 0);

The first parameter passed to GetMessage—d&msg—is the address of a C-
language struct called a MSG structure. The MSG structure is defined as
follows in the WINDOWS.H file (the #include file that defines Windows
API functions and data structures):

typedef struct tagMSG {
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM 1Param;

DWORD time;
POINT pt;
} MSG;

As you can see, a MSG struct is a short structure that the GetMessage func-
tion uses to pass along information about Windows messages. In its hwnd
and message fields, a MSG struct identifies the message being referred to
and the window that the message affects. In its wParam and /Param fields,
the MSG struct stores information about the kind of event the message re-
fers to and the source of the event—for example, if the event is caused by a
keyboard input, the MSG struct’s wParam and [Param fields identify the
key being pressed and also reveal whether a command key was being
pressed at the same time.

35

Learn Visual C++ Now

36

When you call GetMessage and pass it the address of a MSG struct, the
GetMessage function responds by placing essential information about
the event it is retrieving in the MSG struct that you have provided. Your
application can then use that information to carry out an appropriate
response to the event.

In the call to GetMessage, the msg parameter is significant because it is
later accessed by TranslateMessage and DispatchMessage. It might also be
accessed by other functions in a message pump that handle the operation
of modal dialog boxes (when the message being retrieved deals with dialog
boxes) or keyboard shortcuts for menu commands.

Switch statements in window procedures

Typically, a Windows API-style WndProc function contains a long switch
statement that analyzes each message received from GetMessage and routes
the message to an appropriate message handler. (The window procedures

used in Visual C++ programs usually look quite different—and you gener-
ally don’t have to write them because AppWizard does that for you. You’ll
learn how Visual C++ window procedures work in Chapter 5, “Visual C++

Tools.”)

Listing 2-2 shows a portion of the switch statement used in the HELLO
program (shown in its entirety in Lising 2-1 on page 31).
switch (message) {

case WM_PAINT:

hdc = BeginPaint(hwnd, &ps);
GetClientRect(hwnd, &rect);

DrawText(hdc, "Hello, world!", -1, &rect,
DT_SINGLELINE | DT_CENTER | DT_VCENTER);

EndPaint(hwnd, &ps);
return 0;

- case WM_DESTROY:
PostQuitMessage(0);
return 0;
}

Listing 2-2. A switch statement in a window procedure.

In the code fragment shown in Listing 2-2, the message parameter used by
the switch statement identifies the message that the DispatchMessage

2: Introduction to Windows Programming

function has passed to the WinProc function containing the switch state-

ment. The switch statement tests the message ID that has been passed to
it and then uses its case prefixes to implement—or call—the appropriate

message handlers.

This switch statement has only two clauses: a WM_PAINT clause, which
is executed each time the window associated with the window procedure
needs to be redrawn, and a WM_DESTROY clause, which is executed
whenever the window needs to be destroyed.

The WM_PAINT clause executes a message handler that displays the
words “Hello, world!” in the application’s main window and decorates
the window with a blue border. You’ll learn how the program’s WM_PAINT
message handler works in the section “Drawing Text in a Window” on
page 42. '

The WM_DESTROQOY clause calls a Windows API function named PostQuit-
Message, which informs Windows that the application is ready to terminate.
When an application posts a message to Windows by calling PostQuit-
Message, the Windows operating system performs all the housekeeping
that is necessary to let the application exit from its main message loop.

Registering a Window Class
When you execute the HELLO program, the first thing it does is perform

a procedure call to register a window class. When you create a Windows-
based application, every window you use in the application belongs to a
particular window class.

It’s important to understand that in a Windows-based program, a window
class is not the same thing as a C++ class. In Windows terminology, a win-
dow class is simply a particular kind of window that is registered for use
in a given application. Windows classes, like Windows objects, can be
(and are) used in C-language programs as well as in C++ programs.

Calling the Regi&terClass function

You can use as many different window classes as you want in a Windows-
based application. Before you can create a window that belongs to a particu-
lar class, however, you must register the window’s class. In the HELLO

37

Learn Visual C++ Now

38

program, the following statement (which appears in the WinMain function)
registers a window class named szAppName:
WNDCLASS wndclass;

if (!hPrevinstance) {
wndclass.style

CS_HREDRAW | CS_VREDRAW;

wndclass.lpfnWndProc = WndProc;
wndclass.cbClsExtra = 0;
wndclass.cbWndExtra = 0;
wndclass.hInstance = hInstance;

wndclass.hIcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.1pszMenuName
wndclass.1pszClassName
RegisterClass(&wndclass);

LoadIcon(NULL, IDI_APPLICATION);
LoadCursor(NULL, IDC_ARROW);
GetStockObject (WHITE_BRUSH);
NULL;

szAppName;

%ﬂ OTE Notice that the RegisterClass function is called from inside an /if state-

ment. In C++, if statements work the same way they work in C. In this case, if
a previous instance of the HELLO program is running, no new window class
is created. That precaution conserves system resources because it prevents
the RegisterClass function from performing multiple registrations of the
same window class.

The WNDCLASS structure

In the preceding code fragment, the HELLO program declares a data struc-
ture named wndclass, which is a particular type of data structure called a
WNDCLASS structure, and then fills in the structure’s fields with data
that can be used to set up various properties of a window.

The WNDCLASS structure is defined this way in the WINDOWS H file:

typedef struct tagWNDCLASS { = /% wc */

UINT style;
WNDPROC 1pfnWndProc;
int cbClsExtra;
int cbWndExtra;
HINSTANCE hlInstance;
HICON " hlcon;

HCURSOR hCursor;

HBRUSH hbrBackground;

LPCSTR 1pszMenuName;

LPCSTR 1pszClassName;
} WNDCLASS;

2: Introduction to Windows Programming

When the window’s properties have been specified, the application
registers a window class that has those properties by calling a Windows
API function named RegisterClass and passing to it the address of the
data structure in which the attributes of the window class being created
are stored.

RegisterClass registers a window class that has the attributes you re-
quested and gives this new class the name you have specified—in this
case, szAppName. The WNDCLASS structure must also contain in the
IpfnWndProc field a pointer to the procedure or function that will be asso-
ciated with your window class. You must also define the window’s style
in the WNDCLASS structure’s style field, using predefined style constants
that are defined by the Windows APIL. '

Setting window styles

In the RegisterClass function shown in the preceding example, two pre-
defined constants—separated by the bitwise OR operator (i)—are used to
set the style of the window used in the HELLO program, as shown here:

wndclass.style = CS_HREDRAW | CS_VREDRAW;

When you use predefined constants such as these in a Windows-based
program, you don’t have to worry about what their exact values are. All
you have to know is what their effects are.

In this case, when you set the CS_HREDRAW constant, windows that be-
long to the class you are creating are redrawn whenever their horizontal
size changes. Similarly, the CS_VREDRAW constant causes a window to
be redrawn whenever its vertical size changes. In the HELLO program, set-
ting these two constants ensures that the application’s window is redrawn
each time its size changes. That action automatically centers the “Hello,
world!” greeting that is displayed inside the window.

The CS_HREDRAW and CS_VREDRAW constants are not the only style
constants available in Windows; there are many other style attributes that
you can use when you register window classes. (See the online help for a
complete list.)

39

Learn Visual C++ Now

40

Loading application resources

You can call Windows API functions to set window-class attributes in a
RegisterClass statement. For example, the RegisterClass statement used in
the HELLO program calls the Windows API functions LoadIcon and Load-
Cursor to fill in the hlcon and hCursor fields of the window class that is
being registered, as shown here: -

wndclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);

wndclass.hCursor = LoadCursor (NULL, IDC_ARROW);

The hlcon field identifies the class icon. This member must be a handle to
an icon resource. If this member is NULL, the application must draw an
icon whenever the user minimizes the application’s window.

The hCursor field identifies the class cursor. This member must be a
handle to a cursor resource. If this member is NULL, the application
must explicitly set the cursor shape whenever the mouse moves into the
application’s window.

Creating and Displaying a Window

After you have created a window class in a Windows-based application,
you can call the Windows API functions CreateWindow and ShowWindow
to create a window of the class you have specified and to display the win-
dow on the screen. Then you can call the UpdateWindow function when-
ever your window needs to be redrawn.

The CreateWindow function can create an overlapped window, a popup
window, or a child window, depending on the parameters you pass to it.
(For descriptions of these and other kinds'of windows, see Chapter 5,
“Visual C++ Tools.”) When you call CreateWindow, you can specify the
class, the title, the style, and (optionally) the initial position and size of
the window you are creating. You can also specify the new window’s
parent (if there is one) and the new window’s menu.

The CreateWindow function
Here is the CreateWindow function:

HWND CreateWindow(LPCSTR 1pszCiassName, LPCSTR ipszWindowName,
DWORD dwStyle, int x, int y, int nWidth, int nHeight,
HWND hwndParent, HMENU hmenu, HINSTANCE hinst,
void FAR+ 1pvParam)

2: Introduction to Windows Programming

The parameters expected by the CreateWindow function are as follows:

IpszClassName—Address of the name of a registered window class.

IpszWindowName—Pointer to a string that specifies the name of
the window being created.

dwStyle—Constant or set of constants—separated by the bitwise OR .
operator (i)—that can be used to specify various attributes of a win-
dow. You can obtain a list of all the constants that can be used in

this parameter by looking up the CreateWindow function in the
online help. :

x and y—Horizontal and vertical positions of the window being
created.

nWidth and nHeight—Width and height of the window being
created. '

hwndParent—Handle of the parent window of the window being
created (if there is one).

hmenu—Parameter whose meaning depends on the style of the win-
dow being created. For overlapped or popup windows, the hmenu
parameter identifies the menu to be used with the window. If the
default menu for the window’s class is to be used, this value can be
NULL. For child windows, the hmenu parameter is an integer value
that identifies the child window. For more details, look up the
CreateWindow function in the online help.

hinst—Handle of the current application instance.

IpvParam—Pointer to a value that is passed to the window through
the CREATESTRUCT structure referenced by the IParam parameter
of the WM_CREATE message. If an application is calling CreateWin-
dow to create a multiple-document interface (MDI) client window, -
IpvParam must point to a CLIENTCREATESTRUCT structure.

Calling CreateWindow, ShowWindow, and UpdateWindow

In the WinMain function of the HELLO program, the block of code shown
on the following page calls CreateWindow, ShowWindow, and Update-
Window.

41

Learn Visual C++ Now

42

hwnd = CreateWindow(szAppName, // window class name

"HELLO Program”, // window caption
WS_OVERLAPPEDWINDOW, // window style
CW_USEDEFAULT, // initial x position
CW_USEDEFAULT, // initial y position
CW_USEDEFAULT, // initial x size
CW_USEDEFAULT, // initial y size

NULL, // parent window handle
NULL, // window menu handle
hInstance, // program instance handle
NULL); // creation parameters

ShowWindow(hwnd, nCmdShow);

UpdateWindow(hwnd);

The ShowWindow function displays the window specified in its hwnd
parameter, using the style specified in the nCmdShow parameter. (See
the online help for a list of styles that can be passed to the ShowWindow
function.)

‘The UpdateWindow procedure draws the window specified in its hwnd

parameter. It is used after the call to ShowWindow to draw the window
used in the HELLO program. '

Drawing Text in a Window

-One of the first hurdles you come to in the study of Windows program-

ming is the problem of how to draw an image in a window—or, when the
time comes to print an image on paper, the problem of transferring the
image to the printed page. A Windows-based program has to be capable of
drawing many different kinds of images to many different kinds of output
devices. There are many varieties of video cards and Windows accelera-
tors that display different sets of colors in different ways, and there are
different sizes of monitors with different color capabilities, different
screen sizes, and different resolutions. And, of course, there are many
different kinds of printers—color and black-and-white, PostScript and
non-PostScript—to say nothing of pen-equipped and ink jet plotters.

2: Introduction to Windows Programming

Because there are so many kinds of output devices—and because there are
no standards that mandate any particular rules about drawing to output
devices—Windows provides a mechanism called a device context, or DC,
that can be used as a gateway between Windows-based applications and
the low-level APIs (called device drivers) that control output devices. A
device context is a Windows object that accepts drawing commands from
Windows-based applications and translates those commands into lower-
level instructions that are issued directly to device drivers.

When a Windows-based application draws an image by issuing a set of
commands to a device context, it does not have to be concerned with what
kind of output device is being used to display or print the image or with
the specific kind of device driver that is being used to control the output
device. Instead the application simply obtains a handle to a device context
and draws to that device context. The device context that is associated
with the drawing operation then performs whatever magic is necessary to
convert the application’s drawing commands to lower-level device-driver
commands and dispatches them to a device driver. The device driver then
sends the device context’s commands to the appropriate output device,
which does the final job of displaying the object in a window or printing it
on a page.

Along with device contexts, Windows uses another kind of object—called
a GDI object, or graphics device interface object—to draw images in win-
dows and on the printed page.

In Windows, a device context is an object on which images can be drawn
(a kind of electronic canvas), and GDI objects serve as drawing implements,
such as brushes, pens, bitmaps, and fonts. Figure 2-4 on the following
page is a fanciful illustration that shows how Windows uses device con-
texts and GDI objects to draw images in windows and on printed pages.

43

Learn Visual C++ Now

BOOL Ellipse(hdc,
nLeftRect,nTopRect,
nRightRect,nBottomRect)

Device

context GDI object
ﬂm (HBRlUSH)

Figure 2-4. Drawing an image in a Windows-based program.

Because Windows requires the use of device contexts and GDI objects in
drawing operations, you must use both kinds of objects whenever you want
to draw an image in a Windows-based application. The specific steps that
are used to draw an image can vary from application to application, de-
pending on the requirements of the particular program being executed.
The drawing operation used in the HELLO program is fairly typical. Here
are the steps that are used to print the greeting “Hello, world!” in a window:

44

2: Introduction to Windows Programming

1. Call the Windows API function BeginPaint, which prepares a
specified window for painting and fills a data structure called a
PAINTSTRUCT with information about the painting. The Begin-
Paint function takes two parameters: the handle of the window in
which the painting is to take place and the address of the PAINT-
STRUCT. (The HELLO program doesn’t use the information stored
in the PAINTSTRUGT that is passed to BeginPaint; see the online
help for details about the PAINTSTRUCT structure.)

2. Obtain a handle to a device context. There are a number of Windows
functions that you can call to obtain a DC handle. The HELLO pro-
gram obtains a DC handle when it issues the following BeginPaint
call:

hdc = BeginPaint(hwnd, &ps);

3. Call the Windows API procedure GetClientRect to retrieve the coor-
dinates of the client area of the window that is to be painted. The
client area of a window is the area inside the window’s frame and
below the window’s menu bar.

4. Obtain a handle to the specific kind of GDI object you plan to draw
with. The GDI object used by the HELLO program is a pen, which is
created in this statement:

hpen = CreatePen(PS_SOLID, 6, RGB(@, @, 255));

The CreatePen function takes three parameters: a pen-style param-
eter, a width parameter, and a color parameter. In the HELLO pro-
gram, the parameters passed to the CreatePen function are PS_SOLID,
which creates a solid pen; the integer 6, which creates a pen that is
6 pixels wide; and the macro RGB(0, 0, 255), which creates a blue
pen. The RGB macro itself takes three parameters: the intensity of
the color red, the intensity of the color green, and the intensity of
the color blue. Intensities range from 0 through 255, and they can be
mixed and matched. The HELLO program passes the parameters
0, 0, and 255 to the RGB macro, so the result is a pure blue color.

45

Learn Visual C++ Now

46

5. Call a Windows function that associates the device context you have

obtained with the GDI object you are going to use. In Windows jar-
gon, this step is often referred to as selecting a GDI object into a de-
vice context. In the HELLO program, the following statement selects
a pen object into the variable hdc, the handle of the DC object that

- was obtained in step 2:

hpen0l1d = SelectObject(hdc, hpen);

The SelectObject function returns a handle to a GDI object. This
handle can then be stowed away for safekeeping during the drawing
operation that is about to occur. The handle returned by SelectObject
is kept because it might already be in use by a previously selected
GDI object. If that is the case, the handle can be restored with an-
other call to SelectObject as soon as it is no longer needed by the
drawing operation that is about to take place. The handle is then
freed once again for use by the object that originally owned it. (In
step 7, you’ll see how SelectObject can be used to restore a handle
to its original owner.)

. Perform your drawing operation. In the HELLO program, the Rect-

angle function is called to draw a blue border around the appli-
cation’s window, as shown here:
Rectangle(hdc, rect.left + 10, rect.top + 10,

rect.right - 10, rect.bottom - 10);
After the HELLO program calls the Rectangle function, it makes a
call to the DrawText function to print the greeting “Hello, world!”
inside the window, as shown below. The DrawText function does
not require the specific use of a GDI object, but it does require five

- other parameters: the handle of the window into which text is to be

printed, the address of the string to be printed, the length of the
string (or the number -1, which allows the string to be computed
automatically), a pointer to the structure containing dimensions of
the window’s client rectangle, and a set of text-drawing flags.

DrawText(hdc, "Hello, world!", -1, &rect,
DT_SINGLELINE } DT_CENTER ! DT_VCENTER);

2: Introduction to Windows Programming

7. Restore the handle used by the Rectangle function to its original
owner by making another call to SelectObject, as shown here:

SelectObject(hdc, hpen0l1d);

8. Free the DC object that was obtained in step 2 by calling BeginPaint,
as shown here:

DeleteObject(hpen);

9. Call the API function EndPaint to terminate your painting opera-
tion, as shown here:

EndPaint(hwnd, &ps);

The preceding steps—with program-specific variations—are used in all
drawing operations in Windows API-style programs. In Visual C++ pro-
grams that use the Microsoft Foundation Class (MFC) Library version 2.0,
the steps vary slightly.

What's Next?

In Chapter 1, “Introducing Visual C++,” you learned how to create an
application framework by using AppWizard. In this chapter, you learned
how Windows-based programs are created using functions provided by
the Windows APL

In the next two chapters, we’ll take a step back and examine some of the
basic features of generic C++ and some of the fundamentals of object-
oriented programming. Then, in Chapter 5, “Visual C++ Tools,” we’ll
focus our attention once again on Visual C++ and take a detailed look
inside the AppWizard application generator.

47

.

G

.

Chapter

C++ Basics

In Chapter 1, “Introducing Visual C++,” you saw how AppWizard can
create a fully functioning Visual C++ application at the click of a menu
item. In Chapter 2, “Introduction to Windows Programming,” you saw
the basics of how a Windows-based program works. In later chapters,
you’ll learn how you can use Visual C++ wizards and the other tools that
come with Visual C++ to expand the simple kinds of programs presented
in Chapters 1 and 2 into powerful, customized Visual C++ applications.

Before we move on to more complex Visual C++ programs, however, it
will be helpful to look at some of the features of generic C++—the object-
oriented programming language that lies at the root of Visual C++. In this
chapter, we’ll focus on C++ data structures and C++ classes, the building
blocks of all Visual C++ programs. In Chapter 4, “Objects and Member
Functions,” you’ll see how objects are created from classes and how C++
‘member functions are used in programs.

This chapter contains a number of sample programs that show how struc-
tures and classes work in C++ programs. These sample programs are com-
piled using the QuickWin utility, a Visual C++ tool that makes it easy to
write and execute text-based procedures and programs in Windows. Quick-
Win is handy for quickly testing and fine-tuning routines before you in-

- corporate them into full-fledged Windows-based programs.

49

Learn Visual C++ Now

To create a QuickWin application, follow the steps that were outlined in
the section “Example: The HELLO Program” in Chapter 2 on page 28—
with one exception. When the New Project dialog box opens, select Quick-
Win as your project type. Then be sure to choose Edit from the Project
menu and add the appropriate source code files to your project. You can
find all the sample programs in appropriately named folders in the Chap04
folder on the companion CD-ROM.

Together, this chapter and Chapter 4 are a crash course in C++. The topics
they introduce are vital to the study of Visual C++, and many books on C++
are devoted almost entirely to the material these chapters cover. If you are
a C programmer, I guarantee that you will also be a C++ programmer by
the time you finish Chapters 3 and 4. I'm not promising that you’ll be on
intimate terms with every arcane construct that is available in C++, but
you will understand how C++ works, and—even more remarkably—you
will be writing your own C++ programs.

This chapter covers a host of topics, including the following:

B Object-oriented programming: a brief explanation of the uses and
features of object-oriented programming languages.

B An overview of some C++ keywords and data types that aren’t
~ available in C or that are used differently in C++ from how they are
used in C. ‘

B Creating and using classes: how the C-language struct has evolved
into the C++ class, the keystone of object-oriented programming in
the C++ language.

B Other C++ programming techniques, including access specifiers,
operators for accessing member functions and member variables of
classes, constructors and destructors, copy constructors, and the
this pointer.

What's Object-Oriented Programming?

Throughout this book, you’ll notice that the word “object” is used many
times. That shouldn’t surprise you in a book about C++, an object-oriented
programming language. But exactly what is an object-oriented language?

50

3: C++ Basics

Some people assume, logically enough, that object-oriented programming
languages are used to create and manage menus, icons, and the other ele-
ments of the user interface that you encounter in Windows-based programs.
Windows programmers, however, have created and managed on-screen
objects for years using the Windows API (application programming inter-
face), and the Windows API is not an object-oriented tool.

Many people also define an object-oriented language as a language that
makes it possible to reuse code. This definition is a little closer to the
truth, but it still isn’t accurate. A good C programmer, for example, can
write C functions that are reusable from one application to the next, and
a poor C++ programmer can just as easily write code that isn’t reusable at
all. As an object-oriented language, C++ does offer a number of program-
ming mechanisms that make it easier to write reusable code, but those
mechanisms are not its defining features.

The most useful way to understand C++ as an object-oriented language is
to understand how C++ takes advantage of the following features:

B Inheritance—In a non-object-oriented language such as C, you can’t
create a data structure that inherits characteristics from another data
structure. Every time you want to create a data structure, you have
to start from scratch. In C++, you can create a data structure that in-
herits characteristics from another data structure and then supple-
ments those characteristics with unique characteristics of its own.
Furthermore, you can create functions (known as member functions)
that “belong” to C++ data structures, and you can then create other
data structures that inherit those functions and use other functions
of their own. In C++, structures that inherit data and functions from
other structures are arranged in inheritance hierarchies. By making
use of these hierarchies, you can not only write code that is reusable,
you can also write data structures (called classes) that contain vari-
ables and functions that are also reusable, either in full or in part.

B Data encapsulation—In C++, member functions can access all mem-
ber variables of the same class. However, an object can safeguard its
member functions and member variables from being accessed or
modified by other classes. The ability that an object has to conceal

51

Learn Visual C++ Now

52

its data from other parts of a program is called data encapsulation. If
you've ever tried to track down a function that has modified a global
variable in a C program, you’ll appreciate the benefits of C++ data
encapsulation.

m Data abstraction—When you design a C++ class, you can conceal
the details of how its data is represented and handled—that is, you
can hide this information from other classes and other functions in
your C++ program. By making use of data abstraction, C++ functions
can ignore the details of how an operation is implemented and can
concentrate instead on the jobs they want to perform.

You’ll learn more about all these features of object-oriented programming
later in this chapter and in Chapter 4, “Objects and Member Functions.”

Old Friends, New Faces

C++ is sometimes called a superset of C, which means that C++ contains
all the features of C along with some new features of its own. (In fact, that’s
how C++ got its name. Bjarne Stroustrup, the inventor of C++, says he
named it C++ because it’s an “incrementation” of C.) Also, some of the
techniques and elements that C programmers are familiar with have
changed in C++. In this section, we’ll take a look at some of those changes.

Type Specifiers |

To specify exactly how various kinds of data are stored in memory, the
designers of C and C++ established a number of data types. In both C and
C++, a keyword that specifies the data type of a particular piece of data is
called a type specifier. For example, the keyword intis a type specifier for
integers. Similarly, the keyword charis a type specifier for characters. Many
other type specifiers—such as float, double, and long—are used in C++.

The C++ language is equipped with several data types that are not avail-
able in C. These additions to C++ correct some deficiencies that have
always existed in C and provide C++ with some extra programming power.
The following four data types available in C++ require some specific
discussion:

3: C++ Basics

B The enum data type, which is also available in C and has been
promoted to a full data type in C++

B The struct data type, which existed in C but was not a full-fledged
data type

B The reference data type, which behaves like a pointer but can be
treated like a variable, eliminating the overhead that is ordinarily
required to dereference a pointer

B The class data type, a powerful new data type that is the keystone
of object-oriented programming in C++

We’ll cover the first three of these data types in the sections that follow.
Classes are covered in detail in the section “C++ Classes,” on page 65.

The enum data type

In C++, an enumeration is an integral data type that defines a list of named
constants. Enumerations, like structs and consts, are available in C but are
more flexible and more powerful in C++. In C++, the enum keyword is a
real type specifier, so it is more flexible than it is in C.

The struct data type

As a C programmer, you're familiar with structs; they have been used ex-
tensively in C programs ever since the language was invented. But there’s
a difference between the way structs are implemented in C and the way
they are implemented in C++.

In C, a struct is not a full-fledged data type; it is merely a data structure
made up of data items, each of which has its own data type. In C++, a
struct is a full-fledged data type. For example, the following code defines
a new data type named Person:
struct Person {

char= name;

~int height;

int weight;

int age;
I :
You’ll notice that when declaring a C++ pointer variable, the unary operator
(*) is placed immediately after the variable type rather than immediately

53

Learn Visual C++ Now

54

in front of the variable name. You can still use C-style pointer declarations
if you prefer—C++ understands both forms of pointer declarations—but
Visual C++ generates code using the C++ style of pointer declarations.

Variables of type Person are declared in the same way that other variables
are declared. For example, the following line declares a variable named
Charlie of type Person:

Person Charlie;

As with C-style structs, individual data members of a C++ struct are
accessed using the dot operator (.). Likewise, pointers to C++ structs are
accessed using the arrow operator (—>).

The biggest difference between a C-style struct and a C++ struct is that

a C++ struct can contain functions as well as data. Variables that are de-
clared inside a struct definition are called member variables. Functions
that are declared inside a struct definition are called member functions.
Member functions are more closely associated with classes, however, so
they’ll be covered in the section “C++ Classes,” on page 65. '

A C++ struct has all the power and versatility of any other data type. In
fact, the C++ class—the basic building block of C++ object-oriented
programming—is based on the kind of struct used in C++.

References
A reference is a new data type that C++ provides. References are not avail-
able in C. This is what a reference looks like in a C++ program:

&aReference

In C++, a reference is a hybrid data type that combines the behavior of an
ordinary variable with the behavior of a pointer. You can use a reference
in the same way that you might use any other kind of variable in C, but
with a reference, a function can change the value of a variable that is out-
side the function’s scope without having to bother with the overhead of
dereferencing a pointer.

To understand how references work, it helps to view a reference as an alias
for a variable. But a reference is not just a copy of the variable it refers to.
Instead, it is the same variable made available under a different name.

3: C++ Basics

How references are used in C++ In C++, references are most often used
to pass arguments to functions and to return values from functions. To
initialize a reference, you associate it with a variable that has already been
declared. Once you have initialized a reference, it is permanently associ-
ated with its corresponding variable. You cannot reinitialize it to be an
alias for a different variable; Visual C++ returns an error if you try.

To declare a reference, you use the symbol & (the unary AND operator), as
illustrated in the following example:

int anIntVar;

int& aReference = anlIntVar; // reference declaration

The first statement in this example declares an integer variable named
anIntVar. The second statement creates a reference named aReference that
is an alias for anIntVar.

Once these two operations are complete, you can use the name aReference
in exactly the same way that you would use anIntVar. When you perform
an operation on the reference named aReference, the operation has the
same result as if you had performed it on the variable named anIntVar.
Listing 3-1 shows how a variable and a reference associated with it can
be used interchangeably.

Listing 3-1. Variables and references.

Learn Visual C++ Now

The program in Listing 3-1 produces the output shown in Figure 3-1. As

you can see, the operations performed on anIntVar and on aReference in
the preceding example yield the same results.

Figure 3-1. Using a variable and a reference interchangeably.

Prmtmg Text wuth cout <<

n C++ the construct cout << 1s often used to output text in much thef f
~ same way. that the prmtf famlly of functlons 1s used to prmt text 1n C fj v
1,\\\ In C: H- text and numenc 1nformat10n is sent to the cout ob]ect by :
‘means of the << symbol The << symbol is defmed usmg a mechamsm - .
»‘known as operator over]oadmg Asyou will see in Chapter 4, "Ob]ects e
fember F unctions,” operator overloadmg isa C++\‘feature that is i
sedt: customize operator‘ ymbols such as+,—, =, .
‘Wlth operator overloadmg you can make an operator symbol behave
:j”‘”dlfferently when it is used w1th ob]ects of dlfferent classes In the
construct cout <<\the << operator is overloaded to work hke a com \
5 mand that wntes the contents ofacout. ob]ect to standard or dlagnos‘
e ,utput Wthh can be e1ther _pi‘inted page or. t_he screen

Listing 3-2 provides another example of the use of a reference; it shows that
a variable and a reference to that variable have the same memory address.

3: (C++ Basics

~ REF_ADDR.CPP
k#'ik'nﬂude <iostream.h>

void main()
{ o
int anlntVar = 123;
jnt& aReference = anIntVar:

cout << "The variable address is: "
<< &anlIntVar << '\n'; Ll

cout << "The reference address is: "
<< &aReference . << '\n';

Listing 3-2. Obtaining the address of a reference.

Using the & operator with variables and references The unary operator
(&) is used in two different ways in C++. When you declare a reference, as
~ in the following statement:

int& aReference = anlntVar;

the & operator is part of the reference’s type. In contrast, when you define
an ordinary pointer, as in this example:

int anInt;
int *pAnInt = &anlnt;

the & symbol stands for a memory address—in this case, the address of the
pAnint variable.

In Listing 3-2, the & operator is used both ways. In the statement
int& aReference = anlntVar;

the name aReference is declared to be a reference to an int or a variable of
type int&—a usage that is unique to C++.

In the following statements, however, the & operator precedes the address
of the variable it is applied to. This usage is common to both C and C++.
cout << "The variable address is: "

<< &anIntVar << '\n'";

cout << "The reference address is: "
<< &aReference << '\n';

57

Learn Visual C++ Now

58

When you run the program shown in Listing 3-2, it prints the same address
for both anIntVar and aReference, as shown in Figure 3-2. (The address
that is printed depends, of course, on the configuration of your system.)

S HHin/Stdout/St
he variable ad H
he reference address is: Ox34FE

Figure 3-2. A reference and its corresponding variable have the same address.

How references work Now that you know how references are used, it’s
time to reveal how they work. What makes a reference really special is
that from the viewpoint of your Visual C++ compiler, a reference is associ-
ated with a variable’s address. So although you can use a reference in ex-
actly the same way that you use a variable, Visual C++ treats the reference
as if it were a pointer.

Because references behave in this way, you can use them to get around
some of the limitations of using nonpointer variables in C. In C, when you
want to change the value of a local variable of a function from within a dif-
ferent function, you must use a pointer and follow all the manipulations
that are necessary to dereference the pointer. In C++, you can change the
value of the variable simply by associating it with a reference. Then, by
changing the value of your reference, you also change the value of its asso-
ciated variable.

Listing 3-3, a program named USINGREF, shows how a function can use
a reference to change the value of a local variable declared in a different
function. Notice that in C++, references allow you to perform this kind of
operation without the overhead that is required to perform a similar op-
eration using a pointer in C. |

3: C++ Basics

USINGREF.CPP
Finclude <iostream.h>

// function prototype
vo1d ChangeValue(mt& aRef)

void ma1n()

{

int anIntVar = 123; ;
int& aRefer‘ence = anIntVar:’ *

cout << "The va1ue of anIntVar is "
e << anIntVar << '\n -

ChangeVa] ue(aReference)

cout <« "The value of anIntVar is now g R,
,<< anIntVar << '\n e B o

f“:VGid:théngeVaJUE(§ﬁ£&1aﬁef),
= .aRef

456 ,;,_j?[_

Listing 3-3. Using a reference.

In the main function of the USINGREF program, a local integer variable
‘named anlntVar is declared and assigned a value of 123. A reference
named aReference is then declared to be an alias of anIntVar.

When anintVar has been initialized and aReference has been defined, the
main function calls another function, named ChangeValue, that changes
the value of the reference named aReference.

Because both aReference and aRef are aliases of anIntVar, changing the
value of aRef also changes the value of anIntVar—even though anintVaris
a local variable that is declared and defined inside another function!

To perform this kind of operation in C, you would have to declare a
pointer to anIntVar, pass the pointer to aRef, and then dereference the
pointer to obtain its new value. In C++, you can use a reference for this
task instead of a pointer. This technique eliminates the overhead of
dereferencing a pointer.

59

Learn Visual C++ Now

60

Advantages of using references In a program as short and simple as the
one shown in Listing 3-3, the time and effort you save by using a reference
instead of a pointer is minimal. But if you need to use a pointer to access a
long sequence of memory locations—for example, the contents of a very
large array—you might find that you can speed up processing significantly
by using an array and eliminating the extra time and effort that derefer-
encing a pointer would require.

Dangers in using references All this power and flexibility can be danger-
ous if you don’t know exactly what you’re doing. In C, you can always tell
when you’re working with a pointer because you have to use the derefer-
ence operator (*) to obtain the value of a variable being accessed through

a pointer. In contrast, a reference does not have to be identified using any
special kind of symbol. That means that in your source code, a reference
can look the same as a variable even though it packs a lot of extra power.

So you should not go around indiscriminately declaring and using refer-
ences. You should use them with caution, and you should always be sure
that you identify them in comments. That makes it much safer for other
developers who might be assigned to work with your source code after
you have made your millions and retired to Monaco.

Qualifiers
In C and G++, a qualifier is a keyword that either modifies a type specifier

or defines the behavior of a function. When a qualifier is used to modify a
type specifier, it is called a type qualifier. For example, the keyword const
is used in the following statement as a type qualifier that declares a con-
stant named aConst:

const int aConst:

The following statement shows how a qualifier can be used to define the
behavior of a function. In this case, the keyword inline is a qualifier that
declares AFunction to be an inline function. (Inline functions are described
in more detail in the section “Inline Member Functions” on page 67.

inline void AFunction(int paramA};

M‘ OTE A function qualifier can also be referred to as a function modifier.
(| '

3: C++ Basics

As these examples illustrate, you can use both a qualifier and a type speci-
fier in the definition of a variable or a function. When you do that, the type
qualifier modifies the type specifier or the function, in much the same
way that an adjective modifies a noun.

For example, when you precede the name of a variable with the const key-
word, the variable becomes a constant. To create a const in a C++ program,
you use a statement like this:

const int aConstvVar = 100;
or a statement like this:
const float aConstVar2 = 129.95;

In C++, both of the preceding statements are called initialization state-
ments. In the first of these statements, aConstVar is declared to be a con-
stant integer and is initialized to a value of 100. In the second statement,
aConstVar2 is declared to be a constant of the float type and is initialized
to a value of 129.95.

‘Assignment and Initialization in C++

In C programming, “assignment’ and mltlahzatlon are two words
that mean essentlally the same thing. Both describe the assignment of
avalueto a constant or to a variable. The only difference in C++ is
~ thatan 1n1tlahzat10n operatlon declares a variable and assigns a value
toitina smgle step. Here’s an example of an initialization statement:

1ntx 5

\You cannot use an a331gnment operator to as31gn avalue to a const
data type As you saw earlier in this chapter, you can. create a const
’ and assign a value to it usmg an 1n1t1ahzat10n operatlon as follows

\wconst int aConstVar = 100

(continued)

61

" Learn Visual C++ Now

62

Assignment and Initialization in C++. continued

fg‘f";But you cannot create a const and then use an assxgnment operatlon:
to asmgn a value to 1t The follo" ing as: 1gnment operatlon is not legal

° / 11 'legal : generates
\ ’ // a compﬂer j, (‘
i It is also 1mportant to understand the d1fference between 1n1t1ahza— ,\.\
~ tion operatmns and a331gnment operatmns when you create member
;fvarlables of C++. classes When ‘you declare a member vanable ofa :
\i\dclass 1n51de the class s declaratlon you cannot a331gn a value to the
'member vanable usmg an 1n1t1ahzat1on operatmn Instead you must
f1rst 1nstant1at ‘an ‘cb]ect of a claSs : nd then use an. a551gnment opera-
f"tlon to ass1gn a Value toa membe ‘\vanable of the class Youw 11 learnf
yl;‘fhow to create classes and member variables 'of classes'm the sectlon
.}\“C++ Classes” on page65 : :

If the keyword const were not used in the preceding statements, aConstVar
and aConstVar2 would be ordinary variables. But because they are declared
using the const keyword, they are constants and their values cannot be
changed once they have been initialized.

Other type qualifiers that did not exist in C or have been given increased
power and versatility in C++ include the following:

B The inline qualifier, which makes it possible to embed short func-
tions inside other functions instead of calling them indirectly. This
qualifier can speed up processing at the cost of a little extra code.
(For more details on inline functions, see the section “Inline Mem-
ber Functions” on page 67.)

B The virtual qualifier, which makes it possible for derived classes to
override inherited member functions in special ways. (We’ll cover
derived classes, member functions, and the virtual qualifier in
Chapter 4, “Objects and Member Functions.”)

B The friend qualifier, which provides classes with special kinds of
access to member variables and member functions of other classes.
(The friend qualifier is also covered in Chapter 4.)

3: C++ Basics

The const type qualifier

In C++, the const qualifier lets you create type-safe constants. The const
qualifier is also available in C, but consts are much more powerful in C++
than they are in C. In G, about all you can do with a const is initialize it
and then use it in place of its value in your program. In C++, you can use
consts in many different ways with pointers, references, and functions.
You can write functions that take consts as arguments, write functions
that return const values, and even declare entire C++ objects to be consts.

The const qualifier and the #define directive Most C programs define
constant values using the #define preprocessor directive, as shown here:

fdefine MAX_SIZE 256

That’s fine, but it has one potential shortcoming: the #define directive
does not generate type-safe constants because it is just a preprocessor
directive, not a compiler statement.

When you generate a constant using #define, your constant has no data
type, so your compiler has no way to ensure that operations on the con-
stant are carried out properly—at design time, at run time, or even during
debugging. When you work with a constant created with the #define direc-
tive, you're strictly on your own; no type-checking is ever done for you.

In contrast, when you define a const in a C++ program, you execute a real
compiler statement, such as this one:

const int MAX_SIZE = 256;

This statement declares an integer constant named MAX_SIZE and initial-
izes it to a value of 256. Once this operation has taken place, the value of
MAX_SIZE cannot be changed. ‘

Notice that this statement, unlike the previous #define directive, does not
begin with a # symbol and does end with a semicolon; those are your clues
that it’s a real statement executed by your application, not a preprocessor
directive.

You can, however, do many things with consts that you cannot do with

- non-const variables. You can create const arrays, assign pointers to consts,
create pointers that are consts, and create const pointers that have the
same values as references. You can also write functions that take const
arguments and return const values.

63

Learn Visual C++ Now

64

Creating a const pointer to a variable Many of these operations can be
mixed and matched. For example, the following statement creates a const
pointer to an integer variable and assigns to the pointer the value of a ref-
erence, all in one step:
int *const pAnIntVar = &anIntVar; // constant pointer,

» // ordinary variable
It’s important to understand that in the preceding statement, the pointer
named pAnIntVaris a const, but the variable that it points to is an ordi-
nary variable. Consequently, the address that is stored in the pAnIntVar
pointer cannot be changed later, but the value of the variable that
pAnintVar points to can be changed.

Creating a pointer to a const variable When the variable that is pointed
to is a const but the pointer is not a const, just the reverse happens. In this
case, the value of the variable that is pointed to cannot be changed later,
but the address stored in the pointer that accesses the variable can be
changed, making it point to a different location, as shown here:
const int *pAnIntVar; // constant variable,

// ordinary pointer
Creating a const pointer to a const variable Finally, you can use the
const qualifier to create a const pointer to a const integer. Then the pointer
you have created can’t be changed later, and neither can the variable that
it points to, as shown here:
const int const =pAnIntVar; // constant variable,

// constant pointer

Using the const qualifier in function definitions The const type qualifier
is often used in function definitions. For example, the following statement
defines a function that returns a const:

const int TestConstFunc(int x, int y);

Here’s the definition of another function that returns a const pointer to an
ordinary variable:

int =const TestConstFunc(int x, int y);
And here’s a function that returns an ordinary pointer to a const variable:

const int *TestConstFunc(int x, int y);

3: C++ Basics

Last we have a function that returns a const pointer to a const variable:
const int const *TestConstFunc(int x, int y);

Passing const arguments to functions You can also use consts as argu-
ments in function calls. In fact, you can pass const arguments to functions
in a number of different ways, such as in the following statement:

void *TestConstFunc(const int a, int =*const b,
- const int *c, const int const xd);:

C++ Classes

Once you know how a struct works in a C++ program, you've come a long
way toward learning how classes work in C++. In essence, a C++ class is
a C-style struct with a few simple but far-reaching enhancements. In the
following paragraphs, you’ll see how structs have evolved into classes

in G++.

Declaring Classes

In a C++ program, you declare a class in the same way that you declare a
struct. To declare a simple class, all you do is write a struct definition and
substitute the keyword class for the keyword struct. For example, the fol-
lowing code fragment is a declaration of a struct:

struct EmpInfo {

char* m_name;

char* m_dept;

char* m_position;

long m_salary;

void PrintInfo(EmpInfo empData);
}:

%&Ql OTE In the preceding code fragment, notice that the Empinfo struct has a

/A M member function named Printinfo. In C++, a struct—like a class—can contain
member functions. But this feature of a C++ struct is rarely used. The gen-
eral feeling among C++ programmers seems to be that if you're going to
create a struct with member functions, you might as well go ahead and cre-
ate a class because classes are more powerful than structs and can make
use of inheritance and other useful features that structs do not have. You'll
learn much more about the many features of classes in the remainder of this

. chapter and in Chapter 4. ’

65

Learn Visual C++ Now

66

By changing the keyword struct to the keyword class, EmpInfo becomes a
class instead of a struct, as shown here:

class EmpInfo {

char* m_name;

char* m_dept;

char* m_position;

long m_salary;
, void PrintInfo(EmpInfo empData);
I

N

OTE The Empinfo class created in the preceding example has four member
variables: m_name, m_dept, m_position, and m_salary. In Visual C++, the
recommended convention for writing the name of a member variable is to
precede it with the letter m followed by an underscore. This convention
helps to distinguish member variables from ordinary variables.

Declaring a class in a C++ program has the same effect as declaring a
struct. When you declare a C++ class, no memory for the class is allocated
until you create an object from a class. Creating an object from a class is
called instantiating an object. An object created from a class is known as
an instance of that class.

Access Specifiers

C++ uses access specifiers to allow a class to control access to the class’s
data members. Access specifiers can be used to permit access to specific
members of a class while restricting access to other class members. This
capability can prevent private data members from being changed inadver-
tently by functions that access them—a problem that is often caused by
the sloppy use of global variables in C programs.

There are three access specifiers in C++: public, protected, and private.
When you declare a class member to be public, it can be freely accessed
inside and outside its class. Data members that are declared as protected
are accessible from the class’s member functions but cannot be accessed
by other classes or other parts of the program. When a member of a class is
declared as private, it is inaccessible not only from other classes and other
parts of the program but also from derived classes. (Derived classes are de-
scribed in Chapter 4, “Objects and Member Functions.”)

3: (C++ Basics

Inline Member Functions
Some C++ functions contain only a few lines of code, and some consist

of a single line of code only. For example, the following member function
sets a member variable named m_age to the value passed to the function:

void Person::SetAge(int age)
{

m_age = age;
}
The overhead cost of a function call must be paid each time you want to

set the m_age member variable—quite a price for a single line of code.

To help avoid the overhead of a function call, C++ provides inline func-
tions, which are similar to C macros. An inline function is like a normal
function, but it is expanded in line. This decreases the execution time of
a program but increases its size (due to multiple inline copies of the func-
tion). Shorter member functions can be (and often should be) declared as
inline functions.

There are two methods for declaring an inline function in a C++ program.
The first is to declare and define the function using an all-in-a-row syntax
in the function’s definition. Using this method, the previous example
would look like the following:

void SetAge(int age) { m_age = age; }

Notice that an inline function definition has all the ingredients of an ordi-
nary “out-of-line” function definition—namely, a function heading fol-
lowed by a function body that is enclosed in braces, or curly brackets. The
only significant difference is that in an inline function definition, all these
ingredients appear on the same line.

The second method for declaring an inline function is to use the inline
function modifier when you create the function. You’ll see an example
of using the inline function modifier in Chapter 4, “Objects and Member
Functions.”

Example: The EMPINFO Program
Listing 3-4 on the following page—a sample program named EMPINFO—

demonstrates the three concepts we’ve seen in this section: classes, access
specifiers, and inline functions.

67

Learn Visqal C++ Now

lvo1d Pmntlnfo() e

void SetName(chars name) { m_name = name; }

void SetDept(char‘* ‘dept) { m_ dept = dept }

void SetPosition(chars psn) { m_pos1t1on psns Yo
o1d SetSa]ary('Iong sa1) { m sa]ary sa],‘}
A name } :

Listing 3-4. Using a class in a C++ program.

68

3: C++ Basics

How the EMPINFO program works
The EMPINFO program shown in Listing 3-4 is divided into the following
three parts:

B The first part of the program is a declaration of a class named
EmplInfo, shown here:

class EmpInfo {
private:
char* m_name;
char+ m_dept;
char* m_position;
long m_salary:
public:
void PrintInfo();
void SetName(char* name) { m_name = name; }
void SetDept(char* dept) { m_dept = dept; }
void SetPosition(char* psn) { m_position = psn; }
void SetSalary(long sal) { m_salary = sal; }
const char* GetName() { return m_name; }
const char* GetDept() { return m_dept; }
const char* GetPosition() { return m_position; }
const long GetSalary() { return m_salary; }
}s

Notice that there are eight inline functions (SetName, SetDept,

SetPosition, SetSalary, GetName, GetDept, GetPosition, and
GetSalary) and one normal function (PrintInfo).

The member variables of the EmplInfo class are declared as private,
so member functions from another class cannot access them. The
Emplnfo class’s member functions, however, are declared as public,
which means that member functions from other classes can access
them.

B The second part of the program is the definition of the PrintInfo
function, shown here:

void EmpInfo::PrintInfo()

{
cout << "Name: " << m_name << '\n';
cout << "Department: " << m_dept << '\n';
cout << "Position: " << m_position << '"\n';
. cout << "Salary: " << m_salary << '\n';
}

69

Learn Visual C++ Now

m OTE Notice that the name of the Empinfo class—followed by a pair of

colons (::)—precedes the name of the Printinfo function. In C++, a pair of
colons used in this way is called a scope resolution operator. The scope reso-
lution operator is a standard mechanism for defining a member function of
a class. For more details, see the section “The Scope Resolution Operator”
on page 79.

B The third part of the program is the main function. In the main func-

tion, the following line of code instantiates an object of the EmpInfo
class:

EmpInfo empInfo;
The object instantiated is named emplInfo.

After the emplInfo object has been instantiated, its member variables
are initialized, or assigned their initial values, as shown below. No-
tice that initialization operations, not assignment operations, are
used to carry out this step.

// assign values to member variables

empInfo.SetName("Zippy");

empInfo.SetDept("Entertainment");

empInfo.SetPosition("Actor");

empInfo.SetSalary(35000);

Finally, PrintInfo is called to print the contents of the empInfo
object’s member variables, as shown here:

// print data
empInfo.PrintInfo();

j‘\v”Data Encapsulatlon

«H*IIn C++ access spemflers are the key to data encapsulatlonb By usmg i
o access speclﬁers, aclass c;an control access to member Vaflables an
member functlons When data is protected by encapsulatlon func
,ff\’«tlons that call other funotlons can accessidata
- oalled\ and request actlons 1nvotv1ng th"\ data— 1thoutkno\wmg .

he functions bemg .

pec ic detalls about how the data is manipulated or how the actions

70

3: (C++ Basics

When you execute the EMPINFO program, it produces the output shown
in Figure 3-3.

yName: 21ppy
;Department Entertainment

%Pusition Actor
z’Salary 35000
<
i
Hi

Figure 3-3. Output of the EMPINFO program.

Constructors and Destructors
In C++, special functions exist for instantiating and destroying objects. A

function that performs any necessary initialization—for example, allocat-
ing memory for an array—when an object is instantiated is known as a
constructor. A function that performs any housekeeping that must be
done after the object is destroyed is called a destructor. For example, a
destructor can ensure that any memory allocated to an object is deallocated.
Constructors provide an easy—and safe—way to instantiate objects. De-
structors provide an easy and safe way to destroy objects when they are
no longer needed.

Along with their primary job of constructing objects, constructors can also
perform special kinds of operations, such as converting data from one type
to another and making copies of objects. Constructors are often used, for

n

Learn Visual C++ Now

72

example, to make copies of strings that are implemented as objects of the
Visual C++ CString class. (For more information about the CString class,
see Chapter 6, “The MFC Library.”)

~ Creatmg Objects Wlthout Constructors

: When you 1nstant1ate an ob]ect in C++ the comprler always calls a

; \constructor If you don t provide a constructor for a partlcular class,
the compller creates a 31mple constructor when you ¢ declare the ob-

-]ect and uses the constructor to 1nstant1ate your ob]ect -

“ Because the comprler automatlcally creates a constructor when an_
= 'ob]ect is declared ‘you can define and use a class w1thout exphcrtly
'wrrtmg a constructor for the class. ; :

‘But constructors that are created by the comprler are: often too prlmr- o

~ tive to be Very useful and good C++) programmers rarely, 1f ever, trust

~ the comprler to prov1de a constructor by default The safest way to 3,
instantiate an ob]ect isto wr1te an explicit constructor That doesn \

: .'Vcost anythmg, SO most experrenced C++ programmers wr1te exphcrt

\constructors for the classes they use in therr programs

A constructor is easy to recognize because it always has the same name as
the class in which it is declared. In a class definition, a constructor can be
declared using this format:

class HighClass {

public
HighClass();

The HighClass constructor takes no arguments. A constructor that takes no
arguments is called a default constructor, or a null constructor.

3: (C++ Basics

A destructor, like a constructor, has the same name as the object with which
it is associated. The name of a destructor, however, is always preceded by
the tilde symbol (~), as in this example:

~HighClass() (}
A destructor takes no arguments and never returns a value.

When an object that has a destructor goes out of scope or is otherwise about
to be destroyed, the object’s destructor is automatically invoked. You
never have to make an explicit call to an object’s destructor when the
object is no longer needed.

44

OTE You can see that no return values are specified for the HighClass con-
structor and destructor. In C++, constructors and destructors never return a
value, so you are not allowed to specify a return type—not even void—
when you define a constructor or destructor. If you try to specify a return
type, the Visual C++ compiler reports an error.

Defining a constructor

Once a constructor has been declared, it must be implemented. Construc-
tors, just as other kinds of functions, are often declared in header (.H) files
and are then defined in corresponding implementation (.CPP) files. The
HighClass constructor declared in the preceding example could be defined
in the corresponding implementation file in this way:
HighClass::HighClass()

{ // body of function definition

} .

When you write a constructor that takes arguments, the constructor can
use the values of those arguments for any legal purpose—for example, to
perform any special kinds of assignment operations.that the object being
constructed might require, such as specifying the initial values of member
functions of the object. Of course, code must be provided inside the con-
structor to make use of any arguments it requires.

73

Learn Visual C++ Now

74

Default Function Arguments

Sometimes you’ll write a function that almost always uses the same value
for one of its arguments. For example, a drawing program might include a
tool that draws a square at specified xy-coordinates using a specified color.
You might write a function whose declaration looks similar to this:

void DrawSquare(int x, int y, int color);

This function takes three arguments: an x value, a y value, and a color
value. If you know that the color will usually be black, you might be
tempted to write a second function that takes only x and y values; the
function would draw a black square at the specified location. C++ pro-
vides a way to write a single function that will draw the square using
black but still allow you to specify a different color as needed, as
shown here:

void DrawSquare(int x, int y, int color = BLACK);

In this function, the color argument is a default argument. Default argu-
ments always appear at the end of the argument list.

When a class has a member function that provides default values for its
arguments, you can call the function without passing arguments to it. If
you don’t pass any arguments to the function, the function uses the de-
fault values provided in its argument list.

Alternatively, you can choose to pass arguments to a function that is
equipped with default values for its argument list. When you pass argu-
ments to such a function, they override the default values that are pro-
vided in the function’s declaration.

Listing 3-5 demonstrates a class named HighClass whose constructor uses
default values.

Listing 3-5. Using constructors with default arguments.

3: C++ Basics

~HighClass() (}
. char* m_name;

Cint mox;

1

int main()

{
HighClass myObject;
cout << myObject.m_name << '\n';
cout << myObject.m_x << '\n';

~return 0; '
1 ~ :

Copy Constructors
A copy constructor, as you might guess from its name, is a constructor

specifically designed to copy objects. In C++, copy constructors provide a
means of copying a complex structure such as an object in a single step.

J;@‘ OTE Copy constructors are not the only mechanisms for copying objects in

i\l C++. You can also copy an object by overloading the assignment operator
(=). Operator overloading is described in Chapter 4, “Objects and Member
Functions.”

Custom copy constructors are often used in C++ because the C++ language
does not provide a robust generic copy constructor that can automatically
make a copy of any object. The Visual C++ compiler does have the capa-
bility of copying simple objects without requiring copy constructors, but if
you need a copy constructor that will make a copy of a more complex
object, you must provide your own copy constructor (or use one that has
been provided in a class library).

Because the default copy constructor mechanism in C++ is so limited, it is
almost never used in real-world programming. Learning to write copy con-
structors is really a part of learning to program in C++.

Declaring a copy constructor
A copy constructor always takes one argument—a reference to a class—

and, being a constructor, never returns a value.

75

Learn Visual C++ Now

76

After you have declared a copy constructor, you can define it in the same
way that you define any constructor, as in the following example:
YourClass::YourClass(YourClass& anObject); ’
{

// body of copy constructor
}
After you have declared and defined a copy constructor, you can invoke it
by executing statements such as the following:
YourClass objectA; // define an object
YourClass objectB = objectA: // copy objectA
When these two statements are executed, an object named objectA already
exists. The first statement instantiates an object of the same class named
objectB, and the second statement copies objectA to objectB. '

Techniques for writing copy constructors

In rare situations, when you have a very simple object to copy, you can let
the compiler write a shallow copy constructor for you. At other times,
you’ll need to write a deep copy constructor. Here are the differences:

B A shallow copy, sometimes called a memberwise copy, copies every
data member of an object but does not copy strings or pointer data.
If the object being copied contains a pointer, the pointer is copied
verbatim to the destination object, but the information pointed to by
the pointer is not copied. Shallow copying is not appropriate if the
object being copied is any more complex than a pointerless struct.
In most situations, you should forget about shallow copying.

B A deep copy copies the source object and all the data that is pointed
to by the source object’s pointers and then resets the pointers in the
destination object to point to the data that has been copied. In other
words, a deep copy copies everything. A deep copy is the only safe
kind of copy, so in virtually every situation it is the kind of copy
constructor you should use.

3: C++ Basics

Example: The CPYCONST Program

The CPYCONST program shown in Listing 3-6 demonstrates how a copy
constructor can be used in a C++ program. The program’s main function
instantiates an object named myMoney and then uses a copy constructor
to make a copy of myMoney. The copy of myMoney is named moMoney.

CPYCONST.CPP

#include <iostream.h>

class Money {
~int m_dinero, m_centavo;

;bub11c .
Money () {} // null constructor
Money (Money&); // copy constructor

Money(int dol, int pen) : m _dinero(dol), m_centavo(pen) {}
- int GetDollars() { return m_dinero; e :
G 1nt GetCents() { return m centavo, }

i Money:':Mon‘ey(Money&;caSh)

om _dinero = cash.m_dinero;
m centavo = cash.m_centavo;

s 8" < d << '~-‘<<‘cd<

Listing 3-6. Demonstrating a copy constructor.

Because the CPYCONST program copies an object that contains no point-
ers, the copy constructor the program uses is quite straightforward, as
shown on the following page.

77

Learn Visual C++ Now

78

Money: :Money(Money& cash)
{ .
m_dinero = cash.m_dinero;

m_centavo = cash.m_centavo;

}s

When you call the preceding copy constructor, it copies the m_dinero
and m_centavo member variables from the source object to the destination
object. The Money class has only two member variables, so that completes

the copying operation.

Initializer Lists
In the course of demonstrating the use of copy constructors, Listing 3-6 in-

troduces another useful feature of C++: initializer lists in calls to construc-
tors. In Listing 3-6, an initializer list appears in the following constructor
definition:

Money(int dol, int pen) : m_dinero(dol), m_centavo(pen) {}

Notice that the argument list of the Money class’s constructor is followed
by a colon and then by a pair of constructs that look like calls to C functions.
In this case, those constructs are not functions but serve as an initializer
list for the Money class’s constructor.

The initializer list that is supplied for the Money class initializes a pair of
member variables named m_dinero and m_centavo. The operation of the
initializer list is quite straightforward: when the constructor is called, the
m_dinero member variable is initialized to the value of the dol argument
that is passed to the constructor, and the m_centavo member variable is
initialized to the value of the constructor’s pen argument. Thus, the con-
structor works exactly as if it were defined this way: |
Money::Money(int dol, int pen) {

m_dinero = dol;

m_centavo = pen;
}
As you can see, initializer lists are optional. Many C++ programmers like
them because they take up a little Jess space than conventional member-
variable initializations and because they keep the initialization of member
functions separate from the rest of the code in a constructor.

3: C++ Basics

The Scope Resolution Operator

C++ provides the scope resolution operator (::) as another way to access
member functions and member variables of a class. When a scope resolu-
tion operator appears between the name of a class and the name of a func-
tion in a C++ program, as in the following example, it means that the
specified function is a member of the specified class:

EmpInfo::PrintInfo();

In C++, the scope resolution operator is always used in the headings of
member functions that are not declared in line. (Inline member functions
are described in the section “Inline Member Functions” on page 67.) The
scope resolution operator is also often used to call functions that are out-
side the scope of the calling function. For example, to call a member func-
tion named CStructView::OnDraw from a function that is defined outside
the definition of the CStructView class, you could execute this kind of
statement:

CStructView::0nDraw();

There are some important differences between the way the scope resolu-
tion operator works and the way the arrow and dot operators work in

. C++ programs. The main difference is that the scope resolution operator
is used to access members of classes, and the dot operator and the arrow
operator are used to access members of specific objects.

Using the scope resolution operator inside functions
You can also use the scope resolution operator inside function definitions
in C++ programs. In the following example, the scope resolution operator
is used in two different ways inside a function definition (as well as being
used in the function definition’s heading):
void CMyView::ShowInfo()
{
::MessageBox("We are inside the ShowInfo function.");
EmpInfo::PrintInfo();
}
The scope resolution operator appears by itself in front of a call to a func-
tion named MessageBox and also appears in a call to the EmplInfo::Print-
Info member function.

79

Learn Visual C++ Now

80

In the first statement, shown here, there is no class name in front of the
scope resolution operator:

::MessageBox("We are inside the ShowInfo function.™);

That means that the function being called—MessageBox—is not a member
of any class. (In this case, MessageBox is a function provided by the Win-
dows API. When you call the function, it displays a modal dialog box con-
taining the message you have specified. When the user clicks the OK
button, the message box closes.)

There are two reasons for using a scope resolution operator. One reason is
to distinguish the function that is being called from some other function
that has the same name but is in a different scope. To illustrate a case such
as this, look again at the call to the MessageBox function, shown here:

void CMyView::ShowInfo()

{ ::MessageBox("We are inside the ShowInfo function.");
EmpInfo::PrintInfo();

}

Suppose that when you execute the MessageBox call, you know that the
CMyView class has a member function named ShowInfo::MessageBox. In
C++, when a function that is in scope and a function that is out of scope
have the same name and the same argument list, the version of the func-
tion that is in scope is usually called. In this kind of situation, you can use
the ::MessageBox construct to override this default scoping behavior and
call the Windows API version of the MessageBox function. If you don’t use
the ::MessageBox construct, the ShowInfo::MessageBox function is the
function that is called.

The second reason for using the scope resolution operator is to let readers
of your code know that the function you are calling is not a member func-
tion of the class from which the call is made. Using the scope resolution
operator in this kind of situation is not mandatory, but it can help other
readers of your code understand what’s going on when you’re using a
class that has a lot of member functions.

3: (C++ Basics

The this Pointer

One word you often see in C++ programs is “this.” That’s because every
object in a C++ program is equipped with a pointer to itself named this.
Whenever a program calls a nonstatic member function (most member
functions are nonstatic; static member functions are described in Chapter
4, “Objects and Member Functions”), the this pointer is passed to the
member function that is called. The member function can then use the
this pointer to access other members of the object’s class.

In C++ programs, member functions often use the this pointer as an argu-
ment when they call other functions. The called function can then use the
this pointer to access the calling function’s object.

The sample program in Listing 3-7 shows how the this pointer works.

% THIS CPP

L #1nc1ude <1ostream h>

class YourCTass {

- public: el g e
- YourClass(). {} // defau'lt constructo

- ~YourClass() {} [/ destr‘uctor :
vo1d* IAm() { return th1s Pt

Listing 3-7. Using the this pointer.

In this example, the class named YourClass has a member function named
IAm that returns the this pointer of a YourClass object, as shown here:

7

void+* IAm { return this; }

81

Learn Visual C++ Now

When you execute the program, its main function instantiates a YourClass

object and then calls the IJAm member function. The program then stores

. the this pointer returned by IAm in a pointer variable named pClass, as

shown here:
pClass = anObject.IAm();

When the YourClass object’s this pointer has been stowed away for safe-
keeping, the main function prints out the pointer it has stored in the
pClass variable. The output of the program looks something like the fol-
lowing. (Of course, the actual address printed out varies.) ‘

pClass's pointer is @x603f223011786

What's Next?

This chapter is the first of two chapters that focus on C++ classes, objects,
and member functions. The chapter introduces C++-style structs and C++
classes and objects.

- Other topics covered in this chapter included various type specifiers

and qualifiers, the this pointer, access specifiers, and constructors and
destructors. '

In Chapter 4, “Objects and Member Functions,” you’ll explore the topics
introduced in this chapter in more detail, and you’ll also be introduced to
other features of C++ and principles of C++ object-oriented programming.
By the time you finish Chapter 3 and 4, you’ll have all the background in
C++ that you need to start writing object-oriented programs using the
Visual C++ development environment.

Chapter

Objects and Member Functions

You are now halfway through a crash course on the fundamental features
of generic C++ and the basic principles of object-oriented programming. In
Chapter 3, “C++ Basics,” you learned how the C++ class evolved from the
humble C-language struct and how you can use classes and other kinds of
C++ constructs in your Visual C++ programs. In this chapter, you’ll see in
more detail how objects are instantiated from C++ classes and how objects
and member functions are used in Visual C++ applications. This chapter
takes you deeper into the territory of object-oriented programming by
fleshing out some of the topics introduced in Chapter 3 and by providing
the rest of the background you’ll need to start using classes, objects, and
member functions in your Visual C++ programs.

This chapter covers the following major topics:
B Derived classes, class hierarchies, and inheritance—the corner-
stones of C++ object-oriented programming

B Polymorphism and virtual member functions, which let you specify
the version of a member function that is executed by a derived class

83

Learn Visual C++ Now

84

B Function overloading and operator overloading—mechanisms that
make C++ more versatile

Static member variables—a C++ feature similar to global variables

Mechanisms known as friend classes and friend functions, which
are used for sharing protected data

B The new and delete operators—the C++ operators for allocating
memory ’ ‘

Class Hierarchies and Inheritance

In Chapter 3, “C++ Basics,” you saw how member functions and member
variables can be declared inside C++ classes. You also saw how the pri-
vate, protected, and public access specifiers can control access to member
variables and member functions.

In this chapter, you’ll learn how classes can be derived from other classes
and how base classes and derived classes can be organized into architec-
tures known as class hierarchies. When you derive a class from another
class in a C++ program, the derived class inherits member variables and
member functions from its base class—also referred to as its parent
class—and can add member variables and member functions of its own.

By arranging base classes and derived classes into class hierarchies, you
can simplify software development by developing code that can be trans-
ported easily from application to application. This capability is the key to

‘code reusability in C++ programs.

Understanding Class Hierarchies
When a class is derived from a base class, the derived class inherits all the

member variables and member functions of its base class. Member vari-
ables and member functions declared as private in the base class are not
accessible to derived classes, however.

When a class is derived from a base class, more classes can be derived
from the derived class. In this way, a derived class can also become a base
class. Multiple levels of classes that are derived from each other form a
class hierarchy. Each class in the hierarchy inherits the member variables
and member functions of its respective base class.

4: Objects and Member Functions

How Derived Classes Worlk |

Figure 4-1 illustrates the way a derived class works in a C++ program.
The diagram shows how a derived class inherits the member functions

- and member variables of its base class. The derived class also adds mem-
ber variables and member functions of its own.

BaseClass

Variable1
Variable2

Function1
Function2

A

DerivedClass
Additional variables
Additional functions

Figure 4-1. How derived classes and base classes are related in a C++ program.

Why Use Derived Classes?

In C++, class derivation and class hierarchies are used for a number of rea-
sons, including the following:

B A base class can inherit some behaviors and originate others—
When you use a base class to derive a new class, the new class is a
new data type that inherits all the qualities of the base class without
disturbing the relationships the base class might have with other
parts of the program. If you are already using the base class in your
program, its behavior remains intact for objects that use it, but for
objects that require different behaviors, the member functions of the
derived class can be used to modify the behavior of the base class
without altering the base class’s code.

B Hold the source code—You don’t need access to the source code for
the base class when you want to derive a class from a base class. If
you have access to a header (.H) file that defines a base class, you

85

Learn Visual C++ Now

have all you need to derive classes from that base class. That means
you don’t have to share your source code with developers who use

~ it; just supply them with your header files, and they can derive their

own classes.

You can manage hierarchy behavior by using abstract classes—
Abstract classes are general-purpose classes that do nothing by
themselves but are specifically designed to be used as base classes.
The only purpose of an abstract class is to serve as a base for derived
classes. Derived classes can then add the implementation details.
For example, you could define an abstract class to manage objects in
a list. Then you could provide it with member functions that insert,
change, delete, reorder, and search for entries in the list without
having to know any details about objects in the list.

You can get the benefits of polymorphism—When you set up a class
hierarchy on a foundation of base classes and derived classes, you
can make use of other properties of the object-oriented languages,
such as polymorphism. Polymorphism lets descendants of a class
override a member function of that class with member functions
that have the same name but different effects.

As you move through the material in this chapter, you’ll learn more about

all these reasons for using derived classes.

Example: Deriving a Class

Listing 4-1, a program named HIERARCH, shows how a class can be de-
rived from a base class in a C++ program and demonstrates a simple class
hierarchy. The HIERARCH program is adapted from the EMPINFO pro-
gram presented in Listing 3-4 on page 68 in Chapter 3. It shows how the
EMPINFO program could be redesigned if the company using the program
opened branch offices abroad and hired employees in more than one
country.

To meet the needs of an international company, the designers of the HIER-
ARCH program have derived a new class, named OffshoreEmpInfo, from
the Emplnfo class that was used in the EMPINFO program.

86

4: Objects and Member Functions

HIERARCH.CPP

#include <iostream.h>

// base class
class EmpInfo {
public:
// constructor and destructor
EmpInfo() {}
~EmpInfo() {}
private:
charx m_name;
char* m_dept;
chars m_position;
long m_salary;
public:
void SetName(char#* name) { m_name

void SetDept(char* dept) { m_dept

void SetPosition(char* position).
{ m_position = positiaon; }
~void SetSalary(long salary)
{ m_salary = salary; }
, ~void PrintInfo();
e ,

// derived class
- class OffshoreEmpInfo
~.public: - S
T constructor and destructor
OffshoreEmpInfo() {ry =
H g ~0ffshoreEmpInf0() {}

'pr1vate ST
- char® m country.
?ﬁpub11c ‘ &

non

i vo1q SetCountry(char* country)“f:‘

{;m_country country ‘}

name; }
dept; }

pUb]inEhpInfo‘{ o

Listing 4-1. Demonstrating a derived class.

- (continued)

87

Learn Visual C++ Now

88

Listing 4-1. continued

f;"empInfo SetName("Dawsyduck Fethya
‘emplnfo SetDept("Enterta1nment"),

When you execute the HIERARCH program, it displays the output shown
in Figure 4-2.

Department Entertainment
%P051t1on Vocalist
#Salary: 24000

‘cnuntry Bulgaria

Figure 4-2. The output of the HIERARCH program.

Rules of Inheritance in C++
Because the OffshoreEmplnfo class is derived from the EmplInfo class, it

inherits all the public member functions that are declared inside the defi-
nition of the EmpInfo class. The OffshoreEmplInfo class adds one new

4: Objects and Member Functions

member function and two new member variables that are not members of
its base class, as shown here:
private:

char* m_country;
public:

void SetCountry(char* country)

{ m_country = country; }

void PrintInfo();
Along with these new members, the OffshoreEmplInfo class can use all of its
inherited member functions in the same way that its base class uses them.

In Figure 4-1 on page 85, notice that the arrow connecting the derived class
to the base class points upward—not downward as you might expect. This
convention is used in C++ class diagrams because members of base classes
are visible to derived classes, but members of derived classes are not vis- .
ible to their base classes.

Declaring a Derived Class
Here is the declaration of the OffshoreEmplInfo class:

// Derived class

class OffshoreEmpInfo : public EmpInfo {

public:
// constructor and destructor
OffshoreEmpInfo() {}
~0ffshoreEmpInfo() {}

private:
char* m_country;

public:
void SetCountry(char# country)

{ m_country = country; }

void PrintInfo();

I

Notice that the heading of a derived-class declaration contains the names
of both the derived class and the derived class’s base class. The name

of the derived class is separated from the name of the base class by two
elements: a colon and an access specifier.

Only two access specifiers—public and private—can be used in the header
of a derived-class declaration. The private access specifier is used rarely be-
cause derived classes are almost always publicly derived from their base
classes in C++ programs. You can hide a derived class from the rest of a
program by declaring it as private, but there is usually no reason to do this.

89

Learn Visual C++ Now

90

Constructing Derived Classes

When you instantiate an object of a derived class, the compiler executes
the constructor of the object’s base class before it executes the constructor
of the derived class. This is not important in the HITERARCH program be-
cause both the EmplInfo base class and the OffshoreEmpInfo derived class
have default null constructors. But if a base class has a constructor that re-
quires arguments, they can be provided by a constructor of a derived class.

To illustrate, suppose that a base class has a constructor such as this:
BaseClass(char* nm, int x);
Then suppose that a class derived from BaseClass has a constructor some-
thing like this:
DerivedClass(char* nm, int x) : BaseClass(nm, X)

{ m_name = nm; m_x = x; }
In this kind of situation, you can provide the arguments for BaseClass at
the same time that you create an object of DerivedClass. To do that, invoke
the DerivedClass constructor using the following statement:

DerivedClass myObject("Mikey", 6);

When you invoke the DerivedClass constructor using this sort of state-
ment, the DerivedClass constructor automatically calls the BaseClass con-
structor. The result is that the m_name and m_x member functions of the
object you have instantiated are initialized to the values "Mikey" and 6.

Listing 4-2 shows how this kind of operation can work in a C++ program.

Listing 4-2. Constructing a derived class.

4: Objects and Member Functions

s char* m_name
o int m_x;
}s

class DerivedClass : pubh’c BaseClass { S ey
public: Py i i
DerivedClass(chars nm, int x) : BaseClass(nm, x)

{ m_name = nm; m_x = x; } daml
~DerivedClass() {} i

charx m_name;

cedintomox; oo

};, L ;

. ,mt ma1n()
'~~;Der1vedc1ass myObJec't("Jaclge",' 24)

Overriding Memben‘ Functions

Derived classes can replace, or override, member functions they inherit
from their base classes. Listing 4-3, a sample program named OVERRIDE,
shows how base-class member functions can be overridden.

Listing 4-3. Overriding base-class member functions. (continued)

91

Learn Visual C++ Now

92

4: Objects and Member Functions

// populate the EmpInfo classes with data
empInfol->SetName("Zippy"):
empInfol->SetDept("Entertainment™);
empInfol->SetPosition("Actor"”);
empInfol->SetSalary(34000);
empInfol->Printinfo();

empInfo2->SetName("Daisyduck Feliciano");
empInfo2->SetDept("Entertainment™);
empInfo2->SetPosition("Vocalist");
empInfo2->SetSalary(24000);
empInfo2->SetCountry("Bulgaria™);
empInfo2->PrintiInfo();

; empInfo3 >SetName("Wolfgang Amadeus Mozart");
empInfo3- >SetDept("Transportation”);
empInfo3->SetPosition("Piano Mover");
empInfo3->SetSalary(17000);
empInfo3->SetCountry("Austria™);
empInfo3->PrintInfo();

return 0;

Figure 4-3 shows the output of the OVERRIDE program.

5Name 2ippy
;Department Entertainment

%P051t1un fActor
gsalary 34000

iName: Daisyduck Feliciano
Department: Entertainment
Position: Vocalist

i:Salary: 24000

i Country: Bulgaria

Name: Wolfgang Amadeus Hozart

“salary: 17000
Country: Austria

Figure 4-3. Output of the OVERRIDE program.

93

Learn Visual C++ Now

94

The OVERRIDE program implements a base class named EmplInfo and a
derived class named OffshoreEmplInfo. The program’s main function in-
stantiates one object of the EmpInfo class and two objects of the Offshore-
Emplnfo class. Then the program assigns data to the objects that have been
instantiated. '

After each of the three objects has been created, a function named PrintInfo
is called to print the data stored in the object. It’s important to note, how-
ever, that the program defines two different PrintInfo member functions.
One version is used to print the data stored in the base-class object, and a
different version is used to print data stored in objects of the derived class.

Here is the definition of the EmpInfo::PrintInfo member function that is
used to print data stored in the EmpInfo class:

void EmpInfo::PrintInfo()

{
cout << "\nName: " << m_name << "\n";
cout << "Department: " << m_dept << "\n";
cout << "Position: " << m_position << "\n";
cout << "Salary: " << m_salary << "\n";

}

The other version of the PrintInfo member function is named Offshore-
Emplnfo::PrintInfo. It overrides the base-class version of the PrintInfo
member function and prints data stored in the derived OffshoreEmpInfo
class. Here is its definition:

void OffshoreEmpInfo::PrintInfo()
{

EmpInfo::PrintInfo();

cout << "Country: " << m_country << "\n";
} :
In the OffshoreEmpInfo::PrintInfo function, the OffshoreEmplInfo class
uses the scope resolution operator (::) to call its base class’s PrintInfo
member function. The EmpInfo::PrintInfo member function prints four
lines of text—the name, the department, the position, and the salary—and
then the OffshoreEmpInfo::PrintInfo member function prints one more

line, the country.

4: Objects and Member Functions

Switch Statements and Overridden Member Functions

One way to determine whether you are making enough use of over-
ridden member functions is to consider how often you find yourself
writing switch statements—and how long and complex they are. If
you find that you’re writing a lot of long switch statements, you might
find that you can implement the same functionality by replacing your
switch statements with sets of derived classes that have overridden
member functions.

This technique might require an overhaul in some of your program-
ming techniques, but it will be worth it in the long run. You'll quickly
see how much sense it makes to use overridden member functions
instead of monster switch statements in your C++ programs.

Polymorphism and Virtual Member Functions

A key concept in the world of object-oriented programming is polymor-
phism. Polymorphism is a way to give a name to an action that is per-
formed by similar objects, with each object implementing the action in a
manner appropriate to the object.

The key to polymorphism in C++ is a type of function known as a virtual
function. A virtual function is the mechanism by which derived classes
override member functions of base classes. To create a virtual function in
a C++ program—and thereby implement polymorphism—you declare the
function using the keyword virtual, as in the following statement:

virtual void Display();

Example: Using a Virtual Function
Listing 4-4 on the following page, the VIRTUAL program, demonstrates

the use of a virtual member function. The VIRTUAL program declares a
base class named BaseClass and a derived class named DerivedClass, each
of which defines a separate version of a member function named Display.
The BaseClass::Display function is a virtual member function, and
DerivedClass::Display is a function that overrides BaseClass::Display.

95

Learn Visual C++ Now

_ class DerivedClas
/1 derived-class members
1C' FTATE TR MR 4 L p

Listing 4-4. Using virtual functions.

The VIRTUAL program displays the output shown in Figure 4-4.

96

4: Objects and Member Functions

Figure 4-4. Execuiing a virtual member function.

How the VIRTUAL Program Works
In the VIRTUAL program, the virtual member function Display is defined

as follows in the declaration of BaseClass:
virtual void Display() { cout << 100 << "\n"; }

This function is overridden inside the declaration of DerivedClass, as
follows:

void Display() { cout << 280 << "\n"; }

As you can see, the virtual version of the Display member function dis-
plays the value 100. The version of the function that is overridden in the
DerivedClass declaration displays the value 200.

Calling the Print function
In the VIRTUAL program’s main function, one base-class object and one

derived-class object are instantiated. The main function then calls the
Print function, as shown on the following page.

97

Learn Visual C++ Now

98

int main()

{
BaseClass* pMyBaseClass = new BaseClass;
DerivedClass* pMyDerivedClass = new DerivedClass;

Print(pMyBaseClass);
Print(pMyDerivedClass);

return 9;
}
In turn, the Print function calls the BaseClass::Display member function
and the DerivedClass::Display member function. Be sure to notice, how-
ever, that the Print function does not call these two functions using two
different pointers. Instead, it uses the same pointer—specifically, the
pointer named bc—which, as you can see by examining the Print
function’s heading below, is a pointer to a BaseClass!

void Print(BaseClass* bc)

{
bc->Display();
1

Virtual Functions and Nonvirtual Functions

When a derived class overrides a base-class member function that is not
declared as virtual and then calls the function using a pointer to the base
class, the results are quite different. If Display were not declared as virtual
in the previous example, the program would execute the base-class version
of the function twice.

What happens when a derived-class object calls a base-class virtual mem-
ber function and the derived class calling the function does not have a
customized version of the function? Nothing much, really. The compiler
simply executes the base class’s version of the function, behaving the
same way it would if the function were not virtual.

Benefits of Using Virtual Functions

If a member function of a base class is declared as virtual, you can derive
other classes from that class that include a member function with the same
name. When the function is called at run time, the derived class’s version
of the function is the one that is executed.

4: Objects and Member Functions

The benefit of virtual functions is that objects that share a common base
class can be used in a uniform manner. For example, you might define a
base class named Shape with a virtual Draw member function and then
derive a Circle class and a Square class from Shape that contain their
own Draw member functions. Every object instantiated from these classes
can call the Draw member function; the compiler ensures that the correct
Draw function is called.

V-Tables

Until object-oriented languages came along, programs called functions in
a straightforward way. When a procedural program called a function, the
compiler knew exactly which function was being called and exactly where
in memory the function resided. Therefore, when an application called a
function, the call to the function was simply built into the program when
the program was compiled. This technique is known as early binding, or
static binding.

When a C++ program calls a nonvirtual function, the function is called
using static binding, in the same way that it would be called in a C pro-
gram. However, when a C++ program calls a virtual function through a
pointer to a class, the compiler calls the function using a technique
known as late binding, or dynamic binding.

C++ implements dynamic binding using virtual function tables, or v-tables.
A v-table is an array of function pointers that the compiler constructs for
every class that uses virtual functions. For example, in the VIRTUAL pro-
gram that appears in Listing 4-4 on page 96, the Display function is defined
as a virtual function, so the compiler creates separate v-tables for two differ-
ent versions of the Display function: one for BaseClass and one for
DerivedClass. '

Here’s how v-tables work: When a C++ prdgram is compiled, the compiler
creates all the v-tables that the program uses and stores them in a memory
location that is accessible to all the objects in the program. When the pro-

gram creates a class that accesses a virtual function in a base class, the code
for each instance of the class contains a hidden pointer to the v-table used
by the base class. o

99

Learn Visual C++ Now

100

When an object instantiated from a derived class calls a virtual function
declared in a base class through a pointer to a v-table used by the base
class—that is, when the object calls a base-class virtual function using
dynamic binding—the compiler doesn’t know at link time which object
will be calling the virtual function. That means that the compiler doesn’t
know at link time which version of the virtual function will be called when
the program is executed because the program doesn’t call the function
through a pointer to a specific derived class, but rather through a pointer
to a base class that can (and usually does) have multiple derived classes.

In C++, v-tables are the mechanisms that resolve this ambiguity. The rea-
son v-tables work is that they are not built at link time by the compiler.
Instead, they are built at run time by the application in which they appear.
That means that an application using v-tables can resolve references that
make use of each v-table on the spot, when the program is executed.

Because the compiler doesn’t know which version of the function will
be accessed when the program is linked, the program itself must evaluate
each calling statement at run time, when it can determine which version -
of the function to call. So, when a program uses dynamic binding to call

a function through a pointer supplied by a v-table, the calling statement
is evaluated at run time, and the correct version of the virtual function

is called.

Figure 4-5 shows how a v-table works in C++. Suppose that while a pro-
gram is running, it encounters a reference to a virtual function. When the
reference is encountered, the object on the left is in scope, and the object’s
v-table pointer contains the address of an entry in the object’s v-table.

Object V-table Prdgram code
V-table pointer 0
: e \ PrintData
Function2
Function3
Function4

Figure 4-5. How a v-table works.

4: Objects and Member Functions

Now assume that when a reference to a virtual function is encountered,
the object’s v-table pointer points to the second entry in the object’s v-table.
In Figure 4-5, the second entry in the object’s v-table is the PrintData func-
tion. The PrintData function, which resides in the code segment of the
program, is the function that’s called. Because the call to a virtual func-
tion is indirect—through a pointer to an object—the code for the imple-
mentation of a virtual function does not have to be in the same code
segment as the caller of the virtual function.

A v-table that is set up for a class contains one function pointer for each
virtual function in the class. Listing 4-5 demonstrates how v-tables are
used in applications that make use of virtual functions.

EMPDATA.CPP
~ #include <stdio.h>
~#Hinclude <iostream.h>

// base class.
“class Emp]oyee {
' pub11c oy : :
A constructors and destructors‘
.. Employee() {} - SR
.. .~Employee() {}+ S
~oovirtualivoid. Pr1ntData() ;
~void SetName(char* name) { m_nam
~ void SetDept(char* dept) {m dept
"vo1d SetPos1t1on(char* pos1t1on) ;
- { m_position = pos1t1on,;},,: o
Ivo1d SetSa1ary(1ong sa]ary)

:«name, }

uzn,j“;

Listing 4-5. Using virtual functions. (continued)

101

Learn Visual C++ Now

Listing 4-5. continued

102

4: Objects and Member Functions

O0ffshoreEmp::0ffshoreEmp(char* name, charx country, charx* dept,
char* position, long salary)

{
m_name = name;
m_country = country;
m_dept = dept;
m_position = position;
m_salary = salary;

}

SalesEmp::SalesEmp(char+ name, char= dept, charx position, .
long salary, long sales, float commissionPercent)

m_name = name;
m_dept = dept;

“m_position = position;
m_salary = salary;
m_sales = sales;

~m_commissionPercent = comm1ss1onPercent
m_commission = (long)(m_sales* comm1ss1onPercent)
m_totalPay = m_salary + m_commission;

1

i void ExemptEmp PrintData()
- R A

i . cout « "\nName: " << m_name;

~.cout - << "\nDepartment: " <<om dept
~ocout << "\nPosition: " << m_ pos1t1on.;~ SRR
'j_cout,<<1?\nSa]ary: . << m. sa]ary <« "\n"-j,t'~

;1:vo1d OffshoreEmp Pr1ntData()

< m_name;
j"ﬂ<<‘m dept

']fcout << "\nName,a !
cout << "\nDepartment

‘"\n5a1ary,]
\nCountry:

(continued)

103

Learn Visual C++ Now

104

Listing 4-5. continued

*»,cout << "\nSa]es < m sa]es, B
cout << "\nCommission € << mic
- cout << "\nCommission:

_cout << "\nTotal Pay:

" << m_commission
<< m tota1Pay.'

‘~r;ﬁEmp1oyee* emp[3]

'~~.~~gemp[0] new ExemptEmp("Abraham Aber‘nathy"," "Coffee Shop!,
. "CEO", 22000); SRRy Gbi ik

‘p[l] new 0ffshoreEmp("W01fgan Am
- ‘,"Transportatmn'f,~'1 "P1ano I

In Listing 4-5, the ExemptEmp class, the SalesEmp class, and the Offshore-
Emp class have separate v-tables for the PrintData function. When the pro-
gram calls the PrintData function, the pointer to the function points to the
version of the function appropriate for the class that is currently in scope.
Thus, the correct function is called.

Pure Virtual Functions and Abstract Classes

A member function that not only can be overridden but must be overridden
is called a pure virtual function. When a class contains at least one pure
virtual function, the class is known as an abstract class. An abstract class
is a class from which objects cannot be created.

To turn a virtual member function into a pure virtual member function,
all you have to do is assign the function a value of 0 (effectively, a NULL
pointer). For example, in the EMPDATA program shown in Listing 4-5,
the Employee::PrintData function is a pure virtual function, as you can
see in this statement from the definition of the Employee class:

4: Objects and Member Functions

virtual void PrintData() = 0;

In C++, a statement such as this is all it takes to create an abstract class.
You can declare an entire class as an abstract class simply by placing one
pure virtual member function declaration inside the class’s definition.

How Abstract Classes Are Used in the EMIPDATA Program
In the EMPDATA program, the Employee class is an abstract class in

which the pure virtual function PrintData is declared.

Notice that there are no Employee objects in the program; you couldn’t
create any if you wanted to because, as mentioned previously, you can’t
create objects from an abstract class. But ExemptEmp, OffshoreEmp, and

' SalesEmp are all derived from the Employee class. That’s allowed—in
fact, that’s what abstract classes are there for. The only purpose of an ab-
stract class is to serve as a base class for derived classes.

Similarly, the only purpose of a pure virtual function is to serve as a root
function for other functions. You cannot instantiate an object that belongs
to an abstract class, and you cannot directly call a pure virtual function;
you can, however, call an overridden version of a pure virtual function.

The main characteristic of a pure virtual member function is that it must
be overridden by classes derived from the class to which the function be-
longs. In the EMPDATA program, the PrintData function is overridden by
three derived classes: ExemptEmp, OffshoreEmp, and SalesEmp.

Virtual Functions: Pros and Cons

Although dynamic binding is a powerful feature of C++, not all functions
in a program should be virtual functions. Because virtual functions are
called indirectly, they do add some overhead (although not much) to an
application and, therefore, slow down the program’s execution speed
slightly. So, when you design a class, you really should use the virtual
keyword only for functions that you expect to be overridden.

If you make a function virtual and discover later that there is little chance
of it being overridden, you can remove the virtual keyword from the decla-
ration of the function and save a little overhead. But nothing terrible will
happen if you fail to notice that the function isn’t overridden and forget to
remove its virtual designation.

105 -

Learn Visual C++ Now

106

Function Overloading and Operator Overloading

If you’ve ever worked as a mechanic or an electrical engineer, “overload”
is probably not a happy-sounding word. In C++, however, overloading is
the name of a very useful mechanism. C++ uses two kinds of overloading:
function overloading and operator overloading. Both of these are major—
and beneficial—features of the C++ language.

Function Overloading
When you develop applications in C++, using function overloading can

add great flexibility to your applications. To implement function over-
loading, you write two or more functions that share the same name but
have different argument lists. When a function is overloaded, the compiler
decides which version to call by using argument matching—that is, by
comparing the numbers and types of the arguments that are passed to the
function with the numbers and types of the arguments in the argument list
of the functions.

When you implement function overloading, you can execute whichever
version of the function you want by calling the function using the appro-
priate set of arguments. If the class you are using has two member func-
tions with the same name but with different argument lists, you can rest
assured that the function you want will be called.

By using function overloading, you can give the same name to member
functions that perform different, but similar, operations. You can even
give the same name to entire groups of functions. For example, suppose
you want to write two different functions to display a window—one func-
tion requiring a size provided as an argument, and another requiring no
argument but using a default size. You could write a pair of overloaded
member functions in this fashion:

void DisplayWindow();

void DisplayWindow(CRect winRect);)
After you create these overloaded member functions, you could call either
one. This statement would call the first DisplayWindow function:

DisplayWindow();

4: Objects and Member Functions

The following statements would call the second DisplayWindow function:

CRECT winRect(10, 10, 50, 200);

DisplayWindow(winRect);

Function overloading is often used in C++ because it inriposes almost no
run-time penalty and requires practically no overhead.

Listing 4-6 demonstrates how you can use function overloading in a C++
program.

~ MEMOVERCPP
' ;#1nc1ude <1ostream h>

‘fvmd PmntMsg(char‘»= name. char* weapon. mt ab1hty)
cout << name €t S
cout <« ‘weapon << "\n"; Hln ot
cout << ab1hty << "\n\n"

;~i'fvo1d PmntMsg(mt n)
{,
cout << n << "\n\n"

Listing 4-6. Using member function overloading.

Listing 4-6 contains three overloaded versions of a member function named -
PrintMsg. The first version takes three arguments of varying types, the sec-
ond takes one integer argument, and the third takes one string argument.

107

Learn Visual C++ Now

108

Each of these member functions performs a similar task; each displays a
message on the screen. But in C++, because of function overloading, each
PrintMsg member function is recognized as a different function. When you
run the MEMOVER program, it displays the output shown in Figure 4-6.

How are you today?

Figure 4-6. Output of the MEMOVER program.

Constructor overloading

In C++, you can overload constructors as well as ordinary member func-
tions. In fact, constructor overloading is used extensively in C++. It’s very
common to see a class that has two constructors, one with arguments and
one without. Many constructors have even more overloaded versions.
Here’s an example of what a pair of overloaded constructors might look
like in the definition of a class:

HighClass {

HighClass();
HighClass(int paramA, int paramB);

Operator Overloading
Operators, as well as member functions, can be overloaded in C++. And

operator overloading, like function overloading, is a common feature of
C++ programs.

With operator overloading, you can customize operators such as the addi-
tion operator (+), the subtraction operator (-), the assignment operator (=),

4: Objects and Member Functions

and the increment and decrement operators (++ and —-) to make the opera- .

tors behave differently when they are used with objects of different classes.

As an illustration of how operator overloading works, consider the addition
operator. Ordinarily, you use the addition operator simply to add numbers
together. At times, however, you might want to use the addition operator
to concatenate a pair of strings, such as the following:

StringClass myString, stringl, string2;

myString = stringl + string2;

In fact, the addition operator is often overloaded to work as a concatenation
operator when used with string objects in C++.

Writing Operator-Overloading Functions

To overload an operator in C++, you must declare and define an operator-
overloading function (usually a member function). A function that over-
loads an operator always contains the keyword operator. For example, here
is a declaration of a member function that overloads the addition operator:

Money operator+(int);

In the declaration, you follow the operator keyword with the operator you
want to overload. Then, inside parentheses, you place the name of the data
type that you want your overloaded operator to affect.

After you have declared an operator-overloading member function inside
a class definition, you can implement your overloaded operator. Then you
can use your overloaded operator with the data type you have specified.

é{?ﬂ OTE When you overload an.operator, normal scope rules apply; if you
overload the operator inside a class definition—which is usually the case—
the operator is overloaded only within the scope of its class.

An example of operator overloading

Listing 4-7 on the following page shows how you can overload the addi-
tion operator to add two floating-point numbers (which represent mone-
tary values) and store the result in two member variables of a class. One
member variable is used to store the dollar value of the result, and the
other is used to store the cent value of the result.

109

Learn Visual C++ Now

110

// conv’e‘r'sior'i 'fr"om doub]e
// 0 erator over]oadmg L

Listing 4-7. Operator overloading.

4. Objects and Member Functions

Money totalCash = depositl + deposit2;

d
c

totalCash.dollars;
totalCash.cents;

o

cout << "You now have " << d << " dollars.\n";
cout << "You also have " << ¢ << " cents.\n";

return 0;

When you execute the OPEROVER program, it tells you what value is
stored in each member variable of a Money object named totalCash. The
output of the program is shown in Figure 4-7.

now have 8 dollars.
ou also have 13 cents.

Figure 4-7. Output of the OPEROVER program.

Static Member Variables

Everyone who uses global variables knows how dangerous they can be.
The problem is that global variables are simply too vulnerable. Any func-
tion can change the value of a global variable; all too often, a global vari-
able is inadvertently modified from somewhere way out in left field by a
function that you might not even remember writing. Unexpected changes
in global variables can wreak havoc on programs and can be enormously
difficult to track down.

m

Learn Visual C++ Now

112

You can use global variables in C++, but you are strongly encouraged not
to. The recommended alternative is to use a different kind of variable that
C++ provides: a static member variable. Static member variables have
built-in safety features that make them less likely than ordinary global
variables to be changed inadvertently.

When a class has a static member variable, only one copy of the variable
exists, and that single copy is shared by all objects instantiated from the
class. Thus, a static member variable can provide a class with all the ben-
efits of a global variable, but without many of the risks.

One typical use of a static member variable in a C++ program is to keep
track of the number of objects in a list. Each time a program creates an
object in the list, you can increment the value of the static member vari-
able, and each time an object is destroyed, you can decrement the variable.
In this way, the static member variable can always provide the number of
currently active objects in the list.

Creating Static Miember Variables
When you define a class, you can create a static member variable for the

class by preceding the variable’s declaration with the static keyword. For
example, this statement declares a static member variable named count:

static int count;
If you do not declare a member variable as static, it is nonstatic by default.

When you declare a static member variable, a fixed memory location is al-
located for the variable at link time; that location remains the same for the
life of the program. In this sense, a static member variable works the same
as a global variable.

However, access to a static member variable is more limited than access
to a global variable. After you have initialized a static member variable,
functions outside its class can access it only by using the scope resolution
operator (::), preceded by the name of the class in which the variable is
declared. To make this technique work, of course, you must make the static
variable a public member of the class. And that act removes much of the
protection against misuse that is enjoyed by a static member variable. If

4: Objects and Member Functions

you want to make a static member variable accessible outside aclass, you
should take other precautions, such as keeping the static member variable
private and allowing it to be changed from outside the class only through
a public static member function. (Static member functions are described
later in this chapter.)

Declaring and Defining Static Member Variables
Listing 4-8 shows how a static member variable can be used in a C++

program.

STATIC.CPP “
: #1"rk1c1'u'dke' <1dst'r‘eam.h>

class Samp1eC1ass { S
~public: , ; RN e
 static int stat1cVar f* ; // decTare stat1c member var1ab1e

~--SampleClass() {1} ~F Sl e P
vo1d SetStat1cVar(1nt a) { stat1cVar ;‘) G e

int Sya"rynﬁp'leiC]assk::’s‘t’atic\l_a‘r";“% f;fk‘/f/kdéfiﬁefsitatic:"membéflva"k‘iébTe’[,

Listing 4-8. Using a static member variable.

In Listing 4-8, a static member variable named staticVar is defined inside

-the definition of a class named SampleClass. Then, between the Sample-
Class definition and the program’s main function, staticVar is defined
as shown on the following page.

113

Learn Visual C++ Now

114

int SampleClass::staticVar;

Because static member variables can be shared by multiple functions,
they must be defined and declared in this peculiar way. You must declare
a static member variable inside a class definition, but you must define it
outside the definition of its class.

When a static member variable has been declared and defined, it is acces-
sible from any member function of its class. If it is a public or a protected
member variable, you can also access it from other classes—or from out-
side any class—in accordance with normal rules of accessibility.

Accessing Static Member Variables
In Listing 4-8, SampleClass has a member function named SetStathar

that can be called to set the value of the static member variable staticVar,
as shown here:

void SetStaticVar(int a) { staticVar = a; }

In the main function, the following statement sets the value of staticVar by
calling the member function SetStaticVar:

myObject.SetStaticVar(100);

Because access to staticVar is public, the main function can also set the
value of staticVar by accessing the variable directly, as shown here:

SampleClass::staticVar = 200;

Notice that in this statement, the scope resolution operator—preceded by
the name of SampleClass—is used to access staticVar.

Another statement in the main function of Listing 4-8 accesses staticVar
with the dot operator (.), preceded by the name of the object myObject, as
shown below. This construct is possible because a public static member
variable can be called from anywhere in its module.

myObject.staticVar = 300;

It’s important to remember that because staticVar is a static member vari-
able, only one copy of the variable exists. That means that each assignment
statement in the main function assigns a value to the same memory loca-
tion, overwriting the previous value of staticVar.

4: Objects and Member Functions

Private Static Member Variables
A static member variable, like any other member variable, can be public,

protected, or private. If a static member variable is private, it cannot be
accessed from a function outside its class unless access to it is specifically
granted—for example, through friendship status (described in the section
“Friendly Classes and Friendly Functions,” on page 117) or through a pub-
lic member function.

Listing 4-9 shows how a program can use a private static member variable
to keep track of objects that belong to a class.

~ PRIVATECPP
#1nc1ude <1ostream h>

~c1ass L1tt1eL1st {
'ppr‘wate : , A e ‘
B stat1c int ct e //" dec]ar‘efs'ta,ti’c member variable
L1tt1eL1st() { ct++ }
~LittleList() { ct---"~}~ L
kstat1c 1nt GetCount() £ retur‘n ct; };,

;// stat1c memberﬁf
s funct1on

Listing 4-9. Using a private static member variable.

Listing 4-9 includes a static member variable named ct. Although access
to ct is private, the variable is initialized by using the same technique that
would be used to define any other static member variable—from outside
the variable’s class in a statement that accesses the variable using the scope
resolution operator, as shown on the following page.

115

Learn Visual C++ Now

116

int Littlelist::ct = 0;

The static member variable ct is used to keep a running count of three
objects—named obj1, obj2, and obj3—in a class named LittleList. Each
time an object of the LittleList class is instantiated, the object’s construc-
tor increments the ct variable, as shown here:

LittlelList() { ct++; }

Similarly, each time an object’s destructor is called, ct is decremented, as
shown here:

~LittlelList() (ct--; 1}

Because ct is a private variable, the only way to access ct from outside its
class is through a member function. In Listing 4-9, ct is accessed through
a public member function named GetCount, as follows:

cout << "Number of objects: " << LittlelList::GetCount() << '\n";

Static Member Functions

Now that you know about static member variables, you will probably not
be surprised to find out that C++ programs also have static member func-
tions. As you learned in Chapter 3, “C++ Basics,” an ordinary, nonstatic
member function can access any member of the class in which the function
is declared. A static member function, by contrast, can access only the
static member variables defined for a class.

You declare a static member function by preceding its definition with the
static keyword. If you do not declare a member function as static, it is non-
static by default. For example, inside the definition of a class named Object-
Count, you can declare a static member function named Count this way:
class ObjectCount;

{

private:
int x;

4: Objects and Member Functions

protected:

static int ct;
public:

static int Count(); // declare static member function
}
In this class definition, the static member function Count can access the
static member variable ct, but it cannot access the nonstatic member vari-
able x. That’s because a static member function can access only static
member variables and other static member functions, not nonstatic
member variables or nonstatic member functions.

Another feature of a static member function is that it has no this pointer.
As discussed in the section “The this Pointer,” on page 81 in Chapter 3,
the this pointer is a hidden pointer to the current object and is secretly
passed to a member function. The member function can then use that
unseen pointer to access any other member of its class. Because a static
member function is not associated with any particular object of a class,
a static member function has no this pointer.

Friendly Classes and Friendly Functions

In at least one respect, C++ is a friendly language. In a C++ program, you
can declare classes and functions to be friends of each other—and in C++,
as in life, there are special bonds between friends.

To declare friend classes and friend functions, you use the friend key-
word, usually inside a class definition. You can use friend in three ways:

B When a class declares a friend class, the class that is granted friend-
ship status has access to all members of the class that contains the
friend declaration.

B A class can also grant friendship status to a member function of an-
other class. By preceding the declaration of the member function
with the keyword friend, you can declare that the specified non-
member function is a friend of the class being defined.

® Finally, a class can grant frie‘ndship status to a function that is not
a member of another class—that is, to a stand-alone function that
appears anywhere in a program.

17

Learn Visual C++ Now

118

Here’s an example of using the friend keyword in a class declaration to
indicate that a member function of another class is a friend:
class HighClass {
private:
void MyFriend();
protected: .
friend int OtherClass::FriendMembFunc();
};
Here the member function OtherClass::FriendMembFunc is declared as a
friend of HighClass.

One-Way Friendships

One important fact about friend declarations is that they are effective in
only one direction. In the preceding definition of HighClass, OtherClass-
::FriendMembFunc is declared to be a friend of HighClass, so that function
has access to all the members of HighClass. But HighClass does not have
access to members of OtherClass. If such access were granted, it would
have to be granted inside the class definition of OtherClass.

Friend functions and friend classes can be useful when you want to relax
the access rules that ordinarily apply to member variables. For example,
suppose you write a function that has to execute a public member func-
tion of a class repeatedly because the function needs access to a private
member variable of a class. In such a situation—which arises often in C++
programming—each read or write of the desired member variable requires
the overhead that normally results from a call to a function. To eliminate
this overhead, you can specify that the function requiring access is a friend
of the class that owns the desired member variable.

You can also use friend classes to prevent class descriptions from growing
to unwieldy lengths. If there is a particular set of variables and functions
that a class refers to only rarely, you can place them in a class by them-
selves and then make that class a friend of the class that refers to them from

" time to time. That way, the variables and functions that are accessed infre-

quently can be kept separate from the class that sometimes accesses them.

4: Objects and Member Functions

% OTE If you find that in your applications you‘re using friends all over the

place to circumvent the mechanisms for data protection and code protec-
tion built into C++, you should take a close look at your programming hab-
its. The truth is that friends, while useful at times, should not appear very
often in your C++ programs.

Listing 4-10 shows how friend classes and friend functions can be used in
a C++ program. In this program, a class named FriendClass grants friend-
ship access to a class named FriendlyClass2 and to the main function.
FriendlyClass2 then exercises its friendship rights by initializing a mem-
ber variable named privateVar2 to the value stored in privateVar, which
is a private member variable of FriendClass.

FRIENDS.CPP
#include <:1'ostream.h>

class FriendClass {
private:
friend class Fr1end1yC1assZ
friend main(); :
int pr1vateVar,, ‘ ' s
Fr1endC1ass() pr1vateVar(500) {} // pr1vate constructor
f"pub11c ,
it GetPr1vateVar() { return pr1vateVar,,]’"17f~t””

}ﬁ,class Frlend1yc1assz {,
"pruvate = ;
. int pr‘1vateVar2
fafpub11c
- Fr1endlyC1assZ(Fr1endC1ass*

Listing 4-10. Using friends. (continued)

119

Learn Visual C++ Now

120

Listing 4-10. continued

Because FriendlyClass2 is declared as a friend, it has direct access to the
private member variable of FriendClass named privateVar. The private-
Var variable is declared in the definition of FriendClass.

Listing 4-10 contains an interesting precaution that helps prevent misuse
of the friend mechanisms. The safeguard is that the constructor of Friend-
Class is designated as private. That means that only friends of FriendClass
can instantiate FriendClass objects. Another special feature of the program
is that its main function is declared as a friend of FriendClass. This per-
mits the main function to instantiate FriendClass objects, as shown in the
following: '

int x, y;

FriendClass* myFriendlyClass = new FriendClass;
FriendlyClass2 myFriendlyClass2(myFriendlyClass);

x = myFriendlyClass->privateVar;
cout << x << "\n";

y = myFriendlyClass2.GetPrivateVar2();

cout << y << "\n";

When you execute the program in Listing 4-10, the main function instanti-
ates two objects: one named myFriendlyClass and one named myFriendly-
Class2.myFriendlyClass is constructed on the heap, and myFriendlyClass2
is constructed on the stack. '

The FriendClass constructor uses an initializer list (see the section “Initial-
izer Lists” on page 78 in Chapter 3) to set the value of a private variable
named privateVar to 500. When an object of FriendlyClass2 is instanti-
ated, it obtains the value of FriendClass’s privateVar and stores that value
in a private variable of its own, named privateVar2. This is permitted be-
cause FriendlyClass2 is a friend of FriendClass.

4: Objects and Member Functions

When the main function has instantiated a FriendClass object and a
FriendlyClass2 object, main obtains the values of the variables Friend-
Class::privateVar and FriendlyClass2::privateVar2 and displays them.
The main function is able to obtain the value of FriendClass::privateVar
directly because main is a friend of FriendClass. However, main is not a
friend of FriendlyClass2. Therefore, main has to obtain the value of
FriendlyClass2::privateVar2 in a more conventional way: by calling a
member function that retrieves the value of the variable.

The new and delete Operators

In many ways, C++ is a higher-level language than C. One area in which
this truth is evident is the area of memory management. In C, you're gen-
erally on your own when it comes to allocating and deallocating memory.
Because C does not allocate memory space for data when you declare a
pointer, you must allocate the memory yourself by calling the malloc
function or by performing some other action to allocate memory manually.

C++ is a little kinder than that. In C++, instead of calling a function to
allocate or deallocate memory, you invoke an operator. C++ provides two
memory management operators—new and delete—that allocate and deallo-
cate memory from the heap (also called the free store).

The new and delete operators are more reliable than the malloc and free
functions because the Visual C++ compiler performs type checking each
time a program allocates memory with new. Another advantage stems from
the fact that C++ implements new and delete as operators, not as functions.
That means that new and delete are built into the C++ language itself, so
programs can use new and delete without including any header files.

Still another important feature of the new and delete operators is that they
don’t require typecasting—and that makes new and delete easier to use
than malloc and free.

The new Operator

When you call the malloc function in a C program, you pass a size to
malloc, and the function returns a void pointer, which you must cast to
whatever data type you want. Using the new operator is similar but simpler.
The new operator also returns a pointer, but it isn’t a void pointer, so you

121

Learn Visual C++ Now

122

don’t have to cast the pointer to the data type for which you are obtaining
memory. Instead, new returns the kind of pointer you have requested. To
illustrate, you can obtain memory for an object named memBlock by writ-
ing the following pair of statements:

MemStr‘buct* memblock;
memblock = new Memory;

If you want to be more concise, you can write this code:
MemStruct* memBlock = new Memory;

The new operator can also allocate memory for data structures that are not
objects of classes. For example, this code fragment allocates memory for
an array of integers:

int* intArray;
intArray = new int[1000];

This more concise statement has the same effect:
int* intArray = new int[1000];

Both of the preceding examples declare a pointer named intArray and ini-
tialize it to the address returned by new. If a pointer of the requested size
is available, new returns a pointer to the beginning of a block of memory
of the specified size. If there is not enough dynamic storage available to
satisfy a request, new returns 0.

Each time you compile an expression that invokes the new operator, the
compiler performs a type check to verify that the type of the specified
pbinter is the correct type for the memory being allocated. If the types
don’t match, the compiler issues an error message.

The delete Operator

When you allocate memory with the new operator, you can delete it with
the delete operator. The delete operator is easy to use, but, like the C free
function, it can be dangerous if you don’t use it wisely. But by exercising
some commonsense precautions, you can prevent mishaps.

4: Objects and Member Functions

The delete operator is safe if the pointer to the object being deleted is
NULL or if the pointer correctly addresses allocated memory. Problems
arise, however, if a nonzero pointer does not actually have memory allo-
cated for an object at its address and a program attempts to delete at that
pointer’s address.

What's Next?

You have now completed a two-chapter crash course in classes, objects,
and the fundamentals of object-oriented programming. This chapter cov-
ered many important topics, including class hierarchies, virtual member
functions, inheritance and polymorphism, and function and operator
overloading. Other topics covered included static member variables, the
friend function modifier, and the new and delete operators. Now we’re
ready to shift our focus back to Visual C++ and start creating some really
challenging Visual C++ programs. You’ll start doing that next, in Chapter
5, “Visual C++ Tools.”

123

Chapter

Visual C++ Tools

Microsoft Visual C++ version 1.0 is two products in one: a C++-based
software-development system and a graphics-based, user-interactive deliv-
ery system for the classes and member functions provided in the Microsoft
Foundation Class (MFC) Library version 2.0.

The first four chapters of this book introduced you to the Visual C++ de-
velopment environment, the basics of programming in Windows, and the
fundamentals of the C++ language. In this chapter, you’ll learn more about
the Visual C++ programming environment. You’ll also take an in-depth
look at the Visual C++ compiler, the Visual C++ linker, and all the other
program-development tools built into Visual Workbench: App Studio,
ClassWizard, the Visual C++ debugger, and the Visual C++ Source Browser.
By the end of this chapter, you’ll be familiar with all the tools you need to
create full-featured Visual C++ applications, and you’ll get a chance to
write a customized Windows-based Visual C++ application yourself.

The main topics of this chapter include:

Visual C++ projects and the files and classes that AppWizard creates
Using App Studio to manage resources, including bitmaps and menus

Building a Visual C++ application

Creating message handlers using ClassWizard

125

Learn Visual C++ Now

126

B Using the Visual C++ debugger to help you develop error-free
applications :

To demonstrate the use of Visual Workbench, this chapter presents a
sample application named SCRAMBLE. You can build the SCRAMBLE ap-
plication from scratch, or you can copy the program from the CHAPO05 di-
rectory on the companion CD-ROM and simply read along. SCRAMBLE is
an MDI (multiple-document interface) application that displays a bitmap
resource. SCRAMBLE starts out simple: it displays a single bitmap image
in a child window. You can display as many child windows as you want,
but they each display the same bitmap image. Later code is added so that
each child window can be controlled separately, turning the display of the
bitmap on or off.

x\\‘x!' IP If you want to build the SCRAMBLE program from scratch instead

“3) of opening the program’s files and reading along, be sure to copy the
ARCHES.BMP file from the SCRAMBLE project on the companion CD-ROM
to your own SCRAMBLE application’s directory.

The SCRAMBLE program isn’t very complicated, but it’s useful for learning
about the Visual C++ tools, and it serves as a good framework for creating a
graphics-based application. You’ll add more features to the SCRAMBLE
program in Chapter 6, “The MFC Library.”

If you’ve ever written a graphics-based program for MS-DOS, you might
think that creating the SCRAMBLE program will be a heavy burden. Fortu-
nately for us, the Visual C++ tools, in combination with the MFC library,
help lighten the load. Let’s get started by reacquainting ourselves with
AppWizard, the Visual C++ project-generating tool we encountered in
Chapter 1, “Introducing Visual C++.”

Visual C++ Projects

The first step in writing a Visual C++ application is to create a project. A
project is a collection of files that are needed to build an application using
the Visual C++ development environment. When you create a Visual C++
application using AppWizard, AppWizard automatically generates a
project for your application. AppWizard then places all the files that it cre-
ates for your program in the project it has created.

5: Visual C++ Tools

Every Visual C++ version 1.0 project is built around a special kind of file
known as a makefile. AppWizard automatically creates a makefile and
places it in your project. A makefile is a text file that always has the file-
name extension .MAK. It contains the names of all the files that make up
a Visual C++ project, and it describes the relationship that those files have
with each other in a language that the Visual C++ compiler and linker can
understand. A makefile also contains commands and switches for compil-
ing and linking those files. When you build a Visual C++ application by
choosing the Build or the Rebuild All item from the Project menu, Visual
C++ builds your application by executing the commands in the makefile.

A Visual C++ project can contain both source code files and precompiled
object code files known as libraries. When the Visual C++ compiler has
converted an application’s source code into object code, Visual C++ links
the application’s compiled object code with any precompiled object code
libraries that are included in the project.

Table 1-2 on page 13 in Chapter 1 lists the kinds of files that are generated
when you create and build a Visual C++ application. When you build this
chapter’s sample program, you will create a project named SCRAMBLE.
The files that make up the SCRAMBLE project are listed in the section
“Files in the SCRAMBLE Project,” on page 132.

Creating the Basic SCRAMBLE Project

The SCRAMBLE application that you'’ll create in this chapter is a custom-
ized AppWizard program. (SCRAMBLE is similar to SCRIBBLE, a sample
tutorial program that’s also provided on the companion CD-ROM. The main
difference between the two programs is that SCRAMBLE lets you display a
bitmap and SCRIBBLE lets you draw freehand lines.)

When AppWizard creates an application framework, the framework is de-
signed using a document-and-view architecture. To support this architec-
ture, AppWizard always creates a document object that is derived from the
MFC library’s CDocument class and a view object that is derived from the
MFC library’s CView class. The CDocument class provides every document
object with special features that support the automatic loading and saving
of information stored on disk. The CView class provides every view object
with special features that support the creation and handling of images that

127

Learn Visual C++ Now

128

can be displayed in windows or printed on a printer. When you customize
an application framework created by AppWizard, most of the changes you
make are in the program’s document and view files. (We’ll learn more
about document and view classes later in this chapter and in Chapter 6,
“The MFC Library.”)

To create a project for the SCRAMBLE application, follow these steps:
1. Open Visual Workbench.

2. Choose the AppWizard item from the Project menu to open the MFC
AppWizard dialog box, shown here:

dos
msoffice
windows

c: raistlin

3. In the Directory list box, select the directory in which you want to
place your new project.

4. Type a name for your project in the Project Name edit box. (To cre-
ate a project for this exercise, type the name scramble.) When you
type the name of a project in the Project Name edit box, AppWizard
displays the same name in the New Subdirectory edit box and then
places the project files in a new directory with that name.

5: Visual C++ Tools

5. AppWizard can equip a new project with a number of features. To
see these features, click the Options button. Visual Workbench dis-
plays the Options dialog box, shown here:

This dialog box is very straightforward: select an option to include
that feature; deselect an option to skip that feature. One option does
not work as an on/off toggle: AppWizard generates an SDI (single-
document interface) application if you deselect the Multiple Docu-
ment Interface check box. The options that are selected by
default—Multiple Document Interface, Initial Toolbar, Printing
And Print Preview, and Generate Source Comments—suit our needs
quite well for now, so click Cancel to close the Options dialog box.

OTE MDIi was the preferred architecture for Microsoft Windows 3.1-based
&?@ applications, but SDI is gaining new stature with Windows 95. There are two
reasons for this: Microsoft has determined that SDI applications are easier
for users to understand, and the Windows 95 task bar makes it easy to
switch from one window to another. (Switching between windows was the
main feature that made MDI programs useful in Windows 3.1.) So legions of
Windows programmers are now brushing up on writing SDI programs.

6. Click the Classes button to preview the file and class names that
AppWizard is about to assign to your project. AppWizard displays
the Classes dialog box, shown on the following page.

129

Learn Visual C++ Now

CMainFrame
CScrambleDoc
CScrambleView

sz Na
ScrambleApp
a

AppWizard tries to assign suitable names to the files that make up
the project and to the MFC library classes that are created for the
project, but sometimes these names are not very intuitive, and you
might want to change them. To do so, select the appropriate class
name in the New Application Classes list box, and then edit the
text in the appropriate edit box. The default names for the
SCRAMBLE files and classes are fine, so click Cancel to close the
Classes dialog box.

7. Click OK in the MFC AppWizard dialog box. AppWizard displays
the New Application Information dialog box, shown here:

Application: CScrambleApp, in SCRAMBLE.H and SCRAMN
Frame: CMainFrame, in MAINFRM_H and MAINFRM.CPP |
Document: CScrambleDoc, in SCRAMDOC.H and SCRAM

View: CScrambleYiew, in SCRAMYW_H and SCRAMVW.

+ Supports the Multiple Document Interface (MDI)

+ MSVC Compatible project file (SCRAMBLE.MAK)
+ Initial toolbar and status bar in main frame
+ Printing and Print Preview support in view

130

5: Visual C++ Tools

The New Application Information dialog box contains a concise
summary of the class names, filenames, and options to be generated.

8. Click the Create button, and AppWizard creates the files for the
SCRAMBLE project.

Files and Classes in AppWizard Projects

AppWizard creates four MFC library classes in each project it generates.
Chapter 6, “The MFC Library,” describes the four classes, but for now,
here is a brief overview of each of these classes so that you’ll have an idea
of how each one is used in a Visual C++ project:

B Every framework-based Visual C++ program has an application
class that is derived from the MFC library’s CWinApp class. When
AppWizard generates a Visual C++ application, the application is
implemented as an object derived from the CWinApp class. This ap-
plication object provides member functions for initializing each in-
stance of an application that the user starts.

B Every Visual C++ program that AppWizard creates has a main win-
dow class named CMainFrame. When AppWizard creates an SDI
application, CMainFrame is derived from the MFC library’s
CFrameWnd class; when AppWizard creates an MDI application,
CMainFrame is derived from the MFC library’s CMDIFrameWnd
class.

B Every project created by AppWizard has a document class that is de-
rived from the MFC library’s CDocument class. A document class
contains member functions for storing, saving, and retrieving data.
All data in an MFC application should be managed by the appli-
cation’s document class.

® Every project that AppWizard creates has a view class that is derived
from the MFC library’s CView class. Every CView-derived object is
“attached” to a CDocument-derived object and contains functions to
help it display data from that document.

131

Learn Visual C++ Now

Files in the SCRAMBLE Project
If you open the directory that contains the SCRAMBLE project—from the

Windows 95 desktop or from the Windows 3.1 File Manager—you’ll see
that AppWizard has created the following files for the SCRAMBLE project:

B SCRAMBLE.H—The header file for the SCRAMBLE application’s
CScrambleApp class.

B SCRAMBLE.CPP—The implementation file for the SCRAMBLE
application’s CScrambleApp class. '

B MAINFRM.H—The header file for the SCRAMBLE application’s
CMainFrame class. (AppWizard always names this file MAINFRM.H,
no matter what you name your project.)

B MAINFRM.CPP—The implementation file for the SCRAMBLE
 application’s CMainFrame class. (AppWizard always names this
file MAINFRM.CPP, no matter what you name your project.)

m SCRAMVW.H—The header file for the SCRAMBLE application’s
CScrambleView class.

B SCRAMVW.CPP—The implementation file for the SCRAMBLE
application’s CScrambleView class. Of particular interest is the
OnDraw member function. OnDraw draws the client area of a CView-
derived window whenever the window needs to be updated. You'll
learn more about view classes in Chapter 6, “The MFC Library.” The
SCRAMVW.CPP file is presented in Listing 5-1 on page 159.

®m SCRAMDOC.H—The header file for the SCRAMBLE application’s
CScrambleDoc class. The SCRAMDOC.H file is shown in Listing 5-1.

B SCRAMDOC.CPP—The implementation file for the SCRAMBLE
application’s CScrambleDoc class. You’ll learn more about document
classes in Chapter 6, “The MFC Library.” The SCRAMDOC.CPP file
is presented in Listing 5-1.

132

5: Visual C++ Tools

SCRAMBLE.DEF—The SCRAMBLE application’s module-definition
file. In Visual C++, a module-definition file contains important in-
formation about an application. This information includes the name
and description of the application and the initial size of the appli-
cation’s local heap. The Visual C++ version 1.0 compiler requires a
module-definition file for every application it builds, so AppWizard
creates one automatically.

SCRAMBLE.MAK—The SCRAMBLE application’s makefile. As
mentioned previously, a makefile is a text script that the Visual C++
compiler uses to compile and link a project. It specifies the relation-
ships between all the project’s source files and library files, and it
provides other important information such as compiler and linker
switches.

- SCRAMBLE.RC—A text file that defines all resources (such as
menus, dialog boxes, and bitmaps) used by the SCRAMBLE applica-
tion. When AppWizard generates a project, it automatically creates a
resource script (RC) file that defines an initial set of resources, in-
cluding an About dialog box, a bitmap used by the application’s
toolbar, an application icon, an accelerator key resource, a string-
table resource, and either one or two menus (one for an SDI applica-
tion; two for an MDI application).

SCRAMBLE.RES—The compiled version of a resource script file.

Resource files—When AppWizard generates a project, it creates a
directory named RES and stores several resource files in it. These
files include icon (.ICO] files for your application and a bitmap
(.BMP) file for your application’s toolbar. You can edit these re-
sources using App Studio.

RESOURCE.H—A text file that defines the ID (identifier) numbers
assigned to your application’s resources. App Studio assigns these
ID numbers to new resources automatically.

133

Learn Visual C++ Now

134

B STDAFX.H—A header file in which you can place #include direc-
tives for other header files used by your application. All the files in
your application include the STDAFX.H file, so including a header:
file in the STDAFX.H file makes the header file accessible to all the
files in your project. When you create an AppWizard project, its
STDAFX.H file initially includes the AFXWIN.H file and the
AFXEXT.H file.

m STDAFX.CPP—The implementation file that accompanies the
STDAFX.H header file. When you compile your Visual C++ project,
the STDAFX.CPP and STDAFX_H files are used to build a precom-
piled header (.PCH) file named STDAFX.PCH. A precompiled
header file contains compiled code for an unchanging part of your
project, such as the Windows and MFC header files. Precompiled
header files speed up the build process considerably.

Adding a Bitmap:
Managing Resources with App Studio

When you use AppWizard to develop a Visual C++ application, AppWizard
creates a resource script file (.RC) and places it in your application’s
project. A resource script file is a text file that contains information about
resources such as menus, bitmaps, icons, toolbars, and dialog boxes. App-
Wizard also places information about default resources, such as an About
box and a default menu bar, in the resource script file.

-When you have built-a Visual C++ project with AppWizard, you can edit

the resources that AppWizard has created—and add more resources of
your own—by using a Visual C++ tool named App Studio. In Visual C++
version 1.0, App Studio is a stand-alone application that you open by
choosing the App Studio item from the Tools menu. When you execute
App Studio, it provides several graphically based resource editors that
you can use to create various kinds of resources. For example, App Studio
provides a bitmap editor for creating and editing bitmaps, a dialog editor
for creating and editing dialog boxes, and a menu editor for creating and
editing menus.

5: Visual C++ Tools

When you start App Studio from Visual Workbench, App Studio opens
the resource script file that AppWizard has created for your project. You
can then navigate to the various editors that App Studio provides and use
them to edit your project’s resources.

To demonstrate how App Studio can minimize the work involved in add-
ing resources to your project, we’ll use it to add a bitmap image to the
SCRAMBLE project. Open the SCRAMBLE project (if it is not already open)
and choose App Studio from the Tools menu. You’'ll see the App Studio
window, shown in Figure 5-1.

Figure 5-1. The App Studio window.

The Type list box displays a list of resource types; the Resources list box
displays a list of the resources of the selected type. We’ll add a single
bitmap image—the ARCHES.BMP file—to the project. Follow these steps
to add the bitmap:

1. Select Bitmap in the Type list box. App Studio displays IDR_MAIN-
FRAME in the Resources list box. (This is the bitmap image used by
the project’s toolbar.)

2. Choose Import from the Resource menu. The Import Resource dialog
box appears, as shown on the following page.

135

Learn Visual C++ Now

arches.bmp o\
£ scramble
res

ED c: raistlin

3. Select the ARCHES.BMP file, and click OK. (If the ARCHES.BMP
file does not appear, you must copy the file from the SCRAMBLE
project on the companion CD-ROM to your project’s directory.)
The Import Resource dialog box closes, and a new window, named
IDB_BITMAP1 (Bitmap), appears in App Studio, as shown here:

136

5: Visual C++ Tools

You'll also see the graphics palette, the untitled window shown here:

The graphics palette contains tools for manipulating images and a
color palette you can use to select foreground and background col-
ors. (You’ll find complete information about the graphics palette in
the online help.) ‘

Choose Properties from the Resource menu. The Properties window,
another untitled window, appears as shown here:

137

Learn Visual C++ Now

138

The Properties window is used to control the appearance and behav-
ior of the resources you create. For now, simply note the default ID
that App Studio assigned to this resource: IDB_BITMAP1. (In Visual
C++, all resources—bitmaps, menus, and so on—have ID numbers
that are assigned automatically by App Studio and are defined in
the header file RESOURCE.H.)

5. Choose Exit from the App Studio File menu, and save yoﬁr changes.

Writing Code to Display the Bitmap

In Chapter 2, “Introduction to Windows Programming,” you learned how
to draw in windows using DCs (device contexts) and GDI (graphical device
interface) objects such as brushes and pens. In Chapter 4, “Objects and
Member Functions,” you were introduced to the Visual C++ equivalents of
DCs and GDI objects: the CDC class, which encapsulates device contexts,
and the CGdiObject family of classes, which include CGdiObject-derived
classes such as CBrush and CPen.

In Visual C++, a bitmap is an object of the CBitmap class. The CBitmap
class, like CBrush, CPen, and other graphics classes, is derived from the
MFC library’s CGdiObject class. Bitmaps are used in much the same way
that other kinds of CGdiObject-derived objects are used. Using bitmaps
requires a few more steps, however, because they are usually loaded from
files or as a resource, whereas CGdiObject-derived objects such as brush
and pen objects are generally created on the fly.

Working with Bitmaps

To load a bitmap resource and use it in a Visual C++ program, you follow
these general steps:

1. Construct an object of the CBitmap class.

2. Load the bitmap into memory using the CBitmap::LoadBitmap |
member function.

3. Use the CDC::CreateCompatibleDC member function to create a
device-context object that is compatible with the output device be-
ing used. ’

5: Visual C++ Tools

4. Select the CBitmap object you have constructed in memory into the
device-compatible CDC object.

5. Use a CDC member function such as CDC::BitBlt or CDC::StretchBIt
to copy your CBitmap object from memory into the CDC object.

These steps are described in more detail in the sections that follow.

] P It is better to create a bitmap in memory and then to copy it to the
screen than to paint the bitmap directly to the screen. Your computer’s
screen refreshes itself many times each second, and if you try to paint di-
rectly to the screen during a screen refresh, you often see unsightly flashes
and other undesirable side effects. If you copy a bitmap into memory and
then transfer it to the screen using CDC::BitBlt or CDC::StretchBlIt, these
types of problems are minimized.

)
il

Loading the bitmap
In Visual C++, the first step in creating and displaying a bitmap is to con-
struct an object of the CBitmap class. We need a member variable to store
the bitmap, a member function that provides access to the bitmap, and
member functions to load and unload the bitmap. All data in an MFC-
based application is stored in the application’s document class, so open
the SCRAMDOC.H file and add the following lines to the CScrambleDoc
class declaration:
private:

CBitmap* m_pArches;

CBitmap* m_pBackground;
public:

CBitmap* GetBackground() { return m_pBackground; }

void LoadBackground(CBitmap=*);

void UnloadBackground();
GetBackground is an inline function that simply returns a pointer to the
background bitmap. (The m_pBackground member variable and the Load-
Background and UnloadBackground member functions aren’t necessary
for this version of the SCRAMBLE application, but they’ll make life easier
later in this chapter, when we add menu commands to turn the back-
ground bitmap on or off.)

139

Learn Visual C++ Now

140

Now open the SCRAMDOC.CPP file, and edit the CScrambleDoc class con-
structor and destructor as shown here:

CScrambleDoc::CScrambleDoc()

{
m_pArches = new CBitmap;
if (m_pArches)
{
m_pArches->LoadBitmap(IDB_BITMAP1);
} .
m_pBackground = m_pArches;
}
CScrambleDoc::~CScrambleDoc()
{ .
if (m_pArches)
{
delete m_pArches;
m_pArches = NULL;
}
1

The LoadBitmap function instantiates a CBitmap object on the heap, stores
the object’s address in the m_pArches member variable, and loads the
bitmap resource. (LoadBitmap, a member function of the CBitmap class,
has two overloaded versions: one that takes a resource ID as a parameter,
and one that takes a pointer to a resource name as a parameter.)

While you’re working in SCRAMDOC.CPP, add the LoadBackground and
UnloadBackground functions, as shown here:
void CScrambleDoc::LoadBackground(CBitmap* pBackground)

{
m_pBackground = pBackground;

1
void CScrambieDoc::UnloadBackground()
{

m_pBackground = NULL;

}

5: Visual C++ Tools

Drawing the bitmap

Now we need to draw the bitmap. OnDraw, a member function of the
CView class, is called whenever part of a window is invalidated (needs to
be redrawn). AppWizard automatically creates an OnDraw function in ev-
ery view-class implementation file it creates, but it’s up to you to provide
the drawing code. Open the SCRAMVW.CPP file, and edit the CScramble-
View::OnDraw member function so that it looks like this:

void CScrambleView::0nDraw(CDC* pDC)

{
CScrambleDoc* pDoc = GetDocument();
CBitmap=* pBitmap;
BITMAP Bitmapy
CDC dc;
pBitmap = pDoc->GetBackground();
if (pBitmap)
{
dc.CreateCompatibleDC(pDC);
CBitmap* p0l1dBitmap = dc.SelectObject(pBitmap);
pBitmap->GetObject(sizeof(Bitmap), &Bitmap);
pDC->BitB1t(0, @,
Bitmap.bmWidth,
Bitmap.bmHeight,:
&dc,
0, o,
SRCCOPY);
dc.SelectObject(p01dBitmap);
}
}

This code is slightly more involved, but it’s not too hard to understand if
you take it one step at a time. For example, the following statement returns
a pointer to the document class and stores it in the pDoc variable:

CScrambieDoc* pDoc = GetDocument();
GetDocument is a member function of the CDocument class.

After we have the pointer, we can call the CScrambleDoc::GetBackground
function with the following statement:

pBitmap = pDoc->GetBackground();

14

Learn Visual C++ Now

142

We then create a compatible device context and select the bitmap into it
with these statements:
dc.CreateCompatibleDC(pDC);
CBitmap* p01dBitmap = dc.SelectObject(pBitmap);
We're almost ready to draw the device context using the CDC::BitBIt func-
tion, which copies a rectangular area from a bitmap to a corresponding
rectangle in the current device context. If you look up the CDC::BitBIt
function in the online help, you’ll see that it is prototyped as follows:
BOOL BitB1t(int x, int y, int nWidth, int nHeight,

CDC* pSrcDC, int xSrc, int ySrc, DWORD dwRop);
The x and y arguments specify the upper left corner of the rectangle to
which the bitmap will be copied, nWidth and nHeight are the width and
height of the bitmap, pSrcDC is the device context into which the bitmap
has been selected, xSrc and ySrc specify the upper left corner of the rect-
angle in the bitmap, and dwRop is the raster operation to be performed. (A
complete list of raster operations and a description of each can be found in
the online help. We will also cover bitmap operations in more detail in
Chapter 10, “Visual C++ Graphics.”) For this version of SCRAMBLE, we
need the SRCCOPY operation, which simply copies the bitmap verbatim.

We now have all the information we need except the height and width of
the bitmap. Fortunately, the GetObject function can fill in the holes. The
following statement stores information about the bitmap in a structure
named Bitmap:

pBitmap->GetObject(sizeof (Bitmap), &Bitmap):
Armed with this information, we’re ready to call BitBlt, as follows:

pDC->BitB1t(@, 0,
Bitmap.bmWidth,
Bitmap.bmHeight,
&dc,

0, 0,
SRCCOPY);

That’s it. Now we’re ready to build the SCRAMBLE application.

5: Visual C++ Tools

Deleting GDI Objects

Under Win16, it’s very important to delete GDI objects after you've -
finished using them because GDI memory is owned by the system. If
you fail to delete a GDI object, the memory it is using is not freed un-
til the user restarts Windows. Freeing GDI objects is less important
under Win32 because GDI memory is allocated to a process and is
freed when the process terminates. However, it’s still good program-
ming practice to delete GDI objects after you’ve finished using them.

Building a Visual C++ Application
After you have created an application framework—with or without
AppWizard—you can either build it (compile and link it) or simply com-
pile it without linking.
To build a program, choose Build or Rebuild All from the Project menu.
(Alternatively, you can click the Build or the Rebuild All button on the
Visual Workbench toolbar.) The Build command builds a program by
recompiling only files that have changed since the last build. To build a
program by compiling all files, choose the Rebuild All command. To com-
pile a file without linking it, open the file and choose the Complle File
command from the Project menu.

Compiling an Application

The Visual C++ compiler is actually two compilers in one: a C compiler
and a C++ compiler. The Visual C++ compiler determines a file’s language
by checking its filename extension. The job of the Visual C++ compiler is
to translate source code files (text files with the extension .C or .CPP) into
machine-readable files called object files (files with the extension .OBJ).

The compiler is integrated with the rest of the Visual C++ development
system, so you can run it without leaving the Visual C++ editor. In fact,
the compiler runs in the background, so you can do other work on your

143

Learn Visual C++ Now

144

computer—even leave the Visual C++ environment, if you want—while
your application is being compiled. When compilation is complete, Visual
C++ beeps, notifying you that you can return to the editor to verify that
your program has compiled successfully.

While the compiler is working, it displays a running summary of its
progress in an output window. Error and warning messages are displayed
as problems, and potential trouble spots are detected. The compiler stops
and displays an error message if it encounters a fatal error.

Changing the build mode

By default, AppWizard-generated projects are built in Debug mode. (The
other option is Release mode.) A project built in Debug mode is much -
larger than when it’s built in Release mode because it contains information
such as debugging symbols used by the Visual C++ debugger. It’s a good
idea to build a project in Debug mode until you’re sure it is fully de-
bugged. Then you can switch to Release mode and rebuild the project. -

To build a project in Release mode, follow these steps:

1. Choose Project from the Options menu. The Project Options dialog

box appears, as shown here:

2. Click the Release option button in the Build Mode area of the Project
Options dialog box, and then click OK.

3. Click the Rebuild All button on the Visual Workbench toolbar.

5: Visual C++ Tools

The Visual Workbench Source Browser

Another important tool that you'll use when you develop applica-
tions in Visual C++ is the Visual Workbench Source Browser, a
Windows-based source code browser that uses information generated
by the compiler to help you find, examine, and edit related symbols
and study the relationships among various symbols. The browser dis-
plays a hierarchical view that you can use to examine the symbols
you are interested in. For example, you can use the browser to exam-
ine the relationships between base classes and derived classes or be-
tween calling functions and called functions. You can select any
function, variable, type, macro, or class and then see exactly where
it’s defined and used in your project. You can control all the
browser’s hierarchy expansions with the mouse.

By default, AppWizard enables browser information in new projects.
The Visual C++ compiler creates a browser database file—with the
filename extension .BSC—that keeps track of where each symbol in
your source code is defined and used. After a .BSC file is created, it
becomes part of your project and is updated each time you build your
project. « _
; When the Browse dlalog box opens choose the symbol you Want to
browse for. You control the parameters of your browsing operation by
selecting items from the Type, Subset, ‘and Symbol drop-down combo
boxes. For example, to dlsplay a graph showing the base classes that
are used i in your application, select the Base Class Graph item from
~the Type combo box and then click the Display Result button. If your
‘ apphcatmn has any base classes to dlsplay, the browser drsplays ¢
~ them i in a tree like hst : :

You can also use the browser w1thout opemng the Browse wmdow

‘j"edltor, you can 31mply use the Browse menu to select a symbol ina ’

source file,)ump to 1ts defmltlon or first reference, rev1ew all refer-

ences to the symbol and retum to the orlgmal 1nsert10n pomt in your

"source ﬁle

(continued)

145

Learn Visual C++ Now

The Visual Workbench Source Browser. continued

tk'_ﬂAIthough the Source Browser can be a valuable tool when you are de-

/‘::velopmg complex C++ pI‘O]eCtS V1sual C++ programmers often dis-
‘fable it when they don t need it. That s because when the Source o
= \Browser is enabled it creates anew bIOWSer database every tlme you' o
: ;‘fcomplle an apphcatlon and that can be a time- consumlng process ¢
1_,.\You mlght want to drsable browser 1nformat10n until you start devel-
i oping pro;ects that are complex enougb to make its capablhtles useful o

: To dlsable Source Browser 1nformat10n follow these steps i

L 1 Choose the PmJect 1tem from the Optrons menu

2. When the PrO]ect Optlons dlalog box appears, chck the Com— i
~ piler button L o

n the c/ C++ Compﬂer Optrons

?ﬁ\bgbéxa\siglectmstingFﬂes; .
. n\;the Category llst box e 5

Deselect the Browser Informatmn optlon

: Close the C/C++ Comprler Optlons dlalog box by chckmg OK

. Close the Prolect Opthl’lS dlalog box by chckmg OI(

Jroe Browser by consultmg the :

Linking an Application

Although the .OB]J files produced by the Visual C++ compiler are binary
(machine-readable) files, they are not executable programs. Executable
files (executables for short) have header sections containing important
run-time information that .OB]J files do not provide. To convert an appli-
cation’s .OB]J files to an executable program, you must use the Visual C++
linker.

The linker has two primary jobs. First it resolves all your application’s ref-
erences to external functions by searching through the library files that the

146

5: Visual C++ Tools

project accesses. Then it links the appropriate library files to your appli-
cation’s object files, producing your project’s executable (.EXE) file.

Linking with object code libraries

Linking with object code libraries is an important operation because most
Visual C++ applications rely on external libraries that are supplied as part
of the Visual C++ development package. You can also create libraries
yourself and access them from your Visual C++ applications.

é}{@‘ OTE Functions that are imported from libraries instead of being imple-

1l \il mented in an application’s source code are sometimes referred to as exter-
nal functions. The process of tracking down functions provided in object
code libraries is sometimes referred to as resolving external references.

How the Visual C++ linker works

The Visual C++ linker links .OB]J files generated by the Visual C++ com-
piler to any other object code files that an application might require. When
the .OB]J files that make up an application go to the Visual C++ linker, the
linker makes a thorough search through the code it is compiling for the
names of any functions that are not implemented in the .OB]J files it has
received from the compiler. If the linker encounters the names of any func-
tions that are not implemented in the source code of the application being
compiled, the linker tries to find the missing functions in any library files
that have been incorporated into the application being compiled.

"IP I the Visual C++ linker starts generating vast quantities of errors when
you link a program and you know you couldn’t possibly have made that
many errors in your source code, open the Project Options dialog box and
verify that the Use Microsoft Foundation Classes check box is selected. If it
isn‘t selected, and if you are using MFC library classes in your program, se-
lect the box and relink. That should solve your problem.

AN

%

Figure 5-2 on the following page illustrates the Visual C++ build process.

147

Learn Visual C++ Now

148

e b Resources
,\’/|’sukal Workbench f > (menus, bitmaps,
S : : icons, and so on)
L2]
Source files ‘ Resource
(.CPP, .C, .H) »| script file
(.RQO)
¢ Windows, @

Module : TR O run-time, | [T T)
definition Visual C++ compiler |- and MFC ,,"Resourc.e"corynplyle{ ;
file (DEF) | L library || (compile mode)

include ' '
files (.H)
¥
Object Binary
files) resource
(.OBJ) file (.RES)
; Statically — * —
Pl e e linked Resource compiler -
wic L Visual C++ linker libraries (bind mode)
library (.LIB) - k T k

Figure 5-2. The Visual C++ build process.

Executing the SCRAMIBLE Program
After you have built the SCRAMBLE application, you can execute it by
choosing Execute from Visual Workbench’s Project menu. When the
SCRAMBLE program starts, you can open any number of child windows
by choosing the New Window item from the Window menu or by clicking
the New Document button on the toolbar.

The SCRAMBLE program might not impress you because each child
window displays the same bitmap. Consider, however, that we wrote

5: Visual C++ Tools

only about 22 lines of code. In the next few sections, we’ll modify the
SCRAMBLE program to add menu commands that allow the user to clear
and redraw the bitmap in each child window.

[Edlnitmg Menus with App Studio
One of the most important features of a Windows-based program is its
menu bar. AppWizard generates two menu bars for an MDI application:
one for its main frame window, and another for its child windows. The
application can use more menu bars if necessary.

The SCRAMBLE program has two menu bars: a main frame window menu
bar with the resource identifier IDR_MAINFRAME, and a child window
menu bar with the resource identifier IDR_SCRAMBTYPE. SCRAMBLE
uses the default main frame window menu bar provided by AppWizard,
but its child window menu bar has one custom menu, Background. This
menu has two items—Arches and Clear—as shown in Figure 5-3.

Figure 5-3. The SCRAMBLE program’s Background menu.

The easiest way to create menus and menu items for Visual C++ programs
is to use App Studio. Open App Studio, click on Menu in the Type list box,
and you’ll see SCRAMBLE'’s two menu resources, as shown in Figure 5-4
on the following page.

149

Learn Visual C++ Now

& IDR_SCRAMBTYPE

Figure 5-4. The SCRAMBLE program’s menu resources.
To add the SCRAMBLE application’s Background menu and its menu

items, follow these steps:

1. Double-click on the IDR_SCRAMBTYPE item in the Resources list
box.

2. In the IDR_SCRAMBTYPE window, select the Window menu, as
shown here:

3. Press the Ins key. App Studio inserts a new, untitled menu between
the View and Window menus, as shown here:

150

5: Visual C++ Tools

“File:

4. Double-click on the new menu. App Studio opens the Properties
window, which displays the properties for the new menu.

5. In the Properties window, enter &Background in the Caption edit
box, as shown here:

6. Double-click on the blank box under the Background menu.

7. Create a new menu item named Arches by entering & Arches in the
Properties window’s Caption edit box.

8. Create a second Background menu item, named Clear, by following
the same procedures you used to create the Arches menu item.
(Double-click on the blank box at the bottom of the menu to insert a
new menu item.) The Background menu, with the Arches and Clear
menu items, is shown on the following page.

151

Learn Visual C++ Now

152

9. Exit App Studio, and save your changes.

?y,gf‘,l(eyboard Shortcuts

¥ Wmdows-based programs often mclude keyboard shortcuts for users :
~ who prefer to use the keyboard rather than the mouse. A keyboard
shortcut 1ets the user execute a menu command by pressmg a key
“ :,Whlle holdmg down the Alt key Keyboard shortcuts are 1dent1f1ed by ;
an underhned character 1n a menu 1tem. L Govind e Bt

Keyboard shortcuts can be added to menu 1tems by usmg App Stu— \
dio; they do not requlre any spec1al program code Slmply open t the ;
.f:;}Propertles Wrndow for the appropnate menu resource and add an am-w,‘\\
persand (&) in front of the character you d hke to use as the keyboard o

Creating Message Handlers with ClassWizard
After you have added a menu item, or a set of menu items, to an applica-

tion, creating message handlers for these menu items is an easy task thanks
to ClassWizard, another Visual C++ tool.

5: Visual C++ Tools

To create message handlers for the menu items you have created in the
SCRAMBLE program, follow these steps:

1.

2.
3.

4.
5.

6.

Start ClassWizard by choosing the ClassWizard item from Visual
Workbench’s Browse menu. The ClassWizard dialog box appears, as
shown here:

Select CScrambleDoc in the Class Name list box.

Select ID_BACKGROUND_ARCHES in the Object IDs list box.
(ID_BACKGROUND_ARCHES is the default ID App Studio gave to
the Arches menu item.)

Select the COMMAND item in the Messageé list box.

Click the Add Function button. The Add Member Function dialog
box appears, as shown here:

Accept the default member function name, OnBackgroundArches,
in the Member Function Name edit box by clicking OK.

153

Learn Visual C++ Now

Notice that ClassWizard has now added OnBackgroundArches to
. the Member Functions list box, as shown below. (As you’ll see later,

ClassWizard has actually created a member function named OnBack-
groundArches and has added it to your SCRAMDOC.CPP source
code file. When you finish creating the SCRAMBLE program, this
member function will be executed whenever the user chooses the
Arches item from the Background menu. Of course, we have not yet
written any code for this function. We’ll do that in the next section.)

7. Using the same procedure you followed to create the OnBackground-
Arches member function, create a member function named OnBack-
groundClear for the ID_BACKGROUND_CLEAR object ID and add it
to the Member Functions list box.

8. Click OK to close the ClassWizard dialog box.

Your application now has a Background menu with two menu items:
Arches and Clear. You have also created message handlers for these two
menu items, but neither of your message handlers contains any executable
code, so the menu items don’t do anything useful yet. You’ll get a chance
to fix that now.

154

5: Visual C++ Tools

Writing Code for Message Handlers

The SCRAMBLE program is almost ready to execute. All we need to do is
add a small amount of code to the message handlers for the application’s
two customized menu items, Arches and Clear. Because we added mem-
ber functions that load and unload the bitmap to the CScrambleDoc class,
the message handlers are quite simple. Open SCRAMDOC.CPP, and then
edit the OnBackgroundArches and OnBackgroundClear member functions
as follows:

void CScrambleDoc::0nBackgroundArches()
{
LoadBackground(m_pArches);
UpdateAl1Views(NULL);
}

void CScrambleDoc: :0nBackgroundClear()

{

UnloadBackground();

UpdateAl1Views (NULL):
}
Rebuild SCRAMBLE, and execute it. Open several child windows, and
experiment with the Arches and Clear commands. You should be able to
control the image displayed in each child window. Not bad for four extra

lines of code!

The Visual C++ Debugger

Unfortunately, even the best programmers occasionally write code that
doesn’t work properly. To help swat bugs, Visual C++ includes an interac-
tive, graphically based debugging tool built right into the Visual C++ edi-
tor. With the Visual C++ debugger, you can track down bugs in programs
and correct them.

When you are designing a program, you can examine and correct compiler
and linker errors that you encounter during the build process. These errors
are usually caused by incorrect language syntax, undeclared variables, or
misspelled keywords. ’

155

Learn Visual C++ Now

156

You can also use the Visual C++ debugger during the execution of your
program, after all the syntax errors have been corrected and the project has
been successfully built. Then you can use the debugger to track down bugs
by setting breakpoints and examining variables. When you isolate an error
at run time, you can correct it on the spot with the Visual C++ editor and
then rebuild your program.

Setting Breakpoints

With the Visual C++ debugger, you can control the execution of your pro-
gram and examine its state at various points in its execution by setting
breakpoints that halt the execution of your program at whatever point in
your code you specify, You can also set breakpoints that stop your program
conditionally—that is, only when certain specified conditions are met.

Before you try to set a breakpoint, choose the Project item from the Tools
menu and check the Build Mode to ensure that the Debug option is se-
lected. You can then set breakpoints by choosing the Breakpoints com-
mand from the Debug menu or by clicking the Breakpoint button, shown
here, on the Visual Workbench toolbar:

After you héve set a breakpoint (or a series of breakpoints), you can start
debugging your program by executing it under the control of the debugger.

"To do that, you choose the Go command from the Debug menu.

Stepping Through a Program

There are other ways to run a program under the control of the debugger.
For example, you can step through your program one statement at a time,
examining the results of each statement the program executes. As you step
through a program, you can select functions that you want to step into or
step over. When you step into a function, each line of the function is exe-
cuted separately. When you step over a function, the entire function is
executed. The debugger then stops and positions the insertion point at the
end of the function that has been stepped over.

After you have stepped into a function, you can step out of it immediately
by choosing the Step Out command, which returns you to the statement

5: Visual C++ Tools

from which the function was called. You can step into, step over, and step
out of functions by choosing the Step Into, Step Over, and Step Out com-
mands from the Debug menu or by clicking the associated buttons, shown
here, on the Visual Workbench toolbar:

You can also place the Visual C++ editor’s insertion point on a particular
line in a source code file and run your application under the control of the
debugger up to the point at which the insertion point appears. This has the
effect of turning the insertion point into a breakpoint. To run the debugger
and stop execution at the editor’s insertion point, simply choose the Step
To Cursor command from the Debug menu.

Opening Debugger Windows

The Visual C++ debugger has two windows that you can open by choosing
commands from the Debug menu and other windows that you can open by
choosing commands from the Window menu. You can open the
debugger’s Watch window by choosing the Watch item from the Window
menu. To open the QuickWatch window, you choose the QuickWatch
item from the Debug menu.

The Watch window displays the values of selected variables at each break-
point. With the QuickWatch window, you can examine the values of vari-
ables and change them for subsequent program execution. Figure 5-5
shows the QuickWatch window.

CGdiObiject = {...}
+classCBitmap = {...}

Figure 5-5. The QuickWatch window.

157

Learn Visual C++ Now

158

Two other windows that can be opened from the Window menu also dis-
play aspects of the program’s state when it is paused. When execution of a
program stops, the Registers window displays the values of your system’s
microprocessor registers; the Locals window displays the value of vari-
ables local to the current function. The Locals window is updated every
time there is a change in the scope of variables in the application being
debugged.

The Show Call Stack item on the Debug menu displays a list of all nested
function calls. To use the debugger’s call-stack feature, simply stop execu-
tion at a function, and then choose the Show Call Stack command. Visual
Workbench opens a dialog box that displays a list of all nested function
calls. The current function is the most deeply nested function,; it is dis-
played at the top of the call-stack list. Less deeply nested functions appear
farther down in the list. You can double-click on a function in the list to
display the source code associated with that function.

When you terminate a debugging operation—either by exiting the program
being debugged or by choosing the Stop Debugging command—any break-
points that you have set remain in place. If you close your project, Visual
Workbench stores any breakpoints you have set and restores them when
you open the project again. That means that a debugging operation can
span editing sessions.

Debugging is an art that you can learn and master with experience. This
section has barely touched on the highlights of debugging Visual C++ pro-
grams. You can learn more about the Visual C++ debugger and how to use
it by choosing the Visual Workbench item from the Help menu and then
clicking the button labeled Debugging Your Application.

Listing: The SCRAMBLE Program

This chapter’s sample program, SCRAMBLE, is an MDI applicati‘on that
displays a bitmap in child windows. Portions of the program described
in this chapter are presented in Listing 5-1. You can find the complete
program in this chapter’s directory on the companion CD-ROM.

5: Visual C++ Tools

- SCRAMDOC.H

// scramdoc.h : interface of the CScrambleDoc class
1/
///

class CScrambleDoc : public CDocument
{
private:
CBitmap* m_pArches;
CBitmap* m_pBackground;
public:
CBitmap* GetBackground() { return m_ pBackground }
void LoadBackground(CBitmap+*);
vo1d Un]oadBackground()

protected: // create from ser1a11zat1on on1y
CScramb]eDoc() e
DECLARE DYNCREATE(CScramb]eDoc)

:; // Attr1butes
pub]1c

//kOpehations
public:

// Implementat1on
: pub]wc R B
~virtual ~CScramb1eDoc() o
; v1rtua1 vo1d Ser1a1ize'CA h1ve& a

s // overr1dden fop e
/1 document'1/o St

'~]#1fdef DEBUG L
S v1rtua1 v01d AssertVa11d(,cons s

¥ v1rtua1 vo1d Dump(CDumpContext& dc)

 ftendif ‘ :

:j;protected

Listing 5-1. The SCRAMBLE program listing. (continued)

159

Learn Visual C++ Now

Listing 5-1. continued

160

5: Visual C++ Tools

m_pArches = NULL;

}
}
BOOL CScramb]eDoc::OnNewDocﬁment()
{ .
if (!CDocument::0nNewDocument())
return FALSE;
// TODO: add reinitialization code here
// (SDI documents will reuse this document)
return TRUE;
}

JEELELLTILT LI L ELT PP TP i i riii it rririniit iy
// CScrambleDoc serialization

- void CScrambleDoc::Serialize(CArchive& ar)
-3

if (ar.IsStoring())

[S PRRSVE .
! // TODO: add storing code here
Y ,

e]se,

{ o

~~// TODO: add loading code here

8 B R ')

} ///
f]*// CScramb]eDoc d1agnost1cs

ﬁ"f#1fdef _DEBUG

j*vo1d CScrambleDoc AssertVa11d() const

; G :
S CDocument 'AssertVa11d()

(continued)

161

Learn Visual C++ Now

Listing 5-1. continued

‘m_pBackground = NUL

void CScrambleDoc: :OnBackgroundArches ()

Arches)

162

5: Visual C++ Tools

BEGIN_MESSAGE_MAP(CScrambleView, CView)
7/ {{AFX_MSG_MAP(CScrambleView)
//}YAFX_MSG_MAP
// Standard printing commands
~ ON_COMMAND(ID_FILE_PRINT, CView::0nFilePrint)
ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView: 0nF11ePr1ntPrev1ew)
END_MESSAGE_MAP()

L1707 10007 7000000077707 7700000 007700777077777771100071777717171
// CScrambleView construction/destruction

CScrambleView::CScrambleView()

C

{ .
// TODO:’add construction code here
s CScrambleView::~CScrambleView()
[, : ;
1

’;7// f
// CScramb]eV1ew draw1ng :

~ void CScramb]eV1eW‘-OnDraw(Cbcé;pDC)

‘. S e
: ”;CScramb]eDoc* pDoc = GetDocument();
~CBitmap# pBitmap; I e
Bt BITMAP B1tmap,”,,~ i

7pB1,mapr— quc >GetBackground()

(continued)

163

Learn Visual C++ Now

LIStIng 5-1. contmued

vo1d CScramb]eV1ew 0nBeg1nPr1h 1ng(CDCS:"“':Y
e CPrlntInfo* /*pInfo*/) ,
?,{{;,

'// TODO add‘extra 1n1t1a11zat1on before pr1nt1ng

id CScramb]eV1ew 0nEndPr1nt1ng(CDC* /*pDC

164

5: Visual C++ Tools

What's Next?

In this chapter, you learned how to use the tools provided by Visual Work-
bench to create and build customized Visual C++ applications. You wrote

a program using the Visual C++ editor, added a couple of menu items to it
with App Studio, and then used ClassWizard to equip your program with
message handlers. The result was a Visual C++ application named
SCRAMBLE. With the SCRAMBLE program, you can open multiple child
windows and you can choose menu items that display or clear a bitmap
from the child windows. You can control each child window individually.

In Chapter 6, “The MFC Library,” we’ll look more closely at the role of the
MFC library in creating Visual C++ programs, and you’ll have an opportu-
nity to add more features to the SCRAMBLE program. For example, you’ll
learn how to control the initial size of each child window the program dis-
plays, and you’ll learn how to add scroll bars and scrolling functionality
to the child windows. You'll also learn how to add menu items that let the
user display different bitmaps in different child windows.

165

Foom,

/
/

The MFC Library

In any object-oriented language—including Microsoft Visual C++—one of
the most important advantages of using classes is inheritance. As you
learned in Chapters 4 and 5, inheritance allows objects to be derived from
other objects. In C++, derived classes can inherit data members and func-
tions from base classes, so designers of software development systems can
create large libraries of C++ classes with specific relationships between
classes built in.

One such library is the Microsoft Foundation Class (MFC) Library version
2.0 included with Visual C++ version 1.0. The MFC library is designed to
help programmers use the power of C++ to build Windows-based applica-
tions. This is an important development in the evolution of Windows pro-
gramming because code reusability is a goal that has long eluded users of
the Windows API (application programming interface). Because the Win-
dows API is not an object-oriented development tool and does not support
inheritance, every application written under the Windows API has to be
created essentially from scratch.

To solve that problem, the MFC library provides a set of C++ classes that
are not only reusable but also transportable to a growing variety of com-
puter platforms. Programs written using Visual C++ and the MFC library
are compatible with computers based on the Intel 386/486/Pentium family
of microprocessors and with other systems, including DEC, MIPS, and

167

Learn Visual C++ Now

168

even Apple Macintosh computer systems. In addition to its portability to a
variety of platforms, the MFC library is also compiler-independent; it is
used not only by Microsoft but also by other compiler and tool vendors
(including Symantec, Watcom, MetaWare, and others). Visual C++ is not
the only software development platform that supports the MFC library.

When you create an application using AppWizard, AppWizard generates a
skeleton program using classes and member functions provided in the MFC
library. Your main job as a Visual C++ programmer is to add functionalities
specific to your application. In this chapter, you’ll see how AppWizard
uses classes and member functions provided by the MFC library to create
Visual C++ applications and how you can build on AppWizard’s applica-
tion frameworks to create specialized MFC applications. The following
topics are covered: ’

B How the MFC library can be used with Visual C++ to create well-
behaved programs

B How the classes and member functions implemented in the MFC
library work together in Visual C++

m How AppWizard constructs application frameworks using MFC
library classes

m How MFC applications handle events, messages, and other features
of Windows-based programs

The chapter includes a new version of the SCRAMBLE program that dem-
onstrates many of the topics introduced in the text. Using the SCRAMBLE
program, we’ll also look at how you can easily add some new features to
an application by using Visual C++ tools. Here are some of the features of
the SCRAMBLE program:

M It can display multiple background bitmaps in individual document
windows simultaneously.

B It can create and display backgrdunds in solid colors—even custom-
designed colors—using a predefined Color dialog box provided by
the MFC library.

B It lets you execute menu commands using custom-designed toolbar
buttons.

6: The MFC Library

m [t places check marks next to currently active menu items.

It lets you specify the initial size and many other characteristics of
its main frame window and its child windows.

W Its child windows contain scroll bars and support scrolling.

Figure 6-1 shows the output of this chapter’s SCRAMBLE program.

Figure 6-1. Qutput of the SCRAMBLE application.

About the MFC Library

As you learned in Chapter 5, “Visual C++ Tools,” Visual C++ is a graphics-
based, user-interactive delivery system designed to support MFC applica-
tions. AppWizard and the other tools included with Visual C++ help you
build MFC applications as quickly and easily as possible, using graphics-
based interfaces that take advantage of dialog boxes, drop-down menus,
and mouse-generated commands.

The MFC library encapsulates most of the Windows API to take advantage
of the object-oriented features of C++ programs. The MFC library calls
functions implemented in the Windows API to create windows, dialog
boxes, device contexts, controls, common GDI objects such as brushes and
pens, and other standard Windows items. The classes that are used to cre-
ate these kinds of objects provide MFC users with a convenient C++ inter-
face to the structures in Windows that the classes encapsulate.

169

Learn Visual C++ Now

170

The single characteristic that sets the MFC library apart from other class
libraries that are available for Windows is its very close mapping to the
Windows APIL. When you need more direct access to the Windows API than
the MFC library provides—for example, when you want to make an API
call—you can call the API function directly. In fact, you can generally mix
calls to the MFC library quite freely with direct calls to the Windows APIL.

The MFC library is designed to be used as a tool for developing with the
Windows API, not as a substitute for the Windows API. It encapsulates
Windows functions only when there is a clear advantage in doing so. Be-
cause the MFC library makes as much use as possible of functionalities
that are already built into the Windows API, MFC programs are relatively
small and fast—an accomplishment that many critics of C++ claimed was
impossible in the early days, when the C++ language was struggling to get
off the ground.

OTE During the early days of C++, some detractors leveled charges that

% C++ applications had to be big and slow. That never was true, and the MFC
library is one of many well-designed C++ class libraries that have become
showpieces of small, fast C++ code packages.

A Brief History of the MFC Library

Although the original designers of the MFC library might not have known
it, from the beginning the MFC library was destined to become what
Microsoft spokespeople now call the C++ API for Windows, or the “new
Windows APL.” The MFC library was designed from the ground up to use
only a subset of C++, which means that the MFC library does not attempt
to exploit every feature available in C++. For example, it does not support
multiple inheritance because this feature does not seem to fit in well with
the overall architecture of the MFC library.

Version 1.0 of the MFC library shipped with Microsoft C/C++ version 7.0—
the last version of C++ that Microsoft made available before the introduc-
tion of Visual C++. MFC version 1.0 contained just over 50 classes that
provided a basic encapsulation of the Windows API.

6: The MFC Library

MFC version 1.0 wasn’t nearly as large or complex as its successors, but it
was designed with expandability in mind, so it was a good foundation for
future versions of the MFC library. MFC version 1.0 got C++ programmers
started with the MFC library by providing the following:

Diagnostic classes
Support for collections and strings

A proprietary method of exception handling that could be modified
to accommodate future growth

B Basic Windows API classes for windowing and building simple
applications

MFC Version 2.0

MFC version 2.0, which was introduced along with Visual C++ version
1.0, is provided on the companion CD-ROM. MFC version 2.0, like MFC
version 1.0, is designed to be easily expandable and is a good foundation
for the future growth of the MFC library.

- MFC version 2.0 added a great deal of new support for Windows-based
programming, including the following features:

B Support for a new document-and-view architecture. When you use
AppWizard to generate a Windows-based program, the application
framework created by AppWizard supports documents that can be
displayed in multiple views. For more information, see the section
“Using Documents and Views in MFC Programs” on page 192.

B A new set of architecture classes, including command classes, docu-
ment and view classes, dialog box classes, and form-view classes.
All these varieties of classes are described later in this chapter and
in subsequent chapters.

B Seamless integration with a new set of GUI (graphical user interface)
- programming tools supported by Visual C++. These new tools in-
clude AppWizard, ClassWizard, and the other graphics-based utili-
ties described in this chapter and in other chapters in this book.

17

Learn Visual C++ Now

172

MFC: The New Windows API

From the outset, the MFC library was designed in a more orderly way
than the traditional Windows API (which has been criticized—quite
justly—for being designed in some awkward and peculiar ways), and it
has a more orderly architecture. It neatly encapsulates functions provided
by the Windows API, arranges them in a structured and much more com-
prehensible order, and provides support for almost all Windows API pro-
cedures, including the following:

B Message management using message maps (which are covered in
Chapter 7, “Of Mice and Messages”)

B Memory management, including both memory allocation and
cleanup operations after objects are destroyed

B Graphics, screen, and device I/0 using simple encapsulation mecha-
nisms

B Management of windows and controls using C++ classes

Tasking operations

The MFC library’s role in Windows-based applications

When you write an MFC application, you can let the MFC library handle
all your window management, messaging, and resource management.
The MFC library is equipped with C++ classes that encapsulate both
MDI (multiple-document interface) and SDI (single-document interface)
applications.

The MFC library also supports message management. MFC is equipped with
a powerful message-handling mechanism that can automatically map mes-
sages to member functions in C++ classes that you use in your application.
MFC also provides default responses for many commonly used messages.
This means that you don’t have to write a handler for every message your
application uses. However, if you want a particular message handled in a
way that differs from the way that the MFC library handles it, you can al-
ways override MFC’s default behavior and write your own message handler.

6: The MFC Library

In an MFC program, these are some of the tasks that MFC library classes
and member functions can perform:

Track memory allocation.
Report memory leaks.

Track and report unfreed resources.

Handle common types of I/O. The MFC library has a mechanism for
routing screen I/0 to a particular part of an AppWizard-generated
application framework, where the application can implement its
own behavior.

W Provide built-in support for common types of file I/O operations,
such as the New, Open, and Save commands on the File menu.

The MFC library carries out these operations using member functions,
many of which encapsulate Windows API calls. These MFC member func-
tions can make your applications simpler and safer, at a cost of almost no
additional overhead. |

The MFC library also simplifies the handling of Windows objects by tak-
ing on many data management chores. For example, many MFC library
classes use the this pointer provided by the C++ language to perform tasks
that rely on Windows handles in Windows API programs.

Handles, pointers, and the MFC library

In Windows API applications, handles are used to access various kinds of
Windows objects—windows, menus, icons, controls—and even items that
don’t represent visible objects, such as instances of applications. In MFC
programs, these objects are not usually accessed with handles. More often,
they are accessed using pointers to C++ objects.

Suppose that an MFC application calls an MFC member function to create
anew Windows object. In turn, the MFC library calls a Windows API func-
tion, which creates the object and returns a handle to the object. When the
MFC function that called the Windows API function obtains a handle to
the object created, the handle is automatically stored in a public member
variable of the newly created object. Later, if the application that created

173

Learn Visual C++ Now

174

the object needs the new object’s handle for some reason, the program can
retrieve the handle by accessing the public member variable in which the
handle has been stored.

In the sample code presented in this book, you’ll see many examples of
how C++ pointers are used instead of handles in MFC programs. After you
become familiar with MFC programming, you’ll rarely need to access the
handles of the objects that you use in your Visual C++ programs. But in
rare situations when you need access, it will be there.

Other parameters that are used in calls to Windows API functions are not
used in calls to MFC functions. Often the MFC library doesn’t need the ex-
tra arguments because it already has the information that those arguments
would provide.

Although MFC applications and Windows API-style applications are
equipped with different sets of functions, the functions provided in the
MFC library have a familiar look if you’re used to working with the Win-
dows API The parameters that Visual C++ programs pass to MFC member
functions are similar to the parameters that are expected by corresponding
Windows API functions, with certain fairly consistent exceptions—such
as the fact that handle parameters are usually not required in calls to MFC
functions.

Secrets of the WFC Gurus

6: The MFC Library

m Using inline functions to call the Windows API—As noted in
Chapter 3, “C++ Basics,” C++ inline functions are short func-
tions that are embedded in your application at design time in-
stead of being called in the traditional way each time they are
accessed. In the MFC library, many calls to Windows API func-
tions are implemented as inline functions. This means that
when your MFC application is compiled and executed, it calls
Windows API functions directly whenever possible, instead of
calling an MFC function that calls a Windows API function.
Using inline code in this way increases the speed and effi-
ciency of MFC a‘pplicyations.\

® Using macros when it makes sense to use them—C-language
~ macros are often handy and efficient substitutes for short func-
_tions, but macros have received a lot of bad press because they
- don’t perform type checking. In C++, inline functions offer the
same advantages as C macros, w1th the added benefit of type
checking, so C++ programmers have even less reason to use
~ macros. However, there are times when it makes sense to use
them. For example, as you’ll see in Chapter 7, “Of Mice and
MéSsages, the MFC library uses macros to map meSsages to
- message handlers by embeddmg direct calls to message handlers‘
in your source code at de31gn time. In this kind of message map-
ping, the lack of type checking that macros have been criticized
- for- poses no danger because all the macros. used i in the MFC e
2 message mappmg system are thoroughly debugged and are :
0 placed in your code automa’ucally Used in this way, macros
e "\are probably the speedlest message-handling mechanism that .
o could be 1ncorporated into a Wmdows-based program e

The MFC Library Class Hierarchy

The MFC library is a set of more than 100 classes that are implemented in
more than 60,000 lines of code. Most of this code is encapsulated in C++
classes, and all of it is optimized, pretested, and ready to use in your Vi-
sual C++ programs.

175

Learn Visual C++ Now

176.

‘TIVIFC's Afx Functlons L

~ The only functions in the MFC hbrary that aren’t encapsulated in:

. C++ classes are the Visual G++ apphcatmn framework functzons—— \

~aspecial group of global functions. Afx functions, which begin with

ithe letters Afx, are global functions that are prov1ded to interface as

seamlessly as poss1ble between the MFC hbrary and the C-language :
Windows API e o]

-There are many Afx functmns in the MFC hbrary For example Afx-
MessageBox is a global fllllCthIl that displays a message dialog box.
Another Afx function is AfomMam the MFC equlvalent of the
WmMam function used in traditional Wmdows API—style programs
 You'll learn more about the WmMam functlon in the section “The .

:"WmMam Functlon on page 186

Most classes in the MFC library are descended from a root class named
CObject, which some pundits have referred to as “the mother of all classes.”
All classes descended from CObject inherit important capabilities, such as
built-in diagnostic capabilities and the ability to serialize files—that is, to
store them on disk and read them from disk automatically.

Some MFC library classes, such as CString and CTime, are not derived
from the CObject class because they do not require serialization capabili-
ties or the other features that derivation from CObject provides. (Both
CString and CTime are descrlbed in more detail in Chapter 7, “Of Mice
and Messages.”)

"IP By convention, the names of all classes provided in the MFC library be-
gin with a capital C. So if you create classes of your own that are not derived
from MFC library classes, it might be a good idea to start their names with
some other letter.

The classes in the MFC library can be divided into the categories listed in
Table 6-1. Many of the classes listed in the table are described in more de-
tail in later sections of this chapter and in Chapter 7.

6: The MFC Library

Class Category

Description

MFC framework classes

CObject (the MFC
library root class)

~ Windows application
class (CWinApp)

File classes

Collection classes

The MFC framework classes contribute to
the architecture of an application frame-
work. They are diagrammed in Figure 6-2
on page 181. '

CObject is the root class of almost all
other classes