Microsoft. QuickC.

Microsoft. QuickC.
TOOL KIT

VERSION 2.0

MICROSOFT CORPORATION

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software described in this docu-
ment is furnished under a license agreement or nondisclosure agreement. The software
may be used or copied only in accordance with the terms of the agreement. It is against
the law to copy the software on any medium except as specifically allowed in the li-
cense or nondisclosure agreement. No part of this manual may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopy-
ing and recording, for any purpose without the express written permission of Microsoft.

©Copyright Microsoft Corporation, 1988. All rights reserved.
Simultaneously published in the U.S. and Canada.

Printed and bound in the United States of America.

Microsoft, MS, MS-DOS, QuickC, CodeView, and XENIX are registered trademarks of
Microsoft Corporation.

COMPAQ is a registered trademark of Compaq Computer Corporation.

Hercules is a registered trademark and InColor is a trademark of Hercules Computer
Technology.

Intel is a registered trademark of Intel Corporation.

Document No. 410840031-200-R00-1088
Part No. 04320
10 9 8

Table of Contents Overview

Introduction R <
Part One Tool Kit Tutorlal

Chapter 1 Creating Executable Programs . -
Chapter 2 Maintaining Software Libraries with LIB A
Chapter 3 Maintaining Programs with NMAKE < Y

Part Two Reference to QuickC Tools

Chapter4 QCL Command Reference e oY
Chapter5 LINK ..o 00
Chapter6 LIB O Y
Chapter 7 NMAKE e 5
Chapter 8 HELPMAKE .o.0m
Appendixes

Appendix A ExitCodes . . I)
Appendix B Working with QulckC Memory Models S/ O &
Appendix C Hardware-Specific Utilities 8 |
Appendix D Error-Message Reference 225
Glossary30

Index3

Table of Contents .

Introduction

About This Manual OO D © 4
Elsewherein ThisPackage .. X
Key to Document Conventions D o< |

PART 1 Tool Kit Tutorial

Chapter 1 Creating Executable Programs 5
Compiling and Linking: an Overview 5
Using the QCL Command 7
Specifying File Names 9
Controlling Compiling and Linking with QCL Options 10
Compiling without Linking .10
Compiling Only Modified Functions O ¥ |
Optimizing Programs O
Naming Output Files D 1
Turning Off Language Extensions . 13
Debugging and Syntax Checking OO O
Checking Syntax P

Setting Warning Levels O

Compiling for a Debugger o &1

Controlling the Preprocessor « . « .« . e v o v o o . oo .o 15
Defining Constants . 15

Searching for Include Files O ¢

Creating Preprocessor Listings e

Removing Predefined Identifiers T

vi Microsoft QuickC Tool Kit

Compiling for Specific Hardware

Choosing Memory Models

Controlling the Linking Process

Other QCL Options

Invoking the Linker Directly: the LINK Command

Giving Input to the LINK Command

LINK Options
Controlling the Linking Process with Options
Optimizing the Executable File
Modifying the Executable File
Other LINK Options

Chapter 2 Maintaining Software Libraries with LIB
Why Use a Library?
The LIB Command
Listing the Contents of a Library
Modifying the Contents of a Library
Modifying the Library
Adding a Module
Deleting a Module
Replacing a Module
Copying and Moving Object Modules From a Library
Creating a New Library
Other Ways of Using LIB

Chapter 3 Maintaining Programs with NMAKE
How NMAKE Works
Building a Simple Description File

Description Blocks

Dependency Lines

18
19
20
21
22
22
24
25
26
27
27

29
29
30
31
31
32
33
33
33
34
35
35

37
38
39
40
40

Command Lines
Comments
Escape Character
Description-File Examples
The CC Macro
Invoking NMAKE
Invoking NMAKE from the DOS Command Line
Invoking NMAKE with a Response File
NMAKE Options
Controlling Input
Controlling Execution
Controlling Output
Building Complex Description Files
Using Special Characters to Modify Commands
Using Macros
Defining Your Own Macros
Predefined Macros
Precedence of Macro Definitions
Using Inference Rules
Predefined Inference Rules
Defining Inference Rules
Precedence of Inference Rules
Using Directives
The INCLUDE Directive

Conditional Directives (!IF, !ELSE, !ENDIF)
Testing for Macro Definitions ({IFDEF, !IFNDEF, {UNDEF)

The !ERROR Directive

Summary

Contents vii

41
42
43
43
44
45
45
46
46
47
47
48
49
50
51
51
53
54
55
56
58
58
59
59
60
61
62
62

viii . Microsoft QuickC Tool Kit

PART 2 Reference to QuickC Tools

Chapter 4 QCL Command Reference
4.1 The QCL Command Line

4.2 How the QCL Command Works

43 QCL Options

43.1
432
433
434
435
43.6
437
43.8
439
43.10
43.11
4.3.12

4.3.13
4.3.14
43.15

/A Options (Memory Models)

/c (Compile Without Linking)

/C (Preserve Comments During Preprocessing)

/D (Define Constants and Macros)

/E (Copy Preprocessor Output to Standard Output)
/EP (Copy Preprocessor Output to Standard Output)
/F (Set Stack Size)

/Fb (Bind a Program)

/Fe (Rename Executable File)

/Fm (Create Map File)

/Fo (Rename Object File)

/FP Options (Select Floating-Point-Math Package)
4.3.12.1 /FPi(Emulator)

4.3.12.2 /[FPi87 (Coprocessor)

4.3.12.3 Library Considerations for Floating-Point Options
4.3.12.4 Compatibility between Floating-Point Options

4.3.12.5 The NO87 Environment Variable
4.3.12.6 Standard Combined Libraries

/GO0, /G2 Options (Generate Instructions for 8086 or 80286 Processor)

/Gc (Use FORTRAN/Pascal Calling Convention)

/Gi (Use Incremental Compilation)

67
67
68
70
71
72
72
72
74
74
75
75
76
77
79
80
80
81
81
82
83
84
84
85
87

Contents ix

43.16 /Gs (Turn Off Stack Checking) 9
43.17 /Gt (Set Data Threshold)] |
4.3.18 /HELP (List the Compiler Options) 92
43.19 /I (Search Directory forInclude Files) 92
4.3.20 /J (Change Default char Type) K
4321 [Lc,Lr (Compile for Real Mode), /Lp (Compile for Protected Mode) 93
4.3.22 /Li(Link Incrementally) O
4323 /NT (Name the Text Segment) B 2
43.24 /O Options (Optimize Program) 9

4.3.24.1 /Od (Turn Off Optimization) P ¢

43242 /Ol (OptimizeLoops) « .« « « « « « 9%

43.24.3 /O and /Ot (Minimize Execution Time) 9

43244 JOx (Use Maximum Optimization) T ¢}
4.3.25 /P (Create Preprocessor-Output File) Y
4326 [Tc (Specify C Source File) e e e e e e s e e s e e e a9
4327 /U, fuRemove Predefined Names) 98
4328 /W,/w(SetWarningLevel)9
4329 /X (Ignore Standard Include Directory) P 140
4330 [Ze,/Za (Enable or Disable Language Extensions) 100
4331 /Zi,/Zd (Compile For Debugging)102
4.3.32 /Z1 (Remove Default-Library Name from ObjectFile) 102
4.3.33 /Zp (Pack Structure Members) o (0]
4334 [Zr(CheckPointers)« . . o 104
4335 [Zs(Check SyntaxOnly) .105
4.3.36 Giving Options with the CL Environment Variable 105

Controlling Stack and Heap Allocation . (1

x Microsoft QuickC Tool Kit

Chapter 5 LINK

5.1 Overview

52 Invoking LINK

52.1

522
523
524

Command Line

5.2.1.1 LINK Options

5.2.1.2 Object Files

5.2.1.3 Executable File

52.1.4 MapFile

52.1.5 Libraries

5.2.1.6 Choosing Defaults

Prompts

Response File

How LINK Searches for Libraries

5.2.4.1 Searching Additional Libraries

5.2.4.2 Searching Different Locations for Libraries
52.4.3 Overriding Libraries Named in Object Files

53 LINK Memory Requirements
5.4 LINK Options

54.1
542
543
544
545
54.6
54.7
548
549
54.10
54.11

Running in Batch Mode (/BA)

Creating a .COM File (/BI)

Preparing for Debugging (/CO)

Setting the Maximum Allocation Space (/CP)
Ordering Segments (/DO)

Controlling Data Loading (/DS)

Packing Executable Files (/E)

Optimizing Far Calls (/F)

Viewing the Options List (/HE)

Controlling Executable-File Loading (/HI)
Displaying Linker-Process Information {(/INF)

109
109
109
110
110
111
111
111
111
112
113
115
117
118
118
118
119
120
121
122
122
123
123
124
125
125
126
127
127

54.12
54.13
5.4.14
5415
5.4.16
5.4.17
54.18
54.19
5420
5421
5.4.22
5.4.23
5.4.24

Including Line Numbers in the Map File (/LI)
Listing Public Symbols (/M)

Ignoring Default Libraries (/NOD)

Ignoring Extended Dictionary (/NOE)
Disabling Far-Call Optimization (/NOF)
Preserving Compatibility (/NOG)

Preserving Case Sensitivity (/NOI)

Disabling Segment Packing (/NOP)

Setting the Overlay Interrupt (/O)

Packing Contiguous Segments (/PAC)
Pausing during Linking (/PAU)

Setting Maximum Number of Segments (/SE)
Controlling Stack Size (/ST)

5.5 Linker Operation

55.1
552
553
554
555
55.6

Alignment of Segments
Frame Number

Order of Segments
Combined Segments
Groups

Fixups

5.6 Using Overlays

56.1
56.2

Restrictions on Overlays

Overlay-Manager Prompts

Chapter 6 LIB
6.1 Invoking LIB

6.1.1

Command Line

6.1.1.1 Library File
6.1.1.2 LIB Options
6.1.1.3 Commands

Contents xi

. 128
. 128
. 129
. 129
. 129
. 130
. 130
. 130
. 131
. 131
. 132
. 133
. 133
. 134
. 134
. 135
. 135
. 135
. 136
. 136
. 138
. 138
. 139

. 141
. 142
. 142
. 143
. 143
. 145

xii Microsoft QuickC Tool Kit

6.1.14 Cross-Reference-Listing File
6.1.1.5 Output Library
6.1.2 Prompts
6.1.3 Response File
6.2 LIB Commands
6.2.1 Creating a Library File
6.2.2 Add Command (+)
6.2.3 Delete Command (-)
624 Replace Command (—+)
6.2.5 Copy Command (*)
6.2.6 Move Command (-*)

Chapter 7 NMAKE
7.1 Invoking NMAKE
7.1.1 Using a Command Line to Invoke NMAKE
7.1.2 Using a Response File to Invoke NMAKE
72 NMAKE Options
7.3 Description Files
7.3.1 Description Blocks
7.3.1.1 Modifying Commands
7.3.1.2 Specifying a Target in Multiple Description Blocks
732 Macros
7.3.2.1 Macro Definitions
7.3.22 Macro Substitations
7.3.2.3 Special Macros
7324 Precedence of Macro Definitions
7.3.3 Inference Rules
734 Directives
7.3.5 Pseudotargets

74 Response-File Generation

145
146
146
148
149
150
151
151
152
152
153

155
155
156
156
157
158
159
161
162
162
163
164
165
167
167
170
172
173

7.5 Differences between NMAKE and MAKE

7.6 Interchanging NMAKE and QuickC .MAK Files
7.6.1 Syntax Rules
7.6.2 Order of Targets
7.63 Macro Definitions

7.64 Dependency Lines

Chapter § HELPMAKE
8.1 Structure and Contents of a Help Data Base
8.1.1 What’s in a Help File?
8.1.2 Help File Formats
82 Invoking HELPMAKE
8.3 HELPMAKE Options
8.3.1 Options for Encoding
8.3.2 Options for Decoding
8.4 Creating a Help Data Base
8.5 Help Text Conventions
8.5.1 The Help Text File
8.5.2 Context Conventions
8.5.3 Hyperlinks and Cross-References
8.54 Formatting Cross-Reference Text
8.54.1 Local Contexts
8.54.2 Application-Specific Control Characters
8.6 Formatting a Help Data Base
8.6.1 QuickHelp Format
8.6.1.1 The QuickHelp Context Command
8.6.1.2 QuickHelp Formatting Flags
8.6.1.3 QuickHelp Cross-References
8.6.2 Minimally Formatted ASCII
8.6.3 Rich Text Format (RTF)

Contents xiii

. 174
. 176
. 176
. 176
. 176
. 176

177
. 177
. 178
. 179
. 180
. 181
. 181
. 183
. 184
. 185
. 185
. 186
. 187
. 188
. 189
. 189
. 191
. 191
. 191
. 192
. 193
. 195
. 196

xiv. Microsoft QuickC Tool Kit

Appendixes

Appendix A Exit Codes
A.l Exit Codes with NMAKE
A.2 Exit Codes with DOS Batch Files
A3 Exit Codes for Programs

A3.1 LINK Exit Codes

A3.2 LIB Exit Codes

A3.3 NMAKE Exit Codes

Appendix B Working with QuickC Memory Models
B.1 Near, Far, and Huge Addressing
B.2 Using the Standard Memory Models
B.2.1 Creating Small-Model Programs
B.2.2 Creating Medium-Model Programs
B.2.3 Creating Compact-Model Programs
B.24 Creating Large-Model Programs
B.2.5 Creating Huge-Model Programs
B.3 Using the near, far, and huge Keywords
B.3.1 Library Support for near, far, and huge
B.3.2 Declaring Data with near, far, and huge
B.3.3 Declaring Functions with the near and far Keywords

B.3.4 Pointer Conversions

Appendix C Hardware-Specific Utilities
C.1 Fixing Keyboard Problems with FIXSHIFT
C.2 Using Herculese Graphics
C.2.1 Support for Cards and Display Characteristics
C22 The MSHERC Driver

201
201
201
202
202
203
203

205
205
206
207
208
209
211
212
212
214
214
216
218

221
221
221
222
222

Contents xv

C.2.3 Using a Mouse 0
C.24 Setting Hercules GraphicsMode223
C3 TheMouseDriver ... o.223

AppendixD Error-Message Reference25
D.1 CompilerErrors Lo o e ... 226
D.1.1 Fatal-Error Messages A
D.1.2 Compilation-Error Messages1233
D.1.3 WarningMessages e e e e w252
D14 CompilerLimits .25
D.2 Command-LineErrors« 267
D.2.1 Command-Line Error Messages267
D.2.2 Command-Line Warning Messages2069
D3 Run-TimeErrors 0 0o o0 00w s oo o2
D.3.1 Floating-PointExceptions .21
D.3.2 Run-TimeErrorMessages« « . .«273
D33 Run-TimeLimits .. .27
D4 LINKEmorMessages « « v v v v e e e e e e e e 2T
D5 LIBErmrorMessages o . . ooo..o.o.oLB300
D.6 NMAKEErrorMessages+« .+ . . . o . o o .30s
D.7 HELPMAKE Error Messages . § 2

Glossary .

Index33

Figures i

Figure 1.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 4.1
Figure 4.2
Figure 4.3
Figure 5.1
Figure 6.1
Figure B.1
Figure B.2
Figure B.3
Figure B4

The Compiling and Linking Process
Components of a Description Block

A More Complex Description File
Precedence of Macro Definitions
Duplicate Definitions with the /D Option
Global Regions for Incremental Compilation
Effect of the CL Environment Variable
LINK Response File

LIB Response File :

Memory Map for Small Memory Model
Memory Map for Medium Memory Model
Memory Map for Compact Memory Model

Memory Map for Large and Huge Memory Models

40
49
55
73
88

106

115

148

208

209

210

211

Tables

Table 4.1 Memory Models I |
Table 4.2 QCL Options and Default Libraties &
Table 4.3 Using the check_stack Pragma 9
Table 4.4 PredefinedNames .. 98
Table 4.5 UsingthepackPragma .104
Table 5.1 LINK Fixups T . ¥
Table 7.1 Predefined InferenceRules16
Table B.1 Addressing of Code and Data Declared with near and far A K
Table D.1 Limits Imposed by the QuickC Compiler e e e e e oo ... 265

Table D.2 Program Limits at Run Time . [

Introduction i

The QuickCe Tool Kit is a set of utility programs that you can use to
develop your own programs outside the QuickC integrated environment.
These tools include

m QCL, the Microsoft QuickC Compiler, which compiles QuickC
source programs and invokes LINK (see below) to link object files

m LINK, the Microsoft Overlay Linker, which combines object files
that you’ve created with the Microsofte QuickC Compiler (or any
other Microsoft language product) into executable programs

m LIB, the Microsoft Library Manager, which combines object files
into libraries

m NMAKE, the Microsoft Program-Maintenance Utility, which main-
tains large programs that consist of separate modules

m HELPMAKE, the Microsoft Help-File-Creation Utility, which lets
you create on-line-help files

m The special-purpose utilities, including MSHERC (which provides
support for Herculese graphics adapters) and FIXSHIFT (which fixes
a bug in certain keyboards that makes them incompatible with
QuickC and some other programs)

Why use the Tool Kit when you can perform many of these same opera-
tions within the QuickC environment? The main reason is flexibility. The
QuickC environment uses the same tools as the Tool Kit but provides
access to only the most commonly used options. When you use the utili-
ties from the Tool Kit, all their powerful and flexible options are avail-
able to you. You may find that it’s easiest to use the integrated
environment during the early stages of program development, when
you’re still tinkering with programs and you need to compile, run, and
debug programs fast. Then, when you’re fine-tuning and maintaining
your code, use the tools from the Tool Kit for additional control and
flexibility.

xx Microsoft QuickC Tool Kit

About This Manual

If you’re new to Microsoft language products, this book will teach you how to
get the most out of the tools provided in this package. Experienced users of
Microsoft languages will be able to find information about existing utilities
quickly, as well as learn about the new utilities provided with QuickC (including
the new NMAKE and HELPMAKE utilities and the hardware-specific support
utilities documented in Appendix C, “Hardware-Specific Utilities.”)

Part 1 of the manual is a tutorial that illustrates the ways you’ll use the QCL,
LINK, LIB, and NMAKE utilities for everyday programming work. Each chap-
ter describes the most common options of each utility.

Part 2 is a reference to the Tool Kit. Each chapter describes a tool in detail, show-
ing the exact syntax of the command line and describing all of the tool’s options
and their effects. Chapter 8 comprises a complete reference to HELPMAKE, the
Microsoft Help-File-Creation Utility. Consult this chapter if you want to cus-
tomize your on-line help.

Appendixes of this manual list the exit codes returned by each tool, explain the
use of QuickC memory models, describe the MSHERC and FIXSHIFT utilities,
and describe the error messages associated with each tool.

Following the appendixes is a glossary, which defines all the terms introduced in
this manual, as well as other C-specific terms you may find helpful.

NOTE Microsoft documentation uses the term “0S/2” to refer to the 0OS/2 systems—Microsoft
Operating System/2 (MS® 0S/2) and IBMe 0S/2. Similarly, the term “DOS?” refers to both the MS-
DOSe and IBM Personal Computer DOS operating systems. The name of a specific operating sys-
tem is used when it is necessary to note features that are unique to that system.

Elsewhere in This Package

As you’re reading this manual, you may want to refer to other manuals or on-
line documentation for information about other parts of the product. This manual
assumes that you’ve installed the QuickC compiler software as described in the
manual titled Up and Running. If you haven’t yet installed the software, install

it now.

Read the manual titled C for Yourself if you’re new to C programming and want
to learn how to write C programs. That manual includes an appendix that sum-
marizes the C language and common C library routines.

Insert the disk titled “Learning the QuickC Environment” and type learn if
you want to learn how to use the QuickC integrated environment. The lesson
titled “Basic Skills” shows how to get on-line help for any command or option
within the environment or for any part of the C language or run-time library.

Introduction xxi

Key to Document Conventions

This book uses the following document conventions:

Examples

Description

STDIO.H, PATH, C:\BIN, QCL,
NMAKE, DX, _TEXT

cdecl, int, printf, alloc_text,
#undef, &&, DosCreateThread

QCLA.CB.CC.OBJ

CTRL+ENTER

“argument”
Color Graphics Adapter (CGA)

if (expression) statement1

[option]

#pragma pack {112}

QCL options [file...]

while ()
{

UPPERCASE LETTERS indicate file names,
segment names, registers, and terms used at the
DOS-command level.

Boldface letters indicate C keywords, opera-
tors, language-specific characters, and library
functions, as well as OS/2 functions.

This font is used for examples, user input,
program output, and error messages in text.

SMALL CAPITAL LETTERS are used for the names
of keys on the keyboard. When you see a plus
sign (+) between two key names, you should
hold down the first key while pressing the
second.

The carriage-return key, sometimes appearing
as a bent arrow on the keyboard, is called
ENTER.

Quotation marks enclose a new term the first
time it is defined in text.

The first time an acronym is used, it is often
spelled out.

Italic letters indicate placeholders for informa-
tion you must supply, such as a file name.
Italics are also occasionally used for emphasis
in the text.

Items inside double square brackets are
optional.

Braces and a vertical bar indicate a choice
among two or more items. You must choose
one of these items unless double square brack-
ets surround the braces.

Three dots following an item indicate that
more items having the same form may appear.

A column of three dots tells you that part of the
example program has been intentionally
omitted.

ool Kit Tutoria

g . R R :
R ZL ST B ST T Y0 T SRR TR et 2

e 76 - A ey e
e ey, S ; e s 3N '
i g W pA . & AR ede
R i C pTET Bayside

£ ¥4 g PR P AR A
g wmatl o 0 2% G e A

s il R L

et e
N el
B o 7> g o
B ke e T
L Y e Uy

e vy a5, &
Wk
B R
WA SN A
28 e SE T e
T 3 Sn B 5
g4 KA T aomn % n et

v 5
ey

.
o

e v Vs
et oY

AR L ST
o wlaaner”

F R

. B0 e Vs B0 e Y,
ey, £ o 0
e RS At
%

S ;;"

LE

PNl

R ‘h P
EA

i Kitis divided into two parts. Part 118 a tutorial

; o started wzth ihe QuickC tools. It docs not cover
) Loouti ! gives you a “quick start” on the op-

‘ 11 kely to need. If you are

’ / ‘ ow o usc the Tool Kit and

sz(,ns of cach tool. After
o cd some cxpericnce with the tools, turm 1o Part 2, “Rel-
] 7 iorthe "nuts and bolts” of cach ool

N i _ndamental jools youn

o owle programs ouside the QuickT environ- 1

Y atd

1 v Manager (LIB), with which you can
¢ creale fibrances ui comptled g,odc The pari conduacs wiih

AKE, a pz(wmm -mainicnance uiility that helps you automate

i the process of rebuilding software,

. Y B
“ 2N
i .
t Dl ,‘:\‘mms A2 -:.af;“:\\ BT R
. <o . “
.
Iy
» ALY

CHAPTERS

1 Creating Executable Programs 5
2 Maintaining Software Libraries withLIB 29
3 Maintaining Programs with NMAKE 37

CHAPTER 1 5
= = —

Creating Executable
Programs

This chapter shows you how to create executable programs from QuickC
source files. The QuickC Tool Kit has two programs for this purpose:
QCL and LINK.

Although you can create executable programs within the QuickC environ-
ment, the QCL and LINK commands give you more power and flexi-
bility in this process. For example, QCL gives you greater control over
the QuickC preprocessor, allows you to generate special code for an
8087-family coprocessor or an 80286 processor, and allows you to re-
name output files.

This chapter introduces the basic concepts and the most common options
of the QCL and LINK commands. For a complete description of ail the
QCL options, listed alphabetically, see Chapter 4, “QCL Command Ref-
erence,” in Part 2, “Reference to QuickC Tools.” For a complete explana-
tion of how LINK works, see Chapter 5, “LINK,” also in Part 2.

Compiling and Linking: an Overview

The first step in creating a QuickC program is to enter the source code using an
editor and save it in a file. This file is known as a C “source file.” You may enter
separate parts of the program in different source files and compile these source
files separately.

Once you’ve saved your C source file(s), two steps are required to convert it to
an executable file:

1. Compiling. During this step, the QuickC compiler converts the C source files
to object files. An object file contains binary code but is not yet in execut-
able form.

6 Microsoft QuickC Tool Kit

2. Linking. During this step, the linker takes the object files created during com-
pilation, combines them with standard libraries plus any other object files
and libraries you specify, and creates an executable file that can be run

under DOS.
| ocL a.c B.c c.0BJ /link D.LIB
| | Default | |
| | library] |
|]] |
| | | |
| | | |
] | | |
| | | |
| 1 |
| | |
i . Default | |
I AC library name I ’ |
] c A.OBJ 1L |
| "1 o > . " |
[M | N Y |
: A0 | & :
| / ' | E |
| L 1| R |
| E —Default ! I
B.C R library name		
F— —» B.OBJ F——	—» A.EXE	
f		
C.0BJ s)		
]		
	!	
]	
]		
D.LIB ! >		
I	I	
[Step 1 | Step2 | Step 3 |

Figure 1.1 The Compiling and Linking Process

Creating Executable Programs 7

You’ll use the QCL command to perform both compiling and linking. On the
QCL command line, give the names of any C source files that you want to com-
pile, and the names of any additional object files or libraries that you want to
link. The compile/link procedure is described below and illustrated in Figure 1.1:

1. QCL compiles the source files you named, creating object files. All object
files created by QCL from source files have the extension .OBJ. They also
contain the name of the combined library needed to create the executable file.

2. QCL calls the linker and passes the object files created in the compiling step
plus any object files and libraries that you specified on the QCL com-
mand line.

3. The linker links the object files, the libraries named in the object files, and
libraries passed by QCL to create the executable file.

Using the QCL Command

The QCL command, which you’ll use for most compiling and linking opera-
tions, has the format shown below:

QCL loptionsl .sourceﬁles objﬁles| Ilibrarie.s‘ flink libraries linkoptions‘

Optional At least one Optional
source file or
object file

The items in italics are different pieces of input (described below) that you must
give on the QCL command line:

m The options are QCL options, which control some aspect of the compiling or
linking process. They may appear anywhere on the command line and in
most cases affect any files that appear later on the command line. The most
commonly used QCL options are described in the section titled “Controlling
Compiling and Linking with QCL Options.” For complete information on
all QCL options, see Chapter 4, “QCL Command Reference.”

m The sourcefiles are the names of the C source files that you are compiling.
Normally, these file names have .C extensions.

8 Microsoft QuickC Tool Kit

m The obffiles are the names of additional object files that you want to link

with. QCL compiles the source files, then links the resulting object files with
objfiles. For example, given the command line

QCL MAIN.C AUX.OBJ

QCL compiles MAIN.C, creating the object file MAIN.OBJ, then passes
MAIN.OBJ and AUX.OBJ to the linker, which creates an executable file
named MAIN.EXE.

If you give a file name with any extension other than .C or .LIB, or with no
extension, QCL assumes you are giving it the name of an object file. For ex-
ample, in the command line

QCL OBJECT1 OBJECTZ2.0OBJ

the QCL command assumes the .OBJ extension for OBJECT1 and passes it
and OBJECT2 .0BJ to the linker for processing.

The libraries are the names of libraries that you want to link with, These
names must have .LIB extensions.

Ordinarily, you don’t need to give a library name unless your program calls
functions that are stored in libraries other than the standard combined C
libraries (which you created during installation). For example, if you use
libraries created by a company other than Microsoft, or if you have created a
private library of functions and your program calls functions in this library,
you must give the private-library name on the QCL command line. For ex-
ample, the command line

QCL MAIN.C GRAPHICS.LIB

tells QCL to compile MAIN. C, creating the object file MAIN.OBJ, then to
pass MAIN.OBJ to the linker, which links MAIN.OBJ with functions in
the default combined library SLIBCE.LIB and the GRAPHICS.LIB library
given on the command line.

The linkoptions are linker options, which control some aspect of the linking
process. Linker options are described in the section in this chapter titled
“Controlling the Linking Process.”

If you’re not sure that your program will fit in available memory, you can in-
dicate that certain parts of the program will become “overlays”; that is, they
will be stored on disk and read into memory—overlaid—only when needed.
To specify overlays, enclose the modules you want to overlay in parentheses
on the QCL command line. For example,

QCL RESIDNT.C (ONCALL.C) MAIN.C

creates a program named RESIDNT.EXE with an overlay module named
ONCALL.OBJ. Whenever control passes to ONCALL.OBJ, it is read into
memory from disk. (See Section 5.6, “Using Overlays,” for more information
about overlays and restrictions on their use.)

Creating Executable Programs 9

Specifying File Names

File-name extensions

Uppercase and lowercase letters

Path names

A DOS file name has two parts: the “base name,” which includes everything
before the period (.), and the “extension,” which includes the period and up to
three characters following the period. The extension identifies the type of the
file. The QCL command uses the extension of each file name to determine how
to process the corresponding file, as explained in the following list:

Extension Processing

C QCL assumes the file is a C source file and compiles it.

.OBJ QCL assumes the file is an object file and passes it to the
linker.

.LIB QCL assumes the file is a library and passes it to the

linker. The linker links this library with the object files
QCL created from source files and the object files given
on the command line.

Any other extension or QCL assumes the file is an object file and passes it to the

no extension linker. You must end the file name with a period (.) if the
file has no extension. Otherwise, QCL assumes the exten-
sion .OBJ.

In file names, any combination of uppercase and lowercase letters is legal. For
example, SHUTTLE.C and Shuttle.c represent the same file.

Any file name can include a path name. When a file name includes a path name,
QCL assumes the file to be in that path. You may supply either a full path name
or a partial path name. A full path name includes a drive name and one or more
directory names. A partial path name is the same as a full path name but omits
the drive name, which QCL assumes to be the current drive.

If no path name is given, QCL assumes that all source and object files given on
the command line are in the current directory.

Examples
The command line

QCL A.C B.C C.OBJ D E.MOD

compiles the files A.C and B.C, creating object files named A.OBJ and
B.OBJ. These object files are then linked with the object files C.0BJ, D.OBJ,
and E.MOD to form an executable file named A.EXE (since the base name of
the first file on the command line is A). Note that the extension .0OBJ is as-
sumed for D because no extension is given on the command line.

QCL TEAPOT.C \MSG\ERROR C:\GRAPHICS\GRAPHICS.LIB

10 Microsoft QuickC Tool Kit

This command line tells QCL to compile the file TEAPOT.C and to link the re-
sulting object file with \MSG\ERROR.OBJ and the library GRAPHICS.LIB.
QCL assumes the extension .OBJ for the file \MSG\ERROR because none was
specified. It looks for the library in the \GRAPHICS directory on drive C:.

Controlling Compiling and Linking
with QCL Options

The QCL command offers a variety of options that control the compiling and
linking processes and modify the files created during each stage. For example,
you can specify QCL options to rename output files, to control the operation of
the QuickC preprocessor, to take advantage of an 80286 processor or a coproces-
sor, or to optimize your program for speed or size.

QCL options may begin with either a forward slash (/) or a dash (-). In this
manual, the slash is used.

Important Except as noted, QCL options are case sensitive, so you must use the exact combina-
tion of uppercase and lowercase letters shown in this manual.

Some QCL options require arguments. For example, you may be required to
give a number or a file name as part of a QCL option. For some options, you
must put a space between the option and the argument; for others, you must
place the argument immediately after the option. The description of each option
gives its exact syntax.

The following sections list the most commonly used QCL options by type. See
Chapter 4, “QCL Command Reference,” for a complete list of QCL options or
for more information about the effects of an option described in this chapter.

Help with QCL options If you need fast help with QCL options, enter the following command:
QCL /HELP

This command displays a list of commonly used QCL options with a brief de-
scription of each option. Unlike other QCL options, /HELP is not case sensitive;
you can type any combination of lowercase and uppercase letters.

Compiling without Linking

‘When you compile with the /c option, QCL compiles the source files you give
on the command line, but ignores any object files or libraries that you give on
the command line. Because QCL does not invoke the linker when you give this
option, it does not create an executable file.

Creating Executable Programs 11

You might want to use this option in the following cases:

m To compile separate modules that you want to put in a library using the LIB
utility (described in Chapter 2 of this manual)

= To link in a separate step as described later in this chapter (for example, in an
NMAKE file)

Example
QCL /c SPELL.C THESRS.C

The example above compiles the C source files SPELL.C and THESRS.C,
creating the object files SPELL.OBJ and THESRS.OBJ. No linking is per-
formed, so no executable file is created.

Compiling Only Modified Functions

The /Gi option allows you to compile programs much faster than usual. It speeds
compilation by telling QCL to compile only the parts of each C source file that
have changed since the file was last compiled. This process is called “incremen-
tal compilation.”

Information about the incremental compilation of each source file is maintained
in an MDT (Module Description Table) file. One MDT file can contain this in-
formation for more than one source file.

If you give a file-name argument following the /Gi option, the compiler writes
the change information for all the source files into that single MDT file. Do not
put spaces between the /Gi option and the file name.

If you specify the /Gi option without a file name, the compiler creates an MDT
file for each C source file that you give on the command line. Each MDT file
has the base name of the source file and the . MDT extension.

Generally, when you compile with /Gi, only the changed functions in each C
source file are recompiled. The entire file is recompiled only if a change affects
the entire program.

See Section 4.3.15 in Part 2, “Reference to QuickC Tools,” for details about in-
cremental compilation and the /Gi option.

Example
QCL /GiASC.MDT alpha.c num.c
The example above compiles the changed portions of the files alpha.c and

numn. c. It creates a single . MDT file named ASC.MDT into which it writes
change information for both source files.

12 Microsoft QuickC Tool Kit

Optimizing Programs

“Optimizing” a program is the process of making the program, or a part of the
program, as fast or as small as possible. The following QCL options can help

with this process:

Option Effect

/0, /Ot Tells the compiler to optimize the program for execution time over
code size. The compiler makes the executable file faster, but it does
not make the file size as small as possible.

/Ol Tells the compiler to optimize loops in your program. This option
makes the executable file run faster.

/Gs Turmns off stack-checking routines in your program. This option re-
duces the size of the executable file, but it may cause important
stack-overflow errors to go undetected.

/O0x Tells the compiler to perform all possible optimizations. This op-
tion combines the effects of the /Ot, /O], and /Gs options.

/O0d Tells the compiler not to optimize your program. This option

speeds compilation, although it may result in a slightly slower ex-
ecutable file.

You may combine the /O options on the command line, specifying more than
one letter following /O. For instance, /Olt optimizes loops and execution time.
If the letters conflict, QCL uses the last one in the list.

Naming Output Files

Use the following options to name the object and executable files that QCL

creates:

Option

Effect

[Foobfile

Gives the name objfile to the object file. You may give more than
one /Fo option; each option applies to the next C source-file name
on the command line. For example,

QCL /FoOBJ1 SRC1.C SRC2.C

compiles SRC1.C, creating an object file named OBJ1 .0BJ,
then compiles SRC2.C, creating an object file named
SRC2.0BJ.

Creating Executable Programs 13

If you give objfile without an extension, QCL automatically ap-
pends the .OBJ extension to the file name. If you give a complete
path name with objfile, QCL creates the object file in that path. For
example,

QCL /Fo\MODS\OBJ1.0BJ SRC1.C

compiles SRC1.C, creating an object file named OBJ1.0BJ in
the \MODS directory. If you give only a drive or directory specifi-
cation, the specification must end with a backslash () so that QCL
can distinguish it from a file name.

[Feexefile Gives the name exefile to the executable file. If you give exefile
without an extension, QCL automatically appends the .EXE exten-
sion to the file name. If you give a complete path name with
exefile, QCL creates the executable file in that path. If you give a
path specification without a file name, the path specification must
end with a backslash (\) so that QCL can distinguish it from a
file name.

If you don’t tell it otherwise, QCL names output files as follows:

Type of File Default

Object Same base names as the original C source files with extensions of
.OBYJ. For example, if you compile a C source file named LEX.C,
QCL creates an object file named LEX.OBJ.

Executable Same base name as the first file name on the command line plus an
extension of .EXE. For example,

QCL LEX.C GENCOD.0OBJ OPTIMIZ

creates an executable file named LEX.EXE by compiling LEX.C
(creating LEX.OBJ), then linking LEX.0OBJ, GENCOD.OBJ,
and OPTIMIZ.ORJ.

Turning Off Language Extensions

The /Za option tells the compiler to treat all Microsoft-specific keywords as ordi-
nary identifiers and to display error messages if your programs use any other ex-
tended language features.

Compile with the /Za option if you plan to port your programs to environments
that don’t recognize Microsoft extensions to the C language, or if you want to en-
sure that your programs are strictly compatible with the American National
Standards Institute (ANSI) definition of the C language. Microsoft extensions in-
clude the near, far, huge, cdecl, fortran, and pascal keywords, as well as
several usages of standard C constructs that are not defined in the ANSI stand-
ard. (See Section 4.3.30, “/Ze, /Za,” in Part 2, for more information about these
extensions.)

14 Microsoft QuickC Tool Kit

Debugging and Syntax Checking

Several QCL options are useful when you want the compiler to check the syntax
of your program, or when you want to track down logic errors using the debug-
ger built into the QuickC environment (or other Microsoft debuggers). These op-
tions fall into three categories: ‘

m Checking syntax
m Setting warning levels

= Compiling for a debugger

Checking Syntax

If you want to make sure that your program is free from syntax errors without
compiling and linking the program, compile it with the /Zs option. This option
tells the QCL command to display error messages if your program has syntax er-
rors. QCL doesn’t create object or executable files.

Setting Warning Levels

You may get warning messages during compilation if your program has prob-
lems that aren’t serious enough to stop the compiling process. You can easily
identify a warning message because it begins with the word “warning” and has
“C4” as the first two characters in the error number.

The “warning level” options, /w and /WO through /W3, allow you to suppress
warning messages for certain classes of problems. In general, the lower the warn-
ing level, the less strict the compiler is about flagging possible errors in your pro-
gram. You might want to use a lower warning level if you're intentionally using
the flexibility of C in some operations and you want to suppress warnings about
these operations.

The warning-level options are described below:

Option Effect
/WO, fw Turns off all warning messages.
/W1 Tells the compiler to display most warning messages. (This is the

level of warnings you get by default.)

/W2 Tells the compiler to display all /W1 warnings plus warnings for
problems such as functions without a declared return type; func-
tions that have a return type other than void and don’t have a
return statement; and data conversions that cause loss of precision.

Creating Executable Programs 15

L N

W3 Tells the compiler to display all /W2 warnings plus warnings for
any non-ANSI features or Microsoft-specific keywords. The /W3
option is similar to the /Za option, except that /W3 gives warnings
for nonstandard features, while /Za gives error messages and aborts
the compilation.

Appendix D lists all warning messages in order of error number. The description
of each message indicates the warning level that must be set in order for the mes-
sage to appear.

Compiling for a Debugger

‘You must compile your program with one or more of the following QCL options
if you plan to debug it within the QuickC environment or with another Microsoft

debugger:
Option Effect
[Zi Puts information needed for debugging into the program. Use /Zi if

you plan to debug your program with the QuickC debugger or with
the Microsoft® CodeView® window-oriented debugger provided
with other Microsoft language products.

/Zd Puts limited symbolic information in the object file. Use /Zd if you
plan to debug your program with SYMDEB, the Microsoft Sym-
bolic Debug Utility, shipped with earlier versions of Microsoft
language products.

[Zx Checks for null or out-of-range pointers in your program. Optional
if you plan to debug with the QuickC debugger.

Controlling the Preprocessor

The QCL command provides several options that control the operation of the
QuickC preprocessor. These options allow you to define macros and manifest
(symbolic) constants from the command line, change the search path for include
files, and stop compilation of a source file after the preprocessing stage to pro-
duce a preprocessed source-file listing.

Defining Constants

The C preprocessor directive #define defines a name for a constant or for C pro-
gram text. Wherever the name appears in your program, the preprocessor substi-
tutes the text you’ve defined for that name.

16 Microsoft QuickC Tool Kit

You can use the /D option to define constants from the QCL command line.
This option has the form

[Didentifier=string
or
[Didentifier=number

The identifier is the name you’re defining; string or number is the text or
numeric value that is substituted for the name. The string must be in double quo-
tation marks if it includes spaces.

You can leave off the equal sign and the string or number. If you do, the identi-
fier is defined and its value is set to 1. This approach is useful when you need to
define an identifier but do not care what its value is. For example, /DCREATE
defines an identifier named CREATE and sets it equal to 1.

If you’ve defined a number for identifier, you can “turn off” the definition by
using the following form of the /D option:

/Didentifier=

‘When you compile with this form, the identifier is no longer defined within your
program and no value is substituted for it.

QCL allows you to define up to 15 constants using the /D option for each. You
may be able to define as many as 20, depending on the other options you
specify. (See the section in this chapter titled “Removing Predefined Identifiers”
for more information about the number of constants you are allowed to define.)

Searching for Include Files
The QuickC preprocessor directive

#include filename

tells the QuickC preprocessor to insert the contents of filename in your source
program, beginning at the line where the directive appears. Include files pro-
vided with the Microsoft QuickC Compiler contain prototypes of standard C
library functions and the constants used by these functions. If filename is en-
closed in angle brackets (<>), the preprocessor looks for the file in the directo-
ries given by the INCLUDE environment variable. If filename is enclosed in
quotation marks (" "), the preprocessor looks for the file first in the current
directory and then in the directories specified by the INCLUDE variable. (Enter
the SET command at the DOS prompt to see the INCLUDE variable and the
directories it specifies.)

Creating Executable Programs 17

Use the following options to override the usual search order without changing
the value of the INCLUDE variable:

Option Effect

X Tells the preprocessor not to search for include files in the
directory given by the INCLUDE variable.

[directory Tells the compiler to search the given directory for include files

before it searches the directories given by the INCLUDE environ-
ment variable. You can give more than one /I option, each
specifying a directory. Directories are searched in the order in
which they appear on the command line.

Creating Preprocessor Listings

If you want to see dutput from the QuickC preprocessor, give one or more of the
following options on the QCL command line:

Option Effect

[E Writes preprocessor output to the standard output device (your
screen, unless you redirect output to another device or to a file).
The /E option also inserts #line directives in the output. The #line
directives renumber the lines of the preprocessed file so that, if you
recompile the preprocessed file, the errors generated during later
stages of processing refer to the original source file rather than to
the preprocessed file.

/P Writes preprocessor output to a file and inserts #line directives in
the output file. The preprocessor gives the file the base name of
your C source file and an extension of .I.

[EP Writes preprocessed output to the standard output device but does
not insert #line directives.

/C Leaves comments in the preprocessed output. Normally, the pre-
processor strips comments from the source file. This option has an
effect only if you also give the /E, /P, or /EP option.

Removing Predefined Identifiers

The QuickC compiler automatically defines certain identifiers, which represent
conditions such as the current operating system or memory model. Your pro-
grams may use these identifiers along with the QuickC preprocessor directives
#if, #ifdef, #ifndef, #else, #elif, and #endif to tell the compiler to “conditionally
compile” portions of the program. For example, the #ifdef directive tells the
compiler to compile subsequent code only if a given identifier is defined. Simi-
larly, the #ifndef directive telis the compiler to compile subsequent code only if
a given identifier is not defined.

18 Microsoft QuickC Tool Kit
_

The predefined identifiers are as follows: _QC, MSDOS, M_186, M_I86/mM,
M_I8086, M_I286, NO_EXT_KEYS, and _CHAR_UNSIGNED. (For more infor-
mation on how and when these identifiers are defined, see Table 4 4, “Prede-
fined Names,” in Section 4.3.27.) If you don’t use these identifiers for
conditional compilation, you might want to remove their definitions from the
program. For each predefined identifier that you remove, you can define an addi-
tional identifier (over the default limit of 15) with the /D option on the QCL com-
mand line.

The following options turn off predefined identifiers:

Option Effect
[Uidentifier Turns off the definition of identifier
fu Turns off the definition of all predefined identifiers

Compiling for Specific Hardware

QuickC creates executable programs that run on any processor in the 8086
family, including the 8086/8088, 80186, 80286, and 80386.

If your programs will always run on machines with 80286 or 80386 processors,
or on machines with coprocessors, you can compile your programs with the fol-
lowing options to take advantage of the specific hardware configuration:

Option Effect

/G2 Uses the 80286/80386 instruction set for your program. You can-
not run the program on machines with 8088, 8086, or 80186
processors.

/FPi87 Handles math for floating-point types (float and double) by gener-

ating instructions for an 8087 or 80287 math coprocessor. This
reduces the size of your program; however, the program must be
run on a system with a coprocessor present.

The /G2 and /FPi87 options are the most commonly used options for hardware-
specific compilation, but others are available. See Sections 4.3.12 and 4.3.13 for
details.

Creating Executable Programs 19

Choosing Memory Models

The “memory model” your program uses determines how many 64K (kilobytes)
segments the compiler allocates for its data and code. Ordinarily, you don’t need
to choose the memory model explicitly if your program’s code can fit into one
64K segment and your program’s data can fit into one 64K segment. This
memory allocation, called the small memory model, is the default used by the
QCL command.

If your program exceeds the default limit for code or data, you must use one of
the other memory models. The following list summarizes the options for the
memory model:

Option Effect

/AS Small model: provides one 64K segment for data and one 64K seg-
ment for code. No one data item can exceed 64K. This is the most
efficient model for QuickC programs. QCL uses this option auto-
matically if you don’t give a memory-model option, so you never
need to give this option explicitly.

/AM Medium model: provides one 64K segment for data and multiple
64K segments for code. No one data item can exceed 64K. This is
the most efficient model if your program exceeds the 64K default
limit for code.

/AC Compact model: provides multiple 64K segments for data and one
64K segment for code. No one data item can exceed 64K. This is
the most efficient model if your program exceeds the 64K default
limit for data.

/AL Large model: provides multiple 64K segments for data and for
code. No one data item can exceed 64K.

/AH Huge model: same as large model, except that individual data items
can be larger than 64K.

Although memory models give you additional flexibility in dealing with large
programs, you must use them with care to avoid problems in your programs.

See Section 4.3.1 or Appendix B if you need further information about the use of
memory models.

20 Microsoft QuickC Tool Kit

Controlling the Linking Process

The /link option

Several QCL options control the linking process rather than the compiling
process. You’ve already encountered one of these options: the /Fe option, which
renames the executable file. Here are the others:

Option Effect

[Fmmapfile Creates a map file showing program segments in order of appear-
ance in the program. If you give mapfile without an extension,
QCL automatically appends the MAP extension to the file name.
If you give a complete path name with mapfile, QCL creates the
map file in that path. For example,

QCL /Fm\MODS\MAP1.MAP SRC1.C

compiles and links SRC1.C, creating a map file named
MAP1.MAP inthe \MODS directory. If the path specification
lacks a file name, it must end with a backslash (\) to distinguish it
from a file name.

The mapfile is optional; if you don’t specify a new name, the linker
gives the map file the same base name as the executable file, with
an extension of .MAP. For example,

QCL /Fm MOD1.CMOD2.C

creates an executable file named MOD1.EXE and a map file
named MOD1.MAP.

[F number Sets the stack size to the given number of bytes. The number may
be in decimal, octal, or hexadecimal. (As in C programs, octal num-
bers start with the prefix 0 and hexadecimal numbers with the
prefix 0x.) If you don’t give this option, the executable file uses a
2K stack. Use this option if your program gets stack-overflow er-
rors at run time.

See Sections 4.3.7,4.3.9, and 4.3.10 for detailed information on these options
and on map files.

Another way of controlling the linking process is to use the /link option on the
QCL command line. The /link option allows you to specify LINK command op-
tions—not QCL options—without invoking the linker separately. On the QCL
command line, the /link option must follow the source and object files and all
QCL options. QCL passes directly to the linker the options that follow /link.
These options are described under “LINK Options” below and in Section 5.4.

Creating Executable Programs 21

T R - O

Example
QCL /FPi87 /Fm SRC1.C SRC2 /link /INF

In the example, the /Fm and /FPi87 options apply to the QCL command and the
/INF option applies only to the linker. As a result of this command line, QCL
compiles SRC1.C torunon an 8087 or 80287 processor then passes
SRC1.0BJ and SRC2.0BJ to the linker. The /Fm option to QCL causes the
linker to create a map file named SRC1.MAP. The /INF option, which applies
only to the linker and not to QCL, causes the linker to display information about
the linking process.

Other QCL Options

The following QCL options are used for the specific purposes described:

Option Effect

/Ge “Calling-convention” option. Uses the FORTRAN/Pas-
cal naming and calling conventions for functions in the
program. Compile with this option if you want to call
routines that use the Microsoft Pascal or Microsoft FOR-
TRAN calling conventions or if you need to save space
in the executable file. (See Section 4.3.14 for more infor-
mation about the effects of this option.)

[Gtnumber “Threshold” option. Tells the compiler to allocate data
items larger than number in a new data segment. If you
give this option with no number, QCL allocates items
larger than 256 bytes in their own segment. If you don’t
give this option, QCL allocates items larger than 32,767
bytes in their own segment.

This option applies only if you compile with the compact
(/AC), large (JAL), or huge (/AH) memory model. See
Appendix B for more information about memory models
and allocation.

INT textsegname “Name-text-segment” option. Assigns the given name to
the text segment. The space is optional between /NT and
textsegname. The text segment contains the program
code for the entire program (if you compile with the /AS
option, the /AC option, or no memory-model option) or
for the module you are compiling (if you compile with
the /AM, /AL, or /AH option).

/Z1 “Library” options. Tells the compiler not to put the name
of the appropriate combined library in the object file. Use
this option to compile modules that you want to putin a
library with the LIB utility.

22 Microsoft QuickC Tool Kit

[Zpnumber “Pack” option. Stores structure members after the firston
number-byte boundaries. The number argument, if given,
may be 1, 2, or 4; if it isn’t given, QCL assumes a value
of 2. This option may reduce the size of executable files,
although it may also slow program execution.

The QCL options shown in this chapter are those most commonly used with
QuickC programs. QCL supports a number of other options in addition to those
described so far. See Section 4.3 for descriptions of all the QCL options.

Invoking the Linker Directly: the LINK Command

In some cases, you may choose to compile source files in one step, then link the
resulting object files in a separate step. For example, in the first step, you would
compile your C source files as shown below:

QCL /c SOURCE1l.C SOURCE2.C

Then, in the second step, you would link the resulting object files, plus any addi-
tional object files or libraries, as shown below:

QCL SOURCE1l SOURCE2Z GRAPHICS.LIB

As illustrated in the second step, if you give only object files or libraries on the
QCL command line, the QCL command simply passes the object files and librar-
ies to the linker.

Instead of using the QCL command to link, you can invoke the linker directly by
entering the LINK command. The advantage to using LINK is that the linker
prompts you for any input it needs; you don’t need to give all file names and op-
tions on the command line, although you may do so.

The remainder of this section explains how to use the LINK command to link ob-
ject files and libraries.

Giving Input to the LINK Command

To invoke the linker explicitly, simply enter

LINK

Creating Executable Programs 23

Input on the command line

If you don’t give any other information on the command line, LINK prompts
you for input. The following list shows how to respond to each prompt:

At This Prompt: Enter:

Object Modules: The names of all object files that you want to link, sepa-
rated by plus signs. If all the names do not fit on one line,
type a plus sign as the last character on the line. LINK re-
peats the prompt on the next line, and you can type
additional object-file names.

Type a library name in response to this prompt if you
want to include the entire library in the executable file.
Make sure the library name has an extension of .LIB. (If
you type the library name in response to the “Libraries:”
prompt below, LINK places in the executable file only
the library modules that are called in your source files.)

Run File: The name of the executable file that you want to create,
If you press ENTER without typing a name, LINK uses the
base name of the first object file you gave plus the exten-
sion .EXE. This name is shown in brackets in the prompt.

List File: The name of the map file, which shows segments in your
program. If you press ENTER without typing a name,
LINK doesn’t create a map file. If you enter a name
without an extension, LINK adds the MAP extension
utomatically.

Libraries: The names of libraries other than the standard combined
libraries that you want to link with the object files. If you
enter a library name without an extension, LINK as-
sumes the extension .LIB. If you enter more than one
library name, put a plus sign between each library name
and the next.

You can type LINK-command options as part of the response to any prompt.
See the next section, “LINK Options,” for a list of commonly used options.

1f you prefer, you can give all your input to LINK on the command line. The
LINK command line has the form shown below:

LINK linkoptions objfiles, exefile, mapfile, libraries;

Optional Optional Optional

Note: Semicolon may end command line wherever a comma appears.

24 Microsoft QuickC Tool Kit

Input in a response file

LINK Options

Case sensitivity

Abbreviations

Commas must appear as shown above to separate the names of the different
files. You may type a semicolon to terminate the command line anywhere after
the list of object files, The semicolon tells LINK to use defaults for the remain-
ing files. LINK options may appear anywhere on the command line.

The prompts previously described correspond to the command line as follows:
“Object Modules” is equivalent to objfiles, “Run File” to exefile, “List File” to
mapfile, and “Libraries” to libraries.

LINK allows you one other alternative for providing input. You can enter re-
sponses for all prompts in a file, then invoke LINK with the following command:

LINK @responsefile

Replace responsefile with the name of the file that contains your responses. The
responses should look the same as if you were typing them in response to
prompts. For example, type all object-file names on the first line, the executable-
file name on the second line, and the map-file name on the third line. Use a plus
sign at the end of a line to continue a response on the next line. Leave a blank
line in the file if you want LINK to use the default for a prompt. Place LINK op-
tions at the end of any response or place them on one or more separate lines.

LINK options allow you to control the operation of the linker. If you’re using the
QCL command to link, give these options after the /link option on the command
line. If you’re using the LINK command to link, these options may appear any-
where on the command line.

Not all LINK options are applicable to QuickC programs. Some options are use-
ful only for assembly-language programs. This section describes only the op-
tions that are useful for QuickC programs. See Chapter 5, “LINK,” for a
complete list of options.

LINK options are not case sensitive, so you can type any combination of upper-
case and lowercase letters for each option.

Because some LINK options have long names, LINK allows you to abbreviate
each name. The abbreviation must include enough continuous letters to distin-
guish the option from others. Letters that you may leave off are surrounded by
brackets in the following sections. In general, this manual refers to LINK op-
tions by their shortest possible abbreviations.

Numerical parameters

Help with LINK options

Creating Executable Programs 25

Some LINK options take numbers as parameters. You may specify the numbers
in decimal, hexadecimal, or octal. As in C programs, hexadecimal numbers are
identified by the prefix Ox and octal numbers by the prefix 0.

If you need quick help with LINK options, enter the following command:

LINK /help

Controlling the Linking Process with Options
Use the LINK options described below to control the linking process:

Option

Effect

/BA[TCH]

/INF[ORMATION]

/NOD[EFAULTLIBRARYSEARCH]

/MIAP]

/PAU[SE]

Tells the linker to continue pro-
cessing if it can’t find one of the files
you’ve given, rather than stop pro-
cessing and prompt you. Also
prevents LINK from displaying its
program banner and echoing the con-
tents of response files on standard
output.

Use this option in batch files or
NMAKE description files if you’re
building large executable files and
don’t want the linker to stop pro-
cessing if it can’t find a file it needs.

Tells the linker to display informa-
tion about the linking process,
including the linking phase and the
name of each object file being
linked.

Tells the linker not to search the
standard C combined libraries to find
C library functions. If you use this
option, you should explicitly specify
the name of a standard combined
library.

Includes a full public-symbol listing
in the map file.

Tells the linker to pause before it
creates the executable file and to dis-
play a message. This allows you to
insert a new disk to hold the execu-
table file.

26 Microsoft QuickC Tool Kit

If you’re running on a machine
without a hard disk, you might want
to create the executable fileon a
different removable disk. In this
case, you would swap the current
disk for the new disk before creating
the executable file. If LINK displays
the message

Temporary file tempfile has
been created.

Do not change diskette in
drive, letter.

terminate your link session, copy the
temporary file named tempfile to the
disk where you want to create the ex-
ecutable file, and reenter the LINK
command.

Optimizing the Executable File

The following LINK options make the executable file faster, smaller, or both:

Option

Effect

/E[XEPACK]

/FTARCALLTRANSLATION]

/PAC[KCODE]

Compresses the executable file. This option re-
duces the program’s size and load time.
However, you cannot use the QuickC or
CodeView debugger to debug the program.

Reduces the size of the executable file and in-
creases its speed by optimizing far calls to
procedures in the same segment as the calling
procedure.

Given with the /F option, improves the effi-
ciency of medium-, large-, and huge-model
programs by grouping neighboring code
segments.

Creating Executable Programs 27
_

Modifying the Executable File

You can use the following LINK options to modify the executable file (for ex-
ample, to specify the maximum number of segments or set the stack size):

Option Effect

/CPIARMAXALLOC]):number Sets the maximum number of 16-byte para-
graphs needed for the program to number. The
number may be any decimal, octal, or hexadeci-
mal number in therange 1 — 65,535 decimal.

/SE[GMENTSY:number Sets the maximum number of segments a pro-
gram may have to rumber. The number may
be any value in the range 1 — 3072 decimal. If
you don’t give this option, a program may
have no more than 128 segments.
[STIACK]:number Sets the stack size to number bytes. The
number may be any decimal, octal, or hexadeci-
mal number in the range 1 — 65,535 decimal. If
you don’t give this option, the stack is 2K.

Other LINK Options

The LINK options described in this chapter are those most typically used when
linking QuickC programs. The linker supports additional options, including
several that apply only to assembly-language programs. For complete informa-
tion on all LINK options, see Chapter 5, “LINK,” in Part 2, “Reference to
QuickC Tools.”

CHAPTER 2 2

Maintaining Software
Libraries with LIB

The Microsoft Library Manager (LIB) lets you create and maintain
object-code libraries. You can use the library manager for several tasks:

To list the contents of a library
To modify the contents of an existing library

To copy object code from the library

To create a new library

This chapter gives you an introduction to libraries then explains how to
perform each of the tasks listed above.

Why Use a Library?

An “object-code library” is an organized collection of object code; that is, a
library contains functions and data that are already assembled or compiled and
are ready for linking. The structure of a library supports the mass storage of com-
mon procedures—procedures called by a variety of programs. Each library has
an index of its components. These components, called “modules,” can be added,
deleted, changed, or copied. When you give the linker a library as input, the
linker efficiently scans the library and uses only the modules needed by the
program.

Object-code libraries are typically used for one of three purposes:
s To support high-level languages. Languages, including C, BASIC, and

FORTRAN, perform input/output and floating-point operations by calling
standard support routines. Because the support routines are available in a

30 Microsoft QuickC Tool Kit

library, the compiler never needs to regenerate code for these routines. Librar-
ies that contain standard support routines are called “standard libraries.”

m To perform complex and specialized activities, such as data-base manage-
ment or advanced graphics. Libraries containing such routines are often sold
by third-party software vendors or are provided by the makers of the com-
piler (in the case of graphics libraries for Microsoft QuickC).

m To support your own work. If you have created routines that you find useful
for a variety of programs, you may want to put these routines in a library.
That way, these routines do not need to be recoded or recompiled. You save
development time by using work you have already done.

The LIB Command

The LIB command has the form shown below:

LIB oldlibrary options commands, listfile, newlibrary;

Optional Optional Optional Optional

Note: Semicolon may end command line wherever a comma appears.

The oldlibrary field gives the name of a library. Object-code libraries typically
have names that end with .LIB. You specify a library in this field whenever you
use LIB.

The options field specifies one or more LIB options. For most tasks, you won’t
need to use any of these options. The options are described in Chapter 6, “LIB,”
in Part 2, “Reference to QuickC Tools.”

The commands field gives the commands that modify the contents of the library.
Commands are described below in “Modifying the Contents of a Library.”

The listfile field specifies a file into which LIB puts a list of the library’s con-
tents, The next section tells how to list the contents of a library.

The newlibrary field specifies a name for the modified library if the commands
you give change an existing library. See Section 6.1.1.5 for more information on
this field.

Maintaining Software Libraries with LIB 31

Listing the Contents of a Library

You can use LIB to obtain a symbol listing for any object-code library. Listings
are useful because they give the exact names of modules and public symbols.
You may need a listing if you want to modify a library, as described in the next
section.

To list the contents of a library, you need to use only the oldlibrary field and the
listfile field. Use a semicolon (;) to terminate the command so that LIB does not
prompt you for additional input.

In the oldlibrary field, give the name of the library that you want to examine.
You can enter a full path name or a file name without a path. If you do not in-
clude a file extension, then LIB assumes the default .LIB extension. Typically,
object-code libraries have a .LIB extension.

In the listfile field, give the name of the file in which you want the listing to be
placed. If you enter the name of a file that does not yet exist, LIB creates the file.
If you enter the name of a file that already exists, LIB replaces the current con-
tents of the file with the new listing.

For example, the following command line directs LIB to place a listing of the
contents of MYLIB.LIB into the file LISTING.TXT:

LIB MYLIB, LISTING.TXT;

The listing file summarizes the contents of the entire library. Each listing file
contains two kinds of information in this order:
1. Alist of public symbols with corresponding modules for each

2. Alist of modules with corresponding symbols for each

Modules, which are basic to the operation of LIB, are discussed in the next sec-
tion. For a more detailed description of listing files, see Section 6.1.1.4, “Cross-
Reference-Listing File,” in Part 2, “Reference to QuickC Tools.”

Modifying the Contents of a Library

You can use LIB to alter the contents of any object-code library. There are a
number of reasons why you might want to do so. For example, if you work with
higher-level-language libraries, you may want to replace a standard routine with

32 Microsoft QuickC Tool Kit

your own version of the routine. Or you may want to add a new routine to the
standard library, so that your routine is available along with the standard
routines.

LIB operations involve these two important items, besides the library file itself:

Ttem Description

Object file An independent file containing object code correspond-
ing to one source file. An object file normally has an
.OBIJ file extension.

Object module A self-contained unit within a library, consisting of one

or more routines. An object module in a library is in al-
most all respects identical to the corresponding object
file. The object module, however, has no file extension
or path because it is not a separate file. Object modules
are simply called “modules” in this manual.

The sections that follow refer to both of these items extensively. Just remember:
amodule is stored in an object file when it is outside a library and becomes
simply a “module” when it is loaded into a library.

Modifying the Library

To modify an object-code library, carry out the following steps:

1. To add or replace an object module, first compile or assemble the new code.
If the procedure you want to add is part of a program, then copy the source
code into its own file and compile or assemble it separately.

2. Add, delete, or replace the module with the command line
LIB oldlibrary commands;

in which commands consists of one or more LIB commands that use the syn-
tax shown later in this section.

Note that in step 2 above, the command line does not use all the LIB fields. You
may, however, include a listfile if you want a file listing. You may also use the
newlibrary field to preserve old library contents. If you enter a newlibrary, LIB
places the updated library contents in newlibrary and leaves the contents of
oldlibrary unchanged. Otherwise, LIB updates the contents of oldlibrary and
saves the old contents in the file oldlibrary. BAK.

You can use the library as input to the linker once the contents change. Any
routines you have added or replaced become part of the library and can be called
by your programs.

Adding a Module

Deleting a Module

Maintaining Software Libraries with LIB 33
—

To add an object file to a library, use the command
+file

in which file is the name of the object file you want to add as a module. You
may specify a complete path name for file if the object file is not in the current
directory. If the file-name extension is .OBJ, you can leave off the extension;
LIB assumes the .OBJ extension by default. LIB adds the object module at the
end of the library. The library contains only the base name of the module
without the .OBJ extension.

For example, the following command line adds the module PRINTOUT to
the library MYLIB.LIB, by copying the contents of the object file
\SOURCE\PRINTQUT.OBJ:

LIB MYLIB +\SOURCE\PRINTOUT;

You can also add the entire contents of one library to another by specifying a
library name for file. Remember to enter a complete file name (including exten-
sion) because LIB assumes that files in the commands field have the .OBJ exten-
sion. For example, the following command line adds the complete contents of
the library SMALL.LIB to the library SUPER.LIB:

LIB SUPER +SMALL.LIB;

To delete an object module from a library, use the command
—module

in which module is the name of a module already stored in the library. For ex-
ample, the following command deletes the module DELETEME from the library
BIGLIB.LIB:

LIB BIGLIB -DELETEME;

Replacing a Module

To replace an object module within a library, use the command
—+module

in which module is the name of a module that is currently stored in the library.
The old copy of module is deleted from the library. The current contents of
module OBJ are copied into the library. For example, to replace the QuickC

34 Microsoft QuickC Tool Kit

small-model library version of printf() with your own version, execute these
steps:

1. Write your own version of printf(), and compile or assemble it.

2. Make sure that the resulting object file is named PRINTF .0BJ and that
PRINTF .OBJ is located in the current directory. (If you look at a listing of
the library, you will see that the public symbol for the printf() function is
_printf(). The name of the module, however, is printf(). If you have any
doubt about the exact name of an object module, get a listing of the library
before trying to modify the library.)

3. Issue the following command line:

LIB SLIBCE —+PRINTF;

You can combine any number of operations in the commands field. Spaces be-
tween the commands are acceptable but not necessary. For example, the follow-
ing command line adds a new module, NEWFUN, replaces a current module,
OLDFUN, and deletes another current module, BYENOW:

LIB MYLIB +NEWFUN —-+OLDFUN -BYENOW;

In the example above, the files NEWFUN.OBJ and OLDFUN.OBJ serve as
input for the modules NEWFUN and OLDFUN, respectively.

Copying and Moving Object Modules From a Library

You can extract any object module from a library. The extracted object module
is copied into an .OBJ file with the same name as the module. For example, if
you extract a module named OLDFUN, LIB copies it into the object file
OLDFUN. OBJ. If a file with that name already exists, its contents are
overwritten.

To copy a module into an .OBJ file, use the command
*module

in which module is the name of the module you wish to copy from the library.
The module is placed in the file module.OBJ.

For example, the following command line copies the printf() module from the
Microsoft QuickC small-model library, and places the contents of this module
into the object file PRINTF , OBJ:

LIB SLIBCE *PRINTF;

Maintaining Software Libraries with LIB 35

You can move a module out of a library with the following command:
—*module

Moving a module is similar to copying a module, in that LIB copies the contents
of the module into a file named module.OBJ. The move command (—*),
however, causes LIB to delete the module from the library after copying it.

Creating a New Library

When you use LIB, creating a new object-code library is easy. You simply com-
bine two techniques:

m In the oldlibrary ficld, enter the name of a file that does not yet exist.

m In the command field, use the add command (+file) to list entries for the new
library. (Technically, this step is not required; however, if you do not use the
add command, the library will be empty.)

For example, if the file NEWLIB.LIB does not yet exist, the following com-
mand line creates this file. The object files MYPROC, MYFUN, and PRINTIT
provide the input for the new library.

LIB NEWLIB +MYPROC +MYFUN +PRINTIT;

Other Ways of Using LIB

This chapter has covered the basic operations of the LIB utility, so that you can
quickly begin to create and maintain your own libraries. For a complete descrip-
tion of LIB, see Chapter 6, “LIB,” in Part 2, “Reference to QuickC Tools.”
Some additional features described in that chapter include the following:

m How to make LIB case sensitive, so that it treats Print and PRINT as
two different module names.
m How to specify alignment of modules within a library.

s How to let LIB prompt you for command fields, rather than requiring you to
enter them all on a single command line.

= How to use a response file to give input to LIB. Response files are useful for
giving unusually long command lines or for giving the same command line
repeatedly.

CHAPTER 3

Maintaining Programs
with NMAKE

37

NMAKE, the Microsoft Program-Maintenance Utility, helps to automate
software development and maintenance. Following instructions that you
supply, NMAKE determines whether a program is out of date and, if so,
how to update it. Your instructions list all the sources, include files, and
libraries the program depends on, and specify the commands to update
the program.

NMAKE, however, is not limited to updating programs. It can also per-
form other actions, such as building distribution disks, cleaning up direc-
tories, and so forth. Any procedure that requires the latest version of
several files is a good candidate for NMAKE. By using NMAKE for
these operations instead of doing them by hand, you can avoid the head-
aches of invalid source modules, old libraries, and forgotten include files.

NMAKE is typically used in the following situations:

m In program development, to update an executable file whenever any
of the source or object files has changed

m Inlibrary management, to rebuild a library whenever any of the mod-
ules in the library has changed

m In a networking environment, to update the local copy of a file that is
stored on the network whenever the master copy has changed

This chapter describes what NMAKE does, defines the terms you need to
understand, and tells you how to use NMAKE to manage your QuickC
projects.

38 Microsoft QuickC Tool Kit

If you are unfamiliar with NMAKE, this chapter will introduce its most
useful features. If you are an experienced MAKE user, you will find that
this new utility is different; in fact, you may need to change your existing
description files to make them compatible. (See Section 7.5 for a sum-
mary of changes.) This tutorial chapter also serves as an introduction to
some of the new features.

For detailed information see Chapter 7, “NMAKE,” in Part 2, “Reference
to QuickC Tools.”

How NMAKE Works

Asimple description block

NMAKE relies on a “description file,” sometimes called a “makefile,” to deter-
mine which files to update, when to update them, and what operations to per-
form. The description file defines the dependencies among the files in the

project and gives the commands NMAKE must execute to bring everything up

to date. For a QuickC program comprising several object files, the description
file lists the source and header files needed to build each object file, and all the
object files needed to build the executable program. The description file also con-
tains the QCL commands that must be executed to build the program,

Description files are made of several elements:

m Description blocks, which tell NMAKE how to build files

m Macros, similar to C macros, which provide a shorthand notation that allows
you to change certain values when the file is processed

= Inference rules, which tell NMAKE what to do in the absence of explicit
commands

m Directives, which provide conditionals and other structuring techniques
All of these elements need not be present in every description file. For many ap-

plications, a description file consisting of a single description block is adequate.
The example below shows a description file with only one description block:

program.exe : program.obi subl.bbj #update program
QCL program.obj subl.ob]

Maintaining Programs with NVAKE 39

The first line of the description block is called the “dependency line.” It identi-
fies the “target” to be updated (program.exe) and the “dependents” that
make up the target (program.obj, subl.obj).If any of the dependents has
changed since the target was last modified, NMAKE rebuilds the target. When
NMAKE executes this description, it checks the date when each of the object
files was last modified. If either has been modified since the executable program
was created, NMAKE executes the second line called the “command line.” The
QCL command in the example relinks the program.

What about the C source files? ~ Note that the target is an executable file (EXE) and its dependents are object
files ((OBJ). You might wonder why the C source files program.c and
subl.c do not appear in the description block. The reason is that NMAKE as-
sumes that .OBJ files depend on C source files and knows that it must compile
program.c and subl.c tocreate program.obij and subl.obj. How
and why NMAKE works this way are advanced topics covered later in the sec-
tion titled “Using Inference Rules.” You don’t need to understand inference
rules to create description files and use NMAKE.

Of course, if you prefer, you can make your target-executable files depend on
the C source files and give the QCL command to compile and link the sources. It
is, however, generally preferable to list the object files as dependents.

The next section in this chapter, “Building a Simple Description File,” shows
how to construct description files, such as the one above, that consist of a single
block.

Building a Simple Description File

Before you invoke NMAKE, you need to create a description file. A description
file is simply a text file, so you can use any text editor (including the one in the
QuickC environment) to create one. NMAKE places no restrictions on the name
of the description file, but always looks for a file named MAKEFILE in the cur-
rent directory unless you tell it otherwise. The section below titled “Invoking
NMAKE” gives more information on how NMAKE identifies the descrip-

tion file.

Depending on the size of the project you are maintaining, your description file
may contain one or more description blocks. This section describes the com-
ponents of a description block and shows you how to build description files that
consist only of description blocks.

40 Microsoft QuickC Tool Kit

Description Blocks

Description blocks are the basic elements of description files. A description
block tells NMAKE how to update a target from a group of dependents. Every
description block consists of a dependency line, any number of command lines,
and optional comments. Figure 3.1 shows the components of a description block.

Comment # Makefile for program.exe

Dependency line| program.exe : program.obj subl.obj'#two modules |

Command line QCL program.obj subl.obj

Figure 3.1 Components of a Description Block

Targets

Pseudotargets

Dependency Lines

A dependency line lists a target and one or more of its dependents. A colon (:)
separates the target from the dependents.

The name of the target goes at the beginning of the line with no tabs or spaces
preceding it. NMAKE creates the target in the current directory unless you in-
clude a drive and path specification in its name. A dependency line may contain
more than one target, but at least one space must separate each pair of names.
Below are some example target names:

testl.exe :
c:\cprogs\testl.exe :
testl.exe test2.exe :

The first example specifies the target testl.exe in the current directory. In
the second, the target is built in the directory c¢:\cprogs. The last lists two tar-
gets to be built from the same set of dependents.

All the targets shown above are executable files. A target, however, need not be
an executable file; in fact, it need not be a file at all. NMAKE allows you to
specify the following:

UPDATE :

Maintaining Programs with NVAKE 41

Specifying dependents

Search paths for dependents

In this case, UPDATE is considered a “pseudotarget” because it is not a file but
simply a label for a set of dependents and commands. Pseudotargets are useful
for updating directories and copying groups of files. NMAKE always considers
pseudotargets out of date.

List the names of the dependent files on the same line as the target, but after the
colon. Separate the dependent names by one or more spaces. A target can have
any number of dependents. If the names of all the dependents do not fit on one
line, use a backslash (V) to end the line and continue the list on the next line. This
is NMAKE’s standard method of line continuation.

Dependent names, like target names, may contain drive and path specifications.
If you do not include a drive or path specification, NMAKE looks for the de-
pendents in the current directory. For example:

mycprog.exe : mycprog.obj \public\src\graphics.ob]
UPDATE : *.c \inc*.h

The first example shows two dependents for mycprog.exe. One of them is
mycprog.obj, for which NMAKE searches the current directory. The other is
graphics.obij, for which NMAKE searches the \public\src directory.
The second example shows that the pseudotarget UPDATE depends on all the
.C files in the current directory and all the header files in the directory \inc.

You can direct NMAKE to search for dependents in a sequence of other directo-
ries by adding a search path enclosed in braces. NMAKE uses the search path if
it cannot find the file in the current directory. Separate each pair of directories in
the path with a semicolon. The backslash at the end of the path is optional. Con-
sider the following:

program.exe : program.obj {\mel\cwork; q:\src\}tables.ob]

This line lists two dependents for program.exe. The first, program.ob3,
is assumed to be in the current directory. For tables.obj, a search path is
specified. The search path causes NMAKE to look first in the current directory,
thenin \me\cwork, andthenin q:\src until it finds the file. If it cannot
find the file, all is not lost; it relies on its inference rules to build the file. (For
more information on inference rules, see “Using Inference Rules” in this chap-
ter; for a more detailed description, see Section 7.3.3.)

Command Lines

The command lines in a description block give the commands to be carried out if
a target is out of date with respect to any of its dependents. Commands can be
the names of programs, batch files, or any DOS commands—in short, any com-
mand that can be issued on the DOS command line.

42 Microsoft QuickC Tool Kit

Rules for specifying commands ~ Typically, NMAKE users put their commands on separate lines from the target
and its dependents, one command per line. Each line must start with one or more
spaces or tab characters. If you forget the space or tab, NMAKE assumes you
are specifying a dependency line (or a macro) and gives an error. You may find
it helpful to use a tab to indent the line, making it easy to identify the commands
that apply to each target. (This manual uses that convention.) For example:

program.exe : program.obj sub.obj
gcl program.obj sub.ob]j

The command line in the example invokes QCL to link the two dependent files
into a single executable image.

If you prefer, however, you can put your commands on the same line as the tar-
get and dependents. In that case, a semicolon must precede each command to
separate it from the previous item on the line, whether a dependent or another
command. The following has the same effect as the previous example:

program.exe : program.obj sub.obj ; gcl program.obj sub.ob]j

If a command is too long to fit on one line, you can split it across two or more
lines with a backslash (V), in the same way that you split a long dependency list.
For example:

program.exe : program.obj subl.cb]j sub2.cobj sub3.obj
qcl program.ob]j subl.obj sub2.0bj \
sub3.obj

Be sure that every line that is part of a command begins with a space or tab.

Comments

You may put comments in your makefiles just as you do in your C programs.
Every comment starts with a number sign (#) and extends to the end of the cur-
rent line. NMAKE ignores all the text between the number sign and the next
new-line character. Comments may appear anywhere in an NMAKE description
file except on a command line. You may place comment lines among the com-
mand lines, but the number sign that starts the comment must be the first
character on the line with no spaces or tabs preceding it. The following example
shows the use of comments:

#makefile for program.exe

program.exe : program.obj subl.obj sub2.obj
gcl program.obj subl.obj sub2.cbj

program

The first comment documents the purpose of the file. The second causes
NMAKE to treat the line program as acomment. When NMAKE executes
this description, it will rebuild program.exe but will not run it.

Maintaining Programs with NVAKE 43

Escape Character

Some characters, such as the number sign (#), have a special meaning when they
appear in an NMAKE description file. If you want NMAKE to interpret these
characters literally, and not with their special NMAKE meanings, you must use
the caret (*) as an “escape” character.

For example, the number sign (#) denotes the start of a comment. To use it in a
file name, you must precede it with a caret to “escape” its special meaning, as
follows:

winning”#.txt
NMAKE interprets the example as the file name winning#.txt .

The following characters have special significance to NMAKE, so you must
precede them with a caret whenever you want NMAKE to interpret them
literally:

#OSMN\{}!@-

NMAKE ignores a caret that precedes any other character. In addition, carets
that appear within quotation marks are not treated as escape characters.

Description-File Examples

Assume you are developing a program named handle. Your directories are or-
ganized so that all your source files and object files are stored under the current
directory and your include files are in the \inc directory. Consider the follow-
ing makefile:

handle.exe : main.obj comm.obj \inc\comm.h
QCL /Fehandle.exe main.obj comm.ob]
handle

The dependency line says that handle.exe should be updated if any of three
files change. Two of these files are object files; the third is an include file. If
NMAKE determines that it must create a new version of the target, it executes
the QCL command. QCL’s /Fe option specifies the name handle.exe for
the executable program. NMAKE executes the new version of handle.exe
after creating it.

If the current directory contains only the files for handle . exe, and none for
any other programs, the description file could be rewritten as follows:

handle.exe : *.obj \inc\comm.h
QCL /Fehandle.exe *.obj
handle

NMAKE expands the wild cards in the dependent names when it starts to build
the target.

44 Microsoft QuickC Tool Kit

The CC Macro

Redefining CC in a makefile

Redefining CC
in the TOOLS.INI file

The sample description files presented so far have contained only description
blocks—no macros, directives, or inference rules. For the most part, you can get
along fine without any of these features.

Before you use NMAKE with QuickC, however, you need to know about one
particular macro, CC. The predefined macro CC tells NMAKE which C com-
piler to use when it tries to create .OBJ files from .C files. As you may be aware,
NMAKE is provided with both QuickC and the Microsoft C Optimizing Com-
piler. For that reason, CC is predefined to invoke the C Optimizing Compiler,
CL. You must redefine CC to invoke QCL, the Microsoft QuickC Compiler.

To redefine the CC macro, add the following at the top of your description file:
CC = gcl

No spaces or tabs may precede CC; it must be the first item on the line. The
spaces around the equal sign are optional.

Continuing with the example in the previous section, the description file would
look like the following:

CC = qgcl

handle.exe : *.obj \inc\comm.h
QCL /Fehandle.exe *.,obj
handle

This description has the same effect as before but ensures that NMAKE will use

the QuickC compiler to generate the .OBJ files, if necessary, from any .C files in
the current directory. The QCL command in the example invokes QuickC to link
the object files into an executable file.

As an alternative, you can redefine CC in TOOLS.INI, the tools-initialization
file. The TOOLS.INI file contains environment variables and initial (default) set-
tings for various utility programs. You may already have a TOOLS.INI file; if
not, you can create one with any text editor.

Items that apply to NMAKE appear in the file following the tag [nmake]. To
change the definition of the CC macro, add a line that reads CC=qcl, as follows:

[nmake]
CC=qcl

‘Whenever you invoke NMAKE, the utility looks for TOOLS.INI first in the
current directory and then in the directory specified by the INIT environment
variable. To see what INIT is set to, type the SET command at DOS command
level.

Maintaining Programs with NMAKE 45

Invoking NMAKE

You can invoke NMAKE in ¢ither of two ways:

m By giving the NMAKE command and all options, macros, and targets on the
DOS command line

m By giving the NMAKE command and the name of a response file that con-
tains all the options, macros, and targets

This section describes both methods.

Invoking NMAKE from the DOS Command Line

The default file MAKEFILE

Under most circumstances, you’ll probably just issue the NMAKE command
from the DOS command line. The command has the following format:

NMAKE options macrodefinitions targets filename

l

Optional

All the arguments are optional.

The options modify the action of the NMAKE command. The most commonly
used NMAKE options are described under “NMAKE Options” below; the
complete set is covered in Chapter 7.

The macrodefinitions give text to replace macro names in the description file.
“Using Macros,” later in this chapter, introduces macros and explains how and
when to use them. See Section 7.3.2 for details.

The targets field lists one or more targets for NMAKE to build. If you do not
specify a target, NMAKE builds the first one in the file. You can find more infor-
mation on targets under “Description Blocks,” above, and in Section 7.3.1.

Finally, the filename field gives the name of the description file that tells
NMAKE what to do. Like the others, this field is optional. Thus, the simplest
form of the NMAKE command is just

NMAKE

When you invoke NMAKE with the preceding command, it looks in the current
directory for a file named MAKEFILE to use as the description file. If no such
file exists, it displays an error message.

46 Microsoft QuickC Tool Kit

When you give a file name, as in

NMAKE history.mak

NMAKE looks first for a file named MAKEFILE in the current directory, as in
the previous example. If no such file exists, NMAKE treats the first argument on
the command line that is not an option, a target, or a macro definition as the
name of a description file. In the example above, NMAKE uses the description
file history.mak from the current directory.

A third way is to use the /F option, described below in the section “Controlling
Input.”

Invoking NMAKE with a Response File

For more complicated updates, and whenever the NMAKE command line
exceeds the DOS limit of 128 characters, you will need to create a response file.
The response file contains the options, targets, and macros you would type on
the DOS command line. It is not the same as the NMAKE description file; in-
stead, it is comparable to a LINK or LIB response file.

To invoke NMAKE with a response file, issue the following command:

NMAKE @responsefile

For responsefile, use the name of the file that contains the options, targets, and
macros you would otherwise type on the NMAKE command line.

NMAKE Options

NMAKE provides a rich set of options that control the descriptions it reads as
input, the details of its execution, and the messages it displays on output. The
sections below describe some of the most useful NMAKE options. Chapter 7

covers all the options in detail.

Options immediately follow the NMAKE command on the DOS command line
and precede the name of the description file, if you supply one. NMAKE accepts
options in uppercase or lowercase letters, with either a slash (/) or a dash (-) to in-
troduce each option. For example, -F, /F, -f, and /f all represent the same option.
In options that take file-name arguments, for example, /F and /X, the file name
and the option must be separated by a space.

Maintaining Programs with NMAKE 47

Controlling Input

The /F option specifies the name of the description file. This option has the fol-
lowing form:

/F filename

If you specify the /F option, NMAKE uses filename as the name of the descrip-
tion file. The space separating /F and filename is required. In place of a file
name, you can enter a dash (-) to tell NMAKE to read the description from stand-
ard input, typically your keyboard.

If you omit the /F option, NMAKE looks for a file named MAKEFILE in the cur-
rent directory. If none exists, NMAKE will take a file name from the command
line as shown in the previous section.

NOTE Unless you use the /F option, NMAKE always searches for the file MAKEFILE in the cur-
rent directory. Therefore, you should explicitly specify /F to avoid unintentionally using MAKEFILE.

The following is an example of the /F option:

NMAKE /F hello.mak

This command invokes the NMAKE utility and specifies hello.mak, in the
current directory, as the description file.

Controlling Execution

The following options change the way NMAKE interprets the description file:

Option Effect

/A Builds all of the targets requested, even if they are not
out of date.

f Ignores exit codes returned by commands executed

within a description file. NMAKE continues processing
the description file despite the errors.

/N Displays the commands from the description file, but
does not execute them. This option is useful for determin-
ing which targets are out of date without rebuilding
them. It is also helpful in debugging description files.

T “Touches” any target files that are outdated. “Touching”
a file causes its date of modification to be changed to the
current date. It has no effect on the contents of the file.

48 Microsoft QuickC Tool Kit

Controlling Output

As NMAKE runs, it displays on standard output each command that it executes.
It issues a diagnostic message if it cannot find a file or command needed to
complete a description block or if any command returns an error. You can
change the type and number of messages that NMAKE returns by using the op-

tions below:

Option Effect

/C Suppresses the Microsoft copyright message and all non-
fatal or warning messages.

/D Displays the modification date of each target or depend-
ent file when it checks the date.

/P Prints all macro definitions and target descriptions.

/S Executes “silently”’; does not display commands as they
are executed.

/X filename Sends all error output to filename. A space must separate
/X from filename. Specifying a dash (-) instead of a file
name sends error output to the standard output device.

Options Examples

The following command invokes NMAKE with physics.mak as the descrip-

tion file:

NMAKE /F physics.mak /N

The /N option tells NMAKE to read, but not to execute, any of the commands
within the file physics.mak. NMAKE checks the modification dates on the
files and displays the commands it would execute if the /N option were not pre-
sent. This option is useful for finding out ahead of time what files are out of date
S0 you can estimate how long a build might take. It can also be used in debug-
ging description files.

After using the /N option to check what NMAKE would do, you might invoke it
with the command line below:

NMAKE /F physics.mak /C /S

The /C option suppresses the NMAKE copyright message and any warning mes-
sages. The /S option suppresses the display of commands. You will, however,
still see the copyright messages for any commands that NMAKE invokes and
the output those commands generate.

Maintaining Programs with NMAKE 49

Building Complex Description Files

Most software projects can be maintained using the features already described.
Description files for large projects, however, may become complicated and cum-
bersome, especially if each module is dependent on many source and include
files. Using NMAKE’s advanced features, you can shorten your description files
and make them more powerful at the same time.

This section covers several of NMAKE’s advanced features:

m Special characters on command lines
m Macros
m Inference rules

m Directives

Figure 3.2 shows a more complicated description file than those presented so far.

Inference Rules

.c.obj
QCL /c $**

Inference rule

Macro Definitions

Macro definition | lopts = /M

First Description Block

Description mylib.lib : line.obj circle.ob]j errmsg.ob]
block @LIB mylib.lib —-+line -+circle -+errmsg;

Build .EXE from .obj and library

$(target) .exe : $(target).obj mylib.lib

!IFDEF linkall } Directive
Description LINK $(lopts) ${target).obj mylib.lib,,;
block IELSE F Directive
LINK $(lopts) $(target).obj,,,mylib.lib
IENDIF - Directive

N
Figure 3.2 A More Complex Description File

50 Microsoft QuickC Tool Kit

Using Special Characters to Modify Commands

NMAKE recognizes three special characters that modify its treatment of com-
mands. These characters give you additional control over how the individual
commands are executed, whereas NMAKE'’s options apply to all the commands
in the description file.

The characters go in front of the command name and may be separated from the
name by one or more spaces, though they need not be. At least one space or tab
must precede the character on the line. To use two or three special characters
with a single command, put them one after the other on the command line. The
special characters are as follows:

Character Action

Dash (-) Turns off error checking for the command it precedes so
that NMAKE continues executing if an error occurs. A
dash followed by a number suspends error checking for
error levels at the number and below.

At sign (@) Suppresses display of the command when it is executed.

Exclamation point (!) Causes the command to be executed iteratively, once for
each dependent file, if it uses one of the macros for de-
pendent names. (The macros are described in the next
section.)

Note that the dash (-) has the same effect as the /I option. Also, the “at” sign (@)
is similar to the /S option.

Examples

beatles.exe : john.asm paul.c george.c ringo.c
-QCL /c paul.c george.c ringo.c
MASM john
LINK john paul george ringo, beatles.exe;

In the example above, the dash preceding the QCL command means that
NMAKE will attempt to execute the MASM and LINK commands even if errors
occur during compilation.

beatles.exe : john.asm paul.c george.c ringo.c
-@QCL /c paul.c george.c ringo.c
MASM john

@LINK john paul george ringo, beatles.exe;

The description in this example has the same effect as that in the previous ex-
ample, except that neither the QCL nor the LINK command will be displayed
when it is executed.

Maintaining Programs with NMAKE 51
_

Using Macros

Macros on the command line

One way to streamline your description files is to use macros. A macro is a name
that replaces other text in the description file in the same way that a macro de-
fined in a QuickC #define directive replaces other text in a program. Wherever
the name appears in the description file, NMAKE substitutes the text associated
with it. To change the meaning of the name, you simply change the text assigned
to it in the macro definition.

Macros are most useful in two situations:

m To replace all or part of a file name so that a single NMAKE description file
can be used to update more than one program.

m To supply options for commands within the NMAKE description file. For ex-
ample, you might define a macro to represent your usual debug options for
the QCL command. Then, to compile with a different set of options, you
need not edit the description file. You merely change the macro definition.

NMAKE provides two types of macros: predefined macros and macros you de-
fine. This section shows how to use them.

Defining Your Own Macros

A “macro definition” tells NMAKE what text to substitute for a macro. You can
put macro definitions in the description file, on the NMAKE command line, or
in your TOOLS.INI file. In the description file, each macro definition must be
on a separate line. On the command line, macro definitions follow any NMAKE
options and precede any targets. In the TOOLS.INI file, macro definitions ap-
pear in a section following the tag [nmake], each on a separate line, as described
previously in the section “The CC Macro.”

No matter where you put them, macro definitions take the following form:
macroname = string

The macroname is the name you use in the description file. A macro name may
consist of any alphanumeric characters and the underscore (_) character. The
string is the text that replaces the macro name when the description file is
processed.

On the NMAKE command line, white space may not appear on either side of the
equal sign because it causes DOS to treat the macro name and its definition as
separate tokens. In addition, if string contains any embedded white space, you
must enclose it in double quotation marks, as follows:

my macro="this string"

52 Microsoft QuickC Tool Kit

Macros in the description file

Alternatively, you may enclose the entire macro definition—macroname and
string—in double quotation marks. In that case, spaces may surround the equal
sign because DOS treats all the characters within quotation marks as a single
token. Thus, the following is also acceptable:

"my macro = this string"

In a description file, define each macro on a new line. The definition must start
at the beginning of the line with no preceding white space. NMAKE ignores any
white space surrounding the equal sign. Quotation marks are unnecessary as
well; if you use them, they will become part of the string.

This example defines a macro named pname and another named t:
pname = mycprog.exe
t = this

To use a macro within a command or dependency line, specify its name in
parentheses preceded by a dollar sign ($), as follows:

$(macroname)

If you need to use a literal dollar sign in a description file, type it twice ($$) or
use the caret (*) escape character.

The lines below show how to refer to the macros defined in the previous ex-
ample. Note that if the name of a macro is only one character long, you can omit
the parentheses.

$ (pname)
St

Once a macro is defined, the only way to remove its definition is to use the
IUNDEF directive. See “Using Directives,” later in this chapter, for more
information.

Example

A common use of macros is to specify the options for a command. For example,
the following description block uses the macro copts to represent QCL
options.

picture.exe : picture.c graphics.c fileilo.c
gcl ${copts) picture.c graphics.c fileio.c

Assuming the description file is named picture.mak, the command line
might be the following:

NMAKE /F picture.mak copts="/C /P"

Maintaining Programs with NVAKE 53

At execution time, NMAKE substitutes /C /P wherever $ (copts) appears
in the description file. The result is the same as if the following description were
used:

picture.exe : picture.c graphics.c filelo.c
qcl /C /P picture.c graphics.c fileio.c

Note that the /P option causes QuickC to create a preprocessor listing, and the /C
option retains the comments from the source files in the preprocessor listing.

Predefined Macros

Some macros are predefined by NMAKE. You have already seen one of these,
CC. Some of the other predefined macros are described below. For a complete
list, see Section 7.3.2.3.

Macros for Program Names (CC, AS, MAKE) The CC macro, already in-
troduced, represents the C compiler command that NMAKE executes to create
object files from C source files. The AS macro is similar. It stands for the name
of the assembler that NMAKE executes when it needs to create object files from
.ASM sources. Both of these macros are predefined by NMAKE. You can
change their definitions in the description file, in the TOOLS.INI file, or on the
NMAKE command line. Their default definitions are the following:

CC=cl
AS =masm

These two macros are primarily used in inference rules. (See “Using Inference
Rules” in this chapter, or Section 7.3.3, for information on inference rules.)

The MAKE macro is defined as the command you used to invoke NMAKE. Use
this macro, rather than the NMAKE command itself, to invoke NMAKE recur-
sively within a description file. Recursion is typically used in building large soft-
ware projects, such as compilers, and frequently involves the use of conditional
directives. An example of the recursive use of NMAKE appears later in this
chapter in the section titled “Conditional Directives.”

Macros for Target Names ($@, $*) The $@ macro represents the full
name of the target and the $* macro represents the base name of the target, that
is, the full name with the extension deleted. These two macros are typically used
in inference rules but, for the sake of discussion, this section will show their use
in description files.

Consider the following description block:
S(target) : picture.obj graphics.obj fileio.ob]

LINK picture.obij graphics.obj fileio.obj, $@:;
Sk

54 Microsoft QuickC Tool Kit
_

Assume the file is invoked with the command line that follows:

NMAKE target=trees.exe

The command line supplies text for the macro target, which sets the full
name of the target to trees.exe. At execution time, NMAKE substitutes the
text for the macro as explained in the previous section. However, this file goes
one step further. Instead of repeating the user-defined $ (target) macro as
the output of the LINK command, it uses the predefined macro $@ . This macro
stands for the full name of the target and therefore has the same meaning as

$ (target) . Thus, the LINK command links the object files into
trees.exe. In the last line of the file, the macro $* stands for the base name
of the target. This line causes trees.exe to be executed as a program.

NMAKE automatically substitutes for these macros. It picks up the target name
from its position on the dependency line in the description file. You cannot as-
sign a value to a predefined macro on the command line.

NMAKE provides additional predefined macros that you can use to specify tar-
get names. See Section 7.3.2.3 for details.

Macros for Dependent Names ($**, $?) These macros signify the names
of one or more dependents. The $** macro represents the complete list of de-
pendent files for the target. The $? macro represents only the dependents that are
out of date relative to the target. These two macros are commonly used with the
special characters that modify commands to prevent NMAKE from doing any
more work than necessary.

The example below shows the description file from the previous section using
macros for the dependent names:

$S({target) : picture.obj graphics.obj fileio.ob]
LINK $**, S$S@;
s*

The first line of the example defines all the dependents for the target. On the
next line, the LINK command links all the dependents, represented by $**, into
a single executable image. Finally, the target is run as a program.

NMAKE provides additional predefined macros that you can use to specify de-
pendent names. See Section 7.3.2.3 for details.

Precedence of Macro Definitions

Because macros can be defined in so many places, it is quite possible to give a
macro more than one definition. Sometimes this is desirable. For instance, you
may wish to override a macro definition for a single execution of the makefile.

Maintaining Programs with NMAKE 55

NMAKE’s precedence rules determine which macro definition it uses. Prece-
dence depends on where the macro is defined. The following lists the order of
precedence from highest to lowest priority:

1. Macros defined on the NMAKE command line

2. Macros defined in the description file and in files included in the description
file with the !INCLUDE directive (see “Using Directives” below)

3. Macros defined by environment variables
4. Macros defined in the TOOLS.INI file
5. Macros defined by NMAKE, such as CC and AS

Figure 3.3 shows how macros defined on the command line take priority over
those in the description file.

NMAKE options="/C /E" program=account

options=/z1i
IAKE
M FILE S (program) .exe : ${(program) .ob]
QCL $ (options) $(program).c
What NMAKE
executes QCL /C /E account.c

Figure 3.3 Precedence of Macro Definitions

In addition, you can force environment variables to override assignments in the
description file. See Sections 7.2 and 7.3.2.4 for details.

Using Inference Rules

Most of the description blocks shown so far in this chapter contain commands to
update the target from its dependents. Under certain conditions, however,
NMAKE will follow a set of rules, called “inference rules,” to create the target.
Like macros, several inference rules are predefined, and NMAKE allows you to
define your own,

56 Microsoft QuickC Tool Kit

From.Cto.0OBJ

If you supply a description block that does not contain any commands, or if the
dependents of your target do not exist, NMAKE relies on inference rules.
Whether predefined or user defined, inference rules are based on the file-name
extensions of the target and dependent files. In short, they tell NMAKE how to
create a file with a particular extension from a file with the same base name and
a different extension.

Below is a simple inference rule:

.c.exe :
QCL $*.c

This rule defines how to make a file with the .EXE extension from a file with the
same base name and the .C extension. The first line says that the rule tells how
to go from a file with the .C extension ¢o a file with the .EXE extension. The sec-
ond line gives the command that creates the .EXE file—in this case, the QCL
command. The macro $* represents the base name of the target with the exten-
sion deleted.

Note that an inference rule looks very similar to a description block, with two
exceptions:

1. An inference rule lists two file-name extensions instead of target names.

2. Inference rules do not list dependents.

If the preceding rule were in effect, NMAKE would use it for the following de-
scription block:

zfile.exe : zfile.c

NMAKE applies the inference rule for three reasons: first, the description block
does not contain any commands; second, the file-name extensions of the target
file and its dependent match those in the rule; and third, the base name of the tar-
get and dependent are the same. The combination of the inference rule and the
description above has the same effect as the following description block:

zfile.exe : zfile.c
QCL zfile.c

Predefined Inference Rules

NMAKE has three predefined inference rules. The predefined rules make use of
the default macros CC and AS and several of the predefined macros that have al-
ready been presented.

One predefined rule builds .OBJ files from .C files, as follows:

.c.obj:
$(CC) $(CFLAGS) /c $*.c

Maintaining Programs with NMAKE 57

From.Cto .EXE

From.ASMto.0BJ

When NMAKE applies this rule, it substitutes the current values of the macros
CC and CFLAGS for $(CC) and $(CFLAGS). (The CFLAGS macro lists op-
tions for the C compiler.) It then looks for a C source file with the same name as
the target and compiles the source file without linking. This is the rule NMAKE
uses for the examples in this chapter that list .OBJ files—not C source files—as
dependents.

With the description block below, NMAKE would use this inference rule if it
needed to create or update one or more of the .OBJ files listed in the dependency
list:

menu.exe : menu.obj funcs.obj draw.ob]
LINK menu funcs draw;

If the current directory contains .C source files with the same base names as the
.OBI files in the example, NMAKE compiles them according to the inference
rule.

Another predefined rule, shown below, builds .EXE files from .C files:

.c.exe:
$(CC) S$(CFLAGS) S$*.c

This rule causes NMAKE to use the same files as the previous rule but to link
the output into an executable image. Continuing with the example, NMAKE
would use this rule if the description file contained the following:

menu.exe [menu.c

Note that the files funcs.c and draw.c are not shown here. NMAKE
would not create .EXE files for them because their base names are different from
that of the .EXE file that NMAKE is trying to create.

The third predefined rule builds .OBIJ files from .ASM files:

.asm.obj:
$(AS) $(AFLAGS) $*;

This rule tells NMAKE to look for an assembly-language source file with the
same name as the target file and to invoke the Macro Assembler to create an
object file. (The AFLAGS macro lists options for the assembler command.)
NMAKE would use this inference rule under the same conditions as the first
rule. For example:

menu.exe : menu.obj funcs.obj draw.obj
LINK menu funcs draw;

If the current directory contains .ASM files with the same base names as any of
the .OBJ files, NMAKE uses this final inference rule.

58 Microsoft QuickC Tool Kit

Specifying a path
for .toext or .fromext

Defining Inference Rules

The predefined inference rules are adequate for most situations. Nevertheless,
NMAKE allows you to define your own inference rules in the description file or
in your TOOLS.INI file. You can also define them in a separate file that is in-
cluded in your description file. (See the next section for information on the
IINCLUDE directive.) Inference rules cannot be defined on the NMAKE com-
mand line.

To define an inference rule, use a statement in the following form :

Jfromext.toext.
command

The first line defines the types of files to which the rule applies. The extension
of the “from” file is given first followed by the extension of the “to” file. The
second and subsequent lines give the commands that NMAKE must execute to
create a file with the “to” file extension from a file that has the same base name
and the “from” file extension. You can specify one or more commands, just as in
a description block.

Sometimes you may want to associate a directory with each type of file. For in-
stance, some programmers organize all their source files in one directory and
their object files in another. NMAKE allows you to precede each of the exten-
sions with a path, as follows:

{frompath} fromext{topath} .toext

The example below shows a rule that starts with source files in one directory and
creates object files in a different directory:

{\usr\graphics\source}.c{\usr\graphics\obj}.obj

You may specify only one path for each extension. If you need to pull source
files from several different directories and place all the object files in one
directory, you must define a separate inference rule for each source directory.

Precedence of Inference Rules

Like macros, inference rules can be defined in several places, so where an infer-
ence rule is defined establishes its precedence. NMAKE applies inference rules
in the following order from highest to lowest priority:

1. Inference rules defined in the description file or in files included in the de-
scription file by the {INCLUDE directive (described below under “Using
Directives™)

Maintaining Programs with NMAKE 59

Using Directives

2. Inference rules defined in the TOOLS.INI file

3. Predefined inference rules

Directives provide additional control over the execution of commands beyond
what you can do with macros and inference rules. Using directives, you can

m Include the contents of another file in your description file
m Conditionally execute a command or group of commands

= Issue error messages from within a description file

In effect, directives let you build description files that act like DOS batch files.
Such description files are especially useful for large software projects where the
work is divided among several people. A description file can compile each
source file, build any necessary libraries, and link the entire program. If errors
occur anywhere in the process, the description file can issue diagnostic mes-
sages, possibly take corrective action, or terminate execution.

Each directive begins on a new line in the description file. A directive starts with
an exclamation point (1) as the first character on the line. NMAKE allows, but
does not require, spaces between the name of the directive and the exclamation
point.

The sections that follow describe several of the NMAKE directives. For informa-
tion on all the directives, see Section 7.3.4.

The !INCLUDE Directive

The 'INCLUDE directive is similar to the #include preprocessor directive in
QuickC. When NMAKE comes across !INCLUDE, it reads the contents of
another description file before continuing with the current description file. The
IINCLUDE directive is useful for including a standard set of inference rules or
macros in your description files. For example:

!INCLUDE rules.mak

The INCLUDE directive in this example tells NMAKE to begin reading from
the file rules.mak in the current directory and to evaluate the contents of
rules.mak as partof the current description file.

If you enclose the file name in angle brackets (<>), NMAKE searches for the
file in the directories specified by the INCLUDE environment variable.

60 Microsoft QuickC Tool Kit

Expressions

Recursion

Conditional Directives (!IF, IELSE, !ENDIF)

The conditional directives allow you to specify blocks of commands to be ex-
ecuted depending on the value of a constant expression. A conditional block has
the following form:

!TF expression
statements
'ELSE
Statements
IENDIF

If the value of expression is nonzero (true), NMAKE executes the statements be-
tween the !IF directive and the !ELSE directive. If the value of the constant ex-
pression is zero (false), NMAKE executes the statements between the !ELSE
directive and the !ENDIF directive.

The expression may consist of integer constants, string constants, or program in-
vocations that return constants. Integer constants can use the C unary operators
for numerical negation (-), logical negation (1), and one’s complement arith-
metic (~); or the C binary operators, including arithmetic operators, bitwise oper-
ators, and logical operators. (See Section 7.3.4 for a complete list.) For string
constants, only the equality (==) and inequality (!=) operators are valid. You can
use parentheses to group expressions wherever necessary. Program invocations,
when used in conditionals, must be enclosed in square brackets.

Conditional directives are commonly used to test whether a program executed
successfully. The program can be a DOS command, a program you have written,
or even NMAKE itself. In the following description block, note the use of the
macro $(MAKE) to invoke the program recursively:

S$(target) : picture.obj fileio.obj error.obj
¥ Try to build pix.lib
1IF ! [$(MAKE) /f pix.mak]
LINK $**,5(target),,pix.lib;
COPY pix.lib \mylibs
{ELSE
#Build didn’t work, so link with old version
LINK $**,S$(target),,\mylibs\pix.lib;
!ENDIF

In this case, the expression is the value returned by another invocation of
NMAKE. NMAKE, like many programs, returns the value 0 if it executes
successfully and a nonzero errorlevel code otherwise. This is the opposite of the
usual conditional test, which considers zero to be true and nonzero to be false.
Therefore, the !IF directive must test the logical negation of the expression; that
is, it uses the exclamation-point operator outside the square brackets.

If the library pix.1lib is built successfully, NMAKE executes the LINK and
COPY commands on the two lines immediately following the !IF directive.

Maintaining Programs with NMAKE 61

If the library cannot be built successfully, NMAKE executes the command fol-
lowing the !ELSE directive. This command links all the dependents (named by
the special macro $**) with an old version of the library.

Testing for Macro Definitions (!IFDEF, IIFNDEF, IUNDEF)

The !IFDEF and !IFNDEF directives test whether a macro is defined and ex-
ecute a block of statements depending on the result. You use these two directives
with the 'ELSE and !ENDIF directives to construct conditional blocks, as de-
scribed in the previous section.

The description block below shows the use of !IFDEF and !IFNDEF directives:

$(target) : picture.obj fileio.obj error.obj
Macro $(newlib) is defined to use new pix.lib
!TFDEF newlib

LINK S$**,S(target),,pix.lib;
'ELSE
Just link with existing version

LINK $**,S$(target),,\mylibs\pix.lib;
{ENDIF

When NMAKE encounters the !IFDEF directive, it checks whether newlib
has been defined. If so, it executes the LINK command on the next line. If not, it
executes the LINK command following the !ELSE directive.

NMAKE considers a macro to be defined if its name appears to the left of an
equal sign anywhere in the description file or on the NMAKE command line.
So, if the file MAKEFILE contains the above description, both of the commands
below would result in execution of the statements following the IFDEF
directive:

NMAKE newlib=true target=eliot.exe
NMAKE newlib= target=eliot.exe

Even though the second command line sets newlib to the null string,
newlib is still considered defined because its name appears to the left of the
equal sign.

The !IFNDEF directive acts in exactly the same way as !IFDEF, except that the
statements following it are executed only if the macro is not defined.

Once you have defined a macro, the only way to remove its definition is to use
the 'UNDEEF directive. You might want to remove a macro definition before in-
cluding another file, as in the following example:

IUNDEF opts
I'INCLUDE newlib.mak

The 'UNDEEF directive ensures that the macro opts is not defined when the
file newlib.mak is processed.

62 Microsoft QuickC Tool Kit

Summary

The IERROR Directive

The 'ERROR directive causes NMAKE to print some text, then quit processing
the makefile. This directive is commonly used in conditionals to terminate execu-
tion when fatal errors occur. For example, when NMAKE comes across the
conditional

1IF "S$(continue)" == "n"
!ERROR Could not continue because of errors.
1ELSE

LINK $**, S@;
!ENDIF

it tests the value of the macro continue.If continue holds the string

"n", NMAKE displays the text that follows the lERROR directive then stops ex-
ecution. If continue holds any other value, NMAKE executes the LINK
command that follows the !ELSE directive.

This chapter has covered a subset of NMAKE intended to get you started but not
to turn you into an overnight expert. In addition to the features described in this
chapter, the NMAKE utility lets you

m Specify additional command-line options

m Specify more than one set of dependents for a target

m Create description files that build more than one target, and specify the target
to build at invocation

= Use additional predefined macros

m Substitute text within macros

m Use additional directives

m Generate response files for use with other programs

m Use predefined “pseudotargets,” which provide special rules and information
As you become more familiar with NMAKE, and as your software projects

grow, you will probably need to use some of these features. See Chapter 7 for
more information.

’ -

#
r E
TN : T e
> > X 9,,«',
'y AR e .
S ~A_‘..~:: E v ‘;L r

Reference
to QuickC Tools

N N,

< ‘/‘ :‘; "‘H
o Fanie
R ©arelerence (o the 1ools. Here you
o ‘ ‘ ’ tihe options of the utilitics.
oo ‘ T oo uesiion abowd vve of the
" AP ac. oo the atilities wd need
/;1 . [
1‘) v ! y\i’?f’{\g‘<",k
. . AN, G
B R
Ce g
ot R i chapter on the HELPMA Y E program,
‘ / . cial ool that allows you to replace or cus-
‘ oo b de weetied by Micrasoft, including those for the
E - .
hid o

‘
ot
o,
“Bar
s
¢

CHAPTERS

LINK 109

NMAKE 155

QW N O O N
™~
—
8)
-
o+
-,

CHAPTER 4
=

QCL Command
Reference

67
——

This chapter describes in detail the QCL command, which is used to com-
pile and link QuickC programs. It explains the rules for giving input on
the QCL command line, describes the options to QCL in alphabetical
order, and shows how to change the stack space allocated to a program.

The chapter provides reference material for programmers who are famil-
iar with the Microsoft QuickC Compiler in general and the QCL com-
mand in particular. If you are new to QuickC, see Chapter 1, “Creating
Executable Programs,” in Part 1, “QuickC Tools Tutorial” for an intro-
ductory approach.

4.1 The QCL Command Line

The QCL command line has the following format:
QCL [option... file... [optionlfile]... [/link [lib... link-opt... 1]

The following list describes input to the QCL command:

Entry Meaning

option One or more QCL options; see Section 4.3, “QCL Op-
tions,” for descriptions.

file The names of one or more source files, object files, or li-
braries. At least one file name is required. QCL compiles
source files and passes object files and libraries to the
linker.

68 Microsoft QuickC Tool Kit

iib One or more library names. QCL passes these libraries to
the linker for processing.

link-opt One or more of the linker options described in Chapter 5,
“LINK.” The QCL command passes these options to the
linker for processing.

Maximum command-line length You may specify any number of options, file names, and library names, as long
as the length of the command line does not exceed 128 characters.

Specifying file names In file names, any combination of uppercase and lowercase letters is legal. Any
file name can include a full or partial path name; if so, QCL assumes the file to
be in that path. A full path name includes a drive name and one or more
directory names. A partial path name omits the drive name, which QCL assumes
to be the current drive. If no path name is given, QCL assumes the file is in the

current directory.

QCL determines how to process each file depending on its file-name extension,

as follows:

Extension Processing

C QCL assumes the file is a C source file and compiles it.

.OBJ QCL assumes the file is an object file and passes it to the
linker.

.LIB QCL assumes the file is a library and passes it to the
linker. The linker links this library with the object files
QCL created from source files and the object files given
on the command line.

Any other extension or QCL assumes the file is an object file and passes it to the

no extension linker.

4.2 How the QCL Command Works

The QCL command follows the procedure described below to create an execu-
table file from one or more C source files:

1. QCL compiles each source file, creating an object file for each. In each ob-
ject file, QCL places the name of the appropriate standard combined library.
The memory model and floating-point-math package used to compile the pro-
gram determine this library name.

QCL Command Reference 69
|

2. QCL invokes the linker, passing the object files it has created plus any object
files or libraries given on the command line. The linker is invoked with the
options listed in the LINK environment variable. If you use /link to specify
linker options on the QCL command line, these options apply as well. If con-
flicts occur, options that follow /link override those in the LINK environment
variable.

3. The linker links the object files and libraries passed by QCL to create a
single executable file.

Before it creates the executable file, the linker resolves “external references”
in the object files. An external reference is a function call in one object file
that refers to a function defined in another object file or in a library. To re-
solve an external reference, the linker searches the following locations in the
order shown for the called function:

a. The object files passed by QCL

b. The libraries given on the QCL command line, if any

c. The libraries named in the object files

Example

Assume that you are compiling three C source files: MAIN.C, MOD1.C, and
MOD2 . C. Each file includes a call to a function defined in a different file:

m MAIN.C calls the function named modl () in MOD1.C and the function
named mod2 () in MOD2.C.

m MOD1.C calls the standard-library functions printf and scanf.

m MOD2.C calls graphics functions named myline () and mycircle(),
which are defined in a library named MYGRAPH.LIB.

First, compile with a command line of the following form:

QCL MAIN.C MOD1.C MOD2.C /link MYGRAPH.LIB

In step 1, QCL compiles the C source files and creates the object files
MAIN.OBJ, MOD1.0BJ, and MOD2 .0OBJ. It places the name of the standard
library SLIBCE.LIB in each object file.

70 Microsoft QuickC Tool Kit
-

In step 2, QCL passes these source files to the linker. In step 3, the linker re-
solves the external references as follows:

1. MAIN.OBJ : resolves the reference to the modl () function using the defi-
nition in MOD1 .0BJ and resolves the reference to the mod2 () function
using the definition in MOD2 . OBJ.

2. MOD1.0BJ : resolves the references to printf and scanf using the defini-
tions in SLIBCE.LIB. The linker knows that this is the appropriate library be-
cause it finds the library name within MOD1 .0BJ.

3. MOD2.0BJ : resolves the references to myline and mycircle using
the definitions in MYGRAPH.LIB.

4.3 QCL Options

Command-line order

Options to the QCL command consist of either a forward slash (/) or a dash (-)
followed by one or more letters. Certain QCL options take arguments; in some
of these options, a space is required between the option and the argument, and in
others, no space may appear. The spacing rules for each option are given in its
description.

Important QCL options (except for the /HELP option) are case sensitive. For example, /C and /c
are two different options.

Options can appear anywhere on the QCL command line. With a few exceptions
(/c, [Fe), each QCL option applies to the files that follow it on the command line
and does not affect files preceding it on the command line. You can also define
QCL options in the CL environment variable; these options are used every time
QCL is invoked. (See Section 4.3.36, “Giving Options with the CL Environment
Variable.”)

The remainder of this section describes all the QCL options in alphabetical
order. See Chapter 1, “Creating Executable Programs,” for descriptions of the
various categories of QCL options and the more commonly used options belong-
ing to each category. If an option can take one or more arguments, its format is
shown under an “Option” heading before its description.

QCL Command Reference 71

4.3.1 /A Options (Memory Models)

Default memory model

Uses of memory models

Memory models
and default libraries

A program’s memory model defines the rules that the compiler uses to set up the
program’s code and data segments in memory. QCL offers the memory-model
options described in Table 4.1.

Table 41 Memory Models

QCL Memory Data Code

Option Model Segments Segments

/AS Small One One

/AM Medium One One code segment per

module

/AC Compact Multiple data segments; One
data items must be
smaller than 64K

JAL Large Multiple data segments; One code segment per
data items must be module
smaller than 64K

/AH Huge Multiple data segments; One code segment per
data items may be larger module
than 64K

By default, the Microsoft QuickC Compiler uses the small memory model.

Generally, memory models with multiple code segments can accommodate
larger programs than can memory models with one code segment, and memory
models with multiple data segments can accommodate more data-intensive pro-
grams than can memory models with one data segment. Programs with multiple
code or data segments, however, are usually slower than programs with a single
code or data segment. It is often more efficient to compile with the smallest
possible memory model and use the near, far, and huge keywords to override
the default addressing conventions for any data items or functions that can’t be
accommodated in that model. (See Appendix B for more information about these
keywords and their interactions with standard memory models.)

The memory-model and math options used to compile the program determine
the library that the linker searches to resolve external references. The library
name is mLIBCf.LIB, where the memory-model option determines »: S for
small (default) model, M for medium model, C for compact model, or L for
large or huge model. The math option (see Section 4.3.12, “/FP Options™) deter-
mines f: E for emulator (default) or 7 for 8087/80287 option.

72 Microsoft QuickC Tool Kit

4.3.2 /c (Compile Without Linking)

The /c option tells the QCL command to compile all C source files given on the
command line, creating object files, but not to link the object files. No execu-
table file is produced. Regardless of its position on the command line, this option
applies to all source files on the command line.

Example
QCL FIRST.C SECOND.C /c THIRD.OBJ

This example compiles FIRST .C, creating the object file FIRST . OBJ, and
SECOND. C, creating the object file SECOND . OBJ. No processing is performed
with THIRD.OBJ because QCL skips the linking step.

4.3.3 /C (Preserve Comments During Preprocessing)

The /C (for “comment”) option preserves comments during preprocessing. If this
option is not given, the preprocessor strips comments from a source file because
they do not serve any purpose in later stages of compiling.

This option is valid only if the /E, /P, or /EP option is also used.

Example
QCL /P /C SAMPLE.C

This example produces a listing named SAMPLE . I. The listing file contains the
original source file, including comments, with all preprocessor directives ex-
panded or replaced.

4.3.4 /D (Define Constants and Macros)

Option
[Didentifier[[={string|number}]
Use the /D option to define constants or macros for your source file.

The identifier is the name of the constant or macro. It may be defined as a string
or as a number. The string must be enclosed in quotes if it includes spaces.

If you leave out both the equal sign and the string or number, the identifier is as-
sumed to be defined, and its value is set to 1. For example, /DSET is sufficient
to define a macro named SET with a value of 1.

The /D option is especially useful with the #if directive to conditionally compile
source files.

QCL Command Reference 73

Removing definitions

Duplicate definitions

If you have defined a numeric constant, giving the equal sign with no number re-
moves the definition of that constant from the source file. For example, to re-
move all occurrences of RELEASE, use the following option:

/DRELEASE=

Note that the identifier argument is case sensitive. For example, the /D option
above would have no effect on a constant named release thatis defined in
the source file.

Defining macros and constants with the /D option has the same effect as using a
#define preprocessor directive at the beginning of your source file. The identi-
fier is defined until either an #undef directive in the source file removes the defi-
nition or the compiler reaches the end of the file.

If an identifier defined in a /D option is also defined within the source file, QCL
uses the definition on the command line until it encounters the redefinition of the
identifier in the source file, as illustrated in Figure 4.1.

QCL /DMAXSIZE=512

main ()
MAXSIZE=512 {
in this part
of the program

#define MAXSIZE 256

MAXSIZE=256
in this part
of the program

Figure 4.1 Duplicate Definitions with the /D Option

The /D option has the same effect as the Define text box in the QuickC
environment.

Example

#if !defined (RELEASE)
_nheapchk () ;
#endif

This code fragment calls a function to check the near heap unless the constant
RELEASE is defined. While the program is under development, you can leave

74 Microsoft QuickC Tool Kit

RELEASE undefined and perform heap checking to find bugs. Assuming the
program name is BIG.C, you would compile with the following command:

OCL BIG.C

After you have found all of the bugs in the program, you can define RELEASE
in a /D option so that the program will run faster, as follows:

QCL /DRELEASE BIG.C

4.3.5 /E (Copy Preprocessor Output to Standard Output)

The /E option copies output from the preprocessor to the standard output (usu-
ally your terminal). This output is identical to the original source file except that
all preprocessor directives are carried out, macro expansions are performed, and
comments are removed. The /E option is normally used with the /C option (see
Section 4.3.3), which preserves comments in the preprocessed output. DOS re-
direction can be used to save the output in a disk file.

The /E option also places a #line directive at the beginning and end of each in-
cluded file and around lines removed by preprocessor directives that specify con-
ditional compilation.

This option is useful when you want to resubmit the preprocessed listing for
compilation. The #line directives renumber the lines of the preprocessed file so
that errors generated during later stages of processing refer to the original source
file rather than to the preprocessed file.

The /E option suppresses compilation. No object file or map file is produced,
even if you specify the /Fo or /Fm option on the QCL command line.

Example
QCL /E /C ADD.C > PREADD.C

The command above creates a preprocessed file with inserted #line directives
from the source file ADD.C. The output is redirected to the file PREADD . C.

4.3.6 /EP (Copy Preprocessor Output to Standard Output)

The /EP option is similar to the /E option: it preprocesses the C source file and
copies preprocessor output to the standard output. Unlike the /E option,
however, the /EP option does not add #line directives to the output.

Preprocessed output is identical to the original source file except that all pre-
processor directives are carried out, macro expansions are performed, and com-
ments are removed. The /EP option is normally used with the /C option (see
Section 4.3.3), which preserves comments in the preprocessed output.

QCL Command Reference 75

I —
The /EP option suppresses compilation; no object file or map file is produced,
even if you specify the /Fo or /Fm option on the QCL command line.
Examples
QCL /EP /C ADD.C
The command above creates a preprocessed file from the source file ADD.C. It
preserves comments but does not insert #line directives. The output appears on
the screen.
4.3.7 /F (Set Stack Size)
Option
[F number
The /F option sets the program stack size to number bytes, where number is a
hexadecimal number in the range 0001 to FFFF. If this option is not given, a
stack size of 2K is used.
You may want to increase the stack size if your program gets stack-overflow di-
agnostic messages. Conversely, if your program uses the stack very little, you
may want to decrease the size of your program by reducing the stack size. In
general, if you modify the stack size, you should not use the /Gs option to
suppress stack checking.
4.3.8 /Fb (Bind a Program)
Option
[Fbllboundexell

If you have installed the Microsoft C Optimizing Compiler, Version 5.1 or later,
and have created protected-mode libraries, you can use the /Fb option to bind a
program after compiling and linking. The boundexe argument specifies a name
for the bound executable program. The name must follow the option immedi-
ately with no intervening spaces.

Binding permits the same executable file to run in both OS/2 protected mode
and DOS 3.x (real mode). See the Version 5.1 Update document for the
Microsoft C Optimizing Compiler for more information.

76 Microsoft QuickC Tool Kit

4.3.9 /Fe (Rename Executable File)

Path names and extensions

Option
[Feexefile

By default, QCL names the executable file with the base name of the first file
(source or object) on the command line plus the extension .EXE. The /Fe option
lets you give the executable file a different name or create it in a different
directory.

Because QCL creates only one executable file, you can give the /Fe option any-
where on the command line. If more than one /Fe option appears, QCL gives the
executable file the name specified in the last /Fe option on the command line.

The /Fe option applies only in the linking stage. If you specify the /c option to
suppress linking, /Fe has no effect.

The exefile argument must appear immediately after the option with no interven-
ing spaces. The exefile argument can be a file specification, a drive name, or a
path specification. If exefile is a drive name or path specification, the QCL com-
mand creates the executable file in the given location, using the default name
(base name of the first file plus .EXE). A path specification must end with a
backslash (V) so that QCL can distinguish it from an ordinary file name.

You are free to supply any name and any extension you like for exefile. If you
give a file name without an extension, QCL automatically appends the .EXE
extension.

Examples
QCL /FeC:\BIN\PROCESS *.C
The example above compiles and links all source files with the extension .C in

the current directory. The resulting executable file is named PROCESS . EXE
and is created in the directory C:\BIN.

QCL /FeC:\BIN\ *.C

The example above is similar to the first example except that the executable file,
instead of being named PROCESS . EXE, is given the same base name as the
first file compiled. The executable file is created in the directory C:\BIN.

QCL Command Reference 77

4.3.10 /Fm (Create Map File)

Path names and extensions

Segment information

Group information

Option
[Fm{mapfile]

The /Fm option produces a map file. The map file contains a list of segments in
order of their appearance within the load module.

The mapfile argument must follow the /Fm option immediately with no interven-
ing spaces. The mapfile can be a file specification, a drive name, or a path speci-
fication. It can also be omitted.

If you give just a path specification as the mapfile argument, the path specifica-
tion must end with a backslash (\) so that QCL can distinguish it from an ordi-
nary file name. For example, to create a map file in the path C:\LIST, the
appropriate /Fm option is /FmC:\LIST\.

If you do not specify a name for the map file or if you supply only a drive name
or path, QCL uses the base name of the first source or object file on the com-
mand line plus the extension .MAP.

A fragment of a sample map file is shown below:

Start Stop Length Name Class
00000H O1E9FH O01EAOH _TEXT CODE
01EAOH OlEAOH 00000H C ETEXT ENDCODE

The information in the Start and Stop columns shows the 20-bit address
(in hexadecimal) of each segment, relative to the beginning of the load module.
The load module begins at location zero. The Length column gives the length
of the segment in bytes. The Name column gives the name of the segment, and
the Class column gives information about the segment type.

The starting address and name of each group appear after the list of segments. A
sample group listing is shown below:

Origin Group
01EA: 0 DGROUP

In this example, DGROUP is the name of the data group. DGROUP is used for
all near data (that is, all data not explicitly or implicitly placed in their own data
segment) in Microsoft QuickC programs.

78 Microsoft QuickC Tool Kit

Global symbols

The map file shown below contains two lists of global symbols: the first list is
sorted in ASCII-character order by symbol name and the second is sorted by
symbol address. The notation Abs appears next to the names of absolute sym-
bols (symbols containing 16-bit constant values that are not associated with pro-
gram addresses).

Global symbols in a map file usually have one or more leading underscores be-
cause the QuickC compiler adds an underscore to the beginning of variable
names. Many of the global symbols that appear in the map file are symbols used
internally by the Microsoft QuickC Compiler and the standard libraries.

Address Publics by Name
01EA:0096 STKHQQ
0000:1D86 _brkectl
01EA:04BO _edata
01EA:0910 _end

01EA:00EC __abrkp
01EA:009C __abrktb
O1EA:00EC __abrktbe
0000:9876 Abs __ acrtmsg
0000:9876 Abs _ acrtused
01EA:0240 argc
01EA:0242 argv

Address Publics by Value
0000:0010 _main

0000:0047 _htoi

0000:00DA _explé
0000:0113 __chkstk
0000:0129 __astart
0000:01C5 __cintDIV

The addresses of the external symbols show the location of the symbol relative
to zero (the beginning of the load module).

QCL Command Reference 79

Program entry point

Following the lists of symbols, the map file gives the program entry point, as
shown in the following example:

Program entry point at 0000:0129
NOTE Ifyou use the /Fm option with the /Gi option (for incremental compilation), QCL produces

a segmented-executable map file rather than a DOS executable map file. The segment addresses
in the file are different from those in DOS map files, and the file itself has a different format.

4.3.11 /Fo (Rename Object File)

Path names and extensions

Option
[Foobifile

By default, QCL gives each object file it creates the base name of the corre-
sponding source file plus the extension .OBJ. The /Fo option lets you give dif-
ferent names to object files or create them in a different directory. If you are
compiling more than one source file, you can use the /Fo option with each
source file to rename the corresponding object file.

Keep the following rules in mind when using this option:

m The obffile argument must appear immediately after the option, with no inter-
vening spaces.

m Each /Fo option applies only to the next source file on the command line.

You are free to supply any name and any extension you like for the objfile.
However, it is recommended that you use the conventional .OBJ extension be-
cause the linker and the LIB library manager use .OBJ as the default extension
when processing object files.

If you do not give a complete object-file name with the /Fo option (that is, if you
do not give an object-file name with a base and an extension), QCL names the
object file according to the following rules:

= If you give an object-file name without an extension (such as TEST), QCL
automatically appends the .OBJ extension.

= If you give an object-file name with a blank extension (suchas TEST.),
QCL leaves the extension blank.

= If you give only a drive or directory specification following the /Fo option,
QCL creates the object file on that drive or directory and uses the default file
name (the base name of the source file plus .OBJ).

80 Microsoft QuickC Tool Kit

You can use this option to create the object file in another directory or on
another disk. When you give only a directory specification, the directory specifi-
cation must end with a backslash (\) so that QCL can distinguish between a
directory specification and a file name.

Examples
QCL /FoB:\OBJECT\ THIS.C

In the example above, the source file THIS.C is compiled; the resulting object
file isnamed THIS.OBJ (by default). The directory specification
B:\OBJECT\ tells QCL tocreate THIS.OBJ in the directory named
\OBJECT on drive B.

QCL /Fo\OBJECT\ THIS.C THAT.C /Fo\SRC\NEWTHOSE.OBJ THOSE.C

In the example above, the first /Fo option tells the compiler to create the object
file THIS.OBJ (the result of compiling THIS.C)in the \OBJECT
directory. The second /Fo option tells the compiler to create the object file
named NEWTHOSE.CBJ (the result of compiling THOSE.C) inthe \SRC
directory. The compiler also creates the object file THAT .OBJ (the result of
compiling THAT . C) in the current directory.

4.3.12 /FP Options (Select Floating-Point-Math Package)

Interrupt fix-ups

The /FPi and /FPi87 options specify how your program handles floating-point-
math operations.

4.3.12.1 /FPi (Emulator)

The /FPi option is useful if you do not know whether an 8087 or 80287 coproces-
sor will be available at run time. Programs compiled with /FPi work as follows:

m If acoprocessor is present at run time, the program uses the coprocessor.

m If no coprocessor is present or if the NO87 environment variable has been
set, the program uses the emulator.

The /FPi option generates in-line instructions for an 8087 or 80287 coprocessor
and places the name of the emulator library (mLIBCE.LIB) in the object file. At
link time, you can specify an 8087/80287 library (mLIBC7.LIB) instead. If you
do not choose a floating-point option, QCL uses the /FPi option by default.

This option works whether or not a coprocessor is present because the Microsoft
QuickC Compiler does not generate “true” in-line 8087/80287 instructions. In-
stead, it generates software interrupts to library code. The library code, in turn,

QCL Command Reference 81

fixes up the interrupts to use either the emulator or the coprocessor depending on
whether a coprocessor is present. The fix-ups can be removed by linking the file
RMFIXUP.OBJ with the C program.

Linking this file with QuickC programs can save execution time (the time re-
quired to fix up all the interrupts the first time). However, a C program linked
with RMFIXUP.OBJ will run only if a coprocessor is present.

4.3.12.2 /FPi87 (Coprocessor)

The /FPi87 option includes the name of an 8087/80287 library (mLIBC7.LIB) in
the object file. At link time, you can override this option and specify an emulator
library (mLIBCE.LIB) instead so that the program will run on computers
without coprocessors.

If you use the /FPi87 option and link with mLIBC7.LIB, an 8087 or 80287 co-
processor must be present at run time; otherwise, the program fails and the fol-
lowing error message is displayed:

run-time error R6002
— floating peint not loaded

If you compile with /FPi87 and link with mLIBCE.LIB, you can set the
NO87 environment variable to suppress the use of the coprocessor (see Section
4.3.12.5).

Compiling with the /FPi87 option results in the smallest, fastest programs
possible for handling floating-point arithmetic.

4.3.12.3 Library Considerations for Floating-Point Options

You may want to use libraries in addition to the default library for the floating-
point option you have chosen on the QCL command line. For example, you may
want to create your own libraries or object files, then link them at a later time
with object files that you have compiled using different QCL options.

You must be sure that you use only one standard combined C library when you
link. You can control which library is used in one of two ways:

1. Make sure the first object file passed to the linker has the name of the desired
library. For example, if you want to use an 8087/80287 library, give the
/FPi87 option before the first source-file name on the QCL command line; or
give the name of an object file compiled with /FPi87 as the first file name on
the command line. All floating-point calls in this object file refer to the
8087/80287 library.

82 Microsoft QuickC Tool Kit

Removing library names

2. Give the /NOD (no default-library search) option after the /link option on the
QCL command line. Then specify the name of the library you want to use on
the QCL command line. The /NOD option overrides the library names
embedded in the object files. Because the linker searches libraries given on
the command line before it searches libraries named in object files, all
floating-point calls will refer to the libraries you specify.

Another complication might arise if you create your own libraries: normally,
each module in the library you create will contain a standard-library name, and
the linker will try to search the standard libraries named in the modules when it
links with your library.

The safest course, especially when you are distributing libraries to others, is to
use the /Z1 option when you compile the object files that make up your libraries.
The /Z1 option tells the compiler net to put library names in the object files.
Later, when you link other object files with your library, the standard library
used for linking will depend only on the floating-point and memory-model op-
tions used to compile those object files.

Examples
QCL CALC.C ANOTHER SUM

In the example above, no floating-point option is given, so QCL compiles the
source file CALC.C with the default floating-point option, /FPi. The /FPi op-
tion generates in-line instructions and selects the small-model-emulator com-
bined library (SLIBCE.LIB), which is the default.

QCL /FPi87 CALC.C ANOTHER.OBJ SUM.OBJ /link SLIBCE.LIB /NOD

In the example above, CALC.C is compiled with the /FPi87 option, which
selects the SLIBC7.LIB library. The /link option, however, overrides the default
library specification: the /NOD option suppresses the search for the default
library, and the alternate math library (SLIBCE.LIB) is specified. The resulting
executable file, CALC .EXE, is linked with SLIBCE.LIB.

4.3.12.4 Compatibility between Floating-Point Options

Each time you compile a source file, you can specify a floating-point option.
‘When you link two or more source files to produce an executable program file,
you are responsible for ensuring that floating-point operations are handled in a
consistent way.

QCL Command Reference 83

Coprocessor-suppression
message

Examples
QCL /AM CALC.C ANOTHER SUM /link MLIBC7.LIB /NOD

The example above compiles the program CALC.C with the medium-model op-
tion (/AM). Because no floating-point option is specified, the default (/FPi) is
used. The /FPi option generates in-line 8087/80287 instructions and specifies the
emulator library MLIBCE.LIB in the object file. The /link field specifies the
/NOD option and the name of the medium-model 8087/80287 library,
MLIBC?7.LIB. Specifying the 8087/80287 library forces the program to use an
8087 coprocessor; the program fails if a coprocessor is not present.

4.3.12.5 The NO87 Environment Variable

Programs compiled with the /FPi option automatically use an 8087 or 80287 co-
processor at run time if one is installed. You can override this and force the use
of the emulator instead by setting an environment variable named NO87.

If NOR87 is set to any value when the program is executed, the program will use
the emulator even if a coprocessor is present. When this occurs, the NO87 set-
ting is displayed on the standard output as a message. The message is displayed
only if a coprocessor is present and its use is suppressed; if no coprocessor is pre-
sent, no message appears. If you want to force use of the emulator, but don’t
want a message to appear, set NO87 equal to one or more spaces. The variable is
still considered to be defined.

Note that the presence or absence of the NO87 definition determines whether
use of the coprocessor is suppressed. The actual value of the NO87 setting is
used only for the message.

The NO87 variable takes effect with any program linked with an emulator
library (mLIBCE.LIB). It has no effect on programs linked with 8087/80287
libraries (mLIBC7.LIB).

Examples

SET NO87=Use of coprocessor suppressed

The example above causes the message Use of coprocessor
suppressed to appear when a program that would use an 8087 or 80287 co-
processor is executed on a computer that has such a coprocessor.

SET NO87=space

The example above sets the NO87 variable to the space character. Use of the co-
processor is still suppressed, but no message is displayed.

84 Microsoft QuickC Tool Kit

4.3.12.6 Standard Combined Libraries

Table 4.2 shows each combination of memory-model and floating-point options
and the corresponding library name that QCL embeds in the object file.

Table 4.2 QCL Options and Default Libraries

Floating-Point Memory-Model Default

Option Option Library

/FPi87 /AS SLIBC7.LIB
/AM MLIBC7.LIB
/AC CLIBC7.LIB
/AL or /AH LLIBC7.LIB

[FPi /AS SLIBCE.LIB
/AM MLIBCE.LIB
/AC CLIBCE.LIB
/AL or /AH LLIBCE.LIB

4.3.13 /G0, /G2 Options (Generate Instructions for 8086 or 80286
Processor)

If you have an 80286 processor, you can use the /G2 option to enable the instruc-
tion set for your processor. When you use the /G2 option, the compiler automati-
cally defines the identifier M_1286.

Although it is usually advantageous to enable the appropriate instruction set, you
are not required to do so. If you have an 80286 processor, for example, but you
want your code to be able to run on an 8086, do not compile with the /G2 option.

The /GO option enables the instruction set for the 8086/8088 processor. You do
not have to specify this option explicitly because the 8086/8088 instruction set is
used by default. Programs compiled this way will also run on the machines with
the 80286 processor but will not take advantage of its processor-specific instruc-
tions. When you compile programs for the 8086/8088 processor, the compiler au-
tomatically defines the identifier M_I8086.

The /GO and /G2 options also enable the assembling of instructions with in-
line assembler. If your program includes in-line assembler code that uses a
mnemonic instruction supported only on 80286 processors or 80287 coproces-
sors, you must compile with the /G2 option; compiling with /GO results in an
error. Note that it is illegal to use 80286 mnemonics as labels regardless of the
processor option you choose.

QCL Command Reference 85

These options apply to all file names that follow on the command line until
another /GO or /G2 option appears.

Note that you may also specify /G1, which allows 80186 instructions in in-line
assembly. The code generated with the /G1 option, however, is restricted to the
8086 instruction set. This option is of limited usefulness.

4.3.14 /Gc (Use FORTRAN/Pascal Calling Convention)

Parameter-passing conventions

Stack-cleanup conventions

The pascal and fortran keywords

The /Gc option

The fortran, pascal, and cdecl keywords and the /Gc option allow you to con-
trol the function-calling and naming conventions so that your QuickC programs
can call and be called by functions that are written in FORTRAN or Pascal.

Because functions in Microsoft QuickC programs can take a variable number of
arguments, QuickC must handle function calls differently from languages such
as Pascal and FORTRAN. Pascal and FORTRAN normally push actual param-
eters to a function in left-to-right order so that the last argument in the list is the
last one pushed on the stack. In contrast, because QuickC functions do not al-
ways know the number of actual parameters, they must push their arguments
from right to left, so that the first argument in the list is the last one pushed.

Another difference between QuickC programs and FORTRAN or Pascal pro-
grams is that in QuickC programs, the calling function must remove the argu-
ments from the stack. In Pascal and FORTRAN programs, the called function
must remove the arguments. If the code for removing arguments is in the called
function (as in Pascal and FORTRAN), it appears only once; if it is in the calling
function (as in QuickC), it appears every time there is a function call. Because a
typical program has more function calls than functions, the Pascal/FORTRAN
method results in slightly smaller, more efficient programs.

The Microsoft QuickC Compiler can generate the Pascal/FORTRAN calling con-
vention in one of several ways. The first is through the use of the pascal and
fortran keywords. When these keywords are applied to functions, or to pointers
to functions, they indicate a corresponding Pascal or FORTRAN function (or a
function that uses the Pascal/FORTRAN calling convention). Therefore, the cor-
rect calling convention must be used. In the following example, sort isde-
clared as a function using the alternative calling convention:

short pascal sort(char *, char *);

The pascal and fortran keywords can be used interchangeably. Use them when
you want to use the left-to-right calling sequence for selected functions only.

The second method for generating the Pascal/FORTRAN calling convention is
to use the /Gc option. If you use the /Gc option, the entire module is compiled
using the alternative calling convention. You might use this method to make it

86 Microsoft QuickC Tool Kit

The cdec! keyword

Naming conventions

possible to call all the functions in a QuickC module from another language or to
gain the performance and size improvement provided by this calling convention.

When you use /Gc to compile a module, the compiler assumes that all functions
called from that module use the Pascal/FORTRAN calling convention, even if
the functions are defined outside that module. Therefore, using /Gc would nor-
mally mean that you cannot call or define functions that take variable numbers
of parameters and that you cannot call functions such as the QuickC library func-
tions that use the QuickC calling sequence. In addition, if you compile with the
/Gc option, either you must declare the main function in the source program
with the cdecl keyword, or you must change the start-up routine so that it uses
the correct naming and calling conventions when calling main.

The cdecl keyword in Microsoft QuickC is the “inverse” of the fortran and
pascal keywords. When applied to a function or function pointer, it indicates
that the associated function is to be called using the normal QuickC calling con-
vention. This allows you to write QuickC programs that take advantage of the
more efficient Pascal/FORTRAN calling convention while still having access to
the entire QuickC library, other QuickC objects, and even user-defined functions
that accept variable-length argument lists. The cdecl keyword takes precedence
over the /Gc option.

For convenience, the cdecl keyword has already been applied to run-time-library
function declarations in the include files distributed with the QuickC compiler.
Therefore, your QuickC programs can call the library functions freely, no matter
which calling conventions you compile with. Just make sure to use the appro-
priate include file for each library function the program calls.

Use of the pascal and fortran keywords, or the /Gc option, also affects the
naming convention for the associated item (or, in the case of /Gc, all items): the
name is converted to uppercase letters, and the leading underscore that QuickC
normally prefixes is not added. The pascal and fortran keywords can be applied
to data items and pointers, as well as to functions; when applied to data items or
pointers, these keywords force the naming convention described above for that
item or pointer.

The pascal, fortran, and cdecl keywords, like the near, far, and huge key-
words, are disabled by use of the /Za option. If this option is given, these names
are treated as ordinary identifiers, rather than keywords.

Examples

int cdecl var_print(char*,...);

In the example above, var_print is declared with a variable number of argu-
ments using the normal right-to-left QuickC function-calling convention and

QCL Command Reference 87

naming conventions. The cdecl keyword overrides the left-to-right calling
sequence set by the /Gc option if the option is used to compile the source file in
which this declaration appears. If this file is compiled without the /Gc option,
cdecl has no effect since it is the same as the default QuickC convention.

float *pascal nroot (number, root):;

The example above declares nroot to be a function returning a pointer to a
value of type float. The function nroot uses the default calling sequence (left-
to-right) and naming conventions for Microsoft FORTRAN and Pascal programs.

4.3.15 /Gi (Use Incremental Compilation)

Module-description table (MDT)

Incrementally compile,
update MDT

Option
/Gil[mdtname]]

‘When the /Gi option is given, QCL compiles only those functions in each C
source file that have changed since the last time the source file was compiled.
The process of compiling only the changed functions in a source file is known as
“incremental compilation.” Because the compiler does not need to handle the en-
tire source file, incremental compilation is considerably faster than regular com-
pilation. The object files created and the code generated when you compile
incrementally, however, may be larger.

If you specify any of the optimization (/Ostring) options on the same line with
/Gi, the compiler ignores the /Gi option.

The compiler tracks changes for incremental compilation in a file known as a
“module-description table,” or MDT. A single MDT can contain change informa-
tion for multiple source files. If mdtname is given, the compiler saves change in-
formation for all source files in a single MDT named mdtname. If you do not
specify mdtname, the compiler creates one MDT for each source file named on
the command line. Each MDT has the base name of the source file and the

.MDT extension.

The types of changes made to a source file determine whether the compiler can
incrementally compile a source file and whether the compiler creates or updates
the corresponding MDT.

Except as noted below, if changes are confined to function bodies, the QCL com-
mand compiles only those changed functions and the “global regions” of the
source file. Global regions are the parts of the source file between the closing

88 Microsoft QuickC Tool Kit

curly brace (}) of one function and the opening curly brace ({) of the next func-
tion (see Figure 4.2). The compiler also updates the MDT to reflect the changes
to the source file.

#include <stdio.h>
Global region #define ULONG unsigned long
void main (int argc, char **argv)

{

}

Global region int funcl (int a, int b)

{

}

Global region float func2 (float ¢, float d)

{

Figure 4.2 Global Regions for Incremental Compilation

If a global region of the source file has changed, QCL recompiles from the point
where the change occurred. A change in a global region means any change in the
storage-class specifier, type specifier, function declarator, or formal-parameter

declarations of a function. Similarly, if a file specified in an #include directive
has a more recent modification date than the including object module, the source
file is recompiled from the point where the #include directive appears. In addi-
tion, if a function is defined within an include file, the source file is recompiled
from the start of the function.

QCL Command Reference 89

Compile whole program,
don’t update MDT

Using function prototypes

Compilation errors

Incremental linking

The compiler must recompile an entire source file, but does not update its MDT,
in any of these cases:

m A function definition appears within an include file.

m The compiler does not have enough memory to create the MDT.

For fastest compilation with /Gi, use a prototype for each function in your pro-
gram. A function prototype lists the name and type of the function and the name
and type of each of its parameters. (See “Declaring a Function’s Parameters,” in
Chapter 2 of C for Yourself for more information.) The C include files that
Microsoft supplies contain prototypes for all the functions in the C run-time
library. The information in the prototypes lets the compiler check the number
and type of arguments to the function.

If you use the /Gi option and your program contains functions without corre-
sponding prototypes, the compiler issues the following level 3 warning message:

no function prototype given

When the /Gi option is given and errors occur during compilation, the compiler
still creates a partial object file; that is, it generates object code up to the point
where the error occurs. It places a record in each object file indicating that the
object file is invalid. If you try to link one of these object files, the linker issues
the following error message:

invalid object due to aborted incremental compile

When the compiler can perform incremental compilation, it invokes a special
form of the linker that performs “incremental linking.” Like incremental compil-
ing, incremental linking links only the object files that changed from the pre-
vious link. No library searches are performed; the assumption is that the libraries
are exactly the same as in the previous link. Incremental linking is considerably
faster than regular linking. If any of the changes to the program prevent QuickC
from performing an incremental link, it automatically performs a full link.

NOTE Ifyou use the /Gi option with the /Fm option (which produces a map file), the map file is a
segmented-executable map file rather than a DOS executable map file. The segment addresses in
the file are different from those in DOS map files, and the file itself has a different format.

90 Microsoft QuickC Tool Kit

Examples

Assume three C source files named MOD1.C, MOD2.C, and MOD3.C for the
following examples.

QCL /Gi MOD1.C MOD2.C MOD3.C

The example above incrementally compiles and links the three C source files.
Three MDTs are created or updated: MOD1.MDT, MOD2 .MDT, and
MOD3 .MDT.

QCL /GiMYMDT.MDT MOD1.C MOD2.C MOD3.C

The example above has the same effect as the preceding example, except that
the compiler creates or updates only one MDT named MYMDT .MDT. This MDT
includes all change-control information for the three C source files.

4.3.16 /Gs (Turn Off Stack Checking)

Stack probes

When to use the /Gs option

When to use
the check_stack pragma

You can reduce the size of a program and speed up execution slightly by remov-
ing stack probes. You can do this with either the /Gs option or the check_stack
pragma. Note that the /Gs option and the check_stack pragma have no effect on
standard C library routines because no stack checking is performed for these
routines.

A “stack probe” is a short routine called on entry to a function to verify that the
program stack has enough room to allocate local variables required by the func-
tion. The stack-probe routine is called at every function-entry point. Ordinarily,
the stack-probe routine generates a stack-overflow message if the required stack
space is not available. When stack checking is turned off, the stack-probe routine
is not called, and stack overflow can occur without being diagnosed (that is, no
stack-overflow message is printed).

Use the /Gs option when you want to turn off stack checking for an entire mod-
ule if you know that the program does not exceed the available stack space. For
example, stack probes may not be needed for programs that make very few func-
tion calls or that have only modest local-variable requirements. In the absence of
the /Gs option, stack checking is on. The /Gs option should be used with great
care. Although it can make programs smaller and faster, it may mean that the
program will not be able to detect certain execution errors.

Use the check_stack pragma when you want to turn stack checking on or off
only for selected routines, leaving the default (as determined by the presence or
absence of the /Gs option) for the rest. When you want to turn off stack check-
ing, put the following line before the definition of the function you don’t want to
check:

#pragma check stack (off)

QCL Command Reference 91

Note that the preceding line disables stack checking for all routines that follow it
in the source file, not just the routines on the same line. To reinstate stack check-
ing, insert the following line:

#pragma check stack (on)

If no argument is given for the check_stack pragma, stack checking reverts to
the behavior specified on the command line: disabled if the /Gs option is given,
or enabled if it is not. The interaction of the check_stack pragma with the /Gs
option is summarized in Table 4.3.

Table 4.3 Using the check_stack Pragma

Compiled with
Syntax /Gs Option? Action
#pragma check_stack() Yes Tums off stack checking
for routines that follow
#pragma check_stack() No Tums on stack checking
for routines that follow
#pragma check_stack(on) Yes or no Tums on stack checking
for routines that follow
#pragma check_stack(off) Yes orno Turns off stack checking

for routines that follow

NOTE For versions of Microsoft QuickC prior to 2.0, the check_stack pragma had a different for-
mat: check_stack(+) to enable stack checking and check_stack(-) to disable stack checking. Al-
though the Microsoft QuickC Compiler still accepts this format, its use is discouraged because it
may not be supported in future versions.

Example
QCL /Gs FILE.C

This example optimizes the file FILE.C by removing stack probes with the
/Gs option. If you want stack checking for only a few functionsin FILE.C,

you can use the check_stack pragma before and after the definitions of func-
tions you want to check.

4.3.17 /Gt (Set Data Threshold)
Option
[Gtnumber]]

The /Gt option causes all data items whose size is greater than or equal to
number bytes to be allocated in a new data segment.

92 Microsoft QuickC Tool Kit

When number is specified, it must follow the /Gt option immediately with no in-
tervening spaces. When /Gt is specified without a number, the default thresh-
old value is 256. When the /Gt option is omitted, the default threshold value

is 32,767.

The option is particularly useful with programs that have more than 64K of ini-
tialized static and global data in small data items.

By default, the compiler allocates all static and global data items within the de-
fault data segment in the small and medium memory models. In compact-,
large-, and huge-model programs, only iritialized static and global data items
are assigned to the default data segment.

NOTE You can use the /Gt option only if you are creating a compact-, large-, or huge-model pro-
gram because small- and medium-model programs have only one data segment.

4.3.18 /HELP (List the Compiler Options)

Option

/HELP
/help

This option displays a list of the most commonly used compiler options. QCL
processes all information on the line containing the /help option and displays the
command list.

Unlike all the other QCL options, /HELP is not case sensitive. Any combination
of uppercase and lowercase letters is acceptable. For example, /hELp is a valid
form of this option. The option has no abbreviation.

4.3.19 /I (Search Directory for Include Files)

Option
[Idirectory

You can add to the list of directories searched for include files by using the /I
(for “include™) option. This option causes the compiler to search the directory
you specify before searching the directories given by the INCLUDE environ-
ment variable. That way, you can give a particular file special handling without
changing the compiler environment you normally use.

The space between /I and directory is optional. To search more than one
directory, you can give additional /I options on the QCL command line. The
directories are searched in order of their appearance on the command line.

QCL Command Reference 93

The directories are searched only until the specified include file is found. If the
file is not found in the given directories or the standard places, the compiler
prints an error message and stops processing. When this occurs, you must restart
compilation with a corrected directory specification.

Examples
QCL /I \INCLUDE /I\MY\INCLUDE MAIN.C

In the example above, QCL looks for the include files requested by MAIN.C in
the following order: first in the directory \ INCLUDE, then in the directory
\MY\ INCLUDE, and finally in the directory or directories assigned to the
INCLUDE environment variable.

QCL /X /I \ALT\INCLUDE MAIN.C

In the example above, the compiler looks for include files only in the directory
\ALT\INCLUDE, First the /X option tells QCL. to consider the list of standard
places empty; then the /I option specifies one directory to be searched.

4.3.20 /J (Change Default char Type)

In Microsoft QuickC, the char type is signed by default, so if a char value is
widened to int type, the result is sign-extended.

You can change this default to unsigned with the /J option, causing the char
type to be zero-extended when widened to int type. If a char value is explicitly
declared signed, however, the /J option does not affect it, and the value is sign-
extended when widened to int type. This option is useful when working with
character data that eventually will be translated into a language other than
English.

When you specify /J, the compiler automatically defines the identifier
_CHAR_UNSIGNED, which is used with #ifndef in the LIMITS.H include file to
define the range of the default char type.

4.3.21 ﬁl/; c,d L; (Compile for Real Mode), /Lp (Compile for Protected
ode

If you have installed the Microsoft C Optimizing Compiler, Version 5.1 or later,
and have created protected-mode libraries, you can use the /Lp option to compile
programs for the OS/2 protected-mode environment.

94 Microsoft QuickC Tool Kit

If you compile with /Lp, you must make sure the linker uses the appropriate
protected-mode library. You can use either of the following methods:

m Rename the protected-mode library so that it has the same name as the appro-
priate standard combined library. For example, if you use the small memory
model and emulator math package (the defaults) for compilation, the linker
searches for a library named SLIBCE.LIB. You could change the name of
the protected-mode library SLIBCEP.LIB to SLIBCE.LIB, and the linker
would link with the protected-mode library automatically.

m Give the /NOD option to the linker so that it does not look for the standard
combined library and specify the protected-mode library explicitly. Using the
same example, you would compile and link using the following command
line:

QCL PROTMOD.C /link /NOD SLIBCEP.LIB

This command line tells the linker not to link with SLIBCE.LIB and to link
with SLIBCEP.LIB instead.

The /Lc and /Lr options are synonymous. Both options compile the program for
08/2 real mode or for the DOS environment. As with the /Lp option, if you com-
pile with /Lc or /Lr, you must make sure the linker uses the appropriate real-
mode library; either use /NOD to tell the linker not to search for the default
library, or rename the appropriate real-mode library so that it has the default
name.

4.3.22 /Li(Link Incrementally)

The /Li option specifies incremental linking. When you link incrementally, the
linker by default pads all near functions to a 40-byte boundary. Note that the in-
cremental linker is automatically invoked whenever you use the /Gi option for in-
cremental compilation.

4.3.23 /NT (Name the Text Segment)

Option
/NT textsegment

The /NT option renames a text segment in a QuickC program. The textsegment
argument can be any combination of letters and digits. The space between /NT
and ftextsegment is optional.

QCL Command Reference 95

A “segment” is a contiguous block of binary information (code or data) pro-
duced by the Microsoft QuickC Compiler. Every module (that is, every object
file produced by the compiler) has at least two segments: a text segment contain-
ing the program instructions and a data segment containing the program data.
The program’s memory model determines how many text segments and how
many data segments the program has (see Sections B.2.1-B.2.5).

Every segment in every module has a name. The linker uses this name to define
the order in which the segments of the program appear in memory when loaded
for execution. (Note that the segments in the group named DGROUP are an
exception.)

The QuickC compiler normally creates text- and data-segment names. In small-
and compact-memory models, which have a single text segment, the text seg-
ment is named _TEXT. In medium, large, and huge models, which have multiple
text segments, the code for each module is placed in a separate segment named
module_TEXT where module is the base name of the module. In general, you
should not use the /NT option with the small and compact memory models.
Doing so may cause fixupp-overflow errors at link time.

The /NT option overrides the default text-segment name used by the QuickC
compiler (thus overriding the default loading order). This option gives the text
segment a new name in each module being compiled.

4.3.24 /O Options (Optimize Program)
Option
/O string

The /O options give you control over the optimizing procedures that the com-
piler performs. The string consists of one or more of the letters “d,” “1,” “t,” and
“x.” The list below shows how each of these affects optimization:

Letter Optimizing Procedure

/0Od Turmns off all optimization

/01 Enables loop optimization

/0, /Ot Favors execution speed during optimization (the default)
/0x Maximizes optimization

The letters can appear in any order. More than one /O option can be given; the
compiler uses the last one on the command line if any conflict arises. Each op-
tion applies to all source files that follow on the command line.

96 Microsoft QuickC Tool Kit

4.3.24.1 /Od (Turn Off Optimization)

The /Od (for “debug™) option tells the compiler to turn off all optimizations in
the program, This option speeds compilation because the compiler does not take
time to perform optimizations.

The /Od option is recommended when you compile with the /Zi option (de-
scribed in Section 4.3.31) to include debugging information. This is because the
/Od option does not reorganize code, thus making it easier to debug.

4.3.24.2 /Ol (Optimize Loops)

The /Ol option tells the compiler to perform loop optimizations, which store
frequently used loop variables in registers. The /Ox option implicitly turns on the
/O1 option.

4.3.24.3 /0 and /Ot (Minimize Execution Time)

‘When you do not use any of the /O options, the QCL command automatically
favors program execution speed in the optimization. The /O and /Ot options
have the same effect as this default.

Wherever the compiler has a choice between producing smaller (but perhaps
slower) and larger (but perhaps faster) code, the compiler generates faster code.
For example, when the /Ot option is in effect, the compiler generates intrinsic
functions to perform shift operations on long operands.

4.3.24.4 /Ox (Use Maximum Optimization)

The /Ox option is a shorthand way to combine optimizing options to produce the
fastest possible program. Its effect is the same as using the following options on
the same command line:

/01t /Gs

That is, the /Ox option performs loop optimizations, favors execution time over
code size, and removes stack probes.

Example
QCL /0Ol FILE.C
This command tells the compiler to perform loop optimizations when it com-

piles FILE.C. The compiler favors program speed over program size because
the /Ot option is also specified by default.

QCL Command Reference 97

4.3.25 /P (Create Preprocessor-Output File)

The /P writes preprocessor output to a file with the same base name as the source
file but with the .I extension. The preprocessed listing file is identical to the origi-
nal source file except that all preprocessor directives are carried out and macro
expansions are performed. The /P option is normally used with the /C option (dis-
cussed in Section 4.3.3), which preserves comments in the preprocessed output.

The /P option suppresses compilation; no object file or listing is produced, even
if you specify the /Fo or /Fm option on the QCL command line.

Example
QCL /P MAIN.C

The example above creates the preprocessed file MAIN. I from the source file
MAIN.C.

4.3.26 /Tc (Specify C Source File)
Option

[Tc filename

The /Tc option tells the QCL command that the given file is a C source file. The
space between /Tc and filename is optional.

If this option does not appear, QCL assumes that files with the extension .C are
C source files, files with the extension .LIB are libraries, and files with any other
extension or with no extension are object files. If you use the /Tc option, QCL
treats the given file as a C source file regardless of its extension, if any.

If you need to specify more than one source file with an extension other than .C,
you must specify each source file in a separate /Tc option.

Example
OCL MAIN.C /Tc TEST.PRG /Tc COLLATE.PRG PRINT.PRG

In the example above, the QCL command compiles the three source files
MAIN.C, TEST.PRG, and COLLATE .PRG. Because the file PRINT.PRG is
given without a /Tc option, QCL treats it as an object file. Therefore, after com-
piling the three source files, QCL links the object files MAIN.OBJ,
TEST.OBJ, COLLATE.OBJ, and PRINT.PRG.

98 Microsoft QuickC Tool Kit

4.3.27 /U, /u (Remove Predefined Names)
Options

[Uname

Ju

The /U (for “undefine”) option turns off the definition of one of the names that
the QuickC compiler predefines. The /u option turns off the definitions of all pre-
defined names except for the name of the memory model. These options do not
apply to user-defined names.

These names are useful in writing portable programs. For instance, they can be
used with compiler directives to conditionally compile parts of a program, de-
pending on the processor and operating system being used. The predefined iden-
tifiers and their meanings are listed in Table 4.4.

Table 4.4 Predefined Names

When
Syntax Purpose Defined
_QcC Identifies compiler as Microsoft Always
QuickC.
MSDOS Identifies target operating system Always
as MS-DOS.
M_18086 Identifies target machine as an ‘When the /GO
8086. option is given
and by default
M_1286 Identifies target machine as an When the /G2
80286. option is given
M_I86 Identifies target machine as a Always
member of the Intel® family.
M_I86mM Identifies memory model, where Always
m is either S (small model), C
(compact model), M (medium
model), L (large model), or H
(huge model). If huge model is
used, both M_I86LM and
M_I86HM are defined.
NO_EXT_KEYS Indicates that Microsoft-specific When the [Za

_CHAR_UNSIGNED

language extensions and extended
keywords are disabled.

Indicates that the char type is un-
signed by default.

option is given

When the /J
option is given

QCL Command Reference 99

Limits on command-line
definitions

One or more spaces may separate /U and name. You may specify more than one
/U option on the same command line.

The /u option turns off the definitions of all predefined names except M_I86M,
which identifies the memory model. You can use the /U option to remove the
definition of M_I86mM. If you do, however, you must explicitly define the
NULL constant in your program because the definition of NULL in the STDIO.H
and STDDEF H files depends on the memory model in use.

The /U and /u options are useful if you need to give more than the maximum
number of definitions (15 if the /Za or /J option is used, 14 if both options are
given, or 16 otherwise) on the command line or if you have other uses for the
predefined names. For each predefined name you remove, you can substitute a
definition of your own on the command line. When the definitions of all six pre-
defined names are removed, you can specify up to 23 command-line definitions.
Because MS-DOS limits the number of characters you can type on a command
line, however, the number of definitions you can specify in practice is probably
fewer than 23,

Example
QCL /UMSDOS /UM I86 WORK.C

This example removes the definitions of two predefined names. Note that the /U
option must be given twice to do this.

4.3.28 /W, /w (Set Warning Level)

WO, Iw

Options
/W{0111213}

W

You can suppress certain classes of warning messages produced by the compiler
by using the /w, /W0, /W1, /W2, or /W3 option. Compiler warning messages are
any messages beginning with C4; see Appendix D, “Error-Message Reference,”
for a complete list of these messages.

Warnings indicate potential problems (rather than actual errors) with statements
that may not be compiled as you intend.

The /W options affect only source files given on the command line; they do not
apply to object files.

The /WO option turns off all warning messages. This option is useful when you
compile programs that deliberately include questionable statements. The /WO op-
tion applies to the remainder of the command line or until the next occurrence of
a /W option on the command line. The /w option has the same effect as the /WO
option.

100 Microsoft QuickC Tool Kit

w

m2

/W3

The /W1 option (the default) causes the compiler to display most warning
messages.

The /W2 option causes the compiler to display an intermediate level of warning
messages. Level-2 warnings may or may not indicate serious problems. They in-
clude warnings such as the following:

m Use of functions with no declared return type

m Failure to put return statements in functions with non-void return types

m Data conversions that would cause loss of data or precision

The /W3 option displays the highest level of warning messages, including warn-

ings about the use of non-ANSI features and extended keywords and about func-
tion calls that precede their function prototypes in the program.

Note that the descriptions of the warning messages in Appendix D indicate the
warning level that must be set (that is, the number for the appropriate /W option)
for the message to appear.

Example
QCL /W3 CRUNCH.C PRINT.C

This example enables all possible warning messages when the source files
CRUNCH.C and PRINT.C are compiled.

4.3.29 /X (Ignore Standard Include Directory)

You can prevent the QuickC compiler from searching the standard places for in-
clude files by using the /X (for “exclude”) option. When QCL sees the /X op-
tion, it does not search the current directory or any directories specified in the
INCLUDE environment variable.

This option is often used with the /I option to define the location of include files
that have the same names as include files found in other directories but that con-
tain different definitions. See Section 4.3.19 for an example of /X used with /1.

4.3.30 /Ze, /Za (Enable or Disable Language Extensions)

The Microsoft QuickC Compiler supports the latest draft of the ANSI C stand-
ard. In addition, it offers a number of features beyond those specified in the
ANSI C standard. These features are enabled when the /Ze (default) option is in
effect and disabled when the /Za option is in effect. They include the following:

m The cdecl, far, fortran, huge, near, and pascal keywords

m Use of casts to produce lvalues, as in the following example:

QCL Command Reference 101

int *p;
{((long *)p)++;

The preceding example could be rewritten to conform with the ANSI C stand-
ard as shown below:

p = (int *) ((char *)p + 1);
Redefinitions of extern items as static, as in the example below:

extern int foo():;
static int foo()

{}

Use of trailing commas (,) rather than an ellipsis (,...) in function declarations
to indicate variable-length argument lists, as in the following example:

int printf(char *,)};

Benign typedef redefinitions within the same scope, as in the following
example:

typedef int INT;
typedef int INT;

Use of mixed character and string constants in an initializer, as in the follow-
ing example:

char arr([5] = {('a', 'b’', "cde"}:;
Use of bit fields with base types other than unsigned int or signed int

The use of single-line comments, which are introduced with two slash
characters, as in the following example:

// This is a single-line comment.

Use the /Za option if you plan to port your program to other environments. The
/Za option tells the compiler to treat extended keywords as simple identifiers and
disable the other extensions listed above.

When you specify /Za, the compiler automatically defines the identifier
NO_EXT_KEYS. In the include files provided with the Microsoft QuickC Com-
piler run-time library, this identifier is used with #ifndef to control use of the
cdecl keyword on library function prototypes. For an example of this conditional
compilation, see the file STDIO.H.

102 Microsoft QuickC Tool Kit

4.3.31 /Zi,/Zd (Compile For Debugging)

The /Zi option produces an object file containing full symbolic-debugging infor-
mation for use with the QuickC integrated debugger and the CodeView sym-
bolic debugger. This object file includes full symbol-table information and line
numbers.

The /Zd option produces an object file containing line-number records corre-
sponding to the line numbers of the source file. Use /Zd if you plan to debug
with the SYMDEB debugger. This option is also useful in cases where you want
to reduce the size of an executable file that you will be debugging with the
CodeView debugger, and you do not need to use the expression evaluator during
debugging.

Example
OCL /c /Zi TEST.C

This command produces an object file named TEST.OBJ that contains line
numbers corresponding to the linesin TEST.C.

4.3.32 /ZI (Remove Default-Library Name from Object File)

Ordinarily QCL places the name of the default library, SLIBCE.LIB, in the ob-
ject file so that the linker can automatically find the correct library to link with
the object file.

The /Z1 option tells the compiler not to place the default-library name in the ob-
ject file. As a result, the object file is slightly smaller.

The /Z1 option is useful when you are using the LIB utility (described in Chap-
ters 2 and 6) to build a library. You can use /Z1 to compile the object files you
plan to put in your library, thereby omitting the default-library names from your
object modules. Although the /ZI option saves only a small amount of space for
a single object file, the total amount of space saved is significant in a library con-
taining many object modules.

Example
QCL ONE.C /Z1 TWO.C

The example above creates the following two object files:

= An object file named ONE.OBJ that contains the name of the C library
SLIBCE.LIB

m An object file named TWO.OBJ that contains no default-library information

QCL Command Reference 103

When ONE.OBJ and TWO.OBJ are linked, the default-library information in
ONE .OBJ causes the default library to be searched for any unresolved refer-
ences in either ONE.0BJ or TWO.OBJ.

4.3.33 /Zp (Pack Structure Members)

Option
[Zp[{11214}])

‘When storage is allocated for structures, structure members are ordinarily stored
as follows:

m Items of type char or unsigned char, or arrays containing items of these
types, are byte aligned.

= Structures are word aligned; structures of odd size are padded to an even
number of bytes.

m All other types of structure members are word aligned.

To conserve space or to conform to existing data structures, you may want to
store structures more or less compactly. The /Zp option and the pack pragma
control how structure data are “packed” into memory.

Use the /Zp option when you want to specify the same packing for all structures
in a module. When you give the /Zpn option, where n is 1, 2, or 4, each structure
member after the first is stored on n-byte boundaries depending on the option
you choose. If you use the /Zp option without an argument, structure members
are packed on two-byte boundaries.

On some processors, the /Zp option may result in slower program execution be-
cause of the time required to unpack structure members when they are accessed.
For example, on an 8086 processor this option can reduce efficiency if members
with int or long type are packed in such a way that they begin on odd-byte
boundaries.

Use the pack pragma in your source code to pack particular structures on differ-
ent boundaries from the packing specified on the command line. Give the
pack(n) pragma, where n is 1, 2, or 4, before structures that you want to pack
differently. To reinstate the packing given on the command line, give the pack()
pragma with no arguments.

104 Microsoft QuickC Tool Kit

Table 4.5 shows the interaction of the /Zp option with the pack pragma.

Table 4.5 Using the pack Pragma

Compiled with

Syntax [Zp Option? Action

#pragma pack() Yes Reverts to packing specified on the
command line for structures that
follow

#pragma pack() No Reverts to default packing for struc-
tures that follow

#pragma pack(n) Yes or no Packs the following structures to the
given byte boundary until changed
or disabled

Example
QCL /Zp PROG.C

This command causes all structures in the program PROG.C to be stored
without extra space for alignment of members on int boundaries.

4.3.34 /Zr (Check Pointers)

#pragmacheck_pointer

The /Zr option checks for null or out-of-range pointers in your program. A run-
time error occurs if you try to run a program with such pointers.

If you compile with the /Zr option, you can use the check_pointer pragma
within your source file to turn checking on or off only for selected pointers leav-
ing the default (see below) for the remaining pointers in the program. When you
want to turn on pointer checking, put the following line before the declaration of
the pointer you want to check:

#ipragma check_pointer (on)

This line turns on pointer checking for all pointers that follow it in the source
file, not just the pointers on the following line. To turn off pointer checking, in-
sert the following line:

#pragma check_pointer (off)

QCL Command Reference 105

If no argument is given for the check_pointer pragma, pointer checking reverts
to the behavior specified on the command line: turned on if the /Zr option is
given or turned off otherwise.

Example
QCL /Zr prog.c

This command causes QCL to check for null or out-of-range pointers in the file
prog.c. All pointers in the file are checked except those to which a
check_pointer(off) pragma applies.

4.3.35 /Zs (Check Syntax Only)

The /Zs option tells the compiler only to check the syntax of the source files that
follow the option on the command line. This option provides a quick way to find
and correct syntax errors before you try to compile and link a source file.

When you give the /Zs option, the compiler does not generate code or produce
object files, object listings, or executable files. The compiler, however, does dis-
play error messages if the source file has syntax errors.

Example
QCL /Zs TEST*.C

This command causes the compiler to perform a syntax check on all source files
in the current working directory that begin with TEST and end with the .C ex-
tension. The compiler displays messages for any errors found.

4.3.36 Giving Options with the CL Environment Variable

Use the CL environment variable to specify files and options without giving
them on the command line. This variable has the following format:

SET CL=[[option] ... [file]l ...1 [/tink [link-libinfolll

This variable is useful if you usually give a large number of files and options
when you compile. Ordinarily, the command line is limited to 128 characters.
The files and options that you define with the CL environment variable,
however, do not count toward this limit. Therefore, you can define the files and
options you use most often with the CL variable and then give only the files and
options you need for specific purposes on the command line.

106 Microsoft QuickC Tool Kit

The information defined in the CL variable is treated as though it appeared
before the information given on the CL command line, as illustrated in
Figure 4.3.

| sET cL=/FPig7 |—

,QCL /AL FLOAT.CI

QCL{ /FP187}/AL FLOAT.C ———— Options defined by
"""""" CL appear before
options given on the
command line.

Figure 4.3 Effect of the CL Environment Variable

Note that if you have given an option in the CL environment variable, you gener-
ally cannot turn off or change the option from the command line. You must reset
the CL environment variable and omit the file or option that you do not want

to use.

Also note that you cannot use CL to set options that use an equal sign (for ex-
ample, the /Didentifier= string option), and you cannot use wild-card characters
in file names to specify multiple files to CL.

Examples

SET CL=/Zp /Ox /I\NINCLUDE\MYINCLS \LIB\BINMODE.OBJ
QCL INPUT.C

In the example above, the CL environment variable tells the QCL command
to use the /Zp, /Ox, and /I options during compilation and then to link with the
object file \LIB\BINMODE .0OBJ. With CL defined as shown, the QCL
command above has the same effect as the command line

QCL /Zp /Ox /ININCLUDE\MYINCLS \LIB\BINMODE.OBJ INPUT.C

That is, both would specify structure packing on two-byte boundaries; perform
maximum optimizations; search for include files in the \ INCLUDE\MYINCLS
directory; and would suppress translation of carriage-return-line-feed character
combinations for the source file INPUT.C.

QCL Command Reference 107

SET CL=FILEl1.C FILE2.C
QCL FILE3.O0BJ

In the example above, the CL environment variable tells the QCL command
to compile and link the source files FILEL1.C and FILE2.C. The QCL
command

QCL FILEl.C FILE2.C FILE3.OBJ

would then have the same effect as the previous command line.

SET CL=/Za
QCL FILEl.C /Ze FILE2.C

The example above illustrates how to turn off the effects of a QCL option de-
fined in the environment,. In this example, the CL environment variable is set to
the /Za option, which tells the compiler not to recognize Microsoft extensions to
the C language. This option causes Microsoft-specific keywords to be treated as
ordinary identifiers rather than reserved words. The QCL command specifies the
inverse option, /Ze, which tells the compiler to treat language extensions as re-
served words. Since the effect is the same as compiling with the command line

QCL /Za FILEl1.C /Ze FILE2.C

FILE1.C iscompiled with language extensions turned off and FILE2.C is
compiled with language extensions enabled.

4.4 Controlling Stack and Heap Allocation

The “stack” and the “heap” are two important memory areas that are allocated
for QuickC programs. The stack is used for all local data (that is, data that are de-
fined within a function); the heap is used for all dynamically allocated data (that
is, data allocated by one of the alloc family of functions).

Programs compiled and linked under the Microsoft QuickC Compiler run with a
fixed stack size (the default size is 2048 bytes). The stack resides above static
data, and the heap uses whatever space is left above the stack. For some pro-
grams, however, a fixed-stack model may not be ideal; a model where the stack
and heap compete for space is more appropriate.

Linking with the mVARSTCK.OBJ object files gives you such a model: when
the heap runs out of memory, it tries to use available stack space until it runs into
the top of the stack. When the allocated space in the heap is freed, it is once
again made available to the stack. Note that the stack cannot grow beyond the
last-allocated heap item in the stack or, if there are no heap items in the stack,
beyond the size it was given at link time. Furthermore, while the heap can em-
ploy unused stack space, the reverse is not true: the stack cannot employ unused
heap space.

108 Microsoft QuickC Tool Kit

You can change the model used to allocate heap space by linking your program
with one of the mVARSTCK.OBJ object files (where m is the first letter of the
library you choose). These files are the small-, medium-, compact-, and large-
model versions of a routine that allows the memory-allocation functions
(malloc, calloc, _expand, _fmalloc, _nmalloc, and realloc) to allocate items in
unused stack space if they run out of other memory. (If you use the huge
memory model, link with the large-model object file LVARSTCK.OBJ.)

‘When you link your program with one of the mVARSTCK.OB files, do not
suppress stack checking with the #check_stack pragma, or with the /Gs or /Ox
option. Stack overflow can occur more easily in programs that link with the
variable-stack object files, possibly causing errors that would be difficult to
detect.

Example
QOCL TEST.C SVARSTCK

This command line compiles TEST.C and then links the resulting object
module with SVARSTCK.OBJ, the variable-stack object file for small-model
programs.

5.1 Overview

CHAPTER 5 109

LINK

This chapter describes in detail the operation of the Microsoft Overlay
Linker (LINK) and includes an alphabetical reference to the LINK
options.

The Microsoft Overlay Linker (LINK) combines object files into a single
executable file. It can be used with object files compiled or assembled for
8086/8088, 80286, or 80386 machines. The format of input to the linker is the
Microsoft Relocatable Object-Module Format (OMF), which is based on the
Intele 8086 OMF.

The output file from LINK (that is, the executable file) is not bound to specific
memory addresses. Thus, the operating system can load and execute this file at
any convenient address. LINK can produce executable files containing up to one
megabyte of code and data.

5.2 Invoking LINK

Instead of using the QCL command to invoke the linker, you can use the LINK
command to invoke LINK directly. You can specify the input required for this
command in one of three ways:

1. By placing it on the command line.
2. By responding to prompts.

3. By specifying a file containing responses to prompts. This type of file is
known as a “response file.”

110 Microsoft QuickC Tool Kit

Regardless of how you invoke LINK, you may press CTRL+C at any time to ter-
minate a LINK operation and exit to DOS.

You can use any combination of uppercase and lowercase letters for the file
names you specify on the LINK command line or give in response to the LINK
command prompts.

If you specify file names without extensions, LINK uses the following default
file-name extensions:

Default
File Type Extension
Object .OBJ
Executable .EXE
Map (or “Listing™) .MAP
Library .LIB

You can override the default extension for a particular command-line field or
prompt by specifying a different extension. To enter a file name that has no ex-
tension, type the name followed by a period.

5.2.1 Command Line

Use the following form of the LINK command to specify input on the command
line:

LINK [[linkoptions] objfiles|, [exefile] [, [mapfilel [, [librariesT 111 I[;1

A comma must separate each command-line field from the next. You may omit
the text from any field (except the required objfiles), but you must include the
comma. A semicolon may end the command line after any field causing LINK to
use defaults for the remaining fields. For details of LINK defaults, see

Section 5.2.1.6.

The command-line fields are explained below.

5.2.1.1 LINK Options

You may specify command-line options after any field, but before the comma
that terminates the field. You do not have to give any options when you run the
linker. Linker options are described in Section 5.4.

LINK 111

5.2.1.2 Object Files

The objfiles field allows you to specify the names of the object files you are link-
ing. At least one object-file name is required. A space or plus sign (+) must sepa-
rate each pair of object-file names. LINK automatically supplies the .OBJ
extension when you give a file name without an extension. If your object file has
a different extension or if it appears in another directory or on another disk, you
must give the full name—including the extension and path name—for the file to
be found. If LINK cannot find a given object file and the drive associated with
the object file is a removable-disk (floppy) drive, then LINK displays a message
and waits for you to change disks.

You may also specify one or more libraries in the objfiles field. To enter a
library in this field, make sure that you include the .LIB extension; otherwise,
LINK assumes the .OBJ extension. Libraries entered in this field are called “load
libraries” as opposed to “regular libraries.” LINK automatically links in every
object module in a load library; it does not search for unresolved external refer-
ences first. The effect of entering a load library is exactly the same as if you had
entered the names of all the library’s object modules in the objfiles field. This
feature is useful if you are developing software using many modules and wish to
avoid typing the name of each module on the LINK command line.

5.2.1.3 Executable File

The exefile field allows you to specify the name of the executable file. If the file
name you give does not have an extension, LINK automatically adds .EXE as
the extension. You can give any file name you like; however, if you are specify-
ing an extension, you should always use .EXE because DOS expects executable
files to have either this extension or the .COM extension.

5.2.1.4 Map File

The mapfile field allows you to specify the name of the map file if you are creat-
ing one. To include public symbols and their addresses in the map file, specify
the /MAP option on the LINK command line.

If you specify a map-file name without an extension, LINK automatically adds
an extension of .MAP. LINK creates the map file in the current working
directory unless you specify a path name for the map file.

5.2.1.5 Libraries

The libraries field allows you to specify the name of one or more libraries that
you want linked with the object file(s). When LINK finds the name of a library
in this field, it treats the library as a “regular library” and links in only those ob-
ject modules needed to resolve external references.

112 Microsoft QuickC Tool Kit

Each time you compile a source file for a high-level language, the compiler
places the name of one or more libraries in the object file that it creates; the
linker automatically searches for a library with this name (see Section 5.2.4).
Because of this, you do not need to give library names on the LINK command
line unless you want to search libraries other than the default libraries or search
for libraries in different locations.

‘When you link your program with a library, the linker pulls into your executable
file any library modules that your program references. If the library modules
have external references to other library modules, your program is linked with
those other library modules as well.

5.2.1.6 Choosing Defaults

If you include a comma (to indicate where a field would be) but do not put a file
name before the comma, then LINK selects the default for that field. However, if
you use a comma to include the mapfile field (but do not include a name}), then
LINK creates a map file. This file has the same base name as the executable file.
Use NUL for the map-file name if you do not want to produce a map file.

You can also select default responses by using a semicolon (;). The semicolon
tells LINK to use the defaults for all remaining fields. Anything after the semi-
colon is ignored. If you do not give all file names on the command line or if you
do not end the command line with a semicolon, the linker prompts you for the
files you omitted. See Section 5.2.2 for a description of these prompts.

The list below summarizes the linker’s defaults for each field:

Field Default

exefile Creates a file with the base name of the first object file
and a .EXE extension.C

mapfile Does not create a map file unless you include the mapfile
field. The field may be empty, as in the following com-
mand line:

LINKmyfileyourfile, ourfile, ;

If you include the field but not a file name, LINK creates
amap file with the base name of the executable file and
the .MAP extension. Thus the example creates a map file
named ourfile.map.

libraries Searches only the default libraries specified in the object
files.

LINK 113

5.2.2 Prompts

If you do not specify a drive or directory for a file, the linker assumes that the
file is on the current drive and directory. If you want the linker to create files in a
location other than the current drive and directory, you must specify the new
drive and directory for each such file on the command line.

Examples

LINK SPELL+TEXT+DICT+THES, ,SPELLIST, XLIB.LIB

The command line above causes LINK to load and link the object modules
SPELL.OBJ, TEXT.OBJ, DICT.OBJ, and THES.OBJ, and to search for
unresolved references in the library file X1.IB.LIB and the default libraries.
By default, the executable file produced by LINK isnamed SPELL.EXE.

LINK also produces a map file, SPELLIST .MAP. Note that no semicolon is re-
quired because a library is specified.

LINK SPELL,,:

The LINK command line shown above produces a map file named SPELL . MAP
because a comma appears as a placeholder for the mapfile specification on the
command line.

LINK SPELL, ;

LINK SPELL;

These two command lines do not produce a map file because commas do not ap-
pear as placeholders for the mapfile specification.

LINK MAIN+GETDATA+PRINTIT, , MAIN;

The command above causes LINK to link the three files MAIN . OBJ,
GETDATA.OBJ, and PRINTIT.OBJ into an executable file. A map file
named MAIN.MAP is also produced.

If you want the linker to prompt you for input, start LINK by entering
LINK
at the DOS prompt. LINK also displays prompts if you type an incomplete com-

mand line that does not end with a semicolon or if a response file (see Section
5.2.3) is missing any required responses.

114 Microsoft QuickC Tool Kit

Continuation character (+)

Choosing defaults:
current prompt

Choosing defaults:
all remaining prompts

LINK prompts you for the input it needs by displaying the following lines, one
at a time. The items in square brackets are the defaults LINK applies if you press
ENTER in response to the prompt. (You must supply at least one object-file name
for the “Object Modules” prompt.) LINK waits for you to respond to each
prompt before it displays the next one.

Object Modules [.OBJ]:
Run File [basename.EXE] :
List File [NUL.MAP]:
Libraries [.LIB]:

Note that the default for the Run File prompt is the base name of the first ob-
ject file with the .EXE extension.

The responses you give to the LINK command prompts correspond to the fields
on the LINK command line as follows:

Prompt Command-Line Field
“Object Modules” objfiles

“Run File” exefile

“List File” mapfile

“Libraries” libraries

If you type a plus sign (+) as the last character on a response line, the same
prompt appears on the next line, and you can continue typing responses. The
plus sign must appear at the end of a complete file or library name, path name,
or drive name.

To select the default response to the current prompt, press ENTER without giving
a file name. The next prompt appears.

To select default responses to the current prompt and all remaining prompts,
type a semicolon (;) and press ENTER. After you type a semicolon, you cannot re-
spond to any of the remaining prompts for that link session. This option saves
time when you want the default responses. Note, however, that you cannot enter
only a semicolon in response to the “Object Modules” prompt because there is
no default response for that prompt; the linker requires the name of at least one
object file. '

LINK 115

Defaults forprompts The following list shows the defaults for the other linker prompts:

Prompt Default

“Run File” The name of the first object file submitted for the “Ob-
ject Modules” prompt with the .EXE extension replacing
the .OBJ extension

“List File” The special file name NUL.MAP, which tells LINK not
to create a map file

“Libraries” The default libraries encoded in the object files (see Sec-
tion 5.2.4)

5.2.3 Response File

A response file contains responses to the LINK prompts. The responses must be
in the same order as the LINK prompts discussed in the previous section. Each
new response must appear on a new line or must begin with a comma; however,
you can extend long responses across more than one line by typing a plus sign
(+) as the last character of each incomplete line. You may give options at the end
of any response or place them on one or more separate lines.

LINK treats the input from the response file just as if you had entered it in re-
sponse to prompts or on a command line. It treats any new-line character in the
response file as if you had pressed ENTER in response to a prompt or included a
comma in a command line. (This mechanism is illustrated in Figure 5.1.) For
compatibility with OS/2 versions of the linker, it is recommended that all linker
response files end with a semicolon after the last line.

LINK QRESPONSE |

LINK prompts RESPONSE

Object modules: I A.OBJ+B.OBJ+ | 4—' A.OBRJ+B.OBJ+ |

Object modules: | C.OBJ | < C.OBJ

Run file: | RUN.EXE

RUN.EXE

Listfile: | RUN.MAP

RUN.MAP

Libraries:

i
e

Figure 5.1 LINK Response File

116 Microsoft QuickC Tool Kit

Options and
command characters

Prompts

To use the linker with a response file, create the response file, then type the fol-
lowing command:

LINK @responsefile

Here responsefile specifies the name or path name of the response file for the
linker. You can also enter the name of a response file, preceded by an “at” sign
(@), after any LINK command prompt or at any position in the LINK command
line; in this case, the response file completes the remaining input.

You can use options and command characters in the response file in the same
way as you would use them in responses you type at the keyboard. For example,
if you type a semicolon on the line of the response file corresponding to the
“Run File” prompt, LINK uses the default responses for the executable file and
for the remaining prompts.

‘When you enter the LINK command with a response file, each LINK prompt is
displayed on your screen with the corresponding response from your response
file. If the response file does not include a line with a file name, semicolon, or
carriage return for each prompt, LINK displays the appropriate prompt and waits
for you to enter a response. When you type an acceptable response, LINK
continues.

Example
Assume that the following response file is named SPELL.LNK:

SPELL+TEXT+DICT+THES
/PAUSE /MAP

SPELLIST

XLIB.LIB;

You can type the following command to run LINK and tell it to use the re-
sponses in SPELL . LNK:

LINK @SPELL.LNK

The response file tells LINK to load the four object files SPELL, TEXT,

DICT, and THES. LINK produces an executable file named SPELL.EXE and
a map file named SPELLIST.MAP. The /PAUSE option tells LINK to pause
before it produces the executable file so that you can swap disks, if necessary.
The /MAP option tells LINK to include public symbols and addresses in the map
file. LINK also links any needed routines from the library file XLIB.LIB. The
semicolon is included after the library name for compatibility with the OS/2 ver-
sion of the linker.

LINK 117

5.2.4 How LINK Searches for Libraries

Library name
with path specification

Library name
without path specification

LINK searches for libraries that are specified in either of the following ways:
n In the libraries field on the command line or in response to the “Libraries”
prompt.

m By an object module. The QuickC compiler writes the name of a default com-
bined library in each object module it creates.

NOTE The material in this section does not apply to libraries that LINK finds in the objfiles field,
either on the command line or in response to the “Object Modules” prompt. Those libraries are
treated simply as a series of object files, and LINK does not conduct extensive searches in such
cases.

If the library name includes a path specification, LINK searches only that
directory for the library. Libraries specified by object modules (that is, default
libraries) normally do not include a path specification.

If the library name does not include a path specification, LINK searches the fol-
lowing locations, in the order shown, to find the library file:
1. The current directory

2. Any path specifications or drive names that you give on the command line or
type in response to the “Libraries” prompt in the order in which they appear

3. The locations given by the LIB environment variable
Because object files created by the Microsoft QuickC Compiler contain the
names of all the standard libraries you need, you are not required to specify a

library on the LINK command line or in response to the LINK “Libraries”
prompt unless you want to do one of the following:

m Add the names of additional libraries to be searched
m Search for libraries in different locations

m Override the use of one or more default libraries

For example, if you have developed your own customized libraries, you might
want to include one or more of them as additional libraries at linking time.

118 Microsoft QuickC Tool Kit

5.2.4.1 Searching Additional Libraries

You can tell LINK to search additional libraries by specifying one or more
library files on the command line or in response to the ‘“Libraries” prompt. LINK
searches these libraries in the order you specify before it searches default
libraries.

LINK automatically supplies the .LIB extension if you omit it from a library-file
name. If you want to link a library file that has a different extension, be sure to
specify the extension.

5.2.4.2 Searching Different Locations for Libraries

You can tell LINK to search additional locations for libraries by giving a drive
name or path specification in the libraries field on the command line or in re-
sponse to the “Libraries” prompt. You can specify up to 32 additional paths. If
you give more than 32 paths, LINK ignores the additional paths without display-
ing an error message.

5.2.4.3 Overriding Libraries Named in Object Files

If you do not want to link with the library whose name is included in the object
file, you can give the name of a different library instead. You might need to
specify a different library name in the following cases:

® You assigned a “custom” name to a standard library when you set up your
libraries.

w You want to link with a library that supports a different math package than
the math package you gave on the compiler command line (or the default).

If you specify a new library name on the LINK command line, the linker
searches the new library to resolve external references before it searches the
library specified in the object file.

If you want the linker to ignore the library whose name is included in the object
file, you must use the /NOD option. This option tells LINK to ignore the default-
library information that is encoded in the object files created by high-level-
language compilers. Use this option with caution; for more information, see
Section 5.4.14, “Ignoring Default Libraries.”

Example
LINK

Microsoft® QuickC Linker Version 4.00.
Copyright® Microsoft Corp 1988. All rights reserved.

LINK 119

Object Modules [.OBJ]: SPELL TEXT DICT THES
Run File [SPELL.EXE]:

List File [NUL.MAP]:

Libraries [.LIB]: C:\TESTLIB\ NEWLIBV3

This example links four object modules to create an executable file named
SPELL.EXE. LINK searches NEWLIBV3.LIB before searching the default
libraries to resolve references. To locate NEWLIBV3.LIB and the default
libraries, the linker searches the current working directory, then the
C:\TESTLIB\ directory, and finally the locations given by the LIB environ-
ment variable.

5.3 LINK Memory Requirements

LINK uses available memory for the link session. If the files to be linked create
an output file that exceeds available memory, LINK creates a temporary disk file
to serve as memory. This temporary file is handled in one of the following ways,
depending on the DOS version:

m For the purpose of creating a temporary file, the linker uses the directory
specified by the TMP environment variable. If the TMP variable is set to
C:\TEMPDIR, for example, then LINK puts the temporary file in
C:\TEMPDIR.

If there is no TMP environment variable or if the directory specified by TMP
does not exist, then LINK puts the temporary file in the current directory.

m If the linker is running on DOS Version 3.0 or later, it uses a DOS system
call to create a temporary file with a unique name in the temporary-file
directory.

m If the linker is running on a version of DOS prior to 3.0, it creates a tem-
porary file named VM.TMP.
When the linker creates a temporary disk file, you see the message

Temporary file tempfile has been created.
Do not change diskette in drive, letter.

In the message displayed above, tempfile is “\’ followed by either VM. TMP or
aname generated by DOS, and letter is the drive containing the temporary file.

If you are running on a removable-disk system, the “Do not change diskette”
message appears. After this message appears, do not remove the disk from the

120 Microsoft QuickC Tool Kit

specified drive until the link session ends. If you remove the disk, the operation
of LINK is unpredictable, and you may see the following message:

unexpected end-of-file on scratch file

If this happens, rerun the link session. The temporary file created by LINK is a
working file only. LINK deletes it at the end of the link session.

NOTE Do not give any of your own files the name VM.TMP. The linker displays an error mes-
sage if it encounters an existing file with this name.

5.4 LINK Options

Abbreviations

Numeric arguments

This section explains how to use linker options to specify and control the tasks
performed by LINK.

When you use the LINK command line to invoke LINK, you may put options at
the end of the line or after individual fields on the line. Options, however, must
immediately precede the comma that separates each field from the next.

If you respond to the individual prompts for the LINK command, you may
specify linker options at the end of any response. When you use more than one
option, you can either group the options at the end of a single response or dis-
tribute the options among several responses. Every option must begin with the
slash character (/) or a dash (-), even if other options precede it on the same line,

In aresponse file, options may appear on a line by themselves or after individual
response lines.

Because linker options are named according to their functions, some of their
names are quite long. You can abbreviate the options to save space and effort.
Be sure that your abbreviation is unique so that the linker can determine which
option you want. The minimum legal abbreviation for each option is indicated in
the syntax description of the option.

Abbreviations must begin with the first letter of the name and must be continu-
ous through the last letter typed. No gaps or transpositions are allowed. Options
may be entered in uppercase or lowercase letters.

Some linker options take numeric arguments. A numeric argument can be any of
the following:

m A decimal number from O to 65,535.

» An octal number from 00 to 0177777. A number is interpreted as octal if it
starts with 0. For example, the number 10 is interpreted as a decimal num-
ber, but the number 010 is interpreted as an octal number, equivalent to 8
in decimal.

LINK 121

m A hexadecimal number from 0X0 to OXFFFF. A number is interpreted as
hexadecimal if it starts with 0X. For example, 0X10 is a hexadecimal num-
ber, equivalent to 16 in decimal.

LINK environment variable You can use the LINK environment variable to cause certain options to be used
each time you link. The linker checks the environment variable for options if the
variable exists.

The linker expects to find options listed in the variable exactly as you would
type them on the command line. It does not accept any other arguments; for in-
stance, including file names in the environment variable causes the error mes-
sage unrecognized option name.

Each time you link, you can specify other options in addition to those in the
LINK environment variable. If you enter the same option both on the command
line and in the environment variable, the linker ignores the redundant option. If
the options conflict, however, the command-line option overrides the effect of
the environment variable option. For example, the command-line option
/SE:512 cancels the effect of the environment-variable option /SE:256.

NOTE The only way to prevent an option in the environment variable from being used is to reset
the environment variable itself.

Example
>SET LINK=/NOI /SE:256 /CO

>LINK TEST;
>LINK /NOD /COQ PROG;

In the example above, the file TEST .0OBJ is linked with the options /NOI,
/SE:256, and /CO. The file PROG.OBJ is then linked with the option /NOD, in
addition to /NOI, /SE:256, and /CO. Note that the second /CO option is ignored.

5.4.1 Running in Batch Mode (/BA)

Option
/BA[TCH]

By default, the linker prompts you for a new path name whenever it cannot find
alibrary that it has been directed to use. It also prompts you if it cannot find an
object file that it expects to find on a removable disk. If you use the /BA option,
however, the linker does not prompt you for any libraries or object files that it
cannot find. Instead, the linker generates an error or warning message, if appro-
priate. In addition, when you use /BA, the linker does not display its copyright
banner, nor does it echo commands from response files. This option does not

122 Microsoft QuickC Tool Kit

prevent the linker from prompting for command-line arguments. You can pre-
vent such prompting only by using a semicolon on the command line or in a re-
sponse file.

Using this option may result in unresolved external references. It is intended pri-
marily for use with batch or NMAKE files that link many executable files with a
single command and to prevent linker operation from halting.

NOTE In earlier versions of LINK, the BATCH option was abbreviated to /B.

5.4.2 Creating a.COM File (/BI)

Option
/BI[NARY]

The /BI option is used to generate a .COM file instead of a .EXE file as the out-
put from the linker. The result is the same as if you had linked a .EXE file, then
used the EXE2BIN command to convert it to a .COM file. (See The MS-DOS

Programmer’ s Reference Manual for more information on .COM files and the
EXE2BIN command.)

‘When you use the /BI option, the linker by default produces an output file with
the .COM extension instead of .EXE. If you specify a file name with a different
extension, the linker applies the extension you specify. Note that the “Run File”
prompt shows the .EXE extension if you have not yet given the /BI option.

After you give the option, the linker issues a warning message that the extension
of the output file is .COM.

Files with the .COM extension may not perform load-time relocations and there-
fore may not include far-segment references. The linker issues an error if it de-
tects such references.

NOTE This option applies only to assembly-language programs.

5.4.3 Preparing for Debugging (/CO)

Option
/CO[DEVIEW]

The /CO option is used to prepare for debugging with the integrated QuickC de-
bugger or the Microsoft CodeView window-oriented debugger. This option tells
the linker to prepare a special executable file containing symbolic data and line-
number information.

LINK 123

Object files linked with the /CO option must first be compiled with the /Zi op-
tion, which is described in Section 4.3.31.

You can run this executable file outside the CodeView debugger; the extra data
in the file are ignored. To keep file size to a minimum, however, use the special-
format-executable file only for debugging; then you can link a separate version
without the /CO option after the program is debugged.

5.4.4 Setting the Maximum Allocation Space (/CP)

Option
JCPTARMAXALLOC]:number

The /CP option sets the maximum number of 16-byte paragraphs needed by the
program when it is loaded into memory. The operating system uses this value
when allocating space for the program before loading it. The option is useful
when you want to execute another program from within your program and you
need to reserve space for that other program.

LINK normally requests the operating system to set the maximum number of
paragraphs to 65,535. Since this represents more memory than could be availa-
ble under DOS, the operating system always denies the request and allocates the
largest contiguous block of memory it can find. If the /CP option is used, the
operating system allocates no more space than the option specifies. This means
any additional space in memory is free for other programs.

The number can be any integer value in the range 1 — 65,535. If number is less
than the minimum number of paragraphs needed by the program, LINK ignores
your request and sets the maximum value equal to whatever the minimum value
happens to be. The minimum number of paragraphs needed by a program is
never less than the number of paragraphs of code and data in the program. To
free more memory for programs compiled in the medium- and large-memory
models, link with /CP:1; this leaves no space for the near heap.

5.4.5 Ordering Segments (/DO)

Option
/DO[SSEG]

The /DO option forces a special ordering on segments. This option is automati-
cally enabled by a special object-module record in Microsoft QuickC libraries. If
you are linking to one of these libraries, then you do not need to specify this
option.

124 Microsoft QuickC Tool Kit

This option is also enabled by assembly modules that use the Microsoft Macro
Assembler directive .DOSSEG.

The /DO option forces segments to be ordered as follows:

1. All segments with a class name ending in CODE
2. All other segments outside DGROUP
3. DGROUP segments, in the following order:

a. Any segments of class BEGDATA (this class name reserved for
Microsoft use)

b. Any segments not of class BEGDATA, BSS, or STACK
c. Segments of class BSS
d. Segments of class STACK

When the /DO option is in effect the linker initializes two special variables as

follows:
_edata = DGROUP : BSS
_end = DGROUP : STACK

The variables _edata and _end have special meanings for the Microsoft C and
FORTRAN compilers, so it is not wise to give these names to your own program
variables. Assembly modules can reference these variables but should not
change them.

5.4.6 Controlling Data Loading (/DS)

Option
/DSTALLOCATE]

By default, LINK loads all data starting at the low end of the data segment. At
run time, the DS (data segment) register is set to the lowest possible address to
allow the entire data segment to be used.

Use the /DS option to tell LINK to load all data starting at the high end of the
data segment instead of at the low end. In this case, the DS register is set at run
time to the lowest data-segment address that contains program data.

The /DS option is typically used with the /HI option (see Section 5.4.10) to take
advantage of unused memory within the data segment.

WARNING This option should be used only with assembly-language programs.

LINK 125

5.4.7 Packing Executable Files (/E)

Option
/E[XEPACK]

The /E option directs LINK to remove sequences of repeated bytes (typically
null characters) and to optimize the load-time-relocation table before creating
the executable file. (The load-time-relocation table is a table of references, rela-
tive to the start of the program. Each reference changes when the executable
image is loaded into memory and an actual address for the entry point is
assigned.)

Executable files linked with this option may be smaller, and thus load faster,
than files linked without this option. Programs with many load-time relocations
(about 500 or more) and long streams of repeated characters are usually shorter
if packed. The /E option, however, does not always save a significant amount of
disk space and sometimes may increase file size. LINK notifies you if the
packed file is larger than the unpacked file.

Note that you cannot use the QuickC debugger, the Symbolic Debug Utility
(SYMDEB), or the CodeViewe window-oriented debugger to debug packed
files. The /EXEPACK option strips symbolic information needed by the debug-
gers from the input file and issues a warning message to notify you.

5.4.8 Optimizing Far Calls (/F)

Option
/FIARCALLTRANSLATION]

The /F option directs the linker to optimize far calls to procedures that lie in the
same segment as the caller. Using the /F option may result in slightly faster code
and smaller executable-file size. It should be used with the /PAC option (see Sec-
tion 5.4.21) for significant results. By default, the /F option is off. Furthermore,
once you have enabled it, you can disable it for one or more object files by using
the /NOF option (see Section 5.4.16).

For example, a medium- or large-model program may include a machine instruc-
tion that makes a far call to a procedure in the same segment. Because both the
instruction and the procedure it calls have the same segment address, only a near
call is truly necessary. A near-call instruction does not require an entry in the re-
location table as a far-call instruction does. In this situation, use of /F (together
with /PAC) would result in a smaller executable file because the relocation table
is smaller. Such files load faster.

126 Microsoft QuickC Tool Kit

When /F has been specified the linker optimizes code by removing the following
instruction:

call FAR label

and substituting the sequence

push cs
call NEAR label
nop

Upon execution, the called procedure still returns with a far-return instruction.
Because both the code segment and the near address are on the stack, however,
the far return is executed correctly. The nop (no-op) instruction appears so that
exactly five bytes replace the five-byte far-call instruction; the linker may in
some cases place nop at the beginning of the sequence.

The /F option has no effect on programs that make only near calls. Of the high-
level Microsoft languages, only small- and compact-model C programs use near
calls.

NOTE There is a small risk involved with the /F option: the linker may mistakenly translate a byte
in a code segment that happens to have the far-call opcode (9A hexadecimal). If a program linked
with /F inexplicably fails, then you may want to try linking with this option off. Object modules pro-
duced by Microsoft high-level languages, however, should be safe from this problem because rela-
tively little immediate data is stored in code segments.

In general, assembly-language programs are also relatively safe for use with the /F option, as long
as they do not involve advanced system-level code, such as might be found in operating systems or
interrupt handlers.

5.4.9 Viewing the Options List (/HE)

Option
/HE[LP]

The /HELP option causes LINK to display a list of its options on the screen.
This gives you a convenient reminder of the options.

When you use this option, LINK ignores any other input you give and does not
create an executable file.

LINK 127

5.4.10 Controlling Executable-File Loading (/HI)

Option
HI[GH]

The /Hi option allows you to control where the executable file is placed in
memory. The executable file can be placed either as low or as high in memory as
possible. The /HI option tells LINK to place the executable file as high as
possible in memory. Without the /HI option, LINK places the executable file as
low as possible.

WARNING This option should be used only with assembly-language programs.

5.4.11 Displaying Linker-Process Information (/INF)

Option
/INFIORMATION]|

The /INF option tells the linker to display information about the linking process,
including the phase of linking and the names of the object files being linked.
This option is useful if you want to determine the locations of the object files
being linked and the order in which they are linked.

Output from this option is sent to the standard error output.

Example

The following is a sample of the linker output when the /INF option is specified
on the LINK command line:

* Kk k% PASS ONE Xk kK
HSTGM.OBJ (hstgm.c)

%% T,IBRARY SEARCH *%*
\gc\1ib\SLIBCE.LIB(CRTO)
\gc\1ib\SLIBCE.LIB (CRTODAT)
\gc\1ib\SLIBCE.LIB (CRTOMSG)
\qc\1ib\SLIBCE.LIB{(CRTOFP)
\qc\1ib\SLIBCE.LIB {CHKSTK)
\gqc\11b\SLIBCE.LIB (CHKSUM)

128 Microsoft QuickC Tool Kit

** %% ASSTGN ADDRESSES **xx

* Kk kK PASS TWO * kK Kk

HSTGM.OBJ (hstgm.c)
\gqc\1ib\SLIBCE.LIB (CRTO0)
\gc\1ib\SLIBCE.LIB (CRTODAT)
\gc\1ib\SLIBCE.LIB(CRTCMSG)
\gqc\1ib\SLIBCE.LIB(CRTOFP)
\gc\1ib\SLIBCE.LIB (CHKSTK)
\qc\1ib\SLIBCE.LIB (CHKSUM)
x %% WRITING EXECUTABLE *%*

Segments 31
Groups 1
Bytes in symbol table 32784

5.4.12 Including Line Numbers in the Map File (/LI)

Option
/LIINENUMBERS]

You can include the line numbers and associated addresses of your source pro-
gram in the map file by using the /LI option. This option is primarily useful if
you will be debugging with the SYMDEB debugger included with earlier re-
leases of Microsoft language products.

Ordinarily the map file does not contain line numbers. To produce a map file
with line numbers, you must give LINK an object file (or files) with line-number
information. The /Zd option of the QCL command (see Section 4.3.31) directs
the compiler to include line numbers in the object file. If you give LINK an ob-
ject file without line-number information, the /LI option has no effect.

The /LI option forces LINK to create a map file even if you did not explicitly tell
the linker to create a map file. By default, the file is given the same base name as
the executable file plus the extension .MAP. You can override the default name
by specifying a new map file on the LINK command line or in response to the
“List File” prompt.

5.4.13 Listing Public Symbols (/M)

Option
/MIAP]

You can list all public (global) symbols defined in the object file(s) by using the
/M option. When you invoke LINK with the /M option, the map file contains a
list of all the symbols sorted by name and a list of all the symbols sorted by
address. If you do not use this option, the map file contains only a list of
segments.

LINK 129

When you use this option, the default for the mapfile field or “List File” prompt
response is no longer NUL. Instead, the default is a name that combines the base
name of the executable file with a .MAP extension. You may still specify NUL
in the mapfile field (which indicates that no map file is to be generated); if you
do, the /M option has no effect.

NOTE In earlier versions of LINK, number specified the maximum number of public symbols
that LINK could sort; the current version of LINK sorts the maximum number of symbols that can be
sorted in available memory.

5.4.14 Ignoring Default Libraries (/NOD)

Option
/NOD[EFAULTLIBRARYSEARCH] [[filename]

The /NOD option tells LINK rnot to search any library specified in the object file
to resolve external references. If you specify filename, then LINK searches all
libraries specified in the object file except for filename.

In general, higher-level-language programs do not work correctly without a
standard library. Therefore, if you use the /NOD option, you should explicitly
specify the name of a standard library in the libraries field.

5.4.15 Ignoring Extended Dictionary (/NOE)

Option
/NOE[XTDICTIONARY]

The /NOE option prevents the linker from searching the extended dictionary,
which is an internal list of symbol locations that the linker maintains. Normally,
the linker consults this list to speed up library searches. The effect of the /NOE
option is to slow down the linker. You often need this option when a library sym-
bol is redefined. Use /NOE if the linker issues the following error message:

symbol name multiply defined

5.4.16 Disabling Far-Call Optimization (/NOF)
Option
/NOF[ARCALLTRANSLATION]

This option is normally not necessary because far-call optimization (translation)
is turned off by default. However, if an environment variable such as LINK

130 Microsoft QuickC Tool Kit

(or CL) turns on far-call translation automatically, you can use /NOF to turn far-
call translation off again.

5.4.17 Preserving Compatibility (/NOG)

Option
/NOG[ROUPASSOCIATION]

The /NOG option causes the linker to ignore group associations when assigning
addresses to data and code items. It is provided primarily for compatibility with
previous versions of the linker (Versions 2.02 and earlier) and early versions of
Microsoft language compilers.

WARNING This option should be used only with assembly-language programs.

5.4.18 Preserving Case Sensitivity (/NOI)

Option
/NOI[GNORECASE]

By default, LINK treats uppercase letters and lowercase letters as equivalent.
Thus ABC, abc, and Abc are considered the same name. When you use the
/NOI option, the linker distinguishes between uppercase letters and lowercase let-
ters, and considers ABC, abc, and Abc to be three separate names. Because
names in some high-level languages are not case sensitive, this option can have
minimal importance. In Microsoft QuickC, however, case is significant. If you
plan to link your files from other high-level languages with Microsoft QuickC
routines, you may need to use this option.

5.4.19 Disabling Segment Packing (/NOP)

Option

/NOPJACKCODE]

This option is normally not necessary because code-segment packing is turned
off by default. However, if an environment variable such as LINK (or CL) turns

on code-segment packing automatically, you can use /NOP to turn segment pack-
ing off again.

LINK 131

5.4.20 Setting the Overlay Interrupt (/O)

Option
JOITVERLAYINTERRUPT]:number

By default, the interrupt number used for passing control to overlays is 63 (3F
hexadecimal). The /O option allows you to select a different interrupt number.

The number can be a decimal number from 0 to 255, an octal number from octal
0 to octal 0377, or a hexadecimal number from hexadecimal O to hexadecimal
FF. Numbers that conflict with DOS interrupts can be used; however, their use is
not advised.

In general, you should not use /O with programs. The exception to this guideline
would be a program that uses overlays and spawns another program that also
uses overlays. In this case, each program should use a separate overlay-interrupt
number, meaning that at least one of the programs should be compiled with /O.

5.4.21 Packing Contiguous Segments (/PAC)

Option
/PACIKCODE][:number]

The /PAC option affects code segments only in medium- and large-model pro-
grams. It is intended to be used with the /F option. It is not necessary to under-
stand the details of the /PAC option in order to use it. You only need to know
that this option, used in conjunction with /F, produces slightly faster and more
compact code. The packing of code segments provides more opportunities for
far-call optimization, which is enabled with /F. The /PAC option is off by de-
fault and can always be turned off with the /NOP option.

The /PAC option directs the linker to group neighboring code segments. Seg-
ments in the same group are assigned the same segment address; offset addresses
are adjusted upward accordingly. In other words, all items have the correct physi-
cal address whether the /PAC option is used or not. However, /PAC changes seg-
ment and offset addresses so that all items in a group share the same segment
address.

The number field specifies the maximum size of groups formed by /PAC. The
linker stops adding segments to a group as soon as it cannot add another segment
without exceeding number. At that point, the linker starts forming a new group.
The default for number is 65,530.

132 Microsoft QuickC Tool Kit

You can safely use /PAC with programs developed with the Microsoft QuickC
Compiler. The /PAC option, however, should not be used with assembly pro-
grams that make assumptions about the relative order of code segments. For ex-
ample, the following assembly code attempts to calculate the distance between
CSEG1 and CSEG2. This code would produce incorrect results when used with
/PAC because /PAC causes the two segments to share the same segment address.
Therefore, the procedure would always return 0.

CSEG1 SEGMENT PARA PUBLIC ’CODE’

CSEG1 ENDS

CSEG2 SEGMENT PARA PUBLIC ‘CODE’
ASSUME cs:CSEG2

; Return the length of CSEGl in AX.

codsize PROC NEAR

mov ax, CSEG2 ; Load para address of CSEG1

sub ax,CSEG1 ; Load para address of CSEG2

mov cx, 4 ; Load count, and convert

shl ax,cl ; distance from paragraphs
; to bytes

codsize ENDP

CSEG2 ENDS

5.4.22 Pausing during Linking (/PAU)

Option
/PAU[SE]

The /PAU option tells LINK to pause before it writes the executable ((EXE) file
to disk. This option is useful on machines without hard disks, where you might
want to create the executable file on a new removable (floppy) disk. Without the
/PAU option, LINK performs the linking session from beginning to end without
stopping.

If you specify the /PAU option, LINK displays the following message before it
creates the file:

About to generate .EXE file
Change diskette in drive letter and press <ENTER>

The letter corresponds to the current drive. LINK resumes processing when you
press ENTER.

LINK 133

NOTE Do not remove the disk that will receive the listing file or the disk used for the tempo-
rary file.

Depending on how much memory is available, LINK may create a temporary
disk file during processing, as described in Section 5.3, and display the follow-
ing message:

Temporary file tempfile has been created.
Do not change diskette in drive, letter

If the file is created on the disk you plan to swap, press CTRL+C to terminate the
LINK session. Rearrange your files so that the temporary file and the executable
file can be written to the same disk, then try linking again.

5.4.23 Setting Maximum Number of Segments (/SE)

Option
/SE[GMENTS1:number

The /SE option controls the number of segments that the linker allows a program
to have. The default is 128, but you can set number to any value (decimal, octal,
or hexadecimal) in the range 1-3072 (decimal).

For each segment, the linker must allocate some space to keep track of segment
information. By using a relatively low segment limit as a default (128), the
linker is able to link faster and allocate less storage space.

When you set the segment limit higher than 128, the linker allocates additional
space for segment information. This option allows you to raise the segment limit
for programs with a large number of segments. For programs with fewer than
128 segments, you can keep the storage requirements of the linker at the lowest
level possible by setting number to reflect the actual number of segments in the
program. If the number of segments allocated is too high for the amount of
memory available to the linker, LINK issues the following error message:

segment limit set too high

If this occurs, relink the object files, specifying a lower segment limit.

5.4.24 Controlling Stack Size (/ST)
Option
/STIACK]:number

The /ST option allows you to specify the size of the stack for your program. The
number is any positive value (decimal, octal, or hexadecimal) up to 65,535

134 Microsoft QuickC Tool Kit

(decimal). It represents the size, in bytes, of the stack. If you do not use this op-
tion, the stack size is 2K.

If your program returns a stack-overflow message, you may need to increase the
size of the stack. In contrast, if your program uses the stack very little, you may
save some space by decreasing the stack size.

5.5 Linker Operation

LINK performs the following steps to combine object modules and produce an
executable file:

Reads the object modules submitted

Searches the given libraries, if necessary, to resolve external references
Assigns addresses to segments

Assigns addresses to public symbols

Reads code and data in the segments

Reads all relocation references in object modules

Performs fixups

e A o

Outputs an executable file (executable image and relocation information)

Steps 5, 6, and 7 are performed concurrently: in other words, LINK moves back
and forth between these steps before it progresses to step 8.

The “executable image” contains the code and data that constitute the executable
file. The “relocation information” is a list of references, relative to the start of
the program. The references change when the executable image is loaded into
memory and an actual address for the entry point is assigned.

The following sections explain the process LINK uses to concatenate segments
and resolve references to items in memory.

5.5.1 Alignment of Segments

LINK uses a segment’s alignment type to set the starting address for the seg-
ment. The alignment types are BYTE, WORD, PARA, and PAGE. These corre-
spond to starting addresses at byte, word, paragraph, and page boundaries,
representing addresses that are multiples of 1, 2, 16, and 256, respectively. The
default alignment is PARA.

LINK 135

When LINK encounters a segment, it checks the alignment type before copying

the segment to the executable file. If the alignment is WORD, PARA, or PAGE,
LINK checks the executable image to see if the last byte copied ends on the ap-

propriate boundary. If not, LINK pads the image with null bytes.

5.5.2 Frame Number

LINK computes a starting address for each segment in the program. The starting
address is based on the segment’s alignment and the sizes of the segments
already copied to the executable file (as described in the previous section). The
starting address consists of an offset and a “‘canonical frame number.” The
canonical frame number specifies the address of the first paragraph in memory
that contains one or more bytes of the segment. (A paragraph is 16 bytes of
memory; therefore, to compute a physical location in memory, multiply the
frame number by 16 and add the offset.) The offset is the number of bytes from
the start of the paragraph to the first byte in the segment. For BYTE and WORD
alignments, the offset may be nonzero. The offset is always zero for PARA and
PAGE alignments. (An offset of zero means that the physical location is an exact
multiple of 16.)

You can find the frame number for each segment in the map file created by
LINK. The first four digits of the segment’s start address give the frame number
in hexadecimal. For example, a start address of 0COA6 indicates the frame
number 0COA.

5.5.3 Order of Segments

LINK copies segments to the executable file in the same order that it encounters
them in the object files. This order is maintained throughout the program unless
LINK encounters two or more segments that have the same class name. Seg-
ments having identical segment names are copied as a contiguous block to the
executable file.

The /DOSSEG option may change the way in which segments are ordered. (See
Section 5.4.5.)

5.5.4 Combined Segments

LINK uses combine types to determine whether two or more segments that share
the same segment name should be combined into one large segment. The valid
combine types are PUBLIC, STACK, COMMON, and PRIVATE.

If a segment has combine type PUBLIC, LINK automatically combines it with
any other segments that have the same name and belong to the same class. When
LINK combines segments, it ensures that the segments are contiguous and that

136 Microsoft QuickC Tool Kit

all addresses in the segments can be accessed using an offset from the same
frame address. The result is the same as if the segment were defined as a whole
in the source file.

LINK preserves each individual segment’s alignment type. This means that even
though the segments belong to a single, large segment, the code and data in the
segments do not lose their original alignment. If the combined segments exceed
64K, LINK displays an error message.

If a segment has combine type STACK, LINK carries out the same combine
operation as for PUBLIC segments. The only exception is that STACK segments
cause LINK to copy an initial stack-pointer value to the executable file. This
stack-pointer value is the offset to the end of the first stack segment (or com-
bined stack segment) encountered.

If a segment has combine type COMMON, LINK automatically combines it
with any other segments that have the same name and belong to the same class.
When LINK combines COMMON segments, however, it places the start of each
segment at the same address, creating a series of overlapping segments. The re-
sult is a single segment no larger than the largest segment combined.

A segment has combine type PRIVATE only if no explicit combine type is de-
fined for it in the source file. LINK does not combine private segments.

5.5.5 Groups

Groups allow segments to be addressed relative to the same frame address.
‘When LINK encounters a group, it adjusts all memory references to items in the
group so that they are relative to the same frame address.

Segments in a group do not have to be contiguous, belong to the same class, or
have the same combine type. The only requirement is that all segments in the
group fit within 64K.

Groups do not affect the order in which the segments are loaded. Unless you use
class names and enter object files in the right order, there is no guarantee that the
segments will be contiguous. In fact, LINK may place segments that do not
belong to the group in the same 64K of memory. LINK does not explicitly check
whether all the segments in a group fit within 64K of memory; however, LINK
is likely to encounter a fixup-overflow error if they do not.

5.5.6 Fixups

Once the linker knows the starting address of each segment in the program and
has established all segment combinations and groups, LINK can “fix up” any un-
resolved references to labels and variables. To fix up unresolved references,
LINK computes the appropriate offset and segment address and replaces the tem-
porary values generated by the assembler with the new values.

LINK 137

LINK carries out fixups for the types of references shown in Table 5.1.

Table 5.1 LINK Fixups

Type

Location of Reference

LINK Action

Short

Near self-
relative

Near segment-
relative

In JMP instructions that attempt to
pass control to labeled instructions
in the same segment or group. The
target instruction must be no more
than 128 bytes from the point of
reference.

In instructions that access data
relative to the same segment or
group.

In instructions that attempt to
access data in a specified segment
or group, or relative to a specified
segment register.

In CALL instructions that attempt
to access an instruction in another
segment Or group.

Computes a signed, eight-
bit number for the
reference, and displays an
error message if the target
instruction belongs to a
different segment or group
(has a different frame
address), or if the target is
more than 128 bytes away
in either direction.

Computes a 16-bit offset
for the reference and dis-
plays an error if the data
are not in the same seg-
ment or group.

Computes a 16-bit offset
for the reference, and dis-
plays an error message if
the offset of the target
within the specified frame
is greater than 64K or less
than 0, or if the begin-
ning of the canonical
frame of the target is not
addressable.

Computes a 16-bit frame
address and 16-bit offset
for this reference, and dis-
plays an error message if
the computed offset is
greater than 64K or less
than 0, or if the begin-
ning of the canonical
frame of the target is not
addressable.

The size of the value to be computed depends on the type of reference. If LINK
discovers an error in the anticipated size of a reference, it displays a fixup-
overflow message. This can happen, for example, if a program attempts to use a
16-bit offset to reach an instruction which is more than 64K away. It can also
occur if all segments in a group do not fit within a single 64K block of memory.

138 Microsoft QuickC Tool Kit

5.6 Using Overlays

You can direct LINK to create an overlaid version of a program. In an overlaid
version of a program, specified parts of the program (known as “overlays”) are
loaded only if and when they are needed. These parts share the same space in
memory. Only code is overlaid; data are never overlaid. Programs that use over-
lays usually require less memory, but they run more slowly because of the time
needed to read and reread the code from disk into memory.

You specify overlays by enclosing them in parentheses in the list of object files
that you submit to the linker. Each module in parentheses represents one over-
lay. For example, you could give the following object-file list in the objfiles field
of the LINK command line:

a + (b+tc) + (e+f) + g + (1)

In this example, the modules (b+c), (e+f),and (i) are overlays. The re-
maining modules, and any drawn from the run-time libraries, constitute the resi-
dent part (or root) of your program. Overlays are loaded into the same region of
memory, so only one can be resident at a time. Duplicate names in different over-
lays are not supported, so each module can appear only once in a program.

The linker replaces calls from the root to an overlay, and calls from an overlay to
another overlay, with an interrupt (followed by the module identifier and offset).
By default, the interrupt number is 63 (3F hexadecimal). You can use the
JOVERLAYINTERRUPT option of the LINK command to change the interrupt
number.

The CodeView debugger is compatible with overlaid modules. In fact, in the
case of large programs, you may need to use overlays to leave sufficient room
for the debugger to operate.

5.6.1 Restrictions on Overlays

You can overlay only modules to which control is transferred and returned by a
standard 8086 long (32-bit) call/return instruction. Therefore, because calls to
subroutines modified with the near attribute are short (16-bit) calls, you cannot
overlay modules containing near subroutines if other modules call those sub-
routines. You cannot use long jumps with the longjmp library function. Also,
the linker does not produce overlay modules that can be called indirectly through
function pointers. When a function is called through a pointer, the called func-
tion must be in the same overlay or root.

LINK 139

5.6.2 Overlay-Manager Prompts

The overlay manager is part of the language’s run-time library. If you specify
overlays during linking, the code for the overlay manager is automatically linked
with the other modules of your program. Even with overlays, the linker pro-
duces only one .EXE file. At run time, the overlay manager opens the .EXE file
each time it needs to extract new overlay modules. The overlay manager first
searches for the file in the current directory; then, if it does not find the file, the
manager searches the directories listed in the PATH environment variable.
When it finds the file, the overlay manager extracts the overlay modules
specified by the root program. If the overlay manager cannot find an overlay file
when needed, it prompts you for the file name.

For example, assume that an executable program called PAYROLL .EXE uses
overlays and does not exist in either the current directory or the directories
specified by PATH. If you run PAYROLL . EXE (by entering a complete path
specification), the overlay manager displays the following message when it at-
tempts to load overlay files:

Cannot find PAYROLL.EXE
Please enter new program spec:

You can then enter the drive or directory, or both, where PAYROLL . EXE is lo-

cated. For example, if the file is located in directory \EMPLOYEE\DATA\

on drive B, you could enter B: \EMPLOYEE\DATA\ or simply
\EMPLOYEE\DATA\ if the current drive is B.

If you later remove the disk in drive B and the overlay manager needs to access
the overlay again, it does not find PAYROLL.EXE and displays the following
message:

Please insert diskette containing
B:\EMPLOYEE\DATA\PAYROLL.EXE
in drive B: and strike any key when ready.

After reading the overlay file from the disk, the overlay manager displays the fol-
lowing message:

Please restore the original diskette.
Strike any key when ready.

Execution of the program then continues.

CHAPTER 6
P

LIB

141
_

ﬁ

The Microsoft Library Manager (LIB) helps you create and maintain
object-code libraries. An “object-code library” is a collection of sepa-
rately compiled or assembled object files combined into a single file.
Object-code libraries provide a convenient source of commonly used
routines. A program that calls library routines is linked with the library to
produce the executable file. Only the necessary routines, not all library
routines, are linked into the executable file.

Library files are usually identified by their .LIB extension, although other
extensions are allowed. In addition to accepting DOS object files and
library files, LIB can read the contents of 286 XENIXe archives and
Intel-style libraries and combine their contents with DOS libraries.

You can use the LIB utility for the following tasks:

m Create anew library file

m Add object files or the contents of a library to an existing library
m Delete library modules

m Replace library modules

m Copy library modules to object files

142 Microsoft QuickC Tool Kit

6.1 Invoking LIB

To invoke the Library Manager (LIB), type the LIB command on the DOS com-
mand line. You can specify the input required in one of three ways:

1. Type it on the command line.

2. Respond to prompts.

3. Specify a file containing responses to prompts (“response file”).

The three sections below present the three methods of invoking LIB. Section
6.1.1 describes the input fields in detail and is relevant to all three methods.

To terminate the library session at any time and return to DOS, press CTRL+C.

6.1.1 Command Line

You can start LIB and specify all the necessary input from the command line. In
this case, the LIB command line has the following form:

LIB oldlibrary [options] [[commands] I, listfile]l,[[newlibraryl111;]

The individual components of the command line are discussed in the sections
that follow.

Type a semicolon (;) after any field except the oldlibrary field to tell LIB to use
the default responses for the remaining fields. The semicolon should be the last
character on the command line.

Typing a semicolon after the oldlibrary field causes LIB to perform a con-
sistency check on the library—no other action is performed. LIB displays any
consistency errors it finds and returns to the operating-system level.

Examples

LIB GRAPHIC;

The example above causes LIB to perform a consistency check of the library file
GRAPHIC.LIB.

LIB GRAPHIC ,SYMBOLS.LST;

This example tells LIB to perform a consistency check of the library file
GRAPHIC.LIB and tocreate SYMBOLS.LST, a cross-reference-listing file.

LIB 143

Consistency check

LIB GRAPHIC +STAR;

The example above uses the add-command symbol (+) to instruct LIB to add the
file STAR to the library GRAPHIC.LIB. The semicolon at the end of the com-
mand line causes LIB to use the default responses for the remaining fields. As a
result, no listing file is created and the original library file is renamed
GRAPHIC.BAK. The modified library is GRAPHIC.LIB.

LIB GRAPHIC —-*JUNK *STAR, , SHOW

This last example instructs LIB to move the module JUNK from the library
GRAPHIC.LIB to an object file called JUNK.OBJ. The module JUNK is re-
moved from the library in the process. The module STAR is copied from the
library to an object file called STAR.OBJ; the module remains in the library.
No cross-reference-listing file is produced. The revised library is called

SHOW. LIB. It contains all the modules in GRAPHIC.LIB except JUNK,
which was removed by using the move-command symbol (—*). The original
library, GRAPHIC.LIB, remains unchanged.

6.1.1.1 Library File

Use the oldlibrary field to specify the name of the library to be modified. The
LIB utility assumes that the file-name extension is .LIB, because this is usually
the case. If your library file has the .LIB extension, you can omit it. Otherwise,
include the extension. You must give LIB the path name of a library file if it is
in another directory or on another disk.

There is no default for the oldlibrary field. This field is required and LIB issues
an error message if you do not give a file name.

If you type a library name and follow it immediately with a semicolon (;), LIB
only performs a consistency check on the given library. A consistency check
tells you whether all the modules in the library are in usable form. No changes
are made to the library. It usually is not necessary to perform consistency checks
because LIB automatically checks object files for consistency before adding
them to the library. LIB prints a message if it finds an invalid object module; no
message appears if all modules are intact.

6.1.1.2 LIB Options

The Library Manager has four options. Specify options on the command line fol-
lowing the required library-file name and preceding any commands.

144 Microsoft QuickC Tool Kit

Option
/IIGNORECASE]

The /I option tells LIB to ignore case when comparing symbols, which is the de-
fault. Use this option when you are combining a library that is case sensitive
(was created with the /NOI option) with others that are not case sensitive. The re-
sulting library will not be case sensitive. The /NOI option is described later in
this section.

Option
/NOE[XTDICTIONARY]

The /NOE option tells LIB not to generate an extended dictionary. The extended
dictionary is an extra part of the library that helps the linker process libraries
faster.

Use the /NOE option if you get either the error message insufficient
memory Or nomore virtual memory, or if the extended dictionary causes
problems with the linker. For more information on how the linker uses the ex-
tended dictionary, see Section 5.4.15.

Option
/NOI[GNORECASE]

The /NOI option tells LIB not to ignore case when comparing symbols; that is,
/NOI makes LIB case sensitive. By default, LIB ignores case. Using this option
allows symbols that are the same except for case, suchas Spline and
SPLINE, to be put in the same library.

Note that when you create a library with the /NOI option, LIB “marks” the
library internally to indicate that /NOI is in effect. Earlier versions of LIB did
not mark libraries in this way. If you combine multiple libraries and any one of
them is marked /NOI, then /NOI is assumed to be in effect for the output library.

Option
[PA[[GESIZE]:number

The /PA option specifies the library-page size of a new library or changes the
library-page size of an existing library. The number specifies the new page size.
It must be an integer value representing a power of 2 between the values 16

and 32,768.

A library’s page size affects the alignment of modules stored in the library. Mod-
ules in the library are always aligned to start at a position that is a multiple of the

LIB 145

page size (in bytes) from the beginning of the file. The default page size for a
new library is 16 bytes; for an existing library, the default is its current page size.
Because of the indexing technique used by the LIB utility, a library with a large
page size can hold more modules than a library with a smaller page size. For
each module in the library, however, an average of number/2 bytes of storage
space is wasted. In most cases, a small page size is advantageous; you should
use a small page size unless you need to put a very large number of modules in a
library.

Another consequence of the indexing technique is that the page size determines

the maximum possible size of the library file. Specifically, this limit is number *
65,536. For example, /PA:16 means that the library file must be smaller than

1 megabyte (16 * 65,536 bytes).

6.1.1.3 Commands

The commands field allows you to specify the command symbols for manipulat-
ing modules. In this field, type a command symbol followed immediately by a
module name or an object-file name. The command symbols are the following:

Symbol Action

+ Adds an object file or library to the library

- Deletes a module from the library

— Replaces a module in the library

* Copies a module from the library to a object file

—k Moves a module (copies the module and then deletes it)

Note that LIB does not process commands in left-to-right order; it uses its own
precedence rules for processing, as described in Section 6.2. You can specify
more than one operation in the commands field, in any order. LIB makes no
changes to oldlibrary if you leave this field blank.

6.1.1.4 Cross-Reference-Listing File

The listfile field allows you to specify a file name for a cross-reference-listing
file. You can give the listing file any name and any extension. To create it out-
side your current directory, supply a path specification. Note that the LIB utility
does not assume any defaults for this field on the command line. If you do not
specify a name for the file, the file is not created.

146 Microsoft QuickC Tool Kit

A cross-reference-listing file contains the following two lists:

1. An alphabetical list of all public symbols in the library.

Each symbol name is followed by the name of the module in which it is de-
fined. The example output below shows that the public symbol ADD is con-
tained in the module junk and the public symbols CALC, MAKE, and
ROLL are contained in the module dice:

ADD. vt iie e Jjunk
CALC .. vttt i teennn dice
MAREt ennnnn dice
ROLL. . eviivenennnn dice

2. Alist of the modules in the library.

Under each module name is an alphabetical listing of the public symbols de-
fined in that module. The example output below shows that the module
dice contains the public symbols CALC, MAKE, and ROLL and the mod-
ule junk contains the public symbol ADD:

dice Offset: 00000010H Code and data size: 621H
CALC MAKE ROLL

junk Offset: 00000bcOH Code and data size: 118H
ADD

6.1.1.5 Output Library

If you specify a name in the newlibrary field, LIB gives this name to the mod-
ified library it creates. You need not give a name unless you specify commands
to change the library.

If you leave this field blank, the original library is renamed with a .BAK exten-
sion and the modified library receives the original name.

6.1.2 Prompts

If you want to respond to individual prompts to give input to LIB, start the LIB
utility at the DOS command level by typing LIB. The library manager prompts
you for the input it needs by displaying the following four messages, one at
atime:

Library name:
Operations:
List file:
Output library:

LIB 147

Extending lines

Default responses

LIB waits for you to respond to each prompt before printing the next prompt. If
you notice that you have entered an incorrect response to a previous prompt,
press CTRL+C to exit LIB and begin again.

The responses to the LIB command prompts correspond to fields on the LIB
command line (Section 6.1.1), as follows:

Prompt Command-Line Field

“Library name” The oldlibrary field and the options. To perform a con-
sistency check on the library, type a semicolon (;)
immediately after the library name.

If the library you name does not exist, LIB displays the
following prompt:

Library does not exist. Create? (y/n)

Type y to create the library file, or n to terminate the
session. This message does not appear if a command,
a comma, or a semicolon immediately follows the library

name.
“Operations” The commands field.
“List file” The listfile field.
“QOutput library” The newlibrary field. This prompt appears only if you

specify at least one operation at the “Operations” prompt.

If you have many operations to perform during a library session, use the amper-
sand symbol (&) to extend the operations line. Type the ampersand symbol after
the name of an object module or object file; do not put the ampersand between a
command symbol and a name.

The ampersand causes LIB to display the “Operations” prompt again, allowing
you to specify more operations.

Press ENTER to choose the default response for the current prompt. Type a semi-
colon (;) and press ENTER after any response except “Library name” to select de-
fault responses for all remaining prompts.

The following list shows the defaults for LIB prompts:

Prompt : Default
“Operations” No operation; no change to library file
“List file” NUL; tells LIB not to create a listing file

“Output library” The current library name

148 Microsoft QuickC Tool Kit

6.1.3 Response File

Using a response file lets you conduct the library session without typing re-
sponses to prompts at the keyboard. To run LIB with a response file, you must
first create the response file. Then type the following at the DOS command line:

LIB @responsefile

The responsefile is the name of a response file. Specify a path name if the re-
sponse file is not in the current directory.

You can also enter @responsefile at any position on a command line or after any
of the prompts. The input from the response file is treated exactly as if it had
been entered on a command line or after the prompts. A new-line character in
the response file is treated the same as pressing the ENTER key in response to a
prompt.

A response file uses one text line for each prompt. Responses must appear in the
same order as the command prompts appear. Use command symbols in the re-
sponse file the same way you would use responses typed on the keyboard. You
can type an ampersand (&) at the end of the response to the “Operations”
prompt, for instance, and continue typing operations on the next line. This mech-
anism is illustrated in Figure 6.1.

| LIB @RESPONSE |

LIB prompts RESPONSE

Library name: | GRAPHIC | <+ GRAPHIC

Operations: L+CIRCLE-WAVE+WAVE & <——-—-—————| +CIRCLE-WAVE+WAVE &

Operations: «—
List file: . | crapuIC. ST |
Ourput/ibrary:L I “ L]

Figure 6.1 LIB Response File

LIB 149

‘When you run LIB with a response file, the prompts are displayed with the re-
sponses from the response file. If the response file does not contain responses for
all the prompts, LIB uses the default responses.

Example
GRAPHIC

+CIRCLE+WAVE-WAVE*FLASH
GRAPHIC.LST

Assume that a response file named response in the directory b: \proj
contains the above lines and you invoke LIB with the command shown below:

LIB @b:\proj\response

LIB deletes the module WAVE from the library GRAPHIC.LIB, copies the
module FLASH into an object file named FLASH .OBJ, and appends the ob-
jectfiles CIRCLE.OBJ and WAVE.OBJ as the last two modules in the
library. LIB also creates a cross-reference-listing file named GRAPHIC.LST.

6.2 LIB Commands

The LIB utility can perform a number of library-management functions, includ-
ing creating a library file, adding an object file as a module to a library, deleting
modules from a library, replacing a module in the library file, copying a module
to a separate object file, and moving a module out of a library and into an ob-
jectfile.

For each library session, LIB reads and interprets commands in the order listed
below. It determines whether a new library is being created or an existing library
is being examined or modified.

1. LIB processes any deletion and move commands.

LIB does not actually delete modules from the existing file. Instead, it marks
the selected modules for deletion, creates a new library file, and copies only
the modules not marked for deletion into the new library file.

2. LIB processes any addition commands.

Like deletions, additions are not performed on the original library file. In-
stead, the additional modules are appended to the new library file. (If there
were no deletion or move commands, a new library file would be created in
the addition stage by copying the original library file.)

150 Microsoft QuickC Tool Kit

As the LIB utility carries out these commands, it reads the object modules in the
library, checks them for validity, and gathers the information necessary to build

a library index and a listing file. When you link a library with other object files,

the linker uses the library index to search the library.

LIB never makes changes to the original library; it copies the library and makes
changes to the copy. Therefore, if you press CTRL+C to terminate the session, you
do not lose your original library. Therefore, when you run LIB, make sure your
disk has enough space for both the original library file and the copy.

Once an object file is incorporated into a library, it becomes an “object module.”
The LIB utility makes a distinction between object files and object modules: an
object file exists as an independent file while an object module is part of a
library file. An object file has a full path name, including a drive designation,
directory path name, and file-name extension (usually .OBJ). Object modules
have only a name. For example, B: \RUN\SORT .OBJ is an object-file name,
while SORT is an object-module name.

6.2.1 Creating a Library File

To create a new library file, give the name of the library file you want to create
in the oldlibrary field of the command line or at the “Library name” prompt.
LIB supplies the .LIB extension.

If the name of the new library file is the same as the name of an existing library
file, LIB assumes that you want to change the existing file. If the name of the
new library file is the same as the name of a file that is not a library, LIB issues
an error message.

When you give the name of a file that does not currently exist, LIB displays the
following prompt:

Library does not exist. Create? (y/n)

Type y to create the file, or n to terminate the library session. This message
does not appear if the name is followed immediately by a command, a comma,
or a semicolon.

You can specify a page size for the library by specifying the /PAGESIZE option
when you create the library (see Section 6.1.1.2). The default page size is 16
bytes.

Once you have given the name of the new library file, you can insert object mod-
ules into the library by using the add-command symbol (+).

LIB 151

6.2.2 Add Command (+)

Combining libraries

Use the add-command symbol (+) to add an object module to a library. Give the
name of the object file to be added, without the .OBJ extension, immediately fol-
lowing the plus sign.

LIB uses the base name of the object file as the name of the object module in the
library. For example, if the object file B: \CURSOR.OBJ is added to a library
file, the name of the corresponding object module is CURSOR.

Object modules are always added to the end of a library file.

You can also use the plus sign to combine two libraries. When you give a library
name following the plus sign, a copy of the contents of that library is added to
the library file being modified. You must include the .LIB extension when you
give a library-file name. Otherwise, LIB uses the default .OBJ extension when it
looks for the file. If both libraries contain a module with the same name, LIB ig-
nores the second module of that name. For information on replacing modules,
see Section 6.2.4.

LIB adds the modules of the library to the end of the library being changed. Note
that the added library still exists as an independent library because LIB copies
the modules without deleting them.

In addition to allowing DOS libraries as input, LIB also accepts 286 XENIX ar-
chives and Intel-format libraries. Therefore, you can use LIB to convert libraries
from either of these formats to the DOS format.

Examples

LIB mainlib +flash;

This command adds the file £lash.obj to the library mainlib.1lib.
LIB math +trig.lib;

The command above adds the contents of the library trig.1lib to the library
math.lib. Thelibrary trig.1lib is unchanged after this command is
executed.

6.2.3 Delete Command (-)

Use the delete-command symbol () to delete an object module from a library.
After the minus sign, give the name of the module to be deleted. Module names
do not have path names or extensions.

152 Microsoft QuickC Tool Kit

Example
LIB mainlib —-flash;

The command shown above deletes the module £lash from the library
mainlib.lib.

6.2.4 Replace Command (—+)

Use the replace-command symbol (—) to replace a module in a library. Follow-
ing the symbol, give the name of the module to be replaced. Module names do
not have path names or extensions.

To replace a module, LIB first deletes the existing module, then appends an ob-
ject file that has the same name as the module. The object file is assumed to
have the .OBJ extension and to reside in the current directory; if not, give the
object-file name with an explicit extension or path.

Example
LIB mainlib —+flash;

This command replaces the module £lash inthe mainlib.1lib library
with the contents of £lash.obj from the current directory. Upon completion
of this command, the file £1lash.obj still exists and the £1lash module is
updated in mainlib.lib.

6.2.5 Copy Command (*)

Use the copy-command symbol (*) followed by a module name to copy a mod-
ule from the library into an object file of the same name. The module remains in
the library. When LIB copies the module to an object file, it adds the .OBJ exten-
sion to the module name and places the file in the current directory.

Example
LIB mainlib *flash;

This command copies the module £lash fromthe mainlib.1lib library to
afile called £lash.ob3j in the current directory. Upon completion of this
command, mainlib.1lib still contains the module f£lash.

LiB 153

6.2.6 Move Command (-*)

Use the move-command symbol (—*) to move an object module from the library
file to an object file. This operation is equivalent to copying the module to an ob-
ject file, then deleting the module from the library.

Example
LIB mainlib -*flash;
This command moves the module flash fromthe mainlib.1ib library to

afilecalled flash.ob3j in the current directory. Upon completion of this
command, mainlib.1lib no longer contains the module f£lash.

CHAPTER 7 15
NMAKE

The Microsoft Program-Maintenance Utility (NMAKE) can save you
time by automating the process of updating project files. NMAKE com-
pares the modification dates for one set of files, the target files, to those
of another set of files, the dependent files. If any of the dependent files
have changed more recently than the target files, NMAKE executes a
specified series of commands.

NMAKE is typically used by specifying a project’s executable files as tar-
get files and the project’s source files as the dependent files. If any of the
source files have changed since the executable file was created, NMAKE
can issue a command to assemble or compile the changed source files

and link them into the executable file.

NMAKE reads the target- and dependent-file specifications from a “de-
scription file,” also called a “makefile.” The description file comprises
any number of description blocks. Each description block lists one or
more targets and the dependent files related to those targets. The block
also gives the commands that NMAKE must execute to bring the targets
up to date. The description file may also contain macros, inference rules,
and directives.

7.1 Invoking NMAKE

Two methods for invoking NMAKE are available:
1. Specify options, macro definitions, and the names of targets to be built on the
DOS command line.

2. Specify options, macro definitions, and the names of targets to be builtin a
response file, and give the file name on the DOS command line.

156 Microsoft QuickC Tool Kit

7.1.1 Using a Command Line to Invoke NMAKE

The syntax for invoking NMAKE from the command line is as follows:
NMAKE [[options]l [macrodefinitions] [target...] [filename]l

The options field specifies options that modify the action of NMAKE. (Options
are not required.) They are described in Section 7.2.

The optional macrodefinitions field lists macro definitions for NMAKE to use.
Macros provide a convenient method for replacing a string of text in the descrip-
tion file. Macro definitions that contain spaces must be enclosed by quotation
marks. Macros are discussed in Section 7.3.2.

The optional target... field specifies the name of one or more targets to build. If
you do not list any targets, NMAKE builds the first target in the description file.

The optional filename field gives the name of the description file from which
NMAKE reads target- and dependent-file specifications and commands. A better
way of designating the description file is to use the /F option (described in Sec-
tion 7.2). By default, NMAKE looks for a file named MAKEFILE in the current
directory. If MAKEFILE does not exist, NMAKE uses the filename field: it inter-
prets the first string on the command line that is not an option or macro defini-
tion as the name of the description file, provided its file-name extension isn’t
listed in the .SUFFIXES list. (See Section 7.3.5 for more information on the
SUFFIXES list.)

NOTE Unless you use the /F option, NMAKE always searches for a file named MAKEFILE in the
current directory.

Example

NMAKE /S "program = flash" sort.exe search.exe

This example invokes NMAKE with the /S option, a macro assigning f£lash
to program, and two targets, sort .exe and search.exe. By default,
NMAKE uses the file named MAKEFILE as the description file.

7.1.2 Using a Response File to Invoke NVAKE

To invoke NMAKE with a response file, first create the response file, then issue
a command with the following syntax:

NMAKE @responsefile

Here commandfile is the name of a file containing the same information that
would be specified on the command line: options, macro definitions, and targets.
The response file is not the same as the description file.

NMAKE 157

A response file is useful for invoking NMAKE with a long string of command-
line arguments, such as macro definitions, that might exceed the DOS limit of
128 characters. NMAKE treats line breaks that occur between arguments as
spaces. Macro definitions can span multiple lines by ending each line except the
last with a backslash (\). Macro definitions that contain spaces must be enclosed
by quotation marks, just as if they were entered directly on the command line.

Example

/S "program \
= flash" sort.exe search.exe

Assume a file named update contains the text above. The command below in-
vokes NMAKE with the description file MAKEFILE, the /S option, the macro
definition program = flash, and the targets sort.exe and
search.exe. Note that the backslash ending the line allows the macro defini-
tion to span two lines.

NMAKE @update

7.2 NMAKE Options

NMAKE accepts a number of command-line options, which are listed below.
You may specify options in uppercase or lowercase and use either a slash or
dash. For example, -B, /B, —b, and /b all represent the same option.

Option Action

/A Executes commands to build all the targets requested
even if they are not out of date.

/C Suppresses the NMAKE copyright message and prevents
nonfatal error or warning messages from being displayed.

/D Displays the modification date of each file when the date
is checked.

/E Causes environment variables to override macro defini-

tions within description files.

[F filename Specifies filename as the name of the description file to
use. If a dash (-) is entered instead of a file name,
NMAKE accepts input from the standard input device in-
stead of using a description file.

If /F is not specified, NMAKE uses the file named
MAKEFILE as the description file. If MAKEFILE does
not exist, NMAKE uses the first string on the command
line that is not an option or macro definition as the name
of the file, provided the extension is not listed in the
.SUFFIXES list (see Section 7.3.5).

158 Microsoft QuickC Tool Kit

il Ignores exit codes (also called return or “errorlevel”
codes) returned by programs called from the NMAKE de-
scription file. NMAKE continues executing the rest of
the description file despite the errors.

/N Displays the commands from the description file that
NMAKE would execute but does not execute these com-
mands. This option is useful for checking which targets
are out of date and for debugging description files.

P Prints all macro definitions and target descriptions.

Q Retumns a zero status code if the target is up to date and a
nonzero status code if it is not. This option is useful
when invoking NMAKE from within a batch file.

/R Ignores inference rules and macros contained in the
TOOLS.INI file.

/S Does not display commands as they are executed.

/T Changes the modification dates for out-of-date target
files to the current date. The file contents are not
modified.

/X filename Sends all error output to filename, which can be either a

file or a device. If a dash (-) is entered instead of a file
name, the error output is sent to the standard output
device.

Examples
NMAKE /f quick /c fl f2

The example above causes NMAKE to execute the commands in the description
file quick to update the targets £1 and £2. The /c option prevents NMAKE
from displaying nonfatal error messages and warnings.

NMAKE /D /N f1 fl.mak

In the example above, NMAKE updates the target £1. If the current directory
does not contain a file named MAKEFILE, NMAKE reads the file £1.mak as
the description file. The /D option displays the modification date of each file and
the /N option displays the commands without executing them.

7.3 Description Files

NMAKE reads a description file to determine what to do. The description file
may contain any number of description blocks, along with macros, inference
rules, and directives. These can be in any order.

‘When NMAKE runs, it builds the first target in the description file by default.
You can override this default by specifying on the command line the names of

NMAKE 159

the targets to build. The sections that follow describe the elements of a descrip-
tion file.

7.3.1 Description Blocks

The target... field

The dependent.. field

An NMAKE description file contains one or more description blocks. Each has
the following form:

target... : [dependent...] [; command][comment]]
[command])

Bcomment]

[Hcomment] | [command]

The file to be updated is target; dependent is a file upon which rarget depends;
command is a command used to update target; and comment documents what is
happening. The line containing target and dependent is called the dependency
line because target depends on dependent.

Each component of a description block is discussed below.

The target field specifies the name of one or more files to update. If you specify
more than one file, separate the file names by a space. The first target name must
start in the first column of the line; it may not be preceded by any tabs or spaces.
Note that the target need not be a file; it may be a pseudotarget, as described in
Section 7.3.5.

The dependent field lists one or more files on which the target depends. If you
specify more than one file, separate the file names by a space. You can specify
directories for NMAKE to search for the dependent files by using the following
form:

target : {directoryldirectory2...}dependent

NMAKE searches the current directory first, then directoryl, directory2, and so
on. If dependent cannot be found in any of these directories, NMAKE looks for
an inference rule to create the dependent in the current directory. See Section
7.3.3 for more information on inference rules.

In the following example, NMAKE first searches the current directory for
pass.obj,thenthe \src\alpha directory, and finally the d:\proj
directory:

forward.exe : {\srclalpha;d:\projlpass.ob]j

160 Microsoft QuickC Tool Kit

The command field

The comment field

Wild-card characters

Escape character

The command is used to update the target. This can be any command that can be
issued on the DOS command line. A semicolon must precede the command if it
is given on the same line as the target and dependent files. Commands may be
placed on separate lines following the dependency line, but each line must start
with at least one space or tab character. Blank lines may be intermixed with
commands. A long command may span several lines if each line ends with a
backslash (V). If no commands are specified, NMAKE looks for an inference rule
to build the target.

NMAKE considers any text between a number sign (#) and a new-line character
to be a comment and ignores it. You may place a comment on a line by itself or
at the end of any line except a command line. In the command section of the de-
scription file, comments must start in the first column.

You can use the DOS wild-card characters (* and ?) when specifying target- and
dependent-file names. NMAKE expands wild cards in target names when it
reads the description file. It expands wild cards in the dependent names when it
builds the target. For example, the following description block compiles all
source files with the .C extension:

astro.exe : *.,c
QCL *.c

You can use a caret (A) to escape any DOS or OS/2 file-name character in a de-
scription file, so that the character takes on its literal meaning and does not have
any special significance to NMAKE. The following characters must be preceded
by an escape character for NMAKE to interpret them literally.

#(O)SM\{}!@-

For example, NMAKE interprets the specification
bigt#.c

as the file name

big#.c

Using the caret, you can include a literal new-line character in a description
file. This capability is primarily useful in macro definitions, as in the following
example:

XYZ=abc”
def

NMAKE interprets this example as if you had assigned to the XYZ macro the C-
style string abc\ndef. Note that this effect differs from the use of the
backslash () to continue a line. A new-line character that follows a backslash is
replaced with a space.

NMAKE 161

NMAKE ignores a caret that is not followed by any of the characters mentioned
above, as in the following:

mno “: def
In this case, NMAKE ignores the caret and treats the line as

mno : def

Carets that appear within quotation marks are not treated as escape characters.

7.3.1.1 Modifying Commands

Three different characters may be placed in front of a command to modify the
command’s effect. The character must be preceded by at least one space, and
spaces may separate the character from the command. You may use more than
one character to modify a single command. The characters are listed below:

Character Action

Dash (-) Turns off error checking for the command. If the dash is
followed by a number, NMAKE halts only if the error
level returned by the command is greater than the num-
ber. In the following example, if the program flash
returned an error code NMAKE would not halt, but
would continue to execute commands:

light.lst:light.txt
—-flash light.txt

At sign(@) Prevents NMAKE from displaying the command as it ex-
ecutes. In the example below, NMAKE does not display
the ECHO command line:

sort.exe:sort.ob]
@ECHO sorting

The output of the ECHO command, however, appears as

usual.
Exclamation Causes the command to be executed for each dependent
point (!) file if the command uses one of the special macros $? or

$**. The $? macro refers to all dependent files that are
out of date with respect to the target, while $** refers to
all dependent files in the description block. (See Section
7.3.2 for more information on macros.) For example,

print: hop.asmskip.bas jump.c

'print $** lptl:
causes the following three commands to be generated:
print hop.asmlptl:

print skip.bas lptl:
print jump.c lptl:

162 Microsoft QuickC Tool Kit

7.3.2 Macros

7.3.1.2 Specifying a Target in Multiple Description Blocks

You can specify more than one description block for the same target by using
two colons (::) as the separator instead of one. For example:

target.lib :: a.asm b.asm c.asm

ML a.asm b.asm c.asm

LIB target —-+a.obj —-+b.obj -+c.obj;
target.lib :: d.c e.c

QCL /c d.c e.c

LIB target —-+d.obj —+e.obj;

These two description blocks both update the library named target.lib.If
any of the assembly-language files have changed more recently than the library
file, NMAKE executes the commands in the first block to assemble the source
files and update the library. Similarly, if any of the C-language files have
changed, NMAKE executes the second group of commands, which compile the
C files and then update the library.

If you use a single colon in the above example, NMAKE issues an error mes-
sage. It is legal, however, to use single colons if commands are listed in only one
block. In this case, dependency lines are cumulative. For example,

target: jump.bas
target: up.c
commands

is equivalent to

target: Jjump.bas up.c
commands

Macros provide a convenient way to replace a string in the description file with
another string. The text is automatically replaced each time NMAKE is invoked.
This feature makes it easy to change text used throughout the description file
without having to edit every line that uses the text.

Macros can be used in a variety of situations, including the following:

m To create a standard description file for several projects. The macro repre-
sents the file names used in commands. These file names are then defined
when you run NMAKE. When you switch to a different project, changing the
macro changes the file names NMAKE uses throughout the description file.

m To control the options that NMAKE passes to the compiler, assembler, or
linker. When you use a macro to specify the options, you can quickly change
the options used throughout the description file in one easy step.

NMAKE 163

Defining macros
in description files

Defining macros
on the NMAKE command line

7.3.2.1 Macro Definitions

A macro definition uses the following form:

macroname = string

The macroname may be any combination of alphanumeric characters and the un-
derscore (_) character. The string may be any valid string.

You can define macros on the NMAKE command line or in the description file.
Because of the way DOS parses command lines, the rules for the two methods
are slightly different.

In NMAKE description files, define each macro on a separate line. The first
character of the macro name must be the first character on the line. NMAKE ig-
nores spaces following macroname or preceding string. The string may be a null
string and may contain embedded spaces. Do not enclose string in quotation
marks; NMAKE will consider them part of the string.

On the command line, no spaces may surround the equal sign. Spaces cause
DOS to treat macroname and string as separate tokens. Strings that contain
embedded spaces must be enclosed in double quotation marks. Alternatively,
you can enclose the entire macro definition—macroname and string—in quota-
tion marks. The string may be a null string.

After you have defined a macro, use the following to include it in a dependency
line or command:

$(macroname)

The parentheses are not required if macroname is only one character long. The
macroname is converted to uppercase letters. If you want to use a dollar sign ($)
in the file but do not want to invoke a macro, enter two dollar signs ($$), or use
the caret (A) as an escape character preceding the dollar sign.

When NMAKE runs, it replaces all occurrences of $(macroname) with string. If
the macro is undefined, that is, if its name does not appear to the left of an equal
sign in the file or on the NMAKE command line, NMAKE treats it as a nult
string. Once a macro is defined, the only way to cancel its definition is to use the
IUNDEF directive (see Section 7.3.4).

Example
Assume the following text is in a file named MAKEFILE:

program = flash
c = LINK
options =

S (program) .exe : $(program) .cbj
$c S{options) $(program).obj;

164 Microsoft QuickC Tool Kit

When you invoke NMAKE, it interprets the description block as the following:

flash.exe : flash.obj
LINK flash.obj;

7.3.2.2 Macro Substitutions

Just as macros allow you to substitute text in a description file, you can also sub-
stitute text within a macro itself. Use the following form:

$(macroname:stringl = string2)

Every occurrence of stringl is replaced by string2 in the macro macroname.
Spaces between the colon and stringl are considered part of stringl. Any spaces
following stringl or preceding string2 are ignored. If string2 is a null string, all
occurrences of stringl are deleted from the macroname macro.

Example

SRCS = prog.c subl.c sub2.c
prog.exe : $(SRCS:.c=.0bj)
LINK S$**;

DUP : $(SRCS)
1COPY $** c:\backup

Note that the special macro $** stands for the names of all the dependent files
(see Section 7.3.2.3). If the description file above is invoked with a command
line that specifies both targets, NMAKE will execute the following commands:

LINK prog.obj subl.obj sub2.obj;

COPY prog.c c:\backup
COPY subl.c c:\backup
COPY sub2.c c:\backup

The macro substitution does not alter the definition of the macro SRCS, but
simply replaces the listed characters. When NMAKE builds the target
prog.exe, it picks up the definition for the special macro $** (that is, the list
of dependents) from the dependency line, which specifies the macro substitution
in SRCS. The same is true for the second target, DUP. In this case, however, no
macro substitution is requested, so SRCS retains its original value, and $** rep-
resents the names of the C source files.

NMAKE 165

7.3.2.3 Special Macros

Several macros have special meaning. These macros are listed below with their

values:

Macro

Value

$*
@
$**
$<

$?

8@

$(CC)

$(AS)

$(MAKE)

$(MAKEFLAGS)

The target name with the extension deleted.
The full name of the current target.
The complete list of dependent files.

The dependent file that is out of date with respect to the
target (evaluated only for inference rules).

The list of dependents that are out of date with respect to
the target.

The target NMAKE is currently evaluating. This is a dy-
namic dependency parameter that can be used only in
dependency lines. See “Examples,” below, for a typical
use of this macro.

The command to invoke the C compiler. By default,
NMAKE predefines this macro as CC = c1, which in-
vokes the Microsoft C Optimizing Compiler. To redefine
the macro to invoke the QuickC compiler, use the
following:

CC=qcl

You might want to place the above definition in your
TOOLS.INI file to avoid having to redefine it for each de-
scription file.

The command to invoke the Microsoft Macro Assem-
bler. NMAKE predefines this macro as AS = masm.

The name with which the NMAKE utility was invoked.
This macro is used to invoke NMAKE recursively. It
causes the line on which it appears to be executed even if
the /N option is on. You may redefine this macro if you
want to execute another program; however, NMAKE re-
turns a warning message.

The NMAKE options currently in effect. If you invoke
NMAKE recursively, you should use the command:

$ (MAKE) $ (MAKEFLAGS). You cannot redefine this
macro.

166 Microsoft QuickC Tool Kit

Characters that modify
special macros

You can append characters to any of the first six macros in the above list to mod-
ify its meaning. Appending a D specifies the directory part of the file name only,
an F specifies the file name, a B specifies just the base name, and an R specifies
the complete file name without the extension. If you add one of these characters,
you must enclose the macro name in parentheses. (The special macros $$@ and
$** are the only exceptions to the rule that macro names more than one
character long must be enclosed in parentheses.)

For example, assume that $@ has the value C:\SOURCE\PROG\SORT.OBJ.
The list below shows the effect the special characters have when combined

with $@:

Macro Value

$(@D) C:\SOURCE\PROG

$(@F) SORT.OBJ

$(@B) SORT

$(@R) C:\SOURCE\PROG\SORT
Examples

trig.lib : sin.obj cos.obj arctan.obj
{LIB trig.lib —+$2;

In the example above, the macro $? represents the names of all dependents that
are more recent than the target. The exclamation point causes NMAKE to ex-
ecute the LIB command once for each dependent in the list. As a result of this de-
scription, the LIB command is executed up to three times, each time replacing a
module with a newer version.

Include files depend on versions in current directory
DIR=c:\include
$(DIR)\globals.h : globals.h
COPY globals.h $@
$(DIR)\types.h : types.h
COPY types.h $@
$(DIR) \macros.h : macros.h
COPY macros.h $@

This example shows the use of NMAKE to update a group of include files. In
the description file above, each of the files globals.h, types.h, and
macros.h inthe directory c:\include depends on its counterpart in the
current directory. If one of the include files is out of date, NMAKE replaces it
with the file of the same name from the current directory.

NMAKE 167

The following description file, which uses the special macro $$@, is equivalent:

Include files depend on versions in current directory

DIR=c:\include

$(DIR)\globals.h $(DIR)\types.h $(DIR)\macros.h: $$(QF)
ICOPY $2 $S@

In this example, the special macro $$(@F) signifies the file name (without the
directory) of the current target.

When NMAKE executes the description, it evaluates the three targets, one at a
time, with respect to their dependents. Thus, NMAKE first checks whether
c:\include\globals.h isoutof date compared with globals.h in
the current directory. If so, it executes the command to copy the dependent file
globals.h tothe target. NMAKE repeats the procedure for the other two tar-
gets. Note that in the command line, the macro $? refers to the dependent for this
target. The macro $@ means the full name of the target.

7.3.2.4 Precedence of Macro Definitions

If the same macro is defined in more than one place, the rule with the highest
priority is used. The priority from highest to lowest is as follows:

Definitions on the command line

Definitions in the description file or in an include file

Definitions by an environment variable

Definitions in the TOOLS.INI file

Predefined macros such as CC and AS

A e

If NMAKE is invoked with the /E option, which causes environment variables to
override macro definitions, macros defined by environment variables take prece-
dence over those defined in a description file.

7.3.3 Inference Rules

Inference rules are templates that NMAKE uses to generate files with a given ex-
tension. When NMAKE encounters a description block with no commands, it
looks for an inference rule that specifies how to create the target from the de-
pendent files, given the two file extensions. Similarly, if a dependent file does
not exist, NMAKE looks for an inference rule that specifies how to create the de-
pendent from another file with the same base name.

168 Microsoft QuickC Tool Kit

The use of inference rules eliminates the need to put the same commands in
several description blocks. For example, you can use inference rules to specify a
single QCL command that changes any C source file (which has an extension of
.C) to an object file (which has an extension of .OBJ).

Inference rules have the following form:

Jfromext.toext:
command
[command]

.

In this format, command specifies one of the commands involved in converting a
file with the extension fromext to a file with the extension toext. Using the ear-
lier example of converting C source files to object files, the inference rule looks
as follows:

.C.OBJ:
QCL -c $<;

The special macro $< represents the name of a dependent that is out of date rela-
tive to the target.

Pathspecifications You can specify a single path for each of the extensions, using the following
form:

{frompath} fromext{topath}.toext
commands

NMAKE takes the files with the fromext extension it finds in the directory
specified by frompath and uses commands to create files with the foext extension
in the directory specified by topath.

If NMAKE finds a description block without commands, it looks for an infer-
ence rule that matches both extensions. NMAKE searches for inference rules in
the following order:

1. In the current description file.

2. Inthe tools-initialization file, TOOLS.INI. NMAKE first looks for the
TOOLS.INI file in the current working directory and then in the directory in-
dicated by the INIT environment variable. If it finds the file, NMAKE looks
for the inference rules following the line that begins with the tag [nmake].

NOTE NMAKE applies an inference rule only if the base name of the file it is trying to create
matches the base name of a file that already exists.

Predefined inference rules

NMAKE 169

In effect, this means that inference rules are useful only when there is a one-to-one correspon-
dence between the files with the “from” extension and the files with the ‘to” extension. You cannot,
for example, define an inference rule that inserts a number of modules into a library.

NMAKE uses three predefined inference rules, summarized in Table 7.1. Note
that these rules use the macro CC, which invokes the Microsoft C Optimizing
Compiler by default. If you plan to rely on inference rules to build your targets,
you should redefine CC to invoke the QuickC compiler, as shown in

Section 7.3.2.3.

Table 7.1 Predefined Inference Rules

Inference Rule Command Default Action
.c.obj $(CC) $(CFLAGS) /fc $*.c CL /c $*.c
.c.exe $(CC) $(CFLAGS) $*.c CL $*c
.asm.obj $(AS) $(AFLAGS) $*; masm $*;
Example
.OBJ.EXE:
LINK S$<;

EXAMPLELl .EXE: EXAMPLE1l.OBJ

EXAMPLE2 .EXE: EXAMPLEZ2.0BJ
LINK /CO EXAMPLE2,,,LIBV3.LIB

In the sample description file above, the first line defines an inference rule that
executes the LINK command on the second line to create an executable file
whenever a change is made in the corresponding object file. The file name in the
inference rule is specified with the special macro $< so that the rule applies to
any .OBJ file that has an out-of-date executable file.

‘When NMAKE does not find any commands in the first description block, it
checks for a rule that may apply and finds the rule defined on the first two lines
of the description file. NMAKE applies the rule, replacing the $< macro with
EXAMPLE1l.OBJ when it executes the command, so that the LINK command
becomes

LINK EXAMPLE1.OBJ;

NMAKE does not search for an inference rule when examining the second de-
scription block because a command is explicitly given.

170 Microsoft QuickC Tool Kit

7.3.4 Directives

Using directives, you can construct description files that are similar to batch
files. NMAKE provides directives that specify conditional execution of com-
mands, display error messages, include the contents of other files, and turn on or
off some of NMAKE’s options.

Each directive begins with an exclamation point (!) in the first column of the de-
scription file. Spaces can be placed between the exclamation point and the direc-
tive keyword. The list below describes the directives:

Directive Description

lIF constantexpression Executes the statements between the !IF key-
word and the next !ELSE or !ENDIF directive
if constantexpression evaluates to a nonzero
value.

!ELSE Executes the statements between the |ELSE
and |ENDIF directives if the statements preced-
ing the !ELSE directive were not executed.

{ENDIF Marks the end of the !IF, IFDEF, or IFNDEF
block of statements.
TEDEF macroname Executes the statements between the {IFDEF

keyword and the next !ELSE or {ENDIF direc-
tive if macroname is defined in the description
file. NMAKE considers a macro with a null
value to be defined.

ITFNDEF macroname Executes the statements between the IFNDEF
keyword and the next !ELSE or !ENDIF direc-
tive if macroname is not defined in the

description file.

IUNDEF macroname Marks macroname as being undefined in
NMAKE's symbol table.

IERROR text Causes fext to be printed and then stops
execution.

IINCLUDE filename Reads and evaluates the file filename before

continuing with the current description file. If
filename is enclosed by angle brackets (<>),
NMAKE searches for the file in the directories
specified by the INCLUDE macro; otherwise it
looks in the current directory only. The
INCLUDE macro is initially set to the value of
the INCLUDE environment variable.

NMAKE 171

ICMDSWITCHES: {+I-}opt... Turns on or off one of four NMAKE options:
/D, I, /N, and /S. If no options are specified,
the options are reset to the way they were
when NMAKE was started. Turn an option on
by preceding it with a plus sign (+), or turn it
off by preceding it with a minus sign ().
Using this directive updates the MAKEFLAGS
macro.

The constantexpression used with the !IF directive may consist of integer con-
stants, string constants, or program invocations. Integer constants can use the C
unary operators for numerical negation (-), one’s complement (~), and logical
negation (!). They may also use any of the C binary operators listed below:

Operator Description
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulus
& Bitwise AND
! Bitwise OR
AN Bitwise XOR
&& Logical AND
" Logical OR
<< Left shift
>> Right shift
== Equality
1= Inequality
Less than
Greater than
<= Less than or equal to
>= Greater than or equal to

You can use parentheses to group expressions. Values are assumed to be deci-
mal values unless specified with a leading 0 (octal) or leading Ox (hexadecimal).
Use the equality (==) operator to compare two strings for equality or the inequal-
ity (!=) operator to compare for inequality. Strings are enclosed by quotes. Pro-
gram invocations must be in square brackets ([1).

172 Microsoft QuickC Tool Kit

Example

! INCLUDE <infrules.txt>
!CMDSWITCHES +D
winner.exe:winner.obj
!IFDEF debug

! IF lls (debug) '|==lly"
LINK /CO winner.obj;
! ELSE
LINK winner.obj;
! ENDIF
'ELSE
! ERROR Macro named debug is not defined.
{ENDIF

The !INCLUDE directive causes the file INFRULES.TXT to be read and eval-
uated as if it were a part of the description file. The I\CMDSWITCHES directive
turns on the /D option, which displays the dates of the files as they are checked.
If winner.exe isoutof date with respect to winner.obj, the IFDEF
directive checks to see if the macro debug is defined. If it is defined, the !TF
directive checks to see if it is set to y. If it is, then the linker is invoked with the
/CO option; otherwise it is invoked without. If the debug macro is not de-
fined, the !ERROR directive prints the message and NMAKE stops executing.

7.3.5 Pseudotargets

A “pseudotarget” is a target that is not a file but instead is a name that serves as
a “handle” for building a group of files or executing a group of commands. In
the following example, UPDATE is a pseudotarget:

UPDATE: *.*
lcopy $** a:\product

When NMAKE evaluates a pseudotarget, it always considers the dependents out
of date. In the description above, NMAKE copies each of the dependent files to
the specified drive and directory.

The NMAKE utility includes four predefined pseudotargets that provide special
rules within a description file. The list below describes these pseudotargets:

Pseudotarget Action

.SILENT: Does not display lines as they are executed. Same effect
as invoking NMAKE with the /S option.

IGNORE: Ignores exit codes returned by programs called from the

description file. Same effect as invoking NMAKE with
the /I option.

SUFFIXES:Iist

PRECIOUS: target...

NMAKE 173

Lists file suffixes for NMAKE to try if it needs to build a
target file for which no dependents are specified.
NMAKE searches the current directory for a file with the
same name as the target file and a suffix from the list. If
NMAKE finds such a file, and if an inference rule ap-
plies to the file, then NMAKE treats the file as a
dependent of the target. The order of the suffixes in the
list defines the order in which NMAKE searches for the
files. The list is predefined as follows:

.SUFFIXES: .obj .exe .c .asm

To add suffixes to the list, specify .SUFFIXES: followed
by the new suffixes. To clear the list, specify the
following:

.SUFFIXES:

Tells NMAKE not to delete target if the commands that
build it are quit or interrupted. Using this pseudotarget
overrides the NMAKE default. By default, NMAKE de-
letes the target if it cannot be sure the target was built
successfully. For example:

.PRECIOUS: tools.lib
tools.lib : a2z.obj z2a.obj

If the commands (not shown here) to build tools.1lib
are interrupted, leaving an incomplete file, NMAKE
does not delete the partially built tools.lib because
it is listed with .PRECIOUS.

Note, however, that PRECIOUS is useful only in limited
circumstances. Most professional development tools, in-
cluding those provided by Microsoft, have their own
interrupt handlers and “clean up” when errors occur.

7.4 Response-File Generation

At times, you may need to issue a command in the description file that has a list
of arguments that exceeds the DOS limit of 128 characters. Just as NMAKE sup-
ports the use of response files, it can also generate response files for use with

other programs.

The syntax for creating a response file is

target : dependents

command @<< [[filename]}

response-file-text
<<

174 Microsoft QuickC Tool Kit

All of the text between the two sets of angle brackets (<<) is placed in a re-
sponse file. The second pair of angle brackets must be at the beginning of the
line, with no preceding white-space characters. Note that the at sign (@) is not
part of the NMAKE syntax but is the typical response-file character for utilities
such as LINK and LIB.

To name the response file, specify a filename immediately after the first pair of
angle brackets, with no intervening spaces. If you do not specify a file name,
NMAKE gives the response file a unique name in the directory specified by the
TMP environment variable if the variable is defined; if the TMP variable is not
defined, NMAKE creates the response file in the current directory.

Example

math.lib : add.obj sub.obj mul.obj div.obj
LIB @<<

math.lib

-+add.obj—+sub.obj-+mul.obj-+div.obj

listing

<<

The above example creates a response file and uses it to invoke the Microsoft
Library Manager (LIB). The response file specifies which library to use, the com-
mands to execute, and the listing file to produce. The response file contains the
following:

math.lib
-+add.obj-+sub.cbj-+mul.obj-+div.obj
listing

7.5 Differences between NMAKE and MAKE
NMAKE differs from MAKE in the following ways:

m Itaccepts command-line arguments from a file.
m It provides more command-line options.

m It does not evaluate targets sequentially, as MAKE does. Instead, it updates
the targets specified on the command line, regardless of where they appear in
the description file. If no targets are specified, NMAKE updates the first tar-
get in the file.

m It provides more special macros.
= It permits substitutions within macros.
m It supports directives placed in the description file.

m It allows you to specify include files in the description file.

NMAKE 175

MAKE assumed that all targets in the description file would be built. Because
NMAKE builds the first target in the file unless you specify otherwise, you may
need to change your old description files to work with the new utility.

Description files written for use with MAKE typically list a series of subordinate
targets followed by a higher-level target that depends on the subordinates. As
MAKE executed, it would build the targets sequentially, creating the highest-
level target at the end.

The easiest way to convert these description files is to create a new description
block at the top of the file. Give this block a pseudotarget named ALL and set its
dependents to all of the other targets in the file. When NMAKE executes the de-
scription, it will assume you want to build the target ALL and consequently will
build all targets in the file.

Alternatively, if your description file already contains a block that builds a
single, top-level target, you can simply make that block the first in the file.

Example

one.obj: one.c
two.obj: two.c
three.obj: three.c

progl.exe: one.obj two.obj three.obj
link one two three, progl;

x.0bj: x.cC
y.obj: y.c
z.obj: z.c

Xyz.exe: x.0bj y.obj z.obj
link x v 2z, Xyz;

Assume the above is an old MAKE description file named MAKEFILE. Note
that it builds two top-level targets, progl.exe and xyz.exe . To use this
file with the new NMAKE, insert the following as the first line in the file:

ALL : progl.exe xyz.exe

With the addition of this line, ALL becomes the first target in the file. Since
NMAKE, by default, builds the first target, you can invoke NMAKE with

NMAKE

and it will build both progl.exe and xyz.exe.

176 Microsoft QuickC Tool Kit

7.6 Interchanging NMAKE and QuickC .MAK Files

If you create a program list for a program within the QuickC environment,
QuickC creates a description file for the program. The description file has the
same base name as the program, with the extension MAK. The file is used
within the QuickC environment to rebuild the program. The QuickC environ-
ment supports a subset of the NMAKE features for use in the . MAK files. Gener-
ally speaking, NMAKE can execute any QuickC .MAK file, but QuickC cannot
execute all NMAKE description files. This section summarizes the differences
between the two.

7.6.1 Syntax Rules

The QuickC environment limits lines to 100 characters. It does not allow the
backslash () as a line-continuation character.

7.6.2 Order of Targets

QuickC does not use inference rules in the same way as NMAKE. The only in-
ference rule it applies is one that creates .EXE files from .OBJ files. It does not
infer the creation of .OBJ files from .C or .ASM sources as NMAKE does.

7.6.3 Macro Definitions

You can change macro definitions in QuickC .MAK files, but not macro names.
For instance, you might need to change a list of options; modify the CFLAGS,
AFLAGS, or LFLAGS macro to build a target for debugging; or edit the list of
object files or libraries used in the LINK step.

7.6.4 Dependency Lines

NMAKE applies three predefined inference rules for creating targets and depend-
ents, and allows you to define others, as described in Section 7.3.3. The QuickC
environment, however, assumes that all files exist, except for .EXE files it can
create from .OBJ files. To use a NMAKE description file with QuickC, you

must explicitly create all .OB]J files from their .C and .ASM sources.

CHAPTER 8 177

HELPMAKE

The Microsoft Help-File-Creation Utility (HELPMAKE) allows you to
make your own help files for use with Microsoft products. HELPMAKE
also allows you to customize the help files supplied with Microsoft 1an-
guage products.

HELPMAKE translates help text files into a help data base accessible
from within the following:

® Microsoft Editor

m QuickC

m Microsofte QuickBASIC

m OS/2 Programmer’s Toolkit QuickHelp Utility

To use HELPMAKE, you specify the name of a help text file formatted
in one of several simple styles and the amount by which to compress the
file. HELPMAKE can also decompress a help data base to its original
text format.

8.1 Structure and Contents of a Help Data Base

HELPMAKE creates a help data base from one or more input files that contain
information specially formatted for the help system. This section defines some
of the terms involved in formatting and outlines the types of files HELPMAKE
can take as input.

178 Microsoft QuickC Tool Kit

8.1.1 What’s in a Help File?

Contexts and topic text

Cross-references

Implicitcross-references

If you have used the QuickC Advisor, you probably have a good idea what a
help file looks like. As you might expect, each file starts with a subject and some
information about the subject, then lists another subject and some information
about it, then another, and so on. In HELPMAKE terminology, the subjects are
called “contexts” and the information is called “topic text.” Whenever someone
asks for help on the open function, the Advisor looks for the context “open” and
displays its topic text. (The name of every function in the C run-time library is a
context throughout the QuickC Advisor.)

Whether a context is one or several words depends on the application. QuickC,
for example, considers spaces to be delimiters, so contexts in QuickC help files
are limited to a single word. Other applications, such as the Microsoft Editor,
can handle contexts that span several words. Either way, the application simply
hands the context to an internal “help engine,” which searches the data base for
information. All Microsoft products that provide on-line help use the same help
engine.

Often, especially with library routines, the same information applies to more

than one subject. For example, the string-to-number functions strtod, strtol, and
stroul share the same help text. The help file lists all three function names as
contexts for one block of topic text. The converse, however, is not true. You can-
not specify different blocks of topic text, in different places in the help file, to de-
scribe a single subject.

To make it easier for users to navigate through a help data base, you can put
cross-references in your help text. Cross-references bring up information on re-
lated topics, including header files and code examples. The help for the open
function, for example, references the access function and the ASCII header file
FCNTL.H. Cross-references can point to other contexts in the same help data
base, to contexts in other help data bases, or to ASCII files outside the data base.

Help files can have two kinds of cross-references:

m Implicit cross-references

m Explicit cross-references, or “hyperlinks”

The word “open” is an “implicit cross-reference” throughout QuickC help be-
cause it is the name of a function. If a user selects the word “open” anywhere in
QuickC help, the help system displays information on the open function. Cross-
references like this are called “implicit cross-references” because they are impli-
cit in the help file and require no special coding. Anywhere a context appears,
the help system makes an implicit cross-reference to its topic text.

HELPMAKE 179

Hyperlinks

Formatting flags

Explicit cross-references, also called “hyperlinks,” are tied to a word or phrase at
a specific location in the help file. You set up explicit cross-references when you
write the help text. For example, to cause one instance of the word “formatting”
to bring up help on the printf function, you would create an explicit cross-
reference from the word “formatting” to the context “printf.” Anywhere else in
the file, “formatting” would have no special significance, but at that one posi-
tion, it would reference the help for printf.

Help text can also include formatting flags to control the appearance of the text
on the screen. Using these flags, you can make certain words appear in boldface,
others underlined, and so forth, depending on the graphics capabilities of the
user’s computer. In QC.HLP, the help data base Microsoft supplies for QuickC,
cross-references appear underlined when displayed on a monochrome monitor.
On a color monitor, they appear highlighted instead. Other applications may rep-
resent cross-references differently; for example, in italics or in color.

8.1.2 Help File Formats

QuickHelp

RTF

You can create help files in any of three formats:

m QuickHelp format
m Rich Text Format (RTF)
m Minimally formatted ASCII

In addition, you can reference unformatted ASCII files, such as include files,
from within a help data base.

QuickHelp format is the default and is the format in which HELPMAKE writes
files it decodes from existing help data bases. Use any text editor to create a
QuickHelp-format help text file. QuickHelp format also lends itself to a rela-
tively easy automated translation from other document formats.

QuickHelp files can contain all the various cross-references and formatting at-
tributes. Typically, you would use QuickHelp format for any changes you want
to make to the standard help data base. Most of the examples in this chapter are
in QuickHelp format.

Rich Text Format (RTF) is a Microsoft word-processing format that many other
word processors also support. You can create RTF help text with any word pro-
cessor capable of generating RTF output. You may also use any utility program
that takes word-processor output and produces an RTF file.

Use RTF when you want to transfer help files from one application to another
while retaining formatting information. You can format RTF files directly with

180 Microsoft QuickC Tool Kit

the word processing program and need not edit them to insert any special com-
mands or tags. Like QuickHelp files, RTF files can contain formatting attributes
and cross-references.

Minimally formatted ASCII Minimally formatted ASCII files simply define contexts and their topic text.
These files cannot contain cross-references or screen-formatting commands.

Unformatted ASCli Unformatted ASCII files are exactly what their name implies: regular ASCII
files with no special formatting commands, context definitions, or special infor-
mation whatsoever. An unformatted ASCII file does not become part of the help
data base. Instead, only its name is used as the object of a cross-reference. The
standard C header (include) files are unformatted ASCII files used for cross-
references by the help system for the C run-time library. Unformatted ASCII
files are also useful for program examples.

8.2 Invoking HELPMAKE

HELPMAKE is a general support program to encode or decode help files. En-
coding is the process of converting a text file into a compressed help data base.
Decoding reverses the process: it converts a help data base into a text file. The
utility can decode any Microsoft help data base file to a QuickHelp formatted
text file for editing. It can also encode an RTF (Rich Text Format), QuickHelp,
or minimally formatted ASCII text file into help-data-base format.

HELPMAKE is required to create and modify Microsoft-compatible help data
bases. It is not required, however, merely to access data bases supplied with
Microsoft language products.

The HELPMAKE command-line syntax is as follows:
HELPMAKE [[options] { /En | /D } { sourcefiles }

The options modify the action of HELPMAKE. They are described in
Section 8.3.

Either the /E (encode) or the /D (decode) option must be supplied. When encod-
ing (/E) to create a help data base, you must use the /O option to specify the file
name of the data base.

The sourcefile field is required. It specifies the input file for HELPMAKE. If
you use the /D (decode) option, sourcefile may be one or more help-data-base
files (such as QC.HLP). HELPMAKE decodes the data-base files into a single
text file. If you use the /E (encode) option, sourcefile may be one or more help
text files (such as QC.SRC). Separate file names with a space. Standard wild-
card characters may also be used.

HELPMAKE 181

Example
HELPMAKE /V /E /Omy.hlp my.txt > my.log

This example invokes HELPMAKE with the /V, /E, and /O options (see Section
8.3.1). HELPMAKE reads input from the text file my.txt and writes the com-
pressed help data base in the file my . h1p. The /E option causes maximum com-
pression. Note that the DOS redirection symbol (>) sends a log of HELPMAKE
activity to the file my . 1og. You may find it helpful to redirect the log file be-
cause, in its more verbose modes (given by /V), HELPMAKE may generate a
lengthy log.

HELPMAKE /V /D /Omy.src my.hlp > my.log

This example invokes HEL PMAKE to decode the help database my.hlp into
the text file my . src, given with the /O option. Once again, the /V option re-
sults in verbose output, and the output is directed to the log file my . 1og. Sec-
tion 8.3.2 describes additional options for decoding.

8.3 HELPMAKE Options

HEILPMAKE accepts a number of command-line options, which are listed in the
sections that follow. You may specify options in uppercase or lowercase letters,
and precede them with either a forward slash (/) or a dash (-). For example, -L,
/L, -1, and /1 all represent the same option.

Most options apply only to encoding; others apply only to decoding; and a few
apply to both. Section 8.3.1 describes all the options that apply to encoding, and
Section 8.3.2 describes all the options that apply to decoding.

8.3.1 Options for Encoding

‘When you encode a file—that is, when you build a help data base—you must
specify the /E option. In addition, you may supply various other options that con-
trol the way HELPMAKE encodes the data base. All the options that apply when

encoding are listed below:

Option Action

/Ac Specifies ¢ as an application-specific control character
for the help-data-base file. The character marks a line
that contains special information for internal use by the
application. For example, QuickC uses the colon (:).

/C Indicates that the context strings for this help file are case

sensitive. At run time, all searches for help topics are
case sensitive if the help data base was built with the /C
option in effect.

182 Microsoft QuickC Tool Kit

/E[~]

M
/L

/Odestfile
/Sn

NInAl

Creates (“encodes”) a help data base from a specified
text file. The optional » indicates the amount of compres-
sion to take place. If n is omitted, HELPMAKE
compresses the file as much as possible, thereby reduc-
ing the size of the file by about 50 percent. The more
compression requested, the longer HELPM AKE takes to
create a data-base file. The value of # is a number in the
range 0 — 15. It is the sum of successive powers of 2 rep-
resenting various compression techniques, as listed
below:

Yalue Technique

0 No compression

1 Run-length compression

2 Keyword compression

4 Extended-keyword compression
8 Huffman compression

Add values to combine compression techniques. For ex-
ample, use /E3 to get run-length and keyword
compression. This is useful in the testing stages of help-
data-base creation where you need to create the data base
quickly and are not too concermned with size.

Displays a summary of HELPMAKE syntax and exits
without encoding or decoding any files.

“Locks” the generated file so that it cannot be decoded
by HELPMAKE at a later time.

Specifies destfile as the name of the help data base.

Specifies the type of input file, according to the follow-
ing n values:

Option File Type

/S1 RTF

/S2 QuickHelp (default)

/S3 Minimally formatted ASCII

Indicates the “verbosity” of diagnostic and informational
output, depending on the value of n. Increasing the value
adds more information to the output. If you omit this op-
tion or specify only /V, HELPMAKE gives you its most
verbose output. The possible values of » are listed below:

Option Effect

A% Maximum diagnostic output

A%y No diagnostic output and no banner
/N1 Prints only HELPMAKE banner
V2 Prints pass names

/N3 Prints contexts on first pass

V4 Prints contexts on each pass

HELPMAKE 183

N
/V5 Prints any intermediate steps within
each pass
/N6 Prints statistics on help file and
compression
[Wwidth Indicates the fixed width of the resulting help text in

number of characters. The values of width may range
from 11 to 255. If the /W option is omitted, the default is
76. When encoding RTF source (/S1), HELPMAKE auto-
matically formats the text to width. When encoding
QuickHelp (/S2) or minimally formatted ASCII (/S3)
files, HELPMAKE truncates lines to this width.

8.3.2 Options for Decoding

To decode a help data base into QuickHelp files, you must use the /D option. In
addition, HELPMAKE accepts other options to control the decoding process.
The list below shows all the options that are valid when decoding:

Option

Action

[Df[letter]]

Decodes the input file into its component parts. If a desti-
nation file is not specified with the /O option, the help
file is decoded to stdout. HELPMAKE decodes the file
differently depending on the letter specified, as shown
below:

Letter ~ Effect

/D Fully decodes the help data base,
leaving all cross-references and for-
matting information intact.

/DS “Decode split.” Splits the con-
catenated, compressed help data base
into its components using their origi-
nal names. If the data base was
created without concatenation (the
default), HELPMAKE simply copies
it to a file with its original name. No
decompression occurs.

/DU “Decode unformatted.” Decom-
presses the data base and removes all
screen formatting and cross-
references. The output can still be
used later for input and recompres-
sion, but all screen formatting and
cross-references are lost.

Displays a summary of HELPM AKE syntax and exits
without encoding or decoding any files.

184 Microsoft QuickC Tool Kit

[Olldestfile]] Specifies destfile for the decoded output from
HELPMAKE. If destfile is omitted, the help data base is
decoded to stdout. HELPMAKE always decodes help-
data-base files into QuickHelp format.

/Vin] Indicates the “verbosity” of diagnostic and informational
output depending on the value of n. The possible values
are listed below. If you omit this option or specify only
/V, HELPM AKE gives you its most verbose output.

Option

N

/NO
V1
N2
/V3

Effect

Maximum diagnostic output

No diagnostic output and no banner
Prints only the HELPMAKE banner
Prints pass names

Prints contexts on first pass

8.4 Creating a Help Data Base

You can create a Microsoft-compatible help data base by either of two methods.

The first method is to decompress an existing help data base, modify the result-
ing help text file, and recompress the help text file to form a new data base. Note
that, if you decompress the Microsoft help-data-base file QC.HLP, the resulting

text file occupies about 800K on disk.

The second and simpler method is to append a new help data base onto an ex-
isting help data base. This method involves the following steps:

1. Create a help text file in QuickHelp format, RTF, or minimally formatted
ASCIL For your convenience in experimenting with HELPMAKE, the file
SAMPLE.TXT (distributed with QuickC) contains a short help text file in

QuickHelp format.

2. Use HELPMAKE to create a help-data-base file. The example below invokes
HELPMAKE, using SAMPLE.TXT as the input file and producing a help-

data-base file named sample.hlp:

HELPMAKE /V /E /Osample.hlp sample.txt > sample.log

3. Make a back-up copy of the existing data-base file (for safety’s sake).

HELPMAKE 185

4. Append the new help-data-base file onto the existing help data base. The ex-
ample below concatenates the new data base sample.hlp onto the end of
the QC.HLP data base:

COPY qgc.hlp /b + sample.hlp /b

5. Test the data base. The sample.hlp data base contains the context
sample. If you type the word “sample” in the QuickC environment and re-
quest help on it, the help window will display the text associated with the
context sample.

8.5 Help Text Conventions

Using common structure and conventions ensures that help files for one applica-
tion will make sense when viewed using another. This section outlines organiza-
tional conventions used in help data bases supplied by Microsoft. You should
follow the same conventions to create Microsoft-compatible help files.

8.5.1 The Help Text File

Contexts in QuickHelp

The help-retrieval facility that is built into Microsoft products is simply a data-
retrieval tool. It imposes no restrictions on the content and format of the help
text. The HELPMAKE utility and the display routines built into Microsoft lan-
guage environments, however, make certain assumptions about the format of
help text. This section provides some guidelines for creating help text files that
are compatible with those assumptions.

In all three help text formats, the help text source file is a sequence of topics,
each preceded by one or more unique context definitions.

In QuickHelp format, each topic begins with one or more context definitions that
define the context strings that map to the topic text. Subsequent lines up to the
next context definition constitute the topic text, as shown below:

.context strtod
.context strtol
.context stroul
topic text describing the string-to-number functions

.context strtok

topic text describing strtok function

186 Microsoft QuickC Tool Kit

ContextsinRTF In RTF, each context definition must be in a paragraph of its own, beginning
with the help delimiter (>>). Subsequent paragraphs up to the next context defi-
nition constitute the topic text, as shown below:

{rtfo0

>>strtod \par
>>strtol \par
>>stroul \par

topilc text describing the string-to-number functions
>>strtok \par

topic text describing strtok function

}
Note that RTF uses curly braces ({}) for nesting.

Contextsinminimally ~ In minimally formatted ASCII, each context definition must be on a separate
formatted ASCH line, and each must begin with the help delimiter (>>). As in RTF and Quick-
Help files, subsequent lines up to the next context definition constitute the topic
text. The following is the same help file as the previous two, but in minimally
formatted ASCII:

>>strtod
>>strtol
>>stroul

topic text describing the string-to—-number functions
>> strtok

topic text describing strtok function

8.5.2 Context Conventions

Certain contexts are defined by convention across the help data bases for all
Microsoft languages. If you decompress any of the help data base files that
Microsoft supplies, you will see these contexts in the text output.

The contexts listed below are required and are present in all Microsoft help files.
If you modify or replace the standard files, be sure to retain these definitions.

HELPMAKE 187

Context Description

h.default The default help screen, typically displayed when the
user presses F1 at the “top level” in most applications.
The contents are generally devoted to information on
using help.

h.notfound The help text that is displayed when the help system can-
not find information on the requested context. The text

could be an index of contexts, a topical list, or general in-
formation on using help.

h.pgl The help text that is logically first in the file. This is used
by some applications in response to a “go to the begin-
ning” request made within the help window.

h.pg$ The help text that is logically last in the file. This is used
by some applications in response to a ““go to the end” re-
quest made within the help window.

Note that each of the contexts above begins with h. Microsoft help systems con-
sider context strings beginning with x., where x is a specified character prefix, as
“internal” or “constructed” help contexts. Except for the contexts listed above,
these apply to menu items, error numbers, and so forth; in general, you do not
need to insert these in your help files. The following character prefixes denote in-

ternal help contexts:

Character Description

h. Help item. Prefixes miscellaneous help contexts that may
be constructed or otherwise hidden from the user. For ex-
ample, the Contents menu item under the HELP menu
item is a cross-reference to the context h.contents.

m. Menu item. Contexts that relate to product memnu items
are defined by their accelerator keys. For example, the
Exit selection on the FILE menu item is accessed by
ALT+F+X, and is referenced in help by m.fx.

e. Error number. If a product supports the uniform error

numbering scheme used by Microsoft languages, it refer-
ences the help for each error by prefixing the error
number with e.. For example, the context e.c1234 refers
to the C compiler error message number C1234.

8.5.3 Hyperlinks and Cross-References

Explicit cross-references, or hyperlinks, in the help text file are marked with in-
visible text. A hyperlink comprises a word or phrase followed by invisible text
that gives the context to which the hyperlink refers.

188 Microsoft QuickC Tool Kit

The keystroke that activates the hyperlink depends on the application. Consult
the documentation for each product to find the specific keystroke needed.

When the user activates the hyperlink, the help system displays the topic named
by the invisible text.

Examples
\bSee also:\p \uExample\p\vopen.ex\v

In this example, the word Example is a hyperlink. It cross-references to
open.ex. A mouse click or other form of selection with the cursor on any of
the letters of Example brings up the help topic whose contextis open.ex.
On the user’s screen, this line appears as follows:

See also: Example

On a monochrome monitor, See also: isinboldface and Example isun-
derlined. On a color monitor, they appear in different colors, depending on the
user’s default color selection.

\bSee also:\p \uExample\p\vprintf.ex\v, fprintf, scanf,
sprintf, vfprintf, vprintf, vsprintf
\aformatting table\vprintf.table\v

‘When a hyperlink needs to cross-reference more than one word, you must use an
anchor, as in the example above. Anchored hyperlinks must fit on a single line.
In this case, the hyperlink consists of the phrase formatting table, which
references the context printf.table. The\v flag makes the name
printf.table invisible; it does not appear on the screen when the help is
displayed.

8.5.4 Formatting Cross-Reference Text

The invisible cross-reference text is formatted as one of the following:

Cross-Reference Text Action

context_string Causes the help topic associated with context_string to
be displayed. For example, exe format results in the
display of the help topic associated with the context
exe_format.

filename! Causes the entire file filename to be treated as a
single topic to be displayed. For example,
$INCLUDE:stdio.h! would search the INCLUDE
environment variable for the file STDIO.H and display it
as a single help topic.

HELPMAKE 189

filename!context_string Works same way as context_string above, except that
only the help file filename is searched for the context. If
the file is not already open, the help system finds it (by
searching either the current path or an explicit environ-
ment variable), and opens it. For example,
$BIN:readme.doc!patches would search for
readme .doc in the BIN environment variable, and
bring up the topic associated with patches.

8.5.4.1 Local Contexts

Context strings that begin with an “at” sign (@) are defined as “local” and have
no implicit cross-references. They are used in cross-references instead of the con-
text string that would otherwise be generated.

When you use a local context, HELPMAKE does not generate a context string
that can be used from elsewhere in the help file. Instead, it embeds a cross-
reference that has meaning only within the current context. An example of this
usage is shown below:

.context normal

This is a normal topic, accessible by the context string
"normal."

[button\v@local\v] is a cross-reference to the following
topic.

.context @local

This topic can be reached only if the user browses
sequentially through the file or uses the cross-reference
in the previous topic.

In the example, the text [button\v@local\v] defines local asalocal
context. If the user selects the text [button], or scrolls through the file, the
help system displays the topic text that follows the context definition for
local.Because local isdefined with the “at” sign, it can be accessed only
by a hyperlink within the help file or by sequentially browsing through the file.

8.5.4.2 Application-Specific Control Characters

The help data base supports application-specific characters that have special
meaning for Microsoft language products. The application-specific character

190 Microsoft QuickC Tool Kit

may appear at the beginning of any line of help text. This special character is in-
terpreted by the application. If the application does not support this character, it
is ignored.

Within the data bases and applications provided with Microsoft languages, a
colon is used as the control character, and the following colon commands are
supported:

Command Action

n Indicates the default initial window size, in » lines, of the
topic about to be displayed. Always the first line in the
topic if present.

m text Defines text as the name (or title) to be displayed in place

of the context string if the application help displays a
title. Always the first line in the context unless :1 is used,
in which case :n appears on the line following the :1
command.

P Indicates a screen break for environment help. The lines
following :p are accessible only by using the PgDn com-
mand within the environment-help dialog box.

Example

.context open

:113

\bInclude:\p <fentl.h>, <io.h>, <sys\\types.h>,
<sys\stat.h>

\bPrototype:\p int open(char *path, int flag[, int model);
flag: O_APPEND O _BINARY O_CREAT O EXCL O RDONLY
O_RDWR O_TEXT O_TRUNC O WRONLY
(may be joined by |)
mode: S IWRITE S IREAD S _IREAD | S_IWRITE

\bReturns:\p a handle if successful, or -1 if not.
errno: FEACCES, EEXIST, EMFILE, ENOENT

\bSee also:\p \uExample\p\vopen.ex\v,
\uTemplate\p\vopen.tp\v, access, chmod, close,
creat, dup, dup2, fopen, sopen, umask

This example shows the data-base entry from the C run-time library for the open
routine. The :113 command on the second line of the file defines the default
size of the initial window for the help text as 13 lines.

HELPMAKE 191

8.6 Formatting a Help Data Base

The text format of the data base may be any of three types. The list below briefly
describes these types. The sections that follow describe each formatting type in
detail.

An entire help system (such as the one supplied with Microsoft C, QuickC, or
QuickBASIC) may use any combination of files formatted with different format
types. With C, for example, the README.DOC information file is encoded as
minimally formatted ASCII; and the help files for the C language and run-time
library are encoded in the QuickHelp format. The data base also cross-references
the header (include) files, which are unformatted ASCII files stored outside the
data base.

The list below summarizes the three formats and their characteristics:

Type Characteristics

QuickHelp Uses dot commands and embedded formatting characters
(the default formatting type expected by HELPMAKE);
supports highlighting, color, and cross-references. This
format must be compressed before using.

Minimally formatted Uses a help delimiter (>>) to define help contexts; does

ASCII not support highlighting, color, or cross-references. This
format may be compressed, but compression is not
required.

RTF Uses a subset of standard RTF; supports highlighting,
color, and cross-references. This format must be com-
pressed before using.

8.6.1 QuickHelp Format

The QuickHelp format uscs a dot command and embedded formatting flags to
convey information to HELPMAKE.

8.6.1.1 The QuickHelp Context Command

QuickHelp supports a single dot command, the .context command. Additional
dot commands may be added in a future release.

One or more .context commands precedes each topic in a QuickHelp file. Each
.context command defines a context string for the topic text. You may define
more than one context for a single topic, as long as you do not place any topic
text between them.

Typical context commands are shown below. The first defines a context for the
#include C preprocessor directive. The second set illustrates multiple contexts

192 Microsoft QuickC Tool Kit
. ___|

for one block of topic text. In this case, the same topic text explains all of the
string-to-number conversion routines in C.

.context #include

. description of #include goes here
.context strtod
.context strtol

.context strtoul

. description of string-to-number functions goes here

8.6.1.2 QuickHelp Formatting Flags

The QuickHelp format supports a number of formatting flags that are used to
highlight parts of the help data base and to mark hyperlinks in the help text.

Each formatting flag consists of a backslash (V) followed by a character. The
table below lists the formatting flags:

Formatting Flag Action

\a Anchors text for cross-references

\b, \B Tums boldface on or off

N, N Turns italics on or off

\p, \P Tums off all attributes

\u, \U Turns underlining on or off

W, \V Tumns invisibility on or off (hides cross-references in text)
A\ Inserts a single backslash in text

On monochrome monitors, text labeled with the bold, italic, and underlining at-
tributes appears in boldface, italics, or underlined, respectively. On color moni-
tors, these attributes are translated by the application into suitable colors,
depending on the user’s default color selections.

The \b,\i, \u, and \v options are toggles, turning on and off their respective at-
tributes. You may use several of these on the same text. Use the \p attribute to
turn off all attributes. Use the \v attribute to hide cross-references and hyperlinks
in the text.

HELPMAKE 193

HELPMAKE truncates the lines in QuickHelp files to the width specified with
the /W option. (See Section 8.3.1 for a description of this option.) The format-
ting flags do not count toward the character-width limit. Lines that begin with an
application-specific control character are truncated to 255 characters regardless
of the width specification. See Section 8.5.4.2 for details on application-specific
control characters.

Examples

\bReturns:\p a handle if successful, or -1 if not.
errno: EACCES, EEXIST, EMFILE, ENOENT

In this example, the \b flag initiates boldface text for the word Returns: and
the \p flag that follows the word reverts to plain text for the remainder of the line.

\bSee also:\p \uExample\p\vopen.ex\v

In this example, the \b and \p flags surrounding See also: work in the same
way as those surrounding Returns: in the previous example. The \u flag that
precedes Example causes that word to be underlined on monitors that support
underlining and highlighted on monitors that do not. The \p flag that follows
Example turns off underlining for the text that follows. The \v flag causes the
text open.ex to be invisible and defines a cross-reference, as described in the
following section.

8.6.1.3 QuickHelp Cross-References

Help data bases contain two types of cross-references, as described in Section
8.1.1: implicit cross-references and explicit cross-references.

An implicit cross-reference is any word that appears both in the topic text and as
a context in the help file. For example, any time you request help on the word
“close,” the help window will display help on the close function. You need not
code implicit cross-references in your help text files.

Explicit cross-references (“hyperlinks”) are words or phrases on the screen that
are associated with a context. For example, the word “Example” in the initial
help-screen area for any C function is an explicit cross-reference to the C pro-
gram example for that function. You must insert formatting flags in your help
text files to mark explicit cross-references.

If the hyperlink consists of a single word, you can use invisible text to flag it in
the source file. The \v formatting flag creates invisible text, as follows:

hyperlink\vcontext\v

Specify the first \v flag immediately following the word you want to use as
the hyperlink. Following the flag, insert the context that the hyperlink cross-
references. The second \v flag marks the end of the context, that is, the end of

194 Microsoft QuickC Tool Kit

the invisible text. HELPMAKE generates a cross-reference whose context is the
invisible text, and whose hyperlink is the entire word.

If the hyperlink consists of a phrase, rather than a single word, you must use an-
chored text to create explicit cross-references. Use the \a and \wv flags to create
anchored text as follows:

\ahyperlink-words\vcontext\v

The \a flag marks an “anchor” for the cross-reference. The text that follows the
\a flag is the hyperlink. The hyperlink must fit entirely on one line. The first \v
flag marks both the end of the hyperlink and the beginning of the invisible text
that contains the cross-reference context. The second \v flag marks the end of the
invisible text.

Examples

See also: abs, cabs, fabs

The example above contains three implicit cross-references to the C routines
abs, cabs, and fabs.

See also: Examplel\vopen.ex\v, Templatel\vopen.tm\v, close

The example above shows the encoding for an explicit cross-reference to an ex-
ample program and a function template from the help data base for the C run-
time library. The hyperlinks are Example and Template, which reference
the contexts open.ex and open.tm. The example also contains an implicit
cross-reference to the close function.

See also: \als... functions\vis functions\v, atoi

The example above shows the encoding for an explicit cross-reference to an en-
tire family of functions. This cross-reference uses anchored text to associate a
phrase, rather than just a word, with a context. In this example, the hyperlink is
the anchored phrase is... functions, and it cross-references the context
is_functions. In addition, the example contains an implicit cross-reference
to the atoi routine.

.context open

:113

\bInclude:\p <fentl.h>, <io.h>, <sys\\types.h>,
<sys\\stat.h>

\bPrototype:\p int open{char *path, int flag[, int model);
flag: O_APPEND O _BINARY O CREAT O_EXCL O RDONLY
O_RDWR O TEXT O_TRUNC O_WRONLY
(may be joined by |)
mode: S IWRITE S IREAD S_IREAD | S IWRITE

HELPMAKE 195

\bReturns:\p a handle if successful, or -1 if not.
errno: EACCES, EEXIST, EMFILE, ENOENT

\bSee also:\p \uExample\p\vopen.ex\v,
\uTemplate\p\vopen.tp\v,

access, chmod, close, creat, dup, dup2, fopen,
sopen, umask

The code above is an example of a help-data-base file in QuickHelp format that
contains a single entry using QuickHelp format. The :1 sequence is the
QuickC-specific character used in the help display. The number that follows 1
specifies the size of the initial window for the help text. In this case, the initial
window displays 13 lines.

The manifest constants (such as O_WRONLY and EEXIST), the C keywords
(such as int and char), and the other functions (such as sopen and access) are all
implicit cross-references. The words Example and Template are explicit
cross-references to the example open.ex and to the open template

open. tp, respectively. Note the use of double backslashes in the include file
names.

8.6.2 Minimally Formatted ASCII

You can use uncompressed, minimally formatted ASCII help files instead of
compressed QuickHelp format files, although they are larger and slower to
search. Unformatted ASCII files are of fixed width, and they may not contain
highlighting (or other nondefault attributes) or cross-references.

A minimally formatted ASCII text file comprises a sequence of topics, each
preceded by one or more unique context definitions. Each context definition
must be on a separate line beginning with a help delimiter (>>). Subsequent
lines up to the next context definition constitute the topic text.

Example

>>cpen
Include: <fentl.h>, <io.h>, <sys\\types.h>, <sys\\stat.h>

Prototype: int open(char *path, int flag(, int model});
flag: O APPEND O BINARY O CREAT O EXCL O RDONLY
O_RDWR O _TEXT O TRUNC O WRONLY
(may be joined by |)
mode: S_IWRITE S_TIREAD S_IREAD | S_IWRITE

Returns: a handle if successful, or -1 if not.
errno: EACCES, EEXIST, EMFILE, ENOENT

See also: access, chmod, close, creat, dup, dup2, fopen,
sopen, umask

196 Microsoft QuickC Tool Kit

The preceding example, coded in minimally formatted ASCII, shows the same
text as the previous example. The first line of the example defines open asa
context string; therefore the topic text that follows will be displayed when the
user requests help on that topic. No formatting flags or cross-references are in-
cluded because minimally formatted ASCII does not support them. Note,
however, the double backslashes in the file names sys\\types and
sys\\stat.h. The double backslashes ensure that HELPMAKE interprets the
characters as backslashes and not as the start of a formatting flag.

The minimally formatted ASCII help file must begin with the help delimiter
(>>), so that HELPMAKE can verify that the file is indeed an ASCII help file.

8.6.3 Rich Text Format (RTF)

RTF is a Microsoft word-processing format supported by many other word pro-
cessors. It allows documents to be transferred from one application to another
with losing any formatting information. The HELPMAKE utility recognizes a
subset of the full RTF syntax. If your file contains any RTF code that is not part
of the subset, HELPMAKE ignores the code and strips it out of the file.

In general, word-processing and file-conversion programs generate the RTF
code automatically as output. You need not worry about inserting RTF codes
yourself; you can simply format your help files directly with a word-processor
that generates RTF, using the attributes supported by the subset. The only items
you need to insert are the help delimiter (>>) and context string that start each

entry.
HELPMAKE recognizes the subset of RTF listed below:

RTF Code Action

\plain Default attributes. On most screens this is nonblinking
normal intensity.

\b Boldface. This is displayed as intensified text.

\ Italic. This is displayed as reverse video.

A\% Hidden text. Hidden text is used for cross-reference infor-

mation and for some application-specific
communications; it is not displayed.

\ul Underline. This is represented as blue text on adapters
that do not support underlining.

\par End of paragraph.
\pard Default paragraph formatting.

HELPMAKE 197

\fi Paragraph first-line indent.

\li Paragraph indent from left margin.
\line New line (not new paragraph).
\tab Tab character.

Using the word-processing program, you can break the topic text into para-
graphs. When HELPMAKE compresses the file, it formats the text to the width
given with the /W option, ignoring the paragraph formats.

As with the other text formats, each entry in the data base source consists of one
or more context strings, followed by topic text. The help delimiter (>>) at the
beginning of any paragraph denotes the beginning of a new help entry. The text
that follows on the same line is defined as a context for the topic. If the next para-
graph also begins with the help delimiter, it also defines a context string for the
same topic text. You may define any number of contexts for a block of topic

text. The topic text comprises all subsequent paragraphs up to the next paragraph
that begins with the help delimiter.

Example

{rtfo0

>> open \par

{\b Include:} <fentl.h>, <io.h>, <sys\\types.h>,
<sys\\stat.h>

{\b Prototype:} int open{char *path, int flag[, int model):
flag: O APPEND O BINARY O CREAT O EXCL O RDONLY
O_RDWR O_TEXT O _TRUNC O_WRONLY
{(may be Jjoined by I|)
mode: S§ IWRITE S IREAD S_IREAD | S IWRITE

{\b Returns:} a handle if successful, or -1 if not.
errno: EACCES, EEXIST, EMFILE, ENOENT

{\b See also:} {\u Example}{\v open.ex},
{\u Template}{\v open.tp}, access, chmod, close,
creat, dup, dup2, fopen, sopen, umask

}

The code above is an example of a help data base that contains a single entry
using subset RTF text. Note that RTF uses curly braces ({}) for nesting. Thus,
the entire file is enclosed in curly braces, as is each specially-formatted

text item.

AEEendixes

A ExitCodes

........................ 201
B Working with QuickC MemoryModels 205
C Hardware-Specific Utilities 221
D Error-MessageReference 225

Aeeend ixA 201

Exit Codes

Most of the utilities return an exit code (sometimes called an “errorlevel” code)
that can be used by DOS batch files or other programs such as NMAKE. If the
program finishes without errors, it returns exit code 0. The code returned is non-
zero if the program encounters an error. This appendix discusses several uses for
exit codes and lists the exit codes that can be returned by each utility.

A.1 Exit Codes with NVAKE

The Microsoft Program-Maintenance Utility NMAKE) automatically stops ex-
ecution if a program executed by one of the commands in the NMAKE descrip-
tion file encounters an error. (Invoke NMAKE with the /I option to disable this
behavior for the entire description file; or place a minus sign (-) in front of a
command to disable it for only that command.) The exit code returned by the
program is displayed as part of the error message.

For example, assume the NMAKE description file TEST contains the follow-
ing lines:
TEST.OBJ : TEST.C

QCL /¢ TEST.C

If the source codein TEST.C contains a program error (but not if it contains a
warning error), you would see the following message the first time you use
NMAKE with the NMAKE description file TEST:

"nmake: fatal error Ul077: return code 2"

This error message indicates that the command QCL /c TEST.C in the
NMAKE description file returned exit code 2.

You can also test exit codes in NMAKE description files with the !IF directive.

A.2 Exit Codes with DOS Batch Files

If you prefer to use DOS batch files instead of NMAKE description files, you
can test the code returned with the IF command. The following sample batch
file, called COMPILE.BAT, illustrates how to do this:

QCL /c %l.C
IF NOT ERRORLEVEL 1 LINK %1;
IF NOT ERRORLEVEL 1 %1

202 Microsoft QuickC Tool Kit

You can execute this sample batch file with the following command:

COMPILE TEST

DOS then executes the first line of the batch file, substituting TEST for the par-
ameter %1, as in the following command line:

QCL /c TEST.C

It returns exit code 0 if the compilation is successful or a higher code if the com-
piler encounters an error. In the second line, DOS tests to see if the code re-
turned by the previous line is 1 or higher. If it is not (that is, if the code is 0),
DOS executes the following command:

LINK TEST;

LINK also returns a code, which is tested by the third line, If this code is 0, the
TEST program is executed.

The compiler returns the following exit codes:

Code Meaning
0 No error
Nonzero number Program or system-level error

A.3 Exit Codes for Programs

An exit code 0 always indicates execution of the program with no fatal errors.
Warning errors also return exit code 0. NMAKE can return several codes indicat-
ing different kinds of errors, while other programs return only one code to indi-
cate that an error occurred.

A.3.1 LINK Exit Codes

The linker returns the following exit codes:

Code Meaning
0 No error.
2 Program error. Commands or files given as input to the linker pro-

duced the error.

Exit Codes 203

4 System error. The linker encountered one of the following prob-
lems: 1) ran out of space on output files; 2) was unable to reopen
the temporary file; 3) experienced an internal error; 4) was inter-
rupted by the user.

- A.3.2 LIB Exit Codes

The Microsoft Library Manager (LIB) returns the following exit codes:

Code Meaning
0 No error.
2 Program error. Commands or files given as input to the utility pro-

duced the error.

4 System error. The library manager encountered one of the follow-
ing problems: 1) ran out of memory; 2) experienced an internal
error; 3) was interrupted by the user.

A.3.3 NMAKE Exit Codes

The Microsoft Program-Maintenance Utility (NMAKE) returns the following

exit codes:

Code Meaning

0 No error

2 Program error

4 System error—out of memory

If a program called by a command in the NMAKE description file produces an
error, the exit code is displayed in the NMAKE error message.

Aeeendix B 205

Working with QuickC Memory Models

You can gain greater control over how your program uses memory by specifying
the memory model for the program. You do not need to specify a memory model
except in the following cases:

= Your program has more than 64K of code or more than 64K of static data.

m Your program contains individual arrays that need to be larger than 64K.
In these cases, you have the following options:

1. If you are compiling with the QCL command, you can specify one of the
other standard memory models (medium, compact, large, or huge) using one
of the /A options.

2. You can create a mixed-model program using the near, far, and huge
keywords.

3. You can combine method 2 with method 1.

B.1 Near, Far, and Huge Addressing

Segments

Near addresses

The terms “near,” “far,” and “huge” are crucial to understanding the concept of
memory models. These terms indicate how data can be accessed in the seg-
mented architecture of the 8086 family of microprocessors (8086, 80186,

and 80286).

DOS loads the code and data allocated by your program into “segments” in
physical memory. Each segment is up to 64K long. Because separate segments
are always allocated for the program code and data, the minimum number of seg-
ments allocated for a program is two. These two segments, required for every
program, are called the default segments. The small memory model uses only

the two default segments. The other memory models discussed in this chapter
allow more than one code segment per program, or more than one data segment
per program, or both.

In the 8086 family of microprocessors, all memory addresses consist of two
parts:
1. A 16-bit number that represents the base address of a memory segment

2. Another 16-bit number that gives an offset within that segment

206 Microsoft QuickC Tool Kit

Far addresses

Huge addresses

The architecture of the 8086 microprocessor is such that code can be accessed
within the default code or data segment by using just the 16-bit offset value. This
is possible because the segment addresses for the default segments are always
known. This 16-bit offset value is called a “near address”; it can be accessed
with a “near pointer.” Because only 16-bit arithmetic is required to access any
near item, near references to code or data are smaller and more efficient.

When data or code lie outside the default segments, the address must use both
the segment and offset values. Such addresses are called “far addresses™; they
can be accessed by using “far pointers” in a C program. Accessing far data or
code items is more expensive in terms of program speed and size, but using them
enables your programs to address all memory, rather than just the standard 64K
code and data segments.

There is a third type of address in Microsoft QuickC: the “huge” address. A
huge address is similar to a far address in that both consist of a segment value
and an offset value; but the two differ in the way address arithmetic is performed
on pointers. Because items (both code and data) referenced by far pointers are
still assumed to lic completely within the segment in which they start, pointer
arithmetic is done only on the offset portion of the address. This gain in pointer
arithmetic efficiency is achieved, however, by limiting the size of any single
item to 64K. With data items, huge pointers overcome this size limitation:
pointer arithmetic is performed on all 32 bits of the data item’s address, thus al-
lowing data items referenced by huge pointers to span more than one segment,
provided they conform to the rules outlined in Section B.2.5, “Creating Huge-
Model Programs.”

The rest of this chapter deals with the various methods you can use to control
whether your program makes near or far calls to access code or data.

B.2 Using the Standard Memory Models

The libraries created by the SETUP program support five standard memory mod-
els. Using the standard memory models is the simplest way to control how your
program accesses code and data in memory.

‘When you use the standard memory models, the compiler handles library sup-
port for you. The library corresponding to the memory model you specify is used
automatically. Each memory model, except the huge model, has its own library.
The huge model uses the same library as the large model.

The advantage of using standard models for your programs is simplicity. In the
standard models, memory management is specified by compiler options; since
the standard models do not require the use of extended keywords, they are the
best way to write code that can be ported to other systems (particularly systems
that do not use segmented architectures).

Working with QuickC Memory Models 207

The disadvantage of using standard memory models exclusively is that they may
not produce the most efficient code. For example, if you have an otherwise
small-model program containing a large array that pushes the total data size for
your program over the 64K limit for small model, it may be to your advantage to
declare the one array with the far keyword, while keeping the rest of the pro-
gram small model, as opposed to using the standard compact memory model for
the entire program. For maximum flexibility and control over how your program
uses memory, you can combine the standard-memory-model method with the
near, far, and huge keywords, described in Section B.3.

The /A options for QCL are used to specify one of the five standard memory
models (small, medium, compact, large, or huge) at compile time. These
memory-model options are discussed in the next five sections.

NOTE In the following sections, which describe the different memory-model addressing conven-
tions, it is important to keep in mind two common features of all five models:

1. Nosingle source module can generate 64K or more of code.

2. Nosingle data item can exceed 64K, unless it appears in a huge-model program or it has been
declared with the huge keyword.

B.2.1 Creating Small-Model Programs

The /AS option tells the compiler to create a program that occupies the two de-
fault segments—one for code and one for data.

Small-model programs are typically QuickC programs that are short or have a
limited purpose. Because code and data for these programs are each limited to
64K, the total size of a small-model program can never exceed 128K. Most pro-
grams fit easily into this model.

Because programs compiled within the QuickC environment use the small
memory model by default, you should give the /AS option in cases where you
use the QCL command to compile a module for use within the QuickC
environment.

By default, both code and data items in small-model programs are accessed with
near addresses. You can override the defaults by using the far or huge keyword
for data or by using the far keyword for code.

The compiler in the QuickC environment and the QCL command create small-
model programs automatically if you do not specify a memory model. The /AS
option is provided for completeness; you never need to give it explicitly.

208 Microsoft QuickC Tool Kit

Figure B.1 illustrates how memory is set up for the small memory model.

High memory
Heap Unallocated memory used for dynamic allocation
STACK —— Local data
BSS and initiali 3
¢ common Uninitialized global and static data
CONST Compiler-generated read-only data
_DATA Default data segment: initialized global and static data
NULL -—— Checks for nuil-pointer assignment
_TEXT Code segment for all modules
Low memory

Figure B.1 Memory Map for Small Memory Model

B.2.2 Creating Medium-Model Programs

The /AM option provides a single segment for program data and multiple seg-
ments for program code. Each source module is given its own code segment.

Medium-model programs are typically QuickC programs that have a large num-
ber of program statements (more than 64K of code), but a relatively small
amount of data (less than 64K). Program code can occupy any amount of space
and is given as many segments as needed; total program data cannot be greater
than 64K.

By default, code items in medium-model programs are accessed with far
addresses, and data items are accessed with near addresses. You can override the
default by using the far or huge keyword for data and the far keyword for code.

The medium model provides a useful trade-off between speed and space, since
most programs refer more frequently to data items than to code. Figure B.2 il-
lustrates how memory is set up for the medium memory model.

Working with QuickC Memory Models 209

High memory
Heap Unallocated memory used for dynamic allocation
STACK Local data
BSS and initiali i
& common Uninitialized global and static data
CONST ——— Compiler-generated read-only data
_DATA Default data segment: initialized global and static data
NULL ———— Checks for null-pointer assignment
module _TEXT One code segment per module

Low memory

Figure B.2 Memory Map for Medium Memory Model

B.2.3 Creating Compact-Model Programs

The /AC opﬁon directs the compiler to allow multiple segments for program
data but only one segment for the program code.

Compact-model programs are typically QuickC programs that have a large
amount of data but a relatively small number of program statements. Program
data can occupy any amount of space and are given as many segments as needed.

By default, code items in compact-model programs are accessed with near
addresses, and data items are accessed with far addresses. You can override the
defaults by using the near or huge keyword for data or by using the far key-
word for code.

In the medium and compact models, NULL must be used carefully in certain sit-
uations. NULL actually represents a null data pointer. In the small, large, and
huge memory models, where code and data pointers are the same size, it can be
used with either. This is not the case, however, in medium and compact memory

models, where code and data pointers are different sizes. Consider the following
example:

void funcl (char *dp)
{

210 Microsoft QuickC Tool Kit

void func2(char (*fp) (void))
{

}

main ()

{

funcl (NULL) ;
func2 (NULL) ;
}

This example passes a 16-bit pointer to both funcl and func?2 if compiled
using the medium model, and a 32-bit pointer to both funcl and func2 if
compiled using the compact model. To override this behavior, add prototypes to
the beginning of the program to indicate the types, or use an explicit cast on the
argument to funcl (compact model) or func2 (medium model).

Figure B.3 illustrates how memory is set up for the compact memory model.

High memory
Far heap Unallocated far memory used for dynamic allocation
Near heap Unallocated near memory used for dynamic allocation
STACK Local data
c—jgﬁ‘ ﬁ"’o‘i Uninitialized global and static data
CONST Compiler-generated read-only data
_DATA Default data segment: initialized global and static data
NULL —— Checks for null-pointer assignment
!
Initialized and uninitialized global and static
Data segments | —— par and huge data
_TEXT Code segment for all modules
Low memory

Figure B.3 Memory Map for Compact Memory Model

Working with QuickC Memory Models 211

B.2.4 Creating Large-Model Programs

The /AL option allows the compiler to create multiple segments, as needed, for
both code and data. No one data item, however, may exceed 64K.

Large-model programs are typically very large C programs that use a large
amount of data storage during normal processing.

By default, both code and data items in large-model programs are accessed with
far addresses. You can override the defaults by using the near or huge keyword
for data or by using the near keyword for code.

Figure B .4 illustrates how memory is set up for the large and huge memory

models.
High memory
Far heap Unallocated far memory used for dynamic allocation
Near heap Unallocated near memory used for dynamic allocation
STACK Local data
BSS and initiali i
¢ common Uninitialized global and static data
CONST Compiler-generated read-only data
_DATA Default data segment: initialized global and static data
NULL —— Checks for null-pointer assignment
t
Initialized and uninitialized global and static
Data segments far and huge data
T
T
module _TEXT One code segment per module
Low memory

Figure B4 Memory Map for Large and Huge Memory Models

212 Microsoft QuickC Tool Kit

B.2.5 Creating Huge-Model Programs

Restrictions

Pointer subtraction

The /AH option is similar to the /AL option, except that the restriction on the
size of individual data items is removed for arrays.

Some size restrictions do apply to elements of huge arrays where the array is
larger than 64K. To provide efficient addressing, array elements are not per-
mitted to cross segment boundaries. This has the following implications:

1. No array element can be larger than 64K. For instance, this might occur
when an array has elements that are structures or arrays.

2. For any array larger than 128K, all elements must have a size in bytes equal
to a power of 2 (that is, 2 bytes, 4 bytes, 8 bytes, 16 bytes, and so on). If the
array is 128K or smaller, however, its elements may be any size, up to and in-
cluding 64K.

In huge-model programs, care must be taken when using the sizeof operator or
when subtracting pointers. The C language defines the value returned by the
sizeof operator to be an unsigned int value, but the size in bytes of a huge array
is an unsigned long value. To solve this discrepancy, the Microsoft QuickC
Compiler produces the correct size of a huge array when a type cast like the fol-
lowing is used:

(unsigned long)sizeof (huge_ item)

Similarly, the C language defines the result of subtracting two pointers as an int
value. When subtracting two huge pointers, however, the result may be a long
int value. The Microsoft QuickC Compiler gives the correct result when a type
cast like the following is used:

(long) (huge_ptrl - huge_ptr2)

B.3 Using the near, far, and huge Keywords

One limitation of the predefined memory-model structure is that, when you
change memory models, all data and code address sizes are subject to change.
The Microsoft QuickC Compiler, however, lets you override the default address-
ing convention for a given memory model and access items with a near, far, or
huge pointer. This is done with the near, far, and huge keywords. These special
type modifiers can be used with a standard memory model to overcome address-
ing limitations for particular data or code items, or to optimize access to these
items without changing the addressing conventions for the program as a whole.
Table B.1 explains how the use of these keywords affects the addressing of code
or data, or pointers to code or data.

Working with QuickC Memory Models 213

Table B.1 Addressing of Code and Data Declared with near and far
Pointer
Keyword Data Function Arithmetic
near Resides in default data Assumed to be in cur- 16 bits
segment; referenced rent code segment;
with 16-bit addresses referenced with 16-bit
(pointers to data are 16 addresses (pointers to
bits) functions are 16 bits)
far May be anywhere in Not assumed to be in 16 bits
memory-—not assumed current code segment;
to reside in current data referenced with 32-bit
segment; referenced address (pointers to func-
with 32-bit addresses tions are 32 bits)
(pointers to data are 32
bits)
huge May be anywhere in Not applicable to code 32 bits

memory—not assumed
to reside in current data
segment; individual data
items (arrays) can
exceed 64K in size; ref-
erenced with 32-bit
addresses (pointers to
data are 32 bits)

NOTE The near, far, and huge keywords are not a standard part of the C language; they are
meaningful only for systems that use a segmented architecture similar to that of the 8086 micro-
processors. Keep this in mind if you want your code to be ported to other systems.

In the Microsoft QuickC Compiler, the words near, far, and huge are C key-
words by default. To treat these keywords as ordinary identifiers, you must do

one of the following:

For programs compiled within the QuickC environment, compile with the

Language Extensions option turned off.

pile time.

For programs compiled with the QCL command, give the /Za option at com-

214 Microsoft QuickC Tool Kit

These options are useful if you are compiling programs with compilers in which
near, far, and huge are not keywords—for instance, if you are porting a pro-
gram in which one of these words is used as a label.

B.3.1 Library Support for near, far, and huge

When using the near, far, and huge keywords to modify addressing conventions
for particular items, you can usually use one of the standard libraries (small,
compact, medium, large, or huge) with your program. The large-model libraries
are also appropriate for use with huge-model programs. However, you must use
care when calling library routines. In general, you cannot pass far pointers, or
the addresses of far data items, to a small-model library routine. (Some excep-
tions to this statement are the library routines halloc and hfree, and the printf
family of functions.) Of course, you can always pass the value of a far item to a
small-model library routine, as shown in the following example:

long far time_val;

time (&time_val): /* Illegal */
printf("$ld\n", time val); /* Legal */

If you use the near, far, or huge keyword, it is strongly recommended that you
use function prototypes with argument-type lists to ensure that all pointer argu-
ments are passed to functions correctly (see Section B.3.4).

B.3.2 Declaring Data with near, far, and huge

The near, far, and huge keywords modify either objects or pointers to objects.
‘When using them to declare data or code (or pointers to data or code), keep the
following rules in mind:

m The keyword always modifies the object or pointer immediately to its right.
In complex declarators, think of the far keyword and the item immediately to
its right as being a single unit. For example, in the declarator

char far* *p;

p is a pointer (whose size depends on the memory model specified) to a far
pointer to char.

m If the item immediately to the right of the keyword is an identifier, the key-
word determines whether the item will be allocated in the default data seg-
ment (near) or a separate data segment (far or huge). For example,

char near a:

allocates a as an item of type char with a near address.

Working with QuickC Memory Models 215

m If the item immediately to the right of the keyword is a pointer, the keyword
determines whether the pointer will hold a near address (16 bits), a far
address (32 bits) or a huge address (also 32 bits). For example,

char far *p;

allocates p as a far pointer (32 bits) to an item of type char.

Examples

The examples in this section show data declarations using the near, far, and
huge keywords.

char a[3000]; /* small-model program */
char far b[30000];

The first declaration in the example above allocates the array a in the default
data segment. By contrast, the array b in the second declaration may be allo-
cated in any far data segment. Since these declarations appear in a small-model
program, array a probably represents frequently used data that were deliber-
ately placed in the default segment for fast access. Array b probably represents
seldom used data that might make the default data segment exceed 64K and
force the programmer to use a larger memory model if the array were not de-
clared with the far keyword. The second declaration uses a large array because it
is more likely that a programmer would want to specify the address-allocation
size for items of substantial size.

char a[3000]; /* large-model program */
char near b{3000];

In the example above, access speed would probably not be critical for array a.
Even though it may or may not be allocated within the default data segment, it is
always referenced with a 32-bit address. Array b is explicitly allocated near to
improve speed of access in this memory model (large).

char huge *pa; /* small-model program */

In the small-model program above, pa is declared as a pointer to huge data.
Any pointer arithmetic for pa (such as pa++) would be performed using 32-
bit arithmetic. QuickC does not support static huge data; thus the array to which
pa might point must be allocated with the huge data allocation function halloc.

char *pa; /* small-model program */
char far *pb;

The pointer pa is declared as a near pointer to an item of type char in the ex-
ample above. The pointer is near by default since the example appears in a small-
model program. By contrast, pb is allocated as a far pointer to an item of type
char; pb could be used to point to, and step through, an array of characters
stored in a segment other than the default data segment. For example, pa might

216 Microsoft QuickC Tool Kit

be used to point to array a in the first example, while pb might be used to
point to array b.

char far * *pa; /* small-model program */
char far * *pa; /* large—-model program */

The pointer declarations in the example above illustrate the interaction between
the memory model chosen and the near, far, and huge keywords. Although the
declarations for pa are identical, in a small-model program pa is declared as

a near pointer to an array of far pointers to type char, while in a large-model pro-
gram, pa is declared as a far pointer to an array of far pointers to type char.

char far * near *pb; /* any model */
char far * far *pb;

In the first declaration in this sixth and final example, pb is declared as a near
pointer to an array of far pointers to type char; in the second declaration, pb is
declared as a far pointer to an array of far pointers to type char. Note that, in this
example, the far and near keywords override the model-specific addressing con-
ventions shown in the fifth example; the declarations for pb would have the
same effect, regardless of the memory model.

B.3.3 Declaring Functions with the near and far Keywords

The rules for using the near, far, and huge keywords for functions are similar to
those for using them with data, as listed below:

= The keyword always modifies the function or pointer immediately to its
right. See Chapter 2, “Functions,” of C for Yourself, for more information
about rules for evaluating complex declarations.

= If the item immediately to the right of the keyword is a function, then the key-
word determines whether the function will be allocated as near or far. For
example,

char far fun():;

defines fun as a function called with a 32-bit address and returning type
char.

m If the item immediately to the right of the keyword is a pointer to a function,
then the keyword determines whether the function will be called using a near
(16-bit) or far (32-bit) address. For example,

char (far * pfun) ():
defines pfun as a far pointer (32 bits) to a function returning type char.
m Function declarations must match function definitions.

m The huge keyword cannot be applied to functions.

Working with QuickC Memory Models 217

Examples

void char far fun(void); /* small model */
void char far fun({void)

{

}
In the example above, fun is declared as a function returning type char. The
far keyword in the declaration means that fun must be called with a 32-bit call.

static char far * near fun{):; /* large model */
static char far * near fun{()

{

}
In the large-model example above, fun is declared as a near function that re-
turns a far pointer to type char. Such a function might be seen in a large-model
program as a helper routine that is used frequently, but only by the routines in its
own module. Because all routines in a given module share the same code seg-
ment, the function could always be accessed with a near call. However, you
could not pass a pointer to fun as an argument to another function outside the
module in which fun was declared.

void far *fun(void):; /* small model */
void (far * pfun) () = fun;

The small-model example above declares pfun as a far pointer to a function
that has return type void, and then assigns the address of fun to pfun.In fact,
pfun could be used to point to any function accessed with a far call. Note that
if the function pointed to by pfun has not been declared with the far keyword,
or if it is not far by default, then calling that function through pfun would
cause the program to fail.

double far * (far fun) (}: /* compact model */
double far * (far *pfun) () = fun;

The final example above declares pfun as a far pointer to a function that re-
turns a far pointer to type double, and then assigns the address of fun to
pfun. This might be used in a compact-model program for a function that is not
used frequently and thus does not need to be in the default code segment. Both
the function and the pointer to the function must be declared with the far
keyword.

218 Microsoft QuickC Tool Kit

B.3.4 Pointer Conversions

Passing pointers as arguments to functions may cause automatic conversions in
the size of the pointer argument because passing a pointer to a function forces
the pointer size to the larger of the following two sizes:

m The default pointer size for that type, as defined by the memory model used
during compilation.

For example, in medium-model programs, data pointer arguments are near
by default and code pointer arguments are far by default.

n The type of the argument.

If a function prototype with argument types is given, the compiler performs type
checking and enforces the conversion of actual arguments to the declared type of
the corresponding formal argument. However, if no declaration is present or the
argument-type list is empty, the compiler will convert pointer arguments auto-
matically to either the default type or the type of the argument, whichever is
largest. To avoid mismatched arguments, you should always use a prototype

with the argument types.

Examples

/* This program produces unexpected results in compact-—,
** large—, or huge-model programs.

*/

main()

{

int near *x;
char far *y;
int z = 1;

test_fun(x, y, z}); /*x coerced to far pointer*/
1

int test fun(ptrl, ptr2, a)
int near *ptrl;
char far *ptr2;
int a:

{
printf("vValue of a = %d\n", a);
}

Working with QuickC Memory Models 219

If the preceding example is compiled as a small-model program (default for
QCL) or medium-model program (with the /AM option on the QCL command
line), the size of pointer argument x is 16 bits, the size of pointer argument y
is 32 bits, and the value printed for a is 1. However, if the preceding example is
compiled with the /AC, /AL, or /AH option, both x and y are automatically
converted to far pointers when they are passed to test_fun. Because ptrl,
the first parameter of test_fun, is defined as a near-pointer argument, it takes
only 16 bits of the 32 bits passed to it. The next parameter, ptr2, takes the re-
maining 16 bits passed to pt r1, plus 16 bits of the 32 bits passed to it. Finally,
the third parameter, a, takes the leftover 16 bits from ptr2, instead of the
value of z inthe main function. This shifting process does not generate an
error message, because both the function call and the function definition are
legal, but in this case the program does not work as intended because the value
assigned to a is not the value intended.

To pass ptrl as anear pointer, you should include a forward declaration that
specifically declares this argument for test_fun asa near pointer, as shown
below:

/* First, declare test fun so the compiler knows in advance
** about the near pointer argument:

*/

int test fun(int near*, char far *, int);

main{)

{

int near *x;
char far *y;
int z = 1;

test_fun{x, y, 2):; /* now, X will not be coerced
** to a far pointer; it will be
** passed as a near pointer,
** no matter what memory
** model is used
*/

}

int test_fun(ptrl, ptr2, a)
int near *ptril;
char far *ptr2;
int a;

{
printf("Value of a = %d\n", a):;

}

220 Microsoft QuickC Tool Kit

Note that it would not be sufficient to reverse the definition order for
test_ fun and main in the first example to avoid pointer coercions; the
pointer arguments must be declared in a forward declaration, as in the second
example.

Aeeendix C 221

Hardware-Specific Utilities

This appendix describes three utility programs provided with Microsoft QuickC.
These utilities support special hardware that some QuickC users may have. The
utilities are the following:

m The FIXSHIFT utility fixes a bug associated with some COMPAQe and
compatible keyboards.

m The MSHERC driver supports the Herculese display adapter.
n The MOUSE driver supports the Microsoft mouse.

C.1 Fixing Keyboard Problems with FIXSHIFT

On the keyboards of some COMPAQ and compatible computers, the arrow keys
are not part of the numeric keypad. Because of a bug in the ROM BIOS, the
QuickC editor (and other software not supplied by Microsoft) may not operate
correctly on these machines. The FIXSHIFT utility fixes this bug.

To correct the problem, copy FIXSHIFT.COM to the directory that contains the
QuickC program files, and type the following command:

fixshift

Any combination of uppercase and lowercase letters is acceptable for this com-
mand. When FIXSHIFT execules, it first prompts you to press the DOWN key to
ascertain whether the BIOS has the bug. If not, FIXSHIFT displays a message
telling you so, then exits. You need not run FIXSHIFT again. If your machine’s
BIOS has the bug, FIXSHIFT displays additional prompts that guide you
through the appropriate actions.

FIXSHIFT requires approximately 450 bytes of memory. It fixes only the BIOS
bug and has no effect on other programs that you run. You can include the
FIXSHIFT command in your AUTOEXEC.BAT file to correct the problem each
time you start the computer.

C.2 Using Hercules. Graphics

This section briefly summarizes the support that Microsoft QuickC provides for
the Herculese display adapter. For more information, see your Hercules docu-
mentation. Note that the graphics demonstration program GRDEMO.C supports
Hercules graphics.

222 Microsoft QuickC Tool Kit

C.2.1 Support for Cards and Display Characteristics

QuickC supports the Hercules Graphics Card, Graphics Card Plus, InColor Card,
and other cards that are 100 per cent compatible.

Only monochrome (two-color) text and graphics are supported. In monochrome,
the screen resolution is 720 x 348 pixels. The character box is 9 x 14 pixels. Text
dimensions are 80 columns by 25 rows, but the bottom two scan lines of the 25th
row are not visible.

C.2.2 The MSHERC Driver

MSHERC.COM is the driver for Hercules graphics. You must load the driver
before running programs that use Hercules graphics. To load the driver, type the
following command:

MSHERC

To load the driver when you start the machine, put the MSHERC command in
your AUTOEXEC.BAT file.

If you have both a Hercules monochrome card and a color video card, you
should invoke MSHERC.COM with the /H (/HALF) option, as follows:

MSHERC /H

The /H option causes the driver to use one instead of two graphics pages. This
prevents the two video cards from trying to use the same area of memory. You
need not use the /H option if you have only a Hercules card.

If you are developing a commercial application that uses graphics, you should
include MSHERC.COM with your product; you are free to include this file
without an explicit licensing agreement.

NOTE MSHERC.COM is identical to QBHERC.COM, the Hercules driver shipped with Microsoft
QuickBASIC, Version 4.0, and the Microsoft BASIC Compiler, Version 6.0.

C.2.3 Using a Mouse

To use a mouse with the Hercules adapter, follow the special instructions for
Hercules cards in the Microsoft Mouse Programmer’ s Reference Guide. (This
manual must be ordered separately; it is not supplied with either Microsoft
QuickC or the Microsoft Mouse package.)

Hardware-Specific Utilities 223

C.2.4 Setting Hercules Graphics Mode

The graphics include file GRAPH.H sets manifest constants needed for Hercules
graphics operation. In GRAPH.H, the constant _HERCMONO sets the video
mode to 720 x 348 pixels in monochrome. GRAPH.H also includes the constant
_HGC in the section labeled “videoconfig adapter values.”

C.3 The Mouse Driver

The Microsoft Mouse is optional software and is not required for QuickC. If
you use the mouse, however, you must have Version 6.10 or later of the
MOUSE.COM driver for QuickC to operate correctly. If you have an earlier
release, you need to use the MOUSE.COM driver provided with QuickC.
See your Microsoft Mouse manual for installation instructions. If you update
the driver, be sure to delete any outdated MOUSE.SYS drivers from your
CONFIG.SYS file.

AEQendix D 225

Error-Message Reference

This appendix lists error messages you may encounter as you develop a program
and gives a brief description of actions you can take to correct the errors. The fol-
lowing list tells where to find error messages for the various components of the
Microsoft QuickC Compiler:

Component Section

The Microsoft “Compiler Errors”
QuickC Compiler

The command line “Command-Linc Errors”
used to invoke the

Microsoft QuickC

Compiler

The Microsoft C “Run-Time Errors”

run-time librarics and
other run-time
sitnations

The Microsoft Over- “LINK Error Messages”
lay Linker, LINK

The Microsoft Li- “LIB Error Messages”
brary Manager, LIB

The Microsoft Pro- “NMAKE Error Messages”
gram-Maintenance
Ulility, NMAKE

The Microsoft Help- “HELPMAKE Error Messages”
File Creation Utility,
HELPMAKE

Note that the compiler, command-line, and run-time error messages arc listed al-
phabetically by catcgory in this appendix.

Sce “Compiler Limits” in the “Compiler Errors” section for information about
compiler limits; sce “Run-Time Limits” in the “Run-Time Errors” section for in-
formation about run-time limits.

226 Microsoft QuickC Tool Kit

D.1 Compiler Errors

The error messages produced by the C compiler fall into three catcgories:

1. Fatal-error messages
2. Compilation-error messages

3. Warning messages

The messages for each category are listed below in numerical order, with a brief
explanation of each error. To look up an error message, first determine the mes-
sage calegory, then find the error number. Each message that is generated within
the QuickC environment appears in the error window; QuickC moves the cursor
to the line that caused the error. Each message that is gencratced by compiling
with the QCL command gives the file name and line number where the error
occurs.

Fatal-Error Messages

Fatal-error messages indicate a severe problem, one that prevents the compiler
from processing your program any further. These messages have the following
format:

filename (line) : fatal error Clxxx: messagetext
After the compiler displays a fatal-error message, it terminates without produc-
ing an object file or checking for further errors.

Compilation-Error Messages

Compilation-crror messages identify actual program errors. These messages ap-
pear in the following format:

filename (line) : error C2xxx: messagetext

The compiler does not produce an object file for a source file that has compila-
tion errors in the program. When the compiler encounters such errors, it attempts
1o recover from the crror. If possible, it continues to process the source file and
produce error messages. If errors are too numerous or too severe, the compiler
stops processing.

Warning Messages

‘Warning messages are informational only; they do not prevent compilation or
linking. These messages appear in the following format:

filename (line) : warning Cdxxx :messagetext

Error-Message Reference 227

You can use the /W option to control the level of warnings that the compiler
generates.

D.1.1 Fatal-Error Messages

Number

C1000

C1001

C1002

C1003

C1004

The following messages identify fatal errors. The compiler cannot recover from
a fatal error; it terminates after displaying the error message.

Fatal-Error Message

UNKNOWN FATAL ERROR
Contact Microsoft Technical Support

An unknown error condition was detected by the compiler.

Please report this condition to Microsoft Corporation, using the Product As-
sistance Request form at the back of this manual.

Internal Compiler Error
(compiler file *filename’, line n)
Contact Microsoft Technical Support

The compiler detected an internal inconsistency.

Please report this condition using the Product Assistance Request form at the
back of this manual. Please include the file name and line number where the
error occurred in this report; note that the file name refers to an internal compiler
file, not your source file.

out of heap space

The compiler ran out of dynamic memory space. This usually means that your
program has too many symbols and/or complex expressions.

To correct the problem, divide the file into several smaller source files, or break
expressions into smaller subexpressions.

error count exceeds n; stopping compilation

Errors in the program were too numerous or too severe to allow recovery, and
the compiler must terminate.

unexpected EOF

This message appears when you have insufficient space on the default disk drive
for the compiler to create the temporary files it needs. The space required is ap-
proximately two times the size of the source file. This message can also occur
when a comment does not have a closing delimiter (*/), or when the #if directive
occurs without a corresponding closing #endif directive.

228 Microsoft QuickC Tool Kit

Number
C1007

C1008

C1009

C1010

C1012

C1013

C1014

C1015

Fatal-Error Message
unrecognized flag ’string’ in *option’
The string in the command-line option was not a valid option.

no input file specified

The compiler was given no file to compile.

compiler limit : macros too deeply nested
The expansion of a macro exceeds the available space.

Check to see if the macro is recursively defined or if the expanded text is too
large.

compiler limit : macro expansion too big

The cxpansion of a macro excecds the available space.

bad parenthesis nesting - missing *character’

The parentheses in a preprocessor directive were not matched; character is
either a left or right parcenthesis.

cannot open source file *filename’
The given file either did not exist, could not be opcned, or was not found.

Make sure your environment settings are valid and that you have given the cor-
rect path name for the file. If this error appecars without an crror message, the
compilcr has run out of file handles. In that casc, increase the valuc of the
FILES= variable in your CONFIG.SYS file and reboot.

too many include files

Nesting of #include dircctives exceeds the 10-level limit.

cannot open include file *filename’

The given file either did not exist, could not be opened, or was not found. Make
sure your environment settings are valid and that you have given the correct path
name for the file. If these are correct, the problem may be that the compiler has
run out of far hcap space. See the description of error C1060 for alternative solu-
tions. If this error appears without an error message, the compiler has run out of
file handles. In that case, incr¢ase the value of the FILES= variable in your
CONFIG.SYS file and rcboot.

Number
C1016

C1017

C1018

C1019

C1020

C1021

C1022

C1028

C1031

Error-Message Reference 229

Fatal-Error Message

#if[n]def expected an identifier
You must specify an identifier with the #ifdef and #ifndef directives.

invalid integer constant expression

The expression in an #if directive must evaluate to a constant,

unexpected *#elif”

The #elif directive is legal only when it appears within an #if, #ifdef, or #ifndef
construct.

unexpected *#else’

The #else directive is legal only when it appears within an #if, #ifdef, or #ifndef
construct.

unexpected *#endif’
An #endif directive appears without a matching #if, #ifdef, or #ifndef directive.

bad preprocessor command ’string’

The characters following the number sign (#) do not form a valid preprocessor
directive.

expected *#endif’
An #if, #ifdef, or #ifndef directive was not terminated with an #endif directive.
segment segment allocation exceeds 64K

More than 64K of far data were allocated to the given segment. A single module
can have only 64K of far data.

To solve this problem, cither break declarations up into separate modules, re-
duce the amount of data your program uses, or compile your program with the
Microsoft C Optimizing Compiler.

compiler limit : function calls too deeply nested

The program exceeded the compiler limit on nested function calls,

230 Microsoft QuickC Tool Kit

Number
C1032

C1035

C1037

C1041

C1045

C1047

Fatal-Error Message

cannot open object listing file *filename’

One of the following statements about the file name or path name given by
filename is true:

» The given name is not valid.

w The file with the given name cannot be opened for lack of space.

® A read-only filc with the given name already exists.

expression too complex, please simplify
The compiler was unable to gencrate code for a complex expression.

To solve this problem, break the expression into simpler subexpressions and
recompile.

cannoot open object file *filename’

One of the conditions listed under error message C1032 prevents the given file
from being opened.

cannot open compiler intermediate file — no more files

The compiler could not create intcrmediate files used in the compilation process
because no more file handles were available.

This error can usually be corrected by changing the FILES=number line in
CONFIG.SYS to allow a larger number of open files (20 is the recommended
setting).

floating point overflow

The compiler generated a floating-point exception while doing constant arith-
metic on {loating-point items at compile time, as in the following example:

float fp_val = 1.0e100;

In this example, the double-precision constant 1.0e100 cxceeds the maxi-
mum allowable value for a floating-point data item.

too many option flags, ’string’

The option appeared too many times. The string contains the occurrence of the
option that caused the error.

Number

C1048

C1049

C1052

C1053

C1054

C1055

C1056

C1059

C1060

Error-Message Reference 231

Fatal-Error Message

unknown option ’character’ in ’optionstring’

The character was not a valid letter for optionstring.

invalid numerical argument ’string’

A numerical argument was expected instead of string.

too many #it/#ifdef’s

The program exceeded the maximum nesting level for #if/#ifdef directives.
compiler limit : struct/union nesting

Structure and union definitions were nested to more than 10 levels.
compiler limit : initializers too deeply nested

The compiler limit on nesting of initializers was exceeded. The limit ranges
from 10 to 15 levels, depending on the combination of typcs being initialized.

To correct this problem, simplify the data type being initialized to reduce the
levels of nesting, or assign initial values in separate statements after the
declaration.

compiler limit : out of keys

The file being compiled contained too many symbols. Try to scparate it into two
files that can be compiled independcently.

compiler limit : out of macro expansion space

The compiler overflowed an internal buffer during the expansion of a macro.
Simplify the macro and/or shorten its text.

out of near heap space

The compiler ran out of storage for items that it stores in the “near” (defaull data
segment) heap.

out of far heap space
The compiler ran out of storage for items that it stores in the far heap.

Usually this error occurs in prograimms compiled within the QuickC environment
because the symbol table contains too many symbols. To fix this error, try com-
piling with the Debug option turned off, or try including fewer include files. If
these solutions do not work, try compiling the program using the QCL com-
mand. Finally, it may help to {rec additional memory on your system by remov-
ing TSRs (proccsses that terminate and stay resident).

232 Microsoft QuickC Tool Kit

Number
C1061

C1062

C1063

C1065

C1067

C1068

C1069

C1070

C1126

Fatal-Error Message
compiler limit : blocks too deeply nested
Nested blocks in the program exceeded the nesting limit allowed by the compiler.

To correct this problem, rewrite the program so that fewer blocks are nested
within other blocks.

error writing to preprocessor output file

You compiled with the /P, /E, or /EP option to produce a preprocessor output
file, but not cnough room was available (o hold the file.

compiler limit : compiler stack overflow

Your program was too complex and caused the compiler stack to overflow,
Simplify your program by making it more modular and rccompile.

compiler limit : *identificr’ : macro definition too big
The macro definition was longer than allowed.

Try to split the definition into two shorter definitions.
compiler limit : identifier overflowed internal buffer

The compiler read an identifier that is longer than the internal buffer used for
identifier names. Shorten the name and recompilc.

cannot open file ’filename’

The compiler cannot open the given file. A number of conditions may cause this
error, including (but not limited to) the following: the dircctory does not exist;
the file is needcd for output but is marked rcad only; the file is nceded for input
but docs not exist; the FILES= line in CONFIG.SYS does not allow enough files.

write error on file *filename’

An error occurred while the compilcer tricd to write to the file. One possible
causc of this crror is insufficicnt disk space.

mismatched #if/#endif pair in file *filename’

The preprocessor found the #if, #ifdef, or #ifndef dircctive, but did not find a
corresponding #endif directive in the same source file.

identifier: automatic allocation exceeds ’size’

The spacce allocated for the local variables of a function excecded the given limit.

Error-Message Reference 233

D.1.2 Compilation-Error Messages

Number
C2000

C2001

C2003

C2004

C2005

C2006

C2007

C2008

The messages listed below indicate that your program has errors. When the com-
piler encounters any of the errors listed in this section, it continues parsing the
program (if possible) and outputs additional error messages. However, no object
file is produced.

Compilation-Error Message

UNKNOWN ERROR
Contact Microsoft Technical Support

The compiler detected an unknown error condition.

Plcase report this condition to the Microsoft Corporation, using the Product As-
sistance Request form at the back of this manual.

newline in constant

A new-line character in a character or string constant was not in the correct
escape-sequence format (\n).

expected *defined id’

The identifier to be checked in an #if directive was not found.
expected *defined(id)y’

An #if directive caused a syntax crror.

#line expected a line number, found ’string’

A #line directive lacked the required line-number specification.
#include expected a file name, found ’string’

An #include directive lacked the required file-name specification.
#define syntax

A #define dircctive causcd a syntax error.

*character’ : unexpected in macro definition

The given character was used incorrectly in a macro definition.

234 Microsoft QuickC Tool Kit

Number
C2009

C2010

C2012

C2013

C2014

C2015

C2016

C2017

C2018

C2019

Compilation-Error Message

reuse of macro formal *identifier’

The given identifier was used more than once in the formal-parameter list of a
macro definition.

*character’ : unexpected in formal list

The given character was used incorrectly in the formal-parameter list of a macro
definition.

missing name following <’

An #include dircctive lacked the required file-name specification.
missing *>’

The closing angle bracket (>) was missing from an #include directive.
preprocessor command must start as first non-whitespace

Non-white-space characters appeared before the number sign (#) of a preproces-
sor directive on the same line.

too many chars in constant

A character constant containing more than one character or escape scquence
was used.

no closing single quote
A character constant was not enclosed in single quotation marks.
illegal escape sequence

The character or characters after the escape character (V) did not form a valid
escape sequence.

unknown character ’Oxcharacter’
The given hexadecimal number did not correspond to a charactcr,

expected preprocessor command, found ’character’

The given character followed a number sign (#), but it was not the first letter of a
preprocessor directive.

Error-Message Reference 235

Number Compilation-Error Message
C2020 illegal digit ’character’ for base number’

The given character was not a legal digit for the base used.
C2021 expected exponent value, not *character’

The given character was used as the exponent of a floating-point constant but
was not a valid number.

C2022 *number’ : to