
Microsoft
FORTRAN Compiler
for the MSTM-DOS Operating System

User's Guide

Microsoft Corporation

Information in this document is subject to change without notice
and does not represent a commitment on the part of Microsoft
Corporation. The software described in this document is fur­
nished under a license agreement or nondisclosure agreement.
The software may be used or copied only in accordance with the
terms of the agreement. It is against the law to copy Microsoft
FORTRAN Compiler, or any of the software provided, on mag­
netic tape, disk, or any other medium, for any purpose other than
the purchaser's personal use.

rc Copyright Microsoft Corporation, 1981, 1982, 1984

If you have comments about the software or these manuals, please
complete the Software Problem Report at the back of the Microsoft
FORTRAN Reference Manual and return it to Microsoft Corporation.

Microsoft and the Microsoft logo are registered trademarks of Microsoft
Corporation.

MS is a trademark of Microsoft Corporation.

Intel is a registered trademark of Intel Corporation.

Document Number 8206A-320-04
Part Number 005-014-001

Contents

System Requirements ix

Package Contents ix

Microsoft FORTRAN System Software x
Documentation xi

How to Use This Guide xi

1 Introduction to the
Microsoft FORTRAN Compiler 1

1.1 Options 4
1.2 Previous Versions 4
1.3 Syntax Notation 4
1.4 Learning More About FORTRAN 5

2 Getting Started 7

2.1 Preliminary Procedures 9
2.2 Program Development 11
2.3 Vocabulary 15

3 A Sample Session 19

3.1 Creating a Microsoft FORTRAN Source File 22
3.2 Compiling Your Microsoft FORTRAN Program 23
3.3 Linking Your Microsoft FORTRAN Program 28
3.4 Executing Your Microsoft FORTRAN Program 30

4 Options for Compiling and Linking 33

4.1 MS-DOS 2.0 Interface Library 35
4.2 Alternative Linkers 35
4.3 16-Bit Integers as Variables 36
4.4 Floating-Point Options 37
4.5 Changing the Default Math Library 39
4.6 Best Cases for Compilation and Execution 39

iii

Contents

5 More About Compiling 41

5.1 Files Written by the Compiler 43
5.2 Filename Conventions 45
5.3 Starting the Compiler 49

6 More About Linking 53

6.1 Files Read by the Linker 55
6.2 Files Written by the Linker 60
6.3 The Overlay Linker 62
6.4 Linker Switches 64

7 Using a Batch Command File 67

8 Compiling and Linking
Large Programs 69

8.1 Avoiding Limits on Code Size 71
8.2 Avoiding Limits on Data Size 71
8.3 Working With Limits on Compile Time Memory 75
8.4 Working With Limits on Disk Memory 77
8.5 Minimizing Load Module Size 82

9 Using Assembly Language Routines 85

9.1 Calling Conventions 87
9.2 Internal Representations of Data Types 89
9.3 Interfacing to Assembly Language Routines 91

10 Advanced Topics 99

10.1 The Structure of the Compiler 101
10.2 An Overview of the File System 106
10.3 Runtime Architecture 108
10.4 Floating-Point Operations 123
10.5 MS-DOS 2.0 Issues 128

iv

Contents

Appendices 131

A Differences From Earlier Versions
of Microsoft FORTRAN 133

B Microsoft FORTRAN File Control Block 137

C Real Number Conversion Utilities 139

D Structure of External
Microsoft FORTRAN Files 141

E Microsoft FORTRAN Scratch File Names 143

F Customizing i8087 Interrupts 145

G Exception Handling for 8087 Math 151

H Microsoft LINK Error Messages 157

Index 161

v

Figures

Figure 2.1 Program Development 13

Figure 9.1 Contents of the Frame 88

Figure 9.2 Two-Byte Return Value 92

Figure 9.3 Four-Byte Return Value 92

Figure 9.4 Stack Before Transfer to IADD 93

Figure 9.5 Stack Before Transfer to RAD D 95

Figure 10.1 The Structure of the Compiler 101

Figure 10.2 The Unit U Interface 107

Figure 10.3 Memory Organization 111

Figure 10.4 Microsoft FORTRAN Program Structure 115

vii

Tables

Table 2.1 A Suggested Disk Setup 10

Table 3.1 Files Used by the Microsoft FORTRAN Compiler 27

Table 5.1 Default File Specifications 47

Table 6.1 Linker Defaults 57

Table 6.2 Microsoft LINK Switches 65

Table 10.1 Front End Compilation Procedures 103

Table 10.2 Unit Identifier Suffixes 109

Table 10.3 Error Code Classification 120

Table 10.4 Runtime Values in BRTEQQ 121

viii

System Requirements

System Requirements

The Microsoft FORTRAN Compiler can be used with any compu­
ter that has one disk drive and a minim urn of 150K random access
memory available after the operating system is loaded. (The MS­
DOS utility CHKDSK will tell you how much RAM is available.)

We recommend at least two drives, however, for easier operation.
The compiler can successfully take advantage of at least 196K
RAM. Your machine should run MS-DOS.

The current implementation of the Microsoft FORTRAN Com­
piler can take advantage of, but does not require, an 8087 numeric
coprocessor. If you have one, additional preliminary procedures
may be required; see Section 2.1.3, "If You Have an 8087 Copro­
cessor," for details.

Two versions of Microsoft LINK are available for your use. They
are LINK.EXE (the default linker) and LINK.V2 (the optional
MS-DOS 2.0 linker which supports path names and overlays).
You must use either one or the other to link your program modules
(see Chapter 4, "Options for Compiling and Linking"). Microsoft
LINK is the standard MS-DOS linking utility.

Package Contents

The Microsoft FORTRAN Compiler package includes four disks
and one documentation binder, containing two manuals.

ix

Microsoft FORTRAN Compiler User's Guide

Microsoft FORTRAN System Software

The software for the Microsoft FORTRAN Compiler contains the
following files on disk:

x

File Con ten ts

FOR1.EXE Pass one of the Microsoft FORTRAN
Compiler

PAS2.EXE Pass two of the Microsoft FORTRAN
Compiler

P AS3.EXE Pass three of the Microsoft FORTRAN
Compiler

FORTRAN.LIB The default MS-FORTRAN runtime
library

FORTRAN.MAP The link map for FORTRAN.LIB

MATH.LIB The default floating-point package library

MATH.MAP The link map of MATH.LIB

8087.LIB An auxiliary library for use with pro­
grams that are to run only on machines
with the 8087 coprocessor installed and
whose size you wish to reduce.

8087.MAP The link map of 8087.LIB

DOS2FOR.LIB An auxiliary library containing an MS­
DOS version 2.0 file system

DOS2FOR.MAP A map of DOS2FOR.LIB

ALTMATH.LIB An auxiliary library containing high­
speed floating-point support routines

ALTMATH.MAP A map of ALTMATH.LIB

DECMATH.LIB An auxiliary library containing deci­
mal floating-point support routines

DECMATH.MAP The map of DECMATH.LIB

LINK.EXE The default Microsoft Linker

LINK.V2 Optional version of Microsoft LINK (MS­
DOS 2.0)

NULF.OBJ

NULE6.0BJ

ENTX6L.ASM

DEMO.FOR

README.DOC

Documentation

How to Use This Guide

The dummy file system

The dummy error system

The assembler source of the execution
control module that initializes and ter­
minates every program

Bubble sort demonstration program

If present, this file contains documenta­
tion that is more up to date than the most
current printed documentation.

Documentation for the Microsoft FORTRAN Compiler is pro­
vided in the following two manuals:

Microsoft FORTRAN User's Guide

This manual provides an introduction to compiling
and linking, a sample session, and a technical refer­
ence for the Microsoft FORTRAN Compiler.

Microsoft FORTRAN Reference Manual

This manual describes the grammar and use of the
Microsoft FORTRAN language. With the exception of
any recent changes noted in a README.DOC file, this
is the language supported by the Microsoft FORTRAN
Compiler.

How to Use This Guide

The Microsoft FORTRAN User's Guide describes the operation of
the Microsoft FORTRAN Compiler, from the most rudimentary
procedures to more advanced topics that may be of interest only to
experienced programmers.

The document assumes that you have a working knowledge of the
Microsoft FORTRAN language and MS-DOS. For information on
programming in FORTRAN, see Section 1.4, "Learning More
About FORTRAN."

xi

Microsoft FORTRAN Compiler User's Guide

Chapter 1, "Introduction to the Microsoft FORTRAN Compiler,"
introduces you to the Microsoft FORTRAN Compiler and its
features. Microsoft FORTRAN version 3.20 offers a wealth of
options for developing your programs. Be sure to consult Chapter
4, "Options for Compiling and Linking," for the discussion of how
you can use these options to customize your own programs
according to your requirements for portability and performance.

Chapter 2, "Getting Started," discusses several procedures you
should perform before compiling and linking your first program,
describes the process of program development, and provides a
short vocabulary for those who may be unfamiliar with the terms
used in this document. Those who are already familiar with com­
piling and linking may wish to skip most of this chapter, but
should read Section 2.1, "Preliminary Procedures," before pro­
ceeding.

Chapter 3, "A Sample Session," provides a step-by-step walk­
through of each of the procedures that follow the writing of a
program: compiling, linking, and running.

Chapter 4, "Options for Compiling and Linking," provides you
with a summary of the optional libraries and compiler features
that will aid you in your program development.

Chapter 5, "More About Compiling," and Chapter 6, "More About
Linking," supplement the material in Chapter 3 on compiling and
linking, respectively.

Chapters 1 through 6 should be read in their entirety by the
first-time user of the Microsoft FORTRAN Compiler.

Chapter 7, "Using a Batch Command File," and Chapter 8,
"Compiling and Linking Large Programs," provide information
on these topics for the programmer who has moved beyond the
basics.

Chapter 9, "Using Assembly Language Routines," provides
information for the experienced programmer who requires sup­
plementary routines written in assembly language.

Chapter 10, "Advanced Topics," provides additional technical
information on compiler structure, the Microsoft FORTRAN file
system, floating-point issues, and runtime architecture.

xii

How to Use This Guide

Appendix A, "Differences From Earlier Versions of Microsoft
FORTRAN," provides a list of the significant changes between
Microsoft FORTRAN 3.2 and previous versions since 3.0.

Appendices B through E provide information specific to this
implementation of the Microsoft FORTRAN Compiler for MS­
DOS.

Appendix F, "Customizing i8087 Interrupts," describes prelimi­
nary procedures that may be necessary if you have an 8087
numeric coprocessor.

Appendix G, "Exception Handling for 8087 Math," describes the
environment CONTROL words and exception handling condi­
tions of the 8087 coprocessor.

Appendix H,"Microsoft LINK Error Messages," provides a list of
Microsoft LINK error messages.

xiii

Chapter 1
Introduction to
the Microsoft
FORTRAN CODlpiler

1.1 Options 4

1.2 Previous Versions 4

1.3 Descriptive Notation 4

1.4 Learning More About FORTRAN 5

1

The MicrosofL version 3.2 FORTRAN Compiler (MS-FORTRAN
Compiler) runs under version 1.25 of the Microsoft Disk Operat­
ing System (MS-DOS). MS-FORTRAN Compiler accepts pro­
grams written in the language defined by the Microsoft FOR­
TRAN Reference Manual. The MS-FORTRAN language con­
forms to the ANSI X3.9-1978 subset FORTRAN requirements, but
has many features of the full language plus extensions designed
to optilnize FORTRAN in the microcomputer environment. Micro­
soft FORTRAN is especially adept at quickly handling complex
financial and scientific algorithms.

The Microsoft FORTRAN Compiler passes on the advantages of
a high-level programming language without sacrificing speed by
generating native code. Low-level escapes to the machine level
allow Microsoft FORTRAN programs to achieve speeds compar­
able to assembly language. MS-FORTRAN also generates code
for fast numeric processing in the 8087 processing environment
and provides 8087 emulation in the system software package.

The Microsoft FORTRAN Compiler is designed so that by using
the default options you will have the fewest possible problems in
getting your programs to work. This should be true whether you
are writing new programs from scratch or porting existing pro­
grams from some other machine.

If you compile your programs with the default compiler options
and link them with the runtime standard libraries, FORTRAN.­
LIB and MATH.LIB, they will run under both MS-DOS version
1.0 and version 2.0. If you have an 8087 installed in your machine,
your programs will use it to improve the speed of real arithmetic.
If you don't have an 8087 installed, your programs will run
perfectly well and give the same results.

Additional benefits of the Microsoft FORTRAN Compiler are:

1. Support for linking of8086 assembly language, Microsoft
FORTRAN, and Microsoft Pascal programs.

2. Extensive program development support from MS­
FORTRAN's metalanguage, memory management, and
array building tools and runtime support from auxiliary
floating-point libraries and the runtime's intrinsic func­
tion routines.

3

Microsoft FORTRAN Compiler User's Guide

1.1 Options

Compiling and linking options are provided that give you the
flexibility of customizing your own programs according to your
requirements for portability and performance. See Chapter 4,
"Options for Compiling and Linking," for a summary of these
options.

1.2 Previous Versions

For a list of the differences between Microsoft FORTRAN 3.20
and previous versions since 3.0, see Appendix A, "Differences
From Earlier Versions of Microsoft FORTRAN."

1.3 Descriptive Notation

The following descriptive devices are used throughout this man­
ual to emphasize elements of the text. Descriptions of Microsoft
FORTRAN syntax requirements for statements can be found in
Chapter 3 of the Microsoft FORTRAN Reference Manual.

CAPS

Italics

[]

4

Capitalized text indicates statements, files,
or commands. The text is capitalized only
to emphasize procedures, files, compilands,
or objects that the user may encounter.
Microsoft FORTRAN is not case sensitive.
Small capital letters indicate that you
must press a key named by the text.

Italics indicate user-supplied data, for ex­
ample, filenames, variable names, and
array names.

Square brackets indicate that the enclosed
entry is optional.

Ellipses indicate that an entry may be
repeated as many times as needed or
desired.

Introduction to the Microsoft FORTRAN Compiler

All other punctuation, such as commas, colons, slash marks,
parentheses, and equal signs, must be entered exactly as shown.

Pressing the RETURN (or ENTER) key is assumed at the end of every
line you enter in response to a prompt. Only if this is the only
response required is RETURN shown.

1.4 Learning More About FORTRAN

The manuals in this package provide complete reference inform a -
tion for your implementation of the Microsoft FORTRAN Com­
piler. They do not, however, teach you how to write programs in
FORTRAN. If you are new to FORTRAN or need help in learning
to program, we suggest you read any of the following books:

Agelhoff, R., and Richard Mojena. Applied FORTRAN 77,
Featuring Structured Programming. Wadsworth, 1981.

Ashcroft, J., R. H. Eldridge, R. W. Paulson, and G. A. Wilson.
Programming With FORTRAN 77. Granada, 1981.

Friedman, F., and E. Koffman. Problem Solving and Struc­
tured Programming in FORTRAN. Addison-Wesley, 2nd edi­
tion, 1981.

Wagener, J. L. FORTRAN 77: Principles of Programming.
Wiley, 1980.

5

Chapter 2

Getting Started

2.1

2.1.1

2.1.2

2.1.3

2.2

2.3

Preliminary Procedures 9

Backing Up Your System Files

Setting Up Your System Disks

If You Have an 8087 Coprocessor

Program Development 11

Vocabulary 15

9

9

10

7

2.1 Preliminary Procedures

Before you begin the sample session in Chapter 2 or compile any
programs of your own, we recommend that you review the follow­
ing preliminary procedures for backing up your system disks,
preparing your runtime library and setting up your system disks.
If you are unfamiliar with any of the MS-DOS procedures men­
tioned, please consult your MS-DOS manual for instructions.

2.1.1 Backing Up Your System Files

This step is optional but highly recommended.

The first thing you should do when you have unwrapped your
system disks is to make copies to work with, saving the original
disks for backup. Make the copies using the COPY or DISKCOPY
utilities supplied with MS-DOS.

2.1.2 Setting Up Your System Disks

This step is recommended.

Before you begin compiling and linking a program, we recom­
mend that you check the contents of each disk. You may wish to
copy some files from one system disk to another to set up a
working arrangement that is convenient for you. You will cer­
tainly need to have available the linker utility, MS-LINK, from
your MS-DOS package.

In order to avoid continual reprompting from the system to reload
certain MS-DOS files, you may also wish to set up your system
disks as shown in Table 2.1. Table 2.1 assumes that you have a
hardware setup with two 160K disk drives.

9

Microsoft FORTRAN Compiler User's Guide

Table 2.1

A Suggested Disk Setup

Disk

1

2

3

Contents

COMMAND.COM
text editor text editort
miscellaneous utilitiestt
FORl.EXE

COMMAND.COM
PAS2.EXE
PAS3.EXE

COMMAND.COM
LINK.EXE
FORTRAN.LIB
<auxiliary libraries>ttt

Notes for Table 2.1.
t Any text editor that fits.
tt MS-DOS utilities to set up printer, clear screen, sort direc­
tory, etc.
ttt Other libraries you may read are: 8087.LIB, ALTMATH.­
LIB, DECMATH.LIB, and DOS2FOR.LIB.

For most implementations, you can copy the necessary MS-DOS
files by first formatting the blank disks with the /S switch and
then copying the other files to the appropriate disks. If you do not
format disks with the /S switch, the compiler will prompt you to

. reinsert your MS-DOS disk after each step.

2.1.3 If You Have an 8087 Coprocessor

Unless you have linked withALTMATH.LIB, the MS-FORTRAN
runtime library expects to encounter a particular arrangement of
8088,86-8087 hardware. Specifically, it expects that i8087 inter­
rupts will be directed through to the 8088,86 via the 8088,86 inter­
rupt vector 2 (NMI), without the intervention of an 8259 interrupt
controller or its equivalent.

If these interventions do occur, you will need to determine if your
hardware configuration meets any of the following criteria:

1. It uses an 8087 interrupt vector number other than 2.

2. It uses an 8259 interrupt controller.

10

Getting Started

3. The 8087 shares interrupts with another device on the
same vector.

If any of these criteria is true for your computer system, you must
read Appendix F, "Customizing i8087 Interrupts," and customize
the runtime library as described there.

2.2 Program Development

This section provides a brief introduction to program develop­
ment, a multistep process which includes first writing the pro­
gram, and then compiling, linking, and running it. For a brief
explanation of terms that may be unfamiliar, see Section 2.3,
"Vocabulary. "

A microprocessor can execute only its own machine instructions;
it cannot execute source program statements directly. Therefore,
before you run a program, some type of translation, from the
statements in your program, to the machine language of your
microprocessor, must occur.

Compilers and interpreters are two types of programs that per­
form this translation. Depending on the language you are using,
either or both types of translation may be available to you. MS­
FORTRAN is a compiled language.

A compiler translates a source program and creates a new file
called an object file. The object file contains relocatable machine
code that can be placed and run at different absolute locations in
memory.

Compilation also associates memory addresses with variables
and with the targets of GOTO statements, so that lists of vari­
ables or of labels do not have to be searched during execution of
your program.

Many compilers, including the MS-FORTRAN Compiler, are
what are called "optimizing" compilers. During optimization, the
compiler reorders expressions and eliminates common subex­
pressions, either to increase speed of execution or to decrease
program size. These factors combine to measurably increase the
execution speed of your program.

11

Microsoft FORTRAN Compiler User's Guide

The MS-FORTRAN Compiler has a three-part structure. The first
two parts, pass one and pass two, carry out the translation and
create the object code. Pass three is an optional step that creates
an object code listing. Compiling is described in greater detail in
Section 3.2, "Compiling Your Microsoft FORTRAN Program,"
and in Chapter 5, "More about Compiling."

Before a successfully compiled program can be executed, it must
be linked. Linking is the process in which MS-LINK computes
absolute offset addresses for routines and variables in relocatable
object modules and then resolves all external references by
searching the runtime library. The linker saves your program on
disk as an executable file, ready to run.

You may, at link time, link more than one object module, as well
as routines written in assembly language or other high-level lan­
guages, and routines in other libraries. Linking is described in
greater detail in Section 3.3, "Linking Your Microsoft FORTRAN
Program," and in Chapter 6, "More about Linking."

12

Getting Started

Figure 2.1 illustrates the entire program development process.

MS-FORTRAN source

MS-FORTRAN
Compiler

yes +-- errors?

pas.OBJ
file(s)

Runtime
library

MS-LiNK
Linker

for.EXE file

MS-MACRO source

1
MS-MACRO
Assembler

errors? ~ yes

asm.OBJ
file(s)

1.

2.

3.

4.

yes +-(--- errors? ~ no -----~) 5.

Figure 2.1. Program Development

13

Microsoft FORTRAN Compiler User's Guide

14

1. Create and edit your MS-FORTRAN source file.

Program development begins when you write an MS­
FORTRAN program; any general purpose text editor will
serve the purpose. Use a text editor also to write any
assembly language routines you may plan to include.

2. Compile the program with $DEBUG. Assemble the as­
sembler source, if any. When compilation is successful,
remove the $DEBUG metacommand and recompile to
enhance your program's execution time.

Once you have written a program, compile it with the
MS-FORTRAN Compiler. The compiler flags all gram­
matical errors as it reads your source file. Include the
$DEBUG metacommand in your source file to generate
diagnostic calls for runtime errors. If compilation is suc­
cessful, the compiler creates a relocatable object file.

If you have wri tten your own assem bly language rou tines
(for example, to increase the speed of execution of a par­
ticular algorithm), assemble those routines with the
Microsoft MACRO Assembler.

3. Link the compiled (and assembled) OBJ files with the
runtime library.

A compiled (or assembled) object file is not executable and
must be linked with one of the runtime libraries, using
MS-LINK. Separately compiled MS-Pascal subroutines
and functions can also be linked to your program at this
time.

4. Run the EXE file.

The linker links all modules needed by your program and
produces as output an executable run file with .EXE as the
extension. This file can be executed by simply typing its
filename.

5. Recompile, relink, and rerun with $NODEBUG.

Repeat these processes until your program has success­
fully compiled, linked, and run without errors. Then
recompile, relink, and rerun with $NODEBUG or remove
$DEBUG from your source to reduce the amount of time
and space required. Chapter 8, "Compiling and Linking
Large Programs," discusses how to work within the var­
ious physical limits you may encounter in compiling, link­
ing, and executing a program.

Getting Started

2.3 Vocabulary

This section reviews some of the vocabulary that is commonly
used in discussing the steps in program development. The defini­
tions given are intended primarily for use with this manual. Thus,
neither the individual definition nor the list of terms is compre­
hensive.

An MS-FORTRAN program is more commonly called a "source
program" or "source file." The source file is the input file to the
compiler and must be in ASCII format. The compiler translates
this source and creates, as output, a new file called a "relocatable
object file." The source and object files generally have the default
extensions .FOR and .OBJ, respectively. After compiling, the
object file must be linked with the runtime library to produce an
executable program or run file. The run file has the extension
.EXE.

Some other terms you should know are related to stages in the
development and execution of a compiled program. These stages
are:

l. Compile time

The time during which the compiler is executing and
during which it compiles an MS-FORTRAN source file
and creates a relocatable object file.

2. Link time

The time during which the linker is executing and during
which it links together relocatable object files and library
files.

3. Runtime

The time during which a compiled and linked program is
executing. By convention, runtime refers to the execution
time of your program and not to the execution time of the
compiler or the linker.

15

Microsoft FORTRAN Compiler User's Guide

The following terms pertain to the linking process and the run­
time library:

16

1. Module

A general term for a discrete unit of code. There are sev­
eral types of modules, including relocatable and execut­
able modules.

The object files created by the compiler are said to be
"relocatable," that is, they do not contain absolute ad­
dresses. Linking produces an "executable" module, that
is, one that contains the necessary addresses to proceed
with loading and running the program.

2. Routine

Code, residing in a module, that represents a particular
subroutine or function. More than one routine may reside
in a module.

3. External reference

A variable or routine in one given module that is referred
to by a routine in another module. The variable or routine
is often said to be "defined" in the module in which it
resides.

The linker tries to resolve external references by search­
ing for the declaration of each such reference in other
modules. If such a declaration is found, the module in
which it resides is selected to be part of the executable
module (if it is not already selected) and becomes part of
your executable file. These other modules are usually
library modules in the runtime libraries.

If the variable or routine is found, the address associated
with it is substituted for the reference in the first module,
which is then said to be "bound." When a variable is not
found, it is said to be "undefined" or "unresolved."

4. Relocatable module

One whose code can be loaded and run at different loca­
tions in memory. Relocatable modules contain routines
and variables represented as offsets relative to the start of
the module. These routines and variables are said to be at
"relative" offset addresses.

Getting Started

When the module is processed by the linker, an address is
associated with the start of the module. The linker then
computes an absolute offset address that is equal to the
associated address plus the relative offset for each routine
or variable. These new computed values become the abso­
lute offset addresses that are used in the executable file.
Compiled object files and library files are all relocatable
modules.

These offset addresses are still relative to a "segment,"
which corresponds to an 8086 segment register. Segment
addresses are not defined by the linker; rather, they are
computed when your program is actually loaded prior to
execution.

5. Runtime libraries

Contain the runtime routines needed to implement the
MS-FORTRAN language. A library module usually cor­
responds to a feature or subfeature of the MS-FORTRAN
language.

17

Chapter 3
A SaDlple Session

3.1 Creating a Microsoft
FORTRAN Source File 22

3.2 Compiling Your
Microsoft FORTRAN Program 23

3.2.1 Pass One 23
3.2.2 Pass Two 26
3.2.3 Pass Three 27
3.3 Linking Your

Microsoft FORTRAN Program 28
3.4 Executing Your

Microsoft FORTRAN Program 30

19

This chapter provides step-by-step instructions for compiling and
linking an MS-FORTRAN program.

Before proceeding with any of your own MS-FORTRAN pro­
grams, we strongly recommend that you work through the sam­
ple session that follows keeping in mind possible performance
factors as you go. Section 2.1, "Preliminary Procedures," de­
scribes each step that should get your sample session off to a
good start.

Crea ting an executable MS-FO RTRAN program involves the fol­
lowing steps:

1. Write and save an MS-FORTRAN source file.

2. Compile your program with the MS-FORTRAN Compiler.

a. Start pass one and enter your filenames in response to
the prompts.

b. Run pass two of the compiler.

c. Run pass three of the compiler. (This step is optional.)

Note

For more information on starting the compiler and its
command line options, see Chapter 5, "More About
Compiling."

3. Link your object file to the MS-FORTRAN runtime
library. For information about linking options (switches),
see Chapter 6, "More About Linking."

4. Run your program.

Compiler passes one and two are required. You need to run pass
three only if you require or want an object listing (as in this
sample session).

The sample session assumes the following:

1. You have completed the necessary preliminary procedures.

2. You have two disk drives (A: and B:).

21

Microsoft FORTRAN Compiler User's Guide

3. The sample program is already debugged, so that it will
compile, link, and execute successfully.

4. An object listing is required, therefore all three passes of
the compiler will be run.

5. No linker switches will be used.

6. There are no problems with data, code, or memory limits.

These complexities are discussed in Chapter 5, "More About
Compiling," Chapter 6, "More About Linking," and Chapter 8,
"Compiling and Linking Large Programs," and are referred to as
appropriate in the following sample session.

If the files required for successive steps in the process are not on
the same disk as one another, you will have to exchange disks
between steps. For example, ifFOR1.EXE and P AS2.EXE are not
on the same disk, you will have to remove the first disk after
completing pass one and replace it with the disk containing
PAS2.EXE. Similarly, if the linker or the library file is on a
different disk than pass three, you will have to insert a new
system disk before running MS-LINK.

3.1 Creating a Microsoft
FORTRAN Source File

Turn on your computer and load MS-DOS. Insert an empty work
disk in drive B:. Log onto drive B:; this makes B: the default drive.

You can create MS-FORTRAN programs with any available text
editor. The source file should, in most cases, have the .FOR
extension.

22

A Sample Session

Note

We recommend that you use the $STORAGE:2 metacom­
mand at the beginning of your new programs whenever pos­
sible. This will significantly improve the size and speed of
your executable programs. Be advised, however, that this
metacommand may cause problems in programs that are
being ported from a mainframe processing environment and
should be used with $DEBUG during the initial compilation.
For more information on metacommands, see Chapter 6 in
the Microsoft FORTRAN Reference Manual.

For this sample session, we will use the program named DEMO.­
FOR, which came with the system software. Copy DEMO.FOR to
drive B:, which is where it would be if it were your own program.

3.2 Compiling Your
Microsoft FORTRAN Program

As mentioned previously, compiling a program is either a two- or
a three-step process, depending on whether or not you choose to
produce an object code listing. For this sample session, we will run
all three passes.

3.2.1 Pass One

Insert the disk containing FORl.EXE in drive A:. In response to
the operating system prompt, type:

A:FOR1

This command starts pass one of the MS-FORTRAN Compiler.

(Actually, you may respond in either uppercase or lowercase
characters. We use uppercase throughout this document simply
for clarity.)

23

Microsoft FORTRAN Compiler User's Guide

The compiler prints a header that includes the date and version
number, then prompts you for four filenames:

1. your source filename

2. an object filename

3. a source listing filename

4. an object listing filename

Respond to the prompts as described in the following paragraphs.
For additional information about the files themselves, see Chap­
ter 5, "More about Compiling."

24

1. Source file prompt

The first prompt is for the name of the file that contains
your MS-FORTRAN program:

Source filename [.FOR] :

The prompt reminds you that .FOR is the default exten­
sion for the source filename. Unless the extension is some­
thing other than .FOR, you may omit it when you type in
the filename.

For now, type DEMO (to indicate that the source file is
B:DEMO.FOR).

2. Object file prompt

The second prompt is for the name of the relocatable
object file, which will be created during pass two:

Object filename [DEMO.OBJ] :

The name in brackets is the name the compiler will give to
the object file if you simply press the RETURN key at this
point. The filename is taken from the source filename you
gave in response to the first prompt; the .OBJ extension is
the standard extension for object files.

For now, either type DEMO or press the RETURN key.

3. Source listing file prompt

The third prompt is for the name of the source listing file,
which will be created during pass one:

Source listing [NUL.LST] :

A Sample Session

As before, the prompt shows the default. Because the
source listing is not required for linking and executing a
program, it defaults to the null file; that is, if you press the
RETURN key, no file is created at all. However, if you en ter
any part of a file specification, the default extension is
.LST, the default device is the currently logged drive, and
the filename defaults to the name given for the source file.

For this session, assume that you want the source listing
written to a file called DEMO.LST; type DEMO in
response to the source listing prom pt.

4. Object listing file prompt

The final prompt is for the object listing file, to be created
during pass three:

Object listing [NUL.COD] :

The null file is the default for the object listing, as it is for
the source listing. If you press the RETURN key, no inter­
mediate files will be saved and you won't be able to run
pass three. However, the same default naming rules apply
here as elsewhere; if you enter any part of a file specifica­
tion, the default extension is .COD, the default device is
the currently logged drive, and the filename is the source
filename.

For now, type DEMO in response to the object listing
prompt. When you run pass three, the object listing will be
written to a disk file called DEMO.COD.

Compilation begins as soon as you have responded to all four
prompts. The source listing is written to the file DEMO.LST, on
the default dri ve B:, as requested. When pass one is complete, you
should see the following message on your terminal screen:

Pass One No Errors Detected.

If the compiler had detected errors during compilation, a message
such as the following would appear instead:

Pass One 3 Errors Detected.

The error messages are also given in the source listing. Errors are
mistakes that prevent a program from running correctly. See
Appendix C, "Error Messages," in the Microsoft FORTRAN Ref­
erence Manual for a complete listing of the error messages you
may encounter in MS-FORTRAN.

25

Microsoft FORTRAN Compiler User's Guide

Pass one creates two intermediate files, P ASIBF.SYM and
PASIBF.BIN. The compiler saves both of these files on the default
drive for use during pass two. If there are errors, these two files are
deleted and pass two cannot be run.

3.2.2 Pass Two

Remove the disk containing FOR1.EXE from drive A: and insert
the disk containing PAS2.EXE. You won't need to do this if
PAS2.EXE is on the same disk as FOR1.EXE.

Start pass two by typing:

A:PAS2

Pass two does not ordinarily prompt you for any input. However,
it does perform the following actions:

1. It reads the intermediate files P ASIBF.SYM and
PASIBF.BIN created in pass one.

2. It writes the object file.

3. It deletes the intermediate files created in pass one.

4. It writes two new intermediate files, PASIBF.TMP and
PASIBF.OID, for use in pass three. These files are written
to the currently logged drive.

When you are compiling your own programs, the last step de­
scribed varies, depending on your response to the object listing
prompt. If, as for this sample session, you plan to run pass three,
pass two writes the two intermediate files. If in pass one you do
not request an object listing, pass two writes and later deletes just
one new intermediate file, PASIBF.TMP.

When pass two is complete, a message such as the following
prints on your screen:

26

Code Area Size = #05EC (1516)
Cons Area Size = #00E6 (230)
Data Area Size = #0264 (612)

Pass Two No Errors Detected.

A Sample Session

The first three lines indicate, first in hexadecimal and then in
decimal notation, the amount of space taken up by executable
code (Code), constants (Cons), and variables (Data). The message
concerning the number of errors refers to pass two only, not to the
entire compilation.

3.2.3 Pass Three

Remove the disk containing P AS2.EXE from drive A: and insert
the disk containing P AS3.EXE. You won't need to do this if
PAS3.EXE is on the same disk as PAS2.EXE.

Start pass three by typing:

A:PAS3

PAS3.EXE does not prompt you for any input. It reads
PASIBF.TMP and PASIBF.OID, the temporary files created dur­
ing pass two, and, because of your earlier response to the object
listing prompt, writes the object code listing to the file DEMO.COD.

When pass three is complete, the two temporary files are deleted.
If, after requesting an object listing, you choose not to run pass
three, you should delete these files yourself (to save space).

Table 3.1 is a summary of the files read and written by each of the
three passes of the compiler during this sample session.

Table 3.1

Files Used by the MS-FORTRAN Compiler

Pass Reads Writes Deletes

1 DEMO.FOR DEMO.LST
PASIBF.SYM
PASIBF.BIN

2 PASIBF.SYM DEMO.OBJ PASIBF.SYM
PASIBF.BIN PASIBF.OID PASIBF.BIN

PASIBF.TMP

3 PASIBF.OID DEMO. COD PASIBF.OID
PASIBF.TMP PASIBF.TMP

27

Microsoft FORTRAN Compiler User's Guide

See Chapter 5, "More About Compiling," for more detailed infor­
mation about filename conventions and responding to the com­
piler prompts.

3.3 Linking Your
Microsoft FORTRAN Program

N ow you are ready to link your program with one of the two
versions of MS-LINK provided with Microsoft FORTRAN ver­
sion 3.20 (see Section 4.2, "Alternative Linkers," for a description of
these linkers). Linking converts the relocatable object file into an
executable program by assigning absolute addresses and setting
up calls to the runtime library.

Remove the disk containing P AS3.EXE from drive A: and insert
the disk containing LINK.EXE. This step won't be necessary if
the linker is on the same disk as P AS3.EXE.

Start the linker by typing:

A:LlNK

The linker displays a header and then, like pass one of the com­
piler, gives a series of four prompts, to which you must respond
before linking begins. The linker prompts you for the following
information:

1. the name of your relocatable object file(s)

2. the name you wish to give to the executable program

3. the name you wish to give to the linker listing

4. the name of the runtime library or libraries

Each of these prompts is discussed briefly in the following para­
graphs and in somewhat greater detail in Chapter 6, "More About
Linking." For complete information on MS-LINK, see your MS­
DOS manual.

After the first of the four linker prompts appears on the screen,
remove the disk containing LINK.EXE and insert the disk con­
taining FORTRAN.LIB and MATH.LIB. You won't need to do
this if the linker and the runtime libraries are on the same disk.

28

A Sample Session

1. Object modules prompt

The first prompt is for the name of your relocatable object
file (or files):

Object Modules [.OBJ] :

Like the compiler prompts, the linker prompts always
give certain defaults. This prompt indicates that .OBJ is
the default extension for any file(s) you name here. Type
DEMO, and the file DEMO.OBJ, created during compila­
tion, will be linked with FORTRAN.LIB and MATH.LIB
during the linking process. If, for any reason, an object file
does not have the extension .OBJ, you must give the file
specification in full.

2. Run file prompt

The second prompt is for the name of the run file, the file
created by the linker that will contain your executable
program:

Run File [OEMO.EXE] :

The default filename is taken from your response to the
first linker prompt; the .EXE extension identifies an exe­
cutable file. To accept the default filename, simply press
the RETURN key.

3. Linker listing file prompt

The third· prompt is for the linker listing file, sometimes
called the linker map:

List File [NUL.MAP] :

As the prompt indicates, the default for the list file is the
NUL file, that is, no file at all. For now, simply press the
RETURN key to accept this default.

If, when linking your own programs, you wish to see the
list file on your console, without having it written to a disk
file, type CON in response to the list file prompt. If you
want the linker map written to a disk file, respond to this
prompt with a name for the file.

4. Runtime library prompt

The last linker prompt is for the location of the runtime
library:

Libraries [.LlB] :

29

Microsoft FORTRAN Compiler User's Guide

Here, to indicate that FORTRAN.LIB and MATH.LIB
are on drive A:, you should type:

A:

If the libraries are not already on the disk in drive A:, you
will have to exchange disks before linking can proceed.

After you have responded to the last of the four prompts, the linker
links your compiled program, DEMO.OBJ, with the necessary
modules in the MS-FORTRAN runtime library, A:FORTRAN.­
LIB. This linking process creates an executable file, named
DEMO.EXE, on the default drive.

3.4 Executing Your
Microsoft FORTRAN Program

When linking is complete, the operating system prompt returns.
To run the sample program, just type:

DEMO

This command directs MS-DOS to load the executable file
DEMO.EXE, fix segment addresses to their absolute value (based
on the address at which the file is loaded), and start execution.

Assuming the program runs correctly, which it should, you will be
prompted to enter ten numbers, which will then be sorted and
displayed on your screen in sorted order, from lowest to highest.

This concludes the sample session. Additional information on
compiling and linking is provided in Chapter 5, "More About
Compiling," and Chapter 6, "More About Linking," respectively.
The following program shows a log of the entire sample session,
including prompts, your responses (shown in italics), and com­
ments on files written to disk:

30

A>B:
B>A:FOR1
Source file [.FOR]:OEMO
Object file [DEMO.OBJ]:RETURN
Source listing [NUL.LST]:OEMO
Object listing [NUL.COD]:OEMO

[Source listing written as DEMO.LST]

Pass One No Errors Detected.

B>A:PAS2

Code Area Size = 05EC 1516)
Cons Area Size = 00E6 230)
Data Area Size = 0264 612)

Pass Two No Errors Detected.

B>A:PAS3

[Object listing written as DEMO.COD]

B> A:LlNK
Object modules [.OBJ]:OEMO
Run file [DEMO.EXE]:RETURN
List map [NUL.MAP]:RETuRN
Libraries [.LlB]:A:

B>OEMO

[Program prompting and display]

A Sample Session

31

Chapter 4

Options for CODlpiling
and Linking

4.1 MS-DOS 2.0 Interface Library 35

4.2 Alternative Linkers 35

4.3 16-Bit Integer Variables 36

4.4 Floating-Point Options 37

4.5 Changing the Default Math Library 39

4.6 Best Cases for Compilation and Execution 39

33

This chapter contains descriptions of optional libraries and com­
piler features that are available to the users of Microsoft FOR­
TRAN for customizing the performance of executable programs.
We recommend, however, that you start by using the compiler
with its defaults, particularly if you are inexperienced with
FORTRAN.

4.1 MS-DOS 2.0 Interface Library

When you specify DOS2FOR.LIB at linktime, it will automati­
cally replace the standard file system in the runtime library,
FORTRAN.LIB, with the MS-DOS 2.0 file system. If you are
specifying FORTRAN.LIB explicitly you must specify DOS2-
FOR. LIB before FORTRAN.LIB in the list of libraries to be
searched by the linker.

The modules contained in DOS2FOR.LIB provide the interface
described in Section 10.2, "An Overview of the File System," of
this User's Guide.

Note

Programs linked with DOS2FOR.LIB will not run under MS­
DOS 1.25. An error message, "Incorrect DOS version", will be
returned by the program.

4.2 Alternative Linkers

Two versions of the Microsoft LINK utility are provided with this
version of Microsoft FORTRAN. The first, named LINK.EXE, is
the most current linker for MS-DOS versions 1.25 and earlier. It
will run under MS-DOS 2.0 but cannot accept pathnames or
subdirectories. The other version is named LINK.V2. It accepts
pathnames, will only run on MS-DOS 2.0, and includes an Over­
lay option.

35

Microsoft FORTRAN Compiler User's Guide

You must use either LINK.EXE or LINK. V2 to link your program
because earlier versions of the MS-DOS linker lack some of the
internal features necessary for support of this version of Microsoft
FORTRAN.

LINK.EXE and LINK.V2 search libraries based on the contents
of a library list. This list is derived from your command line
specifications and the search directives produced by the compiler.
If, after all the libraries have been searched, at least one reference
has been resolved, the linkers will repeat the search and attempt
to resolve the other references. Previous versions of the linker
searched each library only once.

Rename LINK.V2 to be an .EXE file if you want to use it at
linktime. See Section 6.1.2, "Linking Libraries," for command­
line and prompting information.

Note

If you use the earlier versions of Microsoft LINK, an other­
wise correct program may produce linker error messages and
not execute properly.

For more information about LINK. V2, see Section 6.3, "The Over­
lay Linker."

4.3 16-Bit Integer Variables

If you know that none of the values assigned to INTEGER vari­
ables in your program will exceed the precision of a 16-bitinteger,
and that your program does not rely on REAL, LOGICAL and
INTEGER variables being allocated the same amount of memory
(as specified by the FORTRAN 77 Standard), you can use the
$STORAGE:2 metacommand to specify that your INTEGER and
LOGICAL variables will be mapped into two bytes, instead of the
default four bytes. This will make your programs run more
quickly since the Intel R 8086 processes 16-bit arithmetic much
faster than 32-bit arithmetic.

36

Options for Compiling and Linking

You shouldn't have any problem in using $STORAGE:2 on pro­
grams you write for yourself or which you have migrated from
other microprocessor FORTRANs that have 16-bit INTEGERs.
Be careful, though, when using it with programs originally writ­
ten for mainframe FORTRANs that have bigger integer varia­
bles. Values that were perfectly valid in the bigger integers may
exceed the range of a 16-bit integer. Unless you compile with the
$DEBUG option, the values may wrap around and your program
will give wrong answers. To be safe, always use $DEBUG until
you are sure your program is working properly.

Comments on the Integer Data Type

1. The range of values for both 16-bit and 32-bit integers does
not include the most negative number that can be repres­
ented in 2's complement arithmetic in that number of bits.
These numbers, 16#8000 and 16#80000000, are treated as
"undefined" for error checking purposes.

2. Although the maximum 32-bit integer value is defined as
2**31-1, the compiler and runtime will read greater values
which are nominally in the range up to 2**32. But these
values will only be read without error if the radix is other
than 10. They will be interpreted as the negative numbers
with the corresponding internal representation. For ex­
ample, 16#FFFFFFFF will result in all the bits in the
32-bit integer result being set, and will have an arithmetic
value of-1.

4.4 Floating-Point Options

You can use metacommands and alternative libraries to change
the way floating-point operations are carried out. (For more
details, see Section 10.4, "Floating-Point Operations.") The op­
tions are:

37

Microsoft FORTRAN Compiler User's Guide

SOS7.LIB / $FLOATCALLS

If you know that all machines on which you will be running your
program will have an 8087 installed, you can use 8087.LIB to
reduce its size. You can reduce its size still further and improve its
performance by compiling with the $NOFLOATCALLS meta­
command.

Alternate Math Option

Ifperformance on machines without 8087s installed is an overrid­
ing concern, and you do not care if your program does not exploit
an 8087 ifit is installed, and if you do not require the full power of
the proposed IEEE floating-point standard, you can use the fast
math package by linking with ALTMATH.LIB.

Decimal Math Option

Microsoft FORTRAN supports an alternative floating-point for­
mat in which decimal floating-point numbers up to 14 digits and
within a limited exponent range can be represented exactly. The
results of the operations on the numbers in this format are also
represented exactly if they are in the allowable range. This option
is particularly useful in business and financial applications
where exact results are important.

You select the decimal format by using the $DECMATH meta­
command in all of your program units that use floating-point. You
must link with DECMATH.LIB to support this format. Decimal
floating-point and IEEE floating-point are not compatible.

Note

38

$FLOATCALLS and $NOFLOATCALLS will be ignored if
you have specified $DECMATH.

Options for Compiling and Linking

4.5 Changing the Default Math Library

The default math library is contained in MATH.LIB. You can
make either DECMATH.LIB, SOS7.LIB, or ALTMATH.LIB the
default by naming the one you want to be MATH.LIB.

4.6 Best Cases for
Compilation and Execution

The Microsoft FORTRAN Compiler can create several versions of
your executable program. Here are some "best case" combina­
tions of Microsoft FORTRAN options for particular processor
configurations.

Fastest (with 8087)

To get the best possible performance if you have an SOS7, use
the $NOFLOATCALLS and $STORAGE:2 metacommands,
and link with SOS7.LIB. This will also be the smallest version
of your program.

Fastest (without 8087)

To get the best possible performance without an SOS7, use
$STORAGE:2 and link with ALTMATH.LIB.

Most portable, most consistent

If you want your program to run on any environment and
give the most accurate results possible, use the default com­
piler and library options. You can also compile using the
$NOFLOATCALLS metacommand, which will reduce the
size of your program without affecting the arithmetic
results.

39

Chapter 5

More About CODlpiling

5.1 Files Written by the Compiler 43
5.1.1 The Object File 43
5.1.2 The Source Listing File 43
5.1.3 The Object Listing File 44
5.1.4 The Intermediate Files 44
5.2 Filename Can ven tions 45
5.3 Starting the Compiler 49
5.3.1 Giving No Parameters

on the Command Line 49
5.3.2 Giving All Parameters

on the Command Line 50
5.3.3 Giving Some Parameters

on the Command Line 51

41

This chapter provides procedural information on the compiler,
supplementing the discussion in Section 3.2, "Compiling Your
Microsoft FORTRAN Program." For a technical discussion of the
compiler, see Section 10.1, "The Structure of the Compiler."

5.1 Files Written by the Compiler

In addition to creating several intermediate files, which it later
reads and deletes, the compiler writes one required file and two
optional files that represent your program in various ways. The
object file is the one permanent file that must be created. The
source listing and object listing files are optional; you may request
that either or both of these be displayed or printed instead of being
written to a disk file.

5.1.1 The Object File

The object file is written to disk after the completion of pass two of
the compiler. It is a relocatable module, which contains relative
rather than absolute addresses. Normally created with the .OBJ
extension, the object module must be linked with the MS­
FORTRAN runtime library to create an executable module con­
taining absolute addresses.

5.1.2 The Source Listing File

The source listing file is a line-by-line account of the source file(s),
with page headings and messages. Each line is preceded by a
number that is referred to by any error messages that pertain to
that source line.

Compiler error messages, shown in the source listing, are also
displayed on your terminal screen. See Appendix C, "Error Mes­
sages," in the Microsoft FORTRAN Reference Manual for a com­
plete list of MS-FORTRAN error messages.

If you include files in the compilation with the $INCLUDE meta­
command, these files are also shown in the source listing. (For
information on the $INCLUDE metacommand, see the entry for
$INCLUDE in Section 6.2, "Metacommand Directory," in the
Microsoft FORTRAN Reference Manual.)

43

Microsoft FORTRAN Compiler User's Guide

The various flags, level numbers, error message indicators, and
symbol tables in the source listing make it useful for error check­
ing and debugging. Many programmers prefer a printout of the
source listing file rather than of the source file itself as a working
copy of the program.

5.1.3 The Object Listing File

The object listing file, a symbolic, assembler-like listing of the
object code, lists addresses relative to the start of the program or
module. Absolute addresses are not determined until the object
file itself is linked with the runtime library.

The object listing file is used less often than the source listing file,
but may be a useful tool during program development:

1. You can look at it simply to see what code the compiler
generates and to familiarize yourself with it.

2. You can check to see whether a different construct or
assembly language would improve program efficiency.

3. You use it as a guide when debugging your program with
the MS-DOS DEBUG utility.

5.1.4 The Intermediate Files

Pass one creates two intermediate files, P ASIBF.SYM and
PASIBF.BIN, which incorporate information from your source
file for use in creating the object file during pass two. These two
intermediate files are always written to the default drive.

Pass two reads and then deletes PASIBF.SYM and PASIBF.BIN.
Pass two itself creates one or two new intermediate files, depend­
ing on whether or not you've requested an object listing. If, as for
the sample session, you plan to run pass three to produce the
object listing, pass two writes the two intermediate files,
PASIBF.TMP and PASIBF.OID.

Ifin pass one you do not request an object listing, pass two writes
and later deletes just one new intermediate file, PASIBF.TMP.

44

More About Compiling

P AS2.EXE assumes that the intermediate files created in pass
one are on the default drive. If you have switched disks so that
they are on another drive, you must indicate their location on the
command that starts pass two. For example:

A:PAS2 A/PAUSE

The A immediately following the command tells the compiler that
PASIBF.BIN and PASIBF.SYM are on drive A, instead of the
default drive B:. The / PA USE tells the compiler to pause before
continuing so that you can insert the disk that contains them into
drive A:.

After pausing, pass two prompts as follows:

Press enter key to begin pass two.

When you have inserted the new disk in drive A:, press the
RETURN key and the compiler proceeds with pass two.

PASIBF.TMP and PASIBF.OID are deleted from the default
drive during pass three. If you change your mind after requesting
an object listing file and decide not to run pass three, be sure to
delete these files to recover the space on your disk.

5.2 Filename Conventions

When you start up the compiler, it prompts you for the names of
four files: your source file, the object file, the source listing file, and
the object listing file. The only one of these names you must
supply is the source filename.

This section describes how the compiler constructs the remaining
filenames from the source filename and how you can override
these defaults.

A complete filename specification under MS-DOS has three parts:

1. Device name

The name of the disk drive where the file is or will be. On a
single-drive machine, all device names default to A:. On
multidrive machines, if you do not specify a device, the
compiler assumes the currently logged drive.

45

Microsoft FORTRAN Compiler User's Guide

2. Filename

The name you give to a file. Consult your operating sys­
tem manual for any limitations on assigning filenames.
Note that "line" and "user" are reserved by FORTRAN
for the console and auxiliary port, respectively (the exten­
sion is ignored for these names).

3. Filename extension

Added to the filename for further identification of the file.
The extension consists of up to three alphanumeric char­
acters and must be preceded by a period. Although you
may give any extension to a filename, the MS-FORTRAN
Compiler and MS-LINK recognize and assign certain
extensions by default, as shown in the list below.

Extension Function of File

.FOR MS-FORTRAN source file

.PAS MS-Pascal source file

.OBJ Relocatable object file

.LST Source listing file

.COD Object listing file

.ASM Assem bIer source file

.MAP Linker map file

.LIB Library file

.EXE Executable run file

If you give unique extensions to your filenames, you must include
the extension as part of the filename in response to a prompt. If
you do not specify an extension, the MS-FORTRAN Compiler
supplies one of those shown in Table 5.1.

46

More About Compiling

Table 5.1

Default File Specifications

File Device Extension Full File Spec

Source file dey: .FOR dev:filename.FO R

Object file dey: .OBJ dev:filename.OBJ

Source listing dey: .LST dev:NUL.LST

Object listing dey: .COD dev:NUL.COD

Table 5.1 also shows the default file specifications supplied by the
compiler if you give a name for the source file and then press the
RETURN key in response to each of the remaining compiler
prompts.

The device "dev:" is the currently logged drive. Even if you specify
a device with the source filename, the remaining file specifica­
tions will default to the currently logged drive. You must explicitly
specify the name of another drive if that is where you want a
particular file to go.

The NUL file is equivalent to creating no file at all; thus, by
default, the compiler creates neither a source listing file nor an
object listing file. If, in response to either of the last two prompts,
you enter any part of a file specification, the remaining parts
default as follows:

Source listing dev:filename.LST
Object listing dev:filename.COD

N either listing file is created unless you explicitly request it. If you
specify any non-null file for the object listing, pass two leaves
PASIBF.TMP and P ASIBF.OID, the input files for pass three, on
your work disk until you delete them, either explicitly or by run­
ning pass three.

The general rules for filenames may be summarized as follows:

1. All lowercase letters in filenames are changed into upper­
case letters. For example, the following three names are
all considered equivalent to ABCDE.FGH:

abcde.fgh AbCdE.FgH ABCDE.fgh

47

Microsoft FORTRAN Compiler User's Guide

48

2. To enter a filename that has no extension in response to a
prompt, type the name followed by a period.

For example, typing ABC in response to the source file­
name prompt gives a filename of ABC. FOR; typing ABC.
instructs the compiler to accept ABC with no extension as
the name.

3. You may override any defaults by typing all or part of the
name instead of pressing the RETURN key. For example, if
the currently logged drive is B: and you want the object
file to be written to the disk in drive A:, type A: in response
to the following prompt:

Object Filename [ABC.OBJ] :

This results in a full filename of A:ABC.OBJ for the object
file.

4. Listing files default to null. However, if you specify any
part of a legal filename, the default changes so that the
compiler creates a filename with the same default rules
that apply to the source and object files. Specifically, if
you give a drive or extension, then the base name is the
base name of the source file. For example, typing B: in
response to the object listing prompt gives a filename of
B:ABC.COD.

5. Typing a semicolon after the source filename or in
response to any of the later prompts tells the compiler to
assign the default filenames to all the remaining files.
This is the quickest way to start the compiler if you don't
need either of the listing files.

For example, typing ABC; in response to the source file
prompt eliminates the remaining prompts and results in
the following filenames:

Source file
Object file
Source listing
Object listing

B:ABC.FOR
B:ABC.OBJ
B:NUL.LST
B:NUL.COD

You may not enter a semicolon to specify a source file,
since the source file has no default filename.

More About Compiling

6. Leading and trailing spaces are permitted, so the follow­
ing is an acceptable response to the source file prompt:

ABC ;

The filename itself must not contain spaces.

7. To send either listing file to your screen (console), use one
of the special filenames USER or CON. USER is recog­
nized only by MS-FORTRAN (and MS-Pascal) and writes
to the screen immediately as the listing is created. CON is
recognized by all MS-DOS programs, but saves the con­
sole output and writes it in blocks of 512 bytes.

5.3 Starting the Compiler

You can start the MS-FO RTRAN Compiler in one of three ways:

1. You can let the compiler prompt you for each of the four
filenames (as in the sample session).

2. You can give all four filenames on the command line.

3. You can give some of the filenames on the command line
and let the compiler prompt you for the rest.

Each of these methods is discussed in the following sections. The
second method, giving all four filenames on the command line, is
particularly useful when you plan to use a batch command file.
See Chapter 7, "Using a Batch Command File," for information.

5.3.1 Giving No Parameters
on the Command Line

To start the compiler without gIVIng any of the necessary
parameters (filenames) on the command line, simply type the
following:

A:FOR1

49

Microsoft FORTRAN Compiler User's Guide

As in the sample session, the compiler prompts you for each of the
four filenames it needs. A typical session might look like this (your
responses are shown in italics):

Source filename [.FOR] : MYFILE
Object filename [MYFILE.OBJ] : RETURN

Source listing [NUL.LST] : MYFILE
Object listing [NUL.COD] : RETURN

This sequence of responses would give you an object file called
B:MYFILE.OBJ, a source listing file called B:MYFILE.LST, and
no object listing file.

Note

Pressing the RETURN key means that you accept the default
shown in brackets; giving any part of a file specification
creates a file with the same default rules that apply to other
files.

5.3.2 Giving All Parameters
on the Command Line

Instead of letting the compiler prompt you for each of the four
filenames in turn, you may implicitly or explicitly give all four
names on the same command line with which you start the com­
piler. This eliminates prompting for the filenames and is particu­
larly useful when you are using the MS-DOS batch file facility.
See Chapter 7, "Using a Batch Command File," for information
on creating a batch command file for use with the compiler.

The general form of the command line that includes all of the
compiler parameters is as follows:

A:FOR1 source,object,sourcelist,objectlist;

The same default naming conventions apply here as when you
are prompted for the filenames.

You must separate each filename with a comma; spaces are
optional. Put a semicolon at the end of the line to indicate that you
do not want additional prompting.

50

More About Compiling

If you omit a filename after a comma, the file by default is given
the same filename as the source, the default device designation,
and the default extension. Thus, these two command lines are
equivalent:

A: FOR1 DATABASE,DATABASE,DATABASE,DATABASE;
A: FOR1 DATABASE, , , ;

Both result in the following four filenames being assigned:

Source file
Object file
Source listing
Object listing

B:DATABASE.FOR
B:DATABASE.OBJ
B:DATABASE.LST
B:DATABASE.COD

If you want the normal defaults, with NUL listing files, use the
semicolon (;) following the source filename. Thus, these command
lines are equivalent:

A : FOR1 YOYO,YOYO,NUL,NUL;
A : FOR1 YOYO;

You may include spaces before or after filenames, but not within
them.

5.3.3 Giving Some Parameters
on the Command Line

You may also start the compiler by giving one or more of the
required filenames on the command line and letting the compiler
prom pt you for the rest.

For example, if you give only the names of the source file and the
object file on the command line, the compiler will prompt you for
the names of the source listing and the object listing (your
responses are shown in italics):

B : A : FOR1 TEST, TEST
Source listing [NUL.COD] : TEST
Object listing [NUL.COD] : RETURN

This sequence of responses results in the following filenames:

Source file
Object file
Source listing
Object listing

B:TEST.FOR
B:TEST.OBJ
B:TEST.LST
B:NUL.COD

51

Chapter 6

More About Linking

6.1 Files Read by the Linker 55

6.1.1 Object Modules 55

6.1.1.1 Standard Runtime Libraries 57

6.1.1.2

6.1.1.3

6.2

6.2.1

Auxiliary Libraries 58

Linking Libraries 59

Files Written by the Linker

The Run File 61

6.2.2 The Linker Listing File 61

6.2.3 VM.TMP 62

6.3 The Overlay Linker 62

6.3.1 Restrictions 63

60

6.3.2 Overlay Manager Prompts 64

6.4 Linker Switches 64

53

This chapter provides an overview of what you will see on your
screen when you start LINK.EXE, the default version of Micro­
soft LINK. Included in this overview is a description of the stan­
dard runtime libraries and the auxiliary libraries provided with
this version of the Microsoft FORTRAN Compiler. Also included
is a discussion of the optional version of Microsoft LINK,
LINK.V2, which accepts pathnames and overlays.

6.1 Files Read by the Linker

A successful MS-FORTRAN compilation produces a relocatable
object file. Linking, the next step in program development, is the
process of converting one or more relocatable object files into an
executable program.

6.1.1 Object Modules

Object files can come from any of the following sources:

1. MS-FORTRAN compilands (programs, subroutines, or
functions)

2. MS-Pascal compilands (programs, modules, or units)

3. User code in other high-level languages

4. Assembly language routines

5. Routines in standard runtime modules that support facili­
ties such as error handling, heap variable allocation, or
input! output

Interfacing to MS-Pascal or other high-level language routines is
quite straightforward. All procedures that are referenced in an
MS-FORTRAN routine and that are not defined in the same
program unit are automatically considered to be external. No
additional EXTERNAL declarations are required. For informa­
tion on how to specify in another language that a routine is public,
see the appropriate reference and user manuals for that language.

Calling con ventions and function returns between MS-FO RTRAN
and other languages may differ. (See Chapter 9, "Using Assembly
Language Routines," for MS-FORTRAN calling conventions and

55

Microsoft FORTRAN Compiler User's Guide

interface requirements.) You may need to write assembly lan­
guage interface routines to interface between MS-FORTRAN and
other languages. Whatever the language, it must be able to pro­
duce linkable object modules.

For further information on MS-LINK, see the appropriate chapter
in your MS-DOS manual.

The ability to link together programs and subroutines of MS­
FORTRAN source code, as well as assembly language and
library routines, allows you to develop a program incrementally.
Separate compilation and later linking of separate parts of a
program not only reduces the need for continual recompilation, it
also allows you to create programs that contain more than 64K
bytes of code. (See Chapter 8, "Compiling and Linking Large
Programs.") Separate compilation may increase the total size of
your object module and run file, but will have no effect on the size
of your executable program.

For now, assume that you have created a program that uses one
MS-FORTRAN main program and one subroutine and also con­
tains two assembly language external procedures. Assume fur­
ther that these files have already been compiled or, in the case of
the assembly language routines, already assembled and that the
files thus created are the following:

PROG.OBJ
SUBR.OBJ
ASMl.OBJ
ASM2.0BJ

To link these all together, first invoke the linker by typing the
following:

A:L1NK

Like the compiler, the linker gives a sequence of four prompts.
Before linking can proceed, you must explicitly or implicitly
supply the following pieces of information:

1. the name(s) of the object modules to be linked

2. the name to be given to the executable run file

3. the linker listing file

56

More About Linking

4. the names of any libraries to be searched (other than
FORTRAN.LIB)

As with the compiler, responses to all except the first prompt may
be supplied by defaults.

In response to the first linker prompt, enter the names of the object
files, separated by plus signs as shown:

PROG+SUBR+ASM1 +ASM2

The first object file listed must be an MS-FORTRAN object file,
although it need not be the main program. Do not put any assem­
bly language module first; doing so may result in segments being
ordered incorrectly. After the initial MS-FORTRAN object file,
you may list the other subroutines or assembly language routines
in any order.

Note

Typing a semicolon (;), at any point in the prompting session
after you have specified the object files that you wish to link,
tells the linker to omit the remaining prompts and to supply
defaults for all remaining parameters (see Table 6.1).

Table 6.1

Linker Defaults

Prompt

Object modules

Run file

List map

Libraries

Default Response

None

prog.EXE

NUL.MAP

FORTRAN.LIB

6.1.1.1 Standard Runtime Libraries

A runtime library contains runtime routines that are required
during linking to resolve references made during compilation (see
Section 10.3.1, "Runtime Routines," for a complete list.)

57

Microsoft FORTRAN Compiler User's Guide

MS-FORTRAN causes the linker to search for the runtime librar­
ies FORTRAN.LIB and MATH.LIB, which are supplied with the
compiler and contain the standard runtime modules for FOR­
TRAN. MATH.LIB contains the default floating-point math
package (see Chapter 10, "Advanced Topics," for more details
about these elements of MATH.LIB.)

If you don't use any real numbers in your programs, MATH.LIB
is not required at linktime. But if you have unresolved references
when you link, the linker will req uest MA TH.LIB to satisfy them.
You can also change the default math package by renaming
MATH.LIB and naming the library of your choice to be
MATH.LIB.

6.1.1.2 Auxiliary Libraries

You may wish the linker to search additional libraries at link
time. The auxiliary libraries supplied with MS-FORTRAN are:

1. ALTMATH.LIB, which contains a high speed software
floating-point package

2. BOB7.LIB, which contains "stubs" for the floating-point
package

3. DECMATH.LIB, which contains decimal floating-point
support routines

4. DOS2FOR.LIB, which contains the interface to the MS­
DOS 2.0 file system.

Note

58

The auxiliary math libraries completely replace MATH.LIB
and can be specified before or after an explicit reference to
FORTRAN.LIB. If you specify them first, the automatic
search for MATH.LIB will be suppressed. You must not spec­
ify more than one math library explicitly.

More About Linking

DOS2FOR.LIB replaces the equivalent part of FORTRAN.LIB
and must be searched before FORTRAN.LIB. This will occur
automatically unless you are specifying FORTRAN.LIB explic­
itly. In this case, DOS2FOR.LIB must come before FORTRAN.­
LIB in the list of libraries supplied to the linker.

6.1.1.3 Linking Libraries

To produce a library search using the LINK.EXE prompts, you
specify the desired library at the "Libraries" prompt. For exam­
ple, if you wanted FORTRAN.LIB to be searched, you would enter
fortran. lib in the following sequence of prompts:

Object Modules [.OBJ] : your modules
Run File your program: RETURN

List File [NUL.MAP] : RETURN

Libraries [.L1B] : fortran.lib

On the command line, it would appear as shown here:

A>L1NK your modules, , , fortran.lib

If you press the RETURN key in response to the final linker prompt,
the linker will automatically search for FORTRAN.LIB on the
default drive. If FORTRAN.LIB is not on the default drive, the
following message will appear on your screen:

Cannot find library FORTRAN.L1B
Enter new drive spec:

Switch disks if necessary, and then type the name of the library
that you wish to be searched. If instead you want linking to
proceed without a library search, respond by pressing the RETURN

key.

You can achieve the same effect by using the linker option switch,
INODEFAULTLIBRARYSEARCH, to override the automatic
search for FORTRAN.LIB and MATH.LIB. This will produce
unresolved reference error messages unless you replace every
required runtime routine with a routine of your own. (Most MS­
FORTRAN programmers never require this capability.)

If you are using LINK.EXE, you may specify just the drive, or just
the library filename, or both the drive and the filename. If you are
using LINK.V2, you may specify the library filename in a path

59

Microsoft FORTRAN Compiler User's Guide

(drive:\pathname\filename and extension). For example, if you
want the standard runtime library, \FORTRAN\FORTRAN.­
LIB, you respond,

A>LlNK your modules, , , \fortran\

The linker will look for FORTRAN.LIB in the FORTRAN direc­
tory on drive:A. If you respond,

A>LlNK your modules, , , \fortran\foo

the linker will look for \FORTRAN\FOO.LIB.

Note

You cannot specify a pathname with the default linker,
LINK.EXE.

To instruct the linker to search other libraries (for example, P AS­
CAL.LIB, as well as FORTRAN.LIB) give the library names,
separated by plus signs, in response to the final linker prompt,

Libraries [.LlB] : fortran.lib+pascal.lib+stat./ib

See your MS-DOS User's Guide for complete information on using
different libraries with Microsoft LINK.

6.2 Files Written by the Linker

The primary output of the linking process is an executable run
file. You may also request a linker map or listing file, which serves
much the same purpose as the compiler listing files. The linker, if
need be, also writes and later deletes one temporary file.

60

More About Linking

6.2.1 The Run File

The run file produced by the linker is your executable program.

The default filename, given in brackets as part of the prompt, is
taken from the name of the first module listed in response to the
first prompt. To accept this prompt, press the RETURN key. To
specify another run filename, type in the name you want. All run
files receive the extension .EXE, even if you specify something
else.

The linker ordinarily saves the run file, with the extension .EXE,
on the disk in the default drive. To specify another drive, which
may be necessary if your program is large, type a drive name in
response to the run file prom pt.

6.2.2 The Linker Listing File

The linker map, also called the linker listing file, shows the
addresses, relative to the start of the run module, for every code or
data segment in your program. If you request it with the IMAP
switch, the linker map can also include all EXTERN and PUB­
LIC variables. (See Section 6.4, "Linker Switches," for informa­
tion on the IMAP switch).

The linker map defaults to the NUL file, unless you specifically
request that it be printed, displayed on the screen, or saved on
disk. In the early stages of program development, you may find it
useful to inspect the linker map in these two instances:

1. When using the debugger to set breakpoints and locate
routines and variables

2. To find out why a load module is so large (for example,
what routines are loaded, how big they are, and what's in
them)

As the prompt indicates, the default for the linker map is the NUL
file, that is, no file at all. Press the RETURN key to accept this
default. If you wish to see the linker map but not have it written to
a disk file, type CONin response to the list file prompt. If you want
the file written to disk, give a device or filename.

61

Microsoft FORTRAN Compiler User's Guide

6.2.3 VM. TMP

Linking begins after you have responded to all of the linker
prompts. If the linker needs more memory space to link your
program than is available, it will create a file called VM.TMP on
the disk in the default drive and will display a message like the
following:

VM.TMP has been created.
Do not change disk in drive B:.

If the additional space is used up or if you remove the disk that
contains VM. TMP before linking is complete, the linker will
abort.

When the linker has finished, VM. TMP will be erased from the
disk, and any errors that occurred during linking will be dis­
played. (For a list of MS-LINK error messages, see Appendix H,
"Microsoft LINK Error Messages.")

If the linker aborts, use the MS-DOS command DIR to check the
contents of your disk to make sure that VM.TMP has been deleted.
Then, to make sure the space has been released, use the CHKDSK
program (supplied with MS-DOS). CHKDSK will reclaim any
available space from unclosed files and tell you the total amount
of available space on the disk.

6.3 The Overlay Linker

You can direct the MS-DOS 2.0 version of the linker (named
LINK.V2) to create an overlayed version of your program. This
means tha t parts of your program will only be loaded if and when
they are needed, and will share the same space in memory. Your
program will be smaller as a result, but will usually run more
slowly because of the time needed to read and reread the code into
memory.

Provided your modules obey the restrictions described below, all
you have to do is specify the overlay structure to the linker.
Loading of the overlays is automatic. You specify overlays in the

62

More About Linking

list of modules that you submit to the linker by-enclosing them in
parentheses. Each parenthetical list represents one overlay. For
example, in the following response to the OBJECT MODULES
prompt,

OBJECT MODULES [OBJ.] a + (b+c) + (e+f) + 9 + (i)

the elements (b+c), (e+f) and (i) are overlays. The remaining
modules, and any drawn from the runtime libraries, make up the
resident part of your program, or "root." Overlays are loaded into
the same region of memory, so only one can be resident at a time.
Duplicate names in different overlays are not supported, so each
module can occur only once in a program.

The linker will replace calls from the "root" to an overlay and calls
from an overlay to another overlay with an interrupt (followed by
module identification and offset.) The interrupt is, by default,
number #CD. If this conflicts with another use of this interrupt
number in your program, you can specify another using the
/OVERLA YINTERRUPT switch.

This switch takes a numeric parameter.

6.3.1 Restrictions

The name for the overlays is appended to the .EXE file, and the
name of this file .is encoded into the program so the Overlay
Manager can access it. If, when the program is initiated, the
overlay manager cannot find the .EXE file (perhaps you have
renamed it or it is not in a directory specified by the path envi­
ronment variable), then the linker will prompt you for a new
name.

You can only overlay modules to which control is transferred and
returned by a standard 8086 long (segmented) call/return instruc­
tion. This will always be true for Pascal and FORTRAN modules
(although you should not attempt to overlay any of the modules in
the standard runtime libraries). An exception is a function or a
procedure parameter. In this case, the actual parameter (the func­
tion or procedure that you specify as the parameter) must either be
in the same overlay in which the parameter is used to call it, or in
the "root." You cannot use long jumps or indirect calls to pass
control to an overlay.

63

Microsoft FORTRAN Compiler User's Guide

6.3.2 Overlay Manager Prompts

Suppose that B: is the default drive; then In the following
example,

Cannot find PA YROLL.EXE
Please enter new program spec:\emp/oyee\data\

the response \employee\data\ causes the overlay manager to
look for \employee\data\payroll.exe on B:.

Now, suppose that it becomes necessary to change the disk in
drive B:. If the overlay manager needs to swap overlays, it will
find that PA YROLL.EXE is no longer on B:, and will give the
following message,

Please put diskette containing B:\employee\data\payroll.exe
in drive B: and strike any key when ready.

After the overlay has been read from the disk, the Overlay Man­
ager will give the following message,

Please restore the original diskette.
Strike any key when ready.

6.4 Linker Switches

After any of the linker prompts, you may give one or more linker
switches. Table 6.2 summarizes the linker switches you may use
with Microsoft FORTRAN. See your MS-DOS manual for more
information on linker switches and when and how to use them.

64

More About Linking

Table 6.2

Microsoft LINK Switches

Switch Action

ICPARMAXALLOC:NNNN

IDSALLOCATE

ILINENUMBERS

IMAP

By default, the cparMaxAlloc field (at offset #OC)
in the EXE header (see Chapter 5 in the MS-DOS
Programmer's Reference) is set to 65535. This
switch allows you to set the value to any number
between 1 and 65535; if the value you specify is less
than the computed value of cparMinAlloc, the
linker will use the value of cparMinAlloc (at offset
#OA) instead. If you arc running programs under
MS-DOS 1.25, you should not use this switch.

Loads data at the high end of the data segment.
For Microsoft Pascal and Microsoft FORTRAN
programs, this switch is required and supplied
automatically by the compiler.

Includes source listing line numbers and asso­
ciated addresses in the linker listing, which allows
you to correlate machine addresses with source
lines when debugging. This correlation is also
available on the object listing.

Includes all EXTERN and PUBLIC variables in
the linker list file.

INODEFAULTLIBRARYSEARCH

This switch tells the linker not to automatically
search FORTRAN.LIB.

INOGROUP ASSOCIATION

INOIGNORECASE

If you are linking old libraries (those supplied
with versions of FORTRAN and Pascal prior to
:3.20) you must use this switch.

By default, "FOO", "foo", and "Foo" are treated
by the linker as being equivalent. If INOIG­
NORECASE is specified, then they are all dif­
ferent symbols.

65

Microsoft FORTRAN Compiler User's Guide

Table 6.2 (continued)

Switch Action

/OVERLA YINTERRUPT:NNNN

By default, the interrupt number used for pass­
ing control to overlays is CD hexadecimal. The
overlay interrupt switch allows the user to
select a different interrupt number. NNNN can
be any of the following:

• A decimal number from 0 to 255 (numbers
that conflict with MS-DOS interrupts are
not prevented, but their use is inadvisable.)

• An octal number from 0 to 377. A number is
interpreted as octal if it starts with a zero,
e.g., 10 is 10 decimal but 010 is 8 decimal.

• A hexadecimal number from 0 to FF. A
number is interpreted as hexadecimal if it
starts with "Ox". Thus, 10 is ten decimal,
010 is 8 decimal, and Ox10 is 16 decimal.

/PAUSE Tells Microsoft LINK to display the following
message:

About to generate .EXE file
Change disks <press RETURN>

You may then change disks before the linker
continues. The /PAUSE switch is particularly
useful for linking large programs, since it allows
you to switch disks before writing the run file.
However, if a VM.TMP file is created, you must
not switch the disk in the default drive.

As with all linker switches, a unique abbreviation of the switch name is
acceptable in place of the whole name.

Note

66

For Microsoft Pascal and Microsoft FORTRAN programs, do
not use either of the additional linker switches IHIGH or
ISTACK.

Chapter 7
Using a Batch COInntand File

The MS-DOS batch file facility lets you create a batch file for
executing a series of commands. This facility is described fully in
your MS-DOS manual. This chapter provides a brief description
of command files in the context of compiling, linking, and run­
ning an MS-FORTRAN program.

A batch command file is a text file of lines that are MS-DOS
commands. If a batch file is open when MS-DOS is ready to
process a command, the next line in the file becomes the com­
mand line. After processing all batch command lines (or if batch
processing is otherwise terminated), MS-DOS goes back to read­
ing command lines from the screen.

Batch file lines cannot be read by the compiler, the linker, or a user
program. Thus, you cannot put responses to filename or other
prompts in a batch file. All compiler parameters must be given on
the command line, as described in Section 3.3.2, "Giving All
Parameters on the Command Line."

The batch file may contain dummy parameters that you replace
with actual parameters when you invoke it. The symbol (!ill refers
to the first parameter on the line, %2 to the second parameter, and
so on. The limit is %9. A batch command file must have the
extension .BAT and should be kept on either the program disk or
the utility disk.

The PAUSE command, followed by the text of the prompt, tells
the operating system to pause, display a prompt (which you have
defined), and wait for some further input before continuing.

If your program is already debugged and you are making only
minor changes to it, you can speed up the compilation process by
creating a batch file that issues the compile, link, and run
commands.

67

Microsoft FORTRAN Compiler User's Guide

For example, use the line editor in MS-DOS to create the following
batch file, COLIGO.BAT:

A : FOR1 %1, , ;
PAUSE ... If no errors, insert PAS2 disk in drive A : .
A: PAS2
PAUSE ... Insert runtime libraries disk in drive A : .
A: LINK %1;
%1

To execute this file, type:

COLIGO DEMO

DEMO is the name of the source program you want to compile,
link, and run.

1. The first line of the batch file runs pass one of the
compiler.

2. The second line generates a pause and prompts you to
insert the pass two disk.

3. The third line runs pass two.

4. The fourth line generates a pause and prompts you to
insert the runtime library.

5. The fifth line links the object file.

6. The sixth line runs the executable file.

A BAT file is only executed if there is neither a COM file or EXE
file with the same name. Thus, if you keep your source file and
BAT file on the same disk, give them different filenames.

For more information about batch command files, see your MS­
DOS manual.

68

ChapterS
CODlpiling and
Linking Large PrograDls

8.1 Avoiding Limits on Code Size 71

8.2 Avoiding Limits on Data Size 71

8.2.1 Limits on the Size of
Arrays and COMMON Blocks 71

8.2.2 Passing Arrays as Arguments 72

8.2.3 Limits on Total Static Data 73

8.2.4

8.2.5

8.3

8.3.1

8.3.2

8.4

8.4.1

8.4.2

8.4.3

8.4.4

8.5

8.5.1

8.5.2

8.5.3

Restrictions on "Long" Data Allocation

$LARGE/$NOTLARGE Metacommand

Working With Limits on
Compile Time Memory 75

Identifiers 75

Complex Expressions 76

Working With Limits on Disk Memory

Pass One 78

Pass Two 78

Linking 80

A Complex Example 81

Minimizing Load Module Size 82

I/O 82

Runtime Error Handling 83

Debugging 83

77

73

73

69

Occasionally, you may find that a large program exceeds one or
more physical limits on the size of program the compiler, the
linker, or your machine can handle. This chapter describes some
ways to avoid or work within such limits.

8.1 Avoiding Limits on Code Size

The upper limit on the size of object code that can be generated at
once by the MS-FORTRAN Compiler is 64K bytes. This limit
applies only to generated code; data size limits are discussed in the
following section.

Since you can compile any number of compilands separately and
link them together later, the real limit on program size is not 64K
but the amount of main memory available. For example, you can
separately compile six different compilands of 50K bytes each.
Linking them together produces a program with a total of 300K
bytes of code.

In practice, a source file large enough to generate 64K bytes of
code would be thousands of lines long and unwieldy both to edit
and to maintain. A better practice is to break a large program into
subroutines and functions and compile logical groups of them
separately. Separate compilation will have no effect on final pro­
gram size, but may increase the total size of object files.

8.2 Avoiding Limits on Data Size

8.2.1 Limits on the Size of
Arrays and COMMON Blocks

The 8086 segmented memory addressing scheme makes it ineffi­
cient to address arrays which span more than one segment. We
use the term "long" to describe such arrays as opposed to "short"
arrays that can be contained within one segment. A segment
consists of65536 bytes aligned on a paragraph boundary. Arrays
which are nearly or exactly 65536 bytes long may not fit in one
segment if they do not also start on a paragraph boundary. To be
safe, you should regard all arrays longer than 65521 bytes as
"long."

71

Microsoft FORTRAN Compiler User's Guide

8.2.2 Passing Arrays as Arguments

Microsoft FORTRAN allows you to define long arrays both stati­
cally and in COMMON blocks, but with the restriction that you
see in the topic, "Restriction on 'long' data allocation," that fol­
lows. MS-FORTRAN will also generate the complex code sequen­
ces necessary to reference long arrays provided the compiler
knows that the array is "long."

In the case of a subprogram argument that is an array with
assumed or adjustable bounds, the compiler cannot "tell" if the
actual argument was a long array, and for the sake of efficiency,
assumes, by default, that it was not. Undefined results will occur
if the subprogram tries to reference beyond the first segment.

You must use one of the following methods to get your arrays
passed correctly:

1. You can fix the bounds of the formal argument and set
them big enough so that the compiler knows the actual
argument is "long."

This method is inconvenient, however, because it implies
that all actual arguments will have the same bounds,
which is usually not the case. (The compiler doesn't
enforce this correspondence and it is common practice to
ignore it.)

2. You can continue to use assumed and adjustable bound
arrays by using the $LARGE metacommand to specify
that the actual arguments may (but not necessarily) be
"lang." See the topic "The $LARGE metacommand" that
follows for a description of this metacommand. You may
use $LARGE even when the array is known to be short (it
has fixed bounds) and the long array reference code will
be generated.

You can pass short arrays as actual arguments to long formal
arguments with either method (1) or (2) and your program will
work correctly.

72

Compiling and Linking Large Programs

8.2.3 Limits on Total Static Data

By default, static variables, including arrays, are allocated in the
default data segment of the 8086 (i.e., in DGROUP). The default
data segment also contains data defined by the runtime, the stack
and space for dynamic allocation of file blocks (634 bytes per file)
and, if $DEBUG has been used, some subprogram entry and exit
information. There is a limit of 64k (65536) bytes on the total
amount of data in the default data segment.

Each COMMON block or long array is allocated as many adja­
cent segments outside DGROUP as are required to accommodate
it. So you can increase the amount of space available to you by
moving data into COMMON blocks, either blank or named. How­
ever, should you make a COMMON block span more than one
segment doing this, the restrictions described below may then
apply. You can more conveniently move individual (short) arrays
out of DGROUP by using the $LARGE metacommand, which
causes them to be allocated in separate segments.

8.2.4 Restriction on "Long" Data Allocation

No scalar may be allocated so that it spans a segment boundary.
Each static long array or COMMON block is allocated at the
beginning of a segment (on a "paragraph" boundary in 8086
terms) so that the boundary between the 65536th and 65537th
byte from the start of the array or COMMON block, for example,
must fall between two scalar items. This applies whether the
items are variables or array elements.

8.2.5 $LARGE/$NOTLARGE Metacommands

Syntax $[NOT]LARGE [name [, name2] ...]

If your program uses large amounts of data, you can avoid the
limits on total data size by using the $LARGE metacommand
when you compile. This moves arrays (but not scalars) from the
default data segment to extra data segments. You are unlikely to
fill up the default segment with scalars, so this option effectively
allows you to use all the memory available. The indirect references
that must be made to data in other segments are less efficient and
result in more code being generated than references to the default
data segment, so your programs will be bigger and slower if you
use this option.

73

Microsoft FORTRAN Compiler User's Guide

These metacommands are used to control the way arrays are
allocated and referenced. $LARGE may be applied to individual
arrays, or, by providing no arguments, to all the arrays in a
subprogram. When $LARGE has been set to apply to all arrays,
$NOTLARGE will disable its effect on those arrays that you want
to remain in the default data segment. For example:

$LARGE
$NOTLARGE BAR

SUBROUTINE F0002 (PARRAY)
REAL *4 BAR, PARRAY (*)
DIMENSION BAR (10)

RETURN
END

The effect of $LARGE on an array depends on whether the array
is a formal argument. If it is a formal argument, it tells the
compiler that the actual argument may be a long array. The
compiler will then generate the more complex code sequence for
references to it.

All arrays declared $LARGE will be allocated outside ofDGROUP.
Any array that is obviously larger than 64K bytes (i.e., an array
with constant bounds that is larger than 64K) will automatically
be allocated as a 'large' array regardless of its association with
$LARGE.

Consider the following code fragments:

74

$NOTLARGE BAR
SUBROUTINE F001 (PARRAY)
INTEGER IARRAY (100)

$LARGE
REAL*4 BAR, PARRAY(*)
DIMENSION BAR(10)
BAR(1)=10.98

RETURN
END

Compiling and Linking Large Programs

The integer array IARRAY and the parameter array PARRAY are
declared 'large.' BAR is declared 'not large'.

SUBROUTINE F002 (PAR)
REAL *8 FIGURE(10)
LOGICAL LARRAY(70000)

$NOTLARGE
INTEGER IARRAY (15)
INTEGER PAR(*)

RETURN
END

The arrays in this program unit are declared 'not large' and are
allocated to the default data segment (except for LARRAY, which
will unconditionally be allocated to additional segments).

8.3 Working Within the Limits
of Compile Time Memory

During compilation, large programs are most often limited in the
number of identifiers in anyone source file. They are occasionally
limited by the complexity of the program itself. If one of these
limits is reached, you will see the following error message:

Compiler Out Of Memory

There is no particular limit on number of bytes in a source file. The
number of lines is limited to 32767, but in practice, any source file
this big will run into other limits first.

8.3.1 Identifiers

Pass one of the compiler can handle a maximum of around 1000
identifiers, assuming your memory is big enough to provide a full
data segment of 64K. In MS-FORTRAN, identifer entries are
created for the following objects:

1. the program

2. subroutines and functions declared in the program unit

75

Microsoft FORTRAN Compiler User's Guide

3. subroutines and functions referenced in the program unit

4. COMMON blocks

5. common variables

6. statement functions

7. formal parameters

8. "local" variables

Identifiers of objects 5 through 8 are required only while the
subroutine or function that contains them is being compiled.
These identifiers are discarded at the end of the subroutine and
the space they used is made available for other identifiers.

Hence, you can create much bigger programs by splitting up your
code into more subroutines and functions. Such a practice allows
the "local" identifier space to be shared.

You can go even further by placing the subroutines and functions
in files of their own and compiling them separately, since this
usually reduces the number of identifiers in groups being used per
compiland.

Remember that you may have to create data items in common to
communicate between the new procedures, or preferably, from the
point of view of good program structure, write communication
subroutines. However, either of these may tend to defeat the
purpose of breaking up the program in the first place.

8.3.2 Complicated Expressions

It is also possible to run out of memory in pass one with any of the
following cases:

76

1. a very complicated statement or expression (i.e., one that
is very deeply nested)

2. a large number of error messages

3. a very large block of specification statements (EQUI­
VALENCE statements in particular)

Compiling and Linking Large Programs

Usually, if a program gets through pass one without running out
of memory, it will get through pass two. The major exception
occurs with complicated basic blocks, as in either of the following:

1. sequences of statements with no labels or other breaks

2. sequences of statements containing very long expres­
sions or parameter lists (especially with I/O statements)

Also, pass two uses symbol table entries for objects 1 through 4 in
Section 8.3.1. Unlike pass one, pass two also creates entries for
many of the transcendental functions that are called by a pro­
gram. However, these are limited in number. In any case, pass
two makes a smaller number of symbol table entries than pass
one.

If pass two runs out of memory, it displays the message:

Compiler Out Of Memory

The error message will give a line number reference. If there is a
particularly long expression or parameter list near this line, break
it up by assigning parts of the expression to local variables (or
using multiple WRITE statements). If this does not work, add
labels to statements to break the basic block.

8.4 Working With Limits
on Disk Memory

Another type of limit you may encounter is in the number of disk
drives on your computer or the maximum file size on one disk. As
with other limits, there are several possible solutions discussed in
the following sections.

The simplest method of avoiding these limits is to first load a
compiler pass, then switch disks and run the pass.

77

Microsoft FORTRAN Compiler User's Guide

8.4.1 Pass One

For FOR1.EXE, just type FORl (or dev:FORl ifnecessary) to load
pass one. When the "Source File" prompt appears, you can
remove the disk containing FOR1.EXE. If you have a single-drive
system, replace the system disk with the disk containing your
source file. FORl.EXE will write its intermediate files on the same
disk.

If you have a two-drive system, insert your source file in the
nondefault drive. Since the intermediate files are always written
to the default drive, you will need to give an explicit device (i.e.,
drive) letter for your source file. Typically a source listing file
would go on the same drive as the source.

If your source file will not fit on one disk, you can break it into
pieces and use the $INCLUDE metacommand to compile the
pieces as a group.

These $INCLUDE files can be typed at your screen (or console).
Just give USER as the name of your source file, and type your
$INCLUDE metacommands directly, one per line. You will need
to type <CONTROL-Z> (end-of-file) to end the compilation.

If your source file doesn't fit on one disk, your source listing file
will not fit either, so you will need to send it directly to the printer.

Another way to control a large listing file is by including the
$NOLIST metacommand at the beginning of your source file, and
then using the $LIST and $NOLIST metacommands to bracket
only those portions of the source for which a source listing is
required. In particular, you may want to exclude $INCLUDEd
files when compiling subprograms.

8.4.2 Pass Two

Two command line parameters available with pass two can help
you with disk limitations.

78

1. You can indicate a drive letter on which your intermediate
files, PASIBF.SYM and PASIBF.BIN, can be found.

2. The /PAUSE switch tells pass two to pause while you
remove the disk containing P AS2.EXE and insert some
other disk.

Compiling and Linking Large Programs

For example, if you have a single-drive system, insert your
PAS2.EXE disk and type PAS2 I PA USE. After PAS2.EXE is
loaded, you will see the message:

Press ENTER key to begin pass two

Take out the P AS2.EXE disk and insert the disk with the inter­
mediate file from pass one. Now press the ENTER (i.e., RETURN)

key, and pass two will run.

If you have two drives, but you run out of disk memory when
executing pass two, you need to have the files PASIRF.SYM and
PASIBF.BIN on one drive and the intermediate file PASIBF.TMP
(and PASIBF.OID if you are making an object listing file) on the
other drive.

The PASIBF.TMP file (and the PASIBF.OID file used in pass
three) are always written to the default drive.

Give pass two a drive letter to specify the drive containing the
PASIBF.SYM and PASIBF.BIN files; for example, "PAS2 B".
Normally, you would also need the pause command; for example,
PAS2 BI PA USE. Pass two will respond with a message such as
the following:

PASIBF.SYM and PASIBF.BIN are on B:

This message is followed by the pause prompt:

Press enter key to begin pass two

When you run pass two with the P ASIBF files on two disks, the
object file should usually go on the same disk as PASIBF.TMP
(and PASIBF.OID); that is, in the default drive. Ifit doesn't quite
fit, and you are making an object listing file, you could compile
your program twice, once without the object listing but with the
object file itself, and once with an object listing but with NUL
used for the object file.

79

Microsoft FORTRAN Compiler User's Guide

8.4.3 Linking

If you are making a large program with small disks (or only one
disk drive), you may run into similar problems when you link your
program. Since you can split your program into pieces and com­
pile them separately, but you must link the entire program at one
time, you may run into disk limitations in the linker but not the
compiler.

The linker will prompt you for any object files and/or libraries it
cannot find, so you can swap in the correct disk and continue
linking. Also, the /PAUSE switch makes the linker wait after
linking but before writing the run (EXE) file, so you can create a
run file that fills an entire disk. However, creation of the virtual
file, VM.TMP, and the link map limit the amount of disk swap­
ping you can do.

On a single-drive system:

1. Load the linker by typing LINK.

2. Remove the disk containing LINK.EXE and insert the
disk containing your object file(s) and, if there is room,
any libraries.

3. Respond normally to the linker prompts, except to include
the IPA USE switch with the run file if you want the run
file on another disk.

Unless all 0 bject files, libraries, and the run file will fit on one disk,
you must not write the linker listing to a disk file. Instead, send the
linker map to NUL, CON, or directly to your printer. Since the
map is written at various points in the linking process, you cannot
swap the disk on which the map is written.

The linker will prompt you when it needs an object file, a library
file, or is about to write the run file; exchange disks as necessary
when this happens. If the linker gives a message that it is creating
VM.TMP, its virtual memory file, you cannot switch disks any­
more, so you may not be able to link without more memory or a
second disk drive.

With two disk drives, you can devote one drive (the default) to the
VM.TMP file (and to the link map, if you want one). Use the other
drive for your object files, libraries, and run file (using the
/PAUSE switch). With this method, you can link very large
programs.

80

Compiling and Linking Large Programs

The linker makes two passes through the object files and libraries:
one to build a symbol table and allocate memory, and one to
actually build the run file. This means you will insert a disk
containing object files or libraries twice, and finally insert the
disk that will receive your run file.

8.4.4 A Complex Example

The following example illustrates compiling and linking a very
large program. The example assumes that the machine has two
drives and that the programmer doesn't want any of the listing
files.

Pass one

1. Log onto drive B: and insert an empty disk in B:.

2. Insert the disk containing FOR1.EXE in drive A:, type
A:FORl, and wait for the "Source File" prompt.

3. Remove the disk containing FOR1.EXE from A: and
insert the disk containing the source file LARGE.FOR.

4. Respond to the "Source File" prompt with A:LARGE,
A:LARGE, and wait for pass one to run.

Pass two

1. Log onto drive A:. Remove source disk from A:.

2. Insert the disk containing PAS2.EXE in A:, type PAS2
BI PAUSE and wait for the pass two prompt.

3. Remove the disk containing P AS2.EXE from A:, insert an
empty disk (to which the object file will be written).

4. Respond to the pass two prompt by pressing the RETURN

key, and wait for pass two to run.

5. Remove the disk containing the object file from A:.

Linking

1. Log onto drive B: (which contains a now-empty disk).

2. Insert LINK.EXE in A:. Type A:LINK and wait for the
"Object Modules" prompt.

81

Microsoft FORTRAN Compiler User's Guide

3. Remove the disk containing LINK.EXE from A: and
insert the disk containing the object file(s).

4. Respond to the "Object Modules" prompt by typing
A:LARGE (plus any other object files).

5. Respond to the "Run File" prompt by typing LARGE/
PAUSE.

6. Respond to the "List File" prompt by pressing the RETURN

key, or type B:LARGE to get a linker map.

7. Respond to the "Libraries" prompt by pressing the
RETURN key or with a library name (the library must be
on A:).

8. Wait for the linker to run, swapping the A: disk after
prompts as necessary.

8.5 Minimizing Load Module Size

Some MS-FORTRAN load modules can be reduced in size by
eliminating runtime modules your program doesn't use. Reduc­
tions can be made in several areas:

1. I/O

2. runtime error messages

3. real number operations

4. debugging

8.5.1 liD

Because most MS-FORTRAN programs perform I/O, they require
linking to the MS-FORTRAN file system in the runtime library.
However, some programs do not perform I/O and others perform
I/O by directly calling MS-FORTRAN "Unit U" file routines or
calling operating system I/O routines. (For more information on
Unit U, see Section 10.2, "An Overview of the File System.")

Nonetheless, all programs include calls to INIVQQ and ENDYQQ,
the procedures that initialize and terminate the file system. These
calls increase the size of the load module by linking and loading
routines that may never be used.

82

Compiling and Linking Large Programs

If a program doesn't need the file system routines, you can elimi­
nate unnecessary file support by declaring dummy INIVQQ and
ENDYQQ subroutines in your program, as follows:

SUBROUTINE INIVQQ
END

SUBROUTINE ENDYQQ
END

The linker will still load the Unit U procedures necessary to access
the terminal (INIUQQ, ENDUQQ, PTYUQQ, PLYUQQ, and
GTYUQQ), so that it can write any runtime error messages.

However, if you do include the dummy subroutines described, and
the linker produces any error messages for global names that end
with the "VQQ" or "UQQ" suffix, your program requires the file
system and the process described above will not work.

8.5.2 Runtime Error Handling

Ifruntime error messages are not required, the load module can be
further reduced in size by eliminating the error message module
and the Unit U procedures. Two null object modules are provided
as replacements: NULF.OBJ and NULE6.0BJ. NULF.OBJ con­
tains the dummy subroutines for INIVQQ and ENDYQQ, as well
as dummies for INIUQQ and ENDUQQ. NULE6.0BJ replaces
EMSEQQ and provides simple termination of a program if an
error occurs.

8.5.3 Debugging

Compiling and linking a program with the $DEBUG metacom­
mand may generate up to 40 percent more code than with
$NODEBUG. Therefore, after a program has been successfully
compiled, linked, and run, remove the $DEBUG from your source
file and repeat the entire process to create a program that will run
considerably faster.

83

Chapter 9

Using Assentbly
Language Routines

9.1 Calling Conventions 87

9.2 Internal Representations of Data Types 89

9.3 Interfacing to
Assembly Language Routines 91

85

This chapter first describes the MS-FORTRAN calling conven­
tions and internal representations of data types, and then shows
how to interface 8086 assembly language routines to MS­
FORTRAN programs. The information in this chapter is not
required for most MS-FORTRAN programs and is intended
primarily for the experienced programmer who is familiar with
the following material:

1. The EXTERNAL statement (see Section 3.2.17, "The
EXTERNAL Statement," in the Microsoft FORTRAN
Reference Manual for a description of the statement)

2. Subroutine and function arguments (see Section 3.2.5,
"The CALL Statement," in the Microsoft FORTRAN Ref­
erence Manual for a description of the statement)

3. MS-MACRO Assembler (see your MS-DOS manual)

9.1 Calling Conventions

At runtime, each active subroutine or function has a "frame"
allocated on the stack. The frame contains the data shown in
Figure 9.1.

87

Microsoft FORTRAN Compiler User's Guide

Parameters

Two-byte address of long
function return value, if any

Upper framepointer, Four-byte
if any. Two-byte return address tt
return address t

Framepointer ~ Saved caller framepointer

Short function return value, if any

Local data and temporaries

t For statement functions.
tt For all other procedures.

Figure 9.1. Contents of the Frame

The framepointer points at the saved caller framepointer, below
the return address, and is used to access frame data_ A statement
function nested within another subroutine or function has an
upper framepointer, so that it can access variables in the enclos­
ing frame.

The following takes place during a procedure or function call:

1. The caller saves any registers it needs (except the
framepointer).

2. The caller pushes parameters in the same order as they
are declared in the source and then performs the call.

3. The called routine pushes the old framepointer, sets up its
new framepointer, and allocates any other stack locations
needed.

To return to the calling routine, the called routine restores the
caller's framepointer, releases the entire frame, and returns. Not
all of these steps need necessarily be taken in an assembly lan­
guage routine. You must only ensure that the framepointer is not

88

Using Assembly Language Routines

modified and that the entire frame, including all parameters, is
popped off the stack before returning. For further information on
the assembly language interface, see Section 9.3, "Interfacing to
Assembly Language Routines."

A function always returns its value in registers. For REAL*4 and
REAL *8, the caller allocates a frame temporary for the result and
passes the address to the function like a parameter. When the
called routine returns, it places the address back in the normal
return register.

In MS-FORTRAN, all subroutines and functions are PUBLIC or
EXTERN. All calls to subroutines or functions are long calls (i.e.,
have four-byte addresses). All calls to statement functions are
short calls (i.e., have two-byte addresses).

The called routine must save the BP register, which contains the
MS-FORTRAN framepointer, as well as the DS segment register.
The SS register is used by interrupt routines, both user-declared
and 8087 support, to locate the default data segment, and so must
not be changed (at least, if interrupts are enabled). Other registers
(AX, BX, CX, DX, SI, DI, and ES) need not be saved.

Functions return a one-byte value in AL, a two-byte value in AX,
and a four-byte value in DX:AX (high part:low part, or
segment:offset).

9.2 Internal Representations
of Data Types

This section describes the internal representation of MS­
FORTRAN data types. Programmers who use both MS-FORTRAN
and MS-Pascal should pay particular attention to the data type
and parameter / argument passing differences when passing data
between the two languages. For internal representations of MS­
Pascal data types, see the Microsoft Pascal Compiler User's
Guide.

1. Integer (INTEGER*2 and INTEGER*4)

INTEGER*2 values are I6-bit two's complement numbers;
INTEGER*4 values are 32-bit two's complement numbers.

89

Microsoft FORTRAN Compiler User's Guide

90

2. Real (REAL*4) and double precision (REAL*8)

Reals are IEEE 4-byte real numbers. They have a sign bit,
an 8-bit excess 127 binary exponent, and a 24-bit man­
tissa. The mantissa represents a number between 1.0 and
2.0. Since the high-order bit of the mantissa is always 1, it
is not stored in the number. This representation gives an
exponent range of 1 OA(+ or -)38 and 7 digits of precision.
The maximum real number is normally 1. 70I4IIE37. The
most significant byte contains the sign bit and the most
significant bits of the exponent. The least significant byte
contains the least significant bits of the mantissa.

Double precision real numbers are IEEE 8-byte real
numbers. They have a format similar to 4-byte REAL
numbers. The exponent is II-bits (excess 1023), and the
mantissa has 52 bits (plus the implied high-order 1 bit).

3. Single and double DECIMAL floating-point

Decimal floating-point numbers consist of a byte contain­
ing a sign bit and a 7-bit exponent in excess 64 notation
followed by a mantissa consisting of 6 (single) or 14 (dou­
ble) binary coded decimal digits packed two to a byte (if
the exponent byte is zero, the number is zero.)

The allowable ranges of numbers are:

single + .IE-63 to +.999999E63
- .IE-63 to - .999999E63

double + .ID-63 to +.99999999999999E63
- .ID-63 to -.99999999999999E63

4. Complex (COMPLEX*8 and COMPLEX*I6)

Complex numbers consist of a real number representing
the real part followed by a real number representing the
imaginary part. Each component (real and imaginary) of
a COMPLEX*8 is a REAL*4. Each component of a
COMPLEX*I6 is a REAL*8.

5. Logical (LOGICAL*2 and LOGICAL*4)

LOGICAL*2 values occupy two bytes. The least signifi­
cant (first) byte either is 0 (.F ALSE.) or 1 (.TRUE.); the
most significant byte is undefined. LOGICAL *4 varia­
bles occupy two words, the least significant (first) of
which contains a LOGICAL*2 value. The most signifi­
cant word is undefined.

Using Assembly Language Routines

6. Character

Character values occupy 8" bits and correspond to the
ASCII collating sequence.

7. Files

MS-FORTRAN files use file control blocks (of type
FCBFQQ), allocated dynamically on the heap. File con­
trol blocks for MS-FORTRAN are not identical to file
control blocks for MS-Pascal. See Appendix B, "The
Microsoft FORTRAN File Control Block," for a complete
listing.

8. Procedural parameters (subroutine and function para­
meters)

Procedural parameters contain a reference to the location
of the subroutine or function. The parameter always con­
tains two words: the first word is zero, and the second
word contains a data segment offset address. This is an
offset to two words in the constant area that contain the
segmented address of the actual routine.

9.3 Interfacing to
Assembly Language Routines

All subroutines and functions in MS-FORTRAN are external.
They need not be declared as external with the EXTERNAL
statement. When a subroutine or function is called, the addresses
of the actual parameters are first pushed on the stack in the order
that they are declared. MS-FORTRAN always uses calls by refer­
ence, even if the actual parameters are expressions or constants.

If the procedure called is a function and if the function return type
is real or double precision, an additional implicit parameter for
the function is pushed on the stack. This parameter is the two-byte
address of a temporary variable created by the calling program.

91

Microsoft FORTRAN Compiler User's Guide

After all parameters have been pushed, the return address is
pushed. If the procedure called is a function, the return value is
expected as follows:

1. If the return value is a two-byte integer or logical value,
that value is expected in the AX register, as shown in
Figure 9.2:

AX
AH High byte

}

Single word
I----------~ return value

AL Low byte
~--------~

Figure 9.2. Two-Byte Return Value

2. If the return value is a four-byte integer or logical value,
that value is expected in the DX, AX pair, as shown in
Figure 9.3:

Most
~ significant byte

I--------------~

OH High word, high byte
OX

OL High word, low byte

AH Low word, high byte
AX Least

AL Low word, low byte ~ significant byte
~-------------~

Figure 9.3. Four-Byte Return Value

3. If the return value is a four or eight byte REAL value, or
an eight or sixteen byte COMPLEX value, that value is
expected in the temporary variable created by the calling
program. The two-byte address of this temporary variable
is the last parameter pushed on the stack. It is always at
BP+6 (see Example 2).

Example 1. INTEGER*4 Add Routine

Assume the following MS-FORTRAN program has been compiled:

92

PROGRAM EXAMPL 1
INTEGER I, TOTAL, IADD
I = 10
TOTAL = IADD (1,15)
WRITE (*,'(1X,16)') TOTAL
END

Using Assembly Language Routines

At runtime, just prior to the transfer to IADD, the stack would be
as shown in Figure 9.4:

i Higher
I addresses

Segment high

Segment low

Offset high

Offset low

Segment high

Segment low

Offset high

Offset low

Segment high

Segment low

Offset high

SP ~ Offset low

Stack
grows
downward

1-<

Argument 1.
Address of INTEGER I

Argument 2.
Address of temporary
variable containing
the constant 15.0

Return address

Figure 9.4. Stack Before Transfer to IADD

An example of an assembly language routine that implements
the integer ADD function, IADD, is illustrated in the following
routine. Note that the function return value is AX,DX.

93

Microsoft FORTRAN Compiler User's Guide

DATA SEGMENT PUBLIC 'DATA'
;See Note at end of this section.

DATA ENDS

DGROUP GROUP DATA ;See Note.
CODE SEGMENT 'CODE'

ASSUME CS:CODE,DS:DGROUP,SS:DGROUP ;
See Note.

PUBLIC IADD
IADD PROC FAR

PUSH BP

MOV BP,SP

;Save framepointer
on stack

LES BX,DWORD PTR [BP+10] ;ES,BX:= addr of

END

1st param
MOV AX,ES:[BX] ;AX,DX := value of

MOV
LES

ADD

ADC
MOV
POP

RET

DX,ES:[BX]+2
BX,DWORD PTR [BP+6]

AX,ES:[BX]

DX,ES:[BX]+2
SP,BP
BP

08H

IADD ENDP
CODE ENDS

1st param

;ES,BX := addr of
2nd param

;AX,DX := 1st
parameter plus

;2nd parameter

;Restore the
framepointer

;Return, pop 8 bytes

Example 2. REAL *4 Add Routine

Assume the following FORTRAN program has been compiled:

94

PROGRAM EXAMPL2
REAL R, TOTAL, RADD
R = 10.0
TOTAL = RADD (15.0,R)
WRITE (*,'(1X,F10.3)') TOTAL
END

U sing Assembly Language Routines

At runtime, just prior to the transfer to RADD, the stack would be
as shown in Figure 9.5:

i Higher
I addresses

SP
Stack grows
downward

Segment high

Segment low

Offset high

Offset low

Segment high

Segment low

Offset high

Offset low

Offset high

Offset low

Segment high

Segment low

Offset high

Offset low

>

I~

>

>

Argument 1.
Address of
constant 15.0

Argument 2.
Address of REAL R

Argument 3.
Address of
function return value

Return address

Figure 9.5. Stack Before Transfer to RADD

An example of an assembly language routine that implements
the real add function, RADD, is illustrated in the following rou­
tine. Note that the function return value is in the location specified
by BP+6.

95

Microsoft FORTRAN Compiler User's Guide

DATA SEGMENT PUBLIC 'DATA'
;See Note at end of section

DATA ENDS

DGROUP GROUP DATA ;See Note
CODE SEGMENT 'CODE'

ASSUME CS:CODE,DS:DGROUP,SS:DGROUP;
See Note

PUBLIC RADD
RADD PROC FAR

PUSH BP ;Save framepointer
on stack

MOV BP,SP
LES BX,DWORD PTR [BP+12] ;ES,BX := addr of

1st param
FLO ES:[BX] ;Push value of

1st param
;on 8087 stack

LES BX,DWORD PTR [BP+8] ;ES,BX := addr of
2nd param

FLO ES:[BX] ;Push value of
2nd param

;on 8087 stack
FADDP ST(1),ST ;Add first two items

;on 8087 stack
MOV DI,[BP+6] ;01 := addr of

funct return
FSTP [01] ;Store result on

8087 stack
;at funct return

location
FWAIT
MOV SP,BP ; Restore the

framepointer
POP BP
RET OAH ;Return, pop 10 bytes

RADD ENDP
CODE ENDS

END

96

Using Assembly Language Routines

Important

1) Data used by assembly language routines must be placed in
a segment whose name is DATA, whose classname is
'DATA', and which is grouped in DGROUP. The ASSUME
statement is required.

2) If you use 8087 instructions and you want them to be
emulated, you must use the e switch in the assembler. Using
this switch without an 8087 in your system may cause your
program to wait indefinitely at the first FWAIT instruction.

97

Chapter 10
Advanced Topics

10.1
10.1.1
10.1.2

The Structure of the Compiler
The Front End 103
The Back End 104

10.1.2.1 Pass Two 104
10.1.2.2 Pass Three 106

101

10.2 An Overview of the File System 106
10.3 Runtime Architecture 108
10.3.1 Runtime Routines 109
10.3.2 Memory Organization 110
10.3.3
10.3.3.1
10.3.3.2
10.3.3.3
10.3.3A
10.3A

Initialization and Termination 114
Machine Level Initialization 116
Program Level Initialization 117
Unit Level Initialization 117
Program Termination 119

Error Handling 119
10.3A.1 Machine Error Context 121
10.3.4.2 Source Error Context 122
lOA Floating-Point Operations 123
10A.1 The$NOFLOATCALLS

Metacommand Option 124
10A.2 The Alternate Math Package Option

10A.3 No Emulation Option 126

10AA Decimal Math Option 127

10.5 MS-DOS 2.0 Issues 128

10.5.1 Exit Status Available to 2.0 MS-DOS

125

128

99

This chapter contains advanced technical information that will
be of interest primarily to experienced programmers. Since MS­
Pascal and MS-FORTRAN (but not FORTRAN-80) have the
same compiler back end, and share a common file and runtime
system, much of the information that follows refers to both lan­
guages. Differences, where they exist, are noted.

10.1 The Structure of the Compiler

The compiler is divided into three phases, or passes, each of which
performs a specific part of the compilation process. Figure 10.1,
which follows, illustrates the basic structure of the compiler and
its relationship to the files that it reads and writes.

Front
end

Sack
end

The Compiler Files

r
Pass One

Scanner and parser Source
Low-level utilities --~ Sourcelist

Middle-level utilities Icode

High-level utilities Symtab

? I Pass Two

Optimizer
Code generator Sincod

Link text emitter I

Object

Symtab

Pass Three J

Object code lister

Objectlist

"
Figure 10.1 The Structure of the Compiler

-

-

101

Microsoft FORTRAN Compiler User's Guide

Pass one, which normally corresponds to a file named FORl.EXE,
constitutes the front end of the compiler and performs the follow­
ing actions:

1. reads the source program

2. compiles the source into an intermediate form

3. writes the source listing file

4. writes the symbol table file

5. writes the intermediate code file

Passes two and three (the files PAS2.EXE and PAS3.EXE)
together make up the back end, which does the following:

1. optimizes the intermediate code

2. generates target code from intermediate code

3. writes and reads the intermediate binary file

4. writes the object (link text) file

5. writes the object listing file

Both the front and back end of the compiler are written in MS­
Pascal, in a source format that can be transformed into either
relatively standard Pascal or into system level MS-Pascal. (See
the Microsoft Pascal Reference Manual for a discussion of
implementation levels in MS-Pascal.)

All intermediate files contain MS-Pascal records. The front and
back ends include a common constant and type definition file
called P ASCOM, which defines the intermediate code and symbol
table types. The back ends use a similar file for the intermediate
binary file definition. Formatted dump programs for all interme­
diate files and object files are available for special purpose
debugging.

The symbol table record is relatively complex, with a variant for
every kind of identifier (variables, procedures, intrinsic functions,
and common blocks). The intermediate code (or Icode) record
contains an Icode number, opcode, and up to four arguments; an
argument can be the Icode number of another Icode to represent
expressions in tree form, or something else (such as a symbol table
reference, constant, or length). The intermediate binary code
record contains several variants for absolute code or data bytes,
public or external references, label references and definitions, etc.

102

Advanced Topics

10.1.1 The Front End

The MS-FORTRAN front end can be divided into several parts:

1. the scanner

2. various utilities

3. EXECSTMTS, which processes executable statements

4. DECLSTMTS, which processes declarative statements

The front end is driven by recursive descent syntax analysis,
using a set of procedures such as EXPRESSION (for expressions)
and VARIABLE (for variables). Parsing is performed on a strict
statement basis. The scanner procedure GETSTMT gets the next
MS-FORTRAN statement into the statement buffer.

Overall compilation control depends on a series of states, handled
as shown in Table 10.1.

Table 10.1

Front End Compilation Procedures

Name

INITSTATE
HEADSTATE
IMPSTATE
SPECSTATE
DATASTATE
STMTFUNST ATE
EXECSTATE
ENDSTATE

Function

Initialize procedure
Process subroutine header
Process IMPLICIT statements
Process specification statements
Process DATA statements
Process statement functions
Process executable statements
End procedure

After initialization in INITSTATE, the current state cycles from
HEADST ATE through EXECST ATE for the program and for all
subroutines and functions. The final procedure, which carries out
program termination, is ENDST ATE.

103

Microsoft FORTRAN Compiler User's Guide

MS-FORTRAN intermediate files are written in the same manner
as for the MS-Pascal front end. A few of the intermediate code
operations are specific to MS-FORTRAN, particularly those con­
cerned with assigned GOTO and DO statements. The symbol
table contains special flags for COMMON and EQUIVALENCE
variables, since these affect common subexpression optimization.

10.1.2 The Back End

Of the separate passes that make up the back end of the compiler,
pass two is required while pass three is optional.

10.1.2.1 Pass Two

The optimizer reads the interpass files in the following order: first
the symbol table for a block, then the intermediate code for the
block. Optimization is performed on each "basic block," i.e., each
block of intermediate code up to the first internal or user label or
up to a fixed maximum number of Icodes, whichever comes first.

Within a block, the optimizer can reorder and condense expres­
sions as long as the intent of the program(mer) is preserved. For
instance, in the following program fragment, the array address A
(J, K) need be calculated only once:

A(J,K) = A(J,K)+1
C J = J-1

IF (A(J,K) .EQ. MAX) CALL PUNT

However, if the preceding fragment is rewritten to include the
assignment to J, shown in the fragment as a comment, the array
address in the IF statement must be partially recalculated.

This optimization is called common sub expression elimination.
The optimizer also reorders expressions so that the most compli­
cated parts are done first, when more registers for temporary
values are available. It also does several other optimizations, such
as:

104

1. constant folding not done by the front end

2. strength reduction (changing multiplications and di­
visions into shifts when possible)

3. peephole optimization (removing additions of zero, multi­
plications by one, and changing A := A + 1 to an internal
increment memory Icode)

Advanced Topics

The optimizer works by building a tree out of the intermediate
codes for each statement and then transforming the list of state­
ment trees.

There are seven internal passes per basic block:

1. statement tree construction from the Icode stream

2. preliminary transformations to set address/value flags

3. length checks and type coercions

1. constant and address folding, and expression reordering

5. peephole optimization and strength reduction

6. machine-dependent transformations

7. common subexpression elimination

Finally, the optimizer calls the code generator to translate the
basic block from tree form to target machine code.

The code generator must translate these trees into actual machine
code. It uses a series of templates to generate more efficient code
for special cases. For example, there is a series of templates for the
addition operator. The first template checks for an addition of the
constant one. If this addition is found, the template generates an
increment instruction. I fthe template does not find an addition of
one, the next template gets control and checks for an addition of
any constant. If this is found, the second template generates an
add immediate instruction.

The final template in the series handles the general case. It moves
the operands into registers (by recursively calling the code gener­
ator itself), then generates an add register instruction. There is a
series of templates for every operation. The code generator also
keeps track of register contents and several memory segment
addresses (code, static variables, constant data, etc.), and allo­
cates any needed temporary variables.

The code generator writes a file of binary intermediate code
(BINCOD), which contains machine instruction opcodes with
symbolic references to external routines and variables. A final
internal pass reads the BIN COD file and writes the object code
file.

105

Microsoft FORTRAN Compiler User's Guide

10.1.2.3 Pass Three

This short pass reads both the BINCOD file (described in the
previous section) and a version of the symbol table file as updated
by the optimizer and code generator. Using the data in these files,
pass three writes a listing of the generated code in an assembler­
like format.

For more information about the compiler (especially the back
end), see the article "Native-code Compilers are Portable and
Fast," (James G. Letwin and Andrea L. Lewis, Electronic Design,
May 14, 1981).

10.2 An Overview of the File System

MS-FORTRAN and MS-Pascal are designed to be easily inter­
faced to existing operating systems. The standard interface has
two parts:

1. a file control block (FCB) declaration

2. a set of procedures and functions, called Unit U, that are
called from MS-FORTRAN or MS-Pascal at runtime to
perform input and output

This interface supports three access methods: TERMINAL,
SEQUENTIAL, and DIRECT.

Each file has an associated FCB (file control block). The FCB
record type begins with a n urn ber of standard fields, whose details
are independent of the operating system. These are followed by
fields, such as channel numbers, buffers, and other operating
system data, that are dependent on the operating system.

The advanced MS-Pascal user can access FCB fields directly, as
explained in Chapter 8, "Files," of the Microsoft Pascal Reference
Manual. There is no standard way to access FCB fields within
MS-FORTRAN.

106

Advanced Topics

Both MS-FORTRAN and MS-Pascal have two special file control
blocks that correspond to the keyboard and the screen of your
terminal. These two file control blocks are always available. In
MS-Pascal, they are the predeclared files INPUT and OUTPUT;
in MS-FORTRAN, they are unit number 0 (or *) and are accessed
through a variable TRMVQQ, which is declared as follows:

VAR TRMVOO:ARRAY [BOOLEAN] OF ADR OF FCBFOO;

The false element references the output file; the true element refer­
ences the input file.

Unit U refers to the target operating system interface routines.
The file routines specific to MS-Pascal are called Unit F; the file
routines specific to MS-FORTRAN are called Unit V. Code gener­
ated by the compiler of either language contains calls to the
appropriate unit (F or V), which in turn call Unit U routines.

Figure 10.2 shows this relationship schematically.

Microsoft
Pascal Compiler ~ Code

Microsoft
Code +-- FORTRAN Compiler

I I
Unit F Unit V

V
Unit U

Figure 10.2. The Unit U Interface

The file system uses the following naming convention for public
linker names:

1. All linker globals are six alphabetic characters, ending
with QQ. (This helps to avoid conflicts with your program
global names.)

107

Microsoft FORTRAN Compiler User's Guide

2. The fourth letter indicates a general class, where:

a. xxxFQQ is part of the generic MS-Pascal file unit

b. xxxVQQ is part of the generic MS-FORTRAN file
unit

c. xxxUQQ is part of the operating system interface unit

File system error conditions may be:

1. detected at the lower Unit U level

2. detected at the higher Unit F or V level

3. undetected

When a Unit U routine detects an error, it sets an appropriate flag
in the FeB and returns to the calling Unit F or V routine. When
Unit F or V detects an error or discovers Unit U has detected one,
it takes one of two possible actions:

1. An immediate runtime error message is generated, and
the program terminates.

2. Unit F or V returns to the calling program if error trap­
ping has been set (in MS-Pascal with the TRAP flag, in
MS-FORTRAN with the ERR=nnn clause).

Units F and V will not pass a file with an error condition to a Unit
U routine. For some access methods, certain file operations may
lead to an undetected error, such as reading past the end of a
record (this condition has undefined results). Runtime errors that
cause a program termination use the standard error-handling
system, which gives the context of the error and provides entry to
the target debugging system.

10.3 Runtime Architecture

The remainder of this chapter describes several topics related to
the runtime structure of MS-FORTRAN and MS-Pascal, with
mention of differences where they exist.

108

Advanced Topics

10.3.1 Runtime Routines

MS-FORTRAN and MS-Pascal runtime entry points and varia­
bles conform to the same naming convention: all names are six
characters, and the last three are a unit identification letter fol­
lowed by the letters "QQ". Table 10.2 shows the current unit
identifier suffixes.

Table 10.2

Unit Identifier Suffixes

Suffix

AQQ
BQQ
CQQ
DQQ
EQQ
FQQ
GQQ
HQQ
IQQ
JQQ
KQQ
LQQ
MQQ
NQQ
OQQ
PQQ
QQQ
RQQ
SQQ
TQQ
UQQ
VQQ
WQQ
XQQ
YQQ
ZQQ

Unit Function

Complex real
Compile time utilities
Encode, decode
Double precision real
Error handling
MS-Pascal file system
Generated code helpers
Heap allocator
Generated code helpers
Generated code helpers
FeB definition
STRING, LSTRING
Reserved
Long integer
Other miscellaneous routines
Pcode interpreter
Reserved
Real (single precision)
Set operations
$FLOATCALLS interface
Operating system file system
MS-FORTRAN file system
Reserved
Ini tialize/Termina te
Special utilities
Reserved

109

Microsoft FORTRAN Compiler User's Guide

10.3.2 Memory Organization

Memory on the 8086 is divided into segments, each containing up
to 64K bytes. The relocatable object format and MS-LINK also put
segments into classes and groups. All segments with the same
class name are loaded next to each other. All segments with the
same group name must reside in one area up to 64K long; that is,
all segments in a group can be accessed with one 8086 segment
register.

MS-FORTRAN and MS-Pascal both define a single group, named
DGROUP, which is addressed using the DS or SS segment regis­
ter. Normally, DS and SS contain the same value, although DS
may be changed temporarily to some other segment and changed
back again. SS is never changed. The segment registers always
contain abstract "segment values" and the contents are never
examined or operated on. This provides compatibility with the
Intel 80286 processor. Long addresses, such as MS-Pascal ADS
variables or MS-FORTRAN named common blocks, use the ES
segment register for addressing.

Memory is allocated within DGROUP for the stack, the heap, and
all static variables and constants which reside in memory. The
segment addresses for MS-FORTRAN common blocks and
$LARGE arrays are also allocated within DGROUP, but the
common blocks and $LARG E arrays themselves reside outside of
the default data segment.

Memory in DGROUP is allocated from the top down; that is, the
highest addressed byte has DGROUP offset 65535, and the lowest
allocated byte has some positive offset. This allocation means
offset zero in DGROUP may address a byte in the code portion of
memory, in the operating system below the code, or even below
absolute memory address zero (in the latter case the values in DS
and SS are "negative").

DGROUP has two parts:

110

1. a variable length lower portion containing the heap and
the stack.

2. a fixed length upper portion containing static variables,
constants, and the addresses for common blocks and
$LARG E arrays.

Advanced Topics

After your program is loaded, during initialization (in ENTX6L),
the fixed upper portion is moved upward as much as possible to
make room for the lower portion. If there is enough memory,
DGROUP is expanded to the full64K bytes; if there is not enough
for this, it is expanded as much as possible.

Figure 10.3 illustrates this memory organization.

Top (highest address)

MS-DOS code for COMMAND (may be overlapped)

(Unused memory)

HIMEM segment Class HIMEM
< name> segment(s) Class COMMON
COMMOO segment Class COMMON

OS offset 65536

CONST segment Class CONST
COMADS segment Class COMADS
DATA segment Class DATA
STACK segment Class STACK
MEMORY segment Class MEMORY
HEAP segment Class MEMORY

OS offset >= 00

Code segments (user and library routines)

MS-DOS code and data (fixed)

Bottom (address 0:00)

Figure 10.3 Memory Organization

111

Microsoft FORTRAN Compiler User's Guide

The following paragraphs describe memory contents, starting at
the bottom (address zero), when an MS-FORTRAN or MS-Pascal
program is running. Addresses are shown in "segment:offset"
form.

112

1. 0000:0000

The beginning of memory on an 8086 system contains
interrupt vectors, which are segmented addresses. Usu­
ally the first 32 to 64 are reserved for the operating system.
Following these vectors is the resident portion of the oper­
ating system (MS-DOS in this case).

MS-DOS provides for loading additional code above it,
which remains resident and is considered part of the
operating system as well. Examples of resident additional
code are special device drivers for peripherals, a print
spooler, or the debugger.

2. BASE:OOOO

Here BASE means the starting location for loaded pro­
grams, sometimes called the transient program area.
When you invoke an MS-FORTRAN or MS-Pascal pro­
gram, loading begins here. The beginning of your pro­
gram contains the code portion, with one or more code
segments. These code segments are in the same order as
the object modules given to the linker, followed by object
modules loaded from libraries.

3. DGROUP:LO

The DGROUP data area contains the following:

Segment

HEAP

MEMORY

STACK

DATA

COMADS

CONST

Class

MEMORY

MEMORY

STACK

DATA

COMADS

CONST

Description

Pointer variables, some files

(not used, Intel compatible)

Frame variables and data

Static variables

Address of other data segments;
COMMONs, "long" and
$LARG E arrays

Constant data

The stack and the heap grow toward each other, the stack
downward and the heap upward.

Advanced Topics

4. DGROUP:TOP

TOP means 64K bytes (4K paragraphs) above DGROUP:
0000 of DGROUP:LO and just across the DGROUP seg­
ment boundary. Common blocks, "long" arrays and
$LARGE arrays start here and are allocated to separate
segments and where necessary, across segment boundar­
ies. These additional segments for data items are refer­
enced by three items: a segment name which was derived
from the common block or array names provided with the
MS-FORTRAN program, the class name COMMON, and
a segment address pointer which resides in the COMADS
class of DGROUP:LO. All references to common block,
"long" array or $LARGE array component variables use
offsets from this address.

5. HIMEM:OOOO

The segment named HIMEM (class HIMEM) gives the
highest used location in the program. The segment itself
contains no data, but its address is used during initializa­
tion. Available memory starts here and can be accessed
with MS-Pascal ADS variables.

6. COMMAND

MS-DOS keeps its command processor (the part of itself
which does COPY, DIR, and other resident commands) in
the highest location in memory possible. Your MS­
FORTRAN or MS-Pascal program may need this mem­
ory area in order to run. If so, the command processor is
overwritten with program data. When your program fin­
ishes, the command processor is reloaded from the file
COMAND.COM on the default drive.

In some circumstances, the check may result in a message
appearing on your screen telling you to insert a disk that
contains the appropriate file, COMAND.COM. You can
avoid this delay by making sure that COMAND.COM is
on the disk in the default drive when the program ends.

113

Microsoft FORTRAN Compiler User's Guide

10.3.3 Initialization and Termination

Every executable file contains one, and only one, starting address.
As a rule, when MS-FORTRAN or MS-Pascal object modules are
involved, this starting address is at the entry point BEGXQQ in
the module ENTX. For some versions, the name ENTX may be
appended with other letters. However, the name of the module
always begins with the four letters "ENTX". An MS-FORTRAN
or MS-Pascal program (as opposed to a module or implementa­
tion) has a starting address at the entry point ENTGQQ.
BEGXQQ calls ENTGQQ.

The following discussion assumes that an MS-FORTRAN or MS­
Pascal main program along with other object modules is loaded
and executed. However, you can also link a main program in
assembly or some other language with other object modules in
either MS-FORTRAN or MS-Pascal. In this case, some of the
initialization and termination done by the ENTX module may
need to be done elsewhere.

When a program is linked with the runtime library and execution
begins, several levels of initialization are required. The levels are
the following:

1. machine level initialization

2. program level initialization

3. unit level initialization

The general scheme is shown in Figure 10.4.

114

ENTX Module

BEGXQQ:

ENDXQQ:

INTR Module

INIX87:
ENDX87:

Unit U

INIUQQ:

ENDUQQ:

MISO Module

BEGOQQ:
ENDOQQ:

Program Module

ENTGQQ:

Set stackpointer, framepointer
Initialize PUBLIC variables
Set machine-dependent flags,

registers, and other values
CalilNIX87
CalilNIUQQ
Call BEGOQQ

Advanced Topics

Call ENTGQQ {Execute program}

{Terminations come here}
Call ENDOQQ
Call ENDYQQ
Call ENDUQQ
Call ENDX87
Exit to operating system

Real processor initialization
Real processor termination

Operating system specific
file unit initialization

Operating system specific
file unit termination

(Other user initialization)
(Other user termination)

CalilNIVQQ
If $ENTRY on, CALL ENTEQQ
Initialize static data
Initialize units
FOR program parameters DO

Call PPMFQQ
Execute program
If $ENTRY on, CALL EXTEQQ

Figure 10.4 Microsoft FORTRAN Program Structure

115

Microsoft FORTRAN Compiler User's Guide

10.3.3.1 Machine Level Initialization

The entry point of an MS-FORTRAN load module is the routine
BEGXQQ, in the module ENTX (the module may also be called
ENTX8, ENTX6M, etc.).

BEGXQQ does the following:

116

1. It moves constant and static variables upward (as de­
scribed in Section 10.3.2, "Memory Organization"), creat­
ing a gap for the stack and the heap.

2. It sets the framepointer to zero.

3. It initializes a number of public variables to zero or NIL.
These include:

RESEQQ, machine error context

CSXEQQ, source error context list header

PNUXQQ, initialized unit list header

HDRFQQ, MS-Pascal open file list header

HDRVQQ, MS-FORTRAN open file list header

4. It sets machine-dependent registers, flags, and other
values.

5. It sets the heap control variables. BEGHQQ and
CURHQQ are set to the lowest address for the heap: the
word at this address is set to a heap block header for a free
block the length of the initial heap. ENDHQQ is set to the
address of the first word after the heap. The stack and the
heap grow together, and the public variable STKHQQ is
set to the lowest legal stack address (ENDHQQ, plus a
safety gap).

6. It calls INIX87, the real processor initializer. This routine
initializes an 8087 or sets 8087 emulator interrupt vectors,
as appropriate.

7. It calls INIUQQ, the file unit initializer specific to the
operating system. If the file unit is not used and you don't
want it loaded, a dummy INIUQQ routine that just
returns must be loaded instead.

Advanced Topics

8. It calls BEGOQQ; the escape initializer. In a normal load
module, an empty BEGOQQ that only returns is included.
However, this call provides an escape mechanism for any
other initialization. For example, it could initialize tables
for an interrupt-driven profiler or a runtime debugger.

9. It calls ENTGQQ, the entry point of your MS-FORTRAN
program.

10.3.3.2 Program Level Initialization

Your main program continues the initialization process. First, the
language specific file system is called-INIVQQ for MS­
FORTRAN, or INIFQQ for MS-Pascal. Both are parameterless
procedures.

If the main program is in MS-FORTRAN, and MS-Pascal file
routines will be used, INIFQQ must be called to initialize the
MS-Pascal file system. If the main program is in MS-Pascal, and
MS-FORTRAN file routines will be used, INIVQQ must be called
to initialize the MS-FO RTRAN file system. MS-FO RTRAN main
programs automatically call INIVQQ; MS-Pascal main pro­
grams automatically call INIFQQ. To avoid loading the file sys­
tem, you must provide an empty procedure to satisfy one or both of
these calls.

If$DEBUG has been set, ENTEQQ is then called to set the source
error context.

10.3.3.3 Unit Level Initialization

The information in this section is generally useful only if you
have replaced a portion of the FORTRAN runtime library with
runtime code of you own, or if you have linked MS-FORTRAN
program units with MS-Pascal compilands.

Unit initialization is much like user program initialization. The
following actions occur:

1. error context initialization if $ENTRY metacommand was
on during compilation

2. variable (file) initialization

3. unit initialization for USES clause

4. user's unit initialization

117

Microsoft FORTRAN Compiler User's Guide

Calls to initialize a unit may come from more than one unit. The
unit interface has a version number, and each initialization call
must check that the version number in effect when the unit was
used in another compilation is the same as the version number in
effect when the unit implementation itself was compiled. Except
for this, unit initialization calls after the first one should have no
effect; i.e., a unit's initialization code should be executed only once.
Both version-number checking and single, initial-code execution
are handled with code automatically generated at the start of the
body of the unit. This has the effect of:

IF INUXQQ (USEVERSION, OWNVERSION, INITREC, UNITID)
THEN RETURN

The interface version number used by the compiland using the
interface is always passed as a value parameter to the implemen­
tation initialization code. This is passed as "useversion" to
INUXQQ. The interface version number in the implementation
itself is passed as "ownversion" to INUXQQ. INUXQQ generates
an error if the two are unequal.

INUXQQ also maintains a list of initialized units. INUXQQ
returns true if the unit is found in the list, or else puts the unit in
the list and returns false. The list header is PNUXQQ. A list entry
passed to INUXQQ as "initrec" is initialized to the address of the
unit's identifier (unitid), plus a pointer to the next entry.

User modules (and uninitialized implementations of units) may
have initialization code, much like a program and unit implemen­
tation's initialization code, but without user initialization code or
INUXQQ calls.

The initialization call for a module or uninitialized unit cannot be
issued automatically. When the module is compiled, a warning is
given if an initialization call will be required (i.e., if there are any
files declared or USES clauses). To initialize a module, declare the
module name as an external procedure and call it at the beginning
of the program.

118

Advanced Topics

10.3.3.4 Program Termination

Program termination occurs in one of three ways:

1. The program may terminate normally, in which case the
main program returns to BEGXQQ, at the location
named ENDXQQ.

2. The program may terminate due to an error condition,
either with a user call or a runtime call to an error han­
dling routine. In either case, an error message, error code,
and error status are passed to EMSEQQ, which does
whatever error handling it can and calls ENDXQQ.

3. ENDXQQ may be called directly.

ENDXQQ first calls ENDOQQ, the escape terminator, which
normally just returns to ENDXQQ. Then ENDXQQ calls
ENDYQQ, the generic file system terminator. ENDYQQ closes
all open MS-Pascal and MS-FORTRAN files, using the file list
headers HDRFQQ and HDRVQQ. ENDXQQ calls ENDUQQ,
the operating system specific file unit terminator. Finally,
ENDXQQ calls ENDX87 to terminate the real number processor
(8087 or emulator). As with INIUQQ, INIFQQ, and INIVQQ, if
your program requires no file handling, you will need to declare
empty parameterless procedures for ENDYQQ and ENDUQQ.

As mentioned, the main initialization and termination routines
are in module ENTX. Procedures for BEGOQQ and ENDOQQ
are in module MISO. ENDYQQ is in module MISY.

10.3.4 Error Handling

Runtime errors are detected in one of four ways:

1. The user program calls EMSEQQ.

2. A runtime routine calls EMSEQQ.

3. An error checking routine in the error module calls
EMSEQQ.

4. An internal helper routine calls an error message routine
in the error unit that, in turn, calls EMSEQQ.

119

Microsoft FORTRAN Compiler User's Guide

Handling an error detected at runtime usually involves identify­
ing the type and location of the error and then terminating the
program, or, with ERR= in an 1/0 statement, returning to the
calling MS-FORTRAN procedure.

The error type has three components:

1. a message

2. an error number

3. an error status

The message describes the error, and the number can be used to
look up more information (see Appendix C, "Error Messages," in
the Microsoft FORTRAN Reference Manual). In MS-FORTRAN,
the error status value is used for special purposes and has no
significance for the user. In MS-Pascal, the error status value is
undefined.

Table 10.3 shows the general scheme for error code numbering.

120

Table 10.3

Error Code Classification

Range

1- 999
1000-1099
1100-1199
1200-1299
1300-1999
2000-2049
2050-2099
2100-2149
2150-2199
2200-2399
2400-2449
2450-2499
2500-2999

Classification

Front end errors
Unit U file system errors
Unit F file system errors
Unit V file system errors
Reserved
Heap, stack, memory
Ordinal and long integer arithmetic
REAL *4 and REAL *8 arithmetic
Structures, sets, and strings
Reserved
Peode interpreter
Other internal errors
Reserved

An error location has two parts:

1. the machine error context

2. the source program context

Advanced Topics

The machine error context is the program counter, stackpointer,
and framepointer at the point of the error. The program counter is
always the address following a call to a runtime routine (e.g., a
return address). The source program context is optional; it is
controlled by the $DEBUG metacommand. If $DEBUG is in
effect, the program context consists of:

1. the source filename of the compiland containing the error

2. the name of the routine in which the error occurred

3. the listing line number of the first line of the statement

10.3.4.1 Machine Error Context

Runtime routines are compiled by default with the $RUNTIME
metacommand set. This causes special calls to be generated at the
entry and exit points of each runtime routine. The entry call saves
the context at the point where a runtime routine is called in the
user program. This context consists of the framepointer, stack­
pointer, and program counter. As a consequence of this saving of
context, if an error occurs in a runtime routine, the error location is
always in the user program. This is true even if runtime routines
call other runtime routines. The exit call that is generated restores
the context.

The runtime entry helper, BRTEQQ, uses the runtime values
shown in Table 10.4.

Table 10.4

Runtime Values in BRTEQQ

Value

RESEQQ
REFEQQ
REPEQQ
RECEQQ

Description

Stackpointer
Framepoin ter
Program counter offset
Program counter segment

The first thing that BRTEQQ does is examine RESEQQ. If this
value is not zero, the current runtime routine was called from
another runtime routine and the error context has already been
set, so it just returns. If RESEQQ is zero, however, the error

121

Microsoft FORTRAN Compiler User's Guide

context must be saved. The caller's stackpointer is determined
from the current framepointer and stored in RESEQQ. The
address of the caller's saved framepointer and return address
(program counter) in the frame is determined. Then the caller's
framepointer is saved in REFEQQ. The caller's program counter
(i.e., BRTEQQ's caller's return address) is saved: the offset in
REPEQQ and the segment (if any) in RECEQQ.

The runtime exit helper, ERTEQQ, has no parameters. It deter­
mines the caller's stackpointer (again, from the framepointer) and
compares it against RESEQQ. If these values are equal, the origi­
nal runtime routine called by your program is returning, so
RESEQQ is set back to zero.

EMSEQQ uses RESEQQ, REFEQQ, REPEQQ, and RECEQQ to
display the machine error context.

10.3.4.2 Source Error Context

Giving the source error context involves extra overhead, since
source location data must be included in the object code in some
form. Currently, this is done with calls which set the current
source context as it occurs. These calls can also be used to break
program execution as part of the debug process. The overhead of
source location data, especially line number calls, can be signifi­
cant. Routine entry and exit calls, while requiring more overhead,
are much less frequent, so the overhead is less.

The procedure entry call to ENTEQQ passes two VAR parame­
ters: the first is an LSTRING containing the source filename; the
second is a record that contains the following:

1. the line number of the procedure

2. the subroutine or function identifier

The filename is thatofthecompiland source (e.g., the main source
filename, not the names of any $INCLUDE files). The procedure
identifier is the full identifier used in the source, not the linker
name. The line number is the first executable statement in the
procedure.

Entry and exit calls are also generated for the main program, in
which case the identifier is the program name.

122

Advanced Topics

The procedure exit call to EXTEQQ does not pass any parame­
ters. It pops the current source routine context off a stack main­
tained in the heap.

The line number call to LNTEQQ passes a line number as a value
parameter. The current line number is kept in the public variable
CLNEQQ. Since the current routine is always available, the com­
piland source filename and routine containing the line are avail­
able along with the line number. Line number calls are generated
just before the code in the first statement on a source line. The
statement can, of course, be part of a larger statement.

Most of the error handling routines are in modules ERRE and
FORE. The source error context entry points ENTEQQ, EXTEQQ,
and LNTEQQ are in the debug module, DEBE.

10.4 Floating-Point Operations

By default, the Microsoft FORTRAN Compiler generates calls to
a real number math package to carry out floating-point opera­
tions. This gives the best tradeoff between runtime performance,
code size and flexibility. The real number math package performs
floating-point arithmetic according to the proposed IEEE real
math standard, using an 80-bit internal form, irrespective of the
precision of the operands, and is provided in the standard math
library, MATH.LIB. (MATH.LIB will be searched by default if
you link with just FORTRAN.LIB.)

The real math package is also compatible with the InteL 8087TM
numeric processor. When you run your program on a machine
with an 8087 installed, the real math package, which "emulates"
the 8087, automatically uses the processor to carry out the arith­
metic. This compatibility means that your programs will give the
same, very accurate, results whether they run on a machine with
an 8087 installed or in another processing en vironment. (In cases
where the real math package is emulating the 8087, some trans­
cendental functions may give different results, but the differences
are very slight).

123

Microsoft FORTRAN Compiler User's Guide

MS-FORTRAN also provides options that allow you to tailor your
program for performance and size on specific system configura­
tions. Specifically, you can choose to have in-line 8087 instruc­
tions generated to perform floating-point operations, you can
select a math package optimized for performance but which gives
less accurate results, or you can eliminate the math package
altogether if you know an 8087 will always be present when your
program will be run.

Don't forget that using these options will affect the portability of
your program and the consistency of its results.

10.4.1 The $NOFLOATCALLS Metacommand
Option

The $NOFLOATCALLS metacommand directs the compiler to
generate in-line instruction "skeletons" for floating-point opera­
tions. With $NOFLOATCALLS in your source code and the
standard versions of FORTRAN. LIB and MATH. LIB linked into
your program, fixups in FORTRAN.LIB will cause the linker to
transform the in-line instruction skeletons into software inter­
rupts and control information. The interrupts and control infor­
mation will be fielded at execution time by an emulator (software
math package).

When you run your program, the first time each such interrupt is
executed, the emulator gets control. If you have an 8087 installed,
the emulator will overwrite the interrupt and control information
with the equivalent 8087 instruction and re-execute it. This and all
subsequent executions of the instruction will be carried out by the
8087. If you do not have an 8087, the emulator will use the control
information to carry out a software equivalent of8087 instruction
processing. This will occur every time the instruction is executed.

The in-line instructions typically require half as much code as the
equivalent call sequence and also permit additional optimizations
to be performed. Otherwise, nonfloating-point operations are
unaffected, and the total reduction in code size will usually be
between 10 and 30 percent.

This option provides the most efficient execution if you have an
8087 installed. However, if you do not, the interrupt mechanism
and processing of control information that occurs every time an
instruction is emulated is time consuming and imposes a consid­
erable overhead on the fundamental arithmetic operations. The

124

Advanced Topics

overhead may be up to 25 percent on the simpler instructions (for
example, FADD). But for the same reasons that reduced the
impact of this option on code size, you should expect the overall
overhead to be somewhat less than this, depending on the mix of
instructions.

The basic operations are, in fact, carried out by the same code that
supports the calls to the emulator and using this option will have
no effect on your program's results. Also, you can freely mix
modules compiled with $NOFLOATCALLS with those compiled
with the default option. You can even use a second metacom­
mand, $FLOATCALLS, to switch between modes within the
same module or even subroutine. However, this practice might
not take effect exactly where you specified it, because optimiza­
tions may group statements or reorder code.

Important

You cannot use this option in any modules that will be linked
with the alternate math pack ALTMATH.LIB. You will get
linker errors if you try. You will get a compilation error if you
use $NOFLOATCALLS when $DECMATH is in effect.

10.4.2 The Alternate Math Pack Option

The IEEE math standard as supported by the emulator is compli­
cated, and the emulator, as a result, will contribute about 6.5K
bytes to your program. Also, arithmetic to 80-bit precision is much
more time consuming than the minimum required to provide
reasonable accuracy for 32-bit or even 64-bit floating-point
numbers.

If you do not require consistency with the 8087, or if the speed of
your program is more important than accuracy, you can use the
"Alternate Math Pack." This is a more traditional floating-point
support package. Its interface is compatible with the $FLOAT­
CALLS interface to the emulator, but it is optimized for speed. The
results of your calculations will be less accurate, particularly for
single precision arithmetic, and will, in general, be slightly differ­
ent than those produced using the 8087 or the emulator. However,
basic operations will be typically at least twice as fast, and, if you

125

Microsoft FORTRAN Compiler User's Guide

don't have an 8087, programs that do a lot of floating-point
arithmetic will run much faster. If you do have an 8087 and use
this option, your programs will not use the coprocesssor and will
run slower than they would have had you linked in the standard
math library.

The Alternate Math Pack assumes a much simpler model for
floating-point arithmetic than the IEEE standard, although the
external representation of real values is the same. For example,
all overflow, divide-by-zero and other exceptions that would result
in a NAN (NotA Number) in the IEEE model, will cause an error
exit in the Alternate Math Pack model. Also, unlike the 8087 and
emulator models that assume (and support) an infinite stack, the
Alternate Math Pack assumes a fixed stack with a limited
number of entries. This means that highly recursive functions
may overflow the stack and give an error.

You select the Alternate Math Pack by linking with the library
ALTMATH.LIB, which is provided with the compiler. This
library contains only the Alternate Math Pack, and the remainder
of the runtime is obtained from FORTRAN.LIB. (See Section
6.1.1.1, "Standard Runtime Libraries," for a review of the proce­
dure for linking auxiliary libraries.)

Note

You can change the default math package by renaming
ALTMATH.LIB to be MATH.LIB.

10.4.3 No Emulation Option

As mentioned above, the emulator contributes about 6.5K bytes to
the size of your program. If you have an 8087 installed, its only
purpose is to translate your emulated instructions into actual 8087
instructions. You can eliminate the emulator altogether if you
know that your program will only run on machines that have an
8087.

126

Advanced Topics

To eliminate the emulator, you link in the object module SOS7.LIB,
provided with the compiler. This replaces the emulator and fixes
up the in-line instruction skeletons to actualSOS7 instructions at
link time. $FLOATCALLS interfaces are also provided. These use
the SOS7 to carry out the operation, so that you can use SOS7.LIB
whether or not you have used $FLOATCALLS.

Note

You change the default math package by renaming SOS7.LIB
to MATH.LIB.

10.4.4 Decimal Math Option

Microsoft FORTRAN supports an alternative floating-point for­
mat in which decimal floating-point numbers up to 14 digits and
within a limited exponent range can be represented exactly. The
results of the operations on the numbers in this format are also
represented exactly if they are in the allowable range. This option
is particularly useful in business and financial applications
where exact results are important.

You select the decimal format by using the $DECMATH meta­
command in all of your program units that use floating-point. You
must link with DECMATH.LIB to support this format. Decimal
floating-point and IEEE floating-point are not compatible.

Note

You cannot use $NOFLOATCALLS if you have specified
$DECMATH.

127

Microsoft FORTRAN Compiler User's Guide

10.5 MS-DOS 2.0 Issues

This version of the Microsoft FORTRAN Compiler is essentially
an MS-DOS 1.25 compiler. This means that Microsoft FORTRAN
and programs compiled by it will run on both versions of MS­
DOS, but cannot take advantage of special features of MS-DOS
2.0, such as pathnames.

However, if you know that your program (not compiler) will only
be required to run under MS-DOS 2.0, you can link with the special
version of the FORTRAN file system, DOS2FOR.LIB, which
contains the interface to the MS-DOS 2.0 file system. The modules
contained in DOS2FOR.LIB provide the interface described in
Section 10.2, "An Overview of the File System," of this User's
Guide.

Programs linked with DOS2FOR.LIB, will give the runtime
message

I ncorrect DOS version

when run on earlier versions of MS-DOS.

10.5.1 Exit Status Available to 2.0 MS-DOS

The compiler supplies an exit status to 2.0 MS-DOS that can be
accessed via the "IF ERRORLEVEL n" batch command. The
values returned by the compiler are:

128

nValue

°
2

4

Meaning

No warnings for errors issued

Warnings were issued

Fatal errors encountered

Advanced Topics

The value of the global word DOSEQQ (defined in module ENTX)
is passed to MS-DOS and this becomes the argument to ERROR­
LEVEL. DOSEQQ may be set to any error code desired by the
user.

Note

You will have to use MS-Pascal or MS-Macro Assembler to set
the value of DOSE QQ.

129

Appendices

A Differences From Earlier Versions
of Microsoft FORTRAN 133

B Microsoft FORTRAN File Control Block 137

C Real Number Conversion Utilities 139

D Structure of External
Microsoft FORTRAN Files 141

E Microsoft FORTRAN Scratch Files 143

F Customizing i8087 Interrupts 145

G Exception Handling for 8087 Math 151

H Microsoft LINK Error Messages 157

131

Appendix A

Differences FrolIl
Earlier Versions
of Microsoft FORTRAN

The significant differences between the 3.20 and 3.0 releases of
Microsoft FORTRAN are:

• The PARAMETER statement has been added, including
constant expressions. (See Chapter 3, "Statements," in the
Reference Manual.) Constants may be of LOGICAL type,
CHARACTER type, or any numeric type. Expressions
may only be INTEGER or LOGICAL (REAL and COM­
PLEX constant arithmetic is not supported, nor are char­
acter operators.) After an identifier has been declared by
the PARAMETER statement, it may be used exactly as a
constant of the same type (for example, it may appear in
constant expressions).

• Integer constant expressions are also now allowed in data
declarations, for example:

'CHARACTER foo*(10*2)', or 'REAL*(6-2)r1'

Note

Only integer and logical expressions are allowed; real,
complex and character expressions are not supported.

• The SAVE statement now accepts full language syntax.
(See Chapter 3, "Statements," in the Reference Manual.)

• The .EQV. and .NEQV.logical operators have been added;
they have assumed the position of lowest precedence. (See
Section 2.5.6, "Logical Expressions," in the Reference
Manual.)

133

Microsoft FORTRAN Compiler User's Guide

134

• The DATA statement will check for type compatibilty
between the variable being initialized and the constant. It
will carry out coercions as specified in the full language.
The DATA statement may be interspersed with statement
function statements and executable statements.

• The BLOCK DATA statement is supported although not
all restrictions on it are checked.

• Alternate returns have been added. (See Section 3.2.5,
"The CALL statement," in the Reference Manual.)

• The COMPLEX*8 data type has been added, as well as the
specific and generic type conversion intrinsics that sup­
port it as defined by the full FORTRAN 77 language.
COMPLEX*16 has also been added as a Microsoft FOR­
TRAN extension. New specific intrinsics (see Table 5.1,
"Intrinsic Functions," in the Reference Manual) have been
added to support the COMPLEX*16 type.

• Arrays and common blocks longer than 64K are now
supported; short (less than 64K) arrays may be declared to
be outside DGROUP; and blank common is no longer
within DGROUP

• The metacommands $LARGE and $NOTLARGE have
been added (see Chapter 6, "Metacommands," in the Ref­
erence Manual.)

• Generic intrinsic functions as defined by the full language
have been added. (See Table 5.1, "Intrinsic Functions," in
the Reference Manual.)

• The edit descriptors T, TR, TL, S, SP, SS and" : " have
been added. (See Section 3.1.4, "The FORMAT State­
ment," and Section 4.4.2, "Edit Descriptors for the Format
Statement," in the Reference Manual.) You may not use
the T descriptors to reposition to the left once you have
positioned beyond character position 128, since the output
data are held in a buffer of this size.

• The full language INQUIRE statement has been added.
(See Chapter 3, "Statements," in the Reference Manual.)

• The IOSTAT= <iocheck> specifier has been added to the
CLOSE, OPEN, READ, and WRITE statements.

Differences From Earlier Versions

<iocheck> is an integer variable or integer array element
that becomes defined as: (1) a zero ifno error or end-of-file
conditions are encountered or (2) a processor-dependent
positive integer value if an error condition is encountered
or (3) a processor-dependent negative integer value if an
end-of-file is encountered and no error condition exists.

• New linkers are provided; their use is required. (See Sec­
tion 4.2, "Alternative Linkers," in this guide for more
details.)

• A simple overlay scheme is supported. (See Section 6.3,
"The Overlay Linker," in this guide for a discussion of
how to overlay your program.)

• The library structure has been revised. (See Section 6.1.1,
"Object Modules," in this guide for more information
about the standard runtime library and the auxiliary
libraries that it supports.)

• An alternative math package, optimized for speed, is pro­
vided. (See Chapter 10, "Advanced Topics," in this guide
for the details about ALTMATH.LIB and the Alternate
Math Package.)

• A "Decimal" math package is provided. (See Section
10.4.4, "Decimal Math Option," in this guide for the
details about DECMATH.LIB and the Decimal Math
Package.)

• $FLOATCALLS is now on by default. It is a metacom­
mand which directs the compiler to generate calls to real
math support routines. (See Section 10.4, "Floating-Point
Operations," in this guide for more information on this
metacomand.)

• An interface to the MS-DOS 2.0 file system is provided.
(See Section 4.1, "MS-DOS 2.0 Interface Library," in this
guide for the description of DOS2FOR.LIB.)

• NULR7.0BJ is no longer provided. Math routines are
only included if math operations are performed.

• COMMQQ is no longer allocated to the default data seg­
ment. (See Section 10.3.2, "Memory Organization," in this
guide for a review of the Microsoft Pascal memory model.)

• Unit numbers in the range -32767 to 32767 are accepted.

• The list-directed output line size is 80 columns.

• CHARACTER-typed functions are supported.

135

AppendixB
Microsoft FORTRAN
File Control Block

This appendix lists the complete file control block specification
for this version of the MS-FORTRAN runtime system. The under­
lying data type is an MS-Pascal record. Numbers in square
brackets give the byte offset for each field of the file control block.

{MS-Pascal / MS-FORTRAN FCB Declaration Include File}

INTERFACE; UNIT
FILKQQ (FCBFQQ, FILEMODES, SEQUENTIAL,

TERMINAL, DIRECT, BUFFERBIZE);

canst
BUFFER~IZE = 512;

TYPE
FILEMODES = (SEQUENTIAL, TERMINAL, DIRECT);

FCBFQQ = RECORD {byte offsets start every field comment}
{fields accessible by Pascal user as <file variable>.<field>}
TRAP: BOOLEAN; {OO Pascal user trapping errors if true}
ERRS: WRD(O) .. 15; {01 error status, set only by all units}
MODE: FILEMODES; {02 user file mode; not used in unit U}
M ISC: BYTE; {03 pad to word bound, special user use}
{fields shared by units F, V, U; ERRC / ESTS are write-only}
ERRC: WORD; {04 error code, error exists if nonzero}

{1 000 .. 1 099: set for unit U errors}
{1100 .. 1199: set for unit F errors}
{1200 .. 1299: set for unit V errors}

ESTS: WORD; {06 error specific data usually from OS}
CMOD: FILEMODES; {08 system file mode; copied from MODE}
{fields set / used by units F and V, and read-only in unit U}
TXTF: BOOLEAN; {09 true: formatted / ASCII/TEXT file}

{false: not formatted / binary file}
SIZE: WORD; {10 record size set when file is opened}

{DIRECT: always fixed record length}
{others: max buffer variable length}

137

Microsoft FORTRAN Compiler User's Guide

IERF: BOOLEAN; {12 Unit U Incomplete End Of Record}
{Set false by opnuqq and}
{pccuqq, and true by peruqq. Thus}
{if true in wefuqq, it means that}
{there is an incomplete line, and}
{pccuqq should be called to flush}
{it. Only applies to terminal files}

MISA: BYTE;
OLDF: BOOLEAN;

INPT: BOOLEAN;

{13 Used to keep alignment with old misa}
{14 true: must exist before open; RESET}

{false: can create on open; REWRITE}
{15 true: user is now reading from file}

{false: user is now writing to file}
RECL: WORD; {16 DIRECT record number, 10 order word}
RECH: WORD; {18 DIRECT record number, hi order word}
USED: WORD; {20 number bytes used in current record}
{fields used internally by units F or V not needed by unit U}
LINK: ADR OF FCBFQQ; {22 OS offset address of next open file}
BADR: ADRMEM; {24 F: OS offset address for buffer var}
TMPF: BOOLEAN; {26 F: is a temp file; delete on CLOSE}
FULL: BOOLEAN; {27 F: buffer variable lazy eval status}
UNFM: BOOLEAN; {28 V: for unformatted binary file mode}
OPEN: BOOLEAN; {29 F: file opened (by RESET I REWRITE)}
FUNT: INTEGER; {30 V: FORTRAN unit number (1 to 32767)}
ENDF: BOOLEAN; {32 V: last 1/0 statement was a ENDFILE}
{fields set I used by unit U, and read-only in units F and V}
REDY: BOOLEAN; {33 buffer ready if true; set by FlU}
BCNT: WORD; {34 number of data bytes actually moved}
EORF: BOOLEAN; {36 true if end of record read, written}
EOFF: BOOLEAN; {37 end of file flag set after EOF read}

{unit U (operating system) information starts here}
{***}

FILE---.NAME: : ASTRING;
FDSCP : INTEGER;
PREDEFINED : BOOLEAN;
FNER : BOOLEAN;
BEGIN~UFFER: INTEGER;
END~UFFER : INTEGER;
BUFFER : STRING(512);
PADBUF : STRING(68);

{ points to file name}
{ actual ZEUS file number}
{* True if file is a device. *}
{* True if File name error. *}
{* Start lac of buffer. *}
{* Stop lac of buffer. *}
{* Internal buffering. *}
{* Make same size as MS-Dos. *}

{***}

{end of section for unit U specific OS information}
END;
END;

138

AppendixC
Real NU1l1ber
Conversion Utilities

Releases of MS-FORTRAN starting with version 3.0 use the
IEEE real number format. Releases of MS-FORTRAN earlier
than 3.0 used the Microsoft real number format.

The two formats are not compatible. However, if you need to
convert real numbers from one format to the other, you can use the
following library routines:

a. Single Precision Reals:

Microsoft to IEEE format

SUBROUTINE M21SQQ (RMS, RIEEE)

IEEE to Microsoft format

SUBROUTINE 12MSQQ (RIEEE , RMS)

RMS and RIEEE are real numbers in Microsoft format and in
IEEE format, respectively.

b. Double Precision Reals:

Microsoft to IEEE format

SUBROUTINE M210QQ (OMS, OIEEE)

IEEE to Microsoft format

SUBROUTINE 12MOQQ (OIEEE, OMS)

DMS and DIEEE are real numbers in Microsoft format and in
IEEE format, respectively.

139

AppendixD
Structure of External
Microsoft FORTRAN Files

The structure of an external MS-FORTRAN file is determined
by its properties. The structures used in MS-FORTRAN are as
follows:

l. Formatted sequential files

Records are separated by carriage return and linefeed
(ASCII hex codes OD and OA, respectively).

Record N D A Record N + 1

2. Unformatted sequential files

I

A logical record is represented as a series of physical
records, each of which has the following structure:

L Data <= 128 bytes L
I

\.)
V

Physical record

Each L shown above is a length byte that indicates the
length of the data portion of the physical record. The data
portion of the last physical record contains MOD (length
of logical record, 128) bytes, and the length bytes will
contain the exact size of the data portion.

141

Microsoft FORTRAN Compiler User's Guide

Each of the preceding physical records will contain 128 bytes in
the data portion, while the length byte will contain 129. For
example, if the size of the logical record is 138:

129
128 bytes

129 10
10 bytes

10 of data of data

l____________ _-----------)
V

One logical record

The first byte of the file is reserved and contains the value 75,
which has no other significance.

142

3. Formatted direct files, unformatted direct files, and binary
files

No record boundaries or any other special characters are
used.

Appendix E
Microsoft FORTRAN
Scratch File Nantes

Scratch files are created by the MS-FORTRAN system when no
filename is specified in an OPEN statement. Scratch file names
look like this:

T<u>.TMP

<u> is the unit number specified in the OPEN statement.

143

Appendix F
Custom.izing i8087 Interrupts

This appendix describes how to customize the i8087 interrupts on
your computer system. Before proceeding, you should be familiar
with the following:

1. the Intel publication, iAPX 86120, 88120 Numeric
Supplement

2. MS-MACRO, the Microsoft MACRO Assembler

3. DEBUG, the MS-DOS debugger utility

In addition, we recommend that you make backup copies of any of
the disks you plan to modify.

To change the way the runtime library processes interrupts, you
must use the MS-DOS debugger DEBUG (or a similar utility).
Although this utility is intended primarily for debugging assem­
bly language programs, you can also use it to alter the binary
contents of any file. You will use this second capability of DEBUG
to customize FORTRAN.L87 for a particular hardware configu­
ration.

FORTRAN.L87, the 8087 version of the runtime library, contains
the following assembly language structure:

iSOS7controi
LABXS7
EOIXS7
PRTXS7
SHRXS7
INTXS7
INTOFFSET
iSOS7controi

STRUC
DB '<SOS7>'
DB a
DB a
DB a
DB 2
OW a
ENDS

;4S-bit tag
;EOI instruction
;iS259 port number
;Shared interrupt device
;iS087 interrupt vector #

145

Microsoft FORTRAN Compiler User's Guide

This structure defines the default control values used by the run­
time library to handle 8087 interrupts. Each of the elements of the
structure is described briefly in the following list:

1. LABX87

A string label. LABX87 exists solely to locate the other
structure fields in the executable binaries and libraries.

2. EOIX87

The hexadecimal value of the i8259 "end of interrupt"
instruction for a particular implementation. To the 8087
interrupt handler supplied by Microsoft, any nonzero
value of this byte indicates the presence of an i8259 inter­
rupt controller.

3. PRTX87

The control port number associated with an i8259, if
present.

4. SHRX87

If nonzero, an indication that the i8087 shares its inter­
rupt vector with another device. In such a case, when the
8087 interrupt handler supplied by Microsoft determines
that an interrupt it receives is not an 8087 interrupt, it
passes control to the other interrupt device.

5. INTX87

The interrupt vector number to which the 8087 is
connected.

Depending on the setup of your computer system, any or all (or
none) of the last four items may require changing. Specifically,
you must alter this structure if your hardware configuration
meets any of the following criteria:

146

1. It uses an 8087 interrupt vector number other than 2.

2. It uses an 8259 interrupt controller.

3. The 8087 shares interrupts with another device on the
same vector.

Customizing i8087 Interrupts

The example on the following pages demonstrates how to change
all of the interrupt parameters on the 8087. In the example, the
following specific changes are made:

1. The 8087 interrupt control block is altered to set EOIX87
to 255 decimal, thus informing the software that an i8259
exists and that its EOI instruction is 255.

2. The i8259 should issue its EOI request through port
number 254 (PRTX87).

3. The nonzero value of SHRX87 indicates that the 8087
shares its interrupts with another device.

4. The interrupt vector number of the i8087 was changed
to 4.

These values are used merely for the purpose of this sample
session. Consult your hardware manual for the values required
for your computer system.

For the sake of brevity and clarity, not all of the screen display
issued by the debugger is shown in the example, only the parts
that apply specifically to this procedure. Also, on most screens,
the information shown in lines 4, 7, 8, and 10 will run to 80
columns on an 80-column screen.

Numbers 1 through 13 at the left-hand margin of the sample
session do not appear on the screen; rather, they refer to the
corresponding numbered comments on the page following the
sample session.

See your MS-DOS manual for complete details on using DEBUG.

147

Microsoft FORTRAN Compiler User's Guide

Sample DEBUG Session to Customize i8087 Interrupts:

1. >

2. >debug b:fortran.187

3. DEBUG-86 version 2.10

4. >r
AX=OOOO BX=0001 CX=B800 DX=OOOO
SP=FFEE BP=OOOO SI=OOOO 01=0000
DS=OAF9 ES=OAF9 SS=OAF9 CS=OAF9
IP=0100 NV UP 01 PL NZ NA PO NC
OAF9:0100 FO LOCK
OAF9:0101 FO STD

5. >s ds:100 lefff '8087>'

6. OAF9:2370

7. >d af9:2370
OAF9:2370 38 30 38 37 3E 00 00 00 8087> ...

02 00 00 F8 AO OF 00 02 ... x ..

8. >d af9:2375
OAF9:2375 00 00 00-02 00 00 F8 AO x

OF 00 02

9. >e af9:2375
OAF9:2375 OO.ff OO.fe 00.1
OAF9:2378 02.4

10. >d af9:2375
OAF9:2375 FF FE 01-04 00 00 F8 AO x

OF 00 02

11. >w

12. >q

13. >

Comments for Sample DEBUG Session

148

1. MS-DOS prompt.

2. Call DEBUG with FORTRAN.L87.

3. DEBUG utility prompt.

4. Instruct debugger to show 8086 registers.

5. Instruct debugger to search efff bytes beginning at
DS:I00 for the string '8087>'.

Customizing i8087 Interrupts

6. String found at OAF9:2370.

7. Instruct debugger to display the string.

8. Advance to the beginning of the 'i8087control' structure.

9. Instruct the debugger to make the following alterations:

EOIX87 to FF hex, 255 decimal
PRTX87 to FE hex, 254 decimal
SHRX87 to 1 hex
INTX87 to 4

10. Instruct the debugger to display any changes.

11. Write any changes to the source file.

12. Stop the debugger.

13. MS-DOS prompt returns.

149

Appendix G
Exception Handling
for 8087 Math

The five exceptions to floating-point arithmetic that are required
by the IEEE standard are supported by the 8087 coprocessor and
the real math support routines. Those which would result in a
NAN (Not A Number) error message when enabled, are enabled
by default. The others are disabled. They are not affected by the
$DEBUG metacommand but are controlled by a STATUS word
and a CONTROL word.

1. Invalid Operation-Any operation with a NAN; root(-l),
O*INF, etc.

Default action. Enabled, gives runtime error 2136.
Alternate action. Disabled, returns a NAN.

2. Divide by zero-r/O.O.

Default action. Enabled, gives runtime error 2100.
Alternate action. Disabled, returns a properly signed

INF (infinity).

3. Overflow-Operation results in a number greater than
maximum representable number.

Default action. Enabled, gives runtime error 2101.
Alternate action. Disabled, returns INF.

4. Underflow-Operation results in a number smaller than
smallest valid representable number.

Default action. Disabled, returns zero.
Alternate action. Enabled, gives runtime error 2135.

5. Precision-Occurs whenever a result is subject to round­
Ing error.

Default action. Disabled, returns properly rounded result.
Alternate action. Enabled, gives runtime error 2139.

151

Microsoft FORTRAN Compiler User's Guide

G.I Processing Environment Control

Two memory locations control the 8086 and the 8087 processors.
These are called the STATUS word and CONTROL word. The
effect of these memory locations is discussed in the following
paragraphs.

STATUS word

When one of the exceptional conditions occurs, the appropriate bit
in the STATUS word is set. This flag will remain set to indicate
that the exception occurred until cleared by the user. If you set the
bit in the CONTROL word relating to a given exception, that
exception is masked and the operation proceeds with a supplied
default. If the bit is unset, any exception of that type generates an
error message, halts the operation, and your program will stop. In
either case the exception is ORed into the STATUS word.

CONTROL word

In addition to masking exceptional conditions, the CONTROL
word is also used to set modes for the internal arithmetic required
by the IEEE standard. These are:

Rounding Control

Round to nearest (or even), Up, Down, or Chop

Precision Control

Determines at which bit of the mantissa rounding should take
place (24,53, or 64). Note all results are done to 64 bits regardless of
the precision control. It only affects the rounding in the internal
form. On storage any result is again rounded to the storage
precision.

152

Exception Handling for 8087 Math

Infinity Control

Affine mode is the familar + and - INF style of arithmetic. Projec­
tive mode is a mode where + and - INF are considered to be the
same number. The principal effect is to change the nature of
comparisons. (Projective INF does not compare with anything
but itself.)

The CONTROL word defaults are currently:

Infinity control = affine

Rounding control = near

Precision control = 64 bits

Interrupt-enable mask = unmasked

Precision mask = masked

Underflow mask = masked

Overflow mask = unmasked

Zerodivide mask = unmasked

Denormalized operand mask = unmasked

Invalid operation mask = unmasked

Special exception handling routines handle stack exceptions and
denormal propagation. For these routines to work correctly, the
8087 CONTROL word and auxiliary variables need to be set up as
done by LCWRQQ. Use LCWRQQ to revise the 8087 CONTROL
word.

Important

Do not alter the 8087 CONTROL word with an FLDCW
instruction when using the 8087 with a Microsoft language.

Since the denormal exception is not a part of the IEEE standard,
LCWRQQ always alters the user's parameter word to unmask
denormals and thus handle them with the Microsoft exception
handler. The user cannot affect the handling of denormals with
LCWRQQ.

153

Microsoft FORTRAN Compiler User's Guide

Since stack overflow and underflow are indicated by the 8087
wi th an in valid exception, the in valid exception bit is also always
unmasked by LCWRQQ. However, when an invalid exception
occurs and it is not stack overflow or underflow, then the invalid
exception bit of the user's control word input to LCWRQQ controls
the handling of the exception.

The following list of control words defines the masking settings
for the overflow, zerodivide, and invalid operation exceptions that
are associated with several optional control words. Control word
4914 specifies the default masking settings that are customary
during 8087 operations.

Control word Overflow Zerodivide Invalid

4914 = 1332h unmasked unmasked unmasked
4915 = 1333h unmasked unmasked masked
4918 = 1336h unmasked masked unmasked
4919 = 1337h unmasked masked masked
4922 = 133Ah masked unmasked unmasked
4923 = 133Bh masked unmasked masked
4926 = 133Eh masked masked unmasked
4927 = 133Fh masked masked masked

G.2 Reading and Setting
STATUS and CONTROL Values

The values of the STATUS word and CONTROL word can be
read and set using the following procedures:

154

C Load Control Word

SUBROUTINE LCWROO (CW)
INTEGER*2 CW

C sets the control word to the value in CW

C Store Control Word

INTEGER*2 FUNCTION SCWROO

Exception Handling for 8087 Math

C returns the value of the control word

C Store Status Word

INTEGER*2 FUNCTION SSWRQQ

C returns the value of the status word

Printing NANs (Not A Number)

If you disable the above exceptions, you will either get NAN,
Infinite, or Indefinite values in your variables. If you print such a
value, the output field will contain NAN, INF, or IND padded
with periods to the field width. If the output field has less than
three spaces, only periods will be printed.

G.3 Formats for the
STATUS And CONTROL Words

The bit locations for storing the cumulative record of exceptions
are defined in the diagrams that follow.

155

Microsoft FORTRAN Compiler User's Guide

15 8 7 6 5 4 3 2
STATUS hi byte unused I PE I UE I OE I ZE I

Precision Exception I I I
Underflow Exception
Overflow Exception -------------
Zero Divide Exception
Invalid Exception

(All other bits unused, may be either 1 or 0)

CONTROL 15 14 13 12 11-10 9-8 7 6 5 432
I I I Ie I RC I PC I I I PM I UM I OM I ZM I

(a) Infinity Control J I I
(b) Round Control
(c) Precision Control

Precision Mask
Underflow Mask
Overflow Mask

I I
Zero Divide Mask --------------­
Invalid Mask

(All other bits unused, may be either 1 or 0)

156

(a) Infinity Control
0= Projective
1 :; Affine

(b) Round Control
00 = Round nearest or even
01 = Round down (toward -INF)
10 c: Round up (toward + INF)
11 = Chop (Truncate toward 0)

(c) Precision Control
00 = 24 bits of mantissa
01 = (reserved)
10 = 53 bits of mantissa
11 = 64 bits of mantissa

1

I
0

IMI

o
liE I

AppendixH
Microsoft LINK
Error Messages

Any link error will cause the link session to terminate. After you
ha ve found and corrected the pro blem, you must rerun MS-LINK.
Link errors have no code number. See your MS-DOS manual for
further information on MS-LINK.

Attempt to access data outside of segment bounds

There is probably a bad object file.

Bad numeric parameter

Numeric value is not in digits.

Cannot open temporary file

MS-LINK is unable to create the file VM.TMP because the
disk directory is full. Insert a new disk. Do not remove the disk
that will receive the list map file.

Dup record too complex

DUP record in assembly language module is too complex.
Simplify DUP record in assembly language program.

Fixup overflow in (name).OBJ, (module name) near 0000
in segment (name)

This message usually indicates that the total amount of static
data exceeds the limit of the default data segment. Usually,
the user had defined a segment in an assembly language
module whose group or class name conflicts with those of the
segments generated by the compiler.

Input file read error

There is probably a bad object file.

157

Microsoft FORTRAN Compiler User's Guide

Invalid object module

An object module(s) is incorrectly formed or incomplete (as
when assembly is stopped in the middle).

Symbol defined more than once

MS-LINK found two or more modules that define a single
symbol name.

Program size exceeds capacity of linker

The total size may not exceed approximately 900K bytes.

Reloc table overflow

The program contains more than 12000 long calls (approxi­
mately). Typically, this happens in very large programs with
debugging turned on ($DEBUG).

Requested stack size exceeds 64K

Specify a size greater than or equal to 64K bytes with the
/STACK switch.

Segment size exceeds 64 K

64K bytes is the addressing system limit.

Symbol table overflow

Very many and/ or very long names were typed, exceeding the
limit of approximately 64K bytes.

Too many external symbols in one module

The limit is 511 external symbols per module.

Too many groups

The limit is 10 groups.

Too many initialized segments

The number of segments may not exceed 255 but the number
of initialized segments may not exceed 245.

Too many libraries specified

The limit is 8 libraries.

158

Microsoft LINK Error Messages

Too many public symbols

The limit is 1536 public symbols if you specify IMAP

Unresolved externals: <list>

The external symbols listed have no defining module among
the modules or library files specified.

VM read error

This is a disk error; it is not caused by the Microsoft Linker.

Warning: No stack segment

None of the object modules specified contains a statement
allocating stack space.

Write error in TMP file

No more disk space remains to expand VM.TMP file.

Write error on run file

Usually, there is not enough disk space for the run file.

159

Index

8086 assembly language, 87
8087 coprocessor, 10
8087 emulation, 116

Add routine, 92 to 96
Addresses, offset, 17
Alternative linkers, 35
ALTMATH.LIB, alternative

math package, 38, 39,
125

Arrays
long (exceed 64K), 71, 72, 73,

134
passed as arguments, 72
$LARGE, 72, 73, 110
memory requirements, 75, 110

Assembler, 14
Assembly language

da ta placement, 97
interface, 56, 91

Auxiliary libraries
8087.LIB, 38, 58
ALTMATH.LIB, 38,58
DECMATH.LIB, 38, f)8
DOS2FOR.LIB, 35, 58, 128

Back end, 81, 83
Base name, 48
BAT file. See Batch file.
Batch file, 67
BEGXQQ, 114, 116

Calling conventions, 55,87
Calls

by reference, 91
long, 89
short, 89

Character values, 91
CHKDSK program, 62
Code

relative, 16
size, limits, 71

COMMON block, 71, 76, 113
Compile time

definition, 15
memory limits, 76

Compiler
invocation, 49 to 51
optimization, 11
options, 39, 124
passes, 21

See also
Pass one
Pass two
Pass three

starting, 49
structure, 12, 101

Compiling large programs, 71,81
COPY, 9

Data types
internal representations

character, 91
COMPLEX, 90
decimal, 90
INTEGER, 89
LOGICAL, 90
REAL, 90
size limits, 71

DECMATH.LIB, decimal math
package, 38

Decimal numbers, 90
Definitions, 15
Device drivers, 112
Device name, 45
DGROUP:LO, 110

161

Index

DGROUP:TOP, 110
DIR, 62
DISKCOPY,9
Disks

backup copies, 9
exchanging, 22,80
formatting, 9
limits, 77
memory, 77
provided,3
set up, 9

DOS2FOR.LIB, interface library,
35,58,128

Dummy subroutines, 83

Emulator library, MATH.LIB, 28,
39,58,123,126

ENDYQQ,82
ENTER key, 5
ENTGQQ,114
Error

code classification, 120
machine context, 121
source context, 122
trapping, 108

Examples
large program, 81
program session, 21

Exception handling
CONTROL word, 152, 154, 155
divide by zero, 153
invalid operation, 153
overflow and underflow, 153
precision control, 153
STATUS word, 152, 154, 155

EXE file, 14,61
files, 141
reference, 16

EXTERNAL declarations, 55

File control block, 91, 106, 107,
137

Filenames
conventions, 45

162

default, 47
defaults, 45
extensions, 46
general rules, 47
spaces within, 37

Files
backup copies, 9
batch facility, 67
compiler-written, 43
control blocks. See File control

block
external, 141
intermediate, 44
linker-read, 55
linker-written, 60
naming. See Filenames.
NUL or null, 25,47
object, 43, 55
object listing, 47
run, 61
scratch, names, 143
source listing, 43

Floating-point arithmetic com­
piler options, 37, 123

emulation, 125
FORTRAN

learning resources, 5
standard, subset, 3

FORTRAN.LIB, default runtime
library, 21, 28, 35, 58, 59,
124, 126

Frame contents, 87
Framepointer, 88, 116
Front end, 103
Function return values, 91

Hardware configuration, 10
Heap, 112, 116

1/0,82
Identifier limits, 75
INIVQQ,82
INPUT file, 107
INTEGER*2,84

INTEGER*4,89
Interface, standard, 106
Intermediate files, 44
Internal representations, 89
Interrupts

i8087, 145
parameter changes, 147
vectors, 112

Libraries
auxiliary, 38, 55,58
runtime, 10, 17,35,44,57, 114,

117
Limits

compile time memory, 75
complex expressions, 76
identifiers, 75
physical, 71

Link time, 15
Linker

alternative linkers, 35
defaults, 57
globals, 107
linking with pathnames, 35, 59
listing file, 61
map, 61
options, 33
overlays, 62, 64
prompts, 57, 80
public names, 107

Linker switches, 64
ICPARMAXALLOC:NNNN,

65
IDISALLOCATE,65
IHIGH,66
ILINENUMBERS, 65
IMAP,65
INODEFAULTLIBRARY

SEARCH,65
INOGROUPASSOCIATION,

65
INOIGNORECASE, 65
IOVERLAYINTERRUPT:

NNNN,66

Index

IPAUSE,66
ISTACK, 66

Linking
general discussion, 12,53
large programs, 66, 71, 80
no library search, 59, 65
object files, 14
sample session, 28

LINK.V2, optional linker, 35
Load module, 82
LOGICAL *2, 90
LOGICAL*4,90
Long calls, 89

Machine level initialization, 114
Memory

8086, organization, 110
contents, 112
linking, 62
organization, 110
requirements

COMMON, 71, 72, 73
$LARGE arrays, 72, 73,112
long arrays, 71, 72, 73, 134

Metacommands
$DEBUG, 14,37,83, 117
$DECMATH, 38, 125, 127
$FLOATCALLS, 38,125,127,

135
$INCLUDE, 78
$LARGE, 72, 73, 112, 134
$LIST,78
$NODEBUG, 14,83
$NOFLOATCALLS, 38, 39,

124, 127
$NOLIST,78
$NOTLARGE, 73,134
$STORAGE:2, 23, 36, 39

Metalanguage commands. See
Metacommands.

Microsoft LINK
Linker, 9

Microsoft Macro
Assembler, 14

163

Index

Microsoft Pascal, 14,55, 101, 117
Module

definition, 16
load, 82
object, 55
relocatable, 16
size, 82

MS-DOS procedures, 9

Naming conventions, 107
Notation conventions, 4
NUL or null file, 25, 47

Object
code, 71
file, 14,43,55
listing file, 47
modules, 55

Offset addresses, 17
Optimization, 11, 104
Options

16-bit integers, 36
alternative linkers, 35
auxiliary libraries, 58
default math library, 39
floating-point, 37
interface library, 35
overlay linker (LINK.V2), 35, 64

OUTPUT file, 107
Overlay linker, LINK.V2, 64

Parameters
batch file, 67
procedural, 91

PASCOM, 102
Pass one, 23, 78, 102
Pass two, 26,78,102,104
Pass three, 27, 102, 106
Preliminary procedures, 9
Program

development steps, 11 to 14
example, 21, 81
execution, example, 30

164

large, 81
log, sample, 31
source, 14
termination, 114, 119

Program level initialization, 117
Public routines, 55

QQ naming convention, 107

Real number
conversion utilities, 139
format, 139

REAL*4,90
REAL*8, 90
Reference books, 5
Register

saved, 89
segment, 110

Relocatable
module, 16
object file, 14

RETURN key, 5
Routine, 16
Run file, 14,61
Runtime

architecture, 108
definition, 15
error handling, 119
initialization, 114
libraries, 10, 17, 59
routines, 109
structure, 55
termination, 14

Sample session, 19
Scratch file names, 143
Short calls, 89
Software provided, viii
Source

file, 14, 15,21,53
listing file, 43
program, 14

Stack, 112, 116

Stackpointer, 121, 122
Statement trees, 105
Subexpression elimination, 104
Subroutines, 71
Switches, linker, 64
Symbol table, 77,101

Technical information, 101
Templates, 105
TRAP flag, 108
TRMVQQ,107

Undefined variable, 16
Unit F, 107
Unit identifiers, 109
Unit U, 107
Unit V, 107
Unresolved variable, 16

VM.TMP,62
Vocabulary, 15

Index

165

