User’s Guide |

Visual Workbench User’s Guide
App Studio User’s Guide

Microsoft

STANDARD EDITION

Development System for Windows.

User’s Guides

Microsoft. Visual C++"

Development System for Windows™
Version 1.0

This volume contains two separate books:
Visual Workbench User’s Guide
App Studio User's Guide

Microsoft Corporation

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the
express written permission of Microsoft Corporation.

©1993 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, CodeView, FoxPro, Multiplan, PowerPoint, QuickC, and QuickPascal are
registered trademarks and Windows, Microsoft Access, QuickAssembler, Microsoft QuickBasic,
Visual Basic, and Visual C++ are trademarks of Microsoft Corporation in the USA and other
countries.

U.S. Patent No. 4955066

CompusServe is a registered trademark of CompuServe, Inc.

Flight Simulator is a registered trademark of Bruce Artwick.

IBM is a registered trademark of International Business Machines Corporation.
Macintosh is a registered trademark of Apple Computer, Inc.

0S/2 is a registered trademark licensed to Microsoft.

Paintbrush is a trademark of ZSoft Corporation.

Document No. DB61153-0894
Printed in the United States of America.

Visual Workbench
User’s Guide

Contents

INtrodUuction. ittt it e it e Xi

Microsoft Support Servicesccciiiiiiiii i i i s XV

Part1 Getting Started

Chapter 1 Installing Microsoft Visual C++t 3
Microsoft Visual C++ Overview. 3
WhatIs Visual CH+7 L. e 3
Comparison of Standard and Professional Editions 4
System REqUITEIMENLS. . . . v v v v v e e e e et et e e et e e 5
Installation o e 5
Installation Options ottt ittt e e 7
Setting Command-Line Options for Visual Workbench 9
MS-DOS Configurationt 10
Chapter 2 Building a Sample Application for Windows. 13
Introducing Projects.o v it e 13
A Sample Windows-Based C++ Application 14
Chapter 3 Building a Sample QuickWinProgram. 17
What Is QuickWin?. it e ettt 17
A Sample QuickWin Program i i 18
Chapter 4 Developing a Microsoft Visual C++ Application 21
What Is a Visual C++ Application?. i, 21
Introducing the ToOIS.ottt e 22
The ApplCAtionSottt it e e e 22
The Wizardso e 23
The Process 26
The Application Creation Stage vttt 26
The Application Development Stage.o ... 27
For More Informationottt 34
Chapter 5 Fast Track to Visual Workbenchcoit 35
Menu Summariesttt e 36
Managing Filesand Printing i i 36

Editing Filesttt e e 37

iv Contents

Window Display and Quick ACCeSS. . . v v oot ii e 38
Working with Projects i 39
Accessing Symbolsand Classes i 41
Debugging Programso v ittt e 42
Running Tools from Visual Workbench., 43
Setting Preferences and Custom Options, 44
Arranging and Opening Windowsc it 45
GettingOnline Help. i 46
Key SUmMmariesttt it ettt eeee e e 47
Editing Keyso e e e 47
Toolbar Keyst e e e 49
Window ManagementKeys i i, 50
Build and Compile Keys.ot i 50
Browsing Keys . ..ot e e e 50
DebuggingKeys i 51
Alphabetic Guide to Build Options. 51
Compiler Options . ..o vvi ittt et et e 51
Linker Optionsottt e e 55

Part2 Using Visual Workbench

Chapter 6 The Visual Workbench Environment...............ccc0venens 59
Starting and Quitting Visual Workbench.o o 60
Visual Workbench Features.o i i 60
B T 0o Lo 1 O 60
The Status Bar. e 63
Arranging and Displaying Windowsot 63
Getting Helpo e e 65
Chapter 7 Usingthe Editor..............coiviiiiiiiiiiiiniiniiennss 75
Managing Source Files o i 75
Creating and Saving Source Files oL, 76
Opening and Closing Source Files. o, 79
OpeningResource Files i 80
Moving AroundinFiles it i i 82
Using the Keyboard Commands.o i, 84
Controlling the Source Window i 84
Setting Tabst e e 85
Highlighting Language Syntaxttt ternnenneeenennn 85

MakingaFileRead-Only. 86

Contents v

Findingand Replacing. 86
Finding Text Using the Find Command. 87
Finding Text Usingthe Toolbar. 88
Replacing Text.o ettt et 89

Printing . .. e e e e e 90

Chapter8 UsingProjects............coiiiiiiiiiiniiiiiiininnnnnss 93

ProJect TYPeS . v vt ottt e e e 94

Creatinga Project it e e 97

Opening and Closing Projects.ottt 100

Adding and Deleting Project Files. it 100
Using Include Dependenciescot .. 101

Project Compiler and Linker Options oo, 103

BuildingaProject i e 103

UsingaWorkspacettt e 104
Using the Last Workspace Used. 105
Saving aWorkspace.o e 105
Loading a Workspace v vt ittt i e e 106
Loading an Initial Workspace o, 106

Using External Projects oot e 107

Chapter 9 Customizing BuildOptions.ooviiiiinnennnn 111

The Compiler and Linker Options DialogBoxes 111
GettingHelpon Options i, 113

Default Compiler and Linker Optionso i, 115

Compiler Optionsttt 118
Code Generationc..uuevitenniaeeineeneeennn, 118
Custom OPLONS .« v o oot ettt et e 121
Custom Options (C++) . . oo vt e 124
Debug Options. . . v oo v et e e 127
ListingFileso e 129
Memory Model i 130
Optimizations.ottt e e e 132
P-Code Generation.o.utiintiiiiit i, 136
Precompiled Headers i, 138
PreproCesSOr .« .\ v vttt it e e e 142
Segment Namest e 144

Windows Prolog/Epilog i 146

vi

Contents

Linker OptionsS . . . oot ittt ittt e e 148
Input. . .. e 149
MemoryImagevvvni i e e 151
Miscellaneousot 153
OULPUL . ..o e 155
Windows Libraries oot 157

Resource Compiler Options.ottt vttt e i 158
Disable Load Optimization.ot e nnnnneiieeeennnnn 159
Custom OPtiONS. . . .t v vt i e e 159
Defines. . . oo e 159

Chapter 10 UsingtheBrowser..............coiiiiiiiiiiiiinnnenns 161

Creating a Browser Database 161

Opening a Browser Database.c i, 163

Querying a Browser Database o i 165
Using the Browse Windowo, 166
UsingMenuCommands 168

Browsing Classes and Functionscciiniinnnnn.. 169
Overview of Graphical Browser Query Types 169
Expanding and Collapsing Graphs.ttt 171
Browsing Classest e e 172
Browsing Function Relationships 174
Browsing Definitions and References 176

Chapter 11 Debugging Programs.cciviniienarnrnenanons 179

Using the Debugging Windowst inn... 180

Debugging During Building. i i 181

Using the Visual Workbench Debugger 182
Preparing a Debug VersionofaProgram. 182
Setting and Removing Breakpoints, 183
Controlling Program Execution., .. 189
Usingthe Watch Window. 190
Using QuickWatch i 192
Modifyinga Variable. i 193
Using Show Call Stack. it e 194
Using the Registers Window. i, 195

Other Debugging Features.ttt 196
Hard/Soft Mode Debugging iiteeetminnaaanenn.. 196

Debug Display Optionsc.oiiiiii ... 198

Contents vii

Chapter 12 Customizing Visual Workbench.t 199
Modifying the Tools Menu.ttt e 199
Adding Commands tothe Tools Menu 199
Editing a Tools Menu Command eiinennn... 201
Tips For Using MS-DOS Toolsot 201
Using Argument MacroSo vttt 202
Setting DIr€CtOries. . . o oottt et e it ettt e e e 203
Changing Syntax Coloring v v i i 205
Making Global Display Changes oo, 205
Source File Syntax Coloring 206
Setting Font Typeand Size.ottt 207
Chapter 13 Using Visual Workbench with Other Visual C++ Tools 209
Using AppWizard i e 209
Opening and Closing AppWizard. 210
Specifying the Project Name and Location 210
Selecting Options oottt e 212
Modifying Classes oottt ettt 214
AppWizard-Generated Files 215
Running App Studio e 218
Using ClassWizardottt e e i et i e 220
Creating New Classes. . ..o oottt e et e 221
Creating Message Handlers for Windows Messages 223

viii

Contents

Figures and Tables

Figures

Figure 1.1 The Installation Options DialogBox 6
Figure 2.1 The Open Project DialogBox 14
Figure 2.2 The Project Options DialogBox 14
Figure 3.1 QuickWin C++Program Codecouvu.n. 19
Figure 3.2 The Project Options DialogBox 20
Figure 3.3 QWINTEST Output.ottt ittt e i eeennn 20
Figure 4.1 Visual Workbench. 22
Figure 4.2 AppStudio i e 23
Figure 4.3 AppWizard. i i e 24
Figure 4.4 ClassWizardottt i 25
Figure 4.5 Creating the Visual C++ Framework Code. 26
Figure 4.6 Creating and Editing User-Interface Objects. 28
Figure 4.7 Connecting User-Interface ObjectstoCode 29
Figure 4.8 The Visual C++ Development Process. 30
Figure 4.9 The Visual Workbench Browse Window 31
Figure 4.10 The Visual Workbench Debug Windows 33
Figure 6.1 The Visual Workbench Environment. 59
Figure 6.2 Cascaded Windowsottt nnnn.. 64
Figure 6.3 Tiled Windows 64
Figure 6.4 Minimized Windowsttt 65
Figure 6.5 The Secondary and Primary Help Windows 68
Figure 6.6 The Visual Workbench Help Contents Screen. 69
Figure 6.7 A Visual Workbench Topic Screencc..... 70
Figure 6.8 A Reference Help Contents Screen 71
Figure 7.1 The Save AsDialog Box i, 77
Figure 7.2 The Editor Dialog Box. vttt 79
Figure 7.3 The Editor Dialog BoxX. i, 85
Figure 7.4 The Find Dialog Box 87
Figure 7.5 The Replace Dialog Box. 89
Figure 7.6 The Print Dialog Box 90
Figure 7.7 A Printer Setup DialogBox, 91
Figure 8.1 The Edit - Projectname Dialog Boxco.... 99
Figure 8.2 The Workspace DialogBox 107

Figure 8.3 The External Project Options Dialog Box. e 108

Contents ix

Figure 9.1 The C/C++ Compiler Options DialogBox 112
Figure 9.2 Helponthe Options String 114
Figure 9.3 Helpon Option Controls oottt 115
‘Figure 9.4 -Compiler Options: Code Generation. 118
Figure 9.5 Compiler Options: Custom Options 122
Figure 9.6 Compiler Options: Custom Options (C++) 124
Figure 9.7 Compiler Options: Debug Optionsc.vvv.... 127
Figure 9.8 Compiler Options: Listing Files 129
Figure 9.9 Compiler Options: Memory Model. 130
Figure 9.10 Compiler Options: Optimizationsvue.... 132
Figure 9.11 Compiler Options: P-Code Generation 136
Figure 9.12 Compiler Options: Precompiled Headers. 138
Figure 9.13 Compiler Options: Preprocessor.ccvvvvve ... 143
Figure 9.14 Compiler Options: Segment Names 145
Figure 9.15 Compiler Options: Windows Prolog/Epilog. 147
Figure 9.16 The Linker Options DialogBox oot 148
Figure 9.17 LinkerOptions: Inputcoev. ... 149
Figure 9.18 Linker Options: MemoryImage 151
Figure 9.19 Linker Options: Miscellaneous. 154
Figure 9.20 Linker Options: Qutputttt 155
Figure 9.21 Linker Options: Windows Libraries 157
Figure 9.22 Resource Compiler Options DialogBox 158
Figure 10.1 C/C++ Compiler Options: Listing Files. 162
Figure 10.2 The Browse Window. 164
Figure 10.3 Browse Window Query Group.oiene.... 166
Figure 10.4 Class Graphs i, 170
Figure 10.5 Call and Caller Graphso, 170
Figure 10.6 Expanded and CollapsedNodes 171
Figure 10.7 Derived Class Graph of the CWnd Class. 173
Figure 10.8 Base Class Graph of the CDialogClass 174
Figure 109 ACallGraph it 175
Figure 11.1 Debugging Windows.ot .. 181
Figure 11.2 The Project Options DialogBox. 182
Figure 11.3 Setting a Breakpoint in SORTDEMO.C................... 184
Figure 11.4 The Breakpoints DialogBox 185
Figure 11.5 The Messages Dialog Box. 188
Figure 11.6 The Watch Window 191

Figure 11.7 The Watch Window with Expanded and Collapsed Variables 192
Figure 11.8 The QuickWatch DialogBox. 192

X

Contents

Figure 11.9 The Modify Variable DialogBox 194
Figure 11.10 The Call Stack DialogBox 195
Figure 11.11 TheRegisters Window v, 195
Figure 12.1 The Tools Dialog Boxot 200
Figure 12.2 The Add Tool Dialog Box. 200
Figure 12.3 The Directories DialogBox 204
Figure 12.4 The Color Dialog Boxccviiiriinnnennnen.. 205
Figure 12.5 The Font Dialog Box, 207
Figure 13.1 The MFC AppWizard Dialog Box. 211
Figure 13.2 AppWizard’s Options Dialog Box. 212
Figure 13.3 AppWizard’s Classes DialogBoXc.... 214
Figure 13.4 ClassWizard i e, 220
Figure 13.5 Classes Derived from CCmdTarget 221
Figure 13.6 ClassWizard’s Add Class DialogBox 222
Figure 13.7 Creating Message Handlers for Windows Messages 224
Tables

Table 5.1 Insertion Point MovementKeys 47
Table 5.2 Text SelectionKeys 47
Table 5.3 Insert, Copy,and TabKeys 48
Table 5.4 Delete Keyst 48
Table 5.5 Text Scrolling Keys 48
Table 5.6 SearchKeys. i, 49
Table 5.7 Toolbar Keyst 49
Table 5.8 Visual Workbench Window Management Keys. 50
Table 5.9 Buildand Compile Keys i ... 50
Table 5.10 Browsing Keys.ot 50
Table 5.11 DebuggingKeys. 51
Table 5.12 Alphabetic Guide to Compiler Options 52
Table 5.13 Alphabetic Guide to Linker Options 55
Table 6.1 ToolbarButtonso, 62 -
Table 9.1 Default Compiler Options for Windows Project Types 116
Table 9.2 Default Compiler Options for MS-DOS Project Types 116
Table 9.3 Default Linker Options for Windows Project Types 117
Table 9.4 Default Linker Options for MS-DOS Project Types 117
Table 10.1 Wildcard Types in Symbol Names 167
Table 11.1 Debugging Windows., 180
Table 11.2 DebugMenuCommandsviiuneeenn... 189
Table 11.3 Additional Debugging Features 198

Table 12.1 Visual Workbench ArgumentMacros 202

xi

Introduction

Microsofte Visual C++™ represents an evolutionary step in the progress of high-
performance program development tools for the Microsoft Windows™ operating
system. This comes about because of two milestones: the use of fully integrated
Windows-hosted development tools and the adaptation of the popular “visual” user-
interface-driven paradigm to the traditional C/C++ development process.

Microsoft Visual Workbench is the comerstone of the Visual C++ development
platform. It is a powerful development environment on its own, containing several
integrated tools, including an editor, debugger, and graphical browser. But Visual
Workbench also fits into the larger development strategy by acting as the central
point from which all other development activities are performed. From Visual
Workbench menus you can:

» Invoke the Visual C++ build tools, such as the compiler and linker.
= Run the App Studio resource editor to develop user-interface components.

= Run AppWizard and ClassWizard to help you develop Microsoft Foundation
Class Library applications.

= Run your own tools, which can be installed on the Tools menu.

Visual Workbench strikes the balance of giving you the tools you need most and, at
the same time, making them easy to use by keeping things simple.

About This Manual

This book describes how to install Visual C++ and how to use the Visual Work-
bench integrated development environment to develop applications using Visual
C++. There are two parts to this book.

Part 1, “Getting Started,” helps you install Visual C++, become familiar with
Visual Workbench, and understand the general roles and relationships of the main
Visual C++ development tools. It contains the following chapters:

= Chapter 1 describes how to install Visual C++ and how to reinstall specific
components later. It also provides the basic configuration and system require-
ments for Visual C++, as well as configuration requirements for running Visual
C++ from the command line.

= Chapters 2 and 3 give you a quick guide through building and running two
sample programs: a Microsoft Foundation Class Library sample application and
a simple QuickWin C++ application. You can use these short chapters to verify
that your installation is working and to become familiar with Visual Workbench.

Xii

Introduction

Chapter 4 helps you get acquainted with the concepts and tools behind the
Visual C++ development process, which is designed to make developing
Microsoft Foundation Class Library applications easier than ever.

Chapter 5 provides a quick reference guide to the Visual Workbench features. It
contains several tables listing menu commands and common procedures associ-
ated with them, toolbar buttons, and shortcut keys. It also has an alphabetical
listing of compiler and linker options that is cross-referenced to the dialog boxes
used in setting these options.

Part 2, “Using Visual Workbench,” provides the detailed information and proce-
dures to help you use Visual Workbench. It contains the following chapters:

Chapters 6 describes the basic components of the environment, such as the
toolbar, status bar, and Help system.

Chapter 7 describes how to use the editor to create, open, save, and close files,
edit text, move around in files, set tabs, and search for text, among other editing
tasks.

Chapters 8 and 9 provide all the information you need to use projects, configure
compiler and linker options, and build and run your applications. Chapter 8 de-
scribes creating and using projects to build your applications as well as the use
of workspaces to save and recall environment configurations. Chapter 9 is the
complete reference to the dialog boxes used to set compiler and linker options.

Chapter 10 describes the Visual Workbench browser. This chapter tells you how
to query the browser database from both the Browse window and from within a
source file, and how to work with graphical data displayed for C++ class graphs
and C or C++ function graphs.

Chapter 11 provides information on the Visual Workbench integrated debugger,
which is compatible with the Microsoft CodeViewe debugger. The chapter tells
you how to set breakpoints, monitor variables and expressions in the
QuickWatch dialog box, Watch window, and Locals windows, monitor regis-
ters, step through code, and more.

Chapter 12 tells you how to customize Visual Workbench syntax coloring and
font settings, how to install tools on the Tools menu, and how to set the directo-
ries used during building, browsing, and debugging.

Chapter 13 brings together Visual Workbench and the other main Visual C++
tools associated with it. It tells you how to open App Studio from within Visual
Workbench, how to use AppWizard to generate Microsoft Foundation Class
Library skeleton project files, and how to use ClassWizard features you are
likely to encounter most often from within Visual Workbench.

Introduction Xiii

Document Conventions

This book uses the following typographic conventions:

Example

Description

STDIO.H

char, _setcolor, __far

expression

[option]]

#pragma pack {12}
#include <io.h>

CL [loption...1 file...

while()
{

}
CTRL+ENTER

“argument”

Uppercase letters indicate filenames, segment names,
registers, and terms used at the operating-system command
level.

Bold type indicates C and C++ keywords, operators, language-
specific characters, and library routines. Within discussions of
syntax, bold type indicates that the text must be entered exactly
as shown.

Many functions and constants begin with either a single or
double underscore. These are part of the name and are manda-
tory. For example, to have the __ cplusplus manifest constant
be recognized by the compiler, you must enter the leading
double underscore.

Words in italics indicate placeholders for information you
must supply, such as a filename. Italic type is also used occa-
sionally for emphasis in the text.

Items inside double square brackets are optional.

Braces and a vertical bar indicate a choice among two or more
items. You must choose one of these items unless double
square brackets ([]) surround the braces.

This font is used for examples, user input, program output, and
error messages in text.

Three dots (an ellipsis) following an item indicate that more
items having the same form may appear.

A column or row of three dots tells you that part of an example
program has been intentionally omitted.

Small capital letters are used to indicate the names of keys on
the keyboard. When you see a plus sign (+) between two key
names, you should hold down the first key while pressing the
second.

The carriage-return key, sometimes marked as a bent arrow on
the keyboard, is called ENTER.

Quotation marks enclose a new term the first time it is defined
in text.

Xiv Introduction

Example Description

"C string” Some C constructs, such as strings, require quotation marks.
Quotation marks required by the language have the form " "
and ' ' rather than “” and ‘.

Color Graphics Adapter ~ The first time an acronym is used, it is usually spelled out.

(CGA)

Xv

Microsoft Support Services

Microsoft offers a variety of no-charge and fee-based support options to help you
get the most from your Microsoft products. For an explanation of these options,
please see one of the following sections:

= If you are in the United States, see “Support Services Within the United
States.”

= If you are outside the United States, see “Support Services Worldwide.”

Support Services Within the United States

If you have a question about Microsoft Visual C++, one of the following re-
sources may help you find an answer:

= The index in the product documentation and other printed product
documentation.

= Context-sensitive online Help available from the Help menu.

= The README files that come with your product disks. These files provide
general information that became available after the books in the product pack-
age were published.

= Electronic options such as CompuServe forums or the Microsoft Download
Service.

If you cannot find the information you need, you can obtain product support
through several methods as discussed below. In addition, information is provided
about training and consulting services available to you.

For information about Microsoft incremental and annual fee-based support serv-

ice options, call Microsoft Inside Sales at (800) 227-4679, extension 11700,
Monday through Friday, between 6:30 AM and 5:30 PM Pacific time.

Note Microsoft’s support services are subject to Microsoft’s prices, terms, and
conditions in place in each country at the time the services are used.

Microsoft Forums on CompuServe

Microsoft Product Support Services is available on several CompuServe forums.
The Microsoft Developer Services Area includes forums and information de-
signed specifically for developers. To access the Microsoft Developer Services

Xvi Microsoft Support Services

Area, type GO MSDS at any ! prompt. Some of the services available within
MSDS are:

= The Developer Specific Knowledge Base contains up-to-date technical infor-

mation about Microsoft developer-specific products compiled by Microsoft
developer support engineers. The knowledge base is full-text searchable and
includes information on helpful tips, product bug lists, fix lists, documentation
errors, and Microsoft press releases. To access the Developer Specific
Knowledge Base, type GO MDKB at any ! prompt.

The Microsoft Software Library is a collection of binary files, sample code,
technical specifications, and utilities. The entire library is keyword-searchable
and the files can be downloaded for use locally. To access the Microsoft
Software Library, type GO MSL at any ! prompt.

Developer forums covering programming issues and other developer-specific
information on the Windows operating system, languages, tools, and utilities
are available. You can use these forums to exchange messages with Microsoft
developer support engineers and experienced users of Microsoft development
products. For example, the MSLANG forum provides support and information
on Microsoft Visual C++ and other Microsoft language products and the
WINSDK forum provides information about developing in the Windows
environment.

For an introductory CompuServe membership kit specifically for Microsoft users,
dial (800) 848-8199 and ask for operator 230.

Microsoft Product Support Services

You can reach Microsoft Product Support Services, Monday through Friday,
between 6:00 AM and 6:00 PM Pacific time.

We offer phone support that is best utilized for getting you up and running at
(206) 635-7007.

‘When you call, you should be at your computer with Microsoft Visual C++ run-
ning and the product documentation at hand. Be prepared to give the following
information:

The version of Microsoft Visual C++ you are using.

The type of hardware you are using, including network hardware, if
applicable.

The operating system you are using.

The exact wording of any messages that appeared on your screen and the error
number, if any.

Microsoft Support Services xvii

= A description of what happened and what you were trying to do when the
problem occurred.

m A description of how you tried to solve the problem.

Microsoft Download Service

Microsoft Product Support Services operates a download bulletin board service
(BBS) that contains application notes, drivers, utilities, and other useful informa-
tion. The phone number is (206) 936-6735, and the BBS is accessible seven days
a week, from 2:30 AM to 1:00 AM Pacific time. To access the Microsoft Down-
load Service, you’ll need a modem and terminal emulation software. For 1200,
2400, and 9600 baud modems, set parity to none, data bits to 8, and stop bits to 1.

Microsoft FastTips

Microsoft FastTips is an antomated system you can access by touch-tone tele-
phone that provides recorded answers to common questions about some
Microsoft products. You can also receive copies of this information on a fax
machine. In addition, FastTips offers a library of comprehensive technical notes
that can be faxed or mailed. FastTips is available 7 days a week, 24 hours a day,
including holidays.

= For assistance with Microsoft Visual C++, dial (206) 635-4694.

After you reach FastTips, use the following keys to move through the automated
system:

= To advance to the next message, press the ASTERISK (*) key.
= To repeat the current message, press the 7 key.
= To return to the beginning of FastTips, press the POUND SIGN (#) key.

Microsoft Developer Services Team

For help with nontechnical questions related to Microsoft developer products,
services, and support, call the Developer Services Team at (800) 227-4679, ex-
tension 11771, Monday through Friday, between 6:30 AM and 5:30 PM Pacific
time. Service representatives can help you get started with Microsoft develop-
ment tools, provide information on beta test programs, and inform you about up-
coming Microsoft conferences, events, and training courses. You can request
timely, informative literature on many developer-related topics and products,
purchase development kits for products, and sign up for fee-based technical sup-
port programs.

xviii Microsoft Support Services

Microsoft Product Support for the Deaf and Hard-of-Hearing

Microsoft Product Support Services is available for the deaf and hard-of-hearing,
Monday through Friday, between 6:00 AM and 6:00 PM Pacific time.

Using a special TDD/TT modem, dial (206) 635-4948.

Product Training and Consultation Services

Within the United States, Microsoft offers the following services for training and
consultation.

Consultant Referral Service

Microsoft’s Consultant Relations Program can refer you to an independent con-
sultant in your area. These consultants are skilled in:

= Macro development and translation.
» Database development.

= Custom interface design.

For information about the consultants in your area, call the Microsoft Consultant
Relations Program at (800) 227-4679, extension 56042, Monday through Friday,
between 6:30 AM and 5:30 pM Pacific time.

Microsoft Consulting Services

Microsoft Consulting Services (MCS) assists management and technical staff
through all phases of a project: effective planning, rapid technology transfer,
high-quality design, and integration into an organization’s existing business sys-
tems. Microsoft consultants are available to work on projects of all sizes. MCS
also provides on-site consultants who serve as full-time members of client devel-
opment and support teams.

m Call MCS West at (415) 905-0235, Monday through Friday, between 8:00 AM
and 5:00 PM Pacific time, or MCS East at (617) 487-6400, Monday through
Friday, between 8:00 AM and 5:30 pM Eastern time.

Microsoft University

Microsoft University (MSU) provides hands-on courses to help programmers and
support engineers minimize their learning curves and maximize their ability to
take full advantage of the latest Microsoft systems software. MSU technical
training is for software developers, support and systems engineers, network

Microsoft Support Services Xix

administrators, information system (IS) managers, and data-processing
professionals.

= Call MSU at (206) 828-1507, Monday through Friday, between 6:30 AM and
5:00 pM Pacific time.

Support Services Worldwide

If you are outside the United States and have a question about Microsoft Visual
C++, Microsoft offers a variety of no-charge and fee-based support options. To
solve your problem, you can:

= Consult the index in the product documentation and other printed product
documentation.

= Check context-sensitive online Help available from the Help menu.

= Check the README files that come with your product disks. These files
provide general information that became available after the books in the prod-
uct package were published.

= Consult electronic options such as CompuServe forums or bulletin board sys-
tems, if available.

If you cannot find a solution, you can receive information on how to obtain
product support by contacting the Microsoft subsidiary office that serves your
country.

Note Microsoft’s support services are subject to Microsoft’s prices, terms, and
conditions in place in each country at the time the services are used.

Calling a Microsoft Subsidiary Office

When you call, you should be at your computer with Microsoft Visual C++ run-
ning and the product documentation at hand. Be prepared to give the following
information:

= The version of Microsoft Visual C++ you are using.

= The type of hardware you are using, including network hardware, if
applicable.

= The operating system you are using.
= The exact wording of any messages that appeared on your screen.

= A description of what happened and what you were trying to do when the
problem occurred.

= A description of how you tried to solve the problem.

XX Microsoft Support Services

Microsoft subsidiary offices and the countries they serve are listed below.

Area Telephone Numbers

Argentina Microsoft de Argentina S.A.
Phone: (54) (1) 814-0356
Fax: (54) (1) 814-0372

Australia Microsoft Pty. Ltd.
Phone: (61) (02) 870-2200
Fax: (02) 805-1108
Bulletin Board Service: (612) 870-2348
Technical Support: (61) (02) 870-2131
Sales Information Centre: (02) 870-2100

Austria Microsoft Ges.m.b.H.
Phone: 0222 - 68 76 07
Fax: 0222 - 68 16 2710
Information: 060 - 89 - 247 11 101
Prices, updates, etc.: 060 - 89 - 3176 1199
CompuServe: msce (Microsoft Central Europe)
Technical support:
Windows, Windows for Workgroups, Microsoft Mail: 0660 - 65 - 10
Microsoft Excel for Windows, Microsoft Excel for OS/2 ®, PowerPoint ® for
Windows: 0660 - 65 - 11
Word for MS-DOS ®, Windows Write: 0660 65 - 12
Word for Windows, Word for OS/2: 0660 - 65 - 13
Works for MS-DOS, Works for Windows, Publisher, WorksCalc,
WorksText: 0660 - 65 - 14
C PDS, FORTRAN PDS, Pascal, Macro Assembler PDS, QuickC ®, QuickC for
Windows, QuickPascal ®, QuickAssembler ™, Profiler: 0660 - 65 - 15
COBOL PDS, Basic PDS, Microsoft QuickBasic™, Visual Basic ™: 0660 - 65 - 16
MS-DOS: 0660 - 65 - 17
Macintosh Software: 0660 - 65 - 18
Microsoft Project for Windows, Microsoft Project for MS-DOS, Multiplan ®,
Mouse, Flight Simulator , Paintbrush, Chart: 0660 - 67 - 3
FoxPro ®, Microsoft Access ™: 0660 - 67 - 61

Baltic States See Germany

Belgium Microsoft NV
Phone: 02-7322590
Fax: 02-7351609
Technical Support Bulletin Board Service: 02-7350045 (1200/2400/9600 baud, 8 bits, no
parity, 1 stop bit, ANSI terminal emulation)
(Dutch speaking) Technical Support: 02-5133274
(English speaking) Technical Support: 02-5023432
(French speaking) Technical Support: 02-5132268
Technical Support Fax: (31) 2503-24304

Bermuda See Venezuela

Bolivia See Argentina

Microsoft Support Services

Xxi

Area

Telephone Numbers

Brazil

Canada

Caribbean
Countries

Central America
Chile

Colombia

Denmark

Ecuador

England

Microsoft Informatica Ltda.

Phone: (55) (11) 530-4455

Fax: (55) (11) 240-2205

Technical Support Phone: (55) (11) 533-2922

Technical Support Fax: (55) (11) 241-1157

Technical Support Bulletin Board Service: (55) (11) 543-9257

Microsoft Canada Inc.

Phone: 1 (416) 568-0434

Fax: 1 (416) 568-4689

Technical Support Phone: 1 (416) 568-3503

Technical Support Facsimile: 1 (416) 568-4689

Technical Support Bulletin Board Service: 1 (416) 507-3022

See Venezuela

See Venezuela

Microsoft Chile S.A.

Ave. Presidente Kennedy 5146, Las Condes
Santiago, Chile

Tel: 56 2218 5771

Fax: 56 2 218 5747

Microsoft Columbia

Carrera 9 # 99-02 Piso 2

Bogota, D.C., Colombia

Tel: (571) 618 2245 Soporte Tecnico: (571) 618 2255
Fax:(571) 618 2269

Microsoft Denmark AS
Phone: (45) (44) 89 01 00
Fax: (45) (44) 68 55 10

See Venezuela

Microsoft Limited

Phone: (44) (734) 270000

Fax: (44) (734) 270002

Upgrades: (44) (81) 893-8000

Technical Support:
Main Line (All Products): (44) (734) 271000
Windows Direct Support Line: (44) (734) 271001
Database Direct Support Line: (44) (734) 271126
MS-DOS 5 Warranty Support: (44) (734) 271900
MS-DOS 5 Fee Support Line: (44) (891) 315500
OnLine Service Assistance: (44) (734) 270374
Bulletin Board Service: (44) (734) 270065 (2400 Baud)
Fax Information Service: (44) (734) 270080

Xxii Microsoft Support Services

Area Telephone Numbers

Finland Microsoft OY
Phone: (358) (0) 525 501
Fax: (358) (0) 522 955

France Microsoft France
' Phone: (33) (1) 69-86-46-46
Telex: MSPARIS 604322F
Fax: (33) (1) 64-46-06-60
Technical Support Phone: (33) (1) 69-86-10-20
Technical Support Fax: (33) (1) 69-28-00-28

French Polynesia See France

Germany Microsoft GmbH
Phone: 089 - 3176-0
Telex: (17) 89 83 28 MS GMBH D
Fax: 089 - 3176-1000
Information: 0130 - 5099
Prices, updates, etc.: 089 - 3176 1199
Bulletin board, device drivers, tech notes : BTX: microsoft# or *610808000#
CompuServe: msce (Microsoft Central Europe)
Technical support:
Windows, Windows for Workgroups, Microsoft Mail: 089 - 3176 - 1110
Microsoft Excel for Windows, Microsoft Excel for OS/2, PowerPoint for
Windows: 089 - 3176 - 1120
Word for MS-DOS, Windows Write: 089 - 3176 - 1130
Word for Windows, Word for OS/2: 089 - 3176 - 1131
Works for MS-DOS, Works for Windows, Publisher, WorksCalc,
WorksText: 089 - 3176 - 1140
C PDS, FORTRAN PDS, Pascal, Macro Assembler PDS, QuickC, QuickC for
Windows, QuickPascal, QuickAssembler, Profiler: 089 - 3176 - 1150
COBOL PDS, Basic PDS, Microsoft QuickBasic, Visual Basic: 089 - 3176 - 1151
MS-DOS: 089 - 3176 - 1152
Macintosh Software: 089 - 3176 - 1160
Microsoft Project for Windows, Microsoft Project for MS-DOS, Multiplan,
Mouse, Flight Simulator, Paintbrush, Chart: 089 - 3176 - 1170
FoxPro, Microsoft Access: 089 - 3176 - 1180

Hong Kong Microsoft Hong Kong Limited
Technical Support: (852) 804-4222
Fax: (852) 560-2217

Ireland See England

Israel Microsoft Israel Ltd.
Tuval 34
Ramat-Gan 52522
Israel

Phone: 972-3-575-7034
Fax: 972-3-752-7065

Microsoft Support Services Xxiii

Area Telephone Numbers

Italy Microsoft SpA
Phone: (39) (2) 269121
Telex: 340321 1
Fax: (39) (2) 21072020
Technical Support: '
Microsoft Excel for Windows, Microsoft Project for Windows, Works for
Windows: (39) (2) 26901361
Word, Works for MS-DOS: (39) (2) 26901362
Windows, PowerPoint, Publisher, Windows for Workgroups,
Works : (39) (2) 26901363
Basic, COBOL, Visual Basic, MS-DOS-based, Microsoft Access,
Fox Products: (39) (2) 26901364
C, FORTRAN, Pascal, Macro Assembler (MASM), and SDKs: (39) (2) 26901354
LAN Manager, SQL Server, Microsoft Mail, Microsoft Mail
Gateways: (39) (2) 26901356

Japan Microsoft Company Ltd.
Phone: (81) (3) 3363-1200
Fax: (81) (3) 3363-1281
Technical Support:
MS-DOS-based Applications: (81) (3) 3363-0160
Windows-based Applications: (81) (3) 3363-5040
Language Products (Microsoft C, Macro Assembler [MASM],
QuickC): (81) (3) 3363-7610
Language Products (Basic, FORTRAN, Visual Basic, Quick
Basic): (81) (3) 3363-0170
All Products Technical Support Fax: (81) (3) 3363-9901

Korea Microsoft CH
Phone: (82) (2) 552-9505
Fax: (82) (2) 555-1724
Technical Support: (82) (2) 563-9230

Liechtenstein See Switzerland (German speaking)

Luxemburg Microsoft NV
Phone: (32) 2-7322590
Fax: (32) 2-7351609
Technical Support Bulletin Board Service: (31) 2503-34221 (1200/2400/9600 baud,
8 bits, No parity, 1 stop bit, ANSI terminal emulation)
(Dutch speaking) Technical Support: (31) 2503-77877
(English speaking) Technical Support: (31) 2503-77853
(French speaking) Technical Support: (32) 2-5132268
Technical Support Fax: (31) 2503-24304

México Microsoft México, S.A. de C.V.
Phone: (52) (5) 325-0910
Fax: (52) (5) 280-0198
Technical Support: (52) (5) 325-0912
Sales: (52) (5) 325-0911

XXiv Microsoft Support Services

Area

Telephone Numbers

Netherlands

New Zealand

Northern Ireland

Norway

Papua New Guinea
Paraguay
Peru

Portugal

Puerto Rico
Republic of China

Republic of Ireland
Scotland
Spain

Microsoft BV
Phone: 02503-13181
Fax: 02503-37761

Technical Support Bulletin Board Service: 02503-34221 (1200/2400/9600 baud, 8 bits,

No parity, 1 stop bit, ANSI terminal emulation)
(Dutch speaking) Technical Support: 02503-77877
(English speaking) Technical Support: 02503-77853
Technical Support Fax: 02503-24304

Technology Link Centre

Phone: 64 (9) 358-3724

Fax: 64 (9) 358-3726

Technical Support Applications: 64 (9) 357-5575

See England

Microsoft Norway AS

Phone: (47) (2) 95 06 65

Fax: (47) (2) 95 06 64

Technical Support: (47) (2) 18 35 00

See Australia
See Argentina
See Venezuela

MSFT, Lda.
Phone: (351) 1 4412205
Fax: (351) 1 4412101

See Venezuela

Microsoft Taiwan Corp.

Phone: (886) (2) 504-3122

Fax: (886) (2) 504-3121

Technical Support: (886) (2) 504-3188

See England
See England

Microsoft Iberica SRL

Phone: (34) (1) 804-0000

Fax: (34) (1) 803-8310

Technical Support: (34) (1) 803-9960

Microsoft Support Services

XXV

Area

Telephone Numbers

Sweden

Switzerland

Uraguay

Venezuela

Wales

Microsoft AB

Phone: (46) (8) 752 56 00

Fax: (46) (8) 750 51 58

Technical Support:. - ~ :
Applications: (46) (8) 752 68 50
Development and Network products: (46) (8) 752 60 50
MS-DOS: (46) (071) 21 05 15 (SEK 4.55/min)

Sales Support: (46) (8) 752 56 30

Bulletin Board Service: (46) (8) 750 47 42

Fax Information Service: (46) (8) 752 29 00

(German speaking)
Microsoft AG
Phone: 01 - 83961 11
Fax: 01 - 831 08 69
Infomation: 0049 - 89 - 247 11 101
Prices, updates, etc.: 0049 - 89 - 3176 1199
CompuServe: msce (Microsoft Central Europe)
Technical support:
Windows, Windows for Workgroups, Microsoft Mail: 01 - 342 - 4085
Microsoft Excel for Windows, Microsoft Excel for OS/2, PowerPoint for
Windows: 01 - 342 - 4082
Word for MS-DOS, Windows Write: 01 - 342 - 4083
‘Word for Windows, Word for OS/2: 01 - 342 - 4087
Works for MS-DOS, Works for Windows, Publisher, WorksCalc,
WorksText: 01 - 342 - 4084

C PDS, FORTRAN PDS, Pascal, Macro Assembler PDS, QuickC, QuickC for

Windows, QuickPascal, QuickAssembler, Profiler: 01 - 342 - 4036

COBOL PDS, Basic PDS, Microsoft QuickBascic, Visual Basic: 01 - 342 - 4086

MS-DOS: 01 - 342 - 2152

Macintosh Software: 01 - 342 - 4081

Microsoft Project for Windows, Microsoft Project for MS-DOS, Multiplan,
Mouse, Flight Simulator, Paintbrush, Chart: 01 - 342 - 0322

FoxPro, Microsoft Access: 01 /342 - 4121

(French speaking)

Microsoft SA, office Nyon

Phone: 022 - 363 68 11

Fax: 022 - 363 69 11

Technical support: 022 - 738 96 88

See Argentina

Corporation MS 90 de Venezuela S.A.
Phone: 0058.2.914739
Fax: 0058.2.923835

See England

PART 1

Getting Started

Chapter 1 Installing Microsoft Visual C++. 3
Chapter 2 Building a Sample Application for Windows 13
Chapter 3 Building a Sample QuickWin Program 17
Chapter 4 Developing a Microsoft Visual C++ Application 21

Chapter 5 Fast Track to Visual Workbench. 35

CHAPTER 1

Installing Microsoft Visual C++

This chapter introduces Microsoft Visual C++ and its integrated development
environment, Microsoft Visual Workbench. It outlines the minimum hardware and
software requirements necessary to install and use Visual C++ and also points out
the differences between Visual C++ Standard Edition and Visual C++ Professional
Edition. You can use this chapter to install either version of Visual C++ or to
update components.

Microsoft Visual C++ Overview

Before installing Visual C++, you might find it useful to read a short overview of
the compiler and development environment you are about to use. Also, you may be
interested in the differences between Visual C++ Standard Edition and Visual C++
Professional Edition and how this relates to Visual Workbench, which is used by
both versions.

What Is Visual C++?

Microsoft Visual C++ is a tool for building and debugging Windows-based appli-
cations and libraries in an integrated Windows environment. Visual C++ makes it
much easier to tackle the complex job of developing applications for Windows by
incorporating high-level C++ application framework classes with integrated
Windows-hosted development tools.

The Windows-hosted development tools used in Visual C++ include Visual Work-
bench, App Studio, AppWizard, ClassWizard, and several other utilities accessed
from, or used by, Visual Workbench.

During the development process, you use AppWizard to create the C++ Microsoft
Foundation Class Library source files for your project. To create and edit resources
such as dialog boxes, menus, toolbars, and controls, you use App Studio. You use
ClassWizard to add C++ framework code for classes and message maps for either
resources or View and Document classes. For an overview of the development pro-
cess, see Chapter 4, “Developing a Microsoft Visual C++ Application.”

4 Visual Workbench User’s Guide

Comparison of Standard and Professional Editions

Visual C++ is available in two versions: Visual C++ Standard Edition and Visual
C++ Professional Edition. The same integrated development environment is used
by both, with a few minor differences. This book describes both versions.

Visual C++ Standard Edition incorporates all the features necessary to develop
complete C++ framework-based applications for Windows. In fact, it uses the same
integrated development tools, Microsoft Foundation classes, run-time libraries, and
Windows libraries as Visual C++ Professional Edition. It also provides all neces-
sary reference documentation from the Windows Software Development Kit (SDK)
in online Help files.

Visual C++ Professional Edition is an enhanced version of Visual C++ that adds
features such as an optimizing compiler, support for MS-DOS and p-code targeting,
documentation for command-line tools, and SDK tools and sample programs. The
professional edition provides several additional tools, such as the Microsoft
CodeViewe debugger (both MS-DOS and Windows versions) and the Microsoft
Source Profiler.

There are a only few areas where Visual Workbench differs between models:

» Project Types: Visual C++ Professional Edition supports several target types
not supported by Visual C++ Standard Edition. In the areas where you assign a
project type, namely in the New Project and Project Options dialog boxes, the
following extra project types appear in Visual C++ Professional Edition:

= Windows P-code application

= MS-DOS application

= MS-DOS P-code application

= MS-DOS Overlaid application
= MS-DOS COM application

= Compiler Options: Visual C++ Professional Edition supports the optimizing
compiler. Therefore, in the C/C++ Compiler Options dialog box, accessed from
the Project Options dialog box, there are several compiler options available for
Visual C++ Professional Edition that are either disabled or have limited per-
formance for Visual C++ Standard Edition.

= CodeView Installation: The Microsoft CodeView for Windows debugger is
provided only with Visual C++ Professional Edition and is optionally installed
on the Visual Workbench Tools menu during setup.

Chapter 1 Installing Microsoft Visual C++ 5

System Requirements

Visual C++ requires the following minimum configuration:

» An IBM Personal Computer, or 100 percent compatible, running MS-DOS
version 5.0 or later.

= A VGA monitor.
= An 80386 or higher processor.
= Four megabytes of available memory (6 megabytes recommended).

= A hard disk with enough disk space to install the options you need. The Setup
program lets you select installation options and provides you with the disk-space
requirements for the options you select. It then checks to make sure you have
enough space before copying files.

» A 1.2-MB, 5.25-inch disk drive, or a 1.44-MB, 3.5-inch disk drive.

= Microsoft Windows or Microsoft Windows for Workgroups version 3.1 running
in enhanced mode (command-line utilities can be run outside Windows but you
need Windows to install Visual C++).

Installation

The Setup program provided by Microsoft Visual C++ performs all tasks necessary
for installing the Visual C++ components. You can install everything at once or
install just a subset and upgrade it later with additional libraries, sample programs,
help files, or other components.

Visual C++ tools, such as the compiler and linker, are designed to be used with
Visual Workbench, the integrated development environment. However, if you

are installing the professional edition and want to run the tools from the command
line, you need to change your AUTOEXEC.BAT file to set the PATH, LIB, and
INCLUDE environment variables. This is described in “MS-DOS Configuration”
on page 10.

Initial Installation

For extensive help on any of the dialog boxes presented by the Setup program
during the installation, press the F1 key or choose the Help button in the dialog box.

» To run Setup:
1. Place Disk 1 in drive A.

2. If Windows is loaded, choose Run from the Program Manager File menu and
type A: \SETUP in the Command Line box.

Setup prompts you with a dialog box that describes the program and lets you
continue or exit.

6

Visual Workbench User’s Guide

3. Choose Continue.

The Installation Options dialog box appears (see Figure 1.1). Use this dialog
box to configure the installation to fit your system.

Installation Options

Select the file groups to install. Choose the button to the right of
the option to ize that selecti Chooze Directories to specify
ile di i I fi i h i without

file direct For a def.
changing any options.

X Microsoft Yisual Workbench
Microsoft C/C++ Compiler

Microsoft Foundation Classes
Microsoft App Studio: Resource Editor r—l —
Run-Time Libraries [iL'L .. Di

Sample Source Code Samples... | | Exit I
(X Online Help Files [Help Files... |

Tools —ml

I Disk Space Information
Installation root drive/directory: D:AMSVC\
Sp tly available on i llation root drive: 92100 Kb
Space required during Setup on installation root drive: 41268 Kb
Space required after Setup on installation root drive: 38596 Kb

Figure 1.1 The Installation Options Dialog Box

. In the Disk Space Information group at the bottom of the Installation Options

dialog box, compare the disk space listed as available with the disk space listed
as required.

If you have enough disk space on drive C to install the entire Visual C++ set of
files, you may want to perform a default installation (go on to step 5).

If the default installation requires more disk space than is available on drive C,
you have several choices. You can:

= Use the Directory Options dialog box to change the drive to a larger drive.

= Use the Library Options dialog box to remove a memory model or target file
type.

= Remove elements listed in the Sample Source Options, Help File Options,
and Tool Options dialog boxes.

Disk-space information is provided in each dialog box to help you make the best
decision.

. To perform a default installation, without customization, choose Continue.

Or, if you wish to customize the installation, select whatever installation options
you want and then choose Continue.

Chapter 1 Installing Microsoft Visual C++ 7

“Installation Options” on this page provides an overview of each of the installation
options. You can also press the F1 key for online help on installation options.

After you choose Continue in the Installation Options dialog box, Setup prompts
you for identification information, then builds the file list, checks for sufficient disk
space, and copies files from drive A to your hard drive.

Reinstalling Visual C++

After you have installed Visual C++, you can reinstall it to build additional librar-
ies or copy any other files you didn’t install the first time. The following procedure
shows you how to reinstall a specific part of Visual C++ and shows, as an example,
how you would add the Compact Memory Model library to your existing Visual
C++ configuration.

» To reinstall a specific part of Visual C++:
1. Run Setup as described in “Initial Installation.”

2. In the Installation Options dialog box, clear all check boxes except the category
you want to install.

For example, clear all check boxes except Run-Time Libraries.
3. Choose the command button that corresponds to your category.

For example, choose Libraries. The dialog box for the category you chose
appears.

4. Clear all default options and select the new option or options.

For example, in the Memory Models group, clear Small/Tiny, Medium, and
Large/Huge and select Compact.

5. Choose OK to close the category dialog box.

6. Choose Continue to proceed with the installation.

Installation Options

You can customize your installation of Visual C++. For example, you can choose
what drive you want the files installed on, which libraries you want built, and which
sample files and help files you want installed. Customizing your installation can be
useful if you want to minimize disk-space usage. You can install just the compo-
nents you want now and add components at a later time. This section describes each
of the dialog boxes available from the Installation Options dialog box.

Directories

Use the Directory Options dialog box to change the directories specified for any of
the Visual C++ components. The Install Directory sets the drive and root directory

8

Visual Workbench User’s Guide

name. Any changes you make to the path in the Install Directory text box are auto-
matically made to all other directory paths when you move the focus out of the box.

The Disk Space Information group at the bottom of the dialog box shows you how
much space is available on each hard drive selected in the Drive list box so you can
determine which drive to use.

Libraries

Use the Library Options dialog box to choose which memory models, math support,
and target types to build libraries for. You can choose from among the following
options:

= Memory models: Small/Tiny, Medium, Compact, and Large/Huge

= Math support: Emulation, 80x87, or Alternate (math support for Visual C++
Professional Edition only)

= Targets: Windows .EXE, Windows .DLL, QuickWin .EXE, and MS-DOS
EXE (MS-DOS .EXE for Visual C++ Professional Edition only)

Samples

Sample programs can be installed or omitted by category. The following sample file
categories are available in the Sample Source Options dialog box:

» User’s Guide Samples

= Windows C++ (MFC) Samples

= Windows C (SDK) Samples (SDK sample programs for Visual C++ Profes-
sional Edition only)

Help Files

Help files for an application or library are installed by default when the application
or library is selected in the Installation Options dialog box and the Online Help
Files check box is also selected. The various Help files and what they contain are
as follows:

= Class Library Help (reference help for the Microsoft Foundation Class Library)

= Windows 3.1 SDK Help (reference help for the Software Development Kit and
Windows APIs)

= C Lang/Libs Help (reference help for the C and C++ languages and run-time
libraries)

= Pen/Multimedia Help (reference help for the Pen Windows and Multimedia
APIs— Visual C++ Professional Edition only)

Chapter 1 Installing Microsoft Visual C++ 9

Tools

The Tool Options dialog box is available with Visual C++ Professional Edition
only. It provides check boxes for Windows-hosted tools and MS-DOS—hosted
tools you can install. Windows-hosted tools include:

= CodeView for Windows

= Debug Kernel

= Pen Files

= Windows Profiler

= Redistributable Files

= Analysis Tools

= Help Compiler

= Font Editor

MS-DOS tools include:

» CodeView
= MS-DOS Profiler

Setting Command-Line Options for Visual Workbench

After you have installed Visual Workbench, you can use the Properties dialog box
(opened from the Program Manager File menu in Windows) to specify command-

line options for Visual Workbench. You may find this useful if you want to load a
particular project or set of source files every time you start Visual Workbench.

» To set command-line options for Visual Workbench:
1. Move the focus to the Visual C++ icon.
2. From the Program Manager File menu, choose Properties.

3. In the Command Line box, following MSVC.EXE, add a space followed by
each filename you want Visual Workbench to load automatically.

Visual Workbench uses the first file with an extension .MAK as the project file
and assumes all other files are source files. For example, the following entry

in the Command Line box would load the MYPROJ project and the source files
MYPROJ.CPP and MYPROJ . H, all located in the C root directory:

C:\MSVC\BIN\MSVC.EXE C:\MYPROJ.MAK C:\MYPRQJ.CPP C:\MYPROJ.H

10

Visual Workbench User’s Guide

Note The most recently used project is always loaded automatically when you start
Visual Workbench so you don’t need to use Visual Workbench command-line op-
tions to load your current project. Also, by default, the most recently used work-
space is loaded when you start Visual Workbench, which automatically loads the
files and window configuration from your last session. See Chapter 8, “Using
Projects,” for more information on using workspaces.

MS-DOS Configuration

Since Visual C++ is designed primarily to be used with Visual Workbench, the
Setup program doesn’t configure your system to run Visual C++ components from
the MS-DOS command line. However, Visual C++ Professional Edition does pro-
vide command-line tools and documentation. So if you want to use the compiler,
linker, NMAKE, or any of the other Visual C++ components from the command
line, you need to either make changes to your AUTOEXEC.BAT file or run the
batch file MSVC\BIN\MSVCVARS.BAT to temporarily set your environment
variables.

To update your AUTOEXEC.BAT file for MS-DOS command-line tools, use the
following procedure. Then exit Windows and either reboot your system or run
AUTOEXEC.BAT manually to make the changes effective. This procedure as-
sumes that Visual C++ is installed on drive C in a directory called MSVC. Sub-
stitute any differences in the drive or directory for your installation of Visual C++.

To change AUTOEXEC.BAT to run tools from the command line:

1. Add the following to the PATH variable (separated from the previous path by a
semicolon):

C:\MSVC\BIN

2. Add the following line:
SET INCLUDE=C:\MSVC\INCLUDE;C:\MSVC\MFC\INCLUDE

Or, if there is already an INCLUDE variable for use elsewhere on your system,
add the following to your INCLUDE statement (separated by a semicolon):

C:\MSVC\INCLUDE;C:\MSVC\MFC\INCLUDE

3. Add the following line:
SET LIB=C:\MSVC\LIB;C:\MSVC\MFC\LIB

Or, if there is already a LIB variable for use elsewhere on your system, add the
following to your LIB statement (separated by a semicolon):

C:\MSVC\LIB;C:\MSVC\MFC\LIB

Chapter 1 Installing Microsoft Visual C++ 1

CL, LINK, NMAKE, CVPACK, and BSCMAKE are all 32-bit MS-DOS—
extended programs that must be run on an 80386 or higher processor running in
protected mode. You can run them from the command line either in an MS-DOS
session from within Windows or outside of Windows at the MS-DOS prompt.
These applications are 32-bit hosted only and do not generate 32-bit code.

The file DOSXNT.EXE must be in the same directory as these files or on the path.
(It is installed in the MSVC\BIN directory by default.) In addition, to run these
programs under Windows, the following command must be in the [386Enh] section
of SYSTEM.INI:

DEVICE=C:\MSVC\BIN\DOSXNT.386

and the file DOSXNT . 386 must be in C: \MSVC\BIN. This is done automatically
when you install Visual C++. If you install Visual C++ using a different drive or
directory, you’ll need to modify the DEVICE command to match your installation.

See the Tools TechNote Viewer for more information on using these tools from the
command line.

13

CHAPTER 2

Building a Sample Application for
Windows

The first thing many programmers want to do after installing a new language and
development environment is to perform a test build to make sure everything is
installed correctly and to see how the build process works. A “test drive” gives you
confidence in your setup and helps you get acquainted with the new development
environment.

This chapter takes you directly through a build of a Microsoft Foundation Class
Library sample program, after a short introduction to projects. It assumes that you
have installed the Microsoft Foundation Class Library and sample programs and
that the samples reside in a directory called \MSVC\MFC\SAMPLES on the hard
disk drive on which Microsoft Visual C++ is installed.

Introducing Projects

Projects are the cornerstone of Microsoft Visual Workbench. A project references
all the source files and libraries that make up a program, as well as the compiler
and linker commands that build the program. It is composed of a makefile (MAK),
which is compatible with the Microsoft Program Maintenance Utility (NMAKE),
and a status file (VCW), which contains Visual Workbench information. A project
is identified by its makefile; the makefile has the same base name as the project
with a .MAK extension.

All sample programs have project files associated with them. To leam how to create
your own projects, read Chapter 8, “Using Projects.”

Project files from Microsoft Programmer’s WorkBench (PWB) can be used from
within Visual Workbench by loading them as external projects. This does not give
you access to compiler and linker options (other than Release versus Debug mode),
but it does let you migrate quickly from PWB to Visual C++ and build, run, and
debug your PWB applications from within Visual Workbench. To learn more about
using external projects, see “Using External Projects” on page 107.

14 Visual Workbench User’s Guide

A Sample Windows-Based C++ Application

To familiarize yourself with the steps of building any program that already has
a Visual Workbench project, you can use any of the sample projects in the

Microsoft Foundation Class Library samples directory. The HELLO program
is used in this example.

» To build and run a sample Windows-based C++ program:
1. From the Project menu, choose Open.
The Open Project dialog box appears.
2. Select the HELLO.MAK project file (see Figure 2.1).
This file is in the \MSVCO\MFO\SAMPLES\HELLO directory.

Open Project
File Name: Directories:
hello.mak l c:\msvcimfch les‘hello
T Sov < Cancel I
(F= msve
2 e
(= samples
£ hello
A4
List Files of Type: Drives:
[Proiect (~.mak] M [=« [#]
O Use as an external makefile

Figure 2.1 The Open Project Dialog Box

3. Choose OK.
4. From the Options menu, choose Project.
The Project Options dialog box appears (see Figure 2.2).

5. From the Build Mode options, select Release or Debug (select Debug for this
example for a faster build).

- Project Options F

Project Type:]Eindows application (_[EXE] Lg_l I 0K I

Milise Microsoit Foundation Classes!

Customize Build Options Build Mode
e

Figure 2.2 The Project Options Dialog Box

Chapter 2 Building a Sample Application for Windows 15

6. Choose OK to close the Project Options dialog box.
7. From the Project menu, choose Build HELLO.EXE.

Or click the Build button on the toolbar (see page 60 for more information on
the toolbar).

The build occurs entirely in the background, so you are free to continue working
in Visual Workbench (although some menu commands are disabled). During the
build, output from each of the build utilities, such as the compiler and linker,
appears in Visual Workbench’s Output window.

When the build is complete, Visual Workbench displays the final results on its
status bar. In this case, the status bar should indicate 0 errors and 0 warnings.

8. To run the program without invoking the internal debugger, choose Execute
HELLO.EXE from the Project menu.

To run the program in the debugger, choose Go from the Debug menu or click
the Run button on the toolbar.

Choose Exit from the program’s File menu to quit the program and return to Visual
Workbench when you finish experimenting with the program.

17

CHAPTER 3

Building a Sample QuickWin
Program |

Most programmers learn to write C or C++ programs using standard input/output
(I/O) functions like printf() and scanf() (or the C++ iostream objects cin and
cout) to communicate with users of their programs. Hence, many programmers
are more comfortable using the standard I/O model than the Windows API pro-
gramming model. There are lots of reasons why programmers still rely on the
MS-DOS I/O model, even when programming in Windows. It is convenient for
prototyping code and for quick jobs that don’t justify the development of a full-
blown Windows interface.

The QuickWin library is the fastest and easiest way to merge MS-DOS pro-
gramming with Windows. You can write standard I/O programs and have them
run in a multiple document interface (MDI) QuickWin window. You can even
use all the functions in the MS-DOS GRAPHICS.LIB library. You can use the
QuickWin library to port many of your existing MS-DOS programs to Windows
without incurring the development overhead associated with Windows.

This chapter shows you the quickest way to use Microsoft Visual Workbench to
write, build, and run a QuickWin program.

What Is QuickWin?

A QuickWin application is a standard I/O program with a Windows shell. It runs
only with the Windows operating system. You build your program as a QuickWin
project type; then when you run the program from Windows, a QuickWin MDI
window appears with a window dedicated to all your program output functions.
This window is like a video monitor; you can write to the window and perform
input and output operations with standard MS-DOS input/output routines.

QuiCkWin is an easy way for users of Visual C++ Standard Edition to write
MS-DOS-style programs without having to upgrade to the MS-DOS targeting
provided with Visual C++ Professional Edition. If you are learning C++ or C

18 Visual Workbench User’s Guide

programming, and are using a tutorial such as the C++ Tutorial, which uses the
standard I/O programming model, you’ll find QuickWin useful for experimenting
with sample programs.

The following section walks you through a simple QuickWin C++ example. The
QuickWin library, however, is capable of handling most well-behaved standard
I/O programs, including programs that use the Microsoft GRAPHICS.LIB library.
Of course, QuickWin cannot interpret programs that use hardware-specific func-
tions such as BIOS interrupts or functions that directly manipulate video memory.

For a complete description of the QuickWin library, see Chapter 7 of Program-
ming Techniques.

A Sample QuickWin Program

To see how easy it is to use QuickWin, try typing a small sample program in a
source window and then building it as a QuickWin program. Or, if you would
prefer to try out the sample QuickWin program provided on disk, open the file
named QWGDEMO.CPP located in the \MSVC\SAMPLES\QWGDEMO direc-
tory and follow the instructions detailed in the procedure titled “To build and run
a QuickWin program.”

Note You need the QuickWin library to build QuickWin programs. If you haven’t
installed this library, you can rerun the Setup program to install it (see page 7 to
learn how to install a library using Setup).

» To write a QuickWin program:
1. If you have a project open, close it by choosing Close from the Project menu.
2. From the File menu, choose New.
An empty source window opens.
3. Type the following code in the source window:

f#Finclude <iostream.h>
void main()
{
cout << "Hello C++ world\n";
}

Chapter 3 Building a Sample QuickWin Program 19

If you need help using the editor, see Chapter 7, “Using the Editor.” Figure 3.1
shows the source window with the sample code.
¥ <Huntmebyr MRl

#include <iostream.h>
void main()

cout << “Hello C++ worldsn“:|

Figure 3.1 QuickWin C++ Program Code

From the File menu, choose Save As.

The Save As dialog box appears.

. Type the name for the file, QWINTEST . CPP, in the File Name box and choose

OK.

Note Use the extension .CPP or .CXX, or the compiler will not recognize the
program as a C++ program.

Now that you’ve entered the program, you can build an executable program. For the
next procedure, use either the QWINTEST.CPP program from the previous proce-
dure or the QWGDEMO.CPP program (which you must open first). Note that this
procedure builds the QuickWin program without creating or using a project. If you
plan to develop extensive QuickWin applications, it is suggested that you create and
use projects (see Chapter 8, “Using Projects,” for more information).

To build and run a QuickWin program:

1.

Click in the source window containing the QuickWin program to make it the
active window.

From the Options menu, choose Project.
The Project Options dialog box appears (see Figure 3.2).
In the Project Type list box, select QuickWin application (.EXE).

. From the Build Mode options, select Debug or Release (for this example, select

Debug).

. Choose OK to close the Project Options dialog box.

20

Visual Workbench User’s Guide

Project Options

Project Type: |QuickWin application (EXE] T Lo |
[JiUse Microsoft Foundation Classes!

Customize Build Options Build Mode
o | L]

Figure 3.2 The Project Options Dialog Box

. From the Project menu, choose Build Targetname (where Targetname is either

QWINTEST.EXE or QWGDEMO.EXE in this example depending on the pro-
gram you are building).

Or click the Build button on the toolbar.

The build process automatically generates the module-definition file required for
a QuickWin program.

When the build is finished, there should be 0 errors and 0 warnings reported on
the status bar. If there are any errors (probably created by typing errors), correct
them and repeat the build. If there are link or include-file errors, make sure the
paths for the library files and include files are correct in the Directories dialog
box (opened from the Options menu).

. From the Project menu, choose Execute Targetname (where Targetname is

either QWINTEST.EXE or QWGDEMO.EXE).

The QuickWin window should appear with your program’s output in one of its
MDI windows (see Figure 3.3).

QWINTEST

Stdin{StdouyStderr

Hello C++ world

Figure 3.3 QWINTEST Output

After you have experimented with the program, you can close the QuickWin appli-
cation by choosing Exit from its File menu or by pressing CTRL+C. This will return
you to Visual Workbench.

2

CHAPTER 4

Developing a Microsoft Visual C++
Application | |

This chapter discusses the process of using Visual Workbench and App Studio to
create a Visual C++ application. It presents an overview of the development pro-
cess and puts all the tools in perspective.

It is highly recommended that you complete the Scribble tutorial in the Class
Library User’s Guide to learn how to develop a Visual C++ application. You can
read this chapter as an overview to the tutorial or as a quick refresher.

What Is a Visual C++ Application?

A Visual C++ application is an application for Windows that you design and
develop using the Microsoft Foundation Class Library, the Microsoft Visual C++
build tools, and the Visual Workbench and App Studio Windows-hosted develop-
ment tools.

By using a totally integrated environment, you approach programming your appli-
cation the way that users approach using your program—from the visual interface
elements. Visual C++ calls these elements “user-interface objects.” You first design
the user-interface objects and then use Visual C++ tools to create and manage the
code to support them. Visual C++ tools help automate the tedious and error-prone
process of deriving classes, creating member functions, and mapping them to mes-
sages. This automation lets you concentrate on designing the resources for your
application and writing the functional code to handle messages.

Of course, you can also use Visual C++ tools to develop standard Windows SDK
applications in C or C++, since Visual C++ includes a text editor, project manager,
build utility, browser, debugger, and resource editor. But, if you are familiar with
standard SDK programming for Windows, you’ll find that the Visual C++ tools
make the transition to object-oriented program development, and the Microsoft
Foundation Class Library, easier than you might have imagined.

22

Visual Workbench User’s Guide

Introducing the Tools

The Visual C++ tools consist of two applications, Visual Workbench and App
Studio, and two wizards, AppWizard and ClassWizard. If you have Visual C++
Professional Edition, you have additional auxiliary tools. However, since these
are not fundamental to developing a Visual C++ application using the Microsoft
Foundation classes, they are not discussed in this chapter.

The Applications

Visual Workbench and App Studio are the two Windows-hosted applications that
work together to help you develop Visual C++ applications.

Visual Workbench

Visual Workbench is the main editing and debugging tool and acts as the anchor for
the programming environment by creating and maintaining project information (see
Figure 4.1). It incorporates a text editor, project manager, browser, and debugger in
a single integrated development environment.

Microsoft Yisual C++ - MYAPP.MAK
File Edit Yiew Project Browse Debug Tools Options Window Help

- = [B ClEE Bl BT

<Z2> Browse MYAPP.BSC

<1> CAMSYCIMYAPPAMYAPPDOC.CPP
CHyappDoc : : CHyappDoc()

— Quely
Type: |Derived Cla

- [CI
Subset: |Classes /7 TODO: add one-time construction code here

o

Symbol: |CMpappViev

<3> CAMSVCAMYAPP\M Y APPYW.CPP

™ CView ('EMvappDoc::
,_BCS':“’“V?E} BEGIN_WESSAGE_MAP(CMyappViev. CView)
CFornVig /7{{AFX_MSG_MAP(CMyappView)
CEditView |IBOOL CMyapp| s/ HOTE — the ClassWizard will add and | |
M{ s | DO NOT EDIT what you see in thesd

if (!CD| #7}}AFE_MSG_MAP

ret| 7 Standard printing commands
7 TODOQ| ON_COMMAND(ID_FILE_PRINT, CView::OnFilePri
77 (SDI ON_COMMAND({ID_FILE_PRINT PREVIEW, CView: :O
return ([END_MESSAGE_MAP()

///

«

<5>0utput <4>Watch

Figure 4.1 Visual Workbench

Chapter 4 Developing a Microsoft Visual C++ Application 23

The Wizards

App Studio

App Studio lets you create and edit all your application’s resources, including
dialog boxes, menus, icons, bitmaps, cursors, and more, in a single environment
(see Figure 4.2). It can be used as a stand-alone resource editor to read and gener-
ate resource files for standard Windows SDK program development. Or it can be
integrated with ClassWizard, AppWizard, and Visual Workbench to develop
Visual C++ applications using the Microsoft Foundation classes.

= App Studio - SCRIBBLE.RC [+1+
File Edit Resource Layout Window Help

EExBE=]s]

=] SCRIBBLE.RC (Script) -1~
Type: Resources: {2 total)
EalAFX_IDD_ABOUTBOX (3
Al
Mo
About Scribble X|®
Microsoft Windows 3.1 I
MEC V2.0
Scribble App [E
........ L Version10 [
Ready fi

Figure 4.2 App Studio

Two Visual C++ wizards, AppWizard and ClassWizard, help you design, create,
and implement Visual C++ applications using the Microsoft Foundation classes.
Wizards can be thought of as helpers that relieve you of much of the tedious work
in application development.

AppWizard

AppWizard is a tool that generates a complete suite of source files and resource
files for a Microsoft Foundation Class Library application (see Figure 4.3). It is
important that AppWizard be used first during the development of a Visual C++
application.

24 Visual Workbench User's Guide

= MFC AppWizard I

Project Name: Imyapp j OK

—

Project Path——

c:\msvc\tempdir
\myapp\myapp.mak

i}

Directory: Options...
=15 2 lasses...
B msvc
= tempdir

New Subdirectory:
[myapp]

Drive:

BE

Figure 4.3 AppWizard

By selecting options in AppWizard, you can create skeleton C++ source files
with differing levels of functionality. If you enable all AppWizard options, gener-
ate a project, and then build it without adding a single line of code, you’ll get a
Windows-based application with a surprising amount of functionality. A fully
optioned AppWizard-generated application has:

= A multiple document interface (MDI).

= Menus and dialog boxes for opening and saving files, printing, and print
preview.

= Support for object linking and embedding (OLE).
= Support for Microsoft Visual Basic™ custom controls (custom VBX controls).
= Support for Help.

= A functional toolbar and status bar.

AppWizard is accessed from the Visual Workbench Project menu.

ClassWizard

ClassWizard (see Figure 4.4) is a tool that allows you to:

= Create new classes.
= Map messages to class-member functions.

= Map controls to class-member variables.

Chapter 4 Developing a Microsoft Visual C++ Application

25

= ClassWizard I
Class Name: [CSeribView E
Obiect IDs: Mes ;- Add Class...
CSciibView Y |&)

_COMMAND_Ut Class Info...

1ID_APP_EXIT . - 1
ID_EDIT_CLEAR_ALL
ID_EDIT_COPY

ID_EDIT_CUT e ettt
ID_EDIT_PASTE £ Yassables...

Member Functions:

OW D &FF SBOUT:COMMAND
OnLButtonDown ON_wh_LBUTTONDOWN

OnLButtonUp ON_WM_LBUTTONUP
OnMouseMove ON_w/M_MOUSEMOVE —_—
Edit Code

Add Funotion...

Description: Handle a command (from menw, accel, cmd button)

Figure 4.4 ClassWizard

Creating a new class using ClassWizard is as simple as selecting a base class
from a list of available base classes and typing in the name of the new class.
ClassWizard automatically creates the necessary source files and declaration and
implementation code to derive the new class.

You use ClassWizard most often to “bind” user-interface objects to code. After
creating the user-interface objects in App Studio, you use ClassWizard to create
member functions and message maps to handle messages from these objects.

For example, if you add a menu item “Test” to the Edit menu in App Studio and
then open ClassWizard, you can select the class to which you want the message-
handler function for that object added, select the resource identifier for the

Test menu item (ID_EDIT_TEST in the Object ID list), specify that it is a
COMMAND in the Messages list, and choose the Add Function button. After
presenting you with a message box to allow you to alter the function name,
ClassWizard inserts the message-map entry, function prototype, and skeleton
function code.

You can also easily create message-handler functions for standard Windows mes-
sages, such as WM_MOUSEMOVE. ClassWizard displays a list of standard
Windows messages for each of the classes that can handle messages. To hook up
a message with a message-handler member function, you just select a class, select
the message you want to handle, and choose the Add Function button.

26 Visual Workbench User’s Guide

Finally, ClassWizard can be used to automate development of most of the code
needed for getting data into and out of dialog boxes and for checking the validity
of user input to a dialog-box edit control. ClassWizard’s dialog-data-exchange
feature creates source code to map data from dialog-box controls to class-member
variables. The dialog-data-validation feature creates source code to respond to
incorrect user entries in a dialog box.

ClassWizard is accessed from either Visual Workbench or App Studio.

The Process

The process for developing a Visual C++ application using the tools just described
can be broken into two stages: application creation and application development.
The first stage is straightforward, while the second contains several steps that are
iterative and involve many components.

The Application Creation Stage

The first step in creating a Visual C++ application is to generate a set of application
starter files using AppWizard (see Figure 4.5). These starter files are in a format
that can later be recognized by ClassWizard.

1. Create starter files.

Source files

h 4

AppWizard Create Build

v

Resource files

Figure 4.5 Creating the Visual C++ Framework Code

Chapter 4 Developing a Microsoft Visual C++ Application 27

To run AppWizard, you start Visual Workbench and then choose AppWizard from
the Project menu. You then specify a name for the project and select a location

for the source files. At this point, you can also select from the available options in
AppWizard’s Options dialog box. When first explonng Aplezard, you might
want to start with the default options. :

When you choose OK, AppWizard creates all the files required for a standard
Visual C++ application, including source files, resource files, and a Visual
Workbench project file as shown in Figure 4.5. Visual Workbench then loads the
project. At this point, you can immediately compile and link the files by choosing
Build Targetname (where Targetname represents the name of the project you
created) from Visual Workbench’s Project menu.

For more information on using AppWizard, see Chapter 13, “Using Visual Work-
bench with Other Visual C++ Tools,” in this book and Chapter 2, “Creating a New
Application with AppWizard,” in the Class Library User’s Guide.

The Application Development Stage

This section describes the process of developing a Visual C++ application using
Visual Workbench, App Studio, AppWizard, and ClassWizard. Since so much of
the development process involves Visual Workbench, the Visual Workbench tools
are also introduced.

The development stage of any Windows-based application includes the familiar
passes involved in editing source and resource files, compiling and linking, testing,
and debugging. Because these activities are iterative and interwoven during a nor-
mal development cycle, they can’t easily be serialized into steps.

There is an order involved, however, in using App Studio, ClassWizard, and Visual
Workbench, mostly because you always create user-interface objects first in App
Studio, then use ClassWizard to create the code shell, and then use Visual Work-
bench to write the functional code. This order, normally repeated many times during
typical development, is examined here.

28

Visual Workbench User’s Guide

Creating and Editing User-Interface Objects

Figure 4.6 shows the starter files that are created by AppWizard. Although
AppWizard starts you out with some basic user-interface objects (such as menus,
a toolbar, and so on) when it generates the resource files, you will undoubtedly
need to add user-interface objects of your own. To do this, you use App Studio,
shown editing the resource files in Figure 4.6.

Source files

@ild

Resource files

[T
App 2 Add user-interface objects
Studio to resource file.

Figure 4.6 Creating and Editing User-Interface Objects

You can easily open App Studio from within Visual Workbench by choosing App
Studio from the Tools menu. This opens App Studio and passes the name of the
resource file (.RC) to it. To learn how to use App Studio to create and edit user-
interface objects, see the App Studio User’s Guide.

Connecting User-Interface Objects to Code

After creating the user-interface objects in App Studio, the next step is to create the
Microsoft Foundation Class Library code that supports them. Figure 4.7 shows the
additional two tools, ClassWizard and Visual Workbench, that come into play at
this point.

Chapter 4 Developing a Microsoft Visual C++ Application 29

3. Create skeleton message-handler code
for user-interface objects.

[
Visual ;
—+— 4. Edit message-handler code
Workbench to add functionality.

App
Studio

Figure 4.7 Connecting User-Interface Objects to Code

You use ClassWizard to generate the message-handler functions and message maps
for each user-interface object created in App Studio.

With the skeleton prototype and function code inserted by ClassWizard, you use
Visual Workbench to actually add the code. ClassWizard even lets you jump direct-
ly into Visual Workbench at the proper location to add code.

Depending on your style, you may prefer to connect each user-interface object to
code as it is created in App Studio, or wait until you are finished in App Studio
before using ClassWizard and Visual Workbench. The integrated nature of these
three tools adapts easily to your own style of working.

30

Visual Workbench User’s Guide

The Entire Process

Figure 4.8 shows how AppWizard, App Studio, ClassWizard, and Visual
Workbench all work together. If you have developed applications for Windows
prior to Visual C++, you can see the “standard” development process by mentally
removing ClassWizard and AppWizard from the picture—where Visual Work-
bench represents the source editor and App Studio represents the resource editor
(or editors) you might have used to create source and resource files. This devel-
opment model has been widely used and is still available and fully supported in
Visual C++.

Visual
Workbench

— Source editor

Wizards

Source files

App
Studio

— Resource editor

Figure 4.8 The Visual C++ Development Process

AppWizard simply helps you by creating customized starter files in a location of
your choice. ClassWizard adds another dimension to this standard model by keep-
ing track of source code and user-interface objects and therefore lets you derive

Chapter 4 Developing a Microsoft Visual C++ Application 31

classes, connect resource identifiers to code, and edit source code from a single
vantage point.

What isn’t depicted in this illustration is that Visual Workbench is the central tool
that coordinates all the other tools by maintaining the project information. Visual
Workbench is not just where you edit files; it is also where you manage the source
code, and build and debug the application. The next two sections describe the tools
you use in Visual Workbench during application development.

Managing Your Source Code
ClassWizard and the Visual Workbench source browser are source-code manage-
ment tools that allow you to access your source code from a structured viewpoint.

As discussed earlier, ClassWizard keeps track of all resource objects and member
functions. It lets you immediately jump to the message-handler source code from
ClassWizard so that you can edit it.

The Visual Workbench browser is another Visual C++ tool for managing source
code. You open the browser by opening the Browse window in Visual Workbench
(see Figure 4.9). You can use the browser to:

= Graphically display hierarchical class trees of derived or base classes.

= Graphically display all the functions that call, or are called by, a particular
function.

= Display a list of source-code locations where references to a symbol are made
and where a symbol is defined.

= Display member-function and member-variable lists for C++ classes.

= Jump directly to definitions and references either from list entries in the Browse
window or from a selected symbol in a source file.

= <1> Browse SCRIBBLE.BSC u =
— Query
Type: |Derived Class Graph * | Disglag Result I Eannd Tree I
Subset: |Classes kd | Previous guelz l Cullagse Node I
Symbol: [CWnd
N AICUnd; :CUnd(struct HUND _ const *) 14
H"™5 CDialog CWnd: :CWnd()
CPenWidthsDlg CWnd: :~CWnd({)
CFileDialog struct AFX_MSGMAP_ENTRY * Clnd:: _mfy
CFontDialog "’ j— * — I 3
CColorDialog . ——
CPrintDialog Definitions of ClWnd +
CFindReplaceDialog d:“msvemfeNincludeNafxwin h(1098) (|
™ CStatic References to CWnd
L™ CButton d:~msvesxmfchincludesafxwin h(43)
L& CBitmapButton d:“msvehnfchincludeNafxwin h(665) [g
H*™ CListBox A< T — N S

Figure 4.9 The Visual Workbench Browse Window

32

Visual Workbench User’s Guide

Like ClassWizard, you can use the browser to look at your code from a different
viewpoint than normal text mode. The browser shows you relationships between
base and derived classes and between calling and called functions. You can also
jump directly from the Browse window to source code simply by double-clicking a
reference or definition in the Browse window. Or, without even using the Browse
window, you can select a symbol in a source file, jump to its definition or first
reference, visit all references to the symbol, and return to the original location, all
using menu commands or shortcut keys.

See Chapter 10, “Using the Browser,” to learn more about the Visual Workbench
browser.

Building and Running Your Application

Visual Workbench helps you build, run, and debug your application with as little
interruption as possible since these tasks are repeated so frequently. You can build
a project in Visual Workbench by:

» Choosing the Build or Rebuild All toolbar button.

» Choosing the Build Targetname or Rebuild All Targetname command from the
Project menu.

When the build is complete, you can run the program in the debugger (assuming it
includes debug information) by:

» Choosing the Run toolbar button.
= Choosing the Go command from the Debug menu.

You can run the program outside the debugger by choosing Execute Targetname
from the Project menu. The steps for building and running an application are
provided in Chapter 2, “Building a Sample Application for Windows,” and in
Chapter 8, “Using Projects.” You can find toolbar descriptions in Chapter 6, “The
Visual Workbench Environment.”

Debugging Your Application

You debug your application from within Visual Workbench. The Visual Work-
bench debugger is a Windows-hosted debugger that is integrated with Visual
Workbench and is compatible with Microsoft CodeView (see Figure 4.10).

33

Chapter 4 Developing a Microsoft Visual C++ Application
= Microsoft Visual C++ [break] - SORTDEMO.EXE n =
File Edit View Project Browse Debug JTools Options Window Help
l ==] =) [&ls) EIRlTlE]
 C: \MSVC\SAMPLES\SOFITDEMO\SORTDEMO C [~]4]
43A7:10FD 51 PUSH
4347 :10F1 9A420CA743 CALL SUAPS (43A7:0C42)
4347 :10F6 83C404 - - ADD SE . 04 o -
Swspbars(iRow, iRow + 1 0
43A7:10F9 8B46FC MOV AX, WORD PTR [IROW] ;BK1
4347 :10FC 050100 ADD A¥,00
43A7 :10FF 50 PUSH AX
4347:1100 FF76FC PUSH WORD PTR [IROV]
4347:1103 9A860CA743 CALL SWAPBARS (43A7:0C86)
4347:1108 83C404 ADD SP. 04
iSwitch = iRow:
4347:110B 8B46FC MOV AX,WORD PTR [IROW}
4347 :110E 8946F8 HOv WORD PTR [ISWITCH].AX ¥
- »
= <3> Watch v+l = <2> Locals v]+l|= Reg v |4
—abarWVork +[||[[EP-0004] int iRow = 0 AX = 0924 1
-[0x0] [BP-0006] int iLimit = 44 BX = Ocdd
len = 23 '"\=x17' [BP-0008] int iSwitch = 0 C¥ = 091c
-clr DX = 43a7
nBlue = 0 SP = 1f5c
nGreen = 255 BP = 1fb6a
nked = 0 SI = 1ffc
+[0x1] = {...} DI = 22a?
+[0=2] = {...} DS = 4B9f
+[0=3] = {...} ES = 439f
#l0wd] = £ % 3 =
[ovR[| [pooog |una

Figure 4.10 The Visual Workbench Debug Windows

The Visual Workbench debugger has many powerful features, including:

» Breakpoints for breaking a program at a location, on an expression evaluation,
or on a Windows message or class of messages.

= A QuickWatch dialog box for examining and changing variable values.

» A Watch window for examining specific variables and expressions.

= A Locals window for examining local variables.

= A Registers window for examining and changing hardware register values.

= Tracing commands to step over, step into, or step out of functions.

= Mixed source and assembly listings and assembly-line tracing.

To use the debugger, you build your application with the Debug configuration.
You then set breakpoints and run the application in a debug session from Visual
Workbench.

When the debugger reaches a breakpoint, you have several options. You can
examine variables or expressions using the Watch window, the Locals window,
or the QuickWatch dialog box. Or you can single-step through the code, choosing
to step over functions or trace into functions that are encountered.

For a complete description of the Visual Workbench debugger see Chapter 11,
“Debugging Programs.”

34 Visual Workbench User’s Guide

For More Information

The topics introduced in this chapter are covered in detail in a number of places
in the Visual C++ printed documentation. Please refer to the following documen-
tation for more information:

The Class Library User’s Guide contains a comprehensive tutorial on develop-
ing a Visual C++ application.

Chapters 1 through 6 of the Class Library Reference cover conceptual informa-
tion on using the Microsoft Foundation classes.

Chapters 6 through 12 of the Visual Workbench User’s Guide describe how to
use general Visual Workbench features.

Chapter 13 of the Visual Workbench User’s Guide describes AppWizard in
detail and discusses both using ClassWizard and running App Studio from
within Visual Workbench.

Chapters 3 through 8 of the App Studio User’s Guide describe how to use gen-
eral App Studio features.

Chapter 9 of the App Studio User’s Guide discusses using ClassWizard from
within App Studio and presents a comprehensive description of ClassWizard.

35

CHAPTER 5

Fast Track to Visual Workbench

Chapters 6 through 13 provide comprehensive information and procedures for using
all parts of Visual Workbench. Often, however, all you need is a pointer in the right
direction, and perhaps a comment about the procedure, to get started. The tables in
this chapter will help you quickly get to the right menu command, dialog box,
window, or compiler or linker control to accomplish your task.

This chapter contains the following sections:

= Menu Summaries
= Key Summaries
= Alphabetic Guide to Build Options

You can use this chapter as an introduction to the Visual Workbench menus,
shortcut keys, and compiler and linker options. Or you can refer to the tables later
for a quick reference.

36 Visual Workbench User’s Guide

Menu Summaries

This section summarizes many of the Visual Workbench procedures and provides a
comprehensive menu overview. Since most menu items are referenced to a complete
description, you can also use this section as an index into the Visual Workbench
User’s Guide.

Managing Files and Printing

Project Files

IEIECTED

Open |

8sd ERITIa |

Save

To Comments See

Create a new source file New Ctrl+N Creates an empty source window that willbe p. 76
named when it is saved.

Open a source file Open... Ctrl+O The Open button on the toolbar is equivalent. p. 79
To open a project file, click the Project Files
button on the toolbar and choose the file from
the drop-down list that appears.

Close a source file Close Or double-click the file’s Control-menu box. p- 82

Save a source file Save Ctri+S The Save command and the Save button on p-77

' the toolbar are inactive until you alter text in

the source window.

Rename a source file Save As... Opens the Save As dialog box, which p. 76
prompts you for a filename.

Save all open source files ~ Save All Saves all source files currently opened. p.- 77

Print the active window Print... Opens the Print dialog box. If text is selected, p. 90
this prints just the selected text.

Set print margins, Page Setup... Opens the Page Setup dialog box. This is p- 91

headers, and footers similar to the page setup capability of other
applications for Windows.

Exit Visual Workbench Exit Exits the development environment and p. 60

prompts you to save any modified files.

Chapter 5 Fast Track to Visual Workbench

37

Editing Files

Find Find Next

FERE

olsd] Bdslwla]

To Comments See
Reverse the last edit Undo Ctrl+Z To set the undo buffer size, see the Editor ~ Help
action dialog box (Options menu).
Reverse the last undo Redo Ctrl+A Must be used before any other editing is Help
done.
Delete to the Clipboard Cut Ctrl+X Overwrites the current Clipboard Help
contents.
Copy to the Clipboard Copy Ctrl+C Overwrites the current Clipboard Help
contents.
Paste from the Clipboard Paste Ctrl+V Pastes text only. Help
Delete text from a file Delete Del Does not save to the Clipboard. Help
Search for text Find... Alt+F3 Opens the Find dialog box. Or you can p- 86
use the Find box on the toolbar to select
from the last 16 items searched. To repeat
the last search, click the Find Next button
on the toolbar.
Search and replace text Replace... Opens the Replace dialog box. p- 89
Move to the Find Matching Brace Ctrl¥] Moves the insertion point from a brace or ~ p. 83
corresponding brace parenthesis to its matching brace or
parenthesis (forward or backward).
Write-protect a file Read Only Useful for viewing files that you don’t p- 86

want to accidentally alter.

38 Visual Workbench User’s Guide

Window Display and Quick Access

To Comments See
Go to a specific line Line... Opens the Line dialog box. Type aline p. 82
number and press ENTER.
Display assembly code Mixed Source/Asm Cirl+F7 Displays assembly code mixed with p. 198
source code.
Jump to the next build Next Error F4 Places insertion point in source file at p. 181
error place of next build error (opens file if
necessary).
Jump to the last build Previous Error Shift+tF4 Places insertion point in source file at p. 181
error previous error (opens file if necessary).
Turn bookmark on or off ~ Toggle Bookmark Ctrl+F2 Line is highlighted when bookmark is p. 82
set.
Jump to the next Next Bookmark F2 Places insertion point at next p- 83
bookmark ; bookmark.
Jump to the previous Previous Bookmark Shift+F2 Places insertion point at previous p- 83
bookmark bookmark.
Remove all bookmarks Clear All Bookmarks Clears all bookmarks set by Toggle p. 83
Bookmark or by the Set Bookmarks on
All button in the Find dialog box.
Toggle toolbar display Toolbar Checked when toolbar is displayed. p- 60
Toggle status bar display ~ Status Bar Checked when status bar is displayed. p- 63
Override syntax coloring ~ Syntax Coloring Select C, C++, or None from pop-up p- 205

menu to set syntax coloring for a single
source file. To set global syntax
coloring, use the Color dialog box from
the Options menu.

Chapter 5 Fast Track to Visual Workbench

39

Working with Projects

Compile File Build

EIEE] B

e ER]

| Rebuild All

To Comments See
Create a new App Wizard... Opens the MFC AppWizard p. 210
application using dialog box, which you use to
AppWizard create a suite of project files to

be used with ClassWizard.
Create a new New. Opens the New Project dialog p. 98
project box, where you name the

project, select a project type, and

add files to the project. The new

project is automatically saved to

disk.
Open an existing Open... Closes any current project. p. 100
project Loads browser database, if

available, for the project.
Add files to or Edit... PRUNAME.MAK To change the project type, use p- 99
delete files from a the Project command on the
project Options menu.
Close the current Close Other ways to close a project are p. 100
project opening another project,

creating a project, or exiting

Visual Workbench.
Compile the active ~ Compile File FILENAME Ctrl+F8 Compiles active source file Help
source file specified by FILENAME. Also

available on the toolbar.
Build the project Build TARGETNAME Shift+F8 Builds only the files not up-to- p. 103
using dependency date and creates a target file.
rules Also available on the toolbar.
Build the project Rebuild All TARGETNAME Alt+F8 Builds all the files regardless of p. 104
from start dependencies and creates a

target file. Also available on the

toolbar.
Abort building a Stop Build Cancels the build as soon as the p. 104
project build tool being used is finished.

40 Visual Workbench User’s Guide

To Comments See
Run a program Execute TARGETNAME Ctrl+F5 TARGETNAME is the name of p. 104
outside the the executable file produced by
debugger building the current project. See
the Debug menu’s Go command
to run a program in the
debugger.
Update include Scan Dependencies FILENAME Recursively scans all files p. 102
dependency list for included by the active source file
active file and updates the list.
Update include Scan All Dependencies This is also done automatically p. 102
dependency list for when a project list is created or
entire project edited.
Load a workspace ~ Load Workspace PRUNAME.WSP Loads one of three previously p. 106
saved workspaces associated
with the current project.
Save a workspace ~ Save Workspace PRUNAME.WSP Saves one of three workspaces p. 105

associated with the current
project.

Chapter 5 Fast Track to Visual Workbench 41

Accessing Symbols and Classes
To Comments See
Jump to first place Go to Definition Fi1 Select symbol in source window p. 168
where symbol is defined or Browse window.
Jump to first place Go to Reference Shift+F11 Select symbol in source window p. 168
where symbol is or Browse window.
referenced
Jump to the next Next Ctrl+NumPad+ Depends on whether Go to p- 168
reference or definition Definition or Go to Reference

was used last.
Jump to the previous Previous Ctrl+NumPad—- Depends on whether Go to p- 168
reference or definition Definition or Go to Reference

was used last.
Jump to location of Pop Context Ctrl+NumPad* Returns to the symbol that was ~ p. 169
selected symbol used before the last Go to

Definition or Go to Reference.
Open the Browse Open [PRINAME.BSC] Opens the Browse window with p. 163
window the database listed or, if no

database name is listed, opens

the Open File dialog box.
Create a new class or ClassWizard... Ctrl+W Opens a dialog box that lets you — p. 222

map a Windows
message to a member
function

create new classes and automate
the creation of message maps
and message-handler member
functions.

42 Visual Workbench User’s Guide

Debugging Programs

Toggle Breakpoint

QuickWatch Step Out |

FIEE B &

e BUmlelal

Run | Step Over

Step Into

To Comments See
Start or continue a Go F5 Runs program associated with the current p. 189
program using the project.
debugger
Reload program and Restart Shift+F5 Use when execution has paused at a p- 189
start breakpoint, between steps, or when

program has completed. Discards variable

values.
Quit a debugging Stop Debugging Alt+F5 Stops the debugger at any time, whether p. 189
session the program is running or paused. If this

is dimmed (unavailable), the program

being debugged has focus or has finished.
Single-step through Step Into F8 Enters functions when encountered. p- 190
every line of the program
Single-step through Step Over F10 Runs functions when encountered and p. 190
program but skip stops immediately after.
functions
Run to first instruction Step Out Shift+F7 Continues program out of function then p- 190
after call to current stops at line after function call.
function
Run to the location of Step to Cursor F7 Treats the insertion point location as a p. 190
the insertion point breakpoint.
Display the call stack Show Call Stack... The Call Stack dialog box lists all p. 194

function calls that lead to current

statement.
Set or clear a breakpoint Breakpoints... The Toggle Breakpoint button on the p- 185

toolbar also sets and clears breakpoints.

Chapter 5 Fast Track to Visual Workbench 43
To Comments See
Open QuickWatch to QuickWatch... Shift+F3 The insertion point must be on a variable ~ p. 192
view the value of a with the program paused at a breakpoint
variable, or between steps. o ;
Or add a variable to the To add a variable, open QuickWatch on p. 192
Watch window, the variable and choose the Add to Watch

Window button.
Or change a variable To change a variable value, open p- 193
value QuickWatch on the variable and choose

the Modify button to open the Modify

Variable dialog box.
Running Tools from Visual Workbench
To Comments See
Create menus, dialog boxes, icons, App Studio App Studio lets you visually design and p- 23
and other resources construct the user-interface objects for your
program.
Run CodeView for Windows CodeView CodeView is only provided with Visual C++ p- 179
Professional Edition.

Add a tool to or remove a tool from See the Tools command on the Options menu. p. 199

the Tools menu

44 Visual Workbench User’s Guide

Setting Preferences and Custom Options

To Comments See
Set custom compiler and linker Project... Choose the Compiler, Linker, or Resources p. 111
options, button. Use F1 in the dialog boxes for help.
Or set the build mode (debug vs. You can set the build mode for Visual p. 111
release), Workbench projects or external projects.
Or set the project type Project type can also be set when you create a p.- %4
new project.
Specify an .EXE file to debug a Debug... You must specify a host program to debug any p- 179
DLL, dynamic-link library.
Or set hard or soft mode In hard mode, the debugger traps all input from p. 196
debugging, the mouse and keyboard when in break mode.
Or toggle hexadecimal display Format for display of all variable values p- 198
wherever shown (for example, Watch window).
Set directories for include files, Directories... Visual Workbench prefixes directory p. 204
libraries, executable files, help information to any existing PATH, INCLUDE,
files, and MFC source files or LIB environment variable. The MFC source
file directory is required when debugging or
browsing MFC programs.
Set miscellaneous options Editor... Options include tab settings, scroll bar enabling, p. 85
save before build, prompt before save, and undo
buffer size.
Set workspace options Workspace... Lets you set the menu names and shortcut keys p. 104
and other options for workspaces.
Add a tool to, or remove a tool Tools... You can use this feature to integrate a favorite or p. 199
from, the Tools menu familiar editor with Visual Workbench.
Change syntax coloring, Color... The Color dialog box lets you customize colors p. 205
for all syntax elements.
Or turn syntax coloring off for all Clear the Syntax Coloring check box. See the p. 206
files Syntax Coloring command on the View menu to
select syntax coloring for a single file.
Change the font in a window Font... Select from a variety of fonts and sizes and apply p. 207

bold and/or italic styles.

Chapter 5 Fast Track to Visual Workbench 45
Arranging and Opening Windows
To Window Comments See
Arrange windows as overlapped Cascade To bring an overlapped window to the top, select p. 63
the window from this menu or press ALT+F6 to i
cycle through the windows.
Arrange windows as side-by-side Tile Useful to show several debug windows at the p. 63
same time.
Open an additional window onan Duplicate Useful for viewing different sections of the same p. 79
open source file source file. Fonts can be unique in each window.
Close all open windows Close All Prompts you to save files that have been Help
changed since they were opened.
Open the Watch window (or Watch Watch window variables and expressions are p. 190
bring it to the top) saved with the project.
To add a variable or expression, type it into the p. 190
Watch window during a debug session. (Or use
QuickWatch to add the variable.)
Open the Locals window (or Locals Shows all local variables and their values. p- 180
bring it to the top)
Open the Registers window (or Registers Shows all registers and flags. To change a p. 195
bring it to the top) register value, tab to the register and type over
the current value. To toggle a flag value, tab to
the flag and press the SPACEBAR.
Open the Output window (or Output The output from build utilities, including errors p. 180

bring it to the top)

and warnings, appears here, as well as output
from OutputDebugString() calls during
debugging sessions.

46 Visual Workbench User’s Guide

Getting Online Help

To m Comments See
Find procedural help in Visual Visual Workbench Opens Visual Workbench Help at the p. 65
Workbench top-level Contents screen.
Find help on specific compiler Build Tools Help covers the C/C++ Compiler p-71
or linker options Options and Linker Options dialog
boxes and module-definition-file
statements.
Find help on the C or C++ C/C++ Language C run-time functions and C/C++ p. 65
language and functions language descriptions.
Find help on the Microsoft Foundation Classes Description of classes, member p- 65
Foundation Class Library functions, and macros.
Find help on Windows version Windows 3.1 SDK Descriptions of all Windows version p. 65
3.1 API functions 3.1 APIs, messages, and macros.
Search for a keyword in Help ~ Search for Help On... Opens the Search dialog box with the p. 66
selected word or word at the insertion
point as a keyword and lets you
choose the Help file to search.
Get product support Obtaining Technical Support How to contact Microsoft Product p- Xv

Find information about your About Visual C++...
copy of Visual Workbench

Support to help solve your problems.

Displays a dialog box that shows
software version and registered
owner.

Chapter 5 Fast Track to Visual Workbench

47

Key Summaries

Editing Keys

The tables in this section provide keyboard information and shortcuts for

performing tasks such as editing, scrolling, text selection, searching, and debugging.

Table 5.1 Insertion Point Movement Keys

To move the insertion point Press

One character left LEFT ARROW

One character right RIGHT ARROW

One word left CTRL+LEFT ARROW
One word right CTRL+RIGHT ARROW
One line up UP ARROW

One line down DOWN ARROW

To the first indentation of current line HOME

To the first indentation of next line CTRL+ENTER

To the end of line END

To the beginning of file CTRL+HOME

To the end of file CTRLAEND

Table 5.2 Text Selection Keys

To select Press

Character to the left SHIFT+LEFT ARROW
Character to the right SHIFT+RIGHT ARROW
One word to the left SHIFT+CTRL+LEFT ARROW
One word to the right SHIFT+CTRL+RIGHT ARROW
Current line SHIFT+DOWN ARROW
Line above SHIFT+UP ARROW

To end of line SHIFT+END

To beginning of line SHIFT+HOME

One screen up SHIFT+PAGE UP

One screen down SHIFT+PAGE DOWN
To beginning of file SHIFT+CTRL+HOME
To end of file SHIFT+CTRL+END

Visual Workbench User’s Guide

Table 5.3 Insert, Copy, and Tab Keys

To Press

Turn keyboard insert mode on or off INS

Copy selected text to Clipboard, keeping it CTRL+C
CTRL+INS

Copy selected text to Clipboard, deleting it CTRL+X
SHIFT+DEL

Insert contents of Clipboard CTRL+V
SHIFT+INS

Copy current line to Clipboard, deleting it CTRL+Y

Insert one blank line below

Insert one blank line above

END, then ENTER
HOME, then ENTER

Undo the last edit CTRL+Z
ALT+BACKSPACE

Redo the last edit CTRL+A

Insert a tab TAB

Toggle display of tab symbols CTRL+ALT+T

Table 5.4 Delete Keys

To Press

Delete one character to the left BACKSPACE

Delete one character to the right DEL

Delete to the end of the word CTRL+T

Delete selected text and copy to Clipboard CTRL+X
SHIFT+DEL

Table 5.5 Text Scrolling Keys

To scroll Press

Up one line at a time CTRL+UP ARROW

Down one line at a time CTRL+DOWN ARROW

Up one page at a time PAGE UP

Down one page at a time PAGE DOWN

Chapter 5 Fast Track to Visual Workbench

49

Toolbar Keys

Table 5.6 Search Keys

To Press
Find the selected text CTRL+F3
Repeat the last find F3

Open the Find dialog box ALT+F3
Search backward SHIFT+F3
Find the next error F4

Find the previous error SHIFT+F4
Find matching brace CTRL+]
Find next bookmark F2

Find previous bookmark SHIFT+F2
Table 5.7 Toolbar Keys

To access the Press
Project Files button CTRL+P
Open button CTRL+O
Save button CTRL+S
Find box CTRL+F
Find box: search forward RETURN
Find box: search backward SHIFT+RETURN
Find Next button F3
Compile File button CTRLA+F$
Build button SHIFT+F8
Rebuild All button ALT+F8
Toggle Breakpoint button F9
QuickWatch button SHIFT+F9
Run button F5

Step Into button F8

Step Over button F10

Step Out button SHIFT+F7

50 Visual Workbench User’s Guide

Window Management Keys
Table 5.8 Visual Workbench Window Management Keys

To Press

Switch to the next document window CTRL+F6
Switch to the previous document window SHIFT+CTRL+F6
Switch to the next window (includes all windows) F6

Switch to the previous window (includes all windows) SHIFT+F6
Switch to the previously active window CTRL+TAB
Close the active window CTRLA+F4

Build and Compile Keys

Table 5.9 Build and Compile Keys

To Press
Compile the active source file CTRL+F8
Build the project using dependency rules SHIFT+F8
Build the project from the start ALT+F8

Browsing Keys

Table 5.10 Browsing Keys

To Press

Jump to the definition of selected symbol F11

Jump to the first reference of selected symbol SHIFT+F11

Jump to the next reference in browser list CTRL+NUMPAD+
Jump to the previous reference in browser list CTRL+NUMPAD -
Return to original symbol location CTRL+NUMPAD*
Expand active node one level NUMPAD+
Collapse active node one level NUMPAD -
Expand all nodes in a branch NUMPAD*

Expand an entire graph ALT+X

Chapter 5 Fast Track to Visual Workbench 51

Debugging Keys

Table 5.11 Debugging Keys

To Press
Restart program execution from beginning SHIFT+F5
Continue execution from current statement F5
Execute program to insertion point position F7

Execute next statement, tracing into function calls F8

Single-step, stepping over functions calls F10
Execute program out of current function and stop SHIFT+F7
on first line after function call

Open QuickWatch dialog box SHIFT+F9
Open Modify Variable dialog box CTRLAF9
Toggle hexadecimal display ALT+F9
Toggle breakpoint F9
Toggle mixed mode CTRLA+F7

Alphabetic Guide to Build Options

The tables in this section cross-reference the CL and LINK command-line options
with their corresponding dialog-box controls in the C/C++ Compiler Options and
Linker Options dialog boxes. Visual Workbench uses these dialog boxes to
assemble the command-line options passed to the NMAKE utility during a build.

By mapping each of the command-line options in an existing makefile to its corre-
sponding control in the C/C++ Compiler Options or Linker Options dialog box, you
can quickly bring your existing projects into Visual Workbench. Be sure to check
the default options set by Visual Workbench for each project type if you are con-
verting an existing project (see Tables 9.1 through 9.4 beginning on page 116 for
the default options for each project type). Of course, you can also build existing
projects from within Visual Workbench as external projects (see page 107).

See Chapter 9, “Customizing Build Options,” for descriptions of these compiler and
linker options, default options set by Visual Workbench, and how to use the C/C++
Compiler Options and Linker Options dialog boxes.

Compiler Options

Compiler options are set in Visual Workbench using the C/C++ Compiler Options
dialog box. To open this dialog box, choose Project from the Options menu and then
choose the Compiler button.

52

Visual Workbench User’s Guide

If you cannot find a particular CL option listed in Table 5.12, you can use the Other
Options text box—available in the Custom Options category of the C/C++
Compiler Options dialog box—to enter most command-line options that do not
have a matching dialog-box control.

Table 5.12 Alphabetic Guide to Compiler Options

Option Category Control
/AC Memory Model Model: Compact
/AH Memory Model Model: Huge
/AL Memory Model Model: Large
/AM Memory Model Model: Medium
/AS Memory Model Model: Small
/AT Memory Model Model: Tiny
/D Preprocessor Symbols and Macros to Define
ff Code Generation Code Generator: Fast
ff- Code Generation Code Generator: Optimizing
/Fa Listing Files Assembly
[Fc Listing Files Include Source and Machine Code
/F1 Listing Files Include Machine Code
[Fpa Code Generation Floating-Point Calls: Alternate Math
[Fpc Code Generation Floating-Point Calls: Coprocessor Calls
[FPc87 Code Generation Floating-Point Calls: 80x87 Calls
[Fpi Code Generation Floating-Point Calls: Use Emulator
[Fpi87 Code Generation Floating-Point Calls: Inline 80x87 Inst
/FR Listing Files Include Local Variables
[Fr Listing Files Browser Information
/G Code Generation CPU
/GA Windows Prolog/Epilog Generate Prolog/Epilog For:
Protected Mode Application Functions
/Gce Code Generation Calling Convention: Pascal
/Gd Code Generation Calling Convention: C/C++
/GD Windows Prolog/Epilog Generate Prolog/Epilog For:
Protected Mode DLL Functions
/GEe Windows Prolog/Epilog Protected Mode Options:
Generate for __far Functions
/GEf Windows Prolog/Epilog Protected Mode Options:
Emit Linker EXPDEF Records
/Gf Custom Options Eliminate Duplicate Strings

Chapter 5 Fast Track to Visual Workbench

53

Table 5.12 Alphabetic Guide to Compiler Options (continued)

Option Category Control
/Gp P-Code Generation Number of P-Code Entry Tables
/Gs Code Generation Disable Stack Checking
/Gt Memory Model New Segment Data Size Threshold
/GW Windows Prolog/Epilog Generate Prolog/Epilog For:
Real Mode _ _far Non-Callback Functions
/Gw Windows Prolog/Epilog Generate Prolog/Epilog For:
Real Mode __far Functions
/Gx— Memory Model Assume ‘extern’ and Uninitialized Data ‘far’
/Gy Custom Options Enable Function-Level Linking
/1 Preprocessor Include Path
Mq Custom Options QuickWin Support
/ND Segment Names Data Segment
/NM Segment Names Module Name
/nologo Custom Options Suppress Display of Sign-On Banner
/NQ Segment Names P-Code Segment
/NT Segment Names Code Segment
/INV Segment Names V-Table Segment
/01 Optimizations Minimize Size
/02 Optimizations Maximize Speed
/Oa Optimizations Custom Optimizations: Assume no aliasing
/Ob0 Optimizations Inline Expansion of Functions: Disable
/Obl Optimizations Inline Expansion of Functions: Only _ _inline
/Ob2 Optimizations Inline Expansion of Functions: Any suitable
/Od Optimizations Disable (Debug)
[Oe Optimizations Custom Optimizations:
Global register allocation
[Of— P-Code Generation Disable P-Code Quoting
[Og Optimizations Custom Optimizations: Global-level common
subexpression optimization
/O1 Optimizations Custom Optimizations:
Generate intrinsic functions
/01 Optimizations Custom Optimizations: Loop optimization
/Op Optimizations Custom Optimizations:

/0q

P-Code Generation

Improve float consistency

P-Code Optimization On

54 Visual Workbench User’s Guide

Table 5.12 Alphabetic Guide to Compiler Options (continued)

Option Category Control
/Or Optimizations Custom Optimizations:
Enable single point function exit
/Os Optimizations Custom Optimizations:
Favor small code
/Ot Optimizations Custom Optimizations:
Favor fast code
[Ov— P-Code Generation Sort Local Variables in Occurrence Order
OV Optimizations Inline Function Size
/Ow Optimizations Custom Optimizations:
Assume aliasing across function calls
/Ox Optimizations Custom Optimizations:
Full optimization
[0z Optimizations Custom Optimizations:
Allow potentially unsafe loop optimizations
fu Preprocessor Undefine All Symbols
/U Preprocessor Individual Symbols to Undefine
/vmb Custom Options (C++) Representation Method:
Best-case always
/vmg Custom Options (C++) Representation Method:
General-purpose always
fvmm Custom Options (C++) General Purpose Representation:
Point to multiple inheritance classes
/vms Custom Options (C++) General Purpose Representation:
Point to single inheritance classes
fvmv Custom Options (C++) General Purpose Representation:
Point to any class
fvd Custom Options (C++) Disable Construction Displacements
W Custom Options Warning Level
/WX Custom Options Warnings as Errors
X Preprocessor Ignore Standard Places of Include Files
/Yc Precompiled Headers Precompile through Header (C and/or C++),
Precompile with Source (C and/or C++)
/Yu Precompiled Headers Precompile through Header (C and/or C++),
Precompile with Source (C and/or C++)
X Precompiled Headers Automatic Use of Precompiled Headers
/Z7 Debug Options Full (C7 Compatible)

Chapter 5 Fast Track to Visual Workbench 55

Table 512 Alphabetic Guide to Compiler Options (continued)

Option

Category

Control

[Za

/Zd
/Ze

/Zi
/Zn
/Zp

Custom Options

Debug Options

Custom Options

Debug Options
Listing Files
Code Generation

Code Generation

Disable Microsoft Language Extensions
(checked)

' Partial (Line Numbers Only)

Disable Microsoft Language Extensions (not
checked)

Full, Use Program Database
Don’t Pack Information

Structure Member Byte Alignment
Check Pointers

Linker Options

Linker options are set in Visual Workbench using the Linker Options dialog box.
To open this dialog box, choose Project from the Options menu and then choose the
Linker button.

If you cannot find a particular LINK option listed in Table 5.13, you can use the
Other Options text box—available in the Miscellaneous category of the Linker
Options dialog box—to enter most command-line options that do not have a

matching dialog-box control.

Table 5.13 Alphabetic Guide to Linker Options

Option Category Control
/ALIGN Output Segment Alignment
/CO Output Generate Debugging Information
J/EXEPACK Memory Image Pack EXE File
/[FARCALL Memory Image Translate Far Calls
/INFO Output Produce More Detailed Output
/LINE Output Include Line Numbers/Addresses
in MAP
/MAP Output Create MAP File
/NOD Input Ignore Default Libraries
Specific Libraries to Ignore
/NOE Input Prevent Use of Extended Dictionary
/NOI Input Distinguish Letter Case
/NOLOGO Miscellaneous Suppress Display of Sign-On

Banner

56 Visual Workbench User’'s Guide

Table 5.13 Alphabetic Guide to Linker Options (continued)

Option Category Control

/NOPACKF Memory Image Don’t Remove Unreferenced
Packaged Functions

/ONERROR:NOEXE Output Prevent Creation of EXE on Linker
Error

/PACKC Memory Image Pack Code

/PACKD Memory Image Pack Data

/SEG Memory Image Max. Number of Segments

/STACK Memory Image Stack Size

/TINY Output Produce COM file

PART 2

Using Visual Workbench

Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13

The Visual Workbench Environment. 59
Usingthe Editor 75
Using Projects. 93
Customizing Build Options., 111
Usingthe Browser. i i 161
Debugging Programs 179
Customizing Visual Workbench 199

Using Visual Workbench with Other Visual C++ Tools 209

59

CHAPTER 6

The Visual Workbench
Environment

Microsoft Visual Workbench is an integrated programming environment that runs
with the Microsoft Windows operating system. It integrates a text editor, browser,
compiler, linker, debugger, make utility, and Help database.

A single development environment (see Figure 6.1) is used for both Visual C++
Standard Edition and Visual C++ Professional Edition with a few modifications
to accommodate the extended capabilities of the professional edition. These
modifications are limited to the C/C++ Compiler Options dialog box, because of
the differences in compiler options, and the two dialog boxes where you set pro-
ject types (New Project, accessed from the Project menu, and Project Options,
accessed from the Options menu). Otherwise, Visual Workbench is identical for
both versions.

Microsoft Visual C++ - MYAPP.MAK
File Edit View Project Browse Debug Tools Options Window Help

= =] olElE (O] EI=ITIe]
B <2> Browse MYAPP.BSC |-

™ Query _ = | <1> C:A\MSVC\MYAPPYMYAPPDOC.CPP
Type: |Derived Cla: CMyappDoc : : CMyappDoc() k3
Subset: [Classes

Symbol: |CMyappViev

™ CView CHyappDoc: :

LQCSGTC'l 1Vig BEGIN_MESSAGE_MAP(CMyappView. CView)
CFormVisg 77 {{AF¥_MSG_MAP(CHyapp¥iew)
[BOOL CHyapr) /7 HOTE - the ClassWizard will add and

CEditView
M{ s | DO NHOT EDIT what you see in thesq
if {ICD #7}YAFX_MSG_MAP

==

77 TODO: add one-time construction code here

~

= APD APP pp 2 S

BTy

ret /¢ Standard printing commands
/7 TODO| ON_COMMAND(ID_FILE_PRINT, CView::OnFilePriny
#7 (SDI ON_COMMAND(ID FILE_FRINT_PREVIEW, CView: :0y

return |[END_MESSAGE_MAP()

«

/SIS ES LSS LSS LSS SIS SIS ST
CHMyarn¥iew constructionsdestruction hd

<4>Watch

<5 0utput

+

| [] [[[pooz3for2

Figure 6.1 The Visual Workbench Environment

60 Visual Workbench User’s Guide

This chapter briefly introduces Visual Workbench. It describes how to start and
quit Visual Workbench, how to arrange windows, and how to access the Help
system. It also describes the toolbar and the status bar.

Starting and Quitting Visual Workbench

After you have installed Visual Workbench, start it by double-clicking its icon in
the Program Manager window.

If you had a project open when you last exited Visual Workbench, it is automati-
cally loaded. Or, if you have installed Visual Workbench with command-line op-
tions to load a project or source files, the project or files will automatically load
into Visual Workbench.

To quit Visual Workbench, choose Exit from the File menu. This returns you to
the Windows Program Manager.

Visual Workbench Features

The Toolbar

Visual Workbench uses a multiple document interface (MDI) window that can
contain several different types of child windows to let you edit source code, de-
bug programs, and get status and error information. In addition, there is a toolbar
for quick access to the most-often-used functions and a status bar for displaying
build information and descriptions of toolbar buttons and menu items.

The toolbar appears beneath the menu bar. It provides shortcut commands for
opening and saving files, finding text, and building, running, and debugging a
program.

You can hide or display the toolbar with the Toolbar command on the View
menu. When this command is checked, the toolbar appears. When it is turned off
(not checked), the toolbar is hidden.

The controls (buttons and list boxes) on the toolbar are grouped according to
function. There are toolbar buttons and list boxes for:

» Opening and saving source files.

= Finding text.

= Compiling files and building projects.

= Setting breakpoints and examining variables.

= Controlling program execution during debugging.

Chapter 6 The Visual Workbench Environment 61

| Project Files ‘ Find I Find Next

SEa [H®

Open I | Save

01 0 E R K

Project Files
The Project Files button opens a drop-down list that gives you a convenient way
to open source files associated with your active project. The drop-down list
contains all editable files in the project list. Click the Project Files button, then
click any filename in the list to open a source window on the file.

Open, Save
Clicking the Open button opens the Open File dialog box, the same as choosing
Open from the File menu. The Save button becomes available (not dimmed)
when you make changes to the active source file and lets you save the file.
(Chapter 7, “Using the Editor,” has more information on opening and saving
files.)

Find, Find Next
The Find drop-down list box and the Find Next button let you quickly find text
strings in a source file. To search for text in a source file, type the text in the
Find box or select a text string from the drop-down list, which contains the last
16 text strings searched for. Then press ENTER, double-click the text string, or
click the Find Next toolbar button. To repeat the last search, click the Find Next
toolbar button. This lets you find multiple occurrences of a text string by simply
clicking the Find Next button. Use the SHIFT key with any of these procedures to
search backwards through the file.

Compile File Build

| [2] sledli] (0]s] BIBITlE]

Rebuild All

Compile File, Build, Rebuild All
You use these three build buttons on the toolbar to compile files and build pro-
jects. The Compile File button compiles the active file. Use the Build button to
build the parts of the project modified since the last build, or the Rebuild All
button to force a complete rebuild of all project files.

62

Visual Workbench User’s Guide

Toggle Breakpoint QuickWatch Step Out

(=] (=] | [4] s Bdelole

Run I Step Over
Step Into

Toggle Breakpoint, QuickWatch
These are two of the six debugging buttons on the toolbar. The Toggle Break-
point button turns a breakpoint on or off at the insertion point. When the pro-
gram reaches a breakpoint, or is paused between trace steps, you can use the
QuickWatch button to examine and modify variables.

Run, Step Into, Step Over, Step Out
The four debugging buttons grouped on the far right control program execution
during a debugging session, letting you run the program to a breakpoint, single-
step through the program, and handle function execution in various ways. See
the following table for a description of each of the debugging buttons.

Table 6.1 provides a brief summary of the toolbar buttons.

Table 6.1 Toolbar Buttons

Button Action

Project Files Displays a list of project files to open.

Open Displays the Open File dialog box.

Save Saves the active source file to disk.

Find Next Searches for another occurrence of text last searched for.

Compile File Compiles the active source file.

Build Builds the current project as modified since the last build.

Rebuild All Rebuilds the current project from the start.

Toggle Breakpoint Sets or clears a breakpoint at the insertion point.

QuickWatch Displays the QuickWatch dialog box.

Run Starts or continues program execution.

Step Into Single-steps through instructions in the program. If this command
is used when you reach a function call, the function is entered in
single-step mode.

Step Over Single-steps through instructions in the program. If this command
is used when you reach a function call, the function is executed
without stepping through the function instructions.

Step Out Runs or continues a function to its completion and stops on the

instraction immediately following the function call.

Chapter 6 The Visual Workbench Environment 63

When a button cannot be used (such as is the case for many buttons when no
project is open), the button is dimmed.

The Status Bar

A status bar appears at the bottom of the main Visual Workbench window. The
status bar provides information about Visual Workbench and the active source

window.
Messages from the environment Overtype | Caps Lock | Line
| [open an existing file [oVR[READ [CAPS [NUM [00001 [o01
Read Only | Num Lock+‘ Column

The status bar can be displayed or hidden using the Status Bar command on the
View menu. When displayed, it shows the following information about the active
window:

» Summary help about the current operation.

s Messages from the environment: when you are viewing compile-time errors, for
example, the current error message is displayed here.

s OVR: shows whether the editor is in overtype or insertion mode.
s READ: shows that the current file is read-only.

s CAPS: shows the state of the CAPS LOCK key.

= NUM: shows the state of the NUM LOCK key.

= Line: shows the current line.

» Column: shows the current column.

Arranging and Displaying Windows
Visual Workbench uses the standard commands used by most Windows-based

applications for displaying and arranging windows. These commands appear on
the Window menu and include:

Command Action

Cascade Overlaps all open windows. The top of each window appears below the
previous window’s title bar. The active window appears at the front. See
Figure 6.2.

Tile Resizes windows so that all open windows appear on the screen without

overlapping. See Figure 6.3.

64 Visual Workbench User’s Guide

Microsoft ¥isual C++ - MYAPP.MAK
s Options Window Help

) e EN I s
<1> C:A\MSVCIMYAPP\MYAPPDOC.CPP =]~
<2> C:\MSVCIMYAPP\MYAPP.CPP =1~
<3> C\MSVCIMYAPPIMYAPPYW.CPP <[~
= > Browse MYAPP B = DY
— Query

Type: |Derived Class Graph * | Disglag Result l Exeand'l
Subset: |Classes [Previous Query I Collapse

i

Symbol: |CView |
= T CView: :CView() +
LQCSCrollView CView: :~“CView() £2
CFormView 1'! I hd
CEditView

Definitions of CView fl

CHyappView d: \msvc\mfc\inc_!.ude\af HWIY
o] B >
[READ | [pooo1 oot

Figure 6.2 Cascaded Windows

= 050 APP.MA -1~

File Edit Yiew Project Browse Debug Tools Options Window Help

=]&) B ' 01 P Y EN Y ol P

hd =|<2> CAMSYCAMYAPPAMYAPP.CPL < |
Query ON_COMMAND(ID_FILE_OPEN, CWi4

LK D efinitions and References E 7+ Standard print sstup comj

ON_COMMAND({ID _FILE_PRINT_ SE1
Subset: |ALL END_MESSAGE HMAP()

Symbol: |AFX_CLA55|N|TZZAR_CLASSIN'T[IS ELL S ELSI LS EEST LSS LTSS
-+ CMyappiApp construction

AFX_EXCEPTION_LINK: :AFX_EZI%EE% 7 Place all significant initialy
| -

»

= [<3> CAMSVCIMYAPPAMYAPPYW, ~ | «

= [K1> CAMSVCIMYAPPAMYAPPDO(~

1
BEGIN_MESSAGE_MAP(CHyappView, CY

77 {{AF¥_MSG_MAP(CHyappView)
/7 NOTE - the ClassWizax
Vs DO NOT EDIT what
77}y YAFX_MSG_MAP
/7 Standard printing command
ON_COMMAND(ID_FILE_PRINT, CY

- »

BOOL CHyappDoc: :OnNewDocument ()
{

if (!CDocument : :OnNewDocuney

return FALSE;
77 TODO: add reinitializatid
/7 (SDI documents will reusg
return TRUE;

«| »

[_PEad] [[|

Figure 6.3 Tiled Windows

Visual Workbench windows support the standard Control-menu commands,
including the Minimize command. When a window is minimized, an icon repre-
senting the window appears at the bottom of the main Visual Workbench window
(see Figure 6.4). Double-click the icon to restore the window.

Chapter 6 The Visual Workbench Environment 65

Microsoft Visual C++ - MYAPP.MAK

BEGIN_MESSAGE_MAP(CHyappV¥iew, CView) . .

77 {{AFX_MSG_MAP(CMyappView)
77/ NOTE — the ClassWizard will add and remove napping m
V| DO NOT EDIT what vou see in these blocks of gener
/7Y }AFE_MSG_MAP
/7 Standard printing comnands
ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview
END_MESSAGE_MAP()

/S LLS SIS SIS SISO
7 CHyappView construction/destruction

Ir. a¥s 1L, A hd

2 s B o

<4>Browse <2>Myapp.cpp <5>Output <1>Myappdoc.cpp
myapp.bsc

[[] | [[pooz3forz

Figure 6.4 Minimized Windows

Getting Help

Visual Workbench features an easy-to-use online reference system that provides
access to information about Visual Workbench, build tools, C and C++ pro-
gramming languages, C run-time libraries, Windows APIs, Microsoft Foundation
classes, module-definition file statements, resource file statements, and compiler
and linker errors.

You can get help in several different ways:

= Press the F1 key with the insertion point on a language keyword, library routine,
or error number.

= In a menu, press F1 on a highlighted menu command.

= In adialog box, press F1 or choose the Help button.

= From the Help menu, choose Search for Help On (or choose the Search button in
a Help window).

= From the Help menu, choose a contents category.

The first four of these methods represent a “bottoms up” approach to finding help.
That is, you go directly to the point in the Help system that documents the language
element or Visual Workbench feature you need help on. You can press F1 to get
immediate context-sensitive help on a language element, error code, or Visual
Workbench feature.

66

Visual Workbench User’s Guide

Or, if you choose Search for Help On from the Help menu, you can search for help
on keywords, functions, constants, class members, or errors. When a search topic
appears in more than one Help file, the Search dialog box lets you choose the refer-
ence Help file to search. To search the file that contains Help on the Visual Work-
bench environment, you need to first open the file by choosing Visual Workbench
from the Help menu, by pressing F1 in any Visual Workbench dialog box, or by
pressing F1 with a Visual Workbench menu item highlighted. You then choose the
Search button in the resulting Help window.

The fifth method of finding help (choosing a contents category from the Help menu)
differs from the others in that it represents a “top down” approach. The Help menu
contains several commands that open a Help window with a contents screen per-
taining to the Help category:

= Visual Workbench
= Build Tools

s C/C++ Language

= Foundation Classes
= Windows 3.1 SDK

After choosing one of the commands from the Help menu, you navigate the Help
system from the top contents screen down to the individual Help topics.

This is useful when you want to browse for information or need to see subjects from
a global viewpoint before going to a specific section. This part of the Help system
has been designed to make it easy to navigate through the vast amount of online
information in Visual C++. Because this part of the Help system contains several
new features, you might want to take a few minutes to read about it before trying it
out. “Navigating Help from the Contents Screen” on the next page explains the new
features.

Getting Context-Sensitive Help

The F1 key gives you immediate help on language elements, error codes, and Visual
Workbench features. The status bar provides a description of every menu command
and toolbar button. Toolbar buttons, however, require a little care to display the
button’s description in the status bar without invoking the button.

> To get help on a keyword or an error:

1. Place the insertion point anywhere on the keyword or error.
2. Press F1.

If information on the keyword or error can be found in more than one Help file,
a Search dialog box opens with a list of Help files from which to choose. Select
a Help file and choose OK.

Chapter 6 The Visual Workbench Environment 67

» To get a Help description of a menu command using F1:
1. Click the menu title to open the menu (or use the menu access key).
2. Use the arrow key to highlight the command.
3. Press Fl.

You also get a brief description in the status bar of any toolbar button that you
select. To see the description without activating the button (for buttons that are
not dimmed) use the following procedure.

» To get a status-bar definition of a toolbar button:

1. Depress the toolbar button (move the mouse pointer over the button and press
the mouse button).

2. With the toolbar button depressed, read the status-bar text.

3. Move the mouse pointer off the toolbar button before releasing the mouse button
(releasing the mouse button with the mouse pointer on the toolbar button acti-
vates the button).

Every dialog box in Visual Workbench has an associated Help topic that describes
the function of the dialog box and its elements.

» To get a Help description of any dialog box:
1. Open the dialog box.
2. Press F1 or choose Help.

Note that the C/C++ Compiler Options and Linker Options dialog boxes have addi-
tional Help capabilities to assist you in customizing compiler and linker options for
your program. (See “Getting Help on Compiler and Linker Options” on page 71 to
learn about this additional help capability.)

Navigating Help from the Contents Screen

The Help system is divided into several sections, each covering a different major
category of information. The Help menu contains several commands corresponding
to the various categories of Help.

> To open a contents screen on any category:
e Choose a Help category from the Help menu.
—Or—
¢ If you already have a Help window open, click the Contents button.

The Visual Workbench command on the Help menu opens an environment Help
window for Visual Workbench. All other commands open reference Help windows.

68 Visual Workbench User’s Guide

Using the Secondary Help Window

The environment and reference Help systems are much alike and similar to other
Help systems for Windows you have probably used. What is unique about Visual
C++ Help is that you have the ability to open a secondary Help window that con-
tains only topic links (see Figure 6.5). Choosing a topic link in the secondary
window opens that Help topic in the primary Help window.

Visual Workbench Help uses the secondary Help window to display an index of all
topics in the current category. Reference Help uses the secondary window to dis-
play a list of subcategory topics in the current category. In both Help systems, you
choose the category for secondary window topics from the primary Help window’s
contents screen.

Secondary Help window Primary Help window

=| I Browser [+] =~ Microsoft C}C++ Language Help
File Edit Bookmark Copyright Help
Language Reference Topics Qonlentsl _S__earch l gack l History lBystel I Qp_-
r Operators
O Keywords —)
£l Data Types - The table below liste C and C++ operators by category.
O Modifiers Arithmetic Relational 2
O Statements »
C1 Operators + Addition < Less than
cMoperator Precedence - Subtraction &= Less than or equal {
21 Escape Sequences * Multiplication > Greater than
1 mmain Function / Division = Greater than or equ
O printf Farmatting % Modulus = Equal
1 Directives = Not equal
1 Preprocessor Operatars Assighment Increment & Decrement
O Pragmas
21 Predefined Macros Assignment ++ Increment
21 Header (.H) Files += Addition —-- Decrement
2 Global Variables = Subtraction
1 Constants *= ~Multinlicatinn hd

Figure 6.5 The Secondary and Primary Help Windows

Having two Help windows open to browse for information lets you quickly jump
around in the Help text, clicking entries in the secondary Help window and viewing
the resulting text in the primary Help window. This can be useful when you know
the general category where the information should be but are not sure of the exact
location. In Visual Workbench Help, where the secondary window is used to pro-
vide an index of the current subject, it is much like keeping your thumb in a book’s
index while you open the book to different index references to look up information.

Chapter 6 The Visual Workbench Environment 69

You may want to adjust the secondary Help window and the primary Help window
to best utilize your screen area. You can then minimize the secondary Help window
and close (or minimize) the primary Help window when not using them. (If you
minimize the secondary Help window, instead of closing it, you will not need to
resize and move it each time you use it.)

Visual Workbench Help

The Help window for the Visual Workbench environment has a contents window
with several categories of Help (see Figure 6.6).

= Visual Workbench Help hd
File Edit Bookmark Copyright Help
Qontentsl gearch l gack l History I Index l in

Visual Workbench

How to Use Visual Workbench

2 Using the Editor

a Managing Projects

4 Compiling Files or Building Projects

a Debugging Your Application

a Examining Symbols with the Browser

a Using Wizards to Create Applications for Windows
a Using Workspaces to Manage Your Environment
| Changing Preferences

21 Modifying theTools Menu

Other Help Topics
2 Toolbar and Keyboard Shortcuts

Figure 6.6 The Visual Workbench Help Contents Screen

For Visual Workbench environment Help, each category you choose from the con-
tents screen brings up a list of procedural topics with a brief description of the topic
and a Help icon. Click the icon for the task that interests you and the topic screen
appears.

Most topic screens have two parts: a scrolling region on the bottom, which contains
all the Help text on the topic, and a nonscrolling region on the top, which contains
indexes into the Help text in the scrolling region (see Figure 6.7). This lets you get
to the information you want either by clicking the indexing button or by scrolling
through the text.

70

Visual Workbench User’s Guide

File Edit Bookmark Copyright

= Visual Workbench Help

Help

2 Customizing Printed Output
2 Printing a Help Topic

-

Qunlenlsl _§_eatch| _g_ack IHisLoty I Index l L-

2 Printing Selectively or a Complete File

-

Printing Selectively

window,
I3 To print highlighted text

1 Select the text you want to print.

appears.
Shortcut: SHFT+CTRL+F12
3 Choose OK.

the Window with the current focus.

You can print highlighted text or the cantents of a source

2 From the File menu, choose Print. The Print dialog box

Text is printed in the default font for the printer.

The Print command also prints the contents of an active
window, such as the Output window. An active window is

K|

Figure 6.7 A Visual Workbench Topic Screen

To get back to the Visual Workbench Help contents screen, choose the Contents
button. To open the secondary Index window, choose the Index button at the top

of the Help window.

Reference Help Windows

When you choose any of the categories from the Help menu other than Visual
Workbench, you display a contents screen of a reference Help window (see

Figure 6.8).

Chapter 6 The Visual Workbench Environment [l

= Build Tools Help [~] -

File Edit Bookmark Copyright Help

Build Tools Help

Options and Statements
2 compiler Options
a Linker Options

Alphabetical Quick Reference
a Compiler Options
2 Linker Options

Figure 6.8 A Reference Help Contents Screen

Reference Help windows work similarly to Visual Workbench Help windows with
a couple of small differences. First, when you select a category from the reference
Help’s contents screen, you get a list of subcategory links. (In Visual Workbench
Help, these subcategories are in a different format and are annotated with brief des-
criptions.) Second, to open the secondary Help window, you choose the Browser
button at the top of the Help window. The secondary Help window, called the
Browser window here, simply displays the list of subcategory topic links—the
same list that appears in the primary Help window when you choose a category
from the contents screen.

The Browser Help window is especially useful when searching through reference
Help for a particular subject, since you can use it to quickly flip through topics
much as you might flip through a reference manual to find the section you’re
interested in.

Getting Help on Compiler and Linker Options
The C/C++ Compiler Options and Linker Options dialog boxes, accessed from the

Project Options dialog box, use an enhanced Help system because of the large
amount of information available when setting compiler and linker options.

F1 Help for Compiler and Linker Options

Help for compiler and linker options is context sensitive when you use the F1 key.
You can get either a short pop-up description of an option in the options string, or
a complete description of the option.

72

Visual Workbench User’s Guide

If you highlight an option in the options string (by double-clicking the option) and
press F1, a pop-up window appears with a brief description of the option you
selected. The pop-up description also tells you what dialog-box control is used to
set or clear the option.

You can also get a complete description of any option by placing the dialog-box
focus on the option’s control (text box, list box, check box, or option button) and
pressing F1. The resulting Build Tools Help window contains descriptions of all
options in the current category, but with the text scrolled to the proper location to
display the description of the option you selected.

Getting Help from Within the Help Window

After you use F1 to open a Build Tools Help window on an option control, or choose
Build Tools from the Help menu, you can navigate through the Build Tools refer-
ence Help the same as any reference Help in the Visual C++ Help system. The
Build Tools contents screen gives you access to two types of Help:

= Options and Statements
= Alphabetical Quick Reference

Options and Statements lets you find information on any of the option categories in
either the C/C++ Compiler Options or Linker Options dialog boxes, or any module-
definition file statement.

Alphabetical Quick Reference gives you a fast means of getting both a short
description of any CL or LINK option and finding the dialog-box category that
contains the control for the option.

» To access Help on any option category or module-definition file statement:

1. Open the Build Tools Help window by one of the methods described previously.
2. If you used F1 to open the Help window, choose the Contents button.

The contents screen shows three Options and Statements categories:

= Compiler Options

= Linker Options

= Module-Definition File Statements
3. Choose one of the Options and Statements categories.

If you choose either Compiler Options or Linker Options, the Help window dis-
plays a list of option categories in the dialog box. If you choose Module-
Definition File Statements, the Help window displays a list of statement links.

4. Choose the option category or module-definition file statement you want.

Chapter 6 The Visual Workbench Environment 73

If you prefer to open a secondary window for browsing categories in either the
C/C++ Compiler Options or Linker Options dialog boxes, or for browsing module-
definition file statements, simply choose the Browser button. (If the Browser button
is dimmed, you are at the contents screen and must choose one of the categories
first.)

To look up a command-line option alphabetically:

1.

From the Help window, choose the Contents button.

The contents screen shows two Alphabetical Quick Reference categories:
= Compiler Options

= Linker Options

. Choose one of the Alphabetical Quick Reference categories.

The Help window displays a list of all options for the category you chose, sorted
alphabetically. Use the scroll bars to access all options.

. Choose the name of an option.

A short description of the option appears, including the category in the dialog
box that contains the control to enable or disable the option.

7%

CHAPTER 7

Using the Editor

The integrated text editor is an important part of Visual Workbench. You use
it to:

= Create, open, and save source files.
= Edit source files.

= Print source files.

Writing text with Visual Workbench is similar to using most other editors. For
example, to start a new line, press ENTER. To leave a blank line between lines,
press ENTER twice. If you make a mistake while typing, press BACKSPACE to
delete the error.

This chapter provides information on how to manage, edit, and print source files.
Most of the procedures involved in using the editor, such as file and text handling
and moving around in a file, should seem familiar if you have used other
Windows-based text editors.

Managing Source Files

This section explains how to create, save, open, and close a file. To familiar-

ize yourself with the steps, you can use the simple C++ program below,
QWINTEST.CPP, which can be built and run in Windows as a QuickWin
application (see Chapter 3 for a demonstration of building a QuickWin program).
You can also use this program to try the other editing features described in this
chapter.

76

Visual Workbench Uset’s Guide

// QWINTEST.CPP - A sample QuickWin program
#include <iostream.h>

void main()
{

cout << "Hello C++ world \n";
}

Creating and Saving Source Files

Visual Workbench lets you create source files and manage multiple source files.
Each source window associated with a source file can retain its own fonts, sizing,
and other window attributes. When you make changes to a source window, the Save
button on the toolbar becomes available (not dimmed) to indicate that the informa-
tion in the source window and source file differs.

Creating a Source File

Use the New command on the File menu to create new source windows for entering
text. To save the file on your hard disk, use the Save command on the File menu or
the Save button on the toolbar.

To create a new source file:
1. From the File menu, choose New.
2. Type your program in the new window.

If you are following the example, type in QWINTEST.CPP, the example pro-
gram listed earlier.

3. Save your program as described in the procedures in the next section, “Saving
Source Files.”

New files are labeled UNTITLED.# in the source-window title bar, where » is a
sequential number, until they are saved.

Note Before you can save or close a window, it must be active. To make a window
active, either switch to the window (by clicking anywhere in it) or choose the win-
dow name or number from the Window menu.

Saving Source Files

In Visual Workbench, you can save programs using the Save and Save As com-
mands on the File menu or the Save button on the toolbar. You can set save prefer-
ences—such as whether to be prompted before saving a file—in the Editor dialog
box, accessed from the Options menu.

Chapter 7 Using the Editor 7

» To save a source file:
1. Switch to the source window.
2. From the File menu, choose Save (CTRL+S).
Or click the Save button on the toolbar.

3. If your file is unnamed, Visual Workbench displays the Save As dialog box (see
Figure 7.1). In the File Name box, type the filename.

If you are using the sample program, name the file QWINTEST.CPP.

4. In the Drives and Directories list boxes, select the drive and directory in which
to save the file.

5. Choose OK.

If QWINTEST.CPP already exists in the directory you choose, you are pre-
sented with a message box asking if you want to replace the existing file.

Choose Yes.
File Name: Directories:
| qwinlest.cppl I c:\msvc
B st o Coe
= msvc
& bin
£ include
Clib
r £ mic
£ myapp 3
List Files of Type: Drives:
]Souu:e l‘.c;'.cpp;’.cxxlu c :I
[sinen Hew wWindoe For This Fie

Figure 7.1 The Save As Dialog Box

If the file has already been named, the Save command saves any changes without
displaying the Save As dialog box.

The Save button on the toolbar becomes available when you make any modifica-
tion in the source file.

» To save all open source files that are new or have been changed:
¢ From the File menu, choose Save All.

For every new source file that has not already been saved once, the Save As

dialog box appears to let you type the filename and select the drive and directory
in which to save the file.

78

Visual Workbench User’s Guide

» To save a source file under a different name:

1. Switch to the source window.

2. From the File menu, choose Save As.
The Save As dialog box appears.

3. Type a new name for the file.

4. Select or clear the Open New Window For This File check box, depending on
whether or not you want a new window created for the renamed file.

This check box is used to specify whether to open a new window for the
renamed file and leave the original file’s window open, or to use the original
file’s window for the renamed file. The status of this check box persists between
invocations of this dialog box during the current Visual Workbench session.

5. Choose OK.

Renaming a file is useful for maintaining revised copies of a source file while
keeping the original unchanged. Selecting the Open New Window For This File
check box can be useful for duplicating one file in your project to be used as a
template for a new file, when you want the original file left open. You can also
use the Save As command to name and save a newly created file.

The Editor dialog box, accessed from the Options menu, has two options that
relate to saving files. If you select the Save Before Running Tools check box,
all open files are automatically saved whenever you run any tool installed on the
Tools menu. This lets you integrate Visual Workbench with any tool that opens
a source file also opened by Visual Workbench. Selecting the Prompt Before
Saving Files check box causes Visual Workbench to prompt you before saving
files whenever you perform a build or run a program from the Tools menu.

To set save options:
1. From the Options menu, choose Editor.
The Editor dialog box appears (see Figure 7.2).

2. Select Save Before Running Tools to automatically save source files before any
tool on the Tool menu is run.

3. Select Prompt Before Saving Files to cause Visual Workbench to ask you
whether the file should be saved each time you start a build (or run a tool if Save
Before Running Tools is checked).

4. Choose OK.

Chapter 7 Using the Editor

79

= Editor
[Tab Settings Scroll Bars
Tab Stops: [4_] Vegtical areet |
@® Keep Tabs Horizontal -
O Insert Spaces ‘ Help I
[Source Files

Saye Before Running Tools
Oa Prompt Before Saving Files
[apen .RAC Files Using AppStudio

Undo Buffer Size (K bytes): |:|

Figure 7.2 The Editor Dialog Box

Opening and Closing Source Files

Because the editor works with any ASCII file, you can open and edit text files
created with Visual Workbench or many other editors.

Opening a Source File

When you open a source file, its name is added to the Window menu. Use the
Duplicate command if you want to see more than one view of a source file, for
instance to view different sections of a file at the same time. Do not use the File
menu’s Open command to attempt to open more than one view of a source file.

If you use the Duplicate command to display more than one copy of a file, each
window on the file is titled filename:n, where n is a unique window number.

If no filename extension is given, Visual Workbench adds the extension (.C or
.CPP) of the last file opened that had either a .C or .CPP extension.

» To open a source file:
1. From the File menu, choose Open (CTRL+0).
2. Select the drive and directory where the file is stored.
The default is the current drive and directory.

80

Visual Workbench User’s Guide

3. Inthe List Files of Type box, set the types of files to display.

Or type your own filename filter in the File Name text box. Separate filename
extensions with semicolons (see “Using File Filters” on page 81). For example:

*.CPP ; *.H ; *.RC

The List Files of Type list box serves as a filter in displaying files to open. For
example, C/C++ Header (*.h) displays all files with the .H extension. The drop-
down box lists commonly used filename extensions.

4. Choose OK to see a list of files in the selected directory.
5. Select the file from the list or type its name in the File Name box.
6. Choose OK.

Tip You can also open a file by using the Windows File Manager to display the file
icon and then dragging and dropping the file icon into Visual Workbench. See
Chapter 2 in the Microsoft Windows User’s Guide for information on dragging
icons.

Opening Resource Files

Resource files (files with an extension of .RC) are source files that define resources
such as menus and dialog-box controls and are compiled by the resource compiler
as part of building an application for Windows. Although these are ASCII-based
source files, they are also the primary information files used by App Studio.

When you open a resource file from either the Open File dialog box or the Project
Files button on the toolbar, Visual Workbench does one of two things, based on the
state of the Open .RC File Using App Studio check box in the Editor dialog box
(accessed from the Options menu):

= If this check box is disabled (the default), opening a resource file is like opening
any text file as a source window in Visual Workbench.

= If this check box is enabled, opening a resource file from Visual Workbench
automatically invokes App Studio on that resource file.

‘When the option is enabled, Visual Workbench invokes App Studio and passes it
the filename you selected. App Studio can open any resource file that the resource
compiler can compile without errors, so you can use it with any existing resource
files simply by opening the resource file from Visual Workbench or from App
Studio.

Note that you can use the Windows File Manager to display a list of resource files
and then drag and drop any resource file icon into Visual Workbench. The state of
the Open .RC File Using App Studio check box in the Editor dialog box determines
whether Visual Workbench or App Studio opens the file.

Chapter 7 Using the Editor 81

App Studio is installed on the Tools menu with the $RC macro argument, which
automatically opens the first resource file in the project list. (For more information
on macro arguments, see “Using Argument Macros” on page 202.) Since you can
open App Studio with your resource file from the Tools menu, the defauit action
in the Open File dialog box (or Project Files toolbar button) is not to invoke App
Studio on resource files. However, when you learn to use App Studio, you may
decide you no longer need to hand-edit resource files and want the advantage of
opening App Studio directly on files you select.

To open App Studio on a resource file:

1. From the Options menu, choose Editor.

2. Select the Open .RC Files Using App Studio check box so that it is checked.
3. Choose OK to close the dialog box.
4

. Open the resource file as described in “Opening a Source File” on page 79 or
“Opening Project Source Files” on this page.

Using File Filters

Visual Workbench provides the handy feature of letting you use your own special
filename filters in the Open File and Save As dialog boxes. In Visual Workbench,
these dialog boxes recall the filename filter that was last used. So you can use this
feature to specify special file types that you always want to see. For example, the
first time you open the Open File dialog box during a Visual Workbench session
you can enter *.CPP ; *.H to look for only C++ source and header files. This
filter appears each subsequent time you open that dialog box during the session.

Opening Recently Used Files

A convenient way to open recently used files is to use the list at the bottom of the
File menu, where the last four files that you opened and then closed appear. You
can open one of these files by choosing its name from the list.

Opening Project Source Files

Visual Workbench lets you quickly access source files associated with the active
project by using the Project Files button at the left end of the toolbar. All editable
files in the project list appear in the drop-down list that appears when you click the
Project Files button (or press CTRL+P). Also, all include files that are added to the
project as a result of include dependency scanning can be accessed here. For more
information on include dependency scanning, see page 101.

To open any source file in the active project:
1. Click the Project Files button on the toolbar.

2. Choose the source file from the drop-down list.

82

Visual Workbench User’s Guide

Closing Source Files

All files are automatically closed when you quit Visual Workbench (you are
prompted to save any altered files). You can also close any individual source file
without exiting. If you have more than one window open on a source file, the file
is not closed until all windows associated with it are closed.

To close a source file:

1. Switch to the source window.

2. From the File menu, choose Close.
Or double-click the document Control-menu box.
Or press CTRL+F4.

If you are using the sample program, use one of these techniques to close the
QWINTEST.CPP source window.

If you create a new source file and try to close it before saving, a message
appears asking if you want to save the changes before closing.

Moving Around in Files

This section discusses some special techniques for moving around in source files
in Visual Workbench.

To move to a specific line within the source file:
1. From the View menu, choose Line.
The Line dialog box appears.
2. Type the line number you want to move to.
3. Choose OK.

To set a hookmark in the source window:

1. Move the insertion point to the line where you want to set a bookmark.

2. From the View menu, choose Toggle Bookmark, or press CTRL+F2.
The line containing the bookmark is highlighted.

You can mark frequently accessed lines in your source file. Once a line is
marked, use the View menu Next Bookmark and Previous Bookmark commands
to move quickly to that line. Bookmarks can be cleared when you no longer need
them.

Chapter 7 Using the Editor 83

To clear a bookmark:

1.

Move the insertion point to the marked line.

2. From the View menu, choose Toggle Bookmark.

The bookmark and the highlight are removed.

To remove all bookmarks, choose Clear All Bookmarks from the View menu.

To move to the next bookmark after the insertion point:

From the View menu, choose Next Bookmark, or press F2.

To move to the previous bookmark before the insertion point:

From the View menu, choose Previous Bookmark, or press SHIFT+F2.

To switch to a source window:

Click anywhere in the window (use the right mouse button to keep the insertion
point from jumping to where you click).

—Or—

Choose the window from the Window menu.

—Or—

Use the shortcut key listed on the title bar (ALT+ <window number>).
—Or—

Use CTRL+F6 to cycle through all active document windows.

—Or—

Use F6 to cycle through all active windows (includes document windows and all
other windows).

—Or—

Use CTRL+TAB to switch to the last active window (release the CTRL key to
switch to the window).

To move from one brace to the matching brace:

1.
2.

Place the insertion point immediately in front of a brace.
From the Edit menu, choose Find Matching Brace, or press CTRL+].

You can move from the opening brace to the closing brace or from the closing
brace to the opening brace. This also works for parentheses and brackets.

84

Visual Workbench User’s Guide

Using the Keyboard Commands

The editor includes a number of special keystrokes for editing and moving around
in a source file. These are in addition to the familiar arrow keys, the SPACEBAR,
and the ENTER key. For a complete reference to all keyboard commands, see
pages 47 through 51 in Chapter 5, “Fast Track to Visual Workbench.”

To Press

Move one word to the left CTRL+LEFT ARROW
Move one word to the right CTRLARIGHT ARROW
Move to the first indentation of the current HOME

line

Move to the beginning of the current line
Move to the first indentation of the next line
Move to the end of the current line

Move to the beginning of the file

Move to the end of the file

Undo the last edit

Redo the last edit
Delete to the end of the word
Copy text to the Clipboard

Cut text to the Clipboard
Paste text from the Clipboard

Move to the matching brace
Insert a tab
Toggle display of tab symbols

Controlling the Source Window

The editor features a number of options that affect the source window. These
include the ability to set tabs, highlight language syntax within the window, and

make the window read-only.

HOME, then HOME
CTRL+ENTER

END

CTRL+HOME
CTRLAEND

CTRL+Z
ALT+BACKSPACE

CTRL+A
CTRL+T

CTRL+C
CTRLA+INS

CTRL+X
SHIFT+DEL

CTRL+V
SHIFT+INS

CTRLA+]
TAB
CTRL+ALT+T

Chapter 7 Using the Editor 85

Setting Tabs

The editor supports tab stops in a source file. You can set the number of spaces
a tab consists of, and then either save them as tabs or spaces when you save the
file. You can also toggle the display of tab symbols in a source file.

» To change tab settings:

1.

From the Options menu, choose Editor.

The Editor dialog box appears (see Figure 7.3).

2. In the Tab Stops box, type the number of spaces to be used as a tab stop.

Under Tab Settings, select the Keep Tabs option to treat tabs as a single tab
character when the source file is saved.

Or select Insert Spaces to convert tabs to the number of spaces shown in the Tab
Stops box.

Choose OK. ,
 Tab Settings — | [Scroll Bars
Tab Stops: E Vertical ‘__—]

C 1

@ Keep Tabs Horiz =
O Insert Spaces Help I

[Source Files

Save Before Running Tools
[Prompt Before Saving Files
(] 0pen .RC Files Using AppStudio

Undo Buffer Size [K bytes): D

Figure 7.3 The Editor Dialog Box

» To display or hide tab symbols:

Press CTRL+ALT+T.

Tab symbols are displayed as » wherever there is a tab in a source file. The
CTRL+ALT+T keyboard shortcut is the only means of toggling the display
of tab symbols.

Highlighting Language Syntax
Visual Workbench highlights language keywords, identifiers, comments, and
strings in different colors. This feature is useful when learning a language or

when viewing lengthy and complex source files. For example, if you are editing
a file with a .CPP extension, all C++ keywords are highlighted.

86

Visual Workbench User’s Guide

You can select the colors to use in highlighting language syntax items with the
Color command on the Options menu. See Chapter 12, “Customizing Visual
Workbench,” for additional information.

To highlight language syntax in the source window:
1. From the Options menu, choose Color.
The Color dialog box appears.
2. Select the Syntax Coloring check box.
3. Choose OK.

Making a File Read-Only

The Read Only command on the Edit menu makes the active source file read-
only. When you choose this command, the file cannot be edited.

This command is useful when you are viewing a program and don’t want to acci-
dentally make any changes to the file.

To make a source file read-only:
1. Switch to the source window containing the file.

2. From the Edit menu, choose Read Only.

To cancel the command, choose it again.

A check mark next to the menu command and the word “READ” on the status
bar at the bottom of the screen indicate that the source file is read-only.

Finding and Replacing

Visual Workbench offers advanced find and replace capabilities. You can search
for literal text or use regular expressions to find words or characters in the source
window. You can search for text using three different methods:

= Select any word and press CTRL+F3 (or SHIFT+CTRL+F3 to search backwards)

= Use the Find dialog box

» Use the Find box and Find Next button on the toolbar

The Replace command on the Edit menu opens a dialog box that lets you find text
and replace it with other text.

Chapter 7 Using the Editor 87

Finding Text Using the Find Command

» To find a character or group of characters in the active source window:
1. Position the insertion point where you want to start the search.
2. From the Edit menu, choose Find.
The Find dialog box appears (see Figure 7.4).

3. In the Find What box, type the text you want to find, or select from the 16
previous instances of text searched for, which are listed in the drop-down box.

4. Select any of the Find options, as described below.
5. Choose Find Next.

Find What: | | (2] [_Eind New]
[Match Whole Word Only

[Match Case Direction
O Regular Expression O Up ® Down -

I éel Bookmarks on All I

Figure 7.4 The Find Dialog Box

When you choose the Find command, the editor uses the location of the insertion
point to select a default search string. If the insertion point is inside a word, that
word is displayed as the search text in the Find What box.

If the insertion point is between words, the word to the right is displayed. If there
is no word to the right, the word to the left is displayed. If that is not possible,
nothing is displayed.

The Find dialog box has these choices for locating text:

Match Whole Word Only
Locates separate occurrences of the search text. If you don’t select this option,
the editor finds embedded occurrences, for example, “main” in remainder.

Match Case
Performs a case-sensitive search.

Regular Expression
Finds text using regular expressions. You can find more information about using
regular expressions in the Using the Editor section of Help.

Direction
The Up option searches from the insertion point to the beginning of the file.

The Down option searches from the insertion point to the end of the file.

88 Visual Workbench User’s Guide

After selecting the search options, you can choose either the Find Next or the Set
Bookmarks on All button. If you choose Find Next and the text is located, the
source window jumps to the text and highlights it. Choose Find Next again to
move to the next occurrence of the text.

If you choose Set Bookmarks on All, bookmarks will be set at all occurrences of
located search text. See “Moving Around in Files” on page 82 for more infor-
mation on using bookmarks.

Finding Text Using the Toolbar

The Find box and Find Next button on the toolbar let you quickly look for text
without using a menu dialog box.

» To use the toolbar Find box and Find Next button to search for text:
1. Position the insertion point where you want to start the search.

2. Move the insertion point to the Find box on the toolbar (CTRL+F) and type the
text you want to search for.

Or select from the 16 previous instances of text searched for, which are listed in
the drop-down box.

3. To search forward in the file, press ENTER.
Or double-click the selection.
Or click the Find Next button.
4. To search backward in the file, press SHIFT+ENTER.
Or press SHIFT and double-click the selection.
Or press SHIFT and click the Find Next button.

5. To repeat the search, click the Find Next button (hold down SHIFT for a back-
ward search).

Or, with the insertion point in the Find box, press ENTER or SHIFT+ENTER to
search forward or backward, respectively.

If the text you entered can be found, the active source window jumps to it and
highlights the text.

» To quickly find the next or previous occurrence of a text string:
1. Select the text or place the insertion point anywhere in a single word.
2. Press CTRL+F3 to find the next occurrence of the selected text or word.

Or press SHIFT+CTRL+F3 to find the previous occurrence of the selected text or
word.

Chapter 7 Using the Editor 89

If you use the CTRL+F3 keys with the selected text or word, the text is
automatically entered in the Find list box. You can then continue to press
CTRL+F3 to jump to each occurrence of the selected text or word.

The current state of the following search options in the Find dialog box applies to
searches using the toolbar’s Find box:

= Match Whole Word Only
= Match Case

» Regular Expression

Replacing Text

» To find and replace text:
1. From the Edit menu, choose Replace.
The Replace dialog box appears (see Figure 7.5).

Find What: [| 3] [Eindnext]
Replace With: | 2] [Replace A |
] Match Whole Waord Only
[] Match Lase

O Regular Expression

Figure 7.5 The Replace Dialog Box

2. In the Find What box, type the search text or regular expression.

Or choose from the 16 previous instances of text searched for, which are listed
in the drop-down box.

3. In the Replace With box, type the replacement text.

Or choose from the 16 previous instances of replacement text, which are listed
in the drop-down box.

4. Select any search options you need.

These options are the same as those in the Find dialog box (see “Finding Text
Using the Find Command” on page 87).

90 Visual Workbench User's Guide

5. Choose either Find Next to find the next occurrence of the text or Replace All to
find and replace all occurrences of the text.

If you choose Find Next, the next occurrence of the text is found if it exists, and
the Replace dialog box is replaced by an abbreviated dialog box containing only
Replace control buttons. You can replace the found text, find the next occur-
rence of the text, replace all occurrences of the text, or cancel the operation
using this dialog box.

For information on default search strings, see “Finding Text Using the Find
Command.”

» To repeat the last find or find and replace:
e Choose Find Next in either the Find or Replace dialog box.

An abbreviated portion of the Find or Replace dialog box remains active until
the search reaches the starting location (after wrapping) or until you choose
Cancel.

Printing

If you have installed a printer driver and connected to a printer port within
Windows, you can print text from the active window.

If you have more than one printer, you can change the default selection in the
Print dialog box, which you open by choosing Print on the File menu.

For information on installing printers, see Chapter 5, “Control Panel,” of the
Windows User’s Guide.

» To print the entire contents of the active window:
1. From the File menu, choose Print.
The Print dialog box appears (see Figure 7.6).

Printer: HP Laserdet 111Si PostScript on LPT1: i

Print Range
@ an

Q sglection

Figure 7.6 The Print Dialog Box

Chapter 7 Using the Editor 91

2. Under Print Range, select the All option.
3. Choose OK.

To print selected text in the active window:

1. Select the text to be printed.

2. From the File menu, choose Print.

3. Under Print Range, select the Selection option.
4. Choose OK.

Choose the Setup button to set printer-specific information. The Setup button
opens a printer-supplied dialog box (see Figure 7.7), in which you can change the
paper size, the orientation of the printing, the number of copies, and various other
printing options.

- HP LaserJet lIISi PostScript on LPT1: l

Paper Source: [Uppev Tray IEI l 0K I
Paper Size: I Letter 8.5x 11 in 'El | Cancel I
Orientation ™| . Options...

opies:

]

©

O Landscape

Figure 7.7 A Printer Setup Dialog Box

To change the default printer:
1. From the File menu, choose Print.

2. If your computer is connected to more than one printer, choose a printer from the
drop-down list.

3. Choose OK.

93

CHAPTER 8

Using Projects

Projects are the cornerstone of Visual Workbench. A project keeps track of the
various files and libraries that are needed to build a program or a library. It also
contains information about compiler and linker options. By creating a project and
selecting a project type, you can specify the kind of target file you want to generate
when you build the project. Projects also contain information saved in workspaces,
such as window sizes and positions.

Projects are stored on disk as two files: a makefile (MAK extension) and a status
file (VCW extension). The makefile, which is compatible with the NMAKE util-
ity, specifies the rules for the compilers and linker to build the target file. Visual
Workbench calls this file the project file. When you open the project file from
within Visual Workbench, the status file is automatically loaded.

To create a project, you add the filenames associated with the project to the pro-
ject list, which Visual Workbench then uses to construct the project file. When
you open a project, all source filenames in the project list are made available in
the toolbar’s Project Files drop-down list. This gives you quick access to the main
source files.

Projects also speed development time by recompiling only files that have changed
since the program’s last compilation or build. For example, if your project has

six source files and you edit only one of the files between builds, only that file is
recompiled before linking. You also have the option to rebuild all files from the
start if you want.

This chapter introduces Visual Workbench projects. It describes:

= Each of the project types

= How to create, open, and close a project

= How to build a project

= How Visual Workbench scans include files for dependencies
= Workspaces and how to use them

» How to use external projects and makefiles created by other editors

9%

Visual Workbench User’s Guide

Project Types

Every project must contain a project type, which specifies the kind of target file
to be generated by a build. You choose a project type when you first create the
project, using the New Project dialog box (accessed from the Project menu). To
change the project type of an existing project, you use the Project Options dialog
box (accessed from the Options menu). For step-by-step instructions on how to
create a project and choose a project type, see “Creating a Project” on page 97.

When you select a project type, the appropriate compiler and linker options are
automatically set to generate the target file. These options are sufficient for most
needs, although you can use the C/C++ Compiler Options and Linker Options
dialog boxes to fine-tune them.

Visual C++ Standard Edition provides a basic set of five Windows-based project
types plus static libraries. Visual C++ Professional Edition includes these project
types plus several more. This chapter describes the project types for both editions.

Visual C++ Core Project Types

The following project types are available with both Visual C++ Standard Edition
and Visual C++ Professional Edition:

= Windows application

= Windows dynamic-link library

= QuickWin application

» Visual Basic custom control (custom VBX control)

= Static library

You can use the Microsoft Foundation Class Library with any of these types if you
select the Use Microsoft Foundation Classes check box in either the New Project or
Project Options dialog box. When you select Use Microsoft Foundation Classes, an
extra library is linked during the build. Selecting this check box provides that
library as a default linker option.

Windows Application

Windows-based applications have a full graphical interface and run only with
Windows. They are developed using standard Windows API functions, or using
the Microsoft Foundation Class Library. A Windows-based application filename
has an .EXE extension.

Chapter 8 Using Projects 95

Windows-based applications generally use the following files in the project list:

s Source files (.C, .CPP, or .CXX)
» Module-definition file (DEF)
= Resource file (.RC) ‘

Windows Dynamic-Link Library

Dynamic-link libraries contain functions that are called at run time by Windows- - . .
based programs. All Windows APISs, for example, are kept in dynamic-link librar- =~
ies. Creating a dynamic-link library is a good way to write code that can be :
shared by different programs running in Windows at the same time. A Windows-
based DLL application filename has a .DLL extension.

Dynamic-link libraries generally use the following files in the project list:

= Source files (.C, .CPP, or .CXX)
» Module-definition file (.DEF)
= Resource file (RC)

QuickWin Application

A QuickWin application is a standard input/output MS-DOS program with a
Windows shell. It runs only with the Windows operating system. Building an
MS-DOS program as a QuickWin program is a quick way to create a Windows-
style program, or adapt an existing MS-DOS program to Windows, without
having to learn the basics of programming for Windows. When you run a
QuickWin application, the program output appears in a QuickWin multiple
document interface (MDI) child window as it would on your display monitor
in MS-DOS. The program can use standard MS-DOS functions such as printf
and scanf or C++ iostream operators to process input and output. A QuickWin
application filename has an .EXE extension.

Note QuickWin programs can only run in Windows standard or 386 enhanced
mode. Do not run a QuickWin program in real mode.

QuickWin applications generally require the following files in the project list:

= Source file (.C, .CPP, or .CXX)
= Module-definition file (.DEF)

If you do not include the module-definition file, Visual Workbench automatically
includes one for you (for QuickWin applications only).

96

Visual Workbench User’s Guide

Visual Basic Custom Control

Visual Basic custom controls (also called custom VBX controls) are essentially
dynamic-link libraries with a .VBX extension that can be used as controls from
within a Visual Basic program. They can also be used as resources in App Studio
for Visual C++ applications. You can learn how to write Visual Basic custom
controls from the Control Development Guide, which is included with Microsoft
Visual Basic for Windows, Professional Edition. For more information on using
Visual Basic custom controls in Visual C++, see Chapter 3, “Using the Dialog
Editor,” in the App Studio User’s Guide.

Visual Basic custom controls generally require the following files in the project list:

= Source files (.C, .CPP, or .CXX)
= Module-definition file (.DEF)
= Resource file (.RC) (optional)

Static Library

Static libraries are standard libraries that can be created directly from the build
using object files that belong to the project. To create a static library (.LIB),
create a project with normal project files and/or other object (.OBJ) files in the
project file list, then build the project.

The generated library file is composed of all the object files in the project list
and/or all object files generated by the build. This is a quick way to develop your
own libraries from within Visual Workbench, without having to run a library-
manager utility from an MS-DOS session, or outside of Windows.

Visual C++ Professional Edition Project Types

Visual C++ Professional Edition provides the same project types as Visual C4++
Standard Edition plus these additional project types:

= Windows P-code application

= MS-DOS application

= MS-DOS P-code application

= MS-DOS Overlaid application

= MS-DOS COM application (COM)

Windows P-Code Application

P-code is a special type of executable code that is smaller than machine code and
uses an interpreter, incorporated in the executable file, to translate the p-code into
machine code at run time. P-code programs are smaller but slower than normal
programs that compile to machine code. In a Windows-based p-code application, it
is typical to compile user-interface sections of code as p-code (where speed is not as

Chapter 8 Using Projects 97

important) and computational sections as native code. The default compiler options
for this project type include /Oq, which compiles the entire program using p-code.
Use the directive #pragma optimize(" q", off) in your source code for functions
you want to be in native code.

MS-DOS Application

MS-DOS applications are traditional character-based programs that run with
either MS-DOS or Windows. MS-DOS programs are appropriate when the pro-
gram doesn’t need the Windows interface to execute.

MS-DOS P-Code Application

P-code is a special type of executable code that is smaller than machine code and
uses an interpreter, incorporated in the executable file, to translate the p-code into
machine code at run time. P-code programs are smaller but slower than normal
programs that compile to machine code. The default compiler options for this pro-
ject type include /Oq, which compiles the entire program using p-code. Use the
directive #pragma optimize(" ", off) in your source code for functions you want
to be in native code.

MS-DOS Overlaid Application

This type uses the Microsoft Overlaid Virtual Environment (MOVE) to create pro-
grams that would otherwise be too large to run in conventional memory. Overlays
are sections of a program that are loaded into memory from the executable file only
as needed. To learn how to create an overlaid program, see Chapter 3, “Creating
Overlaid MS-DOS Programs,” in the Command-Line Tools User’s Guide.

MS-DOS COM Application (.COM)

This project type produces an executable file with a file extension of .COM. It uses
the tiny (/AT) memory model compiler option and the /TINY linker option to place
both code and data in a single physical memory segment. The restrictions on using
this project type are that the program cannot use far references and must keep its
data and code requirements less than 64K bytes.

Creating a Project

A program is built from source files and libraries. The source files are compiled
into object files and then linked with the libraries to create a program. In Windows-
based programs, you need to link additional files such as resource files (files that
contain resources like icons, menus, and dialog boxes) and module-definition files
(files that contain information about the program).

Before you create a program, you need to create a project for it. A project can
consist of only one source file or of many source, resource, and library files.

%

Visual Workbench User’s Guide

Everything that applies to projects for programs also applies to projects for
libraries.

Note If your program consists of only one file, you can build and run it without
creating a project. (For QuickWin programs, the module-definition file is automati-
cally included.) However, it is a good idea to create a project if you have unique
compiler or linker settings, since these will be lost if another project is loaded or
Visual Workbench is restarted.

To familiarize yourself with the steps in building a project, you can use the files
listed below to create a multifile C++ project. Although there is already a project
called HELLLO.MAK in the directory, you can experiment by creating a second
project with a different name in that directory. This example assumes that you
have installed the Microsoft Foundation Class Library sample programs. If you
haven’t installed the MFC sample programs, but have installed the SDK sample
programs, you can use one of the programs in the \MSVC\SAMPLES directory,
such as GENERIC, for this example.

File Directory

HELLO.CPP \MSVC\WMFC\SAMPLES\HELLO
HELLO.DEF \MSVC\WMFC\SAMPLES\HELLO
HELLO.RC \MSVC\MFC\SAMPLES\HELLO

The directory listed above is the default directory created by the Setup program.
If you changed the default directory names during installation, the location of the
required files will be different.

» To create a project:

1. From the Project menu, choose New.
The New Project dialog box appears.

If you know the directory for the project, you can simply type the project name,
including the complete path, in the Project Name box and skip to step 6. For ex-
ample, if you installed Visual C++ on drive C, enter the following in the Project
Name box:

C:\MSVC\MFC\SAMPLES\HELLO\MYHELLO.MAK.

If you would rather use the graphical directory browser, continue with step 2.
2. Choose the Browse button to browse and change directories.

The Browse dialog box appears. This dialog box allows you to change directo-
ries and look at filenames. The purpose of browsing your directories is to make
sure you use a unique name for the project and to change to the correct directory
for the project.

Chapter 8 Using Projects 99

. Use the Directories and Drives list boxes to change to the drive and directory
containing the example files.

You should see the name of the existing project file (HELLO.MAK) already
there.

4. 1In the File Name box, type the new project filename.

For example, type MYHELLO.

All project files have a .MAK extension. You don’t need to type any more than
the first eight characters of the filename. The .MAK extension is automatically
added when you choose OK.

. Choose OK.

The Browse dialog box disappears, and the project name you specified appears
in the Project Name box preceded by its path. You must now specify a project
type.

. From the drop-down list in the Project Type box, select a project type.

For this example, select Windows application (.EXE). Be sure the Use

Microsoft Foundation Classes check box is selected if your application uses
the foundation classes, as does the HELLO sample.

. Choose OK.
The Edit — Projectname dialog box appears (see Figure 8.1).

File Name: Directories: [Close |
 c=.cpp-.cn] c:\msvcimfch les\hello —
e
= msve
R
(= samples
= hello
List Files of Type: Drives:
|Soulce (=.e:=.cpp:=.cxx) IEI I c: L!_l

Files in Project:
Add All
Defele I

Figure 8.1 The Edit ~ Projectname Dialog Box

. Add the necessary filenames in the project to the project list.

In this example, you need to add HELLO.CPP, HELLO.DEF, and HELLO.RC.
(HELLO.H cannot be added now since all include files are automatically found
and added when the dialog box is closed.) If you need help using this dialog box,
see the procedure titled “To add a file to the project” on page 101.

100 Visual Workbench User’s Guide

9. Choose the Close button to save the project and scan all the source files for
include files.

Whenever you close (not cancel) the Edit — Projectname dialog box, Visual
Workbench recursively scans all files in the project list for #include directives
and automatically adds any include files it finds to the project list. For more
information on include file dependencies, see “Using Include Dependencies” on
the next page.

Opening and Closing Projects

Although you can maintain many projects on your disk, Visual Workbench can
work with only one project at a time. You can recall any previously created pro-
ject by opening it. When you open an existing project, the current project is auto-
matically closed, or you can close it manually.

» To open an existing project:
1. From the Project menu, choose Open.
2. From the file list, select a project file (MAK extension).
3. Choose OK.

Tip You can also open a project by using the Windows File Manager to display the
project file icon and then dragging and dropping the project file icon into Visual
Workbench. See Chapter 2 in the Microsoft Windows User’s Guide for
information about dragging icons.

» To close a project:
¢ From the Project menu, choose Close.
—Or—
¢ Open another project.
—Or—

¢ (Create another project.

To learn how to open a makefile created outside the Visual Workbench environ-
ment, see “Using External Projects” on page 107.

Adding and Deleting Project Files

When you create a project, you can add files to the project. As projects grow and
change, however, you may need to add files to or delete files from the project.

Chapter 8 Using Projects 101

When you delete a file from the project, only the reference to that file is removed.
The actual file is not deleted from the hard disk.

Choose the Edit command from the Project menu to open a dialog box where you
can add or delete project files. This dialog box is identical to the dialog box used
to add files to a new project (see Figure 8.1).

» To add a file to the project:
1. From the Project menu, choose Edit.
The Edit — Projectname dialog box appears.

2. Use the List Files of Type drop-down list box to set the type of files that appear
in the File Name box.

3. From the file list in the File Name box, select the file to add to the project and
choose Add.

Or double-click the file in the file list.

Or you can choose Add All to add every file that appears in the file list to the
project list. This can save steps if you have several source files you want to add.

4. Repeat steps 2 and 3 for each file (or set of files) you want to add to the project.
5. Choose Close when you finish editing the list of project files.

An include dependency scan now takes place. For more information, see the next
section, “Using Include Dependencies.”

» To delete a file from the project:
1. From the Project menu, choose Edit.
The Edit — Projectname dialog box appears.
2. Select the file from the Files in Project box and choose Delete.
Or double-click the file in the Files in Project box.
3. Repeat step 2 for each file you want to delete from the project.
4. Choose Close when you finish editing the list of project files.

An include dependency scan now takes place. For more information, see the next
section, “Using Include Dependencies.”

Using Include Dependencies

Visual Workbench creates include dependency lists whenever you create or edit a
project. It does this by recursively scanning all the project files for #include direc-
tives and adding each included filename to the project list. Both source files (.C,
.CPP, or .CXX) and resource files (RC) are scanned, so the include files in the
dependency list can have extensions of .H, HXX, .HPP, .INC, .FON, .CUR, .BMP,
ICO, or .DLG. Since these file types are automatically added to the project list, you

102

Visual Workbench User’s Guide

cannot add them manually. These files are part of the project list and are available
in the Project Files drop-down list, accessed from the toolbar’s Project Files button.

An include dependency list associates each included file with the files that include it
and are therefore dependent upon it. This allows Visual Workbench to generate the
correct build dependencies. For example, when you edit a header file and perform a
build, the build compiles only the files that include the modified header file.

An include dependency scan takes place automatically when you close the

Edit — Projectname dialog box, after you have either created or edited the project
list. If you subsequently include a new file in any file in the project list, you should
regenerate the include dependencies for the project.

To regenerate include file dependencies for the entire project:
¢ From the Project menu, choose Scan All Dependencies.

To regenerate include file dependencies for the active file:

e From the Project menu, choose Scan Dependencies Filename (Filename appears
on the menu as the name of the active source file).

Whenever a dependency scan occurs, a status window appears showing the status
of the include dependency scan as it searches files. You can cancel this scan at any
time by choosing the Cancel button, in which case the previous include dependency
list remains in effect.

Visual Workbench scans both bracketed include files (<includefile.h>) and user
include files ("includefile.h"). There are a large number of system include files
shipped with Visual C++ that are unlikely to be changed. Since it would be ineffi-
cient to scan these include files when they are included by a project file, Visual
Workbench uses an exclusion file called SYSINCL.DAT that contains a list of
these include files. Whenever Visual Workbench scans for include dependencies, it
uses this list to exclude any filenames it finds that match those in this list.

The exclusion file is an editable file, and you can use it to fine-tune your build de-
pendencies. For example, if you have a large header file that you never change, you
could add it to the list in the exclusion file. Then, whenever you generate include
dependencies, that file will not be scanned. As another example, you may want a
Microsoft system include file scanned because you are altering it, in which case you
could remove that include filename from the exclusion file. Visual Workbench
never overwrites this file, but it does build a new file containing all system include
files shipped with Visual C++ whenever it doesn’t find a SYSINCL.DAT file at
startup. So you can easily regenerate the original file at any time simply by deleting
or renaming the current exclusion file.

Chapter 8 Using Projects 103

Project Compiler and Linker Options

Besides file references, projects also contain information about compiler and
linker settings to use: When you select a project type, the project configures the
compiler and linker options to build that type of program or library. These op-
tions, and any compiler and linker options you set yourself, are automatically
saved with the project information when you perform a build.

To customize the compiler and linker options generated by the project type, use
the Customize Build Options group in the Project Options dialog box. This group
contains three command buttons that open dialog boxes to let you set compiler,
linker, or resource compiler options. To learn more about these dialog boxes, see
Chapter 9, “Customizing Build Options.”

Building a Project

You create a project so that you can eventually build a program or a library.
Visual Workbench lets you either build or rebuild a project. When you build a
project, only the files in the project list that have changed since the last build are
included in the build. When you rebuild, all files are included in the build.

Before you build a project, you need to determine whether you want to produce a
debug or release version of the program. The debug version contains information
that can be used by Visual Workbench’s integrated debugger or by the Microsoft
CodeView debugger. The release version contains no debug information and
therefore is smaller and faster. To learn how to use the debugger on a debug ver-
sion of a program for Windows, see Chapter 11, “Debugging Programs.”

» To select debug or release build options:
1. From the Options menu, choose Project.
The Project Options dialog box appears.
2. Under Build Mode, select either Debug or Release.
3. Choose OK.

» To build a project:

e From the Project menu, choose Build Targetname (Targetname represents the
name of the target file displayed on the menu).

Or
e (Click the Build button on the toolbar.

104

Visual Workbench User’s Guide

» To rebuild a project:

e From the Project menu, choose Rebuild All Targetname (Targetname repre-
sents the name of the target file displayed on the menu).

_._Or__
e C(Click the Rebuild All button on the toolbar.

After you choose Build or Rebuild All, the Output window provides information
from the tools used by the build. The Output window is also where errors and
warnings are reported. Since the build occurs in the background, you can con-
tinue to use Visual Workbench. Some menu commands and toolbar buttons are
disabled during a build (for example, you are not allowed to exit Visual Work-
bench during a build without first stopping the build).

An audible message notifies you when the build has completed. The audible mes-
sage corresponds to one of three standard system events in Windows:

System Event Indicates

Asterisk Build has completed without errors or warnings
Question Build has completed with warnings
Exclamation Build has completed with errors

If you have a sound driver installed, you can use the Sound application in the
Windows Control Panel to assign these system events to different sounds. Other-
wise, all audible messages simply issue a beep.

To abort a build at any time, choose the Stop Build command on the Project
menu. The build will abort as soon as the currently executing build tool finishes.

If no errors are reported, the build is successful. If the project type is a program,
you can run it by choosing Execute Targetname from the Build menu or debug
it by choosing Go from the Debug menu or by clicking the toolbar’s Run button.
Choose Exit from the program’s File menu to quit the program and return to
Visual Workbench.

Using a Workspace

A workspace is a convenient way of saving and restoring an arrangement of
windows associated with a project. Loading a workspace also restores font set-
tings and the status of the toolbar and status bar (displayed or hidden).

You can load a workspace to quickly re-create a work environment. For example,
suppose you like to debug with a narrow Registers window to the right of your
source window and Watch and Locals windows below your source. If you save
this arrangement as a workspace, you can load it at the start of each debugging

Chapter 8 Using Projects 105

session instead of positioning and sizing the windows. Workspaces also keep
track of the insertion points in all files, so you can immediately continue working
where you left off.

Three named workspaces, plus the last workspace used, are available for each
project you create and for Visual Workbench’s default state (that is, when no pro-
jects are loaded). You can load any of the named workspaces from the Project
menu. Also, you can specify any of the named workspaces or the last workspace
used to be initially loaded when you open a project.

Using the Last Workspace Used

It is often useful to maintain your Visual Workbench setup between sessions.
Whenever you exit Visual Workbench or close a project, the current workspace
(Visual Workbench’s configuration) is automatically saved. When a project is
closed, either directly or by exiting Visual Workbench, the current workspace is
saved in the project’s workspace file. If no project is open when you exit Visual
Workbench, the current workspace is saved in Visual Workbench’s workspace file.

If you want the workspace you were last using to be automatically loaded the next
time you open Visual Workbench, use the Workspace dialog box, accessed from
the Options menu, to set the initial workspace to “Last Workspace Used” (see
“Loading an Initial Workspace” on page 106). Then, since Visual Workbench
always loads the most recently used project when it starts, the last workspace asso-
ciated with that project is also loaded. If no project was active at the end of the last
session, the last workspace used in Visual Workbench’s default state is loaded.

Saving a Workspace

You can save up to three workspaces for each project, besides the current work-
space, which is automatically saved (and becomes the “Last Workspace Used”).
You can also save up to three workspaces for Visual Workbench itself, before
any project is assigned to it.

To save a workspace for a project, first open the project, then take the following
steps. To save a workspace for Visual Workbench itself, save the workspace
when no project is open.

» To save a workspace:
1. Arrange and size the appropriate windows.
2. From the Project menu, choose Save Workspace.

3. From the cascading menu, choose Edit, Debug, or Custom.

106 Visual Workbench User’s Guide

Edit, Debug, and Custom are default workspace names, and are simply useful
labels. You can change the default names by choosing the Workspace command
from the Options menu.

The workspace information is stored in a file with the project name and a .WSP
extension.

Loading a Workspace

When a project is open, you can only load the workspaces defined for that pro-
ject. If no projects are open, you can load the workspaces defined for Visual
Workbench.

» To load a workspace:
1. From the Project menu, choose Load Workspace.
2. From the cascading menu, choose Edit, Debug, or Custom.

Any files already open that do not belong in the current workspace are either
minimized to an icon or are closed depending on the setting of the Close Non-
Workspace Windows on Load check box in the Workspace dialog box.

Loading an Initial Workspace

When you open a project, the project can automatically open a workspace. When
you start Visual Workbench, it can also load an initial workspace.

Use the Workspace command on the Options menu to define an initial workspace.
If a project is open when you use the command, you define an initial workspace
for the project. If no project is open, you define an initial workspace for Visual
‘Workbench.

» To define an initial workspace to load:
1. From the Options menu, choose Workspace.
The Workspace dialog box appears (see Figure 8.2).
2. From the Initial Workspace box, select a workspace name.
3. Choose OK.

Chapter 8 Using Projects 107

Workspace

Workspace #1: [tEdit | ok |

Workspace #2: &Debug
Workspace #3: &Custom

Initial Workspace:

|Lasl Workspace Used |£I

Help

i

[Prompt Before Redefinition
Close Non-Workspace Windows on Load

Figure 8.2 The Workspace Dialog Box

Using External Projects

If you have existing makefiles that you want to use in place of Visual Workbench’s
project makefiles, you can run them from within Visual Workbench. These make-
files are called ‘““external projects” because they are external to the normal mode of
selecting project options from within Visual Workbench.

When you use an external makefile, you are responsible for the contents and actions
of that makefile, since Visual Workbench does not read or alter the file. You can,
however, build an external project and run any resulting program from within
Visual Workbench. If your external makefile generates a CodeView-compatible
debug version of the executable file, you can also debug the target from within
Visual Workbench.

To use an external project, open it as you would any Visual Workbench project
but select the Use as an External Makefile check box in the Open Project dialog
box, accessed from the Open command on the Project menu.

» To open an external project:
1. From the Project menu, choose Open.
The Open Project dialog box appears.
2. In the File Name box, type the name of the external makefile.
3. Select the Use as an External Makefile check box.

If you miss this step, Visual Workbench prompts you when it attempts to open
the project as a Visual Workbench project and cannot. You can specify at that
time that it is an external project.

4. Choose OK.

108 Visual Workbench User’s Guide

Once the external makefile is loaded, you can set build options by choosing the
Project command from the Options menu. This opens the External Project Options
dialog box (see Figure 8.3), where you can set build options.

= External Project Options
Debug Target Name: |C:\MSYCAMYAPPAMYAPP.EXE | [ok |
Project Type Build Mode
iE ebug
(O Dynamic Linked Library
© Dther O Releage
Debug Build: [NMAKE /f MYAPP.MAK

Release Build: [NMAKE /f MYAPP.MAK |

Rebuild All Options: [/a |

Figure 8.3 The External Project Options Dialog Box

Here are the build options you can set in the External Project Options dialog box:

Debug Target Name
Visual Workbench uses the name of the executable target file in this box to
determine what file to use when you use the debugger. This name also appears
on the Project menu following Build, Rebuild All, and Execute. Visual Work-
bench assumes the name of the executable file to have the same base name as
the project. If you change the name in the Debug Target Name box, you are
responsible for making sure your external makefile generates an executable file
with this same name.

Project Type
This is the target file type (Executable, DLL, or other). Depending on the pro-
ject type specified here, the Debug dialog box, accessed from the Options menu,
presents slightly different options. If the project type is specified as Executable,
the upper text box in the Debug dialog box is labeled “Program Arguments” and
lets you enter any parameters to pass to the program. If the project type is speci-
fied here as DLL, the upper text box in the Debug dialog box is labeled “Calling
Program” and lets you enter the executable filename that calls the DLL.

Debug Build
This is the program maintenance utility, such as NMAKE, along with any
command-line options it requires to build a debug version of the project type.
The command in this box is invoked when you choose Build Targetname from
the Project menu or click the Build button on the toolbar if you have Debug
selected under Build Mode in the External Project Options dialog box.

Chapter 8 Using Projects 109

Release Build
This is the program maintenance utility, such as NMAKE, along with any
command-line options it requires to build a release version of the project type.
The command is this box is invoked when you choose Build Targetname from
the Project menu or click the Build button on the toolbar if you have Release
selected under Build Mode in the External Project Options dialog box.

Rebuild All Options
This is the command-line option required by the program maintenance utility to
generate a complete rebuild. The command line specified in either the Debug
Build or Release Build text box (depending on which mode you are building)
and the command-line option in this text box are combined and invoked when
you choose Rebuild All Targetname from the Project menu or click the Rebuild
All button on the toolbar.

Importing Microsoft Programmer’s Workbench (PWB) makefiles into Visual
Workbench is straightforward since PWB makefiles use the default NMAKE com-
mand line in the Debug Build, Release Build, and Rebuild All Options text boxes.
If you want the ability to build both Release and Debug versions, you can use the
same makefile for both and add DEBUG=1 as a command-line option in the Debug
Build text box and DEBUG=0 as a command-line option in the Release Build text
box.

To build an external project, click the Build button on the toolbar or choose Build
Targetname from the Project menu. To rebuild an external project, click the
Rebuild All button on the toolbar or choose Rebuild All Targetname from the
Project menu.

To run an external project target file, choose the Execute Targetname command
from the Project menu. Or to debug an external project target file that contains
debug information, choose Go from the Debug menu or click the Run button on the
toolbar, or use any of the trace commands, Step Into, Step Over, or Step to Cursor,
from the Debug menu.

M

CHAPTER 9

Customizing Build Options

When you choose a project type, Visual Workbench sets up the compiler and linker
options necessary to build that project type. You can customize these options using
dialog boxes accessed from the Project Options dialog box, which contains a
Customize Build Options group with three buttons:

s Compiler
= Linker

= Resources

A typical use of customization, especially for Visual C++ Professional Edition
users, is to use the C/C++ Compiler Options dialog box to optimize your program
for size or speed after all development and debugging have been done. Another use
of these options might be to add more Windows import libraries to your link options
from the Linker Options dialog box. Or you may want to add a custom resource
compiler option using the Resource Compiler Options dialog box.

This chapter describes how to set options in each of these dialog boxes. It also
describes how to use the specialized Help system employed by the C/C++ Compiler
Options and Linker Options dialog boxes.

The Compiler and Linker Options Dialog Boxes

The C/C++ Compiler Options dialog box and the Linker Options dialog box are
similar in operation (see Figure 9.1). Each is divided into two sections. The upper
section displays the options string, which is a representation of the options given to
the compiler and linker when you perform a build. There are also three Build
Options buttons:

= Debug Specific
= Release Specific
= Common to Both

112

Visual Workbench User’s Guide

Choose the Debug Specific or Release Specific button before selecting options to
have your options apply to a Debug or Release build, respectively. You can choose
Common to Both to have the options you select apply to both Debug and Release
builds.

Note The options string is a representation and not the actual command string. In
most cases, the options string provides an exact replica of the command-line string.
There are two exceptions to this. First, in precompiled headers for mixed languages,
where a single option string is not passed to all modules, the options string indicates
/Yu (followed by a header filename) for each language. Second, a special mne-
monic that is not a LINK command-line option (/LIB) is used to indicate which
libraries are passed to the linker.

Select global build options Shows command line options selected
C{C++ Compiler Options
| Build Options: @ Debug Specific | Release Specific) Common to Both
Options String:
/nologo /G2 /W3 /Zi /AM /0d /D " DEBUG" /FR /GA i _
4] | Use Project Defaults I
Category: [Category Settings: Code Generation
o f et —
Custom Dptions
Custom Options [C++) CPU:
Debug Options 80 ¥ _
Listing Files | 286 D [Check Pointers
g;l'?':i';'a:‘i':::l Calling Convention: [] Disable Stack Checking
P-Code Generation |l: FC+t = |£l
Precompiled Head
Preprocessor : - . .
Segment Names Floating-Point Calls: Code Generator:
Windows Prolog/E pilog IUse Emulator * [il |Fasl = |£I
Struct Member Byte Alignment:
|2 Bytes = |£|
Select a category of options Change options in selected category

Figure 9.1 The C/C++ Compiler Options Dialog Box

The lower section of the C/C++ Compiler Options and Linker Options dialog boxes
is divided in two. On the left, a list box contains categories of options. When you
select a category, a new Category Settings group appears on the lower right of the
dialog box to allow you to set options in that category.

Within the Category Settings group, you use various controls (list boxes, text
boxes, check boxes, and option buttons) to select compiler or linker options, which
are then reflected by their corresponding command-line mnemonics in the options
string at the top of the dialog box.

Chapter 9 Customizing Build Options 113

When the control is a list box, a “default” is indicated by an asterisk. The default is
the option that the compiler or linker provides when no command-line argument is
provided. When you select a default option, the mnemonic for that option does not
appear in the options string.

Note In list boxes in the C/C++ Compiler Options and Linker Options dialog
boxes, the item with the asterisk indicates the compiler or linker default operation in
the absence of a command-line argument for the option. It does not indicate the
default option for your selected project type. For example, the default compiler
option for memory model —that is, when no command-line option is present—is
Small (/AS). However, most project types have a default of Medium (/AM), which
is automatically added to the options string when you select the project type.

Getting Help on Options

Because there are so many compiler and linker options available to you in the
C/C++ Compiler Options and Linker Options dialog boxes, a specialized Help
facility is provided to let you get quick definitions of options in the options string.
Also the normal Visual Workbench Help facility for dialog boxes is enhanced to
provide quick access to help on the check boxes, text boxes, and list boxes that
set those options.

The Resource Compiler Options dialog box uses the same Help interface as stan-
dard Visual Workbench dialog boxes since resource compiler options are not as
complex as compiler and linker options.

The Help Command Button

As with any Visual Workbench dialog box, you can get a general overview of the
compiler, linker, and resource compiler dialog boxes by choosing the Help com-
mand button.

F1 Help for Compiler and Linker Options

Help for compiler and linker options is context sensitive when you use the F1 key.
You can get either a short pop-up description of an option in the options string, or
a complete description of an option, depending on the location of the insertion point
when you press Fl.

» To get a short description of any option in the options string:
1. Highlight the option in the options string (double-click the option).
Or just place the insertion point on the option.
2. Press Fl.

114

Visual Workbench User’s Guide

A pop-up window appears with a brief description of the compiler or linker
option (see Figure 9.2).

=| CJC++ Compiler Options

Build Options: @ Debug Specific O Release Specific) Common to Both
Options String:
/nologo /G2 /W3 /Zi /AM /0d /D "_DEBUG" /FR /GA hd

Cancel

AM[dlufw]

Use Project Defaults I

-

Select medium memory model

ode Generation

Category
Memory Model: Model: Medium

[Check Pointers
[Disable Stack Checking

Optimizations Calling Convention:

P-Code Generation [C7Ces= [2]
Precompiled Headers
glepmcessm Floating-Point Calls: Code Generator:
egment Hames
Windows Prolog/Epilog || [Use Emulator = [#] [Fast- [2]

Struct Member Byte Alignment:
|2 Bytes * |£|

Figure 9.2 Help on the Options String

> To get complete help on any option in the Category Settings group:
1. Move the dialog focus to the option control.

For example, place the dialog focus in a list box, on a check box, or in a text
box.

2. Press F1.

A Help window appears with definitions and descriptions of all the options as-
sociated with the control (see Figure 9.3). For example, if it is a list box, all list
box entries are described.

Once a Help window is open, you can get help on any option, either by category or
alphabetically, by going to the Contents screen. See page 71 for more information
on using the Help system for compiler and linker options.

Chapter 9 Customizing Build Options 115

= Build Tools Help [~

= C{C4| File Edit Bookmark Copyright Help
Build Options: @ Debug Specific O Rel{Contents] Search | Back | History | Browser
Options String: Up

nologo /G2 /W3 /Zi 7AM /0d /D *_DEBU{| " Compiler: Memory Model

Model +

Every programs code and data are stored in blocks
called segments. The memory model of the program

Category: _ [Category Settin determines the organization of the segments as well
Code Generation as the kind of executable file that is produced (tiny
Custom Options Model: memory model produces a .COM file, all others
Custom Options (C++} Medium produce an .EXE file.) The compact, large and huge
Debug Options memory models allow multiple data segments; in the

compact and large models, however, data items are
New Segmemﬂ restricted to less than 64K. You can choose from the
- following memory models:

Listing Files
Optimizations
P-Code Generation

Precompiled Headers

Preprocessor [T Assiame *ext Memory Model Code Segments Data Se
Segment Names .
Windows Prolog/E pilog Tiny One segment for both One seg
code and data (<64K) hoth co
data (<g
Small One (B4K) One (64
Medium One code segment One (B3
mav veadula fne lireity
« »

Figure 9.3 Help on Option Controls

Default Compiler and Linker Options

When you choose a project type, Visual Workbench provides a set of default
compiler and linker options for that project type for both debug and release builds.
Tables 9.1 through 9.4 show these default compiler and linker options for each
project type.

» To return all options to their project-specified default settings:
e Choose the Use Project Defaults button.

This sets all options in the current build group (debug or release) to the state
originally set by Visual Workbench for the chosen project type.

Default compiler and linker options, as described in this chapter, are written to the
MSVC.INI file at installation or whenever this file is re-created (as happens if it is
accidentally deleted). Options stored in this file are used whenever a new project is
created or the Use Project Defaults button is chosen.

If you are porting existing projects into Visual Workbench (that is, creating a new
Visual C++ project that matches the existing project’s build options), you need to
be sure that the default build options set by the Visual Workbench project type do
not conflict with the build options of your existing project. You can do this by
comparing the build options in your existing makefile with the defaults in the

116 Visual Workbench User’s Guide

following tables specified for your chosen project type. For an alphabetic cross-
reference of CL and LINK options to their respective controls in the C/C++ Com-
piler Options and Linker Options dialog boxes, see pages 52 and 55, respectively.

Table 9.1 Default Compiler Options for Windows Project Types

Project Type Common to Both Debug Specific Release Specific

Windows application /nologo /W3 /G2 /Zi /Od (/f-)* /O1

(EXE) /AM /FR /GA /D"_DEBUG" /D "NDEBUG"

Windows dynamic- /nologo /W3 /G2 /Zi /Od (/f-)* /01

link library (. DLL) /AM /FR /GD /D"_DEBUG" /D "NDEBUG"

Visual Basic Custom /nologo /G2 /Gc /Zi /Od (/f-)* /Gs /Ox

Control (.VBX) /Zp1 /W3 /AM /D"_DEBUG" /D "NDEBUG"
/FR /GD

QuickWin application /nologo /G2 /Mq /Zi /Od (/f-)* /Gs /Ox

(.EXE) /W3 /AM [FR /D"_DEBUG" /D "NDEBUG"

Static library (.LIB) /nologo /G2 /W3 /Z7 /0d (f=)* /Gs /Ox
/AM /FR /GA /D "_DEBUG" /D "NDEBUG"

Windows P-code /nologo /G2 /Oq /Zi /0d /01

application (EXE) /W3 /AM /FR /GA /D "_DEBUG" /D "NDEBUG"

* Visual C++ Professional Edition only

Table 9.2 Default Compiler Options for MS-DOS Project Types

Project Type Common to Both Debug Specific Release Specific

MS-DOS application /nologo /G2 /W3 /Zi /Od (/f=)* /Gs /Ox

(.EXE) /AM /D "_DOS" /FR /D"_DEBUG" /D "NDEBUG"

MS-DOS P-code /nologo /G2 /W3 /Zi /Od /Gs /Ox

application (.EXE) /AM /Oq /D "_DEBUG" /D "NDEBUG"
/D "_DOS" /FR

MS-DOS Overlaid /nologo /G2 /Gy /Zi [Od (/f=)* /Gs /Ox

application (EXE) /W3 /AM /D "_DEBUG" /D "NDEBUG"
/D "___DOS" /FR

MS-DOS COM /nologo /G2 /W3 /7Zi /Od (/f-)* /Gs /Ox

application (.COM) /AT /D "_DOS" /D "_DEBUG" /D "NDEBUG"
/FR

* Visual C++ Professional Edition only

Chapter 9 Customizing Build Options 117

Table 9.3 Default Linker Options for Windows Project Types

Project Type Common to Both Debug Specific Release Specific
Windows application /NOLOGO /NOD /CO None
(.EXE) /STACK:5120..

/ALIGN:16

/ONERROR:NOEXE

/PACKC:61440
Windows dynamic- /NOLOGO /NOD /CO None
link library (DLL) /ALIGN:16 /MAP:FULL

/ONERROR:NOEXE

/PACKC:61440
Visual Basic Custom /NOLOGO /NOD /CO None
Control (.VBX) /ALIGN:16

/ONERROR:NOEXE

/PACKC:61440
QuickWin application ~ /NOLOGO /NOD /CO None
(.EXE) /STACK:5120

/ALIGN:16

/ONERROR:NOEXE

/PACKC:61440
Windows P-code /NOLOGO /NOD /CO None
application (.EXE) /ONERROR:NOEXE

/PCODE

/PACKC:61440

Table 9.4 Default Linker Options for MS-DOS Project Types

Project Type Common to Both Debug Specific Release Specific
MS-DOS application ~ /NOLOGO /NOD /CO None
(.EXE) /NOI

/STACK:5120

/ONERROR:NOEXE
MS-DOS P-code /NOLOGO /NOD /CO None
application (.EXE) /NOI

/PCODE

/ONERROR:NOEXE
MS-DOS Overlaid /NOLOGO /NOD /CO None
application (.EXE) /NOI

/ONERROR:NOEXE
MS-DOS COM /NOLOGO /NOD /CO None
application (.COM) /NOI

[TINY

118

Visual Workbench User’s Guide

Compiler Options

To set compiler options, choose Compiler in the Project Options dialog box
Customize Build Options group. Each option category is described below, with a
short description of each individual option that can be changed in that category’s
Category Settings group.

Code Generation

The Code Generation category (see Figure 9.4) includes options for compiling for
different CPU types, for using the Pascal or C/C++ calling convention, for selecting
how floating-point numbers are handled, and for setting alignment boundaries for
structures. It also lets you turn on and off options for checking for out-of-range
pointers and, if you have Visual C++ Professional Edition, lets you turn on and off
fast compiling. The stack-checking option is also enabled or disabled here.

(Category Settings: Code Generation

CPU:
I—BEZBB LtJ [ek Pomters
X] Disable Stack Checking

Calling Convention:
[C7Ces- |

Floating-Point Calls: Code Generator:

lﬁe Emulator = I!_I IFast = |£|
Struct Member Byte Alignment:

[1Byte [

Figure 9.4 Compiler Options: Code Generation

CPU

If you are writing programs for a computer with an 8086/8088, 80186/80188,
80286/80288, or 80386/80388 processor, you can use one of the CPU options. All
options produce 16-bit instructions. Programs compiled for higher-numbered
processors do not run on lower-numbered processors.

The /G3 option is only available with Visual C++ Professional Edition and requires
the optimizing compiler (/f—). It generates smaller and faster code than the /G2
option. The resulting programs run only on computers with 80386 or higher

Chapter 9 Customizing Build Options 119

processors. /G3 implies /G2 and thus generates both the _M_1286 and the
M_1286 preprocessor identifiers. The /G3 option does not support 80386/80387
inline-assembler instructions.

CPU List Box

List Entry Option Comment

8086/8088 * /GO Generate 8086 instructions

80186/80188 /G1 Generate 80816 instructions

80286/80288 /G2 Generate 80286 instructions

80386/80388 /G3 Generate 80386 instructions (optimizing compiler)

* This is a default CL option and does not appear in the options string when selected.

Calling Convention

The calling-convention options determine which way arguments passed to functions
are pushed on the stack, and whether the calling or called function removes the ar-
guments from the stack. C functions can have a variable number of arguments, and
in the C/C++ calling convention, arguments are pushed on the stack from right to
left (so that the first argument in the list is the last one pushed on the stack). Pascal
and FORTRAN programs use the Pascal calling convention, where the number of
arguments is fixed and arguments are pushed on the stack from left to right.

Also in C, the calling function must remove the arguments, whereas in Pascal and
FORTRAN, the called function does this. The Pascal calling convention optimizes
size somewhat, while the C/C++ calling convention allows the flexibility of using
variable-number parameter lists.

Calling Convention List Box

List Entry Option Comment
Pascal /Ge Use Pascal calling convention
C/C++ * /Gd Use C/C++ calling convention

* This is a default CL option and does not appear in the options string when selected.

Floating-Point Calls

The floating-point calls options specify how your program handles floating-point-
math operations, The options /Fpa, /FPc87, and /FPc are only available with Visual
C++ Professional Edition and require the optimizing compiler (/f—). For complete
information on using floating-point calls, see Chapter 1, “CL Command Refer-
ence,” in the Command-Line Utilities User’s Guide.

120 Visual Workbench User’s Guide

Floating-Point Calls List Box

List Entry Option Comment

Inline 80x87 Instructions [FPi87 Use Inline 80x87 instructions

Use Emulator * [FPi Use 80x87 inline emulation

Alternate Math [FPa Use fast alternate math (optimizing compiler)

80x87 Calls [FPc87 Use 80x87 calls (optimizing compiler)

Coprocessor Calls /FPc Use 80x87 emulation calls (optimizing
compiler)

* This is a default CL option and does not appear in the options string when selected.

Struct Member Byte Alignment

The /Zp option controls how the members of a structure are packed into memory
and specifies the same packing for all structures in a module. When you specify the
[Zpn option, where n is 1, 2, 4, 8, or 16, each structure member after the first is
stored on n-byte boundaries.

Struct Member Byte Alignment List Box

List Entry Option Comment

1 Byte /Zp1 (/Zp) Pack structures on 1-byte boundaries
2 Bytes * [Zp2 Pack structures on 2-byte boundaries
4 Bytes [Zp4 Pack structures on 4-byte boundaries
8 Bytes /Zp8 Pack structures on 8-byte boundaries
16 Bytes /Zp16 Pack structures on 16-byte boundaries

* This is a default CL option and does not appear in the options string when selected.

Code Generator

The Code Generator list box lets you select whether to use the fast compiler or the
optimizing compiler or whether to let the compiler determine which to use based

on other options. For Visual C++ Standard Edition, the fast compiler option is auto-
matically selected and cannot be changed. For Visual C++ Professional Edition,
you can choose from two options in the list box: Fast and Optimizing.

The Fast option invokes the fast compiler (the CL defauit). The fast compiler results
in faster compilations but can produce larger, slower programs. Fast compiler (/f)
is useful during the development process. Although most optimizations are accepted
by the fast compiler, many optimizations have different implementations in the fast
compiler than in the optimizing compiler.

Selecting the Optimizing option (/f—) turns off the fast compile option and invokes
the C/C++ optimizing compiler.

Chapter 9 Customizing Build Options 121

Code Generator List Box

List Entry Option Comment
Fast * [Faster compilation but larger, slower program
Optimizing ff- Slower compilation but smaller, faster program

* This is a default CL option and does not appear in the options string when selected.

Code Generation Check-Box Summary

The check boxes in the Code Generation category are listed together here for
summary information. Each specific option is described in the sections that follow.

Code Generation Check Boxes

Check Box Option Comment
Check Pointers [Zr Check null pointers (fast compile only)
Disable Stack Checking /Gs Remove stack-check calls

Check Pointers

The /Zr option checks for null or out-of-range pointers, which cause run-time errors
in your program. The /Zr option is only available with the fast compile option.

Disable Stack Checking

Stack checking is a means by which the compiler inserts “stack probe” routines
that are called on entry to each function to verify that the program stack has enough
room to allocate the local variables required by the function. When stack checking
is turned off, a stack overflow can occur without being diagnosed (no stack-
overflow message is printed). Disabling stack checking can make your programs
smaller and faster, but at the expense of diagnostic capability.

Custom Options

Several miscellaneous options are controlled in the Custom Options category (see
Figure 9.5). These include options for turning off Microsoft language extensions,
enabling QuickWin (a default of the QuickWin project type), enabling function-
level linking and string pooling, and selecting the warning level. The Other Options
text box is included here to allow you access to CL options that do not have corre-
sponding controls in the C/C++ Compiler Options dialog box.

122 Visual Workbench User’s Guide

(Category Settings: Custom Options

[[] Disable Microsoft Language Extensions

[Enable Function-Level Linking

[1 Quickwin Support

[] Eliminate Duplicate Stiings

Warning Level: E [1 warnings as Errors
Suppress Display of Sign-On Banner

Other Options: I

Figure 9.5 Compiler Options: Custom Options

Custom Options Check-Box Summary

The check boxes in the Custom Options category are listed together here for sum-
mary information. Each specific option is described in the sections that follow.

Custom Options Check Boxes

Check Box Option Comment

Disable Microsoft Language [Za Disables the default (/Ze)

Extensions

Enable Function-Level Linking /Gy Package functions

QuickWin Support /Mq Windows interface for MS-DOS
programs

Eliminate Duplicate Strings /Gt Implement string pooling

Warnings as Errors /WX Treat all warnings as errors

Suppress Display of Sign-On Banner /nologo Banner not sent to Output window

Disable Microsoft Language Extensions

Visual C++ supports the ANSI C standard. In addition, it offers a number of fea-
tures beyond those specified in the ANSI standard. These features are enabled
by the /Ze option (the default) and disabled by the /Za option. For a complete list
of these extensions, see Help or Chapter 1, “CL Command Reference,” in the
Command-Line Utilities User’s Guide.

Enable Function-Level Linking

The /Gy option enables linking on a function-by-function basis by creating pack-
aged functions. Packaged functions are used in conjunction with the FUNCTIONS
statement in a module-definition file to order functions in an executable file, or to

Chapter 9 Customizing Build Options 123

assign functions to a segment or an overlay. You can also exclude unreferenced
packaged functions from an executable file using the linker’s /PACKF option. C++
member functions are automatically packaged.

QuickWin Support

MS-DOS programs compiled with the /Mq compiler option have a limited
Windows user interface, including a standard menu bar, standard Help (for
QuickWin features), and a client (or application) window with a child (document)
window for input and output streams (stdin, stdout, and stderr for C). The /Mq
compiler option defines the ' WINDOWS constant, declared in the Windows ver-
sion of STDIO.H. For information on writing QuickWin programs, see Chapter 7
of Programming Techniques.

Eliminate Duplicate Strings

The /Gf option enables the compiler to place a single copy of identical strings into
the executable file. Because identical strings are copied into a single memory loca-
tion, programs compiled with the /Gf option can be smaller than those compiled
without /Gf. This space optimization is sometimes called “string pooling.” Use of
/Gf does not guarantee string pooling in all cases. String pooling does, however,
occur in most cases.

Warnings as Errors

The /WX option instructs the compiler to consider any warning message it produces
as an error. If there are any warning messages, an error message is emitted and
compilation continues.

Suppress Display of Sign-On Banner

The /nologo option suppresses the copyright message displayed when CL is in-
voked. This speeds the compilation slightly since the Output window is not updated
with this information.

Warning Level

You can control the number of warning messages produced by the compiler by
setting the warning level option. Warning level /W1 displays only severe warnings.
/W2 displays intermediate warnings, such as the use of functions with no declared
return type, failure to put return statements in functions that aren’t void, and data
conversions that would cause loss of data or precision. /W3 displays less severe
warnings, such as warnings about function calls that precede their function proto-
types. /W4 displays warnings such as non-ANSI features and extended keywords.

124 Visual Workbench User’s Guide

Warning Level List Box

List Entry Option Comment

None /WO Display no warnings

Level 1 * /W1 Display only the most severe warnings
Level 2 /W2 Display intermediate level of warnings
Level 3 /W3 Display most warnings

Level 4 /W4 Display all warnings

* This is a default CL option and does not appear in the options string when selected.

Other Options

The Other Options text box lets you type in CL options independent of the dialog-
box controls used by Visual Workbench to set them. This can be useful if you want
to use a specific set of command-line options from some other makefile and you
don’t want to set these options from the dialog boxes. For a complete description

of all CL options, see Chapter 1, “CL Command Reference,” in the Command-Line
Utilities User’ s Guide (provided with Visual C++ Professional Edition).

Note You are responsible for the accuracy of any option you enter in this text box.
If Visual Workbench recognizes the option as one that can be set using a dialog-
box control, it changes the dialog-box control to reflect the option and removes the
option from the Other Options box. However, if the option is not recognized, it is
left on the options string as is and passed to the compiler.

Custom Options (C++)

The Custom Options (C++) category (see Figure 9.6) lets you specify how C++
pointers to class members are represented.

[Category Settings: Custom Options [C++)

C++ Pointer to Member Reprezentation
Hepresentation Method:

|Best—case always = |£|
G I-Py R

|Point to any class = m

[Disable C. tion Displ

Figure 9.6 Compiler Options: Custom Options (C++)

Chapter 9 Customizing Build Options 125

C++ Pointer to Member Representation

Visual C++ supports pointers to members of any class. The number of bytes
required to represent a pointer to a member of a class and the code required to
interpret the representation varies considerably, depending upon whether the class
is defined with no, single, multiple, or virtual inheritance (no inheritance being
smallest and virtual inheritance largest).

If you always declare a pointer to a member of a class after defining the class, you
can use the default option (/vmb), which causes the compiler to generate an error
when a pointer to a member of a class is declared before the class. This lets the
compiler create the best-case representation, since it knows the inheritance model
of the class before encountering a pointer to a class member.

If you need to declare a pointer to a member of a class prior to defining the class,
you must select the general representation model (/vmg) and then specify the
inheritance-model that is to be assumed for both the pointer representation and
the code required to interpret the pointer representation.

Representation Method

Use the /vmb option if you always define a class before you declare a pointer to a
member of the class.

‘When the compiler encounters the declaration of a pointer to a member of a class,
it already has knowledge of the kind of inheritance used by the class. Thus, the
compiler can use the smallest possible representation of a pointer and generate the
smallest amount of code required to operate on the pointer for each kind of
inheritance.

Use the /ving option if you need to declare a pointer to a member of a class before
defining the class. This need can arise if you define members in two different
classes that reference each other. For such mutually referencing classes, one class
must be referenced before it is defined. You must then select an inheritance model
from the General-Purpose Representation list box.

Representation Method List Box

List Entry . Option Comment

Best-case always * /vmb Always declare class before declaring
pointers to class members

General-purpose always /vmg Can declare pointers to class members
before defining class

* This is a default CL option and does not appear in the options string when selected.

126

Visual Workbench User’s Guide

General-Purpose Representation

When the representation method is General-purpose always (/vmg), you must also
specify an option to indicate the inheritance model of the not-yet-encountered class
definition. This can be one of three options: /vms (single inheritance), /vmm (mul-
tiple inheritance), or /vmv (virtual inheritance). Each of these options specifies the
most general representation of a pointer to a member of a class—that is, it allows
the pointer to point to members of classes with all inheritance models of its speci-
fied type or more restrictive types. Each makes a trade-off between flexibility and
code size.

When you specify an inheritance model, that model is used for all pointers to mem-
ber classes, regardless of their inheritance type or whether or not the pointer is
declared before or after the class. Therefore, if you know that you always use
single-inheritance classes, you can reduce code size by selecting that inheritance
model; however, if you want to be safest (at the expense of the largest data repre-
sentation), you can choose the virtual-inheritance model, which allows pointers to
all classes.

The /vms option specifies that all pointers to not-yet-declared class members will
only point to a member of a class that uses either no inheritance or single inheri-
tance. This requires the smallest pointer size and least amount of code to interpret
the pointer size; however, it causes the compiler to generate an error if the class
member pointed to turns out to be from a class with a multiple or virtual inheritance
model.

The /vmm option allows the pointer to point to members of classes with no inheri-
tance, single inheritance, or multiple inheritance, but produces a larger code than
the /vms option. It causes the compiler to generate an error if the pointer points to
a virtual class member.

The /vmv option specifies the most general representation of a pointer to a member
of a class to be one that uses virtual inheritance. In terms of pointer size and the
code required to interpret the pointer, this is the most expensive option. This option,
however, never causes an error and is the default.

General-Purpose Representation List Box

List Entry Option Comment

Point to any class * /vmv Declare virtual inheritance
Point to single inheritance classes /vms Declare single inheritance
Point to multiple inheritance classes /vmm Declare multiple inheritance

* This is a default CL option and does not appear in the options string when selected.

Chapter 9 Customizing Build Options 127

Disable Construction Displacements

Microsoft Visual C++ implements C++ construction displacement support. Con-
struction displacements solve the problem created when a virtual function, declared
in a virtual base and overridden in a derived class, is called from a constructor
during construction of a further derived class. The problem is that the virtual func-
tion may be passed an incorrect this pointer. This is caused by discrepancies be-
tween the displacements to virtual bases of a class and the displacements to its
derived classes. The solution provides a single construction displacement adjust-
ment, called a vtordisp field, for each virtual base of a class.

By default, vtordisp fields are introduced whenever the code both defines user-
defined constructors and destructors and also overrides virtual functions of virtual
bases. The Disable Construction Displacements option (/vd0) lets you disable the
construction displacements generation to help optimize program size. Select
Disable Construction Displacements only if you are certain that all class construc-
tors and destructors call virtual functions virtually.

Disable Construction Displacements Check Box

Option Comment

fvd0 May reduce program size

Debug Options

The Debug Options category (see Figure 9.7) lets you select parameters used when
compiling a file for use with the Visual Workbench or CodeView debugger. The /Zi
option has changed from previous versions of the compiler to include all type
information in a program database.

Support for the older style debug information storage is provided with the new op-
tion /Z7 (which emulates the behavior of /Zi in the Microsoft C/C++ version 7.0
compiler). The /Zd option is an abbreviated form of the /Z7 option.

[~ Category Settings: Debug Options

Debug Information
 None
O Patial {Line Numbers Only)
O Full (EZ Compatible)
® Full (Using Program Database)

Figure 9.7 Compiler Options: Debug Options

128

Visual Workbench User’s Guide

Debug Options Option-Button Summary

The option buttons in the Debug Options category are listed together here for sum-
mary information. Each specific option is described in the sections that follow.

Debug Options Option Buttons

Option Button Option Comment

None none No debug information is created

Partial (Line Numbers Only) /Zd Only public symbols and line numbers
Full (C7 Compatible) 1Z7 Put all debug information in object files
Full, Use Program Database /Zi Enabled by the /Od (Disable (Debug))

option button in the Optimizations category

None

Choose None to disable the creation of symbolic debugging information. This is the
default for release mode builds.

Partial (Line Numbers Only)

The /Zd option produces an object file containing only global and external symbol
information and line number information. This reduces the size of the debuggable
executable file. You can use /Zd if you do not use the expression evaluator during
debugging. /Zd uses the C7-compatible method of information storage.

Full (C7 Compatible)

The /Z7 option produces an executable file containing line numbers and full sym-
bolic-debugging information for use with the Visual Workbench debugger or with
CodeView. This symbolic information is a map of your source code and includes
such things as the names and types of variables and functions, as well as the names
and numbers of all program segments. The executable file also includes full
symbol-table information and line numbers. The /Z7 option was called /Zi in previ-
ous versions of CL. /Zi now uses a database to maintain type information.

Full, Use Program Database

Visual C++ provides an improved method of storing some of its debug information.
When you use the /Zi option, all type information in your source files is now stored
in a special database file called MSVC.PDB. In previous versions of the Microsoft
C and C++ compilers, all debug type information was written into each object file.

Chapter9 Customizing Build Options 129

Listing Files

Now each object file contains a reference to the type information found in the pro-
gram database. The program database (.PDB) file is necessary to correctly run the
Microsoft Debugging Information Compactor (CVPACK) on a file compiled with
/Zi, which is done automatically when you build an application in debug mode. If

for some reason the .PDB file is deleted, you must rebuild all source files with /Zi
to re-create it.

Use the Listing Files category (see Figure 9.8) to generate output files for assembly
listing files and source browser files.

[~ Category Settings: Listing Files

[Browser Information
Include Local Variables

[pont Pack Information

[J Assembly

[tnetude Sayree and Machine Cade

Figure 9.8 Compiler Options: Listing Files

Browser Information

Source browser files (.SBR) contain symbolic information used by the Microsoft
Browser Database Maintenance Utility (BSCMAKE) to produce a browser data-
base file (BSC) that is used by the Visual Workbench browser. You can force the
compiler to generate .SBR files with or without symbolic information on local
variables. You can also force the compiler to skip the step of compacting the .SBR
file by removing unreferenced definitions.

Browser Information Check Boxes

Check Box Option Comment
Browser Information [Fr Generate .SBR files (ignore local variables)
Include Local Variables /FR Generate .SBR files

Don’t Pack Information /Zn Generate .SBR files but don’t compact them

130 Visual Workbench User’s Guide

Assembly

Use the Assembly check boxes to generate files containing various combinations of
source code, assembly code, and machine code. Each of the options (/Fa, /Fl, and
/Fc) produces a file with the base name of the source file. /Fa produces a file with
the extension .ASM, and the /Fl and /Fc options produce files with the extension

.COD.

Assembly Check Boxes

Check Box Option Comment

Assembly [Fa Default assembly-code listing

Include Machine Code /F1 Generate combined assembly- and machine-code
listing

Include Source and /Fc Generate combined source-, assembly-, and

Machine Code machine-code listing

Memory Model

Options in the Memory Model category (see Figure 9.9) determine the memory
model used by the compiler and the allocation of stack segments and data segments
for functions.

[~ Category Settings: Memory Model

Model: Segment Setup:

[Medium [#] [ss -=Ds - 14

Mew Segment Data Size Threshold: |

Figure 9.9 Compiler Options: Memory Model

Model

Every program’s code and data are stored in blocks called “segments.” The memory
model of the program determines the organization of the segments as well as the
kind of executable file that is produced (tiny memory model produces a .COM file,
all others produce an .EXE file). The compact, large, and huge memory models
allow multiple data segments; in the compact and large models, however, data items
are restricted to less than 64K.

Chapter 9 Customizing Build Options 131

Model List Box

List Entry Option Comment

Tiny /AT One data segment for both code and data

Small * /AS One data segment; one code segment

Medium /AM One data segment; one code segment per module
Compact JAC Multiple data segments; one code segment

Large /AL Mutltiple data segments; one code segment per module
Huge /AH Multiple data segments (arrays can be > 64K) ; one code

segment per module

* This is a default CL option and does not appear in the options string when selected.

Segment Setup

The segment setup options are added as extensions to the existing memory-model
option to modify the stack segment. For example, small memory model with
SS==DS is coded as /ASd. The primary use of modified segment setups is for DLLs
and Windows callback functions.

Segment Setup List Box

List Entry Option Comment

SS==DS * d Stack segment equals data segment

SS!1=DS, DS loaded on u Stack segment does not equal the data seg-

function entry ment; the data segment is loaded for each
function entry

SS!=DS, DS NOT loaded w Stack segment does not equal the data seg-

on function entry ment; the data segment is not loaded at
function entry

* This is a default CL option and does not appear in the options string when selected.

New Segment Data Size Threshold

The /Gt option causes all data items (other than constant data) either assumed to

be far (uninitialized or marked extern), or of a determined size to be allocated in
anew data segment. Type in a value (n) to tell the compiler to allocate all items
whose size is greater than or equal to # in a new data segment. This option requires
a memory model that allows multiple data segments (compact, large, or huge).

New Segment Data Size Threshold Text Box

Entry Option Comment
n [Gtn Range of #n = 0 to 65534

132 Visual Workbench User’s Guide

Assume ‘extern’ and Uninitialized Data ‘far’

Under the compact, large, or huge memory model, the 16-bit compiler allocates
all initialized and uninitialized data and data marked as extern as near if the data
items are smaller than or equal in size to the threshold value set by the /Gt option.
This is important for Windows-based applications since you can only achieve
multiple instances of an application when all data is near. It is also creates more
efficient code. The /Gx— option turns off this default behavior.

With the /Gx— option, the 16-bit compiler makes no assumptions about where the
linker places uninitialized or external data. All references to those data items are
done with far addressing, in case they are placed in a far segment.

Assume ‘extern’ and Uninitialized Data ‘far’ Check Box

Option Comment
/Gx— Use with /AC, /AL, or /AH to keep all data far (/Gx is default)
Optimizations

The Optimizations category (see Figure 9.10) lets you determine how the compiler
will tune the performance of your program. Four of the five option buttons (Default,
Disable (Debug), Maximize Speed, and Minimize Size) at the left of the Category
Settings section require no further optimization on your part. If you select the
Customize option button, you can set specific customizations using other option
controls in this dialog box.

[Category Settings: Optimi
Custom Optimizations:
 Default Agsume no aliasing +
- A liasi f calls
(Disable (Debug) Block-level bexpr. optimiz
(O Magimize Speed |Global-level bexp

Global register allocation
b= e Tobn Db

Loop optimization

Allow potentially fe loop optimi
Disallow post-code-g tion optimizing
Improve float istency
Enable single point function exit hd
Inline Expansion of Functions: Inlined Function Size:
[Disable = [2] [+-Size Grade - +|

Figure 9.10 Compiler Options: Optimizations

Chapter 9 Customizing Build Options 133

Optimizations Option Buttons

Option Button Option(s) Comment
Default none This is the same as Disable (Debug) without
o - /0d
Disable (Debug) /0d Turmn off all optimization and generate debug
information
Maximize Speed /02 Apply optimizations for fastest program
Minimize Size /01 Apply optimizations for smallest program
Customize (see Custom Select options using the Custom Optimiza-
Optimizations) tions list box

Disable (Debug)

Select the Disable (Debug) option button to create an executable file that contains
debug information. This sets the option /Od, which enables debugging if any of the
debugging options /Zi, /Z7, or /Zd are set (see the Debug Options category on page
127). /Od turns off optimization, which speeds compilation and also makes the
program easier to debug by suppressing code reorganization. /Zi, /Z7, and /Zd
create the debug information used by both the Visual Workbench debugger and
CodeView.

Maximize Speed

Select the Maximize Speed option button (/O2) to generate the fastest possible
program. Its effect is the same as using the following options on the same command
line:

/f— /Ow /Ox /Ob2 /OV4 /G2 [Gs /Gf /Gy

Visual C++ Professional Edition recognizes and uses all these options. Visual C++
Standard Edition ignores /f— and /Ow, and has a limited /Ox functionality.

Further increases in speed can be realized with other optimizations, such as the use
of /G3 (use 80386 instructions).

Minimize Size
Select the Minimize Size option button (/O1) to generate the smallest possible pro-

gram. Its effect is the same as using the following options on the same command
line:

/f— /Ow [Oe /Os /Obl /OV4 /G2 /Gs /G /Gy

134

Visual Workbench User’s Guide

Visual C++ Professional Edition recognizes and uses all these options. Visual C++
Standard Edition ignores /f—, /Ow, and /Os.

Further reduction in size can be realized with other optimizations, such as the use of
p-code options and pragmas.

Customize

Select the Customize option button to set Custom Optimizations options. You then
select optimizations using the Custom Optimizations multiple-selection list box.

Custom Optimizations

Options in this list box are enabled when the Maximize Speed, Minimize Size, or

Customize option button is selected. Visual C++ Professional Edition uses all the

options in this list box. Visual C++ Standard Edition uses only /Oe, /Ol, /Op, /Ox,
and /Ot.

For detailed information on each of these optimizations, see Help or Chapter 1, “CL
Command Reference,” in the Command-Line Utilities User’s Guide.

Custom Optimizations List Box

List Box Entry Option Comment

Assume no aliasing /Oa Enable use of registers

Assume aliasing across function calls /Ow Reload variables after function call

Global-level common subexpr. /Og Search functions for common

optimization subexpressions

Global register allocation /Oe Allocate registers according to fre-
quency of variable use

Generate intrinsic functions /Oi Replace intrinsic functions with
their inline code

Loop optimization /01 Perform loop optimizations

Allow potentially unsafe loop /Oz Optimize loops aggressively

optimizations

Improve float consistency /Op Use coprocessor registers to improve
speed and size

Enable single point function [Or Use for debugging functions with

exit several returns

Favor small code /Os Optimize for space

Favor fast code /Ot Optimize for time

Full optimization /Ox Maximize for speed. Same as: /Obl

/Oc /Oe /Og /Oi /O1 /On /Oo /Ot /Gs
(Std. Ed. ignores /Og /Oi /On)

135

Inline Expansion of Functions

Inline expansion options control which functions become expanded. Expanding a
function inline makes the program faster because it does not incur the overhead
of calling the function. When /Ob1 is used, the compiler only expands functions
marked as inline or __inline, or C++ member functions defined within a class
declaration. When /Ob2 is used, the compiler expands functions marked as inline
or __inline, as well as any other function that the compiler chooses.

Inline Expansion of Functions List Box

List Entry Option Comment

Disable * /Ob0 Disable inline expansion

Only _ _inline /Obl Inline expansion is user-defined

Any suitable /Ob2 Inline expansion at compiler discretion plus user-defined

* This is a default CL option and does not appear in the options string when selected.

Inline Function Size

If you choose “Any suitable” in the Inline Expansion of Functions list box (/Ob2),
you let the compiler determine which functions to inline. You can then use the
Inline Function Size list box to give the compiler general rules for determining
which functions to inline, based on their size. You do this by choosing one of 10
size grades, from /OVO to /OV9. For example, /OV limits inlining to only the
smallest functions, whereas /OV9 inlines all functions up to a very large size. The
size gradients are linear between the two extremes but do not map directly to spec-
ific precompiled source sizes.

Inline Function Size List Box

List Entry Option Comment

Very Small /OVO0 Only inlines very small functions

1-Size Grade /OV1 Size of function inlined relative to size grade
2-Size Grade /OV2 Size of function inlined relative to size grade
3-Size Grade /OV3 Size of function inlined relative to size grade
4-Size Grade * /OV4 Size of function inlined relative to size grade
5-Size Grade /OV5 Size of function inlined relative to size grade
6-Size Grade /OV6 Size of function inlined relative to size grade
7-Size Grade [OV7 Size of function inlined relative to size grade
8-Size Grade /OV8 Size of function inlined relative to size grade
Fairly Large /OV9 Inlines fairly large functions

* This is a default CL option and does not appear in the options string when selected.

136

Visual Workbench User’'s Guide

P-Code Generation

If you have Visual C++ Professional Edition, and you want to optimize for the
smallest-possible code size, options in the P-Code Generation category (see Figure
9.11) let you produce an alternate form of code called “p-code.”

P-code produces much smaller programs than machine code, but your machine can-
not execute them directly. Instead, they are executed by a small run-time interpreter
incorporated in the executable file. Because of this, programs run slower than when
compiled into machine code. For more information on using p-code, see Chapter 7,
“Reducing Program Size with P-Code,” in the Command-Line Ultilities User’s
Guide.

[~ Category Settings: P-Code Generation

X{E-Code Optimization On!
[Disable P-Code Quoting
[] Sort Local Variables in Occurrence Order

O ARemove P-Code Native Entry Points

Mumber of P-Code Entry Tables:

Figure 9.11 Compiler Options: P-Code Generation

P-Code Generation Check-Box Summary

The check boxes in the P-Code Generation category are listed together here for
summary information. Each specific option is described in the sections that follow.

P-Code Generation Check Boxes

Check Box Option Comment

P-Code Optimization On /0q Turn on p-code optimization
Disable P-Code Quoting [Of- Quoting is on by default

Sort Local Variables in Occurrence /Ov— /Ov (default) sorts by frequency
Order of use

Remove P-Code Native Entry Points /Gn Remove the native-code funct-

ion entry point from each p-code
function

Chapter 9 Customizing Build Options 137

P-Code Optimization On

The /Oq option optimizes your code for size by compiling the program into p-code.
You can also use the optimize pragma to turn p-code optimizing off and on in your
~ source file, to exclude time-critical portions of code from p-code optimization, for
example.

The /Oq option is not compatible with any of the following options: /FPa, /FPc,
[FPc87, [Fs, /Gr, /S, /Sp, /Ss, or /St. Nor is it compatible with any of the optimiza-
tion options.

Disable P-Code Quoting

P-code quoting (/Of) enables the compiler to find duplicate sections of code and
then create a single p-code function to implement them. This is the default setting
for customization options but should be disabled (/Of-) for debugging, as it makes
code difficult to read. Select this check box to disable p-code quoting.

Sort Local Variables in Occurrence Order

The compiler reduces the size of p-code programs by using 1-byte opcodes to refer-
ence local variables. These opcodes are frame-relative addresses, and only a limited
number are available for each function. The optimizer uses one of two algorithms to
determine which variables receive the available opcodes:

» /Ov sorts the local variables by frequency of use (the default)

= /Ov-— sorts the local variables in the order in which they occur

Remove P-Code Native Entry Points

Native-code entry points are a short series of machine-code instructions placed at
the beginning of a function compiled into p-code so that the function can be called
by a machine-code function. You can save about 4 bytes per function by removing
these, but you must make sure that no p-code functions are called by machine-code
functions.

Number of P-Code Entry Tables

Use the /Gp option to specify the maximum number of entry tables for your pro-
gram. An entry table is needed for every segment that contains a p-code function or
a function called by a p-code function. One entry table can describe up to 256 such

138 Visual Workbench User’s Guide

functions. If a segment contains more functions, the Make P-Code utility (MPC)
creates additional entry tables. Use this option to cause MPC to generate an error if
it requires more entry tables than the number specified by this option.

Number of P-Code Entry Tables Text Box

Entry Option Comment

n /Gpn Defaults to 255 if /Gp is not entered

Precompiled Headers

Precompiled headers (PCH) are a means of greatly speeding compile time by com-
piling header files only once into a precompiled header file (PCH) and thereafter
using the precompiled header for each build. Although the Visual C++ compiler
allows several ways to create and use precompiled header files, the Precompiled
Headers category in the C/C++ Compiler Options dialog box (see Figure 9.12)
presents two simplified approaches to implementing this feature.

You can use the new simplified method (/YX), which requires very little knowledge
of precompiled headers, or you can use the more flexible method (/Yc and /Yu), for
more control and for mixed-language (C and C++) source files.

~ Category Settings: Precompiled Headers

O Automatic Use of Precompiled Headers

Procompile through Heades [

[C++ Files
Precompile through Header: r I
Proogmpiie with Sowee |ﬁELLIJ.EPP |ﬂ
[C Files
Precompile through Header:' I
Procompie with Sowew, r |i|

Figure 9.12 Compiler Options: Precompiled Headers

Automatic Use of Precompiled Headers

The /YX option instructs the compiler to use a precompiled header file with the de-
fault name MSVC.PCH if it exists, or to create one if it does not exist. The file is
always created in the current directory (the /Fp option, which specifies a precom-
piled header filename and directory, is not supported in Visual Workbench).

Chapter9 Customizing Build Options 139

Automatic Use of Precompiled Headers Check Box

Option Comment

X Automatically creates and uses the MSVC.PCH precompiled header file

Using /YX is the easiest way to implement precompiled headers. If your project
contains only one source file, all you need to do is enable the Automatic Use of
Precompiled Headers check box. When the source file is compiled, all preprocessor
directives (such as #include, #define, or #if, for instance) from the beginning of the
file up to where the C or C++ code starts are compiled into MSVC.PCH. There-
after, whenever you build your project, the precompiled code from MSVC.PCH is
used in place of the preprocessor directives, assuming you haven’t altered the
preprocessor directives in any way. Where this really benefits is in precompiling
large header files, such as WINDOWS.H, that appear in #include statements.

If you have more than one source file in your project, you need to take a little care
in order to use /YX effectively. There are basically three ways to use /YX with
multiple files. In all cases, preprocessor directives must appear contiguously, in the
same order, and at the beginning of each file. (The order within a group of #define
statements is an exception and does not have to be identical.)

s Method 1: Place identical preprocessor code in every file. Make sure that the
beginning of every source file in your project, up to where source code begins,
contains identical preprocessor directives. This way, the first file compiled cre-
ates the MSVC.PCH file and all other source files use it. In subsequent builds,
all source files use the MSVC.PCH file.

= Method 2: Place a subset of the preprocessor code at the beginning of every file.
For example, if you have some headers used by every file, put the #include
statements first and in the same order in each source file. The compiler then
determines if the subset of contiguous preprocessor directives is large enough
to warrant a precompiled header file. If so, it creates an MSVC.PCH file with
common preprocessor elements. As an example, suppose that AFILE. C is com-
piled first and contains the following code at the start of the file:

#include <windows.h>
#include "myapp.h"
#include "afile.h"

BFILE.C is compiled next and contains:

#include <windows.h>
#include "myapp.h"
#include "bfile.h"

140

Visual Workbench User’s Guide

When it compiles AFILE. C, the compiler creates an MSVC.PCH file that con-
tains WINDOWS .H, MYAPP.H, and AFILE.H. When it compiles BFILE.C, since
the preprocessor directives don’t match exactly, the compiler creates a new
MSVC.PCH file; however, it includes only WINDOWS .H and MYAPP .H in it
since these are common to both files. This has the advantage that both source
files can now use the MSVC.PCH file for the majority of included code. The
disadvantage is that MSVC.PCH had to be compiled twice.

Method 3: Identify in advance which header files (and other preprocessor direc-
tives) you want precompiled by instructing the compiler where to stop precom-
piling, or using precompiled, preprocessor directives. To use this method, spec-
ify a header filename in the Precompile through Header text box that marks the
last #include statement in the precompiled header data.

As an example, suppose you would be content if you could just precompile
WINDOWS.H. To do so, simply place the following statement at the beginning
of every source file in your project:

f#include <windows.h>

Then select the Automatic Use of Precompiled Headers check box and type
windows . h in the Precompile through Headers text box. WINDOWS.H is pre-
compiled when the first source file is compiled and all source files thereafter use
the precompiled code. This method can also be used by projects with only one
source file to limit what goes into the precompiled header file.

Note that you can achieve the same results by inserting the directive

#pragma hdrstop at a common point in all source files before which you want
all preprocessor directives precompiled. For example, in the previous example,
you could place the following code at the beginning of every source file:

#include <windows.h>
#pragma hdrstop

When used with /YX, #pragma hdrstop does not require or use a filename
argument and should be placed prior to source code in every file.

If you want to observe the behavior of the /YX option during the build, use the /W4
option (Warning Level in the Custom Options category). Note that /YX is slower
than /Yu when generating browser database information.

The compiler uses the following rules when comparing an existing MSVC.PCH file
for consistency:

= The current compiler options must match those specified when the precompiled

header was created.

= The current working directory must match that specified when the precompiled

header was created.

Chapter 9 Customizing Build Options 141

= The order of all preprocessor directives, with the exception of #define direc-
tives, must match those specified when the precompiled header was created.
The values of #define directives must match. The #pragma directives must be
nearly identical—multiple spaces outside of strings are treated as a single
space.

» The value and order of include paths specified using the /I option must match
those used when the precompiled header was created.

= The timestamps of all the header files used to build the precompiled header must
match those that existed when the precompiled header was created.

C++ PCH and C PCH Information

The following rules apply for building precompiled header files from Visual Work-
bench using the /Yc¢ and /Yu model:

» There can be one precompiled header (PCH) file for each source language in
the project (C and C++).

= For a given language, all files use the same precompiled header.

s Each source file in a given language must include the same header files, in the
same order, up to the header file that you specify in the header text box.

= The include file must be specified in each source file with the same path.

To implement precompiled headers in modules of a specific language, type the
name in the Precompile through Header text box (in the C++ Files or C Files group)
of the last header file you want precompiled. Then, from the corresponding
language’s Precompile with Source list box, select a file that includes the header
file in the Precompile through Header text box.

For example, assume you have a stub header file that is included by all of your
source files and contains the following lines:

#include "first.h"
f#finclude "second.h"
#include "Tast.h"

Also, assume one of your source files is called MYPROG. CPP. To include FIRST . H,
SECOND.H, and LAST.H in the precompiled header file, type LAST . H in the

142

Visual Workbench User’s Guide

Precompile through Header text box in the C++ Files group. Then select
MYPROG. CPP from the Precompile with Source list box in the C++ Files group.

Note You cannot use the /Fp command-line option from within Visual Workbench.
Nor can you use the #pragma hdrstop declaration in any source file in your pro-
ject when using /Yc¢ and /Yu. You can, however, access these capabilities through
an external makefile. See Programming Techniques and the Command-Line Utili-
ties User’s Guide for more information.

In the following tables, the Option column describes what you will see in the op-
tions string when you implement precompiled headers. If you are using only one
language, you will see one /Yu option followed by the header filename. If you are
using mixed-language precompiled headers, you will see one /Yu option for both
header files specified. Note that the /Yc option does not appear in the options string.

Also note that the Option column does not indicate the actual CL command line that
is generated. In the makefile, a separate /Yu option and /Yc option is generated for
each language, on a per-module basis, accompanied by the respective header and
source filenames you specify.

Precompile through Header: Text Boxes (for both C Files and C++ Files)

Entry Option Comment

headerfilename [Yu headerfilename Name of the last header file used in the
precompiled header

Precompile with Source: List Boxes (for both C Files and C++ Files)

Entry Option Comment

sourcefilename /Yu sourcefilename sourcefilename is the name of the source
file that includes the last header file used
in the precompiled header

Preprocessor

The Preprocessor category (see Figure 9.13) lets you control elements used by

the C/C++ preprocessor, such as symbols, macros, and include paths. For a list of
ANSI and Microsoft-specific predefined macros, see Chapter 7 in the C Language
Reference, Chapter 13 in the C++ Language Reference, or Help.

Chapter 9 Customizing Build Options 143

" Category Settings: Preprocessor

Symbols and Macros to Define:
|_DEBUG |

Individual Symbols to Undefine:
[Undefine All Symbels
Include Path:

[1gnore Standard Places of Include Files

Figure 9.13 Compiler Options: Preprocessor

Symbols and Macros to Define

Use the /D option to define constants and macros for your source file. This has
the same effect as using a #define preprocessor directive at the beginning of your
source file. You cannot use any identifier that contains spaces. You can assign a
number or a string to the identifier using the equal sign (=) with no intervening
spaces. If you omit the equal sign, the identifier is assumed to be defined (value
of 1).

Type all the constants and macros you want to define separated by spaces or
commas. Note that all project types define DEBUG by default for debug build
mode. This is used by the Microsoft Foundation Class Library and may be disre-
garded or removed if your project does not use the Microsoft Foundation classes.

Symbols and Macros to Define Text Box

Entry Option Comment

identifier /D “identifier” Maximum of 30 identifiers

Individual Symbols to Undefine

To turn off individual symbols that you have defined or that are predefined, type the
names of all symbols separated by spaces, commas, or semicolons. A /U option is
then created for each symbol name.

Individual Symbols to Undefine Text Box

Entry Option Comment

name /U “name” Undefines existing symbols

144 Visual Workbench User’s Guide

Undefine All Symbols

To turn off all symbols (both user-defined and predefined), select the Undefine All
Symbols check box.

Undefine All Symbols Check Box

Option Comment

/u Undefines all defined symbols

Include Path

You can add to the list of directories searched for include files by typing the path in
the Include Path text box. To indicate more than one path to search, separate the
paths by spaces, commas, or semicolons. When an #include directive is encoun-
tered in a program (and a complete path is not provided), the compiler searches the
current directory first, then the path or paths specified with the /I option, and finally
the paths specified in the Directories dialog box, accessed from the Options menu.

Include Path Text Box
Entry Option Comment
directory /1 “directory” Searches directory for include files

Ignore Standard Places of Include Files

You can prevent the compiler from searching the standard places for include files
by using the /X (for “exclude”) option. This excludes the current directory and any
directories listed in the Directories dialog box, accessed from the Options menu.
You can use this option with the /I option to define the location of include files with
the same name (but using different code) as those in the standard places.

Ignore Standard Places of Include Files Check Box

Option Comment
X Ignore the current directory and the Visual Workbench include directories
Segment Names

The compiler places code and data into separate segments in the object file. Every
segment has a name that is used by the linker to determine which segments to com-
bine and how segments are ultimately grouped in the executable file. The Segment
Names category (see Figure 9.14) lets you set names for the data, code, p-code,
module, and v-table segments.

Chapter 9 Customizing Build Options 145

"E tegory Settings: Seg t Names

Data Segment:

Code Segment:

P-Code Segment:

l,
|
I
Module Name: Ii
|

¥-Table Segment:

B

Figure 9.14 Compiler Options: Segment Names

Data Segment

The /ND option renames the default data segment of your code. This is mainly use-
ful for shared data segments. There are some important restrictions involving the
use of this option. See Chapter 1, “CL Command Reference,” in the Command-
Line Utilities User’ s Guide for more information.

Data Segment Text Box
Entry Option Comment
datasegment /ND “datasegment” Renames the default data segment

Code Segment

The /NT option renames the default code segment for medium-, large- and huge-
model programs. It appends _TEXT to the specified name. It should not be used
with tiny or small model.

Code Segment Text Box
Entry Option Comment
codesegment INT “codesegment” Renames the default code segment

P-Code Segment

The /NQ option sets the name of a temporary segment for the p-code compiler; the
temporary segment is removed before the program is run. This option can only be
used with the /Oq (p-code optimization) option. During its operation, the p-code

146

Visual Workbench User’s Guide

compiler generates several temporary segments. If you encounter LINK error 1049
(“too many segments”), use /NQ to combine these temporary segments into one
temporary segment,

P-Code Segment Text Box

Entry Option Comment

pcodesegment /NQ “pcodesegment” Names a temporary p-code segment

Module Name

The /NM option names a module segment. It is recommended that you use the /NI
option to rename code segments. /NM is maintained for compatibility with earlier
versions of Microsoft C.

Module Name Text Box
Entry Option Comment
modulename /NM “modulename” Sets module in code segments

V-Table Segment

The /NV option sets the name of a segment for far v-tables. All far v-tables in a
C++ program are grouped in the specified segment.

V-Table Segment Text Box

Entry Option Comment

vtablesegment /NV “vtablesegment” Sets the segment name for far v-tables

Windows Prolog/Epilog

The Windows Prolog/Epilog category options (see Figure 9.15) create prolog and
epilog code for far functions in both protected mode and real mode. Select an option
in the Generate Prolog/Epilog For group for either a real-mode or protected-mode
application. For protected-mode applications, you can then use the Protected Mode
Options check boxes.

Chapter 9 Customizing Build Options 147

" Category Settings: Windows Prolog/E pilog

 Generate Prolog/Epilog For

O Mone
@ Protected Mode Applicat

O Real Mode __far Functions

QO Protected Mode DLL Functions

C Real Mode __Far Non-Callback Functions

" Protected Mode Opti

te for __far Fi

O &
O€

mit Linker EXPDEF Records

Figure 9.15 Compiler Options: Windows Prolog/Epilog

Generate Prolog/Epilog For

In real mode, use the /Gw option to generate Windows prolog/epilog code for
Windows callback functions. In protected mode, this code is optimized for each
function using the /GA option for applications and the /GD option for DLLs. In
real-mode programs that contain far functions but no callback functions, you can
optimize the prolog/epilog code using the /GW option, which is an improved
version of the /Gq option in previous compilers.

Generate Prolog/Epilog For Options Buttons

Option Button Option Comment

None None Do not optimize Windows prolog/epilog
code

Protected Mode Application /GA Optimize Windows prolog/epilog code

Functions for protected-mode callback functions

Protected Mode DLL /GD Optimize Windows prolog/epilog code

Functions for protected-mode callback functions

Real Mode _ _far Functions /Gw Generate Windows prolog/epilog code
for real-mode far callback functions

Real Mode __far Non- /GW Optimize Windows prolog/epilog code

Callback Functions

for real-mode far non-callback functions

148 Visual Workbench User’s Guide

Protected Mode Options Check-Box Summary

When you select either of the protected-mode options (/GA or /GD), the Protected
Mode Options check boxes are enabled. This lets you enable the /GEe and /GEf
options.

Protected Mode Options Check Boxes

Check Box Option Comment

Generate for __far functions /GEf Treat all far functions as if they were
marked as __export

Emit Linker EXPDEF Records /GEe Force emission of linker EXPDEF
records

Linker Options

To set linker options, choose Linker in the Project Options dialog box Customize
Build Options group. This opens the Linker Options dialog box (see Figure 9.16).
Each option category is described below, with a short description of each individual
option that can be changed in that category’s Category Settings group. For more
information on linker options, see Help or Chapter 2, “Linking Object Files with
LINK,” in the Command-Line Utilities User’s Guide.

= Linker Options
Build Options: @ Debug Specific O Release Specific ' Common to Both

P
ZHOLDGD /LB-"libw" /NOD /PACKC:61440 /STACK:5120 ALIGN:16 i s
JONERROR:NOEXE /CO /LIB:"commdlg.lib" /LIB:"olecli.lib"

/LIB:"olesvr.lib” /LIB:"shell. lib"
+] | Use Project Defaults I

[Category Settings: Input

Memoiy Image Libraries: lﬁb" |
Miscellaneous
Dutput

Windows Libraries

lgnore Default Libraries

Specific Libraries to Ignore:

[Prevent Use of Extended Dictionary

[Distinguish Letter Case

Figure 9.16 The Linker Options Dialog Box

Chapter9 Customizing Build Options 149

Input

At the beginning of the linking process, the linker attempts to resolve external
references by searching libraries and retrieving the appropriate object code. The
Input category (see Figure 9.17) lets you specify special library options to the
linker.

" Category Settings: Input

Libraries: l J

O lgnore Default Libraries

Specific Libraries to Ignore:

[Prevent Use of Extended Dictionary

Distinguish Letter Case

Figure 9.17 Linker Options: Input

Libraries

To include libraries for the linker to search, enter the names, separated by spaces
or commas, in this text box. You do not need to enter the .LIB extension, as this is
assumed.

To use any of the standard Windows API libraries, type the name in the Libraries
text box or use the Windows Libraries category, which contains a list box of all
supported Windows libraries. If you type the name of a Windows API library in the
Libraries text box, the name you typed is immediately removed from the Libraries
text box and the corresponding Library name is selected in the Import Libraries and
DLLs list box in the Windows Libraries category. Duplicate library names typed in
the Libraries text box are also removed automatically.

Libraries Text Box

Entry Option Comment

libraryname /LIB:“libraryname” Causes libraryname.LIB to be linked

150

Visual Workbench User’s Guide

Note that the “/LIB:” mnemonic is not a valid command-line option for LINK. It is
used here to represent libraries as command-line arguments so that you can view
them in one place along with other linker options. The “/LIB:” mnemonic does not
appear as such in the makefile.

Specific Libraries to Ignore

The /NOD option tells LINK not to search default libraries named in object files. If
you want the linker to ignore all libraries, select the Ignore Default Libraries check
box. If you want LINK to ignore specific libraries, type the name or names of those
libraries in this text box, separated by spaces, commas, or semicolons. If one of the
libraries you specify to ignore contains OLDNAMES.LIB, you must specify
OLDNAMES.LIB in the Libraries text box.

Specific Libraries to Ignore Text Box

Entry Option Comment

libraryname /NOD:*libraryname” Do not search default library libraryname

Input Check-Box Summary

The check boxes in the Input category are listed together here for summary infor-
mation. Each specific option is described in the sections that follow.

Input Check Boxes

Check Box Option Comment

Ignore Default Libraries /NOD Ignore all default libraries
Prevent Use of Extended Dictionary /NOE Do not use extended dictionary
Distinguish Letter Case /NOI Do not ignore case differences

Ignore Default Libraries

This check box sets the /NOD option, which tells LINK not to search any default
libraries named in object files. Note that if you use this option, you must also spec-
ify OLDNAMES.LIB in the Libraries text box.to resolve external references.

Prevent Use of Extended Dictionary

The /NOE option prevents the linker from searching extended dictionaries when
resolving references. An extended dictionary is a list of symbol locations in a
library created with the Microsoft Library Manager (LIB). The linker consults
extended dictionaries to speed up library searches. When LINK uses extended
dictionaries, it gives an error when a duplicate definition is found. Use this option
when you redefine a symbol and an error occurs.

Chapter 9 Customizing Build Options 151

Distinguish Letter Case

This check box preserves case in identifiers. Since C and C++ distinguish between
uppercase and lowercase, it is a good idea to use the /NOI linker option.

Memory Image

Once the linker has resolved all external references, it determines how the execu-
table file will use memory when it is loaded. The Memory Image category (see
Figure 9.18) has several options for optimizing data and code segmentation, setting
stack size, and other memory-related parameters.

[~ Category Settings: Memory Image

[pon't Remove Unreferenced Packaged Functions

[#ack ¥x5 Fie
Pack Code: [61440

[] Translate Far Calls

Max. Mumber of Segments: L

Figure 9.18 Linker Options: Memory Image

Memory Image Check-Box Summary

The check boxes in the Memory Image category are listed together here for sum-
mary information. Each specific option is described in the sections that follow.

Memory Image Check Boxes

Check Box Option Comment

Don’t Remove Unreferenced /NOPACKF [PACKEF is provided by default
Packaged Functions

Pack EXE File /EXEPACK Optimize executable file for relocation
Translate Far Calls /FARCALL Optimize far calls to functions in the

same segment

Don’t Remove Unreferenced Packaged Functions

By default, the linker removes unreferenced packaged functions, which may be
created with the /Gy compiler option and are always created by C++ member func-
tions. The /NOPACKEF option disables this action. For a description of packaged
functions, see “Enable Function Level Linking” on page 122.

152

Visual Workbench User’s Guide

Pack EXE File

This check box produces the /EXEPACK option, which directs LINK to remove
sequences of repeated bytes (usually null characters) and to optimize the load-time
relocation table before creating the executable file. This may decrease the execu-
table file size if it contains at least 500 load-time relocations and large streams of
repeated characters.

Translate Far Calls

The /[FARCALL option directs the linker to optimize far calls to procedures that lie
in the same segment as the caller. This can result in slightly faster code; the gain in
speed is most apparent on 80286-based and later computers.

Pack Code

The /PACKC option turns on code-segment packing. This is on by default for
Windows-based programs and DLLs. The linker packs physical code segments by
grouping neighboring logical code segments that have the same attributes. /PACKC
changes the segment and offset addresses so that all items in a group share the same
segment. This affects only programs with multiple code segments and can result in
slightly faster and more compact code. The number you enter in the Pack Code text
box specifies the maximum size of groups formed by /PACKC (the default segment
size without /PACKC is 65,500 bytes).

The /PACKC option is not recommended when linking Windows-based applica-
tions with /FARCALL.

Pack Code Text Box

Entry Option Comment

n /PACKC:n Pack adjacent code segment definitions
Pack Data

The /PACKD option turns on data-segment packing for programs with multiple data
segments. Adjacent data-segment definitions are combined into the same physical
segment. The linker considers any segment definition with a class name that doesn’t
end in CODE as a data segment. The linker stops adding segments to a group when it
cannot add another segment without exceeding the number (%) you enter in this text
box (the default segment size without /PACKD is 65,536 bytes). Packing data seg-
ments can result in slightly faster and more compact code. You can use /PACKD to
get around the limit of 254 physical data segments per executable file imposed by
an operating system.

Chapter 9 Customizing Build Options 153

Pack Data Text Box

Entry Option Comment

n /PACKD:n Pack adjacent data segment definitions
Stack Size

The /STACK option lets you change the stack size from its default value of 2048
bytes. You can enter any even number up to 65,534. Do not specify /STACK for

aDLL.

Stack Size Text Box

Entry Option Comment

n /STACK:n Set stack size to n bytes

Max. Number of Segments

The /SEG option sets the maximum number of program segments. You can use this
text box to set the maximum number of segments from 1 to 16,384. Since LINK
must allocate memory to keep track of each segment, the higher this number is, the
less space LINK has to run in. If LINK runs out of memory, try setting this number
to the actual number of segments in your program and relinking. The default is 128
segments when /SEG is not specified.

Max. Number of Segments Text Box

Entry Option Comment
n /SEG:n Set maximum number of program segments from 1 to 16,384
Miscellaneous

The Miscellaneous category (see Figure 9.19) contains just two controls—a check
box to suppress banner information from the Output window, and a text box that
lets you type in command-line options to the LINK utility directly without using the
dialog-box controls.

154

Visual Workbench User’s Guide

[Category Settings: Miscellaneous

Suppress Display of Sign-On Banner

Other Dptions:

Figure 9.19 Linker Options: Miscellaneous

Suppress Display of Sign-On Banner

The /NOLOGO option suppresses the copyright message displayed when LINK is
invoked. This speeds the build slightly since the Output window is not updated with
this information.

Suppress Display of Sign-On Banner Check Box

Option Comment

/NOLOGO Banner not sent to Output window

Other Options

The Other Options text box allows you to directly type in any LINK command-line
option to be included in the project makefile. This lets you copy linker options from
another makefile and use command-line linker options that are not available from
dialog-box controls. For a complete description of all LINK command-line options,
see Chapter 2, “Linking Object Files with LINK,” in the Command-Line Utilities
User’s Guide (available with Visual C++ Professional Edition).

Important You are responsible for the accuracy of any option you enter in this text
box. If Visual Workbench recognizes the option as one that can be set using a dia-

log-box control, it changes the dialog-box control to reflect the option and removes
the option from the Other Options box. However, if the option is not recognized, it

is left on the options string as is and passed to the linker.

Chapter9 Customizing Build Options

155

The linker is capable of producing many different types of files besides the target
file type. Options in the Output category (see Figure 9.20) give you control over

which files the linker generates.

" Category Settings: Output

X Generate Debugging Information
[Create MAP File

[Produce More Detailed Dutput
[0 sroduce COM Fite

Segment Alignment:

[Include Line Numbers/Addresses in MAP

X Prevent Creation of EXE on Linker Error

Figure 9.20 Linker Options: Output

Output Check-Box Summary

The check boxes in the Output category are listed together here for summary
information. Each specific option is described in the sections that follow.

Output Check Boxes

Check Box Option Comment

Generate Debugging /CO Use with /Zi, /27, or [Zd

Information compiler options

Create MAP File /MAP Generate list of segments and
public symbols

Include Line /LINE Generate list of segments and

Numbers/Addresses in MAP line numbers/addresses

Prevent Creation of EXE on /ONERROR:NOEXE Do not write executable file to

Linker Error disk when a linker error occurs

Produce More Detailed Output /INFO Display link status information

Produce COM File /TINY Produce tiny memory-module-

executable file

156

Visual Workbench User’s Guide

Generate Debugging Information

The /CO option adds Microsoft symbolic debugging information to the executable
file, which allows you to use either the Visual Workbench debugger or CodeView
to debug it. If the object files were not compiled with either the /Zi , /Z7, or /Zd
option, this option places only public symbols in the executable file.

Create Map File

The /MAP option creates a map file that contains a list of segments as well as pub-
lic symbols sorted by name and by address. Symbols in C++ appear in the form of
decorated names. The map file contains the same name as the executable file with
an extension of .MAP.

Include Line Numbers/Addresses in MAP

The /LINE option creates a map file that contains a list of segments and also the
line numbers and associated addresses from source files to the map file. It does not
add public symbols to the map file as the /M option does.

Prevent Creation of EXE on Linker Error

By default, if certain errors occur, LINK writes an executable file to disk and over-
writes any existing file having the same name. The resulting executable file has the
error bit set in its header. Specify /ONERROR:NOEXE to prevent such a file from
being written to disk and preserve any existing file having the same name.

Produce More Detailed Output

The /INFO option displays to the Output window information about the linking pro-
cess, including the phase of linking, the object files being linked, and the library
modules used.

Produce COM File

Select this check box to produce the /TINY option. This causes LINK to produce a
.COM file instead of an .EXE file. When the /CO option (Generate Debugging
Information) is used with /TINY, debug information is put in a separate file with
the same base name as the .COM file and with the .DBG extension. A C or C++
program linked as a .COM file must consist of only one physical segment, must not
use far references, and cannot be a Windows-based program.

Chapter 9 Customizing Build Options 157

Segment Alignment

The /ALIGN option aligns segments in a segmented executable file at the bounda-
ries specified by the number you enter in the Segment Alignment text box. The
alignment size is in bytes and must be an integer power of two, or else is rounded
up by LINK to the next higher power of two. The default alignment is 512 bytes
when /ALIGN is not specified. This only affects Windows-based programs.

Segment Alignment Text Box

Entry Option Comment

n /ALIGN:n Align segments at boundaries of n bytes

Windows Libraries

The Windows Libraries category (see Figure 9.21) has a single list box to allow
you to easily find and use the Windows API libraries that you want.

[~ Category Settings: ‘Windows Libraries

Import Librarnies and DLLs:
COMMDLG

DDEML

LZEXPAND

MMSYSTEM
OLECLI
OLESVR
PENWIN
SCRNSAVE
SHELL
STRESS
TOOLHELP
VER

Figure 9.21 Linker Options: Windows Libraries

Import Libraries and DLLs

Use this multiple-selection list box to instruct the linker to link any of the Windows
version 3.1 API libraries that you select. For each Windows library you select, an
entry of /LIB:“libraryname” (where libraryname represents the Windows library)
appears in the options string.

Note The “/LIB:” mnemonic is not a valid command-line option for LINK. It is
used here to represent libraries as command-line arguments so that you can view
them in one place along with other linker options. The “/LIB:” mnemonic does not
appear as such in the makefile.

158 Visual Workbench User’s Guide

Import Libraries and DLLs List Box

Option

List Entry (See preceding note) Comment

COMMDLG /LIB:“COMMDLG” Common dialog box templates and
procedures

DDEML /LIB:“DDELM” Dynamic Data Exchange

LZEXPAND [LIB:“LZEXPAND” Lempel-Ziv data compression

MMSYSTEM /LIB:“MMSYSTEM” Windows Multimedia Extension

OLECLI /LIB:“OLECLI” Object linking and embedding client

OLESVR /LIB:“OLESVR” Object linking and embedding server

SCRSAVER /LIB:“SCRSAVER” Screen saver, WinMain, and other
startup code

SHELL /LIB:“SHELL” Registration, Drag&drop, and file
association

STRESS /LIB:“STRESS” Application stressing

TOOLHELP /LIB:“TOOLHELP” User heap, GDI heap, memory
management

VER /LIB:“VER” File Installation

Resource Compiler Options

The Resource Compiler Options dialog box lets you select specific options to the
Microsoft Resource Compiler, which is run from the makefile whenever you include
a resource file (.RC) in the project list.

You select resource compiler options by either selecting check boxes or by typing
the options into the Custom Options or Defines text boxes (see Figure 9.22). If a
conflict occurs between a check box option and a text box option, the one specified
in the text box takes precedence.

= Resource Compiler Options
I 0K I

H Cancel I

[] pisable Load Optimization

Custom Options: | -t

Defines

Debug: L I
Release: I; I Help I

Figure 9.22 Resource Compiler Options Dialog Box

Chapter 9 Customizing Build Options 159

Disable Load Optimization

This check box tells the resource compiler not to arrange preload information into
contiguous segments. This is the same as the /K custom option.

Custom Options

The Custom Options text box lets you set specific resource compiler options by
simply typing them in. A complete description of Microsoft Resource Compiler
options can be found in Help.

Defines

The Debug and Release text boxes let you define symbols to be checked by the
resource compiler dependent upon the current build mode. This lets you specify
conditional branching in a resource script file based on whether a term is defined
in the Defines text box that corresponds to your build option.

For example, you could define DEBUG in the Debug text box and use the directives
##ifdef DEBUG and #endif in your resource script to surround a Debug menu
statement. This menu would then appear when you perform a debug build but would
not appear in a release build.

The Defines text boxes take the place of using the /D custom option.

161

CHAPTER 10

Using the Browser

Part of the process of program development involves understanding relations
between program elements, such as between base classes and derived classes or
between called and calling functions. It is also important to be able to move
quickly between related program elements that may be located in several differ-
ent files.

The Visual Workbench graphical browser, an integrated version of the Microsoft
Source Browser, uses information generated by the compiler to help you find
related symbols and display symbol relationships. The generated database con-
tains information about where each symbol is defined and used, and about the
relationships among modules, constants, macros, variables, functions, and
classes.

This chapter introduces you to the capabilities of the browser, including creating,
opening, and querying a browser database. The chapter also shows techniques for
viewing class hierarchies, function call trees, and symbol definitions and
references.

Creating a Browser Database

To use the browser, you must first create a browser database. Visual Workbench
does this for you automatically as part of the normal build process when the
Browser Information check box in the C/C++ Compiler Options dialog box is
enabled.

Note that the Browser Information compiler option is enabled by default for all
project types. Since generating a browser database slows down the build and
browser database files can be very large, you may want to turn off Browser
Information when you do not specifically want to build a browser database.

The following procedure assumes that you have a project loaded in Visual Work-
bench. You may want to use the SCRIBBLE sample project located in the
\MSVCWFCO\SAMPLES\SCRIBBLE directory as an example to experiment with

162 Visual Workbench User’s Guide

the browser’s capabilities. See Chapter 8, “Using Projects,” to learn how to open
and build a project.

» To create a browser database (.BSC) file:
1. From the Options menu, choose Project.
The Project Options dialog box appears.
2. Under Customize Build Options, choose Compiler.
The C/C++ Compiler Options dialog box appears.
3. In the Category box, select Listing Files.

This opens the Category Settings: Listing Files group in the lower right-hand
corner of the dialog box, which contains the Browser Information categories
(see Figure 10.1).

4. Select the Browser Information check box to enable it, if it isn’t already
enabled.
Include Local Variables should be checked and Don’t Pack Information should

be cleared (not checked). (See page 129 for information on customizing the
Browser Information options.)

= C{C++ Compiler Options I

Build Options: @ Debug Specific) Release Specific ' Common to Both
Options String:
/nologo /Gs /G2 /Zp1 A3 /Zi /AM /0d /D "_DEBUG" /FR /GA 1

+ Set to Defaults I

Cancel

Category: [Category Settings: Listing Files
Code Generation
Custom Options Browser Information

Custom Options (C++)
|Debug Dptions | B4 Include Local Variables

[Memory Model 1] Den't Pack Information
g%in:jizaéions
-Code Generation
Precompiled Headers 0] Assembly
Preprocessor [0 tneksde gackine Dode
Segment Names
‘Windows Prolog/Epilog [trnetude Sogee and Maching Lods

Figure 10.1 C/C++ Compiler Options: Listing Files

5. Choose OK in the C/C++ Compiler Options dialog box.

Chapter 10 Using the Browser 163

6. Choose OK in the Project Options dialog box.

7. Click the Rebuild button on the toolbar or choose Rebuild All Targetname from
the Project menu.

During the build, Visual Workbench creates a browser database file with the
name of your project and the extension .BSC in your project directory.

Opening a Browser Database

You can open a browser database by using one of four methods:

= Choosing the Open command on the Browse menu
= Choosing the Open command on the File menu
= Choosing the Next Definition or Next Reference command on the Browse menu

» Dragging a browser database file (BSC) from the Windows File Manager and
dropping it into Visual Workbench

The first method, choosing the Browse menu’s Open command, opens the
Browse window. The Open command is normally followed by a browser data-
base filename, which is usually the name of the current project plus a .BSC
extension. However, if you have opened a browser database using the Open File
dialog box, the name of the most recently opened database appears after the Open
command.

The Open command on the Browse menu appears with no name following it if
there isn’t an active project and you haven’t opened a browser database since you
started Visual Workbench. In this case, choosing the Open command opens the
Open File dialog box with a file filter of *. BSC.

» To open the Browse window for the current project:

e From the Browse menu, choose Open Project. BSC (where Project is the name
of the current project).

If you have created a browser database for the current project, the Browse win-
dow appears. Otherwise, a message appears, indicating that the browser data-
base file cannot be opened.

The second method of opening a browser database is to directly open any existing
browser database by using the Open File dialog box. This can be a browser data-
base generated by Visual Workbench or by Microsoft Programmer’s WorkBench.

164 Visual Workbench User’s Guide

» To open a browser database using the Open File dialog box:
1. From the File menu, choose Open.
Or click the Open button on the toolbar.

Or choose Open from the Browse menu if no filename follows the Open com-
mand (that is, Open is followed by an ellipsis ...).

The Open File dialog box appears.

2. From the drop-down list in the List Files of Type box, select Browse Database
(*.bsc).

3. Use the Directories and Drive list boxes to locate the directory that contains the
browser database.

The browser file appears in the file list.
4. Double-click the browser database filename.
The Browse window appears (see Figure 10.2).

- <1> Browse SCRIBBLE.BSC ~-1-1

— Query

Type: |Definitions and References | ¥ | Display Result I Expand Tree I
Subset: |ALL * l Provious Suory | %Zif;%ia;ss‘e Hade |
Symbol: li l E

Figure 10.2 The Browse Window

When you open a browser database in this manner, the filename of the currently
open database appears on the Browse menu following the Open command. When
you close the Browse window, the Browse menu’s Open command continues to
display the name of the most recently used database.

The third method of opening a browser database is to use the Browse menu’s Go
to Definition or Go to Reference command when a browser database is associated
(named on the Browse menu) but not open.

Chapter 10 Using the Browser 165

» To open a browser database and jump to the first definition or reference:

1. Select a symbol name in a source file (or place the insertion point at the begin-
ning of a symbol name).

Note that the browser database filename associated with the source file must
appear on the Browse menu after the Open command.

2. Choose Go to Definition (F11) to jump to the first definition, or Go to Reference
(SHIFT+F11) to jump to the first reference of the symbol.

The database named in the Browse menu’s Open command is opened, the
Browse window is minimized, and the source file containing the first definition
(or first reference if you chose Go to Reference) appears with the insertion point
at that definition or reference.

See “Browsing Definitions and References” on page 176 for information on using
the Browse window for querying definitions and references.

Finally, as with source files and resource files, you can use the Windows File
Manager to display a file icon and drag and drop the file icon into Visual Work-
bench. When the file icon is a browser database file (with an extension of .BSC),
the Browse window opens with the browser database.

Querying a Browser Database

You can search for information in a browser database by using one of two basic
methods:

= Using the query controls in the Browse window

» Using the commands on the Browse menu

The advantage of the Browse window is that it lets you see graphical representa-
tions of interclass and interfunction relationships and lets you construct lists of
symbols from which to query definitions and references.

The advantage of using the commands on the Browse menu is that you can jump
immediately to definitions and references of a symbol while you are writing or
editing code. The Browse menu’s Go to Definition and Go to Reference com-
mands work in conjunction with the Next and Previous commands to traverse all
definitions or references of a particular symbol.

This section provides a quick summary of querying a browser database using
both methods. For more detailed information, see the specific section devoted to
each of the browser query types later in this chapter.

166

Visual Workbench User’s Guide

Using the Browse Window

Type: |Definitions and References | ¥ | DisBlag Result I
Subset: [ALL b4 Previous Query I
Symbol: |’ | B

To perform a query in the Browse window, you first set the query parameters in
the Query group at the top of the Browse window (see Figure 10.3) and then
choose the Display Resuit button.

Query

Figure 10.3 Browse Window Query Group

The Query group contains three controls to set and display query parameters:

Type

This determines the type of symbol relationship you want to view. The five
choices are:

= Definitions and References
= Call Graph

= Caller Graph

= Derived Class Graph

» Base Class Graph

Subset

This determines or displays the type of symbols you are browsing. For the Call
Graph and Caller Graph query types, Subset is always Functions. For the
Derived Class Graph and Base Class Graph query types, Subset is always
Classes.

For Definitions and References queries, Subset lets you determine the subset of
symbol types to be included in the search. This can be useful when you use a
wildcard in the Symbol text box that matches several symbol names and a
lengthy list of symbols appears in the left display panel. You can narrow the
results list by choosing a subset of symbol types from the Subset drop-down list.
Or you can choose ALL to have a list of all symbols placed in the left display
panel.

Symbol

This determines the specific function, variable, type, macro, or class you want to
browse. You can type in a symbol name or choose from the previous eight sym-
bol names you have queried.

Chapter 10 Using the Browser 167

You can also use a wildcard in the symbol name as described in Table 10.1.
Table 10.1 Wildcard Types in Symbol Names

Type Represents

* All symbols

Sym* All symbols starting with some common characters (denoted here by
Sym)

ClassName:: All member functions and member variables of a class (denoted here

by ClassName) when the query type is Definitions and References

1

When a wildcard matches more than one symbol, all matching symbols appear
either in the left display panel (if the query type is Definitions and References)
or in a disambiguation dialog box (for all other query types). When a disam-
biguation dialog box appears, you must select just one of the symbols, since all
graphs require a single root.

The following procedure assumes you have opgned a Browse window:

To query the browser database from the Browse window:

1.
2.

From the Type drop-down list box, select a query type.

In the Subset drop-down list box, if the query type is Definitions and Refer-
ences, select a symbol type for the query to search, or select ALL to search all
symbol types.

For example, to display all member functions of the class CCmdTarget in the
left panel, type CCmdTarget : : in the Symbol text box and select Functions
from the Subset list box.

In the Symbol text box, type the name of the symbol you want to browse.
Or, using the drop-down list, select a symbol you have browsed recently.
Or type a wildcard combination to match one or more symbol names.
Choose the Display Result button, or press ENTER, to start the query.

If the query type is Definitions and References, the left panel below the Query
group displays the symbol, or lists of symbols. For all other query types, the left
panel displays a graph.

Techniques for manipulating the graphs and lists once you have performed a
query in the Browse window are described in “Browsing Classes and Functions”
on page 169.

To recall the state of the previous browse operation, choose the Previous Query
button. By choosing the Previous Query button repeatedly, you can recall all the
browse operations you have performed since opening the Browse window.

168

Visual Workbench User’s Guide

Using Menu Commands

You can use menus and shortcut keys to browse for definitions and references
directly from any symbol in a source file associated with the open database file,
or any symbol in the Browse window. To do this, you use the five menu com-
mands on the Browse menu:

= Go to Definition (F11)

= Go to Reference (SHIFT+F11)

= Next (CTRL+NUMPAD+)

= Previous (CTRL+NUMPAD-)

= Pop Context (CTRL+NUMPAD*)

To query the browser database from a source file:

1. Select a symbol by either highlighting it or placing the insertion point to the left
of it.

2. From the Browse menu, choose Go to Definition (F11) to jump to the first
definition of that symbol.

Or choose Go to Reference (SHIFT+F11) to jump to the first reference of that
symbol.

When you choose Go to Definition, a source window opens on the file contain-
ing the definition of the selected symbol, with the insertion point placed at the
definition’s location in the source file. If the source for the definition is not
available, such as a definition for a library function like printf(), the insertion
point jumps instead to the first reference, which is usually the prototype.

When you select Go to Reference, a source window opens on the file containing
the first reference to the selected symbol, with the insertion point placed at the
reference’s location in the source file.

If the Browse window isn’t already open, it is opened and minimized the first
time you choose either Go to Definition or Go to Reference.

When you choose either Go to Definition or Go to Reference, a single list is formed
and kept internally of all definitions or references of that symbol, depending on
which menu command you chose. You can traverse this list forward or backward
using the Next and Previous command on the Browse menu. To change the list type
—for example, from definitions to references—you must use one of the “Go to”
commands first.

» To jump to the next or previous definition or reference in a source file:

o From the Browse menu, choose Next or Previous.

If you last chose Go to Definition, a source window appears with the insertion
point on the Next or Previous definition of the queried symbol.

Chapter 10 Using the Browser 169

If you last chose Go to Reference, a source window appears with the insertion
point on the Next or Previous reference of the queried symbol.

» To return to the last symbol queried:
e From the Browse menu, choose Pop Context.

The source window containing the current query context (the symbol selected
before the last Go to Definition or Go to Reference) is made active displaying
the queried symbol.

Note The current position of the definition or reference in a list generated by a “Go
to” command and traversed using the Next and Previous Browse menu commands is
not related to the currently selected definition or reference in the Browse window.

Browsing Classes and Functions

One of the most appealing features of the browser is the ability to graphically view
C++ class hierarchies and relationships between called and calling functions.

Once you have queried the browser database for a graphical representation, you can
manipulate the nodes of the resulting tree to view a small section or the fully
expanded tree. As you click each node, the browser displays a list of definitions and
references for the symbol at that node. And, for class trees, the browser also dis-
plays a list of member functions and variables for each node you select.

This section describes in detail how to access graphical data produced by class and
function queries.

Overview of Graphical Browser Query Types

Graphical query types available in the Browse window include:

= Call Graph

= Caller Graph

= Derived Class Graph
= Base Class Graph

The browser displays relationships between base and derived C++ classes, and
between called and calling functions, as graphical trees. This is similar to the way
the Windows File Manager displays directories. In a class graph, each node of the
tree represents a class; in a function graph, each node represents a function. Each
node can be expanded if it contains further branches or collapsed to hide all its
branches.

170

Visual Workbench User’s Guide

Figure 10.4 illustrates the graphs used to display C++ class-hierarchy informa-
tion. A Derived Class Graph branches from left to right with the base class on the
left and derived classes expanding to the right. A Base Class Graph also branches
from left to right, but with the derived class on the left and the class or classes
from which it is derived expanding to the right.

A Derived Class Graph A Base Class Graph
™ CFrameWnd i =
CHDIFraneWnd L™ Cina
CHainFrame Le CCndTarget

CMDICH 1dnd CObject
Le CScribFramne L= CObjectRoot

Figure 10.4 Class Graphs

Derived Class Graphs and Base Class Graphs automatically provide a list of
member functions and member variables in the top window panel to the right of
the graph. You can click a member variable name to open the source window
where it is defined, or click a member function name to open the source window
where it is implemented.

Figure 10.5 illustrates the graphs used to display function-calling relationships. In
a Call Graph, a node on the left represents a function that calls all functions
labeled in nodes to its right. Conversely, in a Caller Graph, a node on the left rep-
resents a function that is called by all the functions labeled in nodes to its right.

A Call Graph A Caller Graph

= CPrintDialog: :Printdll() © Toadlcon
CPrintDialog: :PrintRange{} p: :Loadlcon{char const *)
CPrintDialog: :PrintSelection() ClWindpp: :LoadIcon(unsigned int)

CWindpp: :LoadStandardIcon{char const *)

CWindpp: :LoadOEMIcon({unsigned int)

Figure 10.5 Call and Caller Graphs

The browser also displays locations of symbol definitions and references. This is
done automatically when you select any of the four query types just mentioned
(Derived Class Graph, Base Class Graph, Call Graph, or Caller Graph). To see
where any class or function in a graphical tree is defined and a list of all locations
where it is referenced, simply click the node. The definitions and references
appear to the right of the graph.

Chapter 10 Using the Browser 171

You can double-click any reference or definition to open the corresponding
source file with the insertion point on the corresponding line.

You can also specifically request a query type of Definitions and References.
This has the advantage that you can apply the search to all types of symbols,
including variables, types, macros, and labels as well as classes and functions.

Expanding and Collapsing Graphs

A node in a class graph or function graph can be collapsed or expanded to hide or
display subordinate nodes. A node icon that looks like an empty file box indicates
that a node has either been expanded or has no subordinate nodes. A node icon
that looks like a file box containing files indicates that a node has subordinate
nodes but is collapsed (see Figure 10.6).

An Expanded Node A Collapsed Node

= =

Figure 10.6 Expanded and Collapsed Nodes

You can expand a graph one level at a time, or all at once, using the mouse or
various keyboard shortcuts. The “active node” refers to the selected symbol in the
graph.

» To display different levels of a graph:

¢ To expand the active node one level, choose the Expand Node button, or double-
click the node, or press PLUS SIGN (+) on the number pad.

e To collapse the active node one level, choose the Collapse Node button, or
double-click the node, or press MINUS SIGN (—) on the number pad.

¢ To fully expand the active branch, press ASTERISK (*) on the number pad.
e To expand the entire graph, choose the Expand Tree button or press ALT+X.

172 Visual Workbench User’s Guide

Browsing Classes

When you select Derived Class Graph or Base Class Graph as a query type, the
browser displays a graphical tree. You can view class hierarchical relationships
by picking a class name and then deciding to view either a tree of all classes
derived from the class (Derived Class Graph) or a tree of all the classes from
which it is derived (Base Class Graph).

Once a class graph is displayed, you can view information about each class in the
two window panels to the right of the graph. When you select any class in the
graph, the location where it is defined and all locations where it is referenced are
displayed in the bottom right panel. All member functions and variables are dis-
played in the top right panel.

Derived Class Graph

The Derived Class Graph query type is used to display a graph of all classes
derived from the class you select as the base class.

» To display a tree of all classes that are derived from a class:
1. From the Type drop-down list box, select Derived Class Graph.

Notice that Classes appears automatically in the Subset box and is the only
choice.

2. In the Symbol box, type the class name, type a wildcard, or select a previously
used symbol from the drop-down list.

For example, type CWnd.

If you type a wildcard, such as C*, that matches several symbol names, a dis-
ambiguation dialog box appears with a list of all symbols matched by the wild-
card. Select one name from the list and choose OK.

3. Choose the Display Result button or press ENTER.

The CWnd derived class graph is displayed in the Browse window (see Figure
10.7).

Chapter 10 Using the Browser

173

= <1> Browse SCRIBBLE.BSC [+{ -~
— Query
Type: |Derived Class Graph ¥ | Display Result I Expand Tree I
Subset: |Classes 2] [_Previous Query I Collapse Node I
Symbol: |Cwnd | EI
= +l[CVUnd . Clnd(struct HWND _ const *) {4
H= Cbhialog Clnd: :ClWind()
CPenlWidthsDlg CWnd: :~ClUnd()
CFileDialog struct AFX_MSGMAP_ENTRY * CWnd::_mfy
CFontDialog ‘_’ — x 3 >
CColorDialog
CPrintDialog Definitions of Clnd 1)
CFindReplaceDialog d:\msvcnfchincludeNafxwin. h(1098) |
H= CStatic References to CWnd
H" CButton d:\msvesnfchincludeNafrwin h(43)
% CBitmapButton d:msvesnfoNincludeNafxwin h(665) [§
H®™ CLlistBox Y (P N 1Y

Figure 10.7 Derived Class Graph of the CWnd Class

Base Class Graph

When you want to view the inheritance path of a particular class, select the Base

Class Graph query type. This graph is a chain of single nodes unless the class

uses muitiple inheritance, in which case the multiple base classes appear as mul-

tiple branches.

To display a graph of base classes from which a class is derived:

1. From the Type drop-down list box, select Base Class Graph.

Notice that Classes appears automatically in the Subset box and is the only

choice.

2. In the Symbol box, type the class name, type a wildcard, or select a recently

queried class from the drop-down list.

For example, select or type CDialog.
3. Choose the Display Result button or press ENTER.

The CD1ialog base class graph appears in the Browse window.

4. To see the complete inheritance path (Figure 10.8), choose Expand Tree.

174 Visual Workbench User's Guide

= <1> Browse SCRIBBLE.BSC [+~

— Query
Type: [Base Class Graph | Disglag Result I l Eannd Tree I
[Previous Query I Collapse Node I

|4

i

Subset: |Classes

Symbol: ICDiang | Ig
fa] - ICDialog: :CDialog() +
Lem Ciind CDialog: :CDialog{unsigned int.class
L™ cCmdTarget CDialog: :CDialog(char const *, class
struct AFX_MSGHAP_ENTRY * CDialog:[g
« >
Definitions of CDialog +

d:\msvemfcNincludeNatrwin h(1550) ||
References to CDialog
d:“msvc\mfechincludeNafzwin . h(d4)
d:“msvcmfehincludesafgwin h{1568)
d:\msvenfch\includeNafrwin h{1569)

a 1o Lrdcaon

Figure 10.8 Base Class Graph of the CDialog Class

Member Functions and Variables

Member functions and variables are displayed automatically as a result of any
query using the Derived Class Graph or Base Class Graph query type.

» To display a list of all member functions and variables belonging to a class:
1. Perform either a Derived Class Graph or Base Class Graph query.

Either specify the class in the Symbol box or make sure it is included in the
resulting graph.

2. Click the name of the class in the resulting graph to make it the active node.

The upper panel to the right of the class tree displays all member functions and
variables belonging to the class (not inherited).

Tip You can also get a list of all member functions and variables by using the
Definitions and References query type and specifying the wildcard ClassName::,
where ClassName represents the name of the class whose member functions and
variables you want to examine.

Browsing Function Relationships

You can use the browser to graphically display relationships between calling and
called functions by selecting the Caller Graph or Call Graph query type. These
graphs are typically tree structures unless they display a recursive function node.
Nodes representing recursive functions, or any functions that appear more than
once, are followed by an ellipsis (...).

Chapter 10 Using the Browser

175

To get a listing of where a function is defined and all the places it is referenced,
select the function in the Caller Graph or Call Graph tree. The panel to the right
of the graph panel in the Browse window lists the locations of the function defi-

nition and all references to it. Double-click any location in this list to open a

source window at that location in the specified file.

» To display a graph of all functions that are called by a function:

1. From the Type drop-down list box, select Call Graph.

The Subset box displays Functions.

2. In the Symbol box, type the function name, type a wildcard, or select a previ-
ously queried function from the drop-down list.

3. Choose the Display Result button or press ENTER.

The call graph of the selected function is displayed (see Figure 10.9).

Symbol: ICPlin!Diang::PlinlAII[]

IE]

[=] <1> Browse SCRIBBLE.BSC [-]-
— Query
Type: |Call Graph ¥ | Disglag Regull I Eannd Tree |
Subset: |Functions & r Previous guelz | CoIIaE:e Node I

tg CPrntiaiog: :Printhe()
CPrintDialog: :PrintSelection()

Definitions of CPrintDialog: :Prin;
d:\msvesmici\includenafzdigs h(35)
References to CPrintDialog: :Print,
d:smsvesnfchincludeNafrdlgs h(21"

1

Figure 10.9 A Call Graph

» To display a graph of all functions that call a function:

1. From the Type drop-down list box, select Caller Graph.

The Subset box displays Functions.

2. In the Symbol box, type the function name, type a wildcard, or select a previ-
ously queried function from the drop-down list.

Note that if you type the name of a function with more than one definition (such

as a C++ class constructor), a disambiguation dialog box appears to let you

choose the function from a list box. This dialog box also appears when you use
wildcards that match more than one symbol name.

3. Choose the Display Result button or press ENTER.

The caller tree of the selected function is displayed.

176

Visual Workbench User's Guide

Browsing Definitions and References

You can use the browser to quickly move between files and access common pro-
gram elements. For example, you may want to examine or change a definition of
a function but are not sure where the function is defined. Or, after changing a
function’s definition, you may want to find every place where it is referenced.

When you select a class or function graph query type, references and definitions
are automatically displayed for the active node to the right of the graph. For ref-
erences and definitions of all other types of symbols, or to get just reference or
definition information on any class or function, use the following procedures.

Note The browser database is based on the state of source files at the time of the
last build. If you edit source files and then perform browse operations, the locations
of definitions and references may not be accurate.

If a definition is listed as <Unknown>, it is probably defined in a library for which
you are not provided the source code. For example, the macro_MSC_VER is
generated by the compiler and defined in code that isn’t provided with Visual
C++.

To display a list of locations where a symbol is defined or referenced:
1. From the Type drop-down list box, select Definitions and References.
2. In the Subset drop-down list box, select the symbol type you are interested in.
3. In the Symbol box, type the symbol name.
Or, using the drop-down list, select a symbol you have browsed recently.

Or type a wildcard combination to match one or more symbol names (for
example, type * to produce a list of all symbol names).

4. Choose the Display Result button or press ENTER.

A list of all symbols that match the query parameters appears in the left display
panel. The list may contain a single symbol, if you typed an exact name of a
symbol, or many symbols if, for example, you used a wildcard or typed the name
of an overriden C++ class member function.

5. Click any symbol in the left panel to get a list of its definitions and references in
the panel on the right.

The top symbol in the list is selected by default when there is more than one
symbol.

Chapter 10 Using the Browser 177

Once you have a list of definitions and references, you can jump directly from the
Browse window to a definition or reference using either of two methods.

To jump to any definition or reference from the Browse window:

1.
2.

Select the symbol in the left display panel.
Double-click the definition or reference in the list in the right panel.
Or select the item and press ENTER.

The source file is opened (or is made the active file if it is already open), and the
insertion point is placed on the line containing the definition or reference.

To jump to the first definition or reference from the Browse window:

1.
2.

Select the symbol in the left display panel.

Choose Go to Definition (F11) to jump to the first definition, or choose Go to
Reference (SHIFT+F11) to jump to the first reference of the symbol.

Once you have jumped to the first definition of, or reference to, a particular
symbol using this method, you can jump to subsequent definitions or references
using the Next (CTRL+NUMPAD+) and Previous (CTRL+NUMPAD-) commands on
the Browse menu.

Note The current position of the definition or reference in a list generated by a
“Go to” command (and traversed using the Next and Previous Browse menu
commands) is not related to the currently selected definition or reference in the
Browse window.

179

CHAPTER 11

Debugging Programs

Debugging a program is a two-phase process. The first phase involves correcting
compiler and linker errors during the build process. These errors usually consist
of incorrect language syntax, undeclared variables, or misspelled keywords.

The second debugging phase occurs after any syntax errors are corrected and the
project is successfully built. If the program does not perform correctly, you need
to analyze its internal workings. This means using a debugger to set breakpoints
and examine variables, which allows you to locate the bug, correct it with the
editor, and rebuild the program.

Visual Workbench offers features for performing both phases of debugging.
Visual Workbench supports debugging of both EXE and DLL projects for
Windows. This chapter covers debugging an EXE project. If you want to debug a
DLL project, you need to first create an appropriate EXE shell program to call
the DLL. Using the Debug dialog box, which is accessed from the Options menu,
you specify the name of the program that calls the DLL project.

As an alternative to using the Visual Workbench debugger, you can use the
Microsoft CodeView debugger. If you have Visual C++ Professional Edition, this
tool is provided in both Window-hosted and MS-DOS—hosted versions. You need
to use CodeView if you are debugging any application for MS-DOS or p-code
application for Windows. Visual Workbench debug information is fully compatible
with both versions,

If you are familiar with CodeView, you’ll find the Visual Workbench debugger
similar in operation and functionality. Both debuggers use similar breakpoint
syntax; Watch, Locals, and Registers windows; and QuickWatch, Call Stack, and
tracing capabilities. CodeView supports a command window for command-line
syntax and a memory window, whereas the Visual Workbench debugger uses
graphical controls entirely and has no memory window. However, only the
Visual Workbench debugger is fully integrated with all the other Visual Work-
bench facilities, such as the browser, editor, and ClassWizard. For information on
using CodeView, see the CodeView Debugger User’s Guide.

180 Visual Workbench User’s Guide

In this chapter, you’ll use the SORTDEMO sample program to learn debugging
strategies and techniques within Visual Workbench.

Using the Debugging Windows

Visual Workbench displays information in a series of windows that you can view
as you debug a program. You activate these windows with commands from the
Window menu.

Table 11.1 lists the windows and information they show.

Table 11.1 Debugging Windows

Window Information

Watch Values of variables and expressions in the Watch window. Watch expres-
sions are entered directly into the Watch window. Values are displayed
only while using the debugger.

Locals Values of local variables within the function currently being stepped
through. Values are used only while using the debugger.

Registers Current contents of the memory and status registers.

Output Information about the build process, including any compiler errors. This

window also displays output from OQutputDebugString function calls or
the class library afxDump dump context object during a debugging
session.

You can size and minimize these windows during debugging so that you can see
various types of information at one time.

Figure 11.1 shows the debugging windows.

Chapter 11 Debugging Programs 181

= Microsoft Visual C++ [break] - SORTDEMO.EXE nn
File Edit View Project Browse Debug Tools Options Window Help

- [=]=)] = ElEE fe BRE

<6> C:AMSVCI{SAMPLES\SORTDEMO\SORTDEMO.C v]
43A7 10F0 51 PUSH CX
4347:10F1 9A420CA743 CALL SWAPS (4347:0C42)
43A7:10F6 83C404 ADD SP, 04
43A7:10F9 8B46FC HOV AYX,WORD PTR [IROW] ;BK1
4347 :10FC 050100 ADD AX, 0001
4347 :10FF 50 PUSH AX
43A7:1100 FF76FC PUSH WORD PTR [IROW]
43A7:1103 94860CAT743 CALL SWAPBARS (43A7:0C86)
4347:1108 83C404 ADD SP.04
iSwitch = iRow;
4347:110B &B46FC HOV AX,WORD PTR [IROVW]
4347:110E 8946F8 MOV WORD PTR [ISUITCH],AX ¥
« -
= <3> Watch M || <2> Locals v|~]= Registe ME
—zbarWork +§l[[BEP-0004] int iRow = 0 AYX = 0924 1
—[0=0] [BP-0006] int ilimit = 44 BX = Oc4d
len = 23 '“=x17°' [BP-0008] int iSwitch = 0 CX = 091c
-clr DX = 43a7
nBlue = 0 SP = 1f5c
nGreen = 255 BP = 1lf6a
nRed = 0 SI = 1ffc
+[0=1] = {...} DI = 22a7
+[0x2] = {.,.} DS = 4B9f
+[0=3] = {...} ES = 439¢
+0w4] = £ i 3 SS = 439f
| pvR[[00003 [_

Figure 11.1 Debugging Windows

Debugging During Building

Language syntax errors are the most common errors preventing you from suc-
cessfully building a program. When a program is built, any compiler and linker
errors are displayed in the Output window. If you need help on an error, move the
insertion point to the error number and press F1 to display online information
about the error.

» To move through the list of errors:

e From the View menu, choose Next Error (F4) to highlight the error following the
current error.

—Or—

e Choose Previous Error (SHIFT+F4) to highlight the error preceding the current
error.

—Or—
e Double-click or press ENTER on an error in the Output window.

As each error is highlighted in the Output window, the corresponding line con-
taining the error is highlighted in the source window, where you can fix it.

182

Visual Workbench User’s Guide

To get help on any error or warning in the Output window, place the insertion
point on the line containing the error or warning and press F1.

Note that the Output window behaves like a source window, allowing you to
copy and print information from the window.

Using the Visual Workbench Debugger

Phase two of debugging occurs after your program is built, but doesn’t work cor-
rectly. In this phase, you use the Visual Workbench debugger to set breakpoints in
the source code, view variables, and control program execution.

Note Debug programs are slower and larger than release programs.

Preparing a Debug Version of a Program

Before a program can be debugged, you must include debugging information in
the executable file with the project. You can use the SORTDEMO project as an
example in the following procedure.

To prepare a project for debugging:
1. Open the project.

To use the example project, open SORTDEMO.MAK, which is in the
\MSVC\SAMPLES\SORTDEMO directory, if it is not already open.

2. From the Options menu, choose Project.
The Project Options dialog box appears (see Figure 11.2).

= Project Options I

Project Type: [Windows application [.EXE) #] ok |
[use Microsoft Foundation Classes
Customize Build Options Build Mode

°
 Release

Figure 11.2 The Project Options Dialog Box

3. Under Build Mode, select the Debug option if it isn’t already selected.
4. Choose OK to close the Project Options dialog box.

Chapter 11 Debugging Programs 183

5. From the Project menu, choose Build.

The current project is compiled and linked and, if no errors occur, a version of
the executable file containing debug information is created.

Setting and Removing Breakpoints
Breakpoints are useful when you have a general idea of where a bug occurs in a
program. The debugger runs until it reaches the breakpoint, then stops. At this
point, you can step to the next line of code or trace through a function until you
find the problem. While the program is paused at a breakpoint, you can also ex-
amine variable values using the QuickWatch dialog box or the Watch or Locals
window, or examine register values using the Registers window.

You can set and clear breakpoints using either the Breakpoints dialog box or the
Toggle Breakpoint button on the toolbar. The Toggle Breakpoint toolbar button
simply sets or clears a breakpoint at the insertion point. The Breakpoints dialog box
allows you to set more complex breakpoints, such as breaking if an expression is
true or breaking on a window message.

All breakpoints that are active when a project is closed are saved as part of the
project information and become active when the project is reopened. (Expres-
sions and variables in the Watch window are also saved as part of the project
information and restored when the project is reopened.) A project is closed when
you choose Close from the Project menu, when you open or create another pro-
ject, or when you quit Visual Workbench.

Quick Access to Setting and Removing Breakpoints

The Toggle Breakpoint button on the toolbar is a quick way to set and clear break-
points in a program. If you prefer to use shortcut keys, use F9 to toggle breakpoints.

» To quickly set a breakpoint:
1. Move the insertion point to the line where you want the program to break.
2. Click the Toggle Breakpoint button on the toolbar (or press F9).
Visual Workbench highlights the line, indicating that the breakpoint is set.

» To quickly remove a breakpoint:
1. Move the insertion point to the line containing the breakpoint.
2. Click the Toggle Breakpoint button on the toolbar (or press F9).

184 Visual Workbench User’s Guide

This is all you need to know to get started using breakpoints. If you want to learn
more about the Breakpoints dialog box, read the next section. To try a sample

breakpoint debugging session using the Toggle Breakpoint toolbar button and the
SORTDEMO sample program, step through the following procedure:

» To set and use a breakpoint in the SORTDEMO program:
1. Open the SORTDEMO project if it is not already open.
2. Build the SORTDEMO project.

Follow the procedure in “Preparing a Debug Version of a Program” on page 182
if you have not already done this.

3. Open the SORTDEMO.C project file.

4. Move the insertion point to a line containing code inside the BubbleSort()
function (line 741 for example).

5. Click the Toggle Breakpoint button on the toolbar.

Visual Workbench highlights the line, indicating that a breakpoint is set on this
line (see Figure 11.3).

<3> CAMSVC\SAMPLES\SORTDEMO\SORTDEMO.C
.~ BubbleSort: BubbleSort cycles through the elements, comparing
77 adjacent elements and swapping pairs that are out of order. It

~# continues to do this until no out-of-order pairs are found.
e

wvoid BubbleSort ()}
{

int iRow, iSwitch, ilimit = nBar-1;

»/ Move the longest bar down to the bottom until all are in order.
do

iSwitch = 0;
for(iRow = 0. iRow ¢ ilimit: iRow++)

#7 1f two adjacent elements are out of order., =wap their values :]
and redraw those two bars.
£

iComnpares++
if{ abarWork[iRow].len > abarWork[iRow + 1].len)
{

Swaps(&abarWork[iRow], &abarWork[iRow + 1

iSwitch = iRow;

Figure 11.3 Setting a Breakpoint in SORTDEMO.C

6. To run the program, click the Run button on the toolbar.

The SORTDEMO program loads and a window appears with the colored bars

in random order (you can sort the bars using any of several sort procedures in
SORTDEMO’s Sort menu).

7. To cause the program to execute the program section containing the breakpoint,
choose Bubble Sort from SORTDEMO’s Sort menu.

Chapter 11 Debugging Programs 185

The program runs until the breakpoint is reached and then returns the focus to
Visual Workbench at the line in the program containing the breakpoint.

With the program paused, you are free to examine and modify its state. You can
examine and change variable values using the Watch window, Locals window,
or QuickWatch dialog box, or examine and change register values and status
flags using the Registers window. You can also show the call stack that led to
the current state.

8. To continue the program to its completion, click the Run button on the toolbar
again (or press F5) and choose Exit from SORTDEMO’s File menu.

There are several ways you can proceed through the program after a breakpoint
has been reached. These are described in “Controlling Program Execution” on
page 189.

Using the Breakpoints Dialog Box

The Breakpoints dialog box (see Figure 11.4) keeps a list of all breakpoints as-
signed to your project. Breakpoints can be set in any of your project source files

or in an executable file. To add a breakpoint, you first select the breakpoint type,
fill in parameters if needed, and then choose the Add button. To remove a break-
point, you select it in the list and choose Delete. To make a breakpoint inactive, you
select it and choose Disable. For additional information on breakpoints, search for
breakpoints in Help or press F1 in the Breakpoints dialog box.

Type: |Break at Location |£| l Close I
Location: [.741 HR Cancel |
Expression: | |
Length: I:

Breakpoints:

+ "{.sortdemo.c.} .741"

Disable

Dofete

Clear All

Figure 11.4 The Breakpoints Dialog Box

186

Visual Workbench User’s Guide

You can choose six types of breakpoints from the Type list box in the Breakpoints
dialog box. These let you determine where and when the program will pause execu-
tion. Breakpoint types are:

Break at Location
This is the simplest type of breakpoint and is the default type used. If you have
the insertion point on a line of code in a source file, this line automatically ap-
pears in the Location text box, making it easy to simply choose Add to add this
breakpoint. When your program’s execution reaches the breakpoint location, the
program stops temporarily and you can use other debugging features. See the
next section, “Breakpoints Involving Location,” for information on proper loca-
tion values.

Break at Location if Expression is True
You specify a location and an expression. Whenever execution reaches that lo-
cation, the debugger checks the expression. If the expression is true (nonzero),
the breakpoint is taken.

Break at Location if Expression has Changed
You specify a location and an expression that represents a variable or a portion
of memory. Type a variable or memory address in the Expression text box. If
the value of any byte has changed since the last time the debugger checked, the
breakpoint is taken. See “Breakpoints Involving Expressions™ on the next page
for more information.

Break when Expression is True
This breakpoint is taken whenever the expression becomes true. The debugger
evaluates the expression after every line or every instruction, instead of only at
a certain location. As a result, this type of breakpoint can greatly slow your pro-
gram’s execution.

Break when Expression has Changed
The debugger checks the variable or range of memory as each line or each
instruction is executed. You can also specify a range of memory by typing the
starting address in the Expression text box and the length in the Length text
box. This type of breakpoint can also slow your program’s execution. See
“Breakpoints Involving Expressions” on the next page for more information.

Break at WndProc if Message is Received
You specify a Windows callback function in the WndProc text box and use the
Messages dialog box to select either a single message or one or more classes
of messages on which to break. When a targeted message is received, the pro-
gram’s execution is paused at the specified WndProc. See “Breakpoints on
Messages” on the next page for more information.

Breakpoints Involving Location

You can enter a location directly into the Location text box by typing a location and
choosing the Add button. The location can be entered either as a line number (with
an optional filename) or as an address (in either hexadecimal or decimal notation).

Chapter 11 Debugging Programs 187

Registers can also be used to form the address. Use a period (.) to indicate a line
number and an exclamation point (!) to separate a filename from a line number. The
following table shows the various forms of syntax for specifying location:

-Format Example Sets breakpoint at:
Filename!.linenumber MyApp.cpp!.35 Line 35 in MYAPP.CPP
.linenumber .35 Line 35 in the active source file
Segment:Offset 0x2717:0x1222 Specified segment and offset
Offset 0x1222 Offset in code segment (CS)
Segment:Offset CS:0x1222 Offset in CS
Segment:Offset CS:IP Instruction pointer offset to CS
Offset Ip Instruction pointer offset to CS

Breakpoints Involving Expressions

Four of the breakpoint types evaluate whether an expression is true or has changed.
Depending on the breakpoint type, when the expression evaluates correctly, the
program pauses either immediately or at the specified location. To use one of these
types, you must first specify the desired expression in the Expression text box.

To detect when an expression has changed, you must enter a variable with a mem-
ory location (an I-value) in the Expression text box when you set the breakpoint.
For variables that are not pointers, the value of the Length text box should normally
be left as 1, since the length is calculated as the size of the variable multiplied by
the number in the Length text box.

When you specify the name of a pointer in the Expression text box (such as Ptr,
where Ptr is defined as int *Ptr), the breakpoint is set only when the address of
the pointer changes. To set a breakpoint when the memory pointed to by the pointer
changes, dereference the pointer in the Expression text box (for example, *Ptr),
and then specify the number of bytes in memory to examine in the Length text box.

Memory ranges can be set by typing a starting address in hexadecimal or decimal
notation in the Expression text box and the number of bytes in the Length text box.
Registers can be used for addresses.

Breakpoints on Messages

The breakpoint type “Break at WndProc if Message is Received” lets you set a
breakpoint that tests messages received by any exported Windows callback function
(window procedure). You can select whether to break on a specific message, or on
any message from a class of messages or from several classes of messages.

188 Visual Workbench User’s Guide

> To set a breakpoint on a message:
1. From the Debug menu, select Breakpoints.
The Breakpoints dialog box appears.

2. In the Type drop-down list box, select “Break at WndProc if Message is
Received.”

3. In the WndProc text box, specify the name of the Windows callback function
you want tested for messages.

If you are setting a breakpoint during a debug session, the drop-down list con-
tains all the exported functions in your project determined by the debugger to be
Windows callback functions; otherwise, it is blank.

4. Choose the Messages button to open the Messages dialog box (see Figure 11.5).

= Messages

]
O Class m;;l—l

Selection:

WM_ACTIVATE
WHM_ACTIVATEAPP
WM_ASKCBFORMATNAME
‘WM_CANCELMODE
‘wM_CHANGECBCHAIN
wWM_CHAR
'WM_CHARTOITEM

Class

Haouse +
Window

fngut

Spsiom

it

Figure 11.5 The Messages Dialog Box

In the Message Type group, select the Selection option button.
In the Selection list box, select the message.
Choose OK to close the Messages dialog box.

® N

Choose Close to close the Breakpoints dialog box.

You can follow the same basic procedure, with slight modification, to set a break-
point on one or more classes of messages.

» To set a breakpoint on any message in one or more classes:
1. From the Debug menu, select Breakpoints.

2. In the Type drop-down list box, select “Break at WndProc if Message is
Received.”

3. In the WndProc text box, specify the name of the exported Windows function.
4. Choose the Messages button to open the Messages dialog box.

Chapter 11 Debugging Programs 189

5. Inthe Message Type group, select the Class option button.
6. In the Class list box, select one or more message classes.
7. Choose OK to close the Messages dialog box.

8. Choose Close to close the Breakpoints dialog box.

If you set a breakpoint using either of these two procedures, the program will pause
execution at the specified exported Windows function (WndProc) when it receives
a message matching the qualifications.

Note If you are debugging a Microsoft Foundation Class Library program, setting
a breakpoint on a message may trace into the Microsoft Foundation Class Library
source code. The debugger then requires the path to the Microsoft Foundation Class
directory in order to open the file containing the breakpoint. If you do not have the
MEC Files Path set correctly in the Directories dialog box (accessed from the
Options menu), the debugger prompts you for a path. The debugger requires only
the base path (for example, CAMSVC\MEC).

Controlling Program Execution

Once a breakpoint is reached and the program stops, you can control program
execution with commands on the Debug menu. Most of these commands have
equivalent toolbar buttons. Table 11.2 lists the Debug Menu commands and their
actions.

Run Step Out
mEE R]

Step Into Step Over

E EE HE

Table 11.2 Debug Menu Commands

Debug Menu

Command Action

Go Executes code from the current statement until a breakpoint is
reached, a watchpoint expression becomes true, or the end of the
program is reached. (Equivalent to the Run button on the toolbar.)

Restart Resets execution to the first line of the program. It reloads the pro-
gram into memory and discards the current values of all variables
(breakpoints and watch expressions still apply). It automatically
halts at the main() or WinMain() function. (No toolbar equivalent.)

Stop Debugging Terminates the debugging session and returns to a normal editing

session. (No toolbar equivalent.)

190

Visual Workbench User’s Guide

Table 11.2 Debug Menu Commands (continued)

Debug Menu

Command Action

Step Into Steps into a function when it is called and steps through all of the
instructions in the function.

Step Over Single-steps through instructions in the program. If this command
is used when you reach a function call, the function is executed
without stepping through the function instructions.

Step Out Executes the program out of a function call and stops on the in-
struction immediately following the call to the function. This allows
you to step into a function without having to step all the way
through it.

Step to Cursor Executes the program as far as the line that currently has the cursor.

This is equivalent to setting a temporary breakpoint at the cursor
location. (No toolbar equivalent.)

Using the Watch Window

The Watch window allows you to enter variables you want to view or expressions
you want to see evaluated as the program progresses. You can enter values or ex-
pressions into the Watch window at any time, but they are only evaluated while
the program is in a debug session. The Watch window displays an error on watch
variables and expressions until a debug session begins.

A watch expression can be any valid C or C++ expression. For example, the fol-
lowing are all valid watch expressions in C and C++:

count
count + 1
count + 1 == 5

For relational expressions, the Watch window shows O if the expression is false
and 1 if the expression is true:

count + 1 ==5 =10
count + 1 ==56 =1

Cast operators can be used in the Watch window, even on user-defined types (such
as LPSTR).

Adding and Deleting Variables and Expressions

» To add a variable or expression to the Watch window:

1. While the program is paused between steps or at a breakpoint, move the inser-
tion point to the first blank line in the Watch window (see Figure 11.6).

Chapter 11 Debugging Programs 191

2. Type the variable name or expression.
3. Press ENTER.

The variable or expression is evaluated immediately. If the expression or vari-
able cannot be evaluated, an error message appears in the window next to the
variable or expression.

= <3> Watch u!

—abarWork[iRow]
len = 23 '~\x17'
—clr
nBlue = 0
nGreen = 255
nRed = 0
—abarWork[iRow + 1]
len = Y
-clr
nBlue = 2
nGreen =
nRed = 0
ilimit = 44
iRow = 0

55
0

Figure 11.6 The Watch Window

If you want, you can use the copy (CTRL+C) and paste (CTRL+V) commands to
copy variable names from your program source files into the Watch window. You
must always press ENTER to insert the variable or expression into the window.

You can also use the QuickWatch dialog box to add variables to the Watch win-
dow. This is described in “Using QuickWatch” on the next page.

To delete a variable or expression from the Watch window:
1. Move the insertion point to the line containing the variable or expression.

2. Select the entire variable name or expression using either the mouse or
SHIFT+LEFT ARROW and SHIFT+RIGHT ARROW.

3. Press the DEL key.

To learn how to modify variables in the Watch window, see “Modifying a
Variable” on page 193.

Expanding and Collapsing Variables

In the Watch window, Locals window, and QuickWatch dialog box, variables that
contain more than one element, such as arrays, structures, classes, or enumerated
types, are displayed with either a + or - sign preceding them (see Figure 11.7).

The + symbol indicates that the variable contains elements and can be expanded.
The — symbol indicates that the variable is fully expanded and can be collapsed.

192 Visual Workbench User’s Guide

= <2> Watch -]~
~Insertion
time = 25.9200 public
svaps = 428 public
compares = 467 public
done = 0 public
HabarWork = 0x420F:0=x3EB6
Insertion.done == 1 = 0

Figure 11.7 The Watch Window with Expanded and Collapsed Variables

» To expand or collapse a variable:
1. Move the insertion point to the line containing the variable.
2. Press ENTER.

Or double-click anywhere on the variable.

Using QuickWatch

QuickWatch is a dialog box that gives you a fast way to view variables and
expressions (see Figure 11.8). Unlike watch expressions, which remain in the
Watch window, the values of QuickWatch variables and expressions appear only
when you open the QuickWatch dialog box (although they can easily be added to
the Watch window from the QuickWatch dialog box). QuickWatch is useful in
exploratory debugging where you are checking a number of variables that are

suspect.
= QuickWatch
Subject:
-abarwWork = Ox4F07:0x0B34 | Zoom |
0] —
len = 26 k1A' [Add to Watch Window |
H11={.}] Modify._. |
+[21=4{.} cl
gy | ose |
+H4]={.}
+[5]={.} 4 | Help |

Figure 11.8 The QuickWatch Dialog Box

» To view a variable’s value or an expression’s result using QuickWatch:
1. Place the insertion point on a variable or expression in your code.
2. Press SHIFT+F9.
Or click the QuickWatch button on the toolbar.

Chapter 11 Debugging Programs 193

» To add a variable or expression to the Watch window from QuickWatch:
1. Place the insertion point on a variable or expression in your code.
2. Press SHIFT+F9.
Or click the QuickWatch button on the toolbar.
3. Choose Add to Watch Window.

The Watch window opens if it is not already open.

The QuickWatch dialog box also provides controls that allow you to expand
arrays or structures to see all their elements and to modify variables while the
program is at a breakpoint.

The Zoom button expands or contracts an array or structure. The button is
unavailable if the currently selected item cannot be expanded.

The Modify button opens the Modify Variable dialog box with the currently
selected item as the default.

Note that the QuickWatch dialog box is active only when your program is run-
ning in the debugger.

Modifying a Variable

While the program is paused at a breakpoint or between steps, you can change
the value of any variable in your program. This gives you the flexibility to try out
changes and see their results in real time or to recover from some logic error and
continue. You can modify any variable in either the Watch window or the Locals
window directly. Or you can modify any variable in your program by using the
QuickWatch dialog box.

» To modify the value of a variable in the Watch window or Locals window:

1. In the Watch window or Locals window, place the insertion point at the end of
the variable value and use the BACKSPACE key to delete the value.

2. Type the new value.
3. Press ENTER.

You can also modify expressions using this same procedure.

The Modify Variable dialog box (see Figure 11.9) is accessed from the Quick-
Watch dialog box. It allows you to modify the variable in the QuickWatch dialog
box or any variable in the program.

194 Visual Workbench User’s Guide

= Modify Variable
Variable: | [abarwork[0]).len | [Tox]
Current Value: 1 Cancel I

New Value: l!:ﬂ I

Figure 11.9 The Modify Variable Dialog Box

» To modify the value of a variable using the Modify Variable dialog box:
1. Place the insertion point on a variable in your code.
2. Click the QuickWatch button on the toolbar.
Or press SHIFT+F9.

The QuickWatch dialog box appears and displays the variable and its current
value.

3. In the QuickWatch dialog box, choose the Modify button.
Or press CTRL+F9.

The Modify Variable dialog box appears with the variable name in the Variable
text box.

4. Type anew value in the New Value text box.
5. Choose OK to close the Modify Variable dialog box.
6. Choose Close to close the QuickWatch dialog box.

To change the value of a structure or array, modify the individual fields or ele-
ments. You cannot change an entire array or structure all at once.

Using Show Call Stack

During a debug session, you can view all the functions that have been called but
have not returned. The Show Call Stack command on the Debug menu opens a
dialog box that lists the function calls that led to the current statement (see Figure
11.10). If the Show Function Parameters check box is enabled, each call is shown
with the arguments passed to it. The most recently executed function is listed
first.

Chapter 11 Debugging Programs 195

=| Call Stack

G
MainwWndProc(22008,273,32,0)

USER!(1) 043f:27bb()
WinMain(17310.0.0x43BF:0x0080,1)
_stubmain

_astart
0000:0000()

Figure 11.10 The Call Stack Dialog Box

» To observe the behavior of a function call:
1. Place the insertion point at the desired location in the function.

2. From the Debug menu, choose the Continue to Cursor command to execute your
program to the location of the insertion point.

The Locals window is updated automatically to show the local variables for the
function or procedure. Expressions and variables in the Watch window are also
reevaluated in the call context.

3. From the Debug menu, choose Show Call Stack.

While the Call Stack dialog box is open, you can select any function shown in
the function list, and the function’s code will be displayed in the source window.

Using the Registers Window

The Registers window (see Figure 11.11) displays the names and current values of
the native CPU registers and flags. You can change the value of any register or flag
directly in the Registers window while the program is being debugged.

= <2> Registers n -
AX = 01d3 BX = 00b0 CX = 0000 DX = 4lcf
SP = 3916 BP = 391c SI = 3e7e DI = 0010
DS = 420f ES = 000G S5 = 420f CS = 4227
IP = 12eB8 FL = 0246

NV UP EI PL ZR Wi PE HC

Figure 11.11 The Registers Window

» To change the value of any register in the Registers window:

1. Use the TAB key or mouse to move the insertion point to the beginning of a
register value.

2. Enter the new value by overtyping the current value.

196

Visual Workbench User’s Guide

Important Changing register values may affect the next execution command. Be
especially careful with IP, BP, and the segment registers.

The flag values displayed in the Registers window are:

Flag Set Symbol Clear Symbol
Overflow ov NV

Direction DN UP

Interrupt -EI DI

Sign NG PL

Zero ZR NZ

Auxiliary carry AC NA

Parity PE PO

Carry CY NC

To set or clear a flag in the Registers window:
1. Use the TAB key or mouse to move the insertion point to the flag.
2. Press the SPACEBAR to toggle the flag.

The Registers window does not show 32-bit registers or p-code registers. Use
CodeView if you need these advanced features.

Other Debugging Features

The Visual Workbench debugger also has debugging commands and options for
switching between Hard and Soft mode debugging, for viewing numbers in hexa-
decimal or decimal format, and for viewing source code as mixed source and
assembly listings.

Hard/Soft Mode Debugging

Hard/Soft debug mode is set in the Debug dialog box, accessed from the Options
menu. This option selects whether or not the debugger traps messages from the
system queue when in break mode. In Hard mode, all keyboard and mouse input
goes to the debugger. This effectively disables all other applications. The debugger
automatically switches in and out of Hard mode when necessary.

Chapter 11 Debugging Programs 197

What is Hard Mode?

Applications written for Windows typically run in soft mode. Hard mode appeared
with Windows version 3.1 as a response to requests for specific debugging
requirements.

Hard mode is a “task exclusive” mode that any Windows-based application can
switch to using the appropriate API. While in hard mode, Windows directs all input
from either the mouse or the keyboard to the application that installed itself in Hard
mode.

How Does Hard Mode Affect the Debugger?

With Windows-hosted debuggers, there is the potential that the debugger might
destabilize the Windows system by interacting with it. For this reason, the Visual
Workbench integrated debugger switches by itself to Hard mode every time it
breaks debugging execution (as a result of a step command, stopping at a break-
point, or encountering an exception, for example) while the system is in a critical
(non-interruptable) processing stage. This can occur while debugging menu events,
system modal windows, or intertask messages, among other situations.

Requirements and Restrictions

Although Soft mode is the default mode for the integrated debugger, you can spe-
cifically request that the debugger switch to Hard mode when in break mode. This
might be useful to debug time-critical events such as intertask DDE (dynamic data
exchange) transactions.

Because Hard mode is, by design, a “task exclusive” mode, no other application
can be switched to or started while this mode is operating. As a reminder, the title
bar displays [break - hard mode] instead of [break] every time the debug-
ger switches to this mode.

While in Hard mode, no other application can be started. In Visual Workbench, this
means you do not have access to the following functionality:

= Help

= App Studio

= Running tools on the Tools menu

= Printing

Also, you cannot minimize Visual Workbench since the Windows default is to
switch to another task when this happens. Another restriction of Hard mode is that

Windows will not repaint anything on the screen except the regions that belong to
the debugger frame and its child windows.

198 Visual Workbench User’s Guide

Considering the restrictions inherent in the use of Hard mode debugging, you should
consider using this mode only when necessary.

Debug Display Options
The debugging display options are listed in Table 11.3. The menus or dialog
boxes where you find these features are listed in parentheses following the action.

Table 11.3 Additional Debugging Features

Feature Action

Hexadecimal Display Toggles the format of all numbers displayed in the Locals and
Watch windows, as well as in several dialog boxes. The
default format is base 10. When this option is selected, the
format is base 16. (Options menu, Debug dialog box)

Mixed Source/Asm Toggles a source display that includes assembly code
integrated with source code. When this command is checked,
the debugger single-steps assembly lines not source lines and
breakpoints can be set in assembly code. (View menu)

See the online reference for complete information about these commands.

199

CHAPTER 12

Customizing Visual Workbench

Many parts of Visual Workbench can be customized to suit your programming
needs. This chapter discusses how you can:

= Add commands and applications to the Tools menu.
= Modify display colors.

= Change the font type and size in source windows.

Font and window information are saved and loaded as part of the workspace
information. For information on naming and saving any custom workspaces you
create, see “Using a Workspace” on page 104 in Chapter 8.

You can also customize many features of the Visual Workbench editor using the
Editor dialog box, opened from the Options menu. For information on customiz-
ing the editor, see Chapter 7, “Using the Editor.”

Modifying the Tools Menu

The Tools menu is a convenient place from which to run frequently used
MS-DOS-based and Windows-based tools while you are in Visual Workbench.
Once you’ve added an application to the Tools menu, you can run it from the
menu. You use the Tools command on the Options menu to add, delete, and edit
Tools menu items.

Adding Commands to the Tools Menu

You can add up to eight commands to the Tools menu, including MS-DOS com-
mands (with .EXE or .COM files), and MS-DOS—based and Windows-based
applications.

To familiarize yourself with the steps in adding a program to the Tools menu, use
the Notepad accessory that comes with Windows.

200 Visual Workbench User’s Guide

» To add a program to the Tools menu and then run it:
1. From the Options menu, choose Tools.
The Tools dialog box appears (see Figure 12.1).

Tools

Menu Contents: | dd... I I 0K l
eann Gt T — 2

tCodeView | Delete I | Cancel I
I Move iin I | Help I
Command Line: ID:\MSVC\BIN\APS'IUDID.EXE |
Menu Text: |&App Studio |
Arquments: | $Rc |
|

Initial Directory: |

l:| Ask for Arguments

Figure 12.1 The Tools Dialog Box

2. Choose Add to open the Add Tool dialog box (see Figure 12.2).

== Add Tool
File Name: Directories:
apstudio.exe = e\ +
bscmake. exe
Ao
c1xx3216.exe n
cl.exe
cvpack._exe
implib_exe
lib.exe ¥
List Files of Type: Drives:
Iinculable [*.exe) IEI | [|El

Figure 12.2 The Add Tool Dialog Box

3. Select the directory in which Windows is installed.
4. Select NOTEPAD.EXE from the list of filenames and choose OK.
The Tools dialog box reappears.

You can change the default menu name by editing the Menu Text text box.
You can also add arguments to be passed to the program by typing them in the
Arguments text box (see “Using Argument Macros” on page 202), or set the
initial directory for your program by typing it in the Initial Directory text box.

Chapter 12 Customizing Visual Workbench 201

Note If the program you are adding to the Tools menu has a .PIF file, the
startup directory specified by the .PIF file overrides the directory specified in the
Initial Directory text box.

5. Choose OK. 7

The name of the program now appears on the Tools menu. To run the program,
choose it from the menu.

Editing a Tools Menu Command

» To edit a Tools menu command:
1. From the Options menu, choose Tools.
2. Under Menu Contents, select the item you want to edit.
3. Perform one or more of the following actions:

= To move the selected command up one position in the menu, choose
Move Up.

= Tomove the selected command down one position, choose Move Down.

= To change the menu title, the command line (tool path), command-line
arguments, or the initial directory, type the new information in the appro-
priate text box.

If you want to specify a letter in the menu title as an access key (a menu accel-
erator key), precede that letter in the Menu Text text box with an ampersand
(&). The first letter in the title is the keyboard access key by default.

If you want to be prompted for command-line arguments each time you run the
tool, select the Ask for Arguments check box.

4. Choose OK.

» To delete a command from the Tools menu:
1. From the Options menu, choose Tools.

2. Under Menu Contents, select the command you want to delete from the Menu
Contents list.

3. Choose Delete to remove the program from the list.
4. Choose OK.

Tips For Using MS-DOS Tools

If you have particular MS-DOS tools or programs you like to use, here are a couple
of tips to make it easier to integrate these tools with Visual Workbench.

202

Visual Workbench User’s Guide

To keep an MS-DOS window open with the output of a command-line tool after the
tool has been run from the Tools menu, use the Windows PIF Editor to edit the file
_DEFAULT.PIF and clear the Close Window on Exit check box. You will then
need to close the MS-DOS window using the Control-menu box whenever you

run the tool, but you will be able to view the tool’s output when it has finished.

To use any of the MS-DOS commands (such as DIR) or command-line operations
(such as piping) that don’t have an executable file, type the complete path to
COMMAND.COM in the Command Line text box and type /C followed by the
commands you want to invoke in the Arguments text box. For example, the follow-
ing parameters in the Tools dialog box cause an MS-DOS window to open with a
paged directory listing of the project directory when the Dir command on the Tools
menu is selected:

Text Box Entry
Command Line C:\DOS\COMMAND.COM
Menu Text Dir
Arguments /C DIR | MORE
Initial Directory $ProjDir

Using Argument Macros

You can specify arguments for any program that you add to the Tools menu by
entering the arguments in the Arguments text box. To help you integrate your tools
with the current status of the Visual Workbench environment, Visual Workbench
provides a set of 10 argument macros (see Table 12.1).

Table 12.1 Visual Workbench Argument Macros

Macro Name Expands to a String Containing

$File The complete filename of the current source (defined as
drive+path+filename), blank if a nonsource window is active.

$FileName The filename of the current source (defined as filename), blank if a
nonsource window is active.

$FileDir The directory of the current source (defined as drive+path), blank if a
nonsource window is active.

$Proj The current project base name (defined as filename), blank if no pro-
ject is currently open.

$ProjDir The directory of the current project (defined as drive+path), blank if no
project is currently open.

$Line The current cursor line position within the active window.

$Col The current cursor column position within the active window.

$Dir The current working directory (defined as drive+path).

Chapter 12 Customizing Visual Workbench 203

Table 12.1 Visual Workbench Argument Macros (continued)

Macro Name Expands to a String Containing
$Target The current project target name (defined as drive+path+filename).
“"$RC " A resource file (*.RC). For Visual Workbench projects, this is the first

resource file in the project list. For external projects, it is $Target.RC.
If there is no resource file or there is no active project, $RC is blank.

Macro recognition is case insensitive. All path macros end in a backslash (\).

To use a macro as an argument, type the macro name in the Arguments text box.
Or, for macros that expand to a directory, you can type the macro name in the
Initial Directory box. As an example, the following procedure demonstrates how
to add the $File argument macro to the Windows Notepad accessory (installed in
a previous procedure).

» To add the $File macro to an installed tool and then run it:
1. From the Options menu, choose Tools.
2. Under Menu Contents, select the command you want to edit.
In this case, select the Notepad accessory installed earlier.
In the Arguments text box, type $File.
Choose OK to close the Tools dialog box.
Open any source file or make an open source file active by clicking in it.

S

From the Tools menu, choose Notepad.

The Windows Notepad editor opens with the active Visual Workbench source
file as its text file.

Setting Directories

When Visual C++ is installed, the Setup program determines the correct directory
paths for several file types and updates the Directories dialog box with these paths.
The file types are:

» Build utilities (executable files)

= Include files

» Libraries

= Microsoft Foundation Class Library source files

= Help files

204

Visual Workbench User’s Guide

The Directories dialog box, accessed by choosing Directories from the Options
menu (see Figure 12.3), lets you edit the directory paths where Visual Workbench
looks for each of the file types. The directories for the top three file types in the
list (executable files, include files, and libraries) are drop-down lists that can
contain up to four different paths, which makes it easy to quickly change build
environments.

Executable Files Path: 'c:\msvc\bin | E I oK I
Include Files Path: |c:‘ ------ chinclude:c:\msvcimfchinclud —| E ’ml
Library Files Path: Ic:\msvc\lib:c:\msvc\mfc\lib | lg
Help Files Path: |§:\msvc\help |
MFC Files Path: [e:AmsvcAmic |

Figure 12.3 The Directories Dialog Box

The Directories dialog box contains the following drop-down list boxes:

Executable Files Path
Specifies where the build utilities, such as NMAKE, LINK, and BSCMAKE,
reside. The build uses MS-DOS tools and requires an MS-DOS path.

Include Files Path
Specifies where the compiler should look for include files surrounded by angle
brackets (< and >) (for example, include <stdio.h>).

Library Files Path

Specifies where the linker should look for libraries to resolve external
references.

In addition, the Directories dialog box contains the following text boxes:

Help Files Path
Specifies where Help files accessed from Visual Workbench are located.

MEFC Files Path
Specifies where the base directory for the Microsoft Foundation Class Library
is located. This is needed when you use the debugger to trace into class library

source code or when you use the browser to jump to definitions or references
in the class library source code.

Directory information is stored in the MSVC.INI file. When you first install Visual
Workbench (or if you delete the MSVC.INI file and then run Visual Workbench),
the MS-DOS environment variables PATH, INCLUDE, and LIB are used to build
the corresponding directory paths. These environment directories are appended to
the Visual C++ directories in which you install Visual Workbench. Thereafter,

Chapter 12 Customizing Visual Workbench 205

Visual Workbench uses the directory paths in the Directories dialog box, regardless
of your current MS-DOS environment variables.

Changing Syntax Coloring

Using different colors for various language elements such as functions and vari-
ables gives you immediate visual clues about the structure of your source code.
You can change the default colors of these elements as well as the color of other
text in the development environment such as reserved words, breakpoints, errors,
and tags. You can also turn off syntax coloring for all source files. These changes
are global and affect all source files with extensions recognized by Visual Work-
bench. To make global syntax coloring changes, choose Color from the Options
menu.

Visual Workbench performs syntax coloring based on file extensions. You can
override Visual Workbench’s default coloring for a file by choosing Syntax
Coloring from the View menu. This allows you to specify C, C++, or no syntax
coloring for any individual file.

Making Global Display Changes

To familiarize yourself with the steps in changing screen colors, change the color
of comments in the source window to black text on a light-blue background.

» To change the colors in the source window:
1. From the Options menu, choose Color.
The Color dialog box appears (see Figure 12.4).

[Locals Window

Registers Window

Butput Window

Breakpoint Line
Cumnient Line

[X] Syntax Coloring

Figure 12.4 The Color Dialog Box

206

Visual Workbench User’'s Guide

2. From the Items list, select the item you want to change.
For this example, select Comment.

3. In the Foreground Color and Background Color groups, select the color squares
to represent the item.

For example, select the light-blue square in the Background Color group and the
black square in the Foreground Color group. The new color combination is
shown in the Sample Text box.

4. Choose OK to apply the change to the source window.
You can change several items in the Items list before choosing OK.

To change a source window item back to its original colors:

1. From the Options menu, choose Color.

2. From the Items list, select the source item to be restored.
For example, select Comment.

3. Choose Restore to Default.

4. Choose OK.

Display items such as keywords and identifiers can be changed back to their
default colors without changing the foreground and background colors of the
source text.

To restore all items to their default values, choose Restore All Defaults.

Source File Syntax Coloring

For any source file in Visual Workbench, you can specify which syntax coloring
to apply (C or C++), or whether to turn off syntax coloring altogether. This is
useful if you have C or C++ code in a header file with a filename extension other
than .H, .HPP, or HXX, or if you have C or C++ source code with filename
extensions that Visual Workbench doesn’t recognize. (You should be cautious
when using nonstandard filename extensions, however, since the filename exten-
sions .CPP, .CXX, and .C are used by Visual Workbench to determine whether
the C++ or C compiler is used during the build.)

» To change syntax coloring in an individual source file:

1. Click in the source file window or use the Window menu to make the source
window active.

If there are multiple windows open on the source file, select one of them. Syntax
coloring changes will appear in all windows opened on the source file.

2. From the View menu, select Syntax Coloring.
A cascading menu appears on the right with three choices: C, C++, and None.

Chapter 12 Customizing Visual Workbench 207

3. Choose C or C++ to determine syntax coloring for that source file.
Or choose None to turn syntax coloring off.

Note Global syntax coloring must be enabled before you can use the Syntax Color-
ing command on the View menu on any specific file. To enable global syntax
coloring, choose Color from the Options menu and then select the Syntax Coloring
check box in the Color dialog box.

Setting Font Type and Size

You can specify which font type and size appear in a Visual Workbench source
window. You can choose any font type and size found in your setup of Windows.
You can also determine what will be the default font for any new window.

» To set the font type, style, and size:
1. From the Options menu, choose Font.
The Font dialog box appears (see Figure 12.5).
2. From the Font list box, select the font you want to apply.
The sample text in the Sample box changes to the font you selected.
3. Optionally, select the font style from the Font Style list box.
The sample text in the Sample box changes to the font style you selected.
4. From the Size list box, select the font size.
The sample text in the Sample box changes to the font size you selected.
5. Choose OK.

= Font
Font Style:

Default Font:
Courier Regular -10pt

AaBbYvZz

Use as Default Font l

This is a printer font. The closest matching
‘Windows font will be used on your screen.

Figure 12.5 The Font Dialog Box

208 Visual Workbench User’s Guide

» To set the default font for new source windows:
1. Choose a font, style, and size as just described.
2. Choose the Use as Default Font button.

The currently selected font, style, and size appear in the Default Font
description.

3. Choose OK.

The default font is automatically applied to any new or opened window. The
default font information is stored with other Visual Workbench information and
is persistent between sessions.

Text within the source window can be only one font and size. Multiple fonts can-
not be displayed in the same source window. However, each source window can
contain a different font and size, even when source windows with different fonts
are attached to the same source file.

209

CHAPTER 13

Using Visual Workbench
with Other Visual C++ Tools

To develop a Visual C++ application, you use four Visual C++ tools. Two of these,
Visual Workbench and App Studio, are major applications. The other two are spe-
cialized “wizards” installed as menu items in these applications:

= AppWizard is used to generate Visual C++ application starter files. AppWizard
is accessed from Visual Workbench.

» ClassWizard is used to create classes, map messages to class-member functions,
and map controls to member variables. ClassWizard is accessed from either
Visual Workbench or App Studio.

This chapter discusses how Visual Workbench fits into the process of developing

a Visual C++ application that uses the Microsoft Foundation classes—that is, how
you see the entire process from the viewpoint of Visual Workbench. In this context,
it focuses on programming activities you encounter while running Visual Work-
bench, such as opening App Studio and running AppWizard and ClassWizard.

Since AppWizard is only run from Visual Workbench, it is described in detail.
Since ClassWizard can be run from either App Studio or Visual Workbench,

the activities likely to be performed from a Visual Workbench invocation of
ClassWizard are described here. The primary reference information for
ClassWizard can be found in Chapter 9, “Using ClassWizard,” in the App Studio
User’s Guide.

For a global view of how all the tools work together, see Chapter 4 in this manual,
“Developing a Microsoft Visual C++ Application.”

Using AppWizard

AppWizard is used to generate a set of starter files for a Visual C++ application
that uses the Microsoft Foundation classes. This set includes all the files required
to build a Windows-based application, including source and header files, resource
files, a module-definition file, a project file, and so on. AppWizard must be used

210

Visual Workbench User’s Guide

first in the development process, primarily so that you have starter files, but also so
that your files are compatible with ClassWizard.

Building the resulting project produces a shell application with a wealth of built-in
functionality. For example, you get built-in handling of the File menu’s Open and
Save As commands, an About dialog box, and an icon. By selecting options in
AppWizard, you can add a toolbar and status bar, a Printer Setup dialog box, a
fully implemented Print Preview, a Print command and toolbar button, context-sen-
sitive Help, support for custom VBX controls (custom controls compatible with
Visual Basic), and support for object linking and embedding (OLE).

This section describes the MFC AppWizard dialog box and the Options and
Classes dialog boxes that are accessed from it. For tutorial information on using
AppWizard to create a Visual C++ application, see Chapter 2, “Creating a New
Application with AppWizard,” in the Class Libraries User’s Guide.

Opening and Closing AppWizard

To open AppWizard, choose the AppWizard command from the Visual Workbench
Project menu. After using AppWizard to specify your application’s name, directory,
options, and classes—as described in the following sections—choose the OK but-
ton to generate the starter files.

When AppWizard is finished, it creates a Visual Workbench project that allows
you to immediately build and run the application. A message box appears to tell you
AppWizard has generated the files, Choose OK in the message box to close
AppWizard and to open the newly created project in Visual Workbench.

Specifying the Project Name and Location

The MFC AppWizard dialog box (see Figure 13.1) allows you to select the project
name and the subdirectory name and root path where the project files will reside.
The project name is given the extension .MAK and appears in the complete path at
the top of the Project Path group. It is also used as a base to create class names and
source and header filenames.

Chapter 13 Using Visual Workbench with Other Visual C++ Tools 211

Project Name: @app I I 0K I

[~ Project Path

\myapp\myapp.mak

c:\msvc\tempdir

Directory:

e i Classes...
[msve
= tempdir

New Subdirectory:

[myapp]
Drive:
I c BI

Figure 13.1 The MFC AppWizard Dialog Box

To select the project name and subdirectory name:

1.

Open the MFC AppWizard dialog box, if it isn’t already open, by choosing
AppWizard from the Project menu.

Type a name in the Project Name box.

Notice that the name you type is automatically entered as a directory name in
the New Subdirectory box. It is also entered in the project file path above the
Directory box.

The maximum number of valid characters in the Project Name box and the New
Subdirectory box is eight.

If you do not want the subdirectory name to be the same as the project name,
you can type a different name in the New Subdirectory box, or you can leave the
subdirectory name blank.

See the next procedure if you want to change the directory path that precedes the
subdirectory.

You must select the drive and directory path to the subdirectory that will contain the
generated files. To do this, you use the Directory box and the Drive box. These two
controls work the same as similar controls in the Open File and Save As dialog
boxes.

To select a drive and directory path for the application’s subdirectory:

1.

In the Drive drop-down list box, select the drive you want.

2. In the Directory box, select the directory path by double-clicking the directory

icons.

212 Visual Workbench User’s Guide

The drive letter and directory path you select are reflected in the project path.
You can omit the subdirectory. The format for the entire path is:

drive:\directorypathl[\subdirectory]|\projectname. MAK

Selecting Options

AppWizard can add the basic skeleton code to support a comprehensive set of ap-
plication options. Obviously, the more functionality your application supports, the
larger it will be. However, if your application needs to support some specific func-
tionality—such as providing context-sensitive hooks to Help, for instance—
AppWizard makes the addition much easier.

To select the options you want your application to support, choose the Options
button in the MFC AppWizard dialog box and then enable or disable the various
check boxes in the resulting Options dialog box (see Figure 13.2). When you have
finished selecting options, close the Options dialog box by choosing OK.

B ibiuitiple Document interface!
& Initial Toolbar

Printing and Print Preview
[Custom ¥BX Controls

[] Context Sensitive Help

[OLE Client

|:| External Makefile
[Generate S C

Cancel

Figure 13.2 AppWizard’s Options Dialog Box

You can select these options in the Options dialog box:

Multiple Document Interface
This option lets you select the type of project you want to create. There are two
project types available. When this option is checked, AppWizard creates an
MDI application. When this option is cleared (not checked), it creates an SDI
application.

= An SDI (single document interface) application allows a user to work with
just one document at a time. The Windows Notepad is an example of an SDI
application.

= An MDI (multiple document interface) application allows a user to open
multiple documents, each with its own window. The Windows File Manager
is an example of an MDI application.

Chapter 13 Using Visual Workbench with Other Visual C++ Tools 213

Initial Toolbar
AppWizard generates code for a toolbar and a status bar. The toolbar contains
buttons for creating a new document, opening and saving document files, cut-
ting, copying and pasting, printing, displaying the About dialog box, and invok-
ing Help. The status bar contains automatic indicators for the keyboard’s CAPS
LOCK, NUM LOCK, and SCROLL LOCK keys and a message line that displays help
strings for menu commands and toolbar buttons. Enabling this option also adds
menu commands to display or hide the toolbar and status bar.

Printing and Print Preview
AppWizard generates the code to handle print, print setup, and print preview
commands by calling member functions in the CView class from the Microsoft
Foundation Class Library. It also adds commands for these functions to the
application’s menu.

Custom VBX Controls
AppWizard enables the use of custom VBX controls (custom controls com-
patible with Visual Basic). This is accomplished by a single function,
EnableVBX(), which includes the run-time code required to use VBX controls.
You use App Studio to incorporate custom VBX controls in your user interface.
To learn how to write the supporting code, see Chapter 17 in the Class Library
User’s Guide.

Context Sensitive Help
AppWizard generates a set of help files (see page 217) that are used to provide
context-sensitive help. Help support requires the help compiler, which is pro-
vided with Visual C++ Professional Edition.

OLE Client
AppWizard generates application support code for an OLE (object linking
and embedding) client application. This allows OLE-linked and OLE-embedded
objects to be placed in your application’s documents. When you select this
option, the document class is derived from COleClientDoc instead of
CDocument. Selecting this option also enables the standard OLE resources
and adds extra OLE commands to the application’s menu bar. For more infor-
mation about how to write code for OLE, see Chapter 18 in the Class Library
User’s Guide.

External Makefile
By default, AppWizard generates a project file that is compatible with Visual
Workbench (and NMAKE). Select this option if you want AppWizard to gen-
erate an NMAKE makefile that can be directly edited but must be used as an
external project from within Visual Workbench.

Generate Source Comments
AppWizard generates and inserts comments in the source files that guide you in
writing your program. This includes indicators where you need to add your own
code. It is a good idea to enable this option.

214

Visual Workbench User’s Guide

Modifying Classes

AppWizard names your application’s classes and files by using the project name
you specify in the Project Name box. The Classes dialog box (see Figure 13.3),
accessed with the Classes button in the MFC AppWizard dialog box, lets you mod-
ify components of each of the four classes that are created by AppWizard. Some
classes allow more modification of options than others.

= Classes
New CHuanDa T —

Application |CMainFrame
Classes: CMyappDoc

Cancel

CHyappView
Class Name: Header File:
I CMyappApp | | syapph l
Base Class: Implementation File:
I {9t I | WYARP.LPR I

Figure 13.3 AppWizard’s Classes Dialog Box

New Application Classes

Three of the four classes available in the New Application Classes list box are
derived from your project name. In each of the following class names, the place-
holder Prjname indicates the project name you have specified.

CPrjnameApp

This is the main application class. The Base Class, Header File, and Implementa-
tion File text boxes are all dimmed, indicating that you cannot change any of these
options, since these must reside in the main project. You can, however, change

the name of the class.

CMainFrame

This is the class that handles the window frame, which contains the toolbar and
status bar. You cannot change the base class, since this is determined by the project
type you choose (MDI or SDI). However, you can change the name of the class or
the names of the header and source files associated with the window frame code by
typing new names in the Header File and Implementation File text boxes.

CPrjnameDoc

This is the class that contains the document data and handles saving it to disk and
recalling it from disk, among other things. You cannot change the base class, which

Chapter 13 Using Visual Workbench with Other Visual C++ Tools 215

will be CDocument (or COleClientDoc if OLE support is selected), but you can
change the names of the class, the header file, and the source (implementation) file.

A CPrjnameDoc class is associated with a document type and has the built-in
functionality to automatically serialize (save and load) the document to and from
disk in response to the Save As and Open commands on the File menu. You can
change the name that is used wherever the application’s native document type is
referred to by typing a new name (up to six characters) in the Doc Type Name box.
Examples of where the document type name is used include the default filename
(CPrjname.DOC), the Windows shell registration name, the title bar of a document
window, and constants referred to in the code created by AppWizard. This name is
also used in the File Manager shell and OLE server options when a file type is
needed.

You can also choose a filename extension for the document by typing up to three
characters in the File Extension box. The filename extension is added to document
files saved from the application and appears as a file filter in the application’s Open
File and Save As dialog boxes.

CPrjnameView

This class is used to display document data inside a window. You can change the
name of the class, the header file, or the source file; however, you cannot change
the name of the base class.

AppWizard-Generated Files

AppWizard always generates a basic list of files, regardless of which options you
choose. The Context Sensitive Help and Initial Toolbar options result in additional
files. This section first describes the core files common to all AppWizard-generated
applications and then describes files that are added when you select toolbar and
Help support.

AppWizard uses the name that you specify in the Project Name box to derive names
for most of its files and classes. In the following descriptions, where the full project
name is used in the filename, PRINAME is used as a placeholder for the name you
specify. For some filenames, the project name is truncated to five characters. In
those cases, PRJNA is used as a placeholder for the truncated project name.

Note The name substitutions indicated in these filenames may not apply if you have
used the Classes dialog box to alter any of these names.

Standard AppWizard Files

This section describes the various files generated by AppWizard and categorizes
them by function. In the project directory, you’ll also find a file named

216

Visual Workbench User’s Guide

README.TXT, which describes each of the files created by AppWizard using the
actual filenames created by AppWizard for your specific project.

Project and Makefiles

PRINAMEMAK
This is the project file for Visual Workbench. It is also an NMAKE-compatible
file. If you select the External Makefile option in AppWizard’s Options dialog
box, this can only be used as an external project from within Visual Workbench.

PRINAME.CLW
This file contains information used by ClassWizard to edit existing classes or
add new classes. ClassWizard also uses this file to store information needed to
generate and edit message maps and dialog data maps, and to generate prototype
member functions.

Resource and Module-Definition Files

PRINAME RC, RESOURCE.H
This is the resource file for the project and its header file. The resource file
contains the default menu definition and accelerator and string tables for a
generic Visual C++ application. It also specifies a default About dialog box
and an icon file (RES\PR/INAME.ICO). The resource file includes the file
STDAFX.RC for standard Microsoft Foundation class resources. If toolbar
support has been specified as an option, it also specifies the toolbar bitmap file
(RES\TOOLBAR.BMP).

RES\PR/NAME.ICO
This is the icon file for the generic Visual C++ application. This icon appears
when the application is minimized.

PRJNAME.DEF
This is the module-definition file for the application, which includes the name
and description of the project as well as the size and type of the run-time heap
and run-time stack. The heap and stack sizes are typical for this type of
Microsoft Foundation Class Library application.

Application Source and Header Files

MAINFRM.CPP, MAINFRM.H
These files derive the CMainFrame class from either CFrameWnd (for SDI
applications), or CMDIFrameWnd (for MDI applications). The CMainFrame
class handles the creation of toolbar buttons and the status bar, if the Initial
Toolbar check box is enabled in AppWizard’s Options dialog box. The
MAINFRM.CPP file also contains the array of object IDs for the default toolbar
buttons provided with a Visual C-++ application.

PRINAME H
This is the main include file for the application. It contains all global symbols
and #include directives for other header files.

Chapter 13 Using Visual Workbench with Other Visual C++ Tools 217

PRJNAME.CPP
This file is the main application source file. It creates one instance of the
class CPrjnameApp (which is derived from CWinApp) and overrides the
InitInstance member function.

CPrjnameApp::InitInstance does several things. It registers document
templates, which serve as a connection between documents and templates,
creates a main frame window, and creates an empty document (or opens a
document if one is specified as a command-line argument to the application). It
also enables support for custom VBX control and F1-Help, if these options have
been chosen.

PRJNADOC.CPP, PRINADOC.H
These files derive and implement the document class, named CPrjnameDoc,
and include skeleton member functions to initialize a document, serialize (save
and load) a document, and implement debugging diagnostics. In an MDI appli-
cation, you use ClassWizard to add more document classes.

PRJNAVW.CPP, PRINAVW.H
These files derive and implement the view class, named CPrjnameView, that
is used to display and print the document data. The CPrjnameView class is de-
rived from CView and has skeleton member functions to draw the view and
implement debugging diagnostics. In an MDI application, you use ClassWizard
to add more view classes. If you have enabled support for printing, message-map
entries are added for print, print setup, and print preview command messages.
These entries call the corresponding member functions in the CView class.

Precompiled Header Files

STDAFX.CPP, STDAFX H
These files are used to build a precompiled header file PR/INAME.PCH and a
precompiled types file PRINAME.PCT.

Files Added by Options

Most options use the standard files to implement their features. The exceptions are
the Initial Toolbar and Context Sensitive Help options. Toolbar support adds just
one file, RES\TOOLBAR.BMP. Help support provides a number of files and cre-
ates a new directory \HLP to contain most of them.

Help Option
MAKEHELP.BAT
This batch file can be used to create Help for your application.

PRINAME .HPJ
This is the Help project file used by the help compiler to create your applica-
tion’s help file.

HLP* BMP
These are a collection of bitmap files used by the help file topics.

218

Visual Workbench User’s Guide

HLP\ALIAS.H
This file is used to create help topic aliases, which map one context to another
existing context. These are used when several commands need to be mapped to
the same help topic. This is included in the [ALIAS] section of the Help project
(.HPJ) file.

HLP\WMAP.H
This file contains mappings for objects and commands that are application spe-
cific. This is included in the [MAP] section of the .HPJ file.

HLP\AFX.RTF
This file contains the standard help topics for Microsoft Foundation Class
Library commands and screen objects.

HLP\KEYS.RTF
This file contains Help for keys used in applications for Windows.

HLP\WMDIRTF
This is the template help file for MDI applications.

HLP\TERMS.RTF
This is the template help file for your application’s glossary of terms.

Running App Studio

App Studio is the application you use to create and edit resources. Although you can
run App Studio independently, App Studio, Visual Workbench, and ClassWizard
are more easily integrated if you run App Studio from within Visual Workbench.
You can run App Studio from Visual Workbench using one of two methods:

= Select App Studio from the Tools menu

= Open a project resource file (assuming the Open .RC Files Using App Studio
check box in the Editor dialog box is enabled)

If you occasionally edit your resource files in a text editor, you may prefer to open
App Studio from the Tools menu and use the Open File dialog box to open resource
files as text in a Visual Workbench source window.

App Studio is installed on the Tools menu with the $RC argument macro. When
you choose App Studio from the Tools menu, the $RC macro expands to either the
first resource file in the project list (for Visual Workbench projects) or the target
name with an .RC extension (for external projects). For external projects, the target
name is displayed in the Debug Target Name box in the Project Options dialog box.

If no resource file exists, App Studio is opened without one.

Since App Studio creates and edits resources graphically, you may not feel the need
to edit your resource files in a text editor. In this case, it can be useful to open App

Chapter 13 Using Visual Workbench with Other Visual C++ Tools 219

Studio by simply selecting a resource file in Visual Workbench’s Open File dialog
box.

Note To open App Studio on a resource file that you select in the Open File dialog
box or from the toolbar’s Project Files list, enable the Open RC Files Using App
Studio check box in the Editor dialog box (accessed from the Options menu). The
state of this check box persists between Visual Workbench sessions.

You can use the Visual Workbench Open File dialog box to open App Studio on
several file types, including:

= Resource files (RC).

= Graphics image files (BMP, .ICO, or .CUR).

= Executable files (EXE, .DLL, or .VBX).

When you open App Studio on a resource file, the file is first compiled using the
resource compiler and the resulting data is stored in memory for App Studio’s use.
App Studio stores this information in a file with the extension .APS for later recall
and for caching when memory is limited.

When you open a graphics image file, it becomes an App Studio resource, and when
you open an executable file, its resources are extracted and can be modified in App
Studio.

» To run App Studio on a resource, graphics image, or executable file:
1. From the Visual Workbench File menu, choose Open.
2. In the Open File dialog box, select the filename.
3. Choose OK.

App Studio is launched with the filename as an argument. App Studio compiles
the resource file first. If an error occurs during this stage, the resource file is
opened in Visual Workbench as a text file with the insertion point on the line
that caused the error.

Since the resource file is usually included in the project list, you can also use the
Project Files button on the toolbar to open App Studio.

» To run App Studio on a project resource or graphics file using the toolbar:
1. Click the Project Files button (on the far left of the toolbar).
The Project Files list appears.
2. Double-click the filename in the Project Files list.
3. App Studio is launched with the filename as an argument.

220

Visual Workbench User’s Guide

Usmg ClassWizard

ClassWizard is a Microsoft Foundation Class Library class generator and manager
that automates the creation and editing of code to handle messages and dialog-box
data. It generates the source code for new classes that can receive messages and
also generates member functions and message maps in those classes to bind the
messages to code. It also maps dialog-box data to member variables and automates
the validation of data entered in a dialog box.

ClassWizard can be opened from either App Studio or Visual Workbench (see Fig-
ure 13.4). Since you design the user-interface objects in App Studio, you usually
open ClassWizard from App Studio and generate the message-handler functions for
the user-interface objects as you go. Chapter 9, “Using ClassWizard,” in the App
Studio User’s Guide contains a comprehensive description of using ClassWizard to
do this and more.

= ClassWizard
Class Name: |CSclihView [;l

Object IDs:
CScribView

Add Class...

]
_COMMAND_LiI Class Info...

&
@

ID_EDIT_CUT
ID_EDIT_PASTE

Member Functions:

D ridppebot OM |0 SPF ABCIT:COMMAND
OnLButtonDown ON_wh_LBUTTONDOWN

OnLButtonUp ON_wM_LBUTTONUP
OnMouseMove ON_wWM_MOUSEMOVE Zelete Tunclion
Edit Code

Description: Handle a command [from menu, accel, cmd button)

Figure 13.4 ClassWizard

This section describes two kinds of ClassWizard activities that you are likely to
perform while running ClassWizard from Visual Workbench: deriving classes and
creating message handlers for standard Windows messages. These activities can
be performed at any time in ClassWizard, regardless of whether you open it from
Visual Workbench or App Studio. However, since deriving classes and creating
message handlers aren’t directly related to developing resources, you may want to
perform these activities while editing and developing code in Visual Workbench.

Chapter 13 Using Visual Workbench with Other Visual C++ Tools 221

Creating New Classes

You can use ClassWizard to add new classes to your application. ClassWizard can
derive a new class from any class with CCmdTarget as a base class.

Important If you plan to use ClassWizard to create message-handler member func-
tions in any new classes, you should use ClassWizard to create the new classes so
that the class code is in a format recognized by ClassWizard.

Figure 13.5 shows a segment of the Microsoft Foundation Class Library hierarchy.
The CCmdTarget class provides message-routing services for user-interface ob-
jects, so any classes with CCmdTarget as a base class can be used to handle mes-
sages from menu items, dialog-box controls, toolbar buttons, and so on. (These are
actually IDs passed by WM_COMMAND messages.) This applies to document
view classes (those derived from CView), which can also handle Windows mes-
sages, as well as document structure classes, such as those derived from

CDocument.
CObject
o CCmd Target
| |
CDocument | CWin App
IrYSu; d_oc—ur;e_nt_: } o_ur— a;)pTic;ti;n_:
| class , class
| CWnd
| |
CFrame Wnd CView
| Yourframe 1 Yourview
| windowclass || class

Figure 13.5 Classes Derived from CCmdTarget

Most often, you will create new dialog classes for dialog resources you have cre-
ated in App Studio. This should be done after creating the dialog resources. Chapter
9, “Using ClassWizard,” in the App Studio User’s Guide provides the procedure
for creating new dialog classes.

222 Visual Workbench User’s Guide

You may also want to create new classes other than dialog classes that have the
ability to respond to user input and either display data or contain data. For example,
when AppWizard creates an application, it derives one document class and one
view class. You might want to add a second view class so a user can display the
document data in different ways, for example as a graphic chart or as a table. Both
the document class and the view class can respond to user-interface object events.
The document class is used to contain the data and to serialize it. The view class is
used to display the data and also respond to Windows messages.

» To derive a new class using ClassWizard:
1. From the Browse menu, choose ClassWizard.
The ClassWizard dialog box appears.
2. Choose the Add Class button to open the Add Class dialog box (see Figure

13.6).
Add Class
|My\liew —| Im_vview.h —l Browse...:

Class Type: Implementation File:
[iew 3] [mviwosr] [Browse.] [Hob]

Import Class...

Figure 13.6 ClassWizard’s Add Class Dialog Box

3. In the Class Name box, type the name of the class you want to create.

Notice that as you type the name, the Header File and Implementation File text
boxes automatically use the first eight characters of the class name for the sug-
gested filenames.

4. From the Class Type drop-down list, select the type of class from which you
want to derive your application’s class.

5. If you want the class prototype code to be generated in a different file, type the
filename in the Header File text box, or use the Browse button to select the
name of an existing header file.

6. If you want the class implementation code to be generated in a different file,
type the filename in the Implementation File text box, or use the Browse button
to select the name of an existing source file.

7. If you are creating a class that is derived from either CDialog or CFormView,
select the resource identifier from the Dialog ID drop-down list.

8. Choose Create Class.

If you skipped step 7, ClassWizard prompts you with a message box to warn
you about using a resource identifier. If your new class is not derived from
CDialog or CFormView, choose Yes.

Chapter 13 Using Visual Workbench with Other Visual C++ Tools 223

ClassWizard generates the source code for the new class and returns to the
ClassWizard dialog box with the new class selected in the Class Name drop-
down list.

Creating Message Handlers for Windows Messages

The classes that handle Windows message—that is, the classes that are derived
from the CWnd class—are often called upon to deal with much of the graphical
overhead of programming in Windows, such as responding to resize messages

(WM_SIZE) or mouse messages (such as WM_LBUTTONDOWN).

ClassWizard makes it easy to generate skeleton code to handle these standard mes-
sages from Windows. It displays a list of all the messages that pertain to each class
type so all you need to do is select the message and choose the Add Function button.

» To create message-handler code for Windows messages:

1.

2.

If ClassWizard is not already open, open it from the Browse menu (or press
CTRL+W).

In the Class Name drop-down list, select the class to which you want to add the
message-handler member function and message-map entry.

In the Object IDs box, select the class name, which will be the first entry in the
list.

A list of Windows messages is displayed in the Messages box. The contents of
this list depend on the Message Filter set for that class, which you can see by
choosing the Class Info button. The message filter is automatically set for each
class type to display the appropriate types of messages. For example, a class
derived from CView displays messages filtered for a child window.

To change the selection of the Message Filter box, choose the Class Info button,
select a different filter in the Message Filter box, and choose Close.

Select a message that you want handled.

Notice that as you select different messages in the Messages list box, a descrip-
tion of each message appears at the bottom of the dialog box (see Figure 13.7).

. Choose the Add Function button.

ClassWizard automatically writes the member function prototype definition,
enters the function name and message name in the message map, and enters the
declaration in the header file.

Notice that the function appears in the Member Functions box and that a hand
icon appears at the left of the message to indicate that it is handled.

If you want, you can now choose the Edit Code button to write code for the
message-handler member function that has been inserted in your code.

ClassWizard closes and Visual Workbench opens a source window with the
insertion point in the message-handler member function that was just created.

224 Visual Workbench User’s Guide

7. If you skipped step 6, close ClassWizard by choosing OK.

= ClassWizard

Obiject IDs: Messages: Add Class...

L it [+][“M_RBUTTONUFR Py

D_AFP_ABOUT =] WM_SETCURSOR Class Info...
ID_APP_EXIT “WM_SETFOCUS

ID_EDIT_CLEAR_ALL W SHOWWIND Dw
ID_EDIT_COPY

ID_EDIT_CUT \Whi_TIMER T
ID_EDIT_PASTE [#]| whivSCROLL Lt Yasiables

Member Functions:

Ordprébout ON_ID_APP_ABOUT-COMMAND -
OrLButtonDewn ON_WHM_LBUTTONDOWN L___la"d Function
OriButtonUp ON_WM_LBUTTONUP

DnbtouseMave ON_WM_MOLSEMOVE Belste Funclion

Description: |ndicates a change in window size

Figure 13.7 Creating Message Handlers for Windows Messages

225

Index

32-bit applications 11

A

Aborting build 104
About dialog box 46
Accelerator keys See Keys, shortcut
Add Tool dialog box 200
Adding
commands to Tools menu 199-200
expressions and variables to Watch window 191, 193
libraries 7
project files 100—101
AFX.RTF 218
afxDump 180
ALIASH 218
Analysis tools, installation 9
App Studio
command on Tools menu 43
Help file installation 8
opening from Visual Workbench 28
overview 23
resource files 80
running
from Visual Workbench 81
via opening resource file 218-219
via Tools menu 218
using 27
App Studio User’s Guide, installing sample programs 8
Application development process 21, 26, 30-32, 209
AppWizard
Classes dialog box 210, 214-215
closing 210
command on Project menu 39
files generated 215-218
opening 210
Options dialog box 210, 212-213
overview 23-24,209-210
running 26-27
specifying
drive, directory 211
project name 210-211
starter files 27
when to use 26
.APS file extension 219
Argument macros 202-203
AUTOEXEC.BAT, configuring 5, 10

Base Class Graphs
browsing 172-173
described 170
.BMP file extension 217
Bookmarks
clearing 38, 83
moving to 38, 8283
setting 82
Breakpoints
dialog box See Breakpoints dialog box
evaluating expressions 187
overview 183
saving between sessions 183
setting
and clearing 183, 185
in SORTDEMO 184
locations 186
testing messages 187-188
types 186—188
Breakpoints dialog box 42, 183, 185-188
Browse menu
browsing commands 168
ClassWizard command 41
compared to Browse window 165
Go to Definition command 41, 164-165, 168, 177
Go to Reference command 41, 164-165, 168, 177
Next command 41, 168, 177
Open command 41, 163-164
Pop Context command 41, 168—169
Previous command 41, 168, 177
Browse window
compared to Browse menu 165
jumping to definitions and references 171, 177
opening 41, 163
using Query controls 166
Browser
database See Browser database
graphical icons 171
graphs
expanding and collapsing 171
overview 169
Help window See Browser Secondary Help Window
overview 161
wildcard symbols 167

226 Index

Browser database C/C++ Compiler Options dialog box (continued)
creating 161-162 Code Generation category (continued)
opening 163-165 Floating-Point Calls options 119
querying 165-169 overview 118
Browser Secondary Help Window 71, 73 Struct Member Byte Alignment options 120
Browsing Custom Options (C++) category
Base Class Graphs 172-173 C++ Pointer to Member Representation 125
Call Graphs 174-175 Disable Construction Displacements 127
class and function graphs 169 General-Purpose Representation options 126
class member functions and variables 172, 174 overview 124
Definitions and References 164-168, 176-177 Representation Model options 125
Derived Class Graphs 172 Custom Options category
function relationships 175 Disable Microsoft Language Extensions 122
Help information 66 Eliminate Duplicate Strings 123
shortcut keys for 50 Enable Function-Level Linking 122-123
.BSC file extension 129, 163 Other Options 124
BSCMAKE 11, 129 overview 121-122
Build and compile shortcut keys 50 QuickWin Support 123
Build mode Suppress Display of Sign-On Banner 123
Debug 182 Warning Level options 123
selecting 103 Warnings as Errors 123
Build options Debug Options category
accessing Help 72-73 Full (C7 Compatible) 128
customizing 111 Full, Use Program Database 128
selecting 103 None 128
Build toolbar button 61 overview 127-128
Build utilities directory 203-204 Partial (Line Numbers Only) 128
Building Listing Files category
aborting build 104 Assembly 130
and running applications 32 Browser Information 129
external projects 109 Don’t Pack Information 129
in background 104 Include Local Variables 129
projects 103 Include Machine Code 130
sample applications 14-15 Include Source and Machine Code 130
sample QuickWin programs 18-20 overview 129
using toolbar 61 mapping to CL command-line options 51-52
Memory Model category
C Assume ’external’ and Uninitialized Data *far’ 132
Model options 130

.C file extension 79 New Segment Data Size Threshold 131

C Lang/Libs Help, installing 8 overview 130

C/C++ calling convention 119 Segment Setup options 131

C/C++ Compiler Options dialog box Optimizations category
accessing Help 72, 113 Custom.Optlons 134
Build Options buttons 111-112 Customize 132, 134
Category Settings group 112-113 Default 132

Code Generation category Disable (Debug) 133)
Calling Convention options 119 Inline Expansion of Functions options 135

Check Pointers 121 Inline Function Size options 135

Code Generator options 120 Maximize Speed 132-133
CPU options 118 Minimize Size 132-134

Disable Stack Checking 121 overview 132

Index

227

C/C++ Compile Options dialog box (continued)
Options String 111,113
overview 118
P-Code Generation category
Disable P-Code Quoting 137
Number of P-Code Entry Tables 137
overview 136
P-Code Optimization On 137
Remove P-Code Native Entry Points 137

Sort Local Variables in Occurrence Order 137

Precompiled Headers category

Automatic Use of Precompiled Headers 138—140

overview 138

Precompile up to Header 141-142

Precompile with Source 141-142
Preprocessor category

Ignore Standard Places of Include Files 144

Include Path 144
Individual Symbols to Undefine 143
overview 142
Symbols and Macros to Define 143
Undefine All Symbols 144
Segment Names category
Code Segment 145
Data Segment 145
Module Segment 146
overview 144
P-Code Segment 145
V-Table Segment 146
Use Project Defaults button 115
Windows Prolog/Epilog category
Generate Prolog/Epilog For options 147
overview 146
Protected Mode options 148
Call Graphs
browsing 174-175
described 170
jumping to definitions and references 175
recursive functions 174
Call Stack dialog box 42
Call stack, viewing 194-195
Cancelling include dependency scan 102
Caps Lock status indicator 63
Changing
project types 94
register values 195
workspace names 106
cin iostream object 17
CL options
See also Compiler options
JAC 130
/AH 130
/AL 130
/AM 130

CL options (continued)
/AS 130
/ASd 131
/AT 130
/D 143
/£ 120
ff- 120
/Fa 130
/Fc 130
/F1 130
/Fp 141
/FPa 119
/FPc 119
/EFPc87 119
/FPi 119
/FPi87 119
/FR 129
/Fr 129
/GO through /G3 118
/G3 133
/GA 146, 148
/Ge 119
/GD 146, 148
/Gd 119
/GEe 148
/GEf 148
/Gf 122-123
/Gn 135-137
/Gp 137
/Gs 121
/Gt 131-132
/GW 146
/Gw 146
/Gx~ 132
/Gy 122-123, 151
/1 144
Mq 122
/ND 145
/NM 146
/nologo 122-123
/NQ 145
/NT 145
/NV 146
/O1 132-134
/02 132-133
/Oa 134
/Ob0 135
/Obl 135
/Ob2 135
/Od 132-133
/Oe 134
/Of 136
[Of— 137
/Og 134

228 Index

J

CL options (continued) Class Wizard (continued)
/01 134 using from within Visual Workbench 220
/Ol 134 when to use 27
/Op 134 Clearing breakpoints 183
/Oq 136-137, 145 Clipboard
/Or 134 copying to 37
/Os 134 deleting to 37
/Ot 134 pasting from 37
/Ov 136-137 Closing
/Ov— 137 AppWizard 210
/OVO0 through /OV9 135 projects 100
/Ow 134 QuickWin applications 20
/Ox 134 source files 82
/Oz 134 .CLW file extension 216
/U 143 CodeView
fu 144 command on Tools menu 43
fvdO 127 compared to Visual Workbench debugger 179
/vmb 125 installation
/vmg 125-126 CodeView for MS-DOS 9
/vmm 126 CodeView for Windows 9
/fvms 126 symbolic debugging information 156
fvmv 126 $Col argument macro 202
/WO through /W4 125 Color dialog box 44, 86, 205-206
/WX 122-123 Color syntax 205-206
/X 144 Column number indicator 63
/Yc 138, 141-142 .COM file extension 156
/Yu 138, 141-142 Command-line options
/YX 138-140 CL See CL options
/27 127-128, 133, 156 LINK See LINK options
[Za 122 Visual Workbench 9, 60
/Zd 127-128, 133, 156 Command-line tools
/Zi 127-128, 133, 156 configuring MS-DOS for 10
/Zn 129 using on Tools menu 201-202
/Zpl 120 Comments, creating with AppWizard 213
[Zp16 120 Comparison of Visual C++ editions 4
/Zp2 120 Compile File toolbar button 61
/Zp4 120 Compiler options
/Zp8 120 See also CL options
/Zr 121 alphabetical listing 51-52
CL, MS-DOS-extended 11 Browser Information 161-162
Class graphs, browser 166 customizing 111
Classes, modifying in AppWizard 214-215 project defaults 115
ClassWizard using dialog box to set 118—148
binding user-interface objects to code 25, 29 Visual C++ editions differences 4
creating new class 25 Computer required to run Visual C++ 5
creating message-handler functions 25, 223 CompuServe, Microsoft forums on xv—xvi
deriving classes using 221-223 Conditional building 93
dialog-data exchange 26 Configuration
editing code 29 system, required 5
managing source code 31 of Visual C++ for MS-DOS 10
menu command 41 Context-sensitive Help, described 66—-67
opening 26 Context-sensitive Help, AppWizard source code option 213
overview 24-26, 220 Conventions, typographical xiii

Core project types list 94

Index

229

cout iostream object 17
.CPP file extension 79
Creating
browser databases 161-162
projects 97-98
source files 76
user-interface objects 27-28
Visual C++ applications 26
Current workspace, described 105

Custom VBX Controls, AppWizard source code option 213

Customizing build options 111
Customizing Visual Workbench
commands
adding to Tools menu 199-200
editing on Tools menu 201-203
overview 199
setting
directories 203-204
font type, size 207-208
syntax coloring, changing 205-206
CVPACK 11, 128

D

.DBG file extension 156
Debug dialog box 44, 179, 198
Debug
information, generating 182
kernal, installation 9
Debug menu
Breakpoints command 42
Go command 14, 32, 42, 104, 109-189
QuickWatch command 43
Restart command 42, 189
Show Call Stack command 42, 194195
Step Into command 42, 190
Step Out command 42, 190
Step Over command 42, 190
Step to Cursor command 42, 190
Stop Debugging command 42, 189
Debuggers
See also CodeView
CodeView compared to integrated debugger 179
Debugging
DLLs 179
expanding and collapsing variables 191-192
external projects 107, 109
Hard and Soft mode 196-197
hexadecimal display 198
mixed source, assembly 198
modifying expressions 193
modifying structures, arrays 194
modifying variables 193-194
overview 32-33

Debugging (continued)
phases 179
running, tracing 189
setting build mode for 182
shortcut keys 51
toolbar buttons 62
using breakpoints 183, 185-189
using QuickWatch 192-193
using Registers window 195-196
using Show Call Stack 194-195
using Watch window 190-191
windows 180-181

Default
file extension when opening files 79
workspace names 106

_DEFAULT.PIF, modifying for Tools menu commands 202

Definitions and References
in graphical queries 170-171
querying from Browse window 169, 176-177
querying from source files 164—165, 168
Deleting
commands from Tools menu 201
expressions, variables from Watch window 191
project files 100—101
text 37
Dependencies, include 101-102
Derived Class Graphs
browsing 172
described 170
Deriving classes using ClassWizard 221-223
Developing Visual C++ applications 21, 209
Development stages
application creation 26—27
application development 27
overview 26
Dialog boxes
Add Tool 200
Breakpoints 42, 183, 185-188

C/C++ Compiler Options 59, 71-73, 111-115, 118-148,

161-162
Call Stack 42
ClassWizard 41, 220
Color 44, 86,205-206
Debug 44, 108, 179, 198
Directories 44, 189,204
Edit - Projectname 39, 100-102
Editor 37,76, 78, 80-81, 85, 218
External Project Options 108—109
Find 37, 86-88
Font 44, 207-208
getting help in 67
Line 38
Linker Options 67, 71-73, 111-115, 148-157
Messages 188

230 Index

Dialog boxes (continued) Editing
MEFC AppWizard 39, 209-211 See also Editor
Modify Variable 193-194 keys
New Project 39, 59 copying 48
Open File 41,79, 81, 161 deleting text 48
Open Project 14, 107 inserting 48
Page Setup 36 inserting, displaying tabs 48
Print 36, 90-91 insertion point movement 47
Project Options 14, 44, 59, 103, 111, 182 scrolling 48
Resource Compiler Options 158-159 searching 49
QuickWatch 43,191-194 selecting text 47
Replace 37, 89 Tools menu command 201
Save As 36,77-78 user-interface objects 27-28
Show Call Stack 194-195 Watch window 190-191
Tools 43, 200-203 Editor
Workspace 44, 106 closing source files 82
Dialog-data exchange 26 creating source files 76
Differences between Visual C++ editions 4 dialog box See Editor dialog box
$Dir argument macro 202 finding text 86—89
Directories highlighting language syntax 85-86
changing settings 203-204 moving around in files 82-83
original settings 204 opening
Directories dialog box files using file filters 81
Executable Files Path 204 recently used files 81
Help Files Path 204 resource files 80-81
Include File Path 204 source files 79, 81
Library Files Path 204 overview 75
MFC Files Path 189, 204 printing 90-91
purpose of 44,204 replacing text 86, 89-90
Duplicating windows 79 saving source files 76—78
Dynamic-link libraries setting
debugging 179 save options 78
files in project list 95 tabs 85
project type 95 using keyboard shortcuts 84
running and debugging 108 write-protecting files 86
Editor dialog box
E Open .RC Files Using App Studio 80-81, 218
Prompt Before Saving 78
Edit - Projectname dialog box 99-100 Save Before Running Tools 78
Edit menu setting save options in 37,44, 76
Copy command 37 Tab Settings group 85
Cut command 37 Tab Stops 85
Delete command 37 Environment variables in MS-DOS for Visual C++ 10
Find command 37, 87 Errors .
Find Matching Brace command 37, 83 accessing from Output window 181
Paste command 37 copying, printing 182
Read Only command 37 displayed on status bar 63
Redo command 37 getting Help on 181
Replace command 37, 86, 89-90 in Watch window 190
Undo command 37 Executing external project targets 109

Execution, controlling in debugger 189
Expanding, collapsing graphs 171

Index

231

Expressions, Watch window
adding to 190-191, 193
copying to 191
deleting from 191
valid expressions 190

Extensions, file See File extensions

External drives required to install Visual C++ 5

External Project Options dialog box
Debug Build 108
Project Type 108
Rebuild All Options 109
Release Build 109
Target File Name 108

External projects
AppWizard source code option 213
building 109
debugging 107, 109
described 107
opening 107
running 108-109
setting build options 108

F1
See also Help
function key 65-67, 71
Help on errors 181
Help on Options String mnemonics 113
Fast compiler 120
Features, Visual C++ 4
$File argument macro 202
File extensions
added by include dependency scanning 101
LAPS 219
BMP 217
.BSC 129, 163
.C 79
.CLW 216
.COM 156
.CPP 79
.DBG 156
default used upon opening 79
HPJ 217
in Open File dialog box 79, 81
in Save As File dialog box 79
.MAK 93
.MAP 156
.PCH 138,217
.PDB 128
.RC 80, 158
recognized for syntax coloring 206

File extensions (continued)
.SBR 129
VCW 93
WSP 106
File filters See Filename filters
File menu
Close command 36, 82
Exit command 36
most recently used filenames 81
New command 18, 36, 76
Open command 36, 61, 79-80, 163-164
Page Setup command 36
Print command 36, 90-91
Read Only command 86
Save All command 36, 77
Save As command 18, 36, 76, 78
Save command 36, 61, 76-77
$FileDir argument macro 202
$Filename argument macro 202
Filename filters
.BSC 163
customizing 81
described 80
Files
generated by AppWizard 215-218
in project list
adding 100-101
deleting 100-101
QuickWin application 95
Static library 96
Visual Basic Custom Control 96
Windows DLL 95
Windows-based application 95
Find dialog box
Find Next 88
Match Case 87
Match Whole Word Only 87
parameters for toolbar Find box 89
Regular Expression 87
Search direction 87
Set Bookmarks on All 88
using 37, 86-87
Find Next toolbar button 61
Find toolbar box 61, 86, 88—89
Flags, setting and clearing 196
Font dialog box 44, 207-208
Font Editor, installation 9
Fonts, setting
for new windows 208
for active window 207
in different windows on same file 208
Function graphs, browser 166

232 Index

G

Generating code 24

Graphical query types
Base Class Graph 169-170
Call Graph 169-170
Caller Graph 169-170
Derived Class Graph 169-170
list of 169

GRAPHICS.LIB 17

Graphs, browser
expanding, collapsing 171
overview 169

H

Hard disk space required to run Visual C++ 5
Hard, Soft mode debugging 196-197
hdrstop pragma 140
Help
accessing
by searching 66
from the menu 65
in dialog box 65, 67
on compiler, linker option controls 72, 113-114
on error number 65-66
on language keyword 65-66
on library function 65
on menu command 65, 67
on option string mnemonics 72
on toolbar button 67
compiler, linker options 72
accessing alphabetically 73
accessing by category 72-73
getting Help from dialog box 113-114
compiler, installation 9
displayed on status bar 63
environment versus reference 68—69
file installation 8
files directory 203-204
installation options 7
navigating 67—-69
product support See Product support
project files 217
reference information 67, 70-71, 73
resource compiler options 113
Visual Workbench environment 67, 69-70
Help menu
About Visual C++ command 46
Build Tools command 46, 66
C/C++ Language command 46, 66

Help menu (continued)
Foundation Classes command 46, 66
Obtaining Technical Support command 46
Search for Help On command 46, 66
Visual Workbench command 46, 66—67
Windows 3.1 SDK command 46, 66

Hexadecimal display 198

Hiding, displaying
status bar 63
toolbar 60

Highlighting syntax 85-86

.HPJ file extension 217

Include dependencies 101-102
Include directory 203-204
Index Help window 68, 70
Initial installation of Visual C++ 5
_ _inline directive 135
Installation options 7-9
Installing
libraries 8
math support 8
memory models 8
MS-DOS tools 9
project types 8
sample programs 8
Visual C++
components 7
for command-line operation 5, 10
initially 5
Professional Edition tools 9
Visual Workbench 3, 9
iostream
objects 17
operators and QuickWin 95

K

Keys, shortcut
browsing 50
building, compiling 50
debugging 51
editing 47-49, 84
toolbar 49
window management 50
KEYS.RTF 218

Index

233

L

/LIB option string mnemonic 149, 157
Libraries
adding 7
directory 203-204
installation option 8
Line dialog box 38, 82
Line number indicator 63
$Line argument macro 202
LINK
See also Linker options
MS-DOS-extended 11
LINK options
See also Linker options
/ALIGN 157
/CO 155-156
/EXEPACK 151-152
/FARCALL 151-152
/INFO 155-156
/LINE 155-156
/MAP 155-156
/NOD 150
/NOE 150
/NOI 150-151
/NOLOGO 154
/NOPACKF 151
/ONERROR:NOEXE 155-156
/PACKC 152
/PACKD 152
/SEG 153
/STACK 153
/TINY 155-156
Linker options
See also LINK options
alphabetical listing 51, 55
customizing 111
project defaunlts 115
using dialog box to set 148—157
Linker Options dialog box
accessing Help 72
Build Options buttons 111-112
Common to Both 111
Debug Specific 111
Release Specific 111
Category Settings group 112-113
getting Help on options 113

Linker Options dialog box (continued)
Input category (continued)
Prevent Use of Extended Dictionary 150

mapping to LINK command-line options 51, 55

Specific Libraries to Ignore 150

Memory Image category
Don’t Remove Unreferenced Packaged Functions 151

Max. Number of Segments 153
overview 151

Pack Code 152

Pack Data 152

Pack EXE File 152

Stack Size 153

Translate Far Calls 152

Miscellaneous category

Use

Other Options 154
overview 153

Suppress Display of Sign-On Banner 154
Options String, Help on options 113
Output category

Create Map File 156

Generate Debugging Information 156

Include Line Numbers/Addresses in MAP 156

overview 155

Prevent Creation of EXE on Linker Error 156

Produce COM File 156

Produce More Detailed Output 156
Segment Alignment 157

Project Defaults button 115

Windows Libraries category

Loading

Import Libraries and DLLs 157
overview 157

files at startup using the command line 9
workspaces 106
Locals window 45, 193

Macros,

for tools arguments 203

MAINFRM.CPP 216
MAINFRM.H 216
.MAK file extension 93
Make P-Code utility 138
Makefiles

external 107

Help button 113

Input category
Distinguish Letter Case 151
Ignore Default Libraries 150
Libraries 149
overview 149

Visual Workbench 93
MAKEHELP.BAT 217
Managing source code

overview 31

using ClassWizard 31

using Visual Workbench browser 31-32

MAP file extension 156

234 Index

MAP.H 218 Monitor type required to run Visual C++ 5
Math support, installation option 8 Moving to line number 82
MDLRTF 218 MS-DOS
Member functions, variables 172, 174 applications, described 96-97
Memory configuring Visual C++ for 5, 10
models, installation option 8 environment variables 204
required to run Visual C++ 5 Overlaid application 9697
Menus P-code applications, described 96-97
Browse See Browse menu Profiler installation 9
Debug See Debug menu programming 17
Edit See Edit menu programming in QuickWin 95
File See File menu programs on Tools menu 202
getting help on 65 required version 5
Help See Help menu tools installation 9
Options See Options menu MS-DOS-extended tools 11
Project See Project menu MSVC.INI
Tools See Tools menu build options in 115
View See View menu directory information in 204
Window See Window menu MSVC.PCH 138-139
Message-handler functions generated with ClassWizard MSVC.PDB 128
for Windows messages 223 MSVCVARS.BAT 10
overview 25 Multifile projects 97
Messages, breaking on 186—189 Multimedia API reference, Help file installation 8
Messages dialog box 188 Multiple Document Interface, AppWizard source code
MFC AppWizard dialog box option 212
described 209-210
Directory 211 N
Drive 211

New Subdirectory 211

Project Name 210-211
Microsoft CodeView See CodeView
Microsoft Foundation Class Library

applic.ation 21,23 Visual Workbench environment 69—70
breaking on messages 189 New Project dialog box 39

building, running sample program 14-15 NMAKE 11, 13, 213

creating code 29 Num Lock status indicator 63

project type 94

sample programs, installing 8

source directory 203-204 o

Microsoft Library Manager (LIB) 150 . L. .
. A . Object linking and embedding (OLE) 213
Microsoft Overlaid Virtual Environment (MOVE) 97 OLDNAMES LIB 150

Microsoft product support services See Product support . . .
Microsoft Programmer’s WorkBench projects 13, 107, 109 OLI,E Client, AppWizard source code option 213
; ; Online reference See Help
Microsoft Resource Compiler 158 Onen File dialog b
Microsoft Source Browser See Browser pen Flie dialog Oiﬂ 79
Microsoft Visual Workbench See Visual Workbench ope ““}’.51 source il ©s 31
Minimizing Visual Workbench windows 64 usfllng. ! er:;.ianlle 1bters 14
Mixed source/assembly, debugging display 198 8Pe“ “’fﬁ“ bl 08 g’l‘
Modify Variable dialog box 193—194 pen toolbar button
Modifying Opening .
expressions while debugging 193 App Studio from Visual Workbench 30

structures, arrays while debugging 194 ﬁppggarg, 2é0 tions dialoe box 212
variables while debugging 193—194 ppWizard's Lptions dialog box

SN . Browse window 41
le-
Module-definition files generated by AppWizard 216 browser database 163—165

Name of new source window 76
Navigating Help
compiler, linker options 71-72
reference information 70-73

Index

Opening (continued)
ClassWizard 26, 220
external projects 107
Help contents screen 67
more than one window on source file 79
project files 93
projects 100
recently used files 81
resource files
as text files 80
invoking App Studio 80-81
source files
default file extension 79
using toolbar 60-61
optimize pragma 137
Optimizing
compiler 120, 134
disk space 5,7
for size 133-134
for speed 133
options 134
Options
AppWizard 212-213
CL See CL options
LINK See LINK options
project See Project Options dialog box
Options dialog box, AppWizard 212
Options menu
Color command 44, 86, 205-206
Debug command 44, 108, 179, 198
Directories command 44, 204
Editor command 44, 78, 80, 85
Font command 44, 207-208
Project command 14, 44, 103, 108-109, 162
Tools command 44, 199- 203, 218
Workspace command 44, 105-106
Options, project See Project Options dialog box
Options string, getting Help on 72
Output window
build status 104
described 180
OutputDebugString 180
Overlapping Visual Workbench windows 63
Overriding
global syntax settings 206
syntax coloring 205
Overtype status indicator 63

P

P-code options 136-137, 145
Page Setup dialog box 36

Pascal calling convention 119
PCH See Precompiled headers

PCH file extension 138,217
.PDB file extension 128
Pen windows API reference, Help file installation 8
Precompiled headers 138—142
Preferences
customizing 199-208
prompt before saving 76, 78
save before running tools 78
Print dialog box 36
Print Range 90-91
Printer 91
Setup button 91
Print Preview, AppWizard source code option 213
Printer options 91
printf function 17
Printing
AppWizard source code option 213
errors 182
selecting default printer 90
using the Print dialog box 91
Processor type required to run Visual C++ 5
Product support
within the United states xv—xix
worldwide xix—xxv
Program database file 128
Programs
adding to Tools menu 199-200
debugging 179-181
$Proj argument macro 202
Project files
AppWizard-generated files 216
opening from the toolbar 93
Project Files toolbar button 61, 81
Project menu
AppWizard 24, 26, 39
Build command 14, 19, 32, 39, 103, 108-109
Close command 39
Compile File command 39
Edit command 39, 100
Execute command 14, 19, 40, 104, 109
Load Workspace command 39, 106
New command 39
Open command 14, 39, 107
Rebuild All command 32, 39, 104, 109
Save Workspace command 40, 105
Scan All Dependencies command 40, 102
Scan Dependencies command 40
Stop Build command 40, 104
$ProjDir argument macro 202
Project options, overview 103
Project Options dialog box 14, 44 111, 182
Project status file 93

236 Index

Project types QuickWin
added by Visual C++ Professional Edition 4 closing applications 20
changing 94 overview 17-18
choosing 94 project type 95
Microsoft Foundation Class 94 writing, building, running sample program 18-19
MS-DOS application 97 QuickWin application project type
MS-DOS Overlaid application 97 described 95
MS-DOS P-code application 97 files in project list 95
QuickWin application (EXE) 19, 95 Quitting Visual Workbench 60
Static library 96 QWGDEMO.CPP 18-19
Visual Basic Custom Control 96 QWINTEST.CPP 19,75
Visual C++ Professional Edition 96
Windows DLL 95 R
Windows P-code application 96
Windows-based application 94-95 RAM required to run Visual C++ 5
Project types list 94 $RC argument macro 81,202, 218
Projects) RC file extension 80, 158
AppWizard 210-211 RC options 158-159

be{leﬁts of using 93 Re-creating work environment 104

building 103, 109 Read-only status indicator 63, 86

building versus rebuilding 103 README.TXT, App Studio-generated file 215
closing 100 Rebuild All toolbar button 61

compiler options 103 Rebuilding project 104

creating 94,97 Recalling previous Browse window queries 167
debug versus release mode 103 Reference Help See Help

default compiler options 115 Regenerating file dependencies 102

default linker options 115 Registers

default when starting Visual Workbench 60 32-bit 196

described 93, 97 native 195

external 107, 109 p-code 196

file exten'sions 93 using in breakpoint addresses 187
introduction 13 Registers window 45, 195-196
linker options 103 Regular expressions 86—87
opening 100 Reinstalling Visual C++ 7
porting 115 Renaming source files 78
rebuilding 104 Replace dialog box 37, 89
selecting build mode 103 Replacing text 86, 89—-90

PWB projects, using in Visual Workbench 13, 107, 109 Resource Compiler Options dialog box 158-159

Resource compiler

Q accessing Help 113
options, customizing 111, 158-159

Querying browser database 165-169 Resource editor See App Studio
QuickWatch dialog box Resource files

Add to Watch Window button 193 generated by AppWizard 216

availability 193 opening in Visual Workbench 80

expanding, collapsing variables 191-192 Restoring original syntax coloring 206

Modify button 193-194 Reversing

overview 192 edit action 37

Zoom button 193 undo 37

QuickWatch toolbar button 62

Index

237

Run toolbar button 62, 184, 189
Run-time libraries, Help file installation 8
Running
App Studio 80-81, 218-219
applications 32
external projects 108
external target files 109
programs
in debugger 104
outside debugger 104
Setup program 5

S

Sample programs
HELLO 14
installing 8
QWGDEMO 18
SCRIBBLE 21, 161
SORTDEMO 180, 182, 184
Sample projects
GENERIC.MAK 97
HELLO.MAK 97-98
Save As dialog box 36, 77-78
Save toolbar button 61
Saving
source files
using File menu 76-77
using toolbar 60-61
with new name 78
workspaces 105
.SBR file extension 129
scanf function 17
SCRIBBLE sample program 21, 161
Search dialog box 46
Searching
and replacing 37
for Help 66
for text
using Find command 87-88
using toolbar 60-61, 88—89
Secondary Help window 68-71, 73
Setting
bookmarks 82
breakpoints 183
breakpoints with toolbar 62

directories in Visual Workbench 203-204

up Visual C++ 5

Setup program
disk space optimization 5
running 5-7

Shortcut keys

editing 84

expanding, collapsing browser graphs 171
F9 183

searching for text 86, 88

summary 47-51

Show Call Stack dialog box 194-195

Single Document Interface, AppWizard source code

option 212
SORTDEMO sample program 180, 182, 184
Source files

automatically loading 105
closing 82

creating 76

multiple windows, opening 79
opening 61, 79, 81

saving 61,76-78

Speed and size of debug programs 182
Standard I/O, QuickWin 17

Starting Visual Workbench 60
Startup, loading files at 9

Static library project type 96

Status bar

described 63
hiding, displaying 63
menu, toolbar descriptions 63, 67

STDAFX.CPP 217
STDAFX.H 217
STDAFX.RC 216

Step Into toolbar button 62, 190
Step Out toolbar button 62, 190
Step Over toolbar button 62, 190

Stopping build 104
Support services See Product support
Syntax

coloring 205-206
highlighting 85-86

SYSINCL.DAT 102
System requirements 5

T

Tabs, setting 85

$Target argument macro 202

Target files 93

Technical support See Product support
TERMS.RTF 218

Text

editor See Editor
files, ASCII 79

Tiling Visual Workbench windows 63

Toggle Breakpoint toolbar button 62, 183-184

Tool argument macros 81, 202-203

238 Index

Toolbar
AppWizard-generated source code 213
buttons See Toolbar buttons
categories 60
general description 60
getting help 67
hiding, displaying 60
shortcut keys 49
Toolbar buttons
Build 32, 39, 61
Compile File 39, 61
Find (box) 37, 88-89
Find Next 37, 61, 86, 88-89
Open 36, 61, 164
Project Files 36, 61, 80-81
QuickWatch 42, 62, 192-193
Rebuild All 32,39, 61
Run 42, 62, 184, 189
Save 36, 61, 76-77
Step Into 42, 62, 189
Step Out 42, 62, 189
Step Over 42, 62, 189
summary table 62
Toggle Breakpoint 42, 62, 183-184
TOOLBAR.BMP 217
Tools
installation options 9

Visual C++ application development 22, 209

Tools dialog box 44, 200-203
Tools menu
adding commands 199-200
App Studio command 43, 81, 218
CodeView command 43
deleting commands 201
editing commands 201
modifying 199
using argument macros 202-203
Typographical conventions xiii

U

User-interface objects
connecting to code 25, 28-29
creating, editing 27-28
introduced 21

v

Variables in Watch window
adding to 190-191, 193
copying to 191
deleting from 191
VBX custom controls, AppWizard 210, 213

.VCW file extension 93
View menu

Clear All Bookmarks command 38, 83
Line command 38, 82

Mixed Source/Asm command 38, 198
Next Bookmark command 38, 82—-83
Next Error command 38, 181

Previous Bookmark command 38, 82—-83
Previous Error command 38, 181

Status Bar command 38, 63

Syntax Coloring command 38, 205-206
Toggle Bookmark command 38, 82—83
Toolbar command 38, 60

Viewing function call stack 194-195
Viewing variables, expressions

expanding and collapsing variables 191
using QuickWatch 192
using Watch window 190-191

Visual Basic Custom Control

See also VBX custom control, AppWizard
described 96

Visual C++

additional components 7

applications See Visual C++ applications, introduction

directories where installed 7

Help system 67, 69-70

installing 3-11

MS-DOS configuration 10

Standard and Professional editions 4, 59

system requirements 5

tools
App Studio overview 23
applications 22
AppWizard overview 23-24
ClassWizard overview 24-26
Visual Workbench overview 22
Windows-hosted development 3
wizards 23

what is 3

Visual C++ applications, introduction

building, running 32
debugging 32--33

described 21

development process 21, 26-33

Visual C++ Professional Edition

additional project types 4, 96
additional tools 8—9
project types 94-97

Visual C++ Standard Edition

MS-DOS-style applications 17
project types 94-96

Index

239

Visual Workbench

as center of development tools 22, 31
browser
database See Browser database
graphical icons 171
graphs 169-171
Help window See Browser Secondary Help Window
managing source code 31-32
overview 161
wildcard symbols 167
command-line options 9, 60
customizing preferences 199-208
debugger See Debugging
editor
closing source files 82
creating and saving source files 76
creating source files 76
finding text 86—89
highlighting language syntax 85-86
keyboard shortcuts 84
moving around in files 82-83
opening files 81
opening resource files 80—81
opening source files 79, 81
overview 75
printing 90-91
replacing text 86, 89-90
saving all source files 77
saving source files 76—78
setting save options 78
setting tabs 85
write-protecting files 86
features 60
Help file installation 8
Help system 65-68
introduction xi
installing 3,9
managing source code 31
overview 31-33, 59
quitting 60
setting command-line options 9
starting 60
toolbar 60
using Programmer’s WorkBench projects 109
Visual C++ Standard versus Professional editions 59
windows
arranging 63
minimizing 64

w

Watch window 45, 180, 190-191, 193
Wildcards, browser

matching more than one symbol 167

types, defined 167

using to find member functions, variables 174
Window management shortcut keys 50
Window menu

Cascade command 45, 63

Duplicate command 45, 79

Locals command 45, 180, 191-193

Output command 45, 180-182

Registers command 45, 180

source file names 79, 83

Tile command 45, 63

Watch command 45, 180, 190-193
Windows DLL, application project type 95
Windows, Microsoft version required to run Visual C++ 5
Windows P-code application project type 96
Windows Software Development Kit

sample programs 8

using with Visual C++ tools 21, 23
Windows, version 3.1 API, Help file installation 8
Windows, Visual Workbench

debugging 180-181, 190, 195

Help 67-69

new source files 76

setting fonts in 207-208
Windows-based application, project type 94-95
Windows-hosted development tools, Visual C++ 3
Wizards

AppWizard 23-24,209

ClassWizard 24-26, 209, 220-223
Workspace dialog box 105-107
Workspaces

current 105

defining initial 106

described 104-105

file extensions 106

information saved 199

Last Workspace Used 105

loading 106

saving 105
.WSP file extension 106

- App Studio User’s Guide —

«— Visual Workbench
User’s Guide

App Studio User’s Guide

Contents

Part1 Using App Studio

Chapter 1 App StudioOverview 3
App Studio Basics 4
Starting App Studio 4
Using the Resource Browser Window 5
CreatingaNew Resource, 6
Editing an Existing Resource. 7
Directly Manipulating User-Interface Objects. 7
UsingUndoandRedo i, 8
Using the Properties Window, 9
Viewing Property Pages. i 10
Controlling the Properties Window. 10
Introduction to App Studio Editing Windows. 11
Dialog Editor 11
MenuEditor 12
Accelerator Table Editor i 12

String Editor. 12
Graphics Editor 13
Binary DataEditor. 14

The Symbol Browser 14
Using ClassWizard i i 14
Simplifying Message Handling 15
Gathering and Validating Dialog-BoxData......................... 15
Understanding Windows Resources. oo, .. 15
Predefined Windows Resourceso, 16
Dialog BOX 16

Menu. 16
Accelerator Table. 17
String Table 18
Bitmap. 18

Tcon 18
131 19

App Studio Sample Resources il 19

Whereto Go from Here. 20

Contents

Chapter2 Working With FilesandSymbols.............................. 21
Working with Files e 22
CreatingaNew Resource File. 22
Opening a Visual C++ Resource File 23
Reading Resource Files Not Created with App Studio or AppWizard 24
Converting Existing Resource Files to App Studio Format 25

Features Supported Only in Microsoft Foundation Class Library
Resource Files. 26
Copying Resources Between Files 26
Using Advanced Resource File Techniques 28
Changing the Name of the Symbols Header File 29
Using Shared (Read-Only) or Calculated Symbols 29
Including Resources From Other Files 30
Working withSymbols 31
Changing a Symbol or SymbolName 32
Changing a Symbol’s Numerical Value 33
Managing Symbols with the Symbol Browser 34
Creating New Symbols. i 35
Changing Unassigned Symbols 35
Opening the Resource Editor for a Given Symbol 36
Symbol Name and Value Restrictions. 36
Symbol Name Restrictions. it 36
Symbol Value Restrictions.t 37
Chapter 3 Using the Dialog Editor.ot 39
Types of Controls. e 39
Creating Dialog BoXes i 40
Opening New or Existing Dialog Boxes. 40
Dialog Box Coordinates.ouiiiiniieiiiie e 42
Adding Controls. 42
Selecting Controls 45
Moving Controls. 46
Deleting and Copying Controls 46
Sizing Individual Controls. 47
Sizing a Control to FitIts Caption. 47
Sizing Combo Box Drop-downs 47
Changingthe TabOrder. 48

Defining Dialog Box Keyboard Accessc..... 50

Contents v

Arranging Controls 51
The Dominant Control i i 51
UsingSnapto Grid. 51
Aligning COontrols.ttt 52
AlGNING 52
Making Spacing Even 53
Centering inthe Dialog Box 53
Arranging Pushbuttons. o ol 54
Resizing Controls. 54
Using Custom ControlS 54
Using VBX Controlso 55
Editing VBX Control Properties.o ... 56
Working with User-Defined Controls. 57
Connecting to Program Code L. 58
CreatingaForm View. i i 59
TestingaDialog Box. 59
Chapter4 Usingthe MenuEditor it 61
Working with Menus and Menultems 62
Opening New or Existing Menu Resources 62
Creating Menusor Menu ltems. 63
Selecting Menus or Menu ltems L 64
Moving and Copying MenusorMenultems 65
Viewing the Menu Resource as a Drop-downMenu. 66
Associating a Menu Item with an AcceleratorKey......................... 66
Chapter 5 Using the Accelerator Table Editor 69
Opening a New or Existing Accelerator Table 69
Editing the Accelerator Table. 70
Editing Accelerator Properties i i 72
Typing in Accelerator Values 73
Associating a Menu Item with an AcceleratorKey...................... ... 73
Chapter 6 Using the String Editor.o i 75
String Tables 75
Opening a New or Existing String Table. 75
Editing the String Table 77

Editing a String’s Properties. 79

Vi Contents

Chapter 7 Using the Graphics Editor 81
Windows and Tools for Editing Graphics 81
The Image Editor Window. i, 82
The Graphics Palette 82
The Status Bar 83
TheImage Menu. 83
Editing Graphical Resources.oo ... 83
Opening New or Existing Graphical Resources. 83
Setting Properties 85
Drawingand Painting. 85
Showing and Hiding the Graphics Palette. 86
Selecting Foreground and Background Colors 86
Freehand Drawing and Erasing 86
Drawing Lines and Closed Figures 87
FillingBounded Areas 88
PickingUp Colors. 89
Using the Selection Tool, 89
Cutting, Copying, Clearing, and Moving. 91
Choosing Opaque and Transparent Backgrounds 92
Flipping the Selection. i, 93
Inverting Colors 93
Creatinga Custom Brush. 93
ResizingaBitmap 94
Changing the Number of ColorsinaBitmap 96
Managing the Graphics-Editor Workspace 97
Using Image-EditorPanes 97
SelectingPanes. 97
Sizing Image-Editor Panes. 97
ZoomingInand Out. 98
Changing the Magnification Factor. 99
Displaying and Hiding the Pixel Grid. 100
Editing Icons and Cursors i 100
Creating and Selecting Images. 100
Editing Device Descriptions i 102
Drawing with Screen and Inverse Colors 103
Setting a Cursor’s Hotspot. 104

Editing Toolbar Graphics i, 104

Contents vii

Managing Colors and Palettes i, 107
Creating Color Palettes i 108
Saving and Loading Palettes 110

Chapter 8 Using the Binary DataEditor 111

Creating a New Data Resource or Custom Resource 111

Opening the Binary Data Editor. 111

Editing Data. 112

Chapter9 UsingClassWizard................ ... innnn. 113

Adding a New Class or Importing an ExistingOne. 114
Adding aNew Classot 115
Importing Existing Classes i 117

Mapping Messages to Functions. 117
Defining Message Handlers, 118
Deleting Message Handlers. i 120
Jumping to Source Code from ClassWizard. 120

Working with Dialog-Box Data.............. 121
Dialog Data Exchange. i 121

Using DDX Variables o i i 124
Dialog Data Validation 124
Custom Data Exchange and Validation 125

Example: Building a Dialog Box with ClassWizard. 125

Example, Part 1: Defining a Message Handler for a Dialog-Box Control . . . 126
Step One: Create the Dialog-Box Resource 126
Step Two: Define The Dialog-Box Class 126
Step Three: Define the Message Handler 127
Step Four: Begin Filling in the Message Handler. 127

Example, Part 2: Using DDX/DDV o . 128
Step One: Define the Member Variable Using ClassWizard. 128

Step Two: Set the Maximum Number of Characters for the Variable. . . . 128
Step Three: Set the Initial Value for the Variable in the Dialog-Box

Class CONnStIUCIOr\ttt e e 129

Step Four: Create Control Variables to Use in theMessage Handler 130
Keeping ClassWizard Updated When Code Changes. 131
Deleting Classes.ttt 131
Renaming or Moving Classest 132
Rebuilding the ClassWizard (CLW) File 132

Updating Existing Code for Use with ClassWizard 133

viii Contents

Part2 App Studio Reference

Chapter 10 App Studio Quick Reference 137
TaskReference. i 137
Managing Files. 137
Editing. 138
Handling ReSOUICes 138
General 139
Dialog Boxes—General. o i oL, 139
Dialog Boxes — Alignment.c.coviiiinnan. 140
Dialog Boxes — Spacing and Positioning. 141
Dialog Boxes — Sizing 141
MeNUS . .. e 142
Bitmaps, Icons, and Cursors — General 142
Bitmaps, Icons, and Cursors —Colors 143

String Tables. e 144
Accelerator Tables i 144
ClassWizard. e 144
Managing SYMbOLS. T 145
Installing VBX Controlscoiiiiiiiniiiiiiniiineennn, 145
Managing App Studio e 145
GettingOnline Help. 146
MenuReference. 146
Managing Files. e 146
Editing. e 147
Creating and Editing Resources. 147
Laying Out Dialog BOXeSttt 148
Working withImages. 148
Managing App Studio 149
GettingOnline Help. i i i 149
Toolbar and Palette Reference 149
The App Studio Toolbar. i i 150
The Properties Window Toolbar. 150
The Dialog Editor Toolbar. 150
The Graphics Editor Palette. 151
The Control Palette. i 151
The Icon Editing Toolbar. i i, 151

The Cursor Editing Toolbar. 152

Contents ix

KeyReference..... ... i 152
Managing Files. 152
EBditing 152
Creating and Editing Resources 153
Managing Windows. 154
Using the Properties Window i, 154
Editing Graphics i 155
Using the Dialog Editor.c....0... 156
Usingthe Menu Editor., 157
Using the String Editor 157
Editing Resources as Binary Data. 157
GettingOnline Help. 157

Chapter 11 Property Page Referencet 159

Resource Property Page i 159

Accel Table: Accel Properties — General. 160

Bitmap Properties — General. 161

Cursor Properties — General 161

Dialog Properties — General 162

Dialog Properties — Styles. e 163

Dialog: Check Box Properties — General. 164

Dialog: Combo Box Properties — General 165

Dialog: Combo Box Properties — Styles. 166

Dialog: Edit Box Properties — General. 166

Dialog: Edit Box Properties — Styles 166

Dialog: Group Box Properties — General. 168

Dialog: List Box Properties—General. 168

Dialog: List Box Properties — Styles 169

Dialog: Picture Properties — General 170

Dialog: Pushbutton Properties — General. 171

Dialog: Radio Button Properties — General 172

Dialog: Scrollbar Properties — General 172

Dialog: Text Properties — General 173

Dialog: User Control Properties — General 174

Dialog: VBX Control Properties — General. 174

Dialog: VBX Control Properties — Styles 174

Icon Properties — General i, 175

Menu Properties — General 175

Menu: MenuItem — General. i 175

X Contents

Appendix

Appendix A APSTUDIO.INI Settingsccoieieiinins, 179
Setting the Default RCFile Type. i, 179
Setting the Numberof Undo Levels 180
Using Default Dialog-Box Buttons. 180
Setting the Default Magnification Factor. 180
Describing Cursor Devices 180
Describing Icon Devices 180

Contents

Xi

Figures
Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 1.8
Figure 1.9
Figure 1.10
Figure 1.11
Figure 1.12
Figure 1.13
Figure 1.14
Figure 1.15
Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 4.1

Figures and Tables

App Studio Workspace
App Studio Resource Browser
Dragging and Dropping
App Studio Properties Window
Dialog Editor
Menu Editor
Accelerator Table Editor
String Editor
Graphics Editor
Binary Data Editor
Symbol Browser
Using Class Wizard to Define a Message Handler
Menu Example
Toolbar Bitmap Generated by AppWizard
Cursor Example: Dragging a Radio Button
Using Drag and Drop to Copy Resources Between Files
Set Includes Dialog Box
Symbol Browser
App Studio Controls
New Dialog Box
Dialog Editor Position Indicators
Dragging a Control from the Control Palette
Selecting Multiple Controls
Sizing a Control
Sizing the Drop-down Portion of a Combo Box
Setting Tab Order
Changing the Existing Tab Order
Dialog Editor Toolbar
Using Space Evenly Down
Install Controls Dialog Box
General Property Page for a VBX Control
Styles Property Page for a VBX Control
General Property Page for a User-Defined Control
Menu Terminology

Xii

Contents

Figure 4.2
Figure 4.3
Figure 5.1
Figure 5.2
Figure 6.1
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 7.12
Figure 7.13
Figure 7.14
Figure 7.15
Figure 7.16
Figure 8.1
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.6
Figure 9.7
Figure 9.8
Figure 9.9
Figure 9.10
Figure 9.11

Tables

Menu Editor New-Item Boxes
Example: Moving a Cascading Menu to the Menu Bar
Using the Accelerator Table Editor and Properties Window
General Property Page for Accelerators
Using the String Editor
Image Editor Window and Graphics Palette
Cross hairs for Defining the Selection
Border Enclosing the Selected Area
Cropping, Extending, Shrinking, and Stretching a Bitmap
Moving the Image-Editor Pane Splitter
Zooming in on the Actual-Size View
New Icon Image Dialog Box
Selectors for Screen Color and Inverse Color
Typical Toolbar Graphic
Grid Settings Dialog Box
Image Editor Window with a Tile Grid
Resizing the Toolbar Bitmap
Selecting Button Images
Moving the Selected Button Images
Color Dialog Box
Custom-Color Dialog Box
The Binary Data Editor
Add Class Dialog Box
Import Class Dialog Box
Defining a Message or Command Handler
Add Variable Member Dialog Box
Dialog Data Validation
Password Dialog Box
DDX/DDV Example: Add Member Variable Dialog Box
DDX/DDV Example: Using Built-in DDV for a CString Variable
DDX/DDV Example Defining a DDX Control Variable
Repair Class Information Dialog Box
Select Files Dialog Box for Generating a New .CLW File

Table 1.1 App Studio Toolbar New-Resource Buttons

Table 3.1 Comparison of App Studio Support for VBX Controls and
User-Defined Controls

Table 6.1 Formatting and Special Characters in Strings
Table 9.1 Types of Classes Created in ClassWizard

Contents

Xiii

Table 9.2
Table 9.3
Table 9.4
Table 9.5

User-Interface Objects and Associated Messages

DDX Variable Types for the Value Property

DDX Variable Types Defined with the Control Property
DDV Variable Types

Xv

Introduction

This manual contains information and procedures for working with App Studio, a
powerful and easy-to-use Microsofte Windows™ operating system resource editor.
In addition to editing Windows resources, App Studio works together with the
Microsoft Foundation Class Library and ClassWizard to let you connect your
resources to code. With ClassWizard, you can also quickly define class member
variables that make it easier to work with dialog-box controls.

Chapter 1 provides an overview of the App Studio user interface, including the
main App Studio window, the resource browser window. Chapter 1 also contains
important information on how to use the App Studio Properties window, a
convenient way for setting the Windows styles of each resource and controlling the
resource’s appearance and behavior.

Chapter 2 discusses how to work with App Studio resource script files and details
important issues to consider when updating existing resource files for use with App
Studio. Also in Chapter 2 is information on working with resource identifiers in
App Studio.

Chapters 3 through 8 offer specific step-by-step procedures for using App Studio’s
editing windows to create or modify Windows resources. Among the topics covered
are the following:

= Using the dialog editor to create dialog-box and form-view templates, and using
drag-and-drop to place dialog-box controls or transfer them from one dialog box
to another.

s Using the menu editor to quickly create and modify menu resources in an editing
window that lets you work with the menu in a menu-bar format similar in
appearance to the finished application.

= Using the accelerator table editor to create and edit accelerator-table entries.

= Using the string editor to create, find, or modify strings in your application’s
string table.

= Using App Studio’s full-featured graphics editor to edit bitmaps, icons, cursors
and special-purpose images such as toolbars.

Xvi

App Studio User’s Guide

Document Conventions

Chapter 9 introduces ClassWizard, a kind of programmer’s assistant that makes it
easier for you to do certain routine tasks such as creating new classes and gathering
data from controls in a dialog box or form view.

Part 2 of this manual provides a reference to the resource properties that you can set
in the App Studio Properties window and a complete reference to the App Studio
menus and toolbars. This information (including additional information about App
Studio dialog boxes) is also contained in online Help.

This book uses the following typographic conventions:

Example

Description

STDIO.H

char, _setcolor,

far

expression

[option]]

#pragma pack {112}

#include <io.h>

CL [[option...]} file...

while()
{

Uppercase letters indicate filenames, segment names,
registers, and terms used at the operating-system command
level.

Bold type indicates C and C++ keywords, operators,
language-specific characters, and library routines. Within
discussions of syntax, bold type indicates that the text must
be entered exactly as shown.

Many functions and constants begin with either a single or
double underscore. These are part of the name and are
mandatory. For example, to have the _ cplusplus manifest
constant be recognized by the compiler, you must enter the
leading double underscore.

Words in italics indicate placeholders for information you
must supply, such as a filename. Italic type is also used
occasionally for emphasis in the text.

Items inside double square brackets are optional.

Braces and a vertical bar indicate a choice among two or
more items. You must choose one of these items unless
double square brackets (][]) surround the braces.

This font is used for examples, user input, program output,
and error messages in text.

Three dots (an ellipsis) following an item indicate that more
items having the same form may appear.

A column or row of three dots tells you that part of an
example program has been intentionally omitted.

Introduction xvii

Example

Description

CTRL+ENTER

“argument”

"C string”

Color Graphics Adapter
(CGA)

Small capital letters are used to indicate the names of keys
on the keyboard. When you see a plus sign (+) between two
key names, you should hold down the first key while
pressing the second.

The carriage-return key, sometimes marked as a bent arrow
on the keyboard, is called ENTER.

Quotation marks enclose a new term the first time it is
defined in text.

Some C constructs, such as strings, require quotation
marks. Quotation marks required by the language have the
form " " and ' ' rather than “” and ‘.

The first time an acronym is used, it is usually spelled out.

PART 1

Using App Studio

Chapter 1 App Studio Overview it
Chapter 2 Working with Filesand Symbols.
Chapter 3 Usingthe DialogEditor i,
Chapter4 Usingthe MenuEditor

Chapter 5 Using the Accelerator Table Editor

Chapter 6 Usingthe String Editor.
Chapter 7 Using the Graphics Editor.
Chapter 8 Using the Binary Data Editor
Chapter 9 Using ClassWizard

CHAPTER 1

App Studio Overview

App Studio is a powerful, easy-to-use resource editor. You can:

= Edit both the appearance and behavior of common user-interface objects such as
menus, dialogs boxes, accelerator tables, and string tables.

» Quickly and easily incorporate any of the large number of VBX custom controls
into your program.

= Quickly design and edit bitmaps, cursors, icons, and toolbars in the App Studio
graphics editor.

However, App Studio is also more than just a resource editor. While working in
App Studio with Microsoft Foundation Class Library resource files you can:

= Attach user-interface objects to code by using ClassWizard to quickly and
easily define message-handling functions.

» Create class member variables that automatically use the Microsoft Foundation
Class Library routines for gathering and validating dialog-box data.

If you’re new to programming for Windows, see the “Understanding Windows
Resources” section near the end of this chapter. It explains the role of resources in a
Windows program and gives examples of the most common resources.

You can also use the sample icons, cursors, and toolbar buttons in the sample
resource file supplied with Microsoft Visual C++™, COMMON.RES.

4

App Studio User’s Guide

App Studio Basics

Once you have installed App Studio on your machine as part of the Visual C++
installation process, you are ready to begin editing user-interface objects and other
resources. For information on installing Visual C++, see Chapter 1 of the Visual
Workbench User’s Guide.

Note A mouse or other pointing device is required for many App Studio functions.

Starting App Studio

To begin your App Studio session, use the Visual Workbench Tools menu to open
your project’s resource script (.RC) file for editing. You can create the menus,
accelerators, dialog boxes, and other resources that make up the user interface of
your Windows program.

To run App Studio:
¢ From the Visual Workbench Tools menu, choose App Studio.
App Studio opens your current project’s .RC file.

For more detailed information on running App Studio, see “Opening a Visual C++
Resource File” in Chapter 2, page 23.

If you used AppWizard when you began to write your program, App Studio opens a
resource file that provides you with not only the basic outline of a fully functioning
Windows application, but with some basic resource building blocks as well. For
more information on AppWizard, see the Visual Workbench User’ s Guide.

Figure 1.1 shows the App Studio resource browser as it appears at the beginning of
anew project. In this illustration, several other important App Studio windows are
open. The major parts of App Studio are described in the sections that follow.

Chapter 1 App Studio Overview

5

App Studio - \SRCYNEWANEW.RC
File Edit Resource Layout Window Help

BREEEA 7

=[\SRC\INEVYANEW.RC [Resource Script) [v] +

Type: Resources: (2 total) !L IDR_NEWTYPE [Menu) M &
£V Accelerator B IDD_ABOUTBOX |dit View Window Help |
(@] Bitmap [E2IDD_DIALDG Toolbar

s Bar

aMenu

abe String !

IDR_MAINFRAME [Accelerator)

Newsl __}—— 1D Key
ok]| [[pEoroorY T+
o ID_FILE_NEW Ctl+N
[_cancel_J{ | fo_rie_oren Cul+0
PP — ID_FILE_PRINT Ctl+P
B
l @ R IDialog Properties General
:11p: [iDD_DIALOG [T2] caption: [Diakg
: Font Name: MS Sans Serif
Menu: |
Font Size:

8
XPos:EI iPos:E’ " l;lass‘:|

Ready

Figure 1.1 App Studio Workspace

Using the Resource Browser Window

At the beginning of a resource editing session, the first App Studio window to
appear is the resource browser (see Figure 1.2). Use the resource browser window
to:

= View the resources in the file by type.

= Create new resources.

= Delete existing resources.

= Move resources from one file to another.

= View and edit a resource’s basic properties in the Properties window.

6 App Studio User’s Guide
= \SROINEWANEW.RC [Resource Script) [+]~
Type: Resources: (4 total)
479 Accelerator [IDD_ABOUTBOX

Bitmap
BH Diatog

[E&]1DD_DIALDGT
B3 IDR_MAINFRAME
ER IDR_NEWTYPE

S Menu

{ipen I Deolete I I Fropesiies... l

Figure 1.2 App Studio Resource Browser

> To browse your application’s resources:

Select a resource in the Type box.

The resources in your file that are of the type or types you selected are listed in
the Resources box.

Select a single resource by clicking with the mouse. Select multiple contiguous
resources by holding down the SHIFT key and clicking. Select multiple
noncontiguous resources by holding down the CTRL key and clicking.

When a resource in the Resources box is selected but is not currently being edited
in an App Studio editing window (or the editing window is minimized), you can
view and edit the resource’s basic properties in the Properties window. For more
information on the Resource property pages and other property pages that appear in
the Properties window, see Chapter 11.

Creating a New Resource

There are several ways to create a new resource in App Studio. You can use the
resource browser window or the App Studio toolbar.

» To create a new resource:

On the App Studio toolbar, click the button you want.
Table 1.1 shows the toolbar’s new-resource buttons.
—Or—

In the resource browser window, click New, or from the Resources menu,
choose New (CTRL+R). Then select the resource you want from the list of
choices and click OK or press ENTER.

The editor window for the resource you chose appears.

Chapter 1 App Studio Overview 7

Table 1.1 App Studio Toolbar New-Resource Buttons

Resource Toolbar Button

Dialog box

Menu -
Cursor -

2| i) (=

Icon
Bitmap

String table
Accelerator table

For a complete reference to the App Studio toolbar, see Chapter 10.

Editing an Existing Resource

» To edit an existing resource:
1. Move to the resource browser window.
2. In the Type box, select the type of resource you want.

A list of the resources of that type in the current file appears in the Resources
box.

3. In the Resources box, select the name or identifier of the resource you want to
edit.

4. Choose Open.
Or select the resource and press ENTER.
Or double-click the resource.
Or from the Resource menu, choose Open.

The editing window for the resource you chose appears.

Directly Manipulating User-Interface Objects

In many cases App Studio allows you to edit user-interface objects by directly
manipulating them. For example, you can:

= Place controls in a dialog box by dragging them from the control palette into the
dialog box (see Chapter 3).

8 App Studio User’s Guide

= Rearrange menu items by moving them from one place to another with the
mouse (see Chapter 4).

One of the most common direct-manipulation techniques is referred to throughout
this manual as “drag and drop.” This means that you position an object by dragging
it with the mouse or other pointing device and dropping it in its new location, as
shown in Figure 1.3.

Dialog) hd I -
1
[pelete Source
[Fast Compress 3
: N—

Figure 1.3 Dragging and Dropping

» To move or reposition an object using “drag and drop””:

1. Point to the object you want to move or position and hold down the left mouse
button.

2. While still holding down the button, drag the object to its new location.
3. When the object is in position, drop it by releasing the button.

Using Undo and Redo

Multiple-level undo and redo is a powerful tool for iterative design in App Studio.
Undo reverses the effect of the last operation and redo reverses the effect of the last
undo.

Normally you can undo your last ten actions, but you can change this number by
changing the value in APSTUDIO.INI (see Appendix A, page 179). Most common
operations in App Studio can be undone, including actions such as dragging and
dropping that involve moving from one App Studio window to another.

Chapter 1 App Studio Overview 9

» To undo an operation:
e On the App Studio toolbar, click the Undo button.

Or from the Edit menu, choose Undo (CTRL+Z).

» Toredo an operation:
e On the App Studio toolbar, click the Redo button.

Or from the Edit menu, choose Redo (CTRL+A.)

Using the Properties Window

The Properties window is one of the most important features of App Studio; it
allows you to control the appearance and behavior of the resources you create.
Figure 1.4 shows the Properties window as it appears when you first open a dialog
box for editing.

] Dialog Properties General :I
1p: [IDD_DIALOG2 | [2] caption: [Diabog |

Font Name: M5 Sans Serif Menu: I El
Font Size: 8

Registered
O o o = n—

Figure 1.4 App Studio Properties Window

Once you use App Studio for a short time, you will become quite familiar with how
the Properties window works. To get a head start, however, there are a few things
you should know:

The Properties window contains one or more property pages that apply to the
resource or resource object that is currently selected.

If the editing window for the selected resource is closed or minimized, only the
Resource property page (showing basic information about the resource) is
available. See page 159 for more information.

You can control whether the Properties window stays visible while you are
working in another window (for example, an editor window) or is dismissed
once you switch to another window.

Changes made on a property page take effect as soon as you make them. For an
edit box, changes take effect as soon as you switch to another window or
control.

You can use App Studio’s property pages and multiple-level undo as a design
tool. Experiment with various property settings and then back them out with
CTRL+Z if they’re not what you want.

10 App Studio User’s Guide

Viewing Property Pages
Property pages divide resource properties into logical groupings so that they are
easier to view and edit.

» To display the Properties window:
e From the Window menu, choose Show Properties.
—Or—
e Choose one of the following shortcuts:
= For resources with a caption, select the resource and start typing the caption.
= Press ENTER when a resource is selected in an editing window.
= Press ALT+ENTER at any time.

= Choose the Properties command at the bottom of the resource browser
window.

Tip You can display the Properties window quickly by double-clicking the object
whose properties you want to edit.

» To move from one property page to another in the Properties window:
1. In the Resources box, select the resource whose properties you want to edit.

2. Display the Properties window if it is not currently displayed: from the Window
menu, choose Show Properties.

3. In the property page box at the upper-right corner of the Properties window,
choose the category of properties you want to edit from the list of property

pages.

Tip With the Properties window displayed, you can quickly move from one
property page to another using the PAGE UP and PAGE DOWN keys.

Controlling the Properties Window

You can control the behavior of the Properties window to suit your working style or
the nature of the resource editing task. Use the “pushpin” command button in the
upper-left corner of the Properties window:

Chapter 1 App Studio Overview 11

s When the button is in the down position, the Properties window stays visible
even when you are working in another window. This is convenient if, during an
editing session, you want to move back and forth frequently between setting
properties and editing objects. Pressing ENTER after you change a value in the
Properties window returns you to the editing window but leaves the Properties
window visible. Pressing ESC cancels any changes you made and returns you to
the editing window.

= When the button is in the up position, you can dismiss the active Properties
window by pressing ENTER or ESC. This is useful if you want to concentrate on
working in an editing window but need to bring up the Properties window
briefly to change one or two values.

Introduction to App Studio Editing Windows

This section presents a visual overview of the main App Studio editing windows
and App Studio dialog boxes. For a complete description of each editor, see the
appropriate chapter.

Dialog Editor

Use the dialog editor to quickly create dialog boxes, place and arrange controls, and
test the finished product. See Chapter 3.

IDD_ENTER_DATA [Dialog) -] B
———— Y=
= |a[=]
Cfo)
x|®|
Efl=s
== f

©

ok) [Ccancet i
o .=l
Dialog Properties General I :I
1D: [IDD_ENTER_DATA | [2] caption: [ErterDatd |
——————————— Font Name: MS Sans Serif Menu: I E
Font Size: 8 -

X Pos: E Y Pos: D Regi:g;a;:::l :

Figure 1.5 Dialog Editor

12 App Studio User’s Guide

Menu Editor

Use the menu editor to create and edit menu items by working directly with a menu
bar that closely resembles the one in your finished application. See Chapter 4.

= IDR_ACCOUNTYPE [Menu) [+]~

|

[Eile Edit Options View

Arrange Icons

[BL
MMenuz Menu ltem Properties |Genera| IEI
1D: [ID_W/INDOW_NEW | 2] caption: [tNew Window |

| Separator O Popup | Inactive Break:

O Checked O Grayed O Help

Prompt: |Dpen another window for the active document |

Figure 1.6 Menu Editor

Accelerator Table Editor

Use the accelerator table editor to add, delete, change, or browse the accelerator-
key assignments in your project. See Chapter 5.

= IDR_MAINFRAME [Accelerator) ﬂ -
1D Key Type
[
{D_FILE_MEW Ctil + N VIRTKEY |
ID_FILE_OPEN Ctil +0 YIRTKE
ID_FILE_PRINT Ctil + P YIRTKE
ID_FILE_SAVE Ctl+5 VIRTKE
ID_EDIT_PASTE Ctl + VIRTKE
|D_EDIT_UNDD Alt +WK_BACK YIRTKE'
ID_EDIT_CUT Shift + VK_DELETE VIRTKE
ID_CONTEXT_HELP ShiftﬁVK_ﬁ VIRTKE
ID_NEXT_PANE [=I A3

i

ID_PREV_PANE & Accel Table: Accel Properties General ¥
iD_EDIT COPY (22 Ld | 2]
\D_EDIT_PASTE iD: [ID_EDIT_COPY Modifiers

I | Hew Cae [shir

Bt [g
Type
|__Mext Key Typed | { O ASCIl @ VintKey

Figure 1.7 Accelerator Table Editor

String Editor

Use the string editor to change or add to your program’s standard string-table
resource. See Chapter 6.

Chapter 1 App Studio Overview

13

- (String Table] [+
1D Value Caption
IDR_MAINFRAME 2 Account Windows Application +
IDR_ACCOUNTYPE 3 \rccountnACCOUN Document

AFX_IDS_IDLEMESSAGE 57345 |For Help, press F1
AFX_IDS_HELPMODEMESSAQ 57346 | Select an object on which to get Help
ID_FILE_NEW 57600 [Create a new document

ID_FILE_OPEN 57601 | Open an existing document

ID_FILE_CLOSE 57602 |[Close the active document

ID_FILE_SAVE 57603 |[Save the active document

ID_FIIF SAVE AS R7604 Save the active dncument with a new name¥

New I | Delete I | Find... I | Properties... I

BL
I 2 ? ISlling Editor: String Properties |Genelal M
ID: |AFX_IDS_APP_TITLE |
Caption: | Account Windows Application t
¥

Figure 1.8 String Editor

Graphics Editor

Use the graphics editor to edit your program’s cursor, icon, and bitmap resources.

See Chapter 7.

=) IDI_ICONA [Icon)

[l

Device: [EGAAGA

[+ [#)

Filename: |ico00007.ico

— | & Icon Properties General :I
1D: [IDIICONS | &
Width: 32 Height: 32 Colors: 16

Figure 1.9 Graphics Editor

14 App Studio User’s Guide

Binary Data Editor

Use the binary data editor to edit an existing custom resource at the binary level in
either hexadecimal or ASCII format. See Chapter 8.

Offset

000090
oonoola
0000z0
000030
000040
000050

65
74
73
61
2D

75
&F
73
75

70

Hexadecimal value

2D
65
69
20

66

65 66
73 74
69 65
68 61
6C 63
£3 20

64
6D
z0
6F

61

20
243
7z
EE
€F
2E

7z
ER
65
74

00

ASClI value

w]a
A user-defined r|4
esource statemen
t specifies a re
source that cont
ains application
-specific data..|¥

Figure 1.10 Binary Data Editor

The Symbol Browser

Use the Symbol Browser to edit and browse existing identifiers or create new ones.

See Chapter 2.
= : Symbol Browser
Name Value In Use
ID_ENTER_DATA 59396 vt
ID_PASSWORD 59395 v
IDB_BITMAP1 1 M
VI

IDC_ALL_ACCESS 1004 v m
IDC_CHECKING 1006 v -
IDC_EDIT1 1000 v
IDC_EDIT2 1001 v
IDC_MONEYMKT 1008 v
IDC_NAME 1000 V(e

[Show Read Only Symbols
Used by:

Figure 1.11 Symbol Browser

Using ClassWizard

App Studio goes beyond just editing resources. You can use ClassWizard to
connect resources to code. This section gives a brief overview of ClassWizard; for
more information, see Chapter 9.

Chapter 1 App Studio Overview 15

Simplifying Message Handling

ClassWizard greatly simplifies the often tedious and time-consuming task of
managing Windows message handling. You can browse the Windows messages
appropriate to a given user-interface object and define message handlers for them
(Figure 1.12).

Import Class

Class Name: Header File:

[Addintd | [dialogs.h | | Browse... | [Cancet |
_Cancel |

Implementation File:

Figure 1.12 Using Class Wizard to Define a Message Handler

Gathering and Validating Dialog-Box Data

The Microsoft Foundation Class Library has built-in routines that simplify
gathering and validating the data associated with dialog-box controls.

When you are building a dialog box in App Studio, you can use ClassWizard to
define member variables in the dialog-box class to take advantage of these built-in
routines for Dialog Data Exchange (DDX) and Dialog Data Validation (DDV).

Understanding Windows Resources

Resources are data objects that are separate from the main body of code in a
Windows operating system program. Because of this, resources can be built and
edited independently of the rest of the development process. This not only makes a
project with a complex user interface easier to manage, but it also makes the
application easier to translate into other languages.

Typically, resources are used to describe the contents and appearance of user-
interface objects such as menus and dialogs. However, you can also define your
own resource type if, for example, you have custom data that you want to make
part of your program.

To most efficiently manage available memory, Windows usually leaves resources
on disk until they are needed, although you can cause individual resources to be
loaded at program startup to improve performance. Once loaded, a resource is
usually placed in a “discardable” section of memory so that memory can be freed
up for other tasks if needed. When the user-interface object is again required, it is
loaded from disk.

16 App Studio User’s Guide

The appearance and contents of resources are defined in a “resource script” (.RC)
file. The .RC file is compiled into a binary form in a separate step when you build
your program and is made a part of the executable file during linking.

Predefined Windows Resources

The following predefined resource types are supported by built-in Windows library

routines:

dialog box menu
accelerator table string table
bitmap icon
cursor

Dialog Box

A dialog box is a window, usually a pop-up window under the control of the main
program window, that allows your program to carry on a two-way conversation
with the user. Dialog boxes are used to gather the information needed to comply
with a user request (such as the name of a file to open).

App Studio allows you to construct dialog boxes by simply dragging controls from
a palette and dropping them into place. You can also arrange controls easily with a
variety of layout tools. For information on editing dialog boxes, see Chapter 3.

Menu

A Windows menu is a list of program commands. Menus offer a way to group
multiple commands into logical units, thus reducing the complexity of the user
interface. Since these lists of commands drop down from a “menu bar” at the top
of the main program window, they also offer a convenient way for the user to
browse and select program commands with a pointing device. Figure 1.13 shows
a program window with a menu bar and two levels of menus open.

Chapter 1 App Studio Overview

17

Drop-down menu
Accelerator key

T MYAPP Window

Menu items (underlined letter is mnemonic key)

Cascading menu

's Application

Menu bar

»

Cut Ctrl+X
Copy Ctri+C
Ctrl+v

Paste Special Metafile
Graphic

[Paste bitmap

[Fov |

Figure 1.13 Menu Example

The App Studio menu editor allows you to create new menus by pointing to any

empty menu cell and filling in the information in the Properties window. To

rearrange menu items, you just drag them from one location to another with the

mouse. For information on editing menus, see Chapter 4.

Accelerator Table

An accelerator table contains a list of accelerator (shortcut) keys that can be used to

execute a program command directly from the keyboard without having to pull
down a menu and choose the command from a list. In Figure 1.13, the menu

example, the Copy command is assigned to the key combination CTRL+C.

Normally, accelerators are associated with program commands that also appear on

a menu. However, some applications use accelerator keys for seldom-used program
commands that, if placed on a menu, would make the program’s menu structure too

complex.

For more information on editing accelerator tables, see Chapter 5.

18

App Studio User’s Guide

String Table

A string table is a Windows resource type that allows you to store text strings that
will be displayed as part of your user interface. Since this information is stored
separately from the program source code, you can easily edit or translate program
text without having to recompile the entire program.

The App Studio string editor gives you convenient access to all string resources and
their associated attributes. For more information about the App Studio string editor,
see Chapter 6. '

Bitmap

A bitmap is a graphical image stored in binary form; the basic element of the
bitmap is the pixel, or picture element. One common use of bitmaps in programs for
Windows is to define the appearance of the custom command buttons frequently
used in toolbars or control palettes. For example, when you create a new
application using AppWizard, a basic toolbar bitmap (Figure 1.14) is included as
part of the application.

]

Figure 1.14 Toolbar Bitmap Generated by AppWizard

The graphics editor in App Studio is full-featured and powerful. In addition to
allowing general bitmap editing, it has special provisions for editing bitmaps for use
with the CToolBar class in the Microsoft Foundation Class Library. For more
information on creating toolbars and other bitmaps using the App Studio graphics
editor, see Chapter 7.

Icon

An icon is a unique graphical identifier that represents a program on the Windows
desktop. An icon is used to launch a program from the Program Manager and also
to represent a program window that has been minimized. Figure 1.9 shows an icon,
which is a 32x32-pixel bitmap, being edited in the App Studio graphics editor.

For information on using App Studio to create or modify icons, see Chapter 7.
For information on incorporating existing icons into your project, see Chapter 2,
page 28.

Chapter 1 App Studio Overview 19

Cursor

A cursor is a bitmap, usually 32x32 pixels, that shows the position of the mouse or
other pointing device on the screen. Programs use different cursors to show a
change in the state or current action.

For example, in the App Studio dialog editor, when you use “drag and drop” (see
page 8) to place a radio button in a dialog box, the cursor changes from an arrow to
an arrow and a radio button (see Figure 1.15) as a visual reminder of what kind of
object you are moving.

®

Figure 1.15 Cursor Example: Dragging a Radio Button

For information on using the App Studio graphics editor to edit cursors, see
Chapter 7. For information on incorporating existing cursor bitmaps into your
project, see Chapter 2, page 28.

App Studio Sample Resources

Visual C++ includes sample resources that you can use in your own application.
These include:

= A large number of icons that represent common business and data-processing
tasks.

= Several commonly used cursors that are not included as predefined Windows
resources.

m A selection of toolbar-button bitmaps.

These resources are located in a file called COMMON.RES in the
\MSVCWFC\SAMPLESNAPSTUDIO directory on the drive where you installed
Visual C++. Additional sample resources can be found in this directory.

> To copy resources from COMMON.RES to your own resource script file:
1. Use App Studio’s File menu to open both your .RC file and COMMON.RES at
the same time.

2. Hold down the CTRL key and drag the resources you want from the
COMMON.RES resource browser window to the resource browser window of
your own application.

20 App Studio User’s Guide

Where to Go from Here

For more information on See -
Managing projects and working with Chapter 2
resource files

Using ClassWizard Chapter 9

Editing specific resource types

User-interface object properties and styles

The chapter covering the editor for that
resource

Chapter 11

21

CHAPTER

2

Working With Files and Symbols

App Studio supports many different ways of working with resources. You can:

Load, save, and edit resource script (.RC) files.

Load, save, and edit Windows executables (.EXE), dynamic link libraries
(.DLL), and compiled resource (.RES) files.

Use App Studio as a stand-alone editor for bitmaps, icons, or cursors.

Import or export graphics resources to or from your current resource file.

In most cases, it is easiest to work with App Studio’s single .RC file. However, App
Studio can accommodate other ways of organizing a project. You can:

Work with nested resource files and conditionally included resource files.

Include shared or read-only identifiers (symbols) that can’t be modified by App
Studio.

Include resources in your executable file ((EXE) that don’t require editing (or
that you don’t want to be edited) during your current project (such as resources
that are shared between several projects).

Include resource types not supported by App Studio.

When you create a new resource or an object within a resource, App Studio assigns
it an identifier, or symbol, consisting of a text string mapped to an integer value.
You can change the symbol name or value in the Properties window when you
create the resource, and you can view existing symbols and add new ones with the
Symbol Browser as you work.

22 App Studio User’s Guide

Working with Files

App Studio lets you open the following types of files:

File Extension Description

.RC Resource script file

.RES Compiled resource script file
.EXE Executable file

.DLL Dynamic-link library

.BMP, .DIB, .ICO, .CUR Graphics files containing bitmaps, icons, or cursors

In addition, you can save an existing resource, executable file, or graphics file as
one of the following:

= _EXE (for an existing executable)

= RC

= RES (a compiled resource file)

= BMP, .DIB, .ICO, or .CUR (if you are working with a graphics file only and
not a resource script file)

App Studio also works with several additional files during your resource editing

session:

Filename Description

RESOURCE.H Header file generated by App Studio; contains symbol
definitions.

projectname APS Binary version of the current resource file; used by App
Studio for quick loading.

projectname.CLW File containing information about the current project; used

by ClassWizard.

The following sections cover the most common operations you’ll need to set up your
project and to manage resources and resource files.

Creating a New Resource File

You can use App Studio to create a new resource script file or graphics resource
file. You can also choose to include Microsoft Foundation Class Library support in
the resource file you create. App Studio can also create a compiled resource (RES)
file, although the situations in which this is required are rare.

Chapter 2 Working With Files and Symbols 23

» To create a new resource file:
1. From the File menu, choose New.
The New dialog box appears.

2. Choose a file type from the list of choices: bitmap, icon, cursor, resource script
file (.RC), or compiled resource file (RES).

3. Set or clear the Use Microsoft Foundation Classes option as appropriate.

For information on features specific to Microsoft Foundation class resource
files, see page 26.

—Or-—
¢ Click the New File button on the App Studio toolbar.

A new resource script file with Microsoft Foundation Class Library support is
created.

Note You can change the type of resource file created by changing the UseMfc
setting in APSTUDIO.INI. See Appendix A for details.

Opening a Visual C++ Resource File

This section provides two ways to start a resource editing session from Visual
Workbench. The instructions assume that you have started Visual Workbench and
created a basic set of new project files using AppWizard. For more information on
AppWizard, see chapter 13 of the Visual Workbench User’s Guide. For
information on opening resource files not created with AppWizard or App Studio,
see page 24.

» To open a resource file from Visual Workbench:
e From the Tools menu, choose App Studio.

This executes App Studio and opens the .RC file with the same base name as the
current project.

—Or-—
1. From the Options menu, choose Editor.
The Editor dialog box appears.

2. Under Source Files, select the Open RC Files Using App Studio option
(normally turned off).

3. Click the Project Files button on the Visual Workbench toolbar and choose your
project’s .RC file from the list.

—Or—

24 App Studio User’s Guide

1. From the File menu, choose Open.
2. Open the .RC file for your project.
Visual Workbench executes App Studio and loads the project resource file.

To open a resource file from App Studio:

1. Start App Studio from the Windows Program Manager.
2. From the App Studio File menu, choose Open.

3. Open your project’s .RC file for editing.

For information on a recommended file structure for Visual C++ projects, see the
discussion of the files generated by the AppWizard in Chapter 13 of the Visual
Workbench User’s Guide.

Reading Resource Files Not Created with App Studio or

AppWizard

When you start a new Visual C++ product, you normally use AppWizard to create
a set of basic starter files. These starter files include an App Studio-compatible .RC
file that contains support for Microsoft Foundation Class Library features.
However, you can also update existing .RC files for use with App Studio.

To update an existing resource file for use with App Studio:
1. Make a backup copy of your existing .RC file.

2. Add the .RC file to your project using Visual Workbench (see Chapter 8 of the
Visual Workbench User’s Guide).

3. Open the file in App Studio according to the instructions in the previous section.

Note App Studio uses the include path set in Visual Workbench (from the
Visual Workbench Options menu, choose Directories). In addition, relative
include paths in an App Studio resource file must be based on the directory
where the .RC file is currently located.

4. Save the App Studio version of the resource file.

Reading in and then saving resource files not created by AppWizard or App Studio
has two results that are important to be aware of:

= App Studio makes several changes to how your resource files are organized so
that you can work with all your resources in one place.

= Several resource-related features supported by the Microsoft Foundation Class
Library are automatically available when your resource script file includes the
library file AFXRES.H. See page 133 for instructions on how to manually add
framework support to existing .RC files.

Chapter 2 Working With Files and Symbols 25

Converting Existing Resource Files to App Studio Format

Saving a non-App Studio resource script file for the first time in App Studio has
several important consequences:

Resources contained in files that were added to your old .RC file with include
statements are written back to disk as part of the main App Studio resource file.

For example, if your old project had dialog boxes in a separate .DLG file, this
separate file is no longer needed since App Studio moves the dialog boxes into
the main .RC file.

However, if you have resource files containing resources that you do not want to
edit in App Studio, or that you want to continue to store in a separate resource
file (such as a version resource file), move the resource to a separate file and
add it back by using the File menu’s Set Includes command. See page 28 for
more information.

Any symbol definitions included in your old .RC file are marked as read-only
symbols by App Studio the first time you save the .RC file. To make the
symbols available for modification and editing, remove them from the included
header file and place them in the App Studio resource header, RESOURCE.H.

Symbols that are defined with expressions rather than integers and used in the
resource file are evaluated by App Studio, but they are then written to the App
Studio symbols header (.H) file as simple integers. To preserve the expressions
for calculated symbol values, include them in a read-only symbols header file
(page 29).

Conditional compilation statements in your old .RC file are evaluated by App
Studio the first time the file is read in, but they are not written back to disk when
you save the .RC file.

Note To preserve conditional compilation statements you should place the
sections of your old .RC file containing these statements in a separate file, then
include the file using the File menu’s Set Includes command. See page 31 for
more information.

Comments in your old .RC file are not preserved.

In most cases, App Studio makes it easy and convenient to work with all your
resources and symbols in a single App Studio file. However, App Studio also sup-
ports a nested resource file structure, conditionally included resource files, and
expressions as symbol values if your project requires it. For more information see
the section “Using Advanced Resource File Techniques” later in this chapter.

26

App Studio User’s Guide

Features Supported Only in Microsoft Foundation Class

Library Resource Files

Normally when you build a Microsoft Foundation Class Library Windows
application from scratch using AppWizard, you start by generating a basic set of
files, including a resource file, that contain the core features of the Microsoft
Foundation classes.

However, if you are editing a resource file for a Windows program that is not based
on the Microsoft Foundation Class Library, the following features specific to the
framework are not available in App Studio:

ClassWizard (Chapter 9)
= Menu prompt strings (page 176)
= Support for VBX controls (page 55)

List Contents for combo-box controls (page 165)

You can, however, add framework support to existing resource script files that do
not have it.

To add framework support to .RC files that do not already have it:
1. From the File menu, choose Set Includes.
The Set Includes dialog box appears.

2. In the Read-Only Symbol Directives box, replace the include statement for
WINDOWS.H with the following:

#include “afxres.h”

3. You may also need to add additional include files using the Compile-Time
Directives box. For more information, see the Class Library Reference.

4. Close the resource file and then reopen it for the changes to take effect.

Copying Resources Between Files

The easiest way to copy resources from either an existing resource or an executable
file to your current resource file is to have both files open in App Studio at the same
time. Then use drag and drop to move items from one resource browser window to
another (see Figure 2.1).

Note Visual C++ includes sample resource files that you can use in your own
application. See page 19.

Chapter 2 Working With Files and Symbols

27

You can use the Resource menu’s Import command to add bitmap, icon, or cursor

files to your current App Studio project. You can save graphics resources to disk as

separate files using the Export command.

To copy resources from one file to another:
1. Open both files. Make sure both resource browser windows are visible.

2. In the resource browser window of the “from” file, select the resource you want

to copy.

3. Hold down the CTRL key and drag the resource to the resource browser window

of the “to” file.

Dragging the resource without holding down the CTRL key moves the resource

rather than copies it.

Note To avoid conflicts with symbol names or values in the existing file, App
Studio may change the transferred resource’s symbol value, or symbol name and

value, when you copy it to the new file.

File Edit Resource Window Help

= App Studio - \SRC\TESTATEST2.RC [-12]

) EERBREEE 1

\SRC\TESTRTEST3.RC [Resource Script] [~]~
Resources: (O total)

\SRC\TEST2\TEST2.RC [Resource Script) n =1
Resources: [5 total}
[E=]1DD_ABQUTBOX
[E:] IDD_DIALOGT

Bzl IDD_DIALOG2
[Ez]'DD_DIALOGS

W 58 (DD_EMTER_DA&Ta

LE'_] [Detete | [Properties... |

\ {ipen l | _f,}jkfi’:?ﬁJ | §:’¥£}$§ﬁ§§-§iz$‘;l

Ready

Figure 2.1 Using Drag and Drop to Copy Resources Between Files

28

App Studio User’s Guide

» To import a separate bitmap, icon, or cursor file into your current resource

file:
1. From the Resource menu, choose Import. The Import dialog box appears.

2. Choose the name of the .BMP, .ICO, or .CUR file you want to import. When
you choose OK, the file is added to the current resource file.

Tip You can also copy a bitmap, icon, or cursor into your current resource file by
dragging it from a File Manager window and dropping it into the App Studio
resource browser window.

To save a bitmap, icon, or cursor as a separate file:

1. Select the bitmap, icon, or cursor you want to export. App Studio exports the
graphic selected in the resource browser window or the graphic in the currently
active image editor window.

2. From the Resource menu, choose Export.

3. Enter a new filename for the bitmap, icon, or cursor, or press ENTER to accept
the current filename.

The graphics file is saved to disk.

Using Advanced Resource File Techniques

You can use the File menu’s Set Includes command to modify App Studio’s normal
working arrangement of storing all resources in the project .RC file and all symbols
in RESOURCE.H. (For more information on symbols, see “Working with
Symbols” on page 31.) Figure 2.2 shows the Set Includes dialog box.

=| Set Includes I

Symbol Header File:

Bead-Only Symbol Directives:

Cancel

ftinclude “afsres_h™ h i

Compile-Time Directives:

ttinclude "res\nu.rc2" // non-App 51+

#tinclude “afxres.ic" // Standard coi
Htinclude "afsprint.rc™ #7 printing/pri

Figure 2.2 Set Includes Dialog Box

Chapter 2 Working With Files and Symbols 29

Use the Symbol Header File box to change the name of the header file where App
Studio stores the symbol definitions for your resource file.

Use the Read-Only Symbol Directives box to include header files that contain
symbols that should not be modified during an App Studio editing session. For
example, you can use the Read-Only Symbol Directives box to include a symbol
file that has been created to be shared among several projects. The Read-Only
Symbol Directives box is also used to include Microsoft Foundation Class
Library .H files.

Use the Compile-Time Directives box to include resource files that:

= Are created and edited separately from the resources in your main resource file.

= Contain compile-time directives, such as directives that conditionally include
Tesources.

s Contain resources in a custom format.

The Compile Time Directives box is also used to include standard Microsoft
Foundation Class Library resource files.

Once you’ve made changes to your resource file using the Set Includes dialog box,
you need to close the file and then reopen it for the changes to take effect.

Changing the Name of the Symbols Header File

Normally App Studio saves all symbol definitions to RESOURCE.H. However, you
may need to change this include filename so that you can, for example, work with
more than one resource file in the same directory.

To change the name of the resource symbol header file:
1. From the File menu, choose Set Includes.
The Set Includes dialog box appears.
2. In the Symbol Header File box, type the new name for the include file.
3. Choose OK.

Using Shared (Read-Only) or Calculated Symbols

The first time App Studio reads a non-App Studio resource file, it marks all
included header files as read-only. Subsequently, you can use the File menu’s Set
Includes command to add additional read-only symbol header files.

One reason you may want to use read-only symbol definitions is for symbol files
that you plan to share among several projects.

30

App Studio User’s Guide

You would also use included symbol files when you have existing resources with
symbol definitions that use expressions rather than simple integers to define the
symbol value. For example,

fidefine IDC_CONTROL1 2100
f#fdefine IDC_CONTROL2 (IDC_CONTROLI1+1)

App Studio will correctly interpret these calculated symbols as long as:

= The calculated symbols are placed in a read-only symbols file.

= Your resource file contains resources to which these calculated symbols are
already assigned.

To include shared (read-only) symbols in your resource file:
1. From the File menu, choose Set Includes. The Set Includes dialog box appears.

2. In the Read-Only Symbol Directives box, use the #inc1ude compiler directive
to specify the file where you want the read-only symbols to be kept. (The file
should not be called RESOURCE.H, since that is the filename normally used by
App Studio’s main symbol header file.)

3. Place the symbols in the file you specified.

The symbols in files included in this way are evaluated each time you open your
resource file, but they are not rewritten to disk by App Studio when you save
your file.

Important What you type in the Read-Only Symbol Directives box is included in
the resource file exactly as you type it. Make sure what you type does not contain
any spelling or syntax errors.

You should use the Read-Only Symbol Directives box to include files with symbol
definitions only, not resource definitions. App Studio places resources included with
the Read-Only Symbol Directives box in the main resource file when it is saved,
thus creating duplicate resource definitions.

Including Resources From Other Files

Normally it is easy and convenient to work with App Studio’s default arrangement
of all resources in one .RC file. However, you can add resources in other files to
your current project at compile time. Use the Set Includes dialog box’s Compile
Time Directives box.

There are several reasons to place resources in a file other than App Studio’s main
resource file:

Chapter 2 Working With Files and Symbols 31

= To include resources that have already been developed and tested and need no
further modification.

= To include resources that are being used by several different projects, or that are
part of a source code version-control system, and thus must exist in a central
location where modifications will affect all projects.

= To include resources (such as RCDATA resources) that are in a custom format.

= To include statements in your resource file that execute conditionally at compile
time using compiler directives such as #1ifdef and #e1se. For example, your
project may have a group of resources that are bracketed by #ifdef _DEBUG
... #endif and are thus included only if the constant _DEBUG is defined at
compile time.

= To include statements in your resource file that modify resource-file syntax by
using #define to implement simple macros.

If you have sections in your existing resource files that meet any of these
conditions, you should place the sections in one or more separate .RC files and
include them in your project using the Set Includes dialog box. The
projectname RC2 file created by AppWizard in the RES subdirectory of a new
project is used for this purpose.

» To include resource files that will be added to your project at compile time:

1. Place the resources in a resource script file with a unique filename. (Do not use
projectname.RC, since this is the filename used for App Studio’s main resource
file.)

2. From the File menu, choose Set Includes. The Set Includes dialog box appears.

3. In the Compile-Time Directives box, use the #include compiler directive to
include the new resource file in the main App Studio resource file.

The resources in files included in this way are made a part of your executable at
compile time. They are not available for editing or modification when you are
working on your project’s main .RC file. You need to work on included resource
files in a separate App Studio resource script file.

Working with Symbols

A symbol is a resource identifier that consists of a text string (name) mapped to an
integer value. Symbols provide a descriptive way of referring to resources and user-
interface objects, both in your source code and while you’re working with them in
App Studio.

32

App Studio User’s Guide

When you create a new resource or resource object, App Studio provides a default
name for the resource (for example, IDC_RADIO1) and assigns a value to it. The
name-plus-value definition is stored in the App Studio-generated file
RESOURCE.H.

In working with symbols from within App Studio, you can:

= Change the symbol associated with a resource or object.

= Change a symbol’s name or value in the Symbol Browser (if the symbol hasn’t
been used yet).

= Change a symbol’s name in the Properties window (if the symbol is already in
use by a single object).

= Use the Symbol Browser to browse existing symbols, add new symbols, and
change or delete unused symbols.

Note When you are copying resources or resource objects from one .RC file to
another, App Studio may change the transferred resource’s symbol value, or symbol
name and value, to avoid conflicts with symbol names or values in the existing file.

Changing a Symbol or Symbol Name

When you create a new resource or resource object, App Studio assigns it a default
name—for example, IDD_DIALOG1. Use the Properties window to change the
default symbol name or to change the name of any symbol already associated with a
resource.

To change a resource’s symbol name:

1. Select the resource and move to the appropriate property page (usually the
General property page), or type CTRL+Q to move directly to the property page
ID box.

—Or—

Open the Symbol Browser (page 34), select the symbol you want to change,
and choose Change. When the Change Symbol dialog box appears, choose
View Use.

This moves you to the property page of the resource where the symbol is used.

2. In the ID box, type a new symbol name or select from the list of existing
symbols.

3. Press ENTER to accept the change. If you typed a new symbol name, App Studio
assigns it a value automatically.

You can use the Symbol Browser to change the name of symbols not currently
assigned to a resource. See “Changing Unassigned Symbols” on page 35.

Chapter2 Working With Files and Symbols 33

Changing a Symbol’s Numerical Value

Usually you can let App Studio assign the numerical value associated with the
symbol names you define. However, there may be times when you need to change
the symbol value associated with a resource—for example, when you want a group
of controls or a series of related strings in the string table to have sequential IDs.

For symbols already associated with a single resource, use the Properties window to
change the symbol value. For symbols associated with more than one resource or
object, make the changes directly in RESOURCE.H using a text editor.

» To change a symbol value using the Properties window (applies only to
symbols assigned to a single resource or object):

1. Select the resource and move to the appropriate property page (usually the
General property page), or type CTRL+Q to move directly to the property page
ID box.

—Or-—

Open the Symbol Browser (page 34), select the symbol you want to change,
and choose Change. When the Change Symbol dialog box appears, choose
View Use.

This moves you to the property page of the resource where the symbol is used.

2. In the property page ID box, type the symbol name followed by an equals sign
and an integer. For example,

IDC_EDITNAME=5100

3. Press ENTER to accept the change.

The new value is stored in the symbol header file the next time you save. Only
the symbol name remains visible in the ID box; the equals sign and value are not
displayed after they are validated.

» To change the numeric value of a symbol assigned to more than one resource
or object:

1. End your App Studio editing session by closing the current resource file or
exiting App Studio.

2. Load RESOURCE.H into Visual Workbench and make the necessary changes.
3. Save RESOURCE . H.

The next time you open the project’s .RC file in App Studio, App Studio uses the
new symbol values.

34 App Studio User’s Guide

Note While editing RESOURCE.H, take special care not to define duplicate
symbols. App Studio can only detect duplicate symbols if they are created from
within App Studio.

You can use the Symbol Browser to change the value of symbols not currently
assigned to a resource. See “Changing Unassigned Symbols.”

Managing Symbols with the Symbol Browser

As your application grows in size and sophistication, so do the number of resources
and symbols that must be created. Large numbers of symbols scattered throughout
several files can be difficult to keep track of. The Symbol Browser (Figure 2.3)
simplifies symbol management by offering a central tool through which you can:

= Quickly browse existing symbol definitions to see the value of each symbol, a
list of symbols being used, and the resources assigned to each symbol.

m Create new symbols.

= Change the name and value of a symbol that is not in use.

= Delete a symbol if it is not being used.

= With the View Use command, move quickly to the appropriate App Studio
resource editor where the symbol is being used.

== Symbol Browser I

Name Value In Use
IDC_PASSWORD 1000 ¥ |+
IDC_RADIO1 o v
IDC_RADIO2 102 Y
IDC_RADID3 103 v
IDD_ABOUTBOX 100 v
IDD_DIALOG1 101 v
IDD_DIALOGS 105 v
IDD_PASSWORD 103 v

DR i P _%_}_ez%eze
IDR_MAINFRAME 2 v | ¥ -
Used b [] Show Read Only Symbols
Used by:

g "

Menu IDR_ENTRYTYPE

Icon IDR_ENTRYTYPE

Figure 2.3 Symbol Browser

» To access the Symbol Browser dialog box:
e On the App Studio toolbar, click the Symbol Browser button.
—Or—
¢ From the Edit menu, choose Symbols (CTRLA+T).

Chapter 2 Working With Files and Symbols 35

Creating New Symbols

When you are beginning a new project, you may find it convenient to map out the
- symbol names you need before creating the resources they will be assigned to.

» To create a new symbol using the Symbol Browser:
1. Inthe Symbol Browser dialog box, choose New.
The New Symbol dialog box appears.
2. In the Name box, type a symbol name.

3. Accept the symbol value assigned by App Studio or, in the Value box, type a
new value.

4. Choose OK or press ENTER to place the new symbol into the symbol list. The
symbol appears in alphabetical order.

If you enter a symbol name that already exists, a message box appears stating that a
symbol with that name is already defined. You cannot define two or more symbols
with the same name, but you can define different symbols with the same numeric
value.

See the “Symbol Name Restrictions” and “Symbol Value Restrictions” sections at
the end of this chapter for additional information on symbol names and values.

Changing Unassigned Symbols

While in the Symbol Browser, you can edit or delete existing symbols that are not
already assigned to a resource or object. You can change existing symbols that are
in use in only one place by using the Change command to move to the appropriate
resource’s property page or by moving to the property page directly. You cannot
change read-only symbols. A check mark in the In Use column of the Symbol
Browser indicates that the symbol is being used. If Show Read Only Symbols is
selected, read-only symbols are also displayed. Editable symbols are displayed as
bold text, and read-only symbols are displayed as normal text.

To change the name or value of a symbol already in use, see page 32.

» To change an unassigned symbol using the Symbol Browser:
1. Select the unassigned symbol you want and choose Change.
The Change Symbol dialog box appears.

2. Edit the symbol’s name or value in the boxes provided, then press ENTER to
accept the change.

36 App Studio User’s Guide

» To delete an unassigned symbol using the Symbol Browser:
¢ Select the unassigned symbol that you want to delete, and choose Delete (DEL).

Note Before deleting an unused symbol in a resource file, make sure it is not used
elsewhere in the program or by resource files included at compile time.

Opening the Resource Editor for a Given Symbol

When you are browsing symbols in the Symbol Editor, you may want more infor-
mation on how a particular symbol is used. The View Use command provides a
quick way to get this information.

» To move to the resource editor where a symbol is being used:
1. In the Name box of the Symbol Browser, select the symbol you want.
2. Inthe Used by box, select the resource type that interests you.
3. Choose View Use.

The editor for the resource you selected appears.

Symbol Name and Value Restrictions

There are several restrictions to be aware of when you use symbol names and
values.

Symbol Name Restrictions

All symbol names must be unique within the scope of the application. This prevents
conflicting symbol definitions in the header files. Legal characters for a symbol
name include A-Z, a-z, 0-9, and the underscore (_). Symbol names cannot begin
with a number and are limited to 247 characters. Symbol names are case
insensitive, but the case of the first symbol definition is preserved.

Symbol names can be used more than once in your application. For example, if you
are writing a data-entry program with several dialogs containing an edit box for a
person’s Social Security number, you may want to give all the related edit boxes a
symbol name of IDC_SSN. To do this, you can define a single symbol and use it as
many times as needed.

While it is not required, symbol names are often given descriptive prefixes which
indicate the kind of resource or object they represent. The Microsoft Foundation
Class Library uses the following symbol naming conventions:

Chapter 2 Working With Files and Symbols 37

Category Prefix Use
Resources IDR_ Accelerator or menu (and associated
resources)
IDD_ Dialog
IDC_ Cursor
IDI_ Icon
IDB_ Bitmap
Menu items and commands IDM_ Menu item
ID_ Command
Controls and child windows IDC_ Control
Strings IDS_ String in the string table
IDP_ String-table string used for message
boxes

For more information on framework naming conventions, see Technical Note 20,
which can be found in MSVO\HELP\MFCNOTES.HLP.

Symbol Value Restrictions

In App Studio, a symbol value can be any integer expressed in the normal manner
for #define preprocessor directives. Here are some examples of symbol values:

18
4001
0x0012
-3456

Symbol values for resources can be decimal numbers in the range from 0 to 32767.
Symbol values for parts of objects (such as dialog box controls or individual strings
in the string table) can be from 0 to 65534 or from -32768 to 32767.

Note Some number ranges are used by App Studio and the Microsoft Foundation
Class Library for special purposes. For more information see Technical Note 20,
which can be found in MSVO\HELPAMFCNOTES.HLP.

In App Studio, you cannot define a symbol value using other symbol strings. For
example, the following symbol definition is not supported:

jidefine IDC_MYEDIT IDC_OTHEREDIT //not supported

38 App Studio User’s Guide

You also cannot use preprocessor macros with arguments as value definitions. For
example,

ffdefine IDD_ABOUT ID(7) //not supported

is not a valid expression in App Studio regardless of what 1D evaluates to at
compile time.

If you have an existing file containing symbols defined with expressions, see page
29 for instructions on how to include the symbols as read-only symbols.

39

CHAPTER 3

Using the Dialog Editor

The App Studio dialog editor allows you to:

= Create a new dialog-box template.
= Place and arrange controls in a dialog-box template.
= Use custom controls.

= Test dialog boxes.

You can define message handlers and manage data gathering and validation using
the Visual C++ ClassWizard.

You can also use the App Studio dialog editor to create and edit templates used
with form views and dialog bars. A form view is a template for a program window
whose client area contains dialog-box controls. See page 59 for more information.

Types of Controls

The dialog editor lets you create dialog boxes that include the following standard
control types (Figure 3.1):

pushbutton combo box static text

radio button group box scroll bar

check box static graphic user-defined control
list box edit box

App Studio also comes with the Grid VBX control already installed.

40 App Studio User’s Guide

Pointer — W | g LStatic graphic
Static text —t A, ||ablji— Edit Box
Group box —ft{"]| Ot Pushbutton
Check box —+- [| (@-4i— Radio button
Combo Box E‘EI =B List Box
Horizontal scroll bar —j[+I#] @ Vertical scroll bar
User-defined control —t €% %‘— Grid (VBX control)

Figure 3.1 App Studio Controls

The dialog editor and Microsoft Foundation classes support VBX controls—
custom controls created in a format compatible with both Microsoft Visual Basic™
and Visual C++. You can add VBX controls to the App Studio control palette, then
incorporate them into your dialog boxes in the same way as standard controls. For
more information, see page 55.

Creating Dialog Boxes

This section contains procedures for:

= Creating a new dialog-box template.

= Adding controls.

= Working with more than one control.

= Moving, deleting, and copying controls.

= Resizing controls.

= Modifying the tab order of controls in a dialog box.
= Defining dialog-box keyboard shortcuts.

Opening New or Existing Dialog Boxes

» To create a new dialog-box template:
® On the App Studio toolbar, click the New Dialog Box button.
—Or—
e In the resource browser window, click New, or from the Resource menu, choose

New (CTRL+R). Then select Dialog from the list of choices and click OK or
press ENTER.

Chapter 3 Using the Dialog Editor 4

The dialog editor window appears (Figure 3.2). Press ENTER to move to the
property page and type a name for the new dialog box. You can use the Properties
window at any time to change the dialog box’s properties.

When the dialog box is created, App Studio assigns it a unique symbol name and
value. If you need to change the symbol value, you can use the ID box on the
General property page. Type the symbol name followed by an equals sign and a

new value. For example,

IDD_DIALOG1=1001

For more information on the property page items, see the “Property Page
Reference,” Chapter 11, or choose the Property page Help button.

= App Studio - APP1 EB
File Edit Resource Layout Window Help
EECEE
=] / APP1 [Resource Script) [~]~ L[
Type: Resources: {1 total) A I
Mo
X|®
.....) i
..... -
| & ?IDiaIng Properties [Genelal IEI
ID: [IDD_DIALDGY | [2] caption: [Didiog |
Font Name: MS Sans Serif Menu: E
Font Size: 8 RI——‘—“—J_ p
1
Ready [34 [1805110

Figure 3.2 New Dialog Box

» To edit an existing dialog box:
1. Move to the resource browser window.
2. Inthe Type box, select Dialog.

A list of the dialog resources in the current file appears in the Resources box.

42

App Studio User’s Guide

3. In the Resources box, select the name or identifier of the dialog box you want to
edit.

4. Choose Open.
Or select the resource and press ENTER.
Or double-click the resource.
Or from the Resource menu, choose Open.

The dialog editor window appears.

Dialog Box Coordinates

The location, height, and width of the current control is displayed in the lower-right
corner of the App Studio status bar (Figure 3.3). When more than one control is
selected, the position indicators show the position of the dominant control (the
control with solid sizing handles). When the dialog box is selected, the status bar
displays the position of the dialog box and its height and width.

Position of selected object relative to
upper-left corner of containing window

/- Height and width of object

1921 [P 3510 |

Figure 3.3 Dialog Editor Position Indicators

The location and size of a dialog box, as well as the location and size of controls
within it, are measured in dialog box units (DLUs). A DLU is based on the size of
the dialog-box font, normally 8-point MS Sans Serif. A horizontal DLU is the aver-
age width of the dialog-box font divided by four. A vertical DLU is the average
height of the font divided by eight.

Adding Controls

You add controls to a dialog box by selecting the control you want from the control
palette. When displayed, the palette stays positioned above other open windows on
your desktop.

Chapter 3 Using the Dialog Editor 43

» To show or hide the control palette:
® Press F2 to display or hide the control palette.
~Or—
e From the ‘Window menu, choose Show Control Palette or Hide Control Palette.

The fastest way to add controls to a dialog box, reposition existing controls, or
move controls from one dialog box to another, is to use the drag and drop method
described in Chapter 1 (page 8). When you add a control to a dialog box with drag
and drop, the control is given a standard height appropriate to that type of control.

You can also add a new control by clicking the control-palette button for the control
you want and:

= “Drawing” the control in the dialog box. This is a good method when you want
to specify the initial size of the object.

= Clicking in the dialog box at the location you want. This is an alternative
method to dragging and dropping.

When you add a control to a dialog box or reposition it, its final placement may be
determined by whether or not you have Snap to Grid turned on. For information
about Snap to Grid and other placement and alignment tools, see the section on
Arranging Controls beginning on page 51.

» To add a control to a dialog box ﬁsing drag and drop:
1. Drag a control from the control palette to the dialog editor window (Figure 3.4).

As you drag the control into the dialog box, a dotted outline of the control
indicates its position.

2. When the dotted outline of the control is in the position you want, release the
mouse button. The control is given a standard size appropriate to that type of
control.

» To add controls to a dialog box using point and click:
1. On the control palette, click the button for the control you want.

Or to add multiple controls of the same type, hold down the CTRL key, and click
the control you want.

2. Move the mouse pointer to the dialog box and click at the position(s) you want.
The control is given a standard size appropriate to that type of control.

3. Press ESC when you are finished placing controls.

44 App Studio User's Guide

1. Click here and drag.
=[App Studio - APP1 KB
File Edit Resource Layout Window Help
ERREEEA i
= APP1 [Resource Script) = X
Type: Resources: (1 total) A
ial D_DIALOG1
B2 Dialog | |ID _DIALS m =)
=] 1IDD_DIALOG1 [Dialog) [~]~ =(®
2| E) =) [_.[@
=] Dialog &= E
New. L1
Drag and drop, orlclick and draw to create a new Radio Button 102,20
3. Release mouse 2. Cursor changes shape to
button to place control. show what you are dragging.

Figure 3.4 Dragging a Control from the Control Palette

» To add a control by “drawing” it with the pointing device:
1. On the control palette, click the control you want.

Or to add multiple controls of the same type, hold down the CTRL key, and click
the control you want.

2. Place the pointer where you want the upper-left comer of the control to be
located.

Hold down the left mouse button.

Move the pointer to the right and down; a dotted outline of the control appears.
When the control is the size you want, release the mouse button.

o kW

Press ESC when you are finished placing controls.

When you have added a control to the dialog box, you can change its caption or any
other of its properties in the Properties window.

Chapter 3 Using the Dialog Editor 45

Selecting Controls

To move, copy, delete, or align controls, you select them and then perform the
operation you want. In most cases, you need to select more than one control to use
the sizing and alignment tools on the dialog-editor toolbar.

‘When a control is selected, it has a shaded border around it with solid (active) or
hollow (inactive) “sizing handles,” small squares that appear in the selection
border.

When you are sizing or aligning multiple controls, App Studio uses the “dominant
control” to determine how the other controls are sized or aligned. When multiple
controls are selected, the dominant control has solid sizing handles; all the other
selected controls have hollow sizing handles. You can set the dominant control by
holding down the CTRL key while clicking that control.

» To select a control:

e Point to the control you want and click. The currently selected object (control or
dialog box) is deselected.

—Or-

e Use TAB to move forward or SHIFT+TAB to move backward through the controls
in the dialog box.

» To select more than one control:
1. From the control palette, select the pointer tool.

2. Hold down the left mouse button and drag to draw a selection box around the
controls you want to select (Figure 3.5). Controls partially outside the selection
box are not selected.

When you release the mouse button, all controls inside the selection box are

selected.

" chedi it

: i [ERREEY = LR N

. OCheck2 | G

: . HR » EETTH

. Clchecks | -aio

1. Drag the mouse pointer down 2. Release the mouse button
and right, drawing a box around and the controls are selected.

the controls you want to select.

Figure 3.5 Selecting Multiple Controls

46 App Studio User’s Guide

Once you have selected one or more controls, you can remove or add individual
controls without disturbing the selection as a whole.

» To remove from or add to an existing selection:

e Hold down the SHIFT key and click the control you want to remove from or add
to the existing selection.

Moving Controls

You can use the following procedures to move one or more controls from one
location to another in a dialog box or from one dialog box to another. If Snap to
Grid is on (see page 51), the control snaps to the alignment grid. For information on
other ways to align multiple controls, see page 52.

» To move a control from one location to another in a dialog box:
e Drag the control to its new location.
—Or—

e For a single control, select the control and use the arrow keys to move the
control one DLU at a time.

» To move a control from one dialog box to another:

e If both dialog boxes are visible, drag the control to its new location. (Hold down
the CTRL key while dragging if you just want to copy the control.)

_Or—

o Use the Edit menu’s Cut and Paste commands. The control is placed in the same
position as in the original dialog box.

Note In rare cases, you may need to place a control outside a dialog box. To do
this, hold down the ALT key while dragging the control.

Deleting and Copying Controls

» To delete a control:
1. Select the control.
2. From the Edit menu, choose Cut (CTRL+X) or Delete (DEL).

» To copy a control:
e Drag the control while holding down the CTRL key.
_Or—
e Use the Edit menu’s Copy (CTRL+C) and Paste (CTRL+V) commands.

Chapter 3 Using the Dialog Editor 47

When you paste a control into a new dialog, it is placed in the same position it was
in the old dialog.

Sizing Individual Controls

Use the sizing handles to resize a control. When the mouse cursor is positioned on a
sizing handle, it changes shape to indicate the direction in which the control will be
resized (see Figure 3.6). Active sizing handles are solid; if a sizing handle is hol-
low, the control cannot be resized along that axis. For information on sizing
multiple controls, see page 54.

When you change the size of a control, its final shape may be affected by whether
or not you have Snap to Grid turned on (see page 51).

» To size a control:
1. Click the control or select it with the TAB key.
2. Use the sizing handles to change the size of the control:
= Sizing handles at the top and sides change the horizontal or vertical size.
= Sizing handles at the corners change both horizontal and vertical size.
-Or—
Use the SHIFT key plus the arrow keys to resize the control one DLU at a time.

sl

Figure 3.6 Sizing a Control

Sizing a Control to Fit Its Caption

You can automatically change the size of a control so that it is the appropriate size
for its text caption.

» To resize a control to fit its caption:
1. Select the control.

2. From the Layout menu, choose Size to Content (F7).

Sizing Combo Box Drop-downs

When you select a drop-down or drop-list combo box to size it, only the right and
left sizing handles are active (Figure 3.7). Use these handles to set the width of the
combo box as it is initially displayed.

48 App Studio User’s Guide

You can also set the vertical size of the drop-down portion of the combo box.

1. Click here to change
to drop-down view.

l 2. Use sizing handle to change
initial size of drop-down box.

Figure 3.7 Sizing the Drop-down Portion of a Combo Box

» To set the size of the combo box drop-down area:
1. Click the drop-down arrow at the right of the combo box (Figure 3.7).

The outline of the control changes to show the size of the combo box with the
drop-down area extended.

2. Use the bottom sizing handle to change the initial size of the drop-down area.

3. Click the drop-down arrow again to close the drop-down portion of the combo
box.

Changing the Tab Order

Tab order is the order in which the TAB key moves the input focus from one control
to the next within a dialog box. Usually the tab order proceeds from left to right in a
dialog box, and from top to bottom. The Tabstop option on the control’s General
property page (normally set) determines if a control actually receives input focus or
not.

Even controls that do not have the Tabstop property set need to be part of the tab
order. This can be important, for example, when you define mnemonics for controls
that do not have captions. Static text that contains a mnemonic for a related control
must immediately precede the related control in the tab order.

Note If your dialog box contains overlapping controls, changing the tab order may
change the way the controls are displayed. Controls that come first in the tab order
are always displayed on top of any overlapping controls that follow them in the tab
order.

Chapter 3 Using the Dialog Editor 49

> To change the tab order for all controls in a dialog box:

1.

From the Layout menu, choose Set Tab Order (CTRL+D).
A number at the upper left of each control shows the current tab order.

Set the tab order by clicking each control in the same order you want the TAB
key to follow (Figure 3.8).

. Press ENTER to exit Set Tab Order mode.

Click each control in turn to
set the desired tab order.

=-| / Dialog
/

10
l-ie I “m
Cancel I
ber

ghnice 1 m is a list

mhoice 2 =
mhoice 3 r

Figure 3.8 Setting Tab Order

To change the existing tab order, you usually need to change the selected control
first, as explained in the following procedure. The selected control determines the
number of the control you click next. For example, if you are in Set Tab Order
mode and control number 1 is selected, the next control you click is set to number 2.

» To change the existing tab order:

1.

From the Layout menu, choose Set Tab Order (CTRL+D).

2. Change the selected control. To do this, hold down the CTRL key and click the

control prior to the one where you want the changed order to begin.

For example, if you want to change the order of controls 7 through 9, select
control 6 first (see Figure 3.9).

Note To set a specific control to number 1 (first in the tab order), double-click
the control.

Reset the tab order by clicking the controls in the order you want the TAB key to
follow.

4, Press ENTER to exit Set Tab Order mode.

50 App Studio User’s Guide

1. Hold down the CTRL key
and click the control prior to
the one you want to change.

=-| Dialog

=

! Cancel
ber E | I

m is a list
4/

mhoice 2

g:hoice 3 T

2. Then click the controls you want to change.
In this example, clicking 8 changes it to 6.
The next control you click changes to 7 in
the tab order, and so on.

-

Figure 3.9 Changing the Existing Tab Order

Defining Dialog Box Keyboard Access

Normally keyboard users move the input focus from one control to another in a
dialog box with the TAB and arrow keys. However, you can define a mnemonic key
that allows users to choose a control by pressing a single key.

Note All the mnemonics within a dialog box should be unique.

» To define a mnemonic key for a control with its own visible caption
(pushbuttons, check boxes, and radio buttons):

1. Select the control and move to the General property page.

2. In the Caption box, type an ampersand (&) in front of the letter you want as the
mnemonic for that control.

An underline appears in the displayed caption to indicate the mnemonic key.

» To define a mnemonic for a control without a visible caption:

1. Make a caption for the control by using a static text control. In the static text
caption, type an ampersand (&) in front of the letter you want as the mnemonic.

2. Make sure the static text control immediately precedes the control it labels in the
tab order.

Chapter 3 Using the Dialog Editor 51

Arranging Controls

»

App Studio provides layout tools that align and size controls automatically. For
most tasks, you can use the dialog-editor toolbar (Figure 3.10). All commands are
also available on the Layout menu and most have keyboard equivalents (see
Chapter 10).

Center horizontally or vertically

Test Mode Make the same size
/ /_L\
EE M EEEE
: Align left, right, i Space evenly Toggle snap

top, or bottom to grid

Figure 3.10 Dialog Editor Toolbar

Many layout commands are available only when more than one control is selected.
For information on selecting more than one control, see page 45.

The Dominant Control

When you are resizing or aligning multiple controls, App Studio uses the dominant
control to determine how the other controls are sized or aligned. When multiple
controls are selected, the dominant control has solid sizing handles; all the other
selected controls have hollow sizing handles.

To change the dominant control when more than one control is selected:

¢ Hold down the CTRL key and click the control you want to influence the size or
location of the others.

The sizing handles change from hollow to solid. All further resizing or
alignment is based on this control.

Using Snap to Grid

>

When you are placing or arranging controls in a dialog box, you can use the layout
grid for more precise positioning. When the grid is turned on, controls appear to
“snap to” the dotted lines of the grid as if magnetized. You can turn this “snap to
grid” feature on and off and change the size of the layout grid cells.

To turn Snap to Grid on and off for the currently active dialog editor
window:

¢ On the dialog-editor toolbar, click Snap to Grid (CTRL+G).

52 App Studio User’s Guide

» To turn Snap to Grid on or off for all dialog editor windows:

1. On the Layout menu, choose Grid Settings. The Grid Settings dialog box
appears.

2. Turn the Snap to Grid check box on or off.

You can still control Snap to Grid in individual dialog editor windows using the
Snap to Grid button on the dialog-editor toolbar.

» To change the size of the layout grid:

1. On the Layout menu, choose Grid Settings. The Grid Settings dialog box
appears.

2. Enter the height and width in DLUs for the cells in the grid. The minimum
height or width is 4 DLUs. For more information on DLUSs, see page 42.

Aligning Controls
Once controls are in place, App Studio offers a variety of ways to regularize their
position. You can:
= Align a group of controls along their left, right, top, or bottom edges.
= Align a group of controls on their center, either horizontally or vertically.
= Even the spacing between a group of three or more controls.
= Cen