
Introducing Visual C++

Development System/or mndowSTMand mndows NI'rM

Introducing Visual C++

Microsoft® Visual C++TM
Development System for WindowsTM and Windows NTTM
Version 2.0

Microsoft Corporation

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the
express written permission of Microsoft Corporation.

© 1994 Microsoft Corporation. All rights reserved.

Microsoft, Microsoft Access, Microsoft Press, Visual Basic, and Win32 are registered trademarks, and
Visual C++, Windows, Windows NT, and Win32s are trademarks of Microsoft Corporation in the
USA and other countries.

U.S. Patent No. 4955066

Pentium is a trademark of Intel Corporation.
Apple and Macintosh are registered trademarks of Apple Computer, Inc.
CompuServe is a registered trademark of CompuServe, Inc.
GEnie is a trademark of General Electric Corporation.
IBM and OS/2 are registered trademarks of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.
Motorola is a registered trademark of Motorola, Inc.

Document No. DB57154-0694
Printed in the United States of America.

Iii

Contents

Introduction ... " xvii

Part 1 Getting Started

Chapter 1 Installing Microsoft Visual C++ .. 3
System Requirements . 3

Installing Visual C++ . 4

Installing Win32s ... 16

Chapter 2 Using Online Documentation 17
Where to Find Information .. 18

Contents of Books Online .. 18

Contents of Quick Reference. 20

Contents of Stand-Alone Help Files 22

Browsing Topics . 23

Opening the Contents Window . 23
Navigating within the Contents Window 24

Navigating within the Viewer Window 25

Searching for Information. 26

Help Search . 28

Keyword Search. 28

Using Search Plus .. 30

Getting Fl Help on a Keyword or an Error Message . 34

Getting Help on a Dialog Box or Menu Command 38
Getting Help on How to Accomplish a Task. 39

Customizing Quick Reference and Books Online 41

Online Documentation Reference. 44

Contents Window Controls. 44

Viewer Window Buttons. 44

Shortcut Keys. 45

Book Sets and Corresponding Help File Names 45

iv Contents

Chapter 3 Questions and Answers, 39
Installation, .. 39

Cross-Platforms ... 42

General Information .. 44

Development Environment .. 45

Microsoft Foundation Class Library 47

Chapter 4 Developing a Microsoft Visual C++ Application. , .. , . , , , , , , , , , , , , , 47
What Is a Visual C++ Application? 47

What Is the Class Library? , 48

The Framework .. 48

The Partnership ... 50

Benefits ... 50

The Development Process ... 51

For More Information .. 55

Part 2 Tutorials

Chapter 5 A Test Drive of Visual C++ . , 59
Developing an Application .. 60

Adding User-Interface Objects to Myapp 69

Browsing the Application ... 77

Debugging the Application .. 81

For More Information .. 86

Chapter 6 Scribble Tutorial , 83
Project Makefiles and STEP Directories for Scribble 84

The Files You Work With .. 85

Scribble Build Information .. 85

Chapter 7 Creating a New Application with AppWizard , 87
Create the Starter Application for Scribble 89

Compile the Starter Files .. 94

Run the Starter Application .. 95

Contents v

Chapter 8 Creating the Document. .. 95
Documents. 96

Document Definition. 98
Documents in the Framework. 98

Document Creation . 98

DocumentlView Interaction ... 99

You and the Document . 99

Scribble's Document: Class CScribDoc 99

The Document's Data: Class CStroke . 105

Building and Storing Strokes. 107

Managing the Document. 109
Initializing and Cleaning Up . 109

Managing the Data. III

Serializing the Data ... 113

Serializing the Document. 114
Serializing Strokes. 115

In the Next Chapter ... 118

Chapter 9 Creating the View . .. 117
Views , 118

View Definition . 118

Views in the Framework. 119

View Creation . 119

Drawing the View's Contents 119
DocumentlView Interaction .. 119

You and the View ... 121

Scribble's View: Class CScribView 121

Redrawing the View . 125

Handling Windows Messages in the View 129

Connecting Messages to Code 129

Adding the Message-Handler Functions 133

Compile Scribble - Step 1 Version 138

vi Contents

Chapter 10 Constructing the User Interface 135
Edit Scribble's Menus ... 137

Default Menus .. 137

Scribble's New Menu Commands 137

Adding the Menus ... 138

Edit Scribble's Toolbar .. 145

About the Too1bar ... 146
Add the Thick Line Button to Scribble's Toolbar Bitmap 146

Summary ... 151

Chapter 11 Binding Visual Objects to Code Using ClassWizard 151
What ClassWizard Can Do ... 152

Command Concepts and Terms 153

Binding Scribble's Commands .. 158

Which Command-Target Class Gets the Handler? 158

Add New Member Variables to Scribble 168
Updating User-Interface Objects 169

Update Scribble's Clear All Menu Item 171

Update Scribble's Thick Line Menu Item 174

Compile Scribble - Step 2 Version 176

Chapter 12 Adding a Dialog Box. 169
Designing a Dialog Box . 171

Create the Dialog Box. 172

Add the Controls. 172

Arrange and Test Controls ... 174

Connecting a Class to a Dialog Box 175

Declare the Dialog Class .. 176
Declare the Message-Handling Functions 179

Map the Controls to Member Variables. 184

Implementing the Message Handler. 188

Open the Dialog Box. 190

Compile Scribble - Step 3 Version 194

Contents vii

Chapter 13 Enhancing Views 189
Updating Multiple Views . 190

Define a Hint for Scribble. 191

Pass the Hint After Modifying the Document. 196

Use the Hint for Efficient Repainting 198

Adding Scrolling . 201

Add Scrolling to Scribble . 203
Adding Splitter Windows . 214

Add Splitter Windows to Scribble 215
Compile Scribble - Step 4 Version 219

Chapter 14 Enhancing Printing 215
Enhance Scribble's Printing .. 216

Enlarge the Printed Image ... 216

Paginate Scribble Documents . 220

Add a Page Header .. 225
Enhance Scribble's Print Preview 227

Compile Scribble - Step 5 Version. 228

Chapter 15 Adding Context-Sensitive Help 225
Division of Labor .. 226

Implementing Context-Sensitive Help with AppWizard 229

The Context-Sensitive Help Option 230

See Context-Sensitive Help in Action 231
Adding Help to Scribble After the Fact 233

Conclusion. 241

Chapter 16 Creating an OLE Server 237
Previewing Scribble Running as an OLE Server. 239

Using AppWizard's Full Server Option 241

Run AppWizard to Provide aNew Skeleton 241

Copy Scribble Step 6 to a New Subdirectory 245

Transfer Scratch Files to Your MYSCRIB Project. 246

Add AFXOLE.H to Your Precompiled Header File 248

Add OLE Server Support to the Application Object 248

Convert the CDocument Class to the COleServerDoc Class 252

Analyze OLE Server Code in InitInstance . 255

viii Contents

Editing OLE.-Related Resources 263

Add OLE Standard Resources 263

Add OLE Menu Resources .. 265
Add OLE Toolbar Resources 267

Add Accelerator Resources for In-Place Active or
Fully Opened Servers ... 268

Adding Application-Specific Server Support 270

Add Application-Specific Server Support to the Document Class 270

Implement the Server Item ... 276

Implement OLE In-Place Support in the View Class .. : 280

Testing Scribble Server Functionality Using a Container Application 285

Chapter 17 Creating an OLE Container .. 265
Preview of the Contain Application 265

The Tutorial Example: Contain .. 269

Chapter 18 Implementing Basic OLE Container Features 269
Creating a Skeleton OLE Container 269

Trying Out the Newly Created OLE Container Application 273

Examining AppWizard-Provided Code 275

Implementing the OLE Client Item Rectangle 284

Implementing Hit Testing and Selection 288

Implementing Activation by Using a Mouse Click 290

Implementing Tracker Rectangles for Resizing and Moving Objects 295

Drawing the Embedded Objects 297

Deleting Embedded Objects .. 299

Building and Running Contain Step 1 300

Chapter 19 Refining OLE Container Functionality 289
Adding Command Handlers for Copy and Paste 289

Using Smart Invalidation ... 294

Define the Update Hint ... 294

Receive the Hint and Invalidate the View 294

Centralize the Sending of Update Hints 297

Invalidate Selected and Deselected Objects 297

Invalidate Tracked Object ... 299

Invalidate Object Moved by Server 299

Contents ix

Coordinating with Server to Determine Size of Object 300

Demonstration . 300

Get the Extent of the CCntrltem Object from the Server. 302

Update the CCntrItem Rectangle When the Item's
Natural Extent Changes ... 303

Update the Rectangle of a Newly Inserted Object 304

Building and Running ... 306

Chapter 20 Creating an OLE Automation Server .. 301
The Tutorial Example: Autoclik. 302

Preview of the Autoclik Application. 303

Overview of Autoclik Steps 1,2, and 3 305

Chapter 21 Enabling OLE Automation in an Application. 307
Creating a Skeleton OLE Automation Server 307

Analyzing the Dispatch Interface Name 310

Analyzing AppWizard-Provided Code 311

Application Class of an Automation Server. 311

Document Class of an Automation Server . 314

Creating an OLE Type Library 315

Implementing Autoclik's Basic Behavior 317

Building and Running Autoclik Step 1 322

Chapter 22 Implementing Automation Properties and Methods 319
Implementing Properties of a Dispatch Interface. 319
Implementing Methods of a Dispatch Interface 328

Build and Test Autoclik Step 2 .. 335

Chapter 23 Implementing Multiple Dispatch Interfaces. 331
Creating a New CCmdTarget Classwith a Dispatch Interface 332

Referring to One Dispatch Interface from Another 333

Createable OLE Dispatch Interface Objects 337

Build and Run ... 338

Chapter 24 Creating a Database Application .. 337
The Tutorial Example: Enroll ... 337

Setting Up the Student Registration Data Source 339

Tutorial Steps .. 345

x Contents

Chapter 25 A Simple Form . 345
About Step 1. .. 346

Creating a New Database Application 347
Examining the Step 1 Classes ... 349

The CSectionSet Recordset Class 349

The CSectionForm Record View Class 351

The CEnrollDoc Document Class 351
Customizing the Dialog Template for the Section Form 353

Binding Enroll's Controls to Recordset Fields 354

Build and Run Enroll Step 1 .. 355

Chapter 26 Using a Second Recordset. 355
About Step 2 ... 355

Changing the Course Controlto a Combo Box 358

Binding the Combo Box Control to a Recordset Field and a
CComboBox Variable ... 360
Creating a Recordset for the Course Table 361

Embedding the Recordset Object in the Document 362

Object .. 363

Filling the Combo Box with a List of Courses 364

Filtering and Parameterizing the Recordset 367

Setting Up the Filter .. 367

Setting Up the Parameter .. 368

Reusing a Database Object Opened by Another Recordset. 371
Sorting the Recordset. ... 372

Requerying the CSectionSet Recordset 374

Build and Run Enroll Step 2 .. 375

Chapter 27 Adding and Deleting Records. 371
About Step 3 ... 371

Creating the Step 3 User Interface 373

Add Menu Items for Add, Refresh, and Delete 374

Add an Acceleratorfor the Refresh Command 375
Create Handlers for Add, Refresh, and Delete 375

The Basics of Adding, Editing, and Deleting Records 376

Implementing the Add Command 378

Implementing the Command Handler 378
Updating the Data Source with the Added Record 381

Contents xl

Disabling Combo Box Logic in Add Mode 385
Implementing the Delete Command. 386
Implementing the Refresh Command 387
Building and Running Enroll Step 3. 389

Part 3 Appendixes

Appendix A Accessibility for People with Disabilities. 387
Microsoft Services for People Who Are Deaf or Hard-of-Hearing 389
Access Pack for Microsoft Windows 389
Keyboard Layouts for Single-Handed Users 391
Microsoft Documentation on Audio Cassettes and Floppy Disks. 392
Products for People Who Are Blind or Have Low Vision 392
Customizing Windows .. 392
Getting More Information .. 394

Appendix B Microsoft Support Services 393
Troubleshooting Guide .. 393
Product Support Within the United States and Canada 396
Product Support Worldwide .. 399

Index ... 407

xii Contents

Figures and Tables

Figures
1.1 The Installation Options Dialog Box . 7
1.2 The Custom Installation Dialog Box . 8
1.3 The Change Directory Dialog Box 8
1.4 The Microsoft Foundation Class Library Options Dialog Box 9
1.5 The Tool Options Dialog Box 10
1.6 The Help File Options Dialog Box. 11
1.7 The Sample Source Options Dialog Box 12
1.8 The Installation Options Dialog Box 15
2.1 Typical Quick Reference Help Topic 29
2.2 Keyword Search Dialog Box 30
2.3 Typical Dialog Box Help Topic 32
2.4 Typical How-To Help Topic 33
2.5 Help Tab In the Options Dialog Box 35
4.1 Document and View .. 49
4.2 Your Code in the Application Framework 51
5.1 The New Project Dialog Box 60
5.2 The Project Window .. 63
5.3 The Default AppWizard Application 64
5.4 The Dependencies Icon in the Project Window 65
5.5 Dragging and dropping controls in the dialog editor 67
5.6 The MFC ClassWizard Dialog Box 68
5.7 The Add Class Dialog Box 69
5.8 The Add Member Variable Dialog Box 70
5.9 The Resource Browser Window 70
5.10 The Message Maps Tab ... 72
5.11 The Add Member Function Dialog Box 72
5.12 The Myapp Application ... 74
5.13 The Resolve Ambiguity Dialog Box 75

Contents xIII

5.14 Derived classes and members of the CDialog class 76
5.15 Jumping to a reference from the Browse window 76
5.16 The First Reference. 77
5.17 The QuickWatch Dialog Box 79
6.1 Scribble in Action. 84
7.1 New Project Dialog Box ... 89
7.2 The Document Class. 91
7.3 Compiling Scribble. 92
7.4 The Starter Application. 93
8.1 Scribble in Action. 95
8.2 Objects in Scribble. 97
8.3 Document and View. 98
8.4 Creating a Document . 99
8.5 One Stroke in Scribble. 100
8.6 Overriding OnNewDocument. 103
8.7 Scribble's m_strokeList Data Structure 106
8.8 Serialization in Scribble. 111
9.1 The View and the Document . 118
9.2 The ClassWizard Message Maps tab 126
9.3 Available Windows Messages in ClassWizard 126
9.4 The Text Editor ... 128
9.5 Scribble Step 1 ... 132
10.1 Menu Editor for IDR_SCRIBTYPE 138
10.2 Property Page with ID ''-: 139
10.3 Adding the Clear All Menu Item .. 140
10.4 The Pen Menu Dragged into Position 141
10.5 The Completed Pen Menu. .. 142
10.6 The Default Toolbar Bitmap 143
10.7 Scribble with Its Edited Toolbar 144
10.8 The Bitmap Image Window 145
10.9 The Grid Settings Dialog Box 146
10.10 The Scrolled Bitmap ... 147
10.11 The Graphics Toolbar .. 147
10.12 The Bitmap Dragged to the Right. 148
10.13 Bitmap for the Thick Line Button. 148
10.14 The Edited Bitmap .. 149

xlv Contents

11.1 Clear All in Class Wizard . 158
11.2 The OnEditClearA11 Function Template 159
11.3 ClassWizard Selections for OnUpdateEditClearAll 164
11.4 Scribble Step 2 . 168
12.1 Scribble's Pen Widths Dialog Box 170
12.2 Designing the Pen Widths Dialog Box 172
12.3 The Add Class Dialog Box 174
12.4 The Message Maps Tab .. 175
12.5 The Member Variables Tab 181
12.6 Scribble Version 3 ... 187
13.1 Multiple Views on a Document Without Updating 190
13.2 A Scrollable View on a Document. 198
13.3 Scribble with Scrolling Support 199
13.4 A Window with Two Views on a Document 207
13.5 Scribble Document Window Split into Two Panes 208
13.6 Scribble Version 4 ... 214
14.1 Scribble Version 5 ... 224
15.1 Selecting Context-Sensitive Help 228
16.1 Toolbar bitmap ... 254
20.1 Autoclik Test Driver dialog box 303
20.2 The Autoclik application .. 304
21.1 IDR_ACLIKTYPE in the String Editor. 309
24.1 The Enroll Tutorial Application 339
24.2 The STDREG Tool. ... 341
24.3 The Enter SQL Syntax dialog box 342
25.1 Enroll's Section Form .. 345
25.2 Table Columns Mapped to Recordset Data Members 349
25.3 The Layout of Enroll's Section Form 352
26.1 Enroll Step 2 With a Combo Box 358
27.1 The Enroll Step 3 Application 372
27.2 The Record Menu with New Commands 374

Contents xv

Tables
2.1 Book Set Help File Names 26
6.1 Tutorial Steps. 84
8.1 Key Objects in an Application 97
8.2 Document Implementation Responsibilities 100
8.3 CScribDoc Data Members . 104
8.4 CScribDoc Member Functions . 104
8.5 CStroke Data Members ... 107
8.6 CStroke Member Functions. 107
9.1 View Implementation Responsibilities 120
9.2 CScribView Data Members 121
9.3 CScribView Member Functions 122
24.1 Tables in the Student Registration Database 338
26.1 CCourseSet Data Members 360

xvii

Introduction

The Microsoft® Visual C++IM 2.0 development system for Windows™ and Windows
NT'M adds fully integrated Windows-hosted development tools and a "visual" user­
interface-driven paradigm to the traditional C/C++ development process.

About This Book
This book includes information to help you install and become familiar with Visual
c++ and to help you understand how to use the main Visual C++ development
tools. The book is divided into three parts:

• The Introduction provides installation information, tells how to use the online
documentation, gives answers to common questions, and describes how to use
the integrated environment to develop a Visual C++ application.

• The Tutorials demonstrate the use of various features of this product, including
Object Linking and Embedding (OLE).

• The Appendix contains information on products that make the Microsoft Visual
C++ development system more accessible for people with disabilities and on
product support and services.

Document Conventions
This book uses the following typographic conventions:

Example

STDIO.H

char, _setcolor, __ far

expression

[option]

Description

Uppercase letters indicate filenames, registers, and terms
used at the operating-system command level

Bold type indicates C and C++ keywords, operators,
language-specific characters, and library routines. Within
discussions of syntax, bold type indicates that the text must
be entered exactly as shown.

Many constants, functions, and keywords begin with either
a single or double underscore. These are required as part of
the name. For example, the compiler recognizes the
__ cplusplus manifest constant only when the leading
double underscore is included.

Words in italics indicate placeholders for information you
must supply, such as a filename. Italic type is also used
occasionally for emphasis in the text.

Items inside double square brackets are optional.

xviii Introduction

Example

#pragma pack {II 2}

lfinclude <io.h>

CL [option ...]ftle ...

whlle()
{

}

CTRL+ENTER

"argument"

"C string"

Dynamic-Link Library
(DLL)

Microsoft Specific ~

END Microsoft Specific

~ CEnterDl g;

Description

Braces and a vertical bar indicate a choice among two or
more items. You must choose one of these items unless
double square brackets ([]) surround the braces.

This font is used for examples, user input, program output,
and error messages in text.

Three dots (an ellipsis) following an item indicate that more
items having the same form may appear.

A column or row of three dots tells you that part of an
example program has been intentionally omitted.

Small capital letters are used to indicate the names of keys
on the keyboard. When you see a plus sign (+) between two
key names, you should hold down the first key while
pressing the second.

The carriage-return key, sometimes marked as a bent arrow
on the keyboard, is called ENTER.

Quotation marks enclose a new term the fIrst time it is
defmed in text.

Some C constructs, such as strings, require quotation marks.
Quotation marks required by the language have the form "
" and ' , rather than " " and ' '.

The fIrst time an acronym is used, it is usually spelled out.

Some features documented in this book have special usage
constraints. A heading identifying the nature of the
exception, followed by an arrow, marks the beginning of
these exception features.

END followed by the exception heading marks the end of text
about a feature which has a usage constraint.

The arrow adjacent to the code indicates that it has been
altered from a previous example, usually because you are
being instructed to edit it.

PAR T 1

Getting Started

Chapter 1 Installing Microsoft Visual C++ . 3
Chapter 2 Using Online Documentation. 17
Chapter 3 Questions and Answers 39
Chapter 4 Developing a Microsoft Visual C++ Application 47

CHAPTER 1

Installing Microsoft Visual C++

This chapter describes how to install the Microsoft® Visual C++TM 2.0 development
system for Windows™ and Windows NT'M, as well as the Win32s™ files, from the
CD-ROM.

3

Note The Visual C++ Cross-Development Edition for Macintosh is sold separately
from this product. It is an add-on to Visual C++ 2.0, running on Windows NT 3.5,
which enables Windows developers to use their existing Microsoft Foundation
Class Library (MFC) and Win32 source code and tools expertise in porting applica­
tions from Windows to the Macintosh. In addition, the toolset includes a portability
library that implements the Win32 API on the Macintosh with native Macintosh
look and feel. This static linked library enables a single set of source code, written
to either MFC or directly to the Win32 API, to target both Windows and the
Macintosh. For more information contact the Microsoft Sales Fax Service at
(800) 727-3351 (twenty-four hours per day, seven days per week).

System Requirements
Visual C++ requires the following minimum configuration:

• A PC with an 80386 or higher processor (80486 or higher recommended),
running Microsoft Windows NT version 3.5.

• A VGA monitor (SVGA monitor recommended).

• 16 megabytes of available memory (20 megabytes recommended).

• A Windows NT-compatible CD-ROM drive connected to your computer.

• A hard disk with enough disk space to install the options you need. The setup
program lets you select installation options and provides you with the disk space
requirements for the options you select. It then checks to make sure you have
enough space before copying files.

4 Introducing Visual C++

If you are developing and testing applications for Win32s, you also need either a
dual-boot computer or a separate computer with:

• Microsoft Windows or Microsoft Windows for Workgroups version 3.1 running
in enhanced mode.

• MS-DOS® version 5.0 or later.

You must install the Win32s dynamic-link libraries (DLLs) on the computer you
plan to use for testing and debugging Win32s programs. For example, if you plan
to use a second computer for testing and debugging Win32s programs, you must
install the Win32s DLLs and debugger on the second computer. This requires that
the second computer also have a CD-ROM drive.

Installing Visual C++
This section describes the basic installation for the Visual C++ development system
and the Win32s files. The setup program provided by Visual C++ performs all tasks
necessary for installing the Visual C++ components.

Quick Guide to Installation
Read this section as an overview to the installation procedures or simply for
background information on the installation process.

The Setup Programs
There are two installation programs on the Visual C++ CD:

• \MSVC20\SETUP.EXE, the Visual C++ setup program

• \WIN32S\SETUP.EXE, the Win32s setup program

The Visual C++ setup program can be used to install Visual C++ to run from the
CD-ROM drive or a network installation.

The Win32s setup program is used to install:

• Win32s system DLLs

• Win32s OLE DLLs

• Win32s tools

• Visual C++ remote debugging tools

Chapter 1 Installing Microsoft Visual C++ 5

Where to Start
If you are only developing applications targeted for Windows NT, run the Visual
C++ setup program. This setup program must be run from Windows NT.

If you are developing applications for Win32s, run the Win32s setup program from
Windows 3.1 to install Win32s on your target computer.

CD-ROM Directories
The Visual C++ CD-ROM root directory includes the directory \MSVC20 with the
following subdirectories:

\MSVC20\BIN Executable files for applications and build tools for building 32-bit
applications.

\MSVC20\INCLUDE C/C++ run-time and Microsoft Win32TM Software Development
Kit (SDK) header files.

\MSVC20\UB C/C++ run-time and Win32 SDK libraries.

\MSVC20\HELP Help files for Visual C++.

\MSVC20\MFC Subdirectories for all Microsoft Foundation Class Library files,
including directories for libraries, source files, and include files.

\MSVC20\SAMPLES
Sample programs from the Microsoft Foundation Class Library, the Microsoft
Win32 SDK, and Object Linking and Embedding (OLE).

\MSVC20\REDIST Files you may need to redistribute to users who receive your
software.

\MSVC20\DEBUG Debug versions of files you may need to redistribute to users who
receive your software.

Win32s files are located in the following \WIN32S subdirectories:

\WIN32S\BIN The Win32s debugging tool, remote debugging files, and Microsoft
Profiler for Win32s, if you choose to install them.

\WIN32S\RETAIL Retail versions of the Win32s DLLs.

\WIN32S\DEBUG Debug versions of the Win32s DLLs.

\WIN32S\NLS Files associated with national language support (NLS).

\WIN32S\UT Files that comprise the universal thunker.

6 Introducing Visual c++

Installation Procedures

For help on any of the dialog boxes presented by the Setup program during
installation, press the Fl key or choose the Help button in the dialog box.

You can install Visual C++ in one of the following ways:

Typicallnstallation This installs all tools and libraries for targeting applications for
Windows NT. It also installs Microsoft Foundation Class Library files, sample
files, and Help files.

Custom Installation This opens the Custom Installation dialog box. In this dialog
box you can select files to install or files to add to your current installation. For
more information, see "Custom Installation Options," on page 8.

Minimum Installation This installs the Visual C++ development environment,
Microsoft Foundation Class Library files, and the tools and libraries needed for
targeting applications for Windows NT.

CD-ROM Installation This copies the Visual C++ development environment from
the CD-ROM drive to your hard disk and modifies Windows NT Registry keys for
Visual C++ environment paths. When modified, the registry keys for executable
files, include files, libraries, Help files, and Microsoft Foundation Class compo­
nents point to the corresponding directories on the CD-ROM drive. For more
information see "Installing Visual C++ to Run From a CD-ROM or Network
Server" on page 12.

~ To run Setup

1. Place the Visual C++ CD in the CD-ROM drive.

2. Log on to Windows NT if you have not already done so.

3. Use the File Manager to run SETUP.EXE, located in the MSVC20 directory of
the CD-ROM drive.

-Or-

From the File menu in Program Manager, choose Run and type
[X]: \MSVC20\SETUP in the Command Line box (where [X] represents the
drive letter associated with the CD-ROM drive).

After initialization, Setup prompts you with a dialog box that describes the
program and lets you continue or exit.

4. Choose Continue.

The Installation Options dialog box appears (see Figure 1.1).

Chapter 1 Installing Microsoft Visual C++ 7

Figure 1.1 The Iustallation Options Dialog Box

5. If you decide to perform either the Typical Installation, Minimum Installation,
or CD-ROM Installation, compare the disk space required for the option you
have chosen (displayed next to the option) with the total disk space available
(listed at the bottom of the dialog box).

If you have enough disk space on the default drive (drive C), proceed to the
next step.

If you want to change the installation disk drive to one with more disk space, use
the Change Directory dialog box (accessed from the Directory button) to change
the drive.

6. To perform a default installation without customization, choose Typical
Installation, Minimum Installation, or CD-ROM Installation.

Or, if you want to customize the installation, choose Custom Installation.

7. If you chose Custom Installation in the previous step, select the options you want
to install and choose Continue. For more information on custom installation, see
the following section.

Compare the amount of disk space required by the components you select with
the total amount of disk space available. You may need to free some disk space
before continuing, or install fewer components initially and add components
later.

8 Introducing Visual C++

Setup checks for sufficient disk space, prompts you for registration confirmation,
builds the file list, and copies files from the CD-ROM drive to your hard drive.
Setup also changes your Windows NT registry and initializes ODBC.

8. Choose Continue.

The Setup program finishes and returns you to Windows NT.

Custom Installation Options

When you choose Custom Installation from the Installation Options dialog box, the
Custom Installation dialog box appears (see Figure 1.2).

Figure 1.2 The Custom Installation Dialog Box

This section describes each of the options available from this dialog box.

Directory
The Directory button opens the Change Directory dialog box, shown in Figure 1.3.
You can change the default installation directory.

Figure 1.3 The Change Directory Dialog Box

This dialog box is used to change to a disk drive with adequate space for the options
you choose. You can also change the root directory for Visual C++ 2.0.

Chapter 1 Installing Microsoft Visual C++ 9

Microsoft Visual C++ Development Environment
Select this check box to install the Microsoft Visual C++ development environment.
This is installed in the \MSVC20\BIN directory.

Microsoft C/C++ Compiler and Libraries
Select this check box to install the Microsoft C/C++ 32-bit compiler and all 32-bit
build utilities and libraries. The compiler and build utilities are installed in the
\MSVC20\BIN directory. The libraries are installed in the \MSVC20\LIB
directory. The include files are installed in the \MSVC20\INCLUDE directory.

Microsoft Foundation Classes
Select this check box to install the Microsoft Foundation Class files. These are
installed in the \MSVC20\MFC directory and the Windows SYSTEM directory.
You can use the MFC Files button to open the Microsoft Foundation Class Library
Options dialog box (see Figure 1.4) and select which files to install.

Figure 1.4 The Microsoft Foundation Class Library Options Dialog Box

The Microsoft Foundation Class Library Options dialog box lets you install
libraries for the following target types: static library for EXEs, static library for
DLLs, and shared DLL. You can choose to install release and/or debug versions of
these libraries, and to install the ANSI and/or UNICODE character sets. You can
also choose to install the source files for the Microsoft Foundation Class Library.

Drivers
Select this button to open the ODBC Drivers dialog box, which you use to choose
which ODBC drivers to install.

10 Introducing Visual C++

Tools
Select this check box to install Windows NT and OLE development tools. You can
use the Tools button to open the Tool Options dialog box (see Figure 1.5) and select
which tools to install. The tools are installed in the \MSVC20\BIN directory.

Figure 1.5 The Tool Options Dialog Box

The Tool Options dialog box has check boxes for six categories of tools. You can
install the following tools:

Spy++
A Windows NT -based utility that gives you a graphical view of the system's
processes.

MFCTools
MAKEHM, which maps resource and command IDs in your application to Help
contexts in Windows Help, and TRACER, which sets the value of
afxTraceEnabled in order to enable or disable output from the TRACE macro.

Win32 SDK tools
Analysis tools such as WinDiff, PView, Zoomln, and OLE SDK Tools.

Profiler
A tool you can use to examine the run-time behavior of your programs.

Help Compiler
The compiler and related tools used to create Windows Help.

Online Help Files
Select this check box to install Help files associated with Visual C++. You can use
the Help Files button to open the Help File Options dialog box (see Figure 1.6)
and select which files to install. Use the file size and disk space information in this
dialog box to help determine which files to install. Help files are installed in the
\MSVC20\HELP directory.

Chapter 1 Installing Microsoft Visual C++ 11

Figure 1.6 The Help File Options Dialog Box

The Help File Options dialog box has check boxes so you can choose whether or
not to install the following Help files:

C/C++ Language Help
The language Help file, a reference to the C/C++ run-time library functions.

MFC Library Help
The Help file containing Microsoft Foundation Class Library descriptions.

Win32 API Help
The Help file for Win32 APIs.

OLE API Help
The Help file for OLE APIs.

The Help File Options dialog box also offers the following choices for installing
Books Online:

Minimal: Leave on CD-ROM
Leaves all Books Online files on the CD-ROM. This option may affect how fast
you can access Books Online.

Standard: Copy index only
Installs on your hard disk the file that Books Online uses to find information.
Content files remain on CD-ROM.

Full: Copy all files
Installs all Books Online files on your hard disk. This option maximizes the
speed at which you can access online information.

12 Introducing Visual C++

Sample Source Code
Select this check box to install sample source code. To modify the installation of
sample code, choose the Samples button to open the Sample Source Options dialog
box (see Figure 1.7).

Figure 1.7 The Sample Source Options Dialog Box

The Sample Source Options dialog box lets you select from the following categories
of sample files:

MFC Samples
This includes Microsoft Foundation Class samples, which are installed in
\MSVC20\SAMPLES\MFC.

Win32 Samples
This includes all the Win32 SDK samples installed in the
\MSVC20\SAMPLES\WIN32 directory.

OLE 2 SDK Samples
This includes all the OLE 2 SDK samples. If you have the OLE 2 SDK and
choose this option, Setup installs the OLE 2 SDK samples in the
\MSVC20\SAMPLES\OLE2 directory.

Installing Visual C++ to Run From a CD-ROM or Network Server
If you have limited space on your hard drive, you may want to run Visual C++
directly from the CD-ROM drive. Visual C++ may run somewhat slower as a result
of the increased access time for build utilities, libraries, include files and Help files.
If performance becomes an issue, you can reinstall Visual C++ to run from the
hard disk.

Chapter 1 Installing MIcrosoft Visual C++ 13

Warning If you are using a Write Once Read Many (WORM) drive, copy all of
the files on the Visual C++ CO to the WORM drive. Run Setup from the WORM
drive, using the CD-ROM installation option. This installs the Visual C++ devel­
opment environment, AppWizard, and ClassWizard on your hard drive. All other
Visual C++ components will run from the WORM drive. If you install Visual C++
on the WORM drive, as described in the following installation procedure, you
will permanently lose some of your drive space every time you run Visual C++.

To install files on a network server so that they may be shared, copy the files onto
the network server exactly as they appear on the CD-ROM. Then use the following
procedure to install Visual C++ on individual network computers.

~ To install Visual C++ to run from the CD-ROM drive or network server

1. Run Setup as described on page 6.

2. Choose CD-ROM Installation in step 6.

The Setup program copies the Visual C++ development environment files onto
your hard drive. It also modifies Windows NT Registry keys for Visual C++
environment paths to point to the directories on the CD-ROM or network
server drive.

Installing Visual C++ to run from CD-ROM allows you to run the Visual C++ tools
from the Visual C++ development environment or from the command line in a
Windows NT command window. Note that you cannot build sample application
projects that reside on the CD-ROM since it is a read-only medium. To build
sample applications, copy the sample application's directory to your hard drive
and build the application from there.

When Visual C++ is installed to run from the CD-ROM, it writes its default
workspace and project files to the Windows directory.

Adding Libraries or Files to Your Installation
You can upgrade your Visual C++ installation by copying libraries or files you
didn't install the first time. The following procedure describes how to do this.

~ To add libraries or files to your installation

1. Run Setup as described on page 6.

2. Choose Custom Installation in step 6.

3. In the Custom Installation dialog box, clear all check boxes except the category
you want to install.

14 Introducing Visual C++

4. If you have selected a category that has an associated dialog box, choose the
associated button; otherwise skip to step 7.

5. Clear all default options and select the new option or options.

For example, if you want to install Win32 API Help files, clear all options in the
Custom Installation dialog box except Online Help Files, choose the Help Files
button, and select only Win32 API Help in that dialog box.

6. Choose OK to close the associated category dialog box.

7. Choose Continue to proceed with the installation.

Installing Win32s
You can use Visual C++ to develop applications for Win32s; however, these
applications must be debugged using a computer running MS-DOS and Windows
3.1. For this reason, the Win32s files are installed separately from the Visual C++
files.

You must install the Win32s files on a system that has a CD-ROM drive and runs
MS-DOS, version 5.0 or later, and Windows 3.1 in enhanced mode. If you want to
copy these files to another computer that doesn't have a CD-ROM, you should
remember to modify the SYSTEM.lNI and TOOLS.INI files on the second
computer. See "Win32s Configuration" on page 16 for a description of what
is changed in these files by the Win32s setup program.

Running Win32s Setup
The Win32s setup program copies files from the WIN32S subdirectories on the
CD-ROM to your hard drive.

~ To run Win32s Setup

1. Place the Visual C++ CD in the CD-ROM drive.

2. Run Windows 3.1 in enhanced mode.

3. Use the File Manager to run SETUP.EXE, located in the WIN32S directory of
the CD-ROM drive.

-Or-

Choose Run from the Program Manager File menu and type
[X J : \W I N32S\SETUP in the Command Line box (where [XJ represents the
drive letter associated with the CD-ROM drive).

After initialization, Setup prompts you with a dialog box that describes the
program and lets you continue or exit.

Chapter 1 Installing Microsoft Visual C++ 15

4. Choose Continue.

The Installation Options dialog box appears. See the following section, "Win32s
Installation Options," or choose the Help button for more information on options
in this dialog box.

5. After selecting installation options, choose Continue.

Setup builds the file list, checks for sufficient disk space and copies files from
the CD-ROM drive to your hard drive.

After all files have been copied, a Configuration Files dialog box appears to let
you choose to have Setup modify configuration files or write a modified version
to another location.

6. Choose one of the options in the Configuration Files dialog box and choose
Continue.

Win32s Installation Options
The Installation Options dialog box appears when you run the Setup program.
(See Figure 1.8.)

Figure 1.8 The Installation Options Dialog Box

The Installation Options dialog box contains options for installing DLLs and
Win32s tools. If you choose the Directory button, the Change Directory dialog box
opens. Use the Change Directory dialog box to change the installation disk drive
and directory.

16 Introducing Visual e++

Win32s DLLs
Retail and debug versions of Win32s system and OLE DLLs are available to
install. At least one of the system DLLs must be installed on a system that runs
applications that call Win32s APIs. The Win32s retail DLLs are first installed to
the WIN32S\RETAIL directory. The Win32s debug DLLs are first installed to the
WIN32S\DEBUG directory. If you choose to install debug files, some are copied to
the Windows directory. If you choose to install the retail versions of the DLLs, or
both retail and debug versions, the retail versions are copied to your Windows
directory. You can run WIN32S\BIN\SWITCH.BAT to change from one version to
the other.

Win32s Tools
If you select the Remote Debugging Files check box, the setup program installs files
that enable you to debug programs on a remote system. If you select the Profiler
check box, the setup program installs Profiler for Win32s.

Win32s Configuration
The Win32s setup program adds lines to the TOOLS.lNI and SYSTEM.lNI files
when it installs Win32s files. See the Help file for more details. Modifications vary
depending on which options you choose during installation. Remember to make
these modifications if you copy the Win32s files to another computer.

Note If your CD-ROM is not supported by Windows NT, open Windows and refer
to the Installation Notes in README.WRI.

CHAPTER 2

Using Online Documentation

Visual C++ online documentation consists of Quick Reference and Books Online.
Quick Reference provides quick look-up information while you program. Books
Online is the documentation set for Visual C++ in online format. Every Quick
Reference topic has a link to Books Online, where complete information is
available. The relationship between Quick Reference and Books Online is similar
to that between a dictionary and an encyclopedia.

17

Visual C++ sets up Quick Reference files, by default, on your hard disk; Books
Online files reside on your product CD-ROM. You can customize where you set up
files or where you get information - you can even choose to go directly to Books
Online for context-sensitive (FI) help.

This chapter describes how to use online documentation. Among the topics covered
in this chapter are the following:

• Where to Find Information

• Browsing Topics

• Searching for Information

• Getting FI Help on a Keyword or an Error Message

• Getting Help on a Dialog Box or Menu Command

• Getting Help on How to Accomplish a Task

• Customizing Quick Reference and Books Online

• Online Documentation Reference

18 Introducing Visual C++

Where to Find Information
Since Quick Reference is a subset of Books Online, some information that will
be of interest to you will not be in Quick Reference. For instance, extended
sample programs for the Microsoft Foundation Classes are not available in Quick
Reference. However, Foundation Class sample programs are part of Books Online.
The Visual C++ online documentation system also includes stand-alone help files
that document various tools or libraries that support Visual C++.

Contents of Books Online
Books Online contains user's guides, programming guides, references, and
reference sets, such as the OLE 2.0 SDK. Books are grouped so you can browse the
material according to your interest.

Book Set Books Description

User's Guides Introducing Visual C++ Describes how to install Visual
C++ , introduces the product,
and provides tutorials on using
Visual C++ and the MFC
library

Visual C++ User's Guide Describes the features of Visual
C++ and all its tools

Help Compiler User's Guide Describes how to create
application help files

MFC Programming with MFC Provides procedural and
conceptual information about the
MFC library

Class Library Reference Provides a complete description
of the MFC library

MFC Samples Provides MFC library samples

MFC Technical Notes Provides technical notes written
by and for programmers.

C/C++ Programming Techniques Introduces programming
techniques for new features and
discusses migrating from other
platforms and compilers

C Language Reference Describes the Microsoft
implementation of C

C++ Language Reference Describes the Microsoft
implementation of C++

Chapter 2 Using Online Documentation 19

Book Set Books Description

C/C++
(continued)

Run-Time Library Reference Describes the Visual C++ run­
time library

Win32 SDK

OLE 2.0 SDK

ODBC2.0SDK

Extensions:

68KPorting

iostream Class Library
Reference

Preprocessor Reference

Samples

Win32 SDK, Volumes I
through 5 and OpenGL

OLE 2 SDK

ODBC SDK, Volumes I
and 2

Getting Started

Programmer's Guide

Contents of Quick Reference

Describes the iostream class
library

Describes the C/C++
preprocessor

Provides C and C++ samples

Describes the Software
Development Kit for Win32

Describes the Software
Development Kit for OLE 2

Describes the Software
Development Kit for ODBC
(Intel only)

Covers setup and installation of
Visual C++ Cross-Development
Edition for Macintosh

Includes overview, porting
procedures, and reference
information for the tools for the
Cross-Development Edition.

Quick Reference provides quick-reference information while you program. For
example, by pressing FI on a keyword or function in a source file, you open a Quick
Reference topic that gives essential information about the keyword or function.
These topics may include the following information:

• Prototype or syntax

• Compatibility, if applicable

• Return value

• Parameter descriptions

• A jump to a group of related functions or parent class

• An example opened from an Example button

20 Introducing Visual C++

Quick Reference also provides how-to information and context-sensitive help on
dialog boxes and menu commands.

For information on

U sing online documentation

Visual C++ tools

Module-definition file statements

Resource-file statements

Build errors

C/C++ language

Microsoft Foundation Classes

C/C++ run-time library

iostream class library

OLE 2.0 classes

Database classes

Win32 API

OLE 2.0 API

ODBCAPI

68K porting issues

Choose the following Quick Reference file

Using Online Documentation

Visual C++

Miscellaneous Tools

Miscellaneous Tools

Build Errors

C/C++ Language

Foundation Classes

Run-Time Routines

iostream Classes

Foundation Classes

Foundation Classes

Windows API

OLE API

ODBC API (Intel only)

68K Porting Reference (Intel only)

Note If you cannot find the information you need in a Quick Reference file, choose
the Books Online icon in each Quick Reference topic or choose Search Plus in
Books Online.

Contents of Stand-Alone Help Files
The table below lists stand-alone Visual C++ help files, which you cannot open
from the Contents window. These files are either installed in the Visual C++
program group or in the product help directory.

For information on

Visual C++ setup

Spy++

Windows NT Knowledge Base articles

Technical support information

Windows Sockets specification

Windows NT sockets

Windows NT Unipad editor help

Hotspot editor for WinHelp files

Open the following help file

Setup Help

Spy++Help

Visual C++ 2.0 Knowledge Base

Technical Support Help

Windows Sockets

Windows Sockets for NT

Notepad Help

Using Hotspot Editor

Chapter 2 Using Online Documentation 21

Browsing Topics
When Quick Reference or Books Online is opened, the content-represented
by icons-is displayed in the Contents window. You can expand icons down a
branch until you reach a topic. When you choose a topic in the Contents window,
the Viewer window displays it. This side-by-side approach allows you to
navigate without losing your place in the Contents window.

An icon represents a book or a classification that you can expand to a topic level.
Clicking an icon always either expands or collapses the levels below it, in the
same manner as File Manager. You can expand or collapse icons without
opening the Viewer window. The Viewer window opens when you double-click
a topic at the end of a branch.

Opening the Contents Window
The Contents window displays book sets or Quick Reference files. You expand a
book set or Quick Reference file to display individual topics.

~ To open the Contents window

• From the Help menu, choose Quick Reference or Books Online.

-Or-

• From the Visual C++ program group, double-click the Quick Reference or the
Books Online icon.

-Or-

• From the Viewer window for Quick Reference or Books Online, choose the
Contents button.

Once the Contents window is open, you can expand icons and jump to topics. You
can also use the drop-down list in the Contents window to switch from Quick
Reference to Books Online, or vice versa.

Navigating within the Contents Window
When the Contents window is opened, it displays a list of icons that represent
categories of information at the same level.

In Quick Reference, for example, the list of icons at the top level represent
individual files-for example, Foundation Classes Quick Reference or Windows
API Quick Reference. In Books Online, a book icon can represent a book set, a
single book, or an important subdivision within a book, such as a chapter.

22 Introducing Visual C++

Any icon can expand or collapse up or down a branch. For instance, when a book
icon is expanded, the closed book icon is replaced with an open book icon.

~ To open or close an icon

• Double-click the icon.

The icon expands or collapses.

Expand shortcut key: RIGHT ARROW

Collapse shortcut key: LEFT ARROW

Note The color of an icon changes to indicate the level of information within a
branch. There is no significance in color of an icon except to indicate its relative
position in the branch.

~ To view a topic

1. Double-click an icon. If another icon is displayed below it, double-click it until a
topic icon appears.

Shortcut key: ENTER

2. Double-click the topic icon.

The Viewer window displays the topic.

Shortcut key: ENTER

Navigating within the Viewer Window
Once you have opened a topic in the Viewer window, you can navigate to other
topics in a number of ways.

~ To navigate within the Viewer window

• Double-click a new topic in the Contents window

The Contents window is the fastest way to browse or scan topics, since you
decide which books to view and in which order.

• Choose the browse buttons on the Viewer window button bar

The Browse buttons move you through topics one by one, forward or back.
Since related material is developed in sequential topics, navigating with Browse
buttons is a convenient way to view all topics on a particular subject.

• Choose a jump within a topic

Jumps take you to topics that have a specific bearing on the current topic. These
jumps may take you to a topic within a book or outside it.

Chapter 2 Using Online Documentation 23

• Choose Search on the Viewer window button bar

All Quick Reference topics are indexed by keyword. Search allows you to look
up keywords and display topics that contain the keywords. Search works best if
you know exactly what you are looking for.

• Use Search Plus in Books Online to find information across all topics

Search Plus allows you to jump to specific information within topics that span
the entire Books Online library. Search Plus is the fastest way to find specific
information.

You may open a topic in Quick Reference or Books Online and not know where
you are. For instance, you may have entered a topic:

• After using Search

• After using Search Plus

• After jumping from another topic

• Mter browsing forward or back through several topics

~ To fmd out where you are

• Choose the Contents button on the Viewer window button bar.

If the Contents window is open, the icon containing the topic in the branch will
expand and the correct topic will be highlighted. If the Contents window is
closed, the Contents window will open and the same action will take place.

Searching for Information
You Can search Visual C++ documentation in three ways:

• Help search

• Keyword Search

• Search Plus

Help search involves the Windows Help Search dialog box. Help search is confined
to the current ftle in Books Online or Quick Reference. For instance, if you want to
search for a Windows API but have the Run-Time Routines Quick Reference file
open, your search will be empty.

Keyword Search is a search that is specific to Visual C++. The Keyword Search
allows you to search for a language keyword, function, or build error across all
Help ftles checked in the Help tab in the Options dialog box.

24 Introducing Visual C++

Help Search

Search Plus is a full-text search. To take advantage of Search Plus, you must open
Books Online-Quick Reference does not support Search Plus. You can limit your
search by selecting a category or categories that correspond to the book sets in
Books Online.

You can quickly find information by using the Search button in the Viewer window.
The Search button opens the Search dialog box, where you select a word that you
want to search for. All topics associated with that word are listed.

~ To get help using Search

1. In the Help button bar, choose the Search button.

-Or-

TypeS.

2. Select the word or phrase you want to search for. As you type, the words that
most closely match the text are displayed.

3. Choose the Show Topics button.

4. Select the topic you want to view. If necessary, use the scroll bar to see more
topics.

5. Choose the Go To button.

Note If you open a Quick Reference file from the Help menu, the Search dialog
box is automatically displayed.

Keyword Search
The Keyword Search command on the Help menu opens the Keyword Search dialog
box. You can use the Keyword Search dialog box as a shortcut for opening help on
a language keyword, library routine, class function, or error message.

You can determine which help files are searched. The default is all Quick
Reference files.

Note You cannot get help on Visual C++ development environment from the
Keyword Search dialog box. Keyword Search is restricted to language elements
and build error message numbers.

Chapter 2 Using Online Documentation 25

~ To get help using Keyword Search

I. From the Help menu, choose the Keyword Search command. The Keyword
Search dialog box opens.

2. In the Keyword box, type a keyword, for example-CreateWindow, Open, or
C1016.

If the keyword appears in one or more files, the View Reference In box displays
a list of the files in which it appears. You can then select which file you want.
If the selected file has more than one reference within it, the file opens and
displays the Help Search dialog box with the term selected.

3. Choose OK.

~ To determine which help tiles are searched with Keyword Search

1. From the Tools menu, choose Options.

The Options dialog box appears.

2. Select the Help tab.

3. Clear the files you don't want to search.

You can check both Quick Reference or Books Online files. If you check both
Foundation Classes Quick Reference and Foundation Classes in Books Online,
the Keyword Search dialog box displays both files in the View Reference In list
box when a keyword is entered.

Tip You may want to always search in Books Online rather than Quick Reference
for certain APIs. The Help tab allows you to set your preferences. For instance, you
may want to search the Windows API in Books Online but the Run-Time Routines
in Quick Reference. The default setting is Quick Reference files.

The files you choose also sets which files open with context-sensitive help (Fl help
from a source file or the output window). For more information, see "Customizing
Context-Sensitive Help" on page 35.

Using Search Plus
Search Plus lets you search all or part of the books in Books Online to find a word
or phrase. You can search for a single word, a combination of words in a topic, one
word near another word, an exact phrase, and so on. You can narrow your search
by defming a search pattern with Boolean expressions.

Search Plus displays the matches to your search in a window, from which you can
select a topic to view. For example, to fmd all topics that have information on
exceptions, you could search for "exceptions" or "exception handling."

26 Introducing Visual C++

The number of topics found by Search Plus is determined by both your search
pattern and where you look for information.

~ To get help using Search Plus in Books Online

1. Open the Contents window for Books Online.

-Or-

Open Books Online to a topic in the Viewer window.

2. Choose Search Plus on the Contents window toolbar.

-Or-

Choose Search Plus on the Viewer window button bar.

3. In the Find dialog box, type the word or words that you want to find.

If you want to enter groups of words or exclude words, choose the Hints button.
This displays the Search Hints dialog box. It describes the use of keywords to
combine words, the use of quoting and grouping operators, and the use of a wild
card for expanding a root word.

You can also set the range used for the keyword NEAR. It determines how
many other words can separate two words for which you are searching.

4. Under Look At, select either the Topic Titles Only or the All Text option button.

5. Under Look In, select the book set(s) in which you want to search. Use the scroll
bar to see all book sets.

6. Choose the Search button.

The titles of topics found are displayed in the Topics Found list. Topics in the
current file have no label before the topic title. Topics in other files in the group
are preceded by a label. These labels change as you switch from one file to
another. See Table 2.1 for a listing of Book Sets and their corresponding labels.

7. Double-click the desired topic in the Topics Found list. Each entry in the topic
displayed is highlighted.

You can also use the Previous, Next, and Go To buttons to display topics.

Table 2.1 Book Set Help File Names

Book Set

User's Guides

MFC

C/C++

Win32 SDK

OLE 2.0 SDK

ODBC2.0SDK

Extensions

Narrowing Your Search

Chapter 2 Using Online Documentation 27

Help File Name

VC20BKS 1. HLP

VC20BKS2.HLP

VC20BKS3.HLP

VC20BKS4.HLP

VC20BKS5.HLP

VC20BKS6.HLP

VC20BKS7.HLP

SinGe a full-text search is comprehensive, you may find that the number of topics
found is too large for practical purposes. For instance, searching for the word
"dialog" would generate a large number of topics.

~ To narrow a search with Search Plus

• Exclude files in the Look In group from the search list by clearing the check box
for a book set.

For example, searching for "dialog" in the User's Guides book set will give you
an entirely different set of found topics than searching in the MFC book set.
You can select or clear as many book sets as needed.

• Use the operators (AND, OR, and NOT) and the grouping operators listed in the
Search Hints dialog box to create likely combinations of words.

• Use the " " quoting operators to search for an exact phrase.

• Use the NEAR operator with combinations of words to find only those that are
close together in a topic.

Using Search Operators
The operators AND, OR, and NOT operate only on a topic level. The following
Search For string finds any topic that contains both words:

menu AND command

The order of words in the Search For string does not matter. The following Search
For strings produce identical results:

menu AND command
command AND menu

28 Introducing Visual C++

• The search mechanism ignores letter case. The same results appear if you search
for cobject or COBJECT.

• You cannot search for the Search operators, such as NOT, for instance.

Built-in Exclusions from Searches
There are several built-in exclusions from searches. Most of these exclusions will
have no effect on your searches, but you should be aware of them. For instance:

• You can search for alphanumeric characters only. Characters such as - [tilde],
[number sign], \ [backslash] and ([left parenthesis] are excluded from the
search.

• Some words are excluded from the full-text search capability in order to build a
smaller search index file. The excluded words, such as "because," are not
usually helpful for finding information in this kind of material.

This exclusion has a side effect with the NEAR keyword, because excluded
words are essentially invisible to the search mechanism, even though they are
visible to you on the topic page. For instance, if you set NEAR to 1 and search
for:

menus NEAR commands

the search would find "commands because the menus" in the sentence "It may
not display all the listed commands because the menus are dynamic," since both
"because" and "the" are excluded from the search index.

Getting F1 Help on a Keyword or an Error Message
You can get help in a source or output window for keywords by placing the
insertion point on a keyword or build error, then pressing Flo (A keyword for
Help is any language element you want help on-a function, language keyword,
message, class name, and so on.) You can get context-sensitive help by pressing:

If additional information on the keyword exists in Books Online, the Books Online
icon in the Quick Reference topic is visible at the end of the topic. If an example
exists for the keyword, the Example button in the button bar is active.

You can also open the Contents window to browse the contents of all Quick
Reference files. For a quick look-up, try the Keyword Search command on the
Help menu. For more information, see "Keyword Search" on page 28.

Chapter 2 Using Online Documentation 29

Pressing F1 in a Source or Output Window
Pressing FI on a keyword in a source or output window opens a topic in Quick
Reference. When the same keyword exists in more than one file, the Keyword
Search dialog box appears, listing the files in which the keyword help exists.

You can also press CTRL+Fl on a keyword to get help. CTRL+Fl search controls the
order in which help files are searched, with the first topic found in any help file
displayed. The help search stops once a topic is found. See "Customizing Context­
Sensitive Help" on page 35 for information on determining a search order for
context-sensitive help.

~ To get Fl help on a keyword or build error

1. Place the insertion point anywhere on the keyword in a source window or
anywhere on the error displayed in the output window.

2. Press Fl.

Help (Figure 2.1) on the keyword or error appears.

#include <float.h>

Return Value
_chgsign returns a value equal to its double-precision floating-poml argument x,
bUI with its sign reversed. There is no error return.

Parameter
x Double-precision floating-pomt value to be changed

CategOlY
Flo attn'S -P oint Supp ort

For complete mforrnation m Books Online, click this icon or press n.

Figure 2.1 Typical Quick Reference Help Topic

3. To display an example in a second topic window, choose the active Example
button.

The Example help window appears.

30 Introducing Visual C++

4. To jump to Books Online for additional information, choose the Books Online
icon.

You can choose which files Visual C++ looks in for help on a keyword. The default
is all Quick Reference files. You can also set an option so that Visual C++ opens a
help topic in Books Online rather than Quick Reference. See "Customizing
Context-Sensitive Help" on page 35 for more information.

Note Clicking the right mouse button in a source or output window does not open
Quick Reference. You may be familiar with this means of getting Quick Reference
from earlier versions of QuickHelp. WinHelp does not support the right mouse
button.

However, clicking the Right mouse button while a Quick Reference file is active
does open a pop-up menu that lists the Quick Reference files. You can jump to
another Quick Reference file by choosing a file on the menu.

Choosing Between Alternative Topics
Sometimes when you press Fl on a keyword in a source file, the Keyword Search
dialog box appears. This occurs when help on the keyword exists in more than one
Quick Reference file.

For example, help on the CreateBitmap function exists in both Foundation Classes
Quick Reference and the Windows API Quick Reference, since both libraries
include a CreateBitmap function.

If you request help on CreateBitmap from a source file, the Keyword Search dialog
box lets you select either the topic in Foundation Classes Quick Reference or the
topic in the Windows API Quick Reference.

~ To choose between alternative topics with Fl help

1. Press Fl on a keyword in a source file.

If alternative topics exist for the keyword, the Keyword Search dialog box
(Figure 2.2) appears.

Chapter 2 Using Online Documentation 31

Figure 2.2 Keyword Search Dialog Box

2. Select the appropriate Quick Reference file and choose OK.

If the selected Quick Reference me contains more than one instance of the help
keyword, the Help Search dialog box for that help file opens after you choose a
specific Quick Reference file.

3. From the Help Search dialog box, double-click the appropriate topic, then
choose Go To.

The Quick Reference topic appears in the Viewer window.

Getting Help on a Dialog Box or Menu Command
You can press FI for context-sensitive Quick Reference on menu commands and
dialog boxes.

Quick Reference on menus describes the purpose of each command. Quick
Reference on dialog boxes describes the purpose of the dialog box and provides
specific information for each control in the dialog box, such as list boxes, check
boxes, text boxes, and option buttons.

~ To get help on a menu command

1. Open the menu.

2. Use the arrow key to highlight the command.

3. Press FI.

Help on the menu appears.

~ To get help on a dialog box

1. Open the dialog box.

2. Press FI or choose Help.

32 Introducing Visual C++

Dialog box help (Figure 2.3) appears.

Use this dialog box to specify a font and font size for text
included in dialog boxes you create using the dialog resource
editor.

Font Lists available fonts.

Size Lists available sizes of the currently selected font.

Sample Displays an example of the currently selected font
and size.

~ For complete infonnation in Books Online, click this
III! Icon or press F2.

Figure 2.3 Typical Dialog Box Help Topic

If any related procedures exist in Quick Reference, they are listed. The Books
Online icon jumps to a topic in Books Online where the function of the dialog is
generally discussed.

Getting Help on How to Accomplish a Task
Visual c++ Quick Reference includes information on tools that make up Visual
C++: the text editor, the resource editors, the debugger, and so forth. Visual C++
Quick Reference is divided into two parts, Step-by-step Instructions and Reference
Information.

The Step-by-step Instructions part contains brief topics that describe how to
accomplish a task, such as setting a breakpoint. To get background information or
greater detail, choose the Books Online icon at the bottom of the topic. The
Reference Information part describes all features of the interface such as dialog
boxes, toolbars, and windows.

Note Quick Reference for the Intel version of Visual C++ includes information on
the Visual C++ 2.0 Cross-Development Edition for Macintosh. Step-by-step
Instructions and Reference Information parts for the Cross-Development edition are
listed under the 68K Specific node.

~ To open Visual C++ Quick Reference

• From the Help menu, choose Quick Reference.

-Or-

Chapter 2 Using Online Documentation 33

• From the Visual C++ program group, choose Quick Reference.

-Or-

• From the Books drop-down list in the Contents window, choose Quick
Reference.

Getting Help on How-To Topics
The how-to topics in Visual C++ Quick Reference are organized by tools.

~ To get help on a how-to procedure

1. Open Visual C++ Quick Reference.

The Contents window opens, displaying Quick Reference files.

2. Double-click Visual C++.

2. Double-click Step-by-step Instructions.

The categories of how-to topics are displayed.

3. Double-click Debugger, for example.

4. From the list of topics, double-click:

To run the program and execute to the next statement

The how-to topic (Figure 2.4) appears in the Viewer window. See Figure 2.4
below.

~ To run the program and execute the next statement (Step Into)

1. Open a source file and set a breakpoint.

2. From the .Qebug menu, choose Qo (FS).

When the program comes to the breakpoint, the debugger pauses
execution.

3. From the .Qebug menu, choose Step Into (F8).

Toolbar: III
Whether it is in the current function or in a c all to another function, the
debugger executes the next statement, then pauses execution.

4. Repeat Step 3 to continue executing the program one statement at a
time.

~ For complete information in Books Online, click this icon or press
.. F2.

Figure 2.4 Typical How-To Help Topic

34 Introducing Visual C++

For additional information on this or any other topic, choose the Books Online icon
at the end of the topic.

Note You can also open Search from the Viewer window button bar to find how-to
procedures in Visual C++ Quick Reference.

Customizing Quick Reference and Books Online
Visual C++ allows you to copy the Books Online files to your hard disk or a
network location. You also have the flexibility to determine where Visual C++
looks for help-in Quick Reference, Books Online, or a combination of the two.

Installing Books Online to Your Hard Disk or to a Network
Location
Installing Books Online on your hard disk or a network location requires changing
path information in the Registry. You can do this by hand, but the Visual C++
Setup program will do it for you.

~ To install Books Online to another location

1. Run Setup from the Visual C++ installation disk.

The Setup program opens.

2. In the Welcome dialog box, choose Continue.

The Installation Options dialog box appears.

3. Choose the Directory button.

The Change Directory dialog box appears.

4. Enter the location where you want to copy the files. Choose OK.

The Installation Options dialog box appears.

5. Choose Custom Installation.

The Custom Installation dialog box appears.

6. Clear the check boxes for all options but Help Files.

7. Choose Help Files.

The Help File Options dialog box appears.

8. Clear the check boxes for all help files.

9. In the Books Online Options group, select the Full: Copy All Files option.

Chapter 2 Using Online Documentation 35

Customizing Context-Sensitive Help
You can limit your FI searches to a set of files or determine a search in a specific
order through a set of files for CTRL+Fl help. The files you select can be part of
Quick Reference or Books Online. The default is all Quick Reference files.

For example, suppose you want Fl help to open Quick Reference files except for the
Windows API, in which case you wanted help to jump to Books Online. When you
pressed Fl on a CreateWindow, for example, Visual C++ would list the files in
which CreateWindow appears-but only in the files you have selected.

You can also determine a search order by moving files up or down a list. When you
press CTRL+Fl on a keyword, Visual C++ looks through the files in order for the
help topic on the keyword. Help displays the first topic found.

~ To limit the number of help files searched for Fl help

1. From the Tools menu, choose Options.

The Options dialog box appears.

2. Select the Help tab.

The Help tab (Figure 2.5) appears.

Figure 2.S Help Tab In the Options Dialog Box

3. Clear the check boxes of the Quick Reference files you don't want to search in
the Help Files list box.

36 Introducing Visual C++

When you press PIon a keyword, only the file or files you have selected are
searched.

Note Both context-sensitive PI help and Keyword Search look only in the files
you have checked in the Help Files list box. If you have unchecked all files or
unchecked the file in which the keyword help exists, pressing FI in a source file or
an output window will generate this error:

Help Topic Not Found

~ To customize an Fl search order

1. From the Help tab on the Options dialog box, select a help file name in the Help
Files list box.

2. Choose Move Up or Move Down.

3. Repeat Steps 1 and 2 until files are ordered as desired.

~ To search for a keyword in a customized search order

1. Place the insertion point anywhere on the keyword in a source window.

2. Press CTRL+Fl.

Visual C++ looks for keyword help in the Help Files list box order and displays the
first topic found.

For example, suppose you have both Foundation Classes Quick Reference and
Foundation Classes in Books Online checked in the Help Files list box. If you have
moved Foundation Classes in Books Online to the top of the list, pressing CTRL+FI
on a member function would open the member function help topic in Books Online.

If you pressed PIon the same member function, the Keyword Search dialog box
would appear, listing both the Quick Reference and Books Online Foundation Class
files. CTRL+FI help gives you the flexibility to get the level of information you want
first on a case-by-case basis.

Tip Use CTRL+FI for the Macintosh cross-development porting information.
Context-sensitive help will always open to the porting information first. You can
then jump to the appropriate function or API in another file if you need more
information.

Chapter 2 Using Online Documentation 37

Online Documentation Reference
This reference describes interface features, shortcut keys, and book-set filenames
for Visual c++ online documentation.

Contents Window Controls
Control Menu

Font
Opens the Fonts dialog box, in which you can change the font and font size
for Contents window display.

About Contents
Opens a dialog box that gives information about the Contents window.

Drop-down List Box
Allows you to select either Quick Reference or Books Online for display in the
Contents browser.

Search Plus
For Books Online, opens the Find dialog box to begin a full-text search.
Disabled in Quick Reference.

Viewer Window Buttons
Contents

If the Contents window is opened, highlights the title of the current topic in
Quick Reference or Books Online. If the Contents window is closed, it opens the
Contents window and highlights the current topic.

Search
Displays the words you can use to search for related topics in the current help
file. Use this button to look for topics related to a word. Search is not a full-text
search across the Books Online library, but works like an index for the current
file.

Search Plus-Books Online Only
Opens the Find dialog box to begin a full-text search one or more book sets.

Back
Displays the topics you viewed, in reverse order.

History
Displays a list of the last 40 topics you viewed in the Windows Help session.
The most recently viewed topic is listed first. To open a topic, double-click it.

Example
When active, opens a programming example in a second topic window.

Jumps to related-and usually additional-information in Books Online.

38 Introducing Visual C++

Shortcut Keys
Context-Sensitive Help
To

Open help topic in a source or output
window

Press or Click

FI

Open first keyword help topic found in a
list of files

CTRL+FI

Display pop-up menu listing Quick
Reference files

Right mouse button while Quick Reference
help file is in focus.

Contents Window Shortcut Keys
To Press

Select the first book HOME

Select the last book END

Select the next level down DOWN ARROW

Select the next level up UPARROW

Page down the list of books PAGE DOWN

Page up the list of books PAGE UP

Expand the current level RIGHT ARROW

Collapse the current level LEFf ARROW

Use shortcut for double-click ENTER

Book Sets and Corresponding Help File Names
Book Set Help File Name

User's Guides VC20BKSl.HLP

MFC VC20BKS2.HLP

C/C++ VC20BKS3.HLP

Win32 SDK VC20BKS4.HLP

OLE 2.0 SDK VC20BKS5.HLP

ODBC 2.0 SDK VC20BKS6.HLP

Extensions VC20BKS7.HLP

39

CHAPTER 3

Questions and Answers

Installation

The questions in this chapter represent a cross-section of typical questions asked by
developers about the Visual C ++ development system and its components.

Questions and answers are provided on the following topics:

• Installation

• Cross-platforms

• General information

• Development environment

• Microsoft Foundation Class Library (MFC)

Q. What does the Setup program do when it modifies the Windows NT registry?
A. It registers the directories for the executable files, include files, library files,
Books Online files, and Help files used by Visual C++. If you install Visual C++ to
run from your hard drive, the drives and directory paths specified at installation are
registered. If you install Visual C++ to run from the CD-ROM, the CD-ROM drive
and directory paths are registered.

The setup program also modifies the settings for the Windows NT Automatic
Debugger for Just-In-Time Debugging. Finally, to permit debugging of OLE
servers and clients, the Setup program modifies OLE Remote Procedure Call
settings.

Q. How do I change the default installation directory?
A. During installation, choose the Directory button in the Installation Options
dialog box and type a new directory name in the Change Directory text box.

40 Introducing Visual C++

Q. Can I run Visual C++ from the CD·ROM?
A. Yes, an option in the Installation Options dialog box of the Setup program lets
you run Visual C++ from the CD-ROM or from a network. This installation will
install Visual C++ and its wizards-AppWizard and ClassWizard-on your hard
drive. If you choose to run Visual C++ from the CD-ROM, you'll save space on
your hard disk, but Visual C++ performance may be negatively affected.

Q. How do I uninstall Visual C++ 2.0?
A. You can uninstall Visual C++ 2.0 by deleting the root directory of Visual C++,
several DLLs located in the Windows NT System32 directory, and an entry from
the Windows NT registry.

~ To uninstall Visual C++ 2.0

1. Open File Manager.

2. Select the MSVC20 directory.

The directory is located on drive C by default. If you installed Visual C++ 2.0 at
a location other than C:\MSVC20, select that directory.

3. Move out of the directory any files you want to save.

4. From the File menu, choose Delete.

The directory and its files are deleted.

5. Choose the SYSTEM32 subdirectory of your Windows NT directory.

6. Select files in the SYSTEM32 directory that are listed in the REDIST.WRI file.

7. From the Edit menu, choose Delete.

The files you selected are deleted from the directory.

8. Open Regedit32.

9. Open the Software folder.

10. Open the Microsoft folder.

11. Select the Visual C++ 2.0 folder.

12. From the File menu, choose Delete.

The entries for Visual C++ 2.0 are deleted from the Windows NT registry.

Q. How do I uninstall Win32s?
A. You can uninstall Win32s by deleting the root directory of Win32s, several files
located in the Windows system directory, and several entries from the
SYSTEM.INI file.

Chapter 3 Questions and Answers 41

~ To uninstall Win32s

1. Open File Manager.

2. Select the WIN32S directory.

The directory is located on drive C by default. If you installed Win32s at a
location other than C:\WIN32S, select that directory.

3. From the File menu, choose Delete.

The directory and its files are deleted.

4. Choose the system subdirectory of your Windows directory.

5. Select files in the System directory that are listed in the REDIST.WRI file.

6. From the File menu, choose Delete.

The files you selected are deleted from the directory.

7. Open the System Configuration editor (SYSEDIT.EXE).

8. Make the SYSTEM.INI window active.

9. Delete the following entry from the [386Enh] section of your SYSTEM.INI file:

device=C:\WINDOWS\SYSTEM\WIN32S\W32S.386

where C:\WINDOWS\SYSTEM is the windows system directory.

10. Delete the following entry from the [Boot] section of your SYSTEM.INI file:

drivers=WINMM16.DLL

11. From the File menu, choose Save to save changes to the SYSTEM.INI file.

Cross-Platforms
Q. How do I port my 16·bit application for Windows to Win32?
A. First, read the section titled "Porting 16-Bit Code to 32-Bit Windows" in
Programming Techniques to learn how to port applications to Windows NT. Then
use the Microsoft PortTool application, located in the \MSVC20\BIN directory, to
help identify areas in your program that require revision. For more information,
see the article "MFC: Porting MFC Applications to 32-Bit" in Programming with
the Microsoft Foundation Class Library.

Q. How do I port my character·mode applications to Windows NT?
A. Character-mode applications that use standard I/O calls such as printf and
scanf can be built in Windows NT as console applications. If your code uses BIOS
calls, graphics libraries, or direct hardware calls, you can use that code for
applications that run under Windows NT.

42 Introducing Visual C++

Q. Can I write or debug 16-bit applications using Visual C++ 2.0?
A. No. Visual C++ 1.5 is available for developing 16-bit applications that run in
Windows 3.1 and MS-DOS.

Q. Can I debug Win32s programs using the debugger?
A. Since Win32s applications use a subset of the Win32 APIs, you can use the
debugger to debug under Windows NT. When you are debugging only Win32s
errors, you can use remote debugging.

Q. How do I use libraries to build a Win32s executable under Windows NT?
A. Link with the same libraries used for any Win32 application. This is enabled
automatically when you choose Windows application (.EXE) as a project type.

Q. Can I port my Windows applications to run on Macintosh?
A. Yes, you can buy the Visual C++ 2.0 cross-platform edition as an add-on to
Visual C++. The add-on product provides a set of NT-hosted tools for recompiling
your Windows code for the Motorola® 680xO processor and a portability library for
implementing Windows on Macintosh. This enables you to develop GUI
applications with a single source-code base (written to the Win32 API) and
implement them on Microsoft Windows or Apple® Macintosh platforms.

Q. How do I port a Windows application to Macintosh?
A. The general steps required to port a Windows application to Macintosh are:

1. Port your application from Windows 16-bit code to 32-bit code.

This might be the most time-consuming part of the job.

2. Segregate those parts of your application that are unique to Windows from those
parts that are specific to the Macintosh.

This may involve using conditional compilation, or it may require changing the
source tree for your project.

3. Port your Win32 API code to the Macintosh using the portability library for the
Macintosh. Use Visual C++ 2.0 to compile, link, and debug your code.

4. Write Macintosh-specific code to take advantage of unique Macintosh features.

Q. Is the Microsoft Foundation Class Library supported on the Macintosh?
A. Yes, MFC has been ported to the Macintosh. Writing to MFC provides you the
greatest degree of portability. Because MFC provides a greater level of abstraction
than writing directly to the Win32 API, it is easier to implement MFC correctly on
the Macintosh,

Chapter 3 Questions and Answers 43

General Information
Q. Does Visual C++ 2.0 include templates?
A. Yes. Visual C++ 2.0 handles templates, which enable you to define a family of
functions or classes that can operate on different types of information.

Q. Does Visual C++ 2.0 support exception handling?
A. Yes. Visual C++ 2.0 handles anomalous situations, known as "exceptions,"
which may occur during the execution of your program.

Q. How do I create 32·bit OLE Custom Controls with Visual C++?
A. The OLE Control Developer's Kit is available as an add-on to Visual C++. This
kit includes extensions to the Microsoft Foundation Class Library, Wizards, and
other tools that enable you to create OLE Custom Controls.

Q. How do I port my Win32 Software Development (SDK) Projects to Visual C++?
A. You have two options, depending on how integrated you want your Win32 SDK
projects to be with Visual C++:

• Update the CL options in the Win32 SDK makefiles and run them from the
command line or as an external project. Visual C++ doesn't support the CL
MIPS options and treats the /Zi options differently. The LINK options are fully
compatible. See Chapter 2, "Working With Projects," Chapter 20, "Setting
Compiler Options," Chapter 21, "Setting Linker Options," Appendix A, "CL
Reference," and Appendix B, "LINK Reference" in the Visual C++ User's
Guide.

• Re-create your projects as Visual C++ projects. See Chapter 2, "Working With
Projects"; Chapter 20, "Setting Compiler Options"; and Chapter 21, "Setting
Linker Options," in the Visual C++ User's Guide for information on creating
Visual C++ projects and selecting compiler and linker options.

Q. Can I use Visual C++ to write POSIX or OS/2® applications?
A. No. The Visual C++ development system is designed for developing console or
GUI applications for the Win32 subsystem. You can use the Win32 Software
Development Kit to build POSIX applications.

Q. Does Visual C++ target MIPS?
A. No, only Intel®-compatible microprocessors are supported by Visual C++ 2.0.
For developers who target MIPS, a VC++ 2.0 for MIPS edition is available.

Q. Do I need the Win32 SDK if I have VC++ 2.0?
A. No.

44 Introducing Visual C++

Q. Can I run all my applications and DLLs under Win32s?
A. You can run applications and DLLs under Win32s provided that they use
features supported on Win32s. For example, Win32s does not support
multithreading, so an application that includes multithreading would not run
correctly on Win32s. For a list of APIs supported on Win32s, see the
WIN32APLCSV file.

Development Environment
Q. Can I do mixed-language programming in Visual C++?
A. You can mix C and C++ source code; however, Visual C++ does not directly
support mixing other languages such as assembly language with C or C++ except
by using the _asm keyword to inline assembly instructions. You can integrate any
language, such as Microsoft Macro Assembler (MASM), with the Visual C++ tools
by installing the compiler on the Tools menu and adding the resulting object files to
your C or C++ project. Alternatively, you can modify your C or C++ internal
project makefile to include mixed-language build statements and then load the
resulting makefile as an external project.

Q. What is Just-In-Time Debugging?
A. Just-In-Time debugging is a new feature of VC++ 2.0. It enables you to open a
debugging session when an error occurs instead of closing your application. For
example, if an unbandled exception occurs and Just-In-Time debugging is enabled,
Visual C++ 2.0 uses a Win32 service to notify the VC++ debugger that an error
has happened. The debugger starts and attaches to your application at the point of
fault. This feature can save you time because you don't have to re-create errors.

The Just-In-Time debugger is also useful when you are debugging asserts in place.
If an assertion occurs when Just-In-Time debugging is enabled, you can choose the
Retry button on the assertion message to open the debugger at the point of the
assertion.

~ To enable Just-In-Time debugging

1. From the Tools menu, choose the Options command.

2. Select the Debug tab.

3. Select the Just -In-Time Debugging check box.

4. Choose OK.

Q. How do I display memory addresses in the integrated debugger?
A. Use the Memory window, opened from the Debug menu, to display memory
addresses. To display the value of a memory address, place the insertion point in the
memory address field and type the address you want to examine.

Chapter 3 Questions and Answers 45

Q. How do I see which command-line options are passed to the compiler?
A. This information is shown in the Project Settings dialog box.

~ To view command-line options for a file

1. From the Project menu, choose Settings.

Visual C++ displays the Project Settings dialog box.

2. In the Settings For list, choose the target, targets, or source file whose settings
you want to view.

3. Select one of the following tabs: C/C++, Link, Resources, OLE Types, or
Browse Info.

Visual C++ displays options associated with the category you selected.

Q. Can I use project files from the Visual C++ development system for Windows in
the Visual C++ development system for Windows NT?
A. Yes, Visual C++ 2.0 converts 16-bit project files.

Q. How do I change the base of my variables in the Watch window from decimal to
hexadecimal?
A. The quickest way to do this is to use the shortcut menu associated with the
Watch window.

~ To switch to hexadecimal display in the Watch window

1. Place the mouse pointer over the Watch window, and then press the right mouse
button to display the shortcut menu.

2. Choose the Hexadecimal Display command from the shortcut menu.

Q. Can I edit 8- or 24-bit-per-pixel color bitmaps?
A. Yes.

Q. Can I use Visual C++ as a general-purpose resource editor?
A. Yes, Visual C++ is a powerful resource editor when used with traditional SDK
applications or with MFC applications. You can use ClassWizard to create MFC
code to support resource objects.

Microsoft Foundation Class Library
Q. Can I use vex custom controls with Visual C++ applications?
A. VBX custom controls are 16-bit dynamic-link libraries and can only be used
with 16-bit applications.

46 Introducing Visual C++

Q. What is the difference between the 16·bit and 32·bit versions of the Microsoft
Foundation Class Library?
A. The message handlers, CWnd::OnCommand and CWnd::OnParentNotify,
and the CTime class have changed. Also, the 32-bit version of MFC does not
support VBX controls or the Microsoft Windows for Pen Computing extensions.
For more information, see the article "MFC: Changes from MFC Versions 2.0
and 2.5" in Programming with the Microsoft Foundation Class Library.

Q. Can I use ClassWizard to recognize my own classes?
A. No. ClassWizard only recognizes classes that have been added using
ClassWizard. These, by definition, are derived from the framework classes.

Q. Can I use AppWizard to create C or C++ code without Microsoft Foundation
Class Library support?
A. No. AppWizard is specifically designed to create Microsoft Foundation Class
Library version 3.0 application source code.

CHAPTER 4

Developing a Microsoft Visual C++
Application

This chapter describes how to use Visual C++ to develop an application and
presents an overview of the Microsoft Foundation Class Library (MFC) and the
development process.

We recommend that you complete the tutorials later in this guide to learn how to
develop a Visual C++ application. You can read this chapter before beginning the
tutorials or as a quick refresher.

What Is a Visual C++ Application?
A Visual C++ application is an application for Windows that you design and
develop using MFC, the Microsoft Visual C++ build tools, and the Visual C++
Windows-hosted development environment.

By using a totally integrated environment, you can develop your application by
focusing on the visual interface elements. Visual C++ calls these elements "user­
interface objects." You first design the user-interface objects and then use Visual
C++ tools to create and manage the code to support them. These tools automate
the often tedious and error-prone process of deriving classes, creating member
functions, and mapping functions to messages. Using Visual C++ tools, you can
concentrate on designing the resources for your application and writing the
functional code to handle messages.

You can also use the Visual C++ tools to develop standard applications for
Windows SDK in C or C++, since Visual C++ includes a text editor, project
window, browse window, debugger, and resource editors. If you are familiar with
SDK programming for Windows, you'll find that the Visual C++ tools make the
transition to object-oriented program development-and MFC-easier than you
might have imagined.

47

48 Introducing Visual C++

What Is the Class Library?
The Microsoft Foundation Class Library (MFC) enables C++ programmers to
write applications for Microsoft Windows. The class library gives you a complete
"application framework" which defines an architecture for integrating the user
interface of an application for Windows with the rest of the application. It also
provides implementations for a large set of the user-interface components described
in The Windows Interface: An Application Design Guide, available from
Microsoft Press.

This section introduces the application framework and its associated visually­
oriented programming tools: Visual C++, AppWizard, and ClassWizard. For more
information about the class library, see Chapter 1 of Programming with the
Microsoft Foundation Class Library.

The Framework
MFC is a group of C++ classes collectively known as an application framework.
These classes provide the framework and essential components of an application
for the Windows operating system. The purpose of the framework is to reduce the
effort required to design and implement applications for Windows. The framework
embodies the accumulated wisdom of experienced programmers for the Windows
operating system.

Note In the documentation, you'll see the terms "application framework" and
"framework" used interchangeably. The classes that make up the framework are
listed and explained in the Class Library Reference. For an explanation of how the
framework works, see Chapter 1 of Programming with the Microsoft Foundation
Class Library.

The application framework supplied by MFC is powerful and easy to reuse
because the framework is an object-oriented class library. Instead of editing the
framework's source code directly, you derive new, specialized classes from those
in the library. The derived classes inherit all of the behavior and functionality of
their base classes, but you can extend them by adding new member variables and
functions and modify the existing behavior by overriding inherited member
functions.

Chapter 4 Developing a Microsoft Visual C++ Application 49

Key Concepts
The following are central concepts in the application framework:

• At the heart of your application for Windows is an "application object."

The application object manages a list of documents and dispatches commands to
other objects in the program.

• The unit of data that the user works with is a document.

The document maintains, loads, and stores its data.

• The user interacts with a document through a "view" on the document.

A view is a window embedded in the client area of a frame window. It displays
its document's data and takes mouse and keyboard input, which it translates into
selection and editing actions.

• Objects in the user interface, such as menus and buttons, send commands to the
documents, views, and other objects in the application. Those objects carry out
the commands.

Figure 4.1 shows the relationship between a document and its view.

Document: Stores data in
an internally useful form

View: Renders the data in a
visual form and responds to
user actions

Figure 4.1 Document and View

Working with the Framework
Your main tasks in using the framework are:

• Defining your application's data in its document class(es).

• Defining how the user views and interacts with the data inside a window.

• Connecting menus, buttons, and other user-interface objects to commands, then
defining handler functions to carry out the commands.

The general process is described later in this chapter.

50 Introducing Visual C++

The Partnership

Benefits

Your work with the Microsoft Foundation classes is a partnership, and your part is
the source code that you add. This includes code to:

• Declare and implement the data structure of a document.

• Serialize the document's data so it persists from one work session to the next,
typically by writing it to and reading it from a file.

• Display the data in a view.

• Process keyboard and mouse-related messages from Windows.

• Handle commands from menus and toolbar buttons.

• Enhance the printing, scrolling, and window-splitting capabilities you get from
the framework.

In addition to the source code that implements your application's functionality,
you're responsible for:

• Using Visual C++ to create and edit resources that define the user-interface
elements of your program.

• Optionally, creating the rich-text format (RTF) files containing help topics for
context-sensitive help.

The role of the framework in this partnership is to provide all of the many features
detailed earlier in this chapter.

The Microsoft Foundation Class Library (MFC) provides a thorough foundation
that allows you to spend most of your programming effort writing the code that
handles your data rather than reinventing the graphical user interface. For more
information about the application framework, see Chapter 1 in Programming with
the Microsoft Foundation Class Library.

Figure 4.2 shows schematically how your code fits into the framework.

Framework classes

Chapter 4 Developing a Microsoft Visual C++ Application 51

Figure 4.2 Your Code in the Application Framework

Because the framework provides so much standard functionality, it's easy to
write applications that follow the recommendations of The Windows Interface:
An Application Design Guide. At the same time, the framework's flexibility and
extensibility don't lock you into Design Guide conformance, although deviating
from the standard may take a little more work.

The Development Process
Developing a Visual C++ application can be broken into two stages: creating the
application and developing the application. In both stages you will use Visual C++,
which incorporates a text editor, resource editors, project window, browse window,
and debugger in a single integrated development environment. Although you can
use Visual C++ as a stand-alone resource editor to read and generate resource files
for standard Windows SDK program development, you'll want to use it most often
with Class Wizard and App Wizard to take advantage of MFC.

Creating the Application
The first step in creating a Visual C++ application is to name a project. Projects are
the cornerstone of Visual C++. A project refers to the source files and libraries that
make up a program, as well as the compiler and linker commands that build the
program. It is composed of a makefile (.MAK), which is compatible with the
Microsoft Program Maintenance Utility (NMAKE), and a project configuration file
(.VCP). A project is identified by its makefile; the makefile has the same base name
as the project, with an .MAK extension. All sample programs have project files
associated with them.

You can use projects from existing 32-bit projects in Visual C++, which converts
them to Visual C++ projects automatically when they load. This does not give you
access to compiler and linker options (other than Release versus Debug mode), but
it does help you bring applIcations into Visual C++ quickly and build, run, and
debug your existing applications.

52 Introducing Visual C++

Creating the Basic Application
After you name your project, use AppWizard to generate a set of application starter
files. It is important to use AppWizard first during the development of a Visual
C++ application because it creates source code that is compatible with
ClassWizard.

By selecting options in AppWizard, you can create C++ source files for skeleton
applications with differing levels of functionality. If you select all of the
AppWizard options, generate a project, and then build it without adding a single
line of code, you'll get an application for Windows with the following features:

• A multiple document interface (MDI).

• Menus and dialog boxes for opening and saving files, previewing print jobs, and
printing.

• Support for object linking and embedding (OLE).

• Support for Help.

• A functional toolbar and status bar.

• ODBC support

When first exploring AppWizard, you might want to start with the default options.

AppWizard creates all the files required for a standard Visual C++ application,
including source files, resource files, and a project file. Visual C++ then loads the
project. You can immediately compile and link the files by choosing Build from the
Project menu.

Developing the Application
The development stage of an application for Windows involves editing source and
resource files, compiling and linking, testing, and debugging. These activities are
repeated throughout a normal development cycle. There is an order involved,
however, because you always create user-interface objects (resources) first, then
use ClassWizard to create the code shell and the text editor to write the functional
code.

Creating and Editing User-Interface Objects
Although AppWizard creates some basic user-interface objects (such as menus, a
toolbar, and so on) when it generates the resource files, you will probably want to
add user-interface objects of your own. To learn how to create and edit user­
interface objects, see Chapter 4, "Working with Resources," in the Visual C++
User's Guide.

Chapter 4 Developing a Microsoft Visual C++ Application 53

Connecting User-Interface Objects to Code
After creating the user-interface objects, the next step is to create the MFC code
that supports them. You use Class Wizard to generate the message-handler functions
and message maps for each user-interface object you create. Class Wizard lets you
manage your source code easily by identifying the proper location to add code.

Visual C++ coordinates all the other tools in the development process by
maintaining the project information. You not only edit files and create resources;
you also manage the source code and build and debug the application. The next two
sections describe the tools you use during application development.

Managing Your Source Code
Class Wizard and the browse window are source-code management tools that allow
you to access your source code from a structured viewpoint.

As discussed earlier, ClassWizard keeps track of all resource objects and member
functions. It lets you immediately jump to the message-handler source code from
Class Wizard so that you can edit it.

The browse window is another Visual C++ tool for managing source code. You can
use the browse window to:

• Graphically display hierarchical class trees of derived or base classes.

• Graphically display all the functions that call, or are called by, a particular
function.

• Display a list of source-code locations where references to a symbol are made
and where a symbol is defined.

• Jump directly to definitions and references from list entries in the browse
window or from a selected symbol in a source file.

You can use the browse window to show relationships between base and derived
classes and between calling and called functions. You can also jump directly to
source code simply by double-clicking a reference or definition in the browse
window. Or, without using the browse window, you can select a symbol in a source
file, jump to its definition or first reference, view all references to the symbol, and
return to the original location, all using Search menu commands or shortcut keys.

Building, Running, and Debugging Your Application
Visual C++ helps you build, run, and debug your application with as little
interruption as possible. You can build a project by:

• Choosing the Build or Rebuild All toolbar button:

II,.
• Choosing the Build or Rebuild All command from the Project menu.

54 Introducing Visual C++

When the build is complete, you can run the program in the integrated Windows­
hosted debugger (assuming it includes debug information) by:

• Choosing the Run toolbar button:

mI
• Choosing the Go command from the Debug menu.

You can run the program outside the debugger by choosing Execute from the
Project menu.

The debugger has many powerful features, including:

• "Just-In-Time" debugging, which enables you to open a debugging session when
an error occurs instead of closing your application.

• Breakpoints for breaking a program at a location, on an expression evaluation,
or on a Windows message or class of messages.

• A QuickWatch dialog box for examining and changing variable values.

• A Watch window for examining specific variables and expressions.

• A Locals window for examining local variables.

• A Memory window for examining memory contents.

• A Registers window for examining and changing hardware register values.

• Tracing commands to step over, step into, or step out of functions.

• Multithreaded debugging capabilities.

• Structured exception handling.

• Mixed source and assembly listings and assembly-line tracing.

To use the debugger, you set breakpoints and run the application in a debug session.
When the debugger reaches a breakpoint, you have several options. You can
examine variables or expressions using the Watch window, the Locals window, or
the QuickWatch dialog box. Or you can single-step through the code, choosing to
step over or trace into functions that are encountered.

For More Information
The topics introduced in this chapter are covered in detail in a number of places in
the Visual C++ documentation. Please refer to the following documentation for
more information:

• Chapter 5, "A Test Drive of Visual C++," contains a quick tutorial that walks
you through development of a sample Visual C++ program.

• Chapters 6 through 27 of this guide contain comprehensive tutorials on
developing a Visual C++ application.

Chapter 4 Developing a Microsoft Visual C++ Application 55

• Part 2 of Programming with the Microsoft Foundation Class Library covers
conceptual information on using the Microsoft Foundation classes.

• Chapters 1 through 16 of the Visual C++ User's Guide describe how to use
general Visual C++ features.

• Chapters 1 and 12 of the Visual C++ User's Guide describe AppWizard and
Class Wizard, respectively, in detail.

• Chapter 17 of the Visual C++ User's Guide describes how to customize your
working environment.

• Chapters 18-21 of the Visual C++ User's Guide provide reference information
about toolbars, keyboard shortcuts, and compiler and linker options.

PAR T 2

Tutorials

Chapter 5 A Test Drive of Visual C++ 59
Chapter 6 Scribble Tutorial ... 83
Chapter 7 Creating a New Application with AppWizard 87
Chapter 8 Creating the Document. 95
Chapter 9 Creating the View. .. 117
Chapter 10 Constructing the U serInterface .. 135
Chapter 11 Binding Visual Objects to Code Using ClassWizard 151
Chapter 12 Adding a Dialog Box 169
Chapter 13 Enhancing Views 189
Chapter 14 Enhancing Printing 215
Chapter 15 Adding Context-Sensitive Help 225
Chapter 16 Creating an OLE Server 237
Chapter 17 Creating an OLE Container 265
Chapter 18 Implementing Basic OLE Container Features 269
Chapter 19 Reftning OLE Container Functionality 289
Chapter 20 Creating an OLE Automation Server. 301
Chapter 21 Enabling OLE Automation in an Application 307
Chapter 22 Implementing Automation Properties and Methods 319
Chapter 23 Implementing Multiple Dispatch Interfaces 331
Chapter 24 Creating a Database Application 337
Chapter 25 A Simple Form . 345
Chapter 26 Using a Second Recordset 355
Chapter 27 Adding and Deleting Records 371

CHAPTER 5

A Test Drive of Visual C++

This chapter takes you through a development session using Visual C++ tools
to create, build, and debug a Microsoft Foundation Class Library (MFC) C++
application. This tutorial demonstrates the core Visual C++ development tools
and the general development process. You can probably ftnish the entire tutorial
in about an hour.

59

This tutorial doesn't teach you about MFC itself, but it does give you a tour of the
product and shows you how easy it is to get started with Visual C++ programming.
For a more detailed tutorial, see the Scribble tutorial beginning in Chapter 6. If you
are unfamiliar with the tools and overall development process, it may be helpful to
read Chapter 4, "Developing a Microsoft Visual C++ Application," in this guide
before starting this tutorial.

The tutorial includes three sections: "Developing an Application," "Browsing the
Application," and "Debugging the Application." The ftrst section develops the
application that is used by the other two sections.

Developing an Application This section demonstrates how to use App Wizard to
generate a set of skeleton fIles for an application. It then describes how to create
Windows-based resources and use ClassWizard to create and manage the code that
supports these resources. When you complete this section, you will have a
completed Visual C++ application.

Browsing the Application This section shows you how to use the source browser to
examine class information in the Browse window or to jump to deftnitions and
references from a symbol in a source fIle.

Debugging the Application In this section, you use the integrated debugger to set a
breakpoint, examine variables, and trace through code.

60 Introducing Visual C++

Developing an Application
The application you'll create (called Myapp) is a subset of the VIEWEX sample
application provided with the MFC samples. Myapp lets you open new child
windows, each displaying an initial message, in a Multiple Document Interface
(MDI) application. When you choose Change Text from the Edit menu in Myapp,
a dialog box opens and allows you to change the text of the message in the currently
active child window.

Myapp starts as a default application created by AppWizard. You'll add eight lines
of code to this starter application to print a message when each new document
window (MDI child window) is opened. Then, you'll create a dialog box for editing
the message and add a menu command for opening the dialog box.

Running AppWizard
The first step in creating an MFC Visual C++ application is to use AppWizard to
create the starter application.

~ To generate a set of application starter files using AppWizard

1. Open Visual C++.

2. From the File menu, choose New.

The New dialog box appears.

3. In the New list, select Project, then choose OK.

The New Project dialog box appears (see Figure 5.1). The dialog box requires
that you enter a project name and select a project location.

Figure 5.1 The New Project Dialog Box

4. In the Project Name box, type myapp.

By default, Visual C++ creates the MY APP directory as a subdirectory of the
current directory (this tutorial uses C:\MSVC20\BIN as the current directory).
To change the directory under which Visual C++ creates the MY APP directory,
double-click the directory you want to select.

Chapter 5 A Test Drive of Visual C++ 61

Although Myapp will create the default MFC AppWizard (exe) project type,
you could create any of the additional following types by selecting one from the
Project Type list:

• MFC AppWizard (dll)

• Application

• Dynamic-Link Library

• Console Application

• Static Library

5. Choose Create.

AppWizard displays the Step 1 dialog box, which lists types of applications you
can create.

This tutorial requires the Multiple Documents application type, the default
option. AppWizard also allows you to create Single Document and Dialog­
based applications.

6. Choose Next.

App Wizard displays the Step 2 Of 6 dialog box, which lists database support
options.

Use the default option, None, to specify that AppWizard create an application
with no database support. AppWizard offers the following alternatives:

• Only include header fIles

• A database view, without file support

• Both a database view and file support

7. Choose Next.

AppWizard displays the Step 3 Of 6 dialog box, which lists OLE options.

Use the default option, None, to specify that AppWizard should create an
application with no support for compound documents. AppWizard offers these
additional alternatives:

• Container

• Mini-Server

• Full-Server

• Both container and server

You can also choose whether to include automation support in your application.
Use the default option, No Automation, to specify that no support be included.

62 Introducing Visual C++

8. Choose Next.

AppWizard displays the Step 4 Of 6 dialog box, which lists project options.

Use the following default project options:

• Dockable Toolbar

• Initial Status Bar

• Printing and Print Preview

• Use 3D Controls

App Wizard also offers you the choice of creating context sensitive help. You
will not create context sensitive help during this tutorial. You can also specify
the number of files your application keeps on its "most recently used" (MRU)
list. For this tutorial, use the default number, 4.

From this dialog box, you can open the Advanced Options dialog box to change
document template strings and specify the characteristics of window frames for
your application. You will not specify advanced options in this tutorial.

9. Choose Next.

AppWizard displays the Step 5 Of 6 dialog box, which lists three more project
options.

Use the default options, Yes, Please for source comments; Visual C++ Makefile;
and Use MFC In A Shared DLL.

10. Choose Next.

In the Step 6 Of 6 dialog box, AppWizard displays the names of classes and
files in the starter application. (App Wizard derives a set of names based on the
project name you type.) For this tutorial, you should not change the classes or
files.

11. Choose Finish.

AppWizard displays the New Project Information dialog box to confirm the type
of application, the classes, and the features of the application it is about to
create.

12. Choose OK to confmn this selection.

App Wizard generates the starter files, creates a project, and loads it.

A project consists of the names and locations of source files used to build your
application, the settings of tools used to build the application, and the look and
organization of the Visual C++ workspace you use to build your application.
The project window displays a graph of logical relations among the files used to
build your project (see Figure 5.2).

i
[1l mainffm. cpp
[jJ myapp.cpp

~ myapp.rc
[!I myappdoc.cpp

ILl ffiyappVW. Cpp

~ readme, txt

[jJ stdafKcPP
CJ Dependencies

Figure 5.2 The Project Window

Chapter 5 A Test Drive of Visual C++ 63

Because this is a new project, Visual C++ scans through all the project files to
create an internal list of dependencies. This list determines which files must be
recompiled when you build the project. For example, if a source file includes a
header file and you edit the header file, the source file must be recompiled.

Building and Running Myapp
You may want to see just how much functionality you get with a basic App Wizard
starter project created with default options. In this optional step, you'll build and
run Myapp.

~ To build and run the application

1. Click the Build toolbar button (or choose Build MYAPP.EXE from the Project
menu).

Toolbar: III
As Myapp is being built, the Output window appears and you'll see output from
each ofthe tools-the compiler and linker, for instance-as the build
progresses.

By default, Visual C++ builds a version of Myapp which includes symbolic
debugging information.

2. From the Project menu, choose Execute MY APP.EXE.

Myapp (see Figure 5.3) is an MDI application that contains a toolbar and a
status bar that displays prompt messages. Among other features are a File menu
with Open and Save commands (automatically hooked up to appropriate dialog
boxes), a Window menu to arrange child windows opened from the New
command on the File menu, and an About box on the Help menu.

64 Introducing Visual C++

Figure 5.3 The Default AppWizard Application

3. From the File menu, choose Exit to close Myapp.

Modifying the Application
In this step, you'll add a few lines of code to the application to initialize and display
a message string. In MFC version 3.0, the data is stored in document classes and
displayed using view classes.

Note Every line of code to be added in this tutorial is indicated by an arrow in the
left margin.

First, you'll use the following procedure to open MY APPDOC.H and add a
member variable to the class C My a p p Doc.

~ To edit MY APPDOC.H

1. In the Project window, titled MY APP.MAK, double-click the Dependencies
icon (see Figure 5.4).

Chapter 5 A Test Drive of Visual C++ 65

Figure 5.4 The Dependencies Icon in the Project Window

A list offiles appears.

2. In the files list, double-click MY APPDOC.H.

The file appears in the text editor. AppWizard constructed the files
MY APPDOC.CPP and MY APPDOC.H, derived from the project name you
entered, for the document class C My a p p Doc.

3. Find the CMyappDoc class declaration, and add the m_strData declaration in
the public section:

II Attri butes
public:

~ CString m_strData; II add for tutorial

4. Choose the Save toolbar button to save the file.

Toolbar: II
5. From the File menu, choose the Close command to close the MYAPPDOC.H

file.

Next, you'll edit MYAPPDOC.CPP to initialize the member variable m_strData
for each new document window:

~ To edit MYAPPDOC.CPP

1. In the Project window, double-click MYAPPDOC.CPP to open the file.

2. Find the CMyappDoc: : OnNewDocument function, and add the marked line
following the comments:

BDDL CMyappDoc::OnNewDocument()
{

if (!CDocument::OnNewDocument())
return FALSE;

II TODO: add reinitialization code here
II (SDI documents will reuse this document)

~ m_strData = "Sample Data String";
return TRUE;

66 Introducing Visual C++

3. Choose the Save toolbar button to save the file.

Toolbar:!II

4. From the File menu, choose Close to close the MY APPDOC.CPP file.

Finally, you need to edit MY APPVW.CPP to display the text.

~ To edit MYAPPVW.CPP

1. In the Project window, double-click MY APPVW.CPP to open the file.

2. Find the CMya ppVi ew: : OnDraw function and add the specified lines following
the TODO comment:

void CMyappView::OnDraw(CDC* pDC)
{

CMyappDoc* pDoc = GetDocument();
ASSERT_VAILD(pDoc);

II TODO: add draw code for native data here
~ CRect rect;
~ GetClientRect(rect);
~ pDC->SetTextAlign(TA_BASELINE ITA_CENTER);
~ pDC->SetBkMode(TRANSPARENT);
~ pDC->TextOut(rect.Width() I 2. rect.Height() I 2.

pDoc->m_strData. pDoc->m_strData.GetLength());

3. Choose the Save toolbar button to save the file.

Toolbar:!II

At this point, if you build and run the application, you'll see that each new MDI
window you create displays the string "Sample Data String."

~ To build and run the application

1. Choose the Build toolbar button (or choose Build MYAPP.EXE from the
Project menu).

Toolbar: III
If necessary, correct any typing errors you might have made that cause syntax
errors and repeat step 1. When there are no errors reported, continue.

2. To run Myapp, choose Execute MY APP.EXE from the Project menu.

Chapter 5 A Test Drive of Visual C++ 67

Adding User-Interface Objects to Myapp
In this step, you design a new dialog box and use ClassWizard to generate the code
that supports it.

Creating a Dialog Box
In this step you create a new dialog box and add an edit control and a static text
control to it. The dialog box will let the user change the message that is displayed in
the active child window.

~ To create Myapp's dialog box

1. If the Myapp project window is not open, choose Open from the File menu and
double-click MY APP.MAK in the File Name list.

2. From the Resource menu, choose New.

The New Resource dialog box appears.

3. In the Resource Type list, select Dialog and then choose OK.

Visual C++ opens the dialog editor. The editor displays a dialog box. The OK
and Cancel buttons are already added for you.

4. From the Controls toolbar, drag the edit control to the middle of the dialog box
(see Figure 5.5).

If the Controls toolbar did not appear when you opened the dialog editor, choose
the Toolbars command from the Tools menu, and then select the Controls box.

Figure 5.5 Dragging and Dropping Controls in the Dialog Editor

5. From the Controls toolbar, drag the static text control to the left of the edit
control.

68 Introducing Visual C++

6. In the static text control, type Edit.

Notice that as soon as you start to type, the Text Properties page appears. When
you click the dialog box window again, the property page disappears (unless you
choose to pin it open using the pushpin at the top left comer of the property
page).

7. Now double-click the title (Dialog) and, in the Caption box of the Dialog
Properties page, type Change Text in place of Dialog.

8. Choose the Save toolbar button to save your work.

Toolbar:.

Creating a Dialog Class and Adding a Member Variable
You can now use ClassWizard to connect this new dialog box to MFC framework
code.

~ To create a dialog class

1. Make sure the dialog box from the previous procedure is still open.

2. Click the ClassWizard toolbar button to open ClassWizard (or choose
Class Wizard from the Project menu.)

Toolbar:.

The MFC Class Wizard dialog box appears (see Figure 5.6).

Figure 5.6 The MFC ClasSWizard Dialog Box

3. Choose the Add Class button.

The Add Class dialog box appears (see Figure 5.7).

Chapter 5 A Test Drive of Visual C++ 69

Figure 5.7 The Add Class Dialog Box

4. In the Class Name box, type CEnterDIg, the name of the new dialog class.

Notice that the filenames "enterdlg.h" and "enterdlg.cpp" are automatically
generated in the Header File and Implementation File boxes.

5. In the Class Type drop down list, select the CDialog class.

6. In the Dialog drop-down list, select the IDD_Dialogl identifier.

7. Choose the Create Class button.

Class Wizard creates the header and implementation files named in step 4. The
ENTERDLG.CPP file includes class declarations and skeleton implementation
code. ClassWizard then returns you to the main ClassWizard dialog box.

Don't close ClassWizard yet, because you'll be using it in the next procedure.

The dialog class now exists, but you still have to initialize the data for the edit
control and retrieve data that has been entered into the edit control.

ClassWizard and the MFC framework make this easy with dialog data exchange
(DDX). To implement DDX, you associate a member variable with a dialog box
control. The framework transfers any initial values to the control when the dialog
box is displayed. It also updates the member variable with any data the user has
entered when the dialog box is dismissed.

You use Class Wizard to add a member variable to the C En t e r 0 1 9 class for the
dialog's edit control data.

~ To add a member variable to CEnterDlg

1. With "CEnterDlg" showing in the Class Name drop-down list box, select the
Member Variables tab of the MFC Class Wizard dialog box.

The control ID for the edit control (IDC_EDIT!) should be selected.

2. Choose the Add Variable button.

The Add Member Variable dialog box appears (see Figure 5.8).

70 Introducing Visual C++

Figure 5.8 The Add Member Variable Dialog Box

3. In the Member Variable Name box, the prefix m_ is displayed. Add strInput to
this prefix to define the variable m_strInput

In the Property box, "Value" should be displayed. In the Variable Type drop­
down list box, "CString" should be displayed.

4. Choose OK to exit the Add Member Variable dialog box.

5. Choose OK to exit ClassWizard.

Class Wizard creates the required code in the C E n t e r D 1 9 class for the
m_s t r I n put member variable in the files ENTERDLG.H and
ENTERDLG.CPP.

6. Double-click the Control menu in the dialog editor window to close it.

Adding a Menu Item
In this step you add a new menu item and connect it to code by using ClassWizard.
You then write the code that will display the new dialog box and handle its data
when a user chooses the new menu item.

~ To add a menu item

1. Click the resource browser window, titled MY APP.RC (MFC Resource Script),
to bring it to the front (see Figure 5.9).

III MYAPP.RC aa
El"~ MYAPP.RC

~··CBJ Accelerator
ffi .. G;:I Bitmap
Be:. Dialog
, , ~ IDD_ABOUTBOX
: L.~ IDD_DIALOG1
~ .. f]] Icon
Ebc;a_
i····~ Sbing Table

ffi··C2J Version

Figure 5.9 The Resource Browser Window

Chapter 5 A Test Drive of Visual C++ 71

2. Double-click the Menu Folder icon.

3. Double-click IDR_MY APPTYPE.

The menu editor window opens.

4. Click the Edit menu in this window and the menu appears.

5. Select the new-item box at the bottom of the menu (below Paste), and type

&Change Text ...

As soon as you begin to type, the property page for that menu item appears and
the text you type appears in the Caption box.

Notice that the ID box is empty. Leave it empty and Visual C++ will generate
an ID for the menu item when you close the property page. If you want to enter
it manually in the ID box, type:

ID_EDIT_CHANGETEXT

(It may be necessary to type it in if you display the ID drop-down list.)

6. In the property page's Prompt box, type:

Opens a dialog box to change window text

This text automatically appears in the prompt section of the status bar whenever
the menu command is highlighted by the user.

7. Press ENTER to close the property page for your new menu command.

8. Remove all menu commands above Change Text by selecting each and pressing
the DEL key.

9. Choose the Save toolbar button to save your work.

Toolbar: II

Creating the Menu's Message-Handler Code
Now you need to create the code that will be called when the user chooses the
Change Text menu command. In the Microsoft Foundation Class Library, this
means that you need both a message map entry and a member function associated
with the menu command.

~ To add message-handler code for the menu command

1. Choose the ClassWizard toolbar button to open ClassWizard.

Toolbar: III
2. Ifthe Message Maps tab is not active, select it (see Figure 5.10).

72 Introducing Visual C++

Figure 5.10 The Message Maps Tab

3. In the Class Name drop-down list, select CMyappDoc.

You need to add the message handler code to this class.

4. In the Object IDs list, select the menu item's resource ID
(ID _EDIT_ CHANGETEXT).

5. In the Messages list, select COMMAND.

(Do not select UPDATE_COMMAND_UI, which is used to dynamically
update menu commands.)

6. Choose the Add Function button.

The Add Member Function dialog box appears (see Figure 5.11). It allows you
to change the name that ClassWizard has derived for the member function.

Figure 5.11 The Add Member Function Dialog Box

6. In the Add Member Function dialog box, accept the name OnEdi tChangeText
by choosing the OK button.

Chapter 5 A Test Drive of Visual C++ 73

Notice that the On Edi tCha ngeText function is listed in the Member Functions
box and that the COMMAND entry in the Messages box has a hand symbol
next to it.

Don't close ClassWizardjust yet, because you'll be using it in the next procedure.

Writing the Message-Handler Function
ClassWizard created a shell of the message-handler function. Now you need to
write the body of the function. You can use Class Wizard to jump directly to the
code in a source window for any member functions that have been added by
ClassWizard. This procedure assumes that you have just finished the previous
procedure and that the On Ed itCha ngetext function is selected in ClassWizard.

~ To open a window at the message-handler function

1. In ClassWizard, choose the Edit Code button.

2. Add the marked code after the TODO comments included in the
MYAPPDOC.CPP file:

void CMyappDoc::OnEditChangetext()
{

II TODO: Add your command handler code here
~ CEnterDlg dlg; II create a CEnterDlg variable
~ dlg.m_strlnput - m_strData; II initialize the edit string
~ if (dlg.DoModal() != lDOK) II open dialog box

}

return;
m_strData = dlg.m_strlnput;
UpdateAllViews(NULL);

II retrieve edit string
I I general update

3. Include the ENTERDLG.H header file at the top of MYAPPDOC.CPP:

II myappdoc.cpp : implementation of the CMyappDoc class
II

'include "stdafx.h"
lfinclude "myapp.h"

'include "myappdoc.h"
~ 'include "enterdlg.h"

4. Choose the Save toolbar button to save the file.

Toolbar: •

74 Introducing Visual C++

Building and Running the Application
The final step in this section of the tutorial is to build and run the Myapp
application.

~ To build and run Myapp

1. Click the Buildtoolbar button (or choose Build MY APP.EXE from the Project
menu).

Toolbar: II
Assuming you've typed everything correctly and the build is successful, you can
now run the program. If you have syntax errors, correct any typing mistakes and
build the program again.

2. From the Project menu, choose Execute MY APP.EXE.

The application, shown in Figure 5.12, should have the following properties:

• A default message "Sample Data String" appears for every new window
opened

• The Edit menu has one command, Change Text

• When you select Change Text (or any command), a help message is
displayed on the status bar.

• When you open the Change Text dialog box, the default message is already
in the text box. Any message you type in the text box appears in the active
child window when you close the dialog box.

Sample Data String

Figure S.12 The Myapp Application

3. From the File menu, choose Exit to close the Myapp application.

Chapter 5 A Test Drive of Visual C++ 75

Browsing the Application
This section of the tutorial uses the Myapp project you created in the preceding
section. By default, generation of browser information is enabled and a browse
information file is created when you build your project.

Examining Derived Classes and Members
In this step you'll use the Browse dialog box to display a Derived Class Graph.
Then you'll pick a member variable of the class and jump to the first location in the
source code where it is referenced.

~ To browse a Derived Class Graph

1. From the Search menu, choose Browse.

The Browse dialog box appears.

2. In the Query On Name box, type CD*.

The asterisk (*) symbol is a wildcard that tells the browser to display a list of
all classes that start with CD. Of course, you can also type the complete name of
the class, but the wildcard is useful if you don't remember the exact name or
don't want to type the full name.

3. From the Select Query list, double-click Derived Classes And Members.

The Resolve Ambiguity dialog box appears (see Figure 5.13).

Figure 5.13 The Resolve Ambiguity Dialog Box

4. In the Symbols list, double-click CDialog(class).

Figure 5.14 shows the results of the query. Each icon in the left-hand pane
represents a derived class. When you select a class, the member variables and
member functions of the class are displayed in the upper-right pane, and a list of
source locations where the class is defined and referenced appears in the lower­
right pane.

You can keep this browse window in view when it loses focus by clicking the
pushpin at the top left of the window.

76 Introducing Visual C++

CAboutDlg
CColorDialog
CEnterDlg
CFileDialog
CFindReplaceDialog
CFontDialog
CPrintDialog

Figure 5.14 Derived Classes and Members of the CDialog Class

~ To jump to a reference from the Browse window

1. Click the CEnterDl 9 icon in the left-hand pane. (See Figure 5.15.)

Figure 5.15 Jumping to a Reference from the Browse Window

C En t e r 0 1 9 is the class you added, using Class Wizard, to handle the Change
Text dialog box.

In the upper-right pane, you will see a list of functions and data symbols
associated with the class, including the member variable you added to the class
using ClassWizard (C EnterDl g: : m_st r Input).

2. Click CEnterDl g: :m_strlnput in the upper-right pane.

A list of definitions and references for this member variable appears in the
lower-right pane.

3. In the lower-right pane, double-click the first reference in the list of references:
c:\msvc20\bin\myapp\myappdoc.cpp

A source window, shown in Figure 5.16, opens on the corresponding file at the
location of the first reference to CEnterDl g: : m_s t r Input.

Chapter 5 A Test Drive of Visual C++ n

It; MYAPI'I)(lC CI'I' liiJ~i

',' // ,','/,' ,','///,'/// .. '////,'/////////// /,,'///,'/// ,'//////////// //
,/,/ OfVappDoc command::;

void CMyappDoc: : OnEdi tChangetext ()
{

/ / TODO Add YOllr comJi'land handler code here
CEnt~
dIg, =m_strData;
1£ (dlg.DoModalO != IDOK)

IE-turn;
m_strData=dlg. m_strlnput;
UpdateAll Views(NULL);

Figure 5.16 The First Reference

If you want to continue browsing references or definitions, you can:

• Choose Next Reference from the Search menu to jump to the next reference.

• Choose Go To Definition from the Search menu to jump to the definition.

• Select another reference or definition from the lower right pane of the browse
window.

Note that you can always use the definitions and references commands on the
Search menu without opening the Browse dialog box. For example, put the insertion
point on any symbol in a source file and press SHIFT+FIl (Go To Reference from the
Search menu) and you jump to the first reference of that symbol, or press FII and
you jump to the symbol's definition. You don't need to open the Browse dialog box
to use these commands since the browse information file (.BSC) loads
automatically.

Examining a Base Class Graph
It is often helpful, especially when learning the architecture of MFC, to view the
inheritance path of a class-that is, to view its base class, the base class of its base
class, and so on. Base class graphs are usually composed of a single list of class
nodes unless there is multiple inheritance somewhere in the hierarchy. Also, base
class graphs are arranged so that each base class appears to the right of its derived
class.

~ To browse a Base Class Graph

1. From the Search menu, choose Browse.

The Browse dialog box appears

2. In the Query On Name box, type CEnterDlg.

78 Introducing Visual C++

3. From the Select Query list, double-click Base Class Graph.

The Base Class Graph window appears, showing the line of inheritance for the
C En t e r 0 1 9 class. The first node beneath C En t e r 0 1 9 is CDialog, the
framework class from which C En t e r 0 1 9 is derived.

4. Click on the plus sign to the left of the CDialog icon.

It expands one level to show its base class, CWnd.

5. Click on the plus sign to the left of the CWnd icon.

It expands one level to show its base class, CCmdTarget.

6. Optionally, close the Base Class Graph window.

Debugging the Application
This section assumes you have loaded and built a debug version of the Myapp
project as described in the first section of this tutorial.

Setting and Running to a Breakpoint
There are two ways to set a breakpoint in the debugger. You can use the Toggle
Breakpoints toolbar button at a location in a source file, or you can use the
Breakpoints dialog box, which allows more complex breakpoint expressions. The
following procedure demonstrates how to use the toolbar to set a breakpoint.

• To set a breakpoint and run Myapp to the breakpoint

1. Open the MYAPPDOC.CPP file.

2. Move to the end of the file (CTRL+END).

3. Move the insertion point to the following line in the
CMya ppDoc: : On Ed i tChangetext function:

m_strData = dlg.m_strlnput; II retrieve edit string

4. Click the Toggle Breakpoint button on the toolbar, or press F9, to set a
breakpoint.

Toolbar: III
Notice that a circle in the left margin indicates that the breakpoint is set. This
breakpoint will be invoked whenever you close Myapp's Change Text dialog
box during a debug session.

5. Click the Run toolbar button, or choose Go from the Debug menu.

Toolbar: D
The Myapp application is loaded into the debugger and run.

Chapter 5 A Test Drive of Visual C++ 79

6. From the Myapp Edit menu, choose Change Text.

The Change Text dialog box appears.

7. In the Edit text box, type New String to replace Sample Data String.

8. Choose OK to close the Change Text dialog box.

The execution line of the breakpoint you just set should appear.

Next, you will use the debugger to examine variables at the breakpoint. Don't close
Myapp yet.

Examining Variables
This step demonstrates how to use the QuickWatch dialog box to view the value of
a variable and add the variable to the Watch window. It is assumed you have just
finished the preceding procedure and execution is now paused at the breakpoint.

~ To open QuickWatch on a variable and add it to the Watch window

1. On the breakpoint line, place the insertion point on the variable m_st rDa tao

2. Press SHIFT+P9.

The QuickWatch dialog box appears, displaying the contents of m_s t r 0 a t a
(see Figure 5.17). Since the line at the breakpoint has not yet executed,
m_ s t r 0 a t a has not yet been assigned its new value.

m_strData is a variable of type CString (a class). You can hide or display its
member by double-clicking the variable name, which expands or contracts the
structure. Two of the members are protected and therefore cannot be viewed.

Figure 5.17 The QuickWatch Dialog Box

3. Click the Add To Watch Window button to add this variable to the Watch
window.

80 Introducing Visual C++

Whereas QuickWatch is handy for examining variables on the fly, you can use the
Watch window to store variables and expressions so they are readily available at
anytime.

The next procedure opens the Watch window (if not already opened) and shows you
another way to add variables to it.

~ To open and use the Watch window

1. If you haven't already opened the Watch window, choose Watch from the
Debug menu.

The Watch window appears. You should see the m_strData variable that you
just added from QuickWatch. You may want to arrange the Watch window and
the source window containing the breakpoint so that you can see them both at
the same time.

2. Switch to the MY APPDOC.CPP source window and select d 1 9 . m_s t r I n put
on the breakpoint line. From the Edit menu, choose Copy (CTRL+C).

3. Switch back to the Watch window.

4. Move the insertion point to the end of the prompt line in the Watch window.
From the Edit menu, choose Paste (CTRL+V) to insert d 1 9 . m_ s t r I n put into
the Watch window.

5. Double-click d 1 9 . m_st r I nput to expand the structure.

The Watch window now contains both the CString variables that appear on
both sides of the assignment operator in the line that contains the breakpoint:

m_strData = dlg.m_strlnput;

6. Choose the Step Over command from the Debug menu, or press FlO.

The execution point is now on the line following the breakpoint line. Notice that
the value of d 1 9 . m_s t r I n put has been assigned to m_s t r D a t a, since both
variables now show the same values in the Watch window.

7. Choose the Run toolbar button to resume the Myapp program.

Toolbar: Ia
The Myapp application appears again. Don't close Myapp if you want to
continue the tutorial and learn about other trace commands.

Chapter 5 A Test Drive of Visual C++ 81

Tracing Through Code
Although you used a couple of the trace commands in the last procedure, this
procedure exercises them all. It assumes you have just finished the preceding
procedure.

~ To trace through code

1. In the Myapp application, open and close the ChangeText dialog box by
choosing Change Text from the Edit menu.

The execution should now be stopped at the breakpoint.

2. Open the file MYAPPVW.CPP and move the insertion point to the first line in
the CMya ppVi ew: : OnDraw function:

CMyappDoc* pDoc - GetDocument();

3. From the Debug menu, choose Run To Cursor.

The current insertion point location acts as a temporary breakpoint.

4. From the Debug menu, choose Step Into, or press F8.

Notice that you traced into the opening brace of the GetDocument function in
the same source file.

5. Now choose Step Into again.

Execution is now at the first line of the GetDocument function:

ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CMyappDoc)));

6. Choose Step Into again.

This time you've traced into the MFC source code (the OBJCORE.CPP file).
Although you may want to trace through this library code, you probably want to
go back to the MYAPPVW.CPP file.

7. Choose the Step Out command from the Debug menu, or press SHIFf+F7.

You have returned to the function call in MY APPVW.CPP.

In general, it's a good idea to step over most framework function calls. You can
use the Step Out command to step out of a function that you don't want to step
all the way through.

8. To conclude this tutorial, choose the Run button on the toolbar and exit Myapp.

Toolbar: IfiI
You should see a message box indicating that the process has terminated
normally, meaning that the debugging session has finished and the program
being debugged has exited.

82 Introducing Visual C++

For More Information
If you've completed all the procedures so far, you now have a good idea of how to
use the tools provided with Visual C++ to create, browse, and debug MFC
applications.

The tutorial has shown you how to use AppWizard to create the skeleton files,
create resource objects, use ClassWizard to create code to support these objects and
help navigate among them so you can add functional code. The tutorial has also
shown you how to edit, browse, and debug code.

Use the information in the following books to help complete your understanding of
MFC or any of the Visual C++ tools:

• Programming with the Microsoft Foundation Class Library for overview
information.

• Class Library Reference for MFC classes and function reference.

• Visual C++ User's Guide for help on editing, building, browsing, and
debugging, and using AppWizard, the resource editors, and ClassWizard.

83

CHAPTER 6

Scribble Tutorial

It's a traditional programming practice to begin work with a new system or
language compiler by writing a program that prints "Hello, World!" on the display.
When you begin programming in a graphical user interface (GUI) environment such
as Microsoft Windows, however, the traditional practice is hard to follow. There's
a fair amount of programming overhead - well in excess of the few lines of "Hello,
World!" - simply to get a minimal GUI application running.

Note This tutorial is designed for Win32. If you have Visual C++ for Macintosh,
you will see some Macintosh-specific resource IDs that have "$CMAC)" appended
to the name. For the purposes of this tutorial, you can either ignore or modify them
in parallel with the Win32 resource IDs of the same name.

Scribble, the application you build in this tutorial, is a tiny drawing program.
Something like Scribble poses a more realistic trial run in the Windows
programming environment than "Hello, World!" Instead of printing that little
phrase so familiar to programmers, Scribble lets the user draw "Hello, World!"
(or any free-hand drawing) using the mouse, and save the image in a file.

By the end of the tutorial, Scribble has custom menus, a dialog box with automatic
initialization and validation, printing and print preview, scrolling, splitter windows,
context-sensitive Windows Help, and more. That's a fitting list of features for a
GUI "Hello, World!" And, as you'll see, it's still quick to implement, considering
the challenge.

84 Introducing Visual C++

Figure 6.1 shows what Scribble looks like on the screen.

He
.Figure 6.1 Scribble in Action

Project Makefiles and STEP Directories for Scribble
Source code files, project files (also known as makefiles), and other necessary
files for the tutorial are supplied in a group of subdirectories under the
SAMPLES\MFC\SCRIBBLE directory. The tutorial develops the Scribble
application in eight steps, with eight subdirectories (named STEPO through STEP7)
representing these steps. Chapters 6 to 15 describe how to develop the basic
Scribble application (Steps 0 to 6). Chapter 16 describes how to convert Scribble to
an OLE server (Step 7). Each subdirectory contains the files needed for one step.
For convenience, Table 6.1 correlates chapters, steps, and chapter content. The
second column gives the step completed by the end of the corresponding chapter.
Each chapter begins where you left off in the previous step.

Table 6.1 Tutorial Steps

Chapter Step Completed Content

7 0 Starter application (AppWizard)

8 Scribble's document

9 Scribble's view

10 Menus and toolbar (menu and graphics editors)

11 2 Handlers for commands (ClassWizard)

12 3 Dialog boxes (resource editors, ClassWizard)

13 4 Scrolling and splitting

14 5 Printing and print preview

15 6 Context-sensitive help

16 7 OLE server creation

Chapter 6 Scribble Tutorial 85

For each version of Scribble, the project file, called SCRIBBLE.MAK, is stored in
the appropriate subdirectory for the step. Use Table 6.1 to locate the right
subdirectory for each chapter.

The Files You Work With
For both of the procedures that follow, you usually need to deal with only a few of
the files:

• Document class files: SCRIBDOC.H and SCRIBDOC.CPP

• View class files: SCRIBVW.H and SCRIBVW.CPP

You may occasionally need to refer to (or edit) SCRIBBLE.H and
SCRIBBLE.CPP, the application class files.

For chapters that use the resource editors (Chapters 9 to 11), you'll work with
SCRIBBLE.RC, the application's resource file.

You may also occasionally want to examine the other files created by App Wizard
and ClassWizard, but in most cases you won't need to alter them.

In Chapter 16, "Creating an OLE Server," you'll also work with the files for MFC
classes that implement OLE server support.

Note For Chapter 7, simply follow the instructions for using AppWizard to create
the skeleton application files. Even if you aren't planning to add the tutorial code
yourself, you can easily follow this procedure. It's a good way to learn to use this
tool.

Scribble Build Information
This section explains a few things you'll need to know when you prepare to build
Scribble. General procedures for compiling and linking MFC programs in Visual
C++ and running the executable program under Windows are given in Chapter 4,
"Developing a Microsoft Visual C++ Application."

The Right Directory
If you're simply reading along with the tutorial without adding code, you can still
compile Scribble at each step to see what it looks like and how it behaves. In this
case, go to the STEP subdirectory for the step indicated at the beginning of a
chapter. For example, in Chapter 8, go to the STEPI subdirectory. Open the
project by double-clicking the file SCRIBBLE.MAK from the File Open dialog
box.

86 Introducing Visual C++

If you're working along, adding code as you read, compile the project in which
you've been editing the files. You should already be in your working subdirectory
and have the project open. In the case of Scribble, the working directory is
MYSCRIB, and you create it in Chapter 7.

Setting Options
For Scribble, you'll normally want to use the default debug-mode setting. However,
for your own project you'll want to be able to build a release version.

To select debug or release build options, from the Project window, choose the
Debug or Release version in the Target box.

Once you've moved to the right directory and the correct options are set, you're
ready to build Scribble. Choose one of the Build commands on the Project menu.

Chapter 7 begins the tutonal proper. You'll create a skeleton application with
AppWizard. In later chapters, you'll build a more powerful Scribble application
upon that skeleton.

CHAPTER 7

Creating a New Application
with AppWizard

87

Once you've completed your initial application design, you'll typically perform the
following tasks to develop the application with the Microsoft Foundation Class
Library (MFC):

• Use AppWizard to create a skeleton application-a set of C++ starter files.

• Use Visual C++ resource editors to construct the user interface.

• Use ClassWizard and the text editor to add application-specific code to the
starter files.

• Use Visual C++ to test and debug, then add more code.

To create a new Visual C++ project based on MFC, you'll use AppWizard, which
creates all the code required to display the windows in which users will interact
with your application. This code represents a starter application that you can
compile and run immediately.

App Wizard speeds your work in beginning a new project. In seconds, it creates a
set of Visual C++ files that declare skeletal versions of the classes that make up
your application. Key parts of the code that implements these classes are supplied
by App Wizard, based on the options you choose.

Once you've created the starter application with AppWizard, you'll complete the
rest ofthe steps listed above. You'll use Visual C++ resource editors to construct
the menus and other user-interfa~e objects. Then you'll use ClassWizard to make
connections between those objects and the code you write to respond to them.
You'll also use Visual C++ to edit, compile, browse, and debug your source-code
files.

The steps tend to be iterative. You'll probably weave back and forth between
editing the user interface and writing code all through the development process,
and you may do the steps in a different order, depending on your working style.

88 Introducing Visual C++

This chapter shows you how to create a set of starter files for the Scribble
application that is developed throughout the tutorial. These files contain
skeletal code for several C++ classes-an "application class," a "document class,"
a "view class," and a "frame window class." The concepts behind these classes
are discussed fully in Chapter 1, "Using the Classes to Write Applications for
Windows," of Programming with the Microsoft Foundation Class Library. You'll
also learn more about them in Chapters 8 and 9 of this manual. Details about the
created files are available in a text file (README. TXT) that is created along with
the starter files. The contents of the starter files are discussed in later chapters
as needed. For additional information about the starter files, see the article
"AppWizard: Files Created" in Part 2 of Programming with the Microsoft
Foundation Class Library.

Without adding a line of code, you can compile the starter application you
created with AppWizard and run the resulting program, which exhibits much
of the standard functionality you expect from a program written for the Windows
operating system. The steps needed to compile and run the program are given in the
sections "Compile the Starter Files" on page 94 and "Run the Starter Application"
on page 95.

Chapters 8 and 9 show you how to add the application-specific code for Scribble,
the sample application developed in the rest ofthe tutorial. Chapter 10 shows you
how to construct Scribble's user interface with Visual C++. From Chapter 11 and
the chapters that follow, you'll iteratively add more features to Scribble, then test,
revise the interface, and so on.

This chapter covers step 0 of the tutorial. If you're working along, adding code as
you read, follow all directions in this chapter. When you finish, you'll have a full
set of starter files in your own subdirectory. If you're reading along without adding
any code, it's still a good idea to work through this chapter to familiarize yourself
with AppWizard. If you prefer, however, you can simply study the set of files in the
SAMPLES\MFC\SCRIBBLE\STEPO subdirectory, which were created by
AppWizard.

Create the Starter Application for Scribble
This section shows you how to use AppWizard to create the starter application that
forms the beginnings of Scribble. AppWizard lets you specify a number of options.
Then it creates a set of source-code files based on these options from which you
develop your application. This saves a great deal of time and effort and lets you
focus on the application-specific parts of your program.

The following procedure describes how to enter the correct values for Scribble.
This procedure applies equally to your own applications. Just change the names
and other values as needed.

Chapter 7 Creating a New Application with AppWizard 89

Figure 7.1 New Project Dialog Box

~ To create starter files for Scribble

1. From the File menu, choose New.

The New dialog box appears.

2. Select Project.

The New Project dialog box (Figure 7.1) appears.

3. In the Project Name box, type scribble.

The application's project file will be given this name: in this case,
SCRIBBLE.MAK.

4. In the New Subdirectory box, delete "scribble" and type myscrib.

This names the directory that will contain the project's files.

AppWizard will create this directory if it doesn't exist. For Scribble,
MYSCRIB is a new directory.

5. Specify the path to the project's subdirectory.

Use the list box provided to navigate through the directories on the selected
drive. As you navigate through the directory structure, the path listed in the
dialog box changes to show where the named subdirectory (MYSCRIB) will be.
When the path suits you, stop navigating.

For Scribble, navigate to SAMPLES\MFC\SCRIBBLE (relative to your Visual
C++ installation). Assuming your Visual C++ installation is in directory
MSVC20 on drive C, the path should look like this in the dialog box:

c:\msvc20\samples\mfc\scribble\myscrib\scribble.mak

Note that in the Project box, you can choose several different kinds of projects
to create, including MFC App Wizard (exe), the default and the option that
Scribble uses; MFC AppWizard (dll); Application; and Dynamic Link Library.
For more information on these choices, see Chapter 1, "Creating a New
Application Using AppWizard," in the Visual c++ User's Guide.

90 Introducing Visual C++

6. Choose the Create button.

AppWizard creates a new MYSCRIB subdirectory in the SCRIBBLE directory,
and the MFC AppWizard-Step 1 dialog box appears.

7. Choose the Next button in the dialog boxes for AppWizard Steps 1,2, and 3 to
accept the default options.

By default, the source code will support the multiple document interface (MDI).
As an MDI application, Scribble lets the user open multiple documents at the
same time. The alternative is a single document interface (SDI) application,
which allows the user to open only one document at a time.

For more information on the various options that appear in these dialog
boxes, see Chapter 1, "Creating a New Application Using AppWizard,"
of the Visual C++ User's Guide.

8. In the AppWizard Step 4 dialog box, choose the Advanced button.

The Advanced Options dialog box appears.

9. From the Document Template Strings tab, in the Document Type Name box,
change "Scribb" to "Scrib."

These are the characters (up to 6) used wherever Scribble's native document
type is referred to. For example, the document type name is used to name the
default file, SCRm 1.SCR, the Windows shell registration name ("Scrib"), and
constants referred to in the code created by App Wizard, such as
IDR_SCRIBTYPE.

Type "scr" in the File Extension box. This extension is appended by default to
the names of files that the user saves with Scribble. In the compiled Scribble
application, "Scrib Files (* .scr)" appears in the List of Files of Type: box in the
File Open and File Save As dialog boxes.

lO. Choose Close.

11. Choose the Next button in the dialog boxes for AppWizard Steps 4 and 5 to
accept the default options.

These options on the Step 4 dialog box add code for printing and print preview
and for supporting a toolbar. The options on the Step 5 dialog box supply
comments throughout the files AppWizard creates to help you understand where
you need to add your own code.

For more information on the various options that appear in these dialog
boxes, see Chapter 1, "Creating a New Application Using AppWizard,"
of the Visual C++ User's Guide.

Chapter 7 Creating a New Application with AppWlzard 91

12. In the AppWizard Step 6 dialog box, select class "CScribbleDoc" and change
the class name from "CScribbleDoc" to "CScribDoc."

In this and the next step, you check and modify class names and filenames.
When the names are not dimmed, you can edit the names of your program's
classes and the files. To edit the information for a class, select the class name in
the box at the top of the App Wizard Step 6 dialog box, which is shown for the
document class in Figure 7.2.

For Scribble, some of the class names must be changed from the defaults that
App Wizard suggests so that the names of your classes and files will be
synchronized with those in the subdirectories provided for the Scribble steps.
What you see on the screen as you work will also match the figures in the
tutorial.

Figure 7.2 The Document Class

13. Select class "CScribbleView" and edit its inf-ormation as follows:

Change the class name from "CScribbleView" to "CScribView."

App Wizard provides satisfactory defaults for classes C S c r; b b 1 e A p P and
CMa; n Frame. You don't have to edit them for Scribble-although you might
want to edit them for another application.

14. Choose the Finish button when you're done.

15. Choose the OK button in the New Project Information dialog box.

AppWizard creates the specified subdirectory if it doesn't exist; then it creates
all necessary files in the directory and opens the project.

The remaining sections of this chapter guide you through the process of compiling
the starter application and running the resulting program to examine its capabilities.

92 Introducing Visual C++

Compile the Starter Files
The starter application you created provides the skeleton of a working application
for the Windows operating system. When you compile the starter files-without
adding a single line of code-the result is an application that runs, opens and closes
windows, and lets you perform other operations on the windows. Of course, at this
stage the windows have nothing in them. So far, Scribble doesn't scribble.

At this point, Scribble should be the currently open project.

~ To compile the starter application

1. Make sure you've set up the environment as explained in Chapter 1, "Installing
Microsoft Visual C++," in this manual.

2. From the Project menu, choose Build or Rebuild All as shown in Figure 7.3.

3. The starter application is built, producing the file SCRIBBLE.EXE in your new
MYSCRlB subdirectory.

Figure 7.3 Compiling Scribble

Run the Starter Application
After you compile the starter application, you can run it from Visual C++, with or
without breakpoints being set. You can also run the application from the Windows
Program Manager.

Chapter 7 Creating a New Application with AppWlzard 93

~ To run Scribble for debugging (with breakpoints)

1. From the Debug menu, choose Breakpoints and set any breakpoints you want in
your code.

2. From the Debug menu, choose Go to run Scribble.

~ To run Scribble without debugging

• From the Project menu, choose Execute.

When the starter application runs, an MDI application window appears with a
default toolbar and a menu bar that contains File, Edit, View, Window, and Help
menus. The application window contains one open document window, as shown in
Figure 7.4 ..

Figure 7.4 The Starter Application

The document window is empty, of course, because you've added no application­
specific code yet. But you can move, resize, minimize, maximize, and close the
document window and the application window. You can also use the New command
on the File menu to open new windows. The Open, Save, and Save As commands
are partially functional: at this point, they save empty files. You haven't added all
of the code yet to support these commands. The About command on the Help menu
brings up an About dialog box with default text in it. The default toolbar is partially
functional too: the Open and Save/Save As buttons do the same things as the
corresponding menus. And the status bar at the bottom of the application window
displays a description string when you move the mouse pointer over any menu
command.

This minimal application lays the foundation for Scribble and displays much of the
standard behavior you expect in an MDI application written for the Windows
operating system. The next two chapters use Scribble to show you how to develop
the document and view classes that you created in this chapter.

94 Introducing Visual C++

You'll undoubtedly want to examine the source code files you created. To orient
you, AppWizard creates a text file, README.TXT, in your new application
directory. This file explains the contents and uses of the other new files created by
AppWizard. Further details are available in the article "AppWizard: Files Created"
in Part 2 of Programming with the Microsoft Foundation Classes.

For more information about using AppWizard, see Chapter 1, "Creating a New
Application Using AppWizard," of the Visual C++ User's Guide.

95

CHAPTER 8

Creating the Document

In this chapter and the next, you'll add code to the starter application you created in
Chapter 7 with AppWizard. By the end of Chapter 9, you can compile and run the
Scribble program.

Figure 8.1 shows what the Scribble application developed in the tutorial will look
like at the end of Chapter 9.

Figure 8.1 Scribble in Action

This chapter introduces documents and develops Scribble's document class,
called CScri bDac, an application-specific class derived from class CDocument.
Chapter 9 introduces views and develops the view class. The two chapters together
introduce many of the fundamental concepts of the framework: documents, views,
drawing, messages, and serialization. Because documents and views are intimately
related, you need to implement both before Scribble is fully functional.

In later chapters, you'll add new features to Scribble incrementally: more menus, a
working toolbar, a dialog box with automatic initialization and validation of its
controls, scrolling, splitter windows, enhanced printing, context-sensitive help,
and OLE server support.

96 Introducing Visual C++

Documents

Your tour of Scribble's code begins with the starter files created by AppWizard in
the previous chapter. You'll add a lot of functionality to Scribble with a small
amount of code. Among the things you'll develop in this chapter are:

• Scribble's data-CSt rake, a class that defines one "stroke" of a drawing.

• Scribble's document-eSc ri bDac, a class to contain and manage a list of
strokes.

• Scribble's serialization code-code that implements writing and reading
documents.

The code that you must add to fill out the framework in this chapter is in the
following files: STDAFX.H, SCRIBBLE.H, SCRIBDOC.H, and
SCRIBDOC.CPP.

This chapter and Chapter 9 cover step 1 of Scribble. If you want to work along,
adding the code as you go, begin with the files you created with App Wizard in
your MYSCRIB subdirectory in Chapter 7. At this point, your files should consist
entirely of the set of generic starter files that AppWizard created. As you read this
chapter, add or change all lines of code marked with the ~ symbol in the left margin.
At the end of Chapter 9" your files should essentially resemble those in the
SCRIBBLE\STEPI subdirectory.

If, on the other hand, you want to read along without adding code, you can print or
examine the files in the SCRIBBLE\STEPI subdirectory.

Note If you have trouble locating the correct place to add code, try looking at the
corresponding source files in the subdirectory for the completed step. For this
chapter and Chapter 9, use the SCRIBBLE\STEPI subdirectory for this purpose.

If you want to preview Scribble, load the version in SCRIBBLE\STEPI and choose
Build on the Project menu. Run the program by choosing Execute from the Project
menu.

At the heart of Scribble are its document and its view. This section explains the role
of the document and introduces Scribble's document class and its members.

At run time, an application written with the Microsoft Foundation Class Library
(MFC) is a group of cooperating objects that communicate by sending and receiving
Windows messages and by calling each other's member functions. Documents are
created by document template objects and managed by an application object.
Users interact with a document through a view object, which is framed by a
document frame window object. Figure 8.2 shows graphically the relationships
between these key objects.

Chapter 8 Creating the Document 97

I Application Object I

I Document Template

I Document I
Main Frame Window

Arrows show directions
of communication flow.

Figure 8.2 Objects in Scribble

I
I

Toolbar

View

Status Bar

Table 8.1 shows how the document and other objects are created and managed in a
framework application.

Table 8.1 Key Objects in an Application

Object

Application

Document template

Document

View

Frame window

Primary Purpose

Manages all other
framework objects.

Creates and manages
documents.

Stores data.

Manages user interaction
with a document.

Frames a view.

Relationships to
Other Objects

Keeps a list of document
templates.

Manages a list of open
documents of a given type.
Creates frame windows and
views to provide a user interface
to the document's data.

Manages a list of views on its
data.

Attached to a document. Owned
by a frame window.

Owns a view that is attached to
a document.

98 Introducing Visual C++

Document Definition
A document is the unit of data that a user opens with the Open command on the
File menu and saves with the Save command. The document is responsible for
storing the data and for loading it from and storing it to persistent storage, usually a
disk file. A document typically appears to the user inside a frame window through
which the user manipulates the data.

Figure 8.3 shows the general relationship between a document and its view and
frame window.

Document: Stores
data in an internally
useful form.

Portion of document
currently visible

.- View: Renders the data in
a visual form and

-- -- __ responds to user actions. -- --

---- -- ---

Figure 8.3 Document and View

Documents in the Framework
In the framework, the data and the user's operations on the data are managed by
two separate objects. A document is an object that stores your data in its member
variables, and reads and writes it through a member function called Serialize. The
user interacts with the document through a separate object called a view. The view
fills the client area of a frame window, where it displays the data and accepts user
input and editing operations. Documents know how to manage data; views know
how to display it and accept operations on it. Figure 8.3 shows this important
relationship graphically.

Chapter 8 Creating the Document 99

Document Creation
When the user opens a document-existing or new-the framework creates a
document object and its associated frame window and view objects. If the document
is associated with a file, the document reads the file and stores its data. The view
obtains data from the document and displays it. Figure 8.4 shows the general
process of creating a new document and its view and frame window.

In MFC, documents are based on class CDocument. To use CDocument, you
derive your own document class from it. For more detailed information about
documents, see Chapter 1, "Using the Classes to Write Applications for Windows,"
and Chapter 3, "Working with Frame Windows, Documents, and Views," in
Programming with the Microsoft Foundation Class Library, as well as class
CDocument in the Class Library Reference.

Construct view object

Create view window

Initialize view

Display document in view

---- User begins editing document

Figure 8.4 Creatiug a Document

Document/View Interaction
When the user modifies data through the view, the view notifies the document. In
tum, the document tells all of its views (some documents have multiple views) to
update their displays with the new information, and the views respond by redrawing
all or part of the visible portion of the document. You'llieam more about the
view's part in this process in Chapter 9.

100 Introducing Visual C++

You and the Document
Table 8.2 shows your responsibilities and those of the framework in implementing a
document.

Table 8.2 Document Implementation Responsibilities

Your Job

Derive a document class from class
CDocument.

Add data members to your class.

Implement application-specific
initialization and cleanup of your
document's data.

Override CDocument's Serialize
member function to specify how your data
is read and written.

The Framework's Job

Provide many document services through
class CDocument.

Call the appropriate initialization and
cleanup functions at the right times.

Provide implementations of File Open, Save,
and Save As that call your Se ri ali ze
override to read and write your data.

Typically, you also add member functions to your derived document class through
which other objects-mainly the view-can access the document's data.

Scribble's Document: Class CScribDoc
Scribble is a simple drawing program. Documents in Scribble store the lines, or
"strokes," that make up a drawing. Because a drawing is typically made up of many
strokes, the document stores a list of all the strokes the user has drawn. Figure 8.5
shows a single stroke drawn in a Scribble document's view.

Figure 8.5 One Stroke in Scribble

Documents in Scribble are objects of class esc rib Doc, whiCh is derived from
CDocument. esc rib Doc has a member variable named m_s t r 0 k eLi s t for
storing a list of strokes and member functions to manage the stroke list.

Chapter 8 Creating the Document 101

Note By convention, class names begin with an uppercase "c" and member
variable names begin with a lowercase "m_".

App Wizard writes a skeletal esc r; b Do c class for you, but you need to add a few
things. In the following procedure, as in similar procedures throughout the tutorial,
you'll add the indicated code to a named file, using the text editor. The files are
those created by AppWizard. In the code listings below, the lines to add or change
are always preceded by a few existing code lines or a comment to help you locate
the right place in the files. To add code, start Visual C++, open the file named in the
procedure, locate the place to add your lines, and type in the lines that are marked
with the symbol ~. For more information about editing source files, see the Visual
C++ User's Guide.

To open a file in Visual C++, go the project window, which is labeled with the
name of your make file. Implementation files, for example, .CPP and .RC files,
can be found under the heading Source Files; other files are found under the heading
Dependencies. Double-click the file you want to work in.

~ To add member declarations to Scribble's document class

• Complete the declaration of class CScr; bDoc (in file SCRIBDOC.H). If you're
working along, add the marked lines, which contain new Scribble-specific code,
to the file.

~ II Forward declaration of data structure class
~ class CStroke;

class CScribDoc : public CDocument
{

protected: II Create from serialization only
CScri bDoc();
DECLARE_DYNCREATE(CScribDoc)

II Attributes
~ protected:
~ II The document keeps track of the current pen width on
~ II behalf of all views. We'd like the user interface of
~ II Scribble to be such that if the user chooses the Draw
~ II Thick Line command. it will apply to all views. not just
~ II the view that currently has the focus.

UINT
CPen

public:

m_nPenWidth; II current user-selected width
m_penCur; II pen created according to

II user-selected pen style (width)

~ CTypedPtrList<CObList. CStroke*> m_strokeList;
~ CPen* GetCurrentPen() { return &m_penCur; }

102 Introducing Visual C++

II Operations
public:

~ CStroke* NewStroke();

II Overrides
II ClassWizard generate virtual function overrides
11{{AFX_VIRTUAl(CScribDoc)
public:
virtual BOOlOnNewDocument();
I/} }AFCVIRTUAl

II Implementation
public:

virtual -CScribDoc();
virtual void Serialize(CArchive& ar); II Overridden for

II document ilo
Ifi fdef _DEBUG

virtual
virtual

Ifendif

void AssertValid() const;
void Dump(CDumpContext& dc) const;

protected:
~ void InitDocument();

II Generated message-map functions
protected:

} ;

11{{AFX_MSG(CScribDoc)
II NOTE - the ClassWizard will add and remove member
II functions here. DO NOT EDIT what you see in these
II blocks of generated code!

I/} }AFCMSG
DEClARE_MESSAGE_MAP()

This code declares a C++ class that defines Scribble's documents. The member
variables and functions provide the typical functionality of a document-they
defme and manipulate the document's data, serialize the data to and from files,
and provide diagnostic assistance when you compile a debug version. (Notice
the forward declaration of class CSt rake, the class used to define the docu­
ment's data structure. CScr; bDac needs to know about CStrake. You'll
learn about CStrake laterin the chapter.)

Scribble uses two of several C++ collection template classes provided by MFC:
CTypedPtrList and CArray. All the template collection classes are defined in the
header file, AFXTEMPL.H. Since this MFC-provided header file will not change
over the course of your development of the Scribble application, it makes sense to
put it into Scribble's precompiled header.

Chapter 8 Creating the Document 103

~ To add AFXTEMPL.H to the precompiled header

1. Open STDAFX.H, which was originally created by AppWizard to keep the list
of header file to be precompiled.

2. Type #include <afxtempl.h>.

The final task in declaring the member functions for CScri bDoc is to override
OnOpenDocument and DeleteContents, which are needed for Scribble-specific
initialization and clean-up. ClassWizard allows you to easily override virtual
functions declared in a base class. ClassWizard lists and then lets you override the
common virtual functions that appear above the / / Imp 1 ementa t i on line in the
header files. ClassWizard automatically adds the correct parameters and syntax for
the definition of the member function that is overriden.

~ To override OnOpen Document and DeleteContents using ClassWizard

1. From the Project menu, choose Class Wizard.

2. Choose the Message Maps tab.

3. In the Class Name box, select CScribDoc.

4. In the Object IDs box, select CScribDoc.

5. In the Messages box, select OnOpenDocument.

6. Choose the Add Function.

Figure 8.6 shows how the Message Maps property page looks at this point. Note
that the name of the overridden function appears in Member Functions box and
that a gray glyph containing the letter "V" precedes the function name. Notice
that AppWizard automatically provided an override for OnNewDocument
when it created the skeleton for your application.

Figure 8.6 Overriding OnNewDocument

104 Introducing Visual C++

7. Repeat steps 5 and 6 for DeleteContents.

8. Choose OK. Before choosing OK, you can choose the Edit Code button
to examine the code or edit it. You will edit the code in "Initializing and
Cleaning Up."

ClassWizard writes the overridden functions into SCRIBDOC.H. The resulting
code now looks like:

II Overrides
II ClassWizard generate virtual function overrides
11{{AFX_VIRTUAl(CScribDoc)
public:
virtual BOOl OnNewDocument();
virtual BOOl DnOpenDocument(lPCTSTR lpszPathName);
virtual void DeleteContents();
I/} }AFX_VIRTUAl

AppWizard added the implementation for OnNewDocument. ClassWizard has
added the implementation for the On Open Document and De 1 eteContents.

Table 8.3 describes the member variables of class CScri bDoc.

Table 8.3 CScribDoc Data Members

Member Description

A list of strokes. Each item in the list is an object of class
CStroke. The list itself is a C++ class template based on
the MFC template classes, CTypedPtrArray.

A CPen object used to do the drawing. Its main attribute is
its width. The pen is created when the document is
constructed and is used during the creation of new strokes.

The current width of the lines drawn by the pen.

Table 8.4 describes the member functions.

Table 8.4 CScribDoc Member Functions

Member

CScribDoc, ~CScribDoc

DeleteContents

Description

A default constructor and a virtual destructor. AppWizard
creates placeholders for these functions. In Scribble, they
remain empty.

Deletes the contents of a document-the strokes that make
up the drawing.

Chapter 8 Creating the Document 105

Table 8.4 CScribDoc Member Functions (continued)

Member

GetCurrentPen

I nitDocument,
OnNewDocument,
OnOpenDocument

NewStroke

Serialize

AssertValid

Dump

Description

Retrieves a pointer to the current pen object any time it's
needed by the drawing code.

Called when a new document is created or an existing
document is opened. Overriding versions of the
CDocument member functions OnNewDocument and
OnOpenDocument call I nit Doc urn e n t to initialize the
new document.

Creates a new stroke object and adds it to the list of strokes
in m_strokeL i st.

Overrides the Serialize member function of class
CDocument. The override specifies how to serialize a list
of stroke objects to and from a disk file. App Wizard creates
this function for you in skeletal form.

Tests the validity of an object's internal state.

Dumps the contents of an object's members for
examination during debugging.

You'll add code for most of these member functions in later sections of this chapter.
You'llieam more about Seri ali ze under "Serializing the Data" on page 113.
For more information about AssertValid and Dump, see "Diagnostics" in
Programming with the Microsoft Foundation Class Library. You won't add code
to these functions for Scribble.

The Document's Data: Class CStroke
In Scribble, a stroke consists of an array of points. As the user drags the mouse to
draw, Scribble collects points and stores them as part of the current stroke. Points
collected from the time the left mouse button is pressed to the time it's released
form one stroke of a Scribble drawing. Figure 8.7 shows Scribble's data structure
schematically. Scribble uses an object of class CPen for drawing.

106 Introducing Visual C++

CTypedPtrList of CStroke
objects. Each CStroke contains
a CArray of CPoint objects.

Arrays of points

Figure 8.7 Scribble's m_strokeList Data Structure

Each stroke is stored in an object of class CStroke, Scribble's primary data
structure. The whole drawing is a list of CStroke objects. CStroke is a new class,
so you'll have to add its entire declaration to Scribble's source files.

~ To add the CStroke class

• If you're working along, add the code marked below. The declaration for class
CStroke follows that for class CScri bDoc in file SCRIBDOC.H. Here's the
declaration for class CSt r 0 k e:

II Declaration of class CScribDoc. then ...
~ class CStroke : public CObject
~ {
~ public:
~ CStroke(UINT nPenWidth);

~ protected:
~ CStroke();
~ DEClARE_SERIAl(CStroke)

~ I I Attri butes
~ UINT m_nPenWidth; II One width applies to entire stroke
~ CArray<CPoint. CPoint> m_pointArray; II Series of connected

~ II Operations
~ public:
~ BOOl DrawStroke(CDC* pDC);

~ public:
~ virtual void Serialize(CArchive& ar);
~ };

II points

Chapter 8 Creating the Document 107

This code declares a C++ class of stroke objects. The member variables and
functions define and manipulate the data of a stroke and serialize it when the
document is serialized. You'll add the member function definitions in the next
section.

Table 8.5 lists CSt r 0 k e' s member variables.

Table 8.5 CStroke Data Members

Member

m_pointArray

Description

Stores the width of the pen in effect at the time this stroke was
drawn.

Stores an array containing the points that define this stroke. They
are used to redraw the stroke as needed.

Table 8.6 lists CStroke's member functions.

Table 8.6 CStroke Member Functions

Member

CStroke

DrawStroke

Serialize

Description

The class defines two constructors, one protected and one public.

When the view object redraws the document's data, it calls upon
each stroke object in the stroke list to draw itself by calling its
DrawStroke member function.

To assist the document in making its data persistent, typically on
disk, CSt r 0 k e also overrides the Serialize member function of
CObject to defme how a single stroke serializes its points and
other data. For more information about point serialization, see
"Serializing the Data" on page 113.

Building and Storing Strokes
Your next step is to add definitions for CSt r 0 k e' s member functions.

~ To add implementation code for the CStroke members

• Add the following definitions for CSt r 0 k e 's two empty constructors to the
SCRIBDOC.CPP file:

II Last line of CScribDoc code, then ...
~ CStroke: :CStroke()
~ {
~ II This empty constructor should be used by serialization only
~ }

108 Introducing Visual C++

~ CStroke::CStroke(UINT nPenWidth)
~ {
~ m_nPenWidth - nPenWidth;
~ }

The flrst constructor, declared protected in SCRIBDOC.H, is used only by the
application framework during serialization of CSt r 0 k e objects. Its parameter
list and function body are empty. The second constructor is for public use, when
you need to construct new stroke objects directly. When it constructs a new
stroke object, the public constructor initializes the pen width. CSt roke doesn't
declare its own destructor-it relies on CObject to provide one by default.

At this point, class CStroke is not quite complete. You'll add code for the
remaining member function, DrawS t r 0 ke, in Constructing the User Interface.
These member functions are used by the view object to draw the data.

Managing the Document
Typically, you must write code to (a) initialize a document's data members and (b)
deallocate memory allocated for the data, release system resources, and perform
other cleanup chores. When a new Scribble document is created, esc r; b Doc must
create a pen for drawing new strokes. When a document is closed, the document
must delete the stroke objects it has stored up.

Initializing and Cleaning Up
Because a document can be created with either the New command or the Open
command on the File menu, CScr; bDoc overrides both the OnNewDocument
and OnOpenDocument member functions of CDocument to perform necessary
document initialization. However, for Scribble, both initializations are the same, so
both overrides call the new member function In; tDocument.

The framework automatically calls OnNewDocument when a new document is
created or OnOpenDocument when a document is opened. AppWizard creates a
skeletal version of OnNewDocument for you, and ClassWizard created a skeleton
version for OnOpenDocument.

If you're working along, add the marked code to the indicated flle. Because the
constructor and destructor created by AppWizard are empty, the code isn't shown
here.

Chapter 8 Creating the Document 109

~ To implement initialization for Scribble's documents

1. Add a definition for the InitDocument memberfunction to SCRIBDOC.CPP:

II OnOpenDocument and DeleteContents. then ...
~ void CScribDoc::InitDocument()
~ {
~ m_nPenWidth - 2; II Default 2-pixel pen width
~ II Solid black pen
~ m_penCur.CreatePen(PS_SOlID. m_nPenWidth. RGB(0.0.0));
~

I nitDocument sets a default pen width and creates a pen object for drawing.
Pen creation is done through the CPen object, m_penCu r, by calling its
CreatePen member function. The arguments specify a solid black pen
2 pixels wide.

2. Add the following to the override of OnNewDocument created by
AppWizard in file SCRIBDOC.CPP:

II Empty constructor and destructor. then ...
BOOl CScribDoc::OnNewDocument()
{

if(!CDocument: :OnNewDocument())
return FALSE;

~ InitDocument();
return TRUE;

}

3. Finally, replace the ClassWizard skeleton version of OnOpenDocument in
SCRIBDOC.CPP:

II OnNewDocument. then ...
BOOl CScribDoc::OnOpenDocument(lPCTSTR lpszPathName)

~ {
~ if(!CDocument: :OnOpenDocument(lpszPathName))
~ return FALSE;
~ InitDocument();
~ return TRUE;
~ }

The two overrides call the base-class version of the function before performing
application-specific initialization of the document.

Because SCRIBDOC.CPP is a simple file, it is easy to fmd the implementations
of OnNewDocument and OnOpenDocument. However, in more complicated
files, you can use Class Wizard to locate the implementation of the {)verridden
function. Open Class Wizard, select the member function you want in the
Member Functions box, and choose Edit Code. The text editor will display the
implementation for the function you chose.

110 Introducing Visual C++

~ To implement document cleanup

• In file SCRmDOc.Cpp, replace the ClassWizard skeleton version of the
DeleteContents member function of CDocument:

II Empty constructor and destructors. then ...
void CScribDoc::DeleteContents()
{

~ while(!m_strokeList.IsEmpty())
~ {

~ delete m_strokeList.RemoveHead();
~ }

CDocument::DeleteContents();
}

De 1 eteContents provides the best place to destroy a document's data
when you want to keep the document object around. The function is called
automatically by the framework any time it's necessary to delete only the
document's contents. It's called in response to the Close command on the File
menu, when the user closes the document's last open window, and before
creating or opening a document with the New and Open commands.

Scribble's override of Del eteContents iterates through the stroke list. For
each stroke object, the function invokes the delete operator. This destroys the
strokes. RemoveHead, a member function of class CTypedPtrList, removes
the first pointer in the list. Alternatively, this cleanup code could be placed in the
destructor, but De 1 eteContents is reused later in other functions.

Managing the Data
~ To implement document members for managing Scribble's data

• Add the NewStroke member function to SCRlBDOC.CPP. NewStroke
creates a new stroke object and adds it to the stroke list:

II InitDocument function. then
~ CStroke* CScribDoc::NewStroke()
~ {
~ CStroke* pStrokeItem - new CStroke(m_nPenWidth);
~ m_strokeList.AddTail(pStrokeItem);
~ SetModifiedFlag(); II Mark document as modified
~ II to confirm File Close.
~ return pStrokeItem;
~ }

NewStroke uses the C++ new operator to construct a new CStroke
object dynamically, initializing it with the current pen width. It uses the
CTypedPtrList member function AddTail to add the new stroke to the list.

Chapter 8 Creating the Document 111

Then it calls the CDocument member function SetModifledFlag to flag the
changes to the document, and it returns a pointer to the stroke.

Note that the new operator never returns NULL. Instead, an exception is thrown
if memory could not be allocated. This would be a good place to implement an
exception handler with the TRY and CATCH macros. For more information
about exception handling, see the article "Exceptions" in Programming with the
Microsoft Foundation Class Library.

Serializing the Data
This section adds code to define file input/output for Scribble documents. The
default I/O implementation in MFC is called "serialization" (see Figure 8.8). It
provides a mechanism for making a document's data persistent between work
sessions with the program. Given the code added here, serialization is automatic
when the user chooses the Open, Save, or Save As commands from the File menu.

Note You don't have to write any code to process the Open, Save, and Save As
commands on the File menu-such as putting up the dialog boxes. The framework
supplies this code.

STORE LOAD

Figure 8.8 Serialization in Scribble

112 Introducing Visual C++

The esc rib Do c class declaration in file SCRIBDOC.H begins with the following
lines, which contain an important macro invocation needed for serialization
(don't add this code):

class CScribDoc : public CDocument
{

protected: II Create from serialization only.

} ;

CScribDoc();
DECLARE_DYNCREATE(CScribDoc
II Other declarations ...

App Wizard wrote this code for you.

The DECLARE_DYNCREATE macro prepares the class so that document
objects can be dynamically created by the framework.

Serializing the Document
Serializing a document occurs in two stages. First, the framework calls the
document's Seri ali ze member function. Second, that Ser; ali ze function calls
the Serialize function of the stroke list. If you're working along, add the marked
lines to the indicated files.

~ To implement serialization for Scribble documents

• Fill in the Ser; al; ze member function for class CScr; bDoc. The
SCRIBDOC.CPP file defines a skeletal version of the function. Here's
S e r; a 1 ; z e, with one marked line added to adapt the serialization mechanism
to Scribble:

II OnNewDocument. then ...
void CScribDoc::Serialize(CArchive& ar)
{

if (ar.IsStoring())
{

}

else
{

}

~ m_strokeList.Serialize(ar);

}

App Wizard creates the skeleton of the S e r; ali z e member function in class
CScr; bOac; you simply fill in the code shown. Later you'll add code in both
branches of the if statement. App Wizard also generates comments of the form

II TODO: Add storing code here

Chapter 8 Creating the Document 113

You will typically remove these comments when the functionality has been
implemented.

Serialization uses an object of class CArchive to manage the connection to a
disk file or other storage. A CArchive object, ar, is passed in as an argument.

A call to the archive object's IsStoring member function determines whether
this is a store or a load operation. If the archive is for storing (saving), the
stroke-list object's own Seri ali ze member function is called to store the
stroke's data to disk. If the archive is for loading, its S e ria 1 i z e member
function is called to load data from the disk file. This constructs new CSt r 0 k e
objects to fill the list. The stroke list for a document being read in from disk
must already be empty.

Note that the stroke list already exists when Se ri ali ze reads data in. That's
because it was declared as an embedded object, like this:

CTypedPtrList <CObList, CStroke*> m_strokeList;

rather than as a pointer, like this:

CTypedPtrList <CObList. CStroke*>* m_pStrokeList;

For a pointer, you'd use CArchive's extraction (») operator to read the data:

ar » m_pStrokeList; II Example of serializing to a
II referenced (non-embedded) object

But for an embedded object, as in Scribble, you call S e ria 1 i z e directly
because you don't want to create a new CTypedPtrList object and because you
know the exact type of the object.

Serializing Strokes
When the document responds to an Open, Save, or Save As command, it delegates
the real serialization work to the strokes themselves. That is, the document tells the
stroke list to serialize itself, and the stroke list, in turn, tells the individual strokes to
serialize themselves. As a result, all strokes in the document are read from or
written to a file.

Throughout the tutorial, Scribble is presented as a series of incremental versions.
When you build successive versions that modify the structure of CSt r 0 ke, they are
incompatible with earlier versions. Attempts to read CStroke data stored by a
previous version may fail because the serialization process expects a different
structure. Each time you make such a modification of CSt rake, it's valuable to tag
the new version with a version number. The version or "schema" number is checked
autom~tically during serialization. You can check the schema number in the
serialization code to support backward compatibility, allowing you to read files
created with earlier versions of your application.

114 Introducing Visual C++

~ To implement serialization for stroke objects

1. Add the IMPLEMENT_SERIAL macro for CStroke.

II End of CScribDoc code in file SCRIBDOC.CPP
~ IMPLEMENLSERIAl(CStroke. CObject. 1)

If you're working along, add the IMPLEMENT_SERIAL macro for CStroke
as shown. The third argument is the schema number, set to I for Scribble step 1.

The IMPLEMENT_SERIAL macro complements the DECLARE_SERIAL
macro invoked in SCRIBDOC.H. The two macros prepare a class for
serialization.

2. Add a Seri ali ze override for class CStroke in the SCRIBDOC.CPP file.
Like C S c rib Doc, CSt r 0 k e also overrides the Serialize member function of its
base class. When the stroke-list object is called to serialize itself, it calls each
stroke object in tum to serialize itself. Here's the code for CSt r 0 ke' s version of
Serialize:

II CStroke::CStroke. then ...
~ void CStroke::Serialize(CArchive& ar)
~ {
~

~

~

~

~

~

~

~

~

~

~

~

~

if(ar.lsStoring())

{

ar « (WORD)m_nPenWidth;
m_pointArray.Serialize(ar) ;

}

else

WORD w;

ar » w;

m_nPenWidth = w;

m_pointArray.Serialize(ar) ;

}

If the archive object is for storing, the stroke's pen-width value is stored in the
archive and then its array of points is stored. Notice that the CArray<CPoint,
CPoint> object m_poi ntArray can serialize itself.

lithe archive object is for loading, the stroke's data must be read in the same
order it was written: first the pen width, then the array of points. The else branch
of the if statement declares a local variable to receive the width, then copies that
value to m_n PenWi dth. It then calls upon the point array to load its data (see
Figure 8.7 on page 106).

Chapter 8 Creating the Document 115

Note that the m_nPenWi dth variable is cast to a WORD before it's inserted in
the archive, a r:

ar « (WORD)m_nPenWidth;

The cast is necessary because m_nPenWi dth is declared as type UINT
(unsigned integer). The archive mechanism only supports saving types of
fixed size. UINT, for example, is 16 bits in the Windows version 3.1 operating
system and 32 bits in the Windows NT operating system. Using the WORD
cast makes the data files created by your application portable. To promote
machine independence, class CArchive doesn't have an extraction operator
for type int but does have one for type WORD.

Once this code is in place, serialization of Scribble's data is automatic.

In the Next Chapter
In this chapter you filled in the details of Scribble's document class by defining
its data, providing useful functions through which to manipulate the data, and
specifying how the data objects are written to and read from files. So far, the data
can be initialized and cleaned up but not displayed or worked on by the user.

At this point, Scribble is about half ready to compile. In Chapter 9, you'll complete
the basic Scribble application by developing a view on the document. The view
displays strokes and manages all user input. At the end of that chapter, you'll
compile and test Scribble.

117

CHAPTER 9

Creating the View

In Chapter 8, you completed Scribble's document class. In this chapter, you'll add a
view class that provides a "view on the document." Scribble's view class displays
the strokes of a drawing and accepts user input from the mouse. By the end of this
chapter, you can compile and run Scribble.

Among the things you'll develop in this chapter are:

• Code to display Scribble's strokes- in class CScri bVi ew.

• Code to handle Windows messages as the user draws with the mouse.

You'll also get more hands-on experience with ClassWizard. ClassWizard lets you
map Windows messages to message-handler member functions in your classes. As
you'll see in Chapter 11, it also lets you map the commands generated by user­
interface objects such as menu items, toolbar buttons, and accelerator keys to
message-handler functions.

The code that you must add to fill out the framework in this chapter is mainly in the
following files: SCRIBVW.H and SCRIBVW.CPP. You'll also add two more
member functions to class CStroke in SCRIBDOC.CPP.

This chapter and Chapter 8 cover step 1 of Scribble. If you want to work along,
adding the code as you go, begin with the files you worked on in Chapter 8 in your
MYSCRIB subdirectory. At this point, your files should consist of the starter files
you created with AppWizard in Chapter 7 and modified in Chapter 8. As you read
this chapter, add all lines of code marked with the ~ symbol in the left margin. At
the end of this chapter, your files should closely resemble those in the
SCRIBBLE\STEPI subdirectory.

If, on the other hand, you want to read along without adding code, you can print or
examine the files in the SCRIBBLE\STEPI subdirectory.

Instructions for compiling Scribble are given at the end of this chapter.

118 Introducing Visual C++

Views
The document object defines, stores, and manages the application's data. But all
user interaction with the document is managed through a view object attached to the
document object. Scribble uses a view object to display a document on the screen or
on a printer. This section explains the role of the view and introduces Scribble's
view class and its members.

As you saw in Chapter 8, when a new document is created in response to a New
or Open command from the File menu, the framework also creates a "document
frame window" and creates a view inside the frame window's client area as a child
window. The view displays the document's data and responds to mouse actions,
keystrokes, menu commands, and other actions as the user works on the document.
It's your task to specify how the view draws your application-specific data and
what it does in response to user actions.

Figure 9.1 illustrates the view's role in relation to the document.

View

GetDocument

On Update

Manages user
interaction with

document

-
1. Updates data

2. Tells view to
redraw Itself

Document

m_strokeList

UpdateAIiViews

Coordinates all
views on its data

Figure 9.1 The View and the Document

View Definition
A view is an object derived from class CView (or from another CView-derived
class, such as CScrollView) that manages user interaction with a document. The
view is attached to a particular document and is a child window that typically fills
the client area of a document frame window. In single document interface (SDI)
applications, the view fills the main frame window. In multiple document interface
(MDI) applications, the document frame window is in turn displayed inside the
main frame window of the application.

Chapter 9 Creating the View 119

Views in the Framework
In the framework, the document manages data, but the view displays it and acts as
intermediary between the user and the document for all input, selection, and editing
in the document. A given view is always associated with only one document. Each
Scribble document uses only one view. However, it is possible for a document to
have multiple views associated with it, as in the case of splitter windows.

View Creation
A view is created by its parent frame window when the framework creates the
associated document. Both the document and frame objects are created by a
document template object; then the frame window creates the view. Immediately
after creation, the framework calls the view's 0 n I nit i a 1 Up d ate member
function to initialize the view. You'll frequently override the OnlnitialUpdate
member function of class CView to initialize the view object. After creation, the
view's OnUpdate member function is called when the document's data changes.
You will frequently override the OnUpdate member function to optimize which
portion of the view is redrawn.

Drawing the View's Contents
Each time the view needs to be redrawn, the framework calls its 0 n D raw member
function. 0 n D raw does the actual drawing, obtaining the data to draw from its
document. However, when more immediate drawing is required, a view can respond
to mouse-related messages, such as WM_LBUTTONDOWN, to do mouse-driven
drawing. You'll see both kinds of drawing in this chapter.

You'll always override the OnDraw member function of class CView to specify
how your document's data is drawn.

Document/View Interaction
A view can access the data stored in its document by calling the CView member
function GetDocument, which returns a pointer to the document object. The view
can call public member functions and access public data members of the document
by using the pointer.

When the user changes data in the view, the view notifies the document and updates
the data stored there. On such occasions, the document typically then calls its
UpdateAllViews member function to cause any views attached to it to redraw
themselves. For a document with multiple views, this mechanism ensures that all
of them are updated properly.

120 Introducing Visual C++

You and the View
Table 9.1 shows your responsibilities and those of the framework in implementing a
view on a document.

Table 9.1 View Implementation Responsibilities

Your Job

Derive a view class from class CView. For
scrolling, use CScrollView instead. Other
view classes are available as well.

Implement your view's 0 n D raw member
function.

Map Windows messages and commands to
member functions of your view.

The Framework's Job

AppWizard provides a skeletal view class
for you. Class CView and its derived
classes provide view services.

The framework calls 0 n D raw at the
appropriate times, passing it a device­
context object into which it can draw.

The framework calls your message-handler
member functions in response to the
corresponding Windows messages.

Other view classes include CFormView and CEditView. For more information
about views, see Chapters 1, "Using the Classes to Write Applications for
Windows," and 3, "Working with Frame Windows, Documents, and Views," of
Programming with the Microsoft Foundation Class Library and class CView and
its derived classes in the Class Library Reference.

Scribble's View: Class CScribView
The job of the view in Scribble is to redraw the view as needed - for example,
when the window is covered by another window and then uncovered or as the user
draws strokes with the mouse.

Views in Scribble are objects of class esc r; b v; ew, which is derived from class
CView. CScr; bV; ew knows how to access the document's stroke list and can tell
the strokes stored there to draw themselves in the view.

App Wizard writes a skeletal esc r; b V; ew class for you, but you need to
implement the 0 n D raw member function and add a few other things. In the
following procedure, as you did in Chapter 8, you'll add the indicated code to a
named file. Add the lines marked with the ~ symbol in the left margin.

~ To define the working data used by the view

• Add Scribble-specific lines to class CScr; bV; ew. File SCRIBVW.H declares
class esc r; b V; ew. Lines are added to the code generated by App Wizard to
defme some Scribble-specific data items:

class CScribView : public CView
{

Chapter 9 Creating the View 121

protected: II Create from serialization only
CScribView();
DECLARE_DYNCREATE(CScribView)

II Attributes
public:

CScribDoc* GetDocument();

~ protected:
~ CStroke* m_pStrokeCur; II The stroke in progress
~ CPoi nt m_ptPrev; II The last mouse pt in the stroke
~ II in progress

II Dperat ions

<remainder of declaration>

} ;

#ifndef _DEBUG II Debug version in scribvw.cpp
inline CScribDoc* CScribView::GetDocument()

{ return (CScribDoc*)m_pDocument; }
flendi f

This code declares class CScri bVi ew, the view on the Scribble document's data.
The added lines declare two new protected member variables.

Table 9.2 describes the member variables of class esc rib View.

Table 9.2 CScribView Data Members

Member

m_pStrokeCur

m_ptPrev

Description

A pointer to the stroke currently being drawn.

A CPoint object containing the previous mouse coordinates,
from which a line will be drawn to the current coordinates.

The view uses these members to store the information it needs in order to record the
points of a stroke in progress.

122 Introducing Visual C++

Table 9.3 describes the member functions of class CScri bVi ew.

Table 9.3 CScribView Member Functions

Member Description

CScri bVi ew, -CScri bVi ew With nothing to initialize and no data to destroy, the view's
constructor and destructor are empty.

OnDraw OnDraw updates the view by redrawing its contents. (It's
used to draw both on the screen and on a printer.)

GetDocument Defined inline in file SCRIBVW.H, Get Document
retrieves a type-safe pointer to the document attached to this
view. The view uses the pointer to call document member
functions, which it must do to access the data it displays.

AssertVal id, Dump

OnPreparePrinting,
OnBeg in Pri nt i ng,
OnEndPrinting

These diagnostic functions simply call the base-class
functions they override.

These virtual functions override the versions in CView to
specify the application's printing behavior. See Chapter 14
for more information about how Scribble prints.

AppWizard creates the constructor and destructor, GetDocument, AssertVa 1 i d,
Dump, OnPreparePri nti ng, OnBegi nPri nti ng, and OnEndPri nti ng for
you. You won't need to alter any of these functions for the tutorial, so they are not
shown in this chapter.

Notice the inline deftnition of Get Document after the class declaration above. The
debug version of this member function calls the IsKindOf member function deftned
in class CObject and uses the RUNTIME_CLASS macro to retrieve the run-time
class name of the document. For more information about those topics, see class
CObject in the Class Library Reference and the article "CObject Class" in
Programming with the Microsoft Foundation Class Library.

Redrawing the View
When the view, or some part of it, must be redrawn, the framework calls your
override of the 0 n D raw member function.

~ To add implementation code for the view's OnDraw member function

• Add OnDraw to me SCRIBVW.CPP, as deftned below:

void CScribView::OnDraw(CDC* pDC)
{

CScribDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc)

Chapter 9 Creating the View 123

~ II The view delegates the drawing of individual strokes to
~ I I CStroke:: DrawStroke().
~ CTypedPtrlist<COblist, CStroke*>& strokelist -
~ pDoc->m_strokelist;
~ POSITION pos - strokelist.GetHeadPosition();
~ while (pos !- NULl)

{

~ CStroke* pStroke - strokelist.GetNext(pos);
~ pStroke->DrawStroke(pDC);
~

}

The view calls upon the individual stroke objects to draw themselves. To do this,
the view needs access to the stroke data stored in the document, so the view's first
task is to obtain a pointer to its document, using Get Doc u me n t. The view then uses
the pointer to iterate through the stroke list, telling each stroke to draw itself. When
OnDraw calls DrawSt roke for a given stroke object, it passes along the device­
context object it received as a parameter. (Having the data draw itself is only one
possible strategy.)

To complete Scribble's drawing, you must also add the DrawStroke member
function to class CStroke.

~ To add drawing code for strokes

• Add the DrawStroke member function to file SCRIBDOC.CPP. Its declaration
is already in place in SCRIBDOC.H. DrawStroke, called when the view
redraws itself (as described above) looks like this:

II CStroke::Serialize, then ...

~ BOOl CStroke::DrawStroke(CDC* pDC
~ {
~ CPen penStroke;
~ if(!penStroke.CreatePen(PS_SOLID, m_nPenWidth, RGB(0,0,0»)
~ return FALSE;
~ CPen* pOldPen = pDC->SelectObject(&penStroke);
~ pDC->MoveTo(m_pointArray[0]);
~ fore tnt i=l; i < m_pointArray.GetSize(); i++
~ {

~ pDC->lineTo(m_pointArray[i]);
~

~ pDC->SelectObject(pOldPen);
~ return TRUE;
~ }

DrawSt roke is passed a pointer to an object of class CDC, which encapsulates a
Windows device context. In programs written with MFC, all graphics calls are
made through a device-context object of class CDC or one of its derived classes.

124 Introducing Visual C++

Ora w S t r 0 k e calls CDC member functions-SelectObject, MoveTo,
LineTo-through the pointer to select a graphic device interface (GDI) pen into the
device context and to move the pen and draw.

Ora w S t r 0 k e next constructs a new CPen object and initializes it with the current
properties by calling the pen's CreatePen member function-note that this two­
stage construction is typical of framework objects. Then 0 raw S t r 0 k e calls
SelectObject to select the pen into the device context (saving the existing pen as
pOl d Pen) and calls MoveTo to position the pen to the first point.

Ora w S t r 0 k e then iterates through the array of points. It calls the device context's
LineTo member function to connect the previous point with the next point.

Finally, DrawStroke restores the device context to its previous condition by
reinstalling its old pen.

Important Always restore the device context to its original state before releasing it
to Windows. To do so, save the state before you change it. Storing the old pen in
DrawStroke is an example of how to do this.

The addition of 0 raw S t r 0 k e completes Scribble's code for drawing in response to
update requests from the framework. However, Scribble also draws in response to
mouse actions, as discussed in the next section.

Handling Windows Messages in the View
To implement mouse-driven drawing in Scribble, it's necessary to write code that
handles several Windows messages related to mouse activity. You will use
Class Wizard to help write this message-handling code.

When the user presses the left mouse button while the pointer is in a Scribble
window, Windows sends the window a WM_LBUTTONDOWN message. When
the user subsequently releases the mouse button within the window, Windows sends
the window a WM_LBUTTONUP message. Meanwhile, if the user moves the
mouse-as in drawing-Windows sends a WM_MOUSEMOVE message.

How does Scribble handle these messages? They're sent to a window, in this case
the currently active view. The view uses its "message map" to determine whether
it has a member function that can handle the message. For example, on receiving
a WM_LBUTTONDOWN message, the view finds that it has a "handler"
associated with that message name and calls the handler. The handler is a member
function of class CScri bVi ew.

It's appropriate that the view should handle mouse-drawing messages because it's
in the view that Scribble's drawing takes place. The view represents that part of the
document that can be seen at anyone time.

Chapter9 Creating the View 125

What do the message-handler functions do? They track mouse activity, drawing in
the view. They also call member functions of the document to update its data. As
the user draws a stroke, the points that make up the stroke are stored in the
document's stroke list.

Connecting Messages to Code
This section takes you through the steps required to connect the three mouse-related
messages needed in Scribble to message-handler member functions of class
CScri bVi ew.

This step will be different from the previous ones. Instead of opening a file in the
text editor and adding lines of code, you'll invoke ClassWizard and use it to make
the connections between Windows messages and their handler functions.
Class Wizard lets you make the connections and generate the handler functions with
a few clicks of the mouse. Class Wizard writes an entry in the message map for
class esc rib View and writes a default member function definition in the
SCRIBVW.CPP file for the handler function. You fill in the function's code.

You'll learn much more about ClassWizard, messages, message maps, and handler
functions in Chapter 11, "Binding Visual Objects to Code Using ClassWizard."
For now, if you're working along, you'll invoke ClassWizard to connect the three
mouse-related messages to handler names and to generate the handlers. Then you'll
use the text editor to fill in the handler functions. If you're reading along, you can
still try out ClassWizard on the starter code you created with AppWizard in
Chapter 7. For more information about Class Wizard, see Chapter 11 in this
guide and Chapter 12, "Using ClassWizard," in the Visual C++ User's Guide.

~ To connect the messages to Scribble's code

1. With your Scribble project open, open Class Wizard by choosing Class Wizard
from the Project menu.

ClassWizard displays the Message Maps tab.

2. In the Class Name box, make sure class CScri bVi ew is selected.

The name "CScrib View" and a number of predefined command IDs appear in
the Object IDs box. Figure 9.2 shows the Message Maps tab.

126 Introducing Visual C++

Figure 9.2 The ClassWizard Message Maps tab

3. In the Object IDs list box, select the name "CScribView."

A list of overrideable functions and Windows messages that the view can
receive appears in the Messages list box. Figure 9.3 shows ClassWizard with
the list of virtual functions and messages.

Figure 9.3 Available Windows Messages in ClassWizard

4. In the Messages list box, scroll down past the list of overridable functions in the
list of messages and select the name of a Windows message for which you want
to define a handler. To begin, select WM_LBUTTONDOWN.

Chapter 9 Creating the View 127

5. To define a handler function for the message, choose the Add Function button.

The Member Functions list box now lists the member function name
OnLButtonDown and the corresponding message-map macro name
ON_ WM_LBUTTONDOWN. A small hand-shaped icon next to the
WM_LBUTTONDOWN message in the Messages list box shows that the
connection has been made.

6. Repeat steps 4 and 5 for each additional message: first WM_LBUTTONUP,
then WM_MOUSEMOVE.

After you press OK, ClassWizard will do the following things to associate each of
the three messages with its handler and to greatly simplify your work:

• Added a function declaration for the handler to the esc rib View class
declaration in file SCRIBVW.H.

• Added a "message-map entry" for the message-to-handler connection in
CScri bVi ew's message map in file SCRIBVW.CPP.

• Added a function defmition with a default body-to file SCRIBVW.CPP. For
example, the default function defmition for On LButtonDown looks like this
(don't add this code):

void CScribView::OnLButtonDown(UINT nFlags. CPoint point)
{

}

II TODO: Add your message handler code here
II andlor call default
CView::OnLButtonDown(nFlags. point);

Notice that ClassWizard embeds a comment reminding you what to do and adds
a call to the OnLButtonDown member function of class CView, the base class
of CScri bVi ew.

You'll learn more about message maps, message-handler functions, and their uses
in Chapter II, "Binding Visual Objects to Code Using ClassWizard." For more
information about these topics, see Chapter 2, "Working with Messages and
Commands," in Programming with the Microsoft Foundation Class Library.

128 Introducing Visual C++

Adding the Message-Handler Functions
With the connections made, it's time to fill in the bodies of the handler functions.
If you're working along, add the marked lines of code.

~ To till in Scribble's message-handler function bodies

1. If you are not in Class Wizard, chose Class Wizard from the Project menu to
continue. '

2. Select the On L But ton D own handler name in the Member Functions list box to
write the handler code for the WM_LBUTTONDOWN message.

3. Choose the Edit Code button.

The text editor appears, scrolled to a function definition for On LButtonDown.
The TODO line in its body is selected for editing. Figure 9.4 shows
On LB ut ton Down in the editor.

4. Fill in the member functions as described in the procedures that follow.

Figure 9.4 The Text Editor

Initiate Stroke Drawing
The OnLButtonDown member function, shown below, is called via the message
map when Windows sends a WM_LBUTTONDOWN message to the view object.
The function begins a new stroke, adding the current location of the mouse to the
stroke and adding the stroke to the document's stroke list. Then On LButtonDown
"captures" the mouse-until the left mouse button is released to end the stroke.

Chapter 9 Creating the View 129

~ To add code for OnLButtonDown

1. If you haven't already done so, use the Edit Code button in Class Wizard or the
text editor to move to the function definition for On LButtonDown.

2. Replace the default implementation of the On LButtonDown function body with
the marked lines shown here:

~

~

~

~

~

~

~

~

~

~

~

~

~

void CScribView::OnLButtonDown(UINT nFlags. CPoint point)

II When the user presses the mouse button. she may be
II starting a new stroke. or selecting or de-selecting a
II stroke.

m_pStrokeCur - GetDocument() ->NewStroke();
II Add first point to the new stroke
m_pStrokeCur->m_pointArray.Add(point);

SetCapture(); II Capture the mouse until button up
m_ptPrev - point; II Serves as the MoveTo() anchor point

II for the LineTo() the next point. as
II the user drags the mouse

return;

This version of On LButtonDown doesn't include a call to the base class
version. It completely replaces the inherited behavior.

3. Remove the first parameter name, nFlags, from the declaration of
On LButtonDown in order to avoid a compiler warning that states that this
parameter is not referenced.

~ void CScribView::OnLButtonDown(UINT. CPoint point)

Once in the editor, you can complete your other message handlers or return to
Class Wizard and select another function.

Terminate Stroke Drawing
The 0 n L But ton U p member function, shown below, ends the current stroke when
the user releases the left mouse button. The function draws a line to connect the last
stroke, then releases the mouse for use by other windows. The test at the beginning
calls the Windows GetCapture function to determine whether the current window
has control of the mouse. If not, the user is not currently drawing in this view.

130 Introducing Visual C++

~ To add code for OnLButtonUp

1. Use the text editor to scroll to the On L But ton U p function definition in the same
file.

2. Replace the default implementation of the On LB u t ton U p function body with the
marked lines shown here:

void CScribView::OnLButtonUp(UINT nFlags, CPoint point
{

~ II Mouse button up is interesting in the Scribble
~ II application only if the user is currently drawing a new
~ II stroke by dragging the captured mouse.
~

~ if(GetCapture() 1= thi s
~ return; II If this window (view) didn't capture the
~ II mouse, the user isn't drawing in this window.
~

~ CScri bDoc* pDoc = GetDocument();
~

~ CCl i entDC dc(thi s);
~

~ CPen* pOldPen = dc.SelectObject(pDoc->GetCurrentPen());
~ dc.MoveTo(m_ptPrev);
~ dc.LineTo(point);
~ dc.SelectObject(pOldPen);
~ m_pStrokeCur->m_pointArray.Add(point);
~

~ ReleaseCapture(); II Release the mouse capture established
~ II at the beginning of the mouse drag.
~ return;

3. Remove the first parameter name, nFlags, from the declaration of
On L But ton Up in order to avoid a compiler warning that this parameter is not
referenced.

~ void CScribView::OnLButtonUp(UINT, CPoint point

Draw While the Mouse Button Is Down
Between the time that the mouse button goes down and the time that it's
released, Scribble tracks the mouse and draws a trace of its movements in the view.
OnMouseMove, shown below, is called as the user moves the mouse while drawing
the current stroke. The function connects the latest mouse location with its previous
location and saves the new location as the previous point for the next time the
function is called. To do the drawing, OnMouseMove constructs a local CClientDC
object used to draw in the window's client area.

Chapter 9 Creating the View 131

~ To add code for OnMouseMove

1. Scroll to the OnMouseMove function definition in the same file.

2. Replace the default implementation of the OnMouseMove function body with the
marked lines shown here:

void CScribView::OnMouseMove(UINT nFlags, CPoint point)
{

~ II Mouse movement is interesting in the Scribble application
~ II only if the user is currently drawing a new stroke by
~ II dragging the captured mouse.
~

~ if(GetCapture() !- this)
~ return; II If this window (view) didn't capture the
~ II mouse, the user isn't drawing in this window.
~

~ CClientDC dc(this);
~

~ m_pStrokeCur->m_pointArray.Add(point);
~

~ II Draw a line from the previous detected point in the mouse
~ II drag to the current point.
~ CPen* pOl dPen -
~ dc.SelectObject(GetDocument()->GetCurrentPen());
~ dc.MoveTo(m_ptPrev);
~ dc.LineTo(point);
~ dc.SelectObject(pOldPen);
~ m_ptPrev = point;
~ return;

}

3. Remove the first parameter name, nFlags, from the declaration of
On M 0 use M 0 vein order to avoid a compiler warning that this parameter is not
referenced.

~ void CScribView::OnMouseMove(UINT, CPoint point)

Together, these three member functions handle the three phases of mouse drawing:
beginning to track the mouse, tracking the mouse and connecting points, and ending
mouse tracking.

For more information about MFC classes mentioned in this section, see the Class
Library Reference.

132 Introducing Visual C++

Compile Scribble - Step 1 Version
In this section, if you've been working along, you'll compile your completed code
and try out the program. If you're simply reading along, use the Scribble project
supplied in your Visual C++ installation as described in step 2 following.

~ To try out your work in Chapters 8 and 9

1. Open the SCRIBBLE.MAK project (if it's not already open) by choosing Open
on the File menu and completing the dialog box. The following describes where
to find the appropriate version of the project:

• If you're building Scribble after working through the chapter, use the
SCRIBBLE.MAK file in your MYSCRIB directory.

-Qr-

• If you're simply previewing Scribble without adding code, use the
SCRIBBLE.MAK file provided by Visual C++ in the
SAMPLES\MFC\SCRIBBLE\STEPI subdirectory.

2. From the Project menu, choose Build to compile and link Scribble.

3. If necessary, use the Visual C++ debugging facilities to find and correct any
errors you made.

For debugging information, see Chapter 14, "Using the Debugger," in the Visual
C++ User's Guide.

After compiling Scribble, try out its features. When Scribble runs, an MDI
application window appears with a menu bar containing File, Edit, View, Window
and Help menus and a toolbar and status bar. It has one document window open as
shown in Figure 9.5.

,- Sc"robble Scrob I ~~
~
, ~~E ~[C![~ ["J[W " " , . , , :

~ --~

,- Scnbl f

Figure 9.S Scribble Step 1

Chapter 9 Creating the View 133

~ To give Scribble a try

1. From the Project menu, choose Execute to run Scribble.

2. Move, resize, minimize, and maximize the document window.

3. Draw "Hello, World!" (or anything) in the window. Then save the file as
HELLO.SCR.

4. Try the Print Preview and Print commands on the File menu.

Note Your printout may show the strokes of your scribbling at a reduced
size. This is because the current version of Scribble uses the MM_TEXT
mapping mode instead of the MM_LOENGLISH mapping mode. Unlike
MM_LOENGLISH, which Scribble will use at a later stage, MM_TEXT
defines a pixel on the printer to be much smaller than a pixel on the screen.
Printing will improve later in the tutorial.

5. Close HELLO.SCR and reopen it with the Open button on the toolbar.

6. Create a new document with the New button on the toolbar and draw in the new
document. (Save the new document if you like.)

7. Exit Scribble.

Note During drawing, Scribble samples points as fast as it can (as soon as the
mouse moves). When Scribble's view redraws a stroke, the playback represents
approximately the speed at which the stroke was originally drawn.

This concludes your quick introduction to Scribble. You've seen how to implement
the document with serialization and the view with message handling. In the next
chapter, you'llleam how to use the resource editors to construct some additional
user-interface components. In later chapters you willleam to add more (and more
interesting) code to Scribble.

135

CHAPTER 10

Constructing the User Interface

Now that you've implemented enough of Scribble by hand to see how it works, it's
time to explore the tools that eliminate much of the handwork.

The next three chapters show how to use some of the powerful tools supplied with
Visual C++ and the Microsoft Foundation Class Library (MFC).

• This chapter explains how to use the resource editors to visually construct
Scribble's menus and toolbar.

• In Chapter 11, you will use Class Wizard and the text editor to bind menu items
and toolbar buttons to commands and define message-handler functions to
process the commands.

• Chapter 11 shows how to use the dialog editor and ClassWizard to create a
dialog box and connect it to a menu command.

This chapter and Chapter 11 cover step 2 of Scribble. If you want to work along,
adding the code as you go, begin with the files from Chapter 9 in your MYSCRIB
directory. At this point, your files should be very similar to the files in the
SCRIBBLE\STEPI subdirectory. As you read this chapter, perform all steps that
use the resource editors. At the end, your resource file, SCRIBBLE.RC, should
closely resemble the same file in the SCRIBBLE\STEP2 subdirectory. You'll also
use the text editor to make a small addition to MAINFRM.CPP. You can compile
the new version of Scribble at the end of Chapter 11.

If, on the other hand, you want to read along without adding code, you can print or
examine the files in the SCRIBBLE\STEP2 subdirectory.

Even if you don't want to add code, however, it's a good idea to work along in this
chapter to familiarize yourself with the Visual C++ programming process. You can
begin by making your own copy of the SCRIBBLE\STEPI subdirectory.

136 Introducing Visual C++

Edit Scribble's Menus
The first task in this chapter is to edit Scribble's menus using the menu editor.

Thanks to App Wizard, Scribble starts out with a skeleton resource file with no
effort on your part. You can look at the file SCRIBBLE.RC among the files
generated in Chapter 7 to see what's there.

Default Menus
The menus AppWizard generates by default include:

• A menu bar to display when Scribble, a multiple document interface (MOl)
application, has no documents open.

The menus include a basic File menu, a View menu for toggling the visibility of
Scribble's status bar and toolbar, and a basic Help menu.

• A menu bar to display when a Scribble document is open.

They include, besides those above, more File menu commands, an Edit menu
with standard commands, and a Window menu with standard commands
(supplied only for MOl applications, like Scribble).

Note Single document interface (SDI) applications have only one menu bar. The
correct menu bars are generated when you choose between single-document and
multiple-document options in App Wizard.

Scribble's New Menu Commands
The goal in this section is to add a new Clear All command to the Edit menu
as well as a completely new Pen menu with two commands, Thick Line and Pen
Widths. The Clear All command clears the current drawing and deletes its stroke
data. The Thick Line command toggles the thickness of the lines used to draw
subsequent strokes. They can be thick or thin. The Pen Widths command brings up
a dialog box that lets the user set the thick and thin widths in pixels for subsequent
drawing.

In the discussion that follows, you'll see how to create the new menu items.
In the next chapter, you'll see how to use ClassWizard to connect the menus to
code. And, in Chapter 12, you'll see how to create the Pen Widths dialog box and
connect it to the menu command.

Chapter 10 Constructing the User Interface 137

Adding the Menus
This section describes how to add all of Scribble's new menus and demonstrates the
fundamental techniques for editing menus. For more information on using the menu
editor, see Chapter 6, "Using the Menu Editor," in the Visual c++ User's Guide.

Add the Clear All Command to Scribble's Edit Menu
When you add the new menu item, the Clear All command, to Scribble, you'll learn
how the menu editor works. If you're working along, use the following procedure:

~ To add Scribble's Clear All menu command

1. From the File menu, choose Open.

2. From the File box, choose SCRIBBLE. MAK.

The project window appears.

3. Double-click SCRIBBLE.RC.

This launches the resource browser and automatically launches the resource
compiler. Once the file has been compiled, Scribble's resource types appear in
the resource browser.

4. Double-click Menu.

Two menu IDs appear: IDR_MAINFRAME and IDR_SCRIBTYPE.
IDR_MAINFRAME is the menu resource for the multiple document interface
(MDI) frame window when no documents are displayed in its child windows.
IDR_SCRIBTYPE is the menu resource for the frame window when a document
in a child window has the focus. (Under the multiple document interface, the
available menus vary depending on context.) This ID was defined for you by
App Wizard. The ID name is based on the document type you chose in
AppWizard.

5. Double-click IDR_SCRIBTYPE.

The menu editor appears. You see the menus much as you would see them in the
running application.

6. Click Scribble's Edit menu.

The menu drops down as it would in the application. An empty cell outlined with
a dotted line sits below the last menu item, as shown in Figure 10.1. The cell
defines where you add the next menu item.

For a taste of what you can do with menus, see the topic "Drag and Drop" on
page 142.

7. Click the cell at the bottom of the Edit menu.

The cell is highlighted with a ragged outline. This is where you'll see the menu's
caption after you type it in the Properties window.

138 Introducing Visual C++

8. If the Properties window has not opened, you can:

Double-click the cell.

-Or-

• Press the right mouse button while the menu editor has the focus.

The resource object menu appears.

• Choose Properties from the resource object menu.

The Properties window now shows the properties of this particular menu
resource. Figure 10.1 shows the menu editor and a general property page for
the resource. Note the empty cells in the menu bar and Edit menu.

-Or-

Start typing the caption. (See the next step.)

Note In order for the Properties window to appear automatically when you open
a resource, the pushpin in the upper-left comer of the Properties window must be
down.

Empty cells

Microsoft Visual C++

Figure 10.1 Menu Editor for IDR_SCRIBTYPE

9. Type the caption Clear &All in the Caption edit box of the Properties window.

As soon as you start typing, the text you enter appears in the highlighted cell on
the menu. You don't have to select the Caption edit box fIrst.

Chapter 10 Constructing the User Interface 139

You must type the ampersand character (&) in front of the letter to be used in an
access key combination. As you type &A, for example, the letter A appears
underlined in the menu.

-Or-

Type the caption and the access key combination in the cell at the bottom of the
Edit menu. The Properties window appears if you haven't already opened it.

Note If you wanted to specify an accelerator or shortcut key for the menu item,
you would append its specifier after the caption. For example, to specify CTRL+O

as the accelerator for an Open command, the caption string would read
"Open ... \tCTRL+O" where "\t" signifies a tab to align the column.

10. Open the ID drop-down list in the Properties window and start typing the ID for
the Clear All command: ID_EDIT_C.

As soon as you start typing the ID, the drop-down list box scrolls to the first ID
that matches the letters you've typed so far. This behavior occurs because
ID_EDIT_CLEAR_ALL is a command ID predefined by the class library.
Visual C++ ensures that the ID you enter is unique.

Several IDs that begin with "ID_EDIT_C" appear in the list box. Select the
ID_EDIT_CLEAR_ALL entry.

Figure 10.2 shows the property page after you've selected the ID.

Figure 10.2 Property Page with ID

You can define your own command IDs, of course. You'll see an example under
"Add Scribble's Pen Menu" on page 140.

12. As soon as you select the predefined ID, the following string appears in the
Prompt edit box: "Erase everything". Change the wording to "Clears the
drawing".

The prompt string is displayed in the status bar, if the application has one, when
the user navigates up and down the menu using the keyboard.

AppWizard predefines this text for the ID_EDIT_CLEAR_ALL symbol. For
an ID that isn't predefined, you should enter a descriptive prompt string. This
context-sensitive menu information is essentially free, so take advantage of it.

140 Introducing Visual C++

That's it. You've added the Clear All command to the Edit menu. It appeared in the
menu as soon as you started typing its caption. Figure 10.3 shows how the menu
looks at this stage.

New menu item Properties filled

Figure 10.3 Adding the Clear All Menu Item

Note You don't have to press ENTER or click any buttons to conclude your
menu editing. The menu editor automatically stores the edited resource in the
resource file.

The most important thing about defining the menu command is assigning it an ill.
To the framework, the ill is the command. At some point, you have to specify what
happens when the user chooses the Clear All menu command; that is, which code
will be executed? You'll learn more about commands in the next chapter.

Add Scribble's Pen Menu
Adding an entire new menu is similar to adding new commands to existing menus.
If you're working along, use the following procedure.

~ To add Scribble's Pen menu

1. With the menu-editor window still showing, click in the ragged-outlined cell at
the right-hand end of the Scribble menu bar (after the Help menu).

This cell serves the same purpose for the top-level menus as the other ragged­
outlined cell does for items within a pop-up menu.

Chapter 10 Constructing the User Interface 141

2. To position the menu entry, drag the ragged-outlined cell to the left and
drop it between the Edit and View menus. (See the topic "Drag and Drop" on
page 142.)

3. Type the new menu's caption, &Pen, in the Caption edit box of the Properties
window.

This is the only step needed to define the Pen menu as a whole. The next step is
to define the menu items on the Pen menu.

Figure lOA shows the new Pen menu after it has been dragged to its new
location and the menu caption typed in.

Original position

Figure 10.4 The Peu Menu Dragged into Position

4. Press the ENTER key to advance to the first menu item or click the ragged­
outlined cell that descends beneath the word "Pen."

5. As you did for the Clear All command, type a caption for the Thick Line
command in the Caption edit box: Thick &Line.

6. In the ID box, type ID_PEN_THICK_OR_THIN.

7. Type a command prompt string in the Prompt edit box:

Toggles the line thickness between thin and thick

No default string appeared because ID_PEN_THICK_OR_THIN is not a
predefined command ID.

142 Introducing Visual C++

8. Click the dotted cell at the bottom of the Pen menu, below "Thick Line."

9. As you did for the Thick Line command, type a caption for the Pen Widths
command: Pen &Widths

The ampersand (&) appears before the character to be used as an access key.
The ellipsis (...) following a menu item's text lets the user know that the item
brings up a dialog box.

10. In the ID box, type ID_PEN_ WIDTHS

11. Type a command prompt string:

Changes the size of the thin and thick pen

12. Close the menu editor.

That's all it takes to create the Pen menu. Figure 10.5 shows the completed menu as
it appears in the menu editor.

Figure 10.5 The Completed Pen Menu

Drag and Drop
Drag and drop is a common technique in Visual C++. You'll find it in the user
interfaces of many of the resource editors. For example, in Chapter 12, you'll see it
used to drag various kinds of controls from a controls toolbar and drop them into a
dialog box in the dialog editor. Try experimenting in the menu editor: position the
mouse over an outlined box under a menu item; press the left mouse button and

Chapter 10 Constructing the User Interface 143

drag the box up or down the list and drop it where you like by releasing the mouse
button. Notice that when you start to drag, an insertion point appears to orient you
for dropping. You can also drag a whole menu to some other location in the menu
structure, or you can drag a top-level menu to a lower level to create a hierarchical
menu. If you change your mind, drag the menu back or choose Undo from the Edit
menu.

Connect the Menus to Code
Typically, at this point you would open ClassWizard from the Resource menu
and use it to bind the menu commands to message-handler functions. That step
is postponed until the next chapter in order to keep this chapter focused on
constructing the user interface. If you like, you can skip ahead, perform the
command-binding steps in Chapter 11, and then return to this chapter to edit
Scribble's toolbar.

Edit Scribble's Toolbar
The resource file that App Wizard creates also includes a toolbar bitmap, shown
in Figure 10.6. When you build Scribble, the framework uses the toolbar bitmap to
create a dockable toolbar. In this section you'll use the bitmap editor to add a new
button to the bitmap for Scribble.

Figure 10.6 The Default Toolbar Bitmap

Earlier in the chapter, you added the Pen menu. One of its menu items is the Thick
Line command. In this section, you'll add a Thick Line button to Scribble's toolbar.
Then, in Chapter 11, you'll use ClassWizard to connect both the Thick Line menu
item and the Thick Line toolbar button to the same handler member function. Thus
the Thick Line toolbar button will become an alternative user interface for the
Thick Line menu item. That is, both user-interface objects will have the same
command ill so they generate the same command message, which calls the same
handler function.

144 Introducing Visual C++

When the user chooses either the menu item or the toolbar button, the handler
function toggles Scribble's drawing pen between thin and thick lines. Figure 10.7
shows Scribble as it appears with the finished toolbar. The Thick Line button is the
seventh button from the left.

Figure 10.7 Scribble with Its Edited Toolbar

About the Toolbar
Some of the buttons on Scribble's toolbar already work, as you saw in Chapter 9
when you compiled Scribble. The buttons for opening and saving fIles are already
connected to handlers defmed by the framework. All you had to do to make the fIle
operations functional was write the Serialize functions for the document and the
stroke data structure. The print button is supported by default.

The Cut, Copy, and Paste buttons on the toolbar will not be implemented for
Scribble. The Help button will be connected up in Chapter 15.

Although this chapter shows you how to add one new button, you could easily add
others or delete unused buttons from the toolbar bitmap.

Add the Thick Line Button to Scribble's Toolbar Bitmap
You'll use the graphics editor for this task.

~ To edit Scribble's toolbar

1. In the resource browser, double-click Bitmap.

2. Double-click IDR_MAINFRAME in the resource browser.

An image window opens, showing the bitmap. The graphics tools open,
including the graphics toolbar and the color toolbar. Figure 10.8 shows this
configuration. You may see more or less of the image window than is shown in
the figure, depending on your screen size.

Chapter 10 Constructing the User Interface 145

If the graphics tools don't appear, choose Toolbars from the Tool menu and
select Graphics and Colors in the dialog box.

You can drag the graphics tools to either side of the screen and dock them to get
a better view of the image window.

Pane with normal view Pane with zoomed view

Graphics toolbar

Properties window

Figure 10.8 The Bitmap Image Window

If the Properties window does not open, select IDR_MAINFRAME, press
ALT+ENTER and pin down the Properties window.

3. Enlarge the visible area of the bitmap by using the graphics editor's maximize
button.

4. From the Image menu, choose Grid Settings.

The Grid Settings dialog box (Figure 10.9) appears.

5. Choose the Tile Grid checkbox and choose OK.

Leave Pixel Grid checked as well. The size boxes show a grid size of 16 pixels
by 15 pixels. This is the size of a "tile" -one of the buttons on the toolbar.

146 Introducing Visual C++

When you turn on the Tile Grid option, a thin blue rectangle (a guide) is placed
around each tile in the bitmap. These guides make it easier to select and work
with a tile.

Figure 10.9 The Grid Settings Dialog Box

6. Scroll the right-hand pane of the image window (which shows a zoomed image
of the bitmap) until the right end of the bitmap is visible in the center of the
pane.

Notice that the bitmap is outlined by a selection rectangle. In the Properties
window, the Width text box shows the bitmap's current width to be 144 pixels.
Beyond the end of the bitmap, there is enough space to expand the bitmap by
several tiles.

7. Lengthen the bitmap by one tile: Drag the resizing handle on the right -hand end
of the bitmap to the right by the width of one tile.

The bitmap grows a full tile at a time. Notice that as you drag your bitmap, the
rightmost indicator on the status bar shows new bitmap dimensions of "160 x
15." This makes the bitmap wide enough to accommodate another button.

Beyond the current end of the bitmap, you see a white area the size of a tile at
the end, overlaid with the grid. Figure 10.10 shows the bitmap as it appears after
you've lengthened it, with the white space displayed at the end.

Notice that the Width text box in the Properties window now shows the new
width of the toolbar bitmap: 160 pixels.

Chapter 10 Constructing the User Interface 147

White space at end

Figure 10.10 The Scrolled Bitmap

Selection tool

Pencil tool

Color indicator

Tool box

Brush selector

Color palette

Figure 10.11 The Graphics Toolbar

8. Enclose the three rightmost button images-a printer, a question mark, and an
arrow next to a question mark-with the selection rectangle.

Click the selection tool in the upper-left comer of the graphics palette.

Figure 10.11 shows the graphics toolbar and the three tools you'll be using: the
selection tool, the pencil tool, and the fill tool.

148 Introducing Visual C++

Position the mouse pointer at the upper-left corner of the printer image and drag
to the lower-right corner of the question-mark image. Place the lines of the
crosshairs just inside the blue guides.

9. Drag the selected images one tile to the right to open up a space for a new
button.

Figure 10.12 shows the bitmap after dragging.

Selection tracker

Figure 10.12 The Bitmap Dragged to the Right

10. Choose the pencil tool from the graphics toolbar.

11. Draw the bitmap shown in Figure 10.13. It doesn't have to be exact.

If you make a mistake, choose the eraser tool.

Thin lines or ...

... thick lines

Figure 10.13 Bitmap for the Thick Line Button

Chapter 10 Constructing the User Interface 149

12. Choose the eye dropper select color tool from the graphics toolbar.

13. Click the select color tool on the background of the last tile. The tool changes to
the paint-bucket fill tool.

14. Click the fill tool in the new button image to fill its background with the selected
color.

Figure 10.14 shows the completed bitmap as it appears in Scribble.

Figure 10.14 The Edited Bitmap

15. From the File menu, choose Save.

That completes the task of editing Scribble's toolbar bitmap. In order for the
new button to work, it must be associated with a command ill. In this case, the
Thick Line button will be bound to I D_P E N_ T HI C K_O R_ TH IN. You defined that
ID earlier in the property page for the Thick Line menu command, so Visual C++
has already written a #derme for the ill in a file called RESOURCE.H. Your only
task at this point is to associate the ill with the button. If you are working along,
add lines of code marked with ~.

Note If you had just created a new button for which there was no existing
command ill, you'd use the symbol editor to defme a symbol such as
ID_PEN_TH ICK_OR_THI N. For information about the symbol editor, see
Chapter 13, "Browsing through Symbols," in the Visual C++ User's Guide.

~ To associate the button with its command ID

1. From the project window, open MAINFRM.CPP.

2. Scroll to the static array called "buttons" and add the marked lines, which map
the buttons to their command IDs.

150 Introducing Visual C++

Summary

II Arrays of IDs used to initialize control bars

II Toolbar buttons - IDs are command buttons
static UINT BASED_CODE buttons[] =
{

II Same order as in the bitmap 'toolbar.bmp'
ID_FILE_NEW,
ID_FILE_OPEN,
ID_FILE_SAVE,

ID_SEPARATOR,
ID_EDIT_CUT,
ID_EDIT_COPY,
ID_EDIT_PASTE,

ID_SEPARATOR,
~ ID_PEN_THICK_OR_THIN,
~ ID_SEPARATOR,

} :

IDJILE_PRINT,
ID_APP_ABOUT,

This array definition provides a I-to-l mapping based on the positions of the
button tiles in the toolbar bitmap. The ID _SEPARATOR entries denote small
amounts of extra space used to group the button tiles.

3. Save the file.

Now the Thick Line button generates precisely the same command as the Thick
Line menu item. Because of this, the same handler function serves for both.

Scribble's resource needs are simple, so this chapter introduced only a few of the
things you can do with the resource editors in Visual C++. For information about
their many capabilities, see the Visual C++ User's Guide.

Mter editing your application's menus and toolbar, the next step is to connect them
to code using Class Wizard. That step is explained in Chapter 11.

CHAPTER 11

Binding Visual Objects to Code
Using ClassWizard

151

The version of Scribble you saw in Chapter 8 and Chapter 9 added a small amount
of code to the skeleton starter files created by App Wizard - much less code than
you would normally have to write to get a comparable application up and running
without the framework. Considering the small amount of work, the program does
quite a lot: drawing, saving, printing, even print preview.

Like all applications written for Windows, Scribble is "message driven." A
keystroke, mouse click, or other event causes messages to be sent to some part
of the application that can respond to the event. In Chapter 9, for example,
you saw that Scribble implements mouse drawing by detecting and responding to
messages generated by mouse clicks and drags.

This chapter introduces a category of messages called "commands," which are
messages to your application from menu items, toolbar buttons, and accelerator
keys. The expanded version of Scribble developed in this chapter adds two menu
items that generate commands to toggle the line thickness for drawing and to clear
all strokes from the current document. The command that toggles line thickness is
also duplicated by a button on Scribble's toolbar.

You created the resources for Scribble's new menu items and its new toolbar button
in Chapter 10. Now you can use ClassWizard to assign a user-interface object, such
as a menu item, to a command and map the command to a function that handles it.

In this chapter, you will:

• Learn the fundamentals of commands and how the framework routes them to
various "command target" objects in the program for handling.

• Extend your knowledge of ClassWizard, begun in Chapter 9.

• Add new command-handling code for Scribble.

• Connect a toolbar button and a menu item to the same command.

• Learn how to keep your user-interface objects (menus and toolbar buttons)
updated since a menu item may be enabled or disabled, a button checked or
unchecked.

152 Introducing Visual C++

This chapter and the previous chapter cover step 2 of Scribble. If you want to
work along, adding the code as you go, begin with the files from Chapter lOin
your MYSCRIB directory. At this point, your files should be very similar to the
files in the SCRIBBLE\STEPI subdirectory, plus the resource changes you made
in Chapter 10. As you read this chapter, perform all ClassWizard steps and add all
lines of code marked in the left margin with the symbol ~. At the end of the chapter,
your files should closely resemble the files in the SCRIBBLE\STEP2 subdirectory.

If, on the other hand, you want to read along without adding code, you can print
or examine the files in the SCRIBBLE\STEP2 subdirectory. However, even if you
don't want to add code, it's a good idea to work along in this chapter to familiarize
yourself with ClassWizard and the Visual C++ programming process. You can
begin by making your own copy of the SCRIBBLE\STEPI subdirectory.

What ClassWizard Can Do
ClassWizard is one of the Visual C++ tools that you'll use most frequently. In this
chapter, you'll learn to use ClassWizard to bind commands to message-handler
functions. Class Wizard can also

• Connect standard Windows messages to message-handler functions.

• Connect user-interface objects to message-handler functions.

• Create new classes, such as dialogs and extra views, documents, or frame
windows.

• Add member variables to dialog classes and specify how those variables are to
be initialized and validated when the dialog box is displayed.

For more information about the capabilities of ClassWizard, see Chapter 12,
"Using ClassWizard," in the Visual c++ User's Guide and the article
"ClassWizard" in Part 2 of Programming with the Microsoft Foundation
Class Library.

When you use ClassWizard to create a message-handler function, ClassWizard
writes an entry for the command in the chosen class's "message map" and
adds a function declaration to the class. Also, ClassWizard writes a function
template-a complete member function definition with an empty function
body-in the source files that contain the class. ClassWizard then lets you
jump directly to the text editor to fill in the function template.

Note Class Wizard automatically writes its changes to your files to disk. You need
to save files explicitly only if you have edited them yourself (if, for example, you
used the text editor to fill in a handler's code.

Chapter 11 Binding Visual Objects to Code Using ClassWizard 153

You can also use ClassWizard to edit existing message maps and message-handler
functions. ClassWizard follows a conservative set of rules in writing to your files,
writing only a few kinds of code to predictable places, so it's safe and easy to use.

Important If you delete a command binding with Class Wizard, its message-map
entry is deleted, but the message-handler function, and any references to it in your
other code, are not deleted. You must delete those items by hand. This is for your
safety; the message-handler function code, which you probably wrote, is preserved
until you delete it.

You may want to work like this: Create several menu items or other user-interface
objects, call up ClassWizard and connect the first object to a handler, and jump to
the text editor to write the handler; then return to Class Wizard and repeat the
process for each of the other objects. You may prefer to create the user-interface
objects, use Class Wizard to make all the connections, and then use the text editor to
fill in all the handler functions. The tools are flexible enough to support the working
style you prefer.

Command Concepts and Terms
Before using ClassWizard to bind commands, you'll need to know more about the
related concepts and terms. This section outlines the material, and you'll find more
information about these concepts in Chapter 2, "Working with Messages and
Commands," of Programming with the Microsoft Foundation Class Library.

• Commands, messages, and control notifications

A command is an instruction to your program to perform a certain action.
Unlike a function call, a command is a "message" that is routed to various
"command target" objects, each of which has an opportunity to carry out the
instruction. Examples of commands include the Open, Save, and Save As
commands on the File menu.

Important To the class library, a command is identical to its ID. A menu item,
toolbar button, or dialog box control is bound to a command by giving the item
the sameID.

Commands are based on the WM_COMMAND Windows message.
Commands can be sent to frame windows, documents, views, the application
itself, and other kinds of objects. These objects are discussed as "command
targets."

154 Introducing Visual C++

• User-interface objects (command generators) and updating

Menu items, buttons, and similar elements of the user interface can cause
Windows to generate commands. The framework routes commands to the other
objects in your program that carry them out. Keep in mind that these user­
interface objects are not C++ objects.

You can also use commands to update the visual state of menu items and
buttons-for example, enabling them if they're available to the user in a given
situation and disabling them if they're unavailable. For more information, see
Chapter 2, "How to Update User-Interface Objects" in Programming with the
Microsoft Foundation Class Library.

• Command targets

Command-target objects contain their own message maps and message-handler
functions. Many objects in your program can receive and respond to commands.
These objects are called "command targets" and are derived from class
CCmdTarget. These are C++ objects.

• Command bindings

A binding associates two things, such as a menu item and the command it
invokes. Commands are assigned to the user-interface objects that generate
them at one end of the command routing. This is done, for example, by using
the command's ID as the ID of a menu item. At the other end of the routing,
commands are mapped to the name of a message-handler function. This is done
by connecting the command ID and the name of the function.

You normally do this task with ClassWizard. Usually, you'll bind some
commands as you construct the user interface. Later, you'll probably revisit
ClassWizard as you work with code in the text editor.

Note You can assign a command ID to more than one user-interface object.
Scribble binds its Thick Line command to both a menu item and a toolbar
button. The same message-hanpIer function and message-map entry work for
both sources of the command.

• Message maps

How does a command target know it can handle a command? For that matter,
how does any object know it can handle a message? The answer is the message
map of the object's class.

Each command-target object has a message map. Message maps are tables that
connect commands-or Windows messages-with the names of the member

Chapter 11 Binding Visual Objects to Code Using ClassWlzard 155

functions that handle the commands. These functions are called "message
handlers." When a command target object receives a message, the object's
message map is used to determine which handler function to call for the
message.

You don't typically have to write message-map entries manually-ClassWizard
does the job for you.

• Message handlers

Command-target classes have member functions to handle any commands to
which the target can respond. These functions are called "message handlers."
In this tutorial, the terms "handler," "message handler," and "message-handler
function" are equivalent.

A considerable part of writing an application is writing message-handler
functions that determine how a document, view, or other class responds to a
command.

• Command routing

How does a command from a menu or other user-interface object find its handler
function? Commands are routed through a standard sequence of command-target
objects on the assumption that one of them has a handler for the command. This
standard routing ensures that your objects receive the commands they need to
handle.

To illustrate, consider a command message from the Clear All item in Scribble's
Edit menu. In Scribble, the handler function for this command happens to be a
member function of class esc rib Doc. Here's how that command reaches its
handler after the user chooses the menu item:

1. The main frame receives the command message first.

2. In the case of an MDI frame window, the main frame gives the currently
active MDI child window a chance to handle the command.

(In the case of an SDI window, the main frame gives the child window, the
currently active window in an MDI frame window, a chance to handle the
command.)

3. Because of the standard routing, the frame window now gives its view a
chance to handle the command before checking its own message map.

4. Unlike the frame, the view checks its own message map first.

5. Finding no handler, the view next routes the command to its associated
document.

6. The document checks its message map and, in this case, does find a handler,
which gets called-and the routing stops.

156 Introducing Visual C++

If the document did riot have a handler, it would route the command next to its
document template. Then the command would return to the view and then to the
frame window. Finally, the child window would check its message map. If that
check failed as well, the command would be routed back to the MDI frame and
then to the application object-the ultimate destination of unhandled commands.
For more information on command handling, see "Working with Messages and
Commands," Chapter 2 in Programming with the Microsoft Foundation Class
Library.

Binding Scribble's Commands
This section explains the issues and procedures involved in binding Scribble's Clear
All and Thick Line commands to their handlers using Class Wizard. (The Pen
Widths command is bound in the next chapter.)

Which Command· Target Class Gets the Handler?
Before you can bind Scribble's Clear All command to a message-handler function
in the document class, there's a problem to solve. Where should you put the handler
for a command? Where should you put attributes, such as a line thickness value? In
the document class? In the view class? Somewhere else?

Consider the specific case of Scribble. Scribble has one document class (some
applications might have several kinds of documents-such as text documents and
graphics documents) and one view class (some documents might have more than
one way to view their data-for example, as text or as an outline).

Scribble's Clear All command has two effects: it deletes data in the document and
it causes the view to be redrawn with no strokes. Should the handler for Clear All
be located in the document or the view? Scribble's esc rib Doc class houses the
application's data structure, the stroke list. Clear All's primary effect is to delete
the data. Redrawing the view afterward is secondary. Hence, it makes sense to
locate the 0 nEd i tel ear All handler in the document.

Scribble's Thick Line command is more interesting. This command toggles the
current value of a line thickness variable between thick and thin. Should the handler
for Thick Line be located in the view because it affects how Scribble's data is
drawn? This seems reasonable, but consider what happens when, in a later chapter,
Scribble gets splitter window functionality. In that case, each pane of the splitter
window is really a new view on the same data. Should each of these views house its
own line thickness information (and its own pen)? It seems a better solution to
store that information in the document instead, where all of the views can access it.

Chapter 11 Binding Visual Objects to Code Using ClassWizard 157

Keep in mind that this is a decision specific to Scribble's user interface, where it's
desirable that the pen width commands apply to all views, not just the one with the
current focus. You might choose to organize things differently in another
application.

Now consider a hypothetical application with more than one view on a document
and perhaps even more than one frame window for the same document. Should
handlers and attributes be part of the document, one of the frame windows, or one
of the views? Should an attribute be duplicated in more than one view or frame
window?

Here are some guidelines that may help:

• In general, put handlers in the command-target class where they have the
greatest effect.

• When attributes are shared by multiple views or frame windows, put them in the
common document.

• If attributes are not shared, put them in the view(s) or window(s) that use them.

Bind Scribble's Clear All Command
As discussed in the previous section, Scribble's Clear All command is bound to the
document class. If you're working along, use the following procedure:

~ To bind Scribble's Clear All command

1. From the Project menu, choose ClassWizard.

2. Select the Message Maps tab.

3. From the Class Name box, select CScri bDoc.

Recall the decision to handle the command from the document rather than the
view. That's why the handler for Clear All will be placed in esc rib Doc.

After you select a class, the Object IDs list box shows all the visual objects
managed by the class-the available items that can be mapped to functions.
These might include controls (for a dialog resource) and commands from menus
and accelerator tables. The list may also include class names.

4. In the Object IDs box, select ID_EDIT_CLEAR_ALL.

You see COMMAND and UPDATE_COMMAND_UI in the Messages list
box. For commands, these are always the choices you see. In other cases, you
might see other things listed-a list of Windows messages, for example, when
the selected item is the name of a window or view class.

158 Introducing Visual C++

5. In the Messages box, select COMMAND,

Later in the chapter, you'll see how UPDATE_COMMAND_UI is used.

Figure 11.1 shows the selections from steps 3,4, and 5.

Figure 11.1 Clear All in ClassWizard

6. Choose the Add Function button.

This brings up a dialog box with a proposed name for the new handler function.

7. In the Add Member Function dialog box, choose the OK button to accept the
name On Ed itCl ea rA 1l.

Although you could change that name, don't. The name fits the handler's
functionality and its connection to the menu item very well. The proposed name
is synthesized from the command name and message type.

Several things are added to your source files when you add a member function:

• A message-map entry is added to the class's message map (in the .CPP file
for the class).

• A member function declaration is added to the class declaration (in the .H
file for the class).

• An empty member function definition is added to the .CPP file.

These changes are made to your source files after you finish editing the class.

After you add the function, its name appears in the Member Functions box
beside the ID to which it maps.

8. On the Message Maps tab, make sure that the new handler's name,
OnE d i t C 1 ear All, is selected in the Member Functions box.

Chapter 11 Binding Visual Objects to Code Using ClassWlzard 159

9. Choose the Edit Code button.

The text editor opens SCRIBDOC.CPP and displays the skeleton code for
On Ed i tCl ea rA 11. Figure 11.2 shows the skeleton code.

MI1 flJ' 011 VI udl (II ~,(1IIInlii MAK I I
~
1!.5I.-r--IT-rlcjl~II" __ 11 f I" 1,;""1,,,1,',

',(IIIIII)()((1'1' I
void CScribDoc: :OnEditClearAll()
{

Figure 11.2 The OnEditClearAIl Function Template

10. Add the lines marked with (.) to fill in the On Edi tel ea rA 11 message-handler
function.

~

~

~

void CScribDoc::OnEditClearAll(
{

DeleteContents() ;

SetModifiedFlag();
UpdateAllViews(NULL) ;

}

SetModified Flag is a member function of class CDocument. It marks the
document as changed so the framework will prompt the user to save the
document when it closes.

11. From the File menu, choose Save to save changes to SCRIBDOC.CPP.

This is the only file you changed by adding the new member function.

How do the commands work? The new message handler first calls
De 1 eteContents to destroy the document's stroke data. (Scribble's version of
De 1 et e Con te n t s, from Chapter 9, overrides CDocument's DeleteContents
member function.) Then On Ed i t C 1 ear A 11 calls the UpdateAlIViews member
function inherited from CDocument to cause all views of the data to be updated.
The document's view is redrawn, this time with no data. UpdateAlIViews takes
a NULL argument because the document is modifying itself. The parameter is
normally used to pass a pointer to the view that modified the document, but that
doesn't apply here.

160 Introducing Visual C++

The Del e t e Can ten t s member function iterates through the list of strokes.
For each stroke, it gets the next stroke and calls the delete operator on it.
For more information about working with list classes, see the article "Collections"
in Part 2 of Programming with the Microsoft Foundation Class Library.

When you finish adding On Ed itCl ea rA 11, you're still in the text editor. To
continue binding commands, choose ClassWizard again from the Project menu.

Bind Scribble's Thick Line Command
Like the Clear All command, the Thick Line command will be handled by the
document. Recall the discussion under "Which Command-Target Class Gets the
Handler?" on page 158.

~ To bind Scribble's Thick Line command

1. If you're not in ClassWizard, open it from the Project menu.

2. Select the Message Maps tab.

3. From the Class Name box, select CScri bDac.

4. In the Object IDs box, select ID_PEN_THICK_OR_THIN.

5. In the Messages box, select COMMAND.

6. Choose the Add Function button.

7. In the Add Member Function dialog box, choose the OK button to accept the
name On PenTh i c kOrTh in.

8. On the Message Maps tab, choose the Edit Code button.

9. Add the lines marked with ~ ~ to fill in the 0 n Pen T h i c k 0 r T h i n message­
handler function.

void CScribDoc::OnPenThickOrThin()

~ II Toggle the state of the pen between thin and thick.
~ m_bThickPen = !m_bThickPen;

~ II Change the current pen to reflect the new width.
~ ReplacePen();

}

The 0 n Pen T hi c k 0 r T hi n message handler first toggles the state of a Boolean
variable, m_bThi ckPen. If the variable is now TRUE, the pen will be thick.
Otherwise, it will be thin. The handler then calls a helper function,
Rep 1 ace Pen, to reset the current pen to the new width. (You declare
m_b T hi c k Pen later in the tutorial.)

Chapter 11 Binding Visual Objects to Code Using ClassWizard 161

10. Next, use the text editor to add Rep 1 acePen to SCRIBDOC.CPP
(Rep 1 a cePen is not a message handler, so you don't add it with Class Wizard):

II OnPenThickOrThin. then ...
~ void CScribDoc::ReplacePen()
~ {

~ m_nPenWidth = m_bThickPen ? m_nThickWidth : m_nThinWidth;
~ II Change the current pen to reflect the new width.
~ m_penCur.DeleteObject();
~ m_penCur.CreatePen(PS_SOLID. m_nPenWidth. RGB(0.0.0));
~

The Rep 1 ace Pen memberfunction uses the C++ conditional operator (?:) to
determine the pen width and return its value. Then it calls the DeleteObject
member function of the current pen object and creates a new solid black pen
with CreatePen, setting its width and other attributes.

11. Besides adding the Rep 1 a cePen function definition to SCRIBDOC.CPP, you
must also add a function prototype to the CScri bOac class declaration in
SCRIBDOC.H. If you're working along, you can open that file in the Project
window, locate the class declaration as partially shown in the next code
example, and add the marked line:

class CScribDoc : public CDocument
{

protected: II Create from serialization only.

II Attributes

II Operations
public:

II Implementation
~ protected:
~ void ReplacePen();

} ;

12. To add this improved way of updating the pen, locate the I nitOacument
member function in SCRIBDOC.CPP and change the function to match this
code:

void CScribDoc::InitDocument()
{

ReplacePen(); II Initialize pen according to current width
}

162 Introducing Visual C++

To match the function as shown, besides adding the marked line you must delete
the following lines (added in Chapter 9):

m_nPenWidth = 2; II Default 2 pixel pen width
II Solid, black pen
m_penCur.CreatePen(PS_SOLID, m_nPenWidth, RGB(0,0,0));

The line you added calls Rep 1 a cePen to set up the pen with its new width.

13. From the File menu, choose Save All to save changes to both SCRIBDOC.H
and SCRIBDOC.CPP.

The Thick Line Command and the Toolbar Button
Scribble's Thick Line command is now bound to the Thick Line toolbar button
as well as to the Thick Line menu item. Either user-interface object generates
precisely the same command. This duplication is accomplished simply by giving the
menu item (above) and the button (as in Chapter 10) the same ID as the command:
ID_PEN_THICK_OR_THIN.

Add New Member Variables to Scribble
In addition to storing the current pen width in m_n Pen Wid t h, class esc rib 0 a c
needs to keep track of whether the pen is currently thick or thin and how "thick"
and "thin" are defined (in pixels). In Chapter 12, you will add code to allow the
user to define these values with a dialog box. For now, defaults are hard coded.

~ To add the new data members

1. In the Project window, double-click Dependencies.

2. Double-click SCRIBDOC.H.

3. Find the class declaration for class CScri bOac.

It begins:

class CScribDoc public CDocument
{ ...

Locate the section labeled" / / At t rib ute s : ".

Chapter 11 Binding Visual Objects to Code Using ClassWizard 163

4. Add the following marked lines after the protected keyword and the existing
m_st rake List and m n PenWi dth declarations:

II Attributes:
protected:
UINT m_nPenWidth;

BOOl m_bThickPen;
UINT m_nThinWidth;
UINT m_nThickWidth;

CPen

public:
I I Additi onal code ...

II Current user-selected pen width
II Thick currently selected or not

II Current definition of thin
II Current definition of thick

II Pen created according to
II user-selected pen style (width)

5. Add the marked lines to I nitDacument in SCRIBDOC.CPP:

void CScribDoc::InitDocument()
{

~ m_bThickPen = FALSE;
~ m_nThinWidth = 2; II Default thin pen is 2 pixels wide
~ m_nThickWidth 5; II Default thick pen is 5 pixels wide

ReplacePen(); II Initialize pen according to current width
}

The added lines specify that the pen is initially thin and define the meanings of
"thin" and "thick."

6. Save files SCRIBDOC.H and SCRIBDOC.CPP.

Updating User-Interface Objects
When a menu drops down in your application, the user expects to see some menu
items enabled (available) and others dimmed (grayed to show they're unavailable)
depending on the current context. Some menu items may have a check mark.
Similarly, the user expects to see some toolbar buttons enabled and others disabled
or perhaps checked (depressed). The framework provides a direct, command-based
way to set the state of the menus and toolbar buttons as conditions in the program
change. For an explanation of how this works, see Chapter 2, "Working with
Messages and Commands," in Programming with the Microsoft Foundation
Class Library.

164 Introducing Visual C++

Update Scribble's Clear All Menu Item
This section presents the steps you will take to prepare the code required to update
the Clear All menu item on Scribble's Edit menu. This command is handled by the
document object, which has the necessary information on whether there are any
strokes in the current drawing to clear. If you're working along, the following
procedure guides you through the process.

~ To add an update handler for Scribble's Clear All menu

1. From the Project menu, choose ClassWizard.

2. Select the Message Maps tab.

3. In the Class Names box, select class CScri bDac.

4. In the Object IDs box, select ID~DIT_CLEAR_ALL.

5. In the Messages box, select UPDATE_COMMAND_UI.

Figure 11.3 shows the selections made in steps 3, 4, and 5:

Figure 11.3 ClassWizard Selections for OnUpdateEditClearAll

6. Choose the Add Function button.

7. Choose the OK button in the Add Member Function dialog box to accept the
name OnUpdateEdi tCl ea rA 11.

8. On the Message Maps tab, choose the Edit Code button.

Chapter 11 Binding Visual Objects to Code Using ClassWizard 165

9. Add the marked lines to the OnUpdateEdi tCl ea rA 11 update handler
function.

void CScribDoc::OnUpdateEditClearAll(CCmdUI* pCmdUI)
{

~ II Enable the user-interface object (menu item or tool-
~ II bar button) if the document is non-empty. i.e .• has
~ II at least one stroke.
~ pCmdUI->Enable(!m_strokeList.lsEmpty());

10. Save changes to SCRIBDOC.CPP.

Notice that the 0 n U p d ate Ed i t C 1 ear All handler takes one argument, a pointer to
a CCmdUI object that contains information about the Clear All menu item on
Scribble's Edit menu.

The pointer to a CCmdUI object, pC md U I, is used to access a CCmdUI member
function, Enable. Enable takes one Boolean argument. In this code, the expression
! m_ s t r 0 k eLi st. I s Em p t Y () evaluates to nonzero if the document has at least
one stroke to clear. If the expression evaluates to zero (no strokes), the menu
item is disabled (and dimmed or grayed).

Note When the user pulls down a menu, the update handlers for all items on the
menu are called before the user sees the menu displayed. Thus it's important to
make your update handlers fast.

When you add an update command for the ClearAll menu item, ClassWizard also
writes a message-map entry in the document's message map in SCRIBDOC.CPP
that looks like this:

BEGIN_MESSAGE_MAP(CScribDoc. CDocument
11{{AFX_MSG_MAP(CScribDoc)
II Other message-map entries
ON_UPDATE_COMMAND_UI(ID_EDIT_CLEAR_ALL. OnUpdateEditClearAll)
II}}AFX_MSG_MAP()

END_MESSAGE_MAP()

The ON_UPDATE_COMMAND_UI macro resembles the ON_COMMAND
macro for the 0 nEd i t C 1 ear A 11 message handler.

166 Introducing Visual C++

In addition, Class Wizard adds a new member function declaration for
OnUpdateEdi tCl ea rA 11 to the CScri bDoc class declaration in SCRIBDOC.H.
The function declaration looks like this:

afx_msg void OnUpdateEditClearAll(CCmdUI* pCmdUI);

Update Scribble's Thick Line Menu Item
Updating the Thick Line menu is very similar to updating the Clear All menu. In
this case, however, rather than enabling or disabling the menu item, the handler puts
a check mark beside the item or removes an existing check mark. If you're working
along, do the following procedure.

~ To add an update handler for the Thick Line menu

1. From the Project menu, choose Class Wizard.

2. Select the Message Maps tab.

3. Select class CScri bDoc.

4. In the Object IDs box, select ID_PEN_TIDCK_OR_TIDN.

5. In the Messages box, select UPDATE_COMMAND_UI.

6. Choose the Add Function button.

7. Choose the OK button in the Add Member Function dialog box to accept the
name OnUpdatePenThi ckOrThi n.

8. On the Message Maps tab, choose the Edit Code button.

9. Add the marked code to the OnUpdatePenThi ckOrThi n update handler
function when the text editor opens.

void CScribDoc::OnUpdatePenThickOrThin(CCmdUI* pCmdUI)
{

~ II Add check mark to Pen Thick Line menu item if the current
~ II pen width is "thick."
~ pCmdUI->SetCheck(m_bThickPen);

}

10. Save changes to SCRIBDOC.CPP.

Rather than enabling or disabling the menu command, this handler uses the pointer
to a CCmdUI object to call the SetCheck member function. SetCheck puts
a check mark in front of the menu item's text, "Thick Line," if its argument
evaluates to TRUE, or unchecks the menu item if FALSE. In this case, the

Chapter 11 Binding Visual Objects to Code Using ClassWizard 167

expression m_b T hie k Pen is a member variable of esc rib Doc. It evaluates
TRUE if the line thickness is currently set to thick. Since the value of
m_bThi ckPen is passed to SetCheck, the effect is to toggle the menu item's
check mark on or off as the line thickness changes.

The ON_UPDATE_COMMAND_UI message-map entry and the
OnUpdatePenTh i ckOrTh in message handler serve to update the state of the
Thick Line button on the toolbar as well as the Thick Line menu item. The code line

pCmdUI-)SetCheck(m_bThickPen);

adjusts the state of the toolbar button as well as updating the checked state of the
menu item. For a toolbar button, "checked" means depressed.

In this example, the user would previously have reset the line thickness. The next
time the user chooses the Pen menu (or the toolbar button), the user-interface
update mechanism takes care of updating the check mark to match the current
thickness. Similarly, the toolbar button's state toggles between a "pressed down"
appearance and a normal appearance.

As with the update handler for Clear All, ClassWizard adds a message-map entry
for OnUpdatePenThi ckOrThi n to the document's message map in file
SCRIBDOC.CPP:

BEGIN_MESSAGE_MAP(CScribDoc. CDocument
11{{AFX_MSG_MAP(CScribDoc)
II Other message-map entries
ON_UPDATE_COMMAND_UI(ID_PEN_THICK_OR_THIN.OnUpdatePenThickOrThin)
I/} }AFLMSG_MAP

END_MESSAGE_MAP()

ClassWizard also adds a member function declaration to the document class
declaration in SCRIBDOC.H:

afx_msg void OnUpdatePenThickOrThin(CCmdUI* pCmdUI);

Compile Scribble - Step 2 Version
How does Scribble behave with these new commands in place? Compile the new
Step 2 version of Scribble and find out.

Run the new version of Scribble from the Project menu. Figure 11.4 shows this
version of Scribble.

168 Introducing Visual C++

Figure 11.4 Scribble Step 2

Draw some strokes with the default thin pen. Then change the line thickness with
the Thick Line command on the Pen menu and draw some new strokes. Clear all
strokes from the drawing with the Clear All command on the Edit menu. Move the
toolbar around and see how it "docks" when you drag it over to the frame. The
framework provides this functionality for you.

Exit Scribble.

This completes step 2 in the tutorial. You now have a basic understanding of
commands. In later chapters you'll build on that foundation.

In the next chapter, you'll implement a command that displays a dialog box and
then processes the results in its message handler.

169

CHAPTER 12

Adding a Dialog Box

In Chapter 10 and Chapter 11, you added new commands to Scribble in two steps:
first, by using the menu editor to add new menu items; and second, by using
ClassWizard to define message handlers and bind them to the commands. Recall
that in Chapter 10, you added menu items for three new commands: Edit Clear All,
Thick Pen, and Pen Widths. Chapter 11 discussed binding only the first two of these
commands.

The reason for this omission is that the Pen Widths command is somewhat different
from the other two commands. Both the Edit Clear All and Thick Pen commands
execute to completion as soon as the user selects them. By contrast, the Pen Widths
command requires more information from the user. This command opens a dialog
box, one that lets the user specify how thin the Thin Pen should be and how thick
the Thick Pen should be. Before you can write a message handler for this command,
you have to design the dialog box that it displays and define a new class to manage
the dialog box. That's what you'll do in this chapter.

This chapter develops a modal dialog box using the same general procedure that
was used for adding menu commands in Chapter 10 and Chapter 11: you'll use the
dialog editor to design the dialog box's appearance, and then use ClassWizard to
define message handlers and bind them to the dialog box. Along the way, you'll see
a feature of Class Wizard that greatly simplifies the process of gathering data from a
dialog box and checking the data's Validity.

This chapter describes the following topics:

• Designing a dialog box.

• Using ClassWizard to connect a class to a dialog box.

• Opening the Dialog Box from your application.

170 Introducing Visual C++

This chapter covers step 3 of Scribble. If you want to work along, adding the code
as you go, begin with the files from Chapter 11 in your SCRIBBLE\MYSCRIB
subdirectory. At this point, these files should closely resemble those in the
SCRIBBLE\STEP2 subdirectory. As you read the chapter, perform all ClassWizard
steps and add all the code that's marked with the symbol~. At the end, your files
should closely resemble the files in the SCRIBBLE\STEP3 subdirectory.

If you want to read along without adding code, you can print or view the files
in the SCRIBBLE\STEP3 subdirectory.

For more information about editing dialog boxes, see Chapter 5, "Using the Dialog
Editor," of the Visual C++ User's Guide.

Designing a Dialog Box
Figure 12.1 shows the Pen Widths dialog box that you will create.

Figure 12.1 Scribble's Pen Widths Dialog Box

The Pen Width dialog box will have the following behavior: for either the Thin or
Thick Pen width the user can enter any number between 1 and 20. If the user enters
a value outside of this range, Scribble displays a message box stating the legal
range; after dismissing the message box, the user can enter new values. To reset the
pen widths to their default values, the user chooses the Default button. To use the
currently displayed widths for any subsequent drawing, the user chooses the OK
button. To cancel the operation, the user chooses the Cancel button.

Visual C++ provides a dialog editor for designing dialog boxes. This editor displays
the dialog control toolbar, which shows the available controls (such as radio
buttons, check boxes, and pushbuttons), and an empty dialog box, which is the
starting point for the dialog box you're designing. You select controls from the
toolbar and position them on your dialog box. You can move and resize the controls
directly using the mouse.

Chapter 12 Adding a Dialog Box 171

To customize the captions and IDs for the controls you've added, you open the
property page for each control. In Chapter 10, you saw that menus and individual
menu items have property pages; in the same way, dialog boxes and dialog controls
have property pages describing their attributes.

There are three steps in designing a dialog box:

1. Creating a new dialog box and editing its caption and ID.

2. Adding the controls and editing their captions and IDs

3. Arranging the controls within the dialog box.

Create the Dialog Box
~ To create the Pen Widths dialog box

1. Open SCRIBBLE.RC.

2. From the Resource menu, choose New. Then select Dialog from the list of
resource types and choose OK.

-Or-

From the resource toolbar, choose the New Dialog button. To open the resource
toolbar, choose Toolbars from the Tools menu; then select the Resource check
box in the Toolbars box.

The dialog editor window appears, displaying a dialog box that contains two
buttons labeled OK and Cancel. The control toolbar also appears.

3. If the property page is not currently displayed, double-click the dialog box and
then choose the push-pin button on the property page to keep it open.

4. In the ID box, change the ID to IDD _PEN_WIDTHS.

5. In the caption box, change the caption to "Pen Widths."

Notice that the title bar of the dialog box reflects the new caption.

Add the Controls
~ To add controls to the Pen Widths dialog box

1. From the control toolbar, drag two edit controls to the Pen Width dialog box.

• Click on the first edit box to display its property page. Change its ID to
IDC_THIN_PEN_ WIDTH.

• Bring up the property page for the second edit box. Change its ID to
IDC_THICK_PEN_ WIDTH.

172 Introducing Visual C++

2. From the control toolbar, drag two static text controls to contain the descriptions
for the two edit controls.

• Click the first text box to display its property page. Change the caption to
read ''Thin Pen Width:".

• Bring up the property page for the other text box. Change its caption to read
"Thick Pen Width:".

• Resize each text box so that the entire caption is visible. You can do this by
dragging the sizing handles on the sides of the text box or by selecting the
text box and pressing F7 when the text box is selected.

You won't have to refer to the IDs of the text boxes, so you can leave them with
their default values (both have the value IDC_STATIC).

3. From the control toolbar, add a third pushbutton to the two already present.

• Click the pushbutton to display its property page. Change its caption to
"Default" and its ID to IDC_DEFAULT_PEN_WIDTHS.

Note that the dialog editor has predefined the OK and Cancel buttons. If you
want to look at the property pages for these buttons, click on them in turn. They
have IDOK and IDCANCEL, respectively, as their IDs. Notice that the OK
button has the Default Button check box chosen; this makes the OK button the
default if the user immediately presses the ENTER key. Figure 12.2 illustrates
designing the Pen Widths dialog box. In this illustration, the central window is
the dialog editor window. Below the dialog editor is the property page and the
control toolbar is to the right.

Thin Pun Width:

Thick Pen Width:

IS .j' 1m II

Control tool bar

Dialog editor window

Figure 12.2 Designing the Pen Widths Dialog Box

Chapter 12 Adding a Dialog Box 173

Arrange and Test Controls
Once you've added all the controls to the dialog box, you can also

• Resize the dialog box for a balanced layout if necessary.

• Arrange and align the controls

You can improve the dialog box's appearance by using the commands on the
Layout menu to align the controls, make them the same size, etc.

• Define the tab order for the controls

Tab order is the order in which the TAB key moves the input focus from one
control to the next. You can see the tab order by choosing Tab Order from the
Layout menu. Click each control in tab order sequence. For more information
on changing the tab order, see Chapter 5, "Using the Dialog Editor," of the
Visual c++ User's Guide.

• Test the dialog box

If you want to see how the dialog box will look when it's displayed, choose the
Test command from the Resource menu. This displays the dialog box as it will
appear in Scribble. Exit Test mode by choosing either the OK or Cancel button
on the dialog box or by pressing the ESC key.

When you're satisfied with the way your dialog box looks, choose the Save
command on the File menu. Visual C++ saves the template for your dialog box in
the .RC file that you're working in, SCRIBBLE.RC in this case.

Connecting a Class to a Dialog Box
Once you've specified the appearance of your dialog box, you must specify its
behavior. This requires deriving a class from CDialog that implements your dialog
box and connecting the class to the resource you created in the previous section.

In general, to connect a class to a dialog box:

1. Declare a class to represent the dialog box.

2. Declare handler functions for the messages you want to handle.

3. Map the controls to member variables of the dialog class and define what (if
any) validation rules should be applied to each.

You could do all of this manually, but ClassWizard provides a graphical user
interface that lets you do it quickly and easily. It generates a header and an
implementation file for yoUr dialog class complete with function prototypes, skeletal
function definitions, a message map, and a data map.

174 Introducing Visual C++

The following sections show how these steps are accomplished for Scribble's Pen
Widths dialog box.

Declare the Dialog Class
As you saw in Chapter 11, ClassWizard lets you connect a graphical object (such
as a menu command or a toolbar button) to an existing class. ClassWizard also lets
you declare entirely new classes in your application.

~ To declare a new dialog class

1. From the Project menu, choose ClassWizard.

The Add Class dialog box appears. ClassWizard knows that a class hasn't been
defined yet, so it displays this dialog box to allow you to define one, as shown in
Figure 12.3.

You could also create the dialog class before creating the dialog resource and
then use the Select Class button to connect them.

Figure 12.3 The Add Class Dialog Box

2. In the Class Name box, type CPenWidthsDlg.

Notice that the class type is already set to "CDialog." ClassWizard assumes this
is the type to use because you were using the dialog editor.

3. In the Header File box, change the name to "pendlg.h."

ClassWizard offers a candidate name, which in this case was "penwidth.h",
based on the class name. You can accept the suggested name or change it.

4. In the Implementation File box, change the name to "pendlg.cpp."

5. Choose the Create Class button.

The Message Maps tab regains the focus, now displaying the name
"CPen WidthsDlg" and the IDs for the controls in the Pen Widths dialog box, as
shown in Figure 12.4.

Chapter 12 Adding a Dialog Box 175

Figure 12.4 The Message Maps Tab

In previous chapters, you added code to the SCRIBDOC.HlCPP and
SCRIBVW.HlCPP files, which were created by AppWizard. In this chapter you
will work with two new files: PENDLG.H and PENDLG.CPP, which you specified
in the Add Class dialog box. Class Wizard automatically adds these files to the
project.

Header File
Here's the initial version ofPENDLG.H that ClassWizard creates once you've
completed the Add Class dialog box:

class CPenWidthsDlg : public CDialog
{

II Construction
public:

CPenWidthsDlg(CWnd* pParent NULL);

II Dialog Data
11{{AFX_DATA{CPenWidthsDlg)
enum { IDD = IDD_PEN_WIDTHS };

II standard constructor

II NOTE: the ClassWizard will add data members here
/ /} }AFLDATA

/1 Overrides
II ClassWizard generated virtual function overrides
11{{AFX_VIRTUAL(CPenWidthsDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX);

II DDX/DDV support
I/} }AFX_VIRTUAL

176 Introducing Visual C++

// Implementation
protected:

} :

// Generated message map functions
//{{AFX_MSG(CPenWidthsDlg)

// Note: the ClassWizard will add member functions here
/ /} }AFCMSG
DECLARE_MESSAGE_MAP()

This file contains a declaration for C Pen Wid t h sOl g, the class that implements the
Pen Widths dialog box. At this point, the class contains two member functions: a
constructor and the 000 a t a Ex c han 9 e function, which is described later on.

The file contains comment lines that begin / / { {A F C and / /} } A F C.
ClassWizard uses those comment lines to find the sections of code that it maintains.
There are three such sections in the header file, each delimited by slightly different
comments: the AFCDATA section, containing the declarations ofthe dialog data
members; the AFX_MSG section, containing the declarations of the message
handlers; and the AFX_V I RTUAL section containing declarations of override
functions. In general, you shouldn't manually edit any declarations that appear in
these sections. It is good style to put any custom declarations in the appropriate
group but below the / /} } A F Cline.

Implementation File
Here's the initial version ofPENDLG.CPP that ClassWizard creates once you've
completed the Add Class dialog box:

#include "stdafx.h"
#include "scribble.h"
#include "pendlg.h"

iti fdef _DEBUG
#undef THIS_FILE
static char BASED CODE THIS_FILE[] = __ FILE __ :
itend if

//

// CPenWidthsDlg dialog

CPenWidthsDlg: :CPenWidthsDlg(CWnd* pParent /*=NULL*/
: CDialog(CPenWidthsDlg::IDD. pParent)

//{{AFX_DATA_INIT(CPenWidthsDlg)
// Note: the ClassWizard will add member initialization here

//}}AFX_DATA_INIT

Chapter 12 Adding a Dialog Box 177

void CPenWidthsDlg::DoDataExchange(CDataExchange* pDX)

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CPenWidthsDlg)

// Note: the ClassWizard will add DDX and DDV calls here
//}}AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CPenWidthsDlg. CDialog)
//{{AFX_MSG_MAP(CPenWidthsDlg)

// Note: the ClassWizard will add message map macros here
/ /} }AFCMSG_MAP

END_MESSAGE_MAP()

//

// CPenWidthsDlg message handlers

This ftle contains an empty message map and empty function definitions for the
constructor and the DoData Exchange member function. The DoDataExchange
function will be described later in this chapter.

Notice that the constructor has a base initializer for CDialog. The CDialog
constructor that it invokes creates a modal dialog box, and it takes two parameters:
the ID of the dialog resource and a pointer to the parent window. For the first
parameter Class Wizard has specified C Pen Wid t h s D 1 9 : : I D D. This is an
enumerated value that is defined in the AFX_DATA section in the class declaration.
This enumerated value is equal to IDD_PEN_ WIDTHS, the ID you specified in the
section "Add the Controls" on page 172. Thus the dialog class is associated with
the dialog resource you created.

Also notice that the implementation ftle, like the header ftle, contains sections
delimited by / / {{AFC and / /} }AFC, into which ClassWizard will insert code
later.

Declare the Message-Handling Functions
The CDialog class defines default handlers for the OK and Cancel buttons.
The Pen Widths dialog box contains a third pushbutton, the Default button. For
C Pen Wid t h s D 1 g to respond when the user chooses this button, you must defme a
new message handler and bind it to the Default pushbutton.

Binding a message handler to a control in a dialog box is similar to binding a
message handler to a menu command, which was described in Chapter 11; both are
accomplished by using ClassWizard to add an entry to a class's message map.

178 Introducing Visual C++

Once you add all the information to the Add Class dialog box in the previous
section, the ClassWizard Message Maps tab is active. This is the same tab that was
described in Chapter 11, but notice the following differences:

• The dialog class, not the document or view class, is the one that will handle
the message. Consequently, the Class Name box displays "CPenWidthsDlg."

• The Object IDs box displays the IDs of all the controls in the dialog box,
not the commands in a menu.

• The message being handled is a Windows control notification message, not
an application-specific command. As a result, the Message box displays more
than just COMMAND and UPDATE_COMMAND_UI; it displays all the
messages that can be sent by the object that's highlighted in the Object IDs
box. For example, if IDC_THIN_PEN_ WIDTH - which is the ID of the first
edit box - is highlighted in the Object IDs box, the Message box displays all
the control notification messages that an edit box can generate, such as
EN_SETFOCUS, EN_KILLFOCUS, and EN_UPDATE.

Despite these differences, the procedure for adding a message handler is the same.

~ To add a message handler for the Default button

1. In the Object IDs list box, select IDC_DEFAULT_PEN_ WIDTHS as
illustrated in Figure 12.4. This is the ID of the Default button. The Message list
box now shows all the notification messages that a pushbutton can send, that is,
BN_CLICKED and BN_DOUBLECLICKED.

2. In the Messages box, select the BN_ CLICKED message.

Notice the description in the Description section of the dialog box: "Indicates
the user clicked a button".

3. Choose the Add Function button.

The Add Member Function dialog box appears, displaying the candidate name,
"OnDefaultPenWidths." ClassWizard has synthesized this name from the
object's ID and the message name.

4. Choose the OK button to accept the function name offered by ClassWizard.

The name "OnDefaultPen Widths" appears in the Member Function box and
a hand-shaped icon appears next to the entry for BN_CLICKED in the
Message box.

Chapter 12 Adding a Dialog Box 179

At this point, you could choose the Edit Code button to fill in the definition
of the OnDefaul tpenWi dths message handler, the way you did with the
message handlers for menu commands in Chapter 11. However, the purpose of
this function is to manipulate member variables of the dialog class. Right now the
CPenWi dthsDl 9 class doesn't have any member variables defined; those members
will be defined in the next section. You will implement 0 n De f a u 1 t Pen Wid t h s
later in the chapter, after you've added the member variables.

Header File
Here are the changes that ClassWizard makes to PENDLG.H after you've defined
the message handler (these changes are saved to the file when you close
Class Wizard):

class CPenWidthsDlg : public CDialog
{

II Construction
public:

CPenWidthsDlg(CWnd* pParent - NULL);

II

II Implementation
protected:

II Generated message map functions
11{{AFX_MSG(CPenWidthsDlg)

. ~ afx_msg void OnDefaultPenWidths();
I/} }AFCMSG
DECLARE_MESSAGE_MAP()

} ;

Notice that ClassWizard has inserted a prototype for a member function named
OnDefaultPenWidths.

180 Introducing Visual C++

Implementation File
ClassWizard makes the following changes to PENDLG.CPP after you've defined
the message handler (these changes are saved to the file when you close
ClassWizard):

BEGIN_MESSAGE_MAP(CPenWidthsDlg. CDialog)
//{{AFX_MSG_MAP(CPenWidthsDlg)

~ ON_BN_CLICKED(IDC_DEFAULT_PEN_WIDTHS. OnDefaultPenWidths)
/ /} lAFX_MSG_MAP

END_MESSAGE_MAP()

II ...

//

// CPenWidthsDlg message handlers

~ void CPenWidthsDlg::OnDefaultPenWidths()
~ {
~ // TODO: Add your control notification handler code here
~ 1

Class Wizard has inserted an entry in the message map indicating that the member
function 0 n De f a u 1 t Pen Wid t h s is a message handler called whenever the control
IDC_DEFAULT_PEN_ WIDTHS sends a BN_CLICKED message.
Class Wizard has also generated an empty function definition for the message
handler. You'll fill in the implementation for the function later in this chapter.

Map the Controls to Member Variables
Scribble must be able to retrieve the values that the user enters in the Thin Pen
and Thick Pen edit boxes. The Microsoft Foundation Class Library defines a
mechanism that automates the process of gathering values from a dialog box; this
mechanism is called a "data map." In the same way that a message map binds a
user-interface element with a member function, a data map binds a dialog-box
control with a member variable. The value of the member variable reflects the
status or the contents of the control. By adding entries to C Pen Wid t h s D 1 g' s data
map, you can retrieve the values entered in the Thin Pen and Thick Pen edit boxes.

For Scribble, the widths of the thin and thick pens must be between 1 and 20. You
can enforce these conditions by using the automated data validation that data maps
provide. If the user enters values that fall outside this range, the application displays
a message box stating the legal range and allows the user to enter new values.

Chapter 12 Adding a Dialog Box 181

~ To map the controls of the Pen Widths dialog box to member variables

1. Choose the Member Variables tab.

This tab, shown in Figure 12.5, contains a list box displaying the mapping
between controls and member variables. At the moment the box displays only
the IDs for the controls because you haven't yet specified which member
variables the controls correspond to.

2. Select IDC_THIN_PEN_ WIDTH and then choose the Add Variable button.

The Add Member Variable dialog box appears.

3. In the Member Name box, type m_nThinWidth.

4. In the Variable Type box, choose "int."

5. Choose OK to add the member variable to the class.

Notice that the member name and type you specified now appear in the
Control box and two new edit boxes appear to receive the validation parameters
appropriate for an integer.

6. In the Minimum and Maximum boxes, enter "I" and "20" respectively.

7. Repeat steps 2 through 6 for the control IDC_TIDCK_PEN_ WIDTH. Type
m_nThickWidth for the member name, choose "int," and enter lower and upper
limits of 1 and 20.

8. Choose OK.

You've now completed the data map connecting the Pen Widths dialog box to the
PenWi dthsDl 9 class.

Figure 12.5 The Member Variables Tab

182 Introducing Visual C++

~

~

ClassWizard makes the following changes to PENDLG.H after you've mapped the
controls to member variables (these changes are saved to the file after you close
ClassWizard):

class CPenWidthsDlg : public CDialog
{

II Construction
public:

CPenWidthsDlg(CWnd* pParent = NULL);

II Dialog Data
11{{AFX_DATA{CPenWidthsDlg)
enum { IDD = IDD_PEN_WIDTHS } ;

int m_nThinWidth;
int m_nThickWidth;
I/} }AFX_DATA

II

} ;

Class Wizard has inserted declarations of member variables in the data map. These
are the member variables you specified in the Add Member Variable dialog box.

ClassWizard makes the following changes to PENDLG.CPP after you've mapped
the controls to member variables (these changes are saved to the file when you
close ClassWizard):

CPenWidthsDlg::CPenWidthsDlg(CWnd* pParent I*=NULL*/)
: CDialog(CPenWidthsDlg::IDD. pParent)

{

11{{AFX_DATA_INIT(CPenWidthsDlg)
~ m_nThi nWi dth = 0;
~ m_Thi ckWi dth = 0;

II}}AFX_DATA_INIT
}

void CPenWidthsDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
11{{AFX_DATA_MAP(CPenWidthsDlg)

~ DDX_Text(pDX. IDC_THIN_PEN_WIDTH. m_nThinWidth);
~ DDV_MinMaxlnt(pDX. m_nThinWidth. 1. 20);
~ DDX_Text(pDX. IDC_THICK_PEN_WIDTH. m_nThickWidth);
~ DDV_MinMaxlnt(pDX. m_nThickWidth. 1. 20);

II}}AFX_DATA_MAP
}

Chapter 12 Adding a Dialog Box 183

Notice that ClassWizard has initialized the member variables in the constructor and
provided an implementation for the DoDataExchange function. The framework
calls DoData Exchange whenever values have to be moved between the member
variables in the class and the controls in the dialog box on screen (for example,
when first displaying the dialog box on the screen or when the user closes the dialog
box by choosing OK).

The DoDataExchange function is implemented using DDX and DDV function
calls. A DDX (for Dialog Data eXchange) function specifies which control in the
dialog box corresponds to a particular member variable and transfers the data
between the two. A DDV (for Dialog Data Validation) function specifies the
validation parameters for a particular member variable, ensuring that its value is
legal. The DDX and DDV function calls shown above reflect the mapping and
validation parameters you specified with Class Wizard.

Notice that the DDV function call for a given member variable immediately follows
the DDX function call for that variable. This is a rule you must follow if you choose
to manually edit the contents of the data map.

For more information about ClassWizard, see "Using ClassWizard," Chapter 12
in Visual C++ User's Guide.

Implementing the Message Handler
Recall that Class Wizard provided an empty function definition for the
OnDefaul tPenWi dths message handler, which is called when the user chooses
the Default button. Now that the C Pen Wid t h sOl 9 class contains the necessary
member variables, it's time to fill in that function definition. This function sets the
contents of the edit boxes to the default widths of the thin and thick pens.

~ To implement the message handler for the Default button

1. Open Class Wizard

2. Choose the Message Maps tab.

3. Select "OnDefaultPenWidths" in the Member Functions box.

4. Choose the Edit Code button.

The Edit Code button transfers you to the text editor, opens PENDLG.CPP,
and displays the definition for OnDefaul tPenWi dths.

184 Introducing Visual C++

5. Add the marked code to the OnDefaul tPenWi dths function definition:

void CPenWidthsDlg::OnDefaultPenWidths()
{

~ m_nThinWidth - 2:
~ m_nThickWidth = 5:
~ UpdateData(FALSE): II causes DoDataExchange()
~ II bSave=FALSE means don't save from screen, rather, write
~ II to screen

}

The function sets m_nThi nWi dth and m_nThi ckWi dth to their default values
and then calls UpdateData, a member function defined by CWnd (the base
class of CDialog).

The UpdateData member function calls the DoDataExchange function to
move values between the 'member variables and the controls displayed on the
screen. The direction in which the data values are moved is specified by the
argument to UpdateData. The default value of this argument is TRUE, which
moves data from the controls to the member variables. A value of FALSE
moves data from the member variables to the controls. The
OnDefaul tPenWi dths member function passes FALSE, causing the default
values to be displayed in the edit boxes on the screen.

6. Save and close the file PENDLG.CPP.

The dialog editor window is still visible, displaying the Pen Widths dialog box
you designed.

7. Click the push-pin button on the property page so that it is unpinned, then
double-click the close box on the dialog editor window.

Only the resource browser window for SCRIBBLE.RC should be visible.

Open the Dialog Box
By now you've specified almost everything about the Pen Widths dialog box: its
appearance, the data map for its edit controls, and the message handlers for its
pushbuttons. There's only one thing that remains to be specified: when the dialog
box should be opened.

At the moment there is no programmatic connection between the Pen Widths menu
item and the Pen Widths dialog box; that is, the menu item and the dialog box are
not bound together. You must explicitly bind them by calling the Pen Widths dialog
box from within the message handler for the Pen Widths command.

Chapter 12 Adding a Dialog Box 185

How do you open a dialog box? The first step is to declare a CPenWi dthsDl 9
object. This doesn't display the dialog box on the screen, it just constructs the C++
object that manages the dialog box. To display the dialog box, you must call the
DoModal member function defined by the CDialog class.

When you use DoModal to display the Pen Widths dialog box, it becomes a
"modal" dialog. This means that when the dialog box is called, it takes control
of the application (it puts the program in a different "mode"). The user can do
no other work in the application while the dialog box is displayed and must dismiss
the dialog box, typically by choosing the OK or Cancel button, to continue with the
application. The DoModai function continues executing as long as the dialog box is
displayed on the screen. When the user chooses the OK or Cancel button, the
DoModai function returns IDOK or IDCANCEL, respectively, and the
application can continue.

Now you can write a message handler for the Pen Widths command. Which class
should get the handler? Recall that in Chapter 11 you added declarations for the
m_nThi ckWi dth and m_nThi nWi dth member variables to the CScri bDoc class,
because the document needs to keep track of the widths of the thick and thin pens
(this allows multiple views to share the same pen widths). Since the document class
has to maintain those values, it should get the handler for the Pen Widths command.

~ To bind the Pen Widths command

1. From the Project menu, choose ClassWizard.

The Message Maps tab appears.

2. In the Class Name box, select "CScribDoc."

3. In the Object IDs box, select the ID_PEN_ WIDTHS command.

4. In the Messages box, select COMMAND.

5. Choose the Add Function button.

6. Choose the OK button to accept the candidate name "OnPenWidths."

7. Choose the Edit Code button.

This returns you to the text editor and opens the file SCRlBDOC.CPP.

186 Introducing Visual C++

8. Make the additions indicated by the marked lines to SCRIBDOC.CPP:

'include "stdafx.h"
'include "scribble.h"
'include "scribdoc.h"

~ Ifinclude "pendlg.h"

II ...

void CScribDoc::OnPenWidths()
{

~ CPenWidthsDlg dlg;
~ II Initialize dialog data
~ dlg.m_nThinWidth = m_nThinWidth;
~ dlg.m_nThickWidth = m_nThickWidth;

~ II Invoke the dialog box
~ if (dlg.DoModal() -- IDOK)
~ {

~ II retrieve the dialog data
~ m_nThinWidth = dlg.m_nThinWidth;
~ m_nThickWidth = dlg.m_nThickWidth;
~

~

~

~

}

II Update the pen used by views when drawing new strokes
II to reflect the new pen widths for "thick" and "thin".
ReplacePen();

9. Save SCRIBDOC.CPP and SCRIBBLE.RC.

When modifying SCRIBDOC.CPP, it's necessary to include PENDLG.H,
so that the message handler has access to the dialog class you've created. The
OnPenWi dths function declares a CPenWi dthsDl g object and sets the values of
the m_nThi ckWi dth and m_nThi nWi dth member variables to the current widths
of the thick and thin pens. Then the function calls the DoModal function, which
displays the dialog box on the screen and takes control of the application until the
user exits the dialog box. If the user exits the dialog box by choosing the OK
button, the function changes the current thick and thin pen widths to the new
values; if the user chooses the Cancel button, the old values are retained. Finally,
the function calls the Re p 1 ace Pen member function to make the document's pen
use the current widths.

When does the application perform the data exchange and validation defmed
in the DoData Exchange function? Recall that DoData Exchange is called by the
UpdateData member function. Just before the dialog box is first displayed on the
screen, the framework calls the UpdateData function with an argument of FALSE,
which sets the contents of the edit boxes to the values of the member variables.

Chapter 12 Adding a Dialog Box 187

If the user exits the dialog box by choosing the OK button, the framework calls
UpdateData with an argument of TRUE, which retrieves the contents of the edit
boxes and sets the values of the member variables accordingly. (If the user exits by
choosing the Cancel button, the framework doesn't call UpdateData.)

You don't have to handle the UPDATE_COMMAND_UI message for the Pen
Widths menu item because the menu item doesn't need to be updated. The
command is never disabled since it's always legal to change the widths of the pens,
and there's no need to add or remove a check mark because the command isn't a
toggle.

Compile Scribble-Step 3 Version
How does Scribble behave now that a dialog box has been added? Compile the new
version of Scribble and find out.

~ To compile Scribble

• From the Project menu, choose Build scribble.exe.

Run the new version of Scribble. Draw some strokes with the default thick pen and
the default thin pen. Then use the Pen Widths dialog to change the thickness of the
pens and draw some new strokes. Figure 12.6 illustrates the third version of
Scribble with a variety of strokes drawn.

Figure 12.6 Scribble Version 3

Exit Scribble.

This completes step 3 in the tutorial.

In the next chapter, you'll implement the updating of multiple views, scrolling, and'
splitter windows.

189

CHAPTER 13

Enhancing Views

In the previous chapters, you've seen how a view acts as an intermediary between a
document and the user: the view displays a document on the screen and interprets
mouse actions as operations on the document. You've also seen how a view
cooperates with a frame window so that the frame window implements the generic
window behavior while the view provides the application-specific functionality.

However, there are additional benefits to having a view class that is separate from
the document and the frame window. This chapter describes how to take advantage
of the division of labor between these classes to add special features to your
application's user interface by:

• Updating multiple views on the same document.

• Scrolling a view.

• Splitting a window.

This chapter covers step 4 of Scribble. If you want to work along, adding the
code as you go, begin with the files you worked on in Chapter 12 in your
SCRIBBLE\MYSCRIB subdirectory. At this point, these files should closely
resemble those in the SCRIBBLE\STEP3 subdirectory. As you read the chapter,
add all the code marked with the symbol ~. At the end, your files should closely
resemble the files in the SCRIBBLE\STEP4 subdirectory.

If you want to read along without adding code, you can print or examine the files in
the SCRIBBLE\STEP4 subdirectory.

190 Introducing Visual C++

Updating Multiple Views
Suppose you have a drawing open in Scribble and you choose the New Window
command on the Window menu. This action opens a new document window
displaying the same drawing. The document object now has two view objects
connected to it. Now consider what would happen if you added some new strokes
in one of the document windows. Would the new strokes appear in the other
window simultaneously? No, not as Scribble is currently implemented ecause each
window is unaware of what's happening in the other windows. (This is illustrated
in Figure 13.1.) You would have to wait until the other window is repainted
(for instance, if you minimized and then restored it). Then its 0 n D raw
function would display the drawing again, including the new strokes.

Figure 13.1 Multiple Views ou a Document Without Updating

How can you ensure that all the views attached to a document reflect changes
to the document as soon as they are made? Each view must notify the other views
whenever it has modified the document. The Microsoft Foundation Class Library
(MFC) provides a standard mechanism for notifying views of modifications to a
document through the UpdateAllViews member function of the CDocument class.

The UpdateAllViews function traverses the list of views attached to the document.
For each view in the list, the function calls the OnUpdate member function of the
CView class. The OnUpdate function is where the view responds to changes in the
document; the default implementation of the function invalidates the client area of

Chapter 13 Enhancing Views 191

the view, causing it to be repainted. The simplest way for you to use this updating
mechanism in your application is to call the document's UpdateAIIViews function
whenever a view modifies a document in response to a user action.

You can also perform more efficient repainting with this updating mechanism if you
use the parameters of the UpdateAIIViews function. Here is the declaration of
UpdateAIIViews:

void UpdateAllViews(CView* pSender. LPARAM lHint = 0L.
CObject* pHint - NULL);

The first argument identifies the view that made the modifications to the document.
This is specified to keep the UpdateAIIViews function from performing a
redundant notification; typically the view that made the modifications doesn't
need to be told about them. The second two arguments are "hints." You can use
these hints to describe the modifications that the view made.

The UpdateAlIViews function gives the hints to every view attached to the
document by passing them as parameters to the OnUpdate member function. You
can override OnUpdate to interpret those hints and update only the area of the
display that corresponds to the modified portion of the document. Thus, if another
view is displaying a completely different portion of the document, it doesn't have to
perform any repainting at all.

To inform other views of modifications:

1. Defme a type of hint that describes a modification to a document.

2. When a view modifies the document, create a hint describing the modification
made and pass it to UpdateAIIViews.

3. Override OnUpdate to use the hint so that only the portion of the screen
corresponding to the modification gets updated.

These steps are described in more detail in the following sections, using Scribble as
an example.

Define a Hint for Scribble
When a stroke is added to a drawing in Scribble, the rectangular region that
contains the new stroke is the only area that needs to be updated; the remainder of
the drawing can be left alone. Therefore, a logical choice for a hint in Scribble is
the bounding rectangle of the new stroke.

192 Introducing Visual C++

~ To derme bounding rectangles for strokes

1. Open the file SCRIBDOC.H and add the following new member declarations to
CStroke:

class CStroke : public CObject
{

II
II Attributes
/I

~ CRect m_rectBounding: II smallest rect that surrounds all
~ II of the pOints in the stroke
~ public:
~ CRect& GetBoundingRect() { return m_rectBounding: }

/I Ope rat ions
public:

BOOl DrawStroke():
~ void Fini shStroke():

/I
} :

Instead of creating a separate class to represent the hint, it's more convenient to
pass a CSt r 0 k e pointer as a hint. Store the bounding rectangle for each stroke
in the CSt roke object itself, so that it can be quickly referred to by OnUpdate
to determine which area of the window needs to be repainted. The protected
member variable m_r e c t B 0 U n din 9 is a eRect object storing the bounding
rectangle, and the public member function Ge t B 0 U n din 9 Re ct allows the
rectangle to be retrieved by the view. There is also a new helper function,
the Fi ni shStroke member function.

2. Open SCRIBDOC.CPP and make the following modifications:

II Each time we change what gets serialized, we change
II the schema number.

~ IMPlEMENT_SERIAl(CStroke, CObject, 2)
/I ...
CStroke::CStroke(UINT nPenWidth)
{

m_nPenWidth = nPenWidth:
~ m_rectBounding.SetRectEmpty():

}

void CStroke::Serialize(CArchive& ar)
{

if (ar.IsStoring(»
{

}

ar « m_rectBounding:
ar « (WORD)m_nPenWidth:
m_pointArray.Serialize(ar):

else

ar » m_rectBounding;
WORD w;
ar » w;

m_nPenWidth - w;
m_pointArray.Serialize(ar);

Chapter 13 Enhancing Views 193

The changes shown here are needed to manage the addition of the
m_rectBoundi ng member variable. The first change to be made is
incrementing the schema number in the IMPLEMENT_SERIAL macro.
This is necessary because this version of Scribble changes what's stored in
a CSt r 0 k e object by adding a new member variable. Changing the schema
number distinguishes strokes saved by this version of Scribble from those of
other versions.

The next change initializes the bounding rectangle to an empty rectangle in the
CSt roke constructor. The changes to the Seri ali ze member function store
and read the m_rectBoundi ng member variable.

3. Add the following function definition to the end of SCRIBDOC.CPP:

~ voi d CStroke:: Fi ni shStroke()
~ {
~ II Calculate the bounding rectangle. It's needed for smart
~ II repainting.
~

~ if(m_pointArray.GetSize() -- 0)
~ {

~ m_rectBounding.SetRectEmpty();
~ return;
~ }
~ CPoint pt = m_pointArray[0];
~ m_rectBounding = CRect(pt.x. pt.y. pt.x. pt.y);
~

~ for (int i-I; i < m_pointArray.GetSize(); i++)
~ {

~ II If the point lies outside of the accumulated bounding
~ II rectangle. then inflate the bounding rect to include it.
~ pt = m_pointArray[i];
~ m_rectBounding.left = min(m_rectBounding.left. pt.x);
~ m_rectBounding.right = max(m_rectBounding.right. pt.x);
~ m_rectBounding.top = min(m_rectBounding.top. pt.y);
~ m_rectBounding.bottom = max(m_rectBounding.bottom. pt.y);
~ }
~

194 Introducing Visual C++

~ II Add the pen width to the bounding rectangle. This is needed
~ II to account for the width of the stroke when invalidating
~ II the screen.
~ m_rectBounding.lnflateRect(CSize(m_nPenWidth. m_nPenWidth»;
~ return;
~ }

The Fin ish S t r 0 ke member function calculates the bounding rectangle for a
stroke. In this function, the stroke object iterates through its array of points.
testing each one's location; if a point falls outside the current bounding
rectangle, the stroke object enlarges the bounding rectangle just enough to
contain it. Then the bounding rectangle is expanded on each side by the width of
the pen.

Pass the Hint After Modifying the Document
The next step is to pass the hint to the document's UpdateAllViews member
function. An appropriate time to pass a hint is each time a stroke is completed.

~ To pass the hint after modifying the document

• Open SCRIBVW.CPP and make the following modifications near the end of
On LButtonUp:

void CScribView::OnLButtonUp(UINT. CPoint point)
{

I I ...
m_pStrokeCur->m_pointArray.Add(point);

~ II Tell the stroke item that we're done adding points to it.
~ II This is so it can finish computing its bounding rectangle.
~ m_pStrokeCur->FinishStroke();

~ II Tell the other views that this stroke has been added
~ II so that they can invalidate this stroke's area in their
~ II client area.
~ pDoc->UpdateAllViews(this. 0L. m_pStrokeCur);

ReleaseCapture();

return;
}

II Release the mouse capture established at
II the beginning of the mouse drag.

Chapter 13 Enhancing Views 195

The On LButtanUp memberfunction is called when a stroke is finished, so
you should call UpdateAIIViews from there. In this function, the view gets
the hint information that it will send to the document. It does this by calling
the Fi n i shSt rake member function for m_pSt rakeCu r; Fi ni shSt rake
computes the bounding rectangle for the current stroke. Then the view calls
UpdateAIIViews, passing two arguments: the this pointer, which identifies
this view as the one that performed the modification to the document; and
m_pSt ra keC u r, whose bounding rectangle is the hint. (The function sends a
pointer to the entire CSt r a k e object rather than just the bounding rectangle
because the hint must be a CObject pointer, and CRect isn't derived from
CObject.) The view doesn't need to send any more hint information, so it
doesn't pass anything (0) in the LPARAM parameter.

The UpdateAIIViews function iterates through the list of views attached to the
document; for each view (except the one that performed the modification), the
function calls its OnUpdate function and passes the hint as a parameter.

Use the Hint for Efficient Repainting
The last step is to take advantage of the hint so the other views can repaint
themselves more efficiently. This involves modifying the C S c rib View class to
respond to any hint it receives.

~ To use the hint for efficient repainting

1. Open ClassWizard.

2. Choose the Message Maps tab.

3. Select the CScribView class.

4. Select "CScrib View" in the Object IDs box.

5. Select "OnUpdate" in the Member Functions box.

6. Choose the Edit Code button.

The Edit Code button transfers you to the text editor, opens SCRIBVW.CPP,
and displays the definition for On U p d ate.

196 Introducing Visual C++

7. Add the marked code to the OnUpdate function definition:

void CScribView::OnUpdate(CView*. LPARAM. CObject* pHint)
{

~ II The document has informed this view that some data has changed.
~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

}

if (pHint 1= NULL)
{

}

if (pHint->IsKindOf(RUNTIME_CLASS(CStroke»)
{

}

II The hint is that a stroke has been added (or changed).
II So. invalidate its rectangle.
CStroke* pStroke - (CStroke*)pHint;
CRect rectlnvalid - pStroke->GetBoundingRect();
InvalidateRect(&rectlnvalid);
return;

II We can't interpret the hint. so assume that anything might
II have been updated.
Inval i date();
return;

Recall that this function is called by the UpdateAllViews function of
esc rib Doc, which passes it a hint. In this function, the view checks if the hint
is a CStroke object. If so, the view gets the bounding rectangle for the stroke
and marks it as invalid. This rectangle marks the area that must be redrawn. If
the hint isn't a CStroke object, the view doesn't know what area was modified,
so it invalidates the entire client area as a precaution.

After a region has been invalidated, Windows sends a WM_PAINT message.
The OnPaint member function defmed by CView handles this message by
calling the virtual 0 nOr a w member function. Consequently, you must modify the
On 0 raw function to take advantage of the invalidated rectangle when redrawing.

8. Make the following changes to the 0 n D raw member function in
SCRlBVW.CPP:

void CScribView::OnOraw(COC* pOC)
{

CScribOoc* pOoc = GetOocument();
ASSERT_VALIO(pOoc);

~ II Get the invalidated rectangle of the view. or in the case
~ II of printing. the clipping region of the printer dc.
~ CRect rectClip;
~ CRect rectStroke;
~ pOC->GetClipBox(&rectClip);
~

Chapter 13 Enhancing Views 197

~ IINote: CScrollView::OnPaint() will have already adjusted the
~ Ilviewpoint origin before calling OnDraw(). to reflect the
~ Ilcurrently scrolled position.

}

II The view delegates the drawing of individual strokes to
II CStroke::DrawStroke().
CTypedPtrList<CObList. CStroke*>& strokeList

- pDoc->m_strokeList;
POSITION pos - strokeList.GetHeadPosition();
while(pos !- NULL)
{

CStroke* pStroke - strokeList.GetNext(pos);
rectStroke - pStroke->GetBoundingRect();
if (!rectStroke.IntersectRect(&rectStroke. &rectClip»

continue;
pStroke->DrawStroke(pDC);

In this function, the view ftrst calls the GetClipBox member function of CDC
to get the invalidated portion of the client area. Then the view iterates through
the list of strokes in the document, calling I ntersectRect for each to
determine if any part of the stroke lies in the invalidated region. If so, the view
asks the stroke to draw itself. Any strokes that don't intersect the invalidated
region don't have to be redrawn.

Note This is a good point to compile your changes and test the window updating.

Adding Scrolling
In the current version of Scribble, you cannot work on a drawing that is larger than
the window. It would be more convenient if you could work on a large drawing no
matter how small the window is. To do this, Scribble must support scrolling.

The addition of scrolling expands the conceptual role played by a view. Not only
does a view produce a visual representation of a document's data, it also acts as
a peephole to a document that may be too large to display all at once. This
peephole can be moved across the document to reveal different portions of it.
This is illustrated in Figure 13.2.

198 Introducing Visual C++

Currently
scrolled
position ------1

View

Document

Figure 13.2 A Scrollable View on a Document

Implementing scrolling all by yourself is fairly complicated. However, since a lot of
the scrolling code is the same for all applications, MFC implements the common
scrolling logic in a class called CScrollView.

The basic steps for adding scrolling to your application are as follows:

1. Define a size for your documents. This can be a constant, a member stored in
each document object, a value calculated at run time, etc.

2. Derive your view class from CScrollView instead of CView.

3. Pass the document's size to the SetScrollSizes member function of
CScrollView whenever the size may change.

4. Convert between logical coordinates and device coordinates if passing points
between graphic device interface (GDI) and non-GDI functions.

The framework's responsibilities are as follows:

• Handle all WM_HSCROLL and WM_ VSCROLL messages, scroll the
document in response, and move the scroll box accordingly.

The positions of the scroll boxes reflect where the currently displayed portion of
the document resides relative to the rest of the document. If the user clicks on a
scroll arrow at either end of the scroll bar, the document is scrolled one "line"
(whose meaning depends on the document type). If the user clicks on either side
of the scroll box, the document is scrolled one "page." If the user drags the
scroll box itself, the document is scrolled accordingly.

• Calculate a mapping between the lengths of the scroll bars and the height and
width of the document, adjust this scaling factor when the window is resized or
when the size of the document changes, and in turn remove or add scroll bars as
needed.

Chapter 13 Enhancing Views 199

The next section describes how to add scrolling to Scribble. Figure 13.3 shows
what Scribble looks like with scroll bars added.

Figure 13.3 Scribble with Scrolling Support

Add Scrolling to Scribble
~ To add scrolling support to Scribble

1. Open SCRIBDOC.H and make the following changes to the declaration of the
CScri bDoc class:

class CScribDoc : public CDocument
{

II ...
public:

CTypedPtrList<CObList.CStroke*> m_strokeList;
~ CPen* GetCurrentPen() { return &m_penCur; }

II
~ protected:
~ CSize m_sizeDoc;
~ public:
~ CSize GetDocSize() { return m_sizeDoc; }

/I Operations
/I
} ;

200 Introducing Visual C++

First defme the size of Scribble documents. You can do this by having each
document store its dimensions. The member variable m_s i zeDoc stores the size
of the document in a CSize object. This member is protected, so it cannot be
accessed directly by the views attached to the document. To let the views
retrieve the size of the document, you provide a public helper function named
GetDocSi ze. The views base their scrolling limits on the document size.

2. Open SCRIBDOC.CPP and make the following changes:

void CScribDoc::Serialize(CArchive& ar)
{

}

II

if (ar.IsStoring(»
{

}

else
{

ar « m_sizeDoc;

ar » m_sizeDoc;
}

m_strokeList.Serialize(ar);

void CScribDoc::InitDocument()
{

I I ...
~ II default document size is 800 x 900 screen pixels
~ m_sizeDoc - CSize(800.900);

}

The new code in the In i t Doc ume n t member function initializes the
m_s i zeDoc member variable; recall that you use this function whenever a new
document is created or an existing document is opened. All Scribble documents
are the same size: 800 logical units in width and 900 logical units in height.
For simplicity's sake, Scribble doesn't support documents of varying sizeto
accommodate arbitrarily large drawings.

The changes to the S e ria 1 i z e member function store and read the
m_s i zeDoc member variable.

3. Open SCRIBVW.H and make the following change to the declaration of
CScri bVi ew:

~ class CScribView : public CScrollView
{

II
}

Chapter 13 Enhancing Views 201

These changes set its scrolling limits according to the size of the document.
By changing the base class of CScri bVi ew from CView to CScrollView, you
give esc rib View scrolling functionality without having to implement scrolling
yourself.

In addition, the CScr; bVi ew class will override the OnInitialUpdate member
function, which is called when the view is first attached to the document. By
overriding this function, you can inform the view of the document's size as
soon as possible.

4. Open ClassWizard.

5. Choose the Message Maps tab.

6. Ensure that "CScribView" is selected in the Class Name and Object IDs boxes.

7 . Select "OnInitialUpdate" in the Member Functions box.

8. Choose the Edit Code button.

The Edit Code button transfers you to the text editor, opens SCRIBVW.CPP,
and displays the definiti~n for OnInitialUpdate.

9. Add the marked code to the OnInitialUpdate function definition:

void CScribView::OnlnitialUpdate()
{

~ SetScrollSizes(MM_TEXT. GetDocument()-)GetDocSize());
CScrollView::OnlnitialUpdate();

}

The SetScrollSizes member function is defined by CScrollView. Its first
parameter is the mapping mode used to display the document. The current
version of Scribble uses MM_ TEXT as the mapping mode; in Chapter 14,
Scribble will use the MM_LOENGLISH mapping mode for better printing.
(For more information on mapping modes, see "Enlarge the Printed Image"
in Chapter 14, or see CDC::SetMapMode in the Class Library Reference).

The second parameter is the total size of the document, which is needed to
determine the scrolling limits. The view uses the value returned by the
document's GetDocSi ze member function for this parameter.

SetScrollSizes also has two other parameters for which Scribble uses the
default values. These are CSize values that represent the size of one "page"
and one "line," the distances to be scrolled if the user clicks the scroll bar or a
scroll arrow. The default values are 1I1Oth and l/100th of the document size,
respectively.

202 Introducing Visual C++

10. In SCRIBVW.CPP change the following lines:

~ IMPLEMENT_DYNCREATE(CScribView. CScrollView

~ BEGIN_MESSAGE_MAP(CScribView. CScrollView
//{{AFX_MSG_MAP(CScribView)

/ / ...
/ /} }AFCMSG_MAP

END_MESSAGE_MAP()

Recall that MFC uses message maps as well as C++ inheritance. As a result,
modifying the class declaration in the header file isn't enough to give
esc r; b V; ew all of CScrollView' s functionality. You also have to modify
the message-map macros in the implementation file. Notice that in the message
map macro, CScr; bY; ew's name is now followed by CScrollView instead of
CView. This instructs the framework to search CScrollView's message map
if it can't find the message handler it needs in CScr; bY; ew's message map.

11. If you want to use the diagnostic features provided by MFC, change the
implementations of the Dump and As s e rt Val; d member functions of
esc r; b V; ew. These functions simply call their base class versions; change
them to call the CScrollView versions rather than the CView versions.

Since Scribble documents are fixed in size, there is no need to make any subsequent
calls to SetScrollSizes. If your application supports documents of varying size,
you should call SetScrollSizes immediately after the document's size changes.
(You can do this from the OnUpdate member function of your view class.)

Notice that the addition of scrolling didn't require you to modify the 0 n D raw
member function of esc r; b V; ew. If the drawing function is unchanged, why does
the window display different portions of the document depending on where the user
has scrolled to? The reason is that the document is displayed using coordinates
relative to an origin used by GDI. When this origin was fixed at the upper-left
comer of the client area, the part of the document that was visible was always the
same. By moving the origin used by GDI, CScrollView can adjust which portion of
the document is shown in the client area of the window and which portions are
hidden.

The origin used by GDI is a characteristic of a device context; it is used by the
member functions of the CDC class. If you want to make adjustments to the
CDC object used by your view, you can override the OnPrepareDC member
unction defmed by CView. CScrollView overrides OnPrepareDC to move
the device context's origin to reflect the currently scrolled position.

Chapter 13 Enhancing Views 203

OnPrepareDC is always called by the framework before it calls OnDraw; in
Scribble, ScrollView's version of On Prepare DC is called before CScri bVi ew's
OnDraw is called. As a result, you don't have to make any changes to the OnDraw
function to draw a properly scrolled document; all the work needed to do scrolling
is done to the device context before OnDraw receives it.

It's important to note that changing the device context's origin doesn't
affect the coordinates you receive with Windows messages such as
WM_LBUTTONDOWN or WM_MOUSEMOVE; the points accompanying
those messages are still specified in coordinates relative to the upper-left comer of
the client area. This is because Windows messages are not part of a device context,
so they are unaffected by changes to the GDI origin. Thus, esc rib View must now
deal with two types of coordinates:

• The coordinates used for describing the points received with a mouse message.
Those points are returned in "device coordinates."

• The coordinates used for drawing with GDI. These are known as "logical
coordinates."

When storing the coordinates of strokes, Scribble needs to know where the
strokes are relative to the document, not relative to the client area. Consequently,
CScri bVi ew must convert points from device coordinates (relative to the window
origin) to logical coordinates (relative to the document origin) before storing them
in CSt ro ke objects.

~ To store the strokes using logical coordinates

1. Make the following modifications to the OnLButtonDown member function of
CScri bVi ew:

void CScribView::OnLButtonDown(UINT. CPoint pOint)
{

~ II CScrollView changes the viewport origin and mapping mode.
~ II It's necessary to convert the point from device coordinates
~ II to logical coordinates. such as are stored in the document.
~ CClientDC dc(this);
~ OnPrepareDC(&dc);
~ dc.DPtoLP(&point);

}

m_pStrokeCur = GetDocument()-)NewStroke();
II Add 1st point to the new stroke
m_pStrokeCur-)m_pointArray.Add(point);
SetCapture(); II Capture the mouse until button up.
m_ptPrev = point; II Serves as the MoveTo() anchor for the

return;

II LineTo() the next point as the user
II drags the mouse.

204 Introducing Visual C++

In this function, the view receives a point specified in device coordinates.
A device context is needed to find the GDI origin, so the function declares a
CClientDC object, a CDC object for the client area of the view, and calls
OnPrepareDC to adjust its origin. Then the function passes the point to the
DPtoLP (Device Point to Logical Point) member function of CDC to perform
the actual conversion. The point added to m_p S t r 0 k e Cur is thus described in
logical coordinates (that is, relative to the document origin).

2. Make a similar modification to the 0 n Mo u 5 eM 0 v e member function:

void CScribView::OnMouseMove(UINT, CPoint point)
{

II
if (GetCapture() 1= this)

return; II If this window (view) didn't capture the mouse,
II then the user isn't drawing in this window.

CClientDC dc(this);
~ II CScrollView changes the viewport orlgln and mapping mode.
~ II It's necessary to convert the point from device coordinates
~ II to logical coordinates, such as are stored in the document.
~ OnPrepareDC(&dc);
~ dc.DPtoLP(&point);

m_pStrokeCur->m_pointArray.Add(point);
II ...

}

This function already has a device context for drawing the stroke in progress, so
the only modifications needed are to call OnPrepareDC to move the viewport
origin and then DPtoLP to convert the point before adding it.

3. Make the same modification to the 0 n L But ton U p member function:

void CScribView::OnLButtonUp(UINT, CPoint point)
{

II
if (GetCapture() I- this)

return; II If this window (view) didn't capture the mouse,
II then the user isn't drawing in this window.

CScribDoc* pDoc = GetDocument();
CClientDC dc(this);

Chapter 13 Enhancing Views 205

~ II CScrollView changes the viewport origin and mapping mode.
~ II It's necessary to convert the point from device coordinates
~ II to logical coordinates. such as are stored in the document.
~ OnPrepareDC(&dc); II set up mapping mode and viewport origin
~ dc.DPtoLP(&point);

CPen* pOldPen - dc.SelectObject(pDoc->GetCurrentPen(»;
II ...

Like OnMouseMove, this function already has a device context to complete
drawing the stroke, so the only modifications needed are to call OnPrepareDC
and then DPtoLP.

4. Make the following modifications to OnUpdate:

void CScribView::OnUpdate(CView*. LPARAM. CObject* pHint)
{

II The document has informed this view that some data has changed.

if (pHint != NULl)
{

}

if (pHint->IsKindOf(RUNTIME_CLASS(CStroke»)
{

}

II The hint is that a stroke as been added (or changed).
II So, invalidate its rectangle.
CStroke* pStroke = (CStroke*)pHint;
CClientDC dc(this);
OnPrepareDC(&dc);
CRect rectInvalid = pStroke->GetBoundingRect();
dc.LPtoDP(&rectInvalid);
InvalidateRect(&rectInvalid);
return;

II We can't interpret the hint. so assume that anything might
II have been updated.
Invalidate(TRUE);
return;

206 Introducing Visual C++

Unlike the previous three functions, OnUpda te requires a conversion in the
opposite direction, that is, from logical coordinates to device coordinates. Recall
that 0 n U p d ate retrieves the bounding rectangle of a stroke and invalidates that
rectangle. The stroke's bounding rectangle is stored in logical coordinates.

However, the rectangle passed to InvalidateRect must be specified in device
coordinates (since InvalidateRect is not a GDI function). Accordingly, a
stroke's bounding rectangle must have its coordinates converted into device
coordinates before it can be invalidated.

The function declares a CClientDC object and then calls the OnPrepareDC
member function to move the viewport origin of the device context to reflect
the currently scrolled position. The rectangle is then passed to the LPtoDP
(Logical Point to Device Point) function of CDC to convert its points into
device coordinates. (Both DPtoLP and LPtoDP are overloaded to accept
rectangles as well as points.) Once it is converted, the rectangle can be
invalidated.

For more information on CScrollView, see the Class Library Reference.

Note This is a good point to compile and test your changes.

Adding Splitter Windows
Scrolling lets you work on a document that is larger than the window, but by the
same token it means that much of the document is hidden at anyone time. Suppose
the user needs to refer to two widely separated portions of a document at the same
time. One way to do this is to open another window on the same document and
scroll them to different locations. However, windows must be resized individually
so that they don't overlap. A more convenient solution is to divide a window into
separate "panes," each of which can display a different portion of the document.
This is illustrated in Figure 13.4.

/'
/'

Window /'

1st View

2nd View

/'

/'
/'

/'

Chapter 13 Enhancing Views 207

Document

Figure 13.4 A Window with Two Views on a Document

A window that can be divided into multiple panes is called a "splitter window."
A splitter window contains split boxes at the top of the vertical scroll bar and at
the left of the horizontal scroll bar. By double-clicking a split box, the user can
divide a window vertically or horizontally into panes. The panes are separated by a
"split bar"; each pane can be scrolled independently to display a different portion of
the document. The user can also drag the split bar to resize both panes at once.

208 Introducing Visual C++

Figure 13.5 shows what a Scribble window looks like when it is split into two
panes.

Figure 13.5 Scribble Document Window Split into Two Panes

Each pane in a splitter window represents a separate view object. In Figure 13.5,
each pane is an instance of the esc rib View class, but it's not necessary for the
panes to use the same view class; you can use different classes for different panes.
This is useful when, for example, you want one pane to display an outline of a
document while the other pane displays the full text.

The Microsoft Foundation Class Library provides splitting functionality in a class
called CSplitterWnd. By using this class, you can support splitting in your
application with very little effort.

The basic steps for adding splitter windows to your application are as follows:

1. Derive a frame window class from CMDIChlldWnd if you are writing a
Multiple Document Interface (MDI) application or CFrame Wnd if you are
writing a Single Document Interface (SDI) application. Give this class a
member variable of type CSplitterWnd.

2. Override the OnCreateClient member function of your frame window class to
create a CSplitterWnd.

3. When defining a document template, use the frame window class you derived
instead of CMDIChildWnd or CFrameWnd.

Chapter 13 Enhancing Views 209

There are two ways that you can add splitter window functionality to your
application.

• You can choose the splitter window option in App Wizard when you create the
application's skeleton. This method does all three steps for you.

• You can add this functionality manually using ClassWizard. This is the method
you'll use for Scribble because it will allow you to examine in greater detail
how the framework implements this feature. You'll use ClassWizard to create
the class CScr; bFrame, which takes care of the first two steps.

The following describes the files that ClassWizard creates for CScr; bFrame.
Similar files are created by AppWizard when you choose the splitter window
option.

Header File
Here's what the header file that ClassWizard creates looks like:

~ //

~ // CScribFrame frame with splitter

~ lfifndef _AFXEXT_H
~ lfi ncl ude <afxext. h>
~ lfendif
~

~ class CScribFrame : public CMDIChildWnd
~ {
~ DEClARE_DYNCREATE(CScribFrame)
~ protected:
~ CScribFrame(); // protected constructor used by dynamic creation
~

~ / / Attri butes
~ protected:
~ CSplitterWnd m_wndSplitter;
~ public:
~

~ II Operations
~ public:
~ / / Overri des
~ // ClassWizard generated virtual function overrides
~ // {{AFX_VIRTUAl (CScribFrame)
~ protected:
~ virtual BOOl OnCreateClient(lPCREATESTRUCT lpcs.
~ CCreateContext* pContext):
~ //}}AFCVIRTUAl

210 Introducing Visual C++

~ II Implementation
~ public:
~ virtual -CScribFrame();

~ II Generated message map functions
~ 11{{AFX_MSG(CScribFrame)
~ II NOTE - ClassWizard will add and remove member functions here.
~ II}}AFX_MSG
~ DECLARE_MESSAGE_MAP()
~ };

CScri bFrame assumes the role that CMDIChildWnd previously played in
Scribble. To understand CScri bFrame's declaration, it's helpful to review how
CMDIChildWnd is normally used. Until now, each time you opened a document
window in Scribble, there were two objects cooperating to display the document:
a CMDIChildWnd object, which manages the document window's frame, and a
esc rib View object, which manages the document window's client area. (These
two classes were specified when App Wizard created the document template for
CScri bDac objects.)

For Scribble to support splitting, this organization must change. Objects of three
classes must cooperate to display a document: a CScr; bFrame object, which
manages the document window's frame; a CSplitterWnd object, which manages
the document window's client area; and one or more esc r; b View objects, each of
which manages a pane in the window. The CSplitterWnd object is not visible as a
distinct entity, but it is responsible for handling the CScri bVi ew objects as panes,
managing their scroll bars, and drawing the split boxes and split bars.

This technique for managing splitter windows is similar to the implementation of
MDl. A client window manages the entire client area, or workspace, of an MDI
application's frame window. It is this client window that owns the child windows
that display documents.

Now consider CScri bFrame's declaration. The CScri bFrame class is derived
from CMDIChildWnd because Scribble is an MDI application; if Scribble were
an SDI application, CScri bFrame would be derived from CFrameWnd. The
only constructorfor CScri bFrame is a protected one because you don't need to
explicitly create CScri bFrame objects; the framework handles their creation for
you.

The esc rib F r a me class defines one member variable: a CSplitterWnd object.
This is the window that covers the frame window's client area. The class also
overrides the OnCreateClient member function defined by CFrameWnd
(the base class of CMDIChildWnd). The framework calls this function when it
first creates the frame window.

Chapter 13 Enhancing Views 211

Implementation File
Here's what the implementation of CScr; bFrame looks like:

~ finclude "stdafx.h"
~ /Iinclude "scribble.h"
~ finclude "scribfrm.h"
~

~ /Ii fdef _DEBUG
~ /Iundef THIS_FILE
~ static char BASED_CODE THIS_FIlE[] - __ FIlE __ :
~ flendi f
~ ///

~ / / CScri bFrame
~

~ IMPlEMENT_DYNCREATE(CScribFrame, CMDIChildWnd)
~

~ CScri bFrame: : CScri bFrame()
~ {
~ }
~

~ CScribFrame: :~CScribFrame()
~ {
~ }
~

~ BOOl CScribFrame::OnCreateClient(lPCREATESTRUCT /*lpcs*/,
~ CCreateContext* pContext)
~ {
~ return m_wndSplitter.Create(this,
~ 2, 2, // TODO: adjust the number of rows, columns
~ CSize(10, 10), // TODO: adjust the minimum pane size
~ pContext):
~ }
~

~ BEGIN_MESSAGE_MAP(CScribFrame, CMDIChildWnd)
~ //{{AFX_MSG_MAP(CScribFrame)
~ // NOTE - ClassWizard will add and remove mapping macros here.
~ //}}AFX_MSG_MAP
~ END_MESSAGE_MAP ()
~

~ //

~ // CScribFrame message handlers

In the 0 nCr e a teC 1 ; en t member function, the frame window creates the window
that will cover its client area by calling the Create function of its CSplitterWnd
member variable. The parameters passed to the Create function describe the panes
that the splitter window will manage.

212 Introducing Visual C++

The first argument passed to Create specifies the parent window for the client
window: the function passes the this pointer, making the C S c r; b F r a me window
the parent of the CSplitterWnd object. The second and third parameters specify
the maximum number of rows and columns that the splitter window can have; a
value of two is used for each, so Scribble's splitter windows can have up to four
panes. The fourth parameter specifies the minimum size of a pane: a square 10
logical units on a side. The fifth parameter is the CCreateContext structure that is
passed to OnCreateCl; ent. This structure is used to determine which view class
should be used for each pane in the splitter window.

The Create function can also accept an additional two arguments; because Scribble
doesn't pass any values for these, the default values are used. The sixth argument
specifies the styles to be used for the splitter window. The default value specifies a
visible child window with vertical and horizontal scroll bars that supports dynamic
splitting. The seventh argument specifies the ID to be assigned to the splitter
window. Its default value is AFX_IDW _PANE_FIRST, which is the ID of the
first pane.

The following section shows how to add splitter windows for Scribble.

Add Splitter Windows to Scribble
To make it easy to add splitter windows to your application, ClassWizard provides
an option that automatically derives a frame window class and overrides its
OnCreateClient member function for you. Alternatively you could add splitter
windows to your application by choosing the appropriate options from App Wizard
when you use it to create the skeleton files for your application. A procedure for
doing this is given at the end of this section.

~ To add splitter windows to Scribble

1. From the Project menu, choose ClassWizard.

The ClassWizard dialog box appears.

2. Choose the Add Class button.

The Add Class dialog box appears.

3. In the Class Name box, type CScribFrame.

4. In the Class Type box, select "splitter."

5. In the Header File box, change the default name to "scribfrm.h."

6. In the Implementation File box, change the default name to "scribfrm.cpp."

7. Choose the Create Class button to generate the new class.

The Class Wizard dialog box regains the focus.

Chapter 13 Enhancing Views 213

8. Choose the OK button to exit the Class Wizard dialog box

As before, the new files are automatically added to the project.

9. Having defined a new frame window class, you must now use it when opening
Scribble documents. Open the file SCRIBBLE.CPP and add the code indicated
by the marked line:

#include "stdafx.h"
#include "scribble.h"
#include "mainfrm.h"

~ #include "scribfrm.h"
#include "scribdo~.h"
#include "scribvw.h"

I I ...

BOOl CScribbleApp::lnitlnstance()
{

}

I I ...

AddOocTemplate(new CMultiOocTemplate(lOR_SCRlBTYPE.

II

RUNTlME_ClASS(CScribOoc).
RUNTlME_ClASS(CScribFrame). II MOl child with splitter wnd
RUNTlME_ClASS(CScribView»);

First it's necessary to include the header file SCRIBFRM.H so you can access
the declaration of the esc rib F r a me class. The major modification occurs in
the In it I ns ta nce member function of CScri bb 1 eApp. This function calls
AddDocTempiate to register the esc rib Doc document type with the
application. Recall that a document template connects a document class,
a frame window class, and a view class. In previous versions of Scribble,
CMDIChildWnd was the frame window class used for displaying CScri bDoc
objects. Now CScri bFrame, which is derived from CMDIChildWnd, is the
frame window class. As a result, the windows used for displaying Scribble's
documents support splitting.

~ To add splitter windows using AppWizard

1. In the App Wizard Step 4 dialog box, choose the Advanced button.

2. If you chose the Multiple Document Interface option, choose the MDI Child
Frame tab.

-Or-

If you chose the Single Document Interface option, choose the Main Frame tab.

214 Introducing Visual C++

3. Select the Use Splitter Window option.

4. Finish choosing your options in AppWizard, and choose OK in the New
Application dialog box.

For more information on CSplitterWnd, see the Class Library Reference.

Compile Scribble - Step 4 Version
How does Scribble behave with these new enhancements? Compile the new version
and find out.

~ To compile Scribble

• From the Project menu, choose Build SCRIBBLE.exe.

Run the new version of Scribble.

Draw some strokes, scroll to a new portion of the drawing, and draw some more
strokes. Resize the window and scroll back and forth. Click the split box to split
the window into two panes. With both panes displaying the same portion of the
document, draw some strokes in one pane and see them reflected in the other one.
Figure l3.6 shows this version of Scribble.

Figure 13.6 Scribble Version 4

Exit Scribble.

This completes step 4 of the tutorial. You now have a basic understanding of the
view architecture provided by the Microsoft Foundation Class Library.

In the next chapter, you'll enhance Scribble's printing and print preview support.

215

CHAPTER 14

Enhancing Printing

Scribble has supported printing and print preview since Chapter 9, when you first
added application-specific code to the starter files created by AppWizard. All the
printing and previewing functionality came "for free." None of the code you added
dealt specifically with printing; AppWizard and the framework did all the work
for you.

While it's nice to get printing and print preview for free, Scribble's current printing
support isn't perfect. For example, the printed image is smaller than you might like.
In addition, the printed image is very plain; it doesn't include a header or footer.
This chapter describes how to enlarge the printed image and implement printing
enhancements in your application.

This chapter covers the following topics:

• Enhance Scribble's printing

• Enhance Scribble's print preview

This chapter covers step 5 of Scribble. If you want to work along, adding the code
as you go, begin with the files from Chapter 13 in your SCRIBBLE\MYSCRIB
subdirectory. At this point, these files should closely resemble those in the
SCRIBBLE\STEP4 subdirectory. As you read the chapter, add all the code that's
marked with the symbol ~. At the end, your files should closely resemble the files in
the SCRIBBLE\STEP5 subdirectory.

If, on the other hand, you want to read along without adding code, you can print or
examine the files in the SCRIBBLE\STEP5 subdirectory.

For more information on the framework's printing architecture, see the article
"Printing" in Programming with the Microsoft Foundation Class Library.

216 Introducing Visual C++

Enhance Scribble's Printing
Step 5 of Scribble adds the following printing capabilities to the program:

• Enlarging the printed image to a more comfortable size.

• Paginating a Scribble document.

• Adding a page header.

The following sections describe these enhancements in detail.

Enlarge the Printed Image
Recall from Chapter 13 that when you specify a position for a GDI drawing
function, you use logical coordinates. Chapter 13 described how CScroUView
moves the origin of this coordinate system. You can also control the scale of
this coordinate system, that is, the physical size of a logical unit. By default, GDI
considers logical units to be equal to device units, meaning that 1 logical unit equals
1 pixel on the screen. This interpretation of logical units is called the MM_ TEXT
mapping mode.

Since Scribble uses the MM_ TEXT mapping mode, it considers a stroke that is
100 units long to be 100 pixels long. The physical size of the stroke depends on
the device that displays it. For example, a device unit on a typical laser printer is
11300 of an inch, which is considerably smaller than a pixel on a typical screen. As
a result, the images that Scribble produces on a printer are much smaller than those
it displays on the screen.

To keep Scribble from producing tiny images on the printer, you need a mapping
mode that ensures that a drawing remains the same size no matter what device
displays it. Windows provides several such mapping modes, known as "metric"
mapping modes. In these modes, GDI considers logical units to be equal to real­
world units (or "metrics"), such as millimeters or inches.

In step 5, Scribble changes to the MM_LOENGLISH mapping mode, which treats
each logical unit as 0.01 inches. In this mode, a stroke that is 100 logical units long
is drawn as 1 inch long, no matter which device is used; each device driver
determines how many device units are needed to draw a I-inch stroke.

Once Scribble uses the MM_LOENGLISH mode, all coordinates used for GDI
drawing are in hundredths-of-an-inch, not pixels. As a result, the images that
Scribble displays on the printer are the same size as the ones it displays on the
screen. Recall that in Chapter 13 a Scribble drawing was defmed to be 800 logical
units across and 900 logical units high; now a drawing is 8 inches across and 9
inches high.

Chapter 14 Enhancing Printing 217

Specify the Mapping Mode
You must specify the mapping mode when you call the SetScrolISizes member
function defined by CScrolIView. Recall from Chapter 13 that this function sets the
view's scrolling limits. SetScrollSizes is called from the On I n it i a 1 Update
member function of C S c rib View.

~ To specify the mapping mode

• Open SCRIBVW.CPP and replace MM_TEXT wit MM_LOENGLISH as
indicated below.

void CScribView: :OnlnitialUpdate()
{

~. SetScrollSizes(MM_LOENGLISH. GetDocument()-)GetDocSize());
}

Recall that 0 n I nit i a 1 Up d ate is called immediately after the view is attached
to the document. This lets the view set its mapping mode before 0 nOr a w is
called.

Reversing the Sign of the V ·Coordinates
Another feature of the MM_LOENGLISH mode (as well as the other metric
mapping modes) is that its y-axis runs in the opposite direction to that in •
MM_TEXT mode. In MM_TEXT mode, y-coordinates increase when you move
down, but in all the metric mapping modes, y-coordinates increase when you move
up.

Even though Scribble has changed the direction of the y-axis for drawing, most of
the code doesn't require any modifications. This is because the DPtoLP function'
performs the conversion for you. Consider this: when a point is received with a
mouse message, its coordinates are converted by the DPtoLP function before being
stored in a CStroke object. This means its y-coordinates are converted from a
positive number of pixels to a negative number of inches. Those coordinates are
then passed to the LineTo drawing function, and then it's up to the device driver for
the screen to determine how many pixels are equivalent to the value that was passed
in inches. You never have to directly examine the value of the coordinates.

However, there are some places where the reversal of the y-axis does have an
impact. The mapping mode used by GDI is a characteristic of a device context;
functions that don't use a device context are unaffected by the mapping mode.
The member functions of the CRect class don't use the mapping mode;
consequently, you must make some adjustments wherever Scribble uses CRect
functions.

218 Introducing Visual C++

~ To compensate for the reversal of the y-axis

1. Open SCRIBDOC.CPP and add the marked code to the Fi ni shStroke
member function of the CSt r 0 k e class:

void CStroke::FinishStroke()
{

I I ...
m_rectBounding = CRect(pt.x. pt.y. pt.x. pt.y);

for (int i=l; i < m_pointArray.GetSize(); i++)

II If the point lies outside of the accumulated bounding
II rectangle. then inflate the bounding rect to include it.
pt = m_pointArray[0];

}

m_rectBounding.left
m_rectBounding.right
m_rectBounding.top
m_rectBounding.bottom

= minCm_rectBounding.left. pt.x);
= max(m_rectBounding.right. pt.x);
= max(m_rectBounding.top. pt.y);
= min(m_rectBounding.bottom. pt.y);

II Add the pen width to the bounding rectangle. This is needed
II to account for the width of the stroke when invalidating
II the screen.

~ m_rectBounding.lnflateRect(CSize(m_nPenWidth.-(int)m_nPenWidth»;
return;

These modifications take into account the negative sign of the y coordinates.

You also must make a correction when using the invalid rectangle. Recall that
the 0 nOr a w member function checks whether the invalid rectangle intersects the
bounding rectangle for each stroke. The IntersectRect member function of
CRect assumes that the bottom of a rectangle must have a larger y-coordinate
than that of the top; it cannot find the intersection of two rectangles whose
bottoms have smaller y-coordinates than their tops.

2. In SCRIBVW.CPP, make the following modifications to the On Draw member
function of CScri bVi ew:

void CScribView::OnDraw(CDC* pDC)
{

CScribDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

II Get the invalidated rectangle of the view. or in the case
II of printing. the clipping region of the printer dc.
CRect rectClip;
CRect rectStroke;
pDC->GetClipBox(&rectClip);
pDC->LPtoDP(&rectClip);

}

Chapter 14 Enhancing Printing 219

II Note: CScrollView::OnPaint() will have already adjusted the
II viewport origin before calling OnDraw(). to reflect the
II currently scrolled position.

II The view delegates the drawing of individual strokes to
II CStroke::DrawStroke().
CTypedPtrlist<COblist.CStroke*>& strokelist - pDoc->m_strokelist;
POSITION pos - strokelist.GetHeadPosition();
while (pos !- NUll)
{

}

CStroke* pStroke - strokelist.GetNext(pos);
rectStroke - pStroke->GetBoundingRect();
pDC->lPtoDP(&rectStroke);
if (!rectStroke.IntersectRect(&rectStroke. &rectClip»

continue;
pStroke->DrawStroke(pDC);

Both the invalidated rectangle and the bounding rectangle are converted to
device coordinates (changing the signs of the-coordinates to positive) before
being tested for intersection.

Paginate Scribble Documents
If Scribble allowed you to produce arbitrarily large drawings, it would make sense
for the program to break up a drawing into pages by dividing it into a grid of m by n
rectangles, the values of m and n being determined by the size of the drawing.
However, Scribble supports drawings of only one size, and each one fits on a single
page. To illustrate pagination, step 5 of Scribble prints each drawing as a two-page
document: a title page, and the drawing itself.

~ To add pagination to Scribble ,
1. Open SCRIBVW.CPP and add the marked lines to CS c rib View's

OnPrepa rePri nti ng member function:

BOOl CScribView::OnPreparePrinting(CPrintInfo* pInfo)
{

}

plnfo->SetMaxPage(2);

II default preparation

II the document is two pages long:
II the first page is the title page
II the second page is the drawing

return DoPreparePrinting(pInfo);

220 Introducing Visual C++

This function specifies the length of the document by calling SetMaxPage
for the pInfo parameter. Since all Scribble documents are two pages long, the
function uses a numeric constant rather than a variable to represent the number
of the last page of the document. The title page and the drawing page are
numbered 1 and 2, respectively. Note that the function still retains a call to
DoPreparePrinting at the end; this displays the Print dialog box and creates a
device context for the printer.

2. Open SCRIBVW.H and add the marked lines to CScri bVi ew's class
declaration:

class CScribView : public CScrollView
{

I I ...
IIImplementation
public:

~ void PrintTitlePage(COC* pOC, CPrintInfo* pInfo);
~ void PrintPageHeader(COC* pOC, CPrintInfo* pInfo,
~ CString& strHeader);

II ...
}

To perform printing, esc rib View will override the OnPrint member function
and defines two new helper functions: P r i n tT it 1 ePa 9 e, which prints the title
page, and P r i n t P age H e a d e r, which prints a header on the drawing page.

3. Open ClassWizard

4. Choose the Message Maps tab.

5. Ensure that "CScribView" is selected in both the Class Name and Object IDs
boxes.

6. Select "OnPrint" in the Member Functions box.

7. Choose the Edit Code button.

The Edit Code button transfers you to the text editor, opens SCRIBVW.CPP,
and displays the definition for 0 n P r i n t.

8. Add the following definition of the 0 n P r i n t member function:

void CScribView::OnPrint(COC* pOC, CPrintInfo* pInfo)
{

~ if (pInfo-)m_nCurPage -- 1) II page no. 1 is the title page
~ {
~ PrintTitlePage(pOC. pInfo);
~ return; II nothing else to print on page 1 but the page title
~ }
~ CString strHeader - GetOocument()-)GetTitle();
~

Chapter 14 Enhancing Printing 221

~ PrintPageHeader(pDC, pInfo, strHeader);
~ II PrintPageHeader() subtracts out from the pInfo->m_rectDraw the
~ II amount of the page used for the header.

~ pDC->SetWindowOrg(pInfo->m_rectDraw.left,-pInfo->m_rectDraw.top);
~

~ II Now print the rest of the page
~ OnDraw(pDC) ;

The behavior of the On P r i n t member function depends on which of the two
pages is being printed. If the title page is being printed, 0 n P r i n t simply calls
the P r i n t Tit 1 ePa 9 e function and then returns. If it' s the drawing page,
OnPri nt calls Pri ntPageHeader to print the header and then calls OnDraw
to do the actual drawing. Before calling OnDraw, OnPri nt sets the window
origin at the upper-left corner of the rectangle defined by m_rectDraw; this
rectangle was reduced by P r i n t P age H e a d e r to account for the size of the
header. This keeps the drawing from overlapping the header.

Notice that the drawing itself isn't divided into multiple pages. Consequently,
On D raw never has to display just a portion of the drawing (for example, it never
has to display the section that fits on a particular page without displaying the
surrounding sections). Either the title page is being printed and OnDraw isn't
called at all, or else the drawing page is being printed and 0 n D raw displays the
entire drawing at once.

This also explains why CScri bVi ew doesn't override the OnPrepareDC
member function: there's no need to adjust the viewport origin or clipping region
depending on which page is being printed.

9. In SCRIBVW.CPP, below your definition of OnPri nt, defme the
P r i n t Tit 1 ePa 9 e member function as follows:

~ void CScribView::PrintTitlePage(CDC* pDC, CPrintInfo* pInfo)
~ {
~ II Prepare a font size for displaying the file name
~ LOGFONT logFont;
~ memset(&logFont, 0, sizeof(LOGFONT»;
~ logFont.lfHeight = 75; II 3/4th inch high in MM_LOENGLISH
~ II (11100th inch)
~ CFont font;
~ CFont* pOldFont = NULL;
~ if (font.CreateFontIndirect(&logFont»
~ pOldFont - pDC->SelectObject(&font);
~

~ II Get the file name, to be displayed on title page
~ CString strPageTitle = GetDocument()->GetTitle();
~

222 Introducing Visual C++

~ II Display the file name 1 inch below top of the page,
~ II centered horizontally
~ pDC->SetTextAlign(TA_CENTER);
~ pDC->TextOut(pInfo->m_rectDraw.right/2, -100, strPageTitle);

~ if (pOldFont 1- NULL)
~ pDC->SelectObject(pOldFont);
~ }

The P r i n t Tit 1 ePa 9 e function uses m_rectDraw, which stores the usable
drawing area of the page, as the rectangle in which the title should be centered.

Notice that P r i n t Tit 1 ePa 9 e declares a local CFont object to use when
printing the title page. If you needed the font for the entire printing process, you
could declare a CFont member variable in your view class, create the font in the
OnBeginPrinting, and destroy it in EndPrinting. However, since Scribble uses
the font for just the title page, the font doesn't have to exist beyond the
P r i n t Tit 1 ePa 9 e function. When the function ends, the destructor is
automatically called for the local CFont object.

Add a Page Header
As mentioned earlier, CScri bVi ew defines the Pri ntPageHeader function,
which is called by 0 n P r i n t before the drawing itself is printed.

~ To add a page header to the drawing

• In SCRIBVW.CPP, after the Pri ntTi tl ePage member function, define the
P r i n t P age H e a d e r member function as follows:

~ void CScribView::PrintPageHeader(CDC* pDC, CPrintInfo* pInfo,
~ CStri ng& strHeader)
~ {
~ II Print a page header consisting of the name of
~ II the document and a horizontal line
~ pDC->TextOut(0,-25, strHeader); II 1/4 inch down

~ II Draw a line across the page, below the header
~ TEXTMETRIC textMetric;

pDC->GetTextMetrics(&textMetric);
int y - -35 - textMetric.tmHeight;

pDC->MoveTo(0, y);
pDC->LineTo(plnfo->m_rectDraw.right,

II line 1/10th in.
II below text
II from left margin

y); II to right margin

Chapter 14 Enhancing Printing 223

~ II Subtract from the drawing rectangle the space used by header.
~ y -- 25; II space 1/4 inch below (top of) line
~ pInfo-)m_rectDraw.top +- y;
~ }

The P r i n t P age H e a d e r member function prints the name of the document at
the top of the page, and then draws a horizontal line separating the header from
the drawing. It adjusts the m_rectDraw member of the plnfo parameter to
account for the height of the header; recall that 0 n P r i n t uses this value to
adjust the window origin before it calls 0 n D raw.

Enhance Scribble's Print Preview
The default print preview capabilities are almost sufficient for Scribble's needs. To
some extent, Scribble's print preview has already been enhanced when the printing
capabilities were enhanced. Recall that in the override of 0 n Pre par e P r i n tin 9
you called the SetMaxPages function to specify the length of Scribble documents.
This allows the framework to add a scroll bar to the preview window.

Another enhancement you can make is to change the number of pages displayed
when preview mode is invoked.

For more information on the framework's print preview architecture, see the article
"Printing" in Programming with the Microsoft Foundation Class Library.

~ To set the number of pages displayed in preview mode

• In SCRIBVW.CPP, replace lines in OnPrepa rePri nti ng member function:

BOOl CScribView::OnPreparePrinting(CPrintInfo* pInfo)
{

pInfo-)SetMaxPage(2); II the document is two pages long:
II the first page is the title page
II the second page is the drawing

~ BOOl bRet - DoPreparePrinting (pInfo); II default preparation
~ pInfo-)m_nNumPreviewPages = 2; IIPreview 2 pages at a time
~ II Set this value after calling DoPreparePrinting to override
~ II value read from .INI file
~ return bRet:

}

The line added here assigns the value 2 to m_nNumPreviewPages. This causes
Scribble to preview both pages of the document at once: the title page (page 1)
and the drawing page (page 2). Note the value for m_nNumPreviewPages must
be assigned after calling DoPreparePrinting, because DoPreparePrinting
sets m_nNumPreviewPages to the number of preview pages used the last
time the program was executed; this value is stored in the application's .00 file.

224 Introducing Visual C++

Compile Scribble - Step 5 Version
What does Scribble's printing look like now? Compile the new version of Scribble
and find out.

~ To compile Scribble

• From the Project menu, choose Build.

Run the new version of Scribble. Draw some strokes, and then choose the Print
Preview from the File menu. Switch back and forth between one-page and two-page
display mode, or move to the previous or next page. Figure 14.1 shows this version
of Scribble.

Scribl
Scrib1

Figure 14.1 Scribble Version 5

Exit Scribble.

This completes step 5 in the tutorial. For a deeper understanding of the printing
architecture provided by MFC, see the article "Printing" in Programming with the
Microsoft Foundation Class Library.

In the next chapter, you'll add context-sensitive help to Scribble.

225

CHAPTER 15

Adding Context-Sensitive Help

So far, thanks to the Microsoft Foundation Class Library (MFC), Scribble
implements a number of common user-interface features, such as print preview
and splitter windows. This chapter adds another such feature to Scribble: context­
sensitive Windows Help.

Note To complete this chapter, the Windows Help Compiler, which is shipped as
an executable file, must be in your path.

Scribble already offers the user some help in the form of prompt strings displayed
in the status bar. When the user navigates through a menu using the UP ARROW and
DOWN ARROW keys, or uses the mouse to press a toolbar button, Scribble displays a
brief description ofthe command's purpose in the status bar (ifthe status bar is
visible). Also, if the user holds the mouse cursor over a toolbar button, a small
pop-up window (called a "tool tip") appears with a brief description of the button.
The framework easily supplies this level of information for commands predefined
by the class library. And, as you did in Chapter 10, you can add prompts to the
menu items you create by filling in a field in the menu's property page. Since
prompts are attached to command IDs, Scribble's toolbar buttons, which duplicate
commands on the menus, automatically invoke the appropriate prompts. To
get more information on adding tool tips to your application, see the article
"Toolbars: Tool Tips" in Programming with the Foundation Class Library.

The level of help described in this chapter, however, goes much further. The user
can open Windows Help for your application from the Help menu or invoke
context-sensitive help by pressing the FI key or SHIFT+FI.

This chapter explains how to implement:

• FI help

• SHIFT +FI help mode

• Help menu support

226 Introducing Visual C++

The next section, describes the three kinds of help listed here, and explains which
functions are provided by the framework and which you must implement.

For a quick preview of how easy it is to add context-sensitive help to your
application, follow the instructions described in "See Context-Sensitive Help in
Action" on page 231. In that section, you'll create a new application with
AppWizard, build the application, and then run it to see the help features you get
without adding a single line of code.

The chapter also shows how to add an AppWizard option to your program if you
didn't select the option when you originally created your application.

For an overview of the framework's help support, see Chapter 4, "Working with
Dialog Boxes, Controls, and Control Bars" in Programming with the Microsoft
Foundation Class Library.

Note You can freely use the help files that AppWizard creates in your applications
and freely ship the compiled help.

This chapter covers step 6 of Scribble. If you want to see the results of this step,
you must follow the directions presented in this chapter, starting with the STEP5
source files.

Division of Labor
To support help, the framework:

• Handles Fl help.

With an active window, dialog box, or message box, or with a menu item or
toolbar button selected, the user can press the Fl key to summon specific help
about the selected item.

For menu items, help is summoned for the item currently highlighted. For
toolbar buttons, the user can use the mouse to press the button and press Fl

before letting the button up.

You can define a key other than Fl for help, but it is common among
applications for Windows to use Fl.

• Handles SHIFT +Fl help mode.

At any time the application is active, the user can press SHlFT+Fl to put the
application into a "help mode." The cursor changes to a help cursor: an arrow
beside a question mark.

Chapter 15 Adding Context-Sensitive Help 227

While the application is in help mode, clicking any window, dialog box,
message box, menu item, or toolbar button summons specific help about the
item. Selecting any item for help ends help mode and displays help. Pressing the
ESCAPE key or switching to another application and back also ends help mode.

The standard toolbar provided by AppWizard also has a button through which
the user can invoke help mode. The graphic on the button resembles the help
cursor.

You can define a key combination other than SHIFT +Fl, but it is common among
applications for Windows to use SHIFT+Fl.

• Provides the Index and Using Help commands on the Help menu.

The Index command causes Windows Help to display an index to the available
help topics. The Using Help command causes Windows Help to display
information on using Windows Help.

• Provides a starter set of files in Rich-Text Format (RTF) containing standard
help topics.

These include commands on standard menus such as File and Edit, standard
information on using help, standard keyboard shortcuts, a standard help index,
and more.

To take advantage of this support for help:

• Use the AppWizard Context-Sensitive Help option.

• Write your application-specific help topics in the .RTF files.

Fill in application-specific details in these help topics, add new topics, and
delete unused topics.

• Provide finer-grained context-sensitive help, if desired.

Fine-tune help further by overriding portions of the class library to support more
specific help contexts, such as individual controls in a dialog box. For more
information about fine-tuning context-sensitive help, see Technical Note 28
under Microsoft Foundation Class Library in Books Online.

Implementing Context-Sensitive Help with AppWizard
Use AppWizard to enable the framework's support for context-sensitive help and
the Help menu. The following sections explain how to select this support in
App Wizard and what App Wizard creates as a result.

228 Introducing Visual C++

The Context-Sensitive Help Option
When you create a new application with AppWizard, be sure to select the Context­
Sensitive Help option if you plan to support help.

~ To select context-sensitive help

1. From the File menu, choose New.

The New dialog box appears.

2. Select Project.

The New Project dialog box appears.

3. In the Project Name box, type in the name of your new project and decide on
the subdirectory you'd like to use for your new project. For this tutorial, use
MYHELP for the project name and SAMPLES\MFC\SCRIBBLE\MYHELP for
the directory.

4. Choose the options you want in AppWizard Steps 1 to 3.

5. In the Step 4 dialog box, select the Context Sensitive Help option.

Figure 15.1 shows the Step 4 dialog box with Context Sensitive Help selected.

6. In the Steps 5 and 6 dialog boxes, select any other options you need.

7. Choose the Finish button in Step 6.

The New Application Information dialog box appears.

8. Choose OK to create your application.

Figure 15.1 Selecting Context-Sensitive Help

Chapter 15 Adding Context-Sensitive Help 229

When AppWizard creates your skeleton application, it adds the following items:

• Message-map entries in your derived frame window class (CMa in Frame) for
handler functions to handle Help menu items and Fl and SHIFf+Fl help. These
handlers are predefined by the framework.

• Index and Using Help items in the menu definitions.

• Status-bar command prompts for the help items. These appear when the user
clicks the mouse in one of the menu commands.

• A batch file called MAKEHELP.BAT that you can use to compile your help.

• A Windows Help project file with a .HPJ extension. It's named for your project.

• One or more RTF-format files (.RTF extension) containing standard help
contexts. Add application-specific help contexts to these files to customize your
help. For more information, see the article "Help: Authoring Help Topics" in
Programming with the Microsoft Foundation Class Library.

• Several bitmap files (.BMP extension) used in the help files.

You can then use the items created by App Wizard, add a few extra steps, and build
your help file. These steps are described in Programming with the Microsoft
Foundation Class Library.

Note Help project files and Windows Help tools are explained in Programming
Tools for the Microsoft Windows Operating System.

See Context-Sensitive Help in Action
The usual way to add help to an application is to select the Context Sensitive Help
option when you first run AppWizard, as just described in "Implementing Context­
Sensitive Help with AppWizard."However, this was not done in Step 0 of Scribble
(in order to simplify the previous chapters), so it's necessary to add the option after
the fact.

However, it isn't necessary to follow the steps described in "Adding Help to
Scribble After the Fact" to try out the help support provided by the framework
and AppWizard. You can quickly try it out now in a newly created application.

~ To tryout the help support

1. Create a new application using App Wizard with the help option selected, as
described in "The Context-Sensitive Help Option."

When you run AppWizard, specify a project named MYHELP with a path of
SAMPLES\MFC\SCRIBBLE\MYHELP. Select the Context Sensitive Help
option. AppWizard creates help-related files for the new application.

230 Introducing Visual C++

2. Build the MYHELP application.

It's not necessary to modify any of the code created by AppWizard. Simply
build the MYHELP application that AppWizardjust created.

3. Run MAKEHELP.BAT from the command line to build the .HLP file.

As the Windows Help Compiler runs, it prints a row of dots on the screen.

Run the MYHELP application and try out various help options. Here are some
suggestions for what to try:

• Choose Using Help from the Help menu. See the standard help provided by
WINHELP's own help file.

• Return to the application and choose Index from the Help menu. See the
standard main help topic that AppWizard has prepared. It describes the standard
menus that the framework provides.

• Click the help-mode button on the toolbar, which appears as an arrow beside a
question mark. To get help for a menu item, drop down a menu and click a menu
item with the mouse. Click the help-mode button again and then click another
toolbar button. Finally, enter help mode again by pressing the SHIFT+Fl keys;
then click the toolbar itself, or a window's title bar, or some other element of
MYHELP's user interface.

• Using the keyboard, drop down a menu and select a menu item using the DOWN

ARROW key. Then press the Fl key to get help for the selected item.

Thanks to AppWizard and the framework, you-and your users-get all of this
help essentially for free.

Adding Help to Scribble After the Fact
This section explains how to add context-sensitive help at a later stage of program
development. The general procedure shown here applies to any AppWizard option
that wasn't chosen when the project was created.

Merging context-sensitive help support into Scribble at this late stage requires
several general steps. Each step is explained in more detail below. The overall
steps are:

1. Create a new MYHELP application from which to borrow code and resources
for Scribble. See the following procedure "To Create a New MYHELP
Application."

The idea is to create a starter application, as in Chapter 6, that has the help­
related files and code.

2. Copy resources from the MYHELP application to Scribble. See the procedure
"To Copy Resources to Scribble."

Chapter 15 Adding Context-Sensitive Help 231

3. Copy help-related code from the MYHELP application to Scribble. See the
procedure "To Copy Help-Related Code to Scribble."

4. Copy help-related files from the MYHELP directory to your MYSCRIB
directory. See the procedure "To Copy Help-Related Files to MYSCRIB."

5. Build the new version of Scribble and compile its help file. See the procedure
"To Complete Scribble's Help."

~ To create a new MYHELP application

• If you haven't done so already, run AppWizard to create a new MYHELP
application, as described in "See Context-Sensitive Help in Action" on
page 231.

It's unnecessary to build the MYHELP application. You're about to borrow
code and resources from this application for Scribble.

The Scribble end of this procedure begins with the files from Chapter 14 (step 5)
in your MYSCRIB directory. If you have not done the tutorial step in Chapter
14, you can copy all the files and subdirectories in the
SAMPLES\MFC\SCRIBBLE\STEP5 subdirectory to your MYSCRIB
directory.

To perform the steps in the next procedure, you'll use the menu, accelerator, and
string editors, which are described in Chapters 6, 7, and 8, respectively, of the
Visual c++ User's Guide.

~ To copy resources to Scribble

1. Open the SCRIBBLE project in the MYSCRIB directory.

You're about to copy menu items, accelerator keys, and status-bar prompt
strings from MYHELP to MYSCRIB. As you do this, you'll not only learn
about adding help to an application after the fact, you'll also learn how easy it is
to copy resources from one resource file to another in Visual C++ into another.
Note that because Scribble is an MDI application, it has two sets of menus,
identified by the IDs IDR_MAINFRAME and IDR_SCRIBTYPE. You'll
copy both sets.

2. Open SCRIBBLE.RC.

3. Using the File Open menu, open MYHELP.RC from the MYHELP directory.

4. Open the IDR_MAINFRAME menus from both resource files.

Unmaximize the menu editor windows, and arrange them so they don't overlap.

232 Introducing Visual C++

5. Drop down both Help menus.

6. Click the separator below the Using Help item in MYHELP's Help menu. Then
hold down the SHIFT key and click on the Index and Using Help items. Release
the SHIFT key.

This selects the separator and the two menu items.

7. Hold down the CTRL key, and drag the highlighted menu items to the Help menu
in SCRIBBLE.RC, above the About Scribble menu item. Release the mouse
button and the CTRL key.

The menu items and the separator are copied to Scribble.

8. Close the two IDR_MAINFRAME menu editing windows.

9. Repeat steps 4 through 8 for the IDR_SCRIBTYPE menu in SCRlBBLE.RC
and for the IDR_MYHELPTYPE menu in MYHELP.RC.

10. Use the accelerator editor to copy the accelerator keys Fl and SHIFT+Fl for the
ID_HELP command and the ID_CONTEXT_HELP command, respectively.

The copying procedure is similar to copying menus. To copy the two
accelerators, hold down the SHIFT key while selecting them. Then hold down the
CTRL key while dragging the accelerators to the new window.

11. Use the string editor to (a) delete the existing AFX_IDSJDLEMESSAGE,
ID_HELP _USING, and ID_HELP _INDEX strings from string segment 0 in
SCRIBBLE.RC, and (b) copy the following status-bar prompt strings to
MYHELP.RC: AFX_IDS_IDLEMESSAGE, ID_HELP _INDEX,
ID_CONTEXT_HELP,ID_HELP _USING, and ID_HELP.

The copying procedure is similar to the procedures for copying menus and
accelerators. To delete a string, select it in the string editor and choose the
Delete button. To copy several contiguous strings, hold the CTRL key down
while selecting the strings. Then hold the CTRL key down while dragging the
selected strings to the new window.

For an application without help, AppWizard defines the default status-bar
prompt to be "Ready". This is the string that is displayed in the status bar when
no other command prompt is being displayed. This string is identified as
AFX_IDS_IDLEMESSAGE.

The other strings are command prompts for the Index and Using Help commands
on the Help menu and for Fl and SHIFT +Fl help.

12. Save the MYSCRIB resource file, SCRlBBLE.RC, and close the MYHELP
resource file, MYHELP.RC.

Chapter 15 Adding Context-Sensitive Help 233

~ To copy help-related code to Scribble

• Open MYHELP\MAINFRM.CPP and MYSCRIB\MAINFRM.CPP. Copy the
help-related lines, marked with the • symbol, from the message map in
MYHELP\MAINFRM.CPP and paste them into the same position in the
message map in MYSCRIB\MAINFRM.CPP. The message map looks like
the following:

II CMainFrame

BEGIN_MESSAGE_MAP(CMainFrame. CMDIFrameWnd)
11{{AFX_MSG_MAP(CMyhelpApp)

II NOTE - the ClassWizard will add and remove mapping
II macros here.
II DO NOT EDIT what you see in these blocks of
II generated code!

ON_WM_CREATE()
I/} }AFCMSG_MAP

~ II Global help commands
~ ON_COMMAND(ID_HELP_INDEX. CMDIFrameWnd::OnHelpIndex)
~ ON_COMMAND(ID_HELP_USING. CMDIFrameWnd::OnHelpUsing)
~ ON_COMMAND(ID_HELP. CMDIFrameWnd::OnHelp)
~ ON_COMMAND(ID_CONTEXT_HELP. CMDIFrameWnd::OnContextHelp)
~ ON_COMMAND(ID_DEFAULT_HELP. CMDIFrameWnd::OnHelpIndex)

END_MESSAGE_MAP()

App Wizard includes a toolbar button for help mode in the toolbar bitmap regardless
of whether you choose the help option. This button did not appear on the screen
when you ran previous versions of Scribble because the button was not mapped to
any command in the but ton 5 array defined in the MAINFRM.CPP file. The help­
mode button has the rightmost position in the toolbar. Up to now there was one
fewer entry in the but ton 5 array than there were buttons in the toolbar bitmap.
To expose the help-mode button, add the command ID_CONTEXT_HELP to the
end of the list of commands in the but ton 5 array in the MAINFRM.CPP file for
Scribble.

234 Introducing Visual C++

~ To enable the help-mode toolbar button
• Add the marked line:

II toolbar buttons - IDs are command buttons
static UINT BASED_CODE buttons[] -
{

II same order as in the bitmap 'toolbar.bmp'
ID_FILE_NEW,
ID_FILE_OPEN,
ID_FILE_SAVE,

ID_SEPARATOR,
ID_EDIT_CUT,
ID_EDIT_COPY,
ID_EDIT_PASTE,

ID_SEPARATOR,
ID_PEN_THICK_OR_THIN,

ID_SEPARATOR,
ID_FILE_PRINT,
ID_APP _ABOUT,

~ ID_CONTEXT_HELP,
} ;

~ To copy help-related files to MYSCRIB

1. Copy the MAKEHELP.BAT and MYHELP.HPJ files from the MYHELP
directory to the MYSCRIB directory.

2. In the MYSCRIB directory, rename MYHELP.HPJ as SCRIBBLE.HPJ.

3. In the copy of MAKE HELP. BAT in the MYSCRIB directory, change all
occurrences of the string "myhelp" to "scribble."

4. In SCRIBBLE.HPJ, make the following changes:

• Under the [FILES] section, add the line

hlp\pen.rtf

The source and purpose of the new file PEN.RTF is explained below.

• Under the [OPTIONS] section, change "CONTENTS=main_index" to
"CONTENTS=new _index."

The new help topic source file, PEN.RTF, will replace the main help topic
that App Wizard originally created.

• Under the [ALIAS] section, change the string "HIDR_MAINFRAME =
main_index" to "HIDR_MAlNFRAME = new_index."

• Under the [ALIAS] section, change "HIDR_MYHELPTYPE" to
"HlDR_SCRIBTYPE."

• Replace all occurrences of the string "myhelp" with "scribble."

Chapter 15 Adding Context-Sensitive Help 235

5. Create a subdirectory called HLP in your MYSCRIB directory. Copy all files in
the directory MYHELP\HLP to your MYSCRIB\HLP directory. This includes
several .RTF files and a number of .BMP files.

6. Copy the SCRIBBLE\STEP6\HLP\PEN.RTF file to MYSCRIB\HLP. Also,
copy SCRlBBLE\STEP6\README.TXT to MYSCRlB\HLP.

PEN.RTF and README. TXT contain help topics specific to Scribble's Pen
menu. The article "Help: Authoring Help Topics" in Programming with the
Foundation Class Library shows you some of the contents of this .RTF file and
explain how you would author the help topics using a program that can edit
.RTF files, such as Microsoft Word for Windows.

~ To complete Scribble's help

1. Run MAKEHELP.BAT to compile your help file.

2. Compile Scribble.

Once you have successfully built Scribble and compiled its help file, run your new
version of Scribble and try out its context-sensitive help.

~ To try out Scribble's help

Conclusion

1. Press the SHIff +Fl keys to enter help mode then click one of the items on
Scribble's Pen menu.

You'll see the custom help that has been provided in PEN.RTF.

2. Select the Index command on the Help menu to see Scribble's custom help
index.

For more information on how to create a help file for an MFC application, see the
Help grouping of articles in Programming with the Microsoft Foundation Class
Library.

This concludes step 6. Chapter 16 describes step 7, which adds OLE server support
to Scribble so that the user can embed Scribble objects into OLE container
documents.

237

CHAPTER 16

Creating an OLE Server

An OLE visual editing server application can create Object Linking and Embedding
(OLE) items that can be embedded or linked into container applications. However,
some server applications only support the creation of embedded items, while others
support the creation of both embedded and linked items. All server applications
must be able to be started by a container application when the user wants to edit an
item. If a server application supports linked items, it must also be able to copy its
data to the Clipboard so that a container can use that data to create OLE items.
An application can be both a container and a server; that is, it can both incorporate
external data into its documents and create data that can be incorporated as items
into the documents of other applications. For more information on OLE containers
and servers, see the article "OLE Overview: Containers and Servers" in
Programming with the Microsoft Foundation Class Library.

Scribble Step 7 addresses two general cases for adding OLE server support to an
application:

• Creating a new OLE visual editing server application from scratch

• Adding OLE visual editing server support to an existing application

The technique described in this chapter illustrates both cases, even though the
tutorial starts with an existing MFC application, Scribble Step 6, to which you
will add OLE server support. For more information on Scribble, see Chapters 6
through 15.

As when adding OLE server support to Scribble Step 6, you will use AppWizard to
provide a skeleton OLE server application in a scratch directory. Then you will
copy files and code fragments from the scratch directory to the existing Scribble
code base. By doing this, you will learn a lot about the OLE server code that
AppWizard provides. Therefore, even if you are starting a new MFC OLE server
application from scratch, you are advised to read this tutorial, if not actually do
the steps. .

238 Introducing Visual C++

How does this approach differ from the traditional approach of copying source code
from a sample application? AppWizard allows you to customize the sample code
you will be borrowing. That is, when you create the scratch application, you will
name it "Scribble," give the classes the same names Scribble itself uses, and so on.
Thus, when you copy source code from the AppWizard-created sample application,
it will match the class names of your original application. You can use this
approach to add other App Wizard-supported features to your existing MFC
applications "after the fact."

Previewing Scribble Running as an OLE Server
Before working through the steps of adding OLE server support to Scribble, try
out the completed application. This will help you appreciate how Scribble behaves
when it is activated by an OLE container. You will need to perform the following
steps.

~ To install and register Scribble as an OLE server application

1. Build SCRmRLE.EXE from SAMPLES\MFOSCRIBBLE\STEP7 or run the
prebuilt SCRIBBLE.EXE from \SAMPLES\MFC\BIN on the Visual C++
distribution CD-ROM.

2. Run Scribble briefly as a stand-alone application so that it will register itself in
the system registry as an OLE server.

~ To install an OLE container application

1. Build CONTAIN.EXE from SAMPLES\MFC\CONTAIN\STEP2 or run
CONTAIN.EXE from \SAMPLES\MFC\BIN on the Visual C++ distribution
CD-ROM.

2. From Contain's Edit menu, choose Insert New Object.

3. In the Insert Object dialog box, select Scrib Document Type from the list of
Object Types to insert a Scribble object. Notice how Scribble:

• Opens a window inside Contain for in-place editing. The window has a
resize border so you can change the size of the window while visually editing
the Scribble object.

• Takes over part of Contain's menu bar and adds its own Pen menu.

• Takes over Contain's toolbar.

4. Draw something in Scribble's in-place window.

Notice how drawing in Scribble's in-place window is just like drawing in the
stand-alone Scribble application built in the steps described in Chapters 6
through 15.

Chapter 16 Creating an OLE Server 239

5. Click outside the window.

Now the Scribble object is redrawn inside Contain's view with the help of the
Scribble server.

The rest of this chapter describes how to make Scribble an OLE server.

Using AppWizard's Full Server Option
The first step for adding OLE server functionality is to run AppWizard with the full
server option. If you are adding OLE support to an existing MFC application, as we
are in this tutorial, you need to do the following:

• Copy your project files, in this case Scribble Step 6, to a new directory.

• Copy new files from the scratch directory to your project directory.

• Add OLE-specific server code to the application object.

• Convert the CDocument class to the COleServerDoc class.

Run AppWizard to Provide a New Skeleton
As mentioned earlier, this tutorial uses the "after-the-fact" approach of using
AppWizard with exactly the same options you used in Step 1 of Scribble
(see Chapter 7), to create a new skeleton with OLE features in a different
"scratch" directory.

~ To set the App Wizard options for an OLE server application

1. From the File menu, choose New.

The New dialog box appears.

2. Select Project.

The New Project dialog box appears.

3. In the Project Name box, type scribble.

The application's project file will be given this name: in this case,
SCRIBBLE.MAK.

Note If you have Visual C++ for Macintosh, please clear the Macintosh check
box in the Platforms box. OLE support, as required by this tutorial, will not be
generated if this check box is selected.

4. In the New Subdirectory box, delete "scribble" and type scratch (so you won't
confuse it with the base MYSCRIB code that you will be adding to).

240 Introducing Visual C++

5. Specify the path to the project's subdirectory.

Use the list box provided to navigate through the directories on the selected
drive. As you navigate through the directory structure, the path listed in the
dialog box changes to show where the named subdirectory (SCRATCH) should
be placed. When the path suits you, stop navigating.

For Scribble, navigate to SAMPLES\MFC\SCRIBBLE (relative to your Visual
C++ installation). Assuming your Visual C++ installation is in directory
MSVC20 on drive C, the path should look like this in the dialog box:

c:\msvc20\samples\mfc\scribble\scratch\scribble.mak

6. Choose the Create button.

The MFC AppWizard Step 1 dialog box appears.

7. Choose the Next button in the dialog boxes for AppWizard Steps 1 and 2 to
accept the default options.

For more information on the various options that appear in these dialog boxes,
see Chapter 1, "Creating a New Application Using AppWizard," in the Visual
c++ User's Guide.

8. In the AppWizard Step 3 dialog box, select Full-Server. Do not select
Automation Support because you will not be adding automation support to
Scribble.

9. Choose Next.

10. In AppWizard Step 4 dialog box, choose the Advanced button.

The Advanced Options dialog box appears.

11. Choose the Document Template Strings tab. In the Doc Type Name box, change
"Scribb" to "Scrib." In the File Extension box, type "scr."

All the other entries in the dialog box change appropriately.

12. Choose Close.

13. Choose the Context Sensitive Help option, and choose Next.

14. In AppWizard Step 5, choose the Next button to accept the default options.

For more information on the various options that appear in these dialog boxes,
see Chapter 1, "Creating a New Application Using AppWizard," in the Visual
C++ User's Guide.

15. In the AppWizard Step 6 dialog box, check and modify class names and
filenames to make them match the original Scribble application:

• Select the class CScri bb 1 eOoc. and change its name to CScribDoc.

Notice that the base class is COleServerDoc, which reflects your Full­
Server choice.

Chapter 16 Creating an OLE Server 241

• Select the class esc rib b 1 e Vie w, and change its name to CScrib View and
choose CScrollView in the Base Class box.

• Select the class esc ri bb 1 eS rv r I tern, and change its name to
CScribltem, the header filename to scribitm.h, and the implementation
filename to scribitm.cpp.

Notice that COleServerltem is the base class, which reflects your full­
server choice.

16. Choose Finish.

17. Choose Yes if you get the message box that says:

A unique class 1D already exists in the registration database for
this document type. Use existing 1D?

This message box appears if you have already run the OLE server version of
Scribble.

18. In the New Project Information dialog box, confirm the specifications and
choose the OK button.

19. Now you can close the project in the SCRIBBLE\SCRATCH.

App Wizard creates the new files.

20. Open the SCRIBBLE\MYSCRIB\SCRIBBLE.MAK project.

Copy Scribble Step 6 to a New Subdirectory
This tutorial picks up where Scribble Step 6 left off in Chapter 15. The original
tutorial used the MYSCRIB subdirectory, and you will do the same here.

~ To copy Scribble Step 6 to a new directory

1. Create a MYSCRIB subdirectory in SAMPLES\MFC\SCRIBBLE if you don't
already have one.

2. Either use your files from Scribble Step 6, or delete all your files and copy all
the files from SAMPLES\SCRIBBLE\MFC\STEP6 to the MYSCRIB
subdirectory .

3. Also, copy the files from STEP6\RES to MYSCRIB\RES and from STEP6\HLP
to MYSCRIB\HLP.

242 Introducing Visual C++

Transfer Scratch Files to Your MYSCRIB Project
AppWizard provides several source files for an OLE server application that you
can use as-is in Scribble.

~ To add the new files to your MYSCRIB project

1. Copy the following files from SCRIBBLE\SCRATCH to
SCRIBBLE\MYSCRIB:

• IPFRAME.H

• IPFRAME.CPP

• SCRIBITM.H

• SCRIBITM.CPP

• SCRIBBLE.REG

• HLP\AFXOLESV.RTF

• RES\lTOOLBAR.BMP

2. Make sure the MYSCRIB project is open.

3. From the Project menu, choose Files.

The Project Files dialog box appears.

4. Add the following two files to your project:

• IPFRAME.CPP

• SCRIBITM.CPP

5. Choose the Close button.

6. Open SCRIBBLE.HPJ.

7. Add "hlp\afxolesv.rtf' to the [FILES] section.

IPFRAME.CPP contains the implementation of Scribble's COleIPFrameWnd­
derived class. This is the frame window for Scribble when it draws in the container.
COleIPFrameWnd provides the resize border that you noticed in the preview
demonstration. Note that Scribble only uses this COleIPFrameWnd object when
the Scribble object is in-place activated in the container application. Only then does
the server need to provide a window. When the Scribble object is not activated in
place, but is just being drawn in the container's window, the OLE server provides a
metafile (a list of drawing commands) to the container so it can then play the
metafile.

SCRIBITM.CPP contains the implementation of Scribble's COleServerItem­
derived class. The COleServerItem object represents the Scribble document when
it is embedded in a container.

Chapter 16 Creating an OLE Server 243

SCRIBBLE.REG is a text file that can be used to register the new application with
Windows. There are three ways you can register the application with Windows:

1. Run REGEDIT.EXE. From the File menu, choose Merge Registration File, and
select SCRIBBLE.REG.

2. If you are redistributing your application, your installation program can spawn
REGEDIT, using the /s (silent) option and specifying the .REG file as a
command line parameter, as follows:

regedit Is scribble.reg

3. Let the framework programmatically register the application for you. This third
method is automatically implemented by App Wizard, as explained later. If you
rely on this convenient third method, you do not need the .REG file. In this case,
the .REG file is useful for informational purposes.

Add AFXOLE.H to Your Precompiled Header File
The MFC OLE support is kept in a separate extension header file, AFXOLE.H.
Because several SCRIBBLE implementation files refer to the MFC OLE classes, it
is a good idea to include it in STDAFX.H, the precompiled header for Scribble.

~ To add AFXOLE.H to the precompiled header file

• Add the marked line to STDAFX.H.

#include <afxwin.h>
#include <afxext.h>
#include <afxtempl.h>

~ #include <afxole.h>

II MFC core and standard components
II MFC extensions (including VB)
II MFC templates
II MFC OLE support

Add OLE Server Support to the Application Object
To add OLE server support to the application object, you need to:

• Add a COleTemplateServer data member to CScri bb 1 eApp.

• Add OLE server code to CScri bbl eApp.

244 Introducing Visual C++

~ To add a COleTemplateServer data member to CScribbleApp

• Add the marked lines in SCRIBBLE.R.

You wili find the same code in SCRA TCH\SCRIBBLE.H, which was provided
by AppWizard.

class CScribbleApp : public CWinApp
{

II Implementation
~ COleTemplateServer m_server;
~ II Server object for document creation

} ;

The COleTemplateServer object is used to register a server application with
OLE. See how m_serve r is used in Scribble's I ni t I nstan ceo

~ To add OLE server code to CScribbleApp

Add OLE server code to the implementation of CSc r i bb 1 eApp in
SCRIBBLE.CPP. You can take advantage of the fact that you have made very few
changes to SCRIBBLE.CPP since you originally ran AppWizard in Step 1 of the
Scribble tutorial. Here is a shortcut:

1. Copy SCRATCH\SCRIBBLE.CPP to MYSCRIB\SCRIBBLE.CPP.

2. Add the marked #include statement to the top of SCRIBBLE.CPP.

'include "mainfrm.h"
~ 'include "scribfrm.h"

'include "ipframe.h"

This change also reflects the Step 4 addition of splitter window support.

3. InCScribbleApp::lnitlnstance, change:

pOocTemplate = new CMultiOocTemplate(

RUNTIME_CLASS(CMOIChildWnd).
II standard MOl child frame

Chapter 16 Creating an OLE Server 245

to:

pDocTemplate - new CMultiDocTemplate(

• RUNTIME_CLASS(CScribFrame).
• II MDl child frame with splitter wnd

This change is needed because in Step 4 of the Scribble tutorial the frame
window class was changed from the standard CMDIChildWnd to
esc rib F r a me when splitter window functionality was added.

4. Use the string editor to copy the same string resource for
IDP _OLE_INIT_FAILED (used in In it I ns ta nee) that AppWizard provides.
The string text is:

OLE initialization failed. Make sure that the OLE libraries are
correct version.

Convert the CDocument Class to the COleServerDoc Class
The CDocument class implements standard document behavior in a stand-alone
application. When the application runs as an OLE visual editing server, however,
the document must do extra work on behalf of OLE. The framework implements the
bulk of this OLE document support in class COleServerDoc. The remaining work
you have to do is:

• Change the base class of CSeri bDoe from CDocument to COleServerDoc.

• Implement the document's support for embedded items.

~ To change the base class of CScribDoc

1. In SCRIBDOC.H, change:

class CScribDoc : public CDocument

to:

• class CScribDoc : public COleServerDoc

2. In SCRIBDOC.CPP, replace all instances of CDocument with
COleServerDoc.

This changes the base class reference of esc rib Doc from CDocument to
COleServerDoc.

246 Introducing Visual C++

~ To implement the document's support for embedded items

The COleServerItem object represents the Scribble document when the document
is embedded in a container. To create a COleServerItem for a given document,
GetEmbeddedItem is overridden in the COleServerDoc-derived class. The
return type of OnGetEmbeddedItem is a pointer to a COleServerItem.

Note A COleServerItem object can also represent an OLE link item, but Scribble
doesn't illustrate that. For an illustration of a link item, see the sample HlERSVR in
the Microsoft Foundation Class Library Samples.

1. Open SCRlBDOC.H and add the following forward class reference for
CScri bItem:

class CStroke;
~ cl ass CScri bItem;

2. Declare OnGetEmbeddedItem as indicated by the marked line:

II Implementation
protected:

~ COleServerItem* OnGetEmbeddedItem();

3. Implement CScri bDac: : OnGetEmbedded Item in SCRIBDOC.CPP by
adding the marked lines:

~ COleServerItem* CScribDoc::OnGetEmbeddedltem()
~ {
~ CScribItem* pItem = new CScribItem(this);
~ ASSERT_VALID(pItem);
~ return pItem;
~ }

4. In SCRIBDOC.CPP, add the marked line.

'include "scribdoc.h"
~ 'include "scribitm.h"

5. For convenience you provide a type-safe function to return a pointer to the
specific COleServerItem-derived class, esc rib Item. by adding the marked
lines in SCRIBDOC.H:

IIAttributes
II

public:
CSize GetDocSize() {return m_sizeDoc;}
CScribltem* GetEmbeddedItem()
{ return (CScribItem*)COleServerDoc::GetEmbeddedItem(); }

Chapter 16 Creating an OLE Server 247

Analyze OLE Server Code in Initlnstance
The code highlighted below shows the OLE server code provided by AppWizard in
SCRIBBLE.CPP.

~ finclude "ipframe.h"

//

// The one and only CScribbleApp object

CScribbleApp theApp;

~ // This identifier was generated to be statistically unique for
~ // your app.
~ // You may change it if you prefer to choose a specific identifier.
~ static const ClSID BASED_CODE clsid -
~ { 0x0002180f. 0x0. 0x0. { 0xC0. 0x0. 0x0. 0x0. 0x0. 0x0. 0x0. 0x46 } };

//

// CScribbleApp initialization

BOOl CScribbleApp::InitInstance()
{

~ // Initialize OLE libraries
~ if (!AfxOleInit()
~ {
~ AfxMessageBox(IDP_OlE_INIT_FAIlED);
~ return FALSE;
~ }

// Standard initialization
// If you are not using these features and wish to reduce the
// size of your final executable. you should remove from the
// following the specific initialization routines you do not
// need.

Enable3dControls();
loadStdProfileSettings() // load standard INI file options

//(including MRU)

248 Introducing Visual C++

II Register the application's document templates. Document
II templates serve as the connection between documents, frame
II windows and views.

CMultiDocTemplate* pDocTemplate:
pDocTemplate - new CMultiDocTemplate(

lDR_SCRlBTYPE,
RUNTlME_CLASS(CScribDoc),
RUNTlME_CLASS(CScribFrame) II MDl child frame with splitter
RUNTlME_CLASS(CScribView»:

~ pDocTemplate-)SetServerlnfo(
~ lDR_SCRlBTYPE_SRVR_EMB, lDR_SCRlBTYPE_SRVR_lP,
~ RUNTlME_CLASS(ClnPlaceFrame»:

AddDocTemplate(pDocTemplate):

~ II Connect the COleTemplateServer to the document template.
~ II The COleTemplateServer creates new documents on behalf
~ II of requesting OLE containers by using information
~ II specified in the document template.
~ m_server.ConnectTemplate(clsid, pDocTemplate, FALSE):

~ II Register all OLE server factories as running.
~ II This enables the OLE libraries to create objects from
~ II other applications.
~ COleTemplateServer::RegisterAll():
~ II Note: MDl applications register all server objects
~ II without regard to the IEmbedding or IAutomation on the
~ II command line.

II create main MDl Frame window
CMainFrame* pMainFrame = new CMainFrame:
if (!pMainFrame-)LoadFrame(lDR_MAlNFRAME»

return FALSE:
m_pMainWnd = pMainFrame:

II enable DDE Execute open
EnableShellOpen():
RegisterShellFileTypes():

~ II Parse the command line to see if launched as OLE server
~ if (Run Embedded () II RunAutomated ())
~ {
~ II Application was run with IEmbedding or IAutomation.
~ II Don't show the main window in this case.

return TRUE:
}

Chapter 16 Creating an OLE Server 249

~ II When a server application is launched stand-alone, it is a
~ II good idea to update the system registry in case it
~ II has been damaged.
~ m_server.UpdateRegistry(OAT_INPLACE_SERVER);

}

II simple command line parsing
if (m_lpCmdLine[0] -- '\0')
{

}

else
{

}

II create a new (empty) document
OnFileNew();

II open an existing document
OpenDocumentFile(m_lpCmdLine);

m_pMainWnd->DragAcceptFiles();
II The main window has been initialized, so show and update it.
pMainFrame->ShowWindow(m_nCmdShow);
pMainFrame->UpdateWindow();

return TRUE;

Here is an explanation of the preceding code, which was provided by App Wizard.
All MFC OLE applications-whether container, server, or automation server­
must call AfxOlelnit and the static function COleTemplateServer::RegisterAll
from the application's I nit Ins tan c e to initialize framework support for OLE.
For an application that is not an OLE server, the CDocTemplate object
coordinates the creation of the frame window, view, and document object for the
stand-alone application. The CDocTemplate uses menu, accelerator, and string
resources passed to the constructor in I nit Ins tan c e code, to determine the menu,
accelerators, and Windows shell registration of the stand-alone application.

In the case of an OLE server application, additional information is needed.
The I nit Ins tan c e function passes this information as parameters to
the CDocTemplate::SetServerInfo function, before it calls
CWinApp::AddDocTemplate. Here is a description of the parameters:

pDocTemplate->SetServerlnfo(
IDR_SCRIBTYPE_SRVR_EMB, IDR_SCRIBTYPE_SRVR_IP,
RUNTIME_CLASS(ClnPlaceFrame»;

250 Introducing Visual C++

1. IDR_SCRIBTYPE_SRVR_EMB is the common ID of the menu and accelerator
resources loaded when Scribble is fully opened by the container application
when it edits an embedded item.

2. IDR_SCRIBTYPE_SRVR_IP is the common ID of the menu, accelerators, and
toolbar bitmap resources that are loaded when Scribble is activated in place in
the container application. The purpose and design of these resources specifically
for the in-place activated server application, as well as the purpose and design of
the above resources for the fully opened server application, are explained later
in this tutorial.

3. RUNTIME_CLASS(CInPlaceFrame) is the COleIPFrameWnd-derived class
provided by App Wizard. This class defines the behavior of the window created
by the framework on behalf of the server application when it is activated in
place by the container. The AppWizard-provided implementation of this class
adds the resize border to the in-place window so that the user can resize the
object while it is activated in place.

The following code defines the OLE class ID for the Scribble application and
registers the application. App Wizard provides a default ID that is randomly
generated. The call to COleTemplateServer::ConnectTemplate registers the
class ID with Windows.

Note The clsid below will differ from the unique one that is provided when you run
AppWizard.

static const CLSID BASED_CODE clsid -
{ 0x0002180f. 0x0. 0x0. { 0xC0. 0x0. 0x0. 0x0. 0x0. 0x0. 0x0. 0x46 } };

m_server.ConnectTemplate(clsid. pDocTemplate. FALSE);

An MFC OLE server can use COieTemplate::UpdateRegistry to register the
application as an OLE server. The following AppWizard-provided code is optional.

II When a server application is launched stand-alone. it is a good
II idea to update the system registry in case it has been damaged.
m_server.UpdateRegistry(OAT_INPLACE_SERVER);

Alternatively you can register your application using one of the two methods
described previously: manually merge the SCRIBBLE.REG registration file into
the system registry, using REGEDIT, or programmatically merge the registration
file from your application's setup program.

Chapter 16 Creating an OLE Server 251

If the application was spawned by OLE as an in-place server or automation server,
then I nit Ins tan c e returns the call before performing additional initialization
tasks that are appropriate only for stand-alone applications.

if (RunEmbedded() I I RunAutomated(»
{

return TRUE;

Editing OLE-Related Resources
The next overall task is to:

• Add OLE standard resources

• Add menus

• Add toolbars

• Add accelerators for in-place active or fully opened servers

Add OLE Standard Resources
~ To add OLE standard resources

1. Open SCRIBBLE.RC.

2. From the Resource menu, choose the Set Includes command.

3. Add the following to Compile-Time Directives:

'include "afxprint.rc" // printing/print preview resources
~ Iii ncl ude "afxol esv. rc" / / OLE server resources

This #include statement takes care of including some string resources referred
to by the framework OLE classes. AppWizard adds this #include statement to
your application resource file if you choose the Mini-Server, Full-Server, or
Container Server option. If you look at SCRA TCH\SCRIBBLE.RC, you will
see that AppWizard has added this same compile-time directive.

4. Choose OK to accept the changes you made in the Set Includes dialog box.

5. Choose OK when the following message box appears:

Directive text will be written verbatim into your resource script and
may render it incompatible

252 Introducing Visual C++

Add OLE Menu Resources
A server application shows different menus, depending on whether it is running
stand-alone, embedded, or in-place activated. AppWizard provides three different
menus for these cases.

• IDR_SCRIBTYPE is the menu for the document when it is opened in the usual
way.

• IDR_SCRIBTYPE_SRVR_EMB is the menu for the document when the server
is opened fully from the container application.

• IDR~SCRIBTYPE_SRVR_IP is the menu for the document when it is activated
in place (thus, "IP") in a container. When an object is activated in place, OLE
merges the menu of the container application with the menu provided by the
server application. The merging of the two menus is based on separator bars.
Scribble's in-place menu (IDR_SCRlBTYPE_SRVRJP) looks like this:

Edit I Pen I Help

An example of a container's menu is seen in Contain (the OLE Container
tutorial discussed in Chapters 17 through 19), as shown below:

File II Window

OLE merges the two menus to create the following menu when the Scribble
object is in-place activated in the Contain application:

File Edit Pen Window Help

OLE merges pop-up menus from left to right in the following order:

1. Container's pop-up menu(s) before the frrst separator

2. Server's pop-up menu(s) before the first separator

3. Container's pop-up menu(s) between the frrst and second separators

4. Server's pop-up menu(s) between the frrst and second separators

5. Container's pop-up menu(s) after the second separator

6. Server's pop-up menu(s) after the second separator

Scribble's two distinct OLE-related menu resources are referred to in the following
cadein CScr; bApp:: InitInstance:

pDocTemplate->SetServerlnfo(
IDR_SCRIBTYPE_SRVR_EMB. IDR_SCRIBTYPE_SRVR_IP.
RUNTIME_CLASS(ClnPlaceFrame»;

Chapter 16 Creating an OLE Server 253

AppWizard provides all the code and resources described above, except for the Pen
pop-up menu, which is application specific. If you are creating a new application
from scratch, each new pop-up menu must be added to each of the three resources.
This is easy to do with the drag and copy feature of the menu editor. You can copy
a resource by dragging it to the desired location while pressing the CTRL key, and
then releasing the mouse button.

In this part of the tutorial, you will:

• Copy the two new resources, IDR_SCRIBTYPE_SRVR_EMB and
IDR_SCRIBTYPE_SRVR_IP, from the AppWizard-provided
SCRA TCH\SCRIBBLE.RC to MYSCRIB\SCRIBBLE.RC.

• Add the Pen pop-up menu to each of the menus.

~ To copy menu resources

1. Open SCRIBBLE\MYSCRIB\SCRIBBLE.RC from the project window.

2. From the File menu, choose Open and select
SCRIBBLE\SCRATCH\SCRIBBLE.RC.

3. Copy the menus IDR_SCRIBTYPE_SRVR_EMB and
IDR_SCRIBTYPE_SRVR_IP from the scratch resource file to
MYSCRIB\SCRIBBLE.RC.

~ To copy menu items

1. Open the menu resources IDR_SCRIBTYPE and
IDR_SCRIBTYPE_SRVR_EMB in the MYSCRIB resource file.

2. Copy the Pen pop-up menu from IDR_SCRIBTYPE into the
IDR_SCRIBTYPE_SRVR_EMB menu so that it is between the Edit and View
menus, as in IDR_SCRIBTYPE.

3. Copy the Clear All menu item from the Edit menu in IDR_SCRIBTYPE to the
Edit menu in IDR_SCRIBTYPE_SRVR_EMB.

4. Repeat steps 1 to 3 for IDR_SCRIBTYPE_SRVR_IP, putting the Pen menu as
follows:

Edit I Pen I Help

5. Close the menu resource and save the resource file.

Add OLE Toolbar Resources
The server application also provides an in-place toolbar to the container. This
toolbar typically supports a different set of commands than does the container's
usual toolbar, generally a subset. For example, the in-place toolbar does not support
File menu commands, because the container, not the server, must handle those
commands even if the server is activated in place.

254 Introducing Visual C++

AppWizard provides a default in-place toolbar with four buttons. The
COleIPFrameWnd-derived class is responsible for specifying the mapping of
commands to toolbar buttons. AppWizard provides this in the buttons array in
IPFRAME.CPP:

II toolbar buttons - IDs are command buttons
static UINT BASED_CODE buttons[] =
{

} ;

II same order as in the bitmap 'toolbar.bmp'
ID_EDIT_CUT.
ID_EDILCOPY.
ID_EDILPASTE.

ID_SEPARATOR.
ID_APP _ABOUT.
I D_CONTEXT _H E LP

~ To copy the toolbar bitmap resource

You will use the bitmap editor, and follow the same kind of procedure that you did
.-lur IIu:nus.

1. Copy the toolbar bitmap resource, IDR_SCRIBTYPE_SRVR_IP, from the
AppWizard-provided scratch resource file to MYSCRIB\SCRIBBLE.RC.

2. In MYSCRIB\SCRIBBLE.RC, copy the application-specific Pen Width button
image from the IDR_MAINFRAME toolbar bitmap to the
IDR_SCRIBTYPE_SRVR_IP toolbar bitmap, as follows:

1. From the Image menu, choose Grid Settings, and select the Tile Grid option
for both bitmap toolbar resources.

2. Increase the width of the IDR_SCRIBTYPE_SRVR_IP bitmap from 80 to
96 pixels.

3. Drag the Help and Context-Sensitive Help images to the last button position
in the bitmap to make room for the Pen Width button image.

4. Using Copy and Paste commands on the Edit menu, copy the Pen Width
button image in IDR_MAINFRAME to IDR_SCRIBTYPE_SRVR_IP, and
locate it between the Edit Paste button and the Help (question mark) button.

This completes the editing of the toolbar bitmap, which should look like the one
in Figure 16.1.

Figure 16.1 Toolbar bitmap

Chapter 16 Creating an OLE Server 255

3. Using the text editor, insert the ID_PEN_THICK_OR_THIN command in the
buttons array for the COleIPFrameWnd in IPFRAME.CPP:

II toolbar buttons - IDs are command buttons
static UINT BASED_CODE buttons[] -
{

II same order as in the bitmap 'itoolbar.bmp'
ID_EDIT_CUT.
ID_EDIT_COPY.
ID_EDIT_PASTE.

~ ID_SEPARATOR.
~ ID_PEN_THICK_OR_THIN.

ID_SEPARATOR.
ID_APP_ABOUT •

.. ID_CONTEXT_HELP.
} ;

The order of command IDs in the buttons array must correspond to the order of
button images in the IDR_SCRIBTYPE_SRVR_IP toolbar bitmap resource. For
more information on working with toolbar bitmap resources, see "Editing
Toolbar Graphics" in Chapter 9, "Using the Graphic Editor," in the Visual C++
User's Guide.

Add Accelerator Resources for In-Place Active or Fully Opened
Servers

Just as a server application offers different pop-up menus when it is in-place active
or fully opened versus running stand-alone, the server application offers a different
set of accelerators. AppWizard provides two additional accelerator resources,
IDR_SCRffiTYPE_SRVR_EMB and IDR_SCRffiTYPE_SRVR_IP, just as it
creates two additional menu resources with these same identifications. You can
copy these accelerator resources from the scratch version of SCRffiBLE.RC.

~ To copy accelerator resources

1. Copy accelerator resources IDR_SCRffiTYPE_SRVR_EMB and
IDR_SCRffiTYPE_SRVR_IP from SCRATCH\SCRffiBLE.RC to
MYSCRffi\SCRffiBLE.RC.

2. Save your changes.

256 Introducing Visual C++

Adding Application-Specific Server Support
The rest of your task is to:

• Add application-specific server support to the document class.

• Implement the server item.

• Implement OLE in-place support in the view class.

Add Application-Specific Server Support to the Document Class
To finish adding application-specific server support in the document class, you have
to:

• Implement notifying the OLE server that the embedded item has moved or
changed size.

• Change the initial size of the document.

• Implement the document's support for putting a link format on the Clipboard.

~ To notify the OLE server when the embedded item moves or changes size

1. Add these declarations to SCRIBDOC.H, as indicated by the marked lines:

II Implementation
protected:

void ReplacePen();
~ COleServerltem* OnGetEmbeddedltem();
~ void OnSetltemRects(LPCRECT lpPosRect.
~ LPCRECT lpClipRect);

The framework calls OnSetItemRects when the position or size of the
embedded item has changed in the container, or when the clipping of the
embedded item has changed in the container. Because Scribble's view is a
CScrollView, you need to call CScrollView::SetScrollSizes to reflect the
change in the size of the item. Because there are multiple places where the logic
associated with SetScrollSizes must be performed, you will later write a helper
function, CScri bVi ew: : SetScro 11 I nfo, which you will call from the
override of OnSetItemRects.

Chapter 16 Creating an OLE Server 257

2. Add the marked lines to SCRIBDOC.CPP:

~ COleServerItem* CScribOoc::OnGetEmbeddedItem()
~ {
~ II OnGetEmbeddedItem is called by the framework to get
~ II the OleServerItem that is associated with the document.
~ II It is only called when necessary.
~

~ CScribItem* pItem = new CScribItem(this);
~ ASSERT_VALIO(pItem);
~ return pItem;
~ }
~

~ voi d CScri bOoc: : OnSetItemRects (LPCRECT 1 pPosRect.
~ LPCRECT lpClipRect)
~ {
~ II call base class to change the size of the window
~ COleServerOoc: :OnSetItemRects(lpPosRect. lpClipRect);
~

~ II notify first view that scroll info should change
~ POSITION pos = GetFirstViewPosition();
~ CScribView* pView = (CScribView*)GetNextView(pos);
~ pView->SetScrollInfo();
~ }

3. Add the marked #include statement to SCRIBDOC.CPP, because the above
implementation refers to CScri bVi ew:

#include "pendlg.h"
~ #include "scribvw.h"
~ #i ncl ude "scri bitm. h"

The next step is to change Scribble's fixed document size, 8 by 9 inches, to 2 by 2
inches in CScri bOac: : In itOacument. The current size, 8 by 9 inches, is too
large for most containers.

~ To change the initial size of the document

1. In SCRIBDOC.CPP, change:

void CScribOoc::InitOocument()
{

Iidefault document size

m_sizeOoc = CSize(800. 900);

}

258 Introducing Visual C++

to:

~ m_sizeDoc = CSize(200. 200);

2. Add the marked line to the C S c rib 0 a c constructor:

CScribDoc: :CScribDoc()
{

~ m_sizeDoc = CSize(200. 200);

The m_s i zeOac is also initialized in the helper member function,
I nit 0 a cum en t, when a document is newly created or reopened in a stand­
alone running instance of Scribble. In i tOacument is called by Scribble's
overrides of CDocument: :OnNewDocument and OnOpenDocument.
When Scribble is run as a server, the OnNewOacument and OnOpenOacument
functions are not called. A good place to initialize m_s i zeOac is in the
constructor.

~ To implement the document's support for putting a link format on the
Clipboard

With this support, containers can do the Paste Link command on the server's Edit
menu.

1. Run Class Wizard.

2. Choose the Message Maps tab.

3. Select CScri bOac in the Class Name box.

4. Add the COMMAND handler for ID_EDIT_COPY, and accept the default
name OnEdi tCapy.

5. Choose the Edit Code button, and add the marked lines to the 0 nEd i t Cap y
function.

void CScribDoc::OnEditCopy()
{

~ CScribltem* pltem = GetEmbeddedltem();
~ pltem->CopyToClipboard(TRUE);

}

The framework function COieServerDoc::CopyToClipboard does all the work.

Chapter 16 Creating an OLE Server 259

Implement the Server Item
AppWizard has done most of the work associated with implementing the server
item by providing the COleServerItem-derived class in SCRIBITM.CPP. All you
have to do is add the application-specific implementation.

The server item's 0 nOr a w is called when the server document needs to draw itself
as an inactive embedded object inside the container window. In contrast, the
view's 0 nOr a w is called when the document is activated in place inside the
container. esc rib I tern: : On 0 raw needs to do essentially the same drawing that
eScri bVi ew: : OnDraw does. If your OnDraw code in your view class is complex,
you will probably want to reuse that code by having your client item's 0 nOr a w call
a shared draw routine. In Scribble, the eStroke: : DrawStroke routine is reused.

~ To implement the OLE item's OnDraw function

1. In SCRIBITM.CPP replace the AppWizard-provided stubbed version of
eScri b I tern: : OnDraw with:

BOOl CScribItem::OnDraw(CDC* pDC. CSize& rSize)
{

CScribDoc* pDoc = GetDocument();
ASSERT_VAlID(pDoc);

pDC->SetMapMode(MM_ANISOTROPIC);
~ CSize sizeDoc - pDoc->GetDocSize();
~ sizeDoc.cy = -sizeDoc.cy;
~ pDC->SetWindowExt(sizeDoc);

pDC->SetWindowOrg(0.0);

~ CTypedPtrlist<COblist. CStroke*>& strokelist
~ - pDoc->m_strokelist
~ POSITION pos = strokelist.GetHeadPosition();
~ while (pos != NULL)
~ {

~ strokelist.GetNext(pos)->DrawStroke(pDC);
~ }
~

return TRUE;
}

This code sets the window extent to the size of the document so that when the
document is drawn in the in-place window, the drawing will stretch to the size of
the window. It is necessary to reverse the sign of the y dimension to reflect the
fact that strokes' positions are maintained in MM_LOENGLISH coordinates
by using negative y coordinates.

260 Introducing Visual C++

2. Update the AppWizard-provided version of CScr i b I tern: : OnGet Extent
with the code marked below:

BOOL CScribltem::OnGetExtent(DVASPECT dwDrawAspect. CSize& rSize)
{

~ II This implementation of CScribltem::OnGetExtent only handles
~ II the "content" aspect i ndi cated by DVASPECLCONTENT.

if (dwDrawAspect 1= DVASPECT_CONTENT)
return COleServerltem::OnGetExtent(dwDrawAspect. rSize):

II CScribltem::OnGetExtent is called to get the extent in
II HIMETRIC units of the entire item. The default
II implementation here simply returns a hard-coded
II number of units.
CScribDoc* pDoc = GetDocument():
ASSERT_VALID(pDoc):

~ rSize - pDoc-)GetDocSize():
~ CCl i entDC dc(NULl):
~

~ II set a MM_LOENGLISH based on logical inches
~ II (we can't use MM_LOENGLISH because MM_LOENGLISH uses
~ I I physi cal inches)
~ dc.SetMapMode(MM_ANISOTROPIC):
~ dc.SetViewportExt(dc.GetDeviceCaps(LOGPIXElSX).
~ dc.GetDeviceCaps(LOGPIXELSY»:
~ dc.SetWindowExt(100. -100):
~ dc.LPtoHIMETRIC(&rSize):

return TRUE:

The framework calls the virtual COleServerltem::OnGetExtent member
function when the item needs to set the viewport and window extents of the
server item window when the item is in-place active. The new code above
modifies the original code provided by App Wizard, which sets the size of the
server item to an arbitrary fixed value. The function must return the size of
the server item in HIMETRIC units. In Scribble, the server item needs to
return the size of the document. Scribble stores the drawing size in physical
MM_LOENGLISH units. For reasons explained in the next section, Scribble
needs to convert the drawing size to HIMETRIC units based on its logical
MM_LOENGLISH size rather than physical MM_LOENGLISH size.

Chapter 16 Creating an OLE Server 261

Implement OLE In-Place Support in the View Class
To implement OLE in-place support in the view class, you must:

• Calculate logical MM_LOENGLISH sizes rather than physical
MM_LOENGLISH sizes.

• Adjust the scroll view's scroll bars to reflect the use of the logical mapping
mode.

• Notify OLE when the embedded item changes.

Before Scribble was enhanced to be an OLE visual editing server, it was lazy about
its device context coordinates using MM_LOENGLISH: Scribble did not adjust
for how many logical pixels per inch are on the screen display. Most serious
Windows applications scale their screen output because small fonts are rarely
readable when displayed in their true (physical) size. Applications can adjust for
the number of pixels in the logical inch by applying the kind of logic illustrated by
the following code sample. This logic relies primarily on values returned by
CDC::GetDeviceCaps(LOGPIXELSX) and GetDeviceCaps(LOGPIXELSY).
Now that Scribble is an OLE server, it should scale according to logical pixels per
inch. Otherwise, you (and your user) will notice a difference in the scaling of a
Scribble drawing when the Scribble server is fully open versus its scaling when it is
displayed embedded in the container.

~ To implement logical MM_LOENGLISH rather than physical
MM_LOENGLISH

1. Open Class Wizard.

2. Choose the Message Maps tab.

3. Ensure that CScribView is chosen in the Class Name and Object IDs boxes.

4. Choose OnPrepareDC in the Member Functions box.

5. Choose Add Function.

6. Choose Edit Code.

7. Add the following code to the override of OnPrepa reDC in SCRIBVW.H:

void CSeribView::OnPrepareDC(CDC* pDC. CPrintInfo* pInfo)
{

~ CSeribDoe* pDoe - GetDoeument();
CSerollView::OnPrepareDC(pDC. pInfo);

~ pDC->SetMapMode(MM_ANISOTROPIC);
~ CSize sizeDoe - pDoe->GetDoeSize();
~ sizeDoe.ey - -sizeDoe.ey;
~ pDC->SetWindowExt(sizeDoe);

262 Introducing Visual C++

~ CSize sizeNum. sizeDenom;
~ pDoc->GetZoomFactor(&sizeNum. &sizeDenom);

~ int xLogPixPerInch = pDC->GetDeviceCaps(LOGPIXELSX);
~ int yLogPixPerInch - pDC->GetDeviceCaps(LOGPIXELSY);

~ long xExt = (long)sizeDoc.cx * xLogPixPerInch * sizeNum.cx;
~ xExt 1= 100 * (long)sizeDenom.cx;
~ long yExt = (long)sizeDoc.cy * yLogPixPerInch * sizeNum.cy;
~ yExt 1- 100 * (long)sizeDenom.cy;
~ pDC ->SetVi ewportExt « i nt)xExt. (i nt) -yExt) ;

}

~ To adjust the scroll view's scroll bars to reflect the use of the logical
MM_LOENGLISH mapping mode

1. In SCRIBVW.H, declare the SetScro 11 I nfo helper function:

II Operations
public:

~ void SetScrollInfo(); II resync scroll sizes

2. In SCRIBVW.CPP, after OnIni ti a1 Update, implement SetScro11 Info:

~ void CScribView::SetScrollInfo()
~ {
~ CClientDC dc(NULL);
~ OnPrepareDC(&dc);
~ CSize sizeDoc - GetDocument()->GetDocSize();
~ dc.LPtoDP(&sizeDoc);
~ SetScrollSizes(MM_TEXT. sizeDoc);
~ }

3. In 0 n I nit i a 1 Up d ate, replace the call to CScrollView:: SetScrollSizes with
the call to the helper function, Set S c r 0 1 1 I n f 0:

void CScribView::OnInitialUpdate()
{

~ SetScrollInfo();
CScrollView::OnInitialUpdate();

}

4. Update the scroll bars appropriately when the window is sized.

• Open Class Wizard.

• Choose the Message Maps tab.

• Select CScri bVi ew in the Class Names box.

Chapter 16 Creating an OLE Server 263

• Select eScr; bV; ew in the Object Types box and add the message handler
for WM_SIZE.

• Choose the Edit Code button, and add the call to Set S c roll In f 0 as
indicated by the marked line:

void CSeribView::OnSize(UINT nType. int ex. ey)
{

SetSeroll Info(); II ensure that scroll info is up-to-date
CSerollView::OnSize(nType. ex. ey);

5. Add the marked line to the eScr; bV; ew constructor:

CSeribView::CSeribView()
{

~ SetSerollSizes(MM_TEXT. CSize(0.0));

It is necessary to initialize the scroll sizes in the CScrib View constructor to
default values, so that the extent is defined before the first call to
OnPrepa reDe.

When Scribble's view finished adding a new stroke in
esc r; b v; ew: : On LB ut ton Down, it calls the document's U pd a teA 11 V; ews to
inform other views that they need to invalidate a portion of the client area occupied
by the new stroke. This notification is fine for Scribble when it is running stand­
alone, but it is not adequate when Scribble is fully opened and editing an embedded
object. In the latter case, Scribble needs to inform the container that the object has
changed. This requires the additional call to COleServerDoc::NotifyChanged.

~ To notify OLE when the embedded item changes

• In SCRIBVW.CPP, add the marked line to the OnLButtonUp function.

void CSeribView::OnLButtonUp(UINT. CPoint point)
{

ReleaseCapture(); II Release the mouse capture established at
II the beginning of the mouse drag.

~ pDoe->NotifyChanged();
return;

}

264 Introducing Visual C++

Testing Scribble Server Functionality Using a Container
Application

You have now completed all the work needed to convert Scribble to an OLE visual
editing server application. Build the project in the usual way, and follow the steps in
the preview of Scribble found at the beginning of the chapter. In particular,
remember to run it once as a stand-alone. You have now converted Scribble to an
OLE server that works as in our preview demonstration.

265

CHAPTER 17

Creating an OLE Container

A "container application" is an application that can incorporate embedded or linked
items into its own documents. The documents managed by a container application
must be able to store and display Object Linking and Embedding (OLE) items as
well as data created by the application itself. A container application must also
allow users to insert new OLE items or edit existing ones.

In this tutorial you will create a simple OLE container application, Contain. The
Contain document can hold several OLE in-place items that the user can resize and
move to any place in the document. However, the Contain document doesn't contain
any application-specific objects. For an example of a container document that has
both application-specific objects (draw objects) and OLE items, see the DRA WCLl
sample in Microsoft Foundation Class Library Samples.

Note This tutorial assumes that you are already familiar with Visual C++ and the
basics of the Microsoft Foundation Class Library (MFC). If you are not, follow the
Scribble tutorial in the Chapters 6 through 15 before you begin this tutorial. The
Scribble tutorial introduces important class library concepts and techniques, and it
teaches you how to use the wizards and the resource editors.

Preview of the Contain Application
Before you work through the steps of implementing Contain, try out the completed
application. This will help you appreciate OLE container functionality in general,
and Contain's container functionality in particular, from a user's point of view.

Other example container applications, written using the OLE SDK rather than
MFC, are provided on the Visual C++ distribution CD-ROM. You can run them
from the Windows Program Manager group named "OLE Samples on CDROM."

266 Introducing Visual C++

The source code for these OLE samples is included on the distribution CD-ROM,
and there is a Setup option that allows you to install the source code on your hard
disk. Finally, the best examples are those world-class applications that support OLE
today (not provided with Visual C++). These are the applications you will
ultimately want to test your application against.

The first step is to install and register at least one OLE server application so that
Contain will have access to at least one OLE server. A good example is the
Step 7 version of Scribble. Another example is the HIERSVR sample. For more
information on OLE containers and servers, see "OLE Overview: Containers
and Servers" in Programming with the Microsoft Foundation Class Library.

~ To install and register the Scribble server application

1. Build SCRlBBLE.EXE from SAMPLES\MFC\SCRlBBLE\STEP7, or run them
from \SAMPLES\MFC\BIN on the CD.

2. Briefly run Scribble once so that it will register itself in your system as an OLE
server.

~ To preview Contain

1. Build CONTAIN.EXE from SAMPLES\MFC\CONTAIN\STEP2, and run it,
or run it from \SAMPLES\MFC\BIN on the CD.

2. From the Edit menu, choose Insert New Object.

3. In the Insert Object dialog box, select SCRIB File Type from the Object Type
box.

A new Scribble drawing is created within the Contain document.

4. Choose OK.

• Notice the tracker rectangle with resize handles and dashed border that
appears in the upper-left comer of the Contain document. Contain negotiates
with the server (Scribble) to determine where to place the initial rectangle
and what size to make it.

• Notice how Contain's menu has been merged with Scribble's (for example,
notice the Pen menu) and how Contain's toolbar is replaced by one provided
by Scribble (notice the Pen toolbar button).

5. Use the mouse to draw within the rectangle provided by the server running
within the Contain container document. Try out Scribble's menu and toolbar
commands in place; for example, try to change the pen width.

6. Click outside th~ Scribble object, somewhere else in the Contain document.

Notice how the Scribble server is deactivated; the dashed border and resize
handles are removed. The application's caption changes back to indicate that a
Contain document now has the focus.

Chapter 17 Creating an OLE Container 267

7. Click the Scribble object to select it.

The selection rectangle and resize handles are drawn again to indicate that this
object has been selected. Notice that the cursor changes to a four-way arrow
when it is over the structure.

8. Drag the Scribble object around and resize it.

9. From the Edit menu, choose Insert New Object to add additional OLE embedded
objects.

10. Run Scribble, HIERSVR, or some OLE server stand-alone. Copy an object from
the server to the Clipboard.

11. Paste the object from the Clipboard into the Contain document.

You have now seen two ways to initiate an embedded object: You can use the Insert
New Object command on the Edit menu, or you can copy an object from the server
and paste it into the container, as shown in steps 10 and 11 above.

The Tutorial Example: Contain
This tutorial consists of two steps. The sample program in
SAMPLES\MFC\CONTAIN contains a subdirectory for each step: STEPI and
STEP2. Each step's subdirectory contains a Visual C++ project file, complete
source files, and other files needed for the step. If you chose the MFC Samples
option in Setup, these files will be installed on your hard disk with the same
directory structure.

This tutorial shows you how to develop an MFC OLE container application that
allows visual (in-place) editing. In Step 1 (Chapter 18), you learn how to:

• Create a skeleton OLE container application capable of visual editing.

• Interpret the OLE container code provided by AppWizard.

• Coordinate the size of an embedded object with the server.

• Add hit testing and selection to the App Wizard-created container application.

• Implement activation of an embedded object.

• Implement tracker rectangles for resizing and moving items.

• Draw embedded and linked items.

• Delete embedded items.

In Step 2 (Chapter 19), you learn how to:

• Implement the Copy and Paste commands on the Edit menu.

• Implement smart invalidation.

• Improve coordination with the server to determine the size of contained objects.

CHAPTER 18

Implementing Basic OLE Container
Features

Step 1 of the OLE container tutorial shows you how to create an OLE container
application. You will learn how to:

• Create a skeleton OLE container application capable of visual editing.

• Interpret the OLE container code provided by AppWizard.

• Coordinate the size of an embedded object with the server.

• Add hit testing and selection to the AppWizard-created container application.

• Implement activation of an embedded object.

• Implement tracker rectangles for resizing and moving items.

• Draw embedded and linked items.

• Delete embedded items.

Creating a Skeleton OLE Container
~ To create a skeleton OLE container-enabled application

1. From the File menu, choose New.

The New dialog box appears.

2. Select Project.

The New Project dialog box appears.

3. In the Project Name box, type contain.

The application's project file will be given this name: in this case,
CONTAIN.MAK.

269

Note If you have Visual C++ for Macintosh, please clear the Macintosh check
box in the Platforms box. OLE support, as required by this tutorial, will not be
generated if this check box is selected.

270 Introducing Visual C++

4. In the New Subdirectory box, delete "contain" and type mycontr.

5. Specify the path to the project's subdirectory.

Use the list box provided to navigate through the directories on the selected
drive. As you navigate through the directory structure, the path listed in the
dialog box changes to show where the named subdirectory (MYCONTR) should
be placed. When the path suits you, stop navigating.

For Scribble, navigate to SAMPLES\MFC\CONTAIN. Assuming your Visual
C++ installation is in directory MSVC20 on drive C, the path should look like
this in the dialog box:

c:\msvc20\samples\mfc\contain\mycontr\contain.mak

6. Choose the Create button.

The MFC AppWizard Step 1 dialog box appears.

7. Choose the Next button in the dialog boxes for AppWizard Steps 1 and 2 to
accept the default options.

For more information on the various options that appear in these dialog boxes,
sec Chapter 1, "Creating a ~Je\v i\.pplication Using .~ppWizard," in the Visual
C++ User's Guide.

8. In the AppWizard Step 3 dialog box, select Container.

Do not select Automation Support because you will not be adding automation
support to Contain.

9. Choose Next.

10. In AppWizard Step 4 dialog box, choose the Advanced button.

The Advanced Options dialog box appears.

11. Choose the Document Template Strings tab.

• In the File Extension box, type cnt without a period.

The correct information appears in the File Filter box.

• In the Doc Type Name box, change "Contai" to "Contr."

12. Choose Close and Next.

13. In AppWizard Step 5, choose the Next button to accept the default options.

For more information on the various options that appear in these dialog boxes,
see Chapter 1, "Creating a New Application Using AppWizard," in the Visual
C++ User's Guide.

Chapter 18 Implementing Basic OLE Container Features 271

14. In the AppWizard Step 6 dialog box, check and modify class names and
filenames. Some of the class names must be changed from the defaults that
AppWizard suggests. To edit the information for a class, select the class name in
the box at the top of the dialog box.

• Select the class CConta i nOoe. Change its header filename to contrdoc.h
and the implementation filename to contrdoc.cpp.

• Selectthe class CConta i nVi ew. Change its header filename to
contrview.h and the implementation filename to contrview.cpp.

• Select the class CConta i nCnt r I tern. Change its name to CCntrItem.

15. Choose Finish.

The New Project Information dialog box appears.

16. Choose OK.

App Wizard creates the starter files for Contain.

17. From the Project menu, choose Build CONTAIN.exe.

For more information on OLE options in AppWizard, see the article "AppWizard:
OLE Support" in Programming with the Microsoft Foundation Class Library.

Trying Out the Newly Created OLE Container Application
App Wizard provides a skeleton OLE container application that already has a lot of
the underlying architecture that most OLE container applications need. Build this
new AppWizard-provided application and try it out. Notice that it already has many
of the features you saw in the preview of the Contain application, but several other
features are implemented in this tutorial.

~ To create a new Scribble drawing within Contain

1. From the Edit menu, choose Insert New Object.

2. In the Insert Object dialog box, select the "Scrib Document" from the Object
Type box.

3. Choose OK.

A new Scribble object is activated in place. No additional code is required to
implement the Insert New Object command on the Edit menu. For more
information on in-place activation, see "Activation" in Programming with the
Microsoft Foundation Class Library.

Notice how Contain's menu is merged with Scribble's and how Contain's
toolbar is replaced by one provided by Scribble. Again, this is already working
so no additional code is required here.

272 Introducing Visual C++

~ To edit the in-place activated object

1. Drag the mouse to draw in the embedded Scribble object.

2. Try out Scribble's menu and toolbar commands in place, such as the Pen Width
command.

3. Click outside the Scribble object.

Nothing happens because Contain does not yet support hit testing and selection.

4. Press the ESC key to deactivate the Scribble object.

Notice that the user interface (ESC) for deactivating the selected OLE object is
already incorporated into the skeleton AppWizard-created application.

5. Click the Scribble object.

Again, nothing happens because Contain does not yet support hit testing and
selection. Note, however, that the AppWizard-provided application always has
its sole OLE object selected. Thus you can use the OLE verb command in the
Edit menu to reactivate the Scribble object.

• From the Edit menu, choose "Scrib Object" and then choose Edit.

The Edit verb activates the object in place. (The Open verb fully opens the
Scribble server.) The Scribble object is reactivated in place, which is
indicated by the tracker. For more information on OLE verbs, see the article
"Activation: Verbs" in Programming with the Microsoft Foundation Class
Library.

• Note that the Scribble server provides the tracker; Contain provides the
tracker only when the object is not activated in place.

6. Exit Contain.

In summary, the AppWizard-provided container application already has a lot of
OLE container functionality, but it is still missing some basic functionality that is
implemented in the remainder of this tutorial. For more information on creating a
new OLE application, see the article "AppWizard: Creating an OLE Visual Editing
Application" in Programming with the Microsoft Foundation Class Library.

Examining AppWizard-Provided Code
The following description of most of the container-specific code provided by
App Wizard will help you gain a preliminary understanding of how MFC OLE
container support works. In addition, if you choose to add OLE container support to
an already existing MFC application, this description will help you identify what
code you need to manually add to your application.

Chapter 18 Implementing Basic OLE Container Features 273

CContainApp
App Wizard provides the application's In i tIn s tan c e function as follows:

• Initializes the OLE libraries by calling AfxOlelnit.

• Calls CDocTemplate::SetContainerInfo to assign the menu and accelerator
resources that are used when an embedded item is activated in place.
AppWizard gives the menu and accelerator resources the same identification:
IDR_CONTRTYPE_CNTR_W.

The menu looks like this:

File I I Window

The two separator bars in the menu tell the framework where to insert pop-up
menus provided by the server when the embedded item is activated in place.

For more information on how separator bars work, see "Menus and Resources:
Menu Merging" in Programming with the Microsoft Foundation Class Library.

The accelerator resource reflects the fact that fewer accelerators are provided by
the container application when an embedded item is activated in place. The
reason for this is that the server provides accelerators specific to the activated
item.

CContainView
The member CCntrItem* m_pSel ect i on points to the currently selected OLE
object. If no object is selected, its value is NULL.

The AppWizard-provided implementation of OnDraw relies on the simplifying
assumption that there is only one object to be drawn, namely the sole
m_pSe 1 ect i on object. Later this implementation is replaced with code that draws
the multiple OLE client items (OLE embedded objects) contained in the document.

void CContainView::OnOraw(COC* pOC)
{

if (m_pSelection == NULL)
{

POSITION pos = pOoc->GetStartPosition();
m_pSelection - (CCntrItem*)pOoc->GetNextClientItem(pos):

}

if (m_pSelection !- NULL)
m_pSelection->Oraw(pOC. CRect(10. 10. 210. 210»:

}

The AppWizard-provided implementation of Is Se 1 ected returns TRUE if the
specified CObject is the m_pSe 1 ect i on object. This code is used without
changes for the Contain application, which has a simple single-selection user
interface. For an example of multiple selection, see the Drawcli sample.

274 Introducing Visual C++

BOOl CContainView::lsSelected(const CObject* pDocltem) const
{

}

II The implementation below is adequate if your selection consists
II of only CCntrltem objects. To handle different selection
II mechanisms, the implementation here should be replaced.

II TODO: implement this function that tests for a selected OLE
II client item

return pDocltem == m_pSelection;

OnlnsertObject is the command handler for the Insert New Object command
on the Edit menu. The AppWizard-provided implementation creates a standard
COlelnsertDialog object and calls up the dialog box. It then creates a
COleClientItem-derived object and calls the CreateItem member function of
the COleInsertDialog object to create the embedded object using the information
specified by the user. For more information, see the articles "Containers: Client
Items" and "Dialog Boxes in OLE" in Programming with the Microsoft
Foundation Class Library.

void CContainView::OnlnsertObject()
{

II Invoke the standard Insert Object dialog box to obtain
II information for new CCntrltem object.
COlelnsertDialog dlg;
if (dlg.DoModal() !- IDOK)

return;

BeginWaitCursor();

CCntrltem* pltem = NUll;
TRY
{

II Create new item connected to this document.
CContainDoc* pDoc = GetDocument();
ASSERT_VAlID(pDoc);
pltem = new CCntrltem(pDoc);
ASSERT_VAlID(pltem);

II Initialize the item from the dialog data.
if (!dlg.Createltem(pltem»

AfxThrowMemoryException(); II any exception will do
ASSERT_VAlID(pltem);

II If item created from class list (not from file) then launch
II the server to edit the item.
if (dlg.GetSelectionType() -- COlelnsertDialog::createNewltem)

pltem->DoVerb(OlEIVERB_SHOW, this);

}

Chapter 18 Implementing Basic OLE Container Features 275

ASSERT_VALID(pltem);

II As an arbitrary user interface design. this sets the
II selection to the last item inserted.

II TODO: reimplement selection as appropriate for your
II application

m_pSelection - pltem; II set selection to last inserted item
pDoc-)UpdateAllViews(NULL);

CATCH(CException. e)
{

}

if (pltem != NULL)
{

ASSERT_VALID(pltem);
pltem-)Delete();

}

AfxMessageBox(IDP_FAILED_TO_CREATE);

END CATCH

EndWaitCursor();

The App Wizard-provided implementation of CContain View: :OnSetFocus
changes the focus from the view to an embedded OLE item if the embedded item is
currently activated in place. This is exactly the implementation needed by Contain
and by most container applications.

void CContainView::OnSetFocus(CWnd* pOldWnd)
{

}

COleClientltem* pActiveltem
= GetDocument()-)GetlnPlaceActiveltem(this);

if (pActiveltem != NULL &&

{

}

pActiveltem-)GetltemState() =- COleClientltem::activeUIState)

II need to set focus to this item if it is in the same view
CWnd* pWnd - pActiveltem-)GetlnPlaceWindow();
if (pWnd !- NULL)
{

}

pWnd-)SetFocus();
return;

II don't call the base class

CView::OnSetFocus(pOldWnd);

276 Introducing Visual C++

The AppWizard-provided implementation of CConta i nVi ew: : OnSi ze
determines if there is an OLE item (COleClientltem) currently activated in place.
If so, the COleClientltem is notified that the clipping rectangle of the item has
changed. This allows the server to know how much of the object is visible. When
the size of the window changes, so does the size of the clipping rectangle. For
example, HIERSVR uses this mechanism to implement scrolling and keyboard
movement correctly.

void CContainView::OnSize(UINT nType, int ex, int cy)
{

}

CView::OnSize(nType, ex, cy);
COleClientItem* pActiveItem

= GetOocument()-)GetInPlaceActiveItem(this);
if (pActiveItem 1= NULL)

pActiveItem-)SetItemRects();

CCntrltem
Class C C n t r I t em is derived from COleClientltem. From the container
application's perspective, a COleClientltem object represents an OLE embedded
item, something it can draw and edit. The life of this object spans the life of the
container document, as long as the particular item is embedded in the document.
A container application typically creates a COleClientltem object in its
implementation of the Insert Object command. Indeed, the implementation of
CConta i nVi ew: : On InsertObject provided by AppWizard does create the
CCnt r Item object, as explained earlier. The application explicitly deletes a
COleClientltem object only in certain cases, such as when the user presses the
DEL key when this item is selected or when the entire containing document is
destroyed. For more information, see the articles "Containers: Client Items" in
Programming with the Microsoft Foundation Class Library.

The AppWizard-provided implementation of CCntrltem: : OnChange simply
calls OnChange in the base class, COleClientltem, and then, just to be safe,
invalidates all views of the document.

void CCntrItem::OnChange(OLE_NOTIFICATION nCode, DWORD dwParam)
{

ASSERT_VALID(this);

COleClientItem::OnChange(nCode, dwParam);

II When an item is being edited (either in-place or fully open)
II it sends OnChange notifications for changes in the state of the
II item or visual appearance of its content.

Chapter 18 Implementing Basic OLE Container Features 277

II TODO: invalidate the item by calling UpdateAllViews
II (with hints appropriate to your application)

GetDocument()->UpdateAllViews(NULL);
II for now just update ALL viewslno hints

}

The framework calls COieClientltem::OnGetltemPosition during in-place
activation when OLE needs to determine the location of the item. The AppWizard­
provided implementation arbitrarily sets the rectangle of the item to (10,10,210,
210). Later this implementation is changed to reflect the actual position and size of
the embedded item.

void CCntrltem::OnGetltemPosition(CRect& rPosition)
{

}

ASSERT_VALID(this);

II During in-place activation. CCntrltem::OnGetltemPosition
II will be called to determine the location of this item. The
II default implementation created from AppWizard simply returns a
II hard-coded rectangle. Usually. this rectangle would reflect the
II current position of the item relative to the view used for
II activation. You can obtain the view by calling
II CCntrltem::GetActiveView.

II TODO: return correct rectangle (in pixels) in rPosition

rPosition.SetRect(10. 10. 210. 210);

The framework calls COleClientltem::OnChangeItemPosition on behalf of a
server to change the position of the in-place window, usually as a result of the
server window being resized or the extent of the server window being changed.
The AppWizard-provided implementation of the OnChangeItemPosi ti on
function calls the base class COleClientltem::OnChangeItemPosition, which
in turn calls COleClientltem::SetltemRects to move or resize the item to the
new position or size.

278 Introducing Visual C++

BOOl CCntrltem::OnChangeltemPosition(const CRect& rectPos)
{

ASSERT_VAlID(this);

II During in-place activation CCntrltem::OnChangeltemPosition
II is called by the server to change the position of the
II in-place window. Usually. this is a result of the data in the
II server document changing such that the extent has changed or as
II a result of in-place resizing.
/!
II The default here is to call the base class. which will call
II COleClientltem::SetltemRects to move the item
II to the new position.

if (!COleClientltem::OnChangeltemPosition(rectPos»
return FALSE;

II TODO: update any cache you may have of the item's
Ilrectangle/extent

return TRUE;

Implementing the OLE Client Item Rectangle
The AppWizard-provided implementation of CCnt r Item does most ofthe work
needed for Contain, but some of its functionality needs to be enhanced.

~ To implement the OLE client item rectangle

1. Declare rn_ r e c t in CNTRITEM.H.

The AppWizard-provided implementation of CCnt r I tern assumed an arbitrary
rectangle that locates the object in the container document. A CRect is needed
to store the location and size of the object:

IIAttributes
public:

~ CRect m_rect; II position within the document

2. Initialize rn rect in the CCnt r I tern constructor in CNTRITEM.CPP.

CCntrltem::CCntrltem(CContainDoc* pContainer)
: COleClientltem(pContainer)

{

~ m_rect.SetRect(10. 10. 50. 50);

Chapter 18 Implementing Basic OLE Container Features 279

3. Replace the implementation of OnGet I temPos; t; on with the marked lines.

void CCntrltem::OnGetltemPosition(CRect& rPosition)
{

~ ASSERT_VAlID(this);
~

~ II return rect relative to client area of view
~ rPosition - m_rect;

The AppWizard-provided implementation arbitrarily sets the rectangle to
(10,10,210,210) when requested by the framework. Because the rectangle
for each C C n t r I t em item is now being tracked by CRectTracker, the
framework's request is satisfied by returning the CRect member, m_rect.

In Contain Step 2, this implementation is replaced with one that allows the
server to negotiate the size of the object.

4. Complete the implementation of OnChangeItemPos; t; on.

The framework calls COleClientItem::OnChangeItemPosition on behalf of
a server to change the position of the in-place window. Replace the AppWizard
stub below with the marked lines. The CCnt r Item updates its CRect m....:rect
according to the value requested by the framework. This means that the
container document has changed. Thus views need to be notified and the
document needs to be marked as dirty according to normal framework
document/view rules.

BOOl CCntrltem::OnChangeltemPosition(const CRect& rectPos)
{

ASSERT_VAlID(this);

II During in-place activation CCntrltem::OnChangeltemPosition
II is called by the server to change the position on of the in­
II place window. Usually, this is a result of the data in the
II server document changing such that the extent has changed or
II as a result of in-place resizing.
/!
II The default here is to call the base class, which will call
II COleClientltem::SetltemRects to move the item
II to the new position.

if (!COleClientltem::OnChangeltemPosition(rectPos»
return FALSE;

280 Introducing Visual C++

~ GetDocument()->UpdateAllViews(NULL);

~ II mark document as dirty
~ GetDocument()->SetModifiedFlag();

return TRUE;
}

In Contain Step 2, the simple UpdateAIIViews call is replaced with smart
invalidation.

5. Serialize the CRect rn_rect member variable in CCntrItern: :Seri al i ze as
indicated by the marked lines:

if (ar.IsStoring(»
{

ar « m_rect;
}

else
{

ar » m_rect;
}

Implementing Hit Testing and Selection
The AppWizard-provided skeleton application initially supports only one embedded
object. Support for multiple objects can now be added by implementing hit testing
and selection.

~ To implement hit testing

1. Declare the helper function Hi tT es t I terns in CONTRVW.H.

II Operations
public:

~ CCntrItem* HitTestItems(CPoint point);

2. Implement the function HitTestIterns in CONTRVW.CPP after
CContain View::OnSize.

Hit testing determines which of the multiple objects lies at a given point.

~ CCntrItem* CContainView::HitTestItems(CPoint point)
~ {
~ CContainDoc* pDoc - GetDocument();
~ CCntrItem* pItemHit = NULL;
~ POSITION pos - pDoc->GetStartPosition();
~ whil e (pos !- NULL)
~ {

~ CCntrItem* pItem - (CCntrItem*)pDoc->GetNextItem(pos);

Chapter 18 Implementing Basic OLE Container Features 281

if (pltem-)m_rect.PtlnRect(point»
pltemHit - pltem;

~ return pltemHit; II return top item at point
~ }

~ To implement selection

1. Declare the helperfunction SetSe 1 ect i on in CONTRVW.H.

II Operations
public:

~ void SetSelection(CCntrltem* pltem);

2. Implement SetSe 1 ect i on in CONTRVW.CPP after the implementation of the
Hi tTestltems member function.

~ void CContainView::SetSelection(CCntrltem* pltem)
~ {
~ II close in-place active item
~ if (pItem == NULL II m_pSelection 1- pltem)
~ {

~ COleClientltem* pActiveltem
~ = GetDocument()-)GetlnPlaceActiveltem(this);
~ if (pActiveltem 1= NULL && pActiveltem 1- pltem)
~ pActiveltem-)Close();
~ }
~ Invalidate();
~ m_pSelection = pltem;
~ }

The above implementation is "lazy" in that it invalidates the entire client area of
the view whenever the selection changes. In Contain Step 2, this implementation
is replaced with smarter invalidation.

Implementing Activation by Using a Mouse Click
Contain has a standard user interface for selecting and activating embedded objects.
A single click selects an object; a double-click activates it. If the object is selected,
the user can move or resize it, or in general, manipulate the object as a whole. If the
object is activated in place, the user can edit it. For more information, see
"Activation" in Programming with the Microsoft Foundation Class Library.

282 Introducing Visual C++

Implementing the OnLButtonDown handler so that a single click selects the
embedded object follows this scheme:

• Call Hi tTestItems to find the CCntrItem at the point where the mouse was
clicked.

• Set the selection to be this CCntrItem. Note, if no CCntrItem is located at the
point where the mouse was clicked, nothing (NULL) is selected.

• If something is selected, set up a tracker rectangle (CRectTracker) around the
selected object. A CRectTracker object is short lived. It exists only during the
time a mouse event is being handled, or as you will see later, during the time a
window is being repainted. In the case of a single click, the CRectTracker
paints a rectangle with resize handles around the object.

If the item is clicked, CRectTracker: : Track captures the mouse and allows the
user to drag the tracker rectangle around on the screen and allows the user to:

• Resize the item if the click was on a handle.

• Drag the item if the click was inside the rectangle.

When the user releases the mouse button, CRectTracker updates its public
member variable, m_ r e ct, which represents the new size of the object. For
more information, see "Trackers" in Programming with the Microsoft
Foundation Class Library.

• If the user has resized the object (indicated by a value of TRUE being returned
from CRectTracker::Track), update the m_rect of the CCntrItem object.

~ To implement the OnLButtonDown mouse handler

1. Use ClassWizard to add WM_LBUTTONDOWN handler for
CContai nVi ew.

2. Implement CContai nVi ew: : OnLButtonDown in CONTRVW.CPP.

For now, the entire client area of the view is invalidated. Smarter invalidation is
implemented in Step 2.

void CContainView::OnLButtonDown(UINT nFlags. CPoint point)
{

~ CCntrItem* pItemHit - HitTestItems(point);
~ SetSelection(pItemHit):

~ if (pItemHit != NULl)
~ {
~ CRectTracker tracker;
~ SetupTracker(pItemHit. &tracker);
~

Chapter 18 Implementing Basic OLE Container Features 283

UpdateWindow();
if (tracker.Track(this. point»
{

Inval i date();
pItemHit-)m_rect - tracker.m_rect;
GetDocument()-)SetModifiedFlag();

CView::OnLButtonDown(nFlags. point);
}

3. Declare the helper function CConta i nVi ew: : SetupTracker in
CONTRVW.H:

1/ Operations
public:

void SetSelection(CCntrItem* pItem);
~ void SetupTracker(CCntrItem* pItem. CRectTracker* pTracker);

4. Implement the helper function, CConta i nVi ew: : SetupTracker after the
implementation of the Set S e 1 e c t ion member function. Set u p T rae ke r sets
up the styles of the tracker rectangle according to the state of the C C n t r I t e m
object, such as whether it has been selected.

~ void CContainView::SetupTracker(CCntrItem* pItem.
~ CRectTracker* pTracker)
~ {
~ pTracker-)m_rect - pItem-)m_rect;

~ if (pItem == m_pSelection)
~ pTracker-)m_nStyle 1= CRectTracker::resizeInside;

~ if (pItem-)GetType() == OT_LINK)
~ pTracker-)m_nStyle 1= CRectTracker::dottedLine;
~ el se
~ pTracker-)m_nStyle 1- CRectTracker::solidLine;

~ if (pItem-)GetItemState() == COleClientItem::openState II
~ pItem-)GetItemState() == COleClientItem::activeUIState)
~ {
~ pTracker-)m_nStyle 1- CRectTracker::hatchInside;
~ }
~ }

284 Introducing Visual C++

The OnLButtonDblClick handler needs to be implemented so that if the user
double-clicks, the object is opened (OLEIVERB_OPEN). How the object is
opened depends on whether the server supports in-place editing. If the user presses
the CTRL key while double-clicking, the Open verb of the object should be called.
Otherwise, call the primary verb, the meaning of which is determined by the server.

~ To implement the OnLButtonDblClick mouse handler

1. Use ClassWizard to add the WM_LBUTTONDBLCLK handler to
CContain View.

2. Implement CContai nVi ew: : OnLButtonDbl Cl kin CONTRVW.CPP by
adding the indicated lines:

void CContainView::OnLButtonDblClk(UINT nFlags, CPoint point)
{

~ OnLButtonDown(nFlags, point);

~ if (m_pSelection !- NULl)
~ {

~ m_pSelection->DoVerb(GetKeyState(VK_CONTROL) < 0 ?
~ OLEIVERB_OPEN : OLEIVERB_PRIMARY, this);
~ }

CView::OnLButtonDblClk(nFlags, point);
}

Implementing Tracker Rectangles for Resizing and
Moving Objects

When the user moves the cursor over a selected object, the cursor changes its shape
to indicate the kind of manipulation available to the user. For example, if the cursor
is over the resize handle at the upper-middle or lower-middle side of the tracker
rectangle, the cursor changes to a two-way vertical arrow to indicate that the user
can drag the upper or lower edge of the object. The framework's CRectTracker
class implements this. All you need to do is call CRectTracker::SetCursor.

~ To implement special cursors for the tracker

1. Use Class Wizard to add a WM_SETCURSOR handler for C Con t a i n View.

2. Implement the CConta i nVi ew: : OnSetCursor handler.

Chapter 18 Implementing Basic OLE Container Features 285

BOOl CContainView::OnSetCursor(CWnd* pWnd. UINT nHitTest.
UINT message)

~ if (pWnd -- this && m_pSelection !- NUll)
~ {

~ II give the tracker for the selection a chance
~ CRectTracker tracker;
~ SetupTracker(m_pSelection. &tracker);
~ if (tracker.SetCursor(this. nHitTest»

return TRUE;
}

return CView::OnSetCursor(pWnd. nHitTest. message);
}

Drawing the Embedded Objects
The AppWizard-provided implementation of CConta i nVi ew: : OnDraw simply
draws the one embedded object pointed to by m_p S e 1 e ct ion. Now that Contain
supports multiple embedded objects, 0 n D raw must be reimplemented accordingly.

~ To support drawing of multiple embedded objects

• Replace the implementation of CConta i nVi ew: : OnDraw provided by
AppWizard with the marked lines:

void CContainView::OnDraw(CDC* pDC)
{

CContainDoc* pDoc = GetDocument();
ASSERT_VAlID(pDoc);

~ II draw the OLE items from the list
~ POSITION pos - pDoc->GetStartPosition();
~ while (pos !- NULL)
~ {

~ II draw the item
~ CCntrItem* pItem - (CCntrItem*)pDoc->GetNextItem(pos);
~ pItem->Draw(pDC. pItem->m_rect);

~ II draw the tracker over the item
~ CRectTracker tracker;
~ SetupTracker(pItem. &tracker);
~ tracker.Draw(pDC);
~ }

}

286 Introducing Visual C++

Again, a CRectTracker object is used to draw the rectangle and possibly resize
handles around the embedded object. The CRectTracker object lives only long
enough to draw during this particular repaint. Another CRectTracker object was
used, as you saw above, to handle a click on one of the resize handles. Yet another
CRectTracker object was used to change the shape of the cursor when it was over
one of the resize handles. Each of these CRectTracker objects is short lived; that
is, they are automatic (local) variables of the respective Windows event handler.
They were all initialized with the common code in SetUpTracker.

Deleting Embedded Objects
Deleting an embedded object is as simple as calling COleClientItem: :Delete from
a handler for the Clear command on the Edit menu pop up in the
IDR_CONTRTYPE menu.

~ To delete an embedded object

1. Use the menu editor to add a Delete command and separator to the Edit menu in
tlJ.e IDR_CONTRTYPE menu resource:

Edit

Paste &Link

&Delete

Assign the standard framework command ID, that is ID_EDlT_CLEAR, to the
Delete command. Note that the command prompt is already defined for you by
the framework.

2. Save the resource file.

3. Open ClassWizard./

4. Choose the Message Maps tab.

5. In the Class Name box, select CConta in Vi ew if it is not already selected.

6. Create a pair of ON_COMMAND and ON_UPDATE_COMMAND_UI
handlers for ID_EDIT_CLEAR. Accept the default handler function names
OnEditCl ear and OnUpdateEditCl ear.

Chapter 18 Implementing Basic OLE Container Features 287

7. Choose the Edit Code button and implement both OnEdi tCl ea rand
OnUpdateEdi tCl ea r as follows:

void CContainView: :OnEditClear()
{

~ if (m_pSelection != NULL)
~ {

~ m_pSelection->Oelete();
~ m_pSelection = NULL;
~ GetOocument()->UpdateAllViews(NULL);
~

void CContainView::OnUpdateEditClear(CCmdUI* pCmdUI)

~ pCmdUI->Enable(m_pSelection != NULL);

}

To delete an embedded object in a container, simply call the object's
COleClientItem: : Delete function.

Building and Running Contain Step 1
Build Contain Step 1. When it compiles and links successfully, run the program.
Here are some things to try:

• From the Edit menu, choose Insert New Object to create a new Scribble drawing
within the Contain document. When the Insert Object dialog box appears, select
Scrib Document in the Object Type box.

Notice that the Scribble object initially has a size of (10, 10,50,50), as
determined by the C C n t r I t em constructor. Contain does not consult the server
about the initial size of the object.

• Resize the object to make it bigger and draw in the new object.

• Click outside the Scribble object. It is now properly deselected.

• Click the Scribble object.

Selection now works, and the cursor changes to a four-way arrow over the
object.

• Drag the object around, and resize it.

Rectangle tracking is now working.

288 Introducing Visual C++

At this point you can try to insert linked items:

• Start HIERSVR stand-alone, create a file, and save it to disk.

• Close HIERSVR.

• From the Edit menu, choose Insert New Object.

• Select the Create from File option.

• Type the name of the HIERSVR file just created.

• Select the Link check box.

• Press OK.

You will see that the item now has a dashed border, and that double-clicking the
item opens it instead of activating it, as would be expected from linked items.

This completes Step 1 of Contain. In Chapter 19, you will add the Copy and Paste
commands to the Edit menu, implement smart invalidation, and implement better
coordination with the server to determine the size of contained objects.

CHAPTER 19

Refining OLE Container
Functionality

289

As implemented in Step 1, Contain is almost fully functional as a general-purpose
OLE container application, but it needs some refinement. To accomplish this,
Step 2 adds the following:

• Implementation of the Copy and Paste commands on the Edit menu.

• Implementation of smart invalidation that optimizes Contain to redraw only
those objects that need to be redrawn, rather than redrawing all objects
whenever one is changed.

• Better coordination with the server to determine the size of contained objects.

To demonstrate why this is necessary, you will be asked to run Step 1 of
Contain. For that reason, you should save the Step 1 version of CONTAIN.EXE
before you start working on Step 2.

You will probably need to make similar refinements in your container applications,
although the details may vary.

Adding Command Handlers for Copy and Paste
AppWizard has already added the Copy and Paste menu items to Contain's Edit
menu, but these commands still need to be implemented. The COleDocument
implementation already provides an VPDATE_ COMMAND_VI handler for the
Paste command. This handler enables the Paste command if there is anything on
the Clipboard.

~ To implement the Copy command

1. Open ClassWizard.

2. Choose the Message Maps tab.

3. Select CContai nVi ew in the Class Name box.

4. Add both the COMMAND and VPDATE_COMMAND_VI handlers for
ID _EDIT_COPY, and accept the default function names, 0 nEd i t Cop y and
OnUpdateEdi tCopy, respectively.

290 Introducing Visual C++

5. Add the marked lines to implement the Copy command on the Edit menu:

void CContainView: :OnEditCopy()
{

~ if (m_pSelection != NULL)
~ m_pSelection->CopyToClipboard();

}

The Copy command on the Edit menu copies the contents of the current selection
to the Clipboard. Implementing the Copy command is easy because the
framework function COleClientItem::CopyToClipboard does all the work.

6. Add the marked code to update the active selection.

void CContainView::OnUpdateEditCopy(CCmdUI* pCmdUI)
{

~ pCmdUI->Enable(m_pSelection != NULL);

The UPDATE_COMMAND_UI handler for the Copy command enables the
command if there is an active selection; otherwise, the command is disabled.

~ To implement the Paste command on the Edit menu

1. Open Class Wizard.

2. Choose the Message Maps tab.

3. In the Class Name box, select CConta i nVi ew .

4. Add the COMMAND handler for just ID _EDIT_PASTE, and accept the
default function name, 0 nEd i t Pas t e.

5. Add the marked lines to implement the Paste command on the Edit menu:

void CContainView::OnEditPaste()
{

~ CCntrItem* pItem = NULL;
~

~ TRY
~ {

~ II Create new item connected to this document.
~ CContainDoc* pDoc = GetDocument();
~ ASSERT_VALID(pDoc);
~ pItem = new CCntrItem(pDoc);
~ ASSERT_VALID(pItem);

~ II Initialize the item from clipboard data
~ if (!pItem->CreateFromClipboard())
~ AfxThrowMemoryException(); II any exception will do
~ ASSERT_VALID(pItem);
~

~

~

~

~

~

~

~

Chapter 19 Refining OLE Container Functionality 291

II update the size before displaying
pItem->UpdateFromServerExtent();

II set selection to newly pasted item
SetSelection(pItem);
pItem->InvalidateItem();

~ CATCH(CException. e)
~ {

~ if (pItem != NULL)
~ {
~ ASSERT_VALID(pItem);
~ pItem->Delete();
~

~ AfxMessageBox(IDP_FAILED_TO_CREATE);
~ }
~ END_CATCH

}

The Paste command on the Edit menu is somewhat like the Insert New Object
command on the Edit menu in that it creates a new COleClientItem object.
Compare the above implementation of 0 nEd i t Pas t e with the one that App Wizard
provided for 0 n Ins e r t 0 b j e ct. Both share the code for constructing a new
CCntrltem.

The difference is that 0 n Ins e r t 0 b j e c t initializes the item based on information
requested from the user by means of a COleInsertDialog object as shown here:

II Initialize the item from the dialog data.
if (!dlg.CreateItem(pItem))

AfxThrowMemoryException(); II any exception will do
ASSERT_VALID(pItem);

II If item created from class list (not from file) then launch
II the server to edit the item.
if (dlg.GetSelectionType() == COleInsertDialog: :createNewltem)

pItem->DoVerb(OLEIVERB_SHOW. this);

OnE d i t Pas t e initializes the item from the Clipboard, using
COleClientltem::CreateFromClipboard as shown below:

if (!pItem->CreateFromClipboard())
AfxThrowMemoryException();

292 Introducing Visual C++

Using Smart Invalidation
The next task in Step 2 is to implement smart invalidation. Smart invalidation
involves several tasks:

• Defining the update hint

• Receiving the hint and invalidating the view

• Centralizing the sending of the update hint

• Invalidating selected and deselected objects

• Invalidating an object moved by the server

• Invalidate the tracked object

Define the Update Hint
The first task is to define the update hint.

~ To define the update hint

• Define the following two #define values in CONTRDOC.H:

~ #define HINT_UPDATE_WINDOW
~ #define HINT_UPDATE_ITEM

o
1

class CContainDoc : public COleDocument
II ...

Receive the Hint and Invalidate the View
The framework provides a mechanism for invalidating portions of a view by using
the [Hint and pHint parameters of CView::OnUpdate. This "update hint"
mechanism is described in the Scribble tutorial and is used in Contain.

~ To receive the hint and invalidate the view

1. Open Class Wizard.

2. Choose the Message Maps tab.

3. Select the CContainView class.

4. Select "CContain View" in the Object IDs box.

5. Select "OnUpdate" in the Member Functions box.

Chapter 19 Refining OLE Container Functionality 293

6. Choose the Edit Code button.

7.

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

The Edit Code button transfers you to the text editor, opens CONTRVW.CPP,
and displays the definition for OnUpdate.

Add the marked code to the OnUpdate function definition:

void CContainView::OnUpdate(CView* pSender. LPARAM lHint.
CObject* pHint)

switch (lHint)
{

case HINT_UPDATE_WINDOW: II invalidate entire window
Invalidate();
break;

case HINT_UPDATE_ITEM: II invalidate single item
{

CRectTracker tracker;
SetupTracker«CCntrItem*)pHint. &tracker) ;
CRect rect;
tracker.GetTrueRect(rect);
InvalidateRect(rect);

}

break;
}

}

The rectangle to be invalidated for HINT_UPDATE_ITEM should include the
area that might be occupied by a tracker around the object. The implementation
of CConta i nVi ew: : On Update takes this into account.

The two #detine HINT_ values are used for the LPARAM lHint value passed
to CContainView: :OnUpdate. The first hint value,
HINT_UPDATE_ WINDOW, has the framework's default lHint value of 0,
which means "no hint": in other words, it is an instruction to invalidate the
entire client area of the view. The second, HINT_UPDATE_ITEM, is used
to invalidate the rectangle of the view's client area occupied by the
COleClientItem object. That rectangle is passed to 0 n U p d ate using the
pHint parameter.

Centralize the Sending of Update Hints
There are several occasions when Contain needs to send the
HINT_UPDATE_ITEM hint for a CCntr Item object, for example, when
the object is selected, deselected, resized, or otherwise changed. The
HINT_UPDATE_ITEM hint must be passed to OnUpda te in conjunction with
the CObject* pHint parameter, which is a pointer to C C n t r I t em. Thus, it
makes sense to have the C C n t r I tern object itself send the update hint by using
the document's UpdateA 11 Vi ews function. CCntr Item: : I nva 1 i dateI tern is
a helper function that you can call whenever you want to send the hint.

294 Introducing Visual C++

~ To centralize the sending of update hints in the CCntrItern object

1. Declare a new public member function CCnt r I tern: : I n val; da te I tern in
CNTRITEM.H:

II Attributes
I I ...

~ II Operations
~ public:
~ void InvalidateItem();

2. To implement CCntrltem: : I nva 1; date Item, add the marked lines to
CNTRITEM.CPP, after CCntrItern::-CCntrItern:

~ void CCntrItem::InvalidateItem()
~ {
~ GetDocument()->UpdateAllViews(NULL. HINT_UPDATE_ITEM. this);
~ }

Note that the framework keeps track of which document object owns the
CCntrltem object and therefore implements CCntrItem: : GetDocument.

Invalidate Selected and Deselected Objects
To eliminate unnecessary repainting whenever the user changes the selected object,
only the old and the new selected objects need to be invalidated. This results in
smarter repainting than simply invalidating the entire client area of the view.

~ To add update hints to selection code

• In the implementation of CConta; n V; ew: : SetSe 1 ect; on in
CONTRVW.CPP, replace the following code:

Invalidate();
m_pSelection = pItem;

with the code marked below:

void CContainView::SetSelection(CCntrItem* pItem)
{

II close in-place active item
if (pItem - NULL II m_pSelection 1= pItem)
{

}

COleClientItem* pActiveItem
= GetDocument()->GetInPlaceActiveItem(this);

if (pActiveItem 1- NULL && pActiveItem 1- pItem)
pActiveItem->Close();

Chapter 19 Refining OLE Container Functionality 295

~ II update view to new selection
~ if (m_pSelection !- pltem)
~ {
~ if (m_pSelection != NULL)
~ OnUpdate(NULL. HINT_UPDATE_ITEM. m_pSelection);
~

~ m_pSelection = pltem;
~ if (m_pSelection != NULL)
~ OnUpdate(NULL. HINT_UPDATE_ITEM. m_pSelection);

Invalidate Tracked Object
When the user clicks an object, the tracker needs to be drawn around the newly
selected object. This code invalidates the extra area occupied by the tracker.

~ To add update hints to OnLButtonDown

• In the implementation of CConta i nVi ew: : On LButton Down in
CONTRVW.CPP, replace:

Inval idate();
pltemHit->m_rect = tracker.m_rect;

with:

~ pltemHit->Invalidateltem();
~ pltemHit->m_rect = tracker.m_rect;
~ pltemHit->Invalidateltem();

Invalidate Object Moved by Server
The framework calls COleClientItem::OnChangeltemPosition whenever the
server requests a change in the position of the in-place activated object. This is one
of several occasions for which you can implement smart repainting.

~ To send an update hint when the position of the CCntrltem object changes

• In the implementation of CCnt r Item: : OnCha nge ItemPos it i on in
CNTRITEM.CPP, replace:

GetDocument()->UpdateAllViews(NULL);
m_rect = rectPos;

with the marked lines:

~ InvalidateItem();
~ m_rect = rectPos;
~ InvalidateItem();

296 Introducing Visual C++

Coordinating with Server to Determine Size of Object
The following exercise demonstrates why Contain needs to coordinate better with
servers to determine the size of embedded objects. For more information on OLE
containers and servers, see the article "OLE Overview: Containers and Servers" in
Programming with the Microsoft Foundation Class Library.

Demonstration
1. If you have not already built the HIERSVR sample, do that now. Run

HIERSVR once to register this OLE server application with OLE and then
close it.

2. Run Step 1 of Contain.

3. From the Edit menu, choose Insert New Object. Choose MFC Hierarchy List as
the object type.

Notice thatthe initial size ofthe HIERSVR object is (la, 10,50,50), as
determined by the CCnt r I tern constructor. Contain does not give HIERSVR
the opponunity to set the initial size of the object.

4. From HIERSVR's Edit menu, choose Add Node to add a second node.

Notice that Contain correctly increases the height of the object to accommodate
the new node. You can add more nodes, and Contain continues to increase the
height of the object. In Step 1 the implementation of
CCnt r Item: : OnCha nge I temPos it i on changes the height ofthe in-place
activated object at the request of HIERSVR.

5. Deactivate the HIERSVR object, then click once to select it.

6. From the Edit menu, choose Hierarchy List Object, then choose Open from the
submenu.

This fully opens the HIERSVR server application. Arrange HIERSVR and
Contain on the screen so you can see both applications at the same time.

7. In HIERSVR, from the Edit menu choose Add Node to add another node.

Notice that the size of the object in Contain does not change to accommodate
the new node. Rather, it stays the same size and compresses the nodes using a
smaller font, so that the N+ 1 nodes now occupy the same space as the original
N nodes. Add more nodes, and they become more and more compressed in the
same space in the container.

What is happening here? Why does OnChange ItemPos i ti on change the size of
the in-place window when a new HIERSVR node is added, but not if it is being
updated when HIERSVR is running fully opened?

Chapter 19 Refining OLE Container Functionality 297

The reason is that OnCha nge I temPos it i on is called by the framework only
when the object is in-place activated. The server temporarily provides the object
with its own in-place window and calls to give the container a chance to customize
the size of the in-place window.

When the server is fully opened, the situation is much different (although it appears
to be the same): When the server is fully opened, the object in the container is
selected but not activated in place. When the user edits the fully opened object
so that its natural size changes, as in the case of adding a node in HIERSVR, the
server indirectly (through the framework) calls CCnt r Item: : OnCha nge instead
of OnChange ItemPos it i on. At this time, Contain needs to find out the new
natural size of the object from HIERSVR. It does this by calling
COleClientItem::GetExtent.

COleClientItem::GetExtent asks the server for the natural extent of the object.
The natural extent is the size of the object as it would appear on the printed page
(in MM_HIMETRIC units). In HIERSVR's case, the natural extent reflects
(1) the font size that the user can specify with the Change Font command on the
Tree menu, and (2) the number of nodes in the HIERSVR object.

The CCnt r Item: : OnChange function is notthe only place where Contain needs
to call COleClientItem::GetExtent to get the natural extent of the object and
then set the m_rect of the CCnt r Item. Therefore, you will implement the helper
function UpdateFromServerExtent as described below.

Get the Extent of the CCntrltem Object from the Server
To get the extent of the CCnt r Item object from the server, and update the m_rect
of the container item, implement the helper function
CCntrItem::UpdateFromServerExtent.

~ To get the extent of a CCntrItem object

1. Add the declaration of UpdateFromServerExtent to CNTRITEM.H as
indicated by the marked line:

II Operations
public:

void Invalidateltem();
~ void UpdateFromServerExtent();

298 Introducing Visual C++

2. Implement the helper function by adding the marked lines to CNTRITEM.CPP,
after CCntrItem: : InvalidateItem.

~ void CCntrltem::UpdateFromServerExtent()
~ {
~ CSize size;
~ if (GetExtent(&size))
~ {

~ II OLE returns the extent in HIMETRIC units -- we need pixels
~ CClientDC dc(NULL);
~ dc.HIMETRICtoDP(&size);
~

~

~

~

~

~

~

~

~

~

~

~

~

~

II only invalidate if it has actually changed and also only
II if it is not in-place active.
if (size != m_rect.Size() && !IsInPlaceActive())
{

II invalidate old, update, invalidate new
Invalidateltem();
m_rect.bottom = m_rect.top + size.cy;
m_rect.right = m_rect.left + size.cx;
Invalidateltem();

II mark document as modified
GetDocument()->SetModifiedFlag();

~ }
~ }

Update the CCntrltem Rectangle
When the Item's Natural Extent Changes

When the fully opened server (for example, HIERSVR) notifies the container about
a change (a new node) that affects the natural extent ofthe object, the
C C n t r I t em rectangle needs to be updated.

~ To update the CCntrItem rectangle when the item's natural extent changes

• Replace the AppWizard-provided implementation of OnChange in
CNTRITEM.CPP with the marked lines:

void CCntrltem::OnChange(OLE_NOTIFICATION nCode, DWORD dwParam)
{

ASSERT_VALID(this);

COleClientltem::OnChange(nCode, dwParam);

II When an item is being edited (either in-place or fully open)
II it sends OnChange notifications for changes in the state of
II the item or visual appearance of its content.

Chapter 19 Refining OLE Container Functionality 299

.. switch (nCode) .. (

.. case OLE_CHANGED:

.. InvalidateItem();

.. UpdateFromServerExtent();

.. break;

.. case OLE_CHANGED_STATE:

.. case OLE_CHANGED_ASPECT:

.. InvalidateItem();

.. break; .. }

Notice that the CCnt r Item object has to be invalidated whenever the server sends
a notification that the object has changed. The constant values that nCo d e can
assume are defined by the framework.

Update the Rectangle of a Newly Inserted Object
As a user-interface design decision in Contain, the rectangle of a newly inserted
object is updated to reflect its natural extent, as determined by the server.
A container application can ignore the natural extent if, for example,
you prefer to clip the object in the rectangle.

~ To update the rectangle of a newly inserted object to its natural extent

• In CONTRVW.CPP, insert the marked lines in
CContainView::OnlnsertObject:
II Create new item connected to this document.
CContainDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
pItem = new CCntrItem(pDoc);
ASSERT_VALID(pItem);

II Initialize the item from the dialog data.
if (!dlg.CreateItem(pItem))

AfxThrowMemoryException(); II any exception will do
ASSERT_VALID(pItem);

.. pItem->UpdateLink();

.. pItem->UpdateFromServerExtent();

II If item created from class list (not from file)

300 Introducing Visual C++

COleClientItem:: UpdateLink is called so that if the server is fully open, Contain
has a visual representation of the newly created item, even though the item hasn't
been changed by the user yet.

~ To implement smart invalidation of the newly inserted item

• In CONTRVW.CPP, replace the code in CContainView::OnlnsertObject:

with

II TODD: reimplement selection as appropriate for your
II application
m_pSelection = pltem;
pOoc->UpdateAllViews(NULL);

~ SetSelection(pltem);
~ pltem->Invalidateltem;

Building and Running
Build the Step 2 version of Contain. It now performs exactly as you previewed it in
Chapter 17.

CHAPTER 20

Creating an OLE Automation
Server

301

An "automation server" is an application that exposes programmable objects to
other applications, which are called "automation clients." Exposing programmable
objects enables clients to "automate" certain functions by directly accessing those
objects and using the services they make available.

Exposing objects is beneficial when applications provide functionality that is useful
for other applications. For example, a word processor might expose its spell­
checking functionality so that other programs can use it. Exposure of objects thus
enables vendors to improve their applications by using the ready-made functionality
of other applications. In this way, OLE automation applies some of the principles of
object-oriented programming, such as reusability and encapsulation, at the level of
applications themselves.

More important is the support OLE automation provides to users and solution
providers. By exposing application functionality through a common, well-defined
interface, OLE automation makes it possible to build comprehensive solutions in a
single general programming language, such as Microsoft® Visual Basic®, instead of
in diverse application-specific macro languages.

This tutorial leads you through the basic steps of implementing an OLE automation
server. You will create a simple automation server application and test it using the
Disptest (Dispatch Test) tool included in Visual C++ as part of the OLE Toolkit.

If you want to learn about implementing an OLE automation client application,
look at the CALCDRIV sample application and its description in the Microsoft
Foundation Class Library Samples, under Microsoft Foundation Class Library in
the Contents browser.

Note This tutorial assumes that you are already familiar with Visual C++ and the
basics of the Microsoft Foundation Class Library (MFC). If you are not, follow
the Scribble tutorial in Chapters 6 through 15 before you begin this tutorial. The
Scribble tutorial introduces important class library concepts and techniques, and it
teaches you how to use the wizards and the resource editors.

302 Introducing Visual C++

The Tutorial Example: Autoclik
In this tutorial you will create a simple OLE automation server application,
Autoclik. When running as a stand-alone application, Autoclik does nothing but
display some text at the last point at which the user clicked the mouse. The user can
change the text in a dialog box. When running as an automation server, Autoclik
allows automation clients to simulate both the mouse clicking and the changing of
text (without bringing up the text dialog box).

An automation server is not necessarily an OLE object server; Autoclik isn't.
Autoclik could have been implemented as both an automation server and an OLE
object server, but this tutorial focuses entirely on adding automation server
functionality to an application.

For an automation client to drive an automation server, the client must gain
knowledge of one or more "dispatch interfaces" of the server. A dispatch interface
is the external programming interface of some grouping of functionality exposed by
the automation server. Autoclik provides two dispatch interfaces. The first exposes
Autoclik's mouse clicking and text data entry functions. The second, introduced for
tutorial rather than practical reasuns, represents a SiIIIple structure: a point given by
x and y coordinates.

A dispatch interface consists of two types of programming interfaces: properties
and methods. Autoclik exposes both properties and methods. An automation
client can get or set the x and y properties representing the location of the text in
Autoclik's window. Or an automation client can set the x and y coordinates and the
text all at once by using a method with three parameters-x, y, and text.

To exercise Autoclik'sautomation functionality, you will use the Disptest tool
included as part of the OLE Toolkit with Visual C++. The Disptest tool is a
simplified version of Microsoft Visual Basic. The following preview of Autoclik
illustrates how you can drive an automation server using Disptest or Visual Basic.
Later in this chapter, you will briefly explore how to write the Visual Basic code
you can run from Disptest or Visual Basic.

Preview of the Autoclik Application
Before you work through the steps of implementing Autoclik, try out the completed
application. This will help you appreciate OLE automation functionality in general,
and Autoclik's automation server functionality in particular, from a user's point of
view.

The first step is to register Autoclik with Windows. An OLE automation server
must be registered before it can be driven by any automation client, just as with
OLE object servers.

Chapter 20 Creating an OLE Automation Server 303

• To install and register the Autoclik automation server

1. Build AUTOCLIK.EXE from SAMPLES\MFC\AUTOCLIK\STEP3, or run
Autoclik from the \SAMPLES\MFC\BIN directory on the Visual C++
distribution CD-ROM.

2. Run Autoclik once so it will register itself as an OLE server.

• To preview Autoclik

1. In the "OLE Toolkit" Program Manager group installed by Visual C++ Setup,
double-click the Automation Test icon, which runs DISPTEST.EXE. An
alternative is to run Microsoft Visual Basic version 3.0.

2. From the File menu of Disptest or Visual Basic, choose Open Project and
specify the following path:

SAMPLES\MFC\AUTOCLIK\AUTODRIV.MAK.

AUTODRIV.MAK is the Visual Basic project me for Autodriv, a small
application specifically written to test drive Autoclik.

3. From the Run menu, choose Start. This brings up the Autoclik Test Driver
dialog box shown in Figure 20.1.

- /\utoCllk 1 cst Drlvpr Fr
K :t r==I""::.:.t_-----,

001--1 _--'

•• 111 = I II.

Figure 20.1 Autoclik Test Driver Dialog Box

4. Bring Autoclik into view next to Autodriv's window. Autodriv launches
Autoclik on startup (Figure 20.2), but Autoclik might initially be hidden behind
some of Disptest's or Visual Basic's windows. To keep both Autoclik and
Autodriv visible, minimize any windows you won't need for this tutorial.

304 Introducing Visual C++

Figure 20.2 The AutocIik Application

~ To explore the automation server features of Autoclik

The X, Y, and T ex t fields in Autodriv's window are initially blank.

1. Choose the Get All button.

The current Autoclik coordinates and text are now displayed in Autodriv's
window.

2. Click around in the Autoclik window.

Notice that the X, Y, and Text fields in Autodriv do not change. That is beca.use
the automation is one way between Autodriv and Autoclik. Although you can
implement an automation server to notify the automation client about changes,
such as the new coordinates in Autoclik, this feature requires that additional call
back/notification interfaces be established so that the automation client can
implement them.

3. From Autoclik's Edit menu, choose Change Text to change the text to "hello."

4. Choose the Get All button in Autodriv.

It now shows new X, Y, and Text values.

5. Change the X, Y, and T ext fields in Autodriv, and then choose the Set All
button.

Autoclik accepts the changes.

6. Explore other Autodriv commands:

Command

Set X, Set Y

Get Position, Set
Position

Description

Accesses just the x or y coordinate of the text. The X and Y
properties of Autoclik' s document dispatch interface are exposed
by using Get and Set methods. Autoclik's implementation of SetX
and SetY includes updating the window to reflect the change.

Changes the x and y coordinates of the text by using a pointer to
Autoclik's second dispatch interface, which represents a Point.

Chapter 20 Creating an OLE Automation Server 305

Command Description

Set Text Changes the Text property of Autoclik, which is directly exposed
as a string rather than by using a pair of Get and Set functions.
This means that when you choose the Set Text command,
Autoclik has no opportunity to detect the change as it did when
you chose the Set X, Set V, or Set Pos i t i on commands.
Therefore, Autoclik does not immediately update its window. To
do so, you must then choose the Refresh Display button.

Set All Simultaneously changes Autoclik's X, V, and Text properties
through its SetA 11 Props method, which accepts these as three
parameters. Autoclik's implementation of SetA 11 Props includes
the immediate updating of the window.

Get All Queries the X, V, and Text properties of Autoclik, perhaps after
you have clicked around in the Autoclik window without
Autodriv's knowledge.

Refresh Display Updates Autoclik's window based on the most recent values of X,
V, and Text, which might have been previously set using
automation.

Animate X & Y Updates Autoclik's x and y coordinates in 20 steps, by individually
updating the X property and then the Y property. Notice that the
text moves horizontally, then vertically, then horizontally, then
vertically, and so on.

Animate Position Updates Autoclik's x and y coordinates through its Point interface.
Because the Point interface updates both the X and V values at the
same time, the animation results in a smooth diagonal movement
of the text across Autoclik's window.

Overview of Autoclik Steps 1, 2, and 3
The Autoclik tutorial consists of three steps. The AUTOCLIK sample program
directory in your SAMPLES\MFC directory contains a subdirectory for each step:
STEP1, STEP2, and STEP3. Each step's subdirectory contains a Visual C++
project file, complete source files, and other files needed for the step. If you chose
the MFC Samples option in Setup, these files are installed on your hard disk with
the same directory structure.

In Step 1 (Chapter 21), you will learn how to:

• Create a skeleton OLE automation server using the OLE Automation option in
AppWizard.

• Change the external name of the dispatch interface created by App Wizard.

• Analyze the code created by AppWizard.

• Implement Autoclik so it can run as a stand-alone application.

306 Introducing Visual C++

In Step 2 (Chapter 22), you implement the document dispatch interface. You will
learn how to use ClassWizard to:

• Expose the eel i k D a c member variable m_p t by using the Get and Set methods
in Autoclik's document dispatch interface.

• Expose the eel i kDac member variable m_str as a property in Autoclik's
document dispatch interface.

• Add automation methods for Refres hWi ndaw, SetA 11 P raps, and
ShawWi ndaw.

In Step 3 (Chapter 23), you will implement the second Point interface and expose
Autoclik's X and Y values by using this Point interface. You will learn how to:

• Use ClassWizard to create a new CCmdTarget-derived class with a dispatch
interface.

• Implement one dispatch interface with reference to a second dispatch interface.

CHAPTER 21

Enabling OLE Automation in an
Application

In Step 1 of Autoclik, you will:

307

• Create a skeleton OLE automation server using the OLE Automation option in
AppWizard.

• Change the external name of the dispatch interface created by App Wizard.

• Analyze the code created by App Wizard.

• Implement Autoclik so it can run as a stand-alone application.

• Build and run Autoclik.

Creating a Skeleton OLE Automation Server
~ To create a skeleton OLE automation server application

1. From the File menu, choose New.

The New dialog box appears.

2. Select Project.

The New Project dialog box appears.

3. In the Project Name box, type autoclik.

The application's project file will be given this name: in this case,
AUTOCLIK.MAK.

Note If you have Visual C++ for Macintosh, please clear the Macintosh check
box in the Platforms box. OLE support, as required by this tutorial, will not be
generated if this check box is selected.

4. In the New Subdirectory box, delete "autoclik" and type myauto.

308 Introducing Visual C++

5. Specify the path to the project's subdirectory.

Use the list box provided to navigate through the directories on the selected
drive. As you navigate through the directory structure, the path listed in the
dialog box changes to show where the named subdirectory (MY AUTO) should
be placed. When the path suits you, stop navigating. Assuming your Visual C++
installation is in directory MSVC20 on drive C, the path should look like this in
the dialog box:

c:\msvc20\samples\mfc\autoclik\myauto\autoclik.mak

6. Choose the Create button.

The MFC App Wizard Step 1 dialog box appears.

7. Choose the Next button in the dialog boxes for AppWizard Steps 1 and 2 to
accept the default options.

For more information on the various options that appear in these dialog boxes,
see Chapter 1, "Creating a New Application Using AppWizard," in the Visual
c++ User's Guide.

8. In the AppWizard Step 3 dialog box, select the Yes button for "Would you like
support for automation?"

Do not select any server or container options because you will not be adding that
type of functionality to Autoclik.

9. Choose Next.

10. In AppWizard Step 4 dialog box, choose the Advanced button.

The Advanced Options dialog box appears.

11. Choose the Document Template Strings tab.

• In the Doc Type Name box, change "Autocl" to "ACLIK."

• In the File Extension box, change the proposed "aut" extension to ack
without a period.

The correct information appears in the File Filter box.

12. Choose Close.

13. In AppWizard Step 5, choose the Next button to accept the default options.

For more information on the various options that appear in these dialog boxes,
see Chapter 1, "Creating a New Application Using AppWizard," in the Visual
C++ User's Guide.

Chapter 21 Enabling OLE Automation in an Application 309

14. In the AppWizard Step 6 dialog box, check and modify class names and
filenames. Some of the class names can be simplified from the defaults that
AppWizard suggests. To edit the information for a class, select the class name in
the box at the top of the dialog box.

• Select the class CAutocl i kApp, and change its name to CClikApp.

• Select the class CAutocl i kDoc, and change its name to CClikDoc.

• Select the class CAutocl i kVi ew, and change its name to CClikView.

15. Choose Finish.

16. Choose the Create button in the New Project Information dialog box after
examining the specifications in the box.

App Wizard provides the starter files for your new application. There is no need
for you to build it yet.

Analyzing the Dispatch Interface Name
The document template string resource is where MFC expects to find a lot of
information about an application or a particular document of an application, such as
default filename extensions of files saved by the application. If the application is an
automation server, MFC also expects to find information specific to OLE
automation.

A dispatch interface name is a literal string that automation clients use to access the
automation server. If you open the string editor, you can look at, or change, these
strings. The string ID is the IDR_ <yourapp>TYPE created by AppWizard, which
is registered in the application's In it I nstance. For Autoclik, the string ID is
IDR_ACLIKTYPE, and it can be found in Segment 0 of the string table. The
strings for IDR_ACLIKTYPE are shown in Figure 21.1.

Figure 21.1 IDR_ACLIKTYPE in the String Editor

310 Introducing Visual C++

This string resource consists of several strings separated by newline characters
(\n). The string" Autoc 1 i k. Document" is the document's dispatch interface
name provided by AppWizard. The Visual Basic application that test drives
Autoclik refers to this dispatch interface name in the following code:

Sub Form_Load()
Set clik = CreateObject("Autoclik.Document")
clik.ShowWindow

End Sub

The naming convention you used for Autoclik's document dispatch interface is
<appname>.Document as in "Autocl i k. Document". As an application evolves,
it might need to distinguish dispatch interfaces with a version number, as in
"Autoclick.Document.1 ". By default, App Wizard creates a version independent
identifier.

You may prefer a document dispatch interface name different from the one
AppWizard provides. To change it, use the string editor to replace the text in the
document template string resource. At the same time, you might want to change the
other document template strings. For more information about them, see the
documentation for CDocTemplate::GetDocString in the Class Library
Reference.

Note An automation server may have more than one dispatch interface. Autoclik
will have two dispatch interfaces. The initial AppWizard-created application has
only one dispatch interface, which is the one identified in the document template
string resource described above.

Analyzing AppWizard-Provided Code
Before implementing Autoclik's basic behavior, let's look at the AppWizard­
provided code that enables the automation server support in Autoclik.

Application Class of an Automation Server
The work of enabling an MFC OLE automation server application is done mostly in
the In it Ins tan c e member function of your application's CWinApp-derived
class. Autoclik's application class is found in AUTOCLIK.CPP. AppWizard
provides this code for you.

Chapter 21 Enabling OLE Automation in an Application 311

All MFC OLE applications require the following call to AfxOlelnit, which
initializes the OLE OLLs so they can call OLE interfaces:

if (!AfxOlelnit(»
{

AfxMessageBox(IOP_OLE_INIT_FAILED);
return FALSE;

All MFC OLE automation server applications, as well as OLE object servers,
require an OLE Class 10. The call to the ConnectTemplate member function of
class COleTemplateServer registers the Class ID with Windows.

static const CLSID BASED_CODE clsid -
{ 0x2106e720. 0xaef8. 0x101a. { 0x90. 0x5. 0x0. 0xdd. 0xl. 0x8. 0xd6.
0x51 } };

II Connect the COleTemplateServer to the document template.
II The COleTemplateServer creates new documents on behalf
II of requesting OLE containers by using information
II specified in the document template.
m_server.ConnectTemplate(clsid. pDocTemplate. FALSE);

Note The numbers shown in the c1sid line are generated at random, so the
numbers in your code will most likely be different from the ones shown here.

A framework application that is an OLE automation server can use
COleTemplate::UpdateRegistry to register itself as an OLE automation server
(OLE Application Type: OAT_DISPATCH_OBJECT). This AppWizard-provided
code is optional.

m_server.UpdateRegistry(OAT_DISPATCH_OBJECT);
COleObjectFactory::UpdateRegistryAll();

Alternatively, you can register your application by using one of the two other
methods described in Creating an OLE Server:

• Manually merge the AppWizard-provided AUTOCLIK.REG registration file
into the Windows registration file, using REGEOIT.

• Programmatically merge the registration as one of the tasks of your application's
installation program.

312 Introducing Visual C++

Document Class of an Automation Server
When you choose the Automation Support option in App Wizard, it not only enables
the application as a whole to support automation but also specifically enables the
document class (in AUTOCDOC.CPP) to expose properties and methods by using
automation.

The document class provided by AppWizard is derived from CDocument;
therefore, your application's document class is derived indirectly from
CCmdTarget. To be exposed through automation, a CCmdTarget-derived class
must call its member function, EnableAutomation, from its constructor and must
also include a dispatch map. Dispatch maps are like MFC message maps in that you
do not edit them directly. App Wizard and Class Wizard edit them for you. The
AppWizard-provided dispatch map in the document's header file looks like this:

11{{AFX_DISPATCH(CClikDoc)
II NOTE - the ClassWizard will add and remove member
II functions here.
II DO NOT EDIT what you see in these blocks of generated code

II}}AFX_DISPATCH
DECLARE_DISPATCH_MAP()

and is implemented in the document's .CPP file like this:

BEGIN_DISPATCH_MAP(CClikDoc. CDocument)
11{{AFX_DISPATCH_MAP(CClikDoc)
II NOTE - the ClassWizard will add and remove mapping macros here.
II DO NOT EDIT what you see in these blocks of generated code!
II}}AFX_DISPATCH_MAP

END_DISPATCH_MAP()

As you will see in Steps 2 and 3 of Autoclik, whenever you add a new property or
method, Class Wizard adds an entry to the dispatch map.

The constructor of an automated CCmdTarget object must call
CCmdTarget::EnableAutomation, as implemented by AppWizard:

CCl i kDoc: : CCl i kDoc ()
{

EnableAutomation();

AfxOleLockApp();
}

If the automation server application supports being initially loaded by using
automation, then the constructor and destructor of the document class should call
AfxOleLockApp and AfxOleUnlockApp, respectively. AppWizard provides the

Chapter 21 Enabling OLE Automation in an Application 313

constructor and destructor of the document class. The calls to AfxOleLockApp and
AfxOleUnlockApp are required so that Autoclik gracefully terminates any
interactions with automation clients before exiting.

Generally, createable objects need this. That way if a client application creates an
object of that type causing the AutoServer to start, the server will exit when the
object goes out of scope in the client.

CClikDoc: :-CClikDoc()
{

AfxOleUnlockApp();

Creating an OLE Type Library
AppWizard adds a file named AUTOCLIK.ODL to the project. AUTOCLIK.ODL
is an Object Definition Library text file. It is input to the MKTYPLm.EXE tool
which creates a type library (.TLB) file named AUTOCLIK.TLB. The binary type
library (.TLB) can be used by other applications to gain information about the
automation server. This information includes a list of the dispatch interfaces
provided by the automation server, and for each dispatch interface, a list of
properties and methods exposed by the automation server.

Whenever you define new dispatch interfaces, and define new methods and
properties for the automation server, ClassWizard adds information to the .ODL
file. When you build the application, the IDE spawns MKTYPLm.EXE to create
an updated .TLB file.

A good example of how the type library file is used is the Read Type Library
option of Class Wizard itself. Class Wizard supports not only the development of
automation servers, as in this tutorial, but also the development of automation
clients. An automation client accesses the properties and methods of the automation
server. The Read Type Library option of Class Wizard creates a CCmdTarget­
derived class for each dispatch interface defined by the automation server. In the
code for the automation client, you can then refer to the methods and properties
of the automation server simply as C++ class member functions and member
variables.

For more information on Object Definition Library and Type Library files, see the
OLE documentation.

314 Introducing Visual C++

Implementing Autoclik's Basic Behavior
The rest of Step 1 implements Autoclik's basic behavior, which consists of
displaying text at mouse clicks and accepting changed text by using a simple dialog
box. There is nothing else relating to automation server support. If you want to
simply read along for the rest of Step 1 and start working on Step 2, copy the
completed \MSVC20\SAMPLES\MFC\AUTOCLIK\STEPI sources to your
AUTOCLIK\MYAUTO subdirectory.

~ To declare the member variables of Autoclik's document class

1. Open AUTOCDOC.H.

2. Declare the following:

II Attributes
public:

~ CPoint m_pt;
~ CString m_str;

I:> Tu iuitiiilize the member variables \if the doclli.uent class

1. Open AUTOCDOC.CPP.

2. Add the marked lines to the constructor:

CClikDoc::CClikDoc()
{

EnableAutomation();

~ m_pt = CPoint(10.10);
~ m_str - _TC"Automation!");

AfxOleLockApp();
}

3. Serialize the member variables in the document class.

void CClikDoc::Serialize(CArchive& ar)
{

}

if (ar.IsStoring(»
{

ar « m_pt « m_str;
}

else
{

ar » m_pt » m_str;
}

Chapter 21 Enabling OLE Automation in an Application 315

~ To implement Autoclik's drawing code

1. Open AUTOCVW.CPP.

2. Implement OnDraw by adding the marked line:

void CClikView::OnDraw(CDC* pDC)
{

CClikDoc* pDoc - GetDocument();
ASSERT_VALID(pDoc);

~ pDC->TextOut(pDoc->m_pt.x, pDoc->m_pt.y, pDoc->m_str);
}

The implementations of On LButtonDown and OnEditChangeText make use of
the helper function, Ref res h.

~ To implement the Refresh helper function

1. Declare Re f res h as a public member function in AUTOCDOC.H:

\\ Ope rat ions
public:

~ void Refresh();

2. Implement it in AUTOCDOC.CPP, after CClikDoc::OnNewDocument, as:

~ void CClikDoc::Refresh()
~ {
~ UpdateAllViews(NULL);
~ SetModifiedFlag();
~ }

~ To implement the mouse click handler

1. Open Class Wizard

2. Choose the Message Maps tab.

3. In the Class Name box, select eel i kVi ew.

4. In the Object ID box, select eel i kVi ew.

5. Double-click WM_LBUTTONDOWN in the Message box.

6. Choose the Edit Code button.

316 Introducing Visual C++

7. Implement the mouse click handler by adding the marked lines:

void CClikView::OnLButtonOown(UINT nFlags. CPoint pOint)
{

~ CClikOoc* pOoc = GetOocument():
~ pOoc->m_pt = point:
~ pOoc->Refresh():

CView::OnLButtonOown(nFlags. point):
}

~ To implement the Change Text dialog box

1. In the project window, double-click AUTOCLIK.RC.

2. From the Resource menu, choose New.

The New Resource dialog box appears.

3. Select Dialog and choose OK..

4. Type the following information in the dialog's property page:

• In the Caption box, type Change Text.

5. Add a static text control labeled: "Enter Text:" and add an Edit control for the
text.

6. Open ClassWizard. In the Add Class dialog box, type the following information:

• In the Class Name box: CChangeText

• In the Header File box: dialogs.h

• In the Implementation box: dialogs.cpp

7. Choose the Create Class button.

8. Choose the Member Variables tab in Class Wizard.

9. Double-click IDC_EDIT!, and type m_str in the Member Variable Name box
to add the member variable for the edit control.

10. Choose OK twice.

~ To add the Change Text command to Autoclik's Edit menu

1. In the resource browser window, double-click Menu.

2. Double click IDR_ACLIKTYPE.

The menu editor opens

3. Click Autoclik's Edit menu.

4. Add a separator below the Paste menu item.

Chapter 21 Enabling OLE Automation in an Application 317

5. Add the following menu item text below the separator:

Change &Text. ••

6. The menu editor automatically names the command ID_EDIT_CHANGETEXT.

7. Type a prompt string such as

Change text displayed in the view.

~ To implement the handler for the Change Text command

1. Open Class Wizard.

2. Choose the Message Maps tab.

3. In the Class Name box, select Cel i kDoc.

4. In the Object ID box, select ID_EDIT_CHANGETEXT.

5. Double-click COMMAND, and accept the default name OnEditChangetext.

6. Choose the Edit Code button.

7. Implement OnEditChangetext as follows:

void CClikDoc::OnEditChangetext()
{

CChangeText dlg;
~ dlg.m_str = m_str;
~ if (dlg.DoModal (»
~ {

~ m_str = dlg.m_str;
~ Refresh();
~ }

}

8. Add the following #include statement in AUTOCDOC.CPP:

~ l/include "dialogs.h"

Building and Running Autoclik Step 1
If you build and run Autoclik Step 1 now, it will only run as a stand-alone
application and minimally as an automation server. You will be able to launch
Autoclik from Autodriv, but if you try to access any of the methods or properties
not yet implemented, Autodriv will not be able to find them.

At this point there is enough information for automation clients to create an
Autoclik document, but not enough to call methods or get or set properties.
You will add this functionality in Chapters 22 and 23.

CHAPTER 22

Implementing Automation
Properties and Methods

319

By the end of Step 1, AppWizard has enabled Autoclik to work as an automation
server. Also, Autoclik's basic behavior has been completely implemented, which is
where most of the work is in a typical application. With the help of Class Wizard,
you can easily add properties and methods to the dispatch maps.

In Step 2, you will:

• Expose the eel i kDoc member variable m_pt by using the Get and Set methods
in Autoclik's document dispatch interface.

• Expose the eel i kDoc member variable m_str as a property in Autoclik's
document dispatch interface.

• Add automation methods for RefreshWi ndow, SetA 11 Props, and
ShowWi ndow.

In the course of doing this, you'll also learn about MFC OLE dispatch maps.

Implementing Properties of a Dispatch Interface
Autoclik's document class has two member variables, m_pt and m_str. They can
be exposed to automation by using Autoclik's document dispatch interface.

There are two ways to expose member variables of an automated CCmdTarget­
derived class.

• Directly expose the member variable as a dispatch interface property. This is
analogous to declaring a member variable public in a C++ class so that objects
of any other class can directly access the member variable.

• Indirectly expose the member variable by using a pair of dispatch interface Get
and Set methods. This is analogous to declaring a member variable protected or
private in a C++ class and declaring Get and Set member functions that other
C++ objects must call to access the member variable.

320 Introducing Visual C++

When should you expose a member variable directly, as a dispatch interface
property, and when indirectly, by using dispatch interface Get and Set methods?
Again, the question is analogous to: when should you declare a member variable
protected or private and provide Get and Set member functions? If you do not
need to monitor access to a member variable, you can expose it directly. If your
application needs to know when the member variable is being accessed, you should
expose it indirectly.

In the case of Autoclik, it makes the most sense to expose both m_pt and m_s t r
indirectly by using Get and Set methods. This way, any time m_pt and m_s t r are
updated through automation, Autoclik updates its view. For tutorial purposes,
however, you handle m_pt and m_s t r differently. You expose m_s t r directly,
whereas you expose m_pt indirectly by using the Get and Set methods. Both
approaches to exposing the member variables are easy to do with the help of
Class Wizard.

~ To indirectly expose the m_pt member variable in the dispatch interface

1. Open ClassWizard.

2. Choose the OLE Automation tab.

3. In the Class Name box, select CC 1 i kDoc if it is not already selected.

4. Choose the Add Property button.

5. In the Add Property dialog box, type x as the External Name.

This is the name used by automation clients, as in the following Visual Basic
code:

Dim clik as object

Set clik = CreateObject("Autoclik.Document")

Sub SetCClick()
clik.X = X.Text

End Sub

6. Under Implementation, select Get/Set Methods.

You will use the other choice, Member Variable, for m_s t r.

7. In the Type box, select short.

Chapter 22 Implementing Automation Properties and Methods 321

8. Choose OK.

This returns you to the OLE Automation tab. The new OLE property, listed as
x in the Name list, is implemented with Get and Set member functions. The
Implementation box shows:

short Getx();
void SetX(short nNewValue);

The gray glyph with a "C" indicates that there is code associated with these
member functions.

9. Choose the Edit Code button. Implement the Get and Set methods as indicated
by the marked lines:

~

~

~

short CClikDoc::GetX()
{

return (short)m_pt.x;
}

void CClikDoc: :SetX(short nNewValue)

m_pt.x = nNewValue;
Refresh();

}

The x and y members of a point are declared as long in Win32. For
compatibility with versions of windows that support only 16-bit GDI
coordinates, the (short) type-cast truncates the LONG coordinate. This
eliminates a compiler warning.

10. Repeat steps 1 through 9 for the y property, ending with:

short CClikDoc::Gety()
{

~ return (short)m_pt.y;

void CClikDoc::SetY(short nNewValue)
{

~ m_pt.y = nNewValue;
~ Refresh();

}

Notice that ClassWizard allows you to implement methods the same way you
implement member functions.

322 Introducing Visual C++

Look in AUTOCDOC.CPP to see how ClassWizard updated the dispatch map of
the document class:

BEGIN_DISPATCH_MAPCCClikDoc, CDocument)
11{{AFX_DISPATCH_MAPCCClikDoc)
DISP_PROPERTY_EXCCClikDoc, "x", GetX, SetX, VT_I2)
DISP_PROPERTY_EXCCClikDoc, "y", GetY, SetY, VT_I2)
II}}AFX_DISPATCH_MAP

END_DISPATCH_MAPC)

You can see how the information you entered in Class Wizard is reflected in the
dispatch map.

~ To directly expose the m_str member variable in the dispatch interface

1. Open Class Wizard.

2. Choose the OLE Automation tab.

3. In the Class Name box, choose C C 1 i k Doc if it is not already selected.

4. Choose Add Property.

5. In the Add Property dialog box, type text in the External Name box.

This is the name that the automation client uses to refer to the property.

6. Under Implementation, select Member Variable.

Whereas you exposed m_pt indirectly by using the Get/Set Methods option,
expose m_s t r directly as a Member Variable.

7. In the Type box, select CString.

8. Replace ClassWizard's proposed Variable Name, m_text (which was based on
the External Name), with m_str.

Soon you will see how to associate the text dispatch property with the m_ s t r
member variable already declared in the document class.

9. Remove ClassWizard's proposed notification function name, OnTextChanged.

This step is included for instructional purposes. You could have implemented an
OnTextCha nged function by calling Refres h (), just as you did for SetX ()
and SetY (). If you do not implement a similar OnTextChanged function, then
you can see the different behavior when you drive Autoclik from an automation
client. When the automation client updates the text, Autoclik does not
automatically update its view as it does when the automation client changes
the x or y values. Instead, the automation client must call the Re f res h
method to update Autoclik's view with the most recently changed text.

Chapter 22 Implementing Automation Properties and Methods 323

10. Choose OK.

This returns you to the OLE Automation tab, which now displays the three
properties: text, x, and y. The Implementation box for the text variable
shows:

CString m_str

11. Choose OK.

12. Open AUTOCDOC.H.

ClassWizard has declared the following members in the dispatch map:

11{{AFX_DISPATCH(CClikDoc)
CString m_str;
afx_msg short GetX();
afx_msg void SetX(short nNewValue);
afx_msg short GetY();
afx_msg void SetY(short nNewValue);
II}}AFX_DISPATCH
DECLARE_DISPATCH_MAP()

At this point, the document header file declares m_s t r twice. The first
declaration is the one you originally wrote:

II Attributes
public:

CPoint m_pt;
CString m_str;

The second declaration is the one ClassWizard added above in the dispatch map.

13. Remove the original m_s t r declaration, as indicated by the marked line:

II Attributes
public:

CPoint m_pt;
~ II CString m_str; moved to dispatch map

14. Change the declaration of the dispatch map from protected to public, as
indicated by the marked line:

protected:
11{{AFX_MSG(CClikDoc)
afx_msg void OnEditChangeText();
I/} }AFCMSG
DECLARE_MESSAGE_MAP()

II Generated OLE dispatch map functions

324 Introducing Visual C++

~ public:
11{{AFX_DISPATCH(CClikDoc)
afx_msg short GetX();
afx_msg void SetX(short nx);
afx_msg short GetY();
afx_msg void SetY(short ny);
CString m_str;
II}}AFX_DISPATCH

This is necessary because m_s t r had already been declared as public so it could
be accessed by the view.

Implementing Methods of a Dispatch Interface
You now add three methods to Autoclik's document dispatch interface:

Method

RefreshWindow

SetAllProps

ShowWindow

Description

Updates the view according to the current values of m_pt and
..... _
11I_~1,1.

Sets the m_pt and m_str member variables, and updates the
view.

Shows Autoc1ik's frame window, which is initially hidden when
Autoc1ik is launched as an automation server.

The Re f res h Win d ow method is the Re f res h member function originally
implemented in Step 1. Here you directly expose the Re f res h member function,
just as you directly exposed the m_str member variable of eel i kDocument.

~ To directly expose the Refresh member function in the dispatch interface

1. Open Class Wizard.

2. Choose the OLE Automation tab.

3. In the Class Name box, select eel i k Doc if it is not already selected.

4. Choose Add Method.

5. In the Add Method dialog box, type RefreshWindow in the External Name
box.

This is the name that the automation client uses to refer to the method, as in the
following Visual Basic code:

Sub RefreshDisplay_Click()
clik.RefreshWindow

End Sub

Chapter 22 Implementing Automation Properties and Methods 325

6. In the Internal Name box, replace the proposed "RefreshWindow" with
Refresh.

Refresh is the name of the member function you implemented in Step 1.
You do not need to make the Internal Name the same as the External Name,
even though ClassWizard proposes that you do so.

7. In the Return Type box, select void.

8. Choose OK.

This returns you to the OLE Automation tab. The new method,
Refres hWi ndow, is shown in the Name list. The gray glyph with an "M" in it
indicates that this is a method: The implementation box shows:

void Refresh();

9. Choose the Edit Code button.

Because Re f res h was selected in the OLE Automation tab, Class Wizard takes
you to the implementation of Refres h in AUTOCDOC.CPP:

voi d CCl i kDoc: : Refres h ()
{

}

UpdateAllView(NULL);
SetModifiedFlag();

However, you implemented the Refresh member function in Step 1;
ClassWizard was not aware ofthat, so it implemented a second stub member
function at the end of AUTOCDOC.CPP.

You will need to remove this second stub implementation. This is analogous to
how you removed ClassWizard's redundant declaration of m_s t r earlier.

10. Remove ClassWizard's redundant implementation of Refres h at the end of
AUTOCDOC.CPP and the redundant declaration in AUTOCDOC.H:

II Operations
public:

~ I I Remove voi d Refresh ();

Leave the dispatch map entry created by Class Wizard:

afx_msg void Refresh();

There are two more methods to implement: SetA 11 Props and ShowWi ndow.

~ To add a method with parameters

1. Open ClassWizard.

2. Choose the OLE Automation tab.

3. Select CCl i kDoc in the Class Name box, if it is not already selected.

4. Choose the Add Method button, which brings up the Add Method dialog.

326 Introducing Visual C++

5. Type SetAllProps in the External Name box. Accept ClassWizard's proposal to
reuse this 'as the Internal Name, which is the name of the class member function.

6. Select void in the Return Type box.

7. Click in the Parameter box to begin entering information for the first parameter
of the SetAll Props method.

This will highlight the first blank row in the Parameter box.

• Under the Name heading, type x in the Name box.

• Click under the Type heading, and select short as the Type.

8. Repeat step 7 for the y parameter.

9. Add the third parameter, text, selecting LPCTSTR from the Type.

10. Choose OK.

This returns you to the Add Method dialog box, which shows the following
implementation:

void SetAllProps(short x, short y, LPCTSTR text);

11. Choose the Edit Code button.

This takes you to the stub that ClassWizard created in AUTOCDOC.CPP:

void CClikDoc::SetAllProps(short x, short y, LPCTSTR text)
{

II TODD: Add your dispatch handler code here
}

12. Replace the stub implementation with the marked lines:

void CClikDoc::SetAllProps(short x, short y, LPCTSTR text)
{

~ m_pt.x - x;
~ m_pt.y - y;
~ m_str = text;
~ Refresh();

Take a look at the dispatch map for the SetA II Props method:

BEGIN_DISPATCH_MAP(CClikDoc, CDocument)
11{{AFX_DISPATCH_MAP(CClikDoc)

DISP_FUNCTION(CClikDoc, "SetAllProps", SetAllProps, VLEMPTY,
VTS_I2 VTS_I2 VTS_BSTR)

II}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

Chapter 22 Implementing Automation Properties and Methods 327

The last four parameters ofthe DISP _FUNCTION entry for SetA 11 Props list
the return type, VT_EMPTY for void, followed by the three parameters. You do
not need to interpret the parameter types in dispatch maps; the framework interprets
them at run time. But you can see that VTS_I2 represents short and VTS_BSTR
represents LPCTSTR.

The last method you must implement is ShowW; ndow. You need this method
because Autoclik leaves its frame window hidden when it is initially launched by
the automation client. This is the default behavior implemented by AppWizard,
which is appropriate for most automation servers. Typically, the automation server
allows the automation client to control when the server window is shown or hidden.
If you want your automation server to show its frame window right at the time it is
launched by the automation client, simply remove the RunAutomated condition
in the following if-statement provided by App Wizard in the application's
In; tInstance routine (in AUTOCLIK.CPP):

Baal CClikApp::lnitlnstance()
{

}

II Parse the command line to see if launched as OLE server
if (RunEmbedded() I I RunAutomated(»
{

}

II Application was run with IEmbedding or
II IAutomation. Don't show the
II main window in this case.
return TRUE;

m_pMainWnd->DragAcceptFiles();
II The main window has been initialized, so show and update it.
pMainFrame->ShowWindow(m_nCmdShow);
pMainFrame->UpdateWindow();

return TRUE;

~ To add a ShowWindow method

1. Open Class Wizard.

2. Choose the OLE Automation tab.

3. In the Class Name box, select eel ; k Doc if it is not already selected.

328 Introducing Visual C++

4. Choose Add Method.

This brings up the Add Method dialog box.

5. Type ShowWindow in the External Name box, and accept ClassWizard's
proposal to reuse this as the Internal Name, which is the name of the class
member function.

6. In the Return Type box, select void.

7. Choose OK.

This returns you to the OLE Automation tab because this method has no
parameters.

'8. Choose the Edit Code button.

This takes you to the stub implementation of S h owW i n d ow created in
AUTOCDOC.CPP by ClassWizard.

9. Implement ShowWi ndow as indicated by the marked lines:

vai d CCl i kDac: : ShawWi ndaw()
{

~ POSTTION pas = GetFirstViewPasitian();
~ CView* pView = GetNextView(pas);
~ if (pView != NULL)
~ {
~ CFrameWnd* pFrameWnd = pView->GetParentFrame();
~ pFrameWnd->ActivateFrame(SW_SHOW);
~ pFrameWnd = pFrameWnd->GetParentFrame();
~ if (pFrameWnd != NULL)
~ pFrameWnd->ActivateFrame(SW_SHOW);
~

}

Build and Test Autoclik Step 2
Autoclik is mostly implemented now. You can try it out with the Autodriv
application, using the Disptest tool or Visual Basic. For more information on
loading and using Autodriv and Disptest, see "Preview of the Autoclik Application"
in Chapter 20.

Notice the difference between using Autodriv's Set Text versus Set X and Set y
functions. Set X and Set Y call Autoclik's SetX and SetY methods, which call
CCl i kDoc: : Refresh. This means that when you use Autodriv's Set X and Set
Y functions, the change shows up immediately in Autoclik's window.

Chapter 22 Implementing Automation Properties and Methods 329

In contrast, Autodriv's Set Text function directly accesses the m_str member
variable of Autoclik's document. The change does not show up in Autoclik's
window until you call Refresh Di spl ay from Autodriv, which calls Autoclik's
Refres hWi ndow method, which in turn calls CCl i kDoc: : Refresh.

Note that the Getpos it i on and Set Pos it i on methods have not been
implemented. If you try to use Autodriv's Get Pos it i on or Set Pos it ion
functions, Disptest or Visual Basic will return the message:

Ole Automation no such property or method

and put the focus on the offending Basic code in the Autodriv application.

CHAPTER 23

Implementing Multiple Dispatch
Interfaces

In Step 2, you added properties and methods to Autoclik's document dispatch
interface, which was initially implemented by AppWizard. In Step 3, you create
an entirely new CCmdTarget-derived class that is exposed by using a second
dispatch interface.

In this step, you will:

331

• Use Class Wizard to create a CCmdTarget-derived class, named eel i k Poi nt,
which implements a second, unnamed dispatch interface.

• Expose Autoclik's x and y coordinates by having Autoclik's document dispatch
interface refer to the second Point dispatch interface.

Autoclik's second dispatch interface, implemented in class CC 1 i kPoi nt, is very
simple. It has two properties: x and y. It has no methods. This dispatch interface
has been included solely for tutorial reasons. Autoclik already fully exposes its
behavior by using the document dispatch interface implemented in Step 2.
eel i k Poi nt's dispatch interface is introduced to illustrate techniques for
managing multiple dispatch interfaces in the same application.

The design decision to split functionality into multiple dispatch interfaces is no
different from design decisions to split a c++ application into multiple classes. This
principle is so strong that the framework enforces a one-to-one relationship between
dispatch interfaces and automation-enabled CCmdTarget-derived classes.

Autoclik's document dispatch interface will refer to the second dispatch interface in
its implementation of the Get P 0 sit ion and Set P 0 sit ion methods. Autoclik's
document dispatch interface will expose the x and y coordinates using this Point
interface as a programmatic alternative for the automation client. The automation
client can get or set Autoclik' s x and y coordinates by using the Get X, Get Y, Set X,
and SetY methods implemented in Step 2. Alternatively, the automation client can
use the GetPos it i on and SetPos it i on methods implemented here in Step 3.

332 Introducing Visual C++

Creating a New CCmdTarget Class
with a Dispatch Interface

When you use ClassWizard, it's simple to derive a new class from CCmdTarget
that implements a new dispatch interface.

~ To create a new CCmdTarget class with a dispatch interface

1. Open Class Wizard.

2. Choose the Add Class button.

The Add Class dialog box appears.

3. In the Class Name box, type CClikPoint.

4. In the Header File box, change the filename to autocpnt.h.

5. In the Implementation File box, change the filename to autocpnt.cpp.

6. In the Class Type, select CCmdTarget.

The OLE Automation and OLE Createable options now appear in the Add Class
dialog box, because these options are only for CCmdTargei-derived ciasses.

7. Select the OLE Automation option.

This enables the OLE Create able check box but doesn't select it.

8. Leave the OLE Createable option un selected and the External Name blank.

This option is explained later.

9. Choose the Create Class button.

This brings up the OLE Automation tab-the same tab you used to add
properties and methods to Autoclik's document class.

10. Choose the Add Property button.

11. In the Add Property dialog box:

• Type x in the External Name box

• Select short in the Type box.

• Accept m_x as the Variable Name.

• Remove OnXChanged as the Notification Function.

As you will see later, the members of the CCl i kPoi nt dispatch interface
class do not need notification functions.

• Use the default Implementation type, Member Variable.

12. Choose OK.

13. Repeat steps 10 to 12 for the y property.

14. Choose OK.

Chapter 23 Implementing Multiple Dispatch Interfaces 333

Take a look at the eel i kPoi nt class created by ClassWizard in AUTOCPNT.H
and AUTOCPNT.CPP. The header file declares the dispatch map:

DECLARE_DISPATCH_MAP()

The AUTOCPNT.CPP file implements the dispatch map, reflecting the two
properties you added in Class Wizard, x and y:

BEGIN_DISPATCH_MAP(CClikPoint. CCmdTarget)
11{{AFX_DISPATCH_MAP(CClikPoint)
DISP_PROPERTY(CClikPoint. "x". m_x. VT_I2)
DISP_PROPERTY(CClikPoint. "y". m-y. VT_I2)
II}}AFX_DISPATCH_MAP

END_DISPATCH_MAP()

Referring to One Dispatch Interface from Another
You will now add a property in Autoclik's document dispatch interface to expose
the document's m_pt by using the second dispatch interface implemented by
eel i k Poi n t. You will expose this new property with a pair of Get and Set
member functions, namely GetPos it i on and SetPos i t i on. The return type
of GetPos it i on and the type of the parameter passed to Setpos it i on is
LPDISPATCH, a pointer to an OLE dispatch object.

The following Autodriv code, written in Visual Basic, accesses the Pos; t; on
property of Autoclik' s document dispatch interface using the Get P 0 sit; 0 n
property:

Dim clik As object
Dim pos As object

Sub Form_Load()
Set clik - CreateObject("Autoclik.Document");
clik.ShowWindow

End Sub

Sub GetPosition_Click()
Set pos - clik.position
X.Text - pos.X
V.Text = pos.V

End Sub

Sub SetPosition_Click()
Set pos - clik.position
pos.X = X.Text
pos.V = V.Text
Set clik.position = pos

End Sub

334 Introducing Visual C++

In Visual Basic, Autoclik's Pos i t i on property is declared simply as a generic
"object." The code

Set pos - clik.position

accesses Autoclik's Pos it i on property, which is declared as LPDISPATCH in
the MFC OLE automation server's dispatch map. The "clik" object is also declared
simply as a generic "object" in this Visual Basic automation client application. The
difference is that the automation client gets initial access to Autoclik's document
dispatch interface object by creating it:

Set clik - CreateObject("Autoclik.Document");

whereas in the case of the eel i k Poi n t object, the automation client obtains a
reference by accessing the eel i k Poi n t object as the "position" property of the
"clik" dispatch interface object.

~ To declare one dispatch interface object as a property of another dispatch
interface

2. Choose the OLE Automation tab.

3. In the Class Name box, choose eel i k Doc if it is not already selected.

4. Choose the Add Property button.

5. In the External Name box, type Position.

6. Under Implementation, choose Get/Set Methods.

You cannot simply declare Po s ; t; 0 n as a Member Variable. The additional
work you need to do to allow the automation client to access this property is
discussed in later steps.

7. Select LPDISPATCH in the Type box.

8. Accept the proposed member function names: Get Pos it i on and
SetPos it ion.

9. Choose OK.

This returns you to the OLE Automation tab where the new property,
Po sit ion, is shown with the following implementation:

LPDISPATCH GetPosition();
void SetPositionLPDISPATCH newValue);

10. Choose the Edit Code button to implement the Get and Set member functions.

This takes you to their stub implementations in AUTOCDOC.CPP.

Chapter 23 Implementing Multiple Dispatch Interfaces 335

11. Implement the Get and Set member functions as shown by the marked lines:

LPDISPATCH CClikDoc::GetPosition()
{

~ CClikPoint* pPos = new CClikPoint;
~ pPos->m_x - m_pt.x;
~ pPos->m_y - m_pt.y;

~ LPDISPATCH lpResult = pPos->GetIDispatch(FALSE);
~ return lpResult;

void CClikDoc::SetPosition(LPDISPATCH newValue)

~ CClikPoint* pPos =

~ (CClikPoint*)CCmdTarget::FromIDispatch(newValue);
~ if (pPos 1= NULL && pPos->IsKindOf(RUNTIME_CLASS(CClikPoint)))
~ {

~ m_pt.x = pPos->m_x;
~ m_pt.y = pPos->m_y;
~ Refresh();
~ }

}

The implementation of Getpos it i on creates a new eel i kPoi nt object. The
eel i k Poi n t object, which is an automation-enabled CCmdTarget object, in
turn creates a dispatch interface object, through the help of the framework.

Finally, Get Pos it i on gets the OLE IDispatch pointer by calling the
CCmdTarget: : GetIDispatch member function of the eel i k Poi n t object and
returns this IDispatch pointer to the automation client. The AddRef parameter
of GetIDispatch is FALSE, because the OLE reference count of this dispatch
interface object was already set to 1 when the eel i k Poi n t object was
constructed.

The implementation of Set P 0 sit ion does a C++ down-casting of the
lDispatch pointer to a eel i k Poi n t pointer. It tests the down-casting with
IsKindOf to make sure the automation client passed back an IDispatch pointer
to a eel i k Poi n t object rather than an IDispatch pointer to some other kind of
object.

Finally, Set Po sit ion updates the view to reflect the new position of the text
by calling the document's Ref res h function. Because the Ref res h is called by
SetPos it i on, it is not necessary to implement the OnXehanged and
On y e han 9 e d member functions to update the views for the eel i k Poi n t class.

12. Add the following #include statement at the top of AUTOCDOC.CPP:

~ Ilinclude "autocpnt.h"

This is required because the implementation of Set Po sit ion refers to the
eel i kPoi nt class.

336 Introducing Visual C++

13. Change the declaration of the C C 1 i k Poi n t constructorfrom protected to
public in AUTOCPNT.H:

~ public:
CCl i kPoi nt() ;

This is required because CCl i kDoc constructs the CCl i kPoi nt object in its
implementation of GetPos it ion.

14. Change the declaration of C C 1 i k Poi nt's dispatch map from protected to
public:

~ public:
II Generated OLE dispatch map functions
11{{AFX_DISPATCH(CClikPoint)
short m_x;
short m_y;
II}}AFX_DISPATCH
DECLARE_DISPATCH_MAP()

This is required because CCl i kDoc directly accessed CCl i kPoi nt's member
variables m_x and m_y in its implementation of Get P 0 sit ion and
SetPositi on.

Createable OLE Dispatch Interface Objects
Earlier you were told not to choose the OLE Createable option for C C 1 i k Poi n t in
Class Wizard. You did not need to do this because the IDispatch pointer to the
Point object was passed between the automation client and server by using the
SetPos i t i on and Getpos it i on methods of Autoclik's document dispatch
interface.

If you had chosen the OLE Createable option, ClassWizard would have
required you to specify the External Name of the dispatch interface, such as
II Aut 0 eli k . Poi n t". In that case, a Visual Basic automation client could
dynamically create a CCl i kPoi nt object, using

Dim pos As object

Set pos = CreateObject("Autoclik.Point");

Build and Run
Build the Step 3 version of Autoclik. It now performs exactly as you previewed it in
Chapter 20. You have finished the Autoclik tutorial.

CHAPTER 24

Creating a Database Application

This tutorial shows you how to develop a Microsoft Foundation Class Library
(MFC) database application. You'llieam how to:

• Use AppWizard and ClassWizard for database support.

• Create and use CRecordset objects to open tables and run queries.

• Create and use CRecordView objects for form-based applications.

• Use database support within the framework's document/view architecture.

• Add, update, and delete records.

• Manage mUltiple tables.

• Handle database exceptions.

337

Important This tutorial assumes you are familiar with Visual C++ and the
Microsoft Foundation Class Library. If you aren't, try the Scribble tutorial in
Chapters 6 through 15 before you begin this tutorial. The Scribble tutorial
introduces important class library concepts and techniques and teaches you to use
the wizards and the resource editors.

The Tutorial Example: Enroll
The tutorial example program, Enroll, manages a student registration database
similar to, but simpler than, a college registration system. It will help you to follow
the tutorial if you understand the structure of the student registration database.

Enroll is based on a database that you will register with ODBC as the "Student
Registration" data source name. Table 24.1 lists the tables, what they store, and the
columns in them.

338 Introducing Visual C++

Table 24.1 Tables in the Student Registration Database

Table Name

Course

Sectiont

Student

Enrollment

Instructor

Contents

Think of each record as an entry in a course
catalog. Example: the MATHlOI course.

A section record is a specific offering of a
course at a specific time. For example,
MATH 10 1 may have many sections.

A record for each student at the school.

A record for each student in a particular section
of a course. For a given student, there is an
enrollnlent record for each COUiSC the student is
taking.

A record for each instructor at the school.

*Indicates the column (or columns) that comprise the table's primary key.

Column List

CourseID*

CourseTitle

Hours

SectionNo*

CourseID*

InstructorID

Schedule

RoomNo

StudentID*

Name

GradYear

CourseID*

SectionNo*

StudentID*

Grade

InstructorID*

Name

RoomNo

tThe Dynabind_Section table is used in the Dynabind sample, but not in the Enroll tutorial.

STDREG.MDB is located in the \MSVC20\SAMPLES\MFC\ENROLL directory.
You can examine it, add records, and so on, using Microsoft Access.

Enroll lets you use a "fonn" -a view with dialog-style controls-to view
registration infonnation for courses, section by section. Section infonnation
displayed includes the course name, section number, instructor, room, and schedule
(such as "MWF 10-11"). For example, you can view section 1 of the course
MATH 101, then section 2, and so on. The initial tutorial step provides read-
only viewing of all sections. Later steps add more capabilities, including updates.
Figure 24.1 shows what the Enroll application looks like at the end of the tutorial.

Chapter 24 Creating a Database Application 339

Course:

Instructor: IROGERSN I

Room: IWll-1088 I

Schedule ITTH3:30-5

Capacity: ~

Figure 24.1 The Enroll Tutorial Application

Setting Up the Student Registration Data Source
Before you start the tutorial, you need to set up a Student Registration database and
register it as an ODBC data source.

Important To use the MFC database classes for targeting a Win32 platform
(such as Windows NT) you must have the 32-bit ODBC driver for your data
source. Drivers can be obtained from Microsoft and other vendors. Visual C++
provides a coupon for ordering the Microsoft ODBC Driver Fulfillment Kit
(32-Bit). You should contact other driver vendors directly.

~ To set up the student registration database

1. Choose a database format and ODBC driver for the Student Registration
database.

The Microsoft Foundation Classes support for database relies on Open Database
Connectivity (ODBC). Choose a database format for which you have the
corresponding database management system (DBMS) and a 32-bit ODBC
driver.

• Visual C++ 2.0 includes only the 32-bit ODBC driver for SQL Server. If
you want to use MFC database support for SQL Server, you will need the
SQL Server product in addition to the ODBC driver for SQL Server that is
provided with Visual C++ 2.0.

• If you want to use other database formats, you will need the DBMS as well
as the ODBC driver. To obtain 32-bit ODBC drivers for other databases,
contact Microsoft or other ODBC driver vendors directly.

340 Introducing Visual C++

• If you want to use Microsoft Access database format, you will need only the
32-bit Microsoft Access ODBC driver to create a database schema. This is
an exception to the requirements listed above; however, if you intend to use
the Microsoft Access database format, we recommend that you also use the
Microsoft Access product itself in conjunction with MFC database support.
The 32-bit ODBC driver for Microsoft Access is not included in Visual C++
2.0. To obtain the Microsoft Access driver, contact Microsoft directly.

2. Install the 32-bit ODBC driver for your DBMS.

You install the ODBC driver for your DBMS once, but you can use it with more
than one data source. If you chose MFC Database Support during Setup, the
32-bit SQL Server driver is already installed. To install other drivers, open the
ODBC Control Panel application and choose Drivers from the Data Sources
dialog box. In the Drivers dialog box, choose Add. In the Add Driver dialog
box, supply the path to the ODBC driver.

3. Create a new database by doing one of the following:

• Create a new database schema using the database administration capability
of your DBMS. Depending on the type of DBMS, you might create the new

MFC database development. You will use the STDREG tool to add tables to
the new database in Step 5 of this procedure.

-Or-

• Copy the STDREG.MDB file from the
\MSVC20\SAMPLES\MFC\STDREG sample directory on the Visual C++
CD to the corresponding sample directory on your hard drive. This Microsoft
Access database file already contains tables and records used in the tutorial.
If you use this file, continue with Step 4, but skip Step 5.

4. Register the new database with ODBC.

You must register the new database with the ODBC data source name
"Student Registration." This data source name (DSN) is referred to by the
Enroll application. You must register the database even if you are using the
pre-built STDREG.MDB Microsoft Access database file.

Register the Student Registration data source in one of the following ways:

• Open the ODBC Control Panel tool and choose Add. The Add Data Source
dialog box appears. For instructions on adding an ODBC data source using
this dialog, see the encyclopedia article "ODBC Administrator" in
Programming with the Microsoft Foundation Class Library.

Chapter 24 Creating a Database Application 341

-Or-

• Run the STDREG tool located in the \MSVC20\SAMPLES\MFC\BIN
directory on the Visual C++ CD, and choose Add Data Source. The Add
Data Source dialog appears. Use the instructions in the encyclopedia article
"ODBC Administrator" in Programming with the Microsoft Foundation
Class Library to add the data source. Go on to Step 5 without exiting the
STDREG tool.

Note The STDREG tool is provided for use with this tutorial as a convenient
method for registering data sources with ODBC and for popUlating databases
with the appropriate tables and data. Nonnally, you will use the ODBC Control
Panel application to register your data sources.

5. If you are using a DBMS other than the prebuilt Microsoft Access
STDREG.MDB database file, use the STDREG tool to add tables to the Student
Registration database.

This tool creates the Student Registration tables listed in Table 24.1.
The tool also adds records to the newly created tables for use as test data
by the Enroll application. The STDREG tool is located in the
\MSVC20\SAMPLES\MFC\BIN directory on the Visual C++ CD, and the
sources for the tool are located in the \MSVC20\SAMPLES\MFC\STDREG
directory.

Note The STDREG sources illustrate how to directly send SQL statements such
as CREATE TABLE, and how to use ODBC catalog functions such as
SQLGetTypelnfo.

The STDREG tool displays the dialog box shown in Figure 24.2:

Figure 24.2 The STDREG Tool

Once you have registered the Student Registration data source, choose the
Initialize Data option. Depending on the type of database you are using, you
may need to respond to a login dialog box, such as the SQL Server Login
dialog box.

342 Introducing Visual C++

After logging in to the Student Registration data source, respond to a series
of three Enter SQL Column Syntax dialog boxes, such as the one shown in
Figure 24.3.

Figure 24.3 The Enter SQL Syntax dialog box

Any given DBMS may define internal data types with names other than the
standard data type names defined by ODBC. Normally, ODBC and MFC
database applications do not need to refer to the data type names used internally
by the DBMS; however the SQL CREATE TABLE statement is an important
exception. ODBC does not attempt to interpret the data types specified for the
one or more table columns specified in the CREATE TABLE statement. The
application sending the CREATE TABLE statement must know the data type
names supported by the specific DBMS.

The STDREG tool is designed to create tables in any arbitrary ODBC database.
Therefore, it must determine how three ODBC data types used in the Student
Registration application (SQL V ARCHAR, SQL INTEGER, and SQL
SMALLINT) are named internally by the DBMS. The STDREG tool queries
the ODBC driver (using SQLGetTypelnfo) to find out what internal data types
correspond to these SQL data types.

The ODBC driver may list more than one internal data type, or the driver
may list data type creation parameters, such as "max length" for a V ARCHAR.
In these cases, it is difficult for STDREG, or any database-independent
application, to choose the right internal data type, or to interpret the data type
creation parameter. Therefore, STDREG displays the internal data types, as .
illustrated in the above dialog, and asks you to use this information to specify
the correct syntax for the internal data type.

Chapter 24 Creating a Database Application 343

After you respond to three successive Enter SQL Column Syntax dialog boxes,
STDREG creates the tables in the new database. When STDREG has completed
this task, choose Exit.

You can rerun the STDREG tool at any time to remove and recreate the tables
in the Student Registration data source.

Tutorial Steps
The tutorial consists of three steps. The following table describes the steps briefly.

Tutorial Step Chapter

1 25

2 26

3 27

Description

Use AppWizard to create an application with database
support. The document embeds a CRecordset object for
the Section table of the Student Registration data source.
Use the dialog editor to design the form. Use ClassWizard
to bind controls on the form to fields in the recordset.

Provide a combo box control on the form so the user can
select a course and view its sections. Fill the combo box
from a recordset object representing the Course table.
Filter and parameterize the recordset to constrain the
records it selects.

Implement a user interface for adding, updating, and
deleting records. Handle database exceptions.

The ENROLL sample program directory contains a subdirectory for each
step, named STEPl, STEP2, and STEP3. Each step's subdirectory contains a
Visual C++ project file, complete source files, and other files needed for the step.

Note The directory \ENROLL\STEP4 contains a fourth step, not covered in the
tutorial. Step 4 illustrates additional class library database programming
techniques, summarized below. See MFC Samples Help for a discussion of Enroll
Step 4. The main techniques illustrated by Enroll Step 4 are:

• U sing multiple record view classes.

• Switching views in a frame window.

• Using the document object to coordinate multiple forms via UpdateAlIViews
and update hints.

345

CHAPTER 25

A Simple Form

This tutorial step implements an updatable database form that lets the user examine
the records in the Section table one record at a time. You'll create a form that looks
like the one shown in Figure 25.1.

Coulse: ~==:I Section: D
Instructor:

Room: I
'--------'

Schedule I L ____ ---'

Capacity: D

Figure 25.1 Enroll's Section Form

This chapter explains:

• Creating the Enroll application.

• Examining the Enroll Step 1 classes.

• Customizing Enroll's database form.

• Binding Enroll's form controls to recordset fields.

• Building and running Enroll Step 1.

If you choose to work along with the tutorial, perform all the steps in the
procedures in this chapter. At the end, you'll be able to build and run the
Enroll Step 1 application.

346 Introducing Visual C++

About Step 1
Step 1 teaches the basics of:

• Using AppWizard to create an application with database support.

• Using ClassWizard and the resource editors to bind controls on a form to data.

• Using recordsets.

• Using record views.

A recordset object represents a set of records selected from a data source. The
recordset may represent a selection of one or more specified columns from rows
of one or more database tables. A CRecordset object represents both (a) this
selection of records and (b) the actual field values for one currently selected record.
For more information, see "Recordset" in Programming with the Microsoft
Foundation Class Library.

A record view is a specialized view class that uses controls laid out in a dialog
template resource to view and/or edit the fields of a recordset in a dialog-like
C..-.. ___ A £"1D ""' _;l".: 7 1""..1 ~ro+ ~n nn ro~ tc..r1 nT~tJ., 'hAth (r:a\ t), t3.f'rt,rrlC'at Ah1orot -:Inri
IUllil. n. ,--".:~"~",,,Ul. U , 1'1;" VUJ\.I\.tl.1.:') u.:')..,vvJ.UL\.tU VV.U·.U LlVLU \"J " .L\ ""'v.'-'~.,..:" ... , ... vVJ'""""''' 1f,.U.J..u.

(b) a dialog template resource. The dialog template resource has an ID of the form
IDD_XXX_FORM, where XXX is based on the project name. CRecordView
derives its form behavior from class CFormView. CRecordView supports end­
user navigation through records, one at a time, using Move First, Move Next, Move
Previous, and Move Last commands of the associated CRecordset object. When
you update the value in a control on the form and navigate to another record, the
corresponding recordset field is automatically updated.

While in AppWizard, you identify an Open Database Connectivity (ODBC) data
source and a table in the data source. AppWizard creates a pair of classes: a
recordset class and a record view class.

For more information, see the articles "Recordset," "Record Views," "AppWizard:
Database Support," "Data Source," and "ODBC" in Programming with the
Microsoft Foundation Class Library.

Creating a New Database Application
For more information on how to use the Database Options button in AppWizard
when you're creating your starter application, see "AppWizard: Database Support"
in Programming with the Microsoft Foundation Class Library. AppWizard lets
you specify whether your database application uses a file as well as a database. The
Enroll application doesn't need a file, so it is based on the "Database Support, No
File Support" option in AppWizard.

Chapter 25 Enroll Step 1: A Simple Form 347

For more information about applications that don't use file support, see
"Serialization: Serialization vs. Database Input/Output" in Programming with the
Microsoft Foundation Class Library

The following procedure describes the steps for creating the Enroll application.
For a more general and detailed procedure, see "AppWizard: Database Support" in
Programming with the Microsoft Foundation Class Library.

~ To create the tutorial database application

1. From the File menu, choose New.

The New dialog box appears.

2. Select Project.

The New Project dialog box appears.

3. In the Project Name box, type enroll.

The application's project file will be given this name: in this case,
ENROLL.MAK.

4. In the New Subdirectory box, delete "enroll" and type myenroll.

5. Specify the path to the project's subdirectory.

Use the list box provided to navigate through the directories on the selected
drive. As you navigate through the directory structure, the path listed in the
dialog box changes to show where the named subdirectory (MYENROLL)
should be placed. Navigate to \SAMPLES\MFC\ENROLL (relative to your
Visual C++ installation). Assuming your Visual C++ installation is in directory
MSVC20 on drive C, the path should look like this in the dialog box:

c:\msvc20\samples\mfc\enroll\myenroll\erlroll.mak

6. Choose the Create button.

The MFC App Wizard Step 1 of 6 dialog box appears.

7. Choose the Next button in the AppWizard Step 1 dialog box to accept the
default options.

For more information on the various options that appear in this dialog boxes, see
Chapter 1, "Creating a New Application Using AppWizard," in the Visual C++
User's Guide.

8. In the AppWizard Step 2 dialog box:

• Select the "A database view, without file support" option.

• Choose the Data Source button.

The Data Sources dialog box appears.

• Double-click "Student Registration" to select the data source. Depending on
the database type, you may need to supply additional information to log into
the data source.

348 Introducing Visual C++

The Select a Table dialog box appears.

• Double-click the table name SECTION. Depending on the data source type
you are using, additional qualifiers may precede or follow the table name.

• Choose Next.

9. In the AppWizard dialog boxes for Steps 3, 4, and 5, choose Next to accept the
default options.

For more information on the various options that appear in these dialog boxes,
see Chapter 1, "Creating a New Application Using AppWizard," in the Visual
C++ User's Guide.

10. In the AppWizard Step 6 dialog box, check and modify class names and
filenames that AppWizard suggests. To edit the information for a class, select
the class name in the box at the top of the dialog box.

• Select the class CEn ro 11 Set, and change its name to CSectionSet. Change
the header filename to sectset.h. Change the implementation file name to
sectset.cpp.

The base class is CRecordSet. The edit item is disabled to show that you
can't change it.

• Select the class C En r 0 11 V; ew, and change its name to CSectionForm.
Change the header filename to sectform.h. Change the implementation file
name to sectform.cpp.

The base class is CRecordView.

When you complete the last dialog box, AppWizard will create a pair of
classes derived from CRecordset and CRecordView: CEn ro 11 Set and
C En r 0 11,V; ew. By default, App Wizard bases the names of these classes on the
project name you supply. This naming is probably fine if your application has
only one recordsetlview pair. If your application has multiple recordsets and
record views, it's a good idea to change the name of the first recordsetlview pair
created by App Wizard so the naming better reflects the name of the table in the
data source. You'll change the names for the tutorial, even though Enroll uses
only one recordsetlview pair, as shown in the next procedure.

11. Choose Finish.

12. Choose OK in the New Project Information dialog box to accept the choices
you've made.

App Wizard creates application, document, and frame window classes as usual.
In addition, it creates CSect; on Form (the record view class) and CSect; onSet
(the recordset class). CSect; on Form is implemented in SECTFORM.H and
SECTFORM.CPP. CSect; onSet is implemented in SECTSET.H and
SECTSET.CPP.

For more information about the AppWizard steps, see "AppWizard: Database
Support" in Programming with the Microsoft Foundation Class Library.

Chapter 25 Enroll Step 1 : A Simple Form 349

Examining the Step 1 Classes
App Wizard makes ENROLL the current project.

~ To examine the new recordset class with ClassWizard

1. From the Project menu, choose ClassWizard.

2. Choose the Member Variables tab.

3. In the Class Name box, select CSect i onSet.

4. Close ClassWizard when you finish the next section.

After examining CSect i onSet with ClassWizard, you'll examine the source files
for classes CSect ion Fo rm and CEn ro 11 Doc using the text editor.

The CSectionSet Recordset Class
Figure 25.2 shows what you see in ClassWizard's Column Names box: a list of
column names from the Section table. AppWizard has bound all of the table's
columns to member variables of the C Sec t ion Set class. These member variables
are called "field data members." AppWizard names the data members auto­
matically, based on the column names from the data source. AppWizard also
assigns the correct C++ or class library data type to the data members, based on
the column type. In this example, all of the columns are text columns, mapped
to type CString, except the Capacity column, which is an int.

Figure 25.2 Table Columns Mapped to Recordset Data Members

350 Introducing Visual C++

If you don't want all of a table's columns bound to your recordset, you can delete
the recordset field data members for those columns you don't want by selecting the
data member and clicking the Delete Variable button. For the tutorial, you will need
them all.

Caution Don't delete any fields that are part of the table's primary key (in this
case, the SectionNo and CourseID fields).

To change the name of a field data member, delete the member and add it again
with the new name. For more information, see "ClassWizard: Binding Recordset
Fields to Table Columns" in Programming with the Microsoft Foundation Class
Library.

The CSectionForm Record View Class
To examine the source code for class CSect i on Form, open file SECTFORM.CPP.

For now, the "form" represented by class CSect i on Form is empty of controls.
Later, in "Customizing the Dialog Template for the Sediun Form," yuu'll use the
dialog editor to design the form and to map controls on the form to the recordset.

The record view opens the recordset in its a n I nit i a 1 Up d ate:

void CSectionForm::OnInitialUpdate()
{

}

m_pSet = &GetDocument()->m_sectionSet;
CRecordView::OnInitialUpdate();

The base class framework function CRecordView::OnlnitialUpdate opens the
database if not already open, then opens the recordset, and initializes the form by in
turn calling CForm View: :OnlnitialUpdate.

The CEnroliDoc Document Class
Notice that AppWizard creates a class derived from CDocument. To see the
document class, open file ENROLDOC.H.

What is the role of a document in a database application? In most other
applications, the document stores data and serializes it to a file on disk. Often
the application reads the whole file into memory at once and writes it back to disk
as a whole. In a database application, however, the data is stored in the database,
and the end user usually views the data as records. Such an application doesn't need
a file.

A document in a database application, then, isn't normally used for its serialization
support. So why does Enroll have a document class?

Chapter 25 Enroll Step 1 : A Simple Form 351

The following code reveals that the role of the document class in Enroll is to own
the recordset.

class CEnroll : public CDocument
{

} ;

II Attributes
public:

CSectionSet m_sectionSet;

The recordset object, m_sect i onSet, is embedded in the document object.
Therefore, the recordset object is automatically constructed when the document
object is constructed, and automatically deleted when the document object is
deleted.

The document class can own any number of recordset objects in this way. For
example, Step 4 of Enroll adds a second form and corresponding recordset; the
document embeds this second recordset.

In a sense, then, the document class is a proxy for the database. This approach isn't
strictly necessary, but if you (or AppWizard) design your database application to
use the document class this way, you can better take advantage of the framework's
document/view architecture. For example, if you have multiple views (forms)
simultaneously showing some of the contents of the database, you can take
advantage of the CDocument::UpdateAIlViews mechanism to conveniently
notify all views about an update that might have been initiated in one of the views.

If you look at the menu resource that AppWizard created when you chose the option
"Database Support, No File Support," you'll see that there are no New, Open,
Save, or Save As commands on the File menu. The File menu has only the Print,
Print Preview, Print Setup, and Exit commands. If you had chosen "Both a database
view and file support," AppWizard would have supplied the missing File menu
commands.

Note If you choose the option "Both a database view and file support" in
App Wizard, the document class plays two roles. First, it serves as a proxy for the
database. Second, it represents the file that is opened and saved via the New, Open,
Save, and Save As commands on the File menu. This file might be used for a
variety of purposes; for ideas, see "MFC: Using Database Classes Without
Documents and Views" and "Serialization: Serialization vs. Database
Input/Output" in Programming with the Microsoft Foundation Class Library.

For more information about documents and views, see Chapter 3 and Chapter 4 in
Programming with the Microsoft Foundation Class Library.

352 Introducing Visual C++

Customizing the Dialog Template for the Section Form
Along with the classes, AppWizard creates a dialog template resource named
IDD_ENROLL_FORM, which the CRecordView-derived class,
CSect ion Fo rm, uses to display its form controls. Because CRecordView is
derived from CFormView, a record view's client area is laid out by a dialog
template resource. The layout ofthe form is up to you. AppWizard places one static
text control on the dialog template resource, labeled "TODO: Place form controls
on this dialog." Your task is to replace this text with controls that correspond to
columns in the table (via the field data members of the recordset).

~ To customize Enroll's form

1. In the project window, double-click the ENROLL.RC resource file to open the
resource browser. This browser displays the resources associated with a project.

2. In the resource browser, double-click Dialog.

3. Double-click IDD_ENROLL_FORM.

The dialog editor opens and displays the dialog box with this ID.

For more information about the dialog editor, see Chapter 5, "Using the Dialog
Editor," in the Visual C++ User's Guide.

4. Select then delete the static control that says "TODO: Place form controls on
this dialog."

5. Design Enroll's Section form to resemble Figure 25.3, using static controls and
edit controls. Add the controls in pairs, in the following order: static text control,
then corresponding edit control, and so on.

For each edit control, use the ID box in the Properties window to specify an ID
based on the table column names (for example, I DC_COU RS E). This is only a
convention, but it is used throughout the tutorial.

Coulse: :===;-->111 ... · Section: D
InstfUctor:

Room:

Schedule LI ___ -----'

Capacity: D

Figure 25.3 The Layout of Enroll's Section Form

6. Make the Course and Section edit controls read-only. For each of these two edit
controls, select the Styles page in the Properties window and set the Read Only
check box. (The other edit controls are updatable.)

Chapter 25 Enroll Step 1: A Simple Form 353

According to a common rule in the user interface design of database forms, the
user shouldn't be able to update these key fields. If users want to change a
course number or section of a Section record, they must delete the old Section
record and add a new one to avoid possibly violating the referential integrity of
the database. Enroll Tutorial Step 3 implements Add and Delete functionality.

7. Choose the Save command on the File menu.

It's a good idea to periodically back up your work.

Binding Enroll's Controls to Recordset Fields
With the form designed, it's time to indicate which edit controls map to which
table columns-or, more precisely, which controls map to which recordset field
data members. To perform this task, you use ClassWizard's "foreign object"
mechanism. (For details about these foreign objects, see the article "ClassWizard:
Foreign Objects" in Programming with the Microsoft Foundation Class Library.)

Normally, you use ClassWizard to bind controls in a dialog box or form to member
variables of your CDialog- or CForm View-derived class. In the case of
CRecordView, though, you bind the form's controls not to data members of the
record view class but to data members of the recordset class associated with the
record view. Your CRecordView-derived class-CSect i onForm in this case­
has a data member called m_pSet. This data member is a pointer to
CSect i onSet, Enroll's recordset class.

The control bindings go through m_pSet to the corresponding field data members
of CSect i onSet. For example, the Course edit control is bound to

~ To bind a form control to a recordset data member

1. In the resource browser, double-click Dialog.

2. Double-click IDD_ENROLL_FORM (if it isn't already open).

The dialog editor opens and displays the dialog box with this ill.

For more information about the dialog editor, see Chapter 5 in the Visual C++
User's Guide.

3. Hold down the CTRL key and double-click the Course edit control.
ClassWizard's Add Member Variable dialog box appears. The most appropriate
field name-based on the caption of the static control before the edit control in
the tab order-is selected in the Member Variable Name box.

For example, for I DC_COURSE, the control's caption is "Course," and the box
should display:

m_pSet->m_CourseID

354 Introducing Visual C++

The Member Variable Name box is a drop-down list box in which ClassWizard
displays its best guess as to which recordset data member you want to map the
selected control ill to. If this name is wrong, select another from the list.

4. Repeat step 2 for each of the other controls on the form.

You can view the bindings by choosing the ClassWizard's Member Variables
tab.

5. Choose OK to close ClassWizard.

6. Save your work.

Note Using C1RL+double-click in the dialog editor is a new Class Wizard shortcut
for mapping form controls to members of the associated dialog, form view, or
record view class. Use it on a pushbutton to create a command handler function for
the button. Use it on other controls to create a class member variable.

Build and Run Enroll SteD 1 •
Build and run Enroll Step 1. For information on building, see Chapter 2, "Working
with Projects," in the Visual C++ User's Guide.

When the C Sec t ion Set recordset opens, it selects records from the Section table
in the Student Registration database. The first record becomes the "current record"
in the recordset. Enroll's database form displays the controls you designed, now
filled with data from the current record. Here are some things to try:

• Take a look at the Record menu, which has First Record, Previous Record, Next
Record, and Last Record commands. (The toolbar has buttons that correspond to
the menu commands.) Try using the commands to scroll through the records in
the recordset.

• Try updating some of the fields. The new values are accepted into the data
source when you move to another record. As mentioned earlier, the key fields
Course and Section are read-only.

• When you finish, exit the program.

This completes Step 1 of the database tutorial. Chapter 26 continues by showing
you how to add a second recordset and use it to fill a combo box control on the
form.

355

CHAPTER 26

Using a Second Recordset

Although AppWizard starts you off with one initial pair of record set and record
view classes, you can later use ClassWizard to add more recordset and record view
classes. Multiple record views can view the same recordset. Conversely, a record
view class can view more than one recordset, although only one of the recordsets
can be its primary recordset. To view more than one recordset with the same record
view, you'll need to add a little code in Step 2.

This chapter explains:

• Replacing the Course edit box with a Course List combo box.

• Creating a second recordset class with Class Wizard.

• Filling the Course List combo box from the second recordset.

• Parameterizing the Section recordset.

• Requerying the Section recordset.

• Building and running Enroll Step 2.

If you choose to work along with the tutorial, perform all the steps in the procedures
in this chapter. Lines of code that you should enter are shown marked in the margin
with a ~symbol. At the end, you'll be able to build and run the Enroll Step 2
application.

About Step 2
Step 2 teaches:

• Using more than one recordset in the same record view.

• Filling a combo box from a recordset.

• Using a recordset filter (CRecordset::m_strFilter).

356 Introducing Visual C++

• Sorting a recordset (CRecordset::m_strSort).

• Using recordset parameters.

• Refreshing a recordset by calling the CRecordset::Requery member function
-a common task if you use filters and parameters.

Step 2 illustrates using two recordsets in one record view by implementing a
second recordset for the Course table, which is used to fill a combo box in the
CSect; on Form view. In this way, the CSect; onForm view has a primary
association with the C Sec t ; 0 n Set recordset - the form shows one record from
C Sec t ; 0 n S et - while the combo box is associated with a second recordset,
CCourseSet.

This step changes the CSect; onSet recordset so it selects only the available class
sections for a single course name, rather than selecting all class sections for all
courses. You'll change the Course edit control to a combo box control and fill the
combo box with all of the course names from the Course table. When the user
selects a different course name from the combo box, you'll requery the Section
table to select only those class sections for the course name the user chose.

Try Step 2 out now, if you like. Load the ENROLL.MAK project from
\ENROLL\STEP2, then build and run it. Enroll's database form now displays a list
of course names in the combo box. The other controls are filled from the first
Section record for that course name.

Use the First Record, Next Record, Previous Record, and Last Record commands
on the Record menu (or the equivalent toolbar buttons) to move through the
different class sections for the same course name.

Note You may observe that menu commands and toolbar buttons in Enroll aren't
always enabled or disabled as you would expect. The CSect; on Form record view
is not able to detect the end of the recordset until the user has moved past it. If the
user moves sequentially past the last record and then moves back to the last record
(or before it), the record vie~ can track the user's position in the recordset and
disable user interface objects correctly. The user must move beyond the last record
before the record view can tell that it must disable any user interface objects for
moving to the next or last record.

Select a new course name from the Course combo box. The application then
requeries the C Sect; 0 n S et recordset for the new course name. Move through the
class sections for the new course name.

Exit Enroll Step 2 when you finish exploring.

Chapter 26 Enroll Step 2: Using a Second Recordset 357

Changing the Course Control to a Combo Box
The Course edit control started out as an edit control in Step 1. In Step 2,
you need to change it to a drop-list style combo box. Continue using the same
ENROLL.MAK you used for Enroll Tutorial Step 1. For details about how to
perform the steps in the following procedure, see the Visual C++ User's Guide.

~ To change the Course control to a combo box

1. Open the dialog resource whose ID is IDD_ENROLL_FORM.

2. Select then delete the Course edit control.

3. Add a combo box where the edit control was.

The status bar lets you know if you've chosen the right control from the control
palette.

4. Open the Properties window for the combo box control and specify the
following:

• In the ID box on the General property page, type IDC_COURSELIST.

• In the Type box on the Styles property page, choose Drop List.

5. Increase the size of the combo box so it can show more than two course names
at a time.

Click the drop-down arrow on the right side of the combo box. Use the bottom
sizing handle to extend the drop-down area downward enough to hold several
lines of text.

6. Check that the new control follows its static text label in the tab order.

If you do, Class Wizard can later use the label as the basis for presenting the
recordset member to which you're most likely to want to bind the control. See
the Visual C++ User's Guide for information about setting the tab order.

Leave the dialog editor open.

Figure 26.1 shows the final appearance of Enroll Step 2 with the combo box in
place.

358 Introducing Visual C++

Room:

Schedule 1-1 TT_H_3:_30_-5 __ -,

Capacity: ~

Figure 26.1 Enroll Step 2 With a Combo Box

For general information about ClassWizard, see the Visual C++ User's Guide.

Binding the Combo Box Control to a Recordset Field
",",_..J ".. I"'I"' __ _D"'", \1", ... i",~I"
ClIIU Cl uuUlllUUUUA v allaul~

Now that you've replaced the edit control for the m_Course I D member of
CSect; onSet with a combo box, you need to unbind the old edit control and bind
the new combo box control to the CourseID field. In addition, you need to bind
the combo box control to a second member variable, a CComboBox variable in
CSect; on Form. You will later use member functions of CComboBox, such as
AddString, to fill and read the combo box. The combo box control will have
two member variables associated with it: (1) the foreign member variable,
m_C 0 u r s e I D, in the recordset associated with the record view and (2) the
CComboBox member variable in the record view class. ClassWizard supports
having two such member variables bound to the same control.

~ To remove the old edit control binding

1. From the Project menu, choose ClassWizard.

2. Choose the Member Variables tab.

3. In the Class Name box, select class CSect; onForm (if it isn't already
selected).

4. In the Control IDs box, select I DC_COU RSE and choose Delete Variable.

5. Choose OK.

Chapter 26 Enroll Step 2: Using a Second Recordset 359

~ To bind the combo box control to the recordset member

I. In the dialog editor, press CTRL and double-click the combo box control.
This opens ClassWizard's Add Variable Member dialog box. Use the default
Variable Type for a combo box control, which is CString.

2. Select m_pSet - >m_Cou rs e I 0 from the Member Variable Name drop list.

3. Choose OK to close the dialog box.

~ To bind the combo box control to the view's CComboBox member variable

1. Press CTRL and double-click the combo box control to open the Add Variable
Member dialog box again.

2. In the Member Variable Name box, give the CComboBox member variable the
name m_ctl CourseL i st.

3. In the Category box, select Control.

4. Close the dialog box.

5. Save your work.

Creating a Recordset for the Course Table
Enroll already has one recordset, for the Section table, which fills the controls on
the C Sec t ion For m record view with information about a single class section of
the currently selected course name. Now you'll add a second recordset, for the
Course table, used to fill the combo box control with a list of all available course
names.

~ To create a new recordset class

1. From the Project menu, choose Class Wizard.

2. Choose Add Class to open the Add Class dialog box.

3. In the Class Name box, type CCourseSet

4. In the Class Type box, select CRecordset.

5. In the Header File box, change the name ofthe file to coursset.h.

6. In the Implementation file box, change the name of the file to coursset.cpp.

7. Choose the Create Class button, which opens the SQL Data Sources dialog box.

360 Introducing Visual C++

~ To connect the recordset class to the Course table

1. In the SQL Data Sources dialog box, double-click the data source name
"Student Registration." Depending on the database type, you may need to supply
additional information to log in to the data source.

The Tables dialog box opens.

2. In the Tables dialog box, double-click the table name "COURSE." Depending
on the data source type you are using, additional qualifiers may precede or
follow the table name.

This connects the table name to class C C 0 u r s e Set and returns you to
ClassWizard's Member Variables tab. The Class Name box shows
CCourseSet, and three names are listed in the Column Names box.

Table 26.1 shows the column names, their data members, and their data types.

3. Choose OK to close ClassWizard.

Note On the Member Variables tab, you can see that all of the table's columns
are already assigned to field member variable. ClassWizard lets you delete those
variables if you don't need to access or modify the columns-but you must be
careful not to delete a field member variable for a column that is part of the table's
primary key.

Table 26.1 CCourseSet Data Members

Column Name

CourseID

CourseTitle

Hours

Type

CString

CString

int

Data Member

m_CourseID

m_CourseTitle

m_Hours

For more information about using ClassWizard to create recordset classes, see the
article "ClassWizard: Creating a Recordset Class" in Programming with the
Microsoft Foundation Class Library.

Embedding the Recordset Object in the Document
Object

In Step 1, App Wizard embedded the C Sec t ion Set object in the document. In this
step, you'll do the same for the second recordset object-an object of the
C C 0 u r s e Set class that you created earlier with Class Wizard.

Chapter 26 Enroll Step 2: Using a Second Recordset 361

~ To embed the recordset in the document

1. Open file ENROLDOC.H.

2. Declare an embedded CCou rseSet object, as shown by the marked line in the
following code:

class CEnrollDoc : public CDocument

/ / Attri butes
publ i c:

CSectionSet m~sectionSet;
~ CCourseSet m~courseSet;

} ;

3. In the ENROLDOC.CPP, ENROLL.CPP, and SECTFORM.CPP
implementation files, add a #include directive for "coursset.h" before the
existing #include directive for "enroldoc.h", as shown in the following lines:

'include "sectset.h"
~ 'include "coursset.h"

'include "enroldoc.h"

The document's m_ co u r s e Set member is referred to in the implementation of
On I nit i a 1 U pd ate that you'll complete later.

Filling the Combo Box with a List of Courses
A good place to fill the combo box with a list of course names is in
CSect i on Form's override of CRecordView's OnlnitialUpdate member
function. As part of its own initialization, the form fills the combo box. The overall
logic is as follows:

1. Construct and open a C C 0 u r s e Set recordset based on the Course table.

2. Remove any current entries in the combo box.

3. For each course name in CCourseSet, add the CourseID to the combo box.

4. Set the selection to the first course name (as sorted) in the combo box.

The code in the following procedure fills the combo box and also filters,
parameterizes, and sorts the C Sec t ion Set recordset. Filtering, parameterization,
and sorting are explained in sections that follow. Lines to add are marked with the
~ symbol.

362 Introducing Visual C++

~ To fill the combo box

1. Open the file SECTFORM.CPP.

2. In the implementation of On In it i a 1 Upda te, add the code marked below:

void CSectionForm::OnlnitialUpdate()
{

m_pSet = &GetDocument()->m_sectionSet;

II Fill the combo box with all of the courses
CEnrollDoc* pDoc = GetDocument();
pDoc->m_courseSet.m_strSort = "CourseID";
if (!pDoc->m_courseSet.Open())

return;

II Filter. parameterize and sort the CSectionSet recordset
m_pSet->m_strFilter = "CourseID = ?";
m_pSet->m_strCourseIDParam = pDoc->m_courseSet.m_CourseID;
m_pSet->m_strSort = "SectionNo";
m_pSet->m_pDatabase = pDoc->m_courseSet.m_pDatabase;

CRecordView::OnlnitialUpdate();

m_ctlCourseList.ResetContent();
if (pDoc->m_courseSet.IsOpen())
{

while (!pDoc->m_courseSet.IsEOF())
{

m_ctlCourseList.AddString(
pDoc->m_courseSet.m_CourseID);

pDoc->m_courseSet.MoveNext();

m_ctlCourseList.SetCurSel(0);

4. Save your work.

For more information, see the article "Record Views: Filling a List Box from a
Second Recordset" in Programming with the Microsoft Foundation Class Library.

Chapter 26 Enroll Step 2: Using a Second Recordset 363

Filtering and Parameterizing the Recordset
The Step 1 version of Enroll selects into CSect i on Set all of the records in the
Section table. In Step 2, only the class sections for a specific course name should be
selected. This discussion introduces the concepts of recordset filters and
parameters.

Setting Up the Filter
Note You've already added the code to filter and parameterize the C Sec t ion Set
recordset (in On I nit i a 1 U pd ate); the code in this section is for illustration. Do
not add any code to your source files in this section.

A record set filter determines what subset of records are selected from a table or
query. To add a filter, you simply set the value of CRecordset::m_strFilter before
calling CRecordset: :Open. For example, the following code selects just the class
section records for course MATHlOI:

m_pSet->m_strFilter = "CourseID = 'MATH101''';
m_pSet->Open();

Since the base class CRecordView::OnlnitialUpdate calls CRecordset::Open,
all you need to do to initially select the records for MATHIOl, for example, is
replace the following App Wizard implementation of a n In i t i a 1 Up d ate:

void CSectionForm::OnlnitialUpdate()
{

}

m_pSet = &GetDocument()->m_sectionSet;
CRecordView::OnlnitialUpdate();

with:

void CSectionForm::OnlnitialUpdate()
{

m_pSet = &GetDocument()->m_sectionSet;
m_pSet->m_strFilter = "CourseID = 'MATH101''';
CRecordView::OnlnitialUpdate();

364 Introducing Visual C++

The filter can be any logical expression that is legal for the SQL WHERE clause.
For example, the following is legal:

m_pSet->m_strFilter =
"CourseID = 'MATH101' AND InstructorID = 'ROGERSN'";

Examine the 0 n I nit i a 1 Up d ate code you added earlier. It shows the filter for
CSect i onSet in Enroll Step 2.

Caution In Enroll, filter strings typically use a parameter placeholder, "1", rather
than assigning a specific literal value, such as "MATH 10 1", at compile time.
If you do use literal strings in your filters (or other parts of the SQL statement),
you may have to "quote" such strings with a DBMS-specific "literal prefix" and
"literal suffix" character(s). For example, the code in this section uses a single
quote character to bracket the value assigned as the filter, "MATHlOl." You may
also encounter special syntactic requirements for operations such as outer joins,
depending on your DBMS. Use ODBC functions to obtain this information from
your driver for the DBMS. For example, call ::SQLGetTypeInfo for a particular
data type, such as SQL_ V ARCHAR, to request the LITERAL_PREFIX and
LITERAL_SUFFIX characters. If you're writing database-independent code,
see Appendix C in the ODBC Programmer's Reference for detailed syntax
information.

Setting Up the Parameter
Enroll reselects, or "requeries," class section records every time the user selects a
new course name from the combo box. One way to implement this is to close the
old CSect i onSet object and reopen it by supplying a new m_strFilter value
before calling Open. This works but is somewhat inefficient, because the
framework has to completely reconstruct and invoke a new SQL SELECT
statement. A more efficient way to requery the same recordset is to "parameterize"
the filter-call Requery with a new filter value and a specific parameter value.

~ To declare a parameter data member in the recordset's header file

1. Open file SECTSET.H.

2. Add the following member variable declaration for m_strCourseI DPa ram:

public:

11{{AFX_FIELD(CSectionSet, CRecordset)

I/} }AFX_FI ELD
~ CString m_strCourseIDParam;

Chapter 26 Enroll Step 2: Using a Second Recordset 365

~ To bind the parameter data member to the recordset

1. Open file SECTSET.CPP.

2. In the CSect i onSet constructor, initialize the parameter count variable,
m_nParams, which by default is zero. Also initialize Enroll's single parameter,
m_s t rCou rse I OPa ram, as shown in the following marked code:

//{{AFX_FIELD_INITCCSectionSet)

m_nFields = 6;
//}}AFX_FIELD_INIT

~ m_nParams = 1;
~ m strCourseIDParam = "H.

3. In the OoF; e 1 d Excha nge member function definition, add two lines of code to
identify m_st rCou rs e I OPa ram as a parameter data member.

void CSectionSet: :DoFieldExchangeCCFieldExchange* pFX)
{

//{{AFX_FIELD_MAPCCSectionSet)
pFX->SetFieldTypeCCFieldExchange::outputColumn);
RFX_TextCpFX, "CourseID", m_CourseID);
RFX_TextCpFX, "SectionNo", m_SectionNo);
RFX_TextCpFX, "InstructorID", m_InstructorID);
RFCTextCpFX, "RoomNo", m_RoomNo);
RFCTextCpFX, "Schedule", m_Schedule);
RFClntCpFX, "Capacity", m_Capacity);
//}}AFX_FIELD_MAP

pFX->SetFieldTypeCCFieldExchange::param);
RFCTextCpFX, "CourseIDParam", m_strCourseIDParam);

OoF; e 1 dExchange recognizes two kinds of fields: columns and parameters.
The call to the CFieldExchange member function SetFieldType indicates what
kind of field(s) follow in the RFX function calls. In this example, there is one
parameter, m_st rCou rse I OPa ram.

The name of the column for the parameter in the RFX_ Text call­
"CourseIDParam" -is arbitrary; you can provide any name you want.

4. Save your work.

366 Introducing Visual C++

~ To specify a parameterized filter

• Before the call to the base class function CRecordset::Open, which is called
by CRecordView::OnlnitialUpdate, specify the parameterized filter, as
shown in this line (which you've already added):

m_pSet->m_strFilter = "CourseID = ?";

The question mark "?" indicates where the parameter value will be substituted at
run-time. If you have more than one parameter in your m_strFilter, such as:

m_pSet->m_strFilter = "CourseID = ? AND SectionNo = ?";

you must make multiple RFX calls after the call to:

pFX->SetFieldType(CFieldExchange::param);

You must make the RFX calls for multiple parameters in exactly the same order as
the question marks in the m_strFilter and/or m_strSort.

Note If you have both a filter and a sort with parameters, specify the filter
parameters first, then the sort parameters. Not all ODBC drivers permit parameters
on a sort. Consult the Help file for your ODBC driver.

~ To supply the run-time parameter value

• Assign the value to the previously bound parameter data member, as shown in
the following line (which you've already added in the OnlnitialUpdate
function).

m_pSet->m_strCourseIDParam = pDoc->m_courseSet.m_CourseID;

This sets the parameter value to be the first course record retrieved from the
ceo u r s e Set recordset. All parameter values must be assigned before calling
CRecordset::Open (or CRecordView::OnlnitialUpdate), or as you will see
later, before calling CRecordset::Requery.

Reusing a Database Object Opened by Another
Recordset

Note This section adds no new code to EnroiL

AppWizard and ClassWizard both implement CRecordset-derived classes such
that the recordset object owns its own CDatabase object. Up to now, the
CDatabase object has been transparent because the framework created it for
you when you constructed a recordset object. The default implementation of

Chapter 26 Enroll Step 2: Using a Second Recordset 367

CRecordView::OnInitiaIUpdate indirectly calls the wizard-implemented
Get De f a u 1 t Con nee t function for the recordset. The implementation looks like
this:

CString CSectionSet::GetDefaultConnect()
{

return "ODBC;DSN-Student Registration;";

The framework passes this "connection" string to CDatabase::Open for the
CDatabase object that the framework creates in its implementation of
CRecordset: :Open. If your application has two or more recordsets, each recordset
will, by default, create and open its own CDatabase object. If multiple recordsets
access the same data source, it's a good idea to have them share the same
CDatabase object.

One way to share the same CDatabase object among multiple recordsets is to pass
the m_pDatabase member of the frrst recordset object to the Open function of the
other recordsets. This is what you've already implemented in
CSectionForm::OnInitialUpdate:

m_pSet->m_pDatabase - pDoc->m_courseSet.m_pDatabase;
CRecordView::OnlnitialUpdate();

If CRecordset::Open finds that the m_pDatabase member is already allocated, it
simply reuses the open CDatabase.

Another way to share the same CDatabase object among multiple recordsets is
to embed the CDatabase object in the document object. For an example of this
approach, see the source code for Enroll Step 4 in the Microsoft Foundation
Class Library Samples under Microsoft Foundation Class Library in the Contents
browser.

Sorting the Recordset
The procedure for sorting a recordset is very simple: set the member variable
CRecordset::m_strSort before calling CRecordset::Open. The syntax for
m_strSort is exactly that of the SQL ORDER BY clause, which is one or more
columns separated by commas.

The CCourseSet records are all sorted by CourseID (which you have already
added):

pDoc->m_courseSet.m_strSort - "CourseID";

368 Introducing Visual C++

Also, the CSect i onSet records for a given course name are sorted by class
section:

m_pSet->m_strSort = "SectionNo";

For more information about using SQL with the database classes, see the article
"SQL" in Programming with the Microsoft Foundation Class Library.

Requerying the CSectionSet Recordset
Whenever the user selects a new course name from the combo box, Enroll must
"requery" the CSect i onSet recordset to refresh its records. By selecting a new
course name, the user will see records only for the class sections of that course
name. The existing C Sec t ion Set recordset contains records for the previous
course name. Requerying the recordset brings it up to date for the new course name,
using the current values of the filter and sort strings.

When the user accepts a selection in the combo box, the C Sec t ion For m record
view gets a CBN_SELENDOK notification message. The record view uses its
handler for this message to reselect records based on the course name selected,
passing the course ID as a parameter.

~ To requery the CSectionSet recordset

1. From the Project menu, choose Class Wizard.

2. Choose the Message Maps tab.

3. In the Class Name box, select CSecti onForm.

4. In the Object IDs box, select IDCCOURSELIST.

5. In the Messages box, select CBN_SELENDOK.

6. Choose Add Function to open the Add Member Function dialog box.

7. Choose OK to accept the default name OnSel endokCourseL i st.

You can change the name if you prefer.

8. Choose Edit Code to jump to the code in the source editor.

Chapter 26 Enroll Step 2: Using a Second Recordset 369

9. Add the marked lines of code in the following:

void CSectionForm::OnSelendokCourselist()
{

~ if (!m_pSet->IsOpen())
~ return;
~ m_ctlCourseList.GetLBText(m_ctlCourseList.GetCurSel().
~ m_pSet->m_strCourseIDParam);
~ m_pSet->Requery();
~ if (m_pSet->IsEOF(»
~ {
~ m_pSet->SetFieldNull(&(m_pSet->m_CourseID). FALSE);
~ m_pSet->m_CourseID - m_pSet->m_strCourseIDParam;
~ }
~ UpdateData(FALSE);

}

10. Save your work.

This code requeries records from the database into the recordset, based on the
parameter value in m_st rCou rseI DPa ram. The parameter value is set to the
currently selected course name from the Course List combo box before requerying
the database.

If you requery and it turns out that the selected course name has no class sections,
the recordset is initialized with Null database field values except for CourseID.

For more information, see "Recordset: Requerying a Recordset" in Programming
with the Microsoft Foundation Class Library.

Build and Run Enroll Step 2
If you're working along, build and run your version of Enroll Step 2. Use the
navigation user interface to move through all class sections for the course name
currently selected in the Course combo box. Select a different course name in the
combo box and navigate through its class sections.

This completes Step 2 of the database tutorial. Chapter 27 (Step 3) concludes the
tutorial by showing you how to add and delete records.

CHAPTER 27

Adding and Deleting Records

This tutorial step implements new commands for adding and deleting records and
for abandoning an update in progress. This chapter explains:

• Creating the Step 3 user interface.

• Adding, editing, and deleting records

• Implementing the Add, Refresh, and Delete commands.

• Building and running Enroll Step 3.

371

If you choose to work along with the tutorial, perform all the steps in the procedures
in this chapter. Lines of code that you should enter are shown marked in the margin
with a ~ symbol. At the end, you'll be able to build and run your Enroll Step 3
application.

About Step 3
Step 3 teaches:

• The basics of adding, editing, and deleting records.

• Implementing commands for these operations.

Up to now Enroll has supported editing (updating) records but not adding or
deleting records.

There are many different user interface styles for adding records. For example,
when a Microsoft Access user reaches the end of a recordset, Access considers the
next record to be a new record. Other applications have an explicit Add command.
Enroll's user interface is only one among many possible user interfaces that you
might implement using the Microsoft Foundation Class Library (MFC).

372 Introducing Visual C++

The user interface in Step 3 includes three new commands on the Record menu,
with corresponding toolbar buttons:

• The Add command prepares a blank record into which the user enters data. The
user saves the new record by moving to another record, just as he or she saves
an edited record by moving to another record. The user can also save the new
record by issuing the Add command again.

• The Refresh command abandons an operation to add or edit a record. Refresh
restores the modified record to its original state or returns to the record shown
before Add.

• The Delete command deletes a record.

Try Step 3 out now, if you like. Load the ENROLL.MAK project from
\ENROLL\STEP3, then build and run it.

Here are some things to try:

• Try the new Add, Refresh, and Delete commands.

• Try forcing the two exceptions handled by Emoll:

1. Try to delete a section that has Emollment records.

2. Try to add a duplicate section.

When you finish, exit the program. Figure 27.1 shows the finished Emoll
application.

Course: !!;SilitJ1'_ Section: D
Inabuctor:

Room:

Schedule

Capacit,:

ISMITHJ I

IWlL-1054 I

Figure 27.1 The Enroll Step 3 Application

Creating the Step 3 User Interface
The fITst thing to do in Step 3 is to use the menu and the accelerator editors to add
menu items and an accelerator for the new commands. You also need to add
message handler member functions for these commands.

Chapter 27 Enroll Step 3: Adding and Deleting Records 373

Add Menu Items for Add, Refresh, and Delete
~ To add menu items for the commands

1. In the resource browser, double-click Menu.

2. Double-click the IDR_MAINFRAME menu resource

3. Open its Record menu.

4. At the top of the Record menu, add an "Add" menu item with the following
caption, resource ID, and command prompt:

• &Add

• ID_RECORD_ADD

• "Add a new section."

5. Add a "Refresh" menu item with the following caption, resource ID, and
command prompt:

• &Refresh \tEsc

• ID_RECORD_REFRESH

• "Cancel changes on form, or cancel Add."

The "\t Esc" coding specifies the key that will be used as an accelerator.

6. Add a "Delete" menu item with the following caption, resource ID, and
command prompt:

• &Delete

• ID_RECORD_DELETE

• "Delete section."

7. Add a separator.

S. Save your work and leave the menu editor window open.

You'll need the editor open to establish a context the next time you open
Class Wizard.

The command IDs are application-specific IDs, not defined by the framework as are
ID_RECORD_FIRST and the other commands on the Record menu.

Figure 27.2 shows the completed menu in the menu editor.

374 Introducing Visual C++

I File Edit::: Becord ::::View
···!;a,(

Befresh
Ilelete

first Record
ErevioU5 Record
Next Record
bast Record

Esc

Figure 27.2 The Record Menu with New Commands

Add an Accelerator for the Refresh Command
You can skip this step if you wish, since you can test the application without this
accelerator.

~ To add an accelerator

1. In the resource browser, double-click Accelerator.

2. Double-click the IDR_MAINFRAME accelerator resource.

3. Create a new accelerator using the ESC key, with the following ID:
ID_RECORD_REFRESH.

VK_ESCAPE is defined as the accelerator for the Refresh command. Be sure
to clear the "Ctrl" modifier box.

For information about creating and editing accelerators, see Chapter 7, "Using
the Accelerator Editor," in the Visual C++ User's Guide.

4. Save your work but leave the accelerator editor open.

You'll need this editor or the menu editor open to establish a context the next
time you open ClassWizard.

Create Handlers for Add, Refresh, and Delete
Each of the new commands needs a command handler function in the
CSect; onForm class.

~ To create handlers for the commands

1. With the focus on the IDR_MAINFRAME menu or accelerator resource, open
ClassWizard.

2. Choose the Message Maps tab.

3. In the Class Name box, select class CSect; on Form.

Chapter 27 Enroll Step 3: Adding and Deleting Records 375

4. Select the I D_RECORD_ADD command ID, select COMMAND in the Messages
box, and choose Add Function to add a command handler function.

Accept the default handler name: 0 n R e cor dAd d.

5. Repeat step 4 for the I D_RECORD_DE LETE and I D_RECORD_RE FRESH
command IDs.

6. Choose OK to close ClassWizard.

You'll fill in the command handlers in later sections.

The Basics of Adding, Editing, and Deleting Records
Before you implement the new command handlers, you should know some basic
facts about how the framework supports database updating:

• CRecordView automatically updates the current record when the user moves to
another record.

• CRecordView takes three steps to modify an edited record in the associated
recordset when the user moves to another record. The record view:

1. Prepares the current record for updating by calling the recordset's Edit
member function.

2. It calls the UpdateData member function derived from CForm View, which
changes the recordset's member variables, usually by getting the new values
from the form's controls.

3. Calls the recordset's Update member function to actually update the data
source with the modified values.

• CRecordView does not provide a default implementation for Add, since user
interfaces for Add functionality vary widely among database applications.

• The steps for adding a new record parallel the steps for updating a modified
record:

1. Prepare a new record by calling the recordset's AddNew member function.
The fields of the new record are initially Null. (In database terminology, Null
means "having no value" and is not the same as NULL in C++.)

2. Change the recordset's member variables, usually by getting the new values
from the form's controls with UpdateData.

3. Call the recordset's Update member function to actually update the data
source with the values for the new record.

376 Introducing Visual C++

• Deleting a record is simpler than adding or editing one. The record view simply
calls the recordset's Delete member function.

There are two main concerns when you delete a record. First, if you delete a
record from one table and there are related records in other tables, you may
damage the integrity of your database. For example, deleting a class section for
which there are records in the Enrollment table makes the Section and
Enrollment tables inconsistent.

Second, after deleting a record, you or the user must move off the deleted record
to another record.

Implementing the Add Command
Step 3 implements a user interface for Add that closely parallels CRecordView's
default user interface for modifying an existing record. The user starts a new record
with the Add command on the Record menu.

Imnl~m,:mtinn th~ Cnmmand Handler _ ••• _ •••••• :::J ••• - -- ---.-- ... --- ... -----

In response to the Add command, the record view calls its On Reco rdAdd member
function and enters an "add mode" by setting an m_bAddMode data member to
TRUE. The add mode is completed when the user moves off the record. The Step 3
implementation overrides the record view's OnMove member function to
implement completion of the add mode. The following procedure implements the
add mode and creates a CEdit member variable used to tum on and off the read­
only style of the Section edit control.

~ To prepare for implementing the Add command

1. Add the m_bAddMode data member to CSect i on Form in file SECTFORM.H:

II Attributes
public:

CMyenrollDoc* GetDocument();
~ protected:
~ BOOl m_bAddMode;

2. Initialize m_bAddMode in the CSect i on Form constructor in file
SECTFORM.CPP:

CSectionForm::CSectionForm()
: CRecordView(CSectionForm::IDD)

11{{AFX_DATA_INIT(CSectionForm)
m_pSet = NUll;
II}}AFX_DATA_INIT

~ m_bAddMode = FALSE;
}

Chapter 27 Enroll Step 3: Adding and Deleting Records 3n

3. To define a CEdit member variable for the Section edit control in
CSect i onForm, open ClassWizard and choose the Member Variables tab.

In Steps 1 and 2 of the tutorial, the Section control was read-only because it
was necessary to prevent the user from changing this primary key value of the
Section record. In Step 3, you need to tum off the read-only style of the Section
control when the user is in add mode. The control is still read-only if the user is
in browse/update mode rather than add mode.

To change the read-only style, you must call the CEdit member function
SetReadOnly with the appropriate parameter. This requires a member variable
of type CEdit in CSect ion Fo rm. At this point, the class has a CString data
member representing the Section control, but you need a CEdit member
variable as well.

4. In the Class Name box, select CSect ion Form.

5. In the Control IDs box, select IDC_SECTION, which is already associated
with a CString member.

6. Choose Add Variable to open the Add Member Variable dialog box.

7. In the Variable Name box, type the name m_ctlSection

8. In the Property box, select Control.

Notice that the Variable Type box changes appropriately to CEdit.

9. Choose OK to close the Add Member Variable dialog box.

Notice that a second member variable is now associated with the I DC SECTION
control ID. You access the control's value through m_pSet - >m_Sect i onNo.
You access the control itself, to call its member functions, through
m_ct 1 Sect ion.

ID. Choose OK to close CIassWizard.

The Add command initiates add mode and calls the recordset's AddNew function
to prepare a new record but doesn't add the record to the data source. The record
isn't actually added to the data source until a subsequent call to OnMove calls the
recordset's Update function.

378 Introducing Visual C++

~ To implement the OnRecordAdd command handler function

• Implement the 0 n Re cor dAd d handler that Class Wizard created by adding the
following code in file SECTFORM.CPP:

void CSectionForm::OnRecordAdd()
{

~ II If already in add mode, complete the previous new record
~ if (m_bAddMode)
~ OnMove(ID_RECORD_FIRST);
~

~ CString strCurrentCourse = m_pSet->m_CourseID;
~ m_pSet->AddNew();
~ m_pSet->SetFiel dNull (&(m_pSet->m_CourseID), FALSE);
~ m_pSet->m_CourseID = strCurrentCourse;
~ m_bAddMode = TRUE;
~ m_ctlSection.SetReadOnly(FALSE);
~ UpdateData(FALSE);

The most important line of this code is the call to CRecordset::AddNew, which
prepares a new record. The rest of the code does the following:

• If the user is already in add mode, complete the current record by simulating the
user's moving to another record. Moving to another record is the normal user
interface for completing a record.

• Save the CourseID for the current record and use it as the default for the new
record, based on the assumption that more often than not the user will want to
add another section for the course currently being viewed.

• In add mode, change the Section control to read/write rather than read-only, so
the user can enter a new section number.

Updating the Data Source with the Added Record
Add mode is completed when the user moves off the record. Enroll implements this
by overriding CRecordView's OnMove member function.

~ To implement Add functionality in the OnMove function override

1. From the Project menu, run ClassWizard.

2. Select the Message Map tab.

3. In the Class Name box, select class CSecti onForm.

4. In the Object ID box, select CSectionForm, then select OnMove in the
Message box.

Chapter 27 Enroll Step 3: Adding and Deleting Records 379

5. Select Add Function. ClassWizard automatically highlights the OnMove entry
in the Member Functions box.

6. Select Edit Code.

7. Replace the stub OnMove function with the following code:

BOOl CSectionForm::OnMove(UINT nIDMoveCommand)
{

~ if (m_bAddMode)
~ {

~ if (!UpdateData())
~ return FALSE;
~ TRY
~ {
~ m_pSet->Update();
~

~ CATCH(CDBException. e)
~ {
~ AfxMessageBox(e->m_strError);
~ return FALSE;
~ }
~ END CATCH
~

~ }
~ el se
~ {

m_pSet->Requery();
UpdateData(FAlSE);
m_ctlSection.SetReadOnly(TRUE);
m_bAddMode = FALSE;
return TRUE;

~ return CRecordView: :OnMove(nIDMoveCommand);
~ }

In its default CRecordView implementation, OnMove moves to the next, previous,
first, or last record. If the application has changed the recordset field data members
for the current record before the move, the framework updates the data source
before moving to another record.

Note Some ODBC drivers do not reflect newly added records in the recordset;
others do. For those drivers that don't display newly added records, to make the
added records visible you must requery the database. For more information, see
"Recordset: Adding, Updating, and Deleting Records" in Programming with the
Microsoft Foundation Class Library.

380 Introducing Visual C++

Step 3 augments the default CRecordView user interface for updating the current
record. If the user is in add mode and then moves off the new record, Enroll adds
the newly prepared record to the data source before moving to another record. But
you must decide whether it's important for added records to be immediately visible.
For the tutorial, the decision is to requery the recordset after each add operation so
the newly added record is included in the recordset.

Normally, the move commands behave as you might expect: Move Next moves to
the next record, and so on. But as a consequence of the decision to requery during
the add operation, when the user chooses any move command when adding a
record, Enroll always effectively moves to the first record. That's because
requerying the recordset automatically sets the recordset to the first record.

Disabling Combo Box Logic in Add Mode
Step 2 implemented a handler for selecting a course in the combo box. The handler
requeried the parameterized CSect i onSet for the newly selected course. In Step
3, the combo box takes on the additional duty of allowing the user to specify the
course for a new section record being added. During add mode, you don' l wallllo
requery the recordset when the user selects a course from the combo box.
Therefore, you need to put the requery logic inside an if clause that is executed
only if add mode isn't in effect.

~ To disable normal combo box logic while in add mode

• Place an if block around the requery code in the OnSe 1 endokCou rse Li st
handler in file SECTFORM.CPP, as shown by the marked lines in the following
code:

void CSectionForm::OnSelendokCourselist()
{

m_ctlCourseList.GetLBText(m_ctlCourseList.GetCurSel(),
m_pSet->m_strCourseIDParam);

~ if (!m_bAddMode)
~ {

~ }
}

m_pSet->Requery();
if (m_pSet->IsEOF())
{

m_pSet->SetFieldNull(&(m_pSet->m_CourseID), FALSE);
m_pSet->m_CourseID = m_pSet->m_strCourseIDParam;

UpdateData(FALSE);

Chapter 27 Enroll Step 3: Adding and Deleting Records 381

Implementing the Delete Command
In response to a Delete command, the record view deletes the current record by
calling the Delete member function of its associated recordset.

~ To implement the Delete command

• Add the marked lines to the OnRecordDel ete handler in SECTFORM.CPP
that Class Wizard created:

void CSectionForm: :OnRecordDelete()
{

~ TRY
~ {
~ m_pSet->Delete();
~ }
~ CATCH(CDBException. e)
~ {

~ AfxMessageBox(e->m_strError);
~ return;
~ }
~ END CATCH

~ II Move to the next record after the one just deleted
~ m_pSet->MoveNext();

~ II If we moved off the end of file. move back to last record
~ if (m_pSet->IsEOF())
~ m_pSet->MoveLast();

~ II If the recordset is now empty. clear the fields left over
~ II from the deleted record
~ if (m_pSet->IsBOF())
~ m_pSet->SetFieldNull(NULL);
~ UpdateData(FALSE);

Catch any exceptions thrown by the recordset's Delete function so that errors are
reported to the user. The CDBException data member m_strError is a fairly
user-friendly error message, prepared by the underlying ODBC driver.

If you want to customize the error message, you can force the error condition, then
examine m_strStateNativeOrigin for a particular state or native value. You can
look up error messages in the ODBC Programmer's Reference, Appendix A,
ODBC Error Codes. Enroll takes the easy approach by displaying m_strError.

For Enroll, the decision was to move to the record following the deleted record.
You could move to the previous record after a Delete operation or anywhere else as
long as you, or the user, moves off the deleted record.

382 Introducing Visual C++

Implementing the Refresh Command
The Refresh command cancels add mode, if the user had previously chosen Add, or
it discards any changes the user may have made on the form for the current record.
In the first case, Enroll cancels the add mode by calling:

CRecordset::Move(AFX_MOVE_REFRESH);

When you call AddNew to begin the add operation, the framework stores a copy of
the current record's fields before allowing the user to enter new values in the record
view's controls. Calling Move as shown here "refreshes" the current record-and
effectively cancels the add operation. It restores the record that was current before
add mode began. This also works if you called Edit instead of AddNew.

When the user cancels add mode, Enroll makes the Section control read-only again,
for reasons explained earlier.

~ To implement the Refresh command

• Add the marked code below to the 0 n R e cor d Ref res h handler function in file
SECTFORM.CPP:

void CSectionForm: :OnRecordRefresh()
{

~ if (m_bAddMode)
~ {

~ m_pSet-)Move(AFX_MOVE_REFRESH);
~ m_ctlSection.SetReadOnly(TRUE);
~ m_bAddMode = FALSE;
~ }
~ II Copy fields from recordset to form. thus
~ II overwriting any changes the user may have made
~ 1/ on the form
~ UpdateData(FALSE);

}

Note The source files for Enroll Step 3 on your distribution CD-ROM include
functional toolbar buttons connected to the Add, Refresh, and Delete commands on
the Record menu. The installed Step 3 source code supplies toolbar buttons for
Enroll. For more information on creating toolbar buttons, see "Edit Scribble's
Toolbar" in Chapter 10.

Chapter 27 Enroll Step 3: Adding and Deleting Records 383

Building and Running Enroll Step 3
Build and run your version of Enroll Step 3. Try the new Add, Refresh, and Delete
commands. Try forcing the two exceptions handled by Enroll-try to delete a
section that has Enrollment records, and try to add a duplicate section.

When you finish, exit the program.

This completes the database tutorial.

The directory \ENROLL\STEP4 contains a fourth step, not covered in the tutorial.
Step 4 illustrates additional class library database programming techniques,
summarized below. See ENROLL in the Microsoft Foundation Class Library
Samples under Microsoft Foundation Class Library in the Contents browser for a
discussion of Enroll Step 4. The main techniques illustrated by Enroll Step 4 are:

• Using multiple record view classes.

• Switching views in a frame window.

• Using the document object to coordinate multiple forms via UpdateAIIViews
and update hints.

PAR T 3

Appendixes

Appendix A Accessibility for People with Disabilities 387
Appendix B Microsoft Support Services. 393

APPENDIX A

Accessibility for People with
Disabilities

387

Microsoft is committed to making its products and services easier for everyone to
use. This appendix provides information about the following products and services,
which make Microsoft Windows and Microsoft Visual C++ more accessible for
people with disabilities:

• Microsoft Visual C++ accessibility.

• Microsoft services for people who are deaf or hard-of-hearing.

• Access Pack for Microsoft Windows, a software utility that makes using
Microsoft Windows easier for people with motion or hearing disabilities.

• Keyboard layouts designed for people who type with one hand or a wand.

• Microsoft software documentation on audio cassettes and floppy disks.

• Products for people who are blind or have low vision.

• Hints for customizing Microsoft Windows.

• Other products and services for people with disabilities.

Note The information in this section applies only to users who purchased Windows
in the United States. If you purchased Windows outside the United States, your
Windows package contains a subsidiary information card listing Microsoft support
services telephone numbers and addresses. You can contact your subsidiary to find
out whether the type of products and services described in this appendix are
available in your area.

388 Introducing Visual C++

Microsoft Services for People Who Are Deaf or Hard-of­
Hearing

Through a text telephone (TIfTDD) service, Microsoft provides people who are
deaf or hard-of-hearing with complete access to Microsoft product and customer
services.

You can contact Microsoft Sales and Service on a text telephone by dialing
(800) 892-5234 between 6:30 A.M. and 5:30 P.M. Pacific time. For technical
assistance you can contact Microsoft Product Support Services on a text telephone
at (206) 635-4948 between 6:00 A.M. and 6:00 P.M. Pacific time. Microsoft support
services are subject to Microsoft prices, terms, and conditions in place at the time
the service is used.

Access Pack for Microsoft Windows
Microsoft distributes Access Pack for Microsoft Windows, which provides people
with motion or hearing disabilities better access to computers running Microsoft
Windows. Access Pack for Microsoft Windows contains several features that:

• Allow single-finger typing of SHIFf, CTRL, and ALT key combinations.

• Ignore accidental keystrokes.

• Adjust the rate at which a character is repeated when you hold down a key, or
turn off character repeating entirely.

• Prevent extra characters if you unintentionally press a key more than once.

• Enable you to control the mouse cursor by using the keyboard.

• Enable you to control the computer keyboard and mouse by using an alternate
input device.

• Provide a visual cue when the computer beeps or makes other sounds.

Access Pack for Microsoft Windows is included on the Microsoft Windows Driver
Library in the file ACCESS.EXE. If you have a modem, you can download
Microsoft Windows Driver Library components from the following network
services:

• CompuServe®

• GEnie™

• Microsoft OnLine

Appendix A Accessibility for People with Disabilities 389

• Microsoft Download Service (MSDL), which you can reach by calling
(206) 936-MSDL (936-6735) any time except between 1:00 A.M. and
2:30 A.M. Pacific time. Use the following communications settings:

For this setting

Baud rate

Parity

Data bits

Stop bits

Specify

1200, 2400, or 9600

None

8

• Various user-group bulletin boards (such as the bulletin-board services on the
Association of PC User Groups network)

People within the United States who do not have a modem can order the Access
Pack for Microsoft Windows on disks by calling Microsoft Product Support
Services at (206) 637-7098 or (206) 635-4948 (text telephone).

Keyboard Layouts for Single-Handed Users
Microsoft distributes Dvorak keyboard layouts that make the most frequently typed
characters on a keyboard more accessible to people who have difficulty using the
standard "QWERTY" layout. There are three Dvorak layouts: one for two-handed
users, one for people who type with their left hand only, and one for people who
type with their right hand only. The left-handed or right-handed keyboard layouts
can also be used by people who type with a single finger or a wand. You do not
need to purchase any special equipment in order to use these features.

Microsoft Windows already supports the two-handed Dvorak layout, which can be
useful for coping with or avoiding types of repetitive-motion injuries associated
with typing. To get this layout, choose International from the Windows Control
Panel. The two layouts for people who type with one hand are distributed as
Microsoft Application Note GA0650. It is also contained in file GA0650.ZIP
on most network services or GA0650.EXE on the Microsoft Download Service.
For instructions on obtaining this application note see the preceding section,
"Access Pack for Microsoft Windows."

390 Introducing Visual C++

Microsoft Documentation on Audio Cassettes and
Floppy Disks

People who have difficulty reading or handling printed documentation can obtain
most Microsoft publications from Recording for the Blind, Inc. Recording for the
Blind distributes these documents to registered members of their distribution service
either on audio cassettes or on floppy disks. The Recording for the Blind collection
contains more than 80,000 titles, including Microsoft product documentation and
books from Microsoft Press. You can contact Recording for the Blind at the
following address or phone numbers:

Recording for the Blind

Address

20 Roszel Road
Princeton, NJ 08540

Phone

(800) 221-4792

Phone ontside U.S. FAX

(609) 452-0606 (609) 987-8116

Products for People Who Are Blind or Have Low Vision
There are numerous products available to help people who are blind or have low
vision use Microsoft Windows. For people with low vision there are screen­
enlargement utilities, and for people who cannot use visual information there are
screen readers that provide alternative output by synthesized voice or refreshable
Braille displays. In addition, people with low vision can customize the Microsoft
Windows display to suit their needs.

For more information on the various products available, see "Getting More
Information" later in this appendix. For more information about customizing
Microsoft Windows for people with low vision, see the next section,
"Customizing Windows."

Customizing Windows
There are many ways you can adjust the appearance and behavior of Microsoft
Windows to suit varying vision and motor abilities without requiring any additional
software or hardware. These include ways to adjust the appearance as well as the
behavior of the mouse and keyboard. The specific methods available depend on
which operating system you are using. Application notes are available describing
the specific methods available for each operating system.

Appendix A Accessibility for People with Disabilities 391

For information relating to customizing Windows 3.0 for people with disabilities,
see Application Note WW0786; for Windows 3.1, Application Note WW0787;
for Windows for Workgroups NT 3.1, Application Note WG0788; for Windows
NT 3.1, Application Note WN0789. For information on obtaining application notes,
see "Access Pack for Microsoft Windows," earlier in this appendix.

Getting More Information
For more information on Microsoft products and services for people with
disabilities, contact Microsoft Sales and Service at (800) 426-9400 (voice) or
(800) 892-5234 (text telephone).

The Trace R&D Center at the University of Wisconsin-Madison produces a book
and a compact disc that describe products that help people with disabilities use
computers. The book, titled Trace ResourceBook, provides descriptions and
photographs of about 2,000 products. The compact disc, titled CO-NET CD,
provides a database of more than 17,000 products and other information for
people with disabilities. It is issued twice a year.

You can contact the Trace R&D Center at the following address or telephone
numbers:

Trace R&D Center

Address

S-151 Waisman Center
1500 Highland Avenue
Madison, WI 53705-2280

Phone Phone outside U.S. FAX

(608) 263-2309 (608) 263-5408 (608) 262-8848

For general information and recommendations on how computers can help specific
people, you should consult a trained evaluator who can best match your needs with
the available solutions. An assistive technology program in your area will provide
referrals to programs and services that are available to you. To locate the assistive
technology program nearest you, you can contact:

National Information System Center for Developmental Disabilities

Address

Benson Building
Univ. of South Carolina
Columbia, SC 29208

Voice/text telephone
outside South Carolina

800) 922-9234, ext. 301

Voice/text
telephone inside
South Carolina

(800) 922-1107

Voice/text FAX
telephone
outside the U.S.

(803) 777-6222 (803) 777-6058

393

APPENDIX B

Microsoft Support Services

Visual c++ has many resources to help answer developer's questions. Sources of
documentation include the online Help, Books Online, README.WRI, technical
notes, and samples. Help is also available through the Microsoft Support Network,
which provides technical support through a variety of services.

Troubleshooting Guide
Most problems can be solved using the information provided with Visual c++.
Here are some steps which can help you take advantage of the Visual C++
resources and help you isolate the problem if you need to call technical support.

Check the Product Documentation
This is one of the most productive ways to find answers to questions, and it can
save you time and money. You can consult several types of documentation:

• Books Online. By clicking the Books Online icon, you have access to over
5000 pages of Visual C++ documentation. You can scan for information in the
Contents browser, use Search to search for a keyword, or use Search Plus to do
a full-text search on a subject.

• Help. This includes procedural and reference information on common features,
functions, and error messages. You can access Help through the Help menu, or
by pressing Fl on a function in your source code.

• README.WRI. This file contains late-breaking information about
configuration problems, new features, and known bugs. You can also open
README.WRI by clicking the icon in the Visual C++ program group.

• Samples. Two online books, MFC Samples, and Samples, include sample
programs that illustrate common programming tasks. You can open these by
clicking the books online icon.

• Microsoft Knowledge Base. The Microsoft Knowledge Base contains thousands
of articles on known problems and programming issues. It is available through
the Help menu or on the Microsoft Developer's Network CD-ROM, and it can
also be accessed from CompuServe or Internet.

394 Introducing Visual C++

Reproduce the Problem
Reproducing the problem is the first step in solving it. Once you can reproduce the
problem, you can start finding solutions. The following questions may give you
more insight on the problem:

• Does the problem occur with just this one program? You may want to try one of
the samples to see if you can reproduce the problem with it. If you cannot
reproduce the problem with other programs, think about what's specific about
the program.

• Does the problem occur on just your machine? If so, the problem may be related
to your system configuration. Try using a different Windows video driver or
modify your system configuration to see if the problem still occurs. It's a good
idea to try to make your machine as much like the average machine as possible.

• What versions of the tools are you using? Knowing the version of the compiler,
linker, and other tools makes it easier to reproduce (or avoid) the problem in the
future.

• Under what circumstances does the problem occur? Does it only occur when you
build from t.~e conunand line, or within Visual C++? Does the amount of
available memory affect the problem? How about other programs that are
running in the system?

Isolate the Problem
After seeing what circumstances cause the problem, you may be able to isolate it.
Once a problem is isolated, it's much easier and quicker to fix or work around.

• Try isolating the component that's causing the problem. You can use the
information about what conditions it reproduces to help isolate the component.
For example, if a problem occurs when compiling both inside the development
environment and using NMAKE from the command line, the problem probably
isn't with the development environment.

• If the problem is with the compiler, you may be able to create a small example.
The compiler generates code on a per-function basis, and you might be able to
isolate it to a particular module or function. A useful way to comment out large
blocks of code is to use ifi f 0.

• Sometimes you can isolate a problem by breaking things in half. For example, if
a particular module is causing a LINK error, separating the module into two
modules will help isolate the problem.

Appendix B Microsoft Support Services 395

Product Support Within the United States and Canada
In the United States and Canada, the following support services are available
through the Microsoft Support Network:

• Electronic services

• Standard support

• Priority support

• Text telephone

• Product training and consultation

• Other support options

Electronic Services
These services are available 24 hours a day, 7 days a week, including holidays.

Microsoft FastTips (800) 936-4300 on a touch-tone telephone. Receive
automated answers to common questions and access a library of technical notes, all
delivered by recording or fax. After you reach FastTips, use the following keys to
move through the automated system:

• To advance to the next message, press the ASTERISK (*) key.

• To repeat the current message, press 7.

• To return to the beginning of FastTips, press the POUND SIGN (#) key.

CompuServe Interact with other users and Microsoft support engineers, or access
the Microsoft Knowledge Base to get product information. At any ! prompt, type go
microsoft to access all Microsoft forums, or type go mskb to access the Microsoft
Knowledge Base. Type go mslang to access the Microsoft Languages forum and
Visual C++ sections, or go msmfc, to access the Microsoft Foundation Class
forum. For an introductory CompuServe membership kit specifically for Microsoft
users, dial (800) 848-8199 and ask for operator 524.

Microsoft Download Service Access, via modem, the Driver Library and
the most current technical notes (1200, 2400, or 9600 baud; no parity;
8 data bits; 1 stop bit.) In the United States, call (206) 936-6735. In Canada,
call (905) 507-3022.

Internet Access the Driver Library and the Microsoft Knowledge Base. The
Microsoft Internet FTP archive host, ftp.microsoft.com, supports anonymous login.
When logging in as anonymous, you should type your complete electronic mail
names as your password.

396 Introducing Visual C++

Standard Support
In the United States, no-charge support from Microsoft support engineers is
available via a toll call between 6:00 A.M. and 6:00 P.M. Pacific time, Monday
through Friday, excluding holidays. This support is available for 30 days after you
make your first call.

• For techni~al support for Visual C++, call (206) 635-7007.

In Canada, support engineers are available via a toll call between 8:00 A.M.

and 8:00 P.M. Eastern time, Monday through Friday, excluding holidays. Call
(905) 568-3503. This support is available for 30 days after you make your first
call.

When you call, you should be at your computer with Microsoft Visual C++ running
and the product documentation at hand. Be prepared to give the following
infonnation:

• The version of Microsoft Visual C++ you are using.

• Your product identification number (choose About from the Help menu to find
this).

• The type of hardware you are using, including network hardware, if applicable.

• The operating system you are using.

• The exact wording of any messages that appeared on your screen and the error
number, if any.

• A description of what happened and what you were trying to do when the
problem occurred.

• A description of how you tried to solve the problem.

Priority Support
The Microsoft Support Network offers priority telephone access to Microsoft
support engineers 24 hours a day, 7 days a week, except holidays.

• In the United States, call (900) 555-2300; $2 (U.S.) per minute; $95 (U.S.)
maximum. Charges appear on your telephone bill.

• In the United States, call (800) 936-5800; $95 (U.S.) per incident, billed to your
VISA card, MasterCard, or American Express card.

• In Canada, call (800) 668-7975 for more infonnation.

Appendix 8 Microsoft Support Services 397

Text Telephone
Microsoft text telephone (TTfTDD) services are available for the deaf or hard-of­
hearing. In the United States, using a TTfTDD modem, dial (206) 635-4948
between 6:00 A.M. and 6:00 P.M. Pacific time, Monday through Friday, excluding
holidays. In Canada, using a TTfTDD modem, dial (905) 568-9641 between
8:00 A.M. and 8:00 P.M. Eastern time, Monday through Friday, excluding holidays.

Other Support Options
The Microsoft Support Network offers annual and multiple incident support plans.
For information, in the United States, contact the Microsoft Support Network Sales
and Information group at (800) 936-3500 between 6:00 A.M. and 6:00 P.M. Pacific
time, Monday through Friday, excluding holidays. In Canada, can (800) 668-7975
between 8:00 A.M. and 8:00 P.M. Eastern time, Monday through Friday, excluding
holidays.

Product Training and Consultation
Microsoft Solution Providers are independent organizations that provide consulting,
integration, customization, development, technical support and training, and other
services for Microsoft products. These companies are caned Solution Providers
because they apply technology and provide services to help solve real-world
problems.

In the United States, for more information about the Microsoft Solution
Providers program or the Microsoft Solution Provider nearest to you, please can
(800) 426-9400 between 6:30 A.M. and 5:30 P.M. Pacific time, Monday through
Friday, excluding holidays. In Canada, call (800) 563-9048 between 8:00 A.M.

and 8:00 P.M. Eastern time, Monday through Friday, excluding holidays.

Product Support Worldwide
If you are outside the United States and have a question about a Microsoft product,
first:

• Consult the documentation and other printed information included with your
product.

• Check online Help.

398 Introducing Visual C++

• Check the README files that come with your product disks. These files
provide general information that became available after the books in the product
package were published.

• Consult electronic options such as CompuServe forums or bulletin boards, if
available.

If you cannot find a solution, you can receive information on how to obtain product
support by contacting the Microsoft subsidiary office that serves your country.

The Microsoft Support Network
The Microsoft Support Network, where available, offers you a wide range of
choices and access to high quality, responsive technical support. Microsoft
recognizes that support needs vary from user to user; the Microsoft Support
Network allows you to choose the type of support that best meets your needs, with
options ranging from electronic bulletin boards to annual support programs.

The Microsoft Support Network.is subject to Microsoft's then-current prices, terms,
and conditions in place in each country at the time the services are used and is
subjt:l:i to change without notice.

Calling a Microsoft Subsidiary Office
When you call, you should be at your computer and have the appropriate product
documentation at hand. Be prepared to give the following information:

• The version number of Microsoft product that you are using.

• The type of hardware that you are using, including network hardware, if
applicable.

• The operating system that you are using.

• The exact wording of any messages that appeared on your screen.

• A description of what happened and what you were doing when the problem
occurred.

• A description of how you tried to solve the problem.

Microsoft subsidiary offices and the countries they serve are listed below.

If there is no Microsoft office in your country, please contact the establishment
from which you purchased your Microsoft product.

Appendix B Microsoft Support Services 399

Microsoft Subsidiary Offices
Area

Argentina

Australia

Austria

Belgium

Bolivia

Brazil

Telephone Numbers

Microsoft de Argentina S.A.
Customer Service:

(54) (I) 814-5105
(54) (1) 814-4807
(54) (I) 814-4808
(54) (1) 811-7199

Fax: (54) (1) 814-0372
Technical Support: (54) (1) 815-1521

Microsoft Pty. Ltd.
Fax: (61) (02) 805-0519
Sales Information Centre: (61) (02) 870-2100
Installation Support: (61) (02) 870-2870
Bulletin Board Service: (61) (02) 878-5200
Technical Support: (61) (02) 870-2131

Microsoft Ges.m.b.H.
Phone: 0222-68 76 07
Fax: 0222-68 162710
Information: 0660-6520
Prices, updates, etc.: 0660-6520
CompuServe: GO MSEURO (Microsoft Central Europe)
Technical support:

CIC++, FORTRAN, Macro Assembler PDS: 0660-6515

Microsoft NV
Phone: 02-7303911
Customer Service: 02-7303922
CompuServe: 02-2150530 (GO MSBEN)
Bulletin Board: 02-7350045 (120012400/9600 bd, 8Nl, ANSI)
Technical Support:

02-5133274 (Dutch speaking)
02-5023432 (English speaking)
02-5132268 (French speaking)

See Argentina

Microsoft Informatica Ltda.
Phone: (55) (11) 530-4455
Fax: (55) (11) 240-2205
Technical Support Phone: (55) (11) 871-0090
Technical Support Fax: (55) (11) 241-1157
Technical Support Bulletin Board Service: (55) (11) 872-4106

400 Introducing Visual C++

Area

Canada

Caribbean

Chile

Colombia

Denmark

Dubai

England

Finland

Telephone Numbers

Microsoft Canada Inc.
Head Office Phone: 1 (905) 568-0434
Customer Support Centre: 1 (800) 563-9048
Microsoft Support Network:

Standard Technical Support Phone: 1 (905) 568-3503
Priority Support Information: 1 (800) 668-7975
Text Telephone (TTffDD) 1 (905) 568-9641
Technical Support Bulletin Board Service: 1 (905) 507-3022

Microsoft Caribbean, Inc.
Phone: (809) 273-3600
Fax: (809) 273-3636
Technical Support: (214) 714-9100

Microsoft Chile S.A.
Phone:

5622185771
5622185711
5622187524

Fax: 5622185747

Microsoft Colombia
Phone: (571) 618 2245
Fax:(571) 618 2269
Technical Support: (571) 618 2255

Microsoft Denmark AS
Phone: (45) (44) 89 01 00
Microsoft Sales Support: (45) (44) 8901 90
Microsoft FaxSvar: (45) (44) 890144
Microsoft BBS: (45) (44) 66 90 46

(Document 303030 in FaxSvar contains detailed instructions)
Technical Support: (45) (44) 8901 11

Microsoft Middle East
Phone: (971) 4 513 888
Fax: (971) 4 527 444

see United Kingdom

Microsoft OY
Phone: (358) (0)9 0 525 501
Microsoft FaxSvar: (46) (0)8 752 29 00 (Information in Swedish and
English)
Microsoft BBS: (46) (0) 87504742 (Information in Swedish and
English)
For Technical Support, please contact your local dealer.

Area

France

French
Polynesia

Germany

Greece

Hong Kong

Ireland

Israel

Italy

Appendix B Microsoft Support Services 401

Telephone Numbers

Microsoft France
Phone: (33) (1) 69-86-46-46
Fax: (33) (1) 64-46-06-60
Telex: MSP ARIS 604322
Technical Support Phone: (33) (1) 69-86-10-20
Technical Support Fax: (33) (1) 69-28-00-28
Fax Information Service: (33) (1) 69-29-11-55

See France

Microsoft GmbH
Phone: 089-3176-0
Fax: 089-3176-1000
Telex: (17) 89 83 28 MS GMBH D
Information: 089-3176 1199
Prices, updates, etc.: 089-31761199
CompuServe: GO MSEURO (Microsoft Central Europe)
Bulletin board, device drivers, tech notes: Btx: microsoft# or
*610808000#
Technical support:

C/C++, FORTRAN, Macro Assembler PDS: 089/3176-1150

Microsoft Hellas, S.A.
Phone: (30) (1) 6893 631 through (30) 1 6893 635
Fax: (30) (1) 6893 636

Microsoft Hong Kong Limited
Fax: (852) 560-2217
Technical Support: (852) 804-4222

See United Kingdom

Microsoft Israel Ltd.
Phone: 972-3-575-7034
Fax: 972-3-575-7065

Microsoft SpA
Phone: (39) (2) 269121
Fax: (39) (2) 21072020
Telex: 340321 I
Customer Service (Prices, new product info, product literature): (39) (2)
26901359
Bulletin Board: (39) (2) 21072051
Technical Support: (39) (2) 26901351

402 Introducing Visual C++

Area

Japan

Korea

Liechtenstein

Luxembourg

Mexico

Telephone Numbers

Microsoft Company Ltd.
Phone: (81) (3)5454-8000
Fax: (81) (3) 5454-7972
Channel Marketing (Pre-sales Product Support) Information Center

Phone: (81) (3) 5454-2300
Fax: (81) (3) 5454-7951

Customer Service Phone (Version upgradelRegistration)
Phone: (81)(3)5454-2305
Fax: (81) (3) 5454-7952

Languages:
Visual C++: (81) (3) 5454-2364
Fortran: (81) (3) 5454-2353
Masm: (81) (3) 5454-2360
C: (81) (3) 5454-2361
Quick C: (81) (3) 5454-2362

Microsoft CH
Phone: (82) (2) 531-4500
Fax: (82) (2) 531-1724
Technical Support: (82) (2) 53i-4800
Technical Support Fax: (82) (2) 563-5194
Technical Support Bulletin Board Service: (82) (2) 538-3256

See Switzerland (German speaking)

Microsoft NY
Phone: (32) 2-7303911
Customer Service: (32) 2-7303922
CompuServe: (32) 2-2150530 (GO MSBEN)
Bulletin Board: (32) 2-7350045 (120012400/9600 bd, 8Nl, ANSI)
Technical Support:

(32) 2-5133274 (Dutch speaking)
(32) 2-5023432 (English speaking)
(32) 2-5132268 (French speaking)

Microsoft Mexico, S.A. de C.V.
Phone: (52) (5) 325-0910
Fax: (52) (5) 280-7940
Customer Service: (52) (5) 325-0911
Bulletin Board Service: (52) (5) 590-5988

(120012400 baud, 8 bits, No parity, 1 stop bit, ANSI terminal
emulation)
Technical Support:

Desktop & as: (52) (5) 325-0912
Developers & Advanced Systems: (52) (5) 237-4800

Area

Netherlands

New Zealand

Northern
Ireland

Norway

Papua New
Guinea

Paraguay

Portugal

Republic of
China

Republic of
Ireland

Scotland

South Africa

Spain

Appendix B Microsoft Support Services 403

Telephone Numbers

Microsoft BV
Phone: 02503-89189
Customer Service: 02503-77700
CompuServe: 020-6880085 (GO MSBEN)
Bulletin Board: 02503-34221 (120012400/9600 bd, 8Nl, ANSI)
Technical Support:

02503-77877 (Dutch speaking)
02503-77853 (English speaking)

Microsoft New Zealand Ltd
Phone: 64 (9) 358-3724
Fax: 64 (9) 358-3726
Technology Link Centre (Technical Support)

Phone: 64 (9) 357-5575
Fax: 64 (9) 358-0092

See United Kingdom

Microsoft Norway AS
Phone: (47) (22) 183022500
Microsoft Sales Support: (47) 22022580
Microsoft BBS: (47) 22182209

(Document 404040 in FaxSvar contains detailed instructions)
Microsoft FaxSvar: (47) 22 02 2570
Technical Support: (47) (22) 02 25 50

See Australia

See Argentina

MSFT,Lda.
Phone: (351) 14412205
Fax: (351) 1 4412101

Microsoft Taiwan Corp.
Phone: (886) (2) 504-3122
Fax: (886) (2) 504-3121
Technical Support: (886) (2) 508-9501

See United Kingdom

See United Kingdom

Microsoft South Africa
Phone: (27) 11 444 0520
Fax: (27) 11 444 0536

Microsoft Iberica SRL
Phone: (34) (1) 804-0000
Fax: (34) (1) 803-8310
Technical Support: (34) (1) 803-9960

404 Introducing Visual C++

Area

Sweden

Switzerland

Turkey

United
Kingdom

Uruguay

Telephone Numbers

Microsoft AB
Phone: (46) (8) 752 56 00
Sales Support: (46) (8) 752 56 30
Microsoft FaxSvar: (46) (0)8 7522900
Microsoft BBS: (46) (8) 7504742

(Document 202020 in FaxSvar contains detailed instructions)
Information on Technical Support: (46) (8) 752 09 29

Microsoft AG
Phone: 01-839 61 11
Fax: 01-831 08 69
Prices, updates, etc.: 01183961 11
CompuServe: GO MSEURO(Microsoft Central Europe)
Documentation:

Phone: 155 5900
Fax: 064-224294, Microsoft Info-Service, Postfach, 8099 Zurich

Technical support:
C/C++, FORTRAN, Macro Assembler PDS: 011342-4036

Technical support (French speaking): 022-738 96 88

Microsoft Turkey
Phone: (90) 212 2585998
Fax: (90) 212 2585954

Works for MS-DOS, Works for Windo, FORTRAN, Macro
Assembler:

01-34 2-4036
BASIC, Visual Basic: 01-342-4086

Microsoft Limited
Phone: (44)(734)270000
Fax: (44) (734) 270002
Upgrades & Registration: (44) (81) 614 8000
Technical Support:

Main Line (All Products): (44) (734) 271000
Fax Information Service: (44) (734) 270080
Bulletin Board Service:

(44) (734) 270065 (2400 Baud)
(44) (734) 270060 (9600 Baud)

MSDOS 90 day F.O.C. Support: (44) (734) 271900
MSDOS Charged Support: (44) (891) 315500

See Argentina

Area

Venezuela

Wales

Appendix B Microsoft Support Services 405

Telephone Numbers

Corporation MS 90 de Venezuela S.A.
Other information:

58.2.910008
58.2.914739
58.2.913342

Fax: 58.2.923835
Technical Support:

58.2.910046
58.2.910510

See United Kingdom

Microsoft TechNet, Technical Information Network
Microsoft TechNet is an annual information service created for those who support
or educate end users, administer networks or databases, create automated solutions
and recommend or evaluate information technology solutions. Microsoft TechNet
gives you the answers you need, when you need them by providing timely,
comprehensive and in-depth information on Microsoft products and on
supporting and administering Microsoft-based solutions.

TechNet members receive twelve monthly TechNet CDs containing the complete
Microsoft Knowledge Base, Resource Kits, products facts and features, educational
materials, conference session notes, and other technical information. Members also
receive four quarterly updates of the Microsoft Drivers and Patches CD containing
drivers and patches for most Microsoft applications. Other membership benefits
include a dedicated TechNet CompuServe forum (GO TECHNET), and the on-line
Microsoft Services Directory.

Availability and the services of Microsoft TechNet may vary by country. To join
Microsoft TechNet outside the U.S. and Canada, call the appropriate number listed
below:

Country

Australia

Argentina

Brazil

Caribbean Region

Canada

Chile

Colombia

Europe

France

Germany

Telephone Number

6128702100

54-1-814-5105/54-1-814-4807/54-1-814-4808

(55) 011-542-4781

(1) (800) 344-2121 or (1) (402) 691-0173

(1) (800) 344-2121

65-2-2048257

(57) (1) 618-2245

+3110 2588864

05 905904 (toll-free)

0130810211 (toll-free)

406 Introducing Visual C++

Country Telephone Number

Hong Kong (852) 756-5560

India 91-11-646 0694

Israel (972) (3) 575-7034

Japan 03-5600-5036

Mexico (525) 325-09-11

Netherlands, The 060222480 (toll-free)

New Zealand 64 93089318

Russia 7-095-244-3474

Singapore (65) 220-7380

South Africa 27 11 445 0000

South Korea 8225314500

Turkey 90-212-2585998

United Arab Emirates 9714513888

United States (1) (800) 344-2121

Venezuela 58-2-910008

All Other Countries (1) (402) 691-0173

Index

8-bit-per-pixel color bitmaps, editing 45
16-bit applications

debugging with Visual C++ 42
porting to Win32 41
writing with Visual C++ 42

16-bit vs. 32-bit versions, Microsoft Foundation Class Library
46

24-bit-per-pixel color bitmaps, editing 45
32-bit OLE custom controls, creating 43
32-bit vs. 16-bit versions, Microsoft Foundation Class Library

46

A
Accelerator keys, specifying in menus 139
Accelerators

copying 232
Enroll sample 374

Access keys See Accelerator keys
Access Pack for Microsoft Windows 388
Activating servers

double-click event 284
fully open vs. in-place, availability 284

Add Class dialog box, ClassWizard
described 174-176
example 212

Add Function button, ClassWizard 158
Add Member Function dialog box, ClassWizard 158
AddDocTemplate member function, class CWinApp, example

213
Adding

AppWizard options later 226
files to project list, AppWizard generated OLE server 242
handler functions

changes to source files 158
ClassWizard 158
what is added 158

member variables to Scribble 162
message-handler functions 128
records

described 371, 375
recordset 371

toolbar buttons 143
Addresses, memory, displaying in debugger 44
AddTail member function, class CObList 110
AFX_DATA delimiter, described 176
AFX_IDS_HELPMODEMESSAGE string 232
AFX_IDS_IDLEMESSAGE string 232
AFX_MOVE_REFRESH, example 382

AFX_MSG delimiter, described 176
AfxOleInit, calling from Contain 273
Application starter files, AppWizard 60
Applications

16-bit, porting to Win32 41
AppWizard options 52
building

and running 74
test drive 59-82

character mode, porting to Windows NT 41
creating

basic, with AppWizard 52
described 51-52
new 87
test drive 59-82
vs. developing 51

debugging
described 53-54
test drive 59-82

default for AppWizard 60
development

described 51~54
overview 47-55
test drive 59-60, 74-82

described 87
framework See Framework, 48, 87
Myapp tutorial application 60-74
objects, in framework 49
OS/2, writing with Visual C++ 43
porting 16-bit to Win32 43
Posix, writing with Visual C++ 43
projects, defined 51
run time, at

cooperating objects 96
described 96

running 53-54
skeleton starter 87
standard, developing for Windows SDK 47
starter

AppWizard 60-63
compiling 88

tutorial, basic information for building 85
Visual C++ 47
Win32s, running under 44
Windows, porting to Macintosh 42

AppWizard
adding full-server support to existing applications 239
application starter files 60

407

408 Index

AppWizard (continued)
automation server

examining application class 310
examining document class 312

class CScribDoc 101
class CScribViCView 120
class CScribView 122
classes

button 90
created by 88
dialog box 90

commands 87
context-sensitive help

implementing with 227
option, products of 229
option, selecting 228
options 228

creating
basic applications with 52
code without Microsoft Foundation Class Library

support 46
OLE automation servers 307
skeieton OLE containers 269

database applications 346
database support options 60
DECLARE_DYNCREATE macro 112
default application

described 63
modifying 64-66

default extensions 90
default MFC project type 60
described 87
description of AppWizard generated code, Contain 273
description of Initlnstance, OLE container application 273
development process 51
dispatch maps 312
Edit Copy, generated support for 289
Edit Paste, generated support for 289
editing

class names 91,271, 309, 348
filenames 271,309,348

Enroll sample 347
generated code in existing applications, using 238
help files created, conditions of use 226
Myapp default application 60
naming document types 90
naming projects 89
OLE options 60
options

adding later 226, 230
advanced 90
context -sensitive help 228
creating application 52
defaults listed 90

AppWizard (continued)
options (continued)

helpful comments 90
MOl application 90
print preview 90
printing 90
project 60
SOl application 90
toolbar, status bar 90

project directories, setting 89
project options 60

Printing and Print Preview 60
source comments generation 60
VC++ makefile 60

provided in-place toolbar 254
README.TXT file 88
running

described 87, 89
tutorial 60-63

Serialize member function 112
setting directories 89
setting full-server options, Scribble, step 7 239
starter appiications 60-63
starter files, application 60

Arranging controls in dialog boxes 173
Assigning

IDs in dialog boxes 171
objects to commands 151

Associating buttons with commands 149
Attributes, class

example 156
location 156

Autoclik
adding Change Text command to Edit menu 316
Change Text dialog box, creating 316
creating Change Text dialog box 316
document class, Edit Change Text handler, defined 317
Edit menu, adding Change Text command 316
exposing data members

indirectly exposing m_pt 320
using Get/Set methods 319
when to use what method 320

m_pt, exposing using ClassWizard 320
step 1, building and running 317
view class, mouse click handler, defined 315

Autoclik tutorial
accessing one dispatch interface through another 333
adding

member variables to document class 314
ShowWindow method 327

application class, examining AppWizard created code 310
CClikPoint objects, creating 335

Autoclik tutorial (continued)
changing

dispatch interface names 309
text 304

class CClikPoint
creating in ClassWizard 332
declaring the class 335
dispatch map, described 333
not OLE creatable 336

command list 304
creating

new dispatch interfaces 332
with AppWizard 307

defining class ID 311
differences in creating dispatch maps 334
dispatch interface names 310
dispatch interface objects, declaring as properties 334
dispatch interfaces

implementing properties 319
supplied 302

dispatch maps
described 312
parameter lists 327

document class
App Wizard created code, examining 312
member variables, adding, initializing, serializing 314

enabling automation 312
exploring features 304
exposing data members

as dispatch interface properties 319
directly exposing m_str 322
two methods 319

exposing member functions, setting the external name 324
exposing methods

with parameters 325
without parameters 324

exposing the Refresh member function 324
features, described 302
frame windows, showing 327
GetPosition method, getting the IDispatch pointer 335
goals 301
implementing drawing code 315
initializing member variables of document class 314
initializing OLE DLLs 311
InitInstance 310
insta1Iing 303
list of commands 304
location, files 305
locking and unlocking the application 312
m_str, exposing using ClassWizard 322
multiple dispatch interfaces

described 331
interactions between interfaces 331

Autoclik tutorial (continued)
previewing

Autodriv, with 303
described 302
each step 305
two methods 303

Index 409

referring between dispatch interfaces 333
registering with OLE

alternative methods 311
COleTemplate, using 311
described 303

running stand-alone 302
second dispatch interface 331
serializing members of document class 314
Set Text vs. Set X methods 328
SetPosition method, updating views 335
showing frame windows 327
step 1

features 307
goals 305, 307

step 2
building and running 328
exposed member functions (list) 324
features, described 319
goals 306,319

step 3
building and running 336
features 331
goals 306,331

step overview 305
testing 302
view class, implementing drawing 315

Autodriv, accessing the Position property 333
Automation clients

automation servers, driving 302
described 301
differences in creating dispatch maps 334
example 301

Automation servers
accessing one dispatch interface through another 333
automation clients, how driven by 302
creating new dispatch interfaces 332
creating with App Wizard 307
declaring dispatch interface objects as a properties 334
defining class ID 311
described 301
dispatch interfaces, implementing properties 319
dispatch maps

described 312
parameter lists 327

enabling automation 312
exposing data members

as dispatch interface properties 319
methods 320

410 Index

Automation servers (continued)
exposing data members (continued)

two methods 319
using Get/Set methods 319

exposing member functions, setting external names 324
features 302
frame windows, showing 327
implementing methods 324
initializing OLE DLLs 311
locking and unlocking the application 312
multiple dispatch interfaces

interactions between interfaces 331
reasons for using 331

referring between dispatch interfaces 333
registering with OLE

alternative methods 311
COleTemplate, with 311

showing frame windows 327
ShowWindow method, adding 327
vs. OLE object server 302

Automation, OLE
advantages 301

B

creating automation servers with AppWizard 307
dispatch interface names

changing 309
defined 309
described 310
possible uses 310

dispatch interfaces 302
dispatch maps, parameter lists 327
examples of use 301
exposing data members

dispatch interface properties 319
two methods 319
using Get/Set methods 319
when to use what method 320

methods 302
properties 302

Base class graphs, examining, Myapp tutorial application 77
Beginning a stroke 128
Binding

Clear All command 157
commands

defined 154
Scribble 156
to handlers 154

controls, cR1L+Double-click 353-354
messages to code 125
Thick Line command 160
user-interface objects to commands 154

Bitmap editor
described 143
example 144
grid 145
guides 146
selection rectangle 147
zoomedirnages 146

Bitmaps
editing 8- or 24-bit-pixel color 45
toolbar 143

Books Online
books (list) 18
contents 18
described 17
full-text search

described 24
narrowing searches 25-27

installation directories 11
installing

to hard disk 34
to network location 34

list of books 18
narrowing searches 25-27
Quick Reference Help subset of 18
Search Plus

Boolean expressions 25
using 24-25

search, full-text 24
searches, narrowing 25-27
viewer window 37
Visual C++ Tools 28
vs. Quick Reference Help 17

Boolean expressions, Search Plus in Books Online 25
Breakpoints

debugging 54
running to 78
setting 78, 93

Browse buttons, Viewer Window 22
Browse window 53
Browser

browse window 53
Myapp tutorial application, browsing 75-77
source code management 53

Browsing Help topics 21
Browsing resources 144
Building

programs, Scribble tutorial example 85
Scribble, step 1 132
starter applications 92

Built-in exclusions
narrowing searches 28
searches 28

Buttons

c

array 149,233
mapping to commands 149
toolbar, deleting 144

C/C++ book set 37
C/C++ Language Help, installation directories 11
Calling document members from view 119
Capabilities, ClassWizard 152
Captions, menu 141
Capturing the mouse 128
CArchive class

data independence 115
extraction operator 113
introduced 113
IsStoring member function 113

CArchive object 113
Cast serialization, example 115
CATCH macro 111
CBN_SELENDOK message, Emoll sample 368
CClickDoc class, OnEditChangetext member function, defmed

317
CClientDC class, example 206
CClikDoc class, Refresh member function defined 315
CClikView class

OnDraw member function defmed 315
OnLButtonDown member function defmed 315

CCmdTarget class 154
CCmdUI structure example, OnUpdateEditClearAlI member

function 165
CCmdUI structure example, OnUpdatePenThickOrThin

member function 166
CCntrItem class

derived from COleClientItem, described 276
OnChange member function

defmed 276
updating rectangle when extent changes 298
when called 297

OnChangeltemPosition member function
defmed 277-279
supporting hints 295
when called 297

OnGetItemPosition member function, defmed 277,279
serialization 280
UpdateFromServerExtedate member function, defmed 297

CContain View class
hit testing 280
HitTestItems member function, defined 280
Insert Object dialog box, use of 274
IsSelected member function, defined 273
OnDraw member function, defined 273, 285
OnEditCopy member function, defined 289

Index 411

CContainView class (continued)
OnEditDelete member function, defined 287
OnEditPaste member function, defined 290
OnlnsertObject member function

defined 274
updating rectangle when extent changes 299

OnLButtonDblClick member function, defined 284
OnLButtonDown member function

defined 282
supporting hints 295

OnSetCursor member function, defined 284
OnSetFocus member function, defined 275
OnSize member function, defined 276
OnUpdate member function, defined 293
OnUpdateEditDelete member function, defined 287
selecting items hit by mouse click, code for 281
SetSelection member function

defined 281
updating client item 294

CD-ROM
directories, installing Visual C++ 5
drive

system requirements 3
Visual C++ setup program 4
Win32s installation 14

installation 6, 12-13
running Visual C++ from 40

CDatabase objects, Recordset 366
CDBException

described 381
error strings 381

CDC class, used in DrawStroke 123
CDC object, encapsulates device context 123
CDialog class

CDialog member functions 177
DoModal member functions 185-186

CDocTemplate class
SetContainerlnfo member function 273
SetServerInfo member function

explained 249
how to call 249

CDocument class
intruduced 99
member functions, UpdateAllViews 190, 191

CDWordArray class, serialization of 114
CEmollDoc class, Emoll sample 350
CFormView, and record views 352
CFrameWnd class, OnCreateClient member functions 208
Changing cursors, class CRectTracker 284
Character-mode applications, porting to Win32 41
Checked state

menus 167
toolbar buttons 167

412 Index

Checking
menu items 166
too1bar buttons 167

Class CCntrItem
constructor defined 278
m_rect data member defined 278

Class library defined 48
Classes

adding with ClassWizard, example 174-176
button, AppWizard 90
CArchive 113
CCmdTarget 154
CDC 123
CDocument 99
CObList 110
CPen 109
created by AppWizard 88
CScribDoc (Scribble) 100
CScribView (Scribble) 120
CStroke (Scribble) 102
custom, recognizing with ClassWizard 46
CView 118
derived 48
dialog, AppWizard 90
framework

extending 48
overriding 48

inheritance 48
naming conventions 104

Class Wizard
accessing text editor from 159
Add Function button 158
Add Member Function dialog box 158
adding handlers

changes to source files 158
member function definition 158
message-map entry 158
what is added 158

adding new classes, example 174-176
binding commands, Clear All 157
building dialog boxes 173
capabilities 152
changing code 152
command binding 154
connecting messages to handlers 125
Control property 359
creating new dispatch interfaces 332
database applications 346
declaring dispatch interface objects as a properties 334
deleting message-map entries, necessary follow-up 153
described 117
development process 51
dialog boxes 177-178
dialog data exchange (DDX) 69

ClassWizard (continued)
dispatch maps

described 312
parameter lists 327

Edit Code button 158
editing code 152, 158
examples

Clear All update handler 164
OnUpdateEditClearAlI member function 166

exposing member functions, setting the external name 324
exposing methods

with parameters 325
without parameters 324

flexibility 153
handler functions 152
handler names, synthesized 158
handling messages 124
jumping to code 152,158
mapping commands to handlers 151
Member Functions list box, described 158
menu items, adding 70
menus, message-handler code 71
message hai1.dlers, adding 71
message map entries 152
Message Maps Property Page 103
Messages list box 157
Object IDs list box 157
OLE Automation

directly exposing data members 322
exposing a member function 324
indirectly exposing data members 320

recognizing custom classes 46
safety 153
scenarios for using 153
source code management 53
splitter windows, creating 212
user-interface objects, connecting to code 53
visual objects 157

Cleanup, documents 110
Clear All command

binding, procedure 157
described 136, 151
location 156
Scribble

command routing example 155
described 156

Clearing drawings in Scribble, OnEditClearAll member
function 159

Client area, of window and view objects 118
Client Items

creating 276
described 276
determining size of objects 297
getting extent 297

Client [terns (continued)
rectangles, implementing 278
resizing 276
updating when extent changes 298-299
using 276

Clipboard
putting link formats on 258
toolbar buttons 144

CMainFrame class 91
CMDIChildWnd class

described 210
example 213

CObList class 110
Code

message-handler, ClassWizard 71
source, managing 53
tracing through 81

COieClientItem class, GetExtent member function, when called
297

Color bitmaps, editing 8- or 24-bit pixels 45
Color palettes 144
Combo boxes

Enroll sample 357
filling from recordsets 361

Command
New, implementation 108
Open, implementation and serialization 108

Command binding 154
Command handlers

See also Message handlers
Enroll sample 374

CommandID
as menu ID 140
assigning to multiple objects 154
buttons array 149
command binding 154
defined 140 .
same as command 153
toolbar button 149, 154

Command routing 155-156
Command targets

CCmdTarget class 154
class hierarchy 154
defined 154
derivation 154
described 153
example, command routing 155
message handlers 155
message maps 154
which class gets handler 156

Command updating 356
Command-line options, passing to compiler, viewing 45

Commands
and ID 140, 153
as messages 153
assigned to user-interface objects 151
associating with buttons 149
binding

Clear All 157
Scribble 156
to toolbar buttons 162

ClassWizard, Messages list box 157
Clear All 136, 156-157
Cut, Copy, Paste 144
Debug menu 93
defined 153
described 151
examples 153
framework

implementations 111
invoking 143

in frameworks 49
mapping

to code 149
to handlers 151

messages 144, 151

Index 413

Open, implementation and serialization 111
Pen Widths 136, 142, 156
Project menu, Execute Target 93
prompt strings

described 139
status bar 225

routing
described 155
to objects 153

Save As, implementation and serialization 111
Save, implementation and serialization 111
Scribble

Clear All 151, 156
described 136, 140
Thick Line 151, 156

sending 153
targets 153
Thick Line

binding 160
described 136, 141, 156
toolbar button 143

WM_COMMAND message 153
Comments, TODO, by AppWizard 112
Compiler, command-line options, viewing 45
Compiling

starter application 88, 92
starter files 92

Complete installation 6
Configuration files, project 51

414 Index

Connecting
messages to code, with ClassWizard 125
toolbar buttons to code 149

Constructing pen objects in two stages, procedure 124
Constructors, class CStroke 107
Contain, serialization, class CCntrItem 280
Contain sample application

building
step 1 287
step 2 266

calling AfxOleInit 273
calling CDocTemplate 273
creating Scribble drawing from inside 271
deactivating Scribble items 266
deleting embedded objects 286
determining size of contained objects 279
drawing embedded objects 285
editing in-place activated objects 272
embedded objects

deleting 286
drawing 285

embedding Scribble items 238
features

described 265
step 1 267,269
step 2 267,289

goals
step 1 269
step 2 267, 289

hit testing, implementation 280
in-place editing Scribble items 266
initializing OLE libraries 273
inserting

OLE items 266
Scribble step 7 items 266

installing OLE container applications 238
menu merging

described 273
with Scribble, step 7 266

negotiating size of objects 296
prerequisites, running servers 266
previewing program 266
redrawing tracker rectangle 267
resizing Scribble items 267
step 1 287
step 2 266
summary of AppWizard generated code 272
tracker rectangle 266
using

before adding code 272
described 271

Container application defined 265
Containers, creating with AppWizard 269

Contents Window
controls 37
Help

navigating within 21
opening 21

shortcut keys 37
Contents; stand-alone Help files 20
Context-sensitive help 230

customizing 35
described 31,227-230
fine-tuning 227
framework's role 226
Help menu, support for 227
Help-related files 234
implementing with AppWizard 227
not implemented in Scribble step 0 229
option

products of 229
selecting 228

SHIFf +Fl help, described 226
trying it out 229

Context-sensitive help option 229
Control palette, Myapp tutorial application 67
Control property, ClassWizard 359
Controls

binding
example 353
to recordsets 353

custom
32-bit OLE, creating 43
using with Visual C++ applications 45, 243

dialog
creating data maps 180-183
discussed 182
modifying properties 171

dragging 142
dragging and dropping 67
Enroll sample 352
VBX, using with Visual C++ applications 45

Converting existing projects 51
Copying resources

accelerators 232
discussed 231
menus 231

CPen class 109, 124
CPenWidthsDlg class, Scribble example, creating 174
Create member fnnction, class CSplitterWnd, example 211-

212
CreatePen member function

called in DrawStroke 124
called in ReplacePen 161
class CPen 124

Creating
AppWizard project directory 89
class CScribDoc 101
document objects 99
new applications, process 87
objects dynamically 112
OLE automation servers with AppWizard 307
view objects 119-120

CRecordset introduced, tutorial 346
CRecordView introduced, tutorial 346
CRectTracker class

changing cursors 284
SetCursor member function 284
usage during selection 282

CRectTracker objects 286
Cross-platform questions and answers 39-42
CScribbleApp class

discussed 91
InitInstance member function, adding OLE server support

244
CScribDoc class

adding access function 246
AppWizard, and 101
changing base class to COleServerDoc 245
code for 102
creation of 10 1
declaration of 10 1
discussed See lnitDocument
GetEmbeddedItem member function 246
implementing embedded item support 246
initialization 109
introduced 100
member functions 104
member variables 104
OnGetEmbeddedItem member function, adding embedded

item support 246 "
role of 100
Serialize member function 112

CScribFrame class
described 210
Scribble example 212

CScribltem class
OnDraw member function implemented 259
OnGetExtent member function

explained 260
setting size of document 260

CScribView class
AppWizard, and 120-122
calls strokes to draw themselves 123
declaration of, code for 120
described 120
member functions of 122
member variables of 121
OnDraw member function, defined 122

Index 415

CScrib View class (continued)
OnlnitialUpdate member function, calling SetScrollInfo

262
OnPrepareDC member function, overriding to implement

logical sizes 261
SetScrollInfo member function, overriding to implement

logical sizes 262
CScrollView class

described 198
example 200
member functions, SetScrollSizes 198

CSectionForm class, Enroll sample 350
CSectionSet class

described 356
Enroll sample 349

CSplitterWnd class
described 208-210
example 211-213

CStroke class
code for 106
constructors 107
declaration of 106
described 105
forward declaration of 102
IMPLEMENT_SERIAL macro 114
incremental versions of 114
member functions of 107
member variables of 107
members used by view 123
Serialize member function, code for 114

CTRL+Double-click 359
binding controls 353-354
pushbuttons 354

Current record, updating 375
Cursor, changing when moving over selected item 284
Custom controls

32-bit OLE, creating 43
using VBX with Visual C++ applications 45

Custom installation
dialog box 8-12
discussed 6
options 8-12

Customizing
context-sensitive Help 35
Help files location 17
search order in Books Online 36

CViewclass
derived classes of

CEditView 118, 120
CForrnView 118,120
CScrollView 118

416 Index

CView class (continued)
member functions

OnPrepareDC 202
OnUpdate 190--191

your view class derived from 118
CWnd class member functions

DoDataExchange 183-186
UpdateData 184, 186

o
Data

delegating drawings to 123
loading from disk See Serialization
management of, in document 98
maps for dialog controls

described 180
example 181-183

Scribble 100
sources, selecting, Enroll sample 347
storing

in documents 98
to disk See Serialization

types 115
view's access to document 119

Database applications
AppWizard 346
ClassWizard 346
document

as proxy for database 351
role 350
uses 351

File menu, role of 351
user interface guidelines

discussed 371
MS Access 371

Database connections, Recordset 366
Database options, adding, Enroll sample 347
Database support options, AppWizard 60
DDX (dialog data exchange), ClassWizard 69
Deaf, Microsoft services for the 388
Debug menu

Breakpoints command 93
discussed 93
Go command 93

Debug window 54
Debugger

breakpoints
discussed 54
running to 78
setting 78

Debug window 54
displaying memory addresses 44
features 54

Debugger (continued)
Just-In-Time 44
Locals window 54
Memory window 54
multithreaded capabilities 54
QuickWatch dialog 54
Registers window 54
tracing commands 54
Watch window 54
Win32s programs 42

Debugging, Scribble 93
Decimal to hexadecimal, changing in Watch window 45
Declaration

class CScribDoc 101
class CScribView 120
class CStroke 106
forward, of class CStroke 102

DECLARE_DYNCREATE macro 112
DECLARE_SERIAL macro 114
Default applications, modifying 64-66
Default extensions, AppWizard 90
Default installation directories 39
Defauh lllenus, cfeated by App\Vizuld 136
Delegating drawings to data objects 123
Delete operator, C++, examples 160
De1eteContents member function

called from OnEditClearAll 159
described 110, 160
overriding, code for, in Scribble 110
Scribble 11 0
when called 110

DeleteContents, overriding, Scribble 103
DeleteObject member function, called in ReplacePen 161
Deleting

column bindings, tip 350
embedded objects 286
records 371,376
Recordset records 371
strokes in Scribble, OnEditClearAll member function 159
toolbar buttons 144

Description of new files, Scribble, step 7 242
Design Guide See Windows Interface: An Application Design

Guide
Development

application 47-55
environment, questions and answers 39
process 51-54
test drive 59-60, 74-82

Device coordinates
converting, example 203, 206
described 203

Device-context object
class CDC 123
encapsulated by CDC object 123

Device-context object (continued)
OnDraw member function use 123
restoring, in DrawStroke 124
uses of 123

Dialog boxes
connecting to code 173
controls

arranging 173
modifying properties 171

creating
discussed 171
Myapp tutorial application, adding to 67

data map for controls
described 180
example 181-183

defining message handlers 173
designing 170-171
displaying 184-185
Fl, pressing in 31
Grid Settings 145
IDs, assigning 171
MFC AppWizard 60
New Project 60
Property Page 171
Setting Tab Order 173
using ClassWizard 173

Dialog classes, creating, Myapp tutorial application 68
Dialog Data Exchange (DDX), Class Wizard 69
Dialog Data Exchange functions 183
Dialog Data Validation functions 183
Dialog editor

controls, dragging and dropping 67
discussed 142,170-171
Myapp tutorial application 67

Dialog template resource, customizing 352
Dimming user-interface objects 163
Directories

CD-ROM (list) 5
default installation 39

Directory options, installation 8
Directory, AppWizard project 89
Dirty, marking document when contained item changes,

Contain application 279
Disabled

Access Pack for Microsoft Windows 388
hearing disabilities 388
keyboard layouts for single-handed users 389
motion 388

Disabling user-interface objects 154, 163
Dispatch interface 302
Dispatch maps 312
Dispatching messages, message map 154
DLLs, running under Win32s 44

Index 417

Document
frame windows and view objects 118
member functions, calling from view 119
member variables, access to from view 119

Document classes
See also CScribDoc class
code for 102
Scribble 100, 107
serialization of 112

Document objects
cleanup 110
creating 99-100
deallocating system resources 108
defined 98
derived from class CDocument 99
frame windows 98
in framework 49,97
initializing 108
interaction with view 119
introduced 96
managing 108
multiple views 119
relation to other objects 97
responsibilities of 98
role of frameworks 98
separation from data view 98
updated by view 119
user interaction with, through view 118
view, interaction with, described 99

Document role, database applications 350
Documentation, online reference 37
Documents

See also Document objects
as proxy for database 351
marking dirty when contained item changes, Contain

application 279
notifying view of changes 190--191
Recordsets, embedded in 360
relationship to view, illustrated 49
views, and

illustrated 98
interaction between 99
roles described 98

DoDataExchange member function, class CWnd 183-186
DoFieldExchange, Enroll sample 365
DoModal member function, class CDialog

described 185
example 186

DoPreparePrinting member function, class CView, example
220

Double-click event, activating server 284
DPtoLP member function, class CDC, example 217

418 Index

Dragging and dropping
controls in Dialog Editor 67
discussed 142

Drawing
delegating to data objects 123
embedded objects 285
environment

See also Device-context object
restoring 124

in view objects 119
Scribble's document 122
strokes

discussed 130
initiating 128
terminating 129
tracking mouse 130

views 99
with mouse 119, 124

DrawStroke member function
class CScribView 123
class CStroke 123
pen used in 124

Unvers, installation directories 9
Dual-boot computer, system requirements 4
Dynamic creation of objects 112

E
Edit Code button, ClassWizard, described 158
Edit control, changing to combo box, Enroll sample 357
Edit menu

Clear All command 136
Copy command

AppWizard generated support 289
implementing 289

Cut, Copy, Paste commands 144
Insert New Object menu item, differences from Edit Paste

291
Paste command

Editing

AppWizard generated support 289
differences from Edit Insert New Object 291
implementing 290

bitmaps, toolbar buttons 144
class names, ClassWizard 271,309,348
code from ClassWizard 152, 158
color bitmaps, 8- or 24-bit-pixels 45
controls, modifying properties, example 171
dialog boxes 170--171
filenames with AppWizard 271,309,348
graphics 144
menus 136,137
message maps 153

Editing (continued)
records 375
symbols 149

Editors
dialog 142
graphics 144
menu 136, 142
resource

discussed 142
using Visual C++ as general purpose 45

Embedded CDatabase object, document 367
Embedded objects

deleting 286
described 113
drawing 285
serialization of using Serialize member function 113
vs. pointer to object 113

Enabling
menu items, example 165
user-interface objects

buttons 154
discussed 163
iliel1iiS

Ending strokes 129
Enroll sample

accelerators, adding 374
added records, reflecting 380
AppWizard 347
binding controls 353
CBN_SELENDOK message 368
class and files created 348
class CCourseSet 356
class CEnrollDoc 350
class CSectionForm 350
class CSectionSet

discussed 349
overview 356
relation to record view 356

combo boxes 357
binding to recordset 358
filling from recordsets 361

command handlers
adding 374
described 374
OnRecordAdd 376
OnRecordDelete 381
OnRecordRefresh 382

command updating, limitation 356
controls

binding to recordset 358
binding to recordsets 353
discussed 352
unbinding 358

creating the application 347

Enroll sample (continued)
data sources, selecting 347
database options, adding 347
described 338
dialog template resource, customizing 352
DoFieldExchange 365
edit control, changing to combo box 357
error handling 381
exceptions 381
File menu, role of 351
filters

parameter placeholder 366
role of 364

location 338
m_pSet member 353
m_sectionSet member 351
making it the current project 349
menu commands 373
message handlers 374
move behavior 380
OnlnitialUpdate function 350
OnRecordAdd handler, and OnMove 378
OnRecordDelete 381
OnRecordRefresh 382
parameter data members

binding 365
discussed 364
DoFieldExchange 365

parameters 366
records, basics of adding, editing, deleting 375
recordsets

AddNew member function 378
opening 350

requerying with filters 364
results, Step 1 354
second recordset, creating 359
student registration database 337
tables, selecting 347
tutorial 337
user interface design 372

Environment, development questions and answers 39
Error handling, Enroll sample 381
Error messages, Help on 28
Error strings, CDBException 381
Exception handling

structured 54
supported in Visual C++ 43

Exceptions
catching in Scribble III
Enroll sample 381

Exclusions, built-in
narrowing searches 28
searches 28

Executable files, installation directories 8

Execute Target command 93
Executing Scribble 93
Extensions book set 37

Index 419

Extent changes, updating client item 298-299
Extraction operator, class CArchive 113

F
PI Help

described 226
on error messages 28
on keywords 28
Output Window 29
pressing on dialog boxes 31
pressing on Menu commands 31
Source Window 29

Files
adding to your installation 13
Help related 234
Help, App Wizard-created, conditions of use 226
Help, customizing location 17
resource 143

Filter strings 364
Filtering Recordsets 363
Fine tuning context-sensitive help 227
FinishStroke member function, CStroke, Scribble example

193
Form-based applications, tutorial 345
Forms introduced, tutorial 346
Frame windows, documents and view objects 118
Frame windows, as view creators 119
Framework

application objects 49
benefits of using, described 50
code in, illustrated 50
command implementations III
commands 49
concepts, key 49
creating view objects 119
defined 48
described 48, 87
document

and view, separation of 98
object 49
role of, in 97

general process in using 49
help, role in supporting 226
implementing commands 108
main tasks in 49
partnership

framework's role 50
your role 50

purpose 48
reusability 48

420 Index

Framework (continued)
role of documents in 98
terminology 48
using, described 48
view objects 49
views in 119

Full-server, adding AppWizard-generated code to existing
applications 239

Full-text Search
Books Online 24
narrowing searches 27

Function handlers 151
Function templates 152

G
Generating commands 151
GetCapture member function, class CWnd, called in

OnMouseMove 131
GetDocument member function

called by OnDraw 123
class CScrib View

in debug version 122
inline definition of 122
IsKindOf member function 122
RUNTIME_CLASS macro 122

class CView 119
GetEmbeddedItem member function, class CScribDoc 246
GetExtent member function, class COleClientItem, when called

297
GetFirstStrokePos member function, called by OnDraw 123
GetNextStroke member function, called by OnDraw 123
Getting extent, client items 297
Graphical user interface (GUI), programming for See GUI
Graphics

editing See Bitmap editor
palette 144

Graphs, examining base class 77
Grid settings, dialog box 145
Grids, bitmap editor 145
GUI (graphical user interface) 83

H
Handlers

See also Message handlers
discussed 154
exception, in Scribble 111
function

creating with ClassWizard 125
discussed 151
in command target 154
menu items 143
toolbar buttons 143

Handlers (continued)
messages, in view objects 124
names, synthesized by ClassWizard 158
OnEditClearAll member function, Scribble 159

Handling Windows messages 124
Hard disk

Books Online installed to 34
system requirements 3

Hard-of-hearing, Microsoft services for the 388
Hearing disabilities, Access Pack for Microsoft Windows 388
Hello world program, replaced by Scribble 83
Help

alternative topics, choosing between 30
browsing topics 21
button, toolbar 144
categories 28
choosing between alternative topics 30
Contents window

controls 37
navigating within 21
opening 21
shortcut keys 37

context-senSluve
See also Context-sensitive Help
customizing 35
discussed 31

customizing
files location 17
installation 34
search order 36

discussed 17
Fl

described 226
on error messages 28

files See Help files
Full-text Search 27
Help Search 24
How-To-Topics 33
installation, customizing 34
Keyword Search 23-24
menus, support for 227
on error messages 28
on keywords 28
Quick Reference See Quick Reference Help
Search keywords, using 27
Search Plus 23
searching 23
SIDFT+Fl, described 226
shortcut keys

Contents Window 37
described 37

stand-alone
contents 20
files contents 20

Help (continued)
support

See also Context-sensitive help
division of labor 226,227
framework's role 226

topics
browsing 21
choosing between alternative 30

viewer
buttons 37
using 37

Viewer window
browse buttons 22
Search Help 22
navigating within 22

Visual C++, getting 32
Help Compiler, installation directories 10
Help File Options Dialog Box 10
Help files

App Wizard-created, conditions of use 226
C/C++ book set 37
installation directories 8
Extensions book set 37
MFC book set 37
Notepad Help 20
ODBC 2.0 SDK book set 37
OLE 2.0 SDK book set 37
Setup Help 20
Spy++ Help 20
starter set of RTF files 227
Technical Support Help 20
User's Guides book set 37
U sing Hotspot Editor 20
VC20BKSl.HLP 37
VC20BKS2.HLP 37
VC20BKS3.HLP 37
VC20BKS4.HLP 37
VC20BKS5.HLP 37
VC20BKS6.HLP 37
VC20BKS7.HLP 37
Visual C++ 2.0 Knowledge Base 20
Win32 SDK book set 37
Windows Sockets 20
Windows Sockets for NT 20

Help mode See SHIFT+Fl

Help Search 23-24
Hexadecimal display, changing to in Watch window 45
Hierarchical menus 142
Hierarchy, command target 154
Hit testing 280
HitTestItems member function, class CContain View, defined

280
Hot spot editor 16
How-To Topics, Help on 33

ID, command 140
ID_SEPARATOR See Toolbar
IDR_MAINFRAME, menu ID 137
Image editor See Bitmap editor
Image window 144
IMPLEMENLSERIAL macro

and DECLARE_SERIAL macro 114
class CStroke 114
code for, in Scribble 114
example 193
in Scribble 114
schema number in 114

Implementing views 120
In-place toolbars, order of buttons

discussed 255
provided by AppWizard 254

Include files, installation directories 8
Inheritance, in Class Library 48
Inherited behavior, replacing 129
InitDocument member function

code for, in Scribble 109
discussed 108, 163
OnNewDocument, called in 109
OnOpenDocument, called in 109
pen, initialization of 109
Scribble, code for 161

Initial toolbar, AppWizard project option 60
Initializing

Scribble's document 109
the document, described 108
views 119

Initiating stroke drawing, in Scribble 128

Index 421

InitInstance description of AppWizard generated code
Contain 273
OLE container application 273

InitInstance member function
class CScribbleApp, adding OLE server support 244
class CWinApp, example 213

Input/output See Serialization
Insert Object dialog box, use in CContainView 274
Insertion point 142
Installation

adding libraries or files 13
Books Online

to hard disk 34
to network location 34

CD-ROM
described 6
or network server 12-13

complete 6
custom 6
customizing Help 34

422 Index

Installation (continued)
default installation directories 39
directories

Books Online 11
C/C++ Language Help 11
directory options 8
discussed 8
drivers 9
executable files 8
Help Compiler 10
Help files 8
include files 8
installation 8
library files 8
MFC files 8
MFC Library Help 11
MFC Samples 12
MFC Tools 10
Microsoft C/C++ Compiler and Libraries 9
Microsoft Foundation classes 9
Microsoft Visual C++ Development Environment files

9
OLE API Help i i
OLE SDK Samples 12
OLE SDK Tools 10
Online Help files 10
Profiler 10
Sample Source Code 12
sample source files 8
Spy++ 10
tools 10
Win32 API Help 11
Win32 Samples 12
Win32 SDK Tools 10

files, adding 13
Help, customizing 34
Installation Options Dialog Box 6
libraries, adding 13
minimum 6
network installation 13
options

Change Directory Dialog Box 8
custom 8-12
Win32s 15

procedures 6-9
questions and answers 39-41
Quick Guide to Installation 4
setup programs 4
system requirements 3-4
Visual C++

Win32s applications 5
Windows NT targets 5

Win32s 14
WORM (Write Once Read Many) drives 12

Installation Options Dialog Box 6, 15
Installing OLE container applications, Contain 238
Installing Visual C++ 4-13
Interaction between documents and views 99
InvalidateRect member function, class CWnd, example 206
Invalidating

deselected objects, smart invalidation 294
objects when moved by servers, smart invalidation 295
selected objects, smart invalidation 294
tracked objects, smart invalidation 295
views, smart invalidation 292

Invoking
App Wizard 87
commands in framework 143

IsKindOf member function, called by GetDocument 122
IsSelected member function, class CContainView, defined 273
IsStoring member function, class CArchive 113

J
Jumping to code from ClassWizard 152, 158-159
Just-in-Time debugger and debugging 44

K
Keys, shortcut 37
Keyword Search

described 24
Help 23

Keywords

L

Help on 28
Search 27

Language elements, Help with Keyword Search 24
Lengthening toolbar bitmaps 146
Libraries

adding to installation 13
building Win32s executables under Windows NT 42

Library files, installation directories 8
LineTo member function, class CDC 123
Link formats, putting on the Clipboard, Server application 258
Loading data from disk See Serialization
Locals window 54
Locating handlers, guidelines 157
Logical coordinates

converting, example 203,206
described 203

M
m_pSelection member, class CCntrItem, Contain 273
m_pSet member, Enroll sample 353
m_rect data member, defined, class CCntrItem 278
m_sectionSet member, Enroll sample 351
m_strFilter member, Recordset 363
m_strokeList

cleanup of See DeleteContents
variable, Scribble 100

Macintosh
Microsoft Foundation Class Library supported on 42
porting Windows applications to 42

Macros
DECLARE_DYNCREATE 112
IMPLEMENT_SERIAL 114
ON_ WM_LBUTTONDOWN 127
RUNTIME_CLASS 122

.MAK (Makefile) project files 51,84
Makefile (.MAK) project files 51,84
Mapping

buttons to commands 149
commands

to code 149
to handers 151

dialog controls to member variables
described 180
example 181, 182, 183

discussed See Binding, command
messages to code 125
modes

metric 216
MM_LOENGLISH, in Scribble 133
MM_TEXT, in Scribble step 1 133
printing 216

MDI applications
See also Multiple document interface
and view objects 118
default menus 136
discussed
menus 137

Member function template See Member functions, definition
Member functions

AddTail, class CObList 110
CreatePen, class CPen 124
definition 158
DeleteContents, class CDocument 110
DrawStroke, class CStroke 123
GetCapture, class CWnd 131
GetDocument, class CView 119
IsKindOf, class CObject 122
IsStoring, class CArchive 113
LineTo, class CDC 123
message handlers 151

Index 423

Member functions (continued)
MoveTo, class CDC 123
OnDraw, class CView 119
OnInitiaiUpdate, class CView 119
OnLButtonDown, class CWnd 127-128
OnLButtonUp, class CWnd 129
OnMouseMove, class CWnd 130
OnNewDocument, class CDocument 108
OnOpenDocument, class CDocument 108
OnUpdate, class CView 119
ReleaseCapture, class CWnd 130
RemoveHead, class CObList 110
SelectObject, class CDC 123
Serialize

class CDocument 112
class CObject 112

SetCapture, class CWnd 129
SetModifiedFlag, class CDocument 110
UpdateAliViews, class CDocument 119

Member Functions list box, ClassWizard, described 158
Member variables

adding to Scribble 162
adding, Myapp tutorial application 68
naming conventions 104

Memory
addresses, displaying in integrated debugger 44
system requirements 3
window 54

Menu commands
Enroll sample 373
Fl, pressing 31

Menu editor
discussed 136-137, 140-142
saving work 140

Menu items
adding

Class Wizard 70
Myapp tutorial application 70

checking 163
disabling 163
enabling 163
Properties Window 138

Menus
adding 137, 140
automatic saving of edits 140
caption 138, 141
checked state 167
copying 231
default 136
dragging 141
Edit Cut, Copy, Paste 144
editing 136, 137
hierarchical 142
MDI application 136

424 Index

Menus (continued)
merging 273
message-handler code, ClassWizard 71
new, adding 137
Pen (Scribble) 136, 140
specifying accelerator keys 139
window 136

Message handlers
addiug, Class Wizard 71
classes 156
dialog boxes, example 173, 177-179, 183-184
Enroll sample 374
for menu commands, example 185
in Scribble, mouse tracking 125
location, guidelines 157
update, making update handlers fast 165

Message maps
command targets 154
copying help entries 233
defined 154
described 154
dispatching messages 154
editing 153
example 180
OnUpdateEditClearAll member function, example 165
OnUpdatePenThickOrThin member function 167
update handler entry 165
view objects 124
writing manually 155

Message Maps Property Page, ClassWizard 103
Message-driven programs 151
Message-handler functions

adding to code 128
discussed See Message handlers

Message-handler member functions
See also Message handlers
described 151

Messages
command 144
connecting to code 125
discussed 151
list box, Class Wizard 157
responding to 151
sending 151
sent to windows, currently active view 124
Windows, handling 124
WM_LBUTTONDOWN 124
WM_LBUTTONUP 124
WM_MOUSEMOVE 124

Metric mapping modes See Mapping modes, metric
MFC

book set 37
files installation directories 8

MFC AppWizard dialog box 60

MFC Library Help installation directories 11
MFC Samples installation directories 12
MFC Tools installation directories 10
MFCNOTES.HLP file 227
Microsoft CIC++ Compiler and Libraries installation

directories 9
Microsoft Foundation Class Library

16-bit vs. 32-bit versions 46
creating code using AppWizard without support of 46
defined 48
development process 51
installation directories 9
Macintosh, supported on 42
questions and answers 39,45-46, 243

Microsoft product services
deaf 388
hard-of-hearing 388
telephone, text 388
TT/TDD 388

Microsoft Program Maintenance Utility (NMAKE) 51
Microsoft Subsidiary offices 398
Microsoft Support Services 393-405
Microsott Visual C++ Development hnvlronment fIles

installation directories 9
Minimum installation 6
MIPS target 43
Mixed-language programming in Visual C++ 44
MKTYPLIB, creating OLE type library with 313
MM_LOENGLISH mapping mode

described 216-217
in Scribble 133

MM_TEXT mapping mode
described 216-217
in Scribble 133

Monitor, system requirements 3
Mouse

capturing 128
drawing

discussed 1l9, 151
in Scribble 124
why handled by view 124

related messages, in Scribble 124
releasing 129
tracking 130

Mouse-driven drawing See Drawing
MoveTo member function, class CDC 123
\MSVC20\BIN CD-ROM directory 5
\MSVC20\DEBUG CD-ROM directory 5
\MSVC20\HELP CD-ROM directory 5
\MSVC20\INCLUDE CD-ROM directory 5
\MSVC20\LIB CD-ROM directory 5
\MSVC20\MFC CD-ROM directory 5
\MSVC20\REDIST CD--ROM directory 5
\MSVC20\SAMPLES CD-ROM directory 5

Multiple document interface (MOl) See MOl
Multiple recordsets, Record views 355
Multithreading, debugging capabilities 54
Myapp tutorial application

N

adding user-interface objects 67-74
applications, building and running 74
base class graphs, examining 77
browsing 75-77
building and running 63,74
ClassWizard, dialog data exchange (DDX) 69
code, tracing 81
debugging 78-82
default application for AppWizard 60
dialog boxes 67
dialog classes, creating 68
dialog editor 67
member variables, adding 68
menu items, adding 70
QuickWatch dialog box, examining variables 79
tracing through code 81
tutorial 60-74
variables, examining 79

Naming
conventions

classes 104
classes and member variables 101
member variables 104

document types, AppWizard 90
Narrowing searches

described 28
Search Plus 25

Negotiating size of objects, Contain application 296
Network

installation from CD-ROM drive 4
running Visual C++ over 40

Network location, Books Online, installing to 34
Network serverinstallation 12-13
New command, framework, implementation of 108
New menus, adding 137
new operator

invoked in NewStroke 110
return value 111

New Project dialog box 60
Ne~Stroke member function 110
NMAKE (Microsoft Program Maintenance Utility) 51
Notepad Help 20

Index 425

o
Object IDs list box 157
Objects

application, table of 97
discussed See Application
document, introduced 96
dynamic creation of 112
embedded 113
user-interface

connecting to code 53
creating 52
discussed 47, 154
editing 52
Myapp tutorial application, adding to 67-74

view, introduced 96
ODBC

data types 342
database drivers

installation 340
obtaining 32-bit drivers 339

filter strings 364
registering Student Registration database 339
SQL CREATE TABLE 342

ODBC 2.0 SDK book set 37
ODBC Administrator

adding data sources 340
found in Control Panel 340

ODBC Drivers Dialog Box, installing Visual C++ 9
OLE

Container and Server option, AppWizard 60
Container option, AppWizard 60
Containers, creating with AppWizard 269
custom controls, creating 32-bit 43
Full Server option, AppWizard 60
items

editing in-place activated items, from Contain 272
inserting, Contain sample 266

Mini-Server option, AppWizard 60
options, AppWizard 60
SDK Samples, installation directories 12
SDK Tools, installation directories 10
Type library, creating 313
verbs, editing 272

OLE 2.0 SDK book set 37
OLE API Help installation directories 11
OLE Automation

advantages 301
creating automation servers with AppWizard 307
dispatch interface 302
dispatch interface name 309-310

changing 309
examples of use 301
method 302

426 Index

OLE Automation (continued)
property 302
reasons for using 301
tutorial 301

OLE Control projects 60
ON_UPDATE_COMMAND_UI macro, example 165
ON_ WM_LBUTTONDOWN macro 127
OnChange member function, class CCntrItem

defined 276
when called 297

OnChangeItemPosition member function, class CCntrItem
defined 277, 279
supporting hints 295
when called 297

OnCreateClient member function, class CFrameWnd
described 208
example 210, 212

OnDefaultPenWidths member function, class CPenWidthsDlg,
Scribble example 178, 183

OnDraw member function
class CClikView 315
class CContainView

uefiueu 273
drawing embedded items 285

class CScribItem, implemented 259
class CScribView, defined 122
class CView 119, 122, 196
must override 119

OnEditChangetext member function, classCClikDoc, defined
317

OnEditClearAll member function
code for Scribble 159
described 159
Scribble 159

OnEditCopy member function, class CContainView, defined
289

OnEditDelete member function, class CContainView, drawing
embedded items 287

OnEditPaste member function, class CContainView, defined
290

OnGetEmbeddedItem member function, class CScribDoc,
adding embedded item support 246

OnGetExtent member function, class CScribItem 260
OnGetltemPosition member function, class CCntrItem, defined

277,279
OnlnitialUpdate function, Enroll sample 350
OnlnitialUpdate member function

class CScrib View, calling SetScrollInfo 262
class CView

described 119
example 201-202,217

overriding 119

OnlnsertObject member function, class CContain View
defined 274
updating rectangle when extent changes 299

OnLButtonDblClick member function, class CContainView
284

OnLButtonDown member function
class CClikView, defined 315
class CContain View

defined 282
selecting embedded objects 282
setting tracker rectangle around selected object 282
supporting hints 295

class CScribView, creating 127
class CWnd, example 203
creating 128
default definition 127
defined 129
described 128
mouse, capturing 128
replacing inherited behavior 129

OnLButtonUp member function
class CWnd, example 204
_____ .. ~_ ~ 1,...n
L-lva.Llllb .1"'7

defined, in Scribble 130
described 129
mouse, releasing 129

Online documentation
Books Online 17
Help 17
reference 37

Online Help files, installation directories 10
OnMouseMove member function

class CWnd, example 204
creating 130
defined, in Scribble 131
described 130
mouse, tracking 130

OnMove member function, examples of use 378
OnNewDocument member function

and AppWizard 108
code for overriding, in Scribble 109
overriding 108
when called 108

OnOpenDocument member function
code for overriding, in Scribble 109
overriding 108
when called 108

OnOpenDocument, overriding, Scribble 103
OnPenThickOrThin member function 160
OnPen Widths member function, class CScribDoc, Scribble

example 185

OnPrepareDC member function
class CScribView, overriding to implement logical sizes

261
class CView

CScrollView version 202
example 204-206

OnPreparePrinting member function, class CView, example
219,223

OnPrint member function, class CView, example 220-221
OnRecordRefresh, Enroll sample 382
OnSetCursor member function, class CContain View, defined

284
OnSetFocus member function, class CContainView, defined

275
OnSize member function, class CContainView, defined 276
OnUpdate member function

class CContainView, defined 293
class CView 119
described 190-191
example 195,205
overriding 119

OnUpdateEditClearAll member function
CCmdUI argument to 165
code for 165
described 165
enabling menu item 165
message map 165
use of CCmdUI structure 165

OnUpdateEditDelete member function, class CContain View,
drawing embedded items 287

OnUpdatePenThickOrThin member function
adding to Scribble 166
code for 166
described 166
message map 167

Open command
framework

implementation in 108
implementation of 111

implementation, in Scribble 113
Operators, CArchive extraction 113
Options

AppWizard
adding later 226
advanced 90
application creation 52
default 90

command-line, viewing 45
context-sensitive help 228
directories

Books Online 11
C/C++ Language Help 11

. drivers 9
executable files 8

Index 427

Options (continued)
directories (continued)

Help Compiler 10
Help files 8
include files 8
installation 8
library files 8
MFC files 8
MFC Library Help 11
MFC Samples 12
MFCTools 10
Microsoft C/C++ Compiler and Libraries 9
Microsoft Foundation classes 9
Microsoft Visual C++ Development Environment files

9
OLE API Help 11
OLE SDK Samples 12
OLE SDK Tools 10
Online Help files 10
Profiler 10
sample source files 8, 12
Spy++ 10
tools 10
Win32 API Help 11
Win32 Samples 12
Win32 SDK Tools 10

installation
directory options 8
Win32s 15

Installation Options Dialog Box 6
setting in tutorial program 86

OS/2 applications, writing with Visual C++ 43
Output Window, Fl Help 29
Overriding

p

DeleteContents member function 110
OnInitialUpdate member function 119
OnNewDocument member function 109
OnOpenDocument member function 109
OnUpdate member function 119
Serialize member function, in Scribble document 112

Page headers and footers, example 222
Panes, splitter window 206, 208
Parameter data member, Enroll sample 364
Parameterizing, Recordset 363
Parameters, multiple, Enroll sample 366
Path, AppWizard, setting 89
Pen

drawing in Scribble 144
initialization, in Scribble 109
menus 136

428 Index

Pen (continued)
objects

construction of, two stage 124
described See CPen class
initializing pens 124

Scribble,OnPenThickOrThin 160
thickness 144

Pen Widths
command, Scribble example 169
dialog box, Scribble example 170
implementing 185

PEN.RTF file 235
Persistent storage See Serialization
Pixel grid 145
Pointer to object, vs. embedded objects 113
Portability, serialization 115
Porting

16-bit applications to Win32 41
character-mode applications to Windows NT 41
Win32 SDK Projects 43
Windows applications on Macintosh 42

Positioning the pen, MoveTo member function 124
Posix applications, writing with Visual C++ 43
Previewing bitmaps 144
Primary key, caution deleting 360
Print preview, example 223
Printing

described 215
example 216
headers and footers 222
Scribble step 1, MM_TEXT mapping mode 133

Printing and Print Preview, AppWizard project option 60
Procedures

adding
member variables 162
message-handler functions 128
update handler for Clear All menu item 164
update handler for Thick Line menu item 166
update handlers 230

binding
Clear All command 157
Scribble's Thick Line command 160
toolbar button to Thick Line command 162

building, Scribble 132
connecting messages to Scribble's code 125
copying

accelerators 232
help-related code to new applications 233
help-related files to new applications 234
menus 231
resources 231

creating Myhelp application 231

Procedures (continued)
enabling

help-mode toolbar buttons 233
toolbar buttons 233

selecting
context-sensitive help in AppWizard 228
debug or release options 86

trying context-sensitive help 229
using ClassWizard 125, 153

Process, creating new applications 87
Processor, system requirements 3
Product support 395-398
Profiler, installation directories 10
Programming, mixed-language in Visual C++ 44
Programs

samples
Microsoft Foundation classes, Hiersvr 266
OLE SDK, locations of 265
OLE SDK, Program Manager group reference 265

tutorial, building, basic information 85
Project files, makefile 84
Projects

configuration files 5 i
converting existing 51
defined 51
files, Visual C++ for Windows on Macintosh 45
menu 93
options, AppWizard 60
types, App Wizard default 60

Prompt
command

default 142
editing 139

strings 225
Properties

caption 141
ID, selecting 139

Properties Window, Menu items 138
Property page dialog 171
Pushbutton controls, modifying properties, example 172
Pushbuttons, CfRL+Double-click 354

Q
Questions and answers

cross-platforms 39-42
development environment 39
general information 43
installation 39-41
Microsoft Foundation Class Library 39, 45-46, 243
overview 39-46

Quick Reference Help
contents 19
opening 32

,

" Quick Reference Help (continued)
overview 17
subset of Books Online 18
vs. Books Online 17

QuickWatch dialog box
described 54
Myapp tutorial application, examining variables 79
variables, examining 79

Quote character, filter strings 364

R
Receiving hints, smart invalidation 292
Record views

and CForm View 352
controls, binding to recordset 353
dialog template resources, customizing 352
introduced, tutorial 346
on multiple recordsets 355

Records, addiing, editing, deleting 371,375-376
Recordsets

adding records 371
and documents 360
CDatabase objects

relation to 366
sharing 367

combo boxes, filling from 361
database connection 366
deleting records 371
filrerstrings,caution 364
fIltering example 363
introduced, tutorial 346
m_strFilrer data member 363
opening, Enroll sample 350
parameterizing 363
requerying 356,368
sorting 367
using a second 355

Redrawing views
See also Drawing the view
discussed
optimizing, in OnUpdate override 119

Refresh member function, class CClikDoc, defmed 315
Registers window 54
ReleaseCapture member function, class CWnd, called in

OnLButtonUp 130
Releasing the mouse 129
RemoveHead member function, class CObList 110
ReplacePen member function 161
Requerying

no records returned 369
Recordsets 356

Resizing Client Items 276
Resource browser window, ClassWizard 70

Index 429

Resource editor, using Visual C++ as general purpose 45
Resource files

discussed 143
Scribble example 136
skeleton 136

RESOURCE.H file, #define statements 149
Resources

browsing 144
copying 231-232
type, Menu 136

Restoring the device context 124
Reuse of framework classes 48
Routing commands See Command routing
.RTF files, starter set 227
Running under Win32s, applications and DLLs 44
RUNTIME_CLASS macro 122

s
Sample source code, installation directories 8, 12
Sample Source Options Dialog Box 12
Save As command

framework, implementation of 111
implementation, in Scribble 113

Save command
framework, implementation of 111
implementation, in Scribble 113

Schema number, described 114
Scribble

adding member variables 162
binding commands 156
building, basic information 85
class CScrib View

declaration 120
member functions of 122
member variables of 121

class CScribView, OnDraw, defined 122
class CStroke 105, 123
Clear All command 156
Clear All menu irem, Updating 164
commands

Clear All 156
discussed 140
Thick Line 156

compiling, srep 1 132
copying step 6 to new directory 241
creating drawing from inside Contain 271
DeleteConrents member function 160
discussed 47
document class (CScribDoc) 100
drawing strokes 123
exception handling 111

430 Index

Scribble (continued)
features

step 1 132
step 7 237

incremental versions 114
lnitDocument member function 109
installing as an OLE server 238
installing OLE container applications 238
m_strokeList variable 100
message-driven program 151
NewStroke member function 110
OnEditClearAll member function 159
OnLButtonDown member function 129
OnPenThickOrThin member function

code for 160
described 160

options, setting 86
overriding Serialize member function of document 112
Pen Widths command 142
previewing program 96
printing, mapping mode problem 133
promptstrings,command 225
registering with Windows 243
serialization, of strokes 113
speed drawing, sampling points 133
status bar, prompt strings 225
step 1, testing 13 3
step 7

adding AFXOLE.H to precompiled header 243
adding application-specific server support 256
adding embedded item support 246
adding files to project list 242
adding m_server data member to CScribbleApp 244
adding OLE menu resources 252
adding OLE standard resources 251
adding string resources 245
changes in position or size of embedded items 247
changing initial size of the document 257
converting document base class from CDocument to

COleServerDoc 245
copying accelerator resources 255
copying step 6 resources 253
copying toolbar resources 254
defining class ID 250
description of new files 242
difference from copying from samples 238
getting pointers to embedded items 246
implementing logical sizes 261
implementing server items 259
in-place toolbars, use of 253
initial size of the document, changing 257
InitInstance, explained 249
interaction between scrollbars and embedded items

247

Scribble (continued)
step 7 (continued)

m_sizeDoc, initialization 258
notification when items change size or location 256
notifying OLE when item changes 263
overview of procedure 237
putting link fonnats on the Clipboard 258
registering applications 250
SCRIBBLE.REG, described 243
SCRIBITM, described 242
separator bars, use of 252
setting AppWizard options 239
updating scroll bars when window sized 262

strokes
drawing 124
illustrated 105
list 100
serializing 113

Thick Line command
binding 160
described 141, 156

toolbars 143-144
tutorial program

described 83
introducing 83

versions of, described 85
view class, CScribView 120
Windows messages

handling 124
mouse-related 124

Scrolling, view
described 197-198,202-203
example 199,202-203,206

SOl applications, and view objects 118
Search Help, Viewer Window 22
Search keywords, using 27
Search Plus

Boolean expressions 25
discussed 24
using 25
Viewer Window 23

Searches
button, Help, categories 28
discussed 28
full-text 24
narrowing in Books Online 27-28
order, customizing Help 36

Searching Help 23
Selecting

bitmap files 147
pen into the device context, SelectObject member function

124
SelectObject member function, class CDC 123
Sending commands to objects See Command routing

Sending hints, Smart invalidation 293
Separator bars, used in server applications 252
Serialization

CArchive object, introduced 113
class CCntrItem 280
DECLARE_DYNCREATE macro 112
DECLARE_SERIAL and IMPLEMENT_SERIAL macros

114
defined 111
described 111
dialog boxes, Open and Save As III
documents

implementation 112
two stages 112

embedded objects 113
fixed-sze data types 115
in Scribble, illustrated III
incremental versions 114
loading from disk 113
of CDWordArray object 114
portability 115
reading, order of 114
schema number 114
Scribble, implementation 112
Serialize member function, class CStroke 114
storing to disk 113
strokes (Scribble) 113
through pointers

discussed 113
example 113
extraction operator 113

Serialize member function
AppWizard 112
class CStroke 114
described 113
for embedded objects 113
of document class 112
Scribble, code for 112
stroke list 112

Serializing documents 112
Server applications

adding
OLE standard resources 251
OLE menu resrouces 252

defining class ID 250
described 237
in-place toolbar uses 253
InitInstance 249
menu resources, use of separator bars 252
notifying OLE when item changes 263
putting link formats on the Clipboard 258
registering with Windows

automatically by framework 243
run REGEDIT manually 243

Server applications (continued)
registering with Windows (continued)

run REGEDIT silently 243
three methods 243

required capabilities 237

Index 431

updating scroll bars when window sized 262
Server Items

implementing 259
OnDraw 259

SetCapture member function, class CWnd, called in
OnLButtonDown 129

SetCheck member function 166
SetContainerInfo member function, class CDocTemplate,

calling from Contain 273
SetCursor member function, class CRectTracker 284
SetModifiedFlag member function, class CDocument

called in NewStroke 110
described 11 0

SetScrollInfo member function, class CScribView, overriding
to implement logical sizes 262

SetScrollSizes member function, class CScrollView
described 198
examples 202,217

SetSelection member function, class CContain View
defined 281
supporting hints 294

SetServerInfo member function, class CDocTemplate
explained 249
how to call 249
parameters explained 250

Setting
AppWizard path 89
breakpoints 93
options in tutorial program 86

Setup Help 20
Setup programs

discussed 4
Visual C++ 4
Win32s 4,14

SHIFf+FI help
described 226
help mode 226

Shipping AppWizard-created help files 226
Shortcut keys

Contents Window 37
Help 37

Single document interface (SDI) See SDI
Size of contained object, Contain application 279
Size of object, Client items 297
Skeleton application 87
Smart invalidation

defming update hint 292
described 292
deselected objects 294

432 Index

Smart invalidation (continued)
objects when moved by server 295
receiving hints 292
required capabilities 292
selected objects 294
sending hints 293
tracked objects 295
views 292

Sorting recordsets 367
Source code management 53
Source comments generation, AppWizard project options 60
Source Window, Fl Help 29
Split bar, defined 207
Split box, defined 207
Splitter windows

adding
with AppWizard 209,213
with ClassWizard 209

described 206,208
example 211-213
views 119

Spy++ Help 20
Spy: : installation directories 10
Standard applications, developing for Windows SDK 47
Standard command routing 155
Starter application

AppWizard 60-63
building 92
compiling 88, 92
described 87-88, 92-93
features 93
procedures

compiling 92
running 92

running 92
Starter files

application, AppWizard 60
compiling 92
help RTF files 227

Starting AppWizard 87
Static Library 32-bit projects 60
Status bar, prompt strings, command 225
STDREGtool

data types 342
described 341
initializing data 341

STDREG.MDB file
location 338
student registration database 337, 340

Step 0 subdirectory See Starter application
Step Out command

Myapp tutorial application 81
tracing through code 81

Step subdirectories
See also Tutorials
for tutorial steps, described 84

Steps, tutorial
See also Tutorials
step 0 88
step 1 117
step 2 96, 135, 152
subdirectories for 84, 267
table of 84
using the right subdirectory 85

Storage of data in document 98
Storing data on disk See Serialization
String segment 0, strings in 232
Strokes

drawing
DrawStroke member function 124
initiating 128
itself in view 123
terminating 129
tracking mouse 130

in Scribble program
defined 105

list

illustrated 105
introduced 100
serializing, described 113

already exists 113
discussed See m_strokeList
embedded objects 113
iterating 123
Scribble, introduced 100
Serialize member function of 112

Structured exception handling 54
Student Registration database

location 338
registering with ODBC 340
setup 339
STDREG.MDB file 337
tables 337
tutorial 337

Subdirectories
See also tutorial
discussed 89
for tutorial steps 84, 267
tutorial

table of 84
using right one 85

Symbol editor 149
Symbols 149
System requirements

CD-ROM drive 3
discussed 3-4
dual-boot computer 4

System requirements (continued)
hard disk 3

T

memory 3
processor 3
separate computer for Win32s 4
Win32s 4
Win32s Dynamic Link Libraries (DLLs) 4

Tab order, setting 173
Tables, selecting, Enroll sample 347
Technical notes, Note 28, help 227
Technical Support Help 20
Telephone service, text 388
Template classes, Scribble's use of 102
Templates included in Visual C++ 43
Terminating stroke drawing, in Scribble 129
Testcornrnand 173
Test drive of Visual C++ 59-82
Testing, Scribble, Step 1 133
Text controls, modifying properties, example 172
Text telephone service 388
Thick Line cornrnand

binding
described 160
to toolbar button 162

described 151
location 156
menu item 143
Scribble 156
toolbar button 143
update handler for 166

Thick Line toolbar button 151
Tile, bitmap button 146
Tips, deleting colnrnn bindings 350
Toolbars

adding buttons 143
bitmaps 143
buttons

adding 143
array 149
binding to cornrnands 162
buttons array 233
checked state 167
checking 163
Clipboard cornrnands 144
cornrnand ID of 143
connecting to code 149
creating 382
Cut, Copy, Paste 144
deleting 144
disabling 163
editing 144

Toolbars (continued)
buttons (continued)

enabling 163, 233
help 144
Open command 144
positions, buttons array 150
Print 144
Save command 144
separators 150
space between 150

example 143
generating commands 151
initial, AppWizard project options 60
Scribble 143, 144
Thick Line button 143, 151

Tools Options Dialog Box 10
Tools, installation directories 10
Tracing

commands 54
through code 81

Index 433

Tracking mouse to draw, in Scribble 125, 130
Troubleshooting guide 393-394
TRY macro 111
TTrroD service 388
Tutorials

Autoclik 301,305
Contrun 267-269,272,289
Enroll sample 337
form-based applications 345
Myapp, building and running 63
Scribble

build information 85
discussed 47
program, described 83
program, introducing 83
step 7 237

student registration 337
subdirectories 85
test drive 59-82

Type Library, creating 313

u
Uninstalling

Visual C++ 40
Win32s 40

Update hint, defining, smart invalidation 292
UpdateAlIViews member function

called from OnEditClearAlI 159
class CDocument 119
described 190-191
example 194

434 Index

UpdateData member function, class CWnd
described 184, 186
example 184

UpdateFromServerExtent member function, class CCntrItem,
getting extent of client item 297

Updating
current record 375
multiple views 119
Scribble's Clear All menu item 164
user interface 356
user-interface objects

checking items 167
command-based method 163
discussed 154, 163
example, OnUpdateEditClearAll member function

165
making handlers fast 165
OnUpdatePenThickOrThin member function 166

views 99, 119
User interface

design, Enroll sample 372
guidelines, database applications 371
objects

accelerator keys 154
buttons 154
command generator 154
connecting to code 53
creating 52
defined 47
disabling 154
distinct from C++ object 154
editing 52
enabling 154
menus 154
Myapp adding to 67-74
updating 154, 163

User's Guides book set 37
Using Hotspot Editor 20

v
Variables

examining, QuickWatch dialog box 79
member See Member variables

VBX custom controls, using in Visual C++ applications 45
VC++ makefile options, AppWizard 60
.VCP (project configuration file) 51
View menu, toggling status bar and toolbar 136
View objects

access to document data 119
calling document members from 119
created by frame window 119
creating 119-120
defined 118

View objects (continued)
described 118
drawing 119
framework, in 49
functionality

described 119
displaying documents 119
editing, management of 119
input, management of 119
messages, handling of 119
selection, management of 119

handling mouse messages 124
in framework 119
in relation to documents 118
initializing 119
interaction with documents 119
introduced 96
message handlers 124
message map, in 124
multiple

per document 119
updating 119

notifying document of change 119
Scribble

delegates stroke drawing 123
tasks, redrawing a stroke 120
tasks, rendering strokes as drawn 120

separation from document 98
splitter windows 119
updating of 99
user interaction with documents 118
usually one per document 119
when views change 119
window client areas 118

Viewer window
browse buttons 22
buttons 37
Help, navigating within 22
Search Plus 23

Viewport origin, used for scrolling 202
Views

See also View objects
and documents, illustrated 118
as child window 118
documents

illustrated 98
interaction between 99

multiple, updating all 119
printing with 215
relationship to documents, illustrated 49
scrolling

described 197-198,202-203
examples 199,202-203,206

Views (continued)
updating

described 190-191
examples 191-192, 194-195

Visual C++
16-bit applications

debugging 42
writing 42

application defined 47
applications using VBX custom controls 45
exception handling supported in 43
general-purpose resource editor, using as 45
Help 32
installation

procedures 6, 9
system requirements 3-4
Win32s applications 5
Windows NT targets 5

installing
CD-ROM directories 5
discussed 3-13

MIPS, for 43
mixed-language programming 44
need Win32 SDK 43
Quick Guide to Installation 4
Remote Debugging Tools, Win32s setup program 4
resource editor, using as general purpose 45
running

from CD-ROM 40
over network 40

Setup programs
CD-ROM drive 4
network installation 4
Visual C++ 4
Win32s 4

templates included 43
uninstalling 40

Visual C++ 2.0 Knowledge Base 20
Visual C++ for Macintosh 83, 239, 269, 307
Visual interface elements 47

w
Watch window 54
Win32

Console projects 60
Dynamic Link Library projects 60
executable projects 60
porting 16-bit applications to 41
Samples installation directories 12

Win32 API Help, installation directories 11

Win32 SDK
needed with Visual C++ 43
projects, porting to Visual C++ 43
Tools installation directories 10

Win32 SDK book set 37
Win32s

Index 435

applications and DLLs running under 44
Dynamic Link Libraries (DLLs), system requirements 4
installation

described 14
from CD-ROM drive 14

installation options 15
OLE DLLs, Win32s setup program 4
programs

building with libraries under Windows NT 42
debugging 42

Setup 14
setup program

Visual C++ Remote Debugging Tools 4
Win32s System DLLs 4
Win32s Tools 4
Win32s0LE DLLs 4

System DLLs, Win32s setup program 4
system requirements 4
Tools, Win32s setup program 4
uninstalling 40

\WIN32S\BIN CD-ROM directory 5
\WIN32S\DATA CD-ROM directory 5
\WIN32S\DEBUG CD-ROM directory 5
\WIN32S\RETAIL CD-ROM directory 5
\WIN32S\UT CD-ROM directory 5
Window

client area of, and view object 118
image, bitmap editor 144
menu, MDI applications only 136

Windows
device context, encapsulated by class CDC 123
message-driven programming 151
messages

ClassWizard, Messages list box 157
handling 124

splitter
described 206,208
example 211, 212, 213

Windows applications, porting to Macintosh 42, 45
Windows Interface: An Application Design Guide 48
Windows NT

porting character-mode applications to 41
Visual C++ for, vs. Visual C++ for Windows 3.1 242

Windows NT, and serialization 115
Windows SDK applications, developing standard 47
Windows Sockets 20
Windows Sockets for NT 20
WM_COMMAND message 153

436 Index

WM_LBUTIONDOWN message 124, 128
WM_LBUTIONUP message 124, 129
WM_MOUSEMOVE message 124, 130
Working with ClassWizard 153
Write Once Read Many (WORM) drive installation 12

1 111111 11111 IIIIIIU 11111 ~IIIIII
* 5 7 1 54* * Recyclable

