
User's Guide
Visual Workbench User's Guide
App Studio User 's Guide

AADEDmON
Development System for Wmdows ..

User's Guides

Microsoft® Visual C++TM
Development System for Windows™
Version 1.0

This volume contains two separate books:
Visual Workbench User's Guide
App Studio User's Guide

Microsoft Corporation

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the
express written permission of Microsoft Corporation.

© 1993 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, CodeView, FoxPro, Multiplan, PowerPoint, QuickC, and QuickPascal are
registered trademarks and Windows, Microsoft Access, QuickAssembler, Microsoft QuickBasic,
Visual Basic, and Visual C++ are trademarks of Microsoft Corporation in the USA and other
countries.

U.S. Patent No. 4955066

CompuServe is a registered trademark of CompuServe, Inc.
Flight Simulator is a registered trademark of Bruce Artwick.
IBM is a registered trademark of International Business Machines Corporation.
Macintosh is a registered trademark of Apple Computer, Inc.
OS/2 is a registered trademark licensed to Microsoft.
Paintbrush is a trademark of ZSoft Corporation.

Document No. DB61153-0894
Printed in the United States of America.

Visual Workbench
User's Guide

iii

Contents

Introduction. .. xi

Microsoft Support Services .. xv

Part 1 Getting Started

Chapter 1 Installing Microsoft Visual C++ .. 3
Microsoft Visual C++ Overview. .. 3

What Is Visual C++? .. 3
Comparison of Standard and Professional Editions 4

System Requirements. .. 5

Installation .. 5
Installation Options .. 7
Setting Command-Line Options for Visual Workbench. 9

MS-DOS Configuration 10

Chapter 2 Building a Sample Application for Windows 13
Introducing Projects. 13

A Sample Windows-Based C++ Application 14

Chapter 3 Building a Sample QuickWin Program 17
What Is QuickWin? ... 17

A Sample QuickWin Program 18

Chapter 4 Developing a Microsoft Visual C++ Application 21
What Is a Visual C++ Application? 21
Introducing the Tools ... 22

The Applications . 22

The Wizards .. 23
The Process . 26

The Application Creation Stage. 26
The Application Development Stage 27

For More Information .. 34

Chapter 5 Fast Track to Visual Workbench 35
Menu Summaries ... 36

Managing Files and Printing 36

Editing Files 37

iv Contents

Window Display and Quick Access. .. 38

Working with Projects 39
Accessing Symbols and Classes . 41
Debugging Programs . 42
Running Tools from Visual Workbench. 43

Setting Preferences and Custom Options . 44

Arranging and Opening Windows. 45
Getting Online Help. 46

Key Summaries . 47
Editing Keys .. 47

Toolbar Keys . 49
Window Management Keys . 50

Build and Compile Keys. 50
Browsing Keys . 50
Debugging Keys . 51

Alphabetic Guide to Build Options. 51

Compiler Options . 51
Linker Options .. 55

Part 2 Using Visual Workbench

Chapter 6 The Visual Workbench Environment 59
Starting and Quitting Visual Workbench. 60
Visual Workbench Features. 60

The Toolbar . 60

The Status Bar. 63
Arranging and Displaying Windows . 63
Getting Help . 65

Chapter 7 Using the Editor .. 75
Managing Source Files . 75

Creating and Saving Source Files 76
Opening and Closing Source Files. 79
Opening Resource Files . 80

Moving Around in Files .. 82
Using the Keyboard Commands. .. 84
Controlling the Source Window . 84

Setting Tabs . 85
Highlighting Language Syntax . 85
Making a File Read-Only. 86

Contents v

Finding and Replacing. 86

Finding Text Using the Find Command 87
Finding Text Using the Toolbar 88
Replacing Text ... 89

Printing . 90

Chapter 8 Using Projects ... 93
Project Types . 94
Creating a Project . 97

Opening and Closing Projects. 100
Adding and Deleting Project Files. 100

Using Include Dependencies . 101
Project Compiler and Linker Options . 103
Building a Project .. 103

U sing a Workspace. 104
U sing the Last Workspace Used. 105
Saving a Workspace. 105
Loading a Workspace. 106

Loading an Initial Workspace . 106
U sing External Projects . 107

Chapter 9 Customizing Build Options 111
The Compiler and Linker Options Dialog Boxes . 111

Getting Help on Options . 113
Default Compiler and Linker Options . 115

Compiler Options . 118
Code Generation . 118

Custom Options . 121
Custom Options (C++) 124

Debug Options .. 127
.Listing Files . 129

Memory Model . 130
Optimizations ... 132

P-Code Generation ... 136
Precompiled Headers . 138

Preprocessor ... 142
Segment Names . 144
Windows Prolog/Epilog . 146

vi Contents

Linker Options. .. 148

fuput ... 149
Memory lInage .. 151
Miscellaneous .. 153
Output ... 155

Windows Libraries .. 157
Resource Compiler Options. .. 158

Disable Load Optimization 159
Custom Options ... 159

Defines ... 159

Chapter 10 Using the Browser. 161
Creating a Browser Database .. 161

Opening a Browser Database 163
Querying a Browser Database. .. 165

U sing the Browse Window. .. 166
Using Menu Commands. .. 168

Browsing Classes and Functions .. 169
Overview of Graphical Browser Query Types .. 169

Expanding and Collapsing Graphs. .. 171
Browsing Classes .. 172
Browsing Function Relationships .. 174

Browsing Definitions and References .. 176

Chapter 11 Debugging Programs. .. 179
U sing the Debugging Windows .. 180
Debugging During Building. .. 181

Using the Visual Workbench Debugger .. 182
Preparing a Debug Version of a Program. .. 182

Setting and Removing Breakpoints .. 183
Controlling Program Execution. .. 189

U sing the Watch Window. .. 190
Using QuickWatch .. 192

Modifying a Variable. .. 193
Using Show Call Stack. .. 194

Using the Registers Window. .. 195
Other Debugging Features. .. 196

Hard/Soft Mode Debugging .. 196
Debug Display Options .. 198

Contents vii

Chapter 12 Customizing Visual Workbench 199
Modifying the Tools Menu 199

Adding Commands to the Tools Menu 199

Editing a Tools Menu Command 201

Tips For Using MS-DOS Tools 201

U sing Argument Macros 202

Setting Directories. 203

Changing Syntax Coloring . 205

Making Global Display Changes 205

Source File Syntax Coloring 206

Setting Font Type and Size. 207

Chapter 13 Using Visual Workbench with Other Visual C++ Tools 209
Using App Wizard .. 209

Opening and Closing AppWizard 210

Specifying the Project Name and Location 210

Selecting Options . 212

Modifying Classes . 214

AppWizard-Generated Files 215

Running App Studio .. 218
U sing Class Wizard . 220

Creating New Classes 221

Creating Message Handlers for Windows Messages 223

Index .. 225

viii Contents

Figures and Tables

Figures
Figure 1.1 The Installation Options Dialog Box . 6
Figure 2.1 The Open Project Dialog Box. .. 14
Figure 2.2 The Project Options Dialog Box .. 14
Figure 3.1 QuickWin C++ Program Code 19
Figure 3.2 The Project Options Dialog Box 20
Figure 3.3 QWINTEST Output. 20
Figure 4.1 Visual Workbench. 22
Figure 4.2 App Studio ... 23
Figure 4.3 App Wizard. 24
Figure 4.4 ClassWizard .. 25
Figure 4.5 Creating the Visual C++ Framework Code. 26
Figure 4.6 Creating and Editing User-Interface Objects 28
Figure 4.7 Connecting User-Interface Objects to Code 29
Figure 4.8 The Visual C++ Development Process. 30
Figure 4.9 The Visual Workbench Browse Window 31
Figure 4.10 The Visual Workbench Debug Windows 33
Figure 6.1 The Visual Workbench Environment 59
Figure 6.2 Cascaded Windows . 64
Figure 6.3 Tiled Windows . 64
Figure 6.4 Minimized Windows . 65
Figure 6.5 The Secondary and Primary Help Windows 68
Figure 6.6 The Visual Workbench Help Contents Screen 69
Figure 6.7 A Visual Workbench Topic Screen 70
Figure 6.8 A Reference Help Contents Screen 71
Figure 7.1 The Save As Dialog Box . 77
Figure 7.2 The Editor Dialog Box. 79
Figure 7.3 The Editor Dialog Box. 85
Figure 7.4 The Find Dialog Box . 87
Figure 7.5 The Replace Dialog Box. .. 89
Figure 7.6 The Print Dialog Box. 90
Figure 7.7 A Printer Setup Dialog Box . 91
Figure 8.1 The Edit - Projectname Dialog Box 99
Figure 8.2 The Workspace Dialog Box. .. 107
Figure 8.3 The External Project Options Dialog Box 108

Contents ix

Figure 9.1 The C/C++ Compiler Options Dialog Box 112
Figure 9.2 Help on the Options String ... 114
Figure 9.3 Help on Option Controls . 115
Figure 9.4 Compiler Options: Code Generation 118
Figure 9.5 Compiler Options: Custom Options . 122
Figure 9.6 Compiler Options: Custom Options (C++) 124
Figure 9.7 Compiler Options: Debug Options 127
Figure 9.8 Compiler Options: Listing Files 129
Figure 9.9 Compiler Options: Memory Model. 130
Figure 9.10 Compiler Options: Optimizations 132
Figure 9.11 Compiler Options: P-Code Generation . 136
Figure 9.12 Compiler Options: Precompiled Headers 138
Figure 9.13 Compiler Options: Preprocessor. 143
Figure 9.14 Compiler Options: Segment Names 145
Figure 9.15 Compiler Options: Windows Prolog/Epilog. 147
Figure 9.16 The Linker Options Dialog Box. 148
Figure 9.17 Linker Options: Input 149
Figure 9.18 Linker Options: Memory Image 151
Figure 9.19 Linker Options: Miscellaneous 154
Figure 9.20 Linker Options: Output 155
Figure 9.21 Linker Options: Windows Libraries 157
Figure 9.22 Resource Compiler Options Dialog Box 158
Figure 10.1 C/C++ Compiler Options: Listing Files 162
Figure 10.2 The Browse Window 164
Figure 10.3 Browse Window Query Group 166
Figure 10.4 Class Graphs 170
Figure 10.5 Call and Caller Graphs 170
Figure 10.6 Expanded and Collapsed Nodes 171
Figure 10.7 Derived Class Graph of the CWnd Class 173
Figure 10.8 Base Class Graph of the CDialog Class 174
Figure 10.9 A Call Graph 175
Figure 11.1 Debugging Windows. 181
Figure 11.2 The Project Options Dialog Box. 182
Figure 11.3 Setting a Breakpoint in SORTDEMO.C 184
Figure 11.4 The Breakpoints Dialog Box . 185
Figure 11.5 The Messages Dialog Box 188
Figure 11.6 The Watch Window 191
Figure 11.7 The Watch Window with Expanded and Collapsed Variables. . . . 192
Figure 11.8 The QuickWatch Dialog Box 192

x Contents

Figure 11.9 The Modify Variable Dialog Box 194
Figure 11.10 The Call Stack Dialog Box. .. 195
Figure 11.11 The Registers Window .. 195
Figure 12.1 The Tools Dialog Box .. 200
Figure 12.2 The Add Tool Dialog Box. .. 200
Figure 12.3 The Directories Dialog Box 204
Figure 12.4 The Color Dialog Box 205
Figure 12.5 The Font Dialog Box 207
Figure 13.1 The MFC AppWizard Dialog Box 211
Figure 13.2 AppWizard's Options Dialog Box 212
Figure 13.3 AppWizard's Classes Dialog Box 214
Figure 13.4 ClassWizard 220
Figure 13.5 Classes Derived from CCmdTarget 221
Figure 13.6 ClassWizard's Add Class Dialog Box 222
Figure 13.7 Creating Message Handlers for Windows Messages 224

Tables
Table 5.1 Insertion Point Movement Keys 47
Table 5.2 Text Selection Keys 47
Table 5.3 Insert, Copy, and Tab Keys 48
Table 5.4 Delete Keys . 48
Table 5.5 Text Scrolling Keys 48
Table 5.6 Search Keys ... 49
Table 5.7 Toolbar Keys .. 49
Table 5.8 Visual Workbench Window Management Keys 50
Table 5.9 Build and Compile Keys 50
Table 5.1 0 Browsing Keys. 50
Table 5.11 Debugging Keys 51
Table 5.12 Alphabetic Guide to Compiler Options 52
Table 5.13 Alphabetic Guide to Linker Options 55
Table 6.1 Toolbar Buttons . 62
Table 9.1 Default Compiler Options for Windows Project Types 116
Table 9.2 Default Compiler Options for MS-DOS Project Types 116
Table 9.3 Default Linker Options for Windows Project Types 117
Table 9.4 Default Linker Options for MS-DOS Project Types 117
Table 10.1 Wildcard Types in Symbol Names 167
Table 11.1 Debugging Windows. .. 180
Table 11.2 Debug Menu Commands .. 189
Table 11.3 Additional Debugging Features .. 198
Table 12.1 Visual Workbench Argument Macros. 202

xi

Introduction
Microsoft® Visual C++TM represents an evolutionary step in the progress of high­
perfonnance program development tools for the Microsoft Windows™ operating
system. This comes about because of two milestones: the use of fully integrated
Windows-hosted development tools and the adaptation of the popular "visual" user­
interface-driven paradigm to the traditional CjC++ development process.

Microsoft Visual Workbench is the cornerstone of the Visual C++ development
platfonn. It is a powerful development environment on its own, containing several
integrated tools, including an editor, debugger, and graphical browser. But Visual
Workbench also fits into the larger development strategy by acting as the central
point from which all other development activities are perfonned. From Visual
Workbench menus you can:

• Invoke the Visual C++ build tools, such as the compiler and linker.

• Run the App Studio resource editor to develop user-interface components.

• Run App Wizard and Class Wizard to help you develop Microsoft Foundation
Class Library applications.

• Run your own tools, which can be installed on the Tools menu.

Visual Workbench strikes the balance of giving you the tools you need most and, at
the same time, making them easy to use by keeping things simple.

About This Manual
This book describes how to install Visual C++ and how to use the Visual Work­
bench integrated development environment to develop applications using Visual
C++. There are two parts to this book.

Part 1, "Getting Started," helps you install Visual C++, become familiar with
Visual Workbench, and understand the general roles and relationships of the main
Visual C++ development tools. It contains the following chapters:

• Chapter 1 describes how to install Visual C++ and how to reinstall specific
components later. It also provides the basic configuration and system require­
ments for Visual C++, as well as configuration requirements for running Visual
C++ from the command line.

• Chapters 2 and 3 give you a quick guide through building and running two
sample programs: a Microsoft Foundation Class Library sample application and
a simple QuickWin C++ application. You can use these short chapters to verify
that your installation is working and to become familiar with Visual Workbench.

xii Introduction

• Chapter 4 helps you get acquainted with the concepts and tools behind the
Visual C++ development process, which is designed to make developing
Microsoft Foundation Class Library applications easier than ever.

• Chapter 5 provides a quick reference guide to the Visual Workbench features. It
contains several tables listing menu commands and common procedures associ­
ated with them, toolbar buttons, and shortcut keys. It also has an alphabetical
listing of compiler and linker options that is cross-referenced to the dialog boxes
used in setting these options.

Part 2, "Using Visual Workbench," provides the detailed information and proce­
dures to help you use Visual Workbench. It contains the following chapters:

• Chapters 6 describes the basic components of the environment, such as the
toolbar, status bar, and Help system.

• Chapter 7 describes how to use the editor to create, open, save, and close files,
edit text, move around in files, set tabs, and search for text, among other editing
tasks.

• Chapters 8 and 9 provide all the information you need to use projects, configure
compiler and linker options, and build and run your applications. Chapter 8 de­
scribes creating and using projects to build your applications as well as the use
of workspaces to save and recall environment configurations. Chapter 9 is the
complete reference to the dialog boxes used to set compiler and linker options.

• Chapter 10 describes the Visual Workbench browser. This chapter tells you how
to query the browser database from both the Browse window and from within a
source file, and how to work with graphical data displayed for C++ class graphs
and C or C++ function graphs.

• Chapter 11 provides information on the Visual Workbench integrated debugger,
which is compatible with the Microsoft Code View® debugger. The chapter tells
you how to set breakpoints, monitor variables and expressions in the
QuickWatch dialog box, Watch window, and Locals windows, monitor regis­
ters, step through code, and more.

• Chapter 12 tells you how to customize Visual Workbench syntax coloring and
font settings, how to install tools on the Tools menu, and how to set the directo­
ries used during building, browsing, and debugging.

• Chapter 13 brings together Visual Workbench and the other main Visual C++
tools associated with it. It tells you how to open App Studio from within Visual
Workbench, how to use App Wizard to generate Microsoft Foundation Class
Library skeleton project files, and how to use Class Wizard features you are
likely to encounter most often from within Visual Workbench.

Introduction xiii

Document Conventions
This book uses the following typographic conventions:

Example

STDIO.H

char, _setcolor, far

expression

[option]

#pragma pack {I I 2}

IFi ncl ude <i o. h>

CL [option ...]jile ...

whil e()

{

CTRL+ENTER

"argument"

Description

Uppercase letters indicate filenames, segment names,
registers, and terms used at the operating-system command
level.

Bold type indicates C and C++ keywords, operators, language­
specific characters, and library routines. Within discussions of
syntax, bold type indicates that the text must be entered exactly
as shown.

Many functions and constants begin with either a single or
double underscore. These are part of the name and are manda­
tory. For example, to have the __ cplusplus manifest constant
be recognized by the compiler, you must enter the leading
double underscore.

Words in italics indicate placeholders for information you
must supply, such as a filename. Italic type is also used occa­
sionally for emphasis in the text.

Items inside double square brackets are optional.

Braces and a vertical bar indicate a choice among two or more
items. You must choose one of these items unless double
square brackets ([]) surround the braces.

This font is used for examples, user input, program output, and
error messages in text.

Three dots (an ellipsis) following an item indicate that more
items having the same form may appear.

A column or row of three dots tells you that part of an example
program has been intentionally omitted.

Small capital letters are used to indicate the names of keys on
the keyboard. When you see a plus sign (+) between two key
names, you should hold down the first key while pressing the
second.

The carriage-return key, sometimes marked as a bent arrow on
the keyboard, is called ENTER.

Quotation marks enclose a new term the first time it is defined
in text.

xiv Introduction

Example

"C string"

Color Graphics Adapter
(CGA)

Description

Some C constructs, such as strings, require quotation marks.
Quotation marks required by the language have the form " "
and' , rather than" " and ' '.

The first time an acronym is used, it is usually spelled out.

,

xv

Microsoft Support Services
Microsoft offers a variety of no-charge and fee-based support options to help you
get the most from your Microsoft products. For an explanation of these options,
please see one of the following sections:

• If you are in the United States, see "Support Services Within the United
States."

• If you are outside the United States, see "Support Services Worldwide."

Support Services Within the United States
If you have a question about Microsoft Visual C++, one of the following re­
sources may help you find an answer:

• The index in the product documentation and other printed product
documentation.

• Context-sensitive online Help available from the Help menu.

• The README files that come with your product disks. These files provide
general information that became available after the books in the product pack­
age were published.

• Electronic options such as CompuServe forums or the Microsoft Download
Service.

If you cannot find the information you need, you can obtain product support
through several methods as discussed below. In addition, information is provided
about training and consulting services available to you.

For information about Microsoft incremental and annual fee-based support serv­
ice options, call Microsoft Inside Sales at (800) 227-4679, extension 11700,
Monday through Friday, between 6:30 AM and 5:30 PM Pacific time.

Note Microsoft's support services are subject to Microsoft's prices, terms, and
conditions in place in each country at the time the services are used.

Microsoft Forums on CompuServe
Microsoft Product Support Services is available on several CompuServe forums.
The Microsoft Developer Services Area includes forums and information de­
signed specifically for developers. To access the Microsoft Developer Services

xvi Microsoft Support Services

Area, type GO MSDS at any ! prompt. Some of the services available within
MSDS are:

• The Developer Specific Knowledge Base contains up-to-date technical infor­
mation about Microsoft developer-specific products compiled by Microsoft
developer support engineers. The knowledge base is full-text searchable and
includes information on helpful tips, product bug lists, fix lists, documentation
errors, and Microsoft press releases. To access the Developer Specific
Knowledge Base, type GO MDKB at any! prompt.

• The Microsoft Software Library is a collection of binary files, sample code,
technical specifications, and utilities. The entire library is keyword-searchable
and the files can be downloaded for use locally. To access the Microsoft
Software Library, type GO MS L at any! prompt.

• Developer forums covering programming issues and other developer-specific
information on the Windows operating system, languages, tools, and utilities
are available. You can use these forums to exchange messages with Microsoft
developer support engineers and experienced users of Microsoft development
products. For example, the MSLANG forum provides support and information
on Microsoft Visual C++ and other Microsoft language products and the
WINSDK forum provides information about developing in the Windows
environment.

For an introductory CompuServe membership kit specifically for Microsoft users,
dial (800) 848-8199 and ask for operator 230.

Microsoft Product Support Services
You can reach Microsoft Product Support Services, Monday through Friday,
between 6:00 AM and 6:00 PM Pacific time.

• We offer phone support that is best utilized for getting you up and running at
(206) 635-7007.

When you call, you should be at your computer with Microsoft Visual C++ run­
ning and the product documentation at hand. Be prepared to give the following
information:

• The version of Microsoft Visual C++ you are using.

• The type of hardware you are using, including network hardware, if
applicable.

• The operating system you are using.

• The exact wording of any messages that appeared on your screen and the error
number, if any.

Microsoft Support Services xvii

• A description of what happened and what you were trying to do when the
problem occurred.

• A description of how you tried to solve the problem.

Microsoft Download Service
Microsoft Product Support Services operates a download bulletin board service
(BBS) that contains application notes, drivers, utilities, and other useful informa­
tion. The phone number is (206) 936-6735, and the BBS is accessible seven days
a week, from 2:30 AM to 1 :00 AM Pacific time. To access the Microsoft Down­
load Service, you'll need a modem and terminal emulation software. For 1200,
2400, and 9600 baud modems, set parity to none, data bits to 8, and stop bits to 1.

Microsoft FastTips
Microsoft FastTips is an automated system you can access by touch-tone tele­
phone that provides recorded answers to common questions about some
Microsoft products. You can also receive copies of this information on a fax
machine. In addition, FastTips offers a library of comprehensive technical notes
that can be faxed or mailed. FastTips is available 7 days a week, 24 hours a day,
including holidays.

• For assistance with Microsoft Visual C++, dial (206) 635-4694.

After you reach FastTips, use the following keys to move through the automated
system:

• To advance to the next message, press the ASTERISK (*) key.

• To repeat the current message, press the 7 key.

• To return to the beginning of FastTips, press the POUND SIGN (#) key.

Microsoft Developer Services Team
For help with nontechnical questions related to Microsoft developer products,
services, and support, call the Developer Services Team at (800) 227-4679, ex­
tension 11771, Monday through Friday, between 6:30 AM and 5:30 PM Pacific
time. Service representatives can help you get started with Microsoft develop­
ment tools, provide information on beta test programs, and inform you about up­
coming Microsoft conferences, events, and training courses. You can request
timely, informative literature on many developer-related topics and products,
purchase development kits for products, and sign up for fee-based technical sup­
port programs.

xviii Microsoft Support Services

Microsoft Product Support for the Deaf and Hard-of-Hearing
Microsoft Product Support Services is available for the deaf and hard-of-hearing,
Monday through Friday, between 6:00 AM and 6:00 PM Pacific time.

Using a special TDD{fT modem, dial (206) 635-4948.

Product Training and Consultation Services
Within the United States, Microsoft offers the following services for training and
consultation.

Consu Itant Referral Service
Microsoft's Consultant Relations Program can refer you to an independent con­
sultant in your area. These consultants are skilled in:

• Macro development and translation.

• Database development.

• Custom interface design.

For information about the consultants in your area, call the Microsoft Consultant
Relations Program at (800) 227-4679, extension 56042, Monday through Friday,
between 6:30 AM and 5:30 PM Pacific time.

Microsoft Consulting Services
Microsoft Consulting Services (MCS) assists management and technical staff
through all phases of a project: effective planning, rapid technology transfer,
high-quality design, and integration into an organization's existing business sys­
tems. Microsoft consultants are available to work on projects of all sizes. MCS
also provides on-site consultants who serve as full-time members of client devel­
opment and support teams.

• Call MCS West at (415) 905-0235, Monday through Friday, between 8:00 AM

and 5:00 PM Pacific time, or MCS East at (617) 487-6400, Monday through
Friday, between 8:00 AM and 5:30 PM Eastern time.

Microsoft University
Microsoft University (MSU) provides hands-on courses to help programmers and
support engineers minimize their learning curves and maximize their ability to
take full advantage of the latest Microsoft systems software. MSU technical
training is for software developers, support and systems engineers, network

Microsoft Support Services xix

administrators, information system (IS) managers, and data-processing
professionals.

• Call MSU at (206) 828-1507, Monday through Friday, between 6:30 AM and
5:00 PM Pacific time.

Support Services Worldwide
If you are outside the United States and have a question about Microsoft Visual
C++, Microsoft offers a variety of no-charge and fee-based support options. To
solve your problem, you can:

• Consult the index in the product documentation and other printed product
documentation.

• Check context-sensitive online Help available from the Help menu.

• Check the README files that come with your product disks. These files
provide general information that became available after the books in the prod­
uct package were published.

• Consult electronic options such as CompuServe forums or bulletin board sys­
tems, if available.

If you cannot find a solution, you can receive information on how to obtain
product support by contacting the Microsoft subsidiary office that serves your
country.

Note Microsoft's support services are subject to Microsoft's prices, terms, and
conditions in place in each country at the time the services are used.

Calling a Microsoft Subsidiary Office
When you call, you should be at your computer with Microsoft Visual C++ run­
ning and the product documentation at hand. Be prepared to give the following
information:

• The version of Microsoft Visual C++ you are using.

• The type of hardware you are using, including network hardware, if
applicable.

• The operating system you are using.

• The exact wording of any messages that appeared on your screen.

• A description of what happened and what you were trying to do when the
problem occurred.

• A description of how you tried to solve the problem.

xx Microsoft Support Services

Area

Argentina

Australia

Austria

Baltic States

Belgium

Bermuda

Bolivia

Microsoft subsidiary offices and the countries they serve are listed below.

Telephone Numbers

Microsoft de Argentina S .A.
Phone: (54) (1) 814-0356
Fax: (54) (1) 814-0372

Microsoft Pty. Ltd.
Phone: (61)(02)870-2200
Fax: (02) 805-1108
Bulletin Board Service: (612) 870-2348
Technical Support: (61) (02) 870-2131
Sales Information Centre: (02) 870-2100

Microsoft Ges.m.b.H.
Phone: 0222 - 68 76 07
Fax: 0222 - 68 162710
Information: 060 - 89 - 247 11 101

Prices, updates, etc.: 060 - 89 - 3176 1199
CompuServe: msce (Microsoft Central Europe)
Technical support:

Windows, Windows for Workgroups, Microsoft Mail: 0660 - 65 - 10
Microsoft Excel for Windows, Microsoft Excel for OS/2 ®, PowerPoint ® for

Windows: 0660 - 65 - 11
Word for MS-DOS ®, Windows Write: 0660 65 - 12
Word for Windows, Word for OS/2: 0660 - 65 - 13
Works for MS-DOS, Works for Windows, Publisher, WorksCa1c,

WorksText: 0660 - 65 - 14
C PDS, FORTRAN PDS, Pascal, Macro Assembler PDS, QuickC ®, QuickC for

Windows, QuickPascal ®, QuickAssembler TM, Profiler: 0660 - 65 - 15
COBOL PDS, Basic PDS, Microsoft QuickBasic™, Visual Basic TM: 0660 - 65 - 16
MS-DOS: 0660 - 65 - 17
Macintosh Software: 0660 - 65 - 18
Microsoft Project for Windows, Microsoft Project for MS-DOS, Multiplan ®,

Mouse, Flight Simulator, Paintbrush, Chart: 0660 - 67 - 3
FoxPro ®, Microsoft Access TM: 0660 - 67 - 61

See Germany

Microsoft NV
Phone: 02-7322590
Fax: 02-7351609
Technical Support Bulletin Board Service: 02-7350045 (1200/2400/9600 baud, 8 bits, no
parity, 1 stop bit, ANSI terminal emulation)
(Dutch speaking) Technical Support: 02-5133274
(English speaking) Technical Support: 02-5023432
(French speaking) Technical Support: 02-5132268
Technical Support Fax: (31) 2503-24304

See Venezuela

See Argentina

Area

Brazil

Canada

Caribbean
Countries

Central America

Chile

Colombia

Denmark

Ecuador

England

Telephone Numbers

Microsoft Informatica Ltda.
Phone: (55) (11) 530-4455
Fax: (55) (11) 240-2205
Technical Support Phone: (55) (11) 533-2922
Technical Support Fax: (55) (11) 241-1157

Microsoft Support Services xxi

Technical Support Bulletin Board Service: (55) (11) 543-9257

Microsoft Canada Inc.
Phone: 1 (416) 568-0434
Fax: 1 (416) 568-4689
Technical Support Phone: 1 (416) 568-3503
Technical Support Facsimile: 1 (416) 568-4689
Technical Support Bulletin Board Service: 1 (416) 507-3022

See Venezuela

See Venezuela

Microsoft Chile S.A.
Ave. Presidente Kennedy 5146, Las Condes
Santiago, Chile
Tel: 5622185771
Fax: 562218 5747

Microsoft Columbia
Carrera 9 # 99-02 Piso 2
Bogota, D.C., Colombia
Tel: (571) 618 2245 Soporte Tecnico: (571) 618 2255
Fax:(571) 618 2269

Microsoft Denmark AS
Phone: (45) (44) 8901 00
Fax: (45) (44) 68 55 10

See Venezuela

Microsoft Limited
Phone: (44) (734) 270000
Fax: (44) (734) 270002
Upgrades: (44) (81) 893-8000
Technical Support:

Main Line (All Products): (44) (734) 271000
Windows Direct Support Line: (44) (734) 271001
Database Direct Support Line: (44) (734) 271126
MS-DOS 5 Warranty Support: (44) (734) 271900
MS-DOS 5 Fee Support Line: (44) (891) 315500
OnLine Service Assistance: (44) (734) 270374
Bulletin Board Service: (44) (734) 270065 (2400 Baud)
Fax Information Service: (44) (734) 270080

xxii Microsoft Support Services

Area Telephone Numbers

Finland Microsoft OY
Phone: (358) (0) 525 501
Fax: (358) (0) 522 955

France Microsoft France

French Polynesia

Germany

Hong Kong

Ireland

Israel

Phone: (33) (1) 69-86-46-46
Telex: MSP ARIS 604322F
Fax: (33) (1) 64-46-06-60
Technical Support Phone: (33) (1) 69-86-10-20
Technical Support Fax: (33) (1) 69-28-00-28

See France

Microsoft GmbH
Phone: 089 - 3176-0
Telex: (17) 89 83 28 MS GMBH D
Fax: 089 - 3176-1000
Information: 0130 - 5099

Prices, updates, etc.: 089 - 31761199
Bulletin board, device drivers, tech notes: BTX: microsoft# or *610808000#
CompuServe: msce (Microsoft Central Europe)
Technical support:

Windows, Windows for Workgroups, Microsoft Mail: 089 - 3176 - 1110
Microsoft Excel for Windows, Microsoft Excel for OS/2, PowerPoint for

Windows: 089 - 3176 - 1120
Word for MS-DOS, Windows Write: 089 - 3176 - 1130
Word for Windows, Word for OS/2: 089 - 3176 - 1131
Works for MS-DOS, Works for Windows, Publisher, WorksCalc,

WorksText: 089 - 3176 - 1140
C PDS, FORTRAN PDS, Pascal, Macro Assembler PDS, QuickC, QuickC for

Windows, QuickPascal, QuickAssembler, Profiler: 089 - 3176 - 1150
COBOL PDS, Basic PDS, Microsoft QuickBasic, Visual Basic: 089 - 3176 - 1151
MS-DOS: 089 - 3176 - 1152
Macintosh Software: 089 - 3176 - 1160
Microsoft Project for Windows, Microsoft Project for MS-DOS, Multiplan,

Mouse, Flight Simulator, Paintbrush, Chart: 089 - 3176 - 1170
FoxPro, Microsoft Access: 089 - 3176 - 1180

Microsoft Hong Kong Limited
Technical Support: (852) 804-4222
Fax: (852) 560-2217

See England

Microsoft Israel Ltd.
Tuval34
Ramat-Gan 52522
Israel
Phone: 972-3-575-7034
Fax: 972-3-752-7065

Area

Italy

Japan

Korea

Liechtenstein

Luxemburg

Mexico

Telephone Numbers

Microsoft SpA
Phone: (39)(2)269121
Telex: 340321 I
Fax: (39) (2) 21072020
Technical Support:

Microsoft Support Services xxiii

Microsoft Excel for Windows, Microsoft Project for Windows, Works for
Windows: (39) (2) 26901361

Word, Works for MS-DOS: (39) (2) 26901362
Windows, PowerPoint, Publisher, Windows for Workgroups,

Works: (39) (2) 26901363
Basic, COBOL, Visual Basic, MS-DOS-based, Microsoft Access,

Fox Products: (39) (2) 26901364
C, FORTRAN, Pascal, Macro Assembler (MASM), and SDKs: (39) (2) 26901354
LAN Manager, SQL Server, Microsoft Mail, Microsoft Mail

Gateways: (39) (2) 26901356

Microsoft Company Ltd.
Phone: (81)(3)3363-1200
Fax: (81) (3) 3363-1281
Technical Support:

MS-DOS-based Applications: (81) (3) 3363-0160
Windows-based Applications: (81) (3) 3363-5040
Language Products (Microsoft C, Macro Assembler [MASM],

QuickC): (81) (3) 3363-7610
Language Products (Basic, FORTRAN, Visual Basic, Quick

Basic): (81) (3) 3363-0170
All Products Technical Support Fax: (81) (3) 3363-9901

Microsoft CH
Phone: (82)(2)552-9505
Fax: (82) (2) 555-1724
Technical Support: (82) (2) 563-9230

See Switzerland (German speaking)

Microsoft NV
Phone: (32) 2-7322590
Fax: (32) 2-7351609
Technical Support Bulletin Board Service: (31) 2503-34221 (1200/2400/9600 baud,

8 bits, No parity, 1 stop bit, ANSI terminal emulation)
(Dutch speaking) Technical Support: (31) 2503-77877
(English speaking) Technical Support: (31) 2503-77853
(French speaking) Technical Support: (32) 2-5132268
Technical Support Fax: (31) 2503-24304

Microsoft Mexico, S.A. de C.V.
Phone: (52) (5) 325-0910
Fax: (52) (5) 280-0198
Technical Support: (52) (5) 325-0912
Sales: (52) (5) 325-0911

xxiv Microsoft Support Services

Area Telephone Numbers

Netherlands Microsoft B V
Phone: 02503-13181
Fax: 02503-37761
Technical Support Bulletin Board Service: 02503-34221 (1200/2400/9600 baud, 8 bits,

No parity, 1 stop bit, ANSI terminal emulation)
(Dutch speaking) Technical Support: 02503-77877
(English speaking) Technical Support: 02503-77853
Technical Support Fax: 02503-24304

New Zealand Technology Link Centre
Phone: 64 (9) 358-3724
Fax: 64 (9) 358-3726
Technical Support Applications: 64 (9) 357-5575

N orthem Ireland See England

Norway Microsoft Norway AS
Phone: (47) (2) 95 06 65
Fax: (47) (2) 95 06 64
Technical Support: (47) (2) 183500

Papua New Guinea See Australia

Paraguay See Argentina

Peru See Venezuela

Portugal MSFT, Lda.
Phone: (351) 1 4412205
Fax: (351) 1 4412101

Puerto Rico See Venezuela

Republic of China Microsoft Taiwan Corp.
Phone: (886) (2) 504-3122
Fax: (886) (2) 504-3121
Technical Support: (886) (2) 504-3188

Republic of Ireland See England

Scotland See England

Spain Microsoft Iberica SRL
Phone: (34) (1) 804-0000
Fax: (34) (1) 803-8310
Technical Support: (34) (1) 803-9960

Area

Sweden

Switzerland

Uruguay

Venezuela

Wales

Telephone Numbers

Microsoft AB
Phone: (46) (8) 752 56 00
Fax: (46) (8) 75051 58
Technical Support:

Applications: (46) (8) 752 68 50

Microsoft Support Services xxv

Development and Network products: (46) (8) 752 6050
MS-DOS: (46) (071) 21 05 15 (SEK 4.55/min)

Sales Support: (46) (8) 752 56 30
Bulletin Board Service: (46) (8) 7504742
Fax Information Service: (46) (8) 752 29 00

(German speaking)
Microsoft AG
Phone: 01 - 839 61 11
Fax: 01 - 831 0869
Infomation: 0049 - 89 - 247 11 101
Prices, updates, etc.: 0049 - 89 - 3176 1199
CompuServe: msce (Microsoft Central Europe)
Technical support:

Windows, Windows for Workgroups, Microsoft Mail: 01 - 342 - 4085
Microsoft Excel for Windows, Microsoft Excel for OS/2, PowerPoint for

Windows: 01 - 342 - 4082
Word for MS-DOS, Windows Write: 01 - 342 - 4083
Word for Windows, Word for OS/2: 01 - 342 - 4087
Works for MS-DOS, Works for Windows, Publisher, WorksCalc,

WorksText: 01 - 342 - 4084
C PDS, FORTRAN PDS, Pascal, Macro Assembler PDS, QuickC, QuickC for

Windows, QuickPascal, QuickAssembler, Profiler: 01 - 342 - 4036
COBOL PDS, Basic PDS, Microsoft QuickBascic, Visual Basic: 01 - 342 - 4086
MS-DOS: 01 - 342 - 2152
Macintosh Software: 01 - 342 - 4081
Microsoft Project for Windows, Microsoft Project for MS-DOS, Multiplan,

Mouse, Flight Simulator, Paintbrush, Chart: 01 - 342 - 0322
FoxPro, Microsoft Access: 01 /342 - 4121

(French speaking)
Microsoft SA, office Nyon
Phone: 022 - 363 68 11
Fax: 022 - 363 69 11
Technical support: 022 - 738 96 88

See Argentina

Corporation MS 90 de Venezuela S.A.
Phone: 0058.2.914739
Fax: 0058.2.923835

See England

PAR T 1

Getting Started

Chapter 1 Installing Microsoft Visual C++ .. 3
Chapter 2 Building a Sample Application for Windows 13
Chapter 3 Building a Sample QuickWin Program 17
Chapter 4 Developing a Microsoft Visual C++ Application 21
Chapter 5 Fast Track to Visual Workbench 35

CHAPTER 1

Installing Microsoft Visual C++

This chapter introduces Microsoft Visual C++ and its integrated development
environment, Microsoft Visual Workbench. It outlines the minimum hardware and
software requirements necessary to install and use Visual C++ and also points out
the differences between Visual C++ Standard Edition and Visual C++ Professional
Edition. You can use this chapter to install either version of Visual C++ or to
update components.

Microsoft Visual C++ Overview

3

Before installing Visual C++, you might find it useful to read a short overview of
the compiler and development environment you are about to use. Also, you may be
interested in the differences between Visual C++ Standard Edition and Visual C++
Professional Edition and how this relates to Visual Workbench, which is used by
both versions.

What Is Visual C++?
Microsoft Visual C++ is a tool for building and debugging Windows-based appli­
cations and libraries in an integrated Windows environment. Visual C++ makes it
much easier to tackle the complex job of developing applications for Windows by
incorporating high-level C++ application framework classes with integrated
Windows-hosted development tools.

The Windows-hosted development tools used in Visual C++ include Visual Work­
bench, App Studio, AppWizard, ClassWizard, and several other utilities accessed
from, or used by, Visual Workbench.

During the development process, you use AppWizard to create the C++ Microsoft
Foundation Class Library source files for your project. To create and edit resources
such as dialog boxes, menus, toolbars, and controls, you use App Studio. You use
ClassWizard to add C++ framework code for classes and message maps for either
resources or View and Document classes. For an overview of the development pro­
cess, see Chapter 4, "Developing a Microsoft Visual C++ Application."

4 Visual Workbench User's Guide

Comparison of Standard and Professional Editions
Visual C++ is available in two versions: Visual C++ Standard Edition and Visual
C++ Professional Edition. The same integrated development environment is used
by both, with a few minor differences. This book describes both versions.

Visual C++ Standard Edition incorporates all the features necessary to develop
complete C++ framework-based applications for Windows. In fact, it uses the same
integrated development tools, Microsoft Foundation classes, run-time libraries, and
Windows libraries as Visual C++ Professional Edition. It also provides all neces­
sary reference documentation from the Windows Software Development Kit (SDK)
in online Help files.

Visual C++ Professional Edition is an enhanced version of Visual C++ that adds
features such as an optimizing compiler, support for MS-DOS and p-code targeting,
documentation for command-line tools, and SDK tools and sample programs. The
professional edition provides several additional tools, such as the Microsoft
CodeView® debugger (both MS-DOS and Windows versions) and the Microsoft
Source Profiler.

There are a only few areas where Visual Workbench differs between models:

• Project Types: Visual C++ Professional Edition supports several target types
not supported by Visual C++ Standard Edition. In the areas where you assign a
project type, namely in the New Project and Project Options dialog boxes, the
following extra project types appear in Visual C++ Professional Edition:

• Windows P-code application

• MS-DOS application

• MS-DOS P-code application

• MS-DOS Overlaid application

• MS-DOS COM application

• Compiler Options: Visual C++ Professional Edition supports the optimizing
compiler. Therefore, in the C/C++ Compiler Options dialog box, accessed from
the Project Options dialog box, there are several compiler options available for
Visual C++ Professional Edition that are either disabled or have limited per­
formance for Visual C++ Standard Edition.

• Code View Installation: The Microsoft Code View for Windows debugger is
provided only with Visual C++ Professional Edition and is optionally installed
on the Visual Workbench Tools menu during setup.

Chapter 1 Installing Microsoft Visual C++ 5

System Requirements

Installation

Visual C++ requires the following minimum configuration:

• An IBM Personal Computer, or 100 percent compatible, running MS-DOS
version 5.0 or later.

• A VGA monitor.

• An 80386 or higher processor.

• Four megabytes of available memory (6 megabytes recommended).

• A hard disk with enough disk space to install the options you need. The Setup
program lets you select installation options and provides you with the disk -space
requirements for the options you select. It then checks to make sure you have
enough space before copying files.

• A 1.2-MB, 5.25-inch disk drive, or a 1.44-MB, 3.5-inch disk drive.

• Microsoft Windows or Microsoft Windows for Workgroups version 3.1 running
in enhanced mode (command-line utilities can be run outside Windows but you
need Windows to install Visual C++).

The Setup program provided by Microsoft Visual C++ performs all tasks necessary
for installing the Visual C++ components. You can install everything at once or
install just a subset and upgrade it later with additional libraries, sample programs,
help files, or other components.

Visual C++ tools, such as the compiler and linker, are designed to be used with
Visual Workbench, the integrated development environment. However, if you
are installing the professional edition and want to run the tools from the command
line, you need to change your AUTOEXEC.BAT file to set the PATH, LIB, and
INCLUDE environment variables. This is described in "MS-DOS Configuration"
on page 10.

Initial Installation
For extensive help on any of the dialog boxes presented by the Setup program
during the installation, press the FI key or choose the Help button in the dialog box.

~ To run Setup:

1. Place Disk 1 in drive A.

2. If Windows is loaded, choose Run from the Program Manager File menu and
type A : \ S ET UP in the Command Line box.

Setup prompts you with a dialog box that describes the program and lets you
continue or exit.

6 Visual Workbench User's Guide

3. Choose Continue.

The Installation Options dialog box appears (see Figure 1.1). Use this dialog
box to configure the installation to fit your system.

Installation Options

Select the file groups to install_ Choose the button to the right of
the option to customize that selection_ Choose Directories to specify
file directories_ For a default configuration. choose Continue without
changing any options_

lSI Microsoft ~isual Workbench

lSI Microsoft C/C++ COmPiler

lSI Microsoft Foyndation Classes Back

lSI Microsoft Wp Studio: Resource Editor
lSI Run-Time libraries 'I -li-br-a-rie-s-___ --.

I I Directories ___ 1
lSI Sam.l!le Source Code I Samples __ _ Exit

lSI Online Help Files I Help Files ___ I
lSI Tools 1 T ools___ I Help

Disk Space Information-----------------,

Installation root drive/directory:
Space currentl}' available on installation root drive:
Space required during Setup on installation root drive:
Space required after Setup on installation root drive:

D:\MSVC\
92100 Kb
41268 Kb
38596 Kb

Figure 1.1 The Installation Options Dialog Box

4. In the Disk Space Information group at the bottom of the Installation Options
dialog box, compare the disk space listed as available with the disk space listed
as required.

If you have enough disk space on drive C to install the entire Visual C++ set of
files, you may want to perform a default installation (go on to step 5).

If the default installation requires more disk space than is available on drive C,
you have several choices. You can:

• Use the Directory Options dialog box to change the drive to a larger drive.

• Use the Library Options dialog box to remove a memory model or target file
type.

• Remove elements listed in the Sample Source Options, Help File Options,
and Tool Options dialog boxes.

Disk -space information is provided in each dialog box to help you make the best
decision.

5. To perform a default installation, without customization, choose Continue.

Or, if you wish to customize the installation, select whatever installation options
you want and then choose Continue.

Chapter 1 Installing Microsoft Visual C++ 7

"Installation Options" on this page provides an overview of each of the installation
options. You can also press the FI key for online help on installation options.

After you choose Continue in the Installation Options dialog box, Setup prompts
you for identification information, then builds the file list, checks for sufficient disk
space, and copies files from drive A to your hard drive.

Reinstalling Visual C++
After you have installed Visual C++, you can reinstall it to build additionallibrar­
ies or copy any other files you didn't install the first time. The following procedure
shows you how to reinstall a specific part of Visual C++ and shows, as an example,
how you would add the Compact Memory Model library to your existing Visual
C++ configuration.

~ To reinstall a specific part of Visual C++:

1. Run Setup as described in "Initial Installation."

2. In the Installation Options dialog box, clear all check boxes except the category
you want to install.

For example, clear all check boxes except Run-Time Libraries.

3. Choose the command button that corresponds to your category.

For example, choose Libraries. The dialog box for the category you chose
appears.

4. Clear all default options and select the new option or options.

For example, in the Memory Models group, clear Smallffiny, Medium, and
Large/Huge and select Compact.

5. Choose OK to close the category dialog box.

6. Choose Continue to proceed with the installation.

Installation Options
You can customize your installation of Visual C++. For example, you can choose
what drive you want the files installed on, which libraries you want built, and which
sample files and help files you want installed. Customizing your installation can be
useful if you want to minimize disk -space usage. You can install just the compo­
nents you want now and add components at a later time. This section describes each
of the dialog boxes available from the Installation Options dialog box.

Directories
Use the Directory Options dialog box to change the directories specified for any of
the Visual C++ components. The Install Directory sets the drive and root directory

8 Visual Workbench User's Guide

name. Any changes you make to the path in the Install Directory text box are auto­
matically made to all other directory paths when you move the focus out of the box.

The Disk Space Information group at the bottom of the dialog box shows you how
much space is available on each hard drive selected in the Drive list box so you can
determine which drive to use.

Libraries
Use the Library Options dialog box to choose which memory models, math support,
and target types to build libraries for. You can choose from among the following
options:

• Memory models: Smallffiny, Medium, Compact, and Large/Huge

• Math support: Emulation, 80x87, or Alternate (math support for Visual C++
Professional Edition only)

• Targets: Windows .EXE, Windows .DLL, QuickWin .EXE, and MS-DOS
.EXE (MS-DOS .EXE for Visual C++ Professional Edition only)

Samples
Sample programs can be installed or omitted by category. The following sample file
categories are available in the Sample Source Options dialog box:

• User's Guide Samples

• Windows C++ (MFC) Samples

• Windows C (SDK) Samples (SDK sample programs for Visual C++ Profes­
sional Edition only)

Help Files
Help files for an application or library are installed by default when the application
or library is selected in the Installation Options dialog box and the Online Help
Files check box is also selected. The various Help files and what they contain are
as follows:

• Class Library Help (reference help for the Microsoft Foundation Class Library)

• Windows 3.1 SDK Help (reference help for the Software Development Kit and
Windows APIs)

• C Lang/Libs Help (reference help for the C and C++ languages and run-time
libraries)

• PenlMultimedia Help (reference help for the Pen Windows and Multimedia
APIs-Visual C++ Professional Edition only)

Chapter 1 Installing Microsoft Visual C++ 9

Tools
The Tool Options dialog box is available with Visual C++ Professional Edition
only. It provides check boxes for Windows-hosted tools and MS-DOS - hosted
tools you can install. Windows-hosted tools include:

• Code View for Windows

• Debug Kernel

• Pen Files

• Windows Profiler

• Redistributable Files

• Analysis Tools

• Help Compiler

• Font Editor

MS-DOS tools include:

• CodeView

• MS-DOS Profiler

Setting Command-Line Options for Visual Workbench
After you have installed Visual Workbench, you can use the Properties dialog box
(opened from the Program Manager File menu in Windows) to specify command­
line options for Visual Workbench. You may find this useful if you want to load a
particular project or set of source files every time you start Visual Workbench.

~ To set command-line options for Visual Workbench:

1. Move the focus to the Visual C++ icon.

2. From the Program Manager File menu, choose Properties.

3. In the Command Line box, following MSVC.EXE, add a space followed by
each filename you want Visual Workbench to load automatically.

Visual Workbench uses the first file with an extension .MAK as the project file
and assumes all other files are source files. For example, the following entry
in the Command Line box would load the MY P ROJ project and the source files
MYPROJ. CPP and MYPROJ. H, all located in the C root directory:

C:\MSVC\BIN\MSVC.EXE C:\MYPROJ.MAK C:\MYPROJ.CPP C:\MYPROJ.H

10 Visual Workbench User's Guide

Note The most recently used project is alw~ys loaded automatically when you start
Visual Workbench so you don't need to use Visual Workbench command-line op­
tions to load your current project. Also, by default, the most recently used work­
space is loaded when you start Visual Workbench, which automatically loads the
files and window configuration from your last session. See Chapter 8, "Using
Projects," for more information on using workspaces.

MS-DOS Configuration
Since Visual C++ is designed primarily to be used with Visual Workbench, the
Setup program doesn't configure your system to run Visual C++ components from
the MS-DOS command line. However, Visual C++ Professional Edition does pro­
vide command-line tools and documentation. So if you want to use the compiler,
linker, NMAKE, or any of the other Visual C++ components from the command
line, you need to either make changes to your AUTOEXEC.BAT file or run the
batch file MSVC\BIN\MSVCV ARS.BAT to temporarily set your environment
variables.

To update your AUTOEXEC.BAT file for MS-DOS command-line tools, use the
following procedure. Then exit Windows and either reboot your system or run
AUTOEXEC.BAT manually to make the changes effective. This procedure as­
sumes that Visual C++ is installed on drive C in a directory called MSVC. Sub­
stitute any differences in the drive or directory for your installation of Visual C++.

~ To change AUTOEXEC.BAT to run tools from the command line:

1. Add the following to the PATH variable (separated from the previous path by a
semicolon):

C:\MSVC\BIN

2. Add the following line:

SET INCLUDE=C:\MSVC\INCLUDE;C:\MSVC\MFC\INCLUDE

Or, if there is already an INCLUDE variable for use elsewhere on your system,
add the following to your INCLUDE statement (separated by a semicolon):

C:\MSVC\INCLUDE;C:\MSVC\MFC\INCLUDE

3. Add the following line:

SET LIB=C:\MSVC\LIB;C:\MSVC\MFC\LIB

Or, if there is already a LIB variable for use elsewhere on your system, add the
following to your LIB statement (separated by a semicolon):

C:\MSVC\LIB;C:\MSVC\MFC\LIB

Chapter 1 Installing Microsoft Visual C++ 11

CL, LINK, NMAKE, CVPACK, and BSCMAKE are all 32-bit MS-DOS­
extended programs that must be run on an 80386 or higher processor running in
protected mode. You can run them from the command line either in an MS-DOS
session from within Windows or outside of Windows at the MS-DOS prompt.
These applications are 32-bit hosted only and do not generate 32-bit code.

The file DOSXNT.EXE must be in the same directory as these files or on the path.
(It is installed in the MSVC\BIN directory by default.) In addition, to run these
programs under Windows, the following command must be in the [386Enh] section
of SYSTEM.lNI:

DEVICE=C;\MSVC\BIN\DOSXNT.386

and the file DOSXNT. 386 must be in C: \MSVC\BI N. This is done automatically
when you install Visual c++. If you install Visual C++ using a different drive or
directory, you'll need to modify the 0 E V ICE command to match your installation.

See the Tools TechNote Viewer for more information on using these tools from the
command line.

CHAPTER 2

Building a Sample Application for
Windows

13

The first thing many programmers want to do after installing a new language and
development environment is to perform a test build to make sure everything is
installed correctly and to see how the build process works. A "test drive" gives you
confidence in your setup and helps you get acquainted with the new development
environment.

This chapter takes you directly through a build of a Microsoft Foundation Class
Library sample program, after a short introduction to projects. It assumes that you
have installed the Microsoft Foundation Class Library and sample programs and
that the samples reside in a directory called \MSVC\MFc\sAMPLES on the hard
disk drive on which Microsoft Visual C++ is installed.

Introducing Projects
Projects are the cornerstone of Microsoft Visual Workbench. A project references
all the source files and libraries that make up a program, as well as the compiler
and linker commands that build the program. It is composed of a makefile (.MAK),
which is compatible with the Microsoft Program Maintenance Utility (NMAKE),
and a status file (.VCW), which contains Visual Workbench information. A project
is identified by its makefile; the makefile has the same base name as the project
with a .MAK extension.

All sample programs have project files associated with them. To learn how to create
your own projects, read Chapter 8, "Using Projects."

Project files from Microsoft Programmer's WorkBench (PWB) can be used from
within Visual Workbench by loading them as external projects. This does not give
you access to compiler and linker options (other than Release versus Debug mode),
but it does let you migrate quickly from PWB to Visual C++ and build, run, and
debug your PWB applications from within Visual Workbench. To learn more about
using external projects, see "Using External Projects" on page 1 07.

14 Visual Workbench User's Guide

A Sample Windows-Based C++ Application
To familiarize yourself with the steps of building any program that already has
a Visual Workbench project, you can use any of the sample projects in the
Microsoft Foundation Class Library samples directory. The HELLO program
is used in this example.

~ To build and run a sample Windows-based C++ program:

1. From the Project menu, choose Open.

The Open Project dialog box appears.

2. Select the HELLO.MAK project file (see Figure 2.1).

This file is in the \MSVC\MFc\sAMPLES\HELLO directory.

0llen Project

OK .!2irectories:

c: \msYc\mfc\samples\helio !hello.mak

FileName:

+
Cancel

to c:\ ~ '-----'
to msyc
tOmfc Help

to samples
125 hello

List Files of ,lype: Driyes:

~!P_ro~je_ct_(Z_.m_ak_J ____ ~!~_f ~l~ __ c_: ________ ~l~_

o .!J.se as an external makefile

Figure 2.1 The Open Project Dialog Box

3. Choose OK.

4. From the Options menu, choose Project.

The Project Options dialog box appears (see Figure 2.2).

5. From the Build Mode options, select Release or Debug (select Debug for this
example for a faster build).

Project Options

e.roject Tvpe: IWindows application (.EXEJ

o i[s.~:::~:~£i:il.~~tLf.~:~~:~~!:~~:~::~i:~~~~:~:i
Customize Build Options

.c.ompiler ...

Linker ...

Resources ...

Build Node

@ .!2ebug

o Release

l~ OK

Cancel

Help

Figure 2.2 The Project Options Dialog Box

Chapter 2 Building a Sample Application for Windows 15

6. Choose OK to close the Project Options dialog box.

7. From the Project menu, choose Build HELLO.EXE.

Or click the Build button on the toolbar (see page 60 for more information on
the toolbar).

The build occurs entirely in the background, so you are free to continue working
in Visual Workbench (although some menu commands are disabled). During the
build, output from each of the build utilities, such as the compiler and linker,
appears in Visual Workbench's Output window.

When the build is complete, Visual Workbench displays the final results on its
status bar. In this case, the status bar should indicate 0 errors and 0 warnings.

8. To run the program without invoking the internal debugger, choose Execute
HELLO.EXE from the Project menu.

To run the program in the debugger, choose Go from the Debug menu or click
the Run button on the toolbar.

Choose Exit from the program's File menu to quit the program and return to Visual
Workbench when you fmish experimenting with the program.

CHAPTER 3

Building a Sample QuickWin
Program

17

Most programmers learn to write C or C++ programs using standard input/output
(I/O) functions like priotfO and sea of 0 (or the C++ iostream objects do and
cout) to communicate with users of their programs. Hence, many programmers
are more comfortable using the standard I/O model than the Windows API pro­
gramming model. There are lots of reasons why programmers still rely on the
MS-DOS I/O model, even when programming in Windows. It is convenient for
prototyping code and for quick jobs that don't justify the development of a full­
blown Windows interface.

The QuickWin library is the fastest and easiest way to merge MS-DOS pro­
gramming with Windows. You can write standard I/O programs and have them
run in a multiple document interface (MDI) QuickWin window. You can even
use all the functions in the MS-DOS GRAPHICS.LIB library. You can use the
QuickWin library to port many of your existing MS-DOS programs to Windows
without incurring the development overhead associated with Windows.

This chapter shows you the quickest way to use Microsoft Visual Workbench to
write, build, and run a QuickWin program.

What Is QuickWin?
A QuickWin application is a standard I/O program with a Windows shell. It runs
only with the Windows operating system. You build your program as a QuickWin
project type; then when you run the program from Windows, a QuickWin MDI
window appears with a window dedicated to all your program output functions.
This window is like a video monitor; you can write to the window and perform
input and output operations with standard MS-DOS input/output routines.

QuickWin is an easy way for users of Visual C++ Standard Edition to write
MS-DOS-style programs without having to upgrade to the MS-DOS targeting
provided with Visual C++ Professional Edition. If you are learning C++ or C

18 Visual Workbench User's Guide

programming, and are using a tutorial such as the C++ Tutorial, which uses the
standard I/O programming model, you'll find QuickWin useful for experimenting
with sample programs.

The following section walks you through a simple QuickWin C++ example. The
QuickWin library, however, is capable of handling most well-behaved standard
I/O programs, including programs that use the Microsoft GRAPHICS .LIB library.
Of course, QuickWin cannot interpret programs that use hardware-specific func­
tions such as BIOS interrupts or functions that directly manipulate video memory.

For a complete description of the QuickWin library, see Chapter 7 of Program­
ming Techniques.

A Sample QuickWin Program
To see how easy it is to use QuickWin, try typing a small sample program in a
source window and then building it as a QuickWin program. Or, if you would
prefer to try out the sample QuickWin program provided on disk, open the file
named QWGDEMO.CPP located in the \MSVc\sAMPLES\QWGDEMO direc­
tory and follow the instructions detailed in the procedure titled "To build and run
a QuickWin program."

Note You need the QuickWin library to build QuickWin programs. If you haven't
installed this library, you can rerun the Setup program to install it (see page 7 to
learn how to install a library using Setup).

~ To write a QuickWin program:

1. If you have a project open, close it by choosing Close from the Project menu.

2. From the File menu, choose New.

An empty source window opens.

3. Type the following code in the source window:

#include <iostream.h>
void mainO
{

cout « "Hello C++ world\n";

Chapter 3 Building a Sample QuickWin Program 19

If you need help using the editor, see Chapter 7, "Using the Editor." Figure 3.1
shows the source window with the sample code.

~-------------<-l->-U-NT-IT-L-ED--l~-------------a--~

#include <iostream.h>
void main()
{

cout < < "Hello C++ world"-n";1
}

+~ J

Figure 3.1 QuickWin C++ Program Code

4. From the File menu, choose Save As.

The Save As dialog box appears.

L+

5. Type the name for the file, Q WIN T EST • C P P, in the File Name box and choose
OK.

Note Use the extension .CPP or .CXX, or the compiler will not recognize the
program as a C++ program.

Now that you've entered the program, you can build an executable program. For the
next procedure, use either the QWINTEST.CPP program from the previous proce­
dure or the QWGDEMO.CPP program (which you must open first). Note that this
procedure builds the QuickWin program without creating or using a project. If you
plan to develop extensive QuickWin applications, it is suggested that you create and
use projects (see Chapter 8, "Using Projects," for more information).

~ To build and run a QuickWin program:

1. Click in the source window containing the Quick Win program to make it the
active window.

2. From the Options menu, choose Project.

The Project Options dialog box appears (see Figure 3.2).

3. In the Project Type list box, select QuickWin application (.EXE).

4. From the Build Mode options, select Debug or Release (for this example, select
Debug).

5. Choose OK to close the Project Options dialog box.

20 Visual Workbench User's Guide

Project Options

e.roject Type: I QuickWin application (.EXE)

o :[~~j~i~Q~~tLf.~:ij~:~~:~:~~~::~!.~~~~i:
Customize Build Options

Compiler ...

Linker ...

Re~ources ...

Build Mode

@ Q.ebug

o Release

Iii OK

Cancel

Help

Figure 3.2 The Project Options Dialog Box

6. From the Project menu, choose Build Targetname (where Targetname is either
QWINTEST.EXE or QWGDEMO.EXE in this example depending on the pro­
gram you are building).

Or click the Build button on the toolbar.

The build process automatically generates the module-definition file required for
a QuickWin program.

When the build is finished, there should be 0 errors and 0 warnings reported on
the status bar. If there are any errors (probably created by typing errors), correct
them and repeat the build. If there are link or include-file errors, make sure the
paths for the library files and include files are correct in the Directories dialog
box (opened from the Options menu).

7. From the Project menu, choose Execute Targetname (where Targetname is
either QWINTEST.EXE or QWGDEMO.EXE).

The QuickWin window should appear with your program's output in one of its
MDI windows (see Figure 3.3).

Figure 3.3 QWINTEST Output

After you have experimented with the program, you can close the QuickWin appli­
cation by choosing Exit from its File menu or by pressing CTRL+C. This will return
you to Visual Workbench.

CHAPTER 4

Developing a Microsoft Visual C++
Application

21

This chapter discusses the process of using Visual Workbench and App Studio to
create a Visual C++ application. It presents an overview of the development pro­
cess and puts all the tools in perspective.

It is highly recommended that you complete the Scribble tutorial in the Class
Library User's Guide to learn how to develop a Visual C++ application. You can
read this chapter as an overview to the tutorial or as a quick refresher.

What Is a Visual C++ Application?
A Visual C++ application is an application for Windows that you design and
develop using the Microsoft Foundation Class Library, the Microsoft Visual C++
build tools, and the Visual Workbench and App Studio Windows-hosted develop­
ment tools.

By using a totally integrated environment, you approach programming your appli­
cation the way that users approach using your program - from the visual interface
elements. Visual C++ calls these elements "user-interface objects." You first design
the user-interface objects and then use Visual C++ tools to create and manage the
code to support them. Visual c++ tools help automate the tedious and error-prone
process of deriving classes, creating member functions, and mapping them to mes­
sages. This automation lets you concentrate on designing the resources for your
application and writing the functional code to handle messages.

Of course, you can also use Visual c++ tools to develop standard Windows SDK
applications in C or C++, since Visual C++ includes a text editor, project manager,
build utility, browser, debugger, and resource editor. But, if you are familiar with
standard SDK programming for Windows, you'll find that the Visual C++ tools
make the transition to object -oriented program development, and the Microsoft
Foundation Class Library, easier than you might have imagined.

22 Visual Workbench User's Guide

Introducing the Tools
The Visual C++ tools consist of two applications, Visual Workbench and App
Studio, and two wizards, App Wizard and Class Wizard. If you have Visual C++
Professional Edition, you have additional auxiliary tools. However, since these
are not fundamental to developing a Visual C++ application using the Microsoft
Foundation classes, they are not discussed in this chapter.

The Applications
Visual Workbench and App Studio are the two Windows-hosted applications that
work together to help you develop Visual C++ applications.

Visual Workbench
Visual Workbench is the main editing and debugging tool and acts as the anchor for
the programming environment by creating and maintaining project information (see
Figure 4.1). It incorporates a text editor, project manager, browser, and debugger in
a single integrated development environment.

Figure 4.1 Visual Workbench

, CView)
iew)

ass~izard will add and
// I DO NOT EDIT what you see in

//}}ll.FX_MSG_Mll.P
// Standard printing commands
ON_COMMll.ND(ID_FILE_PRINT, CView: :OnFilePri
ON_COMMll.ND(ID_FILE_PRINT_PREVIE~, CView:'

_MESSll.GE_Mll.P()

The Wizards

Chapter 4 Developing a Microsoft Visual C++ Application 23

App Studio
App Studio lets you create and edit all your application's resources, including
dialog boxes, menus, icons, bitmaps, cursors, and more, in a single environment
(see Figure 4.2). It can be used as a stand-alone resource editor to read and gener­
ate resource files for standard Windows SDK program development. Or it can be
integrated with ClassWizard, AppWizard, and Visual Workbench to develop
Visual C++ applications using the Microsoft Foundation classes.

file Edit Resource Layout Window .!::!.elp

Type:

:t? Acceler atar

III Bitmap

~Dialog
i"'! Icon

iMenu
~ String Table

Ready

SCRIBBLE.RC (Script)
Resources:

1!1 U§rI<§U luDI DUll ~ [EJZ] I~I rtlll13l
""I About Scribble

Microsoft Windows 3.1
MFCV2.0

Scribble App

...... V~r~i~~ 1.'0' ..
......

Figure 4.2 App Studio

~~

A~

00
[2J@

§1IDl

Two Visual C++ wizards, App Wizard and Class Wizard, help you design, create,
and implement Visual C++ applications using the Microsoft Foundation classes.
Wizards can be thought of as helpers that relieve you of much of the tedious work
in application development.

AppWizard
App Wizard is a tool that generates a complete suite of source files and resource
files for a Microsoft Foundation Class Library application (see Figure 4.3). It is
important that App Wizard be used first during the development of a Visual C++
application.

24 Visual Workbench User's Guide

MFC AppWizard

Proiect t!ame: ,-I m.::....va....:...p,-p ___ -'I I OK

Proiect Path

c: \msYc\tempdir
\mvapp\mvapp_mak

,!2irectorv:

123 c:\
123 msyc

~ tempdir

New Subdirectory:

Imvapp

I~c:

I Cancel

1 Help

I !!ptions ___

• Classes __ _

+

Iii

Figure 4.3 App Wizard

By selecting options in App Wizard, you can create skeleton C++ source files
with differing levels of functionality. Jfyou enable all AppWizard options, gener­
ate a project, and then build it without adding a single line of code, you'll get a
Windows-based application with a surprising amount of functionality. A fully
optioned AppWizard-generated application has:

• A multiple document interface (MDI).

• Menus and dialog boxes for opening and saving files, printing, and print
preview.

• Support for object linking and embedding (OLE).

• Support for Microsoft Visual BasicTM custom controls (custom VBX controls).

• Support for Help.

• A functional toolbar and status bar.

App Wizard is accessed from the Visual Workbench Project menu.

ClassWizard
ClassWizard (see Figure 4.4) is a tool that allows you to:

• Create new classes.

• Map messages to class-member functions.

• Map controls to class-member variables.

Chapter 4 Developing a Microsoft Visual C++ Application 25

ClassWizard

Class Harne: I '-C_Sc_ri_bV_ie_w ____ --"IiJ_!

Qbiect IDs:
CScribView

ID_APP_EXIT
ID EDIT CLEAR ALL
ID-EDIT-COPY -
ID-EDIT-CUT
ID-EDIT-PASTE

Member Functions:

OnLButtonDown
OnLButtonUp
OnMouseMove

ON WM LBUTTONDOWN
ON-WM-LBUTTONUP
ON=WM=MOUSEMOVE

Description: Handle a command (from menu, acceL cmd button)

Figure 4.4 ClassWizard

Close

A!!.d Class __ _

Classlnfo __ _

Help

I A.dd F'-Im~hm. ..

I Delete Function I
~dit Code

Creating a new class using Class Wizard is as simple as selecting a base class
from a list of available base classes and typing in the name of the new class.
ClassWizard automatically creates the necessary source files and declaration and
implementation code to derive the new class.

You use ClassWizard most often to "bind" user-interface objects to code. After
creating the user-interface objects in App Studio, you use ClassWizard to create
member functions and message maps to handle messages from these objects.

For example, if you add a menu item "Test" to the Edit menu in App Studio and
then open Class Wizard, you can select the class to which you want the message­
handler function for that object added, select the resource identifier for the
Test menu item (ID _ EDIT_TEST in the Object ID list), specify that it is a
COMMAND in the Messages list, and choose the Add Function button. After
presenting you with a message box to allow you to alter the function name,
ClassWizard inserts the message-map entry, function prototype, and skeleton
function code.

You can also easily create message-handler functions for standard Windows mes­
sages, such as WM_MOUSEMOVE. ClassWizard displays a list of standard
Windows messages for each of the classes that can handle messages. To hook up
a message with a message-handler member function, you just select a class, select
the message you want to handle, and choose the Add Function button.

26 Visual Workbench User's Guide

Finally, Class Wizard can be used to automate development of most of the code
needed for getting data into and out of dialog boxes and for checking the validity
of user input to a dialog-box edit control. ClassWizard's dialog-data-exchange
feature creates source code to map data from dialog-box controls to class-member
variables. The dialog-data-validation feature creates source code to respond to
incorrect user entries in a dialog box.

Class Wizard is accessed from either Visual Workbench or App Studio.

The Process
The process for developing a Visual C++ application using the tools just described
can be broken into two stages: application creation and application development.
The first stage is straightforward, while the second contains several steps that are
iterative and involve many components.

The Application Creation Stage
The first step in creating a Visual C++ application is to generate a set of application
starter files using AppWizard (see Figure 4.5). These starter files are in a format
that can later be recognized by Class Wizard.

1. Create starter files.

Source files

Figure 4.5 Creating the Visual C++ Framework Code

Chapter 4 Developing a Microsoft Visual C++ Application 27

To run App Wizard, you start Visual Workbench and then choose App Wizard from
the Project menu. You then specify a name for the project and select a location
for the source files. At this point, you can also select from the available options in
AppWizard's Options dialog box. When first exploring AppWizard, you might
want to start with the default options.

When you choose OK, App Wizard creates all the files required for a standard
Visual C++ application, including source files, resource files, and a Visual
Workbench project file as shown in Figure 4.5. Visual Workbench then loads the
project. At this point, you can immediately compile and link the files by choosing
Build Targetname (where Targetname represents the name of the project you
created) from Visual Workbench's Project menu.

For more information on using AppWizard, see Chapter 13, "Using Visual Work­
bench with Other Visual C++ Tools," in this book and Chapter 2, "Creating a New
Application with AppWizard," in the Class Library User's Guide.

The Application Development Stage
This section describes the process of developing a Visual C++ application using
Visual Workbench, App Studio, App Wizard, and Class Wizard. Since so much of
the development process involves Visual Workbench, the Visual Workbench tools
are also introduced.

The development stage of any Windows-based application includes the familiar
passes involved in editing source and resource files, compiling and linking, testing,
and debugging. Because these activities are iterative and interwoven during a nor­
mal development cycle, they can't easily be serialized into steps.

There is an order involved, however, in using App Studio, ClassWizard, and Visual
Workbench, mostly because you always create user-interface objects first in App
Studio, then use ClassWizard to create the code shell, and then use Visual Work­
bench to write the functional code. This order, normally repeated many times during
typical development, is examined here.

28 Visual Workbench User's Guide

Creating and Editing User-Interface Objects
Figure 4.6 shows the starter files that are created by App Wizard. Although
AppWizard starts you out with some basic user-interface objects (such as menus,
a toolbar, and so on) when it generates the resource files, you will undoubtedly
need to add user-interface objects of your own. To do this, you use App Studio,
shown editing the resource files in Figure 4.6.

Source files

Resource files

App 2. Add user-interface objects
Studio to resource file.

Figure 4.6 Creating and Editing User-Interface Objects

You can easily open App Studio from within Visual Workbench by choosing App
Studio from the Tools menu. This opens App Studio and passes the name of the
resource file (.RC) to it. To learn how to use App Studio to create and edit user­
interface objects, see the App Studio User's Guide.

Connecting User-Interface Objects to Code
After creating the user-interface objects in App Studio, the next step is to create the
Microsoft Foundation Class Library code that supports them. Figure 4.7 shows the
additional two tools, Class Wizard and Visual Workbench, that come into play at
this point.

Chapter 4 Developing a Microsoft Visual C++ Application 29

3. Create skeleton message-handler code
for user-interface objects.

Visual
Workbench

Source files

Resource files

App
Studio

4. Edit message-handler code
to add functionality.

Your
Application

Figure 4.7 Connecting User-Interface Objects to Code

You use Class Wizard to generate the message-handler functions and message maps
for each user-interface object created in App Studio.

With the skeleton prototype and function code inserted by Class Wizard, you use
Visual Workbench to actually add the code. ClassWizard even lets you jump direct­
ly into Visual Workbench at the proper location to add code.

Depending on your style, you may prefer to connect each user-interface object to
code as it is created in App Studio, or wait until you are finished in App Studio
before using Class Wizard and Visual Workbench. The integrated nature of these
three tools adapts easily to your own style of working.

30 Visual Workbench User's Guide

The Enti re Process
Figure 4.8 shows how AppWizard, App Studio, ClassWizard, and Visual
Workbench all work together. If you have developed applications for Windows
prior to Visual C++, you can see the "standard" development process by mentally
removing ClassWizard and AppWizard from the picture-where Visual Work­
bench represents the source editor and App Studio represents the resource editor
(or editors) you might have used to create source and resource files. This devel­
opment model has been widely used and is still available and fully supported in
Visual C++.

Visual
Workbench

Resource files

Source editor

App Resource editor
Studio

Figure 4.8 The Visual C++ Development Process

App Wizard simply helps you by creating customized starter files in a location of
your choice. Class Wizard adds another dimension to this standard model by keep­
ing track of source code and user-interface objects and therefore lets you derive

Chapter 4 Developing a Microsoft Visual C++ Application 31

classes, connect resource identifiers to code, and edit source code from a single
vantage point.

What isn't depicted in this illustration is that Visual Workbench is the central tool
that coordinates all the other tools by maintaining the project information. Visual
Workbench is not just where you edit files; it is also where you manage the source
code, and build and debug the application. The next two sections describe the tools
you use in Visual Workbench during application development.

Managing Your Source Code
Class Wizard and the Visual Workbench source browser are source-code manage­
ment tools that allow you to access your source code from a structured viewpoint.

As discussed earlier, ClassWizard keeps track of all resource objects and member
functions. It lets you immediately jump to the message-handler source code from
Class Wizard so that you can edit it.

The Visual Workbench browser is another Visual C++ tool for managing source
code. You open the browser by opening the Browse window in Visual Workbench
(see Figure 4.9). You can use the browser to:

• Graphically display hierarchical class trees of derived or base classes.

• Graphically display all the functions that call, or are called by, a particular
function.

• Display a list of source-code locations where references to a symbol are made
and where a symbol is defmed.

• Display member-function and member-variable lists for C++ classes.

• Jump directly to definitions and references either from list entries in the Browse
window or from a selected symbol in a source file.

I.!I I D iSlillal Result I I Exeand Tree I

f;
~:~: I Derived Class Graph

Sybset: I~C~las~s~es~====~~~~~~~
SY!!l.bol: IL-CYl_nd ___________ --.J

LiJ I Previous 9 uer? I I Collaese Node I
I[!J

I!'!I IIDII
~ CDialog

I
CPenWidthsDlg
CFileDialog
CFontDialog
CColorDialog
CPrintDialog
CFindReplaceDialog

~ CStatic
~ CButton
~ CBi tmapBut ton

f-I!'!I CListBox

~ ~.W.~.c:l .. : ... :,,~.w..~.c:l .. (.~.~.:r..':t.c::.~ ... J:l.W.tl.P._ c::.9..~.~.t ~1 ~
1-1 CWnd: : CWnd() 1-1

CWnd: : ~CWnd()
struct AFX_MSGMAP-;-ENTRY * CWnd: :_m',+

+1 J L+
p.~t~.~.~.H9..~.~ 9..t ... ~.W.~.c:l ... ~
d:'msvc'mfc'include'afxwin.h(1098)~

References to CWnd
d:'msvc'mfc'include'afxwin.h(43)
d:'msvc'mfc'include'afxwin.h(665) ~

+ +1. J L+

Figure 4.9 The Visual Workbench Browse Window

32 Visual Workbench User's Guide

Like Class Wizard, you can use the browser to look at your code from a different
viewpoint than normal text mode. The browser shows you relationships between
base and derived classes and between calling and called functions. You can also
jump directly from the Browse window to source code simply by double-clicking a
reference or definition in the Browse window. Or, without even using the Browse
window, you can select a symbol in a source file, jump to its definition or first
reference, visit all references to the symbol, and return to the original location, all
using menu commands or shortcut keys.

See Chapter 10, "Using the Browser," to learn more about the Visual Workbench
browser.

Building and Running Your Application
Visual Workbench helps you build, run, and debug your application with as little
interruption as possible since these tasks are repeated so frequently. You can build
a project in Visual Workbench by:

• Choosing the Build or Rebuild All toolbar button.

• Choosing the Build Targetname or Rebuild All Targetname command from the
Project menu.

When the build is complete, you can run the program in the debugger (assuming it
includes debug information) by:

• Choosing the Run toolbar button.

• Choosing the Go command from the Debug menu.

You can run the program outside the debugger by choosing Execute Targetname
from the Project menu. The steps for building and running an application are
provided in Chapter 2, "Building a Sample Application for Windows," and in
Chapter 8, "Using Projects." You can find toolbar descriptions in Chapter 6, "The
Visual Workbench Environment."

Debugging Your Application
You debug your application from within Visual Workbench. The Visual Work­
bench debugger is a Windows-hosted debugger that is integrated with Visual
Workbench and is compatible with Microsoft CodeView (see Figure 4.10).

Chapter 4 Developing a Microsoft Visual C++ Application 33

""" I I I lJi:.nlliil..-,ll ·1
file Edit View Eroject Browse Qebug Iools Qptions Window Help

~ I~I~I 1 10 ~ I~I~I~I I ~I&o'l I ~!I {+} I rwl {1l1
gl <6> C:\MSVC\SAMPLES\SORTDEMO\SORTDEMO.C L·J

43A7:10FO 51 PUSH CX ..! 43A7:10Fl 9A420CA743 CALL SWAPS (43A7:0C42)
43A7:10F6 83C404 ADD SP,04

43A7 10F9 8846FC MOV AX,WORD PTR [IROW] ;BK1
43A7 10FC 050100 ADD AX,OOOl
43A7 10FF 50 PUSH AX
43A7 1100 FF76FC PUSH WORD PTR [IROW]
43A7 1103 9A860CA743 CALL SWAPBARS (43A7:0C86) -43A7 1108 83C404 ADD SP,04

iSwiteh = iRow;
43A7 110B 8B46FC MOV AX,WORD PTR [IROW]

~ 43A7:110E 8946F8 MOV WORD PTR rISWITCH1,AX
+J. J 1+
gl 0> Watch l·J "I <2> Locals l·l'" g

• - I ...
-abarWork ~ [BP-0004] int iRow = 0 AX- 0924

-[OxO] [BP-0006] int iLimit = 44 BX = Oc4d
len = 23 ''-x17' I- [BP-0008] int iSwiteh = 0 CX = 091e

-elr DX = 43a7
nBlue = 0 SP = 1£ 5e
nGreen = 255 BP = 1£ 6a
nRed = 0 SI = 1£fe

+[OKl] = { - .. } DI = 22a7
+[Ox2] = { ... } DS = 4139f

~~ g~~ ~ : 5··· ~ I- ~~ : !;~~ +

I fOVRIIII00009 [008

Figure 4.10 The Visual Workbench Debug Windows

The Visual Workbench debugger has many powerful features, including:

• Breakpoints for breaking a program at a location, on an expression evaluation,
or on a Windows message or class of messages.

• A QuickWatch dialog box for examining and changing variable values.

• A Watch window for examining specific variables and expressions.

• A Locals window for examining local variables.

• A Registers window for examining and changing hardware register values.

• Tracing commands to step over, step into, or step out of functions.

• Mixed source and assembly listings and assembly-line tracing.

To use the debugger, you build your application with the Debug configuration.
You then set breakpoints and run the application in a debug session from Visual
Workbench.

When the debugger reaches a breakpoint, you have several options. You can
examine variables or expressions using the Watch window, the Locals window,
or the QuickWatch dialog box. Or you can single-step through the code, choosing
to step over functions or trace into functions that are encountered.

For a complete description of the Visual Workbench debugger see Chapter 11,
"Debugging Programs."

34 Visual Workbench User's Guide

For More Information
The topics introduced in this chapter are covered in detail in a number of places
in the Visual c++ printed documentation. Please refer to the following documen­
tation for more information:

• The Class Library User's Guide contains a comprehensive tutorial on develop­
ing a Visual c++ application.

• Chapters 1 through 6 of the Class Library Reference cover conceptual informa­
tion on using the Microsoft Foundation classes.

• Chapters 6 through 12 of the Visual Workbench User's Guide describe how to
use general Visual Workbench features.

• Chapter 13 of the Visual Workbench User's Guide describes App Wizard in
detail and discusses both using Class Wizard and running App Studio from
within Visual Workbench.

• Chapters 3 through 8 of the App Studio User's Guide describe how to use gen­
eral App Studio features.

• Chapter 9 of the App Studio User's Guide discusses using ClassWizard from
within App Studio and presents a comprehensive description of Class Wizard.

35

CHAPTER 5

Fast Track to Visual Workbench

Chapters 6 through 13 provide comprehensive information and procedures for using
all parts of Visual Workbench. Often, however, all you need is a pointer in the right
direction, and perhaps a comment about the procedure, to get started. The tables in
this chapter will help you quickly get to the right menu command, dialog box,
window, or compiler or linker control to accomplish your task.

This chapter contains the following sections:

• Menu Summaries

• Key Summaries

• Alphabetic Guide to Build Options

You can use this chapter as an introduction to the Visual Workbench menus,
shortcut keys, and compiler and linker options. Or you can refer to the tables later
for a quick reference.

36 Visual Workbench User's Guide

Menu Summaries
This section summarizes many of the Visual Workbench procedures and provides a
comprehensive menu overview. Since most menu items are referenced to a complete
description, you can also use this section as an index into the Visual Workbench
User's Guide.

Managing Files and Printing

To 1m Comments See

Create a new source file New Ctrl+N Creates an empty source window that will be p. 76
named when it is saved .

Open a source file .Qpen ... Ctrl+O The Open button on the toolbar is equivalent. p. 79
To open a project file, click the Project Files
button on the toolbar and choose the file from
the drop-down list that appears.

Close a source file ~Iose Or double-click the file's Control-menu box. p.82

Save a source file .save Ctrl+S The Save command and the Save button on p. 77
the toolbar are inactive until you alter text in
the source window.

Rename a source file Save As ... Opens the Save As dialog box, which p. 76
prompts you for a filename.

Save all open source files Sa~e All Saves all source files currently opened. p. 77

Print the active window frint ... Opens the Print dialog box. If text is selected, p.90
this prints just the selected text.

Set print margins, Page Setup ... Opens the Page Setup dialog box. This is p.91
headers, and footers similar to the page setup capability of other

applications for Windows.

Exit Visual Workbench E~it Exits the development environment and p.60
prompts you to save any modified files.

Editing Files

~ I@Q)

To

Reverse the last edit
action

Reverse the last undo

Delete to the Clipboard

Copy to the Clipboard

Paste from the Clipboard

Delete text from a file

Search for text

Search and replace text

Move to the
corresponding brace

Write-protect a file

DIll
.undo

Redo

Cut

~opy

faste

Qelete

find ...

R~place ...

Chapter 5 Fast Track to Visual Workbench 37

Comments See

Ctrl+Z To set the undo buffer size, see the Editor Help
dialog box (Options menu).

Ctrl+A Must be used before any other editing is Help
done.

Ctrl+X Overwrites the current Clipboard Help
contents.

Ctrl+C Overwrites the current Clipboard
contents.

Ctrl+V

Del

Alt+F3

Pastes text only.

Does not save to the Clipboard.

Opens the Find dialog box. Or you can
use the Find box on the toolbar to select
from the last 16 items searched. To repeat
the last search, click the Find Next button
on the toolbar.

Opens the Replace dialog box.

Help

Help

Help

p.86

p. 89

Find Matching Brace Ctrl+] Moves the insertion point from a brace or p. 83

Read Qnly

parenthesis to its matching brace or
parenthesis (forward or backward).

Useful for viewing files that you don't
want to accidentally alter.

p.86

38 Visual Workbench User's Guide

Window Display and Quick Access
To IIUI:I Comments See

Go to a specific line Line ... Opens the Line dialog box. Type a line p.82
number and press ENTER.

Display assembly code Mixed Source/ Asm Ctrl+F7 Displays assembly code mixed with p. 198
source code.

Jump to the next build Next Error F4 Places insertion point in source file at p.181
error place of next build error (opens file if

necessary).

Jump to the last build frevious Error Shift+F4 Places insertion point in source file at p. 181
error previous error (opens file if necessary).

Tum bookmark on or off Ioggle Bookmark Ctrl+F2 Line is highlighted when bookmark is p.82
set.

Jump to the next Next Bookmark F2 Places insertion point at next p.83
bookmark bookmark.

Jump to the previous Pre~ious Bookmark Shift+F2 Places insertion point at previous p.83
bookmark bookmark.

Remove all bookmarks ~Iear All Bookmarks Clears all bookmarks set by Toggle p.83
Bookmark or by the Set Bookmarks on
All button in the Find dialog box.

Toggle toolbar display Toolllar Checked when toolbar is displayed. p.60

Toggle status bar display Status Bar Checked when status bar is displayed. p.63

Override syntax coloring Syntax Coloring Select C, C++, or None from pop-up p.205
menu to set syntax coloring for a single
source file. To set global syntax
coloring, use the Color dialog box from
the Options menu.

Chapter 5 Fast Track to Visual Workbench 39

Working with Projects
Compile File

To IEaIIII Comments See

Create anew App Wizard ... Opens the MFC App Wizard p.210
application using dialog box, which you use to
AppWizard create a suite of project files to

be used with Class Wizard.

Create anew New ... Opens the New Project dialog p.98
project box, where you name the

project, select a project type, and
add files to the project. The new
project is automatically saved to
disk.

Open an existing Qpen ... Closes any current project. p. 100
project Loads browser database, if

available, for the project.

Add files to or Edit. .. PRJNAME.MAK To change the project type, use p.99
delete files from a the Project command on the
project Options menu.

Close the current ~Iose Other ways to close a project are p.lOO
project opening another project,

creating a project, or exiting
Visual Workbench.

Compile the active ComQile File FILENAME Ctrl+FS Compiles active source file Help
source file specified by FILENAME. Also

available on the toolbar.

Build the project ,e.uild TARGETNAME Shift+FS Builds only the files not up-to- p. 103
using dependency date and creates a target file.
rules Also available on the toolbar.

Build the project Rebuild All TARGETNAME Alt+FS Builds all the files regardless of p. 104
from start dependencies and creates a

target file. Also available on the
toolbar.

Abort building a Slop Build Cancels the build as soon as the p. 104
project build tool being used is finished.

40 Visual Workbench User's Guide

To I:raU", Comments See

Run a program Execute TARGETNAME Ctrl+FS T ARGETNAME is the name of p. 104
outside the the executable file produced by
debugger building the current project. See

the Debug menu's Go command
to run a program in the
debugger.

Update include Scan Qependencies FILENAME Recursively scans all files p. 102
dependency list for included by the active source file
active file and updates the list.

Update include Scan All Dependencies This is also done automatically p. 102
dependency list for when a project list is created or
entire project edited.

Load a workspace boad Workspace PRJNAME. WSP Loads one of three previously p. 106
saved workspaces associated
with the current project.

Save a workspace Save Workspace PRJNAME.WSP Saves one of three workspaces p. 105
associated with the current
project.

Chapter 5 Fast Track to Visual Workbench 41

Accessing Symbols and Classes
To I;II-I:'il Comments See

Jump to first place Go to Qefinition F11 Select symbol in source window p. 168
where symbol is defined or Browse window.

Jump to first place Go to Reference Shift+F11 Select symbol in source window p. 168
where symbol is or Browse window.
referenced

Jump to the next Next Ctrl+NumPad+ Depends on whether Go to p. 168
reference or definition Definition or Go to Reference

was used last.

Jump to the previous frevious Ctrl+NumPad- Depends on whether Go to p. 168
reference or definition Definition or Go to Reference

was used last.

Jump to location of Pop ~ontext Ctrl+NumPad* Returns to the symbol that was p. 169
selected symbol used before the last Go to

Definition or Go to Reference.

Open the Browse Qpen [PRJNAME.BSC] Opens the Browse window with p. 163
window the database listed or, if no

database name is listed, opens
the Open File dialog box.

Create a new class or ClassWizard ... Ctrl+W Opens a dialog box that lets you p.222
map a Windows create new classes and automate
message to a member the creation of message maps
function and message-handler member

functions.

42 Visual Workbench User's Guide

Debugging Programs
Toggle Breakpoint

To III1III1I Comments See

Start or continue a ,Go FS Runs program associated with the current p. 189
program using the project.
debugger

Reload program and Restart Shift+FS Use when execution has paused at a p. 189
start breakpoint, between steps, or when

program has completed. Discards variable
values.

Quit a debugging Stop Qebugging Alt+FS Stops the debugger at any time, whether p. 189
session the program is running or paused. If this

is dimmed (unavailable), the program
being debugged has focus or has finished.

Single-step through Step Into Fa Enters functions when encountered. p. 190
every line of the program

Single-step through Step Qver F10 Runs functions when encountered and p. 190
program but skip stops immediately after.
functions

Run to first instruction Step Oul Shift+F7 Continues program out of function then p. 190
after call to current stops at line after function call.
function

Run to the location of Step to ~ursor F7 Treats the insertion point location as a p. 190
the insertion point breakpoint.

Display the call stack Show Call Stack ... The Call Stack dialog box lists all p. 194
function calls that lead to current
statement.

Set or clear a breakpoint .e.reakpoints ... The Toggle Breakpoint button on the p. 185
toolbar also sets and clears breakpoints.

To

Open QuickWatch to
view the value of a
variable,

Or add a variable to the
Watch window,

Or change a variable
value

l.mulU'
,QuickWatch ... Shift+F9

Chapter 5 Fast Track to Visual Workbench 43

Comments See

The insertion point must be on a variable p. 192
with the program paused at a breakpoint
or between steps.

To add a variable, open QuickWatch on p. 192
the variable and choose the Add to Watch
Window button.

To change a variable value, open
QuickWatch on the variable and choose
the Modify button to open the Modify
Variable dialog box.

p. 193

Running Tools from Visual Workbench
To 'mo"
Create menus, dialog boxes, icons, App Studio
and other resources

Run Code View for Windows CodeView

Add a tool to or remove a tool from
the Tools menu

Comments

App Studio lets you visually design and
construct the user-interface objects for your
program.

Code View is only provided with Visual C++
Professional Edition.

See

p.23

p.179

See the Tools command on the Options menu. p. 199

44 Visual Workbench User's Guide

Setting Preferences and Custom Options
To um~lhll Comments See

Set custom compiler and linker froject ... Choose the Compiler, Linker, or Resources p.111
options, button. Use Fl in the dialog boxes for help.

Or set the build mode (debug vs. You can set the build mode for Visual p.111
release), Workbench projects or external projects.

Or set the project type Project type can also be set when you create a p.94
new project.

Specify an .EXE file to debug a Oe,bug ... You must specify a host program to debug any p. 179
DLL, dynamic-link library.

Or set hard or soft mode In hard mode, the debugger traps all input from p. 196
debugging, the mouse and keyboard when in break mode.

Or toggle hexadecimal display Format for display of all variable values p. 198
wherever shown (for example, Watch window).

Set directories for include files, Qirectories ... Visual Workbench prefixes directory p.204
libraries, executable files, help information to any existing PATH, INCLUDE,
files, and MFC source files or LIB environment variable. The MFC source

file directory is required when debugging or
browsing MFC programs.

Set miscellaneous options Editor ... Options include tab settings, scroll bar enabling, p. 85
save before build, prompt before save, and undo
buffer size.

Set workspace options Workspace ... Lets you set the menu names and shortcut keys p. 104
and other options for workspaces.

Add a tool to, or remove a tool lools ... You can use this feature to integrate a favorite or p. 199
from, the Tools menu familiar editor with Visual Workbench.

Change syntax coloring, .color ... The Color dialog box lets you customize colors p.205
for all syntax elements.

Or tum syntax coloring off for all Clear the Syntax Coloring check box. See the p.206
files Syntax Coloring command on the View menu to

select syntax coloring for a single file.

Change the font in a window font ... Select from a variety of fonts and sizes and apply p.207
bold and/or italic styles.

Chapter 5 Fast Track to Visual Workbench 45

Arranging and Opening Windows
To l+"+101iul§i
Arrange windows as overlapped C,ascade

Arrange windows as side-by-side Iile

Open an additional window on an Q,uplicate
open source file

Close all open windows Close All

Open the Watch window (or Watch
bring it to the top)

Open the Locals window (or
bring it to the top)

Open the Registers window (or
bring it to the top)

Open the Output window (or
bring it to the top)

.!:ocals

Registers

Qutput

Comments See

To bring an overlapped window to the top, select p. 63
the window from this menu or press ALT +P6 to
cycle through the windows.

Useful to show several debug windows at the p. 63
same time.

Useful for viewing different sections of the same p. 79
source file. Fonts can be unique in each window.

Prompts you to save files that have been Help
changed since they were opened.

Watch window variables and expressions are p. 190
saved with the project.

To add a variable or expression, type it into the
Watch window during a debug session. (Or use
QuickWatch to add the variable.)

Shows all local variables and their values.

Shows all registers and flags. To change a
register value, tab to the register and type over
the current value. To toggle a flag value, tab to
the flag and press the SPACEBAR.

The output from build utilities, including errors
and warnings, appears here, as well as output
from OutputDebugString() calls during
debugging sessions.

p. 190

p. 180

p. 195

p. 180

46 Visual Workbench User's Guide

Getting Online Help
To '11mw
Find procedural help in Visual ~isual Workbench
Workbench

Find help on specific compiler .B,uild Tools
or linker options

Find help on the C or C++
language and functions

Find help on the Microsoft
Foundation Class Library

~/C++ Language

foundation Classes

Find help on Windows version Windows 3.1 SDK
3.1 API functions

Search for a keyword in Help

Get product support

Find information about your
copy of Visual Workbench

.search for Help On ...

.Qbtaining Technical Support

About Visual C++ ...

Comments See

Opens Visual Workbench Help at the p. 65
top-level Contents screen.

Help covers the C/C++ Compiler p. 71
Options and Linker Options dialog
boxes and module-definition':'file
statements.

C run-time functions and C/C++
language descriptions.

Description of classes, member
functions, and macros.

p.65

p.65

Descriptions of all Windows version p. 65
3.1 APIs, messages, and macros.

Opens the Search dialog box with the p. 66
selected word or word at the insertion
point as a keyword and lets you
choose the Help file to search .

How to contact Microsoft Product
Support to help solve your problems.

Displays a dialog box that shows
software version and registered
owner.

p.xv

Chapter 5 Fast Track to Visual Workbench 47

Key Summaries

Editing Keys

The tables in this section provide keyboard infonnation and shortcuts for
perfonning tasks such as editing, scrolling, text selection, searching, and debugging.

Table 5.1 Insertion Point Movement Keys

To move the insertion point

One character left

One character right

One word left

One word right

One line up

One line down

To the fIrst indentation of current line

To the first indentation of next line

To the end of line

To the beginning of ftle

To the end of ftle

Table 5.2 Text Selection Keys

To select

Character to the left

Character to the right

One word to the left

One word to the right

Current line

Line above

To end of line

To beginning of line

One screen up

One screen down

To beginning of ftle

To end of file

Press

LEFf ARROW

RIGHT ARROW

CTRL+LEFT ARROW

CTRL+RIGHT ARROW

UPARROW

DOWN ARROW

HOME

CTRL+ENTER

END

CTRL+HOME

CTRL+END

Press

SHIFf +LEFf ARROW

SHIFf +RIGHT ARROW

SHIFf +CTRL+LEFf ARROW

SHIFf +CTRL+RIGHT ARROW

SHIFf +DOWN ARROW

SHIFf +UP ARROW

SHIFf+END

SHIFf+HOME

SHIFf+PAGE UP

SHIFf +P AGE DOWN

SHIFf +CTRL+HOME

SHIFf +CTRL+END

48 Visual Workbench User's Guide

Table 5.3 Insert, Copy, and Tab Keys

To

Tum keyboard insert mode on or off

Copy selected text to Clipboard, keeping it

Copy selected text to Clipboard, deleting it

Insert contents of Clipboard

Copy current line to Clipboard, deleting it

Insert one blank line below

Insert one blank line above

Undo the last edit

Redo the last edit

Insert a tab

Toggle display of tab symbols

Table 5.4 Delete Keys

To

Delete one character to the left

Delete one character to the right

Delete to the end of the word

Delete selected text and copy to Clipboard

Table 5.5 Text Scrolling Keys

To scroll

Up one line at a time

Down one line at a time

Up one page at a time

Down one page at a time

Press

INS

CTRL+C

CTRL+INS

CTRL+X

SHIFT+DEL

CTRL+V

SHIFT+INS

CTRL+Y

END, then ENTER

HOME, then ENTER

CTRL+Z

ALT+BACKSPACE

CTRL+A

TAB

CTRL+ALT+T

Press

BACKSPACE

DEL

CTRL+T

CTRL+X

SHIFT+DEL

Press

CTRL+UP ARROW

CTRL+DOWN ARROW

PAGE UP

PAGE DOWN

Toolbar Keys

Table 5.6 Search Keys

To

Find the selected text

Repeat the last find

Open the Find dialog box

Search backward

Find the next error

Find the previous error

Find matching brace

Find next bookmark

Find previous bookmark

Table 5.7 Toolbar Keys

To access the

Project Files button

Open button

Save button

Find box

Find box: search forward

Find box: search backward

Find Next button

Compile File button

Build button

Rebuild All button

Toggle Breakpoint button

QuickWatch button

Run button

Step Into button

Step Over button

Step Out button

Chapter 5 Fast Track to Visual Workbench 49

Press

CTRL+F3

F3

ALT+F3

SHIFT+F3

F4

SHIFT+F4

CTRL+J

F2

SHIFT+F2

Press

CTRL+P

CTRL+O

CTRL+S

CTRL+F

RETURN

SHIFT +RETVRN

F3

CTRL+F8

SHIFT+F8

ALT+F8

F9

SHIFT+F9

F5

F8

FlO

SHIFT+F7

50 Visual Workbench User's Guide

Window Management Keys
Table 5.8 Visual Workbench Window Management Keys

To Press

Switch to the next document window

Switch to the previous document window

CTRL+F6

Switch to the next window (includes all windows)

Switch to the previous window (includes all windows)

Switch to the previously active window

SHIFf +CTRL+F6

F6

SHIFr+F6

CTRL+TAB

CTRL+F4 Close the active window

Build and Compile Keys
Table 5.9 Build and Compile Keys

To

Compile the active source file

Build the project using dependency rules

Build the project from the start

Browsing Keys
Table 5.10 Browsing Keys

To

Jump to the definition of selected symbol

Jump to the first reference of selected symbol

Jump to the next reference in browser list

Jump to the previous reference in browser list

Return to original symbol location

Expand active node one level

Collapse active node one level

Expand all nodes in a branch

Expand an entire graph

Press

CTRL+F8

SHIFf+F8

ALT+F8

Press

Fll

SHIFr+Fll

CTRL+NUMPAD+

CTRL+NUMPAD -

CTRL+NUMPAD*

NUMPAD+

NUMPAD­

NUMPAD*

ALT+X

Chapter 5 Fast Track to Visual Workbench 51

Debugging Keys
Table 5.11 Debugging Keys

To

Restart program execution from beginning

Continue execution from current statement

Execute program to insertion point position

Execute next statement, tracing into function calls

Single-step, stepping over functions calls

Execute program out of current function and stop
on first line after function call

Open QuickWatch dialog box

Open Modify Variable dialog box

Toggle hexadecimal display

Toggle breakpoint

Toggle mixed mode

Alphabetic Guide to Build Options

Press

SHIFf+F5

F5

F7

F8

FlO

SHIFf+F7

SHIFf+F9

CTRL+F9

ALT+F9

F9

CTRL+F7

The tables in this section cross-reference the CL and LINK command-line options
with their corresponding dialog-box controls in the C/C++ Compiler Options and
Linker Options dialog boxes. Visual Workbench uses these dialog boxes to
assemble the command-line options passed to the NMAKE utility during a build.

By mapping each of the command-line options in an existing makefile to its corre­
sponding control in the C/C++ Compiler Options or Linker Options dialog box, you
can quickly bring your existing projects into Visual Workbench. Be sure to check
the default options set by Visual Workbench for each project type if you are con­
verting an existing project (see Tables 9.1 through 9.4 beginning on page 116 for
the default options for each project type). Of course, you can also build existing
projects from within Visual Workbench as external projects (see page 107).

See Chapter 9, "Customizing Build Options," for descriptions of these compiler and
linker options, default options set by Visual Workbench, and how to use the C/C++
Compiler Options and Linker Options dialog boxes.

Compiler Options
Compiler options are set in Visual Workbench using the C/C++ Compiler Options
dialog box. To open this dialog box, choose Project from the Options menu and then
choose the Compiler button.

52 Visual Workbench User's Guide

If you cannot find a particular CL option listed in Table 5.12, you can use the Other
Options text box-available in the Custom Options category of the C/C++
Compiler Options dialog box - to enter most command-line options that do not
have a matching dialog-box control.

Table 5.12 Alphabetic Guide to Compiler Options

Option Category Control

lAC Memory Model Model: Compact

IAH Memory Model Model: Huge

IAL Memory Model Model: Large

lAM Memory Model Model: Medium

lAS Memory Model Model: Small

IAT Memory Model Model: Tiny

/D Preprocessor Symbols and Macros to Define

If Code Generation Code Generator: Fast

If- Code Generation Code Generator: Optimizing

/Fa Listing Files Assembly

/Fc Listing Files Include Source and Machine Code

/FI Listing Files Include Machine Code

/Fpa Code Generation Floating-Point Calls: Alternate Math

/Fpc Code Generation Floating -Point Calls: Coprocessor Calls

/FPc 87 Code Generation Floating-Point Calls: 80x87 Calls

/Fpi Code Generation Floating-Point Calls: Use Emulator

/Fpi87 Code Generation Floating-Point Calls: Inline 80x87 Inst

/FR Listing Files Include Local Variables

/Fr Listing Files Browser Information

IG Code Generation CPU

IGA Windows Prolog/Epilog Generate Prolog/Epilog For:
Protected Mode Application Functions

IGc Code Generation Calling Convention: Pascal

IGd Code Generation Calling Convention: CIC++

IGD Windows Prolog/Epilog Generate Prolog/Epilog For:
Protected Mode DLL Functions

IGEe Windows Prolog/Epilog Protected Mode Options:
Generate for __ far Functions

IGEf Windows Prolog/Epilog Protected Mode Options:
Emit Linker EXPDEF Records

IGf Custom Options Eliminate Duplicate Strings

Chapter 5 Fast Track to Visual Workbench 53

Table 5.12 Alphabetic Guide to Compiler Options (continued)

Option

IGp

IGs

IGt

IGW

IGw

IGx­

IGy

II
/Mq

/ND

/NM

Inologo

/NQ

/NT

/NV

101

102

lOa

lObO

lObI

IOb2

10d

10e

10f-

109

10i

101

lOp

10q

Category

P-Code Generation

Code Generation

Memory Model

Windows Prolog/Epilog

Windows Prolog/Epilog

Memory Model

Custom Options

Preprocessor

Custom Options

Segment Names

Segment Names

Custom Options

Segment Names

Segment Names

Segment Names

Optimizations

Optimizations

Optimizations

Optimizations

Optimizations

Optimizations

Optimizations

Optimizations

P-Code Generation

Optimizations

Optimizations

Optimizations

Optimizations

P-Code Generation

Control

Number of P-Code Entry Tables

Disable. Stack Checking

New Segment Data Size Threshold

Generate Prolog/Epilog For:
Real Mode __ far Non-Callback Functions

Generate Prolog/Epilog For:
Real Mode __ far Functions

Assume 'extern' and Uninitialized Data 'far'

Enable Function-Level Linking

Include Path

Quick Win Support

Data Segment

Module Name

Suppress Display of Sign-On Banner

P-Code Segment

Code Segment

V-Table Segment

Minimize Size

Maximize Speed

Custom Optimizations: Assume no aliasing

Inline Expansion of Functions: Disable

Inline Expansion of Functions: Only __ inline

Inline Expansion of Functions: Any suitable

Disable (Debug)

Custom Optimizations:
Global register allocation

Disable P-Code Quoting

Custom Optimizations: Global-level common
subexpression optimization

Custom Optimizations:
Generate intrinsic functions

Custom Optimizations: Loop optimization

Custom Optimizations:
Improve float consistency

P-Code Optimization On

54 Visual Workbench User's Guide

Table 5.12 Alphabetic Guide to Compiler Options (continued)

Option Category Control

lOr Optimizations Custom Optimizations:
Enable single point function exit

lOs Optimizations Custom Optimizations:
Favor small code

lOt Optimizations Custom Optimizations:
Favor fast code

/Ov- P-Code Generation Sort Local Variables in Occurrence Order

/OV Optimizations Inline Function Size

lOw Optimizations Custom Optimizations:
Assume aliasing across function calls

lOx Optimizations Custom Optimizations:
Full optimization

/Oz Optimizations Custom Optimizations:
Allow potentially unsafe loop optimizations

/u Preprocessor Undefine All Symbols

IV Preprocessor Individual Symbols to Undefine

/vmb Custom Options (C++) Representation Method:
Best-case always

/vmg Custom Options (C++) Representation Method:
General-purpose always

/vmm Custom Options (C++) General Purpose Representation:
Point to multiple inheritance classes

/vms Custom Options (C++) General Purpose Representation:
Point to single inheritance classes

/vmv Custom Options (C++) General Purpose Representation:
Point to any class

/vd Custom Options (C++) Disable Construction Displacements

/W Custom Options Waming Level

/WX Custom Options Warnings as Errors

IX Preprocessor Ignore Standard Places of Include Files

lYe Precompiled Headers Precompile through Header (C and/or C++),
Precompile with Source (C and/or C++)

lYu Precompiled Headers Precompile through Header (C and/or C++),
Precompile with Source (C and/or C++)

IYX Precompiled Headers Automatic Use of Precompiled Headers

/Z7 Debug Options Full (C7 Compatible)

Chapter 5 Fast Track to Visual Workbench 55

Table 5.12 Alphabetic Guide to Compiler Options (continued)

Option Category Control

/Za

/Zd

/Ze

/Zi

/Zn

/Zp

/Zr

Linker Options

Custom Options

Debug Options

Custom Options

Debug Options

Listing Files

Code Generation

Code Generation

Disable Microsoft Language Extensions
(checked)

Partial (Line Numbers Only)

Disable Microsoft Language Extensions (not
checked)

Full, Use Program Database

Don't Pack Information

Structure Member Byte Alignment

Check Pointers

Linker options are set in Visual Workbench using the Linker Options dialog box.
To open this dialog box, choose Project from the Options menu and then choose the
Linker button.

If you cannot find a particular LINK option listed in Table 5.13, you can use the
Other Options text box-available in the Miscellaneous category of the Linker
Options dialog box-to enter most command-line options that do not have a
matching dialog-box control.

Table 5.13 Alphabetic Guide to Linker Options

Option Category Control

/ALIGN Output Segment Alignment

/CO Output Generate Debugging Information

/EXEPACK Memory Image Pack EXE File

/FARCALL Memory Image Translate Far Calls

/INFO Output Produce More Detailed Output

/LINE Output Include Line Numbers/Addresses
in MAP

/MAP Output Create MAP File

/NOD Input Ignore Default Libraries
Specific Libraries to Ignore

/NOE Input Prevent Use of Extended Dictionary

/NOI Input Distinguish Letter Case

/NOLOGO Miscellaneous Suppress Display of Sign-On
Banner

56 Visual Workbench User's Guide

Table 5.13 Alphabetic Guide to Linker Options (continued)

Option Category

/NOPACKF Memory Image

/ONERROR:NOEXE Output

/PACKC

/PACKD

/SEG

/STACK

/TINY

Memory Image

Memory Image

Memory Image

Memory Image

Output

Control

Don't Remove Unreferenced
Packaged Functions

Prevent Creation of EXE on Linker
Error

Pack Code

Pack Data

Max. Number of Segments

Stack Size

Produce COM file

PAR T 2

Using Visual Workbench

Chapter 6 The Visual Workbench Environment 59
Chapter 7 U sing the Editor . 75
Chapter 8 U sing Projects 93
Chapter 9 Customizing Build Options. 111
Chapter 10 Using the Browser 161
Chapter 11 Debugging Programs . 179
Chapter 12 Customizing Visual Workbench 199
Chapter 13 Using Visual Workbench with Other Visual C++ Tools 209

CHAPTER 6

The Visual Workbench
Environment

59

Microsoft Visual Workbench is an integrated programming environment that runs
with the Microsoft Windows operating system. It integrates a text editor, browser,
compiler, linker, debugger, make utility, and Help database.

A single development environment (see Figure 6.1) is used for both Visual C++
Standard Edition and Visual C++ Professional Edition with a few modifications
to accommodate the extended capabilities of the professional edition. These
modifications are limited to the CjC++ Compiler Options dialog box, because of
the differences in compiler options, and the two dialog boxes where you set pro­
ject types (New Project, accessed from the Project menu, and Project Options,
accessed from the Options menu). Otherwise, Visual Workbench is identical for
both versions.

Figure 6.1 The Visual Workbench Environment

60 Visual Workbench User's Guide

This chapter briefly introduces Visual Workbench. It describes how to start and
quit Visual Workbench, how to arrange windows, and how to access the Help
system. It also describes the toolbar and the status bar.

Starting and Quitting Visual Workbench
After you have installed Visual Workbench, start it by double-clicking its icon in
the Program Manager window.

If you had a project open when you last exited Visual Workbench, it is automati­
cally loaded. Or, if you have installed Visual Workbench with command-line op­
tions to load a project or source files, the project or files will automatically load
into Visual Workbench.

To quit Visual Workbench, choose Exit from the File menu. This returns you to
the Windows Program Manager.

Visual Workbench Features

The Toolbar

Visual Workbench uses a multiple document interface (MDI) window that can
contain several different types of child windows to let you edit source code, de­
bug programs, and get status and error information. In addition, there is a toolbar
for quick access to the most-of ten-used functions and a status bar for displaying
build information and descriptions of toolbar buttons and menu items.

The toolbar appears beneath the menu bar. It provides shortcut commands for
opening and saving files, finding text, and building, running, and debugging a
program.

You can hide or display the toolbar with the Toolbar command on the View
menu. When this command is checked, the toolbar appears. When it is turned off
(not checked), the toolbar is hidden.

The controls (buttons and list boxes) on the toolbar are grouped according to
function. There are toolbar buttons and list boxes for:

• Opening and saving source files.

• Finding text.

• Compiling files and building projects.

• Setting breakpoints and examining variables.

• Controlling program execution during debugging.

Chapter 6 The Visual Workbench Environment 61

Find Next

Project Files
The Project Files button opens a drop-down list that gives you a convenient way
to open source files associated with your active project. The drop-down list
contains all editable files in the project list. Click the Project Files button, then
click any filename in the list to open a source window on the file.

Open, Save
Clicking the Open button opens the Open File dialog box, the same as choosing
Open from the File menu. The Save button becomes available (not dimmed)
when you make changes to the active source file and lets you save the file.
(Chapter 7, "Using the Editor," has more information on opening and saving
files.)

Find, Find Next
The Find drop-down list box and the Find Next button let you quickly find text
strings in a source file. To search for text in a source file, type the text in the
Find box or select a text string from the drop-down list, which contains the last
16 text strings searched for. Then press ENTER, double-click the text string, or
click the Find Next toolbar button. To repeat the last search, click the Find Next
toolbar button. This lets you find multiple occurrences of a text string by simply
clicking the Find Next button. Use the SHIFf key with any of these procedures to
search backwards through the file.

Compile File, Build, Rebuild All
You use these three build buttons on the toolbar to compile files and build pro­
jects. The Compile File button compiles the active file. Use the Build button to
build the parts of the project modified since the last build, or the Rebuild All
button to force a complete rebuild of all project files.

62 Visual Workbench User's Guide

Toggle Breakpoint

Toggle Breakpoint, QuickWatch
These are two of the six debugging buttons on the toolbar. The Toggle Break­
point button turns a breakpoint on or off at the insertion point. When the pro­
gram reaches a breakpoint, or is paused between trace steps, you can use the
QuickWatch button to examine and modify variables.

Run, Step Into, Step Over, Step Out
The four debugging buttons grouped on the far right control program execution
during a debugging session, letting you run the program to a breakpoint, single­
step through the program, and handle function execution in various ways. See
the following table for a description of each of the debugging buttons.

Table 6.1 provides a brief summary of the toolbar buttons.

Table 6.1 Toolbar Buttons

Button

Project Files

Open

Save

Find Next

Compile File

Build

Rebuild All

Toggle Breakpoint

QuickWatch

Run

Step Into

Step Over

Step Out

Action

Displays a list of project files to open.

Displays the Open File dialog box.

Saves the active source file to disk.

Searches for another occurrence of text last searched for.

Compiles the active source file.

Builds the current project as modified since the last build.

Rebuilds the current project from the start.

Sets or clears a breakpoint at the insertion point.

Displays the QuickWatch dialog box.

Starts or continues program execution.

Single-steps through instructions in the program. If this command
is used when you reach a function call, the function is entered in
single-step mode.

Single-steps through instructions in the program. If this command
is used when you reach a function call, the function is executed
without stepping through the function instructions.

Runs or continues a function to its completion and stops on the
instruction immediately following the function call.

Chapter 6 The Visual Workbench Environment 63

When a button cannot be used (such as is the case for many buttons when no
project is open), the button is dimmed.

The Status Bar
A status bar appears at the bottom of the main Visual Workbench window. The
status bar provides information about Visual Workbench and the active source
window.

Messages from the environment

Column

The status bar can be displayed or hidden using the Status Bar command on the
View menu. When displayed, it shows the following information about the active
window:

• Summary help about the current operation.

• Messages from the environment: when you are viewing compile-time errors, for
example, the current error message is displayed here.

• OVR: shows whether the editor is in overtype or insertion mode.

• READ: shows that the current file is read-only.

• CAPS: shows the state of the CAPS LOCK key.

• NUM: shows the state of the NUM LOCK key.

• Line: shows the current line.

• Column: shows the current column.

Arranging and Displaying Windows
Visual Workbench uses the standard commands used by most Windows-based
applications for displaying and arranging windows. These commands appear on
the Window menu and include:

Command

Cascade

Tile

Action

Overlaps all open windows. The top of each window appears below the
previous window's title bar. The active window appears at the front. See
Figure 6.2.

Resizes windows so that all open windows appear on the screen without
overlapping. See Figure 6.3.

64 Visual Workbench User's Guide

Figure 6.2 Cascaded Windows

Figure 6.3 Tiled Windows

Visual Workbench windows support the standard Control-menu commands,
including the Minimize command. When a window is minimized, an icon repre­
senting the window appears at the bottom of the main Visual Workbench window
(see Figure 6.4). Double-click the icon to restore the window.

Getting Help

Chapter 6 The Visual Workbench Environment 65

IIII_'~~~.'_"'_~'_" ___ ."~~ (CMvappView. CView)
//{{AFX_MSG_MAP(CMyappView)

// NOTE - the ClassWizard will add and remove mapping
/ / I DO NOT EDIT what you see in these blocks of gerleril-lll

//}}AFX_MSG_MAP
// Standard printing commands
ON_COMMAND(ID_FILE_PRINT. CView: :OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_PREVIEW. CView: :OnFilePrintPreview

_MESSAGE_MAP ()

//

CMyappView construction/destruction

<2>Myapp.cpp <5>Output <1 >Myappdoc.cpp

Figure 6.4 Minimized Windows

Visual Workbench features an easy-to-use online reference system that provides
access to information about Visual Workbench, build tools, C and C++ pro­
gramming languages, C run-time libraries, Windows APIs, Microsoft Foundation
classes, module-definition file statements, resource file statements, and compiler
and linker errors.

You can get help in several different ways:

• Press the FI key with the insertion point on a language keyword, library routine,
or error number.

• In a menu, press FI on a highlighted menu command.

• In a dialog box, press FI or choose the Help button.

• From the Help menu, choose Search for Help On (or choose the Search button in
a Help window).

• From the Help menu, choose a contents category.

The first four of these methods represent a "bottoms up" approach to finding help.
That is, you go directly to the point in the Help system that documents the language
element or Visual Workbench feature you need help on. You can press FI to get
immediate context-sensitive help on a language element, error code, or Visual
Workbench feature.

66 Visual Workbench User's Guide

Or, if you choose Search for Help On from the Help menu, you can search for help
on keywords, functions, constants, class members, or errors. When a search topic
appears in more than one Help file, the Search dialog box lets you choose the refer­
ence Help file to search. To search the file that contains Help on the Visual Work­
bench environment, you need to first open the file by choosing Visual Workbench
from the Help menu, by pressing FI in any Visual Workbench dialog box, or by
pressing FI with a Visual Workbench menu item highlighted. You then choose the
Search button in the resulting Help window.

The fifth method of finding help (choosing a contents category from the Help menu)
differs from the others in that it represents a "top down" approach. The Help menu
contains several commands that open a Help window with a contents screen per­
taining to the Help category:

• Visual Workbench

• Build Tools

• C/C++ Language

• Foundation Classes

• Windows 3.1 SDK

After choosing one of the commands from the Help menu, you navigate the Help
system from the top contents screen down to the individual Help topics.

This is useful when you want to browse for information or need to see subjects from
a global viewpoint before going to a specific section. This part of the Help system
has been designed to make it easy to navigate through the vast amount of online
information in Visual C++. Because this part of the Help system contains several
new features, you might want to take a few minutes to read about it before trying it
out. "Navigating Help from the Contents Screen" on the next page explains the new
features.

Getting Context-Sensitive Help
The FI key gives you immediate help on language elements, error codes, and Visual
Workbench features. The status bar provides a description of every menu command
and toolbar button. Toolbar buttons, however, require a little care to display the
button's description in the status bar without invoking the button.

~ To get help on a keyword or an error:

1. Place the insertion point anywhere on the keyword or error.

2. Press Fl.

If information on the keyword or error can be found in more than one Help file,
a Search dialog box opens with a list of Help files from which to choose. Select
a Help file and choose OK.

Chapter 6 The Visual Workbench Environment 67

~ To get a Help description of a menu command using Fl:

1. Click the menu title to open the menu (or use the menu access key).

2. Use the arrow key to highlight the command.

3. Press FI.

You also get a brief description in the status bar of any toolbar button that you
select. To see the description without activating the button (for buttons that are
not dimmed) use the following procedure.

~ To get a status-bar definition of a toolbar button:

1. Depress the toolbar button (move the mouse pointer over the button and press
the mouse button).

2. With the toolbar button depressed, read the status-bar text.

3. Move the mouse pointer off the toolbar button before releasing the mouse button
(releasing the mouse button with the mouse pointer on the toolbar button acti­
vates the button).

Every dialog box in Visual Workbench has an associated Help topic that describes
the function of the dialog box and its elements.

~ To get a Help description of any dialog box:

1. Open the dialog box.

2. Press FI or choose Help.

Note that the C/C++ Compiler Options and Linker Options dialog boxes have addi­
tional Help capabilities to assist you in customizing compiler and linker options for
your program. (See "Getting Help on Compiler and Linker Options" on page 71 to
learn about this additional help capability.)

Navigating Help from the Contents Screen
The Help system is divided into several sections, each covering a different major
category of information. The Help menu contains several commands corresponding
to the various categories of Help.

~ To open a contents screen on any category:

• Choose a Help category from the Help menu.

-Or-

• If you already have a Help window open, click the Contents button.

The Visual Workbench command on the Help menu opens an environment Help
window for Visual Workbench. All other commands open reference Help windows.

68 Visual Workbench User's Guide

Using the Secondary Help Window
The environment and reference Help systems are much alike and similar to other
Help systems for Windows you have probably used. What is unique about Visual
C++ Help is that you have the ability to open a secondary Help window that con­
tains only topic links (see Figure 6.5). Choosing a topic link in the secondary
window opens that Help topic in the primary Help window.

Visual Workbench Help uses the secondary Help window to display an index of all
topics in the current category. Reference Help uses the secondary window to dis­
playa list of subcategory topics in the current category. In both Help systems, you
choose the category for secondary window topics from the primary Help window's
contents screen.

I Secondary Help window I Primary Help window

"""'I I Browser l.... ... ""'" I I I • I - I1

Language Reference Topics

[] Keywords
[] Data Types

[] Modifiers

[] Statements

Ckr.Operators

YOperator Precedence

[] Escape Sequences

[] main Function
[] printf Formatting

[] Directives
[] Preprocessor Operators
[] Pragmas

[] Predefined Macros

[] Header (.H) Files
[] Global Variables
[] Constants
, ...•

file £dit Bookmark !;.opyright .!ielp

Contents. Search. Back • HistorV • Browser I l!.P •

Operators

The table below lists C and C++ operators by category.

Arithmetic Relational ~
----------------- ---------------~~

+

%

Addition

Subtraction

Multiplication

Division

Modulus

Assignment

+=

+ +1 I

Assignment

Addition

Subtraction

MI

<

<=

>

>=

Less than

Less than or equal

Greater than

Greater than or equ

Equal

!= Not equal

Increment & Decrement

++ Increment

Decrement

l+

Figure 6.S The Secondary and Primary Help Windows

Having two Help windows open to browse for information lets you quickly jump
around in the Help text, clicking entries in the secondary Help window and viewing
the resulting text in the primary Help window. This can be useful when you know
the general category where the information should be but are not sure of the exact
location. In Visual Workbench Help, where the secondary window is used to pro­
vide an index of the current subject, it is much like keeping your thumb in a book's
index while you open the book to different index references to look up information.

Chapter 6 The Visual Workbench Environment 69

You may want to adjust the secondary Help window and the primary Help window
to best utilize your screen area. You can then minimize the secondary Help window
and close (or minimize) the primary Help window when not using them. (If you
minimize the secondary Help window, instead of closing it, you will not need to
resize and move it each time you use it.)

Visual Workbench Help
The Help window for the Visual Workbench environment has a contents window
with several categories of Help (see Figure 6.6).

Visual Workbench

How to Use Visual Workbench

CJ Using the Editor

CJ Managing Projects

CJ Compiling Files or Building Projects

CJ Debugging Your Application

CJ E)(amining Symbols with the Browser

CJ Using Wizards to Create Applications for Windows

CJ Using Workspaces to Manage Your Environment

CJ Changing Preferences

CJ Modifying theTools Menu

Other Help Topics

CJ Toolbar and Keyboard Shortcuts

CJ Help in Brief

Figure 6.6 The Visual Workbench Help Contents Screen

For Visual Workbench environment Help, each category you choose from the con­
tents screen brings up a list of procedural topics with a brief description of the topic
and a Help icon. Click the icon for the task that interests you and the topic screen
appears.

Most topic screens have two parts: a scrolling region on the bottom, which contains
all the Help text on the topic, and a nonscrolling region on the top, which contains
indexes into the Help text in the scrolling region (see Figure 6.7). This lets you get
to the information you want either by clicking the indexing button or by scrolling
through the text.

70 Visual Workbench User's Guide

o
o Customizing Printed Output

o Printing a Help Topic

Printing Selectively

You can print highlighted text or the contents of a source
window.

CI To print highlighted text

1 Select the text you want to print.

2 From the File menu, choose Print. The Print dialog box
appears.

Shortcut: SHIFT +CTRL+F12

3 Choose OK.

Text is printed in the default font for the printer.

The Print command also prints the contents of an active
window, such as the Output window. An active window is
the Window with the current focus.

Figure 6.7 A Visual Workbench Topic Screen

To get back to the Visual Workbench Help contents screen, choose the Contents
button. To open the secondary Index window, choose the Index button at the top
of the Help window.

Reference Help Windows
When you choose any of the categories from the Help menu other than Visual
Workbench, you display a contents screen of a reference Help window (see
Figure 6.8).

Chapter 6 The Visual Workbench Environment 71

""" ;: I II I ",I'"
File Edit Bookmark Copyright .!::telp

Contents I Search I .!~.ad<. I His!ory I BX.OWMlI I H.p

Build Tools Help

Options and Statements

[J Compiler Options

[J Linker Options

[J Module-Definition File Statements

Alphabetical Quick Reference

[J Compiler Options

[J Linker Options

Figure 6.8 A Reference Help Contents Screen

Reference Help windows work similarly to Visual Workbench Help windows with
a couple of small differences. First, when you select a category from the reference
Help's contents screen, you get a list of subcategory links. (In Visual Workbench
Help, these subcategories are in a different format and are annotated with brief des­
criptions.) Second, to open the secondary Help window, you choose the Browser
button at the top of the Help window. The secondary Help window, called the
Browser window here, simply displays the list of subcategory topic links-the
same list that appears in the primary Help window when you choose a category
from the contents screen.

The Browser Help window is especially useful when searching through reference
Help for a particular subject, since you can use it to quickly flip through topics
much as you might flip through a reference manual to find the section you're
interested in.

Getting Help on Compiler and Linker Options
The C/C++ Compiler Options and Linker Options dialog boxes, accessed from the
Project Options dialog box, use an enhanced Help system because of the large
amount of information available when setting compiler and linker options.

F1 Help for Compiler and Linker Options
Help for compiler and linker options is context sensitive when you use the FI key.
You can get either a short pop-up description of an option in the options string, or
a complete description of the option.

72 Visual Workbench User's Guide

If you highlight an option in the options string (by double-clicking the option) and
press PI, a pop-up window appears with a brief description of the option you
selected. The pop-up description also tells you what dialog-box control is used to
set or clear the option.

You can also get a complete description of any option by placing the dialog-box
focus on the option's control (text box, list box, check box, or option button) and
pressing PI. The resulting Build Tools Help window contains descriptions of all
options in the current category, but with the text scrolled to the proper location to
display the description of the option you selected.

Getting Help from Within the Help Window
After you use PI to open a Build Tools Help window on an option control, or choose
Build Tools from the Help menu, you can navigate through the Build Tools refer­
ence Help the same as any reference Help in the Visual C++ Help system. The
Build Tools contents screen gives you access to two types of Help:

• Options and Statements

• Alphabetical Quick Reference

Options and Statements lets you find information on any of the option categories in
either the CjC++ Compiler Options or Linker Options dialog boxes, or any module­
definition file statement.

Alphabetical Quick Reference gives you a fast means of getting both a short
description of any CL or LINK option and finding the dialog-box category that
contains the control for the option.

~ To access Help on any option category or module-definition file statement:

1. Open the Build Tools Help window by one of the methods described previously.

2. If you used PI to open the Help window, choose the Contents button.

The contents screen shows three Options and Statements categories:

• Compiler Options

• Linker Options

• Module-Definition File Statements

3. Choose one of the Options and Statements categories.

If you choose either Compiler Options or Linker Options, the Help window dis­
plays a list of option categories in the dialog box. If you choose Module­
Definition File Statements, the Help window displays a list of statement links.

4. Choose the option category or module-definition file statement you want.

Chapter 6 The Visual Workbench Environment 73

If you prefer to open a secondary window for browsing categories in either the
C/C++ Compiler Options or Linker Options dialog boxes, or for browsing module­
definition file statements, simply choose the Browser button. (If the Browser button
is dimmed, you are at the contents screen and must choose one of the categories
first.)

~ To look up a command-line option alphabetically:

1. From the Help window, choose the Contents button.

The contents screen shows two Alphabetical Quick Reference categories:

• Compiler Options

• Linker Options

2. Choose one of the Alphabetical Quick Reference categories.

The Help window displays a list of all options for the category you chose, sorted
alphabetically. Use the scroll bars to access all options.

3. Choose the name of an option.

A short description of the option appears, including the category in the dialog
box that contains the control to enable or disable the option.

CHAPTER 7

Using the Editor

The integrated text editor is an important part of Visual Workbench. You use
it to:

• Create, open, and save source files.

• Edit source files.

• Print source files.

Writing text with Visual Workbench is similar to using most other editors. For
example, to start a new line, press ENTER. To leave a blank line between lines,
press ENTER twice. If you make a mistake while typing, press BACKSPACE to
delete the error.

75

This chapter provides information on how to manage, edit, and print source files.
Most of the procedures involved in using the editor, such as file and text handling
and moving around in a file, should seem familiar if you have used other
Windows-based text editors.

Managing Source Files
This section explains how to create, save, open, and close a file. To familiar-
ize yourself with the steps, you can use the simple C++ program below,
QWINTEST.CPP, which can be built and run in Windows as a QuickWin
application (see Chapter 3 for a demonstration of building a QuickWin program).
You can also use this program to try the other editing features described in this
chapter.

76 Visual Workbench User's Guide

II QWINTEST.CPP - A sample QuickWin program

#include <iostream.h>

void maine)
{

cout « "Hello C++ world \n";

Creating and Saving Source Files
Visual Workbench lets you create source files and manage multiple source files.
Each source window associated with a source file can retain its own fonts, sizing,
and other window attributes. When you make changes to a source window, the Save
button on the toolbar becomes available (not dimmed) to indicate that the informa­
tion in the source window and source file differs.

Creating a Source File
Use the New command on the File menu to create new source windows for entering
text. To save the file on your hard disk, use the Save command on the File menu or
the Save button on the toolbar.

~ To create a new source file:

1. From the File menu, choose New.

2. Type your program in the new window.

If you are following the example, type in QWINTEST.CPP, the example pro­
gram listed earlier.

3. Save your program as described in the procedures in the next section, "Saving
Source Files."

New files are labeled UNTITLED.n in the source-window title bar, where n is a
sequential number, until they are saved.

Note Before you can save or close a window, it must be active. To make a window
active, either switch to the window (by clicking anywhere in it) or choose the win­
dow name or number from the Window menu.

Saving Source Files
In Visual Workbench, you can save programs using the Save and Save As com­
mands on the File menu or the Save button on the toolbar. You can set save prefer­
ences-such as whether to be prompted before saving a file-in the Editor dialog
box, accessed from the Options menu.

Chapter 7 Using the Editor 77

~ To save a source file:

1. Switch to the source window.

2. From the File menu, choose Save (CTRL+S).

Or click the Save button on the toolbar.

3. If your file is unnamed, Visual Workbench displays the Save As dialog box (see
Figure 7.1). In the File Name box, type the filename.

If you are using the sample program, name the file QWINTEST.CPP.

4. In the Drives and Directories list boxes, select the drive and directory in which
to save the file.

5. Choose OK.

If QWINTEST.CPP already exists in the directory you choose, you are pre­
sented with a message box asking if you want to replace the existing file.
Choose Yes.

Save As

.!2irectories: OK
c:\msyc

File H.ame:

I qwintest.cp~
l27 c:\ +

Cancel
.....

IE'} msyc
t:J bin Help

t:J include
t:J lib
t:J mlc
t:J mvapp +'

list Files 01 !ype: Dri.'!es:
I Source (Z_c;Z_cpp;Z_cxx) Iii llac: Iii
D fhwn New Window hlt rhi~ Fik

Figure 7.1 The Save As Dialog Box

If the file has already been named, the Save command saves any changes without
displaying the Save As dialog box.

The Save button on the toolbar becomes available when you make any modifica­
tion in the source file.

~ To save all open source files that are new or have been changed:

• From the File menu, choose Save All.

For every new source file that has not already been saved once, the Save As
dialog box appears to let you type the filename and select the drive and directory
in which to save the file.

78 Visual Workbench User's Guide

~ To save a source file under a different name:

1. Switch to the source window.

2. From the File menu, choose Save As.

The Save As dialog box appears.

3. Type a new name for the file.

4. Select or clear the Open New Window For This File check box, depending on
whether or not you want a new window created for the renamed file.

This check box is used to specify whether to open a new window for the
renamed file and leave the original file's window open, or to use the original
file's window for the renamed file. The status of this check box persists between
invocations of this dialog box during the current Visual Workbench session.

5. Choose OK.

Renaming a file is useful for maintaining revised copies of a source file while
keeping the original unchanged. Selecting the Open New Window For This File
check box can be useful for duplicating one file in your project to be used as a
template for a new file, when you want the original file left open. You can also
use the Save As command to name and save a newly created file.

The Editor dialog box, accessed from the Options menu, has two options that
relate to saving files. If you select the Save Before Running Tools check box,
all open files are automatically saved whenever you run any tool installed on the
Tools menu. This lets you integrate Visual Workbench with any tool that opens
a source file also opened by Visual Workbench. Selecting the Prompt Before
Saving Files check box causes Visual Workbench to prompt you before saving
files whenever you perform a build or run a program from the Tools menu.

~ To set save options:

1. From the Options menu, choose Editor.

The Editor dialog box appears (see Figure 7.2).

2. Select Save Before Running Tools to automatically save source files before any
tool on the Tool menu is run.

3. Select Prompt Before Saving Files to cause Visual Workbench to ask you
whether the file should be saved each time you start a build (or run a tool if Save
Before Running Tools is checked).

4. Choose OK.

Editor

Tab Settings SCioli Bars

Lab Stops: ~ l8l Vertical

@ Keep Tabs l8l H oli~ontal

o Inselt fulaces

Source Files--------,

l8l Saye Befole Running Tools

D ~rompt Before Saving Files

D !bien .RC Files Using AppStudio

Undo Buffer Size (K bytes):

Figure 7.2 The Editor Dialog Box

Opening and Closing Source Files

Chapter 7 Using the Editor 79

OK

Cancel

Help

Because the editor works with any ASCII file, you can open and edit text files
created with Visual Workbench or many other editors.

Opening a Source File
When you open a source file, its name is added to the Window menu. Use the
Duplicate command if you want to see more than one view of a source file, for
instance to view different sections of a file at the same time. Do not use the File
menu's Open command to attempt to open more than one view of a source file.

If you use the Duplicate command to display more than one copy of a file, each
window on the file is titled filename:n, where n is a unique window number.

If no filename extension is given, Visual Workbench adds the extension (.C or
.CPP) of the last file opened that had either a.C or .CPP extension.

~ To open a source file:

1. From the File menu, choose Open (CTRL+o).

2. Select the drive and directory where the file is stored.

The default is the current drive and directory.

80 Visual Workbench User's Guide

3. In the List Files of Type box, set the types of files to display.

Or type your own filename filter in the File Name text box. Separate filename
extensions with semicolons (see "Using File Filters" on page 81). For example:

*.CPP ; *.H ; *.RC

The List Files of Type list box serves as a filter in displaying files to open. For
example, C/C++ Header (* .h) displays all files with the .H extension. The drop­
down box lists commonly used filename extensions.

4. Choose OK to see a list of files in the selected directory.

5. Select the file from the list or type its name in the File Name box.

6. Choose OK.

Tip You can also open a file by using the Windows File Manager to display the file
icon and then dragging and dropping the file icon into Visual Workbench. See
Chapter 2 in the Microsoft Windows User's Guide for information on dragging
icons.

Opening Resource Files
Resource files (files with an extension of .RC) are source files that define resources
such as menus and dialog-box controls and are compiled by the resource compiler
as part of building an application for Windows. Although these are ASCII-based
source files, they are also the primary information files used by App Studio.

When you open a resource file from either the Open File dialog box or the Project
Files button on the toolbar, Visual Workbench does one of two things, based on the
state of the Open .RC File Using App Studio check box in the Editor dialog box
(accessed from the Options menu):

• If this check box is disabled (the default), opening a resource file is like opening
any text file as a source window in Visual Workbench.

• If this check box is enabled, opening a resource file from Visual Workbench
automatically invokes App Studio on that resource file.

When the option is enabled, Visual Workbench invokes App Studio and passes it
the filename you selected. App Studio can open any resource file that the resource
compiler can compile without errors, so you can use it with any existing resource
files simply by opening the resource file from Visual Workbench or from App
Studio.

Note that you can use the Windows File Manager to display a list of resource files
and then drag and drop any resource file icon into Visual Workbench. The state of
the Open .RC File Using App Studio check box in the Editor dialog box determines
whether Visual Workbench or App Studio opens the file.

Chapter 7 Using the Editor 81

App Studio is installed on the Tools menu with the $RC macro argument, which
automatically opens the first resource file in the project list. (For more information
on macro arguments, see "Using Argument Macros" on page 202.) Since you can
open App Studio with your resource file from the Tools menu, the default action
iI1 the Open Filedialog box (or Project Files toolbar button) is not to invoke App
Studio on resource files. However, when you learn to use App Studio, you may
decide you no longer need to hand-edit resource files and want the advantage of
opening App Studio directly on files you select.

~ To open App Studio on a resource file:

1. From the Options menu, choose Editor.

2. Select the Open .RC Files Using App Studio check box so that it is checked.

3. Choose OK to close the dialog box.

4. Open the resource file as described in "Opening a Source File" on page 79 or
"Opening Project Source Files" on this page.

Using File Filters
Visual Workbench provides the handy feature of letting you use your own special
filename filters in the Open File and Save As dialog boxes. In Visual Workbench,
these dialog boxes recall the filename filter that was last used. So you can use this
feature to specify special file types that you always want to see. For example, the
first time you open the Open File dialog box during a Visual Workbench session
you can enter * . C P P ; *. H to look for only C++ source and header files. This
filter appears each subsequent time you open that dialog box during the session.

Opening Recently Used Files
A convenient way to open recently used files is to use the list at the bottom of the
File menu, where the last four files that you opened and then closed appear. You
can open one of these files by choosing its name from the list.

Opening Project Source Files
Visual Workbench lets you quickly access source files associated with the active
project by using the Project Files button at the left end of the toolbar. All editable
files in the project list appear in the drop-down list that appears when you click the
Project Files button (or press CTRL+P). Also, all include files that are added to the
project as a result of include dependency scanning can be accessed here. For more
information on include dependency scanning, see page 101.

~ To open any source file in the active project:

1. Click the Project Files button on the toolbar.

2. Choose the source file from the drop-down list.

82 Visual Workbench User's Guide

Closing Source Files
All files are automatically closed when you quit Visual Workbench (you are
prompted to save any altered files). You can also close any individual source file
without exiting. If you have more than one window open on a source file, the file
is not closed until all windows associated with it are closed.

~ To close a source file:

1. Switch to the source window.

2. From the File menu, choose Close.

Or double-click the document Control-menu box.

Or press CTRL+F4.

If you are using the sample program, use one of these techniques to close the
QWINTEST.CPP source window.

If you create a new source file and try to close it before saving, a message
appears asking if you want to save the changes before closing.

Moving Around in Files
This section discusses some special techniques for moving around in source files
in Visual Workbench.

~ To move to a specific line within the source file:

1. From the View menu, choose Line.

The Line dialog box appears.

2. Type the line number you want to move to.

3. Choose OK.

~ To set a bookmark in the source window:

1. Move the insertion point to the line where you want to set a bookmark.

2. From the View menu, choose Toggle Bookmark, or press CTRL+F2.

The line containing the bookmark is highlighted.

You can mark frequently accessed lines in your source file. Once a line is
marked, use the View menu Next Bookmark and Previous Bookmark commands
to move quickly to that line. Bookmarks can be cleared when you no longer need
them.

Chapter 7 Using the Editor 83

~ To clear a bookmark:

1. Move the insertion point to the marked line.

2. From the View menu, choose Toggle Bookmark.

The bookmark and the highlight are removed.

To remove all bookmarks, choose Clear All Bookmarks from the View menu.

~ To move to the next bookmark after the insertion point:

• From the View menu, choose Next Bookmark, or press F2.

~ To move to the previous bookmark before the insertion point:

• From the View menu, choose Previous Bookmark, or press SHIFf +F2.

~ To switch to a source window:

• Click anywhere in the window (use the right mouse button to keep the insertion
point from jumping to where you click).

-Or-

• Choose the window from the Window menu.

-Or-

• Use the shortcut key listed on the title bar (ALT+ <window number».

-Or-

• Use CTRL+F6 to cycle through all active document windows.

-Or-

• Use F6 to cycle through all active windows (includes document windows and all
other windows).

-Or-

• Use CTRL+TAB to switch to the last active window (release the CTRL key to
switch to the window).

~ To move from one brace to the matching brace:

1. Place the insertion point immediately in front of a brace.

2. From the Edit menu, choose Find Matching Brace, or press CTRL+J.

You can move from the opening brace to the closing brace or from the closing
brace to the opening brace. This also works for parentheses and brackets.

84 Visual Workbench User's Guide

Using the Keyboard Commands
The editor includes a number of special keystrokes for editing and moving around
in a source file. These are in addition to the familiar arrow keys, the SPACEBAR,

and the ENTER key. For a complete reference to all keyboard commands, see
pages 47 through 51 in Chapter 5, "Fast Track to Visual Workbench."

To

Move one word to the left

Move one word to the right

Move to the fIrst indentation of the current
line

Move to the beginning of the current line

Move to the first indentation of the next line

Move to the end of the current line

Move to the beginning of the file

Move to the end of the file

Undo the last edit

Redo the last edit

Delete to the end of the word

Copy text to the Clipboard

Cut text to the Clipboard

Paste text from the Clipboard

Move to the matching brace

Insert a tab

Toggle display of tab symbols

Controlling the Source Window

Press

CTRL+LEFT ARROW

CTRL+RIGHT ARROW

HOME

HOME, then HOME

CTRL+ENTER

END

CTRL+HOME

CTRL+END

CTRL+Z

ALT+BACKSPACE

CTRL+A

CTRL+T

CTRL+C

CTRL+INS

CTRL+X

SHIFT+DEL

CTRL+V

SHIFT+INS

CTRL+]

TAB

CTRL+ALT+T

The editor features a number of options that affect the source window. These
include the ability to set tabs, highlight language syntax within the window, and
make the window read-only.

Setting Tabs

Chapter 7 Using the Editor 85

The editor supports tab stops in a source file. You can set the number of spaces
a tab consists of, and then either save them as tabs or spaces when you save the
file. You can also toggle the display of tab symbols in a source file.

~ To change tab settings:

1. From the Options menu, choose Editor.

The Editor dialog box appears (see Figure 7.3).

2. In the Tab Stops box, type the number of spaces to be used as a tab stop.

3. Under Tab Settings, select the Keep Tabs option to treat tabs as a single tab
character when the source file is saved.

Or select Insert Spaces to convert tabs to the number of spaces shown in the Tab
Stops box.

4. Choose OK.

Editor

Tab Settings Scroll Bars

lab Stops: ~ [S] Vertical

@ Keep Tabs [S] Hori~ontal

o Insert ~aces

Source Files----------,

[S] Sa,Ye Before Running Tools

D f.rompt Before Saving Files

D '!!pen .RC Files Using AppStudio

.!J.ndo Buller Size (K bytes):

Figure 7.3 The Editor Dialog Box

~ To display or hide tab symbols:

• Press CTRL+ALT+T.

OK

Cancel

Help

Tab symbols are displayed as » wherever there is a tab in a source file. The
CTRL+ALT+T keyboard shortcut is the only means of toggling the display
of tab symbols.

Highlighting Language Syntax
Visual Workbench highlights language keywords, identifiers, comments, and
strings in different colors. This feature is useful when learning a language or
when viewing lengthy and complex source files. For example, if you are editing
a file with a .CPP extension, all C++ keywords are highlighted.

86 Visual Workbench User's Guide

You can select the colors to use in highlighting language syntax items with the
Color command on the Options menu. See Chapter 12, "Customizing Visual
Workbench," for additional information.

~ To highlight language syntax in the source window:

1. From the Options menu, choose Color.

The Color dialog box appears.

2. Select the Syntax Coloring check box.

3. Choose OK.

Making a File Read-Only
The Read Only command on the Edit menu makes the active source file read­
only. When you choose this command, the file cannot be edited.

This command is useful when you are viewing a program and don't want to acci­
dentally make any changes to the file.

~ To make a source file read-only:

1. Switch to the source window containing the file.

2. From the Edit menu, choose Read Only.

To cancel the command, choose it again.

A check mark next to the menu command and the word "READ" on the status
bar at the bottom of the screen indicate that the source file is read-only.

Finding and Replacing
Visual Workbench offers advanced find and replace capabilities. You can search
for literal text or use regular expressions to find words or characters in the source
window. You can search for text using three different methods:

• Select any word and press CTRL+F3 (or SHIFT +CTRL+F3 to search backwards)

• Use the Find dialog box

• Use the Find box and Find Next button on the toolbar

The Replace command on the Edit menu opens a dialog box that lets you find text
and replace it with other text.

Chapter 7 Using the Editor 87

Finding Text Using the Find Command
~ To find a character or group of characters in the active source window:

1. Position the insertion point where you want to start the search.

2. From the Edit menu, choose Find.

The Find dialog box appears (see Figure 7.4).

3. In the Find What box, type the text you want to find, or select from the 16
previous instances of text searched for, which are listed in the drop-down box.

4. Select any of the Find options, as described below.

5. Choose Find Next.

Find

Find \IIhat: I I [!J I Find Next I
o Match ~hole \IIord Only Cancel

o Match I;.ase Direction

o Regular ~xpression O!Jp @Q.own !::!.elp

Set Bookmarks on All

Figure 7.4 The Find Dialog Box

When you choose the Find command, the editor uses the location of the insertion
point to select a default search string. If the insertion point is inside a word, that
word is displayed as the search text in the Find What box.

If the insertion point is between words, the word to the right is displayed. If there
is no word to the right, the word to the left is displayed. If that is not possible,
nothing is displayed.

The Find dialog box has these choices for locating text:

Match Whole Word Only
Locates separate occurrences of the search text. If you don't select this option,
the editor finds embedded occurrences, for example, "main" in remainder.

Match Case
Performs a case-sensitive search.

Regular Expression
Finds text using regular expressions. You can find more information about using
regular expressions in the Using the Editor section of Help.

Direction
The Up option searches from the insertion point to the beginning of the file.

The Down option searches from the insertion point to the end of the file.

88 Visual Workbench User's Guide

After selecting the search options, you can choose either the Find Next or the Set
Bookmarks on All button. If you choose Find Next and the text is located, the
source window jumps to the text and highlights it. Choose Find Next again to
move to the next occurrence of the text.

If you choose Set Bookmarks on All, bookmarks will be set at all occurrences of
located search text. See "Moving Around in Files" on page 82 for more infor­
mation on using bookmarks.

Finding Text Using the Toolbar
The Find box and Find Next button on the toolbar let you quickly look for text
without using a menu dialog box.

~ To use the toolbar Find box and Find Next button to search for text:

1. Position the insertion point where you want to start the search.

2. Move the insertion point to the Find box on the toolbar (CTRL+F) and type the
text you want to search for.

Or select from the 16 previous instances of text searched for, which are listed in
the drop-down box.

3. To search forward in the file, press ENTER.

Or double-click the selection.

Or click the Find Next button.

4. To search backward in the file, press SHIFT +ENTER.

Or press SHIFT and double-click the selection.

Or press SHIFT and click the Find Next button.

5. To repeat the search, click the Find Next button (hold down SHIFf for a back­
ward search).

Or, with the insertion point in the Find box, press ENTER or SHIFT+ENTER to
search forward or backward, respectively.

If the text you entered can be found, the active source window jumps to it and
highlights the text.

~ To quickly find the next or previous occurrence of a text string:

1. Select the text or place the insertion point anywhere in a single word.

2. Press CTRL+F3 to find the next occurrence of the selected text or word.

Or press SHIFT +CTRL+F3 to find the previous occurrence of the selected text or
word.

Chapter 7 Using the Editor 89

If you use the CTRL+F3 keys with the selected text or word, the text is
automatically entered in the Find list box. You can then continue to press
CTRL+F3 to jump to each occurrence of the selected text or word.

The current state of the following search options in the Find dialog box applies to
searches using the toolbar's Find box:

• Match Whole Word Only

• Match Case

• Regular Expression

Replacing Text
~ To find and replace text:

1. From the Edit menu, choose Replace.

The Replace dialog box appears (see Figure 7.5).

Replace

Find What: "--______ ---'1 0 I Find Next I
Re.l!lace With: 1 1 0 I Replace All I
o Match ~hole Word Only I Cancel I
o Match!;.ase

o Regular ~xpression I .!!elp

Figure 7.5 The Replace Dialog Box

2. In the Find What box, type the search text or regular expression.

Or choose from the 16 previous instances of text searched for, which are listed
in the drop-down box.

3. In the Replace With box, type the replacement text.

Or choose from the 16 previous instances of replacement text, which are listed
in the drop-down box.

4. Select any search options you need.

These options are the same as those in the Find dialog box (see "Finding Text
Using the Find Command" on page 87).

90 Visual Workbench User's Guide

Printing

5. Choose either Find Next to find the next occurrence of the text or Replace All to
find and replace all occurrences of the text.

If you choose Find Next, the next occurrence of the text is found if it exists, and
the Replace dialog box is replaced by an abbreviated dialog box containing only
Replace control buttons. You can replace the found text, find the next occur­
rence of the text, replace all occurrences of the text, or cancel the operation
using this dialog box.

For information on default search strings, see "Finding Text Using the Find
Command."

~ To repeat the last find or find and replace:

• Choose Find Next in either the Find or Replace dialog box.

An abbreviated portion of the Find or Replace dialog box remains active until
the search reaches the starting location (after wrapping) or until you choose
Cancel.

If you have installed a printer driver and connected to a printer port within
Windows, you can print text from the active window.

If you have more than one printer, you can change the default selection in the
Print dialog box, which you open by choosing Print on the File menu.

For information on installing printers, see Chapter 5, "Control Panel," of the
Windows User's Guide.

~ To print the entire contents of the active window:

1. From the File menu, choose Print.

The Print dialog box appears (see Figure 7.6).

Print

erinter: 1UI'¥HAdd"1f.1I:maS I m'UMlii OK

Print Range

@AII

o S.fr.le~~hm

Figure 7.6 The Print Dialog Box

Cancel

I Setupm

Help

Chapter 7 Using the Editor 91

2. Under Print Range, select the All option.

3. Choose OK.

~ To print selected text in the active window:

1. Select the text to be printed.

2. From the File menu, choose Print.

3. Under Print Range, select the Selection option.

4. Choose OK.

Choose the Setup button to set printer-specific information. The Setup button
opens a printer-supplied dialog box (see Figure 7.7), in which you can change the
paper size, the orientation of the printing, the number of copies, and various other
printing options.

HP LaserJet IIISi PostScript on LPT1:

Paper Si~e:

Orientation-------,
kopies:

@ f~·~iir.~·~.t.l

o landscape

Figure 7.7 A Printer Setup Dialog Box

~ To change the default printer:

1. From the File menu, choose Print.

2. If your computer is connected to more than one printer, choose a printer from the
drop-down list.

3. Choose OK.

93

CHAPTER 8

Using Projects

Projects are the cornerstone of Visual Workbench. A project keeps track of the
various files and libraries that are needed to build a program or a library. It also
contains information about compiler and linker options. By creating a project and
selecting a project type, you can specify the kind of target file you want to generate
when you build the project. Projects also contain information saved in workspaces,
such as window sizes and positions.

Projects are stored on disk as two files: a makefile (.MAK extension) and a status
file (.vew extension). The makefile, which is compatible with the NMAKE util­
ity, specifies the rules for the compilers and linker to build the target file. Visual
Workbench calls this file the project file. When you open the project file from
within Visual Workbench, the status file is automatically loaded.

To create a project, you add the filenames associated with the project to the pro­
ject list, which Visual Workbench then uses to construct the project file. When
you open a project, all source filenames in the project list are made available in
the toolbar's Project Files drop-down list. This gives you quick access to the main
source files.

Projects also speed development time by recompiling only files that have changed
since the program's last compilation or build. For example, if your project has
six source files and you edit only one of the files between builds, only that file is
recompiled before linking. You also have the option to rebuild all files from the
start if you want.

This chapter introduces Visual Workbench projects. It describes:

• Each of the project types

• How to create, open, and close a project

• How to build a project

• How Visual Workbench scans include files for dependencies

• Workspaces and how to use them

• How to use external projects and makefiles created by other editors

94 Visual Workbench User's Guide

Project Types
Every project must contain a project type, which specifies the kind of target file
to be generated by a build. You choose a project type when you first create the
project, using the New Project dialog box (accessed from the Project menu). To
change the project type of an existing project, you use the Project Options dialog
box (accessed from the Options menu). For step-by-step instructions on how to
create a project and choose a project type, see "Creating a Project" on page 97.

When you select a project type, the appropriate compiler and linker options are
automatically set to generate the target file. These options are sufficient for most
needs, although you can use the C/C++ Compiler Options and Linker Options
dialog boxes to fine-tune them.

Visual C++ Standard Edition provides a basic set of five Windows-based project
types plus static libraries. Visual C++ Professional Edition includes these project
types plus several more. This chapter describes the project types for both editions.

Visual C++ Core Project Types
The following project types are available with both Visual C++ Standard Edition
and Visual C++ Professional Edition:

• Windows application

• Windows dynamic-link library

• QuickWin application

• Visual Basic custom control (custom VBX control)

• Static library

You can use the Microsoft Foundation Class Library with any of these types if you
select the Use Microsoft Foundation Classes check box in either the New Project or
Project Options dialog box. When you select Use Microsoft Foundation Classes, an
extra library is linked during the build. Selecting this check box provides that
library as a default linker option.

Windows Application
Windows-based applications have a full graphical interface and run only with
Windows. They are developed using standard Windows API functions, or using
the Microsoft Foundation Class Library. A Windows-based application filename
has an .EXE extension.

Chapter 8 Using Projects 95

Windows-based applications generally use the following files in the project list:

• Source files (.C, .CPP, or .CXX)

• Module-definition file (.DEF)

• Resource file (.RC)

Windows Dynamic-Link Library
Dynamic-link libraries contain functions that are called at run time by Windows­
based programs. All Windows APIs, for example, are kept in dynamic-link librar­
ies. Creating a dynamic-link library is a good way to write code that can be
shared by different programs running in Windows at the same time. A Windows­
based DLL application filename has a .DLL extension.

Dynamic-link libraries generally use the following files in the project list:

• Source files (.C, .CPP, or .CXX)

• Module-definition file (.DEF)

• Resource file (.RC)

QuickWin Application
A QuickWin application is a standard input/output MS-DOS program with a
Windows shell. It runs only with the Windows operating system. Building an
MS-DOS program as a QuickWin program is a quick way to create a Windows­
style program, or adapt an existing MS-DOS program to Windows, without
having to learn the basics of programming for Windows. When you run a
QuickWin application, the program output appears in a QuickWin multiple
document interface (MDI) child window as it would on your display monitor
in MS-DOS. The program can use standard MS-DOS functions such as printf
and scanf or C++ iostream operators to process input and output. A QuickWin
application filename has an .EXE extension.

Note QuickWin programs can only run in Windows standard or 386 enhanced
mode. Do not run a QuickWin program in real mode.

QuickWin applications generally require the following files in the project list:

• Source file (.C, .CPP, or .CXX)

• Module-definition file (.DEF)

If you do not include the module-defmition file, Visual Workbench automatically
includes one for you (for QuickWin applications only).

96 Visual Workbench User's Guide

Visual Basic Custom Control
Visual Basic custom controls (also called custom VBX controls) are essentially
dynamic-link libraries with a .VBX extension that can be used as controls from
within a Visual Basic program. They can also be used as resources in App Studio
for Visual C++ applications. You can learn how to write Visual Basic custom
controls from the Control Development Guide, which is included with Microsoft
Visual Basic for Windows, Professional Edition. For more information on using
Visual Basic custom controls in Visual C++, see Chapter 3, "Using the Dialog
Editor," in the App Studio User's Guide.

Visual Basic custom controls generally require the following files in the project list:

• Source files (.C, .CPP, or .CXX)

• Module-definition file (.DEF)

• Resource file (.RC) (optional)

Static Library
Static libraries are standard libraries that can be created directly from the build
using object files that belong to the project. To create a static library (.LIB),
create a project with normal project files and/or other object (.OBJ) files in the
project file list, then build the project.

The generated library file is composed of all the object files in the project list
and/or all object files generated by the build. This is a quick way to develop your
own libraries from within Visual Workbench, without having to run a library­
manager utility from an MS-DOS session, or outside of Windows.

Visual C++ Professional Edition Project Types
Visual C++ Professional Edition provides the same project types as Visual C++
Standard Edition plus these additional project types:

• Windows P-code application

• MS-DOS application

• MS-DOS P-code application

• MS-DOS Overlaid application

• MS-DOS COM application (.COM)

Windows P-Code Application
P-code is a special type of executable code that is smaller than machine code and
uses an interpreter, incorporated in the executable file, to translate the p-code into
machine code at run time. P-code programs are smaller but slower than normal
programs that compile to machine code. In a Windows-based p-code application, it
is typical to compile user-interface sections of code as p-code (where speed is not as

Chapter 8 Using Projects 97

important) and computational sections as native code. The default compiler options
for this project type include /Oq, which compiles the entire program using p-code.
Use the directive #pragma optimize("q", off) in your source code for functions
you want to be in native code.

MS·DOS Application
MS-DOS applications are traditional character-based programs that run with
either MS-DOS or Windows. MS-DOS programs are appropriate when the pro­
gram doesn't need the Windows interface to execute.

MS·DOS P·Code Application
P-code is a special type of executable code that is smaller than machine code and
uses an interpreter, incorporated in the executable file, to translate the p-code into
machine code at run time. P-code programs are smaller but slower than normal
programs that compile to machine code. The default compiler options for this pro­
ject type include /Oq, which compiles the entire program using p-code. Use the
directive #pragma optimize(" q" , off) in your source code for functions you want
to be in native code.

MS·DOS Overlaid Application
This type uses the Microsoft Overlaid Virtual Environment (MOVE) to create pro­
grams that would otherwise be too large to run in conventional memory. Overlays
are sections of a program that are loaded into memory from the executable file only
as needed. To learn how to create an overlaid program, see Chapter 3, "Creating
Overlaid MS-DOS Programs," in the Command-Line Tools User's Guide.

MS·DOS COM Application (.COM)
This project type produces an executable file with a file extension of .COM.1t uses
the tiny (! AT) memory model compiler option and the /TINY linker option to place
both code and data in a single physical memory segment. The restrictions on using
this project type are that the program cannot use far references and must keep its
data and code requirements less than 64K bytes.

Creating a Project
A program is built from source files and libraries. The source files are compiled
into object files and then linked with the libraries to create a program. In Windows­
based programs, you need to link additional files such as resource files (files that
contain resources like icons, menus, and dialog boxes) and module-definition files
(files that contain information about the program).

Before you create a program, you need to create a project for it. A project can
consist of only one source file or of many source, resource, and library files.

98 Visual Workbench User's Guide

Everything that applies to projects for programs also applies to projects for
libraries.

Note If your program consists of only one file, you can build and run it without
creating a project. (For QuickWin programs, the module-definition file is automati­
cally included.) However, it is a good idea to create a project if you have unique
compiler or linker settings, since these will be lost if another project is loaded or
Visual Workbench is restarted.

To familiarize yourself with the steps in building a project, you can use the files
listed below to create a multifile C++ project. Although there is already a project
called HELLO .MAK in the directory, you can experiment by creating a second
project with a different name in that directory. This example assumes that you
have installed the Microsoft Foundation Class Library sample programs. If you
haven't installed the MFC sample programs, but have installed the SDK sample
programs, you can use one of the programs in the \MSVc\sAMPLES directory,
such as GENERIC, for this example.

File

HELLO.CPP
HELLO.DEF
HELLO.RC

Directory

\MSVC\MFc\sAMPLES\HELLO
\MSVC\MFc\sAMPLES\HELLO
\MSVC\MFc\sAMPLES\HELLO

The directory listed above is the default directory created by the Setup program.
If you changed the default directory names during installation, the location of the
required files will be different.

~ To create a project:

1. From the Project menu, choose New.

The New Project dialog box appears.

If you know the directory for the project, you can simply type the project name,
including the complete path, in the Project Name box and skip to step 6. For ex­
ample, if you installed Visual C++ on drive C, enter the following in the Project
Name box:

C:\MSVC\MFC\SAMPLES\HELLO\MYHELLO.MAK.

If you would rather use the graphical directory browser, continue with step 2.

2. Choose the Browse button to browse and change directories.

The Browse dialog box appears. This dialog box allows you to change directo­
ries and look at filenames. The purpose of browsing your directories is to make
sure you use a unique name for the project and to change to the correct directory
for the project.

Chapter 8 Using Projects 99

3. Use the Directories and Drives list boxes to change to the drive and directory
containing the example files.

You should see the name of the existing project file (HELLO.MAK) already
there.

4. In the File Name box, type the new project filename.

For example, type MYHELLO.

All project files have a .MAK extension. You don't need to type any more than
the first eight characters of the filename. The .MAK extension is automatically
added when you choose OK.

5. Choose OK.

The Browse dialog box disappears, and the project name you specified appears
in the Project Name box preceded by its path. You must now specify a project
type.

6. From the drop-down list in the Project Type box, select a project type.

For this example, select Windows application (.EXE). Be sure the Use
Microsoft Foundation Classes check box is selected if your application uses
the foundation classes, as does the HELLO sample.

7. Choose OK.

The Edit - Projectname dialog box appears (see Figure 8.1).

File Hame:

_4U·4i@
hello.cpp

Edit - MYHELLO.MAK

!!.irectories:
c: \msYc\mfc\samples\helio

IC> c:\
IC> msyc
IC> mfc
IC> samples
f5- hello

List Files of I.ype: r-0r-=iy~es_: ___ ---,--.

I Source (z.c;z.cpp;".CIIIIJ LiJ L-11iii_c: ____ -..JI_iI
[iles in Proiect:

II

CI.!!se

Cancel

Help

Add

Figure 8.1 The Edit - Projectname Dialog Box

8. Add the necessary filenames in the project to the project list.

In this example, you need to add HELLO.CPP, HELLO.DEF, and HELLO.RC.
(HELLO.H cannot be added now since all include files are automatically found
and added when the dialog box is closed.) If you need help using this dialog box,
see the procedure titled "To add a file to the project" on page 101.

100 Visual Workbench User's Guide

9. Choose the Close button to save the project and scan all the source files for
include files.

Whenever you close (not cancel) the Edit - Projectname dialog box, Visual
Workbench recursively scans all files in the project list for #include directives
and automatically adds any include files it finds to the project list. For more
information on include file dependencies, see "Using Include Dependencies" on
the next page.

Opening and Closing Projects
Although you can maintain many projects on your disk, Visual Workbench can
work with only one project at a time. You can recall any previously created pro­
ject by opening it. When you open an existing project, the current project is auto­
matically closed, or you can close it manually.

~ To open an existing project:

1. From the Project menu, choose Open.

2. From the file list, select a project file (.MAK extension).

3. Choose OK.

Tip You can also open a project by using the Windows File Manager to display the
project file icon and then dragging and dropping the project file icon into Visual
Workbench. See Chapter 2 in the Microsoft Windows User's Guide for
information about dragging icons. .

~ To close a project:

• From the Project menu, choose Close.

-Or-

• Open another project.

-Or-

• Create another project.

To learn how to open a makefile created outside the Visual Workbench environ­
ment, see "Using External Projects" on page 107.

Adding and Deleting Project Files
When you create a project, you can add files to the project. As projects grow and
change, however, you may need to add files to or delete files from the project.

Chapter 8 Using Projects 101

When you delete a file from the project, only the reference to that file is removed.
The actual file is not deleted from the hard disk.

Choose the Edit command from the Project menu to open a dialog box where you
can add or delete project files. This dialog box is identical to the dialog box used
to add files to a new project (see Figure 8.1).

~ To add a file to the project:

1. From the Project menu, choose Edit.

The Edit - Projectname dialog box appears.

2. Use the List Files of Type drop-down list box to set the type of files that appear
in the File Name box.

3. From the file list in the File Name box, select the file to add to the project and
choose Add.

Or double-click the file in the file list.

Or you can choose Add All to add every file that appears in the file list to the
project list. This can save steps if you have several source files you want to add.

4. Repeat steps 2 and 3 for each file (or set of files) you want to add to the project.

5. Choose Close when you finish editing the list of project files.

An include dependency scan now takes place. For more information, see the next
section, "Using Include Dependencies."

~ To delete a file from the project:

1. From the Project menu, choose Edit.

The Edit - Projectname dialog box appears.

2. Select the file from the Files in Project box and choose Delete.

Or double-click the file in the Files in Project box.

3. Repeat step 2 for each file you want to delete from the project.

4. Choose Close when you finish editing the list of project files.

An include dependency scan now takes place. For more information, see the next
section, "Using Include Dependencies."

Using Include Dependencies
Visual Workbench creates include dependency lists whenever you create or edit a
project. It does this by recursively scanning all the project files for #include direc­
tives and adding each included filename to the project list. Both source files (.C,
.CPP, or .CXX) and resource files (.RC) are scanned, so the include files in the
dependency list can have extensions of .H, .HXX, .HPP, .INC, .FON, .CUR, .BMP,
.ICO, or .DLG. Since these file types are automatically added to the project list, you

102 Visual Workbench User's Guide

cannot add them manually. These files are part of the project list and are available
in the Project Files drop-down list, accessed from the toolbar's Project Files button.

An include dependency list associates each included file with the files that include it
and are therefore dependent upon it. This allows Visual Workbench to generate the
correct build dependencies. For example, when you edit a header file and perform a
build, the build compiles only the files that include the modified header file.

An include dependency scan takes place automatically when you close the
Edit - Projectname dialog box, after you have either created or edited the project
list. If you subsequently include a new file in any file in the project list, you should
regenerate the include dependencies for the project.

~ To regenerate include file dependencies for the entire project:

• From the Project menu, choose Scan All Dependencies.

~ To regenerate include file dependencies for the active file:

• From the Project menu, choose Scan Dependencies Filename (Filename appears
on the menu as the name of the active source file).

Whenever a dependency scan occurs, a status window appears showing the status
of the include dependency scan as it searches files. You can cancel this scan at any
time by choosing the Cancel button, in which case the previous include dependency
list remains in effect.

Visual Workbench scans both bracketed include files «include file .h» and user
include files ("includefile.h"). There are a large number of system include files
shipped with Visual C++ that are unlikely to be changed. Since it would be ineffi­
cient to scan these include files when they are included by a project file, Visual
Workbench uses an exclusion file called SYSINCL.DAT that contains a list of
these include files. Whenever Visual Workbench scans for include dependencies, it
uses this list to exclude any filenames it finds that match those in this list.

The exclusion file is an editable file, and you can use it to fine-tune your build de­
pendencies. For example, if you have a large header file that you never change, you
could add it to the list in the exclusion file. Then, whenever you generate include
dependencies, that file will not be scanned. As another example, you may want a
Microsoft system include file scanned because you are altering it, in which case you
could remove that include filename from the exclusion file. Visual Workbench
never overwrites this file, but it does build a new file containing all system include
files shipped with Visual C++ whenever it doesn't find a SYSINCL.DAT file at
startup. So you can easily regenerate the original file at any time simply by deleting
or renaming the current exclusion file.

Chapter 8 Using Projects 103

Project Compiler and Linker Options
Besides file references, projects also contain information about compiler and
linker settings to use." When you select a project type, the project configures the
compiler and linker options to build that type of program or library. These op­
tions, and any compiler and linker options you set yourself, are automatically
saved with the project information when you perform a build.

To customize the compiler and linker options generated by the project type, use
the Customize Build Options group in the Project Options dialog box. This group
contains three command buttons that open dialog boxes to let you set compiler,
linker, or resource compiler options. To learn more about these dialog boxes, see
Chapter 9, "Customizing Build Options."

Building a Project
You create a project so that you can eventually build a program or a library.
Visual Workbench lets you either build or rebuild a project. When you build a
project, only the files in the project list that have changed since the last build are
included in the build. When you rebuild, all files are included in the build.

Before you build a project, you need to determine whether you want to produce a
debug or release version of the program. The debug version contains information
that can be used by Visual Workbench's integrated debugger or by the Microsoft
Code View debugger. The release version contains no debug information and
therefore is smaller and faster. To learn how to use the debugger on a debug ver­
sion of a program for Windows, see Chapter 11, "Debugging Programs."

~ To select debug or release build options:

1. From the Options menu, choose Project.

The Project Options dialog box appears.

2. Under Build Mode, select either Debug or Release.

3. Choose OK.

~ To build a project:

• From the Project menu, choose Build Targetname (Targetname represents the
name of the target file displayed on the menu).

-Or-

• Click the Build button on the toolbar.

104 Visual Workbench User's Guide

~ To rebuild a project:

• From the Project menu, choose Rebuild All Targetname (Targetname repre­
sents the name of the target file displayed on the menu).

-Or-

• Click the Rebuild All button on the toolbar.

After you choose Build or Rebuild All, the Output window provides information
from the tools used by the build. The Output window is also where errors and
warnings are reported. Since the build occurs in the background, you can con­
tinue to use Visual Workbench. Some menu commands and toolbar buttons are
disabled during a build (for example, you are not allowed to exit Visual Work­
bench during a build without first stopping the build).

An audible message notifies you when the build has completed. The audible mes­
sage corresponds to one of three standard system events in Windows:

System Event

Asterisk

Question

Exclamation

Indicates

Build has completed without errors or warnings

Build has completed with warnings

Build has completed with errors

If you have a sound driver installed, you can use the Sound application in the
Windows Control Panel to assign these system events to different sounds. Other­
wise, all audible messages simply issue a beep.

To abort a build at any time, choose the Stop Build command on the Project
menu. The build will abort as soon as the currently executing build tool finishes.

If no errors are reported, the build is successful. If the project type is a program,
you can run it by choosing Execute Targetname from the Build menu or debug
it by choosing Go from the Debug menu or by clicking the toolbar's Run button.
Choose Exit from the program's File menu to quit the program and return to
Visual Workbench.

Using a Workspace
A workspace is a convenient way of saving and restoring an arrangement of
windows associated with a project. Loading a workspace also restores font set­
tings and the status of the toolbar and status bar (displayed or hidden).

You can load a workspace to quickly re-create a work environment. For example,
suppose you like to debug with a narrow Registers window to the right of your
source window and Watch and Locals windows below your source. If you save
this arrangement as a workspace, you can load it at the start of each debugging

Chapter 8 Using Projects 105

session instead of positioning and sizing the windows. Workspaces also keep
track of the insertion points in all files, so you can immediately continue working
where you left off.

Three named workspaces, plus the last workspace used, are available for each
project you create and for Visual Workbench's default state (that is, when no pro­
jects are loaded). You can load any of the named workspaces from the Project
menu. Also, you can specify any of the named workspaces or the last workspace
used to be initially loaded when you open a project.

Using the Last Workspace Used
It is often useful to maintain your Visual Workbench setup between sessions.
Whenever you exit Visual Workbench or close a project, the current workspace
(Visual Workbench's configuration) is automatically saved. When a project is
closed, either directly or by exiting Visual Workbench, the current workspace is
saved in the project's workspace file. If no project is open when you exit Visual
Workbench, the current workspace is saved in Visual Workbench's workspace file.

If you want the workspace you were last using to be automatically loaded the next
time you open Visual Workbench, use the Workspace dialog box, accessed from
the Options menu, to set the initial workspace to "Last Workspace Used" (see
"Loading an Initial Workspace" on page 106). Then, since Visual Workbench
always loads the most recently used project when it starts, the last workspace asso­
ciated with that project is also loaded. If no project was active at the end of the last
session, the last workspace used in Visual Workbench's default state is loaded.

Saving a Workspace
You can save up to three workspaces for each project, besides the current work­
space, which is automatically saved (and becomes the "Last Workspace Used").
You can also save up to three workspaces for Visual Workbench itself, before
any project is assigned to it.

To save a workspace for a project, first open the project, then take the following
steps. To save a workspace for Visual Workbench itself, save the workspace
when no project is open.

~ To save a workspace:

1. Arrange and size the appropriate windows.

2. From the Project menu, choose Save Workspace.

3. From the cascading menu, choose Edit, Debug, or Custom.

106 Visual Workbench User's Guide

Edit, Debug, and Custom are default workspace names, and are simply useful
labels. You can change the default names by choosing the Workspace command
from the Options menu.

The workspace information is stored in a file with the project name and a . WSP
extension.

Loading a Workspace
When a project is open, you can only load the workspaces defined for that pro­
ject. If no projects are open, you can load the workspaces defined for Visual
Workbench.

~ To load a workspace:

1. From the Project menu, choose Load Workspace.

2. From the cascading menu, choose Edit, Debug, or Custom.

Any files already open that do not belong in the current workspace are either
minimized to an icon or are closed depending on the setting of the Close Non­
Workspace Windows on Load check box in the Workspace dialog box.

Loading an Initial Workspace
When you open a project, the project can automatically open a workspace. When
you start Visual Workbench, it can also load an initial workspace.

Use the Workspace command on the Options menu to define an initial workspace.
If a project is open when you use the command, you defme an initial workspace
for the project. If no project is open, you define an initial workspace for Visual
Workbench.

~ To define an initial workspace to load:

1. From the Options menu, choose Workspace.

The Workspace dialog box appears (see Figure 8.2).

2. From the Initial Workspace box, select a workspace name.

3. Choose OK.

Chapter 8 Using Projects 107

Workspace

OK Workspace 111: I&Edit :=======:
Workspace 112.: I &Debug

:========!
Workspace 111.: 1-1 &C_u_st_om __ ---'

Cancel

!nitial Workspace:
Help

I last Workspace Used Iii
(gI f.rompt Before Redefinition

(gI !;.Iose Non-Workspace Windows on load

Figure 8.2 The Workspace Dialog Box

Using External Projects
If you have existing makefiles that you want to use in place of Visual Workbench's
project makefiles, you can run them from within Visual Workbench. These make­
files are called "external projects" because they are external to the normal mode of
selecting project options from within Visual Workbench.

When you use an external makefile, you are responsible for the contents and actions
of that makefile, since Visual Workbench does not read or alter the file. You can,
however, build an external project and run any resulting program from within
Visual Workbench. If your external makefile generates a Code View-compatible
debug version of the executable file, you can also debug the target from within
Visual Workbench.

To use an external project, open it as you would any Visual Workbench project
but select the Use as an External Makefile check box in the Open Project dialog
box, accessed from the Open command on the Project menu.

~ To open an external project:

1. From the Project menu, choose Open.

The Open Project dialog box appears.

2. In the File Name box, type the name of the external makefile.

3. Select the Use as an External Makefile check box.

If you miss this step, Visual Workbench prompts you when it attempts to open
the project as a Visual Workbench project and cannot. You can specify at that
time that it is an external project.

4. Choose OK.

108 Visual Workbench User's Guide

Once the external makefile is loaded, you can set build options by choosing the
Project command from the Options menu. This opens the External Project Options
dialog box (see Figure 8.3), where you can set build options.

External Project Options

Debug I.arget Name: 1 C:\MSVC\MYAPP\MYAPP.EXE 1 OK

Project Type-------. r-Build Mode- Cancel

@ i:t~~~:~~~:~!.~) @ Dehug

o I!Jnamic Linked Library
Help

O.!lther
o Relea,!e

Debug Build: 1 NMAKE If MYAPP.MAK

Release Build: INMAKE If MYAPP.MAK

Rebuild All Options: L...I I_a _______ --'

Figure 8.3 The External Project Options Dialog Box

Here are the build options you can set in the External Project Options dialog box:

Debug Target Name
Visual Workbench uses the name of the executable target file in this box to
determine what file to use when you use the debugger. This name also appears
on the Project menu following Build, Rebuild All, and Execute. Visual Work­
bench assumes the name of the executable file to have the same base name as
the project. If you change the name in the Debug Target Name box, you are
responsible for making sure your external makefile generates an executable file
with this same name.

Project Type
This is the target file type (Executable, DLL, or other). Depending on the pro­
ject type specified here, the Debug dialog box, accessed from the Options menu,
presents slightly different options. If the project type is specified as Executable,
the upper text box in the Debug dialog box is labeled "Program Arguments" and
lets you enter any parameters to pass to the program. If the project type is speci­
fied here as DLL, the upper text box in the Debug dialog box is labeled "Calling
Program" and lets you enter the executable filename that calls the DLL.

Debug Build
This is the program maintenance utility, such as NMAKE, along with any
command-line options it requires to build a debug version of the project type.
The command in this box is invoked when you choose Build Targetname from
the Project menu or click the Build button on the toolbar if you have Debug
selected under Build Mode in the External Project Options dialog box.

Chapter 8 Using Projects 109

Release Build
This is the program maintenance utility, such as NMAKE, along with any
command-line options it requires to build a release version of the project type.
The command is this box is invoked when you choose Build Targetname from
the Project menu or click the Build button on the toolbar if you have Release
selected under Build Mode in the External Project Options dialog box.

Rebuild All Options
This is the command-line option required by the program maintenance utility to
generate a complete rebuild. The command line specified in either the Debug
Build or Release Build text box (depending on which mode you are building)
and the command-line option in this text box are combined and invoked when
you choose Rebuild All Targetname from the Project menu or click the Rebuild
All button on the toolbar.

Importing Microsoft Programmer's Workbench (PWB) makefiles into Visual
Workbench is straightforward since PWB makefiles use the default NMAKE com­
mand line in the Debug Build, Release Build, and Rebuild All Options text boxes.
If you want the ability to build both Release and Debug versions, you can use the
same makefile for both and add DEBUG=l as a command-line option in the Debug
Build text box and DEBUG=O as a command-line option in the Release Build text
box.

To build an external project, click the Build button on the toolbar or choose Build
Targetname from the Project menu. To rebuild an external project, click the
Rebuild All button on the toolbar or choose Rebuild All Targetname from the
Project menu.

To run an external project target file, choose the Execute Targetname command
from the Project menu. Or to debug an external project target file that contains
debug information, choose Go from the Debug menu or click the Run button on the
toolbar, or use any of the trace commands, Step Into, Step Over, or Step to Cursor,
from the Debug menu.

111

CHAPTER 9

Customizing Build Options

When you choose a project type, Visual Workbench sets up the compiler and linker
options necessary to build that project type. You can customize these options using
dialog boxes accessed from the Project Options dialog box, which contains a
Customize Build Options group with three buttons:

• Compiler

• Linker

• Resources

A typical use of customization, especially for Visual C++ Professional Edition
users, is to use the CjC++ Compiler Options dialog box to optimize your program
for size or speed after all development and debugging have been done. Another use
of these options might be to add more Windows import libraries to your link options
from the Linker Options dialog box. Or you may want to add a custom resource
compiler option using the Resource Compiler Options dialog box.

This chapter describes how to set options in each of these dialog boxes. It also
describes how to use the specialized Help system employed by the CjC++ Compiler
Options and Linker Options dialog boxes.

The Compiler and Linker Options Dialog Boxes
The CjC++ Compiler Options dialog box and the Linker Options dialog box are
similar in operation (see Figure 9.1). Each is divided into two sections. The upper
section displays the options string, which is a representation of the options given to
the compiler and linker when you perform a build. There are also three Build
Options buttons:

• Debug Specific

• Release Specific

• Common to Both

112 Visual Workbench User's Guide

Choose the Debug Specific or Release Specific button before selecting options to
have your options apply to a Debug or Release build, respectively. You can choose
Common to Both to have the options you select apply to both Debug and Release
builds.

Note The options string is a representation and not the actual command string. In
most cases, the options string provides an exact replica of the command-line string.
There are two exceptions to this. First, in precompiled headers for mixed languages,
where a single option string is not passed to all modules, the options string indicates
lYu (followed by a header filename) for each language. Second, a special mne­
monic that is not a LINK command-line option (/LIB) is used to indicate which
libraries are passed to the linker.

Select global build options Shows command line options selected

@ Qebug Specific 0 Release Specific 0 hommon to Both I
_Op~t_ion_s~~~tr_in~g: ____________ ~ __________________ -"I~~~~~~
,--- Cancel
Inologo IG2 1'W3 lZi lAM IOd 10 "_DEBUG" IFR IGA

I Help

I Use Proiect Defaults I
Category Settings: Code Generation --------------------,

Custom Options
CEU: Custom Options (C++)

Debug Options 180286 Iii D Check Pointers
Listing Files
Memory Model

Calling Convention: D Disable Stack Checking
Optimizations
P-Code Generation Ic I C++' Iii Precompiled Headers
Preprocessor Floating-Point Calls: Code Generator:
Segment Names

ProloglE pilog IUse Emulator' Iii I Fast • Iii
Struct Member !!yte Alignment:

12 Bytes' Iii

Select a category of options Change options in selected category

Figure 9.1 The C/C++ Compiler Options Dialog Box

The lower section of the CjC++ Compiler Options and Linker Options dialog boxes
is divided in two. On the left, a list box contains categories of options. When you
select a category, a new Category Settings group appears on the lower right of the
dialog box to allow you to set options in that category.

Within the Category Settings group, you use various controls (list boxes, text
boxes, check boxes, and option buttons) to select compiler or linker options, which
are then reflected by their corresponding command-line mnemonics in the options
string at the top of the dialog box.

Chapter 9 Customizing Build Options 113

When the control is a list box, a "default" is indicated by an asterisk. The default is
the option that the compiler or linker provides when no command-line argument is
provided. When you select a default option, the mnemonic for that option does not
appear in the options string.

Note In list boxes in the C/C++ Compiler Options and Linker Options dialog
boxes, the item with the asterisk indicates the compiler or linker default operation in
the absence of a command-line argument for the option. It does not indicate the
default option for your selected project type. For example, the default compiler
option for memory model-that is, when no command-line option is present-is
Small (lAS). However, most project types have a default of Medium (lAM), which
is automatically added to the options string when you select the project type.

Getting Help on Options
Because there are so many compiler and linker options available to you in the
C/C++ Compiler Options and Linker Options dialog boxes, a specialized Help
facility is provided to let you get quick definitions of options in the options string.
Also the normal Visual Workbench Help facility for dialog boxes is enhanced to
provide quick access to help on the check boxes, text boxes, and list boxes that
set those options.

The Resource Compiler Options dialog box uses the same Help interface as stan­
dard Visual Workbench dialog boxes since resource compiler options are not as
complex as compiler and linker options.

The Help Command Button
As with any Visual Workbench dialog box, you can get a general overview of the
compiler, linker, and resource compiler dialog boxes by choosing the Help com­
mand button.

F1 Help for Compiler and Linker Options
Help for compiler and linker options is context sensitive when you use the Fl key.
You can get either a short pop-up description of an option in the options string, or
a complete description of an option, depending on the location of the insertion point
when you press Fl.

~ To get a short description of any option in the options string:

1. Highlight the option in the options string (double-click the option).

Or just place the insertion point on the option.

2. Press Fl.

114 Visual Workbench User's Guide

A pop-up window appears with a brief description of the compiler or linker
option (see Figure 9.2).

=-1 C/C++ Compiler Options

Build Options: @ ,Ilebug Specific 0 Release Specific 0 .c.ommon to Both 1 OK
Optionslitring: I~~~~~~~

Cancel
Inologo IG2 !W3 lZi IAht IOd ID "_DEBUG" IFR IGA + ~~~~~~~

~ ,-I ___ H...,elp ___ -,

7 1 Use Proiect Defaults I IAM[dlulw]

';;;; Select medium memory model
C~ Code Generation-------------,

g!l Categol}'
Cu
Cu Memory Model: Model: Medium

r~~st~ill~~IIIIII~IIIIIIIIII~---~l~~
htemory htodel
Optimizations
P-Code Generation
Precompiled Headers

Calling Convention:

IC I C++ Z

Preprocessor Floating-Point Calls:

W
Segment Names
Windows ProloglEpilog 1...-1 U_se_Em_u_la_to_r_z ______ W_

Struct htember !lYte Alignment:

12 Bytes Z liJ

Figure 9.2 Help on the Options String

o Check Pointers

o Disable Stack Checking

Code Generator:

IFast Z Iii

~ To get complete help on any option in the Category Settings group:

1. Move the dialog focus to the option control.

For example, place the dialog focus in a list box, on a check box, or in a text
box.

2. Press FI.

A Help window appears with definitions and descriptions of all the options as­
sociated with the control (see Figure 9.3). For example, if it is a list box, all list
box entries are described.

Once a Help window is open, you can get help on any option, either by category or
alphabetically, by going to the Contents screen. See page 71 for more information
on using the Help system for compiler and linker options.

Chapter 9 Customizing Build Options 115

Build Options: @ !!.ebug Specific 0 fte~I~:!:=I.J!!!!~L~;LJ..!:~!!LJ.!~~
Options ,£tring:

Jnologo JG21W31Zi JAM JOd JD "_DEB

Cfttegor,:
Code Generation
Custom Options
Custom Options (C++)
Debug Options
listin Files

Optimizations
P-Code Generation
Precompiled Headers
Preprocessor
Segment Names
Windows PrologJEpilog

Figure 9.3 Help on Option Controls

Model

Every programs code and data are stored in blocks
called segments. The memory model of the program
determines the organization of the segments as well
as the kind of executable file that is produced (tiny
memory model produces a .COM file, all others
produce an .EXE file.) The compact, large and huge
memory models allow multiple data segments; in the
compact and large models, however, data items are
restricted to less than 64K. You can choose from the
following memory models:

Memory Model Code Segments

Tiny One segment for both
code and data «641<)

Small

Medium

Default Compiler and Linker Options
When you choose a project type, Visual Workbench provides a set of default
compiler and linker options for that project type for both debug and release builds.
Tables 9.1 through 9.4 show these default compiler and linker options for each
project type.

~ To return all options to their project-specified default settings:

• Choose the Use Project Defaults button.

This sets all options in the current build group (debug or release) to the state
originally set by Visual Workbench for the chosen project type.

Default compiler and linker options, as described in this chapter, are written to the
MSVC.INI file at installation or whenever this file is re-created (as happens if it is
accidentally deleted). Options stored in this file are used whenever a new project is
created or the Use Project Defaults button is chosen.

If you are porting existing projects into Visual Workbench (that is, creating a new
Visual C++ project that matches the existing project's build options), you need to
be sure that the default build options set by the Visual Workbench project type do
not conflict with the build options of your existing project. You can do this by
comparing the build options in your existing makefile with the defaults in the

116 Visual Workbench User's Guide

following tables specified for your chosen project type. For an alphabetic cross­
reference of CL and LINK options to their respective controls in the C/C++ Com­
piler Options and Linker Options dialog boxes, see pages 52 and 55, respectively.

Table 9.1 Default Compiler Options for Windows Project Types

Project Type Common to Both Debug Specific Release Specific

Windows application /nologo/W3 /G2/Zi/Od (If-)* /01
(.EXE) /AM/FR/GA /D" DEBUG" /D "NDEBUG"

Windows dynamic- /nologo /W3 /G2/Zi/Od (If-)* /01
link library (.DLL) /AM/FR/GD /D"_DEBUG" /D "NDEBUG"

Visual Basic Custom /nologo /G2 /Gc /Zi /Od (If -)* /Gs lOx
Control (.VBX) /Zp1 /W3 /AM /D "_DEBUG" /D "NDEBUG"

/FR/GD

QuickWin application /nologo /G2 /Mq /Zi/Od (If -)* /Gs lOx
(.EXE) /W3/AM/FR /D "_DEBUG" /D "NDEBUG"

Static library (.LIB) /nologo /G2 /W3 /Z7/0d (If -)* /Gs lOx
/AM/FR/GA /D "_DEBUG" /D "NDEBUG"

Windows P-code /nologo /G2 /Oq /Zi /Od /01
application (.EXE) /W3/AM/FR/GA /D "_DEBUG" /D "NDEBUG"

* Visual C++ Professional Edition only

Table 9.2 Default Compiler Options for MS-DOS Project Types

Project Type Common to Both Debug Specific Release Specific

MS-DOS application /nologo /G2 /W3 /Zi /Od (/f -)* /Gs lOx
(.EXE) /AM /D "_DOS" /FR /D"_DEBUG" /D"NDEBUG"

MS-DOS P-code /nologo /G2 /W3 /Zi /Od /Gs/Ox
application (.EXE) /AM/Oq /D"_DEBUG" /D "NDEBUG"

/D "_DOS" /FR

MS-DOS Overlaid /nologo /G2 /Gy /Zi /Od (If -)* /Gs lOx
application (.EXE) /W3/AM /D"_DEBUG" /D "NDEBUG"

/D "_DOS" /FR

MS-DOS COM /nologo /G2 /W3 /Zi /Od (If-)* /Gs lOx
application (.COM) /AT /D "_DOS" /D"_DEBUG" /D"NDEBUG"

/FR

* Visual C++ Professional Edition only

Chapter 9 Customizing Build Options 117

Table 9.3 Default Linker Options for Windows Project Types

Project Type Common to Both Debug Specific Release Specific

Windows application /NOLOGO/NOD ICO None
(.EXE) ISTACK:5120

/ALIGN:16
/ONERROR:NOEXE
/pACKC:61440

Windows dynamic- /NOLOGO/NOD ICO None
link library (.DLL) /ALIGN:16 /MAP: FULL

/ONERROR:NOEXE
/pACKC:61440

Visual Basic Custom /NOLOGO/NOD ICO None
Control (.VBX) /ALIGN:16

/ONERROR:NOEXE
/pACKC:61440

QuickWin application /NOLOGO /NOD ICO None
(.EXE) /STACK:5120

/ALIGN:16
/ONERROR:NOEXE
/pACKC:61440

Windows P-code /NOLOGO/NOD ICO None
application (.EXE) /ONERROR:NOEXE

/PC ODE
/pACKC:61440

Table 9.4 Default Linker Options for MS-DOS Project Types

Project Type Common to Both Debug Specific Release Specific

MS-DOS application /NOLOGO/NOD ICO None
(.EXE) /NOI

ISTACK:5120
IONERROR:NOEXE

MS-DOS P-code /NOLOGO /NOD ICO None
application (.EXE) /NOI

/PCODE
IONERROR:NOEXE

MS-DOS Overlaid /NOLO GO /NOD ICO None
application (.EXE) /NOI

IONERROR:NOEXE

MS-DOS COM /NOLOGO /NOD ICO None
application (.COM) /NOI

/TINY

118 Visual Workbench User's Guide

Compiler Options
To set compiler options, choose Compiler in the Project Options dialog box
Customize Build Options group. Each option category is described below, with a
short description of each individual option that can be changed in that category's
Category Settings group.

Code Generation
The Code Generation category (see Figure 9.4) includes options for compiling for
different CPU types, for using the Pascal or C/C++ calling convention, for selecting
how floating-point numbers are handled, and for setting alignment boundaries for
structures. It also lets you tum on and off options for checking for out-of-range
pointers and, if you have Visual C++ Professional Edition, lets you tum on and off
fast compiling. The stack -checking option is also enabled or disabled here.

Category Settings: Code Generation -----------,

Cf.U:

L-lo_o2_o_6 ______ ---"liJ_f D Ch~~cL Poinkrs.

Calling Convention: [gJ Disable Stack Checking

Ic I C++ Z liJ

Floating-Point Calls: Code Generator:

L-IU_se_E_m_u_la_to_r_Z ____ ~liJ_f L-IF_as_t_z _____ ~~_

Struct Member !lYte Alignment:

11 Byte liJ

Figure 9.4 Compiler Options: Code Generation

CPU
If you are writing programs for a computer with an 8086/8088,80186/80188,
80286/80288, or 80386/80388 processor, you can use one of the CPU options. All
options produce 16-bit instructions. Programs compiled for higher-numbered
processors do not run on lower-numbered processors.

The /G3 option is only available with Visual C++ Professional Edition and requires
the optimizing compiler (If-). It generates smaller and faster code than the /G2
option. The resulting programs run only on computers with 80386 or higher

Chapter 9 Customizing Build Options 119

processors. /G3 implies /G2 and thus generates both the _ M _ 1286 and the
M _1286 preprocessor identifiers. The /G3 option does not support 80386/80387
inline-assembler instructions.

CPU List Box

List Entry

8086/8088 *
80186/80188

80286/80288

80386/80388

Option

/GO

/Gl

/G2

/G3

Comment

Generate 8086 instructions

Generate 80816 instructions

Generate 80286 instructions

Generate 80386 instructions (optimizing compiler)

* This is a default CL option and does not appear in the options string when selected.

Calling Convention
The calling-convention options determine which way arguments passed to functions
are pushed on the stack, and whether the calling or called function removes the ar­
guments from the stack. C functions can have a variable number of arguments, and
in the C/C++ calling convention, arguments are pushed on the stack from right to
left (so that the first argument in the list is the last one pushed on the stack). Pascal
and FORTRAN programs use the Pascal calling convention, where the number of
arguments is fixed and arguments are pushed on the stack from left to right.

Also in C, the calling function must remove the arguments, whereas in Pascal and
FORTRAN, the called function does this. The Pascal calling convention optimizes
size somewhat, while the C/C++ calling convention allows the flexibility of using
variable-number parameter lists.

Calling Convention List Box

List Entry

Pascal

C/C++ *

Option

/Gc

/Gd

Comment

Use Pascal calling convention

Use C/C++ calling convention

* This is a default CL option and does not appear in the options string when selected.

Floating-Point Calls
The floating-point calls options specify how your program handles floating-point­
math operations. The options /Fpa, /FPc87, and /FPc are only available with Visual
C++ Professional Edition and require the optimizing compiler (If -). For complete
information on using floating-point calls, see Chapter 1, "CL Command Refer­
ence," in the Command-Line Utilities User's Guide.

120 Visual Workbench User's Guide

Floating-Point Calls List Box

List Entry Option Comment

Inline 80x87 Instructions /FPi87 Use Inline 80x87 instructions

Use 80x87 inline emulation Use Emulator * /FPi

Alternate Math /FPa Use fast alternate math (optimizing compiler)

Use 80x87 calls (optimizing compiler) 80x87 Calls /FPc 87

Coprocessor Calls /FPc Use 80x87 emulation calls (optimizing
compiler)

* This is a default CL option and does not appear in the options string when selected.

Struct Member Byte Alignment
The /Zp option controls how the members of a structure are packed into memory
and specifies the same packing for all structures in a module. When you specify the
tzpn option, where n is 1,2,4, 8, or 16, each structure member after the first is
stored on n-byte boundaries.

Struct Member Byte Alignment List Box

List Entry Option Comment

1 Byte /Zpl (lZp) Pack structures on I-byte boundaries

2 Bytes * /Zp2 Pack structures on 2-byte boundaries

4 Bytes /Zp4 Pack structures on 4-byte boundaries

8 Bytes /Zp8 Pack structures on 8-byte boundaries

16 Bytes /Zp16 Pack structures on 16-byte boundaries

* This is a default CL option and does not appear in the options string when selected.

Code Generator
The Code Generator list box lets you select whether to use the fast compiler or the
optimizing compiler or whether to let the compiler determine which to use based
on other options. For Visual C++ Standard Edition, the fast compiler option is auto­
matically selected and cannot be changed. For Visual C++ Professional Edition,
you can choose from two options in the list box: Fast and Optimizing.

The Fast option invokes the fast compiler (the CL default). The fast compiler results
in faster compilations but can produce larger, slower programs. Fast compiler (If)
is useful during the development process. Although most optimizations are accepted
by the fast compiler, many optimizations have different implementations in the fast
compiler than in the optimizing compiler.

Selecting the Optimizing option (If -) turns off the fast compile option and invokes
the C/C++ optimizing compiler.

Code Generator List Box

List Entry

Fast *
Optimizing

Option

If

If-

Chapter 9 Customizing Build Options 121

Comment

Faster compilation but larger, slower program

Slower compilation but smaller, faster program

* This is a default CL option and does not appear in the options string when selected.

Code Generation Check-Box Summary
The check boxes in the Code Generation category are listed together here for
summary information. Each specific option is described in the sections that follow.

Code Generation Check Boxes

Check Box

Check Pointers

Disable Stack Checking

Check Pointers

Option

IZr

lOs

Comment

Check null pointers (fast compile only)

Remove stack -check calls

The /Zr option checks for null or out-of-range pointers, which cause run-time errors
in your program. The jZr option is only available with the fast compile option.

Disable Stack Checking
Stack checking is a means by which the compiler inserts "stack probe" routines
that are called on entry to each function to verify that the program stack has enough
room to allocate the local variables required by the function. When stack checking
is turned off, a stack overflow can occur without being diagnosed (no stack­
overflow message is printed). Disabling stack checking can make your programs
smaller and faster, but at the expense of diagnostic capability.

Custom Options
Several miscellaneous options are controlled in the Custom Options category (see
Figure 9.5). These include options for turning off Microsoft language extensions,
enabling QuickWin (a default of the QuickWin project type), enabling function­
level linking and string pooling, and selecting the warning level. The Other Options
text box is included here to allow you access to CL options that do not have corre­
sponding controls in the CjC++ Compiler Options dialog box.

122 Visual Workbench User's Guide

Category Settings: Custom Options --------------,

o Disable Microsoft language Extensions

o En.able Function-level linking

o .!luickWin Support

o Eliminate Duplicate Strings

~arning level: Ilevell Iii 0 Warnings as [rrors

r:sJ Syppress Display of Sign-On Banner

Other Options: 1-1 ______________ ---l

Figure 9.5 Compiler Options: Custom Options

Custom Options Check-Box Summary
The check boxes in the Custom Options category are listed together here for sum­
mary information. Each specific option is described in the sections that follow.

Custom Options Check Boxes

Check Box

Disable Microsoft Language
Extensions

Enable Function-Level Linking

QuickWin Support

Eliminate Duplicate Strings

Warnings as Errors

Suppress Display of Sign-On Banner

Option

IZa

lOy

/Mq

IOf

jWX

Inologo

Comment

Disables the default (jZe)

Package functions

Windows interface for MS-DOS
programs

Implement string pooling

Treat all warnings as errors

Banner not sent to Output window

Disable Microsoft Language Extensions
Visual C++ supports the ANSI C standard. In addition, it offers a number of fea­
tures beyond those specified in the ANSI standard. These features are enabled
by the /Ze option (the default) and disabled by the /Za option. For a complete list
of these extensions, see Help or Chapter 1, "CL Command Reference," in the
Command-Line Utilities User's Guide.

Enable Function-Level Linking
The /Gy option enables linking on a function-by-function basis by creating pack­
aged functions. Packaged functions are used in conjunction with the FUNCTIONS
statement in a module-definition file to order functions in an executable file, or to

Chapter 9 Customizing Build Options 123

assign functions to a segment or an overlay. You can also exclude unreferenced
packaged functions from an executable file using the linker's /P ACKF option. C++
member functions are automatically packaged.

QuickWin Support
MS-DOS programs compiled with the /Mq compiler option have a limited
Windows user interface, including a standard menu bar, standard Help (for
QuickWin features), and a client (or application) window with a child (document)
window for input and output streams (stdin, stdout, and stderr for C). The /Mq
compiler option defmes the _WINDOWS constant, declared in the Windows ver­
sion of STDIO.H. For infonnation on writing QuickWin programs, see Chapter 7
of Programming Techniques.

Eliminate Duplicate Strings
The 10f option enables the compiler to place a single copy of identical strings into
the executable file. Because identical strings are copied into a single memory loca­
tion, programs compiled with the 10f option can be smaller than those compiled
without 10f. This space optimization is sometimes called "string pooling." Use of
10f does not guarantee string pooling in all cases. String pooling does, however,
occur in most cases.

Warnings as Errors
The /WX option instructs the compiler to consider any warning message it produces
as an error. If there are any warning messages, an error message is emitted and
compilation continues.

Suppress Display of Sign-On Banner
The Inologo option suppresses the copyright message displayed when CL is in­
voked. This speeds the compilation slightly since the Output window is not updated
with this infonnation.

Warning Level
You can control the number of warning messages produced by the compiler by
setting the warning level option. Warning level/WI displays only severe warnings.
/W2 displays intennediate warnings, such as the use of functions with no declared
return type, failure to put return statements in functions that aren't void, and data
conversions that would cause loss of data or precision. /W3 displays less severe
warnings, such as warnings about function calls that precede their function proto­
types. /W4 displays warnings such as non-ANSI features and extended keywords.

124 Visual Workbench User's Guide

Warning Level List Box

List Entry Option

None /WO

Levell * /WI

Level 2 /W2

Level 3 /W3

Level 4 /W4

Comment

Display no warnings

Display only the most severe warnings

Display intennediate level of warnings

Display most warnings

Display all warnings

* This is a default CL option and does not appear in the options string when selected.

Other Options
The Other Options text box lets you type in CL options independent of the dialog­
box controls used by Visual Workbench to set them. This can be useful if you want
to use a specific set of command-line options from some other makefile and you
don't want to set these options from the dialog boxes. For a complete description
of all CL options, see Chapter 1, "CL Command Reference," in the Command-Line
Utilities User's Guide (provided with Visual C++ Professional Edition).

Note You are responsible for the accuracy of any option you enter in this text box.
If Visual Workbench recognizes the option as one that can be set using a dialog­
box control, it changes the dialog-box control to reflect the option and removes the
option from the Other Options box. However, if the option is not recognized, it is
left on the options string as is and passed to the compiler.

Custom Options (C++)
The Custom Options (C++) category (see Figure 9.6) lets you specify how C++
pointers to class members are represented.

r Category Settings: Custom Options (C++) ------------,

'C++ Pointer to Member Representation-----------,

Rrunesentation Method:

IBest-case always z Iii
.!ieneral-Purpose Representation:

I Point to any class z III

D Disable Construction Displacements

Figure 9.6 Compiler Options: Custom Options (C++)

Chapter 9 Customizing Build Options 125

c++ Pointer to Member Representation
Visual C++ supports pointers to members of any class. The number of bytes
required to represent a pointer to a member of a class and the code required to
interpret the representation varies considerably, depending upon whether the class
is defined with no, single, multiple, or virtual inheritance (no inheritance being
smallest and virtual inheritance largest).

If you always declare a pointer to a member of a class after defining the class, you
can use the default option (lvmb), which causes the compiler to generate an error
when a pointer to a member of a class is declared before the class. This lets the
compiler create the best -case representation, since it knows the inheritance model
of the class before encountering a pointer to a class member.

If you need to declare a pointer to a member of a class prior to defining the class,
you must select the general representation model (lvmg) and then specify the
inheritance-model that is to be assumed for both the pointer representation and
the code required to interpret the pointer representation.

Representation Method
Use the /vmb option if you always define a class before you declare a pointer to a
member of the class.

When the compiler encounters the declaration of a pointer to a member of a class,
it already has knowledge of the kind of inheritance used by the class. Thus, the
compiler can use the smallest possible representation of a pointer and generate the
smallest amount of code required to operate on the pointer for each kind of
inheritance.

Use the /vmg option if you need to declare a pointer to a member of a class before
defining the class. This need can arise if you define members in two different
classes that reference each other. For such mutually referencing classes, one class
must be referenced before it is defined. You must then select an inheritance model
from the General-Purpose Representation list box.

Representation Method List Box

List Entry , Option

Best-case always * /vmb

General-purpose always /vmg

Comment

Always declare class before declaring
pointers to class members

Can declare pointers to class members
before defining class

* This is a default CL option and does not appear in the options string when selected.

126 Visual Workbench User's Guide

General-Purpose Representation
When the representation method is General-purpose always (lvmg), you must also
specify an option to indicate the inheritance model of the not-yet -encountered class
definition. This can be one of three options: /vms (single inheritance), /vmm (mul­
tiple inheritance), or /vmv (virtual inheritance). Each of these options specifies the
most general representation of a pointer to a member of a class-that is, it allows
the pointer to point to members of classes with all inheritance models of its speci­
fied type or more restrictive types. Each makes a trade-off between flexibility and
code size.

When you specify an inheritance model, that model is used for all pointers to mem­
ber classes, regardless of their inheritance type or whether or not the pointer is
declared before or after the class. Therefore, if you know that you always use
single-inheritance classes, you can reduce code size by selecting that inheritance
model; however, if you want to be safest (at the expense of the largest data repre­
sentation), you can choose the virtual-inheritance model, which allows pointers to
all classes.

The /vms option specifies that all pointers to not -yet-declared class members will
only point to a member of a class that uses either no inheritance or single inheri­
tance. This requires the smallest pointer size and least amount of code to interpret
the pointer size; however, it causes the compiler to generate an error if the class
member pointed to turns out to be from a class with a multiple or virtual inheritance
model.

The /vmm option allows the pointer to point to members of classes with no inheri­
tance, single inheritance, or multiple inheritance, but produces a larger code than
the /vms option. It causes the compiler to generate an error if the pointer points to
a virtual class member.

The /vmv option specifies the most general representation of a pointer to a member
of a class to be one that uses virtual inheritance. In terms of pointer size and the
code required to interpret the pointer, this is the most expensive option. This option,
however, never causes an error and is the default.

General·Purpose Representation List Box

List Entry

Point to any class *
Point to single inheritance classes

Point to multiple inheritance classes

Option

/vmv

/vms

/vmm

Comment

Declare virtual inheritance

Declare single inheritance

Declare multiple inheritance

* This is a default CL option and does not appear in the options string when selected.

Chapter 9 Customizing Build Options 127

Disable Construction Displacements
Microsoft Visual C++ implements C++ construction displacement support. Con­
struction displacements solve the problem created when a virtual function, declared
in a virtual base and overridden in a derived class, is called from a constructor
during construction of a further derived class. The problem is that the virtual func­
tion may be passed an incorrect this pointer. This is caused by discrepancies be­
tween the displacements to virtual bases of a class and the displacements to its
derived classes. The solution provides a single construction displacement adjust­
ment, called a vtordisp field, for each virtual base of a class.

By default, vtordisp fields are introduced whenever the code both defines user­
defined constructors and destructors and also overrides virtual functions of virtual
bases. The Disable Construction Displacements option (/vdO) lets you disable the
construction displacements generation to help optimize program size. Select
Disable Construction Displacements only if you are certain that all class construc­
tors and destructors call virtual functions virtually.

Disable Construction Displacements Check Box

Option Comment

/vdO May reduce program size

Debug Options
The Debug Options category (see Figure 9.7) lets you select parameters used when
compiling a file for use with the Visual Workbench or Code View debugger. The /Zi
option has changed from previous versions of the compiler to include all type
information in a program database.

Support for the older style debug information storage is provided with the new op­
tion jZ7 (which emulates the behavior of jZi in the Microsoft C/C++ version 7.0
compiler). The /Zd option is an abbreviated form of the /Z7 option.

Category Settings: Debug Options --------------,

r Debug Information

O.tione

o f.artial (line Numbers Only)

o Full (CI Compatible)

@ F.yll (Using Program Database)

Figure 9.7 Compiler Options: Debug Options

128 Visual Workbench User's Guide

Debug Options Option-Button Summary
The option buttons in the Debug Options category are listed together here for sum­
mary information. Each specific option is described in the sections that follow.

Debug Options Option Buttons

Option Button

None

Partial (Line Numbers Only)

Full (C7 Compatible)

Full, Use Program Database

None

Option

none

/Zd

/Z7

/Zi

Comment

No debug information is created

Only public symbols and line numbers

Put all debug information in object files

Enabled by the /Od (Disable (Debug))
option button in the Optimizations category

Choose None to disable the creation of symbolic debugging information. This is the
default for release mode builds.

Partial (Line Numbers Only)
The jZd option produces an object file containing only global and external symbol
information and line number information. This reduces the size of the debuggable
executable file. You can use jZd if you do not use the expression evaluator during
debugging. jZd uses the C7 -compatible method of information storage.

Full (C7 Compatible)
The jZ7 option produces an executable file containing line numbers and full sym­
bolic-debugging information for use with the Visual Workbench debugger or with
Code View. This symbolic information is a map of your source code and includes
such things as the names and types of variables and functions, as well as the names
and numbers of all program segments. The executable file also includes full
symbol-table information and line numbers. The /Z7 option was called jZi in previ­
ous versions of CL. jZi now uses a database to maintain type information.

Full, Use Program Database
Visual C++ provides an improved method of storing some of its debug information.
When you use the jZi option, all type information in your source files is now stored
in a special database file called MSVC.PDB. In previous versions of the Microsoft
C and C++ compilers, all debug type information was written into each object file.

Listing Files

Chapter 9 Customizing Build Options 129

Now each object file contains a reference to the type information found in the pro­
gram database. The program database (.PDB) file is necessary to correctly run the
Microsoft Debugging Information Compactor (CVPACK) on a file compiled with
/Zi, which is done automatically when you build an application in debug mode. If
for some reason the .PDB file is deleted, you must rebuild all source files with /Zi
to re-create it.

Use the Listing Files category (see Figure 9.8) to generate output files for assembly
listing files and source browser files.

Category Settings: Listing Files

01l.rowser Information

o I nclude local Variables

D Don't f.ack Information

D Ass-,!mbly

D b~~huk .M.aehine Co~k

D !nd~.ul~~ S o!,w,'~~ and ~,hchintJ CAe

Figure 9.8 Compiler Options: Listing Files

Browser Information
Source browser files (.SBR) contain symbolic information used by the Microsoft
Browser Database Maintenance Utility (BSCMAKE) to produce a browser data­
base file (.BSC) that is used by the Visual Workbench browser. You can force the
compiler to generate .SBR files with or without symbolic information on local
variables. You can also force the compiler to skip the step of compacting the .SBR
file by removing unreferenced definitions.

Browser Information Check Boxes

Check Box

Browser Information

Include Local Variables

Don't Pack Information

Option

IFr
/FR
jZn

Comment

Generate .SBR files (ignore local variables)

Generate .SBR files

Generate .SBR files but don't compact them

130 Visual Workbench User's Guide

Assembly
Use the Assembly check boxes to generate files containing various combinations of
source code, assembly code, and machine code. Each of the options (/Fa, /FI, and
/Fc) produces a file with the base name of the source file. /Fa produces a file with
the extension .ASM, and the /FI and /Fc options produce files with the extension
.COD.

Assembly Check Boxes

Check Box

Assembly

Include Machine Code

Include Source and
Machine Code

Memory Model

Option

/Fa

/FI

/Fc

Comment

Default assembly-code listing

Generate combined assembly- and machine-code
listing

Generate combined source-, assembly-, and
machine-code listing

Options in the Memory Model category (see Figure 9.9) determine the memory
model used by the compiler and the allocation of stack segments and data segments
for functions.

Category Settings: Memory Model-----------,

Model: Segment Setup:
i=IM-ed-iu-m---rlil-' Iss == DS' Iii
Hew Segment Data Size Threshold: 1'---________ ----'

Figure 9.9 Compiler Options: Memory Model

Model
Every program's code and data are stored in blocks called "segments." The memory
model of the program determines the organization of the segments as well as the
kind of executable file that is produced (tiny memory model produces a .COM file,
all others produce an .EXE file). The compact, large, and huge memory models
allow multiple data segments; in the compact and large models, however, data items
are restricted to less than 64K.

Model List Box

List Entry

Tiny

Small *
Medium

Compact

Large

Huge

Option

JAT

JAS

JAM

JAC

JAL
JAH

Chapter 9 Customizing Build Options 131

Comment

One data segment for both code and data

One data segment; one code segment

One data segment; one code segment per module

Multiple data segments; one code segment

Multiple data segments; one code segment per module

Multiple data segments (arrays can be > 64K) ; one code
segment per module

* This is a default CL option and does not appear in the options string when selected.

Segment Setup
The segment setup options are added as extensions to the existing memory-model
option to modify the stack segment. For example, small memory model with
SS==DS is coded as /ASd. The primary use of modified segment setups is for DLLs
and Windows callback functions.

Segment Setup List Box

List Entry

SS==DS *
SSI=DS, DS loaded on
function entry

SSI=DS, DS NOT loaded
on function entry

Option

d

u

w

Comment

Stack segment equals data segment

Stack segment does not equal the data seg­
ment; the data segment is loaded for each
function entry

Stack segment does not equal the data seg­
ment; the data segment is not loaded at
function entry

* This is a default CL option and does not appear in the options string when selected.

New Segment Data Size Threshold
The /Gt option causes all data items (other than constant data) either assumed to
be far (uninitialized or marked extern), or of a determined size to be allocated in
a new data segment. Type in a value (n) to tell the compiler to allocate all items
whose size is greater than or equal to n in a new data segment. This option requires
a memory model that allows multiple data segments (compact, large, or huge).

New Segment Data Size Threshold Text Box

Entry Option Comment

n JGtn Range of n = 0 to 65534

132 Visual Workbench User's Guide

Assume 'extern' and Uninitialized Data 'far'
Under the compact, large, or huge memory model, the 16-bit compiler allocates
all initialized and uninitialized data and data marked as extern as near if the data
items are smaller than or equal in size to the threshold value set by the /Gt option.
This is important for Windows-based applications since you can only achieve
multiple instances of an application when all data is near. It is also creates more
efficient code. The /Gx - option turns off this default behavior.

With the /Gx - option, the 16-bit compiler makes no assumptions about where the
linker places uninitialized or external data. All references to those data items are
done with far addressing, in case they are placed in a far segment.

Assume 'extern' and Un initialized Data 'far' Check Box

Option Comment

IOx- Use with lAC, fAL, or IAR to keep all data far (lOx is default)

Optimizations
The Optimizations category (see Figure 9.10) lets you determine how the compiler
will tune the performance of your program. Four of the five option buttons (Default,
Disable (Debug), Maximize Speed, and Minimize Size) at the left of the Category
Settings section require no further optimization on your part. If you select the
Customize option button, you can set specific customizations using other option
controls in this dialog box.

Category Settings: Optimizations

Custom Optimizations:

o D~faun Assume no aliasing ~ o Disa.!!le (Debug)
Assume aliasing across function calls
Block-level common subexpr. optimization 1-1

o Ma,!!.imize Speed Global-level common subexpr. optimization

o Minimize Size
Global register allocation
Generate intrinsic functions

@ r.~M~·~~.~·~.~.~j loop optimization
Allow potentially unsafe loop optimizations
Disallow post-co de-generation optimizing
Improve float consistency 7 Enable single point function exit

!nline Expansion of Functions: Inlined Function Si~e:

IDisable z I~ 14 -Size Grade Z l!J

Figure 9.10 Compiler Options: Optimizations

Chapter 9 Customizing Build Options 133

Optimizations Option Buttons

Option Button Option(s) Comment

Default none This is the same as Disable (Debug) without
/Od

Disable (Debug) /Od Tum off all optimization and generate debug
information

Maximize Speed /02 Apply optimizations for fastest program

Minimize Size /01 Apply optimizations for smallest program

Customize (see Custom Select options using the Custom Optimiza-
Optimizations) tions list box

Disable (Debug)
Select the Disable (Debug) option button to create an executable file that contains
debug infonnation. This sets the option lad, which enables debugging if any of the
debugging options IZi, IZ7, or /Zd are set (see the Debug Options category on page
127). lad turns off optimization, which speeds compilation and also makes the
program easier to debug by suppressing code reorganization. IZi, IZ7, and /Zd
create the debug infonnation used by both the Visual Workbench debugger and
CodeView.

Maximize Speed
Select the Maximize Speed option button (102) to generate the fastest possible
program. Its effect is the same as using the following options on the same command
line:

If-law lax IOb2 10V 4 IG2 IGs IGf IGy

Visual C++ Professional Edition recognizes and uses all these options. Visual C++
Standard Edition ignores If-and law, and has a limited lax functionality.

Further increases in speed can be realized with other optimizations, such as the use
of IG3 (use 80386 instructions).

Minimize Size
Select the Minimize Size option button (10 1) to generate the smallest possible pro­
gram. Its effect is the same as using the following options on the same command
line:

If- law 10e las lObI IOV4 IG2 IGs IGf IGy

134 Visual Workbench User's Guide

Visual C++ Professional Edition recognizes and uses all these options. Visual C++
Standard Edition ignores If -, lOw, and lOs.

Further reduction in size can be realized with other optimizations, such as the use of
p-code options and pragmas.

Customize
Select the Customize option button to set Custom Optimizations options. You then
select optimizations using the Custom Optimizations multiple-selection list box.

Custom Optimizations
Options in this list box are enabled when the Maximize Speed, Minimize Size, or
Customize option button is selected. Visual C++ Professional Edition uses all the
options in this list box. Visual C++ Standard Edition uses only 10e, 101, lOp, lOx,
and lOt.

For detailed information on each of these optimizations, see Help or Chapter 1, "CL
Command Reference," in the Command-Line Utilities User's Guide.

Custom Optimizations List Box

List Box Entry

Assume no aliasing

Assume aliasing across function calls

Global-level common subexpr.
optimization

Global register allocation

Generate intrinsic functions

Loop optimization

Allow potentially unsafe loop
optimizations

Improve float consistency

Enable single point function
exit

Favor small code

Favor fast code

Full optimization

Option Comment

lOa Enable use of registers

lOw Reload variables after function call

109 Search functions for common
subexpressions

10e Allocate registers according to fre­
quency of variable use

10i Replace intrinsic functions with
their inline code

101 Perform loop optimizations

10z Optimize loops aggressively

lOp Use coprocessor registers to improve
speed and size

lOr Use for debugging functions with
several returns

lOs Optimize for space

lOt Optimize for time

lOx Maximize for speed. Same as: lObI
10c 10e 109 10i 101 IOn 100 lOt IGs
(Std. Ed. ignores 109 10i IOn)

135

Inline Expansion of Functions
Inline expansion options control which functions become expanded. Expanding a
function inline makes the program faster because it does not incur the overhead
of calling the function. When jab 1 is used, the compiler only expands functions
marked as in line or _Jnline, or C++ member functions defined within a class
declaration. When jOb2 is used, the compiler expands functions marked as inline
or _Jnline, as well as any other function that the compiler chooses.

Inline Expansion of Functions List Box

List Entry

Disable *
Only __ inline

Any suitable

Option

lObO

lObI

IOb2

Comment

Disable inline expansion

Inline expansion is user-defined

Inline expansion at compiler discretion plus user-defined

* This is a default CL option and does not appear in the options string when selected.

Inline Function Size
If you choose "Any suitable" in the Inline Expansion of Functions list box (lOb2),
you let the compiler determine which functions to inline. You can then use the
Inline Function Size list box to give the compiler general rules for determining
which functions to inline, based on their size. You do this by choosing one of 1 a
size grades, from jaVa to /OV9. For example, JOV limits inlining to only the
smallest functions, whereas /OV9 inlines all functions up to a very large size. The
size gradients are linear between the two extremes but do not map directly to spec­
ific precompiled source sizes.

Inline Function Size List Box

List Entry Option

Very Small IOVO

I-Size Grade IOVI

2-Size Grade IOV2

3-Size Grade IOV3

4-Size Grade * IOV4

5-Size Grade IOV5

6-Size Grade IOV6

7-Size Grade IOV7

8-Size Grade IOV8

Fairly Large IOV9

Comment

Only inlines very small functions

Size of function inlined relative to size grade

Size of function inlined relative to size grade

Size of function inlined relative to size grade

Size of function inlined relative to size grade

Size of function inlined relative to size grade

Size of function inlined relative to size grade

Size of function inlined relative to size grade

Size of function inlined relative to size grade

Inlines fairly large functions

* This is a default CL option and does not appear in the options string when selected.

136 Visual Workbench User's Guide

P-Code Generation
If you have Visual c++ Professional Edition, and you want to optimize for the
smallest-possible code size, options in the P-Code Generation category (see Figure
9.11) let you produce an alternate form of code called "p-code."

P-code produces much smaller programs than machine code, but your machine can­
not execute them directly. Instead, they are executed by a small run-time interpreter
incorporated in the executable file. Because of this, programs run slower than when
compiled into machine code. For more information on using p-code, see Chapter 7,
"Reducing Program Size with P-Code," in the Command-Line Utilities User's
Guide.

Category Settings: P-Code Generation

[g] !f;'~:~~:~::9.p.~~:~~:?:~~ .. ~~:::9.:~!
D Disable P-Code .!luoting

D Sort bocal Variables in Occurrence Order

D Rem.ove P-Code Native Entry Points

Humber of P-Code Entry Tables: 1..-1 __________ --'

Figure 9.11 Compiler Options: P-Code Generation

P-Code Generation Check-Box Summary
The check boxes in the P-Code Generation category are listed together here for
summary information. Each specific option is described in the sections that follow.

P-Code Generation Check Boxes

Check Box

P-Code Optimization On

Disable P-Code Quoting

Sort Local Variables in Occurrence
Order

Remove P-Code Native Entry Points

Option

/Oq

/Of­

/Ov-

/Gn

Comment

Tum on p-code optimization

Quoting is on by default

/Ov (default) sorts by frequency
of use

Remove the native-code funct­
ion entry point from each p-code
function

Chapter 9 Customizing Build Options 137

P-Code Optimization On
The 10q option optimizes your code for size by compiling the program into p-code.
You can also use the optimize pragma to tum p-code optimizing off and on in your
source file, to exclude time-critical portions of code from p-code optimization, for
example.

The 10q option is not compatible with any of the following options: /FPa, /FPc,
/FPc87, /Fs, IGr, lSI, ISp, ISs, or 1St. Nor is it compatible with any of the optimiza­
tion options.

Disable P-Code Quoting
P-code quoting (f0f) enables the compiler to find duplicate sections of code and
then create a single p-code function to implement them. This is the default setting
for customization options but should be disabled (fOf -) for debugging, as it makes
code difficult to read. Select this check box to disable p-code quoting.

Sort Local Variables in Occurrence Order
The compiler reduces the size of p-code programs by using I-byte opcodes to refer­
ence local variables. These opcodes are frame-relative addresses, and only a limited
number are available for each function. The optimizer uses one of two algorithms to
determine which variables receive the available opcodes:

• 10v sorts the local variables by frequency of use (the default)

• 10v - sorts the local variables in the order in which they occur

Remove P-Code Native Entry Points
Native-code entry points are a short series of machine-code instructions placed at
the beginning of a function compiled into p-code so that the function can be called
by a machine-code function. You can save about 4 bytes per function by removing
these, but you must make sure that no p-code functions are called by machine-code
functions.

Number of P-Code Entry Tables
Use the IGp option to specify the maximum number of entry tables for your pro­
gram. An entry table is needed for every segment that contains a p-code function or
a function called by a p-code function. One entry table can describe up to 256 such

138 Visual Workbench User's Guide

functions. If a segment contains more functions, the Make P-Code utility (MPC)
creates additional entry tables. Use this option to cause MPC to generate an error if
it requires more entry tables than the number specified by this option.

Number of P-Code Entry Tables Text Box

Entry Option Comment

n /Gpn Defaults to 255 if /Gp is not entered

Precompiled Headers
Precompiled headers (PCR) are a means of greatly speeding compile time by com­
piling header files only once into a precompiled header file (.PCR) and thereafter
using the precompiled header for each build. Although the Visual C++ compiler
allows several ways to create and use precompiled header files, the Precompiled
Readers category in the C/C++ Compiler Options dialog box (see Figure 9.12)
presents two simplified approaches to implementing this feature.

You can use the new simplified method (IYX), which requires very little knowledge
of precompiled headers, or you can use the more flexible method (lYc and lYu), for
more control and for mixed-language (C and C++) source files.

Category S eUings: Precompiled Headers

o Au!omatic Use of Precompiled Headers

f.)ecompib hWYf~h H~~<d~J!: 1 1
C++ Files

Pr~compile through Header: 1 I
PH~c~~.m~)Je wi~h ~>OYfC~~·. IHELlO.CPP 12:1

C Files

PrecomPile through Header: 1 I
P!ec~)m~lib wi~h !>OYW~~·. 1 12:1

Figure 9.12 Compiler Options: Precompiled Headers

Automatic Use of Precompiled Headers
The IYX option instructs the compiler to use a precompiled header file with the de­
fault name MSVC.PCR if it exists, or to create one if it does not exist. The file is
always created in the current directory (the /Fp option, which specifies a precom­
piled header filename and directory, is not supported in Visual Workbench).

Chapter 9 Customizing Build Options 139

Automatic Use of Precompiled Headers Check Box

Option Comment

/YX Automatically creates and uses the MSVC.PCH precompiled header file

Using /yX is the easiest way to implement precompiled headers. If your project
contains only one source file, all you need to do is enable the Automatic Use of
Precompiled Headers check box. When the source file is compiled, all preprocessor
directives (such as #include, #define, or #if, for instance) from the beginning of the
file up to where the C or C++ code starts are compiled into MSYC.PCH. There­
after, whenever you build your project, the precompiled code from MSYC.PCH is
used in place of the preprocessor directives, assuming you haven't altered the
preprocessor directives in any way. Where this really benefits is in precompiling
large header files, such as WINDOWS.H, that appear in #include statements.

If you have more than one source file in your project, you need to take a little care
in order to use /yX effectively. There are basically three ways to use /yX with
multiple files. In all cases, preprocessor directives must appear contiguously, in the
same order, and at the beginning of each file. (The order within a group of #define
statements is an exception and does not have to be identical.)

• Method 1: Place identical preprocessor code in every file. Make sure that the
beginning of every source file in your project, up to where source code begins,
contains identical preprocessor directives. This way, the first file compiled cre­
ates the MSYC.PCH file and all other source files use it. In subsequent builds,
all source files use the MSYC.PCH file.

• Method 2: Place a subset of the preprocessor code at the beginning of every file.
For example, if you have some headers used by every file, put the #include
statements first and in the same order in each source file. The compiler then
determines if the subset of contiguous preprocessor directives is large enough
to warrant a precompiled header file. If so, it creates an MSYC.PCH file with
common preprocessor elements. As an example, suppose that A F I L E . C is com­
piled first and contains the following code at the start of the file:

#include <windows.h>
#include "myapp.h"
#include "afile.h"

B F I L E . C is compiled next and contains:

#include <windows.h>
ft inc 1 u de" my a p p . h"
#include "bfile.h"

140 Visual Workbench User's Guide

When it compiles A F I L E . C, the compiler creates an MSYC.PCH file that con­
tains WINDOWS. H, MYAPP. H, and AF I LE. H. When it compiles B FILE. C, since
the preprocessor directives don't match exactly, the compiler creates a new
MSYC.PCH file; however, it includes only WI NDOWS. Hand MYAPP. H in it
since these are common to both files. This has the advantage that both source
files can now use the MSYC.PCH file for the majority of included code. The
disadvantage is that MSYC.PCH had to be compiled twice.

• Method 3: Identify in advance which header files (and other preprocessor direc­
tives) you want precompiled by instructing the compiler where to stop precom­
piling, or using precompiled, preprocessor directives. To use this method, spec­
ify a header filename in the Precompile through Header text box that marks the
last #include statement in the precompiled header data.

As an example, suppose you would be content if you could just precompile
WINDOWS.H. To do so, simply place the following statement at the beginning
of every source file in your project:

#include <windows.h>

Then select the Automatic Use of Precompiled Headers check box and type
wi ndows. h in the Precompile through Headers text box. WINDOWS.H is pre­
compiled when the first source file is compiled and all source files thereafter use
the precompiled code. This method can also be used by projects with only one
source file to limit what goes into the precompiled header file.

Note that you can achieve the same results by inserting the directive
#pragma hdrstop at a common point in all source files before which you want
all preprocessor directives precompiled. For example, in the previous example,
you could place the following code at the beginning of every source file:

#include <windows.h>
#pragma hdrstop

When used with /yX, #pragma hdrstop does not require or use a filename
argument and should be placed prior to source code in every file.

If you want to observe the behavior of the /yX option during the build, use the /W 4
option (Warning Level in the Custom Options category). Note that /yX is slower
than /Yu when generating browser database information.

The compiler uses the following rules when comparing an existing MSYC.PCH file
for consistency:

• The current compiler options must match those specified when the precompiled
header was created.

• The current working directory must match that specified when the precompiled
header was created.

Chapter 9 Customizing Build Options 141

• The order of all preprocessor directives, with the exception of #define direc­
tives, must match those specified when the precompiled header was created.
The values of #define directives must match. The #pragma directives must be
nearly identical-multiple spaces outside of strings are treated as a single
space.

• The value and order of include paths specified using the /I option must match
those used when the precompiled header was created.

• The timestamps of all the header files used to build the precompiled header must
match those that existed when the precompiled header was created.

c++ PCH and C PCH Information
The following rules apply for building precompiled header files from Visual Work­
bench using the /Y c and /yu model:

• There can be one precompiled header (.PCH) file for each source language in
the project (C and C++).

• For a given language, all files use the same precompiled header.

• Each source file in a given language must include the same header files, in the
same order, up to the header file that you specify in the header text box.

• The include file must be specified in each source file with the same path.

To implement precompiled headers in modules of a specific language, type the
name in the Precompile through Header text box (in the C++ Files or C Files group)
of the last header file you want precompiled. Then, from the corresponding
language's Precompile with Source list box, select a file that includes the header
file in the Precompile through Header text box.

For example, assume you have a stub header file that is included by all of your
source files and contains the following lines:

1foinclude "first.h"
1foinclude "second.h"
1foinclude "last.h"

Also, assume one of your source files is called MYPROG. CPP. To include FI RST. H,
SECOND. H, and LAST. H in the precompiled header file, type LAST. H in the

142 Visual Workbench User's Guide

Precompile through Header text box in the C++ Files group. Then select
MY PRO G . C P P from the Precompile with Source list box in the C++ Files group.

Note You cannot use the /Fp command-line option from within Visual Workbench.
Nor can you use the #pragma hdrstop declaration in any source file in your pro­
ject when using /Y c and /yu. You can, however, access these capabilities through
an external makefile. See Programming Techniques and the Command-Line Utili­
ties User's Guide for more information.

In the following tables, the Option column describes what you will see in the op­
tions string when you implement precompiled headers. If you are using only one
language, you will see one /Yu option followed by the header filename. If you are
using mixed-language precompiled headers, you will see one /Yu option for both
header files specified. Note that the /Y c option does not appear in the options string.

Also note that the Option column does not indicate the actual CL command line that
is generated. In the makefile, a separate /Yu option and /Y c option is generated for
each language, on a per-module basis, accompanied by the respective header and
source filenames you specify.

Precompile through Header: Text Boxes (for both C Files and C++ Files)

Entry Option Comment

header filename /Yu headerfilename N arne of the last header file used in the
precompiled header

Precompile with Source: List Boxes (for both C Files and C++ Files)

Entry Option Comment

source filename

Preprocessor

/Yu source filename source filename is the name of the source
file that includes the last header file used
in the precompiled header

The Preprocessor category (see Figure 9.13) lets you control elements used by
the C/C++ preprocessor, such as symbols, macros, and include paths. For a list of
ANSI and Microsoft-specific predefined macros, see Chapter 7 in the C Language
Reference, Chapter 13 in the C++ Language Reference, or Help.

Category Settings: Preprocessor

Symbols and Macros to Define:

Individual Symbols to .!!ndefine:

D Undefine All Symbols

Include Path:

Chapter 9 Customizing Build Options 143

D Ignore Standard Places of Include Files

Figure 9.13 Compiler Options: Preprocessor

Symbols and Macros to Define
Use the /D option to define constants and macros for your source file. This has
the same effect as using a #define preprocessor directive at the beginning of your
source file. You cannot use any identifier that contains spaces. You can assign a
number or a string to the identifier using the equal sign (=) with no intervening
spaces. If you omit the equal sign, the identifier is assumed to be defined (value
of 1).

Type all the constants and macros you want to define separated by spaces or
commas. Note that all project types define _DEBUG by default for debug build
mode. This is used by the Microsoft Foundation Class Library and may be disre­
garded or removed if your project does not use the Microsoft Foundation classes.

Symbols and Macros to Define Text Box

Entry Option Comment

identifier ID "identifier" Maximum of 30 identifiers

Individual Symbols to Undefine
To turn off individual symbols that you have defined or that are predefined, type the
names of all symbols separated by spaces, commas, or semicolons. A IV option is
then created for each symbol name.

Individual Symbols to Un define Text Box

Entry Option Comment

name IV "name" Undefines existing symbols

144 Visual Workbench User's Guide

Undefine All Symbols
To tum off all symbols (both user-defined and predefined), select the Undefine All
Symbols check box.

Undefine All Symbols Check Box

Option Comment

lu Undefines all defined symbols

Include Path
You can add to the list of directories searched for include files by typing the path in
the Include Path text box. To indicate more than one path to search, separate the
paths by spaces, commas, or semicolons. When an #include directive is encoun­
tered in a program (and a complete path is not provided), the compiler searches the
current directory first, then the path or paths specified with the /I option, and finally
the paths specified in the Directories dialog box, accessed from the Options menu.

Include Path Text Box

Entry Option Comment

directory II "directory" Searches directory for include files

Ignore Standard Places of Include Files
You can prevent the compiler from searching the standard places for include files
by using the IX (for "exclude") option. This excludes the current directory and any
directories listed in the Directories dialog box, accessed from the Options menu.
You can use this option with the /I option to define the location of include files with
the same name (but using different code) as those in the standard places.

Ignore Standard Places of Include Files Check Box

Option Comment

IX Ignore the current directory and the Visual Workbench include directories

Segment Names
The compiler places code and data into separate segments in the object file. Every
segment has a name that is used by the linker to determine which segments to com­
bine and how segments are ultimately grouped in the executable file. The Segment
Names category (see Figure 9.14) lets you set names for the data, code, p-code,
module, and v-table segments.

Chapter 9 Customizing Build Options 145

Category Settings: Segment Names -------------,

Da!a Segment:

Code S~ment:

f.-Code Segment:

Module Name:

':1...-T able Segment:

Figure 9.14 Compiler Options: Segment Names

Data Segment
The /ND option renames the default data segment of your code. This is mainly use­
ful for shared data segments. There are some important restrictions involving the
use of this option. See Chapter 1, "CL Command Reference," in the Command­
Line Utilities User's Guide for more information.

Data Segment Text Box

Entry Option Comment

datasegment /ND "datasegment" Renames the default data segment

Code Segment
The /NT option renames the default code segment for medium-, large- and huge­
model programs. It appends _TEXT to the specified name. It should not be used
with tiny or small model.

Code Segment Text Box

Entry Option Comment

codesegment /NT "codesegment" Renames the default code segment

P-Code Segment
The /NQ option sets the name of a temporary segment for the p-code compiler; the
temporary segment is removed before the program is run. This option can only be
used with the /Oq (p-code optimization) option. During its operation, the p-code

146 Visual Workbench User's Guide

compiler generates several temporary segments. If you encounter LINK error 1049
("too many segments"), use /NQ to combine these temporary segments into one
temporary segment.

P-Code Segment Text Box

Entry Option Comment

pcodesegment /NQ "pcodesegment" Names a temporary p-code segment

Module Name
The /NM option names a module segment. It is recommended that you use the /NT
option to rename code segments. /NM is maintained for compatibility with earlier
versions of Microsoft C.

Module Name Text Box

Entry Option Comment

modulename /NM "modulename" Sets module in code segments

V-Table Segment
The /NV option sets the name of a segment for far v-tables. All far v-tables in a
C++ program are grouped in the specified segment.

V -Table Segment Text Box

Entry Option Comment

vtablesegment /NV "vtablesegment" Sets the segment name for far v-tables

Windows Prolog/Epilog
The Windows Prolog/Epilog category options (see Figure 9.15) create prolog and
epilog code for far functions in both protected mode and real mode. Select an option
in the Generate Prolog/Epilog For group for either a real-mode or protected-mode
application. For protected-mode applications, you can then use the Protected Mode
Options check boxes.

Chapter 9 Customizing Build Options 147

,.... Category Settings: Windows Prolog/Epilog

r-Generate Prolog/Epilog For

o Hone

@ f.rotected Mode Application Functions

o Protected Mode Dll Functions

o Rital Mode _far Functions

o Rea! Mode _far Non-Callback Functions

r- Protected Mode Options

o .!ienerate for _far Functions

o Emit linker EXPDEF Records

Figure 9.15 Compiler Options: Windows Prolog/Epilog

Generate Prolog/Epilog For
In real mode, use the /Gw option to generate Windows prolog/epilog code for
Windows callback functions. In protected mode, this code is optimized for each
function using the /GA option for applications and the /GD option for DLLs. In
real-mode programs that contain far functions but no callback functions, you can
optimize the prolog/epilog code using the /GW option, which is an improved
version of the /Gq option in previous compilers.

Generate Prolog/Epilog For Options Buttons

Option Button Option Comment

None None Do not optimize Windows prolog/epilog
code

Protected Mode Application /GA Optimize Windows prolog/epilog code
Functions for protected-mode callback functions

Protected Mode DLL /GD Optimize Windows prolog/epilog code
Functions for protected-mode callback functions

Real Mode __ far Functions /Gw Generate Windows prolog/epilog code
for real-mode far callback functions

Real Mode far Non- /GW Optimize Windows prolog/epilog code
Callback Functions for real-mode far non-callback functions

148 Visual Workbench User's Guide

Protected Mode Options Check-Box Summary
When you select either of the protected-mode options (/GA or /GD), the Protected
Mode Options check boxes are enabled. This lets you enable the /GEe and /GEf
options.

Protected Mode Options Check Boxes

Check Box Option

Generate for __ far functions /GEf

Emit Linker EXPDEF Records /GEe

Linker Options

Comment

Treat all far functions as if they were
marked as __ export

Force emission of linker EXPDEF
records

To set linker options, choose Linker in the Project Options dialog box Customize
Build Options group. This opens the Linker Options dialog box (see Figure 9.16).
Each option category is described below, with a short description of each individual
option that can be changed in that category's Category Settings group. For more
information on linker options, see Help or Chapter 2, "Linking Object Files with
LINK," in the Command-Line Utilities User's Guide.

Linker Options

Build Options: @ .!2ebug Specific 0 Release Specific 0 kommon to Both I OK

o ptions ~tring: I Cancel
JNOlOGO JlIB:"libw" INOD JPACKC:61440 JSTACK:5120 JAlIGN:16 .. ~~~~~~~
JONERROR:NOEXE JCO JUB:"commdlg.lib" JUB:"olecli.lib" I Help
JUB:"olesvr.lib" IUB:"shell.lib" .

C~tegory:

Memory Image
Miscellaneous
Output
Windows libraries

+ I Use Project Defaults I
Category Settings: Input----------------,

.libraries: Llli_bw _______________ -----'

r2l !gnore Default libraries

SQecific libraries to Ignore:

D Prevent Use of Extended Dictionarl!.

D Distin!l.!!ish letter Case

Figure 9.16 The Linker Options Dialog Box

Input

Chapter 9 Customizing Build Options 149

At the beginning of the linking process, the linker attempts to resolve external
references by searching libraries and retrieving the appropriate object code. The
Input category (see Figure 9.17) lets you specify special library options to the
linker.

Category Settings: Input-------------,

Libraries: I '-_______________ ----'
D Ignore Default Libraries

Sl!.ecific Libraries to Ignore:

D Prevent Use of Extended Dictionar!.

[3J Distingyish Letter Case

Figure 9.17 Linker Options: Input

Libraries
To include libraries for the linker to search, enter the names, separated by spaces
or commas, in this text box. You do not need to enter the .LIB extension, as this is
assumed.

To use any of the standard Windows API libraries, type the name in the Libraries
text box or use the Windows Libraries category, which contains a list box of all
supported Windows libraries. If you type the name of a Windows API library in the
Libraries text box, the name you typed is immediately removed from the Libraries
text box and the corresponding Library name is selected in the Import Libraries and
DLLs list box in the Windows Libraries category. Duplicate library names typed in
the Libraries text box are also removed automatically.

Libraries Text Box

Entry Option Comment

library name /Lill:" library name" Causes library name .Lill to be linked

150 Visual Workbench User's Guide

Note that the "/LIB:" mnemonic is not a valid command-line option for LINK. It is
used here to represent libraries as command-line arguments so that you can view
them in one place along with other linker options. The "/LIB:" mnemonic does not
appear as such in the makefile.

Specific Libraries to Ignore
The /NOD option tells LINK not to search default libraries named in object files. If
you want the linker to ignore all libraries, select the Ignore Default Libraries check
box. If you want LINK to ignore specific libraries, type the name or names of those
libraries in this text box, separated by spaces, commas, or semicolons. If one of the
libraries you specify to ignore contains OLDNAMES.LIB, you must specify
OLDNAMES.LIB in the Libraries text box.

Specific Libraries to Ignore Text Box

Entry Option Comment

library name /NOD:" libraryname" Do not search default library libraryname

Input Check-Box Summary
The check boxes in the Input category are listed together here for summary infor­
mation. Each specific option is described in the sections that follow.

Input Check Boxes

Check Box

Ignore Default Libraries

Prevent Use of Extended Dictionary

Distinguish Letter Case

Ignore Default Libraries

Option

/NOD

/NOE

/NOI

Comment

Ignore all default libraries

Do not use extended dictionary

Do not ignore case differences

This check box sets the /NOD option, which tells LINK not to search any default
libraries named in object files. Note that if you use this option, you must also spec­
ify OLDNAMES.LIB in the Libraries text box to resolve external references.

Prevent Use of Extended Dictionary
The /NOE option prevents the linker from searching extended dictionaries when
resolving references. An extended dictionary is a list of symbol locations in a
library created with the Microsoft Library Manager (LIB). The linker consults
extended dictionaries to speed up library searches. When LINK uses extended
dictionaries, it gives an error when a duplicate definition is found. Use this option
when you redefine a symbol and an error occurs.

Chapter 9 Customizing Build Options 151

Distinguish Letter Case
This check box preserves case in identifiers. Since C and c++ distinguish between
uppercase and lowercase, it is a good idea to use the /NOI linker option.

Memory Image
Once the linker has resolved all external references, it determines how the execu­
table file will use memory when it is loaded. The Memory Image category (see
Figure 9.18) has several options for optimizing data and code segmentation, setting
stack size, and other memory-related parameters.

Category Settings: Memory Image

o Don't Remove !!nreferenced Packaged Functions

o Pad<. LXf He

Pact Code: 161440
~========~

e.ack Data: 1

:=::=======~
Slack Size: L-151_2_o __ --'

o Translate Far Calls

Mall. N.umber of Segments: <-I __________ ----'

Figure 9,18 Linker Options: Memory Image

Memory Image Check-Box Summary
The check boxes in the Memory Image category are listed together here for sum­
mary information. Each specific option is described in the sections that follow.

Memory Image Check Boxes

Check Box

Don't Remove Unreferenced
Packaged Functions

Pack EXE File

Translate Far Calls

Option

/NOPACKF

/EXEPACK

/FARCALL

Comment

/pACKF is provided by default

Optimize executable file for relocation

Optimize far calls to functions in the
same segment

Don't Remove Unreferenced Packaged Functions
By default, the linker removes unreferenced packaged functions, which may be
created with the /Gy compiler option and are always created by C++ member func­
tions. The /Nap ACKF option disables this action. For a description of packaged
functions, see "Enable Function Level Linking" on page 122.

152 Visual Workbench User's Guide

Pack EXE File
This check box produces the IEXEP ACK option, which directs LINK to remove
sequences of repeated bytes (usually null characters) and to optimize the load-time
relocation table before creating the executable file. This may decrease the execu­
table file size if it contains at least 500 load-time relocations and large streams of
repeated characters.

Translate Far Calls
The IFARCALL option directs the linker to optimize far calls to procedures that lie
in the same segment as the caller. This can result in slightly faster code; the gain in
speed is most apparent on 80286-based and later computers.

Pack Code
The /p ACKC option turns on code-segment packing. This is on by default for
Windows-based programs and DLLs. The linker packs physical code segments by
grouping neighboring logical code segments that have the same attributes. /p ACKC
changes the segment and offset addresses so that all items in a group share the same
segment. This affects only programs with multiple code segments and can result in
slightly faster and more compact code. The number you enter in the Pack Code text
box specifies the maximum size of groups formed by /pACKC (the default segment
size without /pACKC is 65,500 bytes).

The /p ACKC option is not recommended when linking Windows-based applica­
tions with IF ARCALL.

Pack Code Text Box

Entry Option Comment

n /pACKC:n Pack adjacent code segment definitions

Pack Data
The /p ACKD option turns on data-segment packing for programs with multiple data
segments. Adjacent data-segment definitions are combined into the same physical
segment. The linker considers any segment definition with a class name that doesn't
end in COD E as a data segment. The linker stops adding segments to a group when it
cannot add another segment without exceeding the number (n) you enter in this text
box (the default segment size without /pACKD is 65,536 bytes). Packing data seg­
ments can result in slightly faster and more compact code. You can use /pACKD to
get around the limit of 254 physical data segments per executable file imposed by
an operating system.

Chapter 9 Customizing Build Options 153

Pack Data Text Box

Entry Option Comment

n /PACKD:n Pack adjacent data segment definitions

Stack Size
The /ST ACK option lets you change the stack size from its default value of 2048
bytes. You can enter any even number up to 65,534. Do not specify /STACK for
aDLL.

Stack Size Text Box

Entry Option Comment

n /STACK:n Set stack size to n bytes

Max. Number of Segments
The /SEG option sets the maximum number of program segments. You can use this
text box to set the maximum number of segments from 1 to 16,384. Since LINK
must allocate memory to keep track of each segment, the higher this number is, the
less space LINK has to run in. If LINK runs out of memory, try setting this number
to the actual number of segments in your program and relinking. The default is 128
segments when /SEG is not specified.

Max. Number of Segments Text Box

Entry Option Comment

n /SEG:n Set maximum number of program segments from 1 to 16,384

Miscellaneous
The Miscellaneous category (see Figure 9.19) contains just two controls-a check
box to suppress banner information from the Output window, and a text box that
lets you type in command-line options to the LINK utility directly without using the
dialog-box controls.

154 Visual Workbench User's Guide

Category Settings: Miscellaneous

IZI Syppress Display of Sign-On Banner

Other Options: 1'-_____________ ----'

Figure 9.19 Linker Options: Miscellaneous

Suppress Display of Sign-On Banner
The /NOLOGO option suppresses the copyright message displayed when LINK is
invoked. This speeds the build slightly since the Output window is not updated with
this information.

Suppress Display of Sign-On Banner Check Box

Option Comment

/NOLOGO Banner not sent to Output window

Other Options
The Other Options text box allows you to directly type in any LINK command-line
option to be included in the project makefile. This lets you copy linker options from
another makefile and use command-line linker options that are not available from
dialog-box controls. For a complete description of all LINK command-line options,
see Chapter 2, "Linking Object Files with LINK," in the Command-Line Utilities
User's Guide (available with Visual C++ Professional Edition).

Important You are responsible for the accuracy of any option you enter in this text
box. If Visual Workbench recognizes the option as one that can be set using a dia­
log-box control, it changes the dialog-box control to reflect the option and removes
the option from the Other Options box. However, if the option is not recognized, it
is left on the options string as is and passed to the linker.

Output

Chapter 9 Customizing Build Options 155

The linker is capable of producing many different types of files besides the target
file type. Options in the Output category (see Figure 9.20) give you control over
which files the linker generates.

Categorl' Settings: Output

[3J .!ienerate Debugging Information

D Create MAP File

D Include line Numbers/Addresses in MAP

[3J frevent Creation of EXE on Linker Error

D Produce More Detailed Output

D Fwd.W~tJ COM File

Segment Alignment: r-1'-6 -------,

Figure 9.20 Linker Options: Output

Output Check-Box Summary
The check boxes in the Output category are listed together here for summary
information. Each specific option is described in the sections that follow.

Output Check Boxes

Check Box

Generate Debugging
Infonnation

Create MAP File

Include Line
Numbers/Addresses in MAP

Prevent Creation of EXE on
Linker Error

Option Comment

/CO Use with /Zi, /Z7, or /Zd
compiler options

/MAP Generate list of segments and
public symbols

/LINE Generate list of segments and
line numbers/addresses

/ONERROR:NOEXE Do not write executable file to
disk when a linker error occurs

Produce More Detailed Output /INFO Display link status infonnation

Produce tiny memory-module­
executable file

Produce COM File rrINY

156 Visual Workbench User's Guide

Generate Debugging Information
The JCO option adds Microsoft symbolic debugging information to the executable
file, which allows you to use either the Visual Workbench debugger or Code View
to debug it. If the object files were not compiled with either the jZi , jZ7, or jZd
option, this option places only public symbols in the executable file.

Create Map File
The /MAP option creates a map file that contains a list of segments as well as pub­
lic symbols sorted by name and by address. Symbols in C++ appear in the form of
decorated names. The map file contains the same name as the executable file with
an extension of .MAP.

Include Line Numbers/Addresses in MAP
The /LINE option creates a map file that contains a list of segments and also the
line numbers and associated addresses from source files to the map file. It does not
add public symbols to the map file as the /M option does.

Prevent Creation of EXE on Linker Error
By default, if certain errors occur, LINK writes an executable file to disk and over­
writes any existing file having the same name. The resulting executable file has the
error bit set in its header. Specify jONERROR:NOEXE to prevent such a file from
being written to disk and preserve any existing file having the same name.

Produce More Detailed Output
The /INFO option displays to the Output window information about the linking pro­
cess, including the phase of linking, the object files being linked, and the library
modules used.

Produce COM File
Select this check box to produce the /TINY option. This causes LINK to produce a
.COM file instead of an .EXE file. When the JCO option (Generate Debugging
Information) is used with /TINY, debug information is put in a separate file with
the same base name as the .COM file and with the .DBG extension. A C or C++
program linked as a .COM file must consist of only one physical segment, must not
use far references, and cannot be a Windows-based program.

Chapter 9 Customizing Build Options 157

Segment Alignment
The / ALIGN option aligns segments in a segmented executable file at the bounda­
ries specified by the number you enter in the Segment Alignment text box. The
alignment size is in bytes and must be an integer power of two, or else is rounded
up by LINK to the next higher power of two. The default alignment is 512 bytes
when / ALIGN is not specified. This only affects Windows-based programs.

Segment Alignment Text Box

Entry Option Comment

n /ALIGN:n Align segments at boundaries of n bytes

Windows Libraries
The Windows Libraries category (see Figure 9.21) has a single list box to allow
you to easily find and use the Windows API libraries that you want.

- Category Settings: Windows Libraries

import Libraries and DLLs:
co tot tot DLG
DDEtotL
LZEXPAND
tot tot SYS TE tot
OLECLI
OLESVR
PENWIN
SCRNSAVE
SHELL
STRESS
TOOLHELP
VER

Figure 9.21 Linker Options: Windows Libraries

Import Libraries and DLLs
Use this multiple-selection list box to instruct the linker to link any of the Windows
version 3.1 API libraries that you select. For each Windows library you select, an
entry of /LIB:"libraryname" (where libraryname represents the Windows library)
appears in the options string.

Note The "/LIB:" mnemonic is not a valid command-line option for LINK. It is
used here to represent libraries as command-line arguments so that you can view
them in one place along with other linker options. The "/LIB:" mnemonic does not
appear as such in the makefile.

158 Visual Workbench User's Guide

Import Libraries and DLLs List Box

Option
List Entry (See preceding note)

COMMDLG /LIB:"COMMDLG"

DDEML /LIB:"DDELM"

LZEXPAND /LIB:"LZEXPAND"

MMSYSTEM /LIB:"MMSYSTEM"

OLECLI /LIB : "OLECLI"

OLESVR /LIB:"OLESVR"

SCRSAVER /LIB :"SCRSA VER"

SHELL /LIB : "SHELL"

STRESS /LIB :"STRESS"

TOOLHELP /LIB:"TOOLHELP"

VER /LIB:"VER"

Resource Compiler Options

Comment

Common dialog box templates and
procedures

Dynamic Data Exchange

Lempel-Ziv data compression

Windows Multimedia Extension

Object linking and embedding client

Object linking and embedding server

Screen saver, WinMain, and other
startup code

Registration, Drag&drop, and file
association

Application stressing

User heap, GDI heap, memory
management

File Installation

The Resource Compiler Options dialog box lets you select specific options to the
Microsoft Resource Compiler, which is run from the makefile whenever you include
a resource file (.RC) in the project list.

You select resource compiler options by either selecting check boxes or by typing
the options into the Custom Options or Defines text boxes (see Figure 9.22). If a
conflict occurs between a check box option and a text box option, the one specified
in the text box takes precedence.

Resource Compiler Options

Defines-----------,

!2ebug: II

~========~ Release: I
~-------~

Figure 9.22 Resource Compiler Options Dialog Box

Chapter 9 Customizing Build Options 159

Disable Load Optimization
This check box tells the resource compiler not to arrange preload information into
contiguous segments. This is the same as the IK custom option.

Custom Options

Defines

The Custom Options text box lets you set specific resource compiler options by
simply typing them in. A complete description of Microsoft Resource Compiler
options can be found in Help.

The Debug and Release text boxes let you define symbols to be checked by the
resource compiler dependent upon the current build mode. This lets you specify
conditional branching in a resource script file based on whether a term is defined
in the Defines text box that corresponds to your build option.

For example, you could defme DEB U G in the Debug text box and use the directives
11i f de f DEB U G and tie n d i f in your resource script to surround a Debug menu
statement. This menu would then appear when you perform a debug build but would
not appear in a release build.

The Defines text boxes take the place of using the ID custom option.

161

CHAPTER 10

Using the Browser

Part of the process of program development involves understanding relations
between program elements, such as between base classes and derived classes or
between called and calling functions. It is also important to be able to move
quickly between related program elements that may be located in several differ­
ent files.

The Visual Workbench graphical browser, an integrated version of the Microsoft
Source Browser, uses information generated by the compiler to help you find
related symbols and display symbol relationships. The generated database con­
tains information about where each symbol is defined and used, and about the
relationships among modules, constants, macros, variables, functions, and
classes.

This chapter introduces you to the capabilities of the browser, including creating,
opening, and querying a browser database. The chapter also shows techniques for
viewing class hierarchies, function call trees, and symbol definitions and
references.

Creating a Browser Database
To use the browser, you must first create a browser database. Visual Workbench
does this for you automatically as part of the normal build process when the
Browser Information check box in the CjC++ Compiler Options dialog box is
enabled.

Note that the Browser Information compiler option is enabled by default for all
project types. Since generating a browser database slows down the build and
browser database files can be very large, you may want to tum off Browser
Information when you do not specifically want to build a browser database.

The following procedure assumes that you have a project loaded in Visual Work­
bench. You may want to use the SCRIBBLE sample project located in the
\MSVC\MPc\sAMPLES\sCRIBBLE directory as an example to experiment with

162 Visual Workbench User's Guide

the browser's capabilities. See Chapter 8, "Using Projects," to learn how to open
and build a project.

~ To create a browser database (.BSC) file:

1. From the Options menu, choose Project.

The Project Options dialog box appears.

2. Under Customize Build Options, choose Compiler.

The C/C++ Compiler Options dialog box appears.

3. In the Category box, select Listing Files.

This opens the Category Settings: Listing Files group in the lower right-hand
comer of the dialog box, which contains the Browser Information categories
(see Figure 10.1).

4. Select the Browser Information check box to enable it, if it isn't already
enabled.

Include Local Variables should be checked and Don't Pack Information should
be cleared (not checked). (See page 129 for information on customizing the
Browser Information options.)

C/CH Compiler Options

Build Options:@.!2ebugSpecificOReleaseSpecificOkommontoBoth ... 1 ~~O~K~~
Options .s.lring: FI

~-~~------------------~ .. ~ ~~~Ca~n~ce~I~~
Inologo IGs IG2 IZpl 1W3 lZi lAM IOd ID "_DEBUG" IFR IGA .-

I Help

+ I Set to Defaults I
C.!!tegory: Category Sellings: Listing Files --------------,

Code Generation
Custom Options
Custom Options (C++)
Debu 0 tions

Memory Model
Optimizations
P-Code Generation
Precompiled Headers
Preprocessor
Segment Names
Windows Prolog/E pilog

[2J !!.rowser Information

[2J Include local Variables

D Don't e.ack Information

D Ass.!l.mbly

D bdude .¥'<H~hine Code

D bdurie ~>OYF'~~ m'ld M,;(;hifle C~de

Figure 10.1 C/C++ Compiler Options: Listing Files

5. Choose OK in the C/C++ Compiler Options dialog box.

Chapter 10 Using the Browser 163

6. Choose OK in the Project Options dialog box.

7. Click the Rebuild button on the toolbar or choose Rebuild All Targetname from
the Project menu.

During the build, Visual Workbench creates a browser database file with the
name of your project and the extension .BSC in your project directory.

Opening a Browser Database
You can open a browser database by using one of four methods:

• Choosing the Open command on the Browse menu

• Choosing the Open command on the File menu

• Choosing the Next Definition or Next Reference command on the Browse menu

• Dragging a browser database file (.BSC) from the Windows File Manager and
dropping it into Visual Workbench

The first method, choosing the Browse menu's Open command, opens the
Browse window. The Open command is normally followed by a browser data­
base filename, which is usually the name of the current project plus a .BSC
extension. However, if you have opened a browser database using the Open File
dialog box, the name of the most recently opened database appears after the Open
command.

The Open command on the Browse menu appears with no name following it if
there isn't an active project and you haven't opened a browser database since you
started Visual Workbench. In this case, choosing the Open command opens the
Open File dialog box with a file filter of * .BSC.

~ To open the Browse window for the current project:

• From the Browse menu, choose Open Project.BSC (where Project is the name
of the current project).

If you have created a browser database for the current project, the Browse win­
dow appears. Otherwise, a message appears, indicating that the browser data­
base file cannot be opened.

The second method of opening a browser database is to directly open any existing
browser database by using the Open File dialog box. This can be a browser data­
base generated by Visual Workbench or by Microsoft Programmer's WorkBench.

164 Visual Workbench User's Guide

~ To open a browser database using the Open File dialog box:

1. From the File menu, choose Open.

Or click the Open button on the toolbar.

Or choose Open from the Browse menu if no filename follows the Open com­
mand (that is, Open is followed by an ellipsis ...).

The Open File dialog box appears.

2. From the drop-down list in the List Files of Type box, select Browse Database
(*.bsc).

3. Use the Directories and Drive list boxes to locate the directory that contains the
browser database.

The browser file appears in the file list.

4. Double-click the browser database filename.

The Browse window appears (see Figure 10.2).

r:

Query
Twe: I Definitions and References Iii I Display Result I

5ybset: IALL Iii I FW'fi~~m' Qll~~T I
5 ymbol: I z I [ij

Figure 10.2 The Browse Window

I C~F'md Lee I
I Cdkp'e t'hd~~ I

When you open a browser database in this manner, the filename of the currently
open database appears on the Browse menu following the Open command. When
you close the Browse window, the Browse menu's Open command continues to
display the name of the most recently used database.

The third method of opening a browser database is to use the Browse menu's Go
to Definition or Go to Reference command when a browser database is associated
(named on the Browse menu) but not open.

Chapter 10 Using the Browser 165

~ To open a browser database and jump to the first definition or reference:

1. Select a symbol name in a source file (or place the insertion point at the begin­
ning of a symbol name).

Note that the browser database filename associated with the source file must
appear on the Browse menu after the Open command.

2. Choose Go to Definition (Ft 1) to jump to the first definition, or Go to Reference
(SHIFf+Ftl) to jump to the first reference of the symbol.

The database named in the Browse menu's Open command is opened, the
Browse window is minimized, and the source file containing the first definition
(or first reference if you chose Go to Reference) appears with the insertion point
at that definition or reference.

See "Browsing Definitions and References" on page 176 for information on using
the Browse window for querying definitions and references.

Finally, as with source files and resource files, you can use the Windows File
Manager to display a file icon and drag and drop the file icon into Visual Work­
bench. When the file icon is a browser database file (with an extension of .BSC),
the Browse window opens with the browser database.

Querying a Browser Database
You can search for information in a browser database by using one of two basic
methods:

• U sing the query controls in the Browse window

• Using the commands on the Browse menu

The advantage of the Browse window is that it lets you see graphical representa­
tions of interclass and interfunction relationships and lets you construct lists of
symbols from which to query definitions and references.

The advantage of using the commands on the Browse menu is that you can jump
immediately to definitions and references of a symbol while you are writing or
editing code. The Browse menu's Go to Definition and Go to Reference com­
mands work in conjunction with the Next and Previous commands to traverse all
definitions or references of a particular symbol.

This section provides a quick summary of querying a browser database using
both methods. For more detailed information, see the specific section devoted to
each of the browser query types later in this chapter.

166 Visual Workbench User's Guide

Using the Browse Window
To perform a query in the Browse window, you first set the query parameters in
the Query group at the top of the Browse window (see Figure 10.3) and then
choose the Display Result button.

Query ~~~==~~==~;-;~::;:::::;=;;:::::;::::;l
Tl!Pe: I Definitions and References Iii I Display Result I

Sybset: IAll Iii I Previous Querv I
Symbol: Is I [!]

Figure 10.3 Browse Window Query Group

The Query group contains three controls to set and display query parameters:

Type
This determines the type of symbol relationship you want to view. The five
choices are:

• Definitions and References

• Call Graph

• Caller Graph

• Derived Class Graph

• Base Class Graph

Subset
This determines or displays the type of symbols you are browsing. For the Call
Graph and Caller Graph query types, Subset is always Functions. For the
Derived Class Graph and Base Class Graph query types, Subset is always
Classes.

For Definitions and References queries, Subset lets you determine the subset of
symbol types to be included in the search. This can be useful when you use a
wildcard in the Symbol text box that matches several symbol names and a
lengthy list of symbols appears in the left display panel. You can narrow the
results list by choosing a subset of symbol types from the Subset drop-down list.
Or you can choose ALL to have a list of all symbols placed in the left display
panel.

Symbol
This determines the specific function, variable, type, macro, or class you want to
browse. You can type in a symbol name or choose from the previous eight sym­
bol names you have queried.

Chapter 10 Using the Browser 167

You can also use a wildcard in the symbol name as described in Table 10.1.

Table 10.1 Wildcard Types in Symbol Names

Type

*
Sym*

ClassName::

Represents

All symbols

All symbols starting with some common characters (denoted here by
Sym)

All member functions and member variables of a class (denoted here
by ClassName) when the query type is Definitions and References

When a wildcard matches more than one symbol, all matching symbols appear
either in the left display panel (if the query type is Definitions and References)
or in a disambiguation dialog box (for all other query types). When a disam­
biguation dialog box appears, you must select just one of the symbols, since all
graphs require a single root.

The following procedure assumes you have op~ned a Browse window:

~ To query the browser database from the Browse window:

1. From the Type drop-down list box, select a query type.

2. In the Subset drop-down list box, if the query type is Definitions and Refer­
ences, select a symbol type for the query to search, or select ALL to search all
symbol types.

For example, to display all member functions of the class CCmdTarget in the
left panel, type CCmdTa rget: : in the Symbol text box and select Functions
from the Subset list box.

3. In the Symbol text box, type the name of the symbol you want to browse.

Or, using the drop-down list, select a symbol you have browsed recently.

Or type a wildcard combination to match one or more symbol names.

4. Choose the Display Result button, or press ENTER, to start the query.

If the query type is Definitions and References, the left panel below the Query
group displays the symbol, or lists of symbols. For all other query types, the left
panel displays a graph.

Techniques for manipulating the graphs and lists once you have performed a
query in the Browse window are described in "Browsing Classes and Functions"
on page 169.

To recall the state of the previous browse operation, choose the Previous Query
button. By choosing the Previous Query button repeatedly, you can recall all the
browse operations you have performed since opening the Browse window.

168 Visual Workbench User's Guide

Using Menu Commands
You can use menus and shortcut keys to browse for definitions and references
directly from any symbol in a source file associated with the open database file,
or any symbol in the Browse window. To do this, you use the five menu com­
mands on the Browse menu:

• Go to Definition (FII)

• Go to Reference (SHIFf+Fll)

• Next (CTRL+NUMPAD+)

• Previous (CTRL+NUMP AD-)

• Pop Context (CTRL+NUMPAD*)

~ To query the browser database from a source file:

1. Select a symbol by either highlighting it or placing the insertion point to the left
of it.

2. From the Browse menu, choose Go to Definition (FI!) to jump to the first
definition of that symbol.

Or choose Go to Reference (SHIFf+FII) to jump to the first reference of that
symbol.

When you choose Go to Definition, a source window opens on the file contain­
ing the definition of the selected symbol, with the insertion point placed at the
definition's location in the source file. If the source for the definition is not
available, such as a definition for a library function like printfO, the insertion
point jumps instead to the first reference, which is usually the prototype.

When you select Go to Reference, a source window opens on the file containing
the first reference to the selected symbol, with the insertion point placed at the
reference's location in the source file.

If the Browse window isn't already open, it is opened and minimized the first
time you choose either Go to Definition or Go to Reference.

When you choose either Go to Definition or Go to Reference, a single list is formed
and kept internally of all definitions or references of that symbol, depending on
which menu command you chose. You can traverse this list forward or backward
using the Next and Previous command on the Browse menu. To change the list type
-for example, from definitions to references-you must use one of the "Go to"
commands first.

~ To jump to the next or previous definition or reference in a source file:

• From the Browse menu, choose Next or Previous.

If you last chose Go to Definition, a source window appears with the insertion
point on the Next or Previous definition of the queried symbol.

Chapter 10 Using the Browser 169

If you last chose Go to Reference, a source window appears with the insertion
point on the Next or Previous reference of the queried symbol.

~ To return to the last symbol queried:

• From the Browse menu, choose Pop Context.

The source window containing the current query context (the symbol selected
before the last Go to Definition or Go to Reference) is made active displaying
the queried symbol.

Note The current position of the definition or reference in a list generated by a "Go
to" command and traversed using the Next and Previous Browse menu commands is
not related to the currently selected definition or reference in the Browse window.

Browsing Classes and Functions
One of the most appealing features of the browser is the ability to graphically view
C++ class hierarchies and relationships between called and calling functions.

Once you have queried the browser database for a graphical representation, you can
manipulate the nodes of the resulting tree to view a small section or the fully
expanded tree. As you click each node, the browser displays a list of definitions and
references for the symbol at that node. And, for class trees, the browser also dis­
plays a list of member functions and variables for each node you select.

This section describes in detail how to access graphical data produced by class and
function queries.

Overview of Graphical Browser Query Types
Graphical query types available in the Browse window include:

• Call Graph

• Caller Graph

• Derived Class Graph

• Base Class Graph

The browser displays relationships between base and derived C++ classes, and
between called and calling functions, as graphical trees. This is similar to the way
the Windows File Manager displays directories. In a class graph, each node of the
tree represents a class; in a function graph, each node represents a function. Each
node can be expanded if it contains further branches or collapsed to hide all its
branches.

170 Visual Workbench User's Guide

Figure 10.4 illustrates the graphs used to display C++ class-hierarchy informa­
tion. A Derived Class Graph branches from left to right with the base class on the
left and derived classes expanding to the right. A Base Class Graph also branches
from left to right, but with the derived class on the left and the class or classes
from which it is derived expanding to the right.

A Derived Class Graph

~ CFrameliJnd

~
CMDIFrameliJnd

~ CMainFrame llio,,,.6,
~ CScribFrame

Figure 10.4 Class Graphs

A Base Class Graph

~ CliJnd
~ CCmdTarget
~ CObject
~ CObjectRaat

Derived Class Graphs and Base Class Graphs automatically provide a list of
member functions and member variables in the top window panel to the right of
the graph. You can click a member variable name to open the source window
where it is defined, or click a member function name to open the source window
where it is implemented.

Figure 10.5 illustrates the graphs used to display function-calling relationships. In
a Call Graph, a node on the left represents a function that calls all functions
labeled in nodes to its right. Conversely, in a Caller Graph, a node on the left rep­
resents a function that is called by all the functions labeled in nodes to its right.

A Call Graph

Figure 10.5 Call and Caller Graphs

A Caller Graph

~ 1;!;,9.?':4.J.9.9.~

~
CliJinApp: : Laadlcan(char canst *)
CliJinApp: : Laadlcan(unsigned int)
CliJinApp: : LaadStandardlcan(char canst *)
CliJinApp: : LaadOEMlcan(unsigned int)

The browser also displays locations of symbol definitions and references. This is
done automatically when you select any of the four query types just mentioned
(Derived Class Graph, Base Class Graph, Call Graph, or Caller Graph). To see
where any class or function in a graphical tree is defined and a list of all locations
where it is referenced, simply click the node. The definitions and references
appear to the right of the graph.

Chapter 10 Using the Browser 171

You can double-click any reference or definition to open the corresponding
source file with the insertion point on the corresponding line.

You can also specifically request a query type of Definitions and References.
This has the advantage that you can apply the search to all types of symbols,
including variables, types, macros, and labels as well as classes and functions.

Expanding and Collapsing Graphs
A node in a class graph or function graph can be collapsed or expanded to hide or
display subordinate nodes. A node icon that looks like an empty file box indicates
that a node has either been expanded or has no subordinate nodes. A node icon
that looks like a file box containing files indicates that a node has subordinate
nodes but is collapsed (see Figure 10.6).

An Expanded Node A Collapsed Node

Figure 10.6 Expanded and Collapsed Nodes

You can expand a graph one level at a time, or all at once, using the mouse or
various keyboard shortcuts. The "active node" refers to the selected symbol in the
graph.

~ To display different levels of a graph:

• To expand the active node one level, choose the Expand Node button, or double­
click the node, or press PLUS SIGN (+) on the number pad.

• To collapse the active node one level, choose the Collapse Node button, or
double-click the node, or press MINUS SIGN (-) on the number pad.

• To fully expand the active branch, press ASTERISK (*) on the number pad.

• To expand the entire graph, choose the Expand Tree button or press ALT+X.

172 Visual Workbench User's Guide

Browsing Classes
When you select Derived Class Graph or Base Class Graph as a query type, the
browser displays a graphical tree. You can view class hierarchical relationships
by picking a class name and then deciding to view either a tree of all classes
derived from the class (Derived Class Graph) or a tree of all the classes from
which it is derived (Base Class Graph).

Once a class graph is displayed, you can view information about each class in the
two window panels to the right of the graph. When you select any class in the
graph, the location where it is defined and all locations where it is referenced are
displayed in the bottom right panel. All member functions and variables are dis­
played in the top right panel.

Derived Class Graph
The Derived Class Graph query type is used to display a graph of all classes
derived from the class you select as the base class.

~ To display a tree of all classes that are derived from a class:

1. From the Type drop-down list box, select Derived Class Graph.

Notice that Classes appears automatically in the Subset box and is the only
choice.

2. In the Symbol box, type the class name, type a wildcard, or select a previously
used symbol from the drop-down list.

For example, type C W n d.

If you type a wildcard, such as C *, that matches several symbol names, a dis­
ambiguation dialog box appears with a list of all symbols matched by the wild­
card. Select one name from the list and choose OK.

3. Choose the Display Result button or press ENTER.

The CWnd derived class graph is displayed in the Browse window (see Figure
10.7).

Chapter 10 Using the Browser 173

I:

~;:: I Derived Class Graph Iii I Display Result I
Sybset: ~lc~la~ss~e;,s =====~11I~·*.·~1 ~Pr~ev~io~u~s ~9u~e~rr~1
Symbol: I ,-CW_n_d ___________ ---'1 ill

I Expand Tree I
I Collapse Node I

~ LUm!
~ CDialog

I
CPenWidthsDlg
CFileDialog
CFontDialog
CColorDialog
CPrintDialog
CFindReplaceDialog

~ CStatic
~ CButton
~ CBitmapButton
~ CListBox

~ Ql.~.c:L ... :.Q{~.c:l . .c~.!:.!:.~.9.!: l:I.W.!:f.P._ 9.9..~.~.!: 1 ~
I-" CWnd: :CWnd() ~

CWnd: : ~CWnd()
struct AFX_MSGMAP _ENTRY * CWnd: _m'+

L+
P..E3.J.~.!,}.~.!:.~.9.!,}.§'9.E ,=-.w.!'}.9 ... ~
d:'msvc'mfc'include'afxwin.h(1098) ~

References to CWnd
d:'msvc'mfc'include'afxwin.h(43)
d:'msvc'mfc'include'afxwin.h(665) ~

+ +1 J L+

Figure 10.7 Derived Class Graph of the CWnd Class

Base Class Graph
When you want to view the inheritance path of a particular class, select the Base
Class Graph query type. This graph is a chain of single nodes unless the class
uses multiple inheritance, in which case the multiple base classes appear as mul­
tiple branches.

~ To display a graph of base classes from which a class is derived:

1. From the Type drop-down list box, select Base Class Graph.

Notice that Classes appears automatically in the Subset box and is the only
choice.

2. In the Symbol box, type the class name, type a wildcard, or select a recently
queried class from the drop-down list.

For example, select or type CD i a log.

3. Choose the Display Result button or press ENTER.

The CD i a log base class graph appears in the Browse window.

4. To see the complete inheritance path (Figure 10.8), choose Expand Tree.

174 Visual Workbench User's Guide

r:
~;: IBase Class Graph Iii I Displag Result I

Sybset: ~IC~la~ss~es~====~I:±I~t.~1 ~p=re~v~iou~s~g~ue~rp~1
Sy.!!!bol: L-IC_Di_al_oQ __________ ----'10

I Expand Tree I
I Collapse Node I

~~
~ CCmdTarget

~.P..t~.!.9..9" .. : ... : .. ~.P.t~.:!:.9..'3" . .cJ.. ... ~
CDialog: : CDialog (unsigned in t , class 1-1
CDialog: :CDialog(char const *,class
struct AFX_MSGMAP_~NTRY * CDialog: ~

+lJ 1.+
p..~J..:!:.~.:!:.t..:!:.9..~.~ 9.t ~.P.t~.:!:.9..sr ... ~
d:'msvc'mfc'include'afxwin.h(1550)1-1

References to CDialog
d:'msvc'mfc'include'afxwin.h(44)
d:'msvc'mfc'include'afxwin.h(1568)
~: 'msvc'm~c'~nclu~e'a~xw~n :~(l~!!) ~

Figure 10.8 Base Class Graph of the CDialog Class

Member Functions and Variables
Member functions and variables are displayed automatically as a result of any
query using the Derived Class Graph or Base Class Graph query type.

~ To display a list of all member functions and variables belonging to a class:

1. Perform either a Derived Class Graph or Base Class Graph query.

Either specify the class in the Symbol box or make sure it is included in the
resulting graph.

2. Click the name of the class in the resulting graph to make it the active node.

The upper panel to the right of the class tree displays all member functions and
variables belonging to the class (not inherited).

Tip You can also get a list of all member functions and variables by using the
Definitions and References query type and specifying the wildcard ClassNarne::,
where C lassN arne represents the name of the class whose member functions and
variables you want to examine.

Browsing Function Relationships
You can use the browser to graphically display relationships between calling and
called functions by selecting the Caller Graph or Call Graph query type. These
graphs are typically tree structures unless they display a recursive function node.
Nodes representing recursive functions, or any functions that appear more than
once, are followed by an ellipsis (...).

Chapter 10 Using the Browser 175

To get a listing of where a function is defined and all the places it is referenced,
select the function in the Caller Graph or Call Graph tree. The panel to the right
of the graph panel in the Browse window lists the locations of the function defi­
nition and all references to it. Double-click any location in this list to open a
source window at that location in the specified file.

~ To display a graph of all functions that are called by a function:

1. From the Type drop-down list box, select Call Graph.

The Subset box displays Functions.

2. In the Symbol box, type the function name, type a wildcard, or select a previ­
ously queried function from the drop-down list.

3. Choose the Display Result button or press ENTER.

The call graph of the selected function is displayed (see Figure 10.9).

iii a

1:"-T1!Pe: I Call Graph I.!I I o iSlilla~ Result I I E,lIeand Tree I
Sybset: I Functions 111 I Previous ~uer~ I I Collaese Node I
Symbol: I CPrintDialog::PrintAIiO I[!J
~ Definitions of CPrintDialog: :Prin"

~ CPrintDiaiog : :PrintRange() d:~msvc~mfc~include~afxdlgs"h(351

CPrintDialog: :PrintSelection() References to (Prin tDialog: : Prin tJ
d:~msvc~mfc~include~afxdlgs"h(21'

+1. J L+

Figure 10.9 A Call Graph

~ To display a graph of all functions that call a function:

1. From the Type drop-down list box, select Caller Graph.

The Subset box displays Functions.

2. In the Symbol box, type the function name, type a wildcard, or select a previ­
ously queried function from the drop-down list.

Note that if you type the name of a function with more than one definition (such
as a C++ class constructor), a disambiguation dialog box appears to let you
choose the function from a list box. This dialog box also appears when you use
wildcards that match more than one symbol name.

3. Choose the Display Result button or press ENTER.

The caller tree of the selected function is displayed.

176 Visual Workbench User's Guide

Browsing Definitions and References
You can use the browser to quickly move between files and access common pro­
gram elements. For example, you may want to examine or change a definition of
a function but are not sure where the function is defined. Or, after changing a
function's definition, you may want to find every place where it is referenced.

When you select a class or function graph query type, references and definitions
are automatically displayed for the active node to the right of the graph. For ref­
erences and definitions of all other types of symbols, or to get just reference or
definition information on any class or function, use the following procedures.

Note The browser database is based on the state of source files at the time of the
last build. If you edit source files and then perform browse operations, the locations
of definitions and references may not be accurate.

If a definition is listed as < U n known>, it is probably defined in a library for which
you are not provided the source code. For example, the macro _ MSC _ VER is
generated by the compiler and defined in code that isn't provided with Visual
C++.

~ To display a list of locations where a symbol is defined or referenced:

1. From the Type drop-down list box, select Definitions and References.

2. In the Subset drop-down list box, select the symbol type you are interested in.

3. In the Symbol box, type the symbol name.

Or, using the drop-down list, select a symbol you have browsed recently.

Or type a wildcard combination to match one or more symbol names (for
example, type * to produce a list of all symbol names).

4. Choose the Display Result button or press ENTER.

A list of all symbols that match the query parameters appears in the left display
panel. The list may contain a single symbol, if you typed an exact name of a
symbol, or many symbols if, for example, you used a wildcard or typed the name
of an overriden C++ class member function.

S. Click any symbol in the left panel to get a list of its definitions and references in
the panel on the right.

The top symbol in the list is selected by default when there is more than one
symbol.

Chapter 10 Using the Browser 177

Once you have a list of definitions and references, you can jump directly from the
Browse window to a definition or reference using either of two methods.

~ To jump to any definition or reference from the Browse window:

1. Select the symbol in the left display panel.

2. Double-click the definition or reference in the list in the right panel.

Or select the item and press ENTER.

The source file is opened (or is made the active file if it is already open), and the
insertion point is placed on the line containing the definition or reference.

~ To jump to the first definition or reference from the Browse window:

1. Select the symbol in the left display panel.

2. Choose Go to Definition (FII) to jump to the first definition, or choose Go to
Reference (SHIFT+Fll) to jump to the first reference of the symbol.

Once you have jumped to the first definition of, or reference to, a particular
symbol using this method, you can jump to subsequent definitions or references
using the Next (CTRL+NUMPAD+) and Previous (CTRL+NUMPAD-) commands on
the Browse menu.

Note The current position of the definition or reference in a list generated by a
"Go to" command (and traversed using the Next and Previous Browse menu
commands) is not related to the currently selected definition or reference in the
Browse window.

179

CHAPTER 11

Debugging Programs

Debugging a program is a two-phase process. The first phase involves correcting
compiler and linker errors during the build process. These errors usually consist
of incorrect language syntax, undeclared variables, or misspelled keywords.

The second debugging phase occurs after any syntax errors are corrected and the
project is successfully built. If the program does not perform correctly, you need
to analyze its internal workings. This means using a debugger to set breakpoints
and examine variables, which allows you to locate the bug, correct it with the
editor, and rebuild the program.

Visual Workbench offers features for performing both phases of debugging.
Visual Workbench supports debugging of both EXE and DLL projects for
Windows. This chapter covers debugging an EXE project. If you want to debug a
DLL project, you need to first create an appropriate EXE shell program to call
the DLL. Using the Debug dialog box, which is accessed from the Options menu,
you specify the name of the program that calls the DLL project.

As an alternative to using the Visual Workbench debugger, you can use the
Microsoft Code View debugger. If you have Visual C++ Professional Edition, this
tool is provided in both Window-hosted and MS-DOS-hosted versions. You need
to use Code View if you are debugging any application for MS-DOS or p-code
application for Windows. Visual Workbench debug information is fully compatible
with both versions.

If you are familiar with Code View, you'll find the Visual Workbench debugger
similar in operation and functionality. Both debuggers use similar breakpoint
syntax; Watch, Locals, and Registers windows; and QuickWatch, Call Stack, and
tracing capabilities. Code View supports a command window for command-line
syntax and a memory window, whereas the Visual Workbench debugger uses
graphical controls entirely and has no memory window. However, only the
Visual Workbench debugger is fully integrated with all the other Visual Work­
bench facilities, such as the browser, editor, and ClassWizard. For information on
using CodeView, see the Code View Debugger User's Guide.

180 Visual Workbench User's Guide

In this chapter, you'll use the SORTDEMO sample program to learn debugging
strategies and techniques within Visual Workbench.

Using the Debugging Windows
Visual Workbench displays information in a series of windows that you can view
as you debug a program. You activate these windows with commands from the
Window menu.

Table 11.1 lists the windows and information they show.

Table 11.1 Debugging Windows

Window

Watch

Locals

Registers

Output

Information

Values of variables and expressions in the Watch window. Watch expres­
sions are entered directly into the Watch window. Values are displayed
only while using the debugger.

Values of local variables within the function currently being stepped
through. Values are used only while using the debugger.

Current contents of the memory and status registers.

Information about the build process, including any compiler errors. This
window also displays output from OutputDebugString function calls or
the class library afxDump dump context object during a debugging
session.

You can size and minimize these windows during debugging so that you can see
various types of information at one time.

Figure 11.1 shows the debugging windows.

Chapter 11 Debugging Programs 181

Figure 11.1 Debugging Windows

Debugging During Building
Language syntax errors are the most common errors preventing you from suc­
cessfully building a program. When a program is built, any compiler and linker
errors are displayed in the Output window. If you need help on an error, move the
insertion point to the error number and press FI to display online information
about the error.

~ To move through the list of errors:

• From the View menu, choose Next Error (F4) to highlight the error following the
current error.

-Or-

• Choose Previous Error (SHIFf+F4) to highlight the error preceding the current
error.

-Or-

• Double-click or press ENTER on an error in the Output window.

As each error is highlighted in the Output window, the corresponding line con­
taining the error is highlighted in the source window, where you can fix it.

182 Visual Workbench User's Guide

To get help on any error or warning in the Output window, place the insertion
point on the line containing the error or warning and press Fl.

Note that the Output window behaves like a source window, allowing you to
copy and print information from the window.

Using the Visual Workbench Debugger
Phase two of debugging occurs after your program is built, but doesn't work cor­
rectly. In this phase, you use the Visual Workbench debugger to set breakpoints in
the source code, view variables, and control program execution.

Note Debug programs are slower and larger than release programs.

Preparing a Debug Version of a Program
Before a program can be debugged, you must include debugging information in
the executable file with the project. You can use the SORTDEMO project as an
example in the following procedure.

~ To prepare a project for debugging:

1. Open the project.

To use the example project, open SORTDEMO.MAK, which is in the
\MSVc\sAMPLES\sORTDEMO directory, if it is not already open.

2. From the Options menu, choose Project.

The Project Options dialog box appears (see Figure 11.2).

Project Options

f.roiect Type: IWindows application (.EXEJ

o l!.se Microsoft Foundation Classes

Customize Build Options

Compiler...

.!:.inker...

Resources ...

Build Mode

@lJi.~~.~~.1
o Release

Iii OK

Cancel

Help

Figure 11.2 The Project Options Dialog Box

3. Under Build Mode, select the Debug option if it isn't already selected.

4. Choose OK to close the Project Options dialog box.

Chapter 11 Debugging Programs 183

5. From the Project menu, choose Build.

The current project is compiled and linked and, if no errors occur, a version of
the executable file containing debug information is created.

Setting and Removing Breakpoints
Breakpoints are useful when you have a general idea of where a bug occurs in a
program. The debugger runs until it reaches the breakpoint, then stops. At this
point, you can step to the next line of code or trace through a function until you
find the problem. While the program is paused at a breakpoint, you can also ex­
amine variable values using the QuickWatch dialog box or the Watch or Locals
window, or examine register values using the Registers window.

You can set and clear breakpoints using either the Breakpoints dialog box or the
Toggle Breakpoint button on the toolbar. The Toggle Breakpoint toolbar button
simply sets or clears a breakpoint at the insertion point. The Breakpoints dialog box
allows you to set more complex breakpoints, such as breaking if an expression is
true or breaking on a window message.

All breakpoints that are active when a project is closed are saved as part of the
project information and become active when the project is reopened. (Expres­
sions and variables in the Watch window are also saved as part of the project
information and restored when the project is reopened.) A project is closed when
you choose Close from the Project menu, when you open or create another pro­
ject, or when you quit Visual Workbench.

Quick Access to Setting and Removing Breakpoints
The Toggle Breakpoint button on the toolbar is a quick way to set and clear break­
points in a program. If you prefer to use shortcut keys, use F9 to toggle breakpoints.

~ To quickly set a breakpoint:

1. Move the insertion point to the line where you want the program to break.

2. Click the Toggle Breakpoint button on the toolbar (or press F9).

Visual Workbench highlights the line, indicating that the breakpoint is set.

~ To quickly remove a breakpoint:

1. Move the insertion point to the line containing the breakpoint.

2. Click the Toggle Breakpoint button on the toolbar (or press F9).

184 Visual Workbench User's Guide

This is all you need to know to get started using breakpoints. If you want to learn
more about the Breakpoints dialog box, read the next section. To try a sample
breakpoint debugging session using the Toggle Breakpoint toolbar button and the
SORTDEMO sample program, step through the following procedure:

~ To set and use a breakpoint in the SORTDEMO program:

1. Open the SORTDEMO project if it is not already open.

2. Build the SORTDEMO project.

Follow the procedure in "Preparing a Debug Version of a Program" on page 182
if you have not already done this.

3. Open the SORTDEMO.C project file.

4. Move the insertion point to a line containing code inside the Bub b 1 e S 0 r t ()
function (line 741 for example).

5. Click the Toggle Breakpoint button on the toolbar.

Visual Workbench highlights the line, indicating that a breakpoint is set on this
line (see Figure 11.3).

// BubbleSort: BubbleSort cycles through the elements, comparing
// adjacent elements and swapping pairs that are out of order. It
// continues to do this until no out-of-order pairs are found.
//
void BubbleSort()
{

int iRow, iSwitch, iLimit = nBar-l;

// Move the longest bar down to the bottom until all are in order.
do
{

iSwitch = 0;
fore iRow = O' iRow < iLimit; iRow++)
{

// If two adjacent elements are out of order, swap their values -­
// and redraw those two bars.
//

iCompares++;
if(abarWork[iRow).len > abarWork[iRow + l).len)
{

Swaps (&abarWork[iRow], &abarWork[iRow + 1]);

iSwitch = iRow; ---;

}

+1 J l+

Figure 11.3 Setting a Breakpoint in SORTDEMO.C

6. To run the program, click the Run button on the toolbar.

The SORTDEMO program loads and a window appears with the colored bars
in random order (you can sort the bars using any of several sort procedures in
SORTDEMO's Sort menu).

+

7. To cause the program to execute the program section containing the breakpoint,
choose Bubble Sort from SORTDEMO's Sort menu.

Chapter 11 Debugging Programs 185

The program runs until the breakpoint is reached and then returns the focus to
Visual Workbench at the line in the program containing the breakpoint.

With the program paused, you are free to examine and modify its state. You can
examine and change variable values using the Watch window, Locals window,
or QuickWatch dialog box, or examine and change register values and status
flags using the Registers window. You can also show the call stack that led to
the current state.

8. To continue the program to its completion, click the Run button on the toolbar
again (or press F5) and choose Exit from SORTDEMO's File menu.

There are several ways you can proceed through the program after a breakpoint
has been reached. These are described in "Controlling Program Execution" on
page 189.

Using the Breakpoints Dialog Box
The Breakpoints dialog box (see Figure 11.4) keeps a list of all breakpoints as­
signed to your project. Breakpoints can be set in any of your project source files
or in an executable file. To add a breakpoint, you first select the breakpoint type,
fill in parameters if needed, and then choose the Add button. To remove a break­
point, you select it in the list and choose Delete. To make a breakpoint inactive, you
select it and choose Disable. For additional information on breakpoints, search for
breakpoints in Help or press Fl in the Breakpoints dialog box.

Breakpoints

lvpe: IBreak at location Iii

location: 1_741 I
~================~

.E.xpression: I I
~==~----------~

length: ,-I __ ----'

B reakJ!oints:

+ "Lsortdemo_cJ _741"

Figure 11.4 The Breakpoints Dialog Box

Cl.Q.se

Cancel

Help

Add

Clear All

186 Visual Workbench User's Guide

You can choose six types of breakpoints from the Type list box in the Breakpoints
dialog box. These let you determine where and when the program will pause execu­
tion. Breakpoint types are:

Break at Location
This is the simplest type of breakpoint and is the default type used. If you have
the insertion point on a line of code in a source file, this line automatically ap­
pears in the Location text box, making it easy to simply choose Add to add this
breakpoint. When your program's execution reaches the breakpoint location, the
program stops temporarily and you can use other debugging features. See the
next section, "Breakpoints Involving Location," for information on proper loca­
tion values.

Break at Location if Expression is True
You specify a location and an expression. Whenever execution reaches that lo­
cation, the debugger checks the expression. If the expression is true (nonzero),
the breakpoint is taken.

Break at Location if Expression has Changed
You specify a location and an expression that represents a variable or a portion
of memory. Type a variable or memory address in the Expression text box. If
the value of any byte has changed since the last time the debugger checked, the
breakpoint is taken. See "Breakpoints Involving Expressions" on the next page
for more information.

Break when Expression is True
This breakpoint is taken whenever the expression becomes true. The debugger
evaluates the expression after every line or every instruction, instead of only at
a certain location. As a result, this type of breakpoint can greatly slow your pro­
gram's execution.

Break when Expression has Changed
The debugger checks the variable or range of memory as each line or each
instruction is executed. You can also specify a range of memory by typing the
starting address in the Expression text box and the length in the Length text
box. This type of breakpoint can also slow your program's execution. See
"Breakpoints Involving Expressions" on the next page for more information.

Break at WndProc if Message is Received
You specify a Windows callback function in the WndProc text box and use the
Messages dialog box to select either a single message or one or more classes
of messages on which to break. When a targeted message is received, the pro­
gram's execution is paused at the specified WndProc. See "Breakpoints on
Messages" on the next page for more information.

Breakpoints Involving Location
You can enter a location directly into the Location text box by typing a location and
choosing the Add button. The location can be entered either as a line number (with
an optional filename) or as an address (in either hexadecimal or decimal notation).

Chapter 11 Debugging Programs 187

Registers can also be used to form the address. Use a period (.) to indicate a line
number and an exclamation point (!) to separate a filename from a line number. The
following table shows the various forms of syntax for specifying location:

Format

Filename!.l inenumber

.linenumber

Segment:Offset

Offset

Segment:Offset

Segment:Offset

Offset

Example

MyApp.cpp!.35

.35

0x2717: 0x1222

0x1222

CS:0x1222

CS: I P

IP

Breakpoints Involving Expressions

Sets breakpoint at:

Line 35 in MYAPP.CPP

Line 35 in the active source file

Specified segment and offset

Offset in code segment (CS)

Offset in CS

Instruction pointer offset to CS

Instruction pointer offset to CS

Four of the breakpoint types evaluate whether an expression is true or has changed.
Depending on the breakpoint type, when the expression evaluates correctly, the
program pauses either immediately or at the specified location. To use one of these
types, you must first specify the desired expression in the Expression text box.

To detect when an expression has changed, you must enter a variable with a mem­
ory location (an I-value) in the Expression text box when you set the breakpoint.
For variables that are not pointers, the value of the Length text box should normally
be left as 1, since the length is calculated as the size of the variable multiplied by
the number in the Length text box.

When you specify the name of a pointer in the Expression text box (such as Pt r,
where P t r is defined as i n t * P t r), the breakpoint is set only when the address of
the pointer changes. To set a breakpoint when the memory pointed to by the pointer
changes, dereference the pointer in the Expression text box (for example, * Pt r),
and then specify the number of bytes in memory to examine in the Length text box.

Memory ranges can be set by typing a starting address in hexadecimal or decimal
notation in the Expression text box and the number of bytes in the Length text box.
Registers can be used for addresses.

Breakpoints on Messages
The breakpoint type "Break at WndProc if Message is Received" lets you set a
breakpoint that tests messages received by any exported Windows callback function
(window procedure). You can select whether to break on a specific message, or on
any message from a class of messages or from several classes of messages.

188 Visual Workbench User's Guide

~ To set a breakpoint on a message:

1. From the Debug menu, select Breakpoints.

The Breakpoints dialog box appears.

2. In the Type drop-down list box, select "Break at WndProc if Message is
Received."

3. In the WndProc text box, specify the name of the Windows callback function
you want tested for messages.

If you are setting a breakpoint during a debug session, the drop-down list con­
tains all the exported functions in your project determined by the debugger to be
Windows callback functions; otherwise, it is blank.

4. Choose the Messages button to open the Messages dialog box (see Figure 11.5).

Messages

Message Type------,

@ l~~ .. ~.~·~·I.~·~J o !;.Iass

Selection:
\11M ACTIVATE
\11M - ACTIVA TEAPP
\IIM:::ASKCBFORMATNAME
\11M CANCELMODE
\IIM-CHANGECBCHAIN
\11M-CHAR
\IIM:::CHARTOITEM

MO<.lMl

Window
Input
S9~'km
lnit

OK

Cancel

Help

Figure 11.5 The Messages Dialog Box

5. In the Message Type group, select the Selection option button.

6. In the Selection list box, select the message.

7. Choose OK to close the Messages dialog box.

8. Choose Close to close the Breakpoints dialog box.

You can follow the same basic procedure, with slight modification, to set a break­
point on one or more classes of messages.

~ To set a breakpoint on any message in one or more classes:

1. From the Debug menu, select Breakpoints.

2. In the Type drop-down list box, select "Break at WndProc if Message is
Received."

3. In the WndProc text box, specify the name of the exported Windows function.

4. Choose the Messages button to open the Messages dialog box.

Chapter 11 Debugging Programs 189

5. In the Message Type group, select the Class option button.

6. In the Class list box, select one or more message classes.

7. Choose OK to close the Messages dialog box.

8. Choose Close to close the Breakpoints dialog box.

If you set a breakpoint using either of these two procedures, the program will pause
execution at the specified exported Windows function (WndProc) when it receives
a message matching the qualifications.

Note If you are debugging a Microsoft Foundation Class Library program, setting
a breakpoint on a message may trace into the Microsoft Foundation Class Library
source code. The debugger then requires the path to the Microsoft Foundation Class
directory in order to open the file containing the breakpoint. If you do not have the
MFC Files Path set correctly in the Directories dialog box (accessed from the
Options menu), the debugger prompts you for a path. The debugger requires only
the base path (for example, C:\MSVC\MFC).

Controlling Program Execution
Once a breakpoint is reached and the program stops, you can control program
execution with commands on the Debug menu. Most of these commands have
equivalent toolbar buttons. Table 11.2 lists the Debug Menu commands and their
actions.

I ~ r;Ml I~I"""'I:::I ~ I!I ~ iIti mmm ~

Table 11.2 Debug Menu Commands

Debug Menu
Command

Go

Restart

Stop Debugging

Action

Executes code from the current statement until a breakpoint is
reached, a watchpoint expression becomes true, or the end of the
program is reached. (Equivalent to the Run button on the toolbar.)

Resets execution to the first line of the program. It reloads the pro­
gram into memory and discards the current values of all variables
(breakpoints and watch expressions still apply). It automatically
halts at the mainO or WinMainO function. (No toolbar equivalent.)

Terminates the debugging session and returns to a normal editing
session. (No toolbar equivalent.)

190 Visual Workbench User's Guide

Table 11.2 Debug Menu Commands (continued)

Debug Menu
Command

Step Into

Step Over

Step Out

Step to Cursor

Using the Watch Window

Action

Steps into a function when it is called and steps through all of the
instructions in the function.

Single-steps through instructions in the program. If this command
is used when you reach a function call, the function is executed
without stepping through the function instructions.

Executes the program out of a function call and stops on the in­
struction immediately following the call to the function. This allows
you to step into a function without having to step all the way
through it.

Executes the program as far as the line that currently has the cursor.
This is equivalent to setting a temporary breakpoint at the cursor
location. (No toolbar equivalent.)

The Watch window allows you to enter variables you want to view or expressions
you want to see evaluated as the program progresses. You can enter values or ex­
pressions into the Watch window at any time, but they are only evaluated while
the program is in a debug session. The Watch window displays an error on watch
variables and expressions until a debug session begins.

A watch expression can be any valid C or C++ expression. For example, the fol­
lowing are all valid watch expressions in C and C++:

count
count + 1
count + 1 == 5

For relational expressions, the Watch window shows 0 if the expression is false
and 1 if the expression is true:

count + 1 5 0
count + 1 == 5 = 1

Cast operators can be used in the Watch window, even on user-defined types (such
as LPSTR).

Adding and Deleting Variables and Expressions
~ To add a variable or expression to the Watch window:

1. While the program is paused between steps or at a breakpoint, move the inser­
tion point to the first blank line in the Watch window (see Figure 11.6).

Chapter 11 Debugging Programs 191

2. Type the variable name or expression.

3. Press ENTER.

The variable or expression is evaluated immediately. If the expression or vari­
able cannot be evaluated, an error message appears in the window next to the
variable or expression.

~---------<-3>-W-a-t-ch---------II-~

-abarWork[iRow]
len = 23 ',",x17 ,

-clr
nBlue = 0
nGreen = 255
nRed = 0

-abarWork[iRow + 1]
len = 32 ' ,

-clr
nBlue = 255
nGreen = 0
nRed = 0

iLimit = 44
iRow = 0

Figure 11.6 The Watch Window

If you want, you can use the copy (CTRL+C) and paste (CTRL+V) commands to
copy variable names from your program source files into the Watch window. You
must always press ENTER to insert the variable or expression into the window.

You can also use the QuickWatch dialog box to add variables to the Watch win­
dow. This is described in "Using QuickWatch" on the next page.

~ To delete a variable or expression from the Watch window:

1. Move the insertion point to the line containing the variable or expression.

2. Select the entire variable name or expression using either the mouse or
SHIFf +LEFf ARROW and SHIFf +RIGHT ARROW.

3. Press the DEL key.

To learn how to modify variables in the Watch window, see "Modifying a
Variable" on page 193.

Expanding and Collapsing Variables
In the Watch window, Locals window, and QuickWatch dialog box, variables that
contain more than one element, such as arrays, structures, classes, or enumerated
types, are displayed with either a + or - sign preceding them (see Figure 11.7).

The + symbol indicates that the variable contains elements and can be expanded.
The - symbol indicates that the variable is fully expanded and can be collapsed.

192 Visual Workbench User's Guide

~---------<2-)-W-a-tc-h---------a-~

-Insertion
time = 25.9200 public
swaps = 428 public
compares = 467 public
done = 0 public

+abarWork = Ox420F:Ox3EB6
Insertion.done == 1 = 0

Figure 11.7 The Watch Window with Expanded and Collapsed Variables

~ To expand or collapse a variable:

1. Move the insertion point to the line containing the variable.

2. Press ENTER.

Or double-click anywhere on the variable.

Using QuickWatch
QuickWatch is a dialog box that gives you a fast way to view variables and
expressions (see Figure 11.8). Unlike watch expressions, which remain in the
Watch window, the values of QuickWatch variables and expressions appear only
when you open the QuickWatch dialog box (although they can easily be added to
the Watch window from the QuickWatch dialog box). QuickWatch is useful in
exploratory debugging where you are checking a number of variables that are
suspect.

.s.ubiect:

-abarWork = 01l4F07:01l0B34
-[0]

len = 26 '\1I1A'
+clr = {...}

+[1] = L}
+[2] = L}
+[3] = L}
+[4] = L}
+[5] = L}

QuickWatch

Figure 11.8 The QuickWatch Dialog Box

.. I Zoom

I Add to Watch Window I
Modify ...

CIQse

.1 '-___ H .. e ... lp __1

~ To view a variable's value or an expression's result using QuickWatch:

1. Place the insertion point on a variable or expression in your code.

2. Press SHIFf+P9.

Or click the QuickWatch button on the toolbar.

Chapter 11 Debugging Programs 193

~ To add a variable or expression to the Watch window from QuickWatch:

1. Place the insertion point on a variable or expression in your code.

2. Press SHIFr+P9.

Or click the QuickWatch button on the toolbar.

3. Choose Add to Watch Window.

The Watch window opens if it is not already open.

The QuickWatch dialog box also provides controls that allow you to expand
arrays or structures to see all their elements and to modify variables while the
program is at a breakpoint.

The Zoom button expands or contracts an array or structure. The button is
unavailable if the currently selected item cannot be expanded.

The Modify button opens the Modify Variable dialog box with the currently
selected item as the default.

Note that the QuickWatch dialog box is active only when your program is run­
ning in the debugger.

Modifying a Variable
While the program is paused at a breakpoint or between steps, you can change
the value of any variable in your program. This gives you the flexibility to tryout
changes and see their results in real time or to recover from some logic error and
continue. You can modify any variable in either the Watch window or the Locals
window directly. Or you can modify any variable in your program by using the
QuickWatch dialog box.

~ To modify the value of a variable in the Watch window or Locals window:

1. In the Watch window or Locals window, place the insertion point at the end of
the variable value and use the BACKSPACE key to delete the value.

2. Type the new value.

3. Press ENTER.

You can also modify expressions using this same procedure.

The Modify Variable dialog box (see Figure 11.9) is accessed from the Quick­
Watch dialog box. It allows you to modify the variable in the QuickWatch dialog
box or any variable in the program.

194 Visual Workbench User's Guide

Modify Variable

~ariable: I (abarWorkIO)).len I I OK
Current Value: 1 I Cancel

N.ewValue: 14~ I I Help

Figure 11.9 The Modify Variable Dialog Box

~ To modify the value of a variable using the Modify Variable dialog box:

1. Place the insertion point on a variable in your code.

2. Click the QuickWatch button on the toolbar.

Or press SHIFT+P9.

The QuickWatch dialog box appears and displays the variable and its current
value.

3. In the QuickWatch dialog box, choose the Modify button.

Or press CTRL+P9.

The Modify Variable dialog box appears with the variable name in the Variable
text box.

4. Type a new value in the New Value text box.

5. Choose OK to close the Modify Variable dialog box.

6. Choose Close to close the QuickWatch dialog box.

To change the value of a structure or array, modify the individual fields or ele­
ments. You cannot change an entire array or structure all at once.

Using Show Call Stack
During a debug session, you can view all the functions that have been called but
have not returned. The Show Call Stack command on the Debug menu opens a
dialog box that lists the function calls that led to the current statement (see Figure
11.10). If the Show Function Parameters check box is enabled, each call is shown
with the arguments passed to it. The most recently executed function is listed
first.

!;.alls:
: 11-

MainWndProc(22008,273.32.0)
USER!(l) 043f:27bb()
WinMain(1731 O.O.Ox43B F: Ox0080.1)
_slubmain

aslarl
OOOO:OOOO()

Call Stack

Figure 11.10 The Call Stack Dialog Box

Chapter 11 Debugging Programs 195

Go To

Cancel

Help

~ To observe the behavior of a function call:

1. Place the insertion point at the desired location in the function.

2. From the Debug menu, choose the Continue to Cursor command to execute your
program to the location of the insertion point.

The Locals window is updated automatically to show the local variables for the
function or procedure. Expressions and variables in the Watch window are also
reevaluated in the call context.

3. From the Debug menu, choose Show Call Stack.

While the Call Stack dialog box is open, you can select any function shown in
the function list, and the function's code will be displayed in the source window.

Using the Registers Window
The Registers window (see Figure 11.11) displays the names and current values of
the native CPU registers and flags. You can change the value of any register or flag
directly in the Registers window while the program is being debugged.

AX = 01d3 BX = OObO ex = 0000 DX = 41c£
5P = 3916 BP = 391c 5I = 3e7e DI = 0010
D5 = 420£ E5 = 0000 55 = 420£ e5 = 4227
IP = 12e8 FL = 0246

NV UP EI PL ZR NA PE Ne

Figure 11.11 The Registers Window

~ To change the value of any register in the Registers window:

1. Use the TAB key or mouse to move the insertion point to the beginning of a
register value.

2. Enter the new value by overtyping the current value.

196 Visual Workbench User's Guide

~

Important Changing register values may affect the next execution command. Be
especially careful with IP, BP, and the segment registers.

The flag values displayed in the Registers window are:

Flag Set Symbol Clear Symbol

Overflow OV NV

Direction DN UP

Interrupt EI DI

Sign NO PL

Zero ZR NZ

Auxiliary carry AC NA

Parity PE PO

Carry CY NC

To set or clear a flag in the Registers window:

1. Use the TAB key or mouse to move the insertion point to the flag.

2. Press the SPACEBAR to toggle the flag.

The Registers window does not show 32-bit registers or p-code registers. Use
Code View if you need these advanced features.

Other Debugging Features
The Visual Workbench debugger also has debugging commands and options for
switching between Hard and Soft mode debugging, for viewing numbers in hexa­
decimal or decimal format, and for viewing source code as mixed source and
assembly listings.

Hard/Soft Mode Debugging
Hard/Soft debug mode is set in the Debug dialog box, accessed from the Options
menu. This option selects whether or not the debugger traps messages from the
system queue when in break mode. In Hard mode, all keyboard and mouse input
goes to the debugger. This effectively disables all other applications. The debugger
automatically switches in and out of Hard mode when necessary.

Chapter 11 Debugging Programs 197

What is Hard Mode?
Applications written for Windows typically run in soft mode. Hard mode appeared
with Windows version 3.1 as a response to requests for specific debugging
requirements.

Hard mode is a "task exclusive" mode that any Windows-based application can
switch to using the appropriate API. While in hard mode, Windows directs all input
from either the mouse or the keyboard to the application that installed itself in Hard
mode.

How Does Hard Mode Affect the Debugger?
With Windows-hosted debuggers, there is the potential that the debugger might
destabilize the Windows system by interacting with it. For this reason, the Visual
Workbench integrated debugger switches by itself to Hard mode every time it
breaks debugging execution (as a result of a step command, stopping at a break­
point, or encountering an exception, for example) while the system is in a critical
(non-interruptable) processing stage. This can occur while debugging menu events,
system modal windows, or intertask messages, among other situations.

Requirements and Restrictions
Although Soft mode is the default mode for the integrated debugger, you can spe­
cifically request that the debugger switch to Hard mode when in break mode. This
might be useful to debug time-critical events such as intertask DDE (dynamic data
exchange) transactions.

Because Hard mode is, by design, a "task exclusive" mode, no other application
can be switched to or started while this mode is operating. As a reminder, the title
bar displays [break - hard mode] instead of [break] every time the debug­
ger switches to this mode.

While in Hard mode, no other application can be started. In Visual Workbench, this
means you do not have access to the following functionality:

• Help

• App Studio

• Running tools on the Tools menu

• Printing

Also, you cannot minimize Visual Workbench since the Windows default is to
switch to another task when this happens. Another restriction of Hard mode is that
Windows will not repaint anything on the screen except the regions that belong to
the debugger frame and its child windows.

198 Visual Workbench User's Guide

Considering the restrictions inherent in the use of Hard mode debugging, you should
consider using this mode only when necessary.

Debug Display Options
The debugging display options are listed in Table 11.3. The menus or dialog
boxes where you find these features are listed in parentheses following the action.

Table 11.3 Additional Debugging Features

Feature

Hexadecimal Display

Mixed Source/ Asm

Action

Toggles the format of all numbers displayed in the Locals and
Watch windows, as well as in several dialog boxes. The
default format is base 10. When this option is selected, the
format is base 16. (Options menu, Debug dialog box)

Toggles a source display that includes assembly code
integrated with source code. When this command is checked,
the debugger single-steps assembly lines not source lines and
breakpoints can be set in assembly code. (View menu)

See the online reference for complete information about these commands.

CHAPTER 12

Custol11izing Visual Workbench

Many parts of Visual Workbench can be customized to suit your programming
needs. This chapter discusses how you can:

• Add commands and applications to the Tools menu.

• Modify display colors.

• Change the font type and size in source windows.

199

Font and window information are saved and loaded as part of the workspace
information. For information on naming and saving any custom workspaces you
create, see "Using a Workspace" on page 104 in Chapter 8.

You can also customize many features of the Visual Workbench editor using the
Editor dialog box, opened from the Options menu. For information on customiz­
ing the editor, see Chapter 7, "Using the Editor."

Modifying the Tools Menu
The Tools menu is a convenient place from which to run frequently used
MS-DOS-based and Windows-based tools while you are in Visual Workbench.
Once you've added an application to the Tools menu, you can run it from the
menu. You use the Tools command on the Options menu to add, delete, and edit
Tools menu items.

Adding Commands to the Tools Menu
You can add up to eight commands to the Tools menu, including MS-DOS com­
mands (with .EXE or .COM files), and MS-DOS-based and Windows-based
applications.

To familiarize yourself with the steps in adding a program to the Tools menu, use
the Notepad accessory that comes with Windows.

200 Visual Workbench User's Guide

~ To add a program to the Tools menu and then run it:

1. From the Options menu, choose Tools.

The Tools dialog box appears (see Figure 12.1).

Tools

Menu kontents: Add ... II OK
StudiO

Delete II Cancel &CodeView

MW';"fJ \J.p II Help

I Move Down I

CQ.mmand line: I D:\MSVC\BIN\APSTUDIO.EXE

Menu Text: I lApp Studio
~~~~~~~~ 

Arguments: I SRc 
~==============~ 

!nitial Directory: I 
~------------------~ 

D As.!>. for Arguments 

Figure 12.1 The Tools Dialog Box 

2. Choose Add to open the Add Tool dialog box (see Figure 12.2). 

File N.ame: 

1-
apstudio.exe 
bscmake. exe 
c13216.exe 
c 1xx3216. exe 
cI.exe 
cvpack.exe 
implib.exe 
lib.exe 

Add Tool 

!!.irectories: 

c:\msvc\bin 

~c:\ 
~msvc 
f5 bin 

list Files of I¥pe: Driyes: 

.. 

.. 
~IE_xe_cu_ta_b_le~(·_.e_xe~) __ ~I~_! LI~ __ c_: ________ ~I~_ 

Figure 12.2 The Add Tool Dialog Box 

OK 

Cancel 

Help 

3. Select the directory in which Windows is installed. 

4. Select NOTEPAD.EXE from the list of filenames and choose OK. 

The Tools dialog box reappears. 

You can change the default menu name by editing the Menu Text text box. 
You can also add arguments to be passed to the program by typing them in the 
Arguments text box (see "Using Argument Macros" on page 202), or set the 
initial directory for your program by typing it in the Initial Directory text box. 



Chapter 12 Customizing Visual Workbench 201 

Note If the program you are adding to the Tools menu has a .PIP file, the 
startup directory specified by the .PIF file overrides the directory specified in the 
Initial Directory text box. 

5. Choose OK. 

The name of the program now appears on the Tools menu. To run the program, 
choose it from the menu. 

Editing a Tools Menu Command 
~ To edit a Tools menu command: 

1. From the Options menu, choose Tools. 

2. Under Menu Contents, select the item you want to edit. 

3. Perform one or more of the following actions: 

• To move the selected command up one position in the menu, choose 
Move Up. 

• To move the selected command down one position, choose Move Down. 

• To change the menu title, the command line (tool path), command-line 
arguments, or the initial directory, type the new information in the appro­
priate text box. 

If you want to specify a letter in the menu title as an access key (a menu accel­
erator key), precede that letter in the Menu Text text box with an ampersand 
(&). The first letter in the title is the keyboard access key by default. 

If you want to be prompted for command-line arguments each time you run the 
tool, select the Ask for Arguments check box. 

4. Choose OK. 

~ To delete a command from the Tools menu: 

1. From the Options menu, choose Tools. 

2. Under Menu Contents, select the command you want to delete from the Menu 
Contents list. 

3. Choose Delete to remove the program from the list. 

4. Choose OK. 

Tips For Using MS-DOS Tools 
If you have particular MS-DOS tools or programs you like to use, here are a couple 
of tips to make it easier to integrate these tools with Visual Workbench. 



202 Visual Workbench User's Guide 

To keep an MS-DOS window open with the output of a command-line tool after the 
tool has been run from the Tools menu, use the Windows PIP Editor to edit the file 
_DEFAULT.PIP and clear the Close Window on Exit check box. You will then 
need to close the MS-DOS window using the Control-menu box whenever you 
run the tool, but you will be able to view the tool's output when it has finished. 

To use any of the MS-DOS commands (such as DIR) or command-line operations 
(such as piping) that don't have an executable file, type the complete path to 
COMMAND.COM in the Command Line text box and type / C followed by the 
commands you want to invoke in the Arguments text box. For example, the follow­
ing parameters in the Tools dialog box cause an MS-DOS window to open with a 
paged directory listing of the project directory when the Dir command on the Tools 
menu is selected: 

Text Box 

Command Line 

Menu Text 

Arguments 

Initial Directory 

Using Argument Macros 

Entry 

C:\OOS\COMMANO.COM 

Oir 

IC OIR MORE 

$ProjOir 

You can specify arguments for any program that you addto the Tools menu by 
entering the arguments in the Arguments text box. To help you integrate your tools 
with the current status of the Visual Workbench environment, Visual Workbench 
provides a set of 10 argument macros (see Table 12.1). 

Table 12.1 Visual Workbench Argument Macros 

Macro Name 

$File 

$FileName 

$FileDir 

$Proj 

$ProjDir 

$Line 

$Col 

$Dir 

Expands to a String Containing 

The complete filename of the current source (defined as 
drive+path+filename), blank if a non source window is active. 

The filename of the current source (defined as filename), blank if a 
nonsource window is active. 

The directory of the current source (defmed as drive+path), blank if a 
nonsource window is active. 

The current project base name (defined as filename), blank if no pro­
ject is currently open. 

The directory of the current project (defined as drive+path), blank if no 
project is currently open. 

The current cursor line position within the active window. 

The current cursor column position within the active window. 

The current working directory (defined as drive+path). 



Chapter 12 Customizing Visual Workbench 203 

Table 12.1 Visual Workbench Argument Macros (continued) 

Macro Name 

$Target 

$RC 

Expands to a String Containing 

The current project target name (defined as drive+path+jilename). 

A resource file (*.RC). For Visual Workbench projects, this is the first 
resource file in the project list. For external projects, it is $Target.RC. 
If there is no resource file or there is no active project, $RC is blank. 

Macro recognition is case insensitive. All path macros end in a backslash (\). 

To use a macro as an argument, type the macro name in the Arguments text box. 
Or, for macros that expand to a directory, you can type the macro name in the 
Initial Directory box. As an example, the following procedure demonstrates how 
to add the $File argument macro to the Windows Notepad accessory (installed in 
a previous procedure). 

~ To add the $FiIe macro to an installed tool and then run it: 

1. From the Options menu, choose Tools. 

2. Under Menu Contents, select the command you want to edit. 

In this case, select the Notepad accessory installed earlier. 

3. In the Arguments text box, type $ F i 1 e. 

4. Choose OK to close the Tools dialog box. 

5. Open any source file or make an open source file active by clicking in it. 

6. From the Tools menu, choose Notepad. 

The Windows Notepad editor opens with the active Visual Workbench source 
file as its text file. 

Setting Directories 
When Visual C++ is installed, the Setup program determines the correct directory 
paths for several file types and updates the Directories dialog box with these paths. 
The file types are: 

• Build utilities (executable files) 

• Include files 

• Libraries 

• Microsoft Foundation Class Library source files 

• Help files 



204 Visual Workbench User's Guide 

The Directories dialog box, accessed by choosing Directories from the Options 
menu (see Figure 12.3), lets you edit the directory paths where Visual Workbench 
looks for each of the file types. The directories for the top three file types in the 
list (executable files, include files, and libraries) are drop-down lists that can 
contain up to four different paths, which makes it easy to quickly change build 
environments. 

Directories 

f.Hecutable Files Path: :=' c:=\m=s=yc=\b=in=======~' [!) I OK 

!nclude Files Path: 'c:\msyc\include;c:\msyc\mfc\include I [!) I Cancel 

.librarv Files Path: 'c:\msyc\lib;c:\msyc\mfc\lib I [!) 
I 

I Help 
Hel.!! Files Path: , c:\msyc\help . . 

~================~ .M.FC Files Path: , c:\msyc\mfc , 

Figure 12.3 The Directories Dialog Box 

The Directories dialog box contains the following drop-down list boxes: 

Executable Files Path 
Specifies where the build utilities, such as NMAKE, LINK, and BSCMAKE, 
reside. The build uses MS-DOS tools and requires an MS-DOS path. 

Include Files Path 
Specifies where the compiler should look for include files surrounded by angle 
brackets « and » (for example, i ncl ude <stdi o. h». 

Library Files Path 
Specifies where the linker should look for libraries to resolve external 
references. 

In addition, the Directories dialog box contains the following text boxes: 

Help Files Path 
Specifies where Help files accessed from Visual Workbench are located. 

MFC Files Path 
Specifies where the base directory for the Microsoft Foundation Class Library 
is located. This is needed when you use the debugger to trace into class library 
source code or when you use the browser to jump to definitions or references 
in the class library source code. 

Directory information is stored in the MSVC.INI file. When you first install Visual 
Workbench (or if you delete the MSVC.INI file and then run Visual Workbench), 
the MS-DOS environment variables PATH, INCLUDE, and LIB are used to build 
the corresponding directory paths. These environment directories are appended to 
the Visual C++ directories in which you install Visual Workbench. Thereafter, 



Chapter 12 Customizing Visual Workbench 205 

Visual Workbench uses the directory paths in the Directories dialog box, regardless 
of your current MS-DOS environment variables. 

Changing Syntax Coloring 
Using different colors for various language elements such as functions and vari­
ables gives you immediate visual clues about the structure of your source code. 
You can change the default colors of these elements as well as the color of other 
text in the development environment such as reserved words, breakpoints, errors, 
and tags. You can also tum off syntax coloring for all source files. These changes 
are global and affect all source files with extensions recognized by Visual Work­
bench. To make global syntax coloring changes, choose Color from the Options 
menu. 

Visual Workbench performs syntax coloring based on file extensions. You can 
override Visual Workbench's default coloring for a file by choosing Syntax 
Coloring from the View menu. This allows you to specify C, C++, or no syntax 
coloring for any individual file. 

Making Global Display Changes 
To familiarize yourself with the steps in changing screen colors, change the color 
of comments in the source window to black text on a light-blue background. 

~ To change the colors in the source window: 

1. From the Options menu, choose Color. 

The Color dialog box appears (see Figure 12.4). 

items: 

. " 
Locals Window 
Registers Window 
Output Window 
Breakpoint Line 
Current Line 

-- Sample Text --

I Restore to Qefault 

I Restore All Defaults 

Eoreground Color 

Color 

OK 

Cancel 

Help 

[ZJ fulntax Coloring 

~.malIJ._~ 
[I8]c].lIiiiiiiII __ ~_ 

,!!ackground Color-----------, 

~.malIJ._~ 
[I8]c].lIiiiiiiII __ ~_ 

Figure 12.4 The Color Dialog Box 



206 Visual Workbench User's Guide 

2. From the Items list, select the item you want to change. 

For this example, select Comment. 

3. In the Foreground Color and Background Color groups, select the color squares 
to represent the item. 

For example, select the light-blue square in the Background Color group and the 
black square in the Foreground Color group. The new color combination is 
shown in the Sample Text box. 

4. Choose OK to apply the change to the source window. 

You can change several items in the Items list before choosing OK. 

~ To change a source window item back to its original colors: 

1. From the Options menu, choose Color. 

2. From the Items list, select the source item to be restored. 

For example, select Comment. 

3. Choose Restore to Default. 

4. Choose OK. 

Display items such as keywords and identifiers can be changed back to their 
default colors without changing the foreground and background colors of the 
source text. 

To restore all items to their default values, choose Restore All Defaults. 

Source File Syntax Coloring 
For any source file in Visual Workbench, you can specify which syntax coloring 
to apply (C or C++), or whether to tum off syntax coloring altogether. This is 
useful if you have C or C++ code in a header file with a filename extension other 
than .R, .RPP, or .RXX, or if you have C or C++ source code with filename 
extensions that Visual Workbench doesn't recognize. (You should be cautious 
when using nonstandard filename extensions, however, since the filename exten­
sions .CPP, .CXX, and.C are used by Visual Workbench to determine whether 
the C++ or C compiler is used during the build.) 

~ To change syntax coloring in an individual source file: 

1. Click in the source file window or use the Window menu to make the source 
window active. 

If there are multiple windows open on the source file, select one of them. Syntax 
coloring changes will appear in all windows opened on the source file. 

2. From the View menu, select Syntax Coloring. 

A cascading menu appears on the right with three choices: C, C++, and None. 



Chapter 12 Customizing Visual Workbench 207 

3. Choose C or C++ to determine syntax coloring for that source file. 

Or choose None to tum syntax coloring off. 

Note Global syntax coloring must be enabled before you can use the Syntax Color­
ing command on the View menu on any specific file. To enable global syntax 
coloring, choose Color from the Options menu and then select the Syntax Coloring 
check box in the Color dialog box. 

Setting Font Type and Size 
You can specify which font type and size appear in a Visual Workbench source 
window. You can choose any font type and size found in your setup of Windows. 
You can also determine what will be the default font for any new window. 

~ To set the font type, style, and size: 

1. From the Options menu, choose Font. 

The Font dialog box appears (see Figure 12.5). 

2. From the Font list box, select the font you want to apply. 

The sample text in the Sample box changes to the font you selected. 

3. Optionally, select the font style from the Font Style list box. 

The sample text in the Sample box changes to the font style you selected. 

4. From the Size list box, select the font size. 

The sample text in the Sample box changes to the font size you selected. 

5. Choose OK. 

Font: 

II!!mmD 
I 

1'J,t Courier New 
FiKedsys 

.m Helvetica .m Helvetica-Nallow 

I Use as Default Font I 
Default Font: 
Courier Regular -1 Opt 

Font 

Font St1!.le: ~ize: 
OK 

• Cancel 
:::::; Italic 
..... Bold 
----, Bold Italic 
+ + !::!.elp 

[S_~ 

AaBbYyZz 

This is a printer font The closest matching 
Windows font will be used on your screen. 

Figure 12.5 The Font Dialog Box 



208 Visual Workbench User's Guide 

~ To set the default font for new source windows: 

1. Choose a font, style, and size as just described. 

2. Choose the Use as Default Font button. 

The currently selected font, style, and size appear in the Default Font 
description. 

3. Choose OK. 

The default font is automatically applied to any new or opened window. The 
default font information is stored with other Visual Workbench information and 
is persistent between sessions. 

Text within the source window can be only one font and size. Multiple fonts can­
not be displayed in the same source window. However, each source window can 
contain a different font and size, even when source windows with different fonts 
are attached to the same source file. 



CHAPTER 13 

Using Visual Workbench 
with Other Visual C++ Tools 

209 

To develop a Visual C++ application, you use four Visual C++ tools. Two of these, 
Visual Workbench and App Studio, are major applications. The other two are spe­
cialized "wizards" installed as menu items in these applications: 

• AppWizard is used to generate Visual C++ application starter files. AppWizard 
is accessed from Visual Workbench. 

• ClassWizard is used to create classes, map messages to class-member functions, 
and map controls to member variables. Class Wizard is accessed from either 
Visual Workbench or App Studio. 

This chapter discusses how Visual Workbench fits into the process of developing 
a Visual C++ application that uses the Microsoft Foundation classes-that is, how 
you see the entire process from the viewpoint of Visual Workbench. In this context, 
it focuses on programming activities you encounter while running Visual Work­
bench, such as opening App Studio and running App Wizard and Class Wizard. 

Since App Wizard is only run from Visual Workbench, it is described in detail. 
Since ClassWizard can be run from either App Studio or Visual Workbench, 
the activities likely to be performed from a Visual Workbench invocation of 
Class Wizard are described here. The primary reference information for 
ClassWizard can be found in Chapter 9, "Using ClassWizard," in the App Studio 
User's Guide. 

For a global view of how all the tools work together, see Chapter 4 in this manual, 
"Developing a Microsoft Visual C++ Application." 

Using AppWizard 
AppWizard is used to generate a set of starter files for a Visual C++ application 
that uses the Microsoft Foundation classes. This set includes all the files required 
to build a Windows-based application, including source and header files, resource 
files, a module-definition file, a project file, and so on. App Wizard must be used 



210 Visual Workbench User's Guide 

first in the development process, primarily so that you have starter files, but also so 
that your files are compatible with Class Wizard. 

Building the resulting project produces a shell application with a wealth of built-in 
functionality. For example, you get built-in handling of the File menu's Open and 
Save As commands, an About dialog box, and an icon. By selecting options in 
AppWizard, you can add a toolbar and status bar, a Printer Setup dialog box, a 
fully implemented Print Preview, a Print command and toolbar button, context-sen­
sitive Help, support for custom VBX controls (custom controls compatible with 
Visual Basic), and support for object linking and embedding (OLE). 

This section describes the MFC App Wizard dialog box and the Options and 
Classes dialog boxes that are accessed from it. For tutorial information on using 
AppWizard to create a Visual C++ application, see Chapter 2, "Creating a New 
Application with AppWizard," in the Class Libraries User's Guide. 

Opening and Closing AppWizard 
To open AppWizard, choose the AppWizard command from the Visual Workbench 
Project menu. After using App Wizard to specify your application's name, directory, 
options, and classes-as described in the following sections-choose the OK but­
ton to generate the starter files. 

When App Wizard is finished, it creates a Visual Workbench project that allows 
you to immediately build and run the application. A message box appears to tell you 
App Wizard has generated the files. Choose OK in the message box to close 
App Wizard and to open the newly created project in Visual Workbench. 

Specifying the Project Name and Location 
The MFC AppWizard dialog box (see Figure 13.1) allows you to select the project 
name and the subdirectory name and root path where the project files will reside. 
The project name is given the extension .MAK and appears in the complete path at 
the top of the Project Path group. It is also used as a base to create class names and 
source and header filenames. 



Chapter 13 Using Visual Workbench with Other Visual C++ Tools 211 

------
MFC AppWizilrd 

I Project tiame: ,-I m_ya_pp ___ -' I OK 

Project Path I Cancel 

c: \msvc\tempdir I Help 
\myapp\myapp. mak 

.!lirectory: 
I Qptions .. . 

IDc:\ ~ 
ID msyc 

Classes .. . 

~tempdir 

"+' 
New liubdirectory: 

Imyapp I 

Drixe: 

I Iii! c: I!I 

Figure 13.1 The MFC App Wizard Dialog Box 

~ To select the project name and subdirectory name: 

1. Open the MFC AppWizard dialog box, if it isn't already open, by choosing 
App Wizard from the Project menu. 

2. Type a name in the Project Name box. 

Notice that the name you type is automatically entered as a directory name in 
the New Subdirectory box. It is also entered in the project file path above the 
Directory box. 

The maximum number of valid characters in the Project Name box and the New 
Subdirectory box is eight. 

3. If you do not want the subdirectory name to be the same as the project name, 
you can type a different name in the New Subdirectory box, or you can leave the 
subdirectory name blank. 

See the next procedure if you want to change the directory path that precedes the 
subdirectory . 

You must select the drive and directory path to the subdirectory that will contain the 
generated files. To do this, you use the Directory box and the Drive box. These two 
controls work the same as similar controls in the Open File and Save As dialog 
boxes. 

~ To select a drive and directory path for the application's subdirectory: 

1. In the Drive drop-down list box, select the drive you want. 

2. In the Directory box, select the directory path by double-clicking the directory 
icons. 



212 Visual Workbench User's Guide 

The drive letter and directory path you select are reflected in the project path. 
You can omit the subdirectory. The format for the entire path is: 

drive:\directorypath[\subdirectory ]\proj~ctname.MAK 

Selecting Options 
App Wizard can add the basic skeleton code to support a comprehensive set of ap­
plication options. Obviously, the more functionality your application supports, the 
larger it will be. However, if your application needs to support some specific func­
tionality-such as providing context-sensitive hooks to Help, for instance-
App Wizard makes the addition much easier. 

To select the options you want your application to support, choose the Options 
button in the MFC App Wizard dialog box and then enable or disable the various 
check boxes in the resulting Options dialog box (see Figure 13.2). When you have 
finished selecting options, close the Options dialog box by choosing OK. 

Options 

[g] iM:~!.!:ipi~ji~:~~!!i~~U:~:!:~~f.~~~: 
[g] Inilialloolbar 
[g] f.rinling and Prinl Preview 

D Cuslom ~BX Conlrols 
D Conlexl Sensilive H.!l.lp 

D Q.LE Clienl 

D E~lernal Makefile 
[g] §.enerale Source Commenls 

OK 

Cancel 

Help 

Figure 13.2 AppWizard's Options Dialog Box 

You can select these options in the Options dialog box: 

Multiple Document Interface 
This option lets you select the type of project you want to create. There are two 
project types available. When this option is checked, App Wizard creates an 
MDI application. When this option is cleared (not checked), it creates an SDI 
application. 

• An SDI (single document interface) application allows a user to work with 
just one document at a time. The Windows Notepad is an example of an SDI 
application. 

• An MDI (multiple document interface) application allows a user to open 
multiple documents, each with its own window. The Windows File Manager 
is an example of an MDI application. 



Chapter 13 Using Visual Workbench with Other Visual C++ Tools 213 

Initial Toolbar 
App Wizard generates code for a toolbar and a status bar. The toolbar contains 
buttons for creating a new document, opening and saving document files, cut­
ting, copying and pasting, printing, displaying the About dialog box, and invok­
ing Help. The status bar contains automatic indicators for the keyboard's CAPS 

LOCK, NUM LOCK, and SCROLL LOCK keys and a message line that displays help 
strings for menu commands and toolbar buttons. Enabling this option also adds 
menu commands to display or hide the toolbar and status bar. 

Printing and Print Preview 
App Wizard generates the code to handle print, print setup, and print preview 
commands by calling member functions in the CView class from the Microsoft 
Foundation Class Library. It also adds commands for these functions to the 
application's menu. 

Custom VBX Controls 
App Wizard enables the use of custom VBX controls (custom controls com­
patible with Visual Basic). This is accomplished by a single function, 
EnableVBXO, which includes the run-time code required to use VBX controls. 
You use App Studio to incorporate custom VBX controls in your user interface. 
To learn how to write the supporting code, see Chapter 17 in the Class Library 
User's Guide. 

Context Sensitive Help 
App Wizard generates a set of help files (see page 217) that are used to provide 
context-sensitive help. Help support requires the help compiler, which is pro­
vided with Visual C++ Professional Edition. 

OLE Client 
App Wizard generates application support code for an OLE (object linking 
and embedding) client application. This allows OLE-linked and OLE-embedded 
objects to be placed in your application's documents. When you select this 
option, the document class is derived from COleClientDoc instead of 
CDocument. Selecting this option also enables the standard OLE resources 
and adds extra OLE commands to the application's menu bar. For more infor­
mation about how to write code for OLE, see Chapter 18 in the Class Library 
User's Guide. 

External Makefile 
By default, App Wizard generates a project file that is compatible with Visual 
Workbench (and NMAKE). Select this option if you want AppWizard to gen­
erate an NMAKE makefile that can be directly edited but must be used as an 
external project from within Visual Workbench. 

Generate Source Comments 
App Wizard generates and inserts comments in the source files that guide you in 
writing your program. This includes indicators where you need to add your own 
code. It is a good idea to enable this option. 



214 Visual Workbench User's Guide 

Modifying Classes 
AppWizard names your application's classes and files by using the project name 
you specify in the Project Name box. The Classes dialog box (see Figure 13.3), 
accessed with the Classes button in the MFC App Wizard dialog box, lets you mod­
ify components of each of the four classes that are created by App Wizard. Some 
classes allow more modification of options than others. 

Classes 

New 
Application CMainFrame 
klasses: CMyappDoc 

CMyappView 

Class !iame: Header File: 

ICMyappApp Im.l'app.h 

Base Class: Implementation File: 

ICWinApp 

OK 

Cancel 

Help 

Figure 13.3 AppWizard's Classes Dialog Box 

New Application Classes 
Three of the four classes available in the New Application Classes list box are 
derived from your project name. In each of the following class names, the place­
holder Prjname indicates the project name you have specified. 

CPrjnameApp 
This is the main application class. The Base Class, Header File, and Implementa­
tion File text boxes are all dimmed, indicating that you cannot change any of these 
options, since these must reside in the main project. You can, however, change 
the name of the class. 

CMainFrame 
This is the class that handles the window frame, which contains the toolbar and 
status bar. You cannot change the base class, since this is determined by the project 
type you choose (MDI or SDI). However, you can change the name of the class or 
the names of the header and source files associated with the window frame code by 
typing new names in the Header File and Implementation File text boxes. 

CPrjnameDoc 
This is the class that contains the document data and handles saving it to disk and 
recalling it from disk, among other things. You cannot change the base class, which 



Chapter 13 Using Visual Workbench with Other Visual C++ Tools 215 

will be CDocument (or COleClientDoc if OLE support is selected), but you can 
change the names of the class, the header file, and the source (implementation) file. 

A CPr j n am eO a c class is associated with a document type and has the built-in 
functionality to automatically serialize (save and load) the document to and from 
disk in response to the Save As and Open commands on the File menu. You can 
change the name that is used wherever the application's native document type is 
referred to by typing a new name (up to six characters) in the Doc Type Name box. 
Examples of where the document type name is used include the default filename 
(CPrjname.DOC), the Windows shell registration name, the title bar of a document 
window, and constants referred to in the code created by App Wizard. This name is 
also used in the File Manager shell and OLE server options when a file type is 
needed. 

You can also choose a filename extension for the document by typing up to three 
characters in the File Extension box. The filename extension is added to document 
files saved from the application and appears as a file filter in the application's Open 
File and Save As dialog boxes. 

CPrjnameView 
This class is used to display document data inside a window. You can change the 
name of the class, the header file, or the source file; however, you cannot change 
the name of the base class. 

AppWizard-Generated Files 
App Wizard always generates a basic list of files, regardless of which options you 
choose. The Context Sensitive Help and Initial Toolbar options result in additional 
files. This section first describes the core files common to all App Wizard-generated 
applications and then describes files that are added when you select toolbar and 
Help support. 

AppWizard uses the name that you specify in the Project Name box to derive names 
for most of its files and classes. In the following descriptions, where the full project 
name is used in the filename, PRJNAME is used as a placeholder for the name you 
specify. For some filenames, the project name is truncated to five characters. In 
those cases, PRJNA is used as a placeholder for the truncated project name. 

Note The name substitutions indicated in these filenames may not apply if you have 
used the Classes dialog box to alter any of these names. 

Standard AppWizard Files 
This section describes the various files generated by App Wizard and categorizes 
them by function. In the project directory, you'll also find a file named 



216 Visual Workbench User's Guide 

README.TXT, which describes each of the files created by AppWizard using the 
actual filenames created by App Wizard for your specific project. 

Project and Makefiles 
PRJNAME.MAK 

This is the project file for Visual Workbench. It is also an NMAKE-compatible 
file. If you select the External Makefile option in AppWizard's Options dialog 
box, this can only be used as an external project from within Visual Workbench. 

PRJNAME.CLW 
This file contains information used by Class Wizard to edit existing classes or 
add new classes. Class Wizard also uses this file to store information needed to 
generate and edit message maps and dialog data maps, and to generate prototype 
member functions. 

Resource and Module-Definition Files 
PRJNAME.RC, RESOURCE.H 

This is the resource file for the project and its header file. The resource file 
contains the default menu definition and accelerator and string tables for a 
generic Visual C++ application. It also specifies a default About dialog box 
and an icon file (RES\PRJNAME.ICO). The resource file includes the file 
STDAFX.RC for standard Microsoft Foundation class resources. If toolbar 
support has been specified as an option, it also specifies the toolbar bitmap file 
(RES\TOOLBAR.BMP). 

RES\PRJNAME.ICO 
This is the icon file for the generic Visual C++ application. This icon appears 
when the application is minimized. 

PRJNAME.DEF 
This is the module-definition file for the application, which includes the name 
and description of the project as well as the size and type of the run-time heap 
and run-time stack. The heap and stack sizes are typical for this type of 
Microsoft Foundation Class Library application. 

Application Source and Header Files 
MAINFRM.CPP, MAINFRM.H 

These files derive the CMa in Frame class from either CFrameWnd (for SDI 
applications), or CMDIFrameWnd (for MDI applications). The CMa in Frame 
class handles the creation of toolbar buttons and the status bar, if the Initial 
Toolbar check box is enabled in AppWizard's Options dialog box. The 
MAINFRM.CPP file also contains the array of object IDs for the default toolbar 
buttons provided with a Visual C++ application. 

PRJNAME.H 
This is the main include file for the application. It contains all global symbols 
and #include directives for other header files. 



Chapter 13 Using Visual Workbench with Other Visual C++ Tools 217 

PRJNAME.CPP 
This file is the main application source file. It creates one instance of the 
class CPr j n am e A p p (which is derived from CWinApp) and overrides the 
InitInstance member function. 

CPr j n ameApp: : I ni tIns ta nee does several things. It registers document 
templates, which serve as a connection between documents and templates, 
creates a main frame window, and creates an empty document (or opens a 
document if one is specified as a command-line argument to the application). It 
also enables support for custom VBX control and FI-Help, if these options have 
been chosen. 

PRJNADOC.CPP, PRJNADOC.H 
These files derive and implement the document class, named CPr j nameDoe, 
and include skeleton member functions to initialize a document, serialize (save 
and load) a document, and implement debugging diagnostics. In an MDI appli­
cation, you use Class Wizard to add more document classes. 

PRJNAVW.CPP, PRJNAVW.H 
These files derive and implement the view class, named CPr j nameVi ew, that 
is used to display and print the document data. The CPr j n a me View class is de­
rived from CView and has skeleton member functions to draw the view and 
implement debugging diagnostics. In an MDI application, you use ClassWizard 
to add more view classes. If you have enabled support for printing, message-map 
entries are added for print, print setup, and print preview command messages. 
These entries call the corresponding member functions in the CView class. 

Precompiled Header Files 
STDAFX.CPP, STDAFX.H 

These files are used to build a precompiled header file PRJNAME.PCH and a 
precompiled types file PRJNAME.PCT. 

Files Added by Options 
Most options use the standard files to implement their features. The exceptions are 
the Initial Toolbar and Context Sensitive Help options. Toolbar support adds just 
one file, RES\TOOLBAR.BMP. Help support provides a number of files and cre­
ates a new directory \HLP to contain most of them. 

Help Option 
MAKEHELP.BAT 

This batch file can be used to create Help for your application. 

PRJNAME.HPJ 
This is the Help project file used by the help compiler to create your applica­
tion's help file. 

HLP\*.BMP 
These are a collection of bitmap files used by the help file topics. 



218 Visual Workbench User's Guide 

HLP\ALIAS.H 
This file is used to create help topic aliases, which map one context to another 
existing context. These are used when several commands need to be mapped to 
the same help topic. This is included in the [ALIAS] section of the Help project 
(.HPJ) file. 

HLP\MAP.H 
This file contains mappings for objects and commands that are application spe­
cific. This is included in the [MAP] section of the .HPJ file. 

HLP\AFX.RTF 
This file contains the standard help topics for Microsoft Foundation Class 
Library commands and screen objects. 

HLP\KEYS.RTF 
This file contains Help for keys used in applications for Windows. 

HLP\MDI.RTF 
This is the template help file for MDI applications. 

HLP\TERMS.RTF 
This is the template help file for your application's glossary of terms. 

Running App Studio 
App Studio is the application you use to create and edit resources. Although you can 
run App Studio independently, App Studio, Visual Workbench, and Class Wizard 
are more easily integrated if you run App Studio from within Visual Workbench. 
You can run App Studio from Visual Workbench using one of two methods: 

• Select App Studio from the Tools menu 

• Open a project resource file (assuming the Open .RC Files Using App Studio 
check box in the Editor dialog box is enabled) 

If you occasionally edit your resource files in a text editor, you may prefer to open 
App Studio from the Tools menu and use the Open File dialog box to open resource 
files as text in a Visual Workbench source window. 

App Studio is installed on the Tools menu with the $RC argument macro. When 
you choose App Studio from the Tools menu, the $RC macro expands to either the 
first resource file in the project list (for Visual Workbench projects) or the target 
name with an .RC extension (for external projects). For external projects, the target 
name is displayed in the Debug Target Name box in the Project Options dialog box. 

If no resource file exists, App Studio is opened without one. 

Since App Studio creates and edits resources graphically, you may not feel the need 
to edit your resource files in a text editor. In this case, it can be useful to open App 



Chapter 13 Using Visual Workbench with Other Visual C++ Tools 219 

Studio by simply selecting a resource file in Visual Workbench's Open File dialog 
box. 

Note To open AppStudio on a resource file that you select in the Open File dialog 
box or from the toolbar's Project Files list, enable the Open RC Files Using App 
Studio check box in the Editor dialog box (accessed from the Options menu). The 
state of this check box persists between Visual Workbench sessions. 

You can use the Visual Workbench Open File dialog box to open App Studio on 
several file types, including: 

• Resource files (.RC). 

• Graphics image files (.BMP, .ICO, or .CUR). 

• Executable files (.EXE, .DLL, or .VBX). 

When you open App Studio on a resource file, the file is first compiled using the 
resource compiler and the resulting data is stored in memory for App Studio's use. 
App Studio stores this information in a file with the extension .APS for later recall 
and for caching when memory is limited. 

When you open a graphics image file, it becomes an App Studio resource, and when 
you open an executable file, its resources are extracted and can be modified in App 
Studio. 

~ To run App Studio on a resource, graphics image, or executable file: 

1. From the Visual Workbench File menu, choose Open. 

2. In the Open File dialog box, select the filename. 

3. Choose OK. 

App Studio is launched with the filename as an argument. App Studio compiles 
the resource file first. If an error occurs during this stage, the resource file is 
opened in Visual Workbench as a text file with the insertion point on the line 
that caused the error. 

Since the resource file is usually included in the project list, you can also use the 
Project Files button on the toolbar to open App Studio. 

~ To run App Studio on a project resource or graphics file using the toolbar: 

1. Click the Project Files button (on the far left of the toolbar). 

The Project Files list appears. 

2. Double-click the filename in the Project Files list. 

3. App Studio is launched with the filename as an argument. 



220 Visual Workbench User's Guide 

Using ClassWizard 
Class Wizard is a Microsoft Foundation Class Library class generator and manager 
that automates the creation and editing of code to handle messages and dialog-box 
data. It generates the source code for new classes that can receive messages and 
also generates member functions and message maps in those classes to bind the 
messages to code. It also maps dialog-box data to member variables and automates 
the validation of data entered in a dialog box. 

ClassWizard can be opened from either App Studio or Visual Workbench (see Fig­
ure 13.4). Since you design the user-interface objects in App Studio, you usually 
open Class Wizard from App Studio and generate the message-handler functions for 
the user-interface objects as you go. Chapter 9, "Using ClassWizard," in the App 
Studio User's Guide contains a comprehensive description of using Class Wizard to 
do this and more. 

ClassWizard 

Class .!:!ame: L-IC_Sc_ri_bV_ie_w ____ --"liI_f 

.!!biect IDs: 
CScribView 

ID APP EXIT 
ID-EDlf CLEAR ALL 
ID-EDIT-COPY -
ID-EDIT-CUT 
ID-EDIT-PASTE 

lot ember functions: 

OnLButtonDown 
OnLButtonUp 
OnMouseMove 

ON WM LBUTTONDOWN 
ON-WM-LBUTTONUP 
ON=WM=MOUSEMOVE 

Description: Handle a command (from menu, acceL cmd button) 

Figure 13.4 Class Wizard 

Close 

Add Class ... 

Class !nfo ... 

Help 

I Add F<Jndim!. .. 

I Delete Function I 
Edit Code 

This section describes two kinds of ClassWizard activities that you are likely to 
perform while running Class Wizard from Visual Workbench: deriving classes and 
creating message handlers for standard Windows messages. These activities can 
be performed at any time in Class Wizard, regardless of whether you open it from 
Visual Workbench or App Studio. However, since deriving classes and creating 
message handlers aren't directly related to developing resources, you may want to 
perform these activities while editing and developing code in Visual Workbench. 



Chapter 13 Using Visual Workbench with Other Visual C++ Tools 221 

Creating New Classes 
You can use Class Wizard to add new classes to your application. Class Wizard can 
derive a new class from any class with CCmdTarget as a base class. 

Important If you plan to use Class Wizard to create message-handler member func­
tions in any new classes, you should use Class Wizard to create the new classes so 
that the class code is in a format recognized by Class Wizard. 

Figure 13.5 shows a segment of the Microsoft Foundation Class Library hierarchy. 
The CCmdTarget class provides message-routing services for user-interface ob­
jects, so any classes with CCmdTarget as a base class can be used to handle mes­
sages from menu items, dialog-box controls, toolbar buttons, and so on. (These are 
actually IDs passed by WM_COMMAND messages.) This applies to document 
view classes (those derived from CView), which can also handle Windows mes­
sages, as well as document structure classes, such as those derived from 
CDocument. 

CCmd Target 

I Your document I I Your application I 
I I I I 
I class I I class I 

I Your frame I I 
I . II 
I Window class I I 

Figure 13.5 Classes Derived from CCmdTarget 

Your view 
class 

Most often, you will create new dialog classes for dialog resources you have cre­
ated in App Studio. This should be done after creating the dialog resources. Chapter 
9, "Using ClassWizard," in the App Studio User's Guide provides the procedure 
for creating new dialog classes. 



222 Visual Workbench User's Guide 

You may also want to create new classes other than dialog classes that have the 
ability to respond to user input and either display data or contain data. For example, 
when App Wizard creates an application, it derives one document class and one 
view class. You might want to add a second view class so a user can display the 
document data in different ways, for example as a graphic chart or as a table. Both 
the document class and the view class can respond to user-interface object events. 
The document class is used to contain the data and to serialize it. The view class is 
used to display the data and also respond to Windows messages. 

~ To derive a new class using ClassWizard: 

1. From the Browse menu, choose Class Wizard. 

The ClassWizard dialog box appears. 

2. Choose the Add Class button to open the Add Class dialog box (see Figure 
13.6). 

Add Class 

Ihtl'View 

Class Harne: Create Class 

Cancel 
Class lYpe: !rnplernentation File: .---_-. 

,-I CV_i_ew ________ liI_:!: I rnl'view_cpp II Browse ___ I Help 

II.!!!port Class___ I 

Figure 13.6 ClassWizard's Add Class Dialog Box 

3. In the Class Name box, type the name of the class you want to create. 

Notice that as you type the name, the Header File and Implementation File text 
boxes automatically use the first eight characters of the class name for the sug­
gested filenames. 

4. From the Class Type drop-down list, select the type of class from which you 
want to derive your application's class. 

5. If you want the class prototype code to be generated in a different file, type the 
filename in the Header File text box, or use the Browse button to select the 
name of an existing header file. 

6. If you want the class implementation code to be generated in a different file, 
type the filename in the Implementation File text box, or use the Browse button 
to select the name of an existing source file. 

7. If you are creating a class that is derived from either CDialog or CForm View, 
select the resource identifier from the Dialog ID drop-down list. 

8. Choose Create Class. 

If you skipped step 7, Class Wizard prompts you with a message box to warn 
you about using a resource identifier. If your new class is not derived from 
CDialog or CFormView, choose Yes. 



Chapter 13 Using Visual Workbench with Other Visual C++ Tools 223 

Class Wizard generates the source code for the new class and returns to the 
Class Wizard dialog box with the new class selected in the Class Name drop­
down list. 

Creating Message Handlers for Windows Messages 
The classes that handle Windows message-that is, the classes that are derived 
from the CWnd class-are often called upon to deal with much of the graphical 
overhead of programming in Windows, such as responding to resize messages 
(WM _SIZE) or mouse messages (such as WM _ LBUTTONDOWN). 

Class Wizard makes it easy to generate skeleton code to handle these standard mes­
sages from Windows. It displays a list of all the messages that pertain to each class 
type so all you need to do is select the message and choose the Add Function button. 

~ To create message-handler code for Windows messages: 

1. If Class Wizard is not already open, open it from the Browse menu (or press 
CTRL+W). 

2. In the Class Name drop-down list, select the class to which you want to add the 
message-handler member function and message-map entry. 

3. In the Object IDs box, select the class name, which will be the first entry in the 
list. 

A list of Windows messages is displayed in the Messages box. The contents of 
this list depend on the Message Filter set for that class, which you can see by 
choosing the Class Info button. The message filter is automatically set for each 
class type to display the appropriate types of messages. For example, a class 
derived from CView displays messages filtered for a child window. 

To change the selection of the Message Filter box, choose the Class Info button, 
select a different filter in the Message Filter box, and choose Close. 

4. Select a message that you want handled. 

Notice that as you select different messages in the Messages list box, a descrip­
tion of each message appears at the bottom of the dialog box (see Figure 13.7). 

5. Choose the Add Function button. 

ClassWizard automatically writes the member function prototype definition, 
enters the function name and message name in the message map, and enters the 
declaration in the header file. 

Notice that the function appears in the Member Functions box and that a hand 
icon appears at the left of the message to indicate that it is handled. 

6. If you want, you can now choose the Edit Code button to write code for the 
message-handler member function that has been inserted in your code. 

Class Wizard closes and Visual Workbench opens a source window with the 
insertion point in the message-handler member function that was just created. 



224 Visual Workbench User's Guide 

7. If you skipped step 6, close Class Wizard by choosing OK. 

ClassWizard 

Class,!!ame: I CScribView I~ Close 

Object IDs: Messages: Add Class ... 
+ WM RBUTTONUP 

ID APP ABOUT WM SETCURSOR Class Info ... 
ID - APP-EXIT WM-SETFOCUS 
ID -EDIf CLEAR ALL WM-SHOWWINDOW Help 
ID-EDIT-COPY -
ID-EDIT-CUT WM_TIMER I Edit YmiilUe,t .. 1 ID-EDIT-PASTE WM VSCROLL 

Member Functions: 
o Mpp6.bout ON ID APP ABOUT:COMMAND I Add Function o nLB uttonD own ON=W);:UBUnONDOWN 
OnLButtonUp ON WM LBUnONUP I·Q·dd~J hl1'lckm I OnMouseMove ON=WM=MOUSEMOVE 

fEd'ii"codei 

Description: Indicates a change in window size 

Figure 13.7 Creating Message Handlers for Windows Messages 



Index 

32-bit applications 11 

A 
Aborting build 104 
About dialog box 46 
Accelerator keys See Keys, shortcut 
Add Tool dialog box 200 
Adding 

commands to Tools menu 199-200 
expressions and variables to Watch window 191, 193 
libraries 7 
project files 100-101 

AFX.RTF 218 
afxDump 180 
ALIAS.H 218 
Analysis tools, installation 9 
App Studio 

command on Tools menu 43 
Help file installation 8 
opening from Visual Workbench 28 
overview 23 
resource files 80 
running 

from Visual Workbench 81 
via opening resource file 218-219 
via Tools menu 218 

using 27 
App Studio User's Guide, installing sample programs 8 
Application development process 21,26,30-32,209 
AppWizard 

Classes dialog box 210,214-215 
closing 210 
command on Project menu 39 
files generated 215-218 
opening 210 
Options dialog box 210,212-213 
overview 23-24,209-210 
running 26-27 
specifying 

drive, directory 211 
project name 210-211 

starter files 27 
when to use 26 

.APS file extension 219 
Argument macros 202-203 
AUTOEXEC.BAT, configuring 5,10 

8 
Base Class Graphs 

browsing 172-173 
described 170 

.BMP file extension 217 
Bookmarks 

clearing 38, 83 
moving to 38, 82-83 
setting 82 

Breakpoints 
dialog box See Breakpoints dialog box 
evaluating expressions 187 
overview 183 
saving between sessions 183 
setting 

and clearing 183, 185 
in SORTDEMO 184 
locations 186 

testing messages 187-188 
types 186-188 

Breakpoints dialog box 42, 183, 185-188 
Browse menu 

browsing commands 168 
Class Wizard command 41 
compared to Browse window 165 
Go to Definition command 41, 164-165, 168, 177 
Go to Reference command 41,164-165,168,177 
Next command 41, 168, 177 
Open command 41, 163-164 
Pop Context command 41, 168-169 
Previous command 41,168,177 

Browse window 
compared to Browse menu 165 
jumping to definitions and references 171, 177 
opening 41, 163 
using Query controls 166 

Browser 
database See Browser database 
graphical icons 171 
graphs 

expanding and collapsing 171 
overview 169 

Help window See Browser Secondary Help Window 
overview 161 
wildcard symbols 167 

225 



226 Index 

Browser database 
creating 161-162 
opening 163-165 
querying 165-169 

Browser Secondary Help Window 71, 73 
Browsing 

Base Class Graphs 172-173 
Call Graphs 174-175 
class and function graphs 169 
class member functions and variables 172, 174 
Definitions and References 164-168, 176-177 
Derived Class Graphs 172 
function relationships 175 
Help information 66 
shortcut keys for 50 

.BSC file extension 129, 163 
BSCMAKE 11, 129 
Build and compile shortcut keys 50 
Build mode 

Debug 182 
selecting 103 

Build options 
accessing Help 72-73 
customizing 111 
selecting 103 

Build toolbar button 61 
Build utilities directory 203-204 
Building 

c 

aborting build 104 
and running applications 32 
external projects 109 
in background 104 
projects 103 
sample applications 14-15 
sample QuickWin programs 18-20 
using toolbar 61 

.C file extension 79 
C LanglLibs Help, installing 8 
C/C++ calling convention 119 
C/C++ Compiler Options dialog box 

accessing Help 72, 113 
Build Options buttons 111-112 
Category Settings group 112-113 
Code Generation category 

Calling Convention options 119 
Check Pointers 121 
Code Generator options 120 
CPU options 118 
Disable Stack Checking 121 

C/C++ Compiler Options dialog box (continued) 
Code Generation category (continued) 

Floating-Point Calls options 119 
overview 118 
Struct Member Byte Alignment options 120 

Custom Options (C++) category 
C++ Pointer to Member Representation 125 
Disable Construction Displacements 127 
General-Purpose Representation options 126 
overview 124 
Representation Model options 125 

Custom Options category 
Disable Microsoft Language Extensions 122 
Eliminate Duplicate Strings 123 
Enable Function-Level Linking 122-123 
Other Options 124 
overview 121-122 
QuickWin Support 123 
Suppress Display of Sign-On Banner 123 
Warning Level options 123 
Warnings as Errors 123 

Debug Options category 
Full (C7 Compatible) 128 
Full, Use Program Database 128 
None 128 
overview 127-128 
Partial (Line Numbers Only) 128 

Listing Files category 
Assembly 130 
Browser Information 129 
Don't Pack Information 129 
Include Local Variables 129 
Include Machine Code 130 
Include Source and Machine Code 130 
overview 129 

mapping to CL command-line options 51-52 
Memory Model category 

Assume 'external' and Uninitialized Data 'far' 132 
Model options 130 
New Segment Data Size Threshold 131 
overview 130 
Segment Setup options 131 

Optimizations category 
Custom Options 134 
Customize 132, 134 
Default 132 
Disable (Debug) 133 
Inline Expansion of Functions options 135 
Inline Function Size options 135 
Maximize Speed 132-133 
Minimize Size 132-134 
overview 132 



C/C++ Compile Options dialog box (continued) 
Options String 111, 113 
overview 118 
P-Code Oeneration category 

Disable P-Code Quoting 137 
Number of P-Code Entry Tables 137 
overview 136 
P-Code Optimization On 137 
Remove P-Code Native Entry Points 137 
Sort Local Variables in Occurrence Order 137 

Precompiled Headers category 
Automatic Use of Precompiled Headers 138-140 
overview 138 
Precompile up to Header 141-142 
Precompile with Source 141-142 

Preprocessor category 
Ignore Standard Places of Include Files 144 
Include Path 144 
Individual Symbols to Undefine 143 
overview 142 
Symbols and Macros to Define 143 
Undefine All Symbols 144 

Segment Names category 
Code Segment 145 
Data Segment 145 
Module Segment 146 
overview 144 
P-Code Segment 145 
V-Table Segment 146 

Use Project Defaults button 115 
Windows Prolog/Epilog category 

Oenerate Prolog/Epilog For options 147 
overview 146 
Protected Mode options 148 

Call Oraphs 
browsing 174-175 
described 170 
jumping to definitions and references 175 
recursive functions 174 

Call Stack dialog box 42 
Call stack, viewing 194-195 
Cancelling include dependency scan 102 
Caps Lock status indicator 63 
Changing 

project types 94 
register values 195 
workspace names 106 

dn iostream object 17 
CL options 

See also Compiler options 
lAC 130 
IAH 130 
IAL 130 
lAM 130 

CL options (continued) 
lAS 130 
IASd 131 
IAT 130 
!D 143 
If 120 
If- 120 
/Fa 130 
/Fc 130 
/Fl 130 
/Fp 141 
/FPa 119 
/FPc 119 
/FPc87 119 
/FPi 119 
/FPi87 119 
/FR 129 
/Fr 129 
100 through 103 118 
103 133 
lOA 146,148 
10c 119 
10D 146,148 
10d 119 
10Ee 148 
10Ef 148 
10f 122-123 
IOn 135-137 
lOp 137 
lOs 121 
lOt 131-132 
lOW 146 
lOw 146 
10x- 132 
lOy 122-123, 151 
II 144 
/Mq 122 
/ND 145 
/NM 146 
Inologo 122-123 
/NQ 145 
/NT 145 
/NV 146 
101 132-134 
102 132-133 
lOa 134 
lObO 135 
lObI 135 
IOb2 135 
10d 132-133 
10e 134 
10f 136 
10f- 137 
109 134 

Index 227 



228 Index 

CL options (continued) 
/Oi 134 
/01 134 
lOp 134 
/Oq 136-137, 145 
lOr 134 
lOs 134 
lOt 134 
/Ov 136-137 
/Ov- 137 
/OVO through /OV9 135 
lOw 134 
lOx 134 
/Oz 134 
!U 143 
/u 144 
/vdO 127 
/vmb 125 
/vmg 125-126 
/vmm 126 
/vms 126 
/vmv 126 
/WO through /W4 125 
/WX 122-123 
IX 144 
IYc 138, 141-142 
IYu 138, 141-142 
IYX 138-140 
/Z7 127-128, 133, 156 
/Za 122 
/Zd 127-128, 133, 156 
/Zi 127-128, 133, 156 
/Zn 129 
/Zp1 120 
/Zp16 120 
/Zp2 120 
/Zp4 120 
/Zp8 120 
/Zr 121 

CL, MS-DOS-extended 11 
Class graphs, browser 166 
Classes, modifying in AppWizard 214-215 
Class Wizard 

binding user-interface objects to code 25,29 
creating new class 25 
creating message-handler functions 25,223 
deriving classes using 221-223 
dialog-data exchange 26 
editing code 29 
managing source code 31 
menu command 41 
opening 26 
overview 24-26,220 

Class Wizard (continued) 
using from within Visual Workbench 220 
when to use 27 

Clearing breakpoints 183 
Clipboard 

copying to 37 
deleting to 37 
pasting from 37 

Closing 
AppWizard 210 
projects 100 
QuickWin applications 20 
source files 82 

.CLW file extension 216 
CodeView 

command on Tools menu 43 
compared to Visual Workbench debugger 179 
installation 

Code View for MS-DOS 9 
Code View for Windows 9 

symbolic debugging information 156 
$Col argument macro 202 
Color dialog box 44,86,205-206 
Color syntax 205-206 
Column number indicator 63 
.COM file extension 156 
Command-line options 

CL See CL options 
LINK See LINK options 
Visual Workbench 9,60 

Command-line tools 
configuring MS-DOS for 10 
using on Tools menu 201-202 

Comments, creating with AppWizard 213 
Comparison of Visual C++ editions 4 
Compile File toolbar button 61 
Compiler options 

See also CL options 
alphabetical listing 51-52 
Browser Information 161-162 
customizing 111 
project defaults 115 
using dialog box to set 118-148 
Visual C++ editions differences 4 

Computer required to run Visual C++ 5 
CompuServe, Microsoft forums on xv-xvi 
Conditional building 93 
Configuration 

system, required 5 
of Visual C++ for MS-DOS 10 

Context-sensitive Help, described 66-67 
Context-sensitive Help, AppWizard source code option 213 
Conventions, typographical xiii 
Core project types list 94 



cout iostream object 17 
.CPP file extension 79 
Creating 

browser databases 161-162 
projects 97-98 
source files 76 
user-interface objects 27-28 
Visual C++ applications 26 

Current workspace, described 105 
Custom VBX Controls, AppWizard source code option 213 
Customizing build options 111 
Customizing Visual Workbench 

commands 
adding to Tools menu 199-200 
editing on Tools menu 201-203 

overview 199 
setting 

directories 203-204 
font type, size 207-208 

syntax coloring, changing 205-206 
CVPACK 11,128 

D 
.DBG file extension 156 
Debug dialog box 44,179,198 
Debug 

information, generating 182 
kernal, installation 9 

Debug menu 
Breakpoints command 42 
Go command 14,32,42, 104, 109-189 
QuickWatch command 43 
Restart command 42, 189 
Show Call Stack command 42, 194-195 
Step Into command 42, 190 
Step Out command 42, 190 
Step Over command 42, 190 
Step to Cursor command 42, 190 
Stop Debugging command 42, 189 

Debuggers 
See also CodeView 
Code View compared to integrated debugger 179 

Debugging 
DLLs 179 
expanding and collapsing variables 191-192 
external projects 107, 109 
Hard and Soft mode 196-197 
hexadecimal display 198 
mixed source, assembly 198 
modifying expressions 193 
modifying structures, arrays 194 
modifying variables 193-194 
overview 32-33 

Debugging (continued) 
phases 179 
running, tracing 189 
setting build mode for 182 
shortcut keys 51 
toolbar buttons 62 
using breakpoints 183,185-189 
using QuickWatch 192-193 
using Registers window 195-196 
using Show Call Stack 194-195 
using Watch window 190-191 
windows 180-181 

Default 
file extension when opening files 79 
workspace names 106 

Index 229 

_DEFAULT.PIF, modifying for Tools menu commands 202 
Definitions and References 

in graphical queries 170-171 
querying from Browse window 169, 176-177 
querying from source files 164-165, 168 

Deleting 
commands from Tools menu 201 
expressions, variables from Watch window 191 
project files 100-10 1 
text 37 

Dependencies, include 101-102 
Derived Class Graphs 

browsing 172 
described 170 

Deriving classes using ClassWizard 221-223 
Developing Visual C++ applications 21,209 
Development stages 

application creation 26-27 
application development 27 
overview 26 

Dialog boxes 
Add Tool 200 
Breakpoints 42, 183, 185-188 
CjC++ Compiler Options 59,71-73, 111-115, 118-148, 

161-162 
Call Stack 42 
Class Wizard 41, 220 
Color 44,86,205-206 
Debug 44,108,179,198 
Directories 44, 189,204 
Edit - Projectname 39, 100-102 
Edhor 37,76,78,80-81,85,218 
External Project Options 108-109 
Find 37,86-88 
Font 44,207-208 
getting help in 67 
Line 38 
Linker Options 67,71-73, 111-115, 148-157 
Messages 188 



230 Index 

Dialog boxes (continued) 
MFC AppWizard 39,209-211 
Modify Variable 193-194 
New Project 39,59 
Open File 41, 79,81, 161 
Open Project 14, 107 
Page Setup 36 
Print 36, 90-91 
Project Options 14,44,59, 103, 111, 182 
Resource Compiler Options 158-159 
QuickWatch 43,191-194 
Replace 37,89 
Save As 36,77-78 
Show Call Stack 194-195 
Tools 43, 200-203 
Workspace 44, 106 

Dialog-data exchange 26 
Differences between Visual C++ editions 4 
$Dir argument macro 202 
Directories 

changing settings 203-204 
original settings 204 

Directories dialog box 
Executable Files Path 204 
Help Files Path 204 
Include File Path 204 
Library Files Path 204 
MFC Files Path 189,204 
purpose of 44, 204 

Duplicating windows 79 
Dynamic-link libraries 

debugging 179 

E 

files in project list 95 
project type 95 
running and debugging 108 

Edit - Projectname dialog box 99-100 
Edit menu 

Copy command 37 
Cut command 37 
Delete command 37 
Find command 37, 87 
Find Matching Brace command 37,83 
Paste command 37 
Read Only command 37 
Redo command 37 
Replace command 37, 86, 89-90 
Undo command 37 

Editing 
See also Editor 
keys 

copying 48 
deleting text 48 
inserting 48 
inserting, displaying tabs 48 
insertion point movement 47 
scrolling 48 
searching 49 
selecting text 47 

Tools menu command 201 
user-interface objects 27-28 
Watch window 190-191 

Editor 
closing source files 82 
creating source files 76 
dialog box See Editor dialog box 
finding text 86-89 
highlighting language syntax 85-86 
moving around in files 82-83 
opening 

files using file filters 81 
recently used files 81 
resource files 80-81 
source files 79, 81 

overview 75 
printing 90-91 
replacing text 86, 89-90 
saving source files 76-78 
setting 

save options 78 
tabs 85 

using keyboard shortcuts 84 
write-protecting files 86 

Editor dialog box 
Open .RC Files Using App Studio 80-81,218 
Prompt Before Saving 78 
Save Before Running Tools 78 
setting save options in 37,44, 76 
Tab Settings group 85 
Tab Stops 85 

Environment variables in MS-DOS for Visual C++ 10 
Errors 

accessing from Output window 181 
copying, printing 182 
displayed on status bar 63 
getting Help on 181 
in Watch window 190 

Executing external project targets 109 
Execution, controlling in debugger 189 
Expanding, collapsing graphs 171 



Expressions, Watch window 
adding to 190-191, 193 
copying to 191 
deleting from 191 
valid expressions 190 

Extensions, file See File extensions 
External drives required to install Visual C++ 5 
External Project Options dialog box 

Debug Build 108 
Project Type 108 
Rebuild All Options 109 
Release Build 109 
Target File Name 108 

External projects 

F 
Fl 

App Wizard source code option 213 
building 109 
debugging 107, 109 
described 107 
opening 107 
running 108-109 
setting build options 108 

See also Help 
function key 65-67, 71 
Help on errors 181 
Help on Options String mnemonics 113 

Fast compiler 120 
Features, Visual C++ 4 
$File argument macro 202 
File extensions 

added by include dependency scanning 101 
.APS 219 
.BMP 217 
.BSC 129, 163 
.C 79 
.CLW 216 
.COM 156 
.CPP 79 
.DBG 156 
default used upon opening 79 
.HPJ 217 
in Open File dialog box 79, 81 
in Save As File dialog box 79 
.MAK 93 
.MAP 156 
.PCH 138,217 
.PDB 128 
.RC 80,158 
recognized for syntax coloring 206 

File extensions (continued) 
.SBR 129 
.VCW 93 
.WSP 106 

File filters See Filename filters 
File menu 

Close command 36, 82 
Exit command 36 
most recently used filenames 81 
New command 18, 36, 76 

Index 231 

Open command 36,61, 79-80, 163-164 
Page Setup command 36 
Print command 36, 90-91 
Read Only command 86 
Save All command 36, 77 
Save As command 18, 36, 76, 78 
Save command 36,61, 76-77 

$FileDir argument macro 202 
$Filename argument macro 202 
Filename filters 

.BSC 163 
customizing 81 
described 80 

Files 
generated by AppWizard 215-218 
in project list 

adding 100-101 
deleting 100-101 
QuickWin application 95 
Static library 96 
Visual Basic Custom Control 96 
Windows DLL 95 
Windows-based application 95 

Find dialog box 
Find Next 88 
Match Case 87 
Match Whole Word Only 87 
parameters for toolbar Find box 89 
Regular Expression 87 
Search direction 87 
Set Bookmarks on All 88 
using 37, 86-87 

Find Next toolbar button 61 
Find toolbar box 61,86,88-89 
Flags, setting and clearing 196 
Font dialog box 44,207-208 
Font Editor, installation 9 
Fonts, setting 

for new windows 208 
for active window 207 
in different windows on same file 208 

Function graphs, browser 166 



232 Index 

G 
Generating code 24 
Graphical query types 

Base Class Graph 169-170 
Call Graph 169-170 
Caller Graph 169-170 
Derived Class Graph 169-170 
list of 169 

GRAPHICS.LIB 17 
Graphs, browser 

H 

expanding, collapsing 171 
overview 169 

Hard disk space required to run Visual C++ 5 
Hard, Soft mode debugging 196-197 
hdrstop pragma 140 
Help 

accessing 
by searching 66 
from the menu 65 
in dialog box 65, 67 
on compiler, linker option controls 72, 113-114 
on error number 65-66 
on language keyword 65-66 
on library function 65 
on menu command 65, 67 
on option string mnemonics 72 
on toolbar button 67 

compiler, linker options 72 
accessing alphabetically 73 
accessing by category 72-73 
getting Help from dialog box 113-114 

compiler, installation 9 
displayed on status bar 63 
environment versus reference 68-69 
file installation 8 
files directory 203-204 
installation options 7 
navigating 67 -69 
product support See Product support 
project files 217 
reference information 67, 70-71, 73 
resource compiler options 113 
Visual Workbench environment 67,69-70 

Help menu 
About Visual C++ command 46 
Build Tools command 46, 66 
C/C++ Language command 46, 66 

Help menu (continued) 
Foundation Classes command 46, 66 
Obtaining Technical Support command 46 
Search for Help On command 46, 66 
Visual Workbench command 46,66-67 
Windows 3.1 SDK command 46,66 

Hexadecimal display 198 
Hiding, displaying 

status bar 63 
toolbar 60 

Highlighting syntax 85-86 
.HPJ file extension 217 

Include dependencies 10 1-1 02 
Include directory 203-204 
Index Help window 68, 70 
Initial installation of Visual C++ 5 
__ inline directive 135 
Installation options 7-9 
Installing 

libraries 8 
math support 8 
memory models 8 
MS-DOS tools 9 
project types 8 
sample programs 8 
Visual C++ 

components 7 
for command-line operation 5, 10 
initially 5 
Professional Edition tools 9 

Visual Workbench 3,9 
iostream 

objects 17 
operators and QuickWin 95 

K 
Keys, shortcut 

browsing 50 
building, compiling 50 
debugging 51 
editing 47-49, 84 
toolbar 49 
window management 50 

KEYS.RTF 218 



L 
/LIB option string mnemonic 149, 157 
Libraries 

adding 7 
directory 203-204 
installation option 8 

Line dialog box 38, 82 
Line number indicator 63 
$Line argument macro 202 
LINK 

See also Linker options 
MS-DOS-extended 11 

LINK options 
See also Linker options 
/ALIGN 157 
/CO 155-156 
/EXEPACK 151-152 
/FARCALL 151-152 
/INFO 155-156 
/LINE 155-156 
/MAP 155-156 
/NOD 150 
/NOE 150 
/NOI 150-151 
/NOLOGO 154 
/NOPACKF 151 
/ONERROR:NOEXE 155-156 
/pACKC 152 
/pACKD 152 
/SEG 153 
/STACK 153 
ffINY 155-156 

Linker options 
See also LINK options 
alphabetical listing 51,55 
customizing 111 
project defaults 115 
using dialog box to set 148-157 

Linker Options dialog box 
accessing Help 72 
Build Options buttons 111-112 

Common to Both 111 
Debug Specific 111 
Release Specific 111 

Category Settings group 112-113 
getting Help on options 113 
Help button 113 
Input category 

Distinguish Letter Case 151 
Ignore Default Libraries 150 
Libraries 149 
overview 149 

Index 233 

Linker Options dialog box (continued) 
Input category (continued) 
Prevent Use of Extended Dictionary 150 
Specific Libraries to Ignore 150 

mapping to LINK command-line options 51,55 
Memory Image category 

Don't Remove Unreferenced Packaged Functions 151 
Max. Number of Segments 153 
overview 151 
Pack Code 152 
Pack Data 152 
Pack EXE File 152 
Stack Size 153 
Translate Far Calls 152 

Miscellaneous category 
Other Options 154 
overview 153 
Suppress Display of Sign-On Banner 154 

Options String, Help on options 113 
Output category 

Create Map File 156 
Generate Debugging Information 156 
Include Line Numbers/Addresses in MAP 156 
overview 155 
Prevent Creation of EXE on Linker Error 156 
Produce COM File 156 
Produce More Detailed Output 156 
Segment Alignment 157 

Use Project Defaults button 115 
Windows Libraries category 

Import Libraries and DLLs 157 
overview 157 

Loading 
files at startup using the command line 9 
workspaces 106 

Locals window 45, 193 

M 
Macros, for tools arguments 203 
MAINFRM.CPP 216 
MAINFRM.H 216 
.MAK file extension 93 
Make P-Code utility 138 
Makefiles 

external 107 
Visual Workbench 93 

MAKEHELP.BAT 217 
Managing source code 

overview 31 
using Class Wizard 31 
using Visual Workbench browser 31-32 

.MAP file extension 156 



234 Index 

MAP.H 218 
Math support, installation option 8 
MDLRTF 218 
Member functions, variables 172, 174 
Memory 

models, installation option 8 
required to run Visual C++ 5 

Menus 
Browse See Browse menu 
Debug See Debug menu 
Edit See Edit menu 
File See File menu 
getting help on 65 
Help See Help menu 
Options See Options menu 
Project See Project menu 
Tools See Tools menu 
View See View menu 
Window See Window menu 

Message-handler functions generated with ClassWizard 
for Windows messages 223 
overview 25 

Messages, breaking on 186-189 
Messages dialog box 188 
MFC App Wizard dialog box 

described 209-210 
Directory 211 
Drive 211 
New Subdirectory 211 
Project Name 210-211 

Microsoft CodeView See CodeView 
Microsoft Foundation Class Library 

application 21, 23 
breaking on messages 189 
building, running sample program 14-15 
creating code 29 
project type 94 
sample programs, installing 8 
source directory 203-204 

Microsoft Library Manager (LIB) 150 
Microsoft Overlaid Virtual Environment (MOVE) 97 
Microsoft product support services See Product support 
Microsoft Programmer's WorkBench projects 13, 107, 109 
Microsoft Resource Compiler 158 
Microsoft Source Browser See Browser 
Microsoft Visual Workbench See Visual Workbench 
Minimizing Visual Workbench windows 64 
Mixed source/assembly, debugging display 198 
Modify Variable dialog box 193-194 
Modifying 

expressions while debugging 193 
structures, arrays while debugging 194 
variables while debugging 193-194 

Module-definition files generated by AppWizard 216 

Monitor type required to run Visual C++ 5 
Moving to line number 82 
MS-DOS 

applications, described 96-97 
configuring Visual C++ for 5, 10 
environment variables 204 
Overlaid application 96-97 
P-code applications, described 96-97 
Profiler installation 9 
programming 17 
programming in QuickWin 95 
programs on Tools menu 202 
required version 5 
tools installation 9 

MS-DOS-extended tools 11 
MSVC.INI 

build options in 115 
directory information in 204 

MSVC.PCH 138-139 
MSVC.PDB 128 
MSVCVARS.BAT 10 
Multifile projects 97 
Multimedia API reference, Help file installation 8 
Multiple Document Interface, AppWizard source code 

option 212 

N 
Name of new source window 76 
Navigating Help 

compiler, linker options 71-72 
reference information 70-73 
Visual Workbench environment 69-70 

New Project dialog box 39 
NMAKE 11,13,213 
Num Lock status indicator 63 

o 
Object linking and embedding (OLE) 213 
OLDNAMES.LIB 150 
OLE Client, AppWizard source code option 213 
Online reference See Help 
Open File dialog box 

opening source files 79 
using filename filters 81 

Open Project dialog box 14 
Open toolbar button 61 
Opening 

App Studio from Visual Workbench 30 
AppWizard 210 
AppWizard's Options dialog box 212 
Browse window 41 
browser database 163-165 



Opening (continued) 
Class Wizard 26, 220 
external projects 107 
Help contents screen 67 
more than one window on source file 79 
project files 93 
projects 100 
recently used files 81 
resource files 

as text files 80 
invoking App Studio 80-81 

source files 
default file extension 79 
using toolbar 60-61 

optimize pragma 137 
Optimizing 

compiler 120, 134 
disk space 5, 7 
forsize 133-134 
for speed 133 
options 134 

Options 
AppWizard 212-213 
CL See CL options 
LINK See LINK options 
project See Project Options dialog box 

Options dialog box, AppWizard 212 
Options menu 

Color command 44,86,205-206 
Debug command 44,108,179,198 
Directories command 44,204 
Editor command 44, 78, 80, 85 
Font command 44,207-208 
Project command 14,44, 103, 108-109, 162 
Tools command 44, 199- 203, 218 
Workspace command 44,105-106 

Options, project See Project Options dialog box 
Options string, getting Help on 72 
Output window 

build status 104 
described 180 

OutputDebugString 180 
Overlapping Visual Workbench windows 63 
Overriding 

global syntax settings 206 
syntax coloring 205 

Overtype status indicator 63 

p 
P-code options 136-137, 145 
Page Setup dialog box 36 
Pascal calling convention 119 
PCH See Precompiled headers 

.PCH file extension 138,217 

.PDB file extension 128 

Index 235 

Pen windows API reference, Help file installation 8 
Precompiled headers 138-142 
Preferences 

customizing 199-208 
prompt before saving 76, 78 
save before running tools 78 

Print dialog box 36 
Print Range 90-91 
Printer 91 
Setup button 91 

Print Preview, AppWizard source code option 213 
Printer options 91 
printf function 17 
Printing 

AppWizard source code option 213 
errors 182 
selecting default printer 90 
using the Print dialog box 91 

Processor type required to run Visual C++ 5 
Product support 

within the United states xv-xix 
worldwide xix-xxv 

Program database file 128 
Programs 

adding to Tools menu 199-200 
debugging 179-181 

$Proj argument macro 202 
Project files 

AppWizard-generated files 216 
opening from the toolbar 93 

Project Files toolbar button 61, 81 
Project menu 

AppWizard 24,26,39 
Build command 14,19,32,39, 103, 108-109 
Close command 39 
Compile File command 39 
Edit command 39,100 
Execute command 14, 19,40, 104, 109 
Load Workspace command 39,106 
New command 39 
Open command 14,39,107 
Rebuild All command 32,39, 104, 109 
Save Workspace command 40,105 
Scan All Dependencies command 40, 102 
Scan Dependencies command 40 
Stop Build command 40, 104 

$ProjDir argument macro 202 
Project options, overview 103 
Project Options dialog box 14, 44 111, 182 
Project status file 93 



236 Index 

Project types 
added by Visual C++ Professional Edition 4 
changing 94 
choosing 94 
Microsoft Foundation Class 94 
MS-DOS application 97 
MS-DOS Overlaid application 97 
MS-DOS P-code application 97 
QuickWin application (.EXE) 19,95 
Static library 96 
Visual Basic Custom Control 96 
Visual C++ Professional Edition 96 
Windows DLL 95 
Windows P-code application 96 
Windows-based application 94-95 

Project types list 94 
Projects 

AppWizard 210-211 
benefits of using 93 
building 103, 109 
building versus rebuilding 103 
closing 100 
compiler options 103 
creating 94,97 
debug versus release mode 103 
default compiler options 115 
default linker options 115 
default when starting Visual Workbench 60 
described 93, 97 
external 107, 109 
file extensions 93 
introduction 13 
linker options 103 
opening 100 
porting 115 
rebuilding 104 
selecting build mode 103 

PWB projects, using in Visual Workbench 13, 107, 109 

Q 
Querying browser database 165-169 
QuickWatch dialog box 

Add to Watch Window button 193 
availability 193 
expanding, collapsing variables 191-192 
Modify button 193-194 
overview 192 
Zoom button 193 

QuickWatch toolbar button 62 

QuickWin 
closing applications 20 
overview 17-18 
project type 95 
writing, building, running sample program 18-19 

QuickWin application project type 
described 95 
files in project list 95 

Quitting Visual Workbench 60 
QWGDEMO.CPP 18-19 
QWINTEST.CPP 19, 75 

R 
RAM required to run Visual C++ 5 
$RC argument macro 81,202,218 
.RC file extension 80, 158 
RC options 158-159 
Re-creating work environment 104 
Read-only status indicator 63, 86 
README. TXT, App Studio-generated file 215 
Rebuild All toolbar button 61 
Rebuilding project 104 
Recalling previous Browse window queries 167 
Reference Help See Help 
Regenerating file dependencies 102 
Registers 

32-bit 196 
native 195 
p-code 196 
using in breakpoint addresses 187 

Registers window 45, 195-196 
Regular expressions 86-87 
Reinstalling Visual C++ 7 
Renaming source files 78 
Replace dialog box 37, 89 
Replacing text 86, 89-90 
Resource Compiler Options dialog box 158-159 
Resource compiler 

accessing Help 113 
options, customizing 111, 158-159 

Resource editor See App Studio 
Resource files 

generated by AppWizard 216 
opening in Visual Workbench 80 

Restoring original syntax coloring 206 
Reversing 

edit action 37 
undo 37 



Run toolbar button 62, 184, 189 
Run-time libraries, Help file installation 8 
Running 

s 

App Studio 80-81,218-219 
applications 32 
external projects 108 
external target files 109 
programs 

in debugger 104 
outside debugger 104 

Setup program 5 

Sample programs 
HELLO 14 
installing 8 
QWGDEMO 18 
SCRIBBLE 21, 161 
SORTDEMO 180,182,184 

Sample projects 
GENERIC.MAK 97 
HELLO.MAK 97-98 

Save As dialog box 36,77-78 
Save toolbar button 61 
Saving 

source files 
using File menu 76-77 
using toolbar 60-61 
with new name 78 

workspaces 105 
.SBR file extension 129 
scanf function 17 
SCRIBBLE sample program 21, 161 
Search dialog box 46 
Searching 

and replacing 37 
for Help 66 
for text 

using Find command 87-88 
using toolbar 60-61, 88-89 

Secondary Help window 68-71, 73 
Setting 

bookmarks 82 
breakpoints 183 
breakpoints with toolbar 62 
directories in Visual Workbench 203-204 
up Visual C++ 5 

Setup program 
disk space optimization 5 
running 5-7 

Shortcut keys 
editing 84 

Index 237 

expanding, collapsing browser graphs 171 
F9 183 
searching for text 86, 88 
summary 47-51 

Show Call Stack dialog box 194-195 
Single Document Interface, App Wizard source code 

option 212 
SORTDEMO sample program 180,182,184 
Source files 

automatically loading 105 
closing 82 
creating 76 
multiple windows, opening 79 
opening 61, 79, 81 
saving 61, 76-78 

Speed and size of debug programs 182 
Standard I/O, QuickWin 17 
Starting Visual Workbench 60 
Startup, loading files at 9 
Static library project type 96 
Status bar 

described 63 
hiding, displaying 63 
menu, toolbar descriptions 63,67 

STDAFX.CPP 217 
STDAFX.H 217 
STDAFX.RC 216 
Step Into toolbar button 62, 190 
Step Out toolbar button 62, 190 
Step Over toolbar button 62, 190 
Stopping build 104 
Support services See Product support 
Syntax 

coloring 205-206 
highlighting 85-86 

SYSINCL.DAT 102 
System requirements 5 

T 
Tabs, setting 85 
$Target argument macro 202 
Target files 93 
Technical support See Product support 
TERMS.RTF 218 
Text 

editor See Editor 
files, ASCII 79 

Tiling Visual Workbench windows 63 
Toggle Breakpoint toolbar button 62, 183-184 
Tool argument macros 81,202-203 



238 Index 

Toolbar 
AppWizard-generated source code 213 
buttons See Toolbar buttons 
categories 60 
general description 60 
getting help 67 
hiding, displaying 60 
shortcut keys 49 

Toolbar buttons 
Build 32, 39, 61 
Compile File 39,61 
Find (box) 37,88-89 
Find Next 37,61,86,88-89 
Open 36,61, 164 
Project Files 36, 61, 80-81 
QuickWatch 42,62, 192-193 
Rebuild All 32,39,61 
Run 42,62,184,189 
Save 36,61,76-77 
Step Into 42, 62, 189 
Step Out 42, 62, 189 
Step Over 42,62, 189 
summary table 62 
Toggle Breakpoint 42,62,183-184 

TOOLBAR.BMP 217 
Tools 

installation options 9 
Visual C++ application development 22, 209 

Tools dialog box 44,200-203 
Tools menu 

adding commands 199-200 
App Studio command 43,81,218 
Code View command 43 
deleting commands 201 
editing commands 201 
modifying 199 
using argument macros 202-203 

Typographical conventions xiii 

u 
User-interface objects 

v 

connecting to code 25,28-29 
creating, editing 27 - 28 
introduced 21 

Variables in Watch window 
adding to 190-191, 193 
copying to 191 
deleting from 191 

VBX custom controls, AppWizard 210,213 

.VCW file extension 93 
View menu 

Clear All Bookmarks command 38,83 
Line command 38,82 
Mixed Source/Asm command 38,198 
Next Bookmark command 38, 82-83 
Next Error command 38, 181 
Previous Bookmark command 38, 82-83 
Previous Error command 38, 181 
Status Bar command 38,63 
Syntax Coloring command 38,205-206 
Toggle Bookmark command 38,82-83 
Toolbar command 38, 60 

Viewing function call stack 194-195 
Viewing variables, expressions 

expanding and collapsing variables 191 
using QuickWatch 192 
using Watch window 190-191 

Visual Basic Custom Control 
See also VBX custom control, AppWizard 
described 96 

Visual C++ 
additional components 7 
applications See Visual C++ applications, introduction 
directories where installed 7 
Help system 67,69-70 
installing 3-11 
MS-DOS configuration 10 
Standard and Professional editions 4, 59 
system requirements 5 
tools 

App Studio overview 23 
applications 22 
AppWizard overview 23-24 
ClassWizard overview 24-26 
Visual Workbench overview 22 
Windows-hosted development 3 
wizards 23 

what is 3 
Visual C++ applications, introduction 

building, running 32 
debugging 32-33 
described 21 
development process 21,26-33 

Visual C++ Professional Edition 
additional project types 4, 96 
additional tools 8-9 
project types 94-97 

Visual C++ Standard Edition 
MS-DOS-style applications 17 
project types 94-96 



Visual Workbench 
as center of development tools 22, 31 
browser 

database See Browser database 
graphical icons 171 
graphs 169-171 
Help window See Browser Secondary Help Window 
managing source code 31-32 
overview 161 
wildcard symbols 167 

command-line options 9,60 
customizing preferences 199-208 
debugger See Debugging 
editor 

closing source files 82 
creating and saving source files 76 
creating source files 76 
finding text 86-89 
highlighting language syntax 85-86 
keyboard shortcuts 84 
moving around in files 82-83 
opening files 81 
opening resource files 80-81 
opening source files 79, 81 
overview 75 
printing 90-91 
replacing text 86, 89-90 
saving all source files 77 
saving source files 76-78 
setting save options 78 
setting tabs 85 
write-protecting files 86 

features 60 
Help file installation 8 
Help system 65-68 
introduction xi 
installing 3, 9 
managing source code 31 
overview 31-33,59 
quitting 60 
setting command-line options 9 
starting 60 
toolbar 60 
using Programmer's WorkBench projects 109 
Visual c++ Standard versus Professional editions 59 
windows 

arranging 63 
minimizing 64 

w 
Watch window 45, 180, 190-191, 193 
Wildcards, browser 

matching more than one symbol 167 
types, defined 167 

Index 239 

using to find member functions, variables 174 
Window management shortcut keys 50 
Window menu 

Cascade command 45,63 
Duplicate command 45, 79 
Locals command 45, 180, 191-193 
Output command 45,180-182 
Registers command 45, 180 
source file names 79,83 
Tile command 45, 63 
Watch command 45,180,190-193 

Windows DLL, application project type 95 
Windows, Microsoft version required to run Visual C++ 5 
Windows P-code application project type 96 
Windows Software Development Kit 

sample programs 8 
using with Visual C++ tools 21,23 

Windows, version 3.1 API, Help file installation 8 
Windows, Visual Workbench 

debugging 180-18I, 190, 195 
Help 67-69 
new source files 76 
setting fonts in 207 - 208 

Windows-based application, project type 94-95 
Windows-hosted development tools, Visual C++ 3 
Wizards 

AppWizard 23-24,209 
Class Wizard 24-26, 209, 220-223 

Workspace dialog box 105-107 
Workspaces 

current 105 
defining initial 106 
described 104-105 
file extensions 106 
information saved 199 
Last Workspace Used 105 
loading 106 
saving 105 

.WSP file extension 106 





AppStudio User's Guide --+ 

, 





App Studio User's Guide 





iii 

Contents 

Part 1 Using App Studio 

Chapter 1 App Studio Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3 
App Studio Basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

Starting App Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
Using the Resource Browser Window ................................. 5 

Creating a New Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
Editing an Existing Resource ...................................... 7 

Directly Manipulating User-Interface Objects ........................... 7 
Using Undo and Redo .............................................. 8 
Using the Properties Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

Viewing Property Pages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10 
Controlling the Properties Window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10 

Introduction to App Studio Editing Windows. . . . . . . . . . . . . . . . . . . . . . . . . .. 11 
Dialog Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11 
Menu Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12 
Accelerator Table Editor ........................................ 12 
String Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12 
Graphics Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13 
Binary Data Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14 
The Symbol Browser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14 

Using Class Wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14 
Simplifying Message Handling ................................... 15 
Gathering and Validating Dialog-Box Data ......................... 15 

Understanding Windows Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15 
Predefmed Windows Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16 

Dialog Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16 
Menu ........................................................ 16 
Accelerator Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17 
String Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 
Bitmap ....................................................... 18 
Icon ......................................................... 18 
Cursor ....................................................... 19 

App Studio Sample Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19 
Where to Go from Here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 



iv Contents 

Chapter 2 Working With Files and Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
Working with Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

Creating a New Resource File ....................................... 22 
Opening a Visual C++ Resource File ................................. 23 

Reading Resource Files Not Created with App Studio or App Wizard ....... 24 
Converting Existing Resource Files to App Studio Format . . . . . . . . . . . . . 25 
Features Supported Only in Microsoft Foundation Class Library 
Resource Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

Copying Resources Between Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
Using Advanced Resource File Techniques ............................ 28 

Changing the Name of the Symbols Header File ..................... 29 
Using Shared (Read-Only) or Calculated Symbols ................... 29 
Including Resources From Other Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 

Working with Symbols ............................................... 31 
Changing a Symbol or Symbol Name ................................. 32 

Changing a Symbol's Numerical Value ............................... 33 
Managing Symbols with the Symbol Browser .......................... 34 

Creating New Symbols .......................................... 35 
Changing Unassigned Symbols ................................... 35 

Opening the Resource Editor for a Given Symbol . . . . . . . . . . . . . . . . . . . . 36 
Symbol Name and Value Restrictions ................................. 36 

Symbol Name Restrictions ....................................... 36 
Symbol Value Restrictions ....................................... 37 

Chapter 3 USing the Dialog Editor . ........... , , , , , , , , , , , , , , . , ... , . , , , , , 39 
Types of Controls .................................................... 39 
Creating Dialog Boxes ............................................... 40 

Opening New or Existing Dialog Boxes ............................... 40 
Dialog Box Coordinates ......................................... 42 

Adding Controls .................................................. 42 
Selecting Controls ................................................ 45 

Moving Controls .................................................. 46 
Deleting and Copying Controls ...................................... 46 
Sizing Individual Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 

Sizing a Control to Fit Its Caption ................................. 47 
Sizing Combo Box Drop-downs .................................. 47 

Changing the Tab Order ............................................ 48 

Defining Dialog Box Keyboard Access ............................... 50 



Contents v 

Arranging Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 

The Dominant Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 
U sing Snap to Grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 
Aligning Controls ................................................. 52 

Aligning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 

Making Spacing Even . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 
Centering in the Dialog Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 
Arranging Pushbuttons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 

Resizing Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 
U sing Custom Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 

Using VBX Controls .............................................. 55 
Editing VBX Control Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 
Working with User-Defined Controls ................................. 57 

Connecting to Program Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 

Creating a Form View. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 
Testing a Dialog Box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 

Chapter 4 Using the Menu Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 61 
Working with Menus and Menu Items. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

Opening New or Existing Menu Resources ............................ 62 
Creating Menus or Menu Items. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 
Selecting Menus or Menu Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

Moving and Copying Menus or Menu Items . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 
Viewing the Menu Resource as a Drop-down Menu. . . . . . . . . . . . . . . . . . . . . 66 

Associating a Menu Item with an Accelerator Key. . . . . . . . . . . . . . . . . . . . . . . . . 66 

Chapter 5 Using the Accelerator Table Editor . . . . . . . . . . . . . . . . . . . . . . . . . . .. 69 
Opening a New or Existing Accelerator Table ............................ 69 
Editing the Accelerator Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

Editing Accelerator Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 
Typing in Accelerator Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

Associating a Menu Item with an Accelerator Key. . . . . . . . . . . . . . . . . . . . . . . . . 73 

Chapter 6 Using the String Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 75 
String Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 
Opening a New or Existing String Table ................................. 75 

Editing the String Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 
Editing a String's Properties ........................................... 79 



vi Contents 

Chapter 7 Using the Graphics Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 
Windows and Tools for Editing Graphics ................................ 81 

The Image Editor Window .......................................... 82 
The Graphics Palette .............................................. 82 
The Status Bar ................................................... 83 

The Image Menu .................................................. 83 
Editing Graphical Resources ........................................... 83 

Opening New or Existing Graphical Resources ......................... 83 
Setting Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

Drawing and Painting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 
Showing and Hiding the Graphics Palette. . . . . . . . . . . . . . . . . . . . . . . . . . . 86 
Selecting Foreground and Background Colors ....................... 86 

Freehand Drawing and Erasing ................................... 86 
Drawing Lines and Closed Figures ................................ 87 

Filling Bounded Areas .......................................... 88 
Picking Up Colors .............................................. 89 

Using the Selection Tool ........................................... 89 

Cutting, Copying, Clearing, and Moving ............................ 91 
Choosing Opaque and Transparent Backgrounds ..................... 92 
Flipping the Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 
Inverting Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 
Creating a Custom Brush. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 

Resizing a Bitmap ................................................ 94 
Changing the Number of Colors in a Bitmap ........................... 96 

Managing the Graphics-Editor Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 

Using Image-Editor Panes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 
Selecting Panes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 
Sizing Image-Editor Panes ....................................... 97 

Zooming In and Out ............................................... 98 
Changing the Magnification Factor ................................... 99 

Displaying and Hiding the Pixel Grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 
Editing Icons and Cursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 

Creating and Selecting Images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 

Editing Device Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 
Drawing with Screen and Inverse Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 
Setting a Cursor's Hotspot ......................................... 104 

Editing Toolbar Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 



Contents vii 

Managing Colors and Palettes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 
Creating Color Palettes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 108 

Saving and Loading Palettes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 110 

Chapter 8 Using the Binary Data Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 111 
Creating a New Data Resource or Custom Resource . . . . . . . . . . . . . . . . . . . . . . 111 

Opening the Binary Data Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 111 
Editing Data ....................................................... 112 

Chapter 9 Using ClassWizard ................... , . . . . . . . . . . . . . . . . . . .. 113 
Adding a New Class or Importing an Existing One ........................ 114 

Adding a New Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 
Importing Existing Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 117 

Mapping Messages to Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 

Defining Message Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 

Deleting Message Handlers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 120 
Jumping to Source Code from ClassWizard ........................... 120 

Working with Dialog-Box Data ....................................... 121 

Dialog Data Exchange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 121 
Using DDX Variables ......................................... 124 

Dialog Data Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 124 
Custom Data Exchange and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 

Example: Building a Dialog Box with ClassWizard ....................... 125 
Example, Part 1: Defining a Message Handler for a Dialog-Box Control ... 126 

Step One: Create the Dialog-Box Resource ........................ 126 
Step Two: Define The Dialog-Box Class .......................... 126 

Step Three: Define the Message Handler .......................... 127 
Step Four: Begin Filling in the Message Handler. . . . . . . . . . . . . . . . . . . . 127 

Example, Part 2: Using DDX/DDV ................................. 128 
Step One: Define the Member Variable Using ClassWizard ........... 128 

Step Two: Set the Maximum Number of Characters for the Variable .... 128 
Step Three: Set the Initial Value for the Variable in the Dialog-Box 
Class Constructor ............................................. 129 
Step Four: Create Control Variables to Use in theMessage Handler . . . . 130 

Keeping Class Wizard Updated When Code Changes. . . . . . . . . . . . . . . . . . . . . . 131 
Deleting Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 131 
Renaming or Moving Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 
Rebuilding the ClassWizard (.CLW) File ............................ 132 

Updating Existing Code for Use with ClassWizard ....................... 133 



viii Contents 

Part 2 App Studio Reference 

Chapter 10 App Studio Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 137 
Task Reference ..................................................... 137 

Managing Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 
Editing ......................................................... 138 
Handling Resources .............................................. 138 

General ..................................................... 139 
Dialog Boxes - General ....................................... 139 
Dialog Boxes - Alignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 
Dialog Boxes - Spacing and Positioning. . . . . . . . . . . . . . . . . . . . . . . . . . 141 
Dialog Boxes - Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 
Menus ...................................................... 142 
Bitmaps, Icons, and Cursors - General. .......................... 142 
Bitmaps, Icons, and Cursors - Colors ............................ 143 
String Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 
Accelerator Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 

Class Wizard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 . 
Managing Symbols ............................................... 145 
Installing VBX Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 
Managing App Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 
Getting Online Help. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 

Menu Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 
Managing Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 
Editing ......................................................... 147 
Creating and Editing Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 
Laying Out Dialog Boxes ......................................... 148 
Working with Images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 
Managing App Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 
Getting Online Help. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 

Toolbar and Palette Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 
The App Studio Toolbar ........................................... 150 
The Properties Window Toolbar .................................... 150 
The Dialog Editor Toolbar ......................................... 150 
The Graphics Editor Palette ........................................ 151 
The Control Palette. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 
The Icon Editing Toolbar .......................................... 151 
The Cursor Editing Toolbar ........................................ 152 



Contents ix 

Key Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 
Managing Files .................................................. 152 
Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 
Creating and Editing Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 
Managing Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 
U sing the Properties Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 
Editing Graphics ................................................ 155 
Using the Dialog Editor. .......................................... 156 
Using the Menu Editor ............................................ 157 
Using the String Editor ........................................... 157 
Editing Resources as Binary Data ................................... 157 
Getting Online Help .............................................. 157 

Chapter 11 Property Page Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 159 
Resource Property Page ............................................. 159 
Acce1 Table: Accel Properties - General. .............................. 160 
Bitmap Properties - General. ........................................ 161 
Cursor Properties - General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 
Dialog Properties - General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 
Dialog Properties - Styles ........................................... 163 
Dialog: Check Box Properties - General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 
Dialog: Combo Box Properties - General. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 165 
Dialog: Combo Box Properties - Styles ................................ 166 
Dialog: Edit Box Properties - General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 166 
Dialog: Edit Box Properties - Styles .................................. 166 
Dialog: Group Box Properties - General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 
Dialog: List Box Properties - General. ................................ 168 
Dialog: List Box Properties - Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 
Dialog: Picture Properties - General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 
Dialog: Pushbutton Properties - General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 
Dialog: Radio Button Properties - General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 
Dialog: Scrollbar Properties - General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 172 
Dialog: Text Properties - General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 173 
Dialog: User Control Properties - General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 
Dialog: VBX Control Properties - General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 
Dialog: VBX Control Properties - Styles .............................. 174 
Icon Properties - General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 175 
Menu Properties - General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 175 
Menu: Menu Item - General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 
String Editor: String Properties - General. ............................. 176 



x Contents 

Appendix 

Appendix A APSTUDIO.lNI Settings. . .. . . . . . . . . . . . .. . . . .. . . .. . . .. . . ... 179 
Setting the Default oRC File Type ...................................... 179 
Setting the Number of Undo Levels ............................. 0 • • • • • • 180 

Using Default Dialog-Box Buttons ..................................... 180 
Setting the Default Magnification Factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 
Describing Cursor Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 
Describing Icon Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 

Index. 0 0 ••• 0 ••••••••• 0 ••••••••••••••••• 0 0 ••••• 0 ••••••••••• 0 •••••••••• 0 ••••• 0 0 • 0 ••••• 181 



Figures and Tables 

Figures 
Figure 1.1 App Studio Workspace 
Figure 1.2 App Studio Resource Browser 
Figure 1.3 Dragging and Dropping 
Figure 1.4 App Studio Properties Window 
Figure 1.5 Dialog Editor 
Figure 1.6 Menu Editor 
Figure 1.7 Accelerator Table Editor 
Figure 1.8 String Editor 
Figure 1.9 Graphics Editor 
Figure 1.10 Binary Data Editor 
Figure 1.11 Symbol Browser 
Figure 1.12 U sing Class Wizard to Define a Message Handler 
Figure 1.13 Menu Example 
Figure 1.14 Toolbar Bitmap Generated by AppWizard 
Figure 1.15 Cursor Example: Dragging a Radio Button 

Contents xi 

Figure 2.1 Using Drag and Drop to Copy Resources Between Files 
Figure 2.2 Set Includes Dialog Box 
Figure 2.3 Symbol Browser 
Figure 3.1 App Studio Controls 
Figure 3.2 New Dialog Box 
Figure 3.3 Dialog Editor Position Indicators 
Figure 3.4 Dragging a Control from the Control Palette 
Figure 3.5 Selecting Multiple Controls 
Figure 3.6 Sizing a Control 
Figure 3.7 Sizing the Drop-down Portion of a Combo Box 
Figure 3.8 Setting Tab Order 
Figure 3.9 Changing the Existing Tab Order 
Figure 3.10 Dialog Editor Toolbar 
Figure 3.11 Using Space Evenly Down 
Figure 3.12 Install Controls Dialog Box 
Figure 3.13 General Property Page for a VBX Control 
Figure 3.14 Styles Property Page for a VBX Control 
Figure 3.15 General Property Page for a User-Defined Control 
Figure 4.1 Menu Terminology 



xii Contents 

Figure 4.2 Menu Editor New-Item Boxes 
Figure 4.3 Example: Moving a Cascading Menu to the Menu Bar 
Figure 5.1 Using the Accelerator Table Editor and Properties Window 
Figure 5.2 General Property Page for Accelerators 
Figure 6.1 Using the String Editor 
Figure 7.1 Image Editor Window and Graphics Palette 
Figure 7.2 Cross hairs for Defining the Selection 
Figure 7.3 Border Enclosing the Selected Area 
Figure 7.4 Cropping, Extending, Shrinking, and Stretching a Bitmap 
Figure 7.5 Moving the Image-Editor Pane Splitter 
Figure 7.6 Zooming in on the Actual-Size View 
Figure 7.7 New Icon Image Dialog Box 
Figure 7.8 Selectors for Screen Color and Inverse Color 
Figure 7.9 Typical Toolbar Graphic 
Figure 7.10 Grid Settings Dialog Box 
Figure 7.11 Image Editor Window with a Tile Grid 
Figure 7.12 Resizing the Toolbar Bitmap 
Figure 7.13 Selecting Button Images 
Figure 7.14 Moving the Selected Button Images 
Figure 7.15 Color Dialog Box 
Figure 7.16 Custom-Color Dialog Box 
Figure 8.1 The Binary Data Editor 
Figure 9.1 Add Class Dialog Box 
Figure 9.2 Import Class Dialog Box 
Figure 9.3 Defining a Message or Command Handler 
Figure 9.4 Add Variable Member Dialog Box 
Figure 9.5 Dialog Data Validation 
Figure 9.6 Password Dialog Box 
Figure 9.7 DDX/DDV Example: Add Member Variable Dialog Box 
Figure 9.8 DDX/DDV Example: Using Built-in DDV for a CString Variable 
Figure 9.9 DDX/DDV Example Defining a DDX Control Variable 
Figure 9.10 Repair Class Information Dialog Box 
Figure 9.11 Select Files Dialog Box for Generating a New .CLW File 

Tables 
Table 1.1 App Studio Toolbar New-Resource Buttons 
Table 3.1 Comparison of App Studio Support for VBX Controls and 
User-Defmed Controls 
Table 6.1 Formatting and Special Characters in Strings 
Table 9.1 Types of Classes Created in Class Wizard 



Table 9.2 User-Interface Objects and Associated Messages 
Table 9.3 DDX Variable Types for the Value Property 

Contents xiii 

Table 9.4 DDX Variable Types Defined with the Control Property 
Table 9.5 DDV Variable Types 





xv 

Introduction 

This manual contains information and procedures for working with App Studio, a 
powerful and easy-to-use Microsoft® Windows™ operating system resource editor. 
In addition to editing Windows resources, App Studio works together with the 
Microsoft Foundation Class Library and ClassWizard to let you connect your 
resources to code. With Class Wizard, you can also quickly define class member 
variables that make it easier to work with dialog-box controls. 

Chapter 1 provides an overview of the App Studio user interface, including the 
main App Studio window, the resource browser window. Chapter 1 also contains 
important information on how to use the App Studio Properties window, a 
convenient way for setting the Windows styles of each resource and controlling the 
resource's appearance and behavior. 

Chapter 2 discusses how to work with App Studio resource script files and details 
important issues to consider when updating existing resource files for use with App 
Studio. Also in Chapter 2 is information on working with resource identifiers in 
App Studio. 

Chapters 3 through 8 offer specific step-by-step procedures for using App Studio's 
editing windows to create or modify Windows resources. Among the topics covered 
are the following: 

• Using the dialog editor to create dialog-box and form-view templates, and using 
drag-and-drop to place dialog-box controls or transfer them from one dialog box 
to another. 

• U sing the menu editor to quickly create and modify menu resources in an editing 
window that lets you work with the menu in a menu-bar format similar in 
appearance to the finished application. 

• Using the accelerator table editor to create and edit accelerator-table entries. 

• Using the string editor to create, find, or modify strings in your application's 
string table. 

• Using App Studio's full-featured graphics editor to edit bitmaps, icons, cursors 
and special-purpose images such as toolbars. 



xvi App Studio User's Guide 

Chapter 9 introduces Class Wizard, a kind of programmer's assistant that makes it 
easier for you to do certain routine tasks such as creating new classes and gathering 
data from controls in a dialog box or form view. 

Part 2 of this manual provides a reference to the resource properties that you can set 
in the App Studio Properties window and a complete reference to the App Studio 
menus and toolbars. This information (including additional information about App 
Studio dialog boxes) is also contained in online Help. 

Document Conventions 
This book uses the following typographic conventions: 

Example 

STDIO.H 

char, _ setcolor, 
far 

expression 

[option] 

#pragma pack {I I 2} 

II-include <io.h> 

CL [option ... ]file ... 

whil eO 
{ 

Description 

Uppercase letters indicate filenames, segment names, 
registers, and terms used at the operating -system command 
level. 

Bold type indicates C and c++ keywords, operators, 
language-specific characters, and library routines. Within 
discussions of syntax, bold type indicates that the text must 
be entered exactly as shown. 

Many functions and constants begin with either a single or 
double underscore. These are part of the name and are 
mandatory. For example, to have the __ cplusplus manifest 
constant be recognized by the compiler, you must enter the 
leading double underscore. 

Words in italics indicate placeholders for information you 
must supply, such as a filename. Italic type is also used 
occasionally for emphasis in the text. 

Items inside double square brackets are optional. 

Braces and a vertical bar indicate a choice among two or 
more items. You must choose one of these items unless 
double square brackets ([ ]) surround the braces. 

This font is used for examples, user input, program output, 
and error messages in text. 

Three dots (an ellipsis) following an item indicate that more 
items having the same form may appear. 

A column or row of three dots tells you that part of an 
example program has been intentionally omitted. 



Example 

CTRL+ENTER 

"argument" 

"e string" 

Color Graphics Adapter 
(CGA) 

Introduction xvii 

Description 

Small capital letters are used to indicate the names of keys 
on the keyboard. When you see a plus sign (+) between two 
key names, you should hold down the first key while 
pressing the second. 

The carriage-return key, sometimes marked as a bent arrow 
on the keyboard, is called ENTER. 

Quotation marks enclose a new term the first time it is 
defined in text. 

Some C constructs, such as strings, require quotation 
marks. Quotation marks required by the language have the 
form " " and' , rather than" " and ' '. 

The first time an acronym is used, it is usually spelled out. 





PAR T 1 

Using App Studio 

Chapter 1 App Studio Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3 
Chapter 2 Working with Files and Symbols. . . . . . . . . . . . . . . . . . . . . . . .. 21 
Chapter 3 Using the Dialog Editor ............................... 39 
Chapter 4 U sing the Menu Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 61 
Chapter 5 U sing the Accelerator Table Editor . . . . . . . . . . . . . . . . . . . . . .. 69 
Chapter 6 U sing the String Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 75 
Chapter 7 U sing the Graphics Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 81 
Chapter 8 Using the Binary Data Editor. . . . . . . . . . . . . . . . . . . . . . . . .. 111 
Chapter 9 Using Class Wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 113 





3 

CHAPTER 1 

App Studio Overview 

App Studio is a powerful, easy-to-use resource editor. You can: 

• Edit both the appearance and behavior of common user-interface objects such as 
menus, dialogs boxes, accelerator tables, and string tables. 

• Quickly and easily incorporate any of the large number of VBX custom controls 
into your program. 

• Quickly design and edit bitmaps, cursors, icons, and toolbars in the App Studio 
graphics editor. 

However, App Studio is also more than just a resource editor. While working in 
App Studio with Microsoft Foundation Class Library resource files you can: 

• Attach user-interface objects to code by using ClassWizard to quickly and 
easily define message-handling functions. 

• Create class member variables that automatically use the Microsoft Foundation 
Class Library routines for gathering and validating dialog-box data. 

If you're new to programming for Windows, see the "Understanding Windows 
Resources" section near the end of this chapter. It explains the role of resources in a 
Windows program and gives examples of the most common resources. 

You can also use the sample icons, cursors, and toolbar buttons in the sample 
resource file supplied with Microsoft Visual C++TM, COMMON.RES. 



4 App Studio User's Guide 

App Studio Basics 
Once you have installed App Studio on your machine as part of the Visual C++ 
installation process, you are ready to begin editing user-interface objects and other 
resources. For information on installing Visual C++, see Chapter 1 of the Visual 
Workbench User's Guide. 

Note A mouse or other pointing device is required for many App Studio functions. 

Starting App Studio 
To begin your App Studio session, use the Visual Workbench Tools menu to open 
your project's resource script (.RC) file for editing. You can create the menus, 
accelerators, dialog boxes, and other resources that make up the user interface of 
your Windows program. 

~ To run App Studio: 

• From the Visual Workbench Tools menu, choose App Studio. 

App Studio opens your current project's .RC file. 

For more detailed information on running App Studio, see "Opening a Visual C++ 
Resource File" in Chapter 2, page 23. 

If you used App Wizard when you began to write your program, App Studio opens a 
resource file that provides you with not only the basic outline of a fully functioning 
Windows application, but with some basic resource building blocks as well. For 
more information on AppWizard, see the Visual Workbench User's Guide. 

Figure 1.1 shows the App Studio resource browser as it appears at the beginning of 
a new project. In this illustration, several other important App Studio windows are 
open. The major parts of App Studio are described in the sections that follow. 



Chapter 1 App Studio Overview 5 

Ctrl+ 0 
Ctrl+ P 

1---=--____ -11 ill ~aption: O--i ------i 

11-----" Font Name: MS Sans Serif M.enu: 
-r.:;::;:;:::II::====::::!!I Font Size: 8 

FQnL_ I ~ Pos: ~ Y... Pos: ~ 

Figure 1.1 App Studio Workspace 

Using the Resource Browser Window 
At the beginning of a resource editing session, the first App Studio window to 
appear is the resource browser (see Figure 1.2). Use the resource browser window 
to: 

• View the resources in the file by type. 

• Create new resources. 

• Delete existing resources. 

• Move resources from one file to another. 

• View and edit a resource's basic properties in the Properties window. 



6 App Studio User's Guide 

~Ty~pe_: ________ ~ r-Re~s~ou~rc~es~:~~ ________ ~(4~to~ta~l) 
.t8 Accelerator ~IDD_ABOUTBOX 
Ii] Bitmap ~IDD_DIALOG1 
i;;J. ~ IDR_MAINFRAME 

i:!'! Icon ~ IDR_NEWTYPE 

~String Table 

Figure 1.2 App Studio Resource Browser 

~ To browse your application's resources: 

• Select a resource in the Type box. 

The resources in your file that are of the type or types you selected are listed in 
the Resources box. 

Select a single resource by clicking with the mouse. Select multiple contiguous 
resources by holding down the SHIFf key and clicking. Select multiple 
noncontiguous resources by holding down the CTRL key and clicking. 

When a resource in the Resources box is selected but is not currently being edited 
in an App Studio editing window (or the editing window is minimized), you can 
view and edit the resource's basic properties in the Properties window. For more 
information on the Resource property pages and other property pages that appear in 
the Properties window, see Chapter 11. 

Creating a New Resource 
There are several ways to create a new resource in App Studio. You can use the 
resource browser window or the App Studio toolbar. 

~ To create a new resource: 

• On the App Studio toolbar, click the button you want. 

Table 1.1 shows the toolbar's new-resource buttons. 

-Or-

• In the resource browser window, click New, or from the Resources menu, 
choose New (CTRL+R). Then select the resource you want from the list of 
choices and click OK or press ENTER. 

The editor window for the resource you chose appears. 



Chapter 1 App Studio Overview 7 

Table 1.1 App Studio Toolbar New-Resource Buttons 

Resource Toolbar Button 

Dialog box ~ 
Menu [Bil 
Cursor ~ 
Icon [AJ 
Bitmap [I) 
String table ~ 
Accelerator table [l] 

For a complete reference to the App Studio toolbar, see Chapter 10. 

Editing an Existing Resource 
~ To edit an existing resource: 

1. Move to the resource browser window. 

2. In the Type box, select the type of resource you want. 

A list of the resources of that type in the current file appears in the Resources 
box. 

3. In the Resources box, select the name or identifier of the resource you want to 
edit. 

4. Choose Open. 

Or select the resource and press ENTER. 

Or double-click the resource. 

Or from the Resource menu, choose Open. 

The editing window for the resource you chose appears. 

Directly Manipulating User-Interface Objects 
In many cases App Studio allows you to edit user-interface objects by directly 
manipulating them. For example, you can: 

• Place controls in a dialog box by dragging them from the control palette into the 
dialog box (see Chapter 3). 



8 App Studio User's Guide 

• Rearrange menu items by moving them from one place to another with the 
mouse (see Chapter 4). 

One of the most common direct -manipulation techniques is referred to throughout 
this manual as "drag and drop." This means that you position an object by dragging 
it with the mouse or other pointing device and dropping it in its new location, as 
shown in Figure 1.3. 

I!1IFy';j+·(~;y.~!I !fJnl nth I ~ [E[!] ~m 
... 1 Compress 

~------------------------------I 

: Source File Name 11 IDD DIALOG2 (Dialog) I ..... J ... 

i-~~;~~I:~:~:\---------!j 7 ~I '[!llon'l ~,~ I"';' :::;1;:1 [] 

+J. J '\. I. + Cancel '" .................................. . 

~:-::~~:~ ! 
~.~ .................................. ; 

Figure 1.3 Dragging and Dropping 

~ To move or reposition an object using "drag and drop": 

1. Point to the object you want to move or position and hold down the left mouse 
button. 

2. While still holding down the button, drag the object to its new location. 

3. When the object is in position, drop it by releasing the button. 

Using Undo and Redo 
Multiple-level undo and redo is a powerful tool for iterative design in App Studio. 
Undo reverses the effect of the last operation and redo reverses the effect of the last 
undo. 

Normally you can undo your last ten actions, but you can change this number by 
changing the value in APSTUDIO.INI (see Appendix A, page 179). Most common 
operations in App Studio can be undone, including actions such as dragging and 
dropping that involve moving from one App Studio window to another. 



Chapter 1 App Studio Overview 9 

~ To undo an operation: 

I!::?I • On the App Studio toolbar, click the Undo button. 

Or from the Edit menu, choose Undo (CTRL+Z). 

~ To redo an operation: 

10-1 • On the App Studio toolbar, click the Redo button. 

Or from the Edit menu, choose Redo (CTRL+A.) 

Using the Properties Window 
The Properties window is one of the most important features of App Studio; it 
allows you to control the appearance and behavior of the resources you create. 
Figure 1.4 shows the Properties window as it appears when you first open a dialog 
box for editing. 

r ~ 1 f] Dialog Properties I General Iii 
!D: IIDD_DIALOG2 1 iii !;.aption: J-ID_ialo_Q _____ -' 

Font Name: MS Sans Serif 

Font Size: 8 
M.enu: J-I _____ -'1 iii 

f"n'"I" f"n'"I" Registered I Font... I X Pas: U y Pas: U Class: I 

Figure 1.4 App Studio Properties Window 

I 

Once you use App Studio for a short time, you will become quite familiar with how 
the Properties window works. To get a head start, however, there are a few things 
you should know: 

• The Properties window contains one or more property pages that apply to the 
resource or resource object that is currently selected. 

• If the editing window for the selected resource is closed or minimized, only the 
Resource property page (showing basic information about the resource) is 
available. See page 159 for more information. 

• You can control whether the Properties window stays visible while you are 
working in another window (for example, an editor window) or is dismissed 
once you switch to another window. 

• Changes made on a property page take effect as soon as you make them. For an 
edit box, changes take effect as soon as you switch to another window or 
control. 

• You can use App Studio's property pages and multiple-level undo as a design 
tool. Experiment with various property settings and then back them out with 
CTRL+Z if they're not what you want. 



10 App Studio User's Guide 

Viewing Property Pages 
Property pages divide resource properties into logical groupings so that they are 
easier to view and edit. 

~ To display the Properties window: 

• From the Window menu, choose Show Properties. 

-Or-

• Choose one of the following shortcuts: 

• For resources with a caption, select the resource and start typing the caption. 

• Press ENTER when a resource is selected in an editing window. 

• Press ALT+ENTER at any time. 

• Choose the Properties command at the bottom of the resource browser 
window. 

Tip You can display the Properties window quickly by double-clicking the object 
whose properties you want to edit. 

~ To move from one property page to another in the Properties window: 

1. In the Resources box, select the resource whose properties you want to edit. 

2. Display the Properties window if it is not currently displayed: from the Window 
menu, choose Show Properties. 

3. In the property page box at the upper-right comer of the Properties window, 
choose the category of properties you want to edit from the list of property 
pages. 

Tip With the Properties window displayed, you can quickly move from one 
property page to another using the PAGE UP and PAGE DOWN keys. 

Controlling the Properties Window 
You can control the behavior of the Properties window to suit your working style or 
the nature of the resource editing task. Use the "pushpin" command button in the 
upper-left comer of the Properties window: 



Chapter 1 App Studio Overview 11 

• When the button is in the down position, the Properties window stays visible 
even when you are working in another window. This is convenient if, during an 
editing session, you want to move back and forth frequently between setting 
properties and editing objects. Pressing ENTER after you change a value in the 
Properties window returns you to the editing window but leaves the Properties 
window visible. Pressing ESC cancels any changes you made and returns you to 
the editing window. 

• When the button is in the up position, you can dismiss the active Properties 
window by pressing ENTER or ESC. This is useful if you want to concentrate on 
working in an editing window but need to bring up the Properties window 
briefly to change one or two values. 

Introduction to App Studio Editing Windows 
This section presents a visual overview of the main App Studio editing windows 
and App Studio dialog boxes. For a complete description of each editor, see the 
appropriate chapter. 

Dialog Editor 
Use the dialog editor to quickly create dialog boxes, place and arrange controls, and 
test the finished product. See Chapter 3. 

Enter Data 00 
: : :!iame . :1 L . : : : : : : : : : . 
: : ~ddress : :1' . . . . . . . . . . . . . . . . . . . 1 : : . 
:: :~h~ne .. :1 I:: : : : ...... 

: : :: ~ 

: :: I OK L: : I Cancel r 
.... Q 

[~I f]Oialog Properties I General Iii 
10: IIDD ENTER DATA I iii I;,aption: I-IE_nte_rD_a--'-t4 ____ ---' 

l.!:::=======j Font Name: MS Sans Serif 
Menu: 1-1 _____ ---'1 iii 

Font Size: 8 

I Fon!.._ I X Pos: @:J' Y Pos:@:J' I 

Figure 1.5 Dialog Editor 



12 App Studio User's Guide 

Menu Editor 
Use the menu editor to create and edit menu items by working directly with a menu 
bar that closely resembles the one in your finished application. See Chapter 4. 

IL.:E=-i_le----=E=-d_it----=2=p_ti_o_ns_Y.=.i_ew_ . .'" Y:f,,i.ndow ..... ...!::t ... !.P.. .. ..r. .... =::.:::.:.... ______ -' 

.!'iewWindow 
.", ""!,;'a's'c~'(j'~"""""""""'" .,,:i 

Iile 
Arrange Icons 

r ~1 'f]Menu: Menu Item Properties I General Iii 
10: IID_W'NDOW_NEW I iii I;,aption: I1.NewWindow 

I----r=====i~ 
D ~eparator D f.opup D Inactive !!.reak: INone Iii 
D Chec.!5"ed D .!irayed D HelP 

PromPt: I Open another window for the active document 

Figure 1.6 Menu Editor 

Accelerator Table Editor 
Use the accelerator table editor to add, delete, change, or browse the accelerator­
key assignments in your project. See Chapter 5. 

ID 

IDJILE_NEW 
IDJILE_OPEN 
IDJILE_PRINT 
IDJILE_SAVE 
ID_EDIT _PASTE 
ID_EDIT _UNDO 
ID_EDIT _CUT 
ID_CONTEXT _HELP 

Key 

Orl + N 
Orl + 0 
Ctri+P 
Orl + S 
Orl +V 
An +VK_BACK 
Shift + VK_DELETE 
Shif VKJ1 

Type 

VIRTKE 
VIRTKE 
VIRTKE 
VIRTKE 
VIRTKE 
VIRTKE 
VIRTKE 
VIRTKE 

ID_NEXT_PANE ~;;:~~:::::======::::::~:::~~~F;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;~~ 
ID_PREV_PANE I General Iii 
ID_EDIT _COPY 
ID_EDIT_PASTE I iii Modifiers 

[g] I;,trl D 81t D Shif! 

:===========:1 iii 
I Next Key Typed @~irtKey 

Figure 1.7 Accelerator Table Editor 

String Editor 
Use the string editor to change or add to your program's standard string-table 
resource. See Chapter 6. 



Chapter 1 App Studio Overview 13 

~---------------(S-tr-in-g-T-ab-Ie-I--------------II--In 

ID Value Caption 
IDR_MAINFRAME 2 Account Windows Application ~ 
IDR_ACCOUNTYPE 3 \nAccoun\nACCOUN Document 

AFX IDS IDLEMESSAGE 57345 For Help, press F1 
AFX -IDS - HELPMODEMESSA( 57346 Select an obiect on which to get Help 
IDJILE_NEW 57600 Create a new document 
IDJILE_OPEN 57601 Open an e~isting document 
IDJILE_CLOSE 57602 Close the active document 

: :g-~:~~-~~0~ AS 
57603 5 ave the active document h 
"i7hn4 S;w" th" ""tiv" cin""m,,nt with" n"w n"m. + 

~I Delete I I Find ___ II Proper!ies ___ I .. 
f ~1 f]String Editor: String Properties I General m 
10: IAFXJDS_APP_TITLE IW 
!;.aption: Account Windows Application ~ 

I-' 

~ 

Figure 1.8 String Editor 

Graphics Editor 
Use the graphics editor to edit your program's cursor, icon, and bitmap resources. 
See Chapter 7 . 

• 
10: IIDUCON4 

Width: 32 Height: 32 Colors: 16 

Filename: I ico00007.ico 

Figure 1.9 Graphics Editor 



14 App Studio User's Guide 

Binary Data Editor 
Use the binary data editor to edit an existing custom resource at the binary level in 
either hexadecimal or ASCII format. See Chapter 8. 

Hexadecimal value 

I I I. I •• 

65 66 69 61! 65 64 20 72 
000010 65 73 6F 75 72 63 65 20 73 74 61 74 65 6D 65 61! esource statemen 
000020 74 20 73 70 65 63 69 66 69 65 73 20 61 20 72 65 t specifies a re 
000030 73 6F 75 72 63 65 20 74 68 61 74 20 63 6F 61! 74 source that cont 
000040 61 69 61! 73 20 61 70 70 6C 69 63 61 74 69 6F 61! ains application 
000050 2D 73 70 65 63 69 66 69 63 20 64 61 74 61 21! 00 -specific data .. + 

Figure 1.10 Binary Data Editor 

The Symbol Browser 
Use the Symbol Browser to edit and browse existing identifiers or create new ones. 
See Chapter 2. 

Ngme 

ID ENTER DATA 
ID - PAS SW-O RD 
IDS BITMAPl 

Symbol Browser 

Value 

59396 
59395 
1 

In Use 
Close 

Help 

DC ADDRESS 1003'; 
IDC_ALL_ACCESS 
IDC_CHECKING 
IDC_EDITl 
IDC EDIT2 
IDC - MONEYMKT 
IDC-NAME 

1!.sed by: 

1004 .,j Hew ... 
1006 .,j 

1000 .,j I.Lh(m~w. . I 
1001 .,j 

1008 .,j .p.dde 
1000 .,j + 

D Show Read Onl" S"mbols 

I View Use I 

Figure 1.11 Symbol Browser 

Using ClassWizard 
App Studio goes beyond just editing resources. You can use Class Wizard to 
connect resources to code. This section gives a brief overview of ClassWizard; for 
more information, see Chapter 9. 



Chapter 1 App Studio Overview 15 

Simplifying Message Handling 
Class Wizard greatly simplifies the often tedious and time-consuming task of 
managing Windows message handling. You can browse the Windows messages 
appropriate to a given user-interface object and define message handlers for them 
(Figure 1.12). 

Import Class 

OK Class !lame: Header File: 

I-..IA_dd_ln--!fol __ --l 1-..1 di_alo-=g_s:h __ --lll Browse ... I 
Cancel 

implementation File: ,--_---, 

I dialogs.cpp II Browse... I Help 

Figure 1.12 Using Class Wizard to Define a Message Handler 

Gathering and Validating Dialog-Box Data 
The Microsoft Foundation Class Library has built-in routines that simplify 
gathering and validating the data associated with dialog-box controls. 

When you are building a dialog box in App Studio, you can use Class Wizard to 
define member variables in the dialog-box class to take advantage of these built-in 
routines for Dialog Data Exchange (DDX) and Dialog Data Validation (DDV). 

Understanding Windows Resources 
Resources are data objects that are separate from the main body of code in a 
Windows operating system program. Because of this, resources can be built and 
edited independently of the rest of the development process. This not only makes a 
project with a complex user interface easier to manage, but it also makes the 
application easier to translate into other languages. 

Typically, resources are used to describe the contents and appearance of user­
interface objects such as menus and dialogs. However, you can also define your 
own resource type if, for example, you have custom data that you want to make 
part of your program. 

To most efficiently manage available memory, Windows usually leaves resources 
on disk until they are needed, although you can cause individual resources to be 
loaded at program startup to improve performance. Once loaded, a resource is 
usually placed in a "discardable" section of memory so that memory can be freed 
up for other tasks if needed. When the user-interface object is again required, it is 
loaded from disk. 



16 App Studio User's Guide 

The appearance and contents of resources are defined in a "resource script" (.RC) 
file. The .RC file is compiled into a binary form in a separate step when you build 
your program and is made a part of the executable file during linking. 

Predefined Windows Resources 
The following predefined resource types are supported by built-in Windows library 
routines: 

dialog box 

accelerator table 

bitmap 

cursor 

Dialog Box 

menu 

string table 

icon 

A dialog box is a window, usually a pop-up window under the control of the main 
program window, that allows your program to carry on a two-way conversation 
with the user. Dialog boxes are used to gather the information needed to comply 
with a user request (such as the name of a file to open). 

App Studio allows you to construct dialog boxes by simply dragging controls from 
a palette and dropping them into place. You can also arrange controls easily with a 
variety of layout tools. For information on editing dialog boxes, see Chapter 3. 

Menu 
A Windows menu is a list of program commands. Menus offer a way to group 
multiple commands into logical units, thus reducing the complexity of the user 
interface. Since these lists of commands drop down from a "menu bar" at the top 
of the main program window, they also offer a convenient way for the user to 
browse and select program commands with a pointing device. Figure 1.13 shows 
a program window with a menu bar and two levels of menus open. 



Menu items (underlined letter is mnemonic key) 

Drop-down menu 

Chapter 1 App Studio Overview 17 

Accelerator key Cascading menu 

Ctrl+C 
Ctrl+V 

Figure 1.13 Menu Example 

The App Studio menu editor allows you to create new menus by pointing to any 
empty menu cell and filling in the information in the Properties window. To 
rearrange menu items, you just drag them from one location to another with the 
mouse. For information on editing menus, see Chapter 4. 

Accelerator Table 
An accelerator table contains a list of accelerator (shortcut) keys that can be used to 
execute a program command directly from the keyboard without having to pull 
down a menu and choose the command from a list. In Figure 1.13, the menu 
example, the Copy command is assigned to the key combination CTRL+C. 

Normally, accelerators are associated with program commands that also appear on 
a menu. However, some applications use accelerator keys for seldom-used program 
commands that, if placed on a menu, would make the program's menu structure too 
complex. 

For more information on editing accelerator tables, see Chapter 5. 



18 App Studio User's Guide 

String Table 
A string table is a Windows resource type that allows you to store text strings that 
will be displayed as part of your user interface. Since this information is stored 
separately from the program source code, you can easily edit or translate program 
text without having to recompile the entire program. 

The App Studio string editor gives you convenient access to all string resources and 
their associated attributes. For more information about the App Studio string editor, 
see Chapter 6. 

Bitmap 
A bitmap is a graphical image stored in binary form; the basic element of the 
bitmap is the pixel, or picture element. One common use of bitmaps in programs for 
Windows is to define the appearance of the custom command buttons frequently 
used in toolbars or control palettes. For example, when you create a new 
application using App Wizard, a basic toolbar bitmap (Figure 1.14) is included as 
part of the application. 

Figure 1.14 Toolbar Bitmap Generated by AppWizard 

The graphics editor in App Studio is full-featured and powerful. In addition to 
allowing general bitmap editing, it has special provisions for editing bitmaps for use 
with the CToolBar class in the Microsoft Foundation Class Library. For more 
information on creating toolbars and other bitmaps using the App Studio graphics 
editor, see Chapter 7. 

Icon 
An icon is a unique graphical identifier that represents a program on the Windows 
desktop. An icon is used to launch a program from the Program Manager and also 
to represent a program window that has been minimized. Figure 1.9 shows an icon, 
which is a 32x32-pixel bitmap, being edited in the App Studio graphics editor. 

For information on using App Studio to create or modify icons, see Chapter 7. 
For information on incorporating existing icons into your project, see Chapter 2, 
page 28. 



Chapter 1 App Studio Overview 19 

Cursor 
A cursor is a bitmap, usually 32x32 pixels, that shows the position of the mouse or 
other pointing device on the screen. Programs use different cursors to show a 
ohange in the state or current action. 

For example, in the App Studio dialog editor, when you use "drag and drop" (see 
page 8) to place a radio button in a dialog box, the cursor changes from an arrow to 
an arrow and a radio button (see Figure 1.15) as a visual reminder of what kind of 
object you are moving. 

Figure 1.15 Cursor Example: Dragging a Radio Button 

For information on using the App Studio graphics editor to edit cursors, see 
Chapter 7. For information on incorporating existing cursor bitmaps into your 
project, see Chapter 2,.page 28. 

App Studio Sample Resources 
Visual C++ includes sample resources that you can use in your own application. 
These include: 

• A large number of icons that represent common business and data-processing 
tasks. 

• Several commonly used cursors that are not included as predefined Windows 
resources. 

• A selection of toolbar-button bitmaps. 

These resources are located in a file called COMMON. RES in the 
\MSVC\MFc\sAMPLES\APSTUDIO directory on the drive where you installed 
Visual C++. Additional sample resources can be found in this directory. 

~ To copy resources from COMMON.RES to your own resource script file: 

1. Use App Studio's File menu to open both your .RC file and COMMON.RES at 
the same time. 

2. Hold down the CTRL key and drag the resources you want from the 
COMMON. RES resource browser window to the resource browser window of 
your own application. 



20 App Studio User's Guide 

Where to Go from Here 
For more information on 

Managing projects and working with 
resource files 

Using ClassWizard 

Editing specific resource types 

See / 

Chapter 2 

Chapter 9 

The chapter covering the editor for that 
resource 

User-interface object properties and styles Chapter 11 



CHAPTER 2 

Working With Files and Symbols 

App Studio supports many different ways of working with resources. You can: 

• Load, save, and edit resource script (.RC) files. 

• Load, save, and edit Windows executables (.EXE), dynamic link libraries 
(.DLL), and compiled resource (.RES) files. 

• Use App Studio as a stand-alone editor for bitmaps, icons, or cursors. 

• Import or export graphics resources to or from your current resource file. 

21 

In most cases, it is easiest to work with App Studio's single .RC file. However, App 
Studio can accommodate other ways of organizing a project. You can: 

• Work with nested resource files and conditionally included resource files. 

• Include shared or read-only identifiers (symbols) that can't be modified by App 
Studio. 

• Include resources in your executable file (.EXE) that don't require editing (or 
that you don't want to be edited) during your current project (such as resources 
that are shared between several projects). 

• Include resource types not supported by App Studio. 

When you create a new resource or an object within a resource, App Studio assigns 
it an identifier, or symbol, consisting of a text string mapped to an integer value. 
You can change the symbol name or value in the Properties window when you 
create the resource, and you can view existing symbols and add new ones with the 
Symbol Browser as you work. 



22 App Studio User's Guide 

Working with Files 
App Studio lets you open the following types of files: 

File Extension 

.RC 

.RES 

.EXE 

.DLL 

.BMP, .DIB, .ICO, .CUR 

Description 

Resource script file 

Compiled resource script file 

Executable file 

Dynamic-link library 

Graphics files containing bitmaps, icons, or cursors 

In addition, you can save an existing resource, executable file, or graphics file as 
one of the following: 

• .EXE (for an existing executable) 

• .RC 

• .RES (a compiled resource file) 

• .BMP, .DIB, .ICO, or .CUR (if you are working with a graphics file only and 
not a resource script file) 

App Studio also works with several additional files during your resource editing 
session: 

Filename 

RESOURCE.H 

pro jectname .APS 

projectname.CLW 

Description 

Header file generated by App Studio; contains symbol 
definitions. 

Binary version of the current resource file; used by App 
Studio for quick loading. 

File containing information about the current project; used 
by Class Wizard. 

The following sections cover the most common operations you'll need to set up your 
project and to manage resources and resource files. 

Creating a New Resource File 
You can use App Studio to create a new resource script file or graphics resource 
file. You can also choose to include Microsoft Foundation Class Library support in 
the resource file you create. App Studio can also create a compiled resource (.RES) 
file, although the situations in which this is required are rare. 



Chapter 2 Working With Files and Symbols 23 

~ To create a new resource file: 

1. From the File menu, choose New. 

The New dialog box appears. 

2. Choose a file type from the list of choices: bitmap, icon, cursor, resource script 
file (.RC), or compiled resource file (.RES). 

3. Set or clear the Use Microsoft Foundation Classes option as appropriate. 

For information on features specific to Microsoft Foundation class resource 
files, see page 26. 

-Or-

[ill • Click the New File button on the App Studio toolbar. 

A new resource script file with Microsoft Foundation Class Library support is 
created. 

Note You can change the type of resource file created by changing the U seMfc 
setting in APSTUDIO.INI. See Appendix A for details. 

Opening a Visual C++ Resource File 
This section provides two ways to start a resource editing session from Visual 
Workbench. The instructions assume that you have started Visual Workbench and 
created a basic set of new project files using App Wizard. For more information on 
App Wizard, see chapter 13 of the Visual Workbench User's Guide. For 
information on opening resource files not created with App Wizard or App Studio, 
see page 24. 

~ To open a resource file from Visual Workbench: 

• From the Tools menu, choose App Studio. 

This executes App Studio and opens the .RC file with the same base name as the 
current project. 

-Or-

1. From the Options menu, choose Editor. 

The Editor dialog box appears. 

2. Under Source Files, select the Open RC Files Using App Studio option 
(normally turned off). 

3. Click the Project Files button on the Visual Workbench toolbar and choose your 
project's .RC file from the list. 

-Or-



24 App Studio User's Guide 

1. From the File menu, choose Open. 

2. Open the .RC file for your project. 

Visual Workbench executes App Studio and loads the project resource file. 

~ To open a resource file from App Studio: 

1. Start App Studio from the Windows Program Manager. 

2. From the App Studio File menu, choose Open. 

3. Open your project's .RC file for editing. 

For information on a recommended file structure for Visual C++ projects, see the 
discussion of the files generated by the AppWizard in Chapter 13 of the Visual 
Workbench User's Guide. 

Reading Resource Files Not Created with App Studio or 
AppWizard 

When you start a new Visual c++ product, you normally use App Wizard to create 
a set of basic starter files. These starter files include an App Studio-compatible .RC 
file that contains support for Microsoft Foundation Class Library features. 
However, you can also update existing .RC files for use with App Studio. 

~ To update an existing resource file for use with App Studio: 

1. Make a backup copy of your existing .RC file. 

2. Add the .RC file to your project using Visual Workbench (see Chapter 8 of the 
Visual Workbench User's Guide). 

3. Open the file in App Studio according to the instructions in the previous section. 

Note App Studio uses the include path set in Visual Workbench (from the 
Visual Workbench Options menu, choose Directories). In addition, relative 
include paths in an App Studio resource file must be based on the directory 
where the .RC file is currently located. 

4. Save the App Studio version of the resource file. 

Reading in and then saving resource files not created by App Wizard or App Studio 
has two results that are important to be aware of: 

• App Studio makes several changes to how your resource files are organized so 
that you can work with all your resources in one place. 

• Several resource-related features supported by the Microsoft Foundation Class 
Library are automatically available when your resource script file includes the 
library file AFXRES.H. See page 133 for instructions on how to manually add 
framework support to existing .RC files. 



Chapter 2 Working With Files and Symbols 25 

Converting Existing Resource Files to App Studio Format 
Saving a non-App Studio resource script file for the first time in App Studio has 
several important consequences: 

• Resources contained in files that were added to your old .RC file with include 
statements are written back to disk as part of the main App Studio resource file. 

For example, if your old project had dialog boxes in a separate .DLG file, this 
separate file is no longer needed since App Studio moves the dialog boxes into 
the main .RC file. 

However, if you have resource files containing resources that you do not want to 
edit in App Studio, or that you want to continue to store in a separate resource 
file (such as a version resource file), move the resource to a separate file and 
add it back by using the File menu's Set Includes command. See page 28 for 
more information. 

• Any symbol definitions included in your old .RC file are marked as read-only 
symbols by App Studio the first time you save the .RC file. To make the 
symbols available for modification and editing, remove them from the included 
header file and place them in the App Studio resource header, RESOURCE.H. 

• Symbols that are defined with expressions rather than integers and used in the 
resource file are evaluated by App Studio, but they are then written to the App 
Studio symbols header (.H) file as simple integers. To preserve the expressions 
for calculated symbol values, include them in a read-only symbols header file 
(page 29). 

• Conditional compilation statements in your old .RC file are evaluated by App 
Studio the first time the file is read in, but they are not written back to disk when 
you save the .RC file. 

Note To preserve conditional compilation statements you should place the 
sections of your old .RC file containing these statements in a separate file, then 
include the file using the File menu's Set Includes command. See page 31 for 
more information. 

• Comments in your old .RC file are not preserved. 

In most cases, App Studio makes it easy and convenient to work with all your 
resources and symbols in a single App Studio file. However, App Studio also sup­
ports a nested resource file structure, conditionally included resource files, and 
expressions as symbol values if your project requires it. For more information see 
the section "Using Advanced Resource File Techniques" later in this chapter. 



26 App Studio User's Guide 

Features Supported Only in Microsoft Foundation Class 
Library Resource Files 
Nonnally when you build a Microsoft Foundation Class Library Windows 
application from scratch using App Wizard, you start by generating a basic set of 
files, including a resource file, that contain the core features of the Microsoft 
Foundation classes. 

However, if you are editing a resource file for a Windows program that is not based 
on the Microsoft Foundation Class Library, the following features specific to the 
framework are not available in App Studio: 

• ClassWizard (Chapter 9) 

• Menu prompt strings (page 176) 

• Support for VBX controls (page 55) 

• List Contents for combo-box controls (page 165) 

You can, however, add framework support to existing resource script files that do 
not have it. 

~ To add framework support to .Re files that do not already have it: 

1. From the File menu, choose Set Includes. 

The Set Includes dialog box appears. 

2. In the Read-Only Symbol Directives box, replace the include statement for 
WINDOWS.H with the following: 

#include "afxres.h" 

3. You may also need to add additional include files using the Compile-Time 
Directives box. For more infonnation, see the Class Library Reference. 

4. Close the resource file and then reopen it for the changes to take effect. 

Copying Resources Between Files 
The easiest way to copy resources from either an existing resource or an executable 
file to your current resource file is to have both files open in App Studio at the same 
time. Then use drag and drop to move items from one resource browser window to 
another (see Figure 2.1). 

Note Visual C++ includes sample resource files that you can use in your own 
application. See page 19. 



Chapter 2 Working With Files and Symbols 27 

You can use the Resource menu's Import command to add bitmap, icon, or cursor 
files to your current App Studio project. You can save graphics resources to disk as 
separate files using the Export command. 

~ To copy resources from one file to another: 

1. Open both files. Make sure both resource browser windows are visible. 

2. In the resource browser window of the "from" file, select the resource you want 
to copy. 

3. Hold down the CTRL key and drag the resource to the resource browser window 
of the "to" file. 

Dragging the resource without holding down the CTRL key moves the resource 
rather than copies it. 

Note To avoid conflicts with symbol names or values in the existing file, App 
Studio may change the transferred resource's symbol value, or symbol name and 
value, when you copy it to the new file. 

== App Studio - \SRC\TEST2\TEST2.RC Dn 
File Edit Resource Window Help 

I DIrii;IIii1II~*:"~II~I~I~I.I~I8iiClgIIID=I~1 ~ 
"I \SRC\TESTJ\TESTJ.RC (Resource Script) l"'l'" 

Type: Resources: (0 total) 

fiJ Accelerator 

I I 

!ilBitmap 
~Dialog 
i"~lcon ~ 
iMenu ! 
8iiC String Table 

~ \ ~ I n.d~~tfi I I FWPlij~ili" ... I 
\ .. . . . . I I ...1'" 

Type: Resources: (5 total) 

'\ fiJ Accelerator I ~IDD_ABOUTBOX 
IBitmap ~IDD_DIALOG1 

!;;]: ~IDD_DIALOG2 

r~ 1000 :::----t ~IDD_DIALOG8 
iMenu ~: 

!!is String Table 

~ ~ I Delete I I Proper!ies ... I 
Read}' 

Figure 2.1 Using Drag and Drop to Copy Resources Between Files 



28 App Studio User's Guide 

~ To import a separate bitmap, icon, or cursor file into your current resource 
file: 

1. From the Resource menu, choose Import. The Import dialog box appears. 

2. Choose the name of the .BMP, .ICO, or .CUR file you want to import. When 
you choose OK, the file is added to the current resource file. 

Tip You can also copy a bitmap, icon, or cursor into your current resource file by 
dragging it from a File Manager window and dropping it into the App Studio 
resource browser window. 

~ To save a bitmap, icon, or cursor as a separate file: 

1. Select the bitmap, icon, or cursor you want to export. App Studio exports the 
graphic selected in the resource browser window or the graphic in the currently 
active image editor window. 

2. From the Resource menu, choose Export. 

3. Enter a new filename for the bitmap, icon, or cursor, or press ENTER to accept 
the current filename. 

The graphics file is saved to disk. 

Using Advanced Resource File Techniques 
You can use the File menu's Set Includes command to modify App Studio's normal 
working arrangement of storing all resources in the project .RC file and all symbols 
in RESOURCE.H. (For more information on symbols, see "Working with 
Symbols" on page 31.) Figure 2.2 shows the Set Includes dialog box. 

Set Includes 

furmbol Header File: 

Iresource_~ 

Read-Only Symbol Directives: 

'include "afxres_h" + 

kompile-Time Directives: 

'include "res\nu_rc2" /I non-App SI + 

'include "afxres_rc" /I Standard COl 

'include "afxprint.rc" /I printing/pril 

+ 

OK 

Cancel 

!:!elp 

Figure 2.2 Set Includes Dialog Box 



Chapter 2 Working With Files and Symbols 29 

Use the Symbol Header File box to change the name of the header file where App 
Studio stores the symbol definitions for your resource file. 

Use the Read-Only Symbol Directives box to include header files that contain 
symbols that should not be modified during an App Studio editing session. For 
example, you can use the Read-Only Symbol Directives box to include a symbol 
file that has been created to be shared among several projects. The Read-Only 
Symbol Directives box is also used to include Microsoft Foundation Class 
Library .H files. 

Use the Compile-Time Directives box to include resource files that: 

• Are created and edited separately from the resources in your main resource file. 

• Contain compile-time directives, such as directives that conditionally include 
resources. 

• Contain resources in a custom format. 

The Compile Time Directives box is also used to include standard Microsoft 
Foundation Class Library resource files. 

Once you've made changes to your resource file using the Set Includes dialog box, 
you need to close the file and then reopen it for the changes to take effect. 

Changing the Name of the Symbols Header File 
Normally App Studio saves all symbol definitions to RESOURCE.H. ·However, you 
may need to change this include filename so that you can, for example, work with 
more than one resource file in the same directory. 

~ To change the name of the resource symbol header file: 

1. From the File menu, choose Set Includes. 

The Set Includes dialog box appears. 

2. In the Symbol Header File box, type the new name for the include file. 

3. Choose OK. 

USing Shared (Read-Only) or Calculated Symbols 
The first time App Studio reads a non-App Studio resource file, it marks all 
included header files as read-only. Subsequently, you can use the File menu's Set 
Includes command to add additional read-only symbol header files. 

One reason you may want to use read-only symbol definitions is for symbol files 
that you plan to share among several projects. 



30 App Studio User's Guide 

You would also use included symbol files when you have existing resources with 
symbol definitions that use expressions rather than simple integers to define the 
symbol value. For example, 

#define IDC_CONTROL1 2100 
#define IDC_CONTROL2 (IDC_CONTROL1+1) 

App Studio will correctly interpret these calculated symbols as long as: 

• The calculated symbols are placed in a read-only symbols file. 

• Your resource file contains resources to which these calculated symbols are 
already assigned. 

~ To include shared (read-only) symbols in your resource file: 

1. From the File menu, choose Set Includes. The Set Includes dialog box appears. 

2. In the Read-Only Symbol Directives box, use the #i n c 1 u decompiler directive 
to specify the file where you want the read-only symbols to be kept. (The file 
should not be called RESOURCE.H, since that is the filename normally used by 
App Studio's main symbol header file.) 

3. Place the symbols in the file you specified. 

The symbols in files included in this way are evaluated each time you open your 
resource file, but they are not rewritten to disk by App Studio when you save 
your file. 

Important What you type in the Read-Only Symbol Directives box is included in 
the resource file exactly as you type it. Make sure what you type does not contain 
any spelling or syntax errors. 

You should use the Read-Only Symbol Directives box to include files with symbol 
definitions only, not resource definitions. App Studio places resources included with 
the Read-Only Symbol Directives box in the main resource file when it is saved, 
thus creating duplicate resource definitions. 

Including Resources From Other Files 
Normally it is easy and convenient to work with App Studio's default arrangement 
of all resources in one .RC file. However, you can add resources in other files to 
your current project at compile time. Use the Set Includes dialog box's Compile 
Time Directives box. 

There are several reasons to place resources in a file other than App Studio's main 
resource file: 



Chapter 2 Working With Files and Symbols 31 

• To include resources that have already been developed and tested and need no 
further modification. 

• To include resources that are being used by several different projects, or that are 
part of a source code version-control system, and thus must exist in a central 
location where modifications will affect all projects. 

• To include resources (such as RCDATA resources) that are in a custom format. 

• To include statements in your resource file that execute conditionally at compile 
time using compiler directives such as IFi fdef and IFe 1 se. For example, your 
project may have a group of resources that are bracketed by #i fdef _DEBUG 
. .. #e n d i f and are thus included only if the constant _D E BUG is defined at 
compile time. 

• To include statements in your resource file that modify resource-file syntax by 
using #d e fin e to implement simple macros. 

If you have sections in your existing resource files that meet any of these 
conditions, you should place the sections in one or more separate .RC files and 
include them in your project using the Set Includes dialog box. The 
projectname.RC2 file created by AppWizard in the RES subdirectory of a new 
project is used for this purpose. 

~ To include resource files that will be added to your project at compile time: 

1. Place the resources in a resource script file with a unique filename. (Do not use 
projectname.Rc, since this is the filename used for App Studio's main resource 
file.) 

2. From the File menu, choose Set Includes. The Set Includes dialog box appears. 

3. In the Compile-Time Directives box, use the #i ncl ude compiler directive to 
include the new resource file in the main App Studio resource file. 

The resources in files included in this way are made a part of your executable at 
compile time. They are not available for editing or modification when you are 
working on your project's main .RC file. You need to work on included resource 
files in a separate App Studio resource script file. 

Working with Symbols 
A symbol is a resource identifier that consists of a text string (name) mapped to an 
integer value. Symbols provide a descriptive way of referring to resources and user­
interface objects, both in your source code and while you're working with them in 
App Studio. 



32 App Studio User's Guide 

When you create a new resource or resource object, App Studio provides a default 
name for the resource (for example, IDC_RADI01) and assigns a value to it. The 
name-pIus-value definition is stored in the App Studio-generated file 
RESOURCE.H. 

In working with symbols from within App Studio, you can: 

• Change the symbol associated with a resource or object. 

• Change a symbol's name or value in the Symbol Browser (if the symbol hasn't 
been used yet). 

• Change a symbol's name in the Properties window (if the symbol is already in 
use by a single object). 

• Use the Symbol Browser to browse existing symbols, add new symbols, and 
change or delete unused symbols. 

Note When you are copying resources or resource objects from one .RC file to 
another, App Studio may change the transferred resource's symbol value, or symbol 
name and value, to avoid conflicts with symbol names or values in the existing file. 

Changing a Symbol or Symbol Name 
When you create a new resource or resource object, App Studio assigns it a default 
name-for example, IDD_DIALOGl. Use the Properties window to change the 
default symbol name or to change the name of any symbol already associated with a 
resource. 

~ To change a resource's symbol name: 

1. Select the resource and move to the appropriate property page (usually the 
General property page), or type CTRL+Q to move directly to the property page 
ID box. 

-Or-

Open the Symbol Browser (page 34), select the symbol you want to change, 
and choose Change. When the Change Symbol dialog box appears, choose 
View Use. 

This moves you to the property page of the resource where the symbol is used. 

2. In the ID box, type a new symbol name or select from the list of existing 
symbols. 

3. Press ENTER to accept the change. If you typed a new symbol name, App Studio 
assigns it a value automatically. 

You can use the Symbol Browser to change the name of symbols not currently 
assigned to a resource. See "Changing Unassigned Symbols" on page 35. 



Chapter 2 Working With Files and Symbols 33 

Changing a Symbol's Numerical Value 
Usually you can let App Studio assign the numerical value associated with the 
symbol names you define. However, there may be times when you need to change 
the symbol value associated with a resource-for example, when you want a group 
of controls or a series of related strings in the string table to have sequential IDs. 

For symbols already associated with a single resource, use the Properties window to 
change the symbol value. For symbols associated with more than one resource or 
object, make the changes directly in RESOURCE.H using a text editor. 

~ To change a symbol value using the Properties window (applies only to 
symbols assigned to a single resource or object): 

1. Select the resource and move to the appropriate property page (usually the 
General property page), or type CTRL+Q to move directly to the property page 
ID box. 

-Or-

Open the Symbol Browser (page 34), select the symbol you want to change, 
and choose Change. When the Change Symbol dialog box appears, choose 
View Use. 

This moves you to the property page of the resource where the symbol is used. 

2. In the property page ID box, type the symbol name followed by an equals sign 
and an integer. For example, 

IDC_EDITNAME=5100 

3. Press ENTER to accept the change. 

The new value is stored in the symbol header file the next time you save. Only 
the symbol name remains visible in the ID box; the equals sign and value are not 
displayed after they are validated. 

~ To change the numeric value of a symbol assigned to more than one resource 
or object: 

1. End your App Studio editing session by closing the current resource file or 
exiting App Studio. 

2. Load RESOURCE.H into Visual Workbench and make the necessary changes. 

3. Save RESOURCE.H. 

The next time you open the project's .RC file in App Studio, App Studio uses the 
new symbol values. 



34 App Studio User's Guide 

Note While editing RESOURCE.H, take special care not to define duplicate 
symbols. App Studio can only detect duplicate symbols if they are created from 
within App Studio. 

You can use the Symbol Browser to change the value of symbols not currently 
assigned to a resource. See "Changing Unassigned Symbols." 

Managing Symbols with the Symbol Browser 
As your application grows in size and sophistication, so do the number of resources 
and symbols that must be created. Large numbers of symbols scattered throughout 
several files can be difficult to keep track of. The Symbol Browser (Figure 2.3) 
simplifies symbol management by offering a central tool through which you can: 

• Quickly browse existing symbol definitions to see the value of each symbol, a 
list of symbols being used, and the resources assigned to each symbol. 

• Create new symbols. 

• Change the name and value of a symbol that is not in use. 

• Delete a symbol if it is not being used. 

• With the View Use command, move quickly to the appropriate App Studio 
resource editor where the symbol is being used. 

N,!!me 

IDC_PASSWORD 
IDC_RADlOl 
IDC_RADI02 
IDC_RADI03 
IDD_ABOUTBOX 
IDD_DIALOGl 
IDD_DIALOG8 
IDD_PASSWORD 

!J.sed by: 

MenulDR ENTRYTYPE 
Icon IDR-"E:NTRYTYPE 

Symbol Browser 

Value In Use 

1000 .,; + 
101 .,; 
102 .,; 
103 .,; 
100 .,; 
101 .,; 
105 .,; 
103 .,; 

o Show Read Onl" S"mbols 

Figure 2.3 Symbol Browser 

Close 

Help 

New ... 

I Change ... I 

I View Use I 

~ To access the Symbol Browser dialog box: 

110= I • On the App Studio toolbar, click the Symbol Browser button. 

-Or-

• From the Edit menu, choose Symbols (CTRL+I). 



Chapter 2 Working With Files and Symbols 35 

Creating New Symbols 
When you are beginning a new project, you may find it convenient to map out the 

. symbol names you need before creating the resources they will be assigned to. 

~ To create a new symbol using the Symbol Browser: 

1. In the Symbol Browser dialog box, choose New. 

The New Symbol dialog box appears. 

2. In the Name box, type a symbol name. 

3. Accept the symbol value assigned by App Studio or, in the Value box, type a 
new value. 

4. Choose OK or press ENTER to place the new symbol into the symbol list. The 
symbol appears in alphabetical order. 

If you enter a symbol name that already exists, a message box appears stating that a 
symbol with that name is already defined. You cannot define two or more symbols 
with the same name, but you can define different symbols with the same numeric 
value. 

See the "Symbol Name Restrictions" and "Symbol Value Restrictions" sections at 
the end of this chapter for additional information on symbol names and values. 

Changing Unassigned Symbols 
While in the Symbol Browser, you can edit or delete existing symbols that are not 
already assigned to a resource or object. You can change existing symbols that are 
in use in only one place by using the Change command to move to the appropriate 
resource's property page or by moving to the property page directly. You cannot 
change read-only symbols. A check mark in the In Use column of the Symbol 
Browser indicates that the symbol is being used. If Show Read Only Symbols is 
selected, read-only symbols are also displayed. Editable symbols are displayed as 
bold text, and read-only symbols are displayed as normal text. 

To change the name or value of a symbol already in use, see page 32. 

~ To change an unassigned symbol using the Symbol Browser: 

1. Select the unassigned symbol you want and choose Change. 

The Change Symbol dialog box appears. 

2. Edit the symbol's name or value in the boxes provided, then press ENTER to 
accept the change. 



36 App Studio User's Guide 

~ To delete an unassigned symbol using the Symbol Browser: 

• Select the unassigned symbol that you want to delete, and choose Delete (DEL). 

Note Before deleting an unused symbol in a resource file, make sure it is not used 
elsewhere in the program or by resource files included at compile time. 

Opening the Resource Editor for a Given Symbol 
When you are browsing symbols in the Symbol Editor, you may want more infor­
mation on how a particular symbol is used. The View Use command provides a 
quick way to get this information. 

~ To move to the resource editor where a symbol is being used: 

1. In the Name box of the Symbol Browser, select the symbol you want. 

2. In the Used by box, select the resource type that interests you. 

3. Choose View Use. 

The editor for the resource you selected appears. 

Symbol Name and Value Restrictions 
There are several restrictions to be aware of when you use symbol names and 
values. 

Symbol Name Restrictions 
All symbol names must be unique within the scope of the application. This prevents 
conflicting symbol definitions in the header files. Legal characters for a symbol 
name include A - Z, a - z, 0 - 9, and the underscore (_). Symbol names cannot begin 
with a number and are limited to 247 characters. Symbol names are case 
insensitive, but the case of the first symbol definition is preserved. 

Symbol names can be used more than once in your application. For example, if you 
are writing a data-entry program with several dialogs containing an edit box for a 
person's Social Security number, you may want to give all the related edit boxes a 
symbol name of IDC_SSN. To do this, you can define a single symbol and use it as 
many times as needed. 

While it is not required, symbol names are often given descriptive prefixes which 
indicate the kind of resource or object they represent. The Microsoft Foundation 
Class Library uses the following symbol naming conventions: 



Category 

Resources 

Menu items and commands 

Controls and child windows 

Strings 

Chapter 2 

Prefix 

IDR -

IDD -
IDC -
IDI -
IDB -
IDM -
ID -
IDC -
IDS -
IDP_ 

Working With Files and Symbols 

Use 

Accelerator or menu (and associated 
resources) 

Dialog 

Cursor 

Icon 

Bitmap 

Menu item 

Command 

Control 

String in the string table 

String-table string used for message 
boxes 

For more information on framework naming conventions, see Technical Note 20, 
which can be found in MSVC\HELP\MFCNOTES.HLP. 

Symbol Value Restrictions 
In App Studio, a symbol value can be any integer expressed in the normal manner 
for #defi ne preprocessor directives. Here are some examples of symbol values: 

18 
4001 
0x0012 
-3456 

37 

Symbol values for resources can be decimal numbers in the range from ° to 32767. 
Symbol values for parts of objects (such as dialog box controls or individual strings 
in the string table) can be from ° to 65534 or from -32768 to 32767. 

Note Some number ranges are used by App Studio and the Microsoft Foundation 
Class Library for special purposes. For more information see Technical Note 20, 
which can be found in MSVC\HELP\MFCNOTES.HLP. 

In App Studio, you cannot define a symbol value using other symbol strings. For 
example, the following symbol definition is not supported: 

#define IDC_MYEDIT IDC_OTHEREDIT //not supported 



38 App Studio User's Guide 

You also cannot use preprocessor macros with arguments as value defmitions. For 
example, 

#define 100_ABOUT 10(7) //not supported 

is not a valid expression in App Studio regardless of what I D evaluates to at 
compile time. 

If you have an existing file containing symbols defmed with expressions, see page 
29 for instructions on how to include the symbols as read-only symbols. 



CHAPTER 3 

Using the Dialog Editor 

The App Studio dialog editor allows you to: 

• Create a new dialog-box template. 

• Place and arrange controls in a dialog-box template. 

• Use custom controls. 

• Test dialog boxes. 

You can define message handlers and manage data gathering and validation using 
the Visual C++ ClassWizard. 

39 

You can also use the App Studio dialog editor to create and edit templates used 
with form views and dialog bars. A form view is a template for a program window 
whose client area contains dialog-box controls. See page 59 for more information. 

Types of Controls 
The dialog editor lets you create dialog boxes that include the following standard 
control types (Figure 3.1): 

pushbutton 

radio button 

checkbox 

list box 

combo box 

group box 

static graphic 

edit box 

static text 

scroll bar 

user-defined control 

App Studio also comes with the Grid VBX control already installed. 



40 App Studio User's Guide 

.... 

Pointer ~ Static graphic 

Static text A Edit Box 

Group box 0 0 Pushbutton 

Check box [2J @ Radio button 

Combo Box §1 
-~ ~ -~ List Box 

Horizontal scroll bar ~ Vertical scroll bar 

User-defined control f} Grid (VBX control) 

Figure 3.1 App Studio Controls 

The dialog editor and Microsoft Foundation classes support VBX controls­
custom controls created in a format compatible with both Microsoft Visual Basic™ 
and Visual c++. You can add VBX controls to the App Studio control palette, then 
incorporate them into your dialog boxes in the same way as standard controls. For 
more information, see page 55. 

Creating Dialog Boxes 
This section contains procedures for: 

• Creating a new dialog-box template. 

• Adding controls. 

• Working with more than one control. 

• Moving, deleting, and copying controls. 

• Resizing controls. 

• Modifying the tab order of controls in a dialog box. 

• Defining dialog-box keyboard shortcuts. 

Opening New or Existing Dialog Boxes 
~ To create a new dialog-box template: 

I~I • On the App Studio toolbar, click the New Dialog Box button. 

-Or-

• In the resource browser window, click New, or from the Resource menu, choose 
New (CTRL+R). Then select Dialog from the list of choices and click OK or 
press ENTER. 



Chapter 3 Using the Dialog Editor 41 

The dialog editor window appears (Figure 3.2). Press ENTER to move to the 
property page and type a name for the new dialog box. You can use the Properties 
window at any time to change the dialog box's properties. 

When the dialog box is created, App Studio assigns it a unique symbol name and 
value. If you need to change the symbol value, you can use the ID box on the 
General property page. Type the symbol name followed by an equals sign and a 
new value. For example, 

IDD_DIALOGl=1001 

For more information on the property page items, see the "Property Page 
Reference," Chapter 11, or choose the Property page Help button . 

.. 
~ ~ 

A ~ 

0 0 

I2J @ 

§m -. ~ 
~ [i] 
f} 

1pb;====~lD: IIDD_DIALOG1 

Font Name: MS Sans Serif 
M.enu: 1-1 _____ --' 

l.!:::=========j Font Size: 8 

F,!!.nL. I ~ Pos: [0' y Pos: [0' 

Figure 3.2 New Dialog Box 

~ To edit an existing dialog box: 

1. Move to the resource browser window. 

2. In the Type box, select Dialog. 

A list of the dialog resources in the current file appears in the Resources box. 



42 App Studio User's Guide 

3. In the Resources box, select the name or identifier of the dialog box you want to 
edit. 

4. Choose Open. 

Or select the resource and press ENTER. 

Or double-click the resource. 

Or from the Resource menu, choose Open. 

The dialog editor window appears. 

Dialog Box Coordinates 
The location, height, and width of the current control is displayed in the lower-right 
comer of the App Studio status bar (Figure 3.3). When more than one control is 
selected, the position indicators show the position of the dominant control (the 
control with solid sizing handles). When the dialog box is selected, the status bar 
displays the position of the dialog box and its height and width. 

/ 

Position of selected object relative to 
upper-left corner of containing window 

/ Height and width of object 

I"":"lt--.::l-1-9,-21-II"1"II~1~~:1 -35....:x~1 0--'1 

Figure 3.3 Dialog Editor Position Indicators 

The location and size of a dialog box, as well as the location and size of controls 
within it, are measured in dialog box units (DLUs). A DLU is based on the size of 
the dialog-box font, nonnally 8-point MS Sans Serif. A horizontal DLU is the aver­
age width of the dialog-box font divided by four. A vertical DLU is the average 
height of the font divided by eight. 

Adding Controls 
You add controls to a dialog box by selecting the control you want from the control 
palette. When displayed, the palette stays positioned above other open windows on 
your desktop. 



Chapter 3 Using the Dialog Editor 43 

~ To show or hide the control palette: 

• Press F2 to display or hide the control palette. 

-Or-

• From the Window menu, choose Show Control Palette or Hide Control Palette. 

The fastest way to add controls to a dialog box, reposition existing controls, or 
move controls from one dialog box to another, is to use the drag and drop method 
described in Chapter 1 (page 8). When you add a control to a dialog box with drag 
and drop, the control is given a standard height appropriate to that type of control. 

You can also add a new control by clicking the control-palette button for the control 
you want and: 

• "Drawing" the control in the dialog box. This is a good method when you want 
to specify the initial size of the object. 

• Clicking in the dialog box at the location you want. This is an alternative 
method to dragging and dropping. 

When you add a control to a dialog box or reposition it, its final placement may be 
determined by whether or not you have Snap to Grid turned on. For information 
about Snap to Grid and other placement and alignment tools, see the section on 
Arranging Controls beginning on page 51. 

~ To add a control to a dialog box using drag and drop: 

1. Drag a control from the control palette to the dialog editor window (Figure 3.4). 

As you drag the control into the dialog box, a dotted outline of the control 
indicates its position. 

2. When the dotted outline of the control is in the position you want, release the 
mouse button. The control is given a standard size appropriate to that type of 
control. 

~ To add controls to a dialog box using point and click: 

1. On the control palette, click the button for the control you want. 

Or to add multiple controls of the same type, hold down the CTRL key, and click 
the control you want. 

2. Move the mouse pointer to the dialog box and click at the position(s) you want. 
The control is given a standard size appropriate to that type of control. 

3. Press ESC when you are finished placing controls. 



44 App Studio User's Guide 

1. Click here and drag. 

App Studio - APPl 
File Edit Resource Layout Window Help 

'" I APPl (Resource Script) l ... l .... 
~Ty~pe~: ________ ~ ~Re~s~ou~lc~es~: __________ ~(l~lo~la~l) 

~Dialog I 1~IDD_DIALOG1 I 
'" I 100 DIALOGl (Dialog) .l ... l .... 
00 I!;Ji}·;nu 'liGIGfill WTjItJBlI.H.l:::d ~:::~I T EWJ [] 

Dialog 

Drag and drop, or click and draw to create a new Radio Button t:: 10220 Ill:::: 35x1 0 

3. Release mouse 
button to place control. 

2. Cursor changes shape to 
show what you are dragging. 

Figure 3.4 Dragging a Control from the Control Palette 

~ To add a control by "drawing" it with the pointing device: 

1. On the control palette, click the control you want. 

Or to add multiple controls of the same type, hold down the CTRL key, and click 
the control you want. 

2. Place the pointer where you want the upper-left comer of the control to be 
located. 

3. Hold down the left mouse button. 

4. Move the pointer to the right and down; a dotted outline of the control appears. 

5. When the control is the size you want, release the mouse button. 

6. Press ESC when you are finished placing controls. 

When you have added a control to the dialog box, you can change its caption or any 
other of its properties in the Properties window. 



Chapter 3 Using the Dialog Editor 45 

Selecting Controls 
To move, copy, delete, or align controls, you select them and then perform the 
operation you want. In most cases, you need to select more than one control to use 
the sizing and alignment tools on the dialog-editor toolbar. 

When a control is selected, it has a shaded border around it with solid (active) or 
hollow (inactive) "sizing handles," small squares that appear in the selection 
border. 

When you are sizing or aligning multiple controls, App Studio uses the "dominant 
control" to determine how the other controls are sized or aligned. When multiple 
controls are selected, the dominant control has solid sizing handles; all the other 
selected controls have hollow sizing handles. You can set the dominant control by 
holding down the CTRL key while clicking that control. 

~ To select a control: 

• Point to the control you want and click. The currently selected object (control or 
dialog box) is deselected. 

-Or-

• U se TAB to move forward or SHIFf + TAB to move backward through the controls 
in the dialog box. 

~ To select more than one control: 

1. From the control palette, select the pointer tool. 

2. Hold down the left mouse button and drag to draw a selection box around the 
controls you want to select (Figure 3.5). Controls partially outside the selection 
box are not selected. 

When you release the mouse button, all controls inside the selection box are 
selected . 

..................................... ! 

DCheck1 

DCheck2 

DCheck3 
L_ .. _._ .... _._ .... _._ .. _ . .:~ 

1. Drag the mouse pointer down 
and right, drawing a box around 
the controls you want to select. 

2. Release the mouse button 
and the controls are selected. 

Figure 3.5 Selecting Multiple Controls 



46 App Studio User's Guide 

Once you have selected one or more controls, you can remove or add individual 
controls without disturbing the selection as a whole. 

~ To remove from or add to an existing selection: 

• Hold down the SHIFf key and click the control you want to remove from or add 
to the existing selection. 

Moving Controls 
You can use the following procedures to move one or more controls from one 
location to another in a dialog box or from one dialog box to another. If Snap to 
Grid is on (see page 51), the control snaps to the alignment grid. For information on 
other ways to align multiple controls, see page 52. 

~ To move a control from one location to another in a dialog box: 

• Drag the control to its new location. 

-Or-

• For a single control, select the control and use the arrow keys to move the 
control one DLU at a time. 

~ To move a control from one dialog box to another: 

• If both dialog boxes are visible, drag the control to its new location. (Hold down 
the CTRL key while dragging if you just want to copy the control.) 

-Or-

• Use the Edit menu's Cut and Paste commands. The control is placed in the same 
position as in the original dialog box. 

Note In rare cases, you may need to place a control outside a dialog box. To do 
this, hold down the AL T key while dragging the control. 

Deleting and Copying Controls 
~ To delete a control: 

1. Select the control. 

2. From the Edit menu, choose Cut (CTRL+X) or Delete (DEL). 

~ To copy a control: 

• Drag the control while holding down the CTRL key. 

-Or-

• Use the Edit menu's Copy (CTRL+C) and Paste (CTRL+V) commands. 



Chapter 3 Using the Dialog Editor 47 

When you paste a control into a new dialog, it is placed in the same position it was 
in the old dialog. 

Sizing Individual Controls 
Use the sizing handles to resize a control. When the mouse cursor is positioned on a 
sizing handle, it changes shape to indicate the direction in which the control will be 
resized (see Figure 3.6). Active sizing handles are solid; if a sizing handle is hol­
low, the control cannot be resized along that axis. For information on sizing 
mUltiple controls, see page 54. 

When you change the size of a control, its final shape may be affected by whether 
or not you have Snap to Grid turned on (see page 51). 

~ To size a control: 

1. Click the control or select it with the TAB key. 

2. Use the sizing handles to change the size of the control: 

• Sizing handles at the top and sides change the horizontal or vertical size. 

• Sizing handles at the comers change both horizontal and vertical size. 

-Or-

Use the SHIFf key plus the arrow keys to resize the control one DLU at a time. 

Figure 3.6 Sizing a Control 

Sizing a Control to Fit Its Caption 
You can automatically change the size of a control so that it is the appropriate size 
for its text caption. 

~ To resize a control to fit its caption: 

1. Select the control. 

2. From the Layout menu, choose Size to Content (F7). 

Sizing Combo Box Drop-downs 
When you select a drop-down or drop-list combo box to size it, only the right and 
left sizing handles are active (Figure 3.7). Use these handles to set the width of the 
combo box as it is initially displayed. 



48 App Studio User's Guide 

You can also set the vertical size of the drop-down portion of the combo box . 

•

. Click here to change 
to drop-down view. 

~·'r=:::::::::="::::",:~::,:,:"I·"I!,~ ~"''''''''''''''''''''''''T'II 
6::::::::::::::::::@:::::::::::::::::::t:1 

12. Use sizing handle to change 
initial size of drop-down box. 

Figure 3.7 Sizing the Drop-down Portion of a Combo Box 

~ To set the size of the combo box drop-down area: 

1. Click the drop-down arrow at the right of the combo box (Figure 3.7). 

The outline of the control changes to show the size of the combo box with the 
drop-down area extended. 

2. Use the bottom sizing handle to change the initial size of the drop-down area. 

3. Click the drop-down arrow again to close the drop-down portion of the combo 
box. 

Changing the Tab Order 
Tab order is the order in which the TAB key moves the input focus from one control 
to the next within a dialog box. Usually the tab order proceeds from left to right in a 
dialog box, and from top to bottom. The Tabstop option on the control's General 
property page (normally set) determines if a control actually receives input focus or 
not. 

Even controls that do not have the Tabstop property set need to be part of the tab 
order. This can be important, for example, when you define mnemonics for controls 
that do not have captions. Static text that contains a mnemonic for a related control 
must immediately precede the related control in the tab order. 

Note If your dialog box contains overlapping controls, changing the tab order may 
change the way the controls are displayed. Controls that come first in the tab order 
are always displayed on top of any overlapping controls that follow them in the tab 
order. 



Chapter 3 Using the Dialog Editor 49 

~ To change the tab order for all controls in a dialog box: 

1. From the Layout menu, choose Set Tab Order (CTRL+D). 

A number at the upper left of each control shows the current tab order. 

2. Set the tab order by clicking each control in the same order you want the TAB 

key to follow (Figure 3.8). 

3. Press ENTER to exit Set Tab Order mode. 

Click each control in turn to 
set the desired tab order. 

Dialog 

"e 
_ber ~,-: ___ ---' 

~hoicel 

I;lI!Ilhoice2 

_hoice3 

_is a list 

D 
Figure 3.8 Setting Tab Order 

To change the existing tab order, you usually need to change the selected control 
first, as explained in the following procedure. The selected control determines the 
number of the control you click next. For example, if you are in Set Tab Order 
mode and control number 1 is selected, the next control you click is set to number 2. 

~ To change the existing tab order: 

1. From the Layout menu, choose Set Tab Order (CTRL+D). 

2. Change the selected control. To do this, hold down the CTRL key and click the 
control prior to the one where you want the changed order to begin. 

For example, if you want to change the order of controls 7 through 9, select 
control 6 first (see Figure 3.9). 

Note To set a specific control to number 1 (first in the tab order), double-click 
the control. 

3. Reset the tab order by clicking the controls in the order you want the TAB key to 
follow. 

4. Press ENTER to exit Set Tab Order mode. 



50 App Studio User's Guide 

1. Hold down the CTRL key 
and click the control prior to 
the one you want to change. 

Dialog 

_bel ,--' --+_---' 

~~:~~:~~:'1"''' 
_hoice2 

_hoice3 

_isalist 

o 
2. Then click the controls you want to change. 

In this example, clicking 8 changes it to 6. 
The next control you click changes to 7 in 
the tab order, and so on. 

Figure 3.9 Changing the Existing Tab Order 

Defining Dialog Box Keyboard Access 
Normally keyboard users move the input focus from one control to another in a 
dialog box with the TAB and arrow keys. However, you can define a mnemonic key 
that allows users to choose a control by pressing a single key. 

Note All the mnemonics within a dialog box should be unique. 

~ To define a mnemonic key for a control with its own visible caption 
(pushbuttons, check boxes, and radio buttons): 

1. Select the control and move to the General property page. 

2. In the Caption box, type an ampersand (&) in front of the letter you want as the 
mnemonic for that control. 

An underline appears in the displayed caption to indicate the mnemonic key. 

~ To define a mnemonic for a control without a visible caption: 

1. Make a caption for the control by using a static text control. In the static text 
caption, type an ampersand (&) in front of the letter you want as the mnemonic. 

2. Make sure the static text control immediately precedes the control it labels in the 
tab order. 



Chapter 3 Using the Dialog Editor 51 

Arranging Controls 
App Studio provides layout tools that align and size controls automatically. For 
most tasks, you can use the dialog-editor toolbar (Figure 3.10). All commands are 
also available on the Layout menu and most have keyboard equivalents (see 
Chapter 10). 

Test Mode L 
Center horizontally or vertically 

L Make the same size 

/ " 

~ Ali:n left, right, ~ Space evenly 
top, or bottom 

Figure 3.10 Dialog Editor Toolbar 

Toggle snap 
to grid 

Many layout commands are available only when more than one control is selected. 
For information on selecting more than one control, see page 45. 

The Dominant Control 
When you are resizing or aligning multiple controls, App Studio uses the dominant 
control to determine how the other controls are sized or aligned. When multiple 
controls are selected, the dominant control has solid sizing handles; all the other 
selected controls have hollow sizing handles. 

~ To change the dominant control when more than one control is selected: 

• Hold down the CTRL key and click the control you want to influence the size or 
location of the others. 

The sizing handles change from hollow to solid. All further resizing or 
alignment is based on this control. 

Using Snap to Grid 
When you are placing or arranging controls in a dialog box, you can use the layout 
grid for more precise positioning. When the grid is turned on, controls appear to 
"snap to" the dotted lines of the grid as if magnetized. You can tum this "snap to 
grid" feature on and off and change the size of the layout grid cells. 

~ To turn Snap to Grid on and off for the currently active dialog editor 
window: 

[j] • On the dialog-editor toolbar, click Snap to Grid (CTRL+G). 



52 App Studio User's Guide 

~ To turn Snap to Grid on or off for all dialog editor windows: 

1. On the Layout menu, choose Grid Settings. The Grid Settings dialog box 
appears. 

2. Tum the Snap to Grid check box on or off. 

You can still control Snap to Grid in individual dialog editor windows using the 
Snap to Grid button on the dialog-editor toolbar. 

~ To change the size of the layout grid: 

1. On the Layout menu, choose Grid Settings. The Grid Settings dialog box 
appears. 

2. Enter the height and width in DLUs for the cells in the grid. The minimum 
height or width is 4 DLUs. For more information on DLUs, see page 42. 

Aligning Controls 
Once controls are in place, App Studio offers a variety of ways to regularize their 
position. You can: 

• Align a group of controls along their left, right, top, or bottom edges. 

• Align a group of controls on their center, either horizontally or vertically. 

• Even the spacing between a group of three or more controls. 

• Center one or more controls in the dialog box, vertically or horizontally. 

• Automatically give pushbuttons a standard position along the bottom or on the 
right of the dialog box. 

Aligning 
~ To align controls: 

1. Select the controls you want to align. 

2. Make sure the correct dominant control is selected (see page 45). The final 
position of the group of controls depends on the position of the dominant control. 

3. Choose one of the following tools on the toolbar: 

• Align Left-aligns the selected controls along their left side (CTRL+LEFT 

ARROW). 

• Align Right-aligns the selected controls along their right side (CTRL+RIGHT 

ARROW). 

• Align Top-aligns the selected controls along their top edges (CTRL+UP 

ARROW). 

• Align Bottom-aligns the selected controls along their bottom edges 
(CTRL+DOWN ARROW). 



Chapter 3 Using the Dialog Editor 53 

~ To align controls on their center, vertically or horizontally: 

1. Select the controls you want to center. 

2. Make sure the correct dominant control is selected (see page 45). The final 
position of the group of controls depends on the position of the dominant control. 

3. From the Layout menu, choose Align Vert. Center (F9) or Align Horiz. Center 
(SHIFf+F9). 

Making Spacing Even 
~ To even the spacing between controls: 

1. Select the controls you want to rearrange. 

2. Choose one of the following tools on the toolbar: 

Iwl • Space Evenly Across (ALT+LEFf ARROW or ALT+RIGHT ARROW) 

Controls are spaced evenly between the leftmost and the rightmost control 
selected. 

I X I · Space Evenly Down (ALT+UPARROW or ALT+DOWN ARROW) 

Controls are spaced evenly between the topmost and the bottommost control 
selected (Figure 3.11). 

1 . Select the controls and click the Space 
Evenly Down button on the tool bar. 

2. Intervals between top and 
bottom controls are evened out. 

~I Dialog 

m"""""",!/o\"",,',',','m 
#0 Radiol if 
~D"R:d'i~'2'S 
, .. ''''''''(:''''''''''''''[.' 
c""""",','o,""""""[.' ;0 Radio3¢. 
r.;::::::::::::::(:;:::!:::::!:!:t:'; 

Figure 3.11 Using Space Evenly Down 

Centering in the Dialog Box 
~ To center controls in the dialog box: 

~I 

1. Select the control or controls you want to rearrange. 

2. Choose one of the following tools on the toolbar: 

I~I • Center Vertical (CTRL+F9) 

Controls are centered vertically in the dialog box. 

IE03I • Center Horizontal (SHIFf+CTRL+F9) 

Dialog 

m"""""",!/o\"",,',',','m 
#0 Radiol if 
m"""""",!/o\"",,',',','m 

fD"'R~d~~'~'~ 
(\""""""\".1"""""",~:j 

~::O"'R~d'~~'3T; 
,',>"""""\".1"""""",1.', 

Qq.,~~~:i~~.~ 



54 App Studio User's Guide 

Controls are centered horizontally in the dialog box. 

Arranging Pushbuttons 
~ To arrange push buttons along the right or bottom of the dialog box: 

1. Select one or more pushbuttons. 

2. From the Layout menu, choose Arrange Buttons, then choose Right or Bottom. 

The selected buttons are positioned in a standard arrangement along the bottom 
or right side of the dialog box. If controls other than pushbuttons are selected, 
their position is not affected. 

Resizing Controls 
You can resize a group of controls based on the size of the dominant control. You 
can also resize a control based on the dimensions of its caption text. 

~ To make controls the same width, height, or size: 

1. Select the controls you want to resize. 

2. Make sure the correct dominant control is selected (see page 45). The final size 
of the controls in the group depends on the size of the dominant control. 

3. Choose one of the following tools on the toolbar: 

I§ • Make Same Width (CTRL+MINUS SIGN) 

I]] • Make Same Height (CTRL+BACKSLASH) 

II1!II • Make Same Size (CTRL+EQUAL SIGN) 

Using Custom Controls 
A custom control is a special-format dynamic-link library (DLL) or object file used 
to add additional features and functionality to the user interface of the Windows 
operating system. A custom control can be a variation on an existing Windows 
dialog-box control (for example, a text box suitable for use with Windows for Pen 
Computing) or a totally new category of control. 

App Studio supports VBX controls, which are enhanced custom controls with a 
programming interface supported by both Microsoft Visual Basic and the Microsoft 
Foundation Class Library. You can also use App Studio to place and arrange user­
defined controls-controls created in other formats. The advantage of VBX 
controls over other control formats is that it is much easier to work with the 
appearance and behavior of VBX controls while you are designing the dialog box. 



Chapter 3 Using the Dialog Editor 55 

For information on the VBX controls available from Microsoft and other vendors, 
see the Direct Access for Microsoft C/C++ catalog included with your copy of 
Visual C++. 

User-defined controls are controls written in any other format. This includes the 
format of the custom-control examples in the Windows Software Development Kit 
(SDK) documentation. 

Using vex Controls 
You can add VBX controls to the App Studio control palette with the File menu's 
Install Controls command. Then use VBX controls to create dialog boxes and 
control bars just as you would any of the standard controls. App Studio comes with 
one VBX control already installed: the Grid control. 

When you install VBX controls, information about them is stored in the App Studio 
initialization file APSTUDIO.INI, and the controls are reloaded each time you start 
App Studio. 

Working with VBX controls in App Studio requires a resource script (.RC) file that 
includes Microsoft Foundation Class Library support. For more information on 
programming with VBX controls, see the Class Library User's Guide Chapter 17. 

Note If you are creating an application that uses VBX controls, make sure 
that your application's setup program places the VBX controls in the user's 
\WINDOWS\sYSTEM directory. 

Once a VBX control is installed on the control palette, you can use it like any other 
control. You can: 

• Drag the control from the control palette to a dialog box. 

• View and change all the properties associated with the control. 

• Edit the control's message map and data map with ClassWizard (see Chapter 9). 

• Simulate the control's behavior in App Studio test mode (page 59). 

~ To add a VBX control to the App Studio control palette: 

1. From the File menu, choose Install Controls. The Install Controls dialog box 
appears (see Figure 3.12). 

2. In the Control Filename box, type the name of the custom-control file, or use the 
Drives and Directories boxes to find the file you want. A single . VBX file can 
contain one or more VBX controls. 

3. Choose OK to add the control and to dismiss the dialog box. 

-Or-



56 App Studio User's Guide 

Use the Install command to add multiple VBX files, and then choose Close to 
dismiss the dialog box. 

An icon representing each control installed appears on the App Studio control 
palette. 

1. Select a VBX control to install. 

2. Choose OK to add it to the list of installed 
files, or choose Install to add multiple files. 

d: \win\svstem 

I Install 

I Remove I 
Help 

Iii 

Figure 3.12 Install Controls Dialog Box 

~ To delete a VBX control from the App Studio control palette: 

1. From the File menu, choose Install Controls. The Install Controls dialog box 
appears. 

2. In the Installed Files box, select the name of the control file you want to delete. 

3. Choose Remove, then choose Close. 

Editing VBX Control Properties 
You can edit VBX control properties using the Properties window. Figure 3.13 
shows the General property page, which allows you to set such common control 
properties as captions or identifiers. 

[-l0III1 W]Dialog: Grid Properties I General Iii 
!D: IIDC_GRID1 1m .!;;.aption: L-IG_rid_1 _____ --' 

[3J ~isible D Q.roup 

D Q.isabled D I.abstop 

Figure 3.13 General Property Page for a VBX Control 



Chapter 3 Using the Dialog Editor 57 

The Styles property page (Figure 3.14) gives you access to all the VBX control's 
properties that can be edited as you build the dialog box. 

'" l-{;l1lj 'f?] Dialog: Grid Properties ISt~les 111 
Property Value: 11 -Fixed Single 111 
(About) Enabled FontBold FontStrikethru Height 
BackColor FillSt~le Fontltalic F ontU nderline Highlight 

FixedCols FontName ForeColor left 
Cois FixedRows FontSize Gridlines Rows 
+J. J 1.+ 

Figure 3.14 Styles Property Page for a VBX Control 

~ To edit VBX control properties: 

1. Select the VBX control you want to edit and move to the General or Styles 
property page. 

2. On the General property page, you can modify the properties shown in Figure 
3.13. 

3. On the Styles property page, select a property and use the edit box to change the 
property's value. Depending on the type of property, you may also be able to: 

• Choose from a list of property values. 

-Or-

• Choose the Open Dialog button to the right of the edit box to bring up a 
dialog box for changing the property's value. 

Moving or resizing a VBX control in the dialog editor changes its Top, Left, Right, 
or Bottom properties as appropriate. 

Working with User-Defined Controls 

~ User-defined controls are custom controls that use a programming interface other 
than the VBX format. (The App Studio control palette button for user-defined 
controls is shown at left.) App Studio user-defined controls let you use existing 
custom controls regardless of their format. 

With user-defined controls, App Studio allows you to: 

• Set the location in the dialog box. 

• Enter a caption. 

• Identify the name of the control's Windows class (your application code must 
register the control by this name). 

• Type in a 32-bit hexadecimal value that sets the control's style. 



58 App Studio User's Guide 

The differences between App Studio support for VBX controls and user-defined 
controls are shown in Table 3.1. 

Table 3.1 Comparison of App Studio Support for VBX Controls and User-Defined 
Controls 

VBX Controls 

During the design phase, view the control 
as it will appear at run time. 

Edit style properties by name. 

During test mode, test the control's 
appearance and behavior. 

User-Defined Controls 

During the design phase, view the control 
as a gray square. 

Edit style properties by entering a 
hexadecimal number. 

During test mode, view the control as a 
gray square (run-time behavior not 
simulated). 

Figure 3.15 shows the General property page for the MicroScroll custom-control 
example in the Windows SDK documentation. 

[ ~ I t]Oialog: User Control Properties I General Iii 
10: IIDC_MICROSCROLL 1m I;.aption: I 

:::=======~ [2] iy:~~,:~i:~) 0 .!iroup 

o /2isabled [2] I.abstop 
CI.~ss: I microscroll 

~tl'le: I Ox5001 03eb 

Figure 3.15 General Property Page for a User-Defined Control 

~ To edit user-defined control properties: 

1. Select the control and move to the General property page. 

2. Enter or modify the information as appropriate. 

For more information on user-defined control properties, see the "Property Page 
Reference," Chapter 11, or choose the Property page Help button. 

Connecting to Program Code 
~ App Studio makes it easy to create or update the connections between your user 

interface and the underlying program code. By using the Resource menu's 
ClassWizard command (or clicking the ClassWizard toolbar button), you can: 



Chapter 3 Using the Dialog Editor 59 

• Create a dialog-box class derived from the Microsoft Foundation CDialog class. 

• Define dialog box and control-message handlers (the dialog-box class's 
"message map"). 

• Define class member functions that gather and validate the data entered in the 
dialog box. 

For detailed information on using ClassWizard from within App Studio, see 
Chapter 9. 

Creating a Form View 
You can use App Studio to create a template that is used as a "form view," a 
CView-compatible window that contains dialog-box controls. An application that 
might need a form view is one in which the primary program function is data entry. 
In this case, the program's main view contains nothing but dialog-box controls for 
entering data. 

To construct a form view, you create a dialog box as you normally would but set 
several style properties differently (see the following procedure). You then incorpo­
rate the form view into your program using the Microsoft Foundation Class Library 
CForm View class. You can use the same procedure to create a template for use 
with the CDialogBar class. For more information, see the Class Library 
Reference. 

~ To create a dialog-box template for use with the CForm View or CDialogBar 
class: 

1. Use the dialog editor in the usual way to create a dialog-box template with the 
controls arranged as you want them to appear in the form view. 

2. Move to the Styles property page and set the following properties: 

• In the Style box, select Child from the list of choices. 

• In the Border box, select None from the list of choices. 

• Clear the Visible property. 

3. On the General property page, clear the dialog-box template's caption. 

4. Incorporate the template into your program using the CForm View class. 

Testing a Dialog Box 
You can simulate the run-time behavior of a dialog box from within App Studio 
without compiling your program. This gives you immediate feedback on how the 
layout of controls appears and performs and thus speeds up the user-interface 
design process. 



60 App Studio User's Guide 

When you are in test mode you can: 

• Type in text, select from combo-box lists, tum options on and off, and choose 
commands. 

• Test the tab order. 

• Test the grouping of controls such as radio buttons or check boxes. 

• Test the dialog box's keyboard interface (controls that have mnemonic keys 
defined for them). 

Note Connections to dialog-box code made using ClassWizard are not simulated 
during dialog-box test mode. 

When you test a dialog box, it is usually displayed at a location relative to the main 
App Studio program window. If the dialog box's Absolute Align property is se­
lected, the dialog box is displayed at a position relative to the upper-left comer of 
the screen. 

~ To test a dialog-box: 

[i] 1. On the dialog-editor toolbar, click the Test button, or from the Resource menu 
choose Test (CTRL+T). 

2. To end the test session, take one of the following actions: 

• Press ESC. 

• Close the dialog box using its control-menu box (ALT+F4). 

• Choose a pushbutton with a symbol name of IDOK or IDCANCEL. 



61 

CHAPTER 4 

Using the Menu Editor 

You can create and edit menus in App Studio by working directly with a menu bar 
that closely resembles the one in your finished application. 

In addition, you can use the Visual C++ Class Wizard to hook menu items up to 
code. For more information on Class Wizard, see Chapter 9. 

Figure 4.1 identifies the terms used to describe menu building in the procedures that 
follow. 

Menu items (underlined letter is mnemonic key) 

Drop-down menu 

Accelerator key 

Ctrl+C 
Ctrl+V 

Figure 4.1 Menu Terminology 



62 Part 1 App Studio User's Guide 

Working with Menus and Menu Items 
This section contains procedures for the following menu editing tasks: 

• Creating a new menu resource or editing an existing one. 

• Creating menus and menu items. 

• Selecting menus and menu items. 

• Moving or copying menus and menu items. 

• Viewing the menu resource as a pop-up menu. 

Opening New or Existing Menu Resources 
~ To create a new menu resource: 

I ~I • On the App Studio toolbar, click the New Menu button. 

-Or-

• In the resource browser window, click New, or from the Resource menu, choose 
New (CTRL+R). Then select Menu from the list of choices and click OK or press 
ENTER. 

The menu editor window appears. 

~ To edit an existing menu resource: 

1. Move to the resource browser window. 

2. In the Type box, select Menu. 

A list of the menu resources in the current file appears in the Resources box. 

3. In the Resources box, select the menu resource you want to edit. 

4. Choose Open. 

Or select the resource and press ENTER. 

Or double-click the resource. 

Or from the Resource menu, choose Open. 

The menu editor window appears. 



Chapter 4 Using the Menu Editor 63 

Creating Menus or Menu Items 
~ To create a drop-down menu on the menu bar: 

1. Click the new-item box (an empty rectangle) on the menu bar to select it (see 
Figure 4.2). You can also move to the new-item box with the TAB (move right) 
and SHIFf+TAB (move left) keys or the right and left arrow keys. 

.cascade 
Iile 

New-item boxes 

Arrange Icons 

Figure 4.2 Menu Editor New-Item Boxes 

2. Type the name of the menu. When you start typing, focus automatically shifts to 
the General property page, and the text you type appears both in the Caption box 
and in the menu editor window. 

You can define a mnemonic key that allows the user to select the drop-down 
menu by typing an ALT plus a single letter. Use an ampersand (&) in front of the 
letter that represents the mnemonic character you wish to specify. Make sure all 
the mnemonics on a menu are unique. 

Once you have given the menu a name on the menu bar, the new-item box shifts 
to the right, and another new-item box opens below for adding menu items. 

Note To create a single-item menu on the menu bar, clear the Popup option on 
the General property page. 

~ To create a menu item: 

1. First create a drop-down menu according to the steps outlined in the previous 
procedure. 

2. Select the menu's new-item box. 

-Or-

Select an existing menu item and press INS. The new-item box is inserted before 
the selected item. 



64 Part 1 App Studio User's Guide 

3. Type the name of the menu item. When you start typing, focus automatically 
shifts to the General property page, and the text you type appears in the Caption 
box. 

You can define a mnemonic key that allows the user to select the menu 
command by typing a single letter. Use an ampersand in front of the letter that 
represents the mnemonic character you wish to specify. The mnemonic allows 
the user to select the menu command by typing that letter. 

4. In the ID box, type in the menu item ID, or select an existing command 
identifier. 

5. On the General property page, select the menu item styles that apply. 

For information on what each menu item style means, see Chapter 11, "Property 
Page Reference," or choose the Property page Help button. 

6. In the General property page's Prompt box, type the prompt string you want to 
appear in your application's status bar. This feature is only available with 
Microsoft Foundation Class Library resource script (.RC) files. 

This creates an entry in the string table with the same resource identifier as the 
menu item you created. 

7. Press ENTER to complete the menu item. The new-item box is selected so you 
can create additional menu items. 

~ To create a cascading (hierarchical) menu: 

1. Select the new-item box on the drop-down menu where you want the cascading 
menu to appear. Then type the name of the menu item that, when selected, 
causes the cascading menu to appear. 

-Or-

Select an existing menu item that you want to be the parent item of the 
cascading menu. 

2. On the General property page, select the Popup check box. The menu item is 
marked with the cascading menu symbol (~), and a new-item box appears to the 
right. 

3. Add additional menu items to the cascading menu according to the instructions 
in the previous procedure. 

Selecting Menus or Menu Items 
~ To select a drop-down or cascading menu and display its menu items: 

• Click the menu caption on the menu bar or the parent item of the cascading 
menu. Then click the menu item you want. 

-Or-



Chapter 4 Using the Menu Editor 65 

• Move to the menu caption with the TAB (move right) and SHIFf+TAB (move left) 
keys or the right and left arrow keys. 

~ To select one or more menu items: 

1. Click the drop-down or cascading menu you want. 

Its menu items are displayed. 

2. Click to select a menu item, or hold down the SHIFf key to select multiple menu 
items. Holding down the SHIFf key and clicking an already-selected menu item 
deselects it. 

-Or-

With the mouse pointer outside the menu, hold down the left mouse button and 
draw a selection box around the menu items you want to select. 

Moving and Copying Menus or Menu Items 
U sing the App Studio menu editor you can: 

• Move or copy menus or menu items. 

• Move cascading menus to the menu bar. 

• Make a drop-down menu cascading. 

The simplest way to edit a menu resource is to use the drag and drop method 
described in Chapter 1, page 8. You can also use the Cut, Copy, and Paste 
commands on the App Studio Edit menu. 

Step 1 Step 2 

~~~:h",;~~te:~~r I~E~il_e~f~di_t~~~i=ew~W~in_do_w_ 
!Indo Ctrl+Z

Cut Ctrl+X
~opy Ctrl+C

Insertion guide

Step 3

fdit Window Help L·.·~.· "
!Indo Ctrl+Z

Cut Ctrl+X

Figure 4.3 Example: Moving a Cascading Menu to the Menu Bar

66 Part 1 App Studio User's Guide

~ To move or copy drop-down menus or menu items using drag and drop:

1. Drag (or to copy, hold down the CTRL key and drag) the item you want to:

• A new location in the current menu.

• A different menu. (You can navigate into other menus by dragging the mouse
cursor over them.)

2. Drop the menu item when the insertion guide (see Figure 4.3) shows the position
you want.

~ To move or copy menus or menu items using the App Studio Edit menu:

1. Select one or more menus or menu items.

2. From the Edit menu, choose Cut (to move) or Copy (to copy) the objects. You
can also use the keyboard shortcuts for Cut (CTRL+X or SHIFT+DEL) and Copy
(CTRL+C or SHIFT+INS).

3. If you are moving the items to another menu resource or resource script file,
make that menu editor window active.

4. Select the menu or menu item you want. The moved or copied item is placed
before the item you select.

5. From the Edit menu, choose Paste.

Viewing the Menu Resource as a Drop-down Menu
Normally, when you are working in the menu editor, a menu resource is displayed
as a menu bar with top-level menu items and drop-down menus. However, you may
want to store a single menu as a separate menu resource so you can add it as a drop­
down menu to your application's main menu bar while the program is running. To
see what the separate menu resource looks like as a drop-down menu, use the menu
editor's View as Popup command.

~ To view a menu resource as a drop-down menu:

• From the Resource menu, choose View as Popup (CTRL+U).

To change back to the menu-bar view, choose View as Popup (CTRL+U) again.

ASSOCiating a Menu Item with an Accelerator Key
Many times you want a menu item and a keyboard combination to issue the same
program command. You do this by assigning the same resource identifier to the
menu item and to an entry in your application's accelerator table. You then edit the
menu item's caption to show the name of the accelerator key.

Chapter 4 Using the Menu Editor 67

~ To associate a menu item with an accelerator key:

1. In the menu editor, select the menu item you want and move to the General
property page.

2. In the ID box, give the menu item a descriptive command identifier (for
example, ID _FILE_OPEN).

3. In the Caption box, add the name of the accelerator key to the menu caption:

• Following the menu caption, type the escape sequence for the TAB key (\t),
so that all the menu's accelerator keys are left-aligned.

• Type the name of the modifier key (CTRL, AL T, or SHIFT) followed by a plus
sign and the name, letter, or symbol of the additional key.

For example, if you assign CTRL+O to the File menu's Open command, you
modify the menu's caption so that it looks like this:

Open\tCtrl+O

The menu item in the menu editor is updated to reflect the new caption as you
type it.

4. Create the accelerator-table entry and assign it the same identifier as the menu
item. Use a key combination that you think will be easy to remember.

See Chapter 5 for more information on creating and naming accelerator
resources.

69

CHAPTER 5

Using the Accelerator Table Editor

An accelerator table is a Windows resource that contains a list of accelerator keys
(also known as shortcut keys) and the command identifiers that are associated with
them. A program can have more than one accelerator table.

Normally accelerators are used as keyboard shortcuts for program commands that
are also available on a menu or toolbar. However, you can use the accelerator table
to define key combinations for commands that don't have a user-interface object
associated with them.

You can use Visual C++ Class Wizard to hook accelerator key commands to code.
For more information on Class Wizard, see Chapter 9.

In this chapter, you'll see how to use the accelerator table editor to:

• Add, delete, change, or browse the accelerator key assignments in your project.

• View and change the resource identifier associated with each entry in the
accelerator table. The identifier is used to reference each accelerator table entry
in program code.

• Associate an accelerator key with a menu item.

Opening a New or Existing Accelerator Table
You can call up the accelerator table editor to edit an existing accelerator table or
create a new one.

~ To create a new accelerator table:

liiJ I • On the App Studio toolbar, click the New Accelerator Table button.

-Or-

• In the resource browser window, click New, or from the Resource menu, choose
New (CTRL+R). Then select Accelerator from the list of choices and click OK or
press ENTER.

70 App Studio User's Guide

The accelerator table editor window appears.

Note Windows does not allow the creation of empty accelerator tables. If you
create an accelerator table with no entries, it is deleted automatically when you exit
App Studio.

~ To edit an existing accelerator table:

1. Move to the resource browser window.

2. In the Type box, select Accelerator.

A list of the accelerator tables in the current file appears in the Resources box.

3. In the Resources box, select the accelerator table you want to edit.

4. Choose Open.

Or select the resource and press ENTER.

Or double-click the resource.

Or from the Resource menu, choose Open.

The accelerator table editor window appears.

Editing the Accelerator Table
When you edit an existing accelerator table or create a new one, the accelerator
table editor window appears. Use the accelerator-table window to browse existing
accelerator keys, to delete keys, or to select the new-item box (an empty rectangle)
at the end of the list. Move to the accelerator-table property page to edit or define
values for each accelerator-table entry.

Figure 5.1 shows a portion of the App Studio screen in an arrangement suitable for
working with individual accelerator-table entries.

Chapter 5 Using the Accelerator Table Editor 71

1. In the Type box, select Accelerator.

2. In the Resources box, select an accelerator table to edit.

3. In the Accelerator window, select an entry to modify.

.... App Stlldio - E:\SRC\ACCOUNT\ACCOUNT.RC
file .Edit Resource Windo'# .!::!.elp

g I E:\SRC\ACCOUNT\tI.CCOU T.RC (Resource Script) L ~l &

Type Resour es: (1 total)

:fiJ Accelerator I 11?IDR MAINFRAME I
~ Bitma·.rr=gT= 1==::::!:IO:::!R~M=A=t1 =F=RA=M=E=(A=cc=e=le=ra=to=r=) ===;:±L~=f=&=t1
~Dialo~ ID Key Type
~ Icon r.:::ID~J=::'IL-::-E_-:::P~RI::"':'NT=----+-:C~tr~1 +":':'P------:-V.:::;IR:"':"T:":":'KE::""I..-.!----.
~Menu ID_EDIT_UNDO Ctrl+Z VIRTKE~
;;J;;;String ID_EDIT_CUT '-Ctrl+X VIRTKE~
~ ID_EDIT_COPY' Ctrl+ C VIRTKE~
~ ID_EDIT_PASTE Ctrl+V VIRTKE~

ID_EDIT_UNDO Ait + VK_BACK VIRTKE~

ID_EDIT _CUT Shift + VK_DELETE VIRTKE~

ID_EDIT_COPY' Ctrl + VKJNSERT VIRTKE\
ID_EDIT_PASTE Shift + VKJNSERT VIRTKE\
ID NEXT PANE VKJ6 VIRTKE\
ID=PREV=PANE
ID_CONTEXT _HELP r 1111 !]Accel Table: Accel Properties I General

1D: I I r;1 I~Modiliers I
~ ~ . i,;J [8] ,!;.trl D Ait D Shil!
~ ~ Key: I I [!)

I Next Key Typed I @~irtKey

Ready

Iii

4. Use the General property page to add or change values.

Figure 5.1 Using the Accelerator Table Editor and Properties Window

~ To add an entry to the accelerator table:

1. Select the new-item box at the end of the list, or from the Resource menu,
choose New Accelerator (INs).

2. Move to the General property page to define the key. (Pressing INS, or typing the
key name with the new-item box selected, moves you to the Properties window
automatically.)

Note Make sure all accelerators you define are unique. When duplicate accelerator
keys are assigned, only the first one works correctly.

72 App Studio User's Guide

~ To delete an entry from the accelerator table:

1. Select the entry you want to delete. Use the CTRL or SHIFf keys to select multiple
entries.

2. Choose Delete at the bottom of the accelerator table editor window, or from the
Edit menu, choose Delete (DEL).

~ To move or copy an accelerator-table entry from one resource script file to
another:

1. Open the accelerator table editor windows in both resource script files.

2. Use the drag and drop method described in Chapter 1, page 8.

-Or-

Use the Edit menu's Copy (or Cut) and Paste commands.

Note You can also use the CTRL key with drag and drop, or use the Edit menu, to
copy keys within an accelerator table. However, exercise caution when doing so as
this creates duplicate accelerator keys. App Studio does not prompt you to resolve
accelerator key conflicts.

Editing Accelerator Properties
Use the accelerator table's General property page (Figure 5.2) to edit the values for
each accelerator.

[~l fJAccel Table: Accel Properties I General Iii
10: IIDJILE_NEW II il I.Modifiers I

• . L.;;;,I I [gJ .!;;.trl 0 alt 0 Shif!
Key: IN I iii

I Type I
Next Key Typed I L 0 A.[CII @ !lirtKey

Figure 5.2 General Property Page for Accelerators

An accelerator can be either an ASCII value or virtual key. A virtual key is a
device-independent identifier. The Key box on the General property page contains a
list of standard virtual key identifiers.

~ To define or change the values for an accelerator-table entry:

1. Select the entry you want to define or change.

2. Move to the General property page.

Chapter 5 Using the Accelerator Table Editor 73

3. In the Key box, type the name of the key, or choose from the list of virtual key
identifiers. Select additional options as appropriate under Modifiers (CTRL, ALT,

or SHIFT) and Type (ASCII or VirtKey [virtual key D. When first created, a new
key has the CTRL modifier selected.

-Or-

Choose Next Key Typed and then type the key or key combination you want to
enter. The Key box and the options under Modifiers and Type are updated
automatically.

Note Accelerator values entered using the Next Key Typed command are
always entered as virtual keys, if possible.

Typing in Accelerator Values
The following are legal entries in the Key box of an accelerator table's General
property page:

• An integer between 0 and 255 in decimal, hexadecimal, or octal format. The
setting of the Type property determines if the number is an ASCII or virtual key
value.

Single-digit numbers are always interpreted as the corresponding key, rather
than as ASCII values. To enter an ASCII value from 0 to 9, precede it with two
zeros (for example, 006).

• A single keyboard character. Uppercase A-Z or the numbers 0 through 9 can be
either ASCII or virtual key values; any other character is ASCII only.

• A single keyboard character in the range A-Z (uppercase only), preceded by a
caret (1\) - for example, A C. This enters the ASCII value of the key when it is
pressed with the CTRL key held down.

Note When entering an ASCII value, the CTRL and SHIFT modifiers on the
General property page are not available. You cannot use a control-key
combination entered with a caret to create a virtual accelerator key.

• Any valid virtual key identifier. The Key box on the General property page
contains a list of standard virtual key identifiers.

Associating a Menu Item with an Accelerator Key
Many times you want a menu item and a keyboard combination to issue the same
program command. You do this by assigning the same resource identifier to the
menu item and to an entry in your application's accelerator table. You then edit the
menu item's caption to show the name of the accelerator.

74 App Studio User's Guide

~ To associate a menu item with an accelerator key:

1. In the menu editor (see Chapter 4), select the menu item you want and move to
the General property page.

2. In the ID box, give the menu item a descriptive command identifier (for
example,ID_FILE_OPEN).

3. In the Caption box, add the name of the accelerator key to the menu caption:

• Following the menu caption, type the escape sequence for the TAB key (\t),
so that all the menu's accelerator keys are left -aligned.

• Type the name of the modifier key (CTRL, ALT, or SHIFf) followed by a plus
sign and the name, letter, or symbol of the additional key.

For example, if you assign CTRL+O to the File menu's Open command, you
modify the menu's caption so that it looks like this:

Open\tCtrl+O

The menu item in the menu editor is updated to reflect the new caption as you
type it.

4. Create the accelerator-table entry and assign it the same identifier as the menu
item. Use a key combination that you think will be easy to remember.

CHAPTER 6

Using the String Editor

The App Studio string editor is a window and its associated property page that
allow you to edit or add to a program's standard Windows string table resource.

In this chapter, you'll see how to use the string editor to:

• Create a new string table.

• View the string segments in a program.

• Add or delete individual strings, or move them from one segment to another.

• Change a string, or its name or value.

String Tables
In programming for Windows, strings can be stored in a resource type called a
string table. An application can have only one string table.

In a string table, strings are grouped into segments, or blocks, of 16 strings each.
The segment a string belongs to is determined by the value of its identifier; for
example, strings with identifiers of 0 to 15 are in one segment, strings with values
of 16 to 31 are in a second segment, and so on. Thus, to move a string from one
segment to another you need to change its identifier.

75

Individual string segments are loaded on demand in order to conserve memory. For
this reason, programmers usually try to group strings into logical groupings of
sixteen or less and then to use each group or segment only when it's needed.

Opening a New or Existing String Table
You use App Studio to create your application's string table or use the string editor
to edit an existing one.

76 App Studio User's Guide

~ To create a new string table:

18iie1 • On the App Studio toolbar, click the String Table button.

-Or-

• In the resource browser window, click New, or from the Resource menu, choose
New (CTRL+R). Then select String from the list of choices and click OK or press
ENTER.

The string editor window appears.

Note Windows does not allow the creation of empty string tables. If you create a
string table with no entries, it is deleted automatically when you exit App Studio.

Once you create your application's string table, you can use the App Studio
resource browser window to view a list of string segments in the string table and to
jump to the beginning of a selected segment. Figure 6.1 shows this process.

1. In the Type box, select Stri,ng Table.

12. In the Resources box, select a string segment to edit.

'II I I
. • • I~

~ile Edit Resource Window Help

ClI~11iiiI I!:*:!II~ ~1~U!lU~I~IB 11D=1h'1 ~
"I E:\SRC\ACCOUNT ~CCOUNT.RC (Resource Script) L'" J .. ,.

Tvpe: Resources: (12 total)

iJ Accelerator I ~"'Sh'" 5,,,",,,0 ~ ~Bitmap abc S bing Segment: 57344

~Dialog abc Stung Segment: 57600
!"'!Icon .. I ,I· ... 1·
iMenu ID Value Caption
Ii'iiCString IDR_MAINFRAME 2 Account Windows Application ~

~
IDR ACCOUNTYPE 3 \nAccoun\nACCOUN Docume
AFXJDS_APP _TITLE 57344 Account Windows Application
AFXJDSJDLEMESSAGE 57345 For Help, press F1
AFX IDS HELPMODEMESSA 57346 Select an obiect on which to ge

IDJILE_OPEN 57601 Open an existing document
IDJILE_CLOSE 57602 Close the active document
IDJILE_SAVE 57603 Save the active document
ID FILE SAVE AS '"
ID=FILE=PAGE=SETL [~I i] String Editor: String Properties I General I:!I
IDJILE_PRINT _SET

10: II H!1 IDJILE_PRINT JILE_NEW

I !!ew I~ !;.apti "' I c,,,,, • - d=~"t

~ -
Ready

3. In the String Editor window, select the string to modify.

4. Use the General ro ert a e to edit the strin p p y p g g or its 10.

Figure 6.1 Using the String Editor

Chapter 6 Using the String Editor 77

~ To open an existing string table for editing:

1. Move to the resource browser window.

2. In the Type box, select String Table.

A list of the string segments in your application's string table appears.

3. In the Resources box, select the string segment you want to edit.

Selecting a specific segment of the string table allows you to easily jump to a
specific group of strings. However, opening the string editor gives you access to
the entire string table.

4. Choose Open.

Or select the resource and press ENTER.

Or double-click the resource.

Or from the Resource menu, choose Open.

The string editor window appears.

Editing the String Table
The string editor includes a Find command to let you quickly locate strings in the
string table by either their caption or resource identifier.

~ To find a string in the string table:

1. Open the string table by selecting it in the Type box of the resource browser
window and then clicking any of the segments listed in the Resources box.

2. At the bottom of the string editor window, choose Find.

The Find String dialog appears.

3. In the Find What box, type the caption text or resource identifier of the string
you want to find. Set or clear the Match Case option as appropriate.

4. Press ENTER.

If a string or its identifier in the string table matches what you typed, it is
selected.

Once the string editor window is displayed, you can add or delete entries in the
string table. String table segments are separated by a horizontal line in the string
editor window.

78 App Studio User's Guide

~ To add a string-table entry:

1. Select the new-item box (an empty rectangle) at the end of a string segment.

2. Type the new string.

Focus shifts to the Properties window as you start typing, and the string is given
the next identifier in sequence.

-Or-

1. Select an existing entry in the string table.

2. Choose the New command at the bottom of the string editor window, or from the
Resource menu, choose New String (INs).

A new string is created and given the next available identifier after the currently
selected string.

3. Type the new string.

Note Null strings are not allowed in Windows string tables. If you create an entry
in the string table that is a null string, the entry is deleted when you close the string
editor.

~ To delete a string in the string editor:

1. Select the string you want to delete.

2. Choose Delete at the bottom of the string editor window, or from the Edit menu,
choose Delete (DEL).

~ To move a string from one segment to another:

1. Select the string you want to move.

2. Move to the General property page. In the ID box, change the string's value so
that it falls in the range you want.

For example, to move a string with a name of I DS_MYSTRI NG and a value of
100 to a segment in the 200 range, type the following in the ID box:

IDS_MYSTRING=201

3. Press ENTER to record the change.

~ To move a string from one resource script (.Re) file to another:

1. Open the string editor windows in both resource script files.

2. Use the drag and drop method described in Chapter 1, page 8.

-Or-

Use the File menu's Cut and Paste commands.

Chapter 6 Using the String Editor 79

Note If the moved string's symbol name or value conflicts with an existing
identifier in the destination file, the symbol name is changed (if a symbol by that
name already exists) or the symbol value is changed (if a symbol with that value
already exists).

Editing a String's Properties
~ To change a string or its identifier:

1. Select the string you want to edit.

2. Move to the string's General property page.

3. In the Caption box, modify the string itself.

In the ID box, modify the string's identifier:

• Type in a new symbol name or choose one from the list.

• Change a string's value by typing the symbol name followed by an equal
sign and the new value; for example

IDS_ERROR_MSG=2350

For more information on editing symbols, see Chapter 2.

~ To add formatting or special characters to a string:

• Use the standard escape sequences shown in Table 6.1.

Table 6.1 Formatting and Special Characters in Strings

To Get This:

New line

Carriage return

Tab

Backslash (\)

ASCII character

Alert (bell)

Type This:

\n (or press CTRL+ENTER when typing in the string)

\r

\t (or press CTRL+ TAB when typing the string)

\\

\ddd (octal notation)

\a

81

CHAPTER 7

Using the Graphics Editor

The App Studio graphics editor has a rich set of tools for drawing bitmaps, icons
and cursors, as well as features to support the creation of toolbar bitmaps and the
management of icon and cursor images.

With the graphics editor, you can:

• Create and edit bitmaps in 2 or 16 colors, in sizes up to 999 x 999 pixels.

• Use a full complement of drawing tools.

• Easily copy images from one bitmap to another.

• Use custom brushes for special effects.

• Draw cursors and icons with transparent and inverse-color regions.

• Edit bitmaps for toolbar buttons.

Most editing procedures are the same for bitmaps, icons, and cursors. This
chapter first shows the procedures common to all graphical resources. Later
sections detail procedures and graphics-editor capabilities specific to icons,
cursors, and toolbar-button images.

Note Many of the graphics editor's functions require a mouse or other pointing
device.

Windows and Tools for Editing Graphics
You edit bitmaps, icons, and cursors in App Studio's image editor window, using
the tools on the graphics palette (Figure 7.1).

82 App Studio User's Guide

Image editor window Graphics palette

ra
/ / '

" " '

Selection border Sizing handle

Figure 7.1 Image Editor Window and Graphics Palette

The Image Editor Window
The image editor window shows two views of an image. A splitter separates the
two panes. You can drag the splitter from side to side to change the relative sizes
of the panes. The active pane displays a selection border, as shown in Figure 7.1.

The Graphics Palette
The graphics palette has four parts, which are shown in Figure 7.1:

• The toolbox, which contains 15 tools for drawing, painting, erasing, and
manipulating views

• The color indicator, which shows the foreground and background colors and
(for icons and cursors) selectors for "screen" and "inverse" color

• The color palette, which you click to select the foreground and background
colors

• The option selector, which you click to select brush widths and other drawing
options

To use the toolbox, color palette, and option selector, you click the desired tool,
color, or option.

Chapter 7 Using the Graphics Editor 83

The Status Bar
The Status bar, at the bottom of the App Studio frame window, displays two
panes when an image editor window is open. When the mouse cursor is over an
image, the left pane shows the cursor's current position, in pixels, relative to the
upper-left comer of the image. During a dragging operation such as selecting,
moving, or drawing a rectangle, the right pane shows the size, in pixels, of the
affected area.

The Image Menu
The Image menu, which appears only when the graphics editor is active, has
commands for editing images, managing color palettes, and setting image editor
window options.

Editing Graphical Resources
You need to know just a few fundamental editing operations-creating bitmaps,
drawing, copying, and so on-to use the graphics editor. This section describes
these graphics-editing tasks:

• Creating a new bitmap, icon, or cursor, or editing an existing one

• Setting bitmap properties

• Drawing and painting

• Cutting, copying, clearing, and moving selected parts of a bitmap

You can also import existing bitmaps, icons, and cursors and add them to your
project, and you can open files that are not part of a project for "stand-alone"
editing. See Chapter 2, "Working with Files and Symbols," for more information
on importing resources.

Note Most graphics-editor operations are the same for all kinds of graphical
resources. Unless the text states otherwise, the procedures described in this
section can be performed on bitmaps, cursors, or icons.

Opening New or Existing Graphical Resources
New graphical resources are always added to the current resource script,
executable, dynamic-link library, or other file. If more than one file is open,
before you create the bitmap, click the resource browser window of the file to
which you want to add the new bitmap.

84 App Studio User's Guide

~ To create a new graphical resource:

• On the App Studio toolbar, click the button for the resource you want to
create:

I~I • The bitmap button

I ~ I · The cursor button

I II I · The icon button

-Or-

• In resource browser window, click New, or from the Resource menu, choose
New (CTRL+R). Then select Bitmap, Icon, or Cursor from the list of choices
and click OK or press ENTER.

The image editor window appears.

~ To create a new graphical resource for stand-alone editing:

1. From the File menu, choose New (CTRL+N).

2. From the New dialog box, choose Bitmap, Icon, or Cursor.

3. Choose OK.

The image editor window appears.

~ To open an existing graphical resource for stand-alone editing:

1. From the File menu, choose Open (CTRL+O). The Open dialog box appears.

2. Use the Open dialog box to navigate directories and choose a file name.

~ To edit an existing graphical resource:

1. Move to the resource browser window.

2. In the Type box, select Bitmap, Icon, or Cursor.

A list of the resources in the current file appears in the Resources box.

3. In the Resources box, select the bitmap resource you want to edit.

4. Choose Open.

The image editor window appears.

Tip The Properties window displays a thumbnail view of each graphical resource
as you select its entry in the Resources box. To browse through the bitmaps in the
file you are working on, select the first bitmap and then press the DOWN arrow
key until the desired bitmap appears.

Chapter 7 Using the Graphics Editor 85

Setting Properties
You use the Properties window to change most resource properties. Exceptions
are the Width, Height, and Colors properties of icons and cursors, which you
change by editing the App Studio initialization file, APSTUDIO.INI (see "Editing
Device Descriptions," page 102), and the cursor's hotspot (see "Setting a
Cursor's Hotspot," page 104).

~ To change a bitmap's properties:

1. Select the bitmap whose properties you want to change.

2. Activate the General property page by pressing ENTER or clicking the
Properties window.

3. Change any or all of these properties:

• In the ID box, modify the resources's identifier. For a bitmap, App Studio
by default assigns the next available identifier in a series: IDB_BITMAPl,
IDB_BITMAP2, and so forth. Similar names are used for icons and
cursors.

• In the Width and Height boxes, modify the bitmap's width and height (in
pixels). The default value for each is 48.

If you change the dimensions of a bitmap using the General property page,
the image is cropped or "blank" space is added to the right of or below the
existing image.

• In the Colors list box, select Monochrome or 16. If you have already
drawn the bitmap with a 16-color palette, selecting Monochrome causes
App Studio to substitute black and white for the colors in the bitmap.
Contrast is not always maintained: for example, adjacent areas of red and
green are both converted to black.

• In the Filename box, modify the name of the file in which the bitmap is to
be stored. By default, App Studio assigns a base file name created by
removing the first four characters ("IDB_") from the default identifier and
adding the extension .BMP.

• Check the Save Compressed check box to cause App Studio to save the
bitmap in a compressed format.

Drawing and Painting
You access most of the graphics editor's drawing tools either by clicking icons on
the graphics palette or by entering keyboard commands. More advanced drawing
operations, such as creating custom brushes, can be performed only from the
keyboard. App Studio's keyboard commands are listed in Chapter 10.

86 App Studio User's Guide

Showing and Hiding the Graphics Palette
Since many of the drawing tools are available from the keyboard, sometimes it is
useful to hide the graphics palette.

~ To show or hide the graphics palette:

• Press F2.

Selecting Foreground and Background Colors
Except for the eraser, these tools draw with the current foreground or background
color when you press the left or right mouse button, respectively.

~ To select a foreground color:

• With the left mouse button, click the desired color on the color palette.

~ To select a background color:

• With the right mouse button, click the desired color on the color palette.

Freehand Drawing and Erasing
The graphics editor's freehand drawing and erasing tools all work in the same
way: you select the tool and, if necessary, select foreground and background
colors and size and shape options. You then move the cursor to the bitmap and
click or drag to draw and erase.

When you have selected the eraser tool, brush tool, or airbrush tool, the option
selector displays that tool's options.

Tip Instead of using the eraser tool, you may find it more convenient to draw in
the background color with one of the drawing tools.

~ To select and use a drawing tool:

1. Click a button on the toolbox:

• The eraser tool (SHIFT+P), which "paints over" the image with the current
background color when you press the left mouse button and replaces the
current foreground color with the current background color when you
press the right mouse button.

• The pencil tool (p), which draws freehand in a constant width of one pixel.

• The brush tool (D), whose shape and size are determined by the option
selector.

• The airbrush tool (A), which randomly distributes color pixels around the
center of the brush.

Chapter 7 Using the Graphics Editor 87

2. If necessary, select colors and a brush:

• In the color palette, click with the left button to select a foreground color
or with the right button to select a background color.

• In the option selector, click a shape representing the brush you want to use.
Your selection is highlighted.

3. Move the cursor to the place on the bitmap where you want to start drawing or
painting. The brush or cursor appears on the bitmap.

4. Press the left mouse button (for the foreground color) or the right mouse
button (for the background color), and hold it down as you draw.

5. Release the mouse button.

~ To resize the brush tool or eraser tool to a single pixel:

• Press the PERIOD key.

~ To change the size of the brush, airbrush, or eraser:

• Press the PLUS SIGN key to increase the size or the MINUS SIGN key to decrease
it.

-Or-

• Press PERIOD to choose the smallest size.

-Or-

• Choose a brush in the option selector.

Drawing Lines and Closed Figures
App Studio's tools for drawing lines and closed figures all work in the same way:
you put the cursor at one point and drag to another. For lines, these points are the
endpoints. For closed figures, these points are opposite comers of a rectangle
bounding the figure.

Lines are drawn in a width determined by the current brush selection, and framed
figures are drawn in a width determined by the current width selection. Lines and
all figures, both framed and filled, are drawn in the current foreground color if
you press the left mouse button or in the current background color if you press
the right mouse button.

~ To draw a line:

1,1 1. From the toolbox, select the line tool (L).

2. If necessary, select colors: in the color palette, click with the left button to
select a foreground color or with the right button to select a background color.

3. If necessary, select a brush: in the option selector, click a shape representing
the brush you want to use. Your selection is highlighted.

88 App Studio User's Guide

4. Place the cursor at the line's starting point.

5. Drag the cursor to the line's endpoint.

6. Release the mouse button.

~ To draw a closed figure:

1. From the toolbox, select a closed-figure drawing tool:

• The framed-rectangle tool (R), which draws a rectangle framed with the
foreground or background color.

• The filled-rectangle tool (SHIFf+R), which draws a rectangle filled with the
foreground or background color.

• The framed-round-rectangle tool (N), which draws a rectangle with
rounded comers framed with the foreground or background color.

• The filled-round-rectangle tool (SHIFT+N), which draws a rectangle with
rounded comers filled with the foreground or background color.

• The framed-ellipse tool (E), which draws an ellipse framed with the
foreground or background color.

• The filled-ellipse tool (SHIFT+E), which draws an ellipse filled with the
foreground or background color.

2. If necessary, select colors: in the color palette, click with the left button to
select a foreground color or with the right button to select a background color.

3. If necessary, select a line width: in the option selector, click a shape
representing the brush you want to use. A rectangle appears around the option
you have selected.

4. Move the cursor to one comer of the rectangular area in which you want to
draw the figure.

5. Drag to the diagonally opposite comer.

6. Release the mouse button.

Filling Bounded Areas
The graphics editor provides the fill (or "paint-bucket") tool for filling any
enclosed bitmap area with the current drawing color or the current background
color.

~ To use the fill tool:

I ~I 1. From the toolbox, choose the fill tool (F).

2. If necessary, choose drawing colors: in the color palette, click with the left
button to select a foreground color or with the right button to select a
background color.

Chapter 7 Using the Graphics Editor 89

3. Move the fill tool to the area you want to fill.

4. Click the left or right mouse button to fill with the foreground color or the
background color, respectively.

Picking Up Colors
The color-pickup tool makes any color on the bitmap the current foreground
color or background color, depending on whether you press the left or the right
mouse button.

~ To pick up a color:

1.1'1 1. From the toolbox, select the color-pickup tool (COMMA).

The cursor changes to the "eyedropper."

2. Click the bitmap area containing the color you want to pick up:

• Left mouse button for the foreground color

• Right mouse button for the background color

After you pick up a color, the graphics editor reactivates the most recent tool you
used before the color-pickup tool.

~ To cancel the color-pickup tool:

• Choose another tool or press ESC.

Using the Selection Tool
The selection tool defines an area of the bitmap that you can cut, copy, clear,
resize, invert, or move. You can also create a custom brush from the selection
(see "Creating a Custom Brush").

~ To select an area of the bitmap:

1 :~~~~:I 1. In the toolbox, click the selection tool (s).

2. Move the cursor to one comer of the bitmap area that you want to select.
Cross hairs appear when the cursor is over the bitmap, as shown in Figure 7.2.

90 App Studio User's Guide

Cross hairs

Figure 7.2 Cross hairs for Defining the Selection

3. Drag the cursor to the opposite comer of the area you want to select. A
rectangle shows which pixels will be selected. All pixels within the rectangle,
including those "under" the rectangle, are included in the selection.

4. Release the button. The "selection border" -a rectangular frame-encloses
the selected area, as in Figure 7.3. Now any operation you perform will affect
only the pixels within the rectangle.

Selection border

Figure 7.3 Border Enclosing the Selected Area

Chapter 7 Using the Graphics Editor 91

~ To select the entire bitmap:

• Click the bitmap outside the current selection.

-Or-

• Press ESC.

-Or-

• Choose another tool in the toolbox.

Cutting, Copying, Clearing, and Moving
You can perform standard editing operations-cutting, copying, clearing, and
moving-with the selection, whether the selection is the entire bitmap or just a
part of it. Because the graphics editor uses the Windows Clipboard, you can
transfer images between App Studio and other applications for Windows, such as
Microsoft Paintbrush™ and Microsoft Word for Windows.

In addition, you can resize the selection, whether it includes the entire bitmap or
just a part (see "Resizing a Bitmap," page 94).

~ To cut the current selection and copy it to the Clipboard:

• From the Edit menu, choose Cut (CTRL+X).

The original area of the selection is filled with the current background color,
and the selection is now in the Clipboard.

~ To clear the current selection without copying it to the Clipboard:

• From the Edit menu, choose Clear (DEL).

The original area of the selection is filled with the current background color.

~ To paste the Clipboard contents into the bitmap:

1. From the Edit menu, choose Paste (CTRL+V).

The Clipboard contents, surrounded by the selection border, appear in the
upper-left comer of the pane.

2. Position the cursor within the selection border and drag the Clipboard contents
to the desired location on the bitmap.

3. To copy the Clipboard contents into the bitmap at the desired location, click
outside of the selection border or choose a new tool.

92 App Studio User's Guide

~ To move the selection:

1. Position the cursor inside the selection border or anywhere on it except the
sizing handles.

2. Drag the selection to its new location.

The original area of the selection is filled with the current background color.

3. To anchor the selection in the bitmap at its new location, click outside the
selection border or choose a new tool.

~ To copy the selection:

1. Position the cursor inside the selection border or anywhere on it except the
sizing handles.

2. Hold down the CTRL key as you drag the selection to a new location.

The area of the original selection is unchanged.

3. To copy the selection into the bitmap at its current location, click outside the
selection cursor or choose a new tool.

~ To draw with the selection:

1. Position the cursor inside the selection border or anywhere on it except the
sizing handles.

2. Hold down the SHIff key as you drag the selection.

Copies of the selection are left along the dragging path. The more slowly you
drag, the more copies are made.

Choosing Opaque and Transparent Backgrounds
When you move or copy a selection, any pixels in the selection that match the
current background color are by default "transparent": they do not obscure pixels
in the target location. (A custom brush behaves the same way. See "Creating a
Custom Brush.")

~ To toggle the background-color transparency:

• Press O.

-Or-

~.J

BJ

Chapter 7 Using the Graphics Editor 93

• In the option selector, click the appropriate button:

• Opaque background: existing image is obscured by all parts of the
selection.

• Transparent background: existing image shows through parts of the
selection that match the current background color.

You can change the background color while a selection is already in effect to
change which parts of the image are transparent.

Flipping the Selection
~ To flip the selection along the horizontal axis:

• From the Image menu, choose Flip Horizontal (x).

~ To flip the selection along the vertical axis:

• From the Image menu, choose Flip Vertical (Y).

Inverting Colors
So that you can tell how a bitmap will appear with inverted colors, App Studio
provides a convenient way to invert colors in the selected part of the bitmap.

~ To invert colors in the current selection:

• From the Image menu, choose Invert Colors.

Creating a Custom Brush
A custom brush is a rectangular portion of a bitmap that you "pick up" and use
like one of the graphics editor's ready-made brushes. All operations you can
perform on a selection, you can perform on a custom brush as well.

~ To create a custom brush:

1. Select the part of the bitmap that you want to use for a brush (see "Using the
Selection Tool," page 89).

2. Press CTRL+B.

94 App Studio User's Guide

Pixels in a custom brush that match the current background color are normally
"transparent": they do not paint over the existing image. You can change this
behavior so that background-color pixels paint over the existing image.

You can use the custom brush like a "stamp" or a "stencil" to create a variety of
special effects.

~ To draw custom-brush shapes in the background color:

1. Select an opaque or transparent background (see "Choosing Opaque and
Transparent Backgrounds," page 92).

2. Set the background color to the color in which you want to draw.

3. Position the custom brush where you want to draw.

4. Press the right mouse button.

Any opaque regions of the custom brush are drawn in the background color.

~ To double or halve the custom-brush size:

• Press PLUS to double the brush size, or MINUS to halve it.

~ To cancel the custom brush:

• Press ESC or choose another drawing tool.

Resizing a Bitmap
App Studio's behavior in resizing a bitmap depends on whether the selection
includes the entire bitmap or just part of it:

• When the selection includes only a part of the bitmap, App Studio shrinks the
selection by deleting rows or columns of pixels and filling the vacated regions
with the current background color, or it stretches the selection by duplicating
rows or columns of pixels.

• When the selection includes the entire bitmap, App Studio either shrinks and
stretches the bitmap, or crops and extends it.

See Figure 7.4 for illustrations of cropping, extending, shrinking, and stretching.

Chapter 7 Using the Graphics Editor 95

Original bitmap

Cropped Extended

Shrunken Stretched

Figure 7.4 Cropping, Extending, Shrinking, and Stretching a Bitmap

There are two ways to resize the bitmap: the resizing handles and the Properties
window. You drag the sizing handles to change the size of all or part of a bitmap.
Sizing handles that you can drag are solid, like those on the lower right comer
and the midpoints of the right and bottom sides of the bitmaps in Figure 7.4. You
cannot drag handles that are hollow. You can use the Properties window to resize
only the entire bitmap, not a selected part.

~ To crop or extend an entire bitmap:

1. Select the entire bitmap.

If a part of the bitmap is currently selected and you want to select the entire
bitmap, click anywhere on the bitmap outside the current selection border,
press ESC, or choose another drawing tool.

96 App Studio User's Guide

2. Drag a sizing handle until the bitmap is the desired size.

Normally, App Studio crops or enlarges a bitmap when you resize it by moving a
sizing handle. If you hold down the SHIFf key as you move a sizing handle, App
Studio shrinks or stretches the bitmap.

~ To shrink or stretch an entire bitmap:

1. Select the entire bitmap.

If a part of the bitmap is currently selected and you want to select the entire
bitmap, click anywhere on the bitmap outside the current selection border,
press ESC, or choose another drawing tool.

2. Hold down the SHIff key and drag a sizing handle until the bitmap is the
desired size.

~ To shrink or stretch part of a bitmap:

1. Select the part of the bitmap you want to resize (see "Using the Selection
Tool," page 89).

2. Drag one of the sizing handles until the selection is the desired size.

~ To resize an entire bitmap using the Properties window:

1. Click the Properties window to activate it.

2. Type the desired dimensions in the Width and Height boxes.

If you are increasing the size of the bitmap, App Studio extends the bitmap to
the right or downward, or both, and fills the new region with the current
background color. The image is not stretched.

If you are decreasing the size of the bitmap, App Studio crops the bitmap on
the right or bottom edge, or both.

You can use the Width and Height properties only to resize the entire bitmap, not
to resize a partial selection.

Changing the Number of Colors in a Bitmap
When you increase the number of colors in a bitmap, the image does not change
but you can then add more colors.

~ To change the number of colors in a bitmap:

1. Click the Properties window to activate it.

2. Choose the appropriate setting in the Colors combo box.

Chapter 7 Using the Graphics Editor 97

Managing the Graphics-Editor Workspace
By adjusting the graphics-editor workspace to fit your needs and preferences, you
can work more effectively and comfortably. This section describes procedures
for:

• Selecting and sizing image-editor panes

• Changing the magnification of image editor windows

• Displaying and hiding pixel grids

Using Image-Editor Panes
Normally the image editor window displays a bitmap in two panes separated by a
splitter. One view is actual size, and the other is enlarged (the default
enlargement factor is 6). The views in these two panes are updated automatically:
changes you make in one pane are immediately shown in the other. The two
panes make it easy for you to work on an enlarged "picture" of your bitmap, in
which you can distinguish individual pixels and, at the same time, observe the
effect of your work on the actual-size view of the image.

If the bitmap is 200 x 200 pixels or larger, however, only one pane is displayed
initially. Move the splitter to display both panes.

You can use the two panes in other ways. For example, you might enlarge the
smaller pane and use the two panes to show different regions of a large bitmap.

You move the splitter to change the relative sizes of the panes. The splitter can
move all the way to either side if you want to work on only one pane.

Selecting Panes
~ To select an image-editor pane:

• Press TAB or F6, or click anywhere on the pane. The selection border then
shows that the pane is active.

Sizing Image-Editor Panes
~ To size the image-editor panes:

1. Position the cursor on the splitter.

The cursor turns into a two-headed arrow (see Figure 7.5).

2. Drag the splitter to the right or to the left.

98 App Studio User's Guide

Two-headed arrow cursor

Figure 7.5 Moving the Image-Editor Pane Splitter

Zooming In and Out
By default, the graphics editor displays the view in the left pane at actual size and
the view in the right pane at 6 times actual size. There are several ways to change
the magnification factor- the ratio between actual and displayed size-of the
image you are editing and to toggle between an actual-size view and an enlarged
view:

• The Zoom tool lets you select a magnification factor and choose in advance
the portion of the image that appears in the "zoomed" view.

• Zoom In/Out on the Image menu toggles between the enlarged view and the
actual-size view.

• Zoom Under Cursor, available from the keyboard only, centers the part of the
image that is under the mouse cursor in the image-editor pane.

~ To zoom in or out on an image-editor pane:

I QI 1. On the toolbox, click the Zoom tool (z).

2. Position the mouse cursor over the pane you want to zoom in or out.

If you are zooming in on an actual-size view and the magnified view will not
fit in the pane, a tracking rectangle shows the part of the bitmap that will
appear in the magnified view (see Figure 7.6). Position the tracking rectangle
over the area you want to view.

Chapter 7 Using the Graphics Editor 99

3. Click the pane you want to zoom in or out.

If you have used the Zoom Decrease or Zoom Increase command (see
"Changing the Magnification Factor") to change the zoom factor for the active
pane, the current factor is used. Otherwise the default factor of 6 is used.

Tracking rectangle

Figure 7.6 Zooming in on the Actual-Size View

~ To zoom in on the part of the image under the cursor:

1. Position the mouse cursor on the point that you want to have centered in the
zoomed view.

2. Press M.

~ To toggle the magnification factor:

• Press M.

Changing the Magnification Factor
The magnification factor is the ratio between actual size of the bitmap and the
displayed size. The default is 6, and the range is from 1 to 10.

~ To change the magnification factor:

1. Select the image-editor pane whose magnification factor you want to change.

10..1 2. On the toolbox, choose the Zoom tool (z).

100 App Studio User's Guide

The cursor changes to the Zoom tool, and magnification-factor options appear
in the option selector. If the current magnification factor matches an option,
that option is highlighted.

3. Click the desired magnification factor.

-Or-

1. Select the image-editor pane whose magnification factor you want to change.

2. Press> (SHIFT+PERIOD) to increase the magnification factor, or <
(SHIFT+COMMA) to decrease the magnification factor.

Displaying and Hiding the Pixel Grid
For all image-editor panes with a magnification factor of 4 or greater, you can
display a grid that delimits the individual pixels in the image (see "Changing the
Magnification Factor, page 99).

~ To display or hide the pixel grid:

1. From the Image menu, choose Grid Settings.

2. In the Grid Settings dialog box, check the Pixel Grid box to display the grid,
or clear the box to hide the grid.

3. Click OK.

-Or-

• Press G to toggle the grid display.

You can also display a tile grid to simplify editing toolbar graphics (see "Editing
Toolbar Graphics," page 104).

Editing Icons and Cursors
Icons and cursors are like bitmaps, and you edit them in the same ways. But icons
and cursors have attributes that distinguish them from bitmaps. For example, each
icon or cursor resource can contain multiple images for different display devices.
In addition, cursors have a "hotspot" -the location Windows uses to track the
cursor's position.

Creating and Selecting Images
When you create a new icon or cursor, the graphics editor first creates an image
for the VGA. The image is initially filled with the "screen" (transparent) color. If
the image is a cursor, the hotspot is initially the upper-left comer (coordinates
0,0).

Chapter 7 Using the Graphics Editor 101

By default, the graphics editor supports the creation of images for the following
devices:

Device

EGANGA

Monochrome

eGA

Colors

16

2

2

Width

32

32

32

Height

32

32

16

You can create images for other devices if you first create descriptions for those
devices in App Studio's configuration file, APSTUDIO.lNI (see "Editing Device
Descriptions," page 102).

~ To create a new image:

I i:11 1. On the control bar of the image editor window, click the Device Image button
(INS).

The New Cursor Image or New Icon Image dialog box appears (see Figure
7.7). This dialog box lists all devices for which there is not an image in the
current resource.

New Icon Image

~ I OK f--.---.-. II C.ocd

'--_______ --'. I Help

Figure 7.7 New Icon Image Dialog Box

2. Select the device from the dialog box.

3. Click OK.

4. Edit the new image. In many cases, you can copy an image for another device
and paste it into the new image.

When you open an existing icon or cursor, the image most closely matching the
current display device is opened by default.

102 App Studio User's Guide

~ To select a device image:

• On the control bar of the image editor window, select a device image from the
Device list box.

~ To delete a device image:

1. Display the device image you want to delete.

2. From the Resource menu, choose Delete Device Image.

If this is the last image for the icon or cursor, App Studio displays a message
box informing you that the resource will be deleted. Choose OK to delete the
resource or Cancel to not delete the image. You cannot delete the last
remaining image of a resource opened for stand-alone editing.

3. Choose OK to delete the image or Cancel to cancel the operation.

If the image is the last one in the resource, the resource is also deleted from
the resource file.

Editing Device Descriptions
App Studio's initialization file, APSTUDIO.INI, contains information about the
display devices for which App Studio can create icons and cursors. Display
devices are described in the sections of the file labeled [I con De vic e s] and
[Cur so r De vic e s]. Each device description has the form:

DeviceName = ColorCount, Width, Height

The ColorCount entry must be 2 or 16, and the Width and Height must each be
less than or equal to 999.

If APSTUDIO.INI does not contain an [I con Dev ices] section, the following
device descriptions are used by default:

EGA/VGA=16, 32, 32
Monochrome=2, 32, 32
CGA=2, 32, 16

If APSTUD I 0 .INI does not contain a [C u r so r De vic e s] section, the following
device description is used by default:

Monochrome=2, 32, 32

Chapter 7 Using the Graphics Editor 103

~ To add device descriptions to APSTUDIO.INI:

1. Open APSTUDIO.INI using Notepad or another text editor.

2. Create a section label of the form [I con 0 e vic e s] or [C u r S 0 rOe vic e S] , if
the appropriate section label does not already exist.

3. Under the section label, enter device descriptions in the form

DeviceName = ColorCount, Width, Height

4. Close APSTUDIO.INI.

5. Restart App Studio to make the new device descriptions available.

Drawing with Screen and Inverse Colors
Icon and cursor images are rectangular, but many do not appear so because parts
of the image are "transparent": the underlying image on the screen shows through
the icon or cursor. And when you drag an icon, parts of the image may appear in
an inverted color. You create these effects by choosing screen- and inverse-color
options from the color indicator on the graphics palette, as shown in Figure 7.8.

o f i::::!

~~~ 
'....JIG.. 
DOO 

I~~~'-L- Screen color 

ra . . . . 
/ ,.. , 

" " ' 

Inverse color 

Figure 7.S Selectors for Screen Color and Inverse Color 



104 App Studio User's Guide 

~ To create transparent or inverse regions in an icon or cursor: 

1. On the graphics palette, click a selector: 

Q • The screen-color selector 

Q • The inverse-color selector 

2. Apply the screen or inverse color, using the methods described in "Drawing 
and Painting," page 85. 

The screen and inverse "colors" you apply to icons and cursors are really 
attributes. The colors indicate parts of the image possessing those attributes. You 
can change the colors that represent the screen- and inverse-color attributes for 
your convenience in editing. These changes do not affect the appearance of the 
icon or cursor in your application. 

~ To change the colors representing screen color and inverse color: 

1. On the graphics palette, double-click the screen color or inverse color 
indicator. 

The Color dialog box appears. 

2. Choose a new color from the Color dialog box. 

Setting a Cursor's Hotspot 
The hotspot is the point to which Windows refers in tracking the cursor's 
position. By default, the hotspot is set to the upper-left comer (coordinates 0,0). 
The General property page and the image-editor control bar show the hotspot 
coordinates. 

~ To set a cursor's hotspot: 

I ~~ I 1. On the control bar of the image editor window, click the Hotspot button or 
from the Image menu, choose Set Cursor Hotspot. 

2. Click the pixel you want to designate as the cursor's hotspot. 

Editing Toolbar Graphics 
App Studio's graphics editor has special features to simplify creation of tiled 
graphics for toolbar buttons (see the class CToolBar in the Class Library 
Reference). All the button bitmaps for a toolbar are taken from one bitmap, which 
must contain one image for each button. All images must be the same size: the 
default is 16 x 15 pixels. Images must be side by side in the bitmap. Typically the 
order of the images in the bitmap is the order in which they are drawn on the 
screen. 



Chapter 7 Using the Graphics Editor 105 

Each button has one image. The various button states and styles (pressed, up, 
down, disabled, disabled down, and indeterminate) are generated from that one 
image. Although bitmaps can be any color, best results are achieved with images 
in black and shades of gray. Figure 7.9 shows a typical toolbar bitmap. 

Figure 7.9 Typical Toolbar Graphic 

The graphics editor can superimpose a tile grid on the view of a bitmap. The tile 
grid delimits sections of the bitmap in dimensions you specify so that you can 
properly position tiled images within the bitmap. When the tile grid is displayed, 
the graphics editor's behavior changes in ways that simplify resizing a tiled 
bitmap. 

~ To set the tile-grid dimensions: 

1. From the Image menu, choose Grid Settings. 

The Grid Settings dialog box appears (see Figure 7.10). 

Grid Settings 

IZl :e:~~~:iji.:r:@ 
IZl I.ile Grid -------, 

:Width: ~ pixels 

H.!!ighl: ~ pixels 

OK 

Cancel 

Help 

Figure 7.10 Grid Settings Dialog Box 

2. In the Grid Settings dialog box, select the Pixel Grid check box if it is not 
already checked. 

You cannot set the Tile Grid dimensions if the Pixel Grid check box is not 
checked. 

3. Check the Tile Grid check box. 

4. If necessary, edit the Width and Height settings. 

Typically, these settings are the same as the width and height of your button 
bitmaps. 

5. Click OK. 

The image editor window now displays a tile grid, as in Figure 7.11. 



106 App Studio User's Guide 

Figure 7.11 Image Editor Window with a Tile Grid 

~ To toggle the display of the tile grid: 

• Press CTRL+G. 

Tip When the tile grid is displayed, the sizing handles on the selection border 
behave differently from when the tile grid is not displayed (see "Resizing a 
Bitmap," page 94). When you drag the sizing handles, the bitmap is resized in 
increments of the tile dimensions. 

~ To create a new toolbar button: 

1. Display the tile grid. 

2. If necessary, select a background color for the new button. 

3. To resize the bitmap, drag the sizing handle on the right side of the bitmap to 
the right (see Figure 7.12). The bitmap's width is increased by an amount 
equal to the tile grid's Width setting. 

Figure 7.12 Resizing the Toolbar Bitmap 



Chapter 7 Using the Graphics Editor 107 

4. If the new button is to be added at a position other than the right end of the 
bitmap, make room for it: 

• Select the rightmost button images, including the one at the new button's 
position (see Figure 7.13). 

Figure 7.13 Selecting Button Images 

• Drag the selection to the right, using the tile grid to align the images (see 
figure 7.14). 

5. Draw the new button image in the space you have created. 

Figure 7.14 Moving the Selected Button Images 

Managing Colors and Palettes 
The graphics editor's color palette displays 24 of the 48 "ready-made" colors that 
are available. In addition to the ready-made colors, you can create your own 
custom colors. Color-palette selections can be saved to disk and reloaded as 
needed. 



108 App Studio User's Guide 

Creating Color Palettes 
~ To change colors on the color palette: 

1. Double-click the color you want to change, or click the color and then from 
the Image menu, choose Edit Foreground Color. 

The Color dialog box appears (see Figure 7.15). The color you are changing is 
outlined. 

Color 

Itasic Colors: 

.0 •• 0 ••• 
Selected color ' 0 •• 0 .... 

• 0 •••••• •••••••• •••••••• ••••• 0.0 
hustom Colors: 

ODOOOOOD 
00000000 
I 0 efine Custom Colors... I 
I OK II Cancel II Help I 

Figure 7.15 Color Dialog Box 

2. Click the color you want to assign in place of the current color. 

3. Click OK. 

~ To create a custom color: 

1. Double-click on the color you want to change, or from the Image menu, 
choose Edit Foreground Color. 

The Color dialog box appears. 

2. Choose Define Custom Colors. 

The custom-color dialog box then appears (see Figure 7.16). 



.!tasic Colors: 

!;.ustom Colors: 

DDDDDDDD 
DDDDDDDD 

Chapter 7 Using the Graphics Editor 109 

Color 

I .!!..di/'le Cy~tom Cdint'... ColorlSQlid 

I OK II Cancel II !!elp .----A-dd-to-C...=u=sto=m'--C-ol-or-s --==, 

Figure 7.16 Custom-Colors Dialog Box 

3. Click the Custom Colors box in which you want to store the new custom 
color. 

4. Define the color by typing in RGB or HSL values, or by moving the cross 
hairs on the color box. 

5. Set the luminance by moving the slider on the luminance bar. 

6. Many custom colors are dithered. If you want the solid color closest to the 
dithered color, choose the ColorlSolid control. (If you later decide you want 
the dithered color, move the slider or the cross hairs again to restore the 
dithering.) 

7. Choose a disposition for the new color you have created: 

• To add the new color to the Custom Colors control, click Add to Custom 
Colors. 

• To substitute the new custom color for the current palette color, choose 
OK. The color will be available for later use only if you add it to the 
Custom Colors control. 

• To save the custom color for later use without replacing the current palette 
color, add the color to the Custom Colors control. Choose Cancel. 

Custom-color definitions are saved in APSTUDIO.INI and are automatically 
loaded the next time you start App Studio. 



110 App Studio User's Guide 

Saving and Loading Palettes 
Tip Since the graphics editor has no means to restore the default color palette, 
save the default color palette under a name such as STANDARD.PAL or 
DEFAULT.PAL so that you can restore the defaults without having to quit and 
restart App Studio. 

~ To save a custom palette: 

1. From the Image menu, choose Save Palette Colors. 

2. Use the Save Palette Colors dialog box to navigate directories and enter a file 
name. 

~ To load a custom palette: 

1. From the Image menu, choose Get Palette Colors. 

2. Use the Get Palette Colors dialog box to navigate directories and choose a file 
name. 



111 

CHAPTER 8 

Using the Binary Data Editor 

The App Studio binary data editor allows you to edit a resource at the binary level 
in either hexadecimal or ASCII format. 

You should use the binary editor only when you need to view or make minor 
changes to custom resources or resource types not supported by App Studio. 

Caution Editing nondata resources in the binary data editor can corrupt the 
resource. A corrupted resource can cause App Studio and Windows to behave in 
unexpected ways. 

Creating a New Data Resource or Custom Resource 
The binary data editor allows you to browse resources at a binary level and change 
isolated bytes. However, to create custom or data resources, place them in a 
separate file using normal .RC file syntax. Then add the file to your project's 
resource file with the File menu Set Includes command. For more information on 
working with included resource files, see Chapter 2. 

Opening the Binary Data Editor 
~ To select a resource for binary editing: 

1. Move to the resource browser window. 

2. In the Type box, choose the resource type you want to edit. 

3. In the Resources box, select the specific resource you want to edit. 

4. From the Resource menu, choose Edit Binary Data (CTRL+B). 

The binary data window appears (Figure 8.1). 



112 App Studio User's Guide 

Note If you use the resource browser window to open a resource whose format App 
Studio does not recognize (such as a VERSION, RCDATA, or custom resource), 
App Studio automatically opens the resource in the binary data editor. 

Hexadecimal value 

•• I I I •• 

65 66 69 6E 65 64 20 72 
73 74 61 74 65 6D 65 6E esource statemen 

000020 74 20 73 70 65 63 69 66 69 65 73 20 61 20 72 65 t specifies a re 
000030 73 6F 75 72 63 65 20 74 68 61 74 20 63 6F 6E 74 source that cont 
000040 61 69 6E 73 20 61 70 70 6C 69 63 61 74 69 6F 6E ains application 
000050 2D 73 70 65 63 69 66 69 63 20 64 61 74 61 2E 00 -specific data .. .. 

Figure 8.1 Binary Data Editor 

Note If you want to use the binary data editor on a resource already being edited in 
another App Studio editor window, close the other editor window first. 

Editing Data 
~ To edit a resource in the binary data editor: 

1. Select the byte you want to edit. 

The TAB key moves the focus between the hexadecimal and ASCII sections of 
the editor window. PAGE UP and PAGE DOWN move you through the resource one 
screen at a time. You can also move to the top of the resource with CTRL+HOME 

and to the end with CTRL+END. 

2. Type the new value. 



113 

CHAPTER 9 

Using ClassWizard 

Class Wizard is like a programmer's assistant: it makes it easier for you to do 
certain routine tasks such as creating new classes, defining message handlers, and 
gathering data from controls in a dialog box or form view. 

One of Class Wizard's main tasks is to work with Microsoft Foundation Class 
Library "message maps." A message map is a message-dispatch table that 
associates Windows messages with class member functions. This eliminates the 
cumbersome switch statements needed in traditional programming for Windows. 

With Class Wizard, you can: 

• Create new classes derived from any of the main framework base classes that 
handle Windows messages. 

• Browse the Windows messages associated with windows, dialog boxes, 
controls, menu items, and accelerators. 

• Create new message-handling member functions by clicking the messages you 
want to handle. 

• See which messages have message handlers already defined and jump to the 
handler program code. 

• Define member variables that automatically initialize, gather, and validate data 
entered into dialog boxes or form views. 

Important Class Wizard never changes any of your code. It only works with the 
special-format message-map and "data-map" (see page 116) sections of your 
header and implementation files. The Microsoft Foundation Class Library uses this 
information for message handling and dialog data exchange and validation. 

Class Wizard is used with Microsoft Foundation Class Library version 2 projects. 
For information on how to convert other projects (including Microsoft Foundation 
Class Library version 1 projects) for use with Class Wizard, see "Updating Existing 
Code for Use with Class Wizard" at the end of this chapter. 



114 App Studio User's Guide 

The first part of this chapter discusses three processes that can be automated with 
Class Wizard: 

• Adding a new class to your application 

• Mapping messages and commands to functions 

• Working with dialog-box data 

You can also update ClassWizard when you've made minor changes to the source 
code or rebuild the entire ClassWizard (.CLW) file when the changes you've made 
are more extensive. 

While you can do any of these common programming functions without using 
Class Wizard, using Class Wizard together with the framework allows you to 
accomplish these common chores quickly and efficiently. 

The last part of this chapter discusses how to update existing code for use with 
Class Wizard. 

Adding a New Class or Importing an Existing One 
Use ClassWizard to add error-free class declarations to your project for classes that 
contain message-handling functions. 

Note ClassWizard is only for use with user-interface classes that handle messages 
or manage dialog-box controls. To add a new class that does not handle messages, 
create the class directly in the Visual Workbench editor. 

Class Wizard allows you to create classes derived from the Microsoft Foundation 
classes shown in Table 9.1: 

Table 9.1 Types of Classes Created in ClassWizard 

Class 

CDialog 

CDocument 

CFormView 

CFrameWnd 

CMDIChildWnd 

CView 

CScrollView 

CWnd 

Splitter 

Description 

Dialog box 

Class for managing program data 

Window that can contain dialog-box controls 

Main single document interface (SDI) frame window 

Multiple document interface (MDI) child frame window 

Class for displaying program data 

Scrolling window, derived from CView 

Custom window 

MDI child frame window containing a CSplitterWnd 



Chapter 9 Using ClassWizard 115 

For more information on these classes, see the Class Library Reference. 

When you use Class Wizard to create a new class derived from one of the 
framework classes listed above, it automatically places a complete and functional 
class in the header (.R) and implementation (.CPP) files you specify. ClassWizard 
keeps track of the class's message-handling and data-exchange members, and later 
you can use it to update this information. 

Adding a New Class 
~ To add a new class to your project using ClassWizard: 

1. In Visual Workbench: from the Browse menu, choose ClassWizard (CTRL+W). 

-Or-

In App Studio: click the Class Wizard toolbar button, or from the Resource 
menu, choose ClassWizard (CTRL+W). 

Note For classes associated with a dialog-box resource-classes derived from 
CDialog or CFormView-create the resource in App Studio before you use 
ClassWizard to create the class. 

2. Choose Add Class. The Add Class dialog box appears (Figure 9.1). 

In App Studio, if you are currently editing a dialog box that is not yet associated 
with a class, the Add Class dialog box appears automatically. 

Add Class 

Class Harne: Header file: 

'CP asswordDlg 'L-di_al_og_s-_h __ ---'" Browse ___ 1 
Cancel 

Class IYpe: implementation File: ,--_------. 

I CDialog Iii I dialogs_cpp II Bro!'!se ___ I .!:!elp 

I!.ialog 10: lIDO_PASSWORD Iii 'Import Class ___ I 

Figure 9.1 Add Class Dialog Box 

3. Type the name of your new class in the Class Name box and, in the boxes 
provided, type the names of the header and implementation files where the class 
is to be defined. 

4. In the Class Type box, select the name of the class or class type from which 
your current class is to be derived (Table 9.1). 

5. In the Dialog ID box, select the name of the resource identifier from the list. If 
you are in App Studio, have a dialog box selected, and are creating a class based 
on CDialog or CForm View, the identifier is already filled in for you. 

6. Choose Create Class to create the class in the files you specified. 



116 App Studio User's Guide 

For a specific example of how this general procedure works to create a new dialog­
box class, see page 125. 

When you use Class Wizard to create a new class, it adds skeletal information on 
the new class to both the header and implementation files. If you specify filenames 
that don't yet exist, ClassWizard creates the new files and adds them to your 
project if Visual Workbench is running. 

Note ClassWizard only updates your project file if Visual Workbench is running. 
If it is not, you need to add the files to the project yourself. 

When you add a new class using Class Wizard, special-format comments are placed 
in your code to mark the sections of the header and implementation files that 
Class Wizard edits. Class Wizard never modifies code that is outside these 
commented sections. 

For most classes, there are two related sections of code that Class Wizard edits: the 
member-function definitions in the class header file and the message-map entries in 
the class implementation file. 

The ClassWizard comments in the header file look like this: 

11{{AFX_MSG«classname» 
II ClassWizard adds member functions here 

I/} }AFX_MSG 

The Class Wizard section in the implementation file is set off with comments that 
look like this: 

11{{AFX_MSG_MAP«classname» 
II ClassWizard adds message map macros here 

I/} }AFX_MSG_MAP 

For more information about these comments, see "Updating Existing Code for Use 
with ClassWizard" on page 133. 

For dialog boxes, ClassWizard creates and edits three other sections that are 
marked with special format comments: 

• Member variable declarations in the class header file 
(II{{AFX_DATA ... II}}AFX_DATA) 

• Member variable initialization in the class implementation file 
(II{{AFX_DATA_INIT ... II}}AFX_DATA_INIT) 

• Data-exchange macros in the implementation file 
(II{{AFX_DATA_INIT ... II}}AFX_DATA_INIT) 

For more information see "Working with Dialog-Box Data" on page 121. 



Chapter 9 Using ClassWizard 117 

Importing Existing Classes 
If you add a message-handling class to your current project by copying code from 
another project, you can update Class Wizard so that it recognizes the new class. 

Note If the new code you have copied contains more than two or three new 
message-handling classes, you can save time by rebuilding the Class Wizard file 
completely rather than importing each new class individually. See page 132 for 
more information. 

~ To add a class copied in from another project to the ClassWizard file: 

1. If the code you are importing doesn't already have ClassWizard comments in it, 
add the special-format comments ClassWizard uses to locate message-map 
entries. See page ??? for more information. 

2. Bring up the main Class Wizard dialog box and choose Add Class. When the 
Add Class dialog box appears, choose Import Class. 

3. In the Import Class dialog box (Figure 9.2), type in the name of the new class 
and the name of the header and implementation files where it can be found. 

4. Choose OK to add the new class to the Class Wizard file. 

Import Class 

IAddlnf~ 
OK Class Harne: 

L-Id_ial_og_s_.h __ --'II Browse ... I 
Header file: 

Cancel 
!rnplernentation File: ,..--_--. 

I dialogs.cpp II Bro!tse ... I .!:!elp 

Figure 9.2 Import Class Dialog Box 

Mapping Messages to Functions 
ClassWizard lets you browse the messages associated with a user-interface object 
in your application and quickly define message-handling functions for them. 
Class Wizard also automatically updates the message-dispatch table, or message 
map, when you use Class Wizard to define message-handling functions. 

The procedure for handling a message is very similar, regardless of the kind of 
user-interface object you are working with. Table 9.2 shows the types of objects 
you work with in Class Wizard and the types of messages associated with them. 



118 App Studio User's Guide 

Table 9.2 User-Interface Objects and Associated Messages 

Object ID 

Class name, representing the containing 
window (Table 9.1) 

Menu or accelerator identifier 

Control identifier 

Defining Message Handlers 

Messages 

Windows messages appropriate to a CWnd­
derived class: a dialog box, window, child 
window, MDI child window, or topmost 
frame window 

COMMAND message (executes the program 
function) 

UPDATE_COMMAND _UI message 
(dynamically updates the menu item) 

Control notification messages for the selected 
control type 

After creating a class with Class Wizard, or importing an existing class, you can use 
Class Wizard to browse the messages or control notifications associated with each 
object and to create handler routines (member functions) as appropriate. 

The general procedure for using Class Wizard to define a message or command 
handler is as follows (see Figure 9.3): 

Class N.ame: I CPasswordDlg 

dialogs.h, dialogs.cpp 

ClassWizard 

liJ 

;::;::!!==bi~ec_t_ID-::s::-:,: ____ --, .Messages: 
CP asswordD Ig '~, EN CH.M JC:'E 
IDC ALL ACCESS 

IDCANCEL 
IDOK 

Member [unctions: 

EN ERRSPACE 
EN-HSCROLL 
EN-KILLFOCUS 
E N-MAX:T EXT 
EN-SETFOCUS 
EN-UPDATE 
EN-VSCROLL 

Cancel 

Add Class __ _ 

Class Info __ _ 

Help 

I Edit Variables ... I 

............. , .. "J I Add f~'ct""'- I 
I Delete Function I 
I Edit Code I 

Description: Indicates the display is updated after text changes 

Figure 9.3 Defining a Message or Command Handler 



Chapter 9 Using ClassWizard 119 

~ To define a message handler with ClassWizard: 

1. In Visual Workbench: from the Browse menu, choose ClassWizard (CTRL+W). 

-Or-

In App Studio: select the user-interface object you want to work with. Then click 
the Class Wizard toolbar button, or from the Resource menu, choose 
ClassWizard (CTRL+W). 

The main ClassWizard dialog box appears. If you are in Visual Workbench, 
Class Wizard displays information about the currently selected class name or the 
class you last edited with Class Wizard. If you are in App Studio, you see 
information about the user-interface object that is currently selected. 

2. In the Object IDs box, select the name of the user-interface object you want to 
define a message handler for. Table 9.2 shows the types of objects that will 
appear in the Object IDs box and the messages appropriate to each type. 

3. In the Messages box, select the message for which you want to define a handler 
and choose Add Function, or double-click the message name. 

You can only select messages that do not already have a handler defined. A 
message with a handler already defined has a picture of a small hand next to it. 

Note The messages you see in the Messages box are those most appropriate to 
your class. You can change which messages you see by choosing the Class Info 
command and selecting a new set of messages in the Message Filter box. For 
information on handling custom messages, see Technical Note 6, which can be 
found in MSVC\HELP\MFCNOTES.HLP. 

For messages that don't already have a handler defined in their base class, the 
Add Member Function dialog box appears. 

Tip Selecting a message displays a brief description of it at the bottom of the 
Class Wizard dialog box. You can get a more complete description of the 
message by pressing Fl. 

4. For messages that don't already have a handler defined in their base class, type 
in the member function name you want and press ENTER, or press ENTER to 
accept the name proposed by Class Wizard. This returns you to the main 
Class Wizard dialog box. 

A picture of a hand appears next to the message name to show that a member 
function is defmed to handle the message. The name of the new message­
handling function appears in the Member Functions box. 

At this point you have several options. You can: 

• Add more message handlers. 



120 App Studio User's Guide 

• Choose Edit Code to jump to the empty Class Wizard-generated function in your 
source code and begin defining the function's behavior. 

• Choose OK to close Class Wizard. You can return to Class Wizard any time 
during the development process. 

• Choose Cancel to cancel the changes you have made. 

When you choose OK or Edit Code, Class Wizard updates your source code as 
follows: 

• A function declaration is inserted into the header file. 

• A complete, correct function definition with a skeletal implementation is inserted 
into the implementation file. 

• The class's message map is updated to include the new message-handling 
function. 

Deleting Message Handlers 
Once you have defined a message handler with ClassWizard, you can also use 
Class Wizard to delete it. However, you must remove the function definition, as well 
as any references to the function, from the implementation file yourself. 
Class Wizard never makes changes to your implementation code-only to the 
message and data maps. 

~ To delete a message-handling function: 

1. In the main ClassWizard dialog box, from the Class Name box, select the class 
containing the message-handling function you want to delete. 

2. In the Member Functions box, select the name of the member function to delete. 

3. Use the Edit Code command (see the next section) to open the implementation 
file containing the member function in Visual Workbench. Delete the function 
header and function body, or copy it to a file not in the current project. 

4. Return to Class Wizard and choose Remove Function. This deletes the member 
function from the message-map entries for that class in both the header and 
implementation files. 

Jumping to Source Code from ClassWizard 
Once you have defined a procedure with Class Wizard you can use the Edit Code 
command to jump to the member-function definition and begin to add or modify 
code. The following procedure assumes that Visual Workbench is running. 



Chapter 9 Using ClassWizard 121 

~ To use the ClassWizard Edit Code command (available only when Visual 
Workbench is running): 

1. In the Member Functions box, select the function you want to edit. 

2. Choose Edit Code (see Figure 9.3) or double-click the function name. 

Class Wizard switches to Visual Workbench and moves to the beginning of the 
member function. 

Working with Dialog-Box Data 
Class Wizard offers an easy way to take advantage of the dialog data exchange 
(DDX) and dialog data validation (DDV) capabilities of the Microsoft Foundation 
classes. 

To use DDX, you define member variables in the dialog-box class and associate 
each of them with a dialog-box control. The framework transfers any initial values 
to the controls when the dialog box is displayed. It then updates the variables with 
user-entered data when the user clicks OK to dismiss the dialog box. You can also 
use DDX with VBX controls. 

With DDV, dialog-box information entered by the user is validated automatically. 
You can set the validation boundaries: the maximum length for string values in an 
edit-box control or the minimum or maximum numeric values when you expect a 
number to be entered. You can also use ClassWizard to connect dialog-box controls 
to your own custom data-validation routines. 

For an example of how to use DDX and DDV, see "Example: Part 2: Using 
DDX/DDV" on page 128. 

Dialog Data Exchange 
ClassWizard lets you create variables that use the framework's automatic dialog 
data exchange capabilities. For each dialog-box control you want to set an initial 
value for or gather data from, use Class Wizard to define a data member in the 
dialog class. The framework then transfers the initial value of each variable to the 
dialog box when it is created and updates each member variable when the dialog 
box is dismissed. 

Note You can also use CWnd::UpdateData to transfer data back and forth 
between controls and member variables while a dialog box is open. 



122 App Studio User's Guide 

~ To define data members for dialog data exchange: 

1. Create your dialog box in App Studio, place in it the controls you want, and set 
the appropriate control styles in the Properties window. Then use ClassWizard 
to define a new dialog-box class (page 114). 

2. In the Class Wizard dialog box, choose Edit Variables. The Edit Member 
Variables dialog box appears. 

3. Select the control for which you want to set up DDX and choose Add Variable. 
The Add Member Variable dialog box appears (see Figure 9.4). 

Add Member Variable 

Member Variable Hame: 

I m_nNumberOne 
Cancel 

f.ropertl': 

IValue Iii Help 

Variable !ype: 

lint iii 
Description: int with validation 

Figure 9.4 Add Variable Member Dialog Box 

4. In the Member Variable Name box, type the name of the new variable. 
Class Wizard provides the m_ prefix to identify it as a member variable. 

5. In the Property box, select whether this variable is a Value variable or a Control 
variable. 

For standard Windows controls, choose Value in the Property box to create a 
variable that contains the control's text or status as entered by the user. The 
framework automatically converts the control's data to the data type selected in 
the Variable Type box (see Table 9.3). 

For VBX controls, use the Property box to create a member variable for any of a 
VBX control's properties. The appropriate data type for a given property is 
reflected in the Variable Type box. 

You can also choose Control in the Property box to create a Control variable 
that gives you access to the control itself (see Table 9.4). 

6. In the Variable Type box, choose from a list of variable types appropriate to the 
control (see Table 9.3). 

Once you've defined a DDX Value variable for a standard Windows control, the 
framework automatically initializes and updates the variable for you. 



Chapter 9 Using ClassWizard 123 

Table 9.3 shows the type of DDX Value variables ClassWizard initially provides. 
To create additional variable types, see Technical Note 26, which can be found in 
MSVC\HELP\MFCNOTES.HLP. 

Table 9.3 DDX Variable Types for the Value Property 

Control 

Edit box 

N onnal check box 

Three-state check box 

Radio button (first in group) 

Nonsorted list box 

Drop list combo box 

All other list box and combo box types 

VBX control 

Variable Type 

CString, int, UINT, long, DWORD, float, 
double 

BOOL 

int 

int 

CString, int 

CString, int 

CString 

CString, int, long, BOOL, float, 
COLORREF 

The following additional notes apply to using DDX Value variables: 

• Possible values for three-state check boxes are 0 (off), 1 (on), and 2 
(indeterminate ). 

• Values for a group of radio buttons range from 0 for the first button in the group 
to n-l for a group with n buttons. A value of -1 indicates that no buttons are 
selected. 

• When you are using a group of check boxes or radio buttons with a DDX 
variable, make sure the Auto property is set for all the controls in the group. 

• Set the Group property for the first radio button in a group, and make sure all 
the other radio buttons immediately follow the first button in the tab order. 

• To use an integer value with a combo box or list box, make sure the Sort 
property is turned off on the control's Styles property page. 

• Some VBX custom-control properties are read-only, and their initial values 
cannot be set with DDX. 



124 App Studio User's Guide 

Table 9.4 shows the type of DDX Control variables you can define with 
Class Wizard. 

Table 9.4 DDX Variable Types Defined with the Control Property 

Control 

Edit box 

Checkbox 

Radio button 

Pushbutton 

List box 

Combo box or drop list combo box 

Static text 

VBX custom control 

Using DDX Variables 

Variable Type 

CEdit 

CButton 

CButton 

CButton 

CListBox 

CComboBox 

CStatic 

CVBControl * 

You can set the initial value of DDX variables by editing the initialization code that 
ClassWizard places in the constructor for the dialog-box class. (ClassWizard does 
not disturb these initialization statements once they have been put in place.) The 
framework transfers the values to the dialog box when it is created. 

To see what the user typed once the dialog box is dismissed, access the values of 
the DDX variables just as you would any C++ member variable. 

Dialog Data Validation 
By default, ClassWizard supports the types of data validation shown in Table 9.5, 
but you can add additional types (see Technical Note 26, which can be found in 
MSVC\HELP\MFCNOTES.HLP). 

Table 9.S DDV Variable Types 

Variable Type 

CString 

Numeric (int, UINT, long, DWORD, float, 
double) 

Data Validation 

Maximum length 

Minimum value, maximum value 

You can define the maximum length for a CString DDX variable or the minimum or 
maximum values for a numeric DDX variable at the time you create it. For 
example, the ClassWizard Edit Member Variables dialog box in Figure 9.5 shows a 



Chapter 9 Using ClassWizard 125 

DDX integer variable associated with an edit box. The variable has a minimum 
value of 1 and a maximum value of 10. 

Edit Member Variables 

Class N.ame: CAddlnfoDlg 

dialogs.h, dialogs.cpp 

~ontrol Type Member 

[Ie E[IIT1 Int m nNllmberCine 
IDC EDIT2 
IDcANCEL 
IDOK 

Description: int with validation 

Minimum Value: Ma!.imum Value: 

~ll __________ ~1 1~10 __________ ~ 

Figure 9.5 Dialog Data Validation 

Help 

I Add Variable ___ I 
I Delete Variable I 

At run time, if the value entered by the user exceeds the range you specify, the 
framework automatically displays a message box asking the user to reenter the 
value. The validation of DDX variables takes place all at once when the user 
chooses OK to accept the entries in the dialog box. 

Custom Data Exchange and Validation 
Although you can write a dialog-box class that gathers and validates its own dialog­
box data using custom message handlers, you may find that you have routines for 
data exchange and validation (containing your own variable types and data formats) 
that you want to use over and over. You can extend the Class Wizard user interface 
to reuse your own DDX and DDV routines. 

For more information, see Technical Note 26, which can be found in 
MSVC\HELP\MFCNOTES.HLP. 

Example: Building a Dialog Box with ClassWizard 
In this section you'll see how to define a message-handling function for a simple 
dialog box that prompts a user to type in a password. You'll then see how to use 
ClassWizard to take advantage of the framework's built-in DDX and DDV 
routines. This example uses the procedures described in the previous sections. 



126 App Studio User's Guide 

Example, Part 1 : Defining a Message Handler for a Dialog-Box 
Control 

Step One: Create the Dialog-Box Resource 
To begin, assume that you have created the new dialog box in App Studio (see 
Chapter 3) and are ready to define message handlers for it. The App Studio screen 
at the beginning of the procedure looks like Figure 9.6. The dialog box has an ID of 
ID_PASSWORD. The edit-box control that will accept the password has an ID of 
IDC_PASSWORD. The check box has an ID of IDC_ALL_ACCESS, and its 
Disabled property is selected. 

App Studio - ACCOUNT.RC 
file .Edit Besource bayout Window .!::!.elp 

= I ACCOUNT.RC (Resource Script) 1 ~ I .... II 

~ = 1 IDD PASSWORD (Dialog) 
;go Accel1tr=~==;==;==r:::=;-~~::;-;::::::~~~:=;::==;--;=;---'-----'-t1 
~ Bitma [I] 1 J§:' I,gJ I IOU I UO! 1 ~ [BI2J I [5J I UJ I [±J 1 CIill 

I~I"" 

mDialo£ 
[:rJ Icon _=-J.-I~~~~_~P~as~s~w_or_d ~~~~~ 
~Menu :::::: tnter Your ~assword: 
~S~~ .......... . ............ . 

c-- ::.::: r-j --------,1:··· 
~ 

~ Dialog Properties 

+ 
l-

I---

I­
+ 

tt ~ 
A @li]l 

0 0 

rzJ ® 
§m -. Sl -. 
[ill] fi1 
f} 

1 [!] kaption: 1-1 Pa_ss_wo_rd ____ -----'I 
Font Name: MS Sans Serif 

L--____ ---'I [!] 
Font Size: 8 

Menu: 

Ready I FonL_ I X Pos: ~ Y Pos: ~ 

Figure 9.6 Password Dialog Box 

Step Two: Define The Dialog-Box Class 
On the App Studio toolbar, click the ClassWizard button. The dialog box you 
created is open in the dialog editor window so Class Wizard knows what resource 
identifier to work with. Since the new dialog box isn't yet associated with a class, 
Class Wizard displays the Add Class dialog box. You supply the name of the new 
class and the names of its header and implementation files (Figure 9.1). 



Chapter 9 Using ClassWizard 127 

Step Three: Define the Message Handler 
Next, you want to define a handler to enable the check-box control in the dialog 
box as soon as the user types something into the edit-box control. Since the edit-box 
control sends an EN_CHANGE message to the dialog box every time the contents 
of the control is modified, you select the control's identifier, IDC_PASSWORD, in 
the Object IDs box and double-click EN_CHANGE in the Messages box to define 
the handler. 

Since you've given the edit box a symbol name ofIDC_PASSWORD, 
ClassWizard suggests OnChangePassword as the name of the message-handling 
function. When you press ENTER, Class Wizard accepts the name and creates the 
new member function. The ClassWizard dialog box now looks like Figure 9.3. 

Step Four: Begin Filling in the Message Handler 
You now want to fill in the function body, so you select the new member function 
(0 n C han 9 ePa ssw 0 r d) and choose Edit Code. (The Edit Code command is not 
available unless Visual Workbench is running.) ClassWizard switches to Visual 
Workbench and opens DIALOGS.CPP to the appropriate location in the source 
code. The following empty function is already in place: 

void CPasswordDlg::OnChangePassword() 
{ 

II TODO: Add your control notification handler code here 

The class's message map has been updated to reflect the message handler 
(marked ~): 

BEGIN_MESSAGE_MAP(CPasswordDlg. CDialog) 
11{{AFX_MSG_MAP(CPasswordDlg) 
ON_EN_CHANGE(IDC_PASSWORD. OnChangePassword) 
I/} }AFX_MSG_MAP 

END_MESSAGE_MAP() 

The header file, DIALOGS.H, has been updated as well (marked ~ ): 

II Generated message map functions 
11{{AFX_MSG(CPasswordDlg) 
afx_msg void OnChangePassword(); 
I/} }AFX_MSG 
DECLARE_MESSAGE~MAP() 

You are now ready to add the necessary EN_CHANGE message-handling code to 
DIALOGS.CPP. You'll see how to do this at the end of the second part of this 
example, where the Add Variables dialog box is used to create Control variables 
that allow you to enable the check box whenever the edit box has something in it. 



128 App Studio User's Guide 

Example, Part 2: Using DDX/DDV 
Now assume you want to set up a data member in the CPasswordDlg class to 
contain the password the user types in. You also want to set the password to an 
initial value of "INV ALID" and make sure that it's no more than eight characters 
long. 

Step One: Define the Member Variable Using ClassWizard 
The first step is to set up a member variable in the dialog-box class. You bring up 
Class Wizard with the Password dialog box selected, making sure the identifier for 
the text control that will contain the password (in this case IDC_PASSWORD) is 
selected. Choose Edit Variables. The Edit Member Variables dialog box appears. 

You then choose Add Variable and, in the Add Member Variable dialog box that 
appears, fill in the name of the member variable (m_strPassword, in this case). 
Accept the default values in the Property and Variable Type boxes. At this point, 
the Add Member Variable dialog box looks like Figure 9.7. 

Add Member Variable 

OK Member Variable N.ame: 

I m_ strP assword 
Cancel 

f.roperty: 

IValue Iii Help 

Variable !ype: 

I CS tring Iii 
Description: [String with length validation 

Figure 9.7 DDX/DDV Example: Add Member Variable Dialog Box 

Step Two: Set the Maximum Number of Characters 
for the Variable 
When you choose OK after adding the member variable, Class Wizard returns to the 
Edit Member Variables dialog box. Since you have now defined a CString variable, 
Class Wizard adds an edit box at the bottom of the dialog box where you can type in 
the maximum number of characters for this variable. When the program is running 
and the user types in more than the number of characters you've specified, the 
framework displays a dialog box asking for the correct number of characters. 

In this case, you want the password to be no more than eight characters long, so you 
type 8 in the Maximum Characters box. The Edit Member Variables Dialog Box 
now looks like Figure 9.8. 



Edit Member Variables 

Class H.ame: CPasswordDlg 

dialogs.h, dialogs.cpp 

Control !Ds: Type Member 

Chapter 9 Using ClassWizard 129 

Close 

Help 

IDC ALL ACCESS 

IDCANCEL 
IDOK 

I Add Variable ... I 
I Delete Variable I 

Description: CString with length validation 

Ma.!!.imum Characters: 

I~ 

Figure 9.8 DDX/DDV Example: Using Built-in DDV for a CString Variable 

Class Wizard adds information to the 000 a t a Ex c han 9 e member function of the 
dialog-box class in DIALOGS.CPP based on what you've entered (marked ~ ): 

void CPasswordDlg::DoDataExchange(CDataExchange* pDX) 
{ 

CDialog::DoDataExchange(pDX); 
//{{AFX_DATA_MAP(CPasswordDlg) 
DDX_Text(pDX. IDC_PASSWORD. m_strPassword); 
DDV_MaxChars(pDX. m_strPassword. 8); 
/ /} }AFX_DATA_MAP 

Step Three: Set the Initial Value for the Variable in the 
Dialog-Box Class Constructor 
When you first defined the member variable m_ s t r Pas s W 0 r d, Class Wizard 
placed an initialization statement in the dialog-box class constructor that initialized 
the variable to an empty string (marked ~): 

CPasswordDlg::CPasswordDlg(CWnd* pParent /*=NULL*/) 
: CDialog(CPasswordDlg::IDD. pParent) 

//{{AFX_DATA_INIT(CPasswordDlg) 
m_strPassword = ""; 
//}}AFX_DATA_INIT 

To change the initial value of the DDX variable, simply edit the 
/ / {{AFX_DATA_I N IT section of the dialog-box class code so it reflects the initial 
value you want. For example, changing the line marked with ~: 



130 App Studio User's Guide 

CPasswordDlg::CPasswordDlg(CWnd* pParent /*=NULL*/) 
: CDialog(CPasswordDlg::IDD, pParent) 

//{{AFX_DATA_INIT(CPasswordDlg) 
m_ s t r Pas s w 0 r d = "I N V ALI 0" ; 
//}}AFX_DATA_INIT 

changes the initial value of the password variable to "INVALID." 

Step Four: Create Control Variables to Use in the 
Message Handler 
The final step is to create two DDX Control variables to use in enabling the All 
Access check box when something is typed into the Password box. In the Edit 
Member Variables dialog box, select the IDC_P ASSWORD control and choose 
Add Variable. The Add Member Variables dialog box appears. In the Property box, 
select Control, and in the Member Variable N arne box, type in the name of the 
variable, in this case m_edi tPassword. The Add Member Variable dialog box 
now looks like Figure 9.9. 

Add Member Variable 

OK Member Variable H.ame: 

I m_editPassword 
Cancel 

f.roperty: 

I Control Iii 
.!:!elp 

Variable llpe: 

ICEdit Iii 

Description: map to CEdit member 

Figure 9.9 DDX/DDV Example Defining a DDX Control Variable 

Once you've defined a DDX Control variable for the All Access check box in a 
similar way, you're ready to fill in the EN_CHANGE message-handling function. 
The completed function looks like this: 

void CPasswordDlg::OnChangePassword() 
{ 

} 

m_btnAllAccess.EnableWindow( 
m_editPassword.GetWindowTextLength() != 0 ); 

This completes the example. Class Wizard did most of the work so that you could 
concentrate on the important part, the actual message-handling code. You also have 
added a member variable to your dialog-box class that automatically takes 



Chapter 9 Using ClassWizard 131 

advantage of the framework's built-in routines for custom data exchange and 
validation. 

Keeping ClassWizard Updated When Code Changes 
It's very likely that as your program develops you'll need to delete or modify a 
class, to delete some resources and add others, or to move a class from one source 
file to another. Class Wizard is designed to keep in sync with your code as you make 
these changes: it asks you for the updated information when you next edit the 
affected class. 

Class Wizard stores the information about your application's classes in a file with 
the file extension .CL W. To accommodate source files that have changed, 
Class Wizard displays the Repair Class Information dialog box (Figure 9.10) 
whenever it finds that the information in the .CL W file is out of date. 

The Repair Class Information dialog box has two main functions: 

• Delete obsolete classes from the Class Wizard file. 

• Update the Class Wizard file with the new name or location of classes that you 
have changed or moved. 

Repair Class Information 

ClassWizard could not open the class "CPassword". If OK 
the class has been deleted, use the remove button to 
remove it hom the ClassWizard database. Otherwise, I Remove 
provide the new information for this class below. 

Class N.ame: 

ICPassword 

Header file: 

lL-di_al_oQ_s_.h __ ---'11 !!.rowse ... I 
implementation File: ,--_---. 

IdialoQs.cPP II Dro!!se ... I 

Cancel 

Help 

Figure 9.10 Repair Class Information Dialog Box 

Deleting Classes 
When you delete a class from your header and implementation files, the information 
in the .CL W file needs to be updated as well. The next time you select that class in 
Class Wizard, you are prompted to update the information in the Class Wizard file. 

~ To delete a message-handling class created with ClassWizard: 

1. Remove the class from your header and implementation files. 

2. Open Class Wizard, and in the Class box, select the class you have modified. 



132 App Studio User's Guide 

Class Wizard displays a message box warning you that the class cannot be 
found. Then the Repair Class Information dialog box appears. 

3. Choose Remove. 

The class is deleted from the Class Wizard file. 

Renaming or Moving Classes 
When you change the name of a class or move it from one implementation file to 
another, you're prompted to update the information in the .CLW file the next time 
you edit the class in Class Wizard. 

~ To change the name of a class or move it from one file to another: 

1. Make the desired changes to your source files. 

Note When you change the name of a class, remember to change it everywhere, 
including in the special-format comments ClassWizard uses. For example, 

11{{AFX_MSG_MAP(OldClass) becomes 11{{AFX_MSG_MAP(NewClass) 

2. Invoke ClassWizard. In the Class Name box, choose the class you want to 
change from the list. 

Class Wizard displays a message box warning you that the old class could not be 
found. When you choose OK, the Repair Class Information dialog box appears. 

3. In the Class Name, Header File, and Implementation File boxes, supply the new 
information about the class. If necessary, use the appropriate Browse command 
to look for the correct name of the header or implementation file. 

4. Choose OK to update the ClassWizard file. 

Rebuilding the ClassWizard (.CLW) File 
If you have made numerous changes to your code or have added a large number of 
existing user-interface classes to your current project, you may find it convenient to 
rebuild the Class Wizard file from scratch rather than update it one class at a time. 
To do this, you delete your project's ClassWizard (.CLW) file and use a dialog box 
similar to the Visual Workbench's Edit Project dialog box to generate a new one. 
The newly-generated .CL W file contains information about all the classes that have 
the special-format ClassWizard comments. 

~ To rebuild the ClassWizard file: 

1. Delete your project's current .CLW file. 

2. Open the project resource file in App Studio so that information about your 
program's resources can be added to the file as well. 



Chapter 9 Using ClassWizard 133 

3. Invoke Class Wizard. A message box is displayed asking if you want to rebuild 
the Class Wizard file from your project files. Click Yes. 

4. The Select Source Files dialog box appears (Figure 9.11). Use the File Name 
box and the Add, Add All, and Delete commands to create a list of project files 
in the Files in Project box. 

5. When the list of project files is complete, click OK. 

ClassWizard generates a new .CLW file. 

Select Source Files - ACCOUNT.CLW 

File Harne: 

I accoudoc.cpp 

accoudoc.h 
account.cpp 
account.h 
accouvw.cpp 
accouvw.h 
ddxddv.cpp 
ddxddv.h 
.J: 

list Files of !vpe: 

+ 

h 
+ 

I Source Files (z.h;z.cpp) Iii 
Files in project: 
d: \src\account\accoudoc. cpp 
d: \src\account\accoudoc. h 
d: \src\account\account. cpp 
d: \src\account\account. h 
d: \src\account\accouvw. cpp 

.!lirectories: 
d:\src\account 

Od:\ 
osrc 
f":7 account 
LJ hlp 
LJ res 

Driyes: 

I Ia d: pkdrive2 Iii 

OK 

Help 

Add 

Add All 

Figure 9.11 Select Files Dialog Box for Generating a New .eL W File 

Updating Existing Code for Use with ClassWizard 
This section provides the basics for adding Class Wizard comments to existing code 
so that the code can be used with Class Wizard. Microsoft Foundation Class Library 
version 1 code is an example of code containing classes that need to be updated in 
this way. To update a class for use with Class Wizard, it must already have a 
message map defined. 

For more detailed information on updating existing code, see Technical Note 19, 
which can be found in MSVC\HELP\MFCNOTES.HLP. 

To use existing code with ClassWizard, place the special-format comments 
Class Wizard uses to locate message-map entries in both your header and 
implementation files. 

In your header file, Class Wizard uses comments of the following form, placed 
before and after message-handler declarations: 



134 App Studio User's Guide 

11{{AFX_MSG«classname» 
Ilmessage-handler declaration here 

I/} }AFX_MSG 

The classname is the name of the class to which the message handler belongs. For 
example: 

11{{AFX_MSG(CPasswordDlg) 
afx_msg void OnChangePassword(); 
I/} }AFX_MSG 

In your implementation file, Class Wizard uses comments of the following form, 
placed before and after the message-map entries: 

11{{AFX_MSG_MAP«classname» 
II message map entries here 

I/} }AFX_MSG_MAP 

For example: 

BEGIN_MESSAGE_MAP(CPasswordDlg, CDialog) 
11{{AFX_MSG_MAP(CPasswordDlg) 
ON_EN_CHANGE(IDC_PASSWORD, OnChangePassword) 
I/} }AFX_MSG_MAP 

END_MESSAGE_MAP() 

You can also upgrade existing dialog classes for use with Class Wizard dialog data 
exchange and validation, although you may not need to do this if your existing 
dialog-box code already handles data exchange and validation to your satisfaction. 

For an example of the AFX_DATA, AFX_DATA_INIT, and AFX_DATA_MAP 
comments used by Class Wizard to maintain information for data exchange and 
validation, see the PENDLG.CPP (and PENDLG.H) module of the SCRIBBLE 
example program discussed in the Class Library User's Guide. 

Once you have placed the necessary Class Wizard comments in your source files, 
load the project's resource script file into App Studio, invoke Class Wizard, and 
build the ClassWizard (.CLW) file according to the instructions in the previous 
section. 

To learn how resource script files change when you upgrade from the previous 
version of the Microsoft Foundation Class Library, see Chapter 2, "Working with 
Files and Symbols." 



PAR T 2 

App Studio Reference 

Chapter 10 App Studio Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . .. 137 
Chapter 11 Property Page Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 159 





137 

CHAPTER 10 

App Studio Quick Reference 

The first part of this chapter lists common App Studio tasks and shows you which 
menu items, toolbar buttons, and keystrokes you use to perform them. The second 
part describes all of App Studio's menus, toolbars and palettes, and accelerator 
keys. 

Task Reference 
This section provides a quick guide to many of the common tasks you perform with 
App Studio's menus, accelerator keys, and toolbar buttons. Each brief task 
description includes a page reference to the App Studio User's Guide so that you 
can locate the passage that describes the task in detail. 

Managing Files 
Menu, 

Task Command Key Button Comments Page 

Create a new resource file, CTRL+N Opens the New dialog box, 23 
script, resource file, bitmap, New ... which prompts you to select the 
icon, or cursor file type. 

Create a new resource script [ill The resource browser window 23 
for the new resource script 
appears. 

Open a resource script, file, CTRL+O ~ Opens the Open dialog box, 24 
resource, .EXE, .DLL, Qpen ... which you use to navigate 
. DRV, bitmap, icon, or directories and choose a file . 
cursor file 

Close the active resource file, Or double-click the file's 
script or resource file ~lose Control-menu box. 

Save the active resource file, CTRL+S ~ Saves the .RC file and any 22 
script or resource file Save resource files that have changed. 



138 App Studio User's Guide 

Managing Files (continued) 

Menu, 
Task Command Key Button Comments 

Rename the active resource Eile, F12 Opens the Save As dialog box, 
script or resource file Save As ... which prompts you for a 

filename. 

Save all open resource Eile, Saves all resource scripts and 
scripts and resource files Sav~ All resource files currently open. 

Set names of included Eile, Opens the Set Includes dialog 
header and resource files Set Includes ... box, where you enter the names 

of header files and compile-time 
resource scripts. 

Exit App Studio Eile, ALT+F4 Exits App Studio and prompts 
EXit you to save any modified files. 

Editing 
Menu, 

Task Command Key Button Comments 

Undo an action Edit, CTRL+Z [2] By default, 10 operations can be 
!Indo undone. To change the number, 

see Appendix A. 

Redo the last undo Edit, CTRL+A [£) Disabled until an edit action has 
Redo been undone. 

Delete to the Clipboard Edit, CTRL+X Deletes the selection and 
Cut overwrites the current Clipboard 

contents. 

Copy to the Clipboard Edit, CTRL+C Overwrites the current Clipboard 
~opy contents with the selection. 

Paste from the Clipboard Edit, CTRL+V Does not overwrite selection in 
raste destination. 

Delete selection Edit, DEL Removes the current selection; 
Qelete does not save to the Clipboard. 

Handling Resources 
This section lists general resource-handling tasks first, then tasks specific to 
particular resource types. 

Page 

22 

28 

Page 

8 

8 

46 

46 

46 

46 



Chapter 10 App Studio Reference 139 

General 
Menu, 

Task Command Key Button Comments Page 

Create a new resource Eile, CTRL+N Opens the New dialog box, 23 
script, resource file, bitmap, New ... which prompts you to select the 
icon, or cursor file type. 

Create a new resource Resource, CTRL+R Opens the New Resource dialog 6 
New ... box. Select a resource type and 

press ENTER. 

Open an existing resource Resource, ENTER Enabled only when a resource is 7 
Qpen selected in the resource browser 

window. 

Open a resource for binary Resource, CTRL+B Opens the binary editor window. 111 
editing Open Binary Enabled only when a resource is 

nata selected in the resource browser 
window. 

Change a resource's Resource, ALT+ Activates the Properties window. 10 
properties ~roperties ... ENTER 

Import a bitmap, cursor, or Resource, Opens the Import Resource 28 
icon into your project Import ... dialog box, where you enter the 

name of the file containing the 
bitmap, cursor, or icon resource. 

Export a bitmap, cursor, or Resource, Opens the Export Resource 28 
icon and save it in a Export ... dialog box, where you enter the 
separate file name of the file in which to save 

the resource. Enabled only when 
a bitmap, cursor, or icon 
resource is selected or contained 
in the active editor window. 

Dialog Boxes - General 
Menu, 

Task Command Key Button Comments Page 

Test a dialog box Resource, CTRL+T [i] Activates the dialog box for 59 
Test testing its controls. Menu 

command appears only when a 
dialog editor window is active. 

Show or hide layout grid for [ill] Turns grid on or off for current 51 CTRL+G ..... 
current dialog dialog editor only. 



140 App Studio User's Guide 

Dialog Boxes - General (continued) 

Menu, 
Task Command Key Button Comments Page 

Set order of TAB key Layout, CTRL+D Default is order that controls 48 
movement among controls Set Tab Qrder were added to dialog box. 

Show or hide the control Window, F2 Appears as Hide ,Control Palette 43 
palette Show ,Control if palette is shown. 

Palette 

Dialog Boxes - Alignment 
Menu, 

Task Command Key Button Comments Page 

Align controls along left Layout, CTRL+ ~ Selected controls are aligned 52 
edge Align Controls, LEFT with edge of the dominant 

Left ARROW control, which is marked by 
filled sizing handles. 

Align controls along right Layout, CTRL+ ~ Selected controls are aligned 52 
edge Align Controls, RIGHT with edge of the dominant 

Right ARROW control, which is marked by 
filled sizing handles. 

Align controls along top Layout, CTRL+ ~ Controls are aligned with edge 52 
edge Align Controls, UP of the dominant control, which is 

Top ARROW marked by filled sizing handles. 

Align controls along bottom Layout, CTRL+ ~ Controls are aligned with edge 52 
edge Align Controls, DOWN of the dominant control, which is 

Rottom ARROW marked by filled sizing handles. 

Align controls on vertical Layout, F9 Controls are aligned on 53 
centerline Align Controls, centerline of the dominant 

Yert. Center control, which is marked by 
filled sizing handles. 

Align controls on vertical Layout, SHIFT+ Controls are aligned on 53 
centerline Align Controls, F9 centerline of the dominant 

Horiz. Center control, which is marked by 
filled sizing handles. 



Chapter 10 App Studio Reference 141 

Dialog Boxes - Spacing and Positioning 
Menu, 

Task Command Key Button Comments Page 

Equalize horizontal spacing Layout, ALT+ [E] Spacing between selected 53 
of three or more selected Space Evenly, RIGHT controls is made the same. 
controls Across ARROW 

Equalize vertical spacing of Layout, ALT+ ~ Spacing between selected 53 
three or more selected Space Evenly, DOWN controls is made the same. 
controls I20wn ARROW 

Center controls vertically in Layout, CTRL+F9 WI Horizontal position is not 53 
dialog box ~enter in changed. 

Dialog, 
Yertical 

Center controls horizontally Layout, CTRL+ W Vertical position is not changed. 53 
in dialog box ~enter in SHIFT+ 

Dialog, F9 
Horizontal 

Position selected buttons in Layout, CTRL+B Buttons are positioned with 54 
upper-right comer of dialog Arrange standard spacing. 
box Buttons, 

Right 

Position selected buttons at Layout, CTRL+ Buttons are positioned with 54 
bottom of dialog box Arrange SHIFT+B standard spacing. 

Buttons, 
Hottom 

Dialog Boxes - Sizing 
Menu, 

Task Command Key Button Comments Page 

Make controls same size in Layout, CTRL+ Qill Other selected controls are sized 54 
vertical dimension Make Same BACK- to the dominant control, which is 

Size, SLASH the last control selected. 
Height 

Make controls same size in Layout, CTRL+ ~ Other selected controls are sized 54 
horizontal dimension Make Same MINUS to the dominant control, which is 

Size, the last control selected. 
Width 

Make controls same size in Layout, CTRL+ ~ Other selected controls are sized 54 
both dimensions Make Same EQUAL to the dominant control, which is 

Size, the last control selected. 
Hoth 



142 App Studio User's Guide 

Dialog Boxes - Sizing (continued) 

Menu, 
Task Command Key Button Comments Page 

Size control to fit text Layout, F7 Does not apply to group boxes. 47 
caption Size to Content 

Set dimensions of layout Layout, Opens the Grid Settings dialog 52 
grid for all dialogs Qrid Settings ... box. 

Show or hide layout grid for LillI Turns grid on or off for current 51 CTRL+G ..... 
current dialog dialog editor only. 

Set order of TAB key Layout, CTRL+D Default is order in which 48 
movement among controls Set Tab Qrder controls were added to dialog 

box. 

Show or hide the control Window, F2 Appears as Hide Control Palette 43 
palette Show Control if palette is shown. 

Palette 

Menus 
Menu, 

Task Command Key Button Comments Page 

View a menu resource as a Resource, CTRL+U Displays the menu bar as a drop- 66 
drop-down menu Yiew as Popup down menu. Appears only when 

a menu editor window is active. 
Command is checked when in 
effect. 

Bitmaps, Icons, and Cursors - General 
Menu, 

Task Command Key Button Comments Page 

Create new icon or cursor Resource, INS ~ Opens New Icon Image or New 101 
images New Deyice Cursor Image dialog box. 

Image ... Enabled only if resource does 
not include images for all known 
devices. 

View and edit an icon or Resource, Opens the Open Icon Image or 102 
cursor image for a device Open Devi~e Open Cursor Image dialog box. 

Image Can also use the Device drop-
down list on the editor toolbar. 

Delete an icon or cursor Resource, DEL Deletes the current device 102 
image for a device Delete Device image. 

Image 

Toggle between actual-size Image, M [3J Click zoom tool to select 98 
and magnified views Zoom In/Out magnification factor. 



Chapter 10 App Studio Reference 143 

Bitmaps, Icons, and Cursors - General (continued) 

Menu, 
Task Command Key Button Comments Page 

Set a cursor's hotspot Image, [II Shown only when a cursor is 104 -;~ 

Set Hotspot being edited. 

Flip the selection along its Image, y 93 
vertical axis Flip Yertical 

Flip the selection along its Image, x 93 
horizontal axis Flip Horizontal 

Toggle display of pixel grid Image, G 100 
Qrid Settings ... 

Toggle display of tile grid Image, CTRL+G Tile grid appears only when 106 
Qrid Settings ... pixel grid is also shown. 

Show and hide pixel and Image, Opens the Grid Settings dialog 105 
tile grids; change grid Qrid Settings ... box. 
dimensions 

Show or hide the graphics Window, F2 Appears as Hide Qraphics 86 
palette Show Qraphics Palette if palette is shown. 

Palette 

Bitmaps, Icons, and Cursors - Colors 
Menu, 

Task Command Key Button Comments Page 

Edit the current foreground Image, Opens the Color dialog box. 108 
color Edit 

Foreground 
Color ... 

Pick up color from a Image, COMMA [LJ Preceding tool is selected after 89 
bitmap, icon, or cursor Eickup Color color pickup. 

Load colors from a file Image, Opens the Get Palette Colors 110 
Get Palette dialog box, which you use to 

Colors ... navigate directories and choose a 
file. 

Save colors to a file Image, Opens the Save Palette Colors 110 
Save Palette dialog box, which you use to 

Colors ... navigate directories and choose a 
file. 

Toggle opacity of the Image, 0 Works when moving and 92 
background color Draw Qpaque copying and when using custom 

brush. 



144 App Studio User's Guide 

Bitmaps, Icons, and Cursors - Colors (continued) 

Menu, 
Task Command Key Button Comments Page 

Make background color Image, 0 m?-j Works when moving and 92 
opaque Draw Qpaque copying and when using custom 

brush. 

Make background color Image, 0 m.l Works when moving and 92 
transparent Draw Qpaque copying and when using custom 

brush. 

Invert colors in the selection Image, 93 
Invert Colors 

String Tables 
Menu, 

Task Command Key Button Comments Page 

Add a string to a string Resource, INS 78 
table New, 

.string 

Search for text Edit, ALT+F3 Opens the Find String dialog 77 
Eind String ... box. Appears only when a string 

editor window is active. 

Search for next occurrence Edit, F3 Appears only when a string 
of text Find Next editor window is active. 

String 

Acce~erator Tables 
Menu, 

Task Command Key Button Comments Page 

Add an accelerator to an Resource, INS 71 
accelerator table New, 

Accelerator 

ClassWizard 
Menu, 

Task Command Key Button Comments Page 

Connect user-interface Resource, CTRL+W ~ Invokes Class Wizard. Enabled 119 
objects to code Class Wizard for Microsoft Foundation Class 

Library resource scripts only. 



Chapter 10 App Studio Reference 145 

Managing Symbols 
Menu, 

Task Command Key Button Comments Page 

View and change symbol .Edit, CTRL+I IID=I Opens the Symbol Browser 34 
names and values Symbols ... dialog box. 

Set names of included Eile, Opens the Set Includes dialog 29 
header and resource files Set Includes ... box, where you enter the names 

of header files and compile-time 
resource scripts. 

Installing VBX Controls 
Menu, 

Task Command Key Button Comments Page 

Install and remove VBX Eile, Opens the Install Controls 55 
controls Install dialog box, where you enter the 

Controls ... name of the file containing the 
control. 

Managing App Studio 
Menu, 

Task Command Key Button Comments Page 

Arrange windows in Window, 
overlapping pattern ,Cascade 

Arrange windows one Window, 
above the other Tile Horizontal 

Arrange windows side-by- Window, 
side Tile Yertical 

Arrange icons along bottom Window, 
of App Studio window Arrange Icons 

Show or hide the toolbar Window, Checked if toolbar is shown. 
Toolbar 

Show or hide the status bar Window, Checked if status bar is shown. 
Status Bar 

Show or hide the graphics Window, F2 Appears as Hide Qraphics 86 
editor graphics palette Show Qraphics Palette if palette is shown. 

Palette 

Show or hide the dialog Window, F2 Appears as Hide ,Control Palette 43 
editor control palette Show ,Control if palette is shown. 

Palette 



146 App Studio User's Guide 

Managing App Studio (continued) 

Menu, 
Task Command Key Button Comments Page 

Show or hide the Properties Window, SHIFf+ Appears as Hide froperties if 10 
window Show F2 Properties window is shown. 

froperties 

Exit App Studio Eile, ALT+F4 Exits App Studio and prompts 
Exit you to save any modified files. 

Getting Online Help 
Menu, 

Task Command Key Button Comments Page 

Open the help system's Help, FI Opens App Studio Help at the 
Contents screen ~ontents top-level Contents screen. 

Search for a keyword in Help, SHIFf+FI Opens the Search dialog box. 
Help Search ... 

Get help on a part of the ~ Click the button, then choose a 
App Studio user interface menu or click the object you 

want information about. 

Get information on product Help, Explains kinds of support 
support froduct available from Microsoft Product 

Support Support. 

Get information about your Help, Displays a message box that 
copy of App Studio AboutApp shows software version, 

Studio registered owner, and serial 
number. 

Menu Reference 
This section documents all the commands on App Studio's menus. Menus are 
described in the order of their appearance on the App Studio menu bar. Some menus 
appear only under certain circumstances. The Image menu, for example, appears 
only when an image editor window is active. 

Managing Files 
Eile 

New ... 

Qpen ... 

CTRL+N 

CTRL+O 

Use To 

Create a new resource script, resource file, bitmap, 
icon, or cursor 

Open a resource script, resource, .EXE, .DLL, .DRV, 
bitmap, icon, or cursor file 



Managing Files (continued) 

Eile 

Editing 

Close 

Save 

Save As ... 

Sav~ All 

Set Includes ... 

Install Controls ... 

E~it 

Edit 

Undo 

Redo 

Cut 

Copy 

Easte 

.Qelete 

Symbols ... 

Eind String ... 

Find Next String ... 

CTRL+S 

CTRL+Z 

CTRL+A 

CTRL+X 

CTRL+C 

CTRL+V 

DEL 

CTRL+I 

ALT+F3 

F3 

Creating and Editing Resources 
Resource 

New ... 

Qpen 

Open Binary 12ata 

Eroperties ... 

Import ... 

Export 

Class Wizard 

lest 

Yiew as Popup 

New Deyice Image ... 

CTRL+R 

CTRL+B 

ALT+ 
ENTER 

CTRL+W 

CTRL+T 

CTRL+U 

INS 

Chapter 10 App Studio Reference 147 

Use To 

Close the active resource script or resource file 

Save the active resource script or resource file 

Rename the active resource script or resource file 

Save all open resource scripts and resource files 

Set names of included header and resource files 

Install VBX controls 

Exit App Studio 

Use To 

Undo an action 

Redo the last undo 

Delete to the Clipboard 

Copy to the Clipboard 

Paste from the Clipboard 

Delete selection 

View and change symbol names and values 

Search for text 

Search for next occurrence of text 

Use To 

Create a new resource 

Open an existing resource 

Open a resource for binary editing 

Change a resource's properties 

Import a bitmap, cursor, or icon into your project 

Export a bitmap, cursor, or icon and save it in a 
separate file 

Connect user-interface objects to code 

Test a dialog box 

View a menu resource as a pop-up menu 

Create new icon or cursor images 



148 App Studio User's Guide 

Creating and Editing Resources (continued) 

Resource 

Open Devi~e Image ... 

Delete Device Image 

New String 

New Accelerator 

Laying Out Dialog Boxes 

INS 

INS 

Use To 

View and edit an icon or cursor image for a device 

Delete an icon or cursor image for a device 

Add a string to a string table 

Add an accelerator to an accelerator table 

The Layout menu appears only when the dialog editor window is active. 

,Layout 

Align Controls 

Space Evenly 

.center in Dialog 

Arrange Huttons 

Make Same Size 

Size to Content 

Qrid Settings ... 

Set Tab Qrder 

Working with Images 

F7 

CTRL+D 

Use To 

Align controls along one edge or center them on an 
axis 

Equalize spacing between three or more aligned 
controls 

Center controls in a dialog box 

Align buttons at right edge or bottom of dialog box 

Equalize dimensions of selected controls 

Size a control to fit its contents 

Set dimensions of layout grid 

Set order of TAB key movement among controls 

The Image menu appears only when an image editor window (for editing bitmaps, 
icons, or cursors) is active. 

Image 

Zoom In/Out 

.eickup Color 

Set Hotspot 

Invert Colors 

Flip Yertical 

Flip Horizontal 

Edit Foreground 
Color ... 

Gel Palette Colors .. . 

Save Palette Colors .. . 

M 

COMMA 

y 

x 

Use To 

Toggle between actual-size and magnified views 

Pick up color from a bitmap, icon, or cursor 

Set a cursor's hotspot 

Invert colors in the selection 

Flip the selection along its vertical axis 

Flip the selection along its horizontal axis 

Edit the current foreground color 

Load colors from a file 

Save colors to a file 



Working with Images (continued) 

Image 

Draw Qpaque 

Qrid Settings ... 

Managing App Studio 
.window 

!:.ascade 

lile Horizontal 

Tile Yertical 

Arrange Icons 

Toolhar 

,Status Bar 

o 

Hide Qraphics Palette F2 

Show Qraphics F2 

Palette 

Hide !:.ontrol Palette F2 

Show !:.ontrol Palette F2 

Show ,£roperties SHIFT +F2 

Getting Online Help 
Help 

!:.ontents 

Search ... 

,Eroduct Support 

About App Studio ... 

Fl 

Chapter 10 App Studio Reference 149 

Use To 

Make background color opaque 

Show and hide pixel and tile grids; change grid 
dimensions 

Use To 

Arrange windows in overlapping pattern 

Arrange windows one above the other 

Arrange windows side-by-side 

Arrange icons along bottom of App Studio window 

Show or hide the toolbar 

Show or hide the status bar 

Hide the graphics palette 

Show the graphics palette 

Hide the control palette 

Show the control palette 

Show or hide the Properties window 

Use To 

Open the Help Contents screen 

Search for a keyword in Help 

Get information on product support 

Get information about your copy of App Studio 

Toolbar and Palette Reference 
This section describes the buttons and other controls on App Studio's toolbars, 
control bars, and palettes. 



150 App Studio User's Guide 

The App Studio Toolbar 
New menu Symbol Browser 

New icon ClassWizard 

New Cursor 

Save active file New dialog box New string table 

The Properties Window Toolbar 
Keep window visible 

Help on current page 

Current resource 

The Dialog Editor Toolbar 

Select Properties page 

:!: 

This toolbar appears at the top of a dialog editor window. 

Align 
bottom 

Align right 

Center horizontal 

Equal space vertical 

Same size horizontal 

Same size 

Center vertical 



Chapter 10 App Studio Reference 151 

The Graphics Editor Palette 
This palette appears when an image editor window is active. 

,----- Eraser 

Airbrush 
~_!ji~ Pencil 

Brush Color pickup 
Line Zoom 

Framed rectangle I '-=:I"::j::;;:I+-_F __ r.=..am-..:e-=.d-=.e......:"ip-=.s.:..-.e 
II • Framed rounded rectangle 

Filled rectangle -----n--.!~!-..r- Filled ellipse 

Filled rounded rectangle Color indicator 

Color palette 

ra . 
• • • 
/ / , 

" " , 

Option selector 

The Control Palette 

Pointer Irt 
11-..... - .. 1 

Static text A 
11-..... - .. 1 

G CJYZ 0 roup box 

Check box 

Combo Box 

Horizontal scroll bar I:!EI 

Static graphic 

Edit Box 

Pushbutton 

Radio button 

List Box 

Vertical scroll bar 

User-defined control if} 11::t:t::t:tlt- Grid (VBX control) 

The Icon Editing Toolbar 
This toolbar appears at the top of a image editor window that contains an icon. 

Select device 



152 App Studio User's Guide 

The Cursor Editing Toolbar 
This toolbar appears at the top of a image editor window that contains a cursor. 

Select device image Current hotspot coordinates 

::!: [jJ) Hotspot: 0.0 

Key Reference 
This section lists accelerator keys for common tasks. 

Managing Files 

Editing 

To 

Create a new file 

Create a new resource script 

Open a file 

Save the current resource script 

Save the resource script under a different 
name or as a different type 

To 

Undo an action 

Redo the last undo 

Delete to the Clipboard 

Copy to the Clipboard 

Paste from the Clipboard 

Delete 

View and change symbols 

Press 

CTRL+N 

Fll 

CTRL+O 

CTRL+S, SHIFf +F12 

F12 

Press 

CTRL+Z 

CTRL+A 

CTRL+X, SHIFf+DEL 

CTRL+C, CTRL+INS 

CTRL+V, SHIFT+INS 

DEL 

CTRL+I 



Creating and Editing Resources 
To 

Create a new resource 

Create a new resource in resource browser 
window, string editor, accelerator editor, 
Symbol Browser 

Create a resource of type currently 
highlighted in the resource browser window 

Create a new dialog box 

Create a new menu 

Create a new cursor 

Create a new icon 

Create a new bitmap 

Create a new string table 

Create a new accelerator table 

Delete a resource in resource browser 
window, string editor, accelerator editor, 
Symbol Browser 

Chapter 10 App Studio Reference 153 

Press 

CTRL+R 

ALT+N 

INS 

CTRL+l 

CTRL+2 

CTRL+3 

CTRL+4 

CTRL+5 

CTRL+6 

CTRL+7 

ALT+D 

Open an existing resource selected in the ENTER, ALT+P 

resource browser window 

Open a resource for binary editing CTRL+B 

Activate a resource's Properties window ALT+ENTER, ENTER 

Connect a user-interface objects to code CTRL+W 

(invoke ClassWizard) 

Test a dialog box CTRL+ T 

Open the Properties window and select Styles CTRL+Y 

property page 

Open the Properties window and select CTRL+E 

General property page 

Open the Properties window and select ID CTRL+Q 

control 



154 App Studio User's Guide 

Managing Windows 
To 

Hide or show the graphics palette or control 
palette 

Hide or show the Properties window 

Activate next window 

Activate previous window 

Close current window 

Activate the Properties window 

Activate resource browser window 

Scroll vertically 

Scroll horizontally 

Move resource browser window focus to the 
Resources box 

Move resource browser window focus to the 
Type box 

Shift resource browser window focus 
between Resources and Type boxes 

Using the Properties Window 

Press 

F2 

SHIFT+F2 

CTRL+F6,CTRL+TAB 

CTRL+SHIFT +F6, CTRL+SHIFT + TAB 

CTRL+F4 

ALT +ENTER, ALT +F6, ENTER (except in 
resource browser window) 

CTRL+F2 

PAGE UP, PAGE DOWN 

CTRL+PAGE UP, CTRL+PAGE DOWN 

RIGHT ARROW 

LEFT ARROW 

TAB, SHIFT+TAB 

To Press 

Activate Properties window ALT +ENTER 

Select next page PAGE DOWN 

Select previous page PAGE UP 

Move to next field TAB 

Move to previous field SHIFT + TAB 

Hide or show the Properties window SHIFT +F2 

Open the Properties window and select Styles CTRL+ Y 

property page 

Open the Properties window and select CTRL+E 

General property page 

Open the Properties window and select ID CTRL+Q 

control 

Accept changes ENTER 

Cancel change ESC 



Editing Graphics 
To 

Increase the magnification factor 

Decrease the magnification factor 

Use framed-rectangle tool 

Use filled-rectangle tool 

Use framed rounded-rectangle tool 

Use filled rounded-rectangle tool 

Use framed-ellipse tool 

Use filled-ellipse tool 

Use pencil tool 

Use eraser tool 

Use brush tool 

Use selection tool 

Use fill tool 

Use line tool 

Use airbrush tool 

Pick up color 

Increase brush size 

Decrease brush size 

Use single-pixel brush 

Flip along horizontal axis 

Flip along vertical axis 

Toggle background-color opacity 

Outline custom brush with foreground color 

Toggle pixel grid 

Zoom under cursor 

Use zoom tool 

Use custom brush 

Halve size of custom brush 

Double size of custom brush 

New device image for icons and cursors 

Move to next pane 

Move to previous pane 

Select previous foreground color 

Chapter 10 App Studio Reference 155 

Press 

> (SHIFI' +PERIOD) 

< (SHIFT +COMMA) 

R 

SHIFI'+R 

N 

SHIFI'+N 

E 

SHIFI'+E 

P 

SHIFI'+P 

D 

S 

F 

L 

A 

COMMA 

PLUS, EQUAL SIGN 

MINUS 

PERIOD 

X 

y 

o 

SHIFI'+O 

G 

M 

Z 

CTRL+B 

MINUS 

PLUS 

INS 

TAB,F6 

SHIFI'+TAB, SHIFI'+F6 



156 App Studio User's Guide 

Editing Graphics (continued) 

To 

Select next foreground color 

Select previous background color 

Select next background color 

Show or hide pixel grid 

Show or hide tile grid 

Using the Dialog Editor 
To 

Move to the next control 

Move to the previous control 

Move control right one DLU 

Move control left one DLU 

Move control up one DLU 

Move control down DLU 

Expand the selected control horizontally 

Contract the selected control horizontally 

Expand the selected control vertically 

Contract the selected control vertically 

Align selected controls along left edge 

Align selected controls along right edge 

Align selected controls along top edge 

Align selected controls along bottom edge 

Align selected controls horizontally on 
centerlines 

Align selected controls vertically on 
centerlines 

Center selected control vertically in dialog 
box 

Center selected control horizontally in dialog 
box 

Space selected controls evenly across 

Space selected controls evenly down 

Align buttons at right edge of dialog box 

Align buttons at bottom of dialog box 

Press 

G 

CTRL+G 

Press 

TAB 

SHIFT+TAB 

RIGHT ARROW 

LEFT ARROW 

UPARROW 

DOWN ARROW 

SHIFT +RIGHT ARROW 

SHIFT +LEFT ARROW 

SHIFT +DOWN ARROW 

SHIFT +UP ARROW 

CTRL+LEFT ARROW 

CTRL+RIGHT ARROW 

CTRL+UP ARROW 

CTRL+DOWN ARROW 

F9 

SHIFT+F9 

CTRL+F9 

CTRL+SHIFT +F9 

ALT +RIGHT ARROW 

ALT +DOWN ARROW 

CTRL+B 

CTRL+SHIFT +B 



Using the Dialog Editor (continued) 

To 

Make selected controls same width 

Make selected controls same height 

Make selected controls same height and 
width 

Size control to content 

Show or hide alignment grid 

Set tab order 

Using the Menu Editor 
To 

View menu as pop-up 

Insert empty menu at current location 

Delete menu item 

Using the String Editor 
To 

Find text 

Find next occurrence of text 

Add new string 

Delete current string 

Editing Resources as Binary Data 
To 

Move selection right 

Move selection left 

Move selection up 

Move selection down 

Move between hexadecimal and ASCII 
listings 

Getting Online Help 
To 

Open the Help Contents screen 

Chapter 10 App Studio Reference 157 

Press 

CTRL+MINUS 

CTRL+BACKSLASH 

CTRL+EQUAL 

F7 

CTRL+G 

CTRL+D 

Press 

CTRL+U 

INS 

DEL 

Press 

AL T +F3, CTRL+F 

F3 

INS 

DEL 

Press 

RIGHT ARROW 

LEFT ARROW 

UPARROW 

DOWN ARROW 

TAB 

Press 

Fl 





159 

CHAPTER 11 

Property Page Reference 

This chapter provides detailed information about each of the App Studio property 
pages. Property pages are displayed in the App Studio Properties window and are 
used to control the appearance and behavior of Windows resources. For more 
information about the App Studio Properties window and how to use it, see Chapter 
1, page 9. 

Resource Property Page 
The following properties are available in the Properties window when a resource is 
selected in the resource browser window but the editing window for that resource is 
not open, or when the editing window is open but minimized: 

ID 
The resource's identifier. Usually the resource ID is a symbol supplied by App 
Studio and defined in the .H file that App Studio creates as part of your project. 
(For string tables, the ID is always STRINGTABLE and cannot be modified.) 
Type: Symbol, Integer, or Quoted String. 

Preload 
Determines if the resource is loaded when the application starts up (True) or is 
not loaded until it is called (False). Equivalent to the PRELOAD and 
LOADONCALL resource compiler statements. Type: Bool. Default: False. 

Moveable 
Permits the resource to be moved to compact memory if necessary (True), or 
causes it to remain at a fixed memory location. Equivalent to the MOVABLE 
and FIXED resource compiler statements. Type: Bool. Default: True. 

Discardable 
Allows the resource to be purged from memory if no longer needed. When the 
resource is needed again, it is loaded from disk. Type: Bool. Default: True. 



160 App Studio User's Guide 

Pure 
Prevents the resource from being dynamically modified by the application at run 
time if set to True. If Pure is False, your application cannot have more than one 
instance running at a time. Has no effect for standard resource types in 
Microsoft Foundation Class Library applications. Made available for user 
resource types and backward compatibility with real-mode applications. Type: 
Bool. Default: True. 

Bitmaps, icons, and cursors also have the following fields in the Resource property 
page: 

Filename 
The name of the file containing the bitmap, icon, or cursor resource. 

Preview 
A box showing what the bitmap, icon, or cursor looks like. Useful for browsing 
through graphics resources without opening them. 

Accel Table: Accel Properties - General 
ID 

The resource's identifier. Usually the resource ID is a symbol supplied by App 
Studio and defined in the .H file that App Studio creates as part of your project. 
Type: Symbol or Integer. 

Key 
The accelerator key. Can be one of the following (see Chapter 5, page 73, for 
more information): 

• Integer-Range 0 to 255. Interpreted as ASCII or virtual-key value, 
depending on the Type property. Single digits are interpreted as a key value. 
To enter an ASCII value from 0 to 9, precede the number with two zeros (for 
example, 006). 

• Character-Single character optionally preceded by 1\ to signify a control 
character. 

• Virtual key identifier-Anyone of the virtual-key identifiers in the drop­
down list. 

Modifiers 
Indicate whether the accelerator is a combination formed with Ctrl, Alt, or Shift. 
When the key is an ASCII key, Ctrl and Shift are not available. Type: Bool. 
Defaults: Ctrl is True, Alt and Shift are False. 

Type 
Specifies whether the Key property is an ASCII value or a virtual key (VirtKey) 
value. 



Chapter 11 Property Page Reference 161 

Next Key Typed 
When you choose this command, the next key combination typed changes the 
Key and Modifiers values appropriately. The key is always interpreted as a 
virtual key if possible. 

Bitmap Properties - General 
ID 

The resource's identifier. Usually the resource ID is a symbol supplied by App 
Studio and defined in the .H file that App Studio creates as part of your project. 
Type: Symbol, Integer, or Quoted String. 

Filename 
The name of the file containing the bitmap resources. 

Width 
Image width in pixels. Type: Integer. Default: 48. 

Height 
Image height in pixels. Type: Integer. Default: 48. 

Colors 
Monochrome (2) or 16. The number of colors in a bitmap is determined by the 
current display device. 

Save Compressed 
Saves the image in compressed format to save space; useful for large bitmaps. 
Only color bitmaps can be compressed. Type: Bool. Default: False. 

Cursor Properties - General 
ID 

The resource's identifier. Usually the resource ID is a symbol supplied by App 
Studio and defined in the .R file that App Studio creates as part of your project. 
Type: Symbol, Integer, or Quoted String. 

Filename 
The name of the file containing the cursor resource. 

The following properties are displayed only and cannot be modified on the property 
page: 

Width 
Image width in pixels. This property is determined by the target-device 
definition selected by the user. 

Height 
Image height in pixels. This property is determined by the target-device 
definition selected by the user. 



162 App Studio User's Guide 

Hotspot 
Location of the cursor's active area. In pixels, relative to the upper-left comer 
(0,0). Set with the Set Hotspot command on the Image menu. 

Dialog Properties- General 
ID 

The resource or resource object's identifier. Usually the resource ID is a symbol 
supplied by App Studio and defined in the .H file that App Studio creates as part 
of your project. Type: Symbol, Integer, or Quoted String. 

Caption 
The text that appears as part of the dialog box to label it. Default: A name based 
on the type of resource (in this case, "Dialog") plus a number based on the 
resource identifier assigned by App Studio. 

FontName 
The typeface of the font that will be used in all the controls in the dialog box. 
The bold version of the typeface is always used. Change this value by choosing 
the Font command in the lower-left comer of the property page. Default: MS 
Sans Serif. 

Font Size 
The point size of the font that will be used in all the controls in the dialog box. 
Default: 8 points. Change this value by choosing the Font command in the 
lower-left comer of the property page. 

Font 
Choose the Font command to change the typeface or size of the dialog-box font. 

Menu 
Contains the resource identifier of the menu used in the dialog box, if any. Type: 
Resource identifier. Default: None. 

XPos 
The x-coordinate, in dialog box units (DLUs), of the upper-left comer of the 
dialog box. Type: Integer. 

YPos 
The y-coordinate, in DLUs, of the upper-left comer of the dialog box. Type: 
Integer. 

Registered Class 
Identifier of a registered dialog class (a Windows operating system window 
class, not to be confused with a C++ class). Provided to support C programming. 
If you are using a resource file with Microsoft Foundation Class Library 
support, this option is disabled. Type: Integer or String. String must be in double 
quotes. Default: None. 



Chapter 11 Property Page Reference 163 

Dialog Properties - Styles 
Style 

One of the following: 

• Overlapped-Creates an overlapped window. An overlapped window is 
always a top-level window and should have a caption and a border. 

• Popup (Default)-Creates a pop-up window. 

• Child - Creates a child window. 

Border 
One of the following: 

• None-No border. A title bar is not available. 

• Thin-A thin border. 

• Resizing-Creates a thick border that can be used to resize the dialog box. 

• Dialog Frame (Default)-A dialog-box border. 

Minimize Box 
Creates a minimize box for the dialog box. Disabled if there is no title bar. 
Type: Bool. Default: False. 

Maximize Box 
Creates a maximize box for the dialog box. Disabled if there is no title bar. 
Type: Bool. Default: False. 

Titlebar 
Creates a title bar for the dialog box. Disabled if the dialog box has no border. 
Type: Bool. Default: True. 

System Menu 
Creates a system menu for the dialog box. Disabled if there is no title bar. Type: 
Bool. Default: True. 

Horiz. Scroll 
Creates a horizontal scroll bar for the dialog box. Type: Bool. Default: False. 

Vert. Scroll 
Creates a vertical scroll bar for the dialog box. Type: Bool. Default: False. 

Clip Siblings 
Clips child windows relative to each other; that is, when a particular child 
window is repainted, this style clips all other top-level child windows out of the 
region of the child window to be updated. If Clip Siblings is False and child 
windows overlap, it is possible, when drawing in the client area of a child 
window, to draw in the client area of a neighboring child window. For use with 
child windows only. Type: Bool. Default: False. 



164 App Studio User's Guide 

Clip Children 
Excludes the area occupied by child windows when drawing within the parent 
window. Used when creating the parent window. Do not use this style if your 
dialog box contains a group box. Type: Bool. Default: False. 

System Modal 
Creates a system-modal dialog box. A system-modal dialog box prohibits 
switching to another window or program while the dialog box is active. Type: 
Bool. Default: False. 

Absolute Align 
Determines whether the dialog box is aligned relative to the screen or relative to 
its parent window. If True, the dialog is displayed at coordinates relative to the 
upper-left comer of the screen. Type: Bool. Default: False. 

NoIdleMsg 
Suppresses the WM_ENTERIDLE message ordinarily sent to a dialog box's 
owner when no more messages are waiting in its message queue. Type: Bool. 
Default: False. 

LocalEdit 
Specifies that edit -box controls in the dialog box will use memory in the 
application's data segment. Normally all edit-box controls in dialog boxes use 
memory outside the application's data segment. Type: Bool. Default: False. 

Visible 
Specifies that the dialog box is visible when first displayed. Set this property to 
False for form views and dialog-bar template resources. Type: Bool. Default: 
True. 

Disabled 
Creates a dialog box that is initially disabled. Type: Bool. Default: False. 

Dialog: Check Box Properties - General 
ID 

The resource's identifier. Usually the resource ID is a symbol supplied by App 
Studio and defined in the .R file that App Studio creates as part of your project. 
Type: Symbol or Integer. 

Caption 
The text that appears as part of the control to label it. To make one of the letters 
in the caption of a control the mnemonic key, precede it with an ampersand (&). 
Default: A name based on the type of control (for example, "Check") plus a 
number based on the resource identifier assigned by App Studio. 

Visible 
Determines whether or not the control is visible when the application is first run. 
Type: Bool. Default: True. 



Chapter 11 Property Page Reference 165 

Disabled 
Detennines if the resource is displayed as disabled when the dialog box is 
created. Type: Bool. Default: False. 

Group 
Specifies the first control of a group of controls in which the user can move from 
one control to the next by using the arrow keys. All controls in the tab order 
after the first control with the Group property set to False belong to the same 
group. The next control in the tab order with Group set to True ends the first 
group of controls and starts the next group. Type: Bool. Default: False. 

Tab stop 
Specifies that the user can move to this control with the TAB key. Type: Bool. 
Default: True. 

Auto 
Creates a check box that, when selected, automatically toggles between checked 
and unchecked states. You must set this property to True if you are using a 
group of check boxes with Dialog Data Exchange (see page 121). Type: Bool. 
Default: True. 

Left Text 
Positions the check box's caption text to the left instead of to the right. Type: 
Bool. Default: False. 

Tri-State 
Creates a three-state check box. A three-state check box can be grayed as well 
as checked or not checked. A grayed check box indicates that the state 
represented by the control is undetermined. Type: Bool. Default: False. 

Dialog: Combo Box Properties - General 
For a description of the following properties see Dialog: Check Box Properties­
General on page 164: 

ID 
Caption 
Visible 
Disabled 
Group 
Tab stop 

Combo boxes have an additional property: 

Enter list choices 
Contains the choices you want to appear in the combo box when the dialog is 
created. Press CTRL+ENTER at the end of each item in the list to move to the next 
line. This property is only available in resource files with Microsoft Foundation 
Class Library support. 



166 App Studio User's Guide 

Dialog: Combo Box Properties - Styles 
Type 

Specifies the type of combo box. Can have one of the following values: 

• Simple-Creates a simple combo box that combines an edit-box control 
with a list control. The list is displayed at all times, and the current selection 
in the list is displayed in the edit-box control. 

• Dropdown (Default)-Creates a drop-down combo box. Same as a simple 
combo box, except the list is not displayed unless the user clicks a drop­
down arrow at the right of the edit-box control portion of the combo box. 

• Drop List-Similar to the drop-down style, but the edit-box control is 
replaced by a static-text item that displays the current selection in the list. 

For a description of the following styles see Dialog: Edit Box Properties-Styles 
(following) and Dialog: List Box Properties-Styles (page 169): 

Owner Draw 
Has Strings 
Sort 
Vert. Scroll 
No Integral Height 
Auto HScroll 
Disable No Scroll 
OEM Convert 

Dialog: Edit Box Properties-General 
For a description of the following properties see Dialog: Check Box Properties­
General on page 164: 

ID 
Visible 
Disabled 
Group 
Tabstop 

Dialog: Edit Box Properties-Styles 
Align Text 

Text aligns left, centered, or right. In a multiline edit box, text is always aligned 
left. Default: Left. 

Multiline 
Creates a multiline edit-box control. 



Chapter 11 Property Page Reference 167 

When the multiline edit-box control is in a dialog box, the default response to 
pressing the ENTER key is to activate the default button. 

If AutoHScroll is selected, the multiline edit-box control automatically scrolls 
horizontally when the caret goes past the right edge of the control. To start a 
new line, the user must press ENTER. If AutoHScroll is not selected, the control 
automatically wraps words to the beginning of the next line when necessary. A 
new line is also started if the user presses ENTER, providing the Want Return 
property is set. The position of the wordwrap is determined by the window size. 
If the window size changes, the wordwrap position changes and the text is 
redisplayed. 

Multiline edit-box controls can have scroll bars. An edit-box control with scroll 
bars processes its own scroll-bar messages. Edit-box controls without scroll 
bars scroll as described in the previous paragraph. They also process any scroll 
messages sent by the parent window. Type: BOOL. Default: False. 

Horiz. Scroll 
Provides a horizontal scroll bar for a multiline control. Type: Bool. Default: 
False. 

Auto HScroll 
Automatically scrolls text to the right when the user types a character at the end 
of the line. Type: Bool. Default: True. 

Vert. Scroll 
Provides a vertical scroll bar for a multiline edit-box control. Type: Bool. 
Default: False. 

Auto VScroll 
In a multiline control, automatically scrolls text up one line when the user 
presses ENTER on the last line. Type: Bool. Default: False. 

Password 
Displays all characters as an asterisk (*) as they are typed into the edit-box 
control. Not available in multiline controls. Type: Bool. Default: False. 

No Hide Sel 
Changes the way text is displayed when an edit box loses and regains focus. 
Normally, existing text in an edit box is hidden when the control loses focus and 
is displayed as inverted text when the control regains focus. If NoHideSel is set 
to True, selected text in a edit box is displayed as selected at all times. Type: 
Bool. Default: False. 

OEM Convert 
Converts text entered in the edit-box control from the Windows character set to 
the OEM character set and then back to the Windows set. This ensures proper 
character conversion when the application calls the AnsiToOem function to 
convert a Windows string in the edit-box control to OEM characters. This style 
is most useful for edit-box controls that contain filenames. Type: Bool. Default: 
False. 



168 App Studio User's Guide 

Want Retum 
Specifies that a carriage return be inserted when the user presses the ENTER key 
while entering text into a multiline edit-box control in a dialog box. If this style 
is not specified, pressing the ENTER key has the same effect as pressing the 
dialog box's default pushbutton. This style has no effect on a single-line edit-box 
control. Type: Bool. Default: False 

Border 
Creates a border around the edit box. Type: Bool. Default: True. 

Uppercase 
Converts all characters to uppercase as they are typed into the edit box. Type: 
Bool. Default: False. 

Lowercase 
Converts all characters to lowercase as they are typed into the edit box. Type: 
Bool. Default: False. 

Read Only 
Prevents the user from typing or editing text in the edit box. Type: Bool. 
Default: False. 

Dialog: Group Box Properties - General 
For a description of the following properties see Dialog: Check Box Properties­
General on page 164: 

ID 
Caption 
Visible 
Disabled 
Group 
Tabstop (Default: False) 

Dialog: List Box Properties - General 
For a description of the following properties see Dialog: Check Box Properties­
General on page 164: 

ID 
Visible 
Disabled 
Group 
Tabstop 



Chapter 11 Property Page Reference 169 

Dialog: List Box Properties - Styles 
Selection 

Detennines how items in a list box can be selected. Possible values are as 
follows: 

• Single (default)-Only one item in a list box can be selected at a time. 

• Multiple-More than one list-box item can be selected, but the SHIFT and 
CTRL keys have no effect. Clicking or double-clicking an unselected item 
selects it. Clicking or double-clicking a selected item deselects it. 

• Extended-The SHIFf and CTRL keys can be used together with the mouse to 
select and deselect list-box items, select groups of items, and select non­
adjacent items. 

Owner Draw 
Controls the owner-draw characteristics of the list box. Can be one of the 
following values: 

• No (default)-Turns off the owner-draw style. The list box contains strings. 

• Fixed-Specifies that the owner of the list box is responsible for drawing its 
contents and that the items in the list box are the same height. 

CWnd::OnMeasureltem is called when the list box is created and 
CWnd::OnDrawItem is called when a visual aspect of the list box has 
changed. 

• Variable-Specifies that the owner of the list box is responsible for drawing 
its contents and that the items in the list box are variable in height. 

CWnd::OnMeasureItem is called for each item in the list when the list box 
is created and CWnd::OnDrawItem is called when a visual aspect of the 
list box has changed. 

Has Strings 
Specifies that an owner-draw list box contains items consisting of strings. The 
list box maintains the memory and pointers for the strings so the application can 
use the LB _ GETTEXT message to retrieve the text for a particular item. By 
default, all list boxes except owner-draw list boxes have this style. An 
application can create an owner-draw list box either with or without this style. 

This style is only available if the Owner Draw property is set to either Fixed or 
Variable. If Owner Draw is set to No, the list box contains strings by default. 
Type: BooL Default: True. 

Border 
Creates a list box with a border. Type: BooL Default: True. 

Sort 
Sorts the contents of the list box alphabetically. Type: BooL Default: True. 



170 App Studio User's Guide 

Notify 
Notifies the parent window if a list item has been clicked or double-clicked. 
Type: Bool. Default: True. 

Multicolumn 
Specifies a multicolumn list box that is scrolled horizontally. The 
LB _ SETCOLUMNWIDTH message sets the width of the columns. Type: 
Bool. Default: False. 

Horiz. Scroll 
Creates a list box with a horizontal scroll bar. Type: Bool. Default: False. 

Vert. Scroll 
Creates a list box with a vertical scroll bar. Type: Bool. Default: True. 

No Redraw 
Specifies that the list box's appearance is not updated when changes are made. 
This style can be changed at any time by sending a WM _SETREDRA W 
message or by calling CWnd::SetRedraw. Type: Bool. Default: False. 

Use Tabstops 
Allows a list box to recognize and expand tab characters when drawing its 
strings. The default tab positions are 32 dialog box units. Type: Bool. Default: 
False. 

Want Key Input 
Specifies that the owner of the list box receives WM _ VKEYTOITEM or 
WM _ CHARTOITEM messages whenever the user presses a key and the list 
box has the input focus. This allows an application to perform special processing 
on the keyboard input. If a list box uses the Has Strings style, the list box 
receives WM_ VKEYTOITEM messages. If a list box does not use the Has 
Strings style, it receives WM _ CHARTOITEM messages. Type: Bool. Default: 
False. 

Disable No Scroll 
Shows a disabled vertical scroll bar in the list box when the box does not 
contain enough items to scroll. Without this style, the scroll bar is hidden when 
the list box does not contain enough items. Type: Bool. Default: False. 

No Integral Height 
Specifies that the size of the list box is exactly the size specified by the 
application when it created the list box. Normally, Windows sizes a list box so 
that the list box does not display partial items. Type: Bool. Default: True. 

Dialog: Picture Properties - General 
For a description of the following properties see Dialog: Check Box Properties­
General on page 164: 

ID 
Visible 



Disabled 
Group 
Tabstop (Default: False) 

Chapter 11 Property Page Reference 171 

Static graphics have additional general properties: 

Type 
Sets the type of static graphic to display. One of the following: 

• Frame (Default)-Displays a frame. You set the color of the frame in the 
Color box. Use a frame to visually group controls. 

• Icon - Displays an icon in the dialog box. Use the Icon box to specify the 
identifier of the icon you want to display. 

• Rectangle-Displays a filled-in rectangle. You set the color of the rectangle 
in the Color box. 

Icon 
Sets the resource identifier of the icon to be displayed. 

Color 
Sets the color of a frame or rectangle to black, white, or gray. This property is 
not available when the picture type is icon. Default: Black. 

Dialog: Pushbutton Properties - General 
For a description of the following properties see Dialog: Check Box Properties­
General on page 164: 

ID 
Caption 
Visible 
Disabled 
Group 
Tabstop 

Pushbuttons have additional general properties: 

Default Button 
If True, the control is the default button in the dialog box. The default button is 
selected (drawn with a heavy black border) when the dialog box first appears 
and is executed if the user presses ENTER without choosing another command in 
the dialog box. Windows allows only one default button in a dialog box. Type: 
Bool. Default: False. 



172 App Studio User's Guide 

Owner Draw 
Creates an owner-draw button. Use an owner-draw button when you need to 
customize the appearance of a control by providing your own OnDrawItem 
message handler in the owner-window procedure (usually a dialog-box 
procedure or class derived from the Microsoft Foundation classes CDialog or 
CForm View). You can also derive your own class from CButton and override 
CButton::Drawltem. See CWnd::OnDrawltem and CButton::OnDraw in 
the Class Library Reference for more information. 

This property must be set to define a bitmap button in a dialog box using the 
CBitmapButton class. Type: Bool. Default: False 

Dialog: Radio Button Properties - General 
For a description of the following properties see the Dialog: Check Box Properties 
-General on page 164: 

ID 
Caption 
Visible 
Disabled 
Group 
Tabstop (Default: False) 

Radio buttons also have additional general properties: 

Auto 
When the user selects a radio button with this property, the radio button is 
automatically selected and any other radio buttons in the same group are cleared 
(deselected). You must set this property to True if you are using a group of 
check boxes with Dialog Data Exchange (see page 121). Type: Bool. Default: 
True. 

Left Text 
Places the radio button's caption text on the left rather than the right. Type: 
Bool. Default: False. 

Dialog: Scrollbar Properties - General 
For a description of the following properties see the Dialog: Check Box Properties 
-General on page 164: 

ID 
Visible 
Disabled 
Group 
Tabstop (Default: False) 



Chapter 11 Property Page Reference 173 

Scroll bars have an additional general property: 

Align 
One of the following values: 

• None (Default)-No special alignment is performed. The size of the scroll 
bar is the size specified in App Studio. 

• Top!Left-Aligns the upper-left comer of the scroll bar with the upper-left 
comer of the containing window specified in App Studio. 

• Bottom/Right-Aligns the lower-right comer of the scroll bar with the 
lower-right comer of the containing window specified in App Studio. 

Dialog: Text Properties - General 
For a description of the following properties see Check Box Properties-General 
on page 164: 

ID 
Caption 
Visible 
Disabled 
Group (Default: True) 
Tabstop (Default: False) 

Static text controls have additional general properties: 

No Prefix 
Prevents ampersands (&) in the control's text from being interpreted as the 
mnemonic character. Normally a string containing an ampersand is displayed 
with the ampersand removed and the next character in the string underlined. The 
No Prefix style is most often used when filenames or other strings that may 
contain an ampersand need to be displayed. 

No Wrap 
Displays text left-aligned. Tabs are expanded but words are not wrapped. Text 
that extends past the end of a line is clipped. Type: Bool. Default: False. 

Simple 
Disables No Wrap and Text Align. Text in static text controls with this property 
set does not wrap and is not clipped. In addition, setting this property means that 
overriding WM _ CTLCOLOR in the parent window has no effect on the 
control. Type: Bool. Default: False. 

Text Align 
Controls how text is aligned in the static-text control. Possible values are Left, 
Center, and Right. Set to Left when No Wrap is selected. Default: Left. 



174 App Studio User's Guide 

Dialog: User Control Properties - General 
For a description of the following properties see Dialog: Check Box Properties­
General on page 164: 

ID 
Caption 
Visible 
Disabled 
Group 
Tabstop 

User-defined controls have additional general properties: 

Class 
The name of the control's Windows class. This class must be registered before 
the dialog box containing the control is created. 

Style 
A 32-bit hexadecimal value specifying the control's style, primarily used to edit 
the lower 16 bits that make up a user control's sub-style. 

Dialog: vex Control Properties - General 
For a description of the following properties see Dialog: Check Box Properties­
General on page 164: 

ID 
Caption 
Visible 
Disabled 
Group 
Tabstop 

Dialog: vex Control Properties - Styles 
See page 57 for a description of how to use the VBX control Styles property page. 
For information about specific VBX control styles, see the documentation for that 
VBX control. 



Chapter 11 Property Page Reference 175 

Icon Properties - General 
ID 

The resource or resource object's identifier. Usually the resource ID is a symbol 
supplied by App Studio and defmed in the .H file that App Studio creates as part 
of your project. Type: Symbol, Integer, or Quoted String. 

Filename 
The name of the file containing the icon resource. 

The following properties are displayed only and cannot be modified on the property 
page: 

Width 
Image width in pixels. This property is determined by the currently selected 
target -device definition. 

Height 
Image height in pixels. This property is determined by the currently selected 
target-device definition. 

Colors 
Monochrome (2) or 16. This property is determined by the currently selected 
target -device definition. 

Menu Properties - General 
ID 

The resource or resource object's identifier. Usually the resource ID is a symbol 
supplied by App Studio and defined in the .H file that App Studio creates as part 
of your project. Type: Symbol, Integer, or Quoted String. 

Menu: Menu Item-General 
ID 

The resource's identifier. Usually the resource ID is a symbol supplied by App 
Studio and defined in the .H file that App Studio creates as part of your project. 
Type: Symbol or Integer. 

Caption 
The text that appears as part of the menu item to label it. To make one of the 
letters in the caption of a menu item the mnemonic key, precede it with an 
ampersand (&). 

Separator 
If True, the menu item is a separator. Type: Bool. Default: False. 

Checked 
If True, the menu item is initially checked. Type: Bool. Default: False. 



176 App Studio User's Guide 

Popup 
If True, the menu item is a pop-up menu (a submenu). Type: Bool. Default: True 
for top-level menu items in a menu bar; otherwise False. 

Grayed 
If True, the menu item is initially grayed and inactive. Type: Bool. Default: 
False. 

Inactive 
If the Grayed property is True, then the Inactive property is always True. 
Otherwise Inactive determines whether the menu item is initially inactive. Type: 
Bool. Default: False. 

Help 
Right justifies the menu item in the menu bar at run time. Type: Bool. Default: 
False. 

Break 
Can be one of these values: 

• None (Default)-No break 

• Column-For static menu-bar items, places the item on a new line. For pop­
up menus, places the item in a new column with no dividing line between the 
columns. Setting this property affects the appearance of the menu only at run 
time, not in the menu editor. 

• Bar-Same as Column except, for pop-up menus, separates the new column 
from the old column with a vertical line. Setting this property affects the 
appearance of the menu only at run time, not in the menu editor. 

Prompt 
Contains text to appear in the status bar when this menu item is highlighted. The 
text entered here is placed in the string table with the same identifier as the 
menu item. Available only in resource files with Microsoft Foundation Class 
Library support. 

String Editor: String Properties - General 
ID 

The resource or resource object's identifier. Usually the resource ID is a symbol 
supplied by App Studio and defined in the .H file that App Studio creates as part 
of your project. Type: Symbol or Integer. 

Caption 
A string of up to 255 bytes (single characters, escape sequences, or ASCII 
values). See page 79 for more information about entering escape sequences 
and ASCII values as part of the string. Type: Text. 



Appendix 

Appendix A APPSTUDIO.INI Settings ........................... 179 





APPENDIX A 

APSTUDIO.lNI Settings 

APSTUDIO.INI, App Studio's initialization file, is a text file containing 
information that App Studio retains from one session to another. Most of the 
settings are "read-write": App Studio reads them at startup and writes them at the 
end of the session if they have changed. Other settings are "read-only": App Studio 
reads them at startup but never writes them. You edit APSTUDIO.INI by hand to 
create or change these settings. This appendix describes the read-only settings you 
can use to customize App Studio's behavior. Section labels divide APSTUDIO.INI 
into sections. Each section contains one or more entries consisting of an entry name, 
an equal sign, and a string: 

[Section Label] 
EntryName=String 
AnotherEntry=AnotherString 

Each part of this appendix shows both the section label and the entry. 

Setting the Default .RC File Type 
[General] 
UseMFC=Bool 

This entry is equivalent to the Use Microsoft Foundation Classes check box in the 
New dialog box. If Baal is 1, the check box is checked by default; if Baal is 0, the 
check box is cleared by default. If the check box is checked, App Studio creates a 
resource script (.RC) file that supports Microsoft Foundation Class Library features 
such as Class Wizard and VBX controls. If the check box is cleared, App Studio 
creates a standard resource script (.RC) file. 

Setting the Number of Undo Levels 
[General] 
UndoLevels=leve Is 



180 App Studio User's Guide 

The number of undo operations is limited to the number specified by levels. If this 
entry does not appear in APSTUDIO.INI, the default of 10 is used. 

Using Default Dialog-Box Buttons 
[Dialog Editor] 
InitialButtons=Bool 

If Bool is 1, dialog-box templates are created with the OK and Cancel buttons. If 
Bool is 0, they are not. 

Setting the Default Magnification Factor 
[Graphics Editor] 
DefaultZoom=int 

Sets the default value for the ratio of magnified and actual-size views in the image 
editor window. The range is 2 to 10. If this entry does not appear in 
APSTUDIO.INI, the default of 6 is used. 

Describing Cursor Devices 
[Cursor Devices] 
name=colors[,]width[,]height 

Specifies the names of display devices and the attributes of their corresponding 
cursor images. The name of the device is specified by name. It appears in the New 
Cursor Image dialog box when you add an image to a cursor. The colors, width, 
and height entries specify the number of colors supported by the device (subject to 
App Studio's limit of 16 colors) and the image size in pixels. Windows currently 
supports only monochrome cursors. 

Describing Icon Devices 
[Icon Devices] 
name=colors[,]width[,]height 

Specifies the names of display devices and the attributes of their corresponding icon 
images. The name of the device is specified by name. It appears in the New Cursor 
Image dialog box when you add an image to a cursor. The colors, width, and height 
entries specify the number of colors supported by the device (subject to App 
Studio's limit of 16 colors) and the image size in pixels. 



Index 

A 
Absolute Align (Dialog Box Styles properties) 164 
Acce1 Table, Acce1 Properties 160 
Accelerator keys 

See also Accelerator table 
adding 71 
copying 72 
deleting 72 
key name in menu caption 67, 74 
menu item, associating with 73-74 
moving 72 
properties 

defining 72-73 
editing 72-73 

values 73 
Accelerator keys, App Studio (Quick Reference) 

binary editing 157 
creating and editing resources 153 

editing dialog boxes 156 
graphics 155 
menus 157 
string tables 157 

managing 
App Studio windows 154 
files 152 

online help 157 
Properties window 154 

Accelerator table See also Accelerator Keys 
creating new 69 
defined 17, 69 
editing 70-72 
editor window 

described 70 
illustrated 12,71 

empty tables deleted 70 
General properties 160 
opening 70 
Quick reference to tasks 144 
See also Accelerator Keys 

Accelerator table properties 
ID 160 
Key 160 
Modifiers 160 
Next Key Typed 161 

Accelerator table properties (continued) 
property page reference 160 
Type 160 

Add Member Variable dialog box See ClassWizard 
Adding 

accelerator keys 71 
class, with Class Wizard 114-116 
controls 42--44 
custom colors 108-109 
strings in string table 77-78 
VBX controls to control palette 55 

Airbrush tool 
changing size of 87 
drawing with 86-87 

Align (Scrollbar properties) 173 
Align Text (Edit Box Styles properties) 166 
Aligning controls 

on center 53 
overview 52 
procedure 52-54 

App Studio 
basic concepts 4 
binary data, editing 111 
converting files to 24-25 
opening resource files from 24 
overview 3 
Properties window 9 
Quick reference to tasks 145 
starting 4 

App Studio toolbar 
Class Wizard 119 
New Accelerator Table 69 
New Bitmap 84 
New Cursor 84 
New File 23 
New Icon 84 
New String Table 76 
new-resource buttons 6 
Quick reference 150 
Redo 9 
Symbol Browser 34 
Undo 9 

.APS file 
defined 22 

APSTUDIO.INI 
CursorDevices section 102-103 
IconDevices section 102-103 
overview 179 
UndoRedo section 8 

181 



182 Index 

APSTUDIO.INI (continued) 
U seMfc section 23 
VBX control information 55 

Areas, filling 88 
Arranging 

Controls 51-54 
pushbuttons 54 

ASCII characters, adding to a string 79 
Auto 

Check Box properties 165 
Radio Button properties 172 

Auto HScroll 
Combo Box Styles properties 166 
Edit Box Styles properties 167 

Auto VScroll, Edit Box Styles properties 167 

B 
Background color (graphics) 86 
Backgrounds, opaque or transparent (graphics) 92-93 
Binary data 

opening a resource for editing 111 
overview 111 
using the binary data editor window 112 

Bitmap properties 
Colors 161 
Filename 161 
Height 161 
ID 161 
property page reference 161 
Save Compressed 161 
Width 161 

Bitmap resource, defined 18 
Bitmaps 

See also Graphics 
Colors (Quick Reference) 143 
editing 142 
General properties 161 

Bitmaps, toolbar 
editing 104-107 
overview 104 

.BMPfile 
exporting 28 
importing 28 

Border 
Dialog Box Styles properties 163 
Edit Box Styles properties 168 
List Box Styles properties 169 

Break (Menu Item properties) 176 
Browser, Symbol See Symbol Browser 
Browsing 

graphics, with resource browser window 84 
resources 5-6 

Brush tool 
changing size of 87 
drawing with 86-87 
single pixel 87 

Brush, custom 
creating 93 
using 94 

Buttons, toolbar 
editing 106-107 
overview 104-105 

c 
Calculated symbols, including 29-30 
Caption 

Check Box properties 164 
Combo Box General properties 165 
Dialog Box General properties 162 
Group Box properties 168 
Menu item properties 175 
Pushbutton properties 171 
Radio Button properties 172 
String properties 176 
Text properties 173 
User Control properties 174 
VBX Control General properties 174 

Cascading menu, creating 64 
CDialog class 115 
Centering controls in a dialog box 53 
CFormView class 115 
Changed source code 

Class Wizard, updating for 131 
rebuilding ClassWizard file 132-133 

Changing 
color palette 108 
graphics properties 85 
name of RESOURCE.H 29 
symbol header file name 29 
symbol numerical value 33-34 
symbol or symbol name 32 
unassigned symbols 35 

Characters, adding ASCII or special characters to a string 79 
Check Box properties 

Auto 165 
Caption 164 
Disabled 165 
Group 165 
ID 164 
Left Text 165 
property page reference 164 
Tabstop 165 
Tri-State 165 
Visible 164 



Checked (Menu Item properties) 175 
Class (User Control properties) 174 
Class Library version 1 programs, updating for use with 

ClassWizard 133 
Classes 

CDialog 115 
CFormView 115 
Class Wizard, types created in 114 
creating new in Class Wizard 115-116 
deleting in Class Wizard 131 
importing in Class Wizard 117 
moving in ClassWizard 132 
renaming in ClassWizard 132 

Class Wizard 
.CLW file 

defined 22,131 
rebuilding 132 

Add Member Variable dialog box 
illustrated 122 
Property box 122 
Variable Type box 122 

adding a new class 114-116 
App Studio toolbar button 115 
classes, types created in 114 
comments 116, 133 
defined 113 
Edit Code command 120 
Edit Member Variables dialog box 122 
example 125 
how it works 113 
importing a class 117 
overview 113-114 
Repair Class Information dialog box 131 
updating 131 
updating code for use with 133 
what it modifies 116 
what it's used for 113 

Clearing selected area of graphic 91 
Clip Children (Dialog Box Styles properties) 164 
Clip Siblings (Dialog Box Styles properties) 163 
Clipboard, pasting from, graphics editor 91 
Closed figures, drawing 87-88 
.CLW file 131 

defined 22 
rebuilding 132 

Code 
editing from ClassWizard 120-121 
updating for use with ClassWizard 133-134 

Color 
adding custom 108-109 
changing 108 

changing number of, graphics editor 96 
editing 107-109 
inverse 

Color (continued) 
inverse (continued) 

changing 104 
drawing with 103-104 
using 93 

palettes, saving or loading 110 
picking up 89 
screen 

changing 104 
drawing with 103-104 

selecting 86 
transferring 89 

Color (Picture properties) 171 
Colors 

Bitmap properties 161 
Icon properties 175 

Combo box 
drop-down arrow 48 
drop-downs, sizing 47-48 

Combo Box General properties 
Caption 165 
Disabled 165 
Enter List Choices 165 
Group 165 
ID 165 
property page reference 165 
Tabstop 165 
Visible 165 

Combo Box Styles properties 
Auto HScroll 166 
Combo Box Styles properties 166 
Disable No Scroll 166 
Has Strings 166 
No Integral Height 166 
OEM Convert 166 
Owner Draw 166 
property page reference 166 
Sort 166 
Type 166 
Vert. Scroll 166 

Comments 
in .RC files 25 
used by ClassWizard 116, 133 

COMMON.RES 
described 19 
using 19 

Compiler directives 
including 31 
limits on 25 
using 30-31 

Index 183 

Conditional compilation statements, limits on 25 
Control bar quick reference 149 
Control, dominant 

changing 51 



184 Index 

Control, dominant (continued) 
defined 51 
effect on aligning 52-54 

Control palette 
hiding 43 
Quick reference 151 
showing 43 

Controls 
adding 

alternate methods 43 
by drawing 44 
introduction 42 
with drag and drop 43 
with point and click 43 

aligning 
on center 53 
overview 52 
procedure 52-54 

arranging 51-54 
centering in dialog box 53 
copying 46 
deleting 46 
making the same size, height, or width 54 
mnemonic 

defining 50 
for controls with a caption 50 
for controls without a caption 50 

moving 
between dialog boxes 46 
one DLU at a time 46 
overview 46 
within a dialog box 46 

placing 
by drawing 44 
with drag and drop 43 
with point and click 43 

repositioning, with drag and drop 43 
selected 

changing 46 
described 45 

selecting 45 
sizing 

one DLU at a time 47 
to fit caption 47 

spacing evenly 53 
Coordinates, dialog box 42 
Copying 

accelerator keys 72 
controls 46 
graphics, selected area of 92 
menus and menu items 

overview 65 
using drag and drop 66 
using the Edit menu 66 

Copying (continued) 
resources between files 26-27 

Creating 
cascading (hierarchical) menu 64 
drop-down menu 63 
form view 59 
graphics 

as part of a resource script file 83 
as a stand-alone file 84 

menu item 63-64 
new 

accelerator table 69 
class in ClassWizard 115 
menu resource 62 
resource script file 22-23 

resources 5 
string table 75 
symbols 35 

Cropping, graphics 95 
CToolbar class 104 
.CURfile 

exporting 28 
importing 28 

Cursor 
device image, creating new 10 1 
hotspot, setting 104 

Cursor devices, defining 178 
Cursor Editing toolbar, Quick reference 152 
Cursor properties 

Filename 161 
Height 161 
Hotspot 162 
ID 161 
property page reference 161 
Width 161 

Cursor resource 
defined 19 

Cursors 
See also Graphics 
See also Images 
Colors, Quick reference to tasks 143 
editing 100 
Quick reference to tasks 142 

Custom 
brush 

creating 93 
using 94 

colors, adding 108-109 
controls, defined 54 
resources 

creating 111 
editing in App Studio 111 
including 31 

Cutting, graphics 91 



D 
Data resource, creating 111 
DDV See Dialog Data Validation 
DDX See Dialog Data Exchange 
Default .RC file type, setting 177 
Default Button (Pushbutton properties) 171 
Defining, accelerator keys 72-73 
Deleting 

accelerator keys 72 
classes using ClassWizard 131 
controls 46 
graphic, selected area of 91 
resources 5 
strings in string table 78 
symbols, unassigned 36 
VBX controls 56 

Device image 
cursor 

creating new 101 
overview 101 

deleting 102 
description, editing 102-103 
icon 

creating new 101 
overview 101 

selecting 102 
Dialog 

Check Box Properties 164 
Combo Box Properties 

General 165 
Styles 166 

Edit Box Properties 
General 166 
Styles 166 

Group Box Properties 168 
List Box Properties 

General 168 
Styles 169 

Picture Properties 170 
Pushbutton Properties 171 
Radio Button Properties 172 
Scrollbar Properties 172 
Text Properties 173 
User Control Properties 174 
VBX Control Properties 

General 174 
Styles 174 

Dialog box 
controls 39 
coordinates 42 
creating 

new 40 
overview 40 

Dialog box (continued) 
creating (continued) 

with ClassWizard (example) 125 
defined 16 
editing 41 
font 42 
keyboard access, defining 50 
mnemonics 

defining 50 
for controls with a caption 50 
for controls without a caption 50 

opening 41 
Quick reference 

Aligning controls 140 
General tasks 139 
Sizing controls 141 

Index 185 

Spacing and positioning controls 141 
symbol, changing name or value of 41 
tab order 

changing 48-49 
defined 48 
setting 48-49 

testing 59-60 
units 42 

Dialog box class, defining with ClassWizard (example) 126 
Dialog box controls See Controls 
Dialog Box Data, overview 121 
Dialog Box General properties 

Caption 162 
Font 162 
Font Name 162 
Font Size 162 
ID 162 
Menu 162 
Registered Class 162 
XPos 162 
Y Pos 162 

Dialog Box Styles properties 
Absolute Align 164 
Border 163 
Clip Children 164 
Clip Siblings 163 
Disabled 164 
Horiz. Scroll 163 
LocalEdit 164 
Maximize Box 163 
Minimize Box 163 
NoldleMsg 164 
Style 163 
System Menu 163 
System Modal 164 
Titlebar 163 
Vert. Scroll 163 
Visible 164 



186 Index 

Dialog box template See Dialog box 
Dialog box units 42 
Dialog Data Exchange 

Control variables 122, 130 
defined 121 
overview 121 
setting up with ClassWizard 122 
Value variables 122 
variables 

creating 122 
defining, example 128 
setting initial value, example 124 
using 124 

Dialog Data Validation 
custom 125 
defined 124 
overview 121 
using, example 128 

Dialog editor 
overview 39 
toolbar, Quick reference 150 

Dialog Properties 
General 162 
Styles 163 

Directives, compiler 
including 31 
using 30-31 

Disable No Scroll 
Combo Box Styles properties 166 
List Box Styles properties 170 

Disabled 
Check Box properties 165 
Combo Box General properties 165 
Dialog Box Styles properties 164 
Edit Box General properties 166 
Group Box properties 168 
List Box General properties 168 
Picture properties 170 
Pushbutton properties 171 
Radio Button properties 172 
Scrollbar properties 172 
Text properties 173 
User Control properties 174 
VBX Control General properties 174 

Discardable (Resource properties) 159 
Display devices 

default in image editor 100 
types supported 101 

Displaying, graphics palette 86 
.DLL files 22 
DLUs See Dialog box units 
Dominant control 

alignment, effect on 52 
changing 51 

Dominant control (continued) 
defined 51 
described 45 
effect on aligning 53-54 
setting 45 

Drag and drop 
controls 43 
illustrated 8 
using 7-8 

Drawing 
figure, closed 88 
figures, closed 87 
freehand 86 
lines 87-88 
tools 

changing size of 87 
using 86-87 

with selection 92 
Drop-down 

arrow 48 
combo box 47-48 
menu 

creating 63 
viewing the menu resource as 66 

Dynamic-link library 22 

E 
Edit Box General properties 

Disabled 166 
Group 166 
ID 166 
property page reference 166 
Tabstop 166 
Visible 166 

Edit Box Styles properties 
Align Text 166 
Auto HScroll 167 
Auto VScroll 167 
Border 168 
Horiz. Scroll 167 
Lowercase 168 
Multiline 166 
No Hide Sel 167 
OEM Convert 167 
Password 167 
property page reference 166 
Read Only 168 
Uppercase 168 
Vert. Scroll 167 
Want Return 168 

Edit menu 
Copy command 

accelerators 72 



Edit menu (continued) 
Copy command (continued) 

controls 46 
graphics 91 
menu items 66 

Cut command 
accelerators 72 
controls 46 
graphics 91 
menu items 66 
strings 78 

Delete command 
accelerators 72 
controls 46 
strings 78 

Paste command 
accelerators 72 
controls 46 
graphics 91 
strings 78 

Quick reference 147 
Redo command 9 
Symbols 34 
Undo command 9 

Edit Variables dialog box (ClassWizard) 122 
Editing 

accelerator 
properties 72-73 
table 70-72 

binary data 
opening a resource for editing 111 
using the binary data editor window 112 

bitmaps 104-107 
code, in ClassWizard 120 
cursors 100 
dialog box 41 
dialog box resource 42 
from Symbol Browser 36 
graphics 

as a stand-alone resource 84 
overview 83,91 
part of a resource script file 84 
properties 85 

icons 100 
menu resource 62 
resources 5, 7 
resources at binary level 111 
session, beginning 4 
string table 77 
user-defined control properties 58 
VBX control properties 56-57 
windows, overview 10-14 

Editor 
accelerator table 

described 70 
illustrated 71 

dialog box 41 
graphics 

overview 81 
view, adjusting 97 

image 
described 82 
illustrated 81 

string table 75 

Index 187 

Enter List Choices (Combo Box General properties) 165 
Eraser tool 

drawing with 86-87 
single pixel 87 

Erasing, freehand 86 
Escape sequences, adding to a string 79 
Even spacing between controls 53 
.EXE files 22 
Executable file 22 
Existing resource files, opening 24 
Exporting graphics files 28 
Extending graphics 95 

F 
Factor, magnification 

changing 99-100 
defined 99 

Figure, closed, drawing 87-88 
File management, Quick reference 137 
File menu 

Install Controls command 56 
Install controls command 55 
New command 23,84 
Quick reference 146 
Set Includes command 29-31 

Filename 
Bitmap property page 161 
Cursor property page 161 
Icon properties 175 
Resource property page (bitmaps, icons, cursors) 160 

Files 
.APS 22 
.CLW 22 
.DLL 22 
.EXE 22 
.RC 22 
.RES 22 
App Studio, described 22 
executable 22 
graphics 

.BMP, .DIB, .ICO, .CUR 22 



188 Index 

Files (continued) 
graphics (continued) 

exporting 28 
importing 28 

opening, file types listed 22 
other resource files, induding 30-31 
resource 

consequences of updating to App Studio format 25 
opening existing 24 

resource script 
overview 15-16 
working with 21-22 

RESOURCE.H 22 
saving, file types listed 22 
symbol header file, changing the name of 29 

Fill tool 88 
Filling areas (graphics editor) 88 
Filter, message (ClassWizard) 119 
Finding 

graphics, with resource browser window 84 
strings in string table 77 

Flipping graphics 93 
Font 

dialog box 42 
Dialog Box General properties 162 

Font Name, Dialog Box General properties 162 
Font Size, Dialog Box General properties 162 
Foreground color, selecting 86 
Form view 

controls 39 
creating 59 
defined 59 
using 59 

Formatting, adding to a string 79 
Freehand drawing and erasing 86 
Functions, message handling 

G 

creating 117-120 
deleting 120 

Graphic, static, properties See Picture properties 
Graphical resources See Graphics 
Graphics 

See also Bitmaps 
See also Cursors 
See also Icons 
backgrounds, setting 92 
browsing, using resource browser window 84 
changing number of colors in 96 
copying, selected area of 92 
creating 

as part of a resource script file 83 
as a stand-alone file 84 

Graphics (continued) 
cropping 95 
cutting 91 
editing 

as a stand-alone resource 84 
overview 83,91 
part of a resource script file 84 

extending 95 
files 

exporting 28 
importing 28 
loading 28 
saving 28 
types 22 

finding, using resource browser window 84 
flipping 93 
moving selected area of 92 
opening 

as a stand-alone resource 84 
part of a resource script file 84 

pasting in the graphics editor 91 
properties 

changing 85 
setting 85 

Quick reference to tasks 142 
resizing 

overview 94 
using Properties window 96 

Rotating 93 
selecting 

entire 91 
parts of 89 

shrinking 96 
sizing 

overview 94 
using Properties window 96 

stretching 96 
toolbar 

editing 106-107 
overview 104 

Graphics editor 
graphics palette (quick reference) 151 
grid, pixel 

hiding 100 
showing 100 

overview 81 
view, adjusting 97 
workspace, managing 97 

Graphics palette 
described 82 
displaying 86 
hiding 86 
illustrated 81 
inverse-color selector 104 



Graphics palette (continued) 
screen-color selector 104 
showing 86 

Grayed (Menu item properties) 176 
Grid Settings command 52 
Grid 

layout (dialog editor) See Grid, Snap to 
pixel (graphics editor) 

hiding 100 
showing 100 

Snap to 
defined 51 
using 51-52 

Group 
Check Box properties 165 
Combo Box General properties 165 
Edit Box General properties 166 
Group Box properties 168 
List Box General properties 168 
Picture properties 170 
Pushbutton properties 171 
Radio Button properties 172 
Scrollbar properties 172 
Text properties 173 
User Control properties 174 
VBX Control General properties 174 

Group Box properties 
Caption 168 
Disabled 168 
Group 168 
ID 168 
property page reference 168 
Tabstop 168 
Visible 168 

Guides, insertion 66 

H 
Handlers, message 

creating with Class Wizard 117 -120 
example 127 

Handles, sizing 47 
Has Strings 

Combo Box Styles properties 166 
List Box Styles properties 169 

Height 
Bitmap property page 161 
Cursor property page 161 
Icon properties 175 

Help 
App Studio 

Quick reference 149 
tasks, Quick reference to 146 

getting help on Windows messages 119 

Help (continued) 
Menu item properties 176 

Hiding 
control palette 43 
graphics palette 86 
Properties window 10 

Hierarchical menu, creating 64 
Horiz. Scroll 

Dialog Box Styles properties 163 
Edit Box Styles properties 167 
List Box Styles properties 170 

Hotspot 
(Cursor properties) 162 
cursor 104 

.lCO file 
exporting 28 
importing 28 

Icon (Picture properties) 171 
Icon devices 178 
Icon Editing toolbar (quick reference) 151 
Icon properties 

Colors 175 
Filename 175 
Height 175 
ID 175 
property page reference 175 
Width 175 

Icon resource, defined See Icons 
Icons 

ID 

See also Graphics 
See also Images 
colors (quick reference to tasks) 143 
device image 10 1 
editing 100 
quick reference to tasks 142 

Accelerator table property page 160 
Bitmap property page 161 
Check Box properties 164 
Combo Box General properties 165 
Cursor property page 161 
Dialog Box General properties 162 
Edit Box General properties 166 
Group Box properties 168 
Icon properties 175 
List Box General properties 168 
Menu item properties 175 
Menu Properties 175 
Picture properties 170 
Pushbutton properties 171 
Radio Button properties 172 

Index 189 



190 Index 

ID (continued) 
Resource property page 159 
Scrollbar properties 172 
String properties 176 
Text properties 173 
User Control properties 174 
VBX Control General properties 174 

Identifier See Resource identifier 
Image editor 

See also Graphics editor 
illustrated 81-82 
panes 97 
view, adjusting 97 

Image menu 
color, editing foreground 108 
described 83 
Flip Horizontal command 93 
Flip Vertical command 93 
Quick reference 148 
Set Cursor Hotspot 104 
Zoom command 98 

Image, device 
creating new 101 
deleting 102 
description, editing 102-103 
selecting 102 
types supported 101 

Importing 
class, with Class Wizard 114, 117 
graphics files 28 

Inactive (Menu item properties) 176 
Included resource script files 25 
Including 

calculated symbols 29-30 
compiler directives 31 
read-only symbols 29-30 
resource-file macros 31 
resources from other files 30-31 
shared symbols 29-30 

Initialization, APSTUDIO.INI file 177 
Inserting, strings in string table 77-78 
Insertion guides 66 
Installing VBX controls 55 
Inverse color 

changing 104 
drawing with 103-104 

Inverting, colors 93 

K 
Key (Accelerator table properties) 160 
Key reference 152 
Keyboard access, dialog box 50 

L 
Layout menu 

Align Horiz. Center command 53 
Align Vert. Center command 53 
Arrange Buttons command 54 
Grid Settings command 52 
Quick reference 148 
Set Tab Order command 49 
Size to Content command 47 

Left Text 
Check Box properties 165 
Radio Button properties 172 

Lines, drawing 87-88 
List Box General properties 

Disabled 168 
Group 168 
ID 168 
property page reference 168 
Tabstop 168 
Visible 168 

List Box Styles properties 
Border 169 
Disable No Scroll 170 
Has Strings 169 
Horiz. Scroll 170 
Multi column 170 
No Integral Height 170 
No Redraw 170 
Notify 170 
Owner Draw 169 
property page reference 169 
Selection 169 
Sort 169 
Use Tabstops 170 
Vert Scroll 170 
Want Key Input 170 

Loading graphics files 28 
LocalEdit, Dialog Box Styles properties 164 
Lowercase, Edit Box Styles properties 168 

M 
Macros in resource file, including 31 
Magnification factor 

changing 99-100 
defined 99 
setting default 178 

Making spacing even between controls 53 
Managing graphics editor workspace 97 
Map, message, defined 113 
Mapping messages to functions 117-120 
Maximize Box (Dialog Box Styles properties) 163 
Member variables, Dialog Data Exchange 122 



Menu 
App Studio, quick reference 146 
Dialog Box General properties 162 

Menu editor terms, defined 61 
Menu item and accelerator, associating 66-67 
Menu item properties 

Break 176 
Caption 175 
Checked 175 
Grayed 176 
Help 176 
ID 175 
Inactive 176 
Popup 176 
Prompt 176 
property page reference 175 
Separator 175 

Menu items 
accelerator, associating with 73-74 
creating 63-64 
copying 

options 65 
using drag and drop 66 
using the Edit menu 66 

moving 
options 65 
using drag and drop 66 
using the Edit menu 66 

selecting 64-65 
styles 64 

Menu Properties 
ID 175 
property page reference 175 

Menu resource 
creating new 62 
editing 62 
viewing as drop-down 66 
viewing as drop-down menu 66 

Menus 
copying 

options 65 
using drag and drop 66 
using the Edit menu 66 

defined 16 
Menu Item Properties 175 
moving 

options 65 
using drag and drop 66 
using the Edit menu 66 

Quick reference to tasks 142 
selecting 64-65 
single item, creating 63 
terms 61 

Message filter, ClassWizard 119 

Index 191 

Message handlers 
creating with ClassWizard (example) 127 
deleting 120 

Message map, defined 113 
Messages 

getting help on 119 
mapping to functions 117 -120 

Microsoft Foundation Class Library 
resource files 

adding framework support to 26 
features supported in 26 

support for 23 
version 1, updating for ClassWizard 133 

Minimize Box (Dialog Box Styles properties) 163 
Mnemonic 

control 
defining 50 
for controls with a caption 50 
for controls without a caption 50 

dialog box 
defining 50 
for controls with a caption 50 
for controls without a caption 50 

menu, defining 63 
menu item, defining 64 

Modifiers (Accelerator table properties) 160 
Moveable (Resource properties) 159 
Moving 

accelerator keys 72 
between property pages 10 
classes, in ClassWizard 132 
controls 

between dialog boxes 46 
one DLU at a time 46 
within a dialog box 46 

graphic, selected area of 92 
menus and menu items 

options 65 
using drag and drop 66 
using the Edit menu 66 

resources 5 
strings 

between files 78 
in string table 78 

Multicolumn (List Box Styles properties) 170 
Multiline (Edit Box Styles properties) 166 

N 
Name restrictions, symbol 36-37 
New resource 

creating 6 
script file 22-23 

New-item box 63 



192 Index 

Next Key Typed (Accelerator table properties) 161 
No Hide Sel (Edit Box Styles properties) 167 
No Integral Height 

Combo Box Styles properties 166 
List Box Styles properties 170 

No Prefix (Text properties) 173 
No Redraw (List Box Styles properties) 170 
No Wrap (Text properties) 173 
NoIdleMsg (Dialog Box Styles properties) 164 
Notify (List Box Styles properties) 170 

o 
Objects, manipUlating user-interface 7 
OEM Convert (Edit Box Styles properties) 167 
Online help (App Studio) 146 
Opaque background in graphics 92 
Opening 

accelerator table 70 
binary data editor 111 
dialog box editor 41 
files 22 
graphics 

as a stand-alone resource 84 
part of a resource script file 84 

resource files 
from App Studio 24 
from Visual Workbench 23-24 

resource script file 4 
string table 77 

Overview, App Studio 3 
Owner Draw 

p 

Combo Box Styles properties 166 
List Box Styles properties 169 
Pushbutton properties 172 

Paint bucket tool 88 
Palette 

colors 
adding custom color to 108-109 
changing 108 
editing 107 
saving or loading 110 

graphics 
described 82 
illustrated 81 
inverse-color selector 104 
screen-color selector 104 

Panes, adjusting in image editor 97 
Password (Edit Box Styles properties) 167 
Pasting from clipboard to graphics 91 

Pencil tool 
changing size of 87 
drawing with 86-87 

Picking up colors 89 
Picture properties 

Color 171 
Disabled 170 
Group 170 
Icon 171 
ID 170 
property page reference 170 
Tabstop 170 
Type 171 
Visible 170 

Pixel grid (graphics editor) 
hiding 100 
showing 100 

Placing controls 42 
Popup 

Menu item properties 176 
option, using 63-64 

Preferences, user 
In APSTUDIO.INI file 177 

Preload (Resource properties) 159 
Preview (Resource properties) 160 
Prompt 

Menu item properties 176 
string, menu item 64 

Properties 
accelerator 72-73 
graphics 

editing 85 
setting 85 

resource 9 
Properties window 41 

See also Property pages 
controlling 10 
hiding 10 
overview 9 
property page reference 159 
pushpin 10 
toolbar quick reference 150 
using 9 
viewing 10 

Property page reference 
Accelerator table properties 160 
Bitmap Properties 161 
Check Box properties 164 
Combo Box General properties 165 
Combo Box Styles properties 166 
Cursor properties 161 
Dialog General properties 162 
Dialog Styles properties 163 
Edit Box General properties 166 



Property page reference (continued) 
Edit Box Styles properties 166 
Group Box properties 168 
Icon properties 175 
List Box General properties 168 
List Box Styles properties 169 
Menu item properties 175 
Menu Properties 175 
overview 159 
Picture properties 170 
Pushbutton properties 171 
Radio Button properties 172 
Resource properties 159 
Scrollbar properties 172 
String properties 176 
Text properties 173 
User Control properties 174 
VBX Control General properties 174 
VBX Control Styles properties 174 

Property page, Resource 6 
Property pages 

See also Properties window 
moving between 10 
viewing 10 

Pure (Resource properties) 160 
Pushbutton properties 

Caption 171 
Default Button 171 
Disabled 171 
Group 171 
ID 171 
Owner Draw 172 
property page reference 171 
Tabstop 171 
Visible 171 

Pushbuttons 
arranging 54 
in new dialogs 178 

Pushpin, properties window 10 

Q 
Quick reference 

Accelerator keys (App Studio) 
binary editing 157 
creating and editing resources 153 
editing 152, 156-157 
introduction 137 
managing 152, 154 
online help 157 
overview 152 
Properties window 154 

Accelerator tables 144 

Quick reference (continued) 
App Studio 

toolbar 150 
windows 145 

Bitmaps, icons, and cursors 
colors 143 
general 142 

ClassWizard 144 
common App Studio tasks 137 
Control palette (dialog editor) 151 
Cursor Editing toolbar 152 
dialog box tasks 

aligning controls 140 
general 139 
sizing controls 141 

Index 193 

spacing and positioning controls 141 
Dialog editor toolbar 150 

R 

Edit menu 147 
file management tasks 137 
File menu 146 
Graphics Editor palette 151 
Help menu 149 
Icon Editing toolbar 151 
Image menu 148 
introduction 137 
Layout menu 148 
menu commands 146 
menu resources 142 
menus 137 
online help 146 
Properties Window toolbar 150 
resource editing tasks 138-139 
Resource menu 147 
resource tasks, general 139 
String tables 144 
Symbol editor 145 
Toolbar buttons 137 
Toolbars and palettes 149 
VBX controls 145 
Window menu 149 

Radio Button properties 
Auto 172 
Caption 172 
Disabled 172 
Group 172 
ID 172 
Left Text 172 
property page reference 172 
Tabstop 172 
Visible 172 

RCDA TA resources, including 31 



194 Index 

.RC file type 
setting default 177 

.RC files 22 
included 25 

Read Only (Edit Box Styles properties) 168 
Read-only symbols 

included 25 
Including 30 
including 29 

Reading in graphics files 28 
Rebuilding ClassWizard (.CLW) file 132 
Redo command 8-9 
Reference, property page 159 
Registered Class (Dialog Box General properties) 162 
Removing VBX controls 56 
Renaming classes in ClassWizard 132 
Repair Class Information dialog box 131 
.RES files 22 
Resizing 

See also Sizing 
controls 54 

Resource, dialog box ?? 
Resource browser window 

creating new resource with 6 
using 5, 7, 41-42, 62, 70, 77 

Resource files 
advanced techniques, overview of 28-29 
comments 25 
consequences of updating to App Studio format 25 
creating new 22-23 
including resources from other files 30-31 
macros, including 31 
opening 

from App Studio 24 
from Visual Workbench 23-24 
not an App Studio or App Wizard file 24 

support for Microsoft Foundation Class Library 
adding 26 
described 26 

Resource identifier, strings, changing 79 
Resource menu 

Class Wizard button 115 
Class Wizard command 119 
New command 40, 62, 69, 76, 84 
Open command 62 
Quick reference 147 
Test command 60 

Resource properties 
bitmaps, icons, cursors 

Filename 160 
Preview 160 

property page reference 159 
Resource property page 

Discardable 159 

Resource property page (continued) 
ID 159 
Moveable 159 
overview 6 
Preload 159 
Pure 160 

Resource script file 
creating new 22-23 
defined 15 
included 25 
opening 4 

RESOURCE.H 
changing the name of 29 
defined 22 

Resources 
accelerator table, defined 17 
bitmap, defined 18 
browsing 5-6 
copying between files 26-27 
creating 5, 138 
creating new 6 
cursor, defined 19 
custom 

creating 111 
including 31 

data, creating 111 
deleting 5 
dialog box, defined 16 
editing 5, 7, 36, 138 
handling 13 8 
icon 18 
menu 16 
moving 5 
open existing 42 
properties 9 
quick reference to tasks 139 
RCDATA 31 
sample 19 
shared 31 
string table 18 
viewing 5-6 
working with 21 

Resources, graphical See Graphics 
Reversing color 93 
Rotating graphics 93 

s 
Sample resources 19 
Save Compressed (Bitmap property page) 161 
Saving 

files 22 
graphics files 28 



Screen color 
changing 104 
drawing with 103-104 

Script file See Resource script file 
Scrollbar properties 

Align 173 
Disabled 172 
Group 172 
ID 172 
property page reference 172 
Tabstop 172 
Visible 172 

Searching in string table 77 
Select Source Files dialog box (ClassWizard) 133 
Selected control 45 
Selecting 

colors, foreground and background 86 
controls 45 
copying selected area (graphics editor) 92 
cutting selected area (graphics editor) 91 
deleting selected area (graphics editor) 91 
drawing with selection (graphics editor) 92 
entire graphics 91 
inverting color of selection (graphics editor) 93 
menus or menu items 64-65 
moving selected area (graphics editor) 92 
parts of graphics 89 

Selection See Selecting 
Selection (List Box Styles properties) 169 
Separator (Menu Item properties) 175 
Setting 

cursor hotspot 104 
graphics properties 85 

Shared 
resources 31 
symbols 29-30 

Show control palette 43 
Showing graphics palette 86 
Shrinking, graphics 96 
Simple (Text properties) 173 
Sizing 

See also Resizing 
combo box drop-downs 47-48 
controls 51 
individual controls 

one DLU at a time 47 
to fit caption 47 

Sizing handles 47 
Snap to Grid 

defined 51 
placing controls, affect on 43 
using 51-52 

Sort 
Combo Box Styles properties 166 

Index 195 

Sort (continued) 
List Box Styles properties 169 

Source code, updating ClassWizard 131-132 
Starting, App Studio 4 
Static graphic properties See Picture properties 
Static text properties See Text properties 
Status bar 

image editor 83 
position and size indicators 42 
prompt string 64 

Stretching graphics 96 
String editor 75 
String properties 

Caption 176 
ID 176 
property page reference 176 
String Editor 176 

String table 
See also Strings 
creating new 75 
defined 18, 75 
editing 77 
editor, overview 75 
empty deleted 76 
opening 77 
Quick reference to tasks 144 

Strings 
See also String Table 
identifier 79 
moving, between files 78 
string table 

Style 

adding 77-78 
changing 79 
deleting 78 
finding 77 
inserting 77-78 
moving 78 
searching for 77 

Dialog Box Styles properties 163 
User Control properties 174 

Styles 
menu item 64 
Windows See Properties, resource 

Symbol Browser 
opening 34 
using 34 
View Use command 36 

Symbol header file, changing the name of 29 
Symbols 

calculated 
including 30 
overview 29 

changing 32-34 



196 Index 

Symbols (continued) 
creating new 35 
defined as expressions 25 
deleting unassigned 36 
included as read-only 25 
name restrictions 36-37 
new, creating 35 
quick reference to tasks 145 
read-only 

including 30 
overview 29 

shared 
including 30 
overview 29 

value 
changing 33-35 
restrictions 36-38 

working with 
introduction 31-32 
overview 21 

System Menu (Dialog Box Styles properties) 163 
System Modal (Dialog Box Styles properties) 164 

T 
Tab order, dialog box 

changing 49 
defined 48 
setting 48-49 

Table, accelerator See Accelerator table 
Table, string See String tables 
Tabstop 

Check Box properties 165 
Combo Box General properties 165 
Edit Box General properties 166 
Group Box properties 168 
List Box General properties 168 
Picture properties 170 
property, using 48 
Pushbutton properties 171 
Radio Button properties 172 
Scrollbar properties 172 
Text properties 173 
User Control properties 174 
VBX Control General properties 174 

Task quick reference 137 
Template, dialog box See Dialog box 
Terms, menu editor 61 
Testing 

dialog box 59-60 
graphic with inverted colors 93 

Text Align (Text properties) 173 
Text properties 

Caption 173 

Text properties (continued) 
Disabled 173 
Group 173 
ID 173 
No Prefix 173 
No Wrap 173 
property page reference 173 
Simple 173 
Tabstop 173 
Text Align 173 
Visible 173 

Tile grid 
defined 105 
displaying or hiding 106 
setting dimensions 105 

Titlebar (Dialog Box Styles properties) 163 
Toolbar 

App Studio 
Class Wizard 115, 119 
New Accelerator Table 69 
New Bitmap 84 
New Cursor 84 
new dialog box 40 
New File 23 
New Icon 84 
New Menu 62 
New String Table 76 
new-resource buttons 6 
Redo 9 
Symbol Browser 34 
Undo 9 

bitmaps 
editing 104-107 
overview 104 

dialog editor 
Align Bottom 52 
Align Left 52 
Align Right 52 
Align Top 52 
Center Horizontal 53 
Center Vertical 53 
Make Same Height 54 
Make Same Size 54 
Make Same Width 54 
Snap to Grid 51 
Space Evenly Across 53 
Space Evenly Down 53 
Test 60 

graphics 
editing 106-107 
overview 104-105 

quick reference 
introduction 149 
overview 137 



Toolbar (continued) 
tile grid 

defined 105 
displaying or hiding 106 
setting dimensions 105 

Toolbox, graphics editor, Zoom tool 98-99 
Tools 

closed figure 88 
drawing 86 

changing size of 87 
using 87 

fill 88 
line 87- 88 
selecting 86 

Transferring colors 89 
Transparent background (graphics) 92 
Tri-State (Check Box properties) 165 
Type 

u 

Accelerator table property page 160 
Combo Box Styles properties 166 
Picture properties 171 

Undo 8-9 
Undo levels 8, 178 
Updating 

Class Wizard 131 
code for ClassWizard 133 

Uppercase (Edit Box Styles properties) 168 
Use Tabstops (List Box Styles properties) 170 
UseMfc (APSTUDIO.lNI) 23 
User Control properties 

Caption 174 
Class 174 
Disabled 174 
Group 174 
ID 174 
Style 174 
Tabstop 174 
Visible 174 

User preferences in APSTUDIO.lNI 177 
User-defined controls 

differences between VBX controls and 58 
overview 55 
properties 58 
using 54,57 

User-interface objects, manipulating 7 
Using 

Properties window 9 
redo 8 
Symbol Browser, overview 34 
undo 8 
user-defined controls 57 

v 
Values 

accelerator 73 
symbol 

changing 33 
restrictions 36-38 

Variables, DDX 
Control variables 

example 130 
using 122 

creating 
example 128 
using 122 

setting initial value (example) 129 
using 124 
Value 122 

VBX Control General properties 
Caption 174 
Disabled 174 
Group 174 
ID 174 
property page reference 174 
Tabstop 174 
Visible 174 

Index 197 

VBX Control Styles properties, property page reference 174 
VBX controls 

adding to control palette 55 
advantages 54 
defined 54 
deleting 56 
deleting from control palette 56 
differences between user-defined controls and 58 
Grid control 39 
installing 55 
overview 54 
properties 56-57 
quick reference to tasks 145 
using 55 

Vert. Scroll 
Combo Box Styles properties 166 
Dialog Box Styles properties 163 
Edit Box Styles properties 167 
List Box Styles properties 170 

View, graphics editor 
adjusting 97 
zooming in 

Viewing 

on location under cursor 99 
or out 98 

Properties window 10 
property pages 10 
resources 5-6 



198 Index 

Visible 
Check Box properties 164 
Combo Box General properties 165 
Dialog Box Styles properties 164 
Edit Box General properties 166 
Group Box properties 168 
List Box General properties 168 
Picture properties 170 
Pushbutton properties 171 
Radio Button properties 172 
Scrollbar properties 172 
Text properties 173 
User Control properties 174 
VBX Control General properties 174 

Visual Workbench, opening resource files from 23-24 

w 
Want Key Input (List Box Styles properties) 170 
Want Return (Edit Box Styles properties) 168 
Width 

Bitmap property page 161 
Cursor property page 161 
Icon properties 175 

Window 
Properties 41 
resource browser 41-42 

Window menu 
Hide Control Palette 43 
Quick reference 149 
Show Control Palette 43 
Show Properties command 10 

Windows resources 
basics 15 
defined 15 
overview 15 

Windows, App Studio 
overview 10-14 
quick reference to tasks 145 

Working with symbols 31-32 

x 
XPos 

Dialog Box General properties 162 

y 
YPos 

Dialog Box General properties 162 

z 
Zooming 

graphics editor view 98,99 
See also Magnification Factor 







Documentation Feedback-Microsoft® Visual C++ ™ Version 1.0 
We need your feedback to improve our documentation. When you become familiar with this product, please complete and return this 
form. Use the back of the form to make comments and suggestions, noting errors and special strengths in areas such as online help, 
programming examples, indexes, and organization. Note that your comments and suggestions become the property of Microsoft 
Corporation. 

Programming Background 
1. Years of programming experience: 

Allianguages__ C__ C++ __ 

2. Which programming language do you use for most of your 
software development tasks? 

C C++ Other ___________ _ 

3. How long have you used this product? __ months 

Presenting Visual C++ 
4. Did you read Presenting Visual C++? Yes No 

5. Did it give you a useful overview of the product? 
Yes No 

6. Did the roadmaps help orient you to the documentation? 
Yes No 

Help 
7. How often do you use help? (Check one.) 

_ Never _ Occasionally _ Often 

8. I would use help more if it were easier to use. 
Yes No 

9. Rank the following methods for accessing help from 1 (use 
most often) to 5 (use least often): 
__ Highlight a language element in a source file, then 

press FI. 
__ Open a help file from the help menu. 
__ Open a help file from the product group. 
__ Press Fl in a dialog box. 
__ Other ________________ _ 

10. May we call you about help? 
Ycs No Phone number _________ _ 

Indexes 
11. Do the individual book indexes help you find the information 

you need? 
_ Always _ Most of the time _ Sometimes _ Seldom 

12. Does the comprehensive index help you find the information 
you need? 
_ Always _ Most of the time _ Sometimes _ Seldom 

13. When more than one book is contained in one cover, indicate 
which option would be more helpful: 

One index for the entire volume 
One index for each document in the volume 

Visual Workbench User's Guide 
14. Does the book provide enough information for you to use 

Visual Workbench effectively? Yes _ No-please 
explain: 

15. Indicate which topics we need to improve: 
_ Editor _ Browser _ Debugger 
_ Projects and Build Options _ Environment Options 

Other 

16. Do you use the Fast Track tables in Chapter 5? 
Yes _No-please explain: ________ _ 

17. Indicate which areas we need to improve: 
_ Organization _ Procedures _ Concepts 

Reference material _ Examples _ Illustrations 
Other 

App Studio User's Guide 
18. Does the book help you complete your resource editing tasks? 

Yes _ No-please explain: _________ _ 

19. Indicate which areas we need to improve: 
_ Organization _ Procedures _ Concepts 

Reference material _ Examples _ Illustrations 
Other 

20. Have you used the App Studio Reference in Chapter 1O? 
Yes No 

21. Rank the usefulness of the following App Studio Reference 
topics from 1 (use most often) to 4 (use least often): 
__ Task Reference __ Menu Reference 
__ Toolbar and Palette Reference __ Key Reference 

Class Library User's Guide 
22. Did you perform the steps in the Scribble tutorial? 

Yes No Your reaction: _________ _ 

23. Indicate which topics in the tutorial we need to improve: 
_ Documents _ Views _ App Studio _ Printing 
_ Commands _ Dialogs _ Scrolling/Splitting 
_ Help _ Other _____________ _ 

24. Have you used VBX controls in your programs? 
Yes No 

Overall Evaluation 
25. Does the entire document set help you find the information 

you need? 
_ Always _ Most of the time _ Sometimes _ Seldom 

26. Does the help system help you find the information you need? 
_ Always _ Most of the time _ Sometimes _ Seldom 



Name __________________________________ __ 

Address ________________________________ _ 

City/State/Zip ____________________________ _ 

Home Phone ( __ ) ________________________ _ 

Work Phone ( __ ) ________________________ _ 

May we contact you for additional information about your comments? 

Additional comments: 

Yes No 

........................................................................................................... Fold .......................................................................................................... . 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 108 REDMOND WA 

POSTAGE WILL BE PAID BY ADDRESSEE 

Micl'Osoft® 
Microsoft Corporation 
Languages-Visual C++ ™ 

One Microsoft Way 
Redmond W A 98052-9953 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

11.1 •• 1 •• 1.11 •••• 1.1 ••• 1.11.1 •• 1.111.1.1 ••• 11.1111 .1 



· . ..... . 

· . 
..... . 

· . ..... . 
: ..... 



11111111111111111111111111111111111 
* 6 1 153 * * Recyclable 


