
Programming Techniques

Q;
o
crJ

8 u

Microsoft® C/C++
Version 7.0

Programming Techniques

For MS-DOS® and Windows™ Operating Systems

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commit­
ment on the part of Microsoft Corporation. The software andlor databases described in this document
are furnished under a license agreement or nondisclosure agreement. The software andlor databases
may be used or copied only in accordance with the terms of the agreement. It is against the law to
copy the software on any medium except as specifically allowed in the license or nondisclosure agree­
ment. The licensee may make one copy of the software for backup purposes. No part of this manual
andlor databases may be reproduced or transmitted in any form or by any means, electronic or me­
chanical, including photocopying, recording, or information storage and retrieval systems, for any pur­
pose other than the licensee's personal use, without the express written permission of Microsoft
Corporation.

© 1989, 1991 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

"'If~ _ +'+ 1\/1"(,'1 ... IfCl nne" V1l1lt.TTV ""'_..J~'lr!~~~. ~_...:J A .• :_l~"'" _______ !_4- __ ._.l L-_..l_ •• __ .l. __ £1I.1r! _____ .c..
.L¥.L.l"".lV~VU., .lU_IJ, H.LIJ-.L"J,.", LlL.L.l'l""'O .. , ,"--uu,,", V H .. ·VV, ClUU \,lUlt.,...1\.'-..- rue; .u;:'e,.li:loLvlvU uaUCilllCU.l\.i:lo VIIVlll-lUi:loVU

Corporation.

U.S. Patent No. 4955066

AT&T and UNIX are registered trademarks of American Telephone and Telegraph Company.
Hercules is a registered trademark and InColor is a trademark of Hercules Computer Technology.
IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.
Lotus is a registered trademark of Lotus Development Corporation.
NEC is a registered trademark of NEC Corporation.
Olivetti is a registered trademark of Ing. C. Olivetti.
PDP-II and V AX are registered trademarks of Digital Equipment Corporation.
Tandy is a registered trademark of Tandy Corporation.
Texas Instruments is a registered trademark of Texas Instruments, Inc.
Wang is a registered trademark of Wang Laboratories.
Z8000 is a registered trademark of Zelog, Inc.

Document No. LN24775-1191

1098765432

Contents Overview

Introduction .. xvii

Part 1 Improving Program Performance
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7

Optimizing Your Programs ... 5
Using Precompiled Header Files .. 33
Reducing Program Size with P-Code ... 43
Managing Memory in C .. 55
Managing Memory in C++ ... 97
Using the Inline Assembler.. ... 111
Controlling Floating-Point Math Operations 127

Part 2 Special Environments
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12

Appendix

Compiling with the QuickWin Windows Library 145
Communicating with Graphics ... 167
Creating Charts and Graphs .. 201
Programming with Mixed Languages .. 229
Writing Portable C Programs .. 271

Appendix A P-Code Instruction Tables ... 297

Index ... 301

Contents

Introduction ... xvii

Scope of This Book ... xvii
Document Conventions .. xviii

Part 1 Improving Program Performance
Chapter 1 Optimizing Your Programs .. 5

1.1 Controlling Optimization from PWB............. 5
1.2 Controlling Optimization from the Command Line..... 6
1.3 Controlling Optimization with Pragmas 6
1.4 Default Optimization .. 8

Common Subexpression Elimination..... 8
Dead-Store Elimination .. 8
Constant Propagation .. 9

1.5 Customizing Your Optimizations... 9
Choosing Speed or Size (lOt and lOs)... 9
Generating Intrinsic Functions (lOi) ... 10
Inlining Function Calls (lObO, lObI, and IOb2) ... 13
Assuming No Aliasing (lOa and lOw) ... 13
Performing Loop Optimizations (lot) 18
Disabling Unsafe Loop Optimizations (IOn) .. 20
Enabling Aggressive Optimizations (lOz) .. 20
Enabling Function-Level Linking (lGy) ... 21
Removing Stack Probes (lGs) ... 21
Enabling Global Register Allocation (lOe) 21
Enabling Common SUbexpression Optimization (lOc and 109)..... 23
Achieving Consistent Floating-Point Results (lOp) ... 23
Generating Code for a Specific Processor (lGO, IG 1, IG2, IG3, IG4) 24
Optimizing for Maximum Efficiency (lOx) ... 24

1.6 Linker (LINK) Options That Control Optimization 25
Enabling Far Call Optimization (IF ARCALLTRANSLATION) 25
Packing Code (lPACKCODE) .. 26
Packing Data (IPACKDATA) .. 27

vi Contents

Packing the Executable File (IEXEP ACK) 27
Removing Unreferenced Functions (IPACKFUNCTIONS) 28

1. 7 Optimizing in Different Environments.... 28
Optimizing in DOS ... 28
Optimizing in Microsoft Windows™ ... 28

1.8 Choosing Function-Calling Conventions ... 28
The C Calling Convention (lGd) ... 29
The FORTRANlPascal Calling Convention (lGc) ... 29
The Register Calling Convention (/Gr) .. 30
The __ fastcall Calling Convention.... 30

Chapter 2 Using Precompiled Header Files .. 33
2.1 When to Use Precompiled Headers .. 33
2.2 Creating and Using Precompiled Headers ... 34
2.3 Compiler Options ... 34

Create Precompiled Header Option (lY c). 34
Precompiled Header Filename Option (/Fp) ... 35
Use Precompiled Header Option (/Yu) ... 35
The hdrstop Pragma .. 36
Including Debugging Information (/Y d) ... 38

2.4 Consistency Rules .. 39
Compiler Option Consistency ... 39
Include Path Consistency .. 40
Source File Consistency .. 41
Pragma Consistency .. 41

Chapter 3 Reducing Program Size with P-Code ... 43
3.1 Compiling Your Program into P-Code .. 43
3.2 The P-Code Model ... 44

The P-Code Stack Machine ... 45
Reducing Duplicate Code with Quoting ... 46
Entry Points to P-Code Functions ... 47
Instruction-Naming Convention ... 47

3 .3 Fine-Tuning Your P-Code Program...... 50
Mixing P-Code and Machine Language ... 50
Removing Native Entry Points ... 51
Specifying Entry Tables .. 51
Turning P-Code Quoting On and Off ... 52
Controlling Frame Sorting .. 52

3.4 Controlling the P-Code Build Process ... 53

Contents vii

Chapter 4 Managing Memory in C ... 55
4.1 Pointer Sizes ... 55

Pointers and 64K Segments .. 56
Near Pointers ... 56
Far Pointers ... , 57
Huge Pointers .. 57
Based Addressing .. 58

4.2 Selecting a Standard Memory ModeL ... 58
The Six Standard Memory Models ... 59
Limitations on Code Size and Data Size .. 59
The Tiny Memory ModeL ... 60
The Huge Memory Model .. 60
Null Pointers ... 61
Specifying a Memory Model .. 62

4.3 Mixing Memory Models .. 63
Pointer Problems ... 64
Declaring Near, Far, Huge, and Based Variables ... 65
Declaring Near and Far Functions .. 66
Pointer Conversions .. 68

4.4 Customizing Memory Models .. 70
Setting a Size for Code Pointers ... 70
Setting a Size for Data Pointers .. 71
Setting Up Segments ... 71
Library Support for Customized Memory Models...................... 74
Placement of Data in the Compact, Large, and Huge Memory Models 74
Naming Modules and Segments ... 76
Specifying Code Segments ... 77

4.5 Using Based Pointers and Data .. 78
Based Pointers ... 78
Based Data Allocation .. 86

4.6 Using Based Addressing for Functions .. 88
4.7 Using the Virtual Memory Manager .. 90

Initializing the Virtual Memory Manager.......... 90
Virtual Memory Handles .. 91
Loading Blocks ... 92
Dirty Blocks vs. Clean Blocks .. 92
Locking and Unlocking Blocks .. 92
Techniques for Using Virtual Memory ... 93

viii Contents

Chapter 5 Managing Memory in C++ ... 97
5.1 Memory Models for Classes ... 97

The Ambient Memory Model ... 98
Overriding the Ambient Memory Model..... 99
Overloading the this Pointer ... 100
Specifying the Addressing Mode of Return Objects.............. 10 1
Virtual Table Pointers ... 102

5.2 The Free Store .. 103
The new Operator .. 103
The delete Operator ... 105
The _seCnew _handler Function..... 106

5.3 Based Addressing for Member Functions.......... 107

Chapter 6 Using the Inline Assembler ... 111
6.1 Advantages of Inline Assembly. 111
6.2 The __ asm Keyword .. 112
6.3 Using Assembly Language in __ asm Blocks .. 113
6.4 Using C or C++ in __ asm Blocks .. 115

U sing Operators .. 116
Using C or C++ Symbols .. 116
Accessing C or C++ Data ... 117
Writing Functions .. 118

6.5 Using and Preserving Registers .. 120
6.6 Jumping to Labels ... 121
6.7 Calling C Functions .. 122
6.8 Calling C++ Functions .. 123
6.9 Defining __ asm Blocks as C Macros ... 123
6.10 Optimizing .. 124

Chapter 7 Controlling Floating-Point Math Operations .. 127
7.1 Declaring Floating-Point Types ... 127

Declaring Variables as Floating-Point Types ... 127
Declaring Functions That Return Floating-Point Types................................. 129

7 .2 Run-Time Library Support of Type long double........... 130
7.3 Summary of Math Packages ... 130

Emulator Package .. 131
Math Coprocessor Package 131
Alternate Math Package .. 132

Contents ix

7.4 Selecting Floating-Point Options (/FP) .. 132
Inline Emulator Option (lFPi) ... 134
Inline Math Coprocessor Instructions Option (/FPi87) 134
Calls to Emulator Option (/FPc) ... 135
Calls to Math Coprocessor Option (lFPc87) 135
Use Alternate Math Option (/FPa) .. 136

7.5 Library Considerations for Floating-Point Options 137
Using One Standard Library for Linking .. 137
Inline Instructions or Calls .. 137

7.6 Compatibility Between Floating-Point Options ; 138
7.7 Using the N087 Environment Variable ... 138
7.8 Incompatibility Issues ... 139

Part 2 Special Environments
Chapter 8 Compiling with the QuickWin Windows Library .. 145

8.1 What a QuickWin Program Provides ... 146
Using QuickWin ... 146
The QuickWin User Interface ... 147
Enhanced Capabilities of QuickWin .. 151
QuickWin vs. Windows Applications .. 153
Running QuickWin Programs... 154

8.2 Compiling QuickWin Programs... 154
Compiling from the DOS Command Line ... 154
Compiling from the Programmer's WorkBench .. 156

8.3 Writing Enhanced QuickWin Programs .. 157
The QWDEMO.C Program .. 157
Customizing the About Dialog Box ... 157
Opening Child Windows ... 157
Reading from and Writing to Child Windows .. 159
Resizing and Positioning Child Windows .. 160
Setting the Amount of Scrollable Text... 161
Making a Child Window Active ... 161
Closing a Child Window ... 162
Keeping Windows on the Screen .. 162
Simulating Mouse Clicks in the Menu Bar .. 163
Yielding Time to Other Windows Applications ... 164
Using Custom Icons..................... 164
Providing Help .. 165

x Contents

Chapter 9 Communicating with Graphics .. 167
9.1 Video Modes ... 167

Sample Low-Level Graphics Program ... 168
Setting a Video Mode... 169
Reading the _ videoconfig Structure.. 171
Maximizing Resolution or Color.. 172
Selecting Your Own Video Modes ... 173
Super VGA Support .. 173

9.2 Mixing Colors and Changing Palettes .. 175
CGA Palettes ... 176
Olivetti Palettes ... 177
VGA Palettes ... 177
MCGA Palettes ... 179
EGA Palettes ... 179
Symbolic Constants ... 180

9.3 Specifying Points Within Coordinate Systems .. 180
Physical Coordinates ... 180
Viewport Coordinates ... 182
Window Coordinates ... 184
Screen Locations ... 185
Bounding Rectangles .. 185
The Pixel Cursor ... 186

9.4 Graphics Functions ... 186
Controlling Video Modes.. 186
Changing Colors .. 188
Drawing Points, Lines, and Shapes ... 189
Defining Patterns... 191
Manipulating Images ... 192

9.5 Using Graphic Fonts ... 193
Using the C Font Library .. 195
Registering the Fonts ... 195
Setting the Current Font.. 196
Displaying Text ... 197
Sample Program .. 198
Using Fonts Effectively .. 199

Chapter 10 Creating Charts and Graphs .. 201
10.1 Overview of Presentation Graphics .. 201
10.2 Parts of a Graph .. 202

Contents xi

10.3 Writing a Presentation Graphics Program ... 205
Pie Charts .. 206
Bar, Column, and Line Charts .. 208
Scatter Diagram ... 212

10.4 Manipulating Colors and Patterns.. 214
Color Pool ... 215
Style Pool .. 216
Pattern Pool ... 217
Character Pool ... 219

10.5 Customizing the Chart Environment .. 219
_titletype Structures .. 220
_axistype Structures .. 221
_ windowtype Structures .. 223
_legendtype Structures .. 225
_chartenv Structures .. 226

Chapter 11 Programming with Mixed Languages .. 229
11.1 Making Mixed-Language Calls .. 229
11.2 Language Convention Requirements ... 231

Naming Convention Requirement .. 231
Calling Convention Requirement 234
Parameter-Passing Requirement ... 235

11.3 Compiling and Linking .. 237
Compiling with Correct Memory Models .. 237
Linking with Language Libraries ... 237

11.4 C Calls to High-Level Languages .. 238
11.5 C Calls to BASIC ... 240
11.6 C Calls to FORTRAN .. 243

Calling a FORTRAN Subroutine from C ... 243
Calling a FORTRAN Function from C .. 245

11. 7 C Calls to Pascal... 246
Calling a Pascal Procedure from C......... 246
Calling a Pascal Function from C ... 247

11.8 C Calls to Assembly Language .. 248
Writing the Assembly-Language Procedure ... 249
Setting Up the Procedure .. 250
Entering the Procedure .. 250
Allocating Local Data... 251
Preserving Register Values ... 251
Accessing Parameters ... 252

xii Contents

Returning a Value ... 255
Exiting the Procedure .. 256

11.9 c++ Calls to High-Level Languages .. 257
11.10 Handling Data in Mixed-Language Programming 257

Default Naming and Calling Conventions .. 258
Numeric Data Representation ... 258
Strings .. 259
Arrays .. 263
Array Declaration and Indexing .. 263
Structures, Records, and User-Defined Types .. 265
External Data ... 265
Pointers and Address Variables .. 266
Common Blocks .. 267
Using a Varying Number of Parameters........... 268

Chapter 12 Writing Portable C Programs .. 271
12.1 Assumptions About Hardware .. : 271

Size of Basic Types .. 271
Storage Order and Alignment ... 274
Byte Order in a Word .. 277
Reading and Writing Structures .. 278
Bit Fields in Structures .. 279
Processor Arithmetic Mode .. 280
Pointers .. 281
Address Space ... 283
Character Set ... 284

12.2 Assumptions About the Compiler .. 285
Sign Extension .. 285
Length and Case of Identifiers .. 288
Register Variables ... 288
Functions with a Variable Number of Arguments .. 289
Evaluation Order ... 289
Function and Macro Arguments with Side Effects 290
Environment Differences .. 291

12.3 Portability of Data Files .. 292
12.4 Portability Concerns Specific to Microsoft C .. 292
12.5 Microsoft C Byte Ordering ... 292

Contents xiii

Appendix

Appendix A P-Code Instruction Tables ... 297

Index ... 301

Figures and Tables

Figures
Figure 4.1
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 11.1
Figure 11.2
Figure 11.3
Figure 11.4

Tables
Table 1.1
Table 1.3
Table 2.1
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 7.1
Table 7.2
Table 7.3
Table 7.4
Table 9.1
Table 9.2
Table 9.3
Table 9.4
Table 9.5
Table 9.6

Anatomy of a Small-Model Program ... 56
Physical Screen Coordinates... 181
Coordinates Changed by _setvieworg 182
A Viewport.. 183
Window Coordinates .. 184
Bounding Rectangle 186
Example Pie Chart .. 208
Example Bar Chart ... 210
Example Column Chart .. 211
Example Line Chart ... 212
Example Scatter Diagram .. 214
Mixed-Language Call .. 230
Naming Convention ... 233
C Call to BASIC ... 241
C Stack Frame .. 253

Processor Compatibility......... 24
Register Candidates.. 31
Compilation Option Consistency.......... 39
Memory Models ... 59
Addressing Declared with Microsoft Keywords......... 64
Startup Routines for Customized Memory Models 74
Segment-Naming Conventions .. 77
Floating-Point Types .. 128
Lengths of Exponents and Mantissas ... 128
Range of Floating-Point Types .. 129
Summary of Floating-Point Options .. 133
Constants That Represent Video Modes 169
Members of a _ videoconfig Structure.. 171
Constants for Maximum Resolution and Color 172
CGA Palettes in _MRES4COLOR Mode.................................. 176
CGA Palettes in _MRESNOCOLOR Mode 176
Typefaces and Type Sizes in the C Library. 195

Table 10.1
Table 10.2
Table 10.3
Table 11.1
Table 11.2
Table 11.3
Table 11.4
Table 11.5
Table 11.6
Table 12.1
Table 12.2
Table 12.3
Table 12.4
Table 12.5

Contents xv

Presentation Graphics Functions ... 201
Presentation Graphics Chart Styles.. 205
Fill Patterns .. 217
Language Equivalents for Routine Calls 231
Parameter-Passing Defaults ... 236
Register Conventions for Simple Return Values 255
Default Naming and Calling Conventions 258
Equivalent Numeric Data Types .. 259
Equivalent Array Declarations... 264
Size of Basic Types in Microsoft C 274
Size of Generic Pointers ... 283
Default Pointer Sizes in 16-Bit Programs 283
Byte Ordering for Short Types .. 293
Byte Ordering for Long Types ... 293

Introduction

Programming Techniques describes how to take advantage of the special features
of Microsoft C/C++. The topics covered by this manual include language exten­
sions, special-purpose library functions, and the interaction between programming
strategies and compiler options.

This manual is not a reference for the tools included with Microsoft C/C++. If
you have specific questions about the CodeView debugger, the Programmer's
WorkBench (PWB), or any of the command-line utilities, see the Environment and
Tools manual or Help.

Scope of This Book
Programming Techniques is divided into two parts. Part 1, "Improving Program
Performance," helps you write more efficient programs. It provides specific
information about optimizing-when and why to use various optimizing options.
It describes precompiled headers, which can reduce compilation time during
development. Part 1 explains how to compile your program into p-code, a form of
code that produces smaller executable files. It also explains memory management
options for both C and C++ and when to use them. Chapter 6 describes the inline
assembler, a feature that lets you mix assembly language with your C and C++
source code, and Chapter 7 describes the floating-point math packages.

Part 2, "Special Environments," describes graphics capabilities and the QuickWin
library. It also shows how to program in mixed languages and offers tips to make
your programs more portable. The Microsoft C run-time libraries contain graphics
functions for low-level graphics operations, such as drawing lines, rectangles, and
circles. The libraries also contain functions for creating presentation graphics, such
as pie charts and bar charts. Microsoft C/C++ also includes a library that lets you
convert DOS programs with simple input and output requirements into Windows
programs.

xviii Programming Techniques

Document Conventions
Note The tenn "DOS" refers to both the MS-DOS and IBM Personal Computer
DOS operating systems. The name of a specific operating system is used when it
is necessary to note features that are unique to the system.

This book uses the following typographic conventions:

Example

STDIO.H

char, _setcolor,
__ far

expression

[optionE

#pragma pack {I I 2}

f/include <io.h>

CL [option ... Efile ...

while()
{

}

Description

Uppercase letters indicate filenames, segment names,
registers, and tenns used at the operating-system
command level.

Bold type indicates C and C++ keywords, operators,
language-specific characters, and library routines.
Within discussions of syntax, bold type indicates that
the text must be entered exactly as shown.

Many functions and constants begin with either a
single or double underscore. These are part of the
name and are mandatory. For example, to have the
__ cplusplus manifest constant be recognized by
the compiler, you must enter the leading double
underscore.

Words in italics indicate placeholders for infonnation
you must supply, such as a filename.

Items inside double square brackets are optional.

Braces and a vertical bar indicate a choice among two
or more items. You must choose one of these items
unless double square brackets ([m surround the
braces.

This font is used for examples, user input, program
output, and error messages in text.

Three dots (an ellipsis) following an item indicate that
more items having the same form may appear.

A column or row of three dots tells you that part of an
example program has been intentionally omitted.

Example

CTRL+ENTER

"argument"

"C string"

Color Graphics
Adapter (CGA)

Introduction xix

Description

Small capital letters are used to indicate the names of
keys on the keyboard. When you see a plus sign (+)
between two key names, you should hold down the
first key while pressing the second.

The carriage-return key, sometimes marked as a bent
arrow on the keyboard, is called ENTER.

Quotation marks enclose a new term the first time it is
defined in text.

Some C constructs, such as strings, require quotation
marks. Quotation marks required by the language
have the form " " and ' , rather than " " and' '.

The first time an acronym is used, it is usually spelled
out.

Optimizing Your Programs

The Microsoft C/C++ compiler translates C or c++ source statements into ma­
chine-executable instructions. In addition, the compiler rewrites or "optimizes"
parts of your program to make it more efficient in ways that are not apparent at the
source level.

The compiler performs three general types of optimization:

• It modifies or moves sections of code so that fewer instructions are used, or so
that the instructions used make more efficient use of the processor.

• It moves code and combines operations to maximize use of registers because
operations on data stored in processor registers are far faster than the same
operations on data stored in memory.

• It eliminates sections of code that are redundant or unused.

This chapter explains the various ways you can control how the Microsoft C/C++
compiler optimizes your code.

1.1 Controlling Optimization from PWB
The Programmer's WorkBench (PWB) is an integrated development environment
for editing, building, and debugging applications written in Microsoft C or C++.
For more information on the PWB, see the Environment and Tools manual.

There are two ways to compile from inside the Programmer's WorkBench:

• Debug compile. In a default debug compile, the compiler performs no optimiza­
tions at all.

• Release compile. In a default release compile, the compiler performs most
optimizations.

To select the optimizations the compiler performs in either a debug compile or a
release compile, pull down the Options menu and choose the Language Options

6 Programming Techniques

submenu. From that menu, open either the C or C++ Compiler Options dialog box.
From that dialog box, you can specify either a debug or a release compile, and you
can open the Optimizations dialog box to select individual optimizations.

The optimizations in each of the Compiler Options dialog boxes correspond to a
command-line option to CL. (In fact, the PWB constructs a command line from
your input and passes it to CL.)

Note In this chapter, optimization options are discussed in terms of the effect of
the optimization, the command-line option to invoke the optimization, and prag­
mas that control the optimization. All of these optimizations can be controlled at
the compilation-unit (file) level using the Compiler Options dialog boxes.

1.2 Controlling Optimization from the Command line
Controlling optimization from the command line requires that you determine
which optimizations you need for your application. You then specify those optimi­
zations using command-line options that begin with 10 (and in some cases IG).

If there is any conflict between options, the compiler uses the last option specified
on the command line. The command line

CL lOa 101 lOt TEST.C

compiles the program TEST.C. It specifies that the compiler can

• Optimize on the assumption that you are doing no aliasing (lOa)

• Perform loop optimization (/01)

• Perform other general speed-enhancing optimizations (/Ot)

The preceding command line can also be written

CL 10alt TEST.C

1.3 Controlling Optimization with Pragmas
Occasionally you will need to exercise a fine level of control over compiler optimi­
zations. Command-line options allow you to control optimization over an entire
compilation unit (file). In addition, Microsoft CIC++ supports several pragmas
that allow you to exercise such control on a per-function basis.

The pragmas that control optimization are described in this chapter under the type
of optimization they affect.

Optimizing Your Programs 7

You can control each of the following optimization parameters on a function-by­
function basis using the optimize pragma:

• Behavior of code with respect to aliasing (a and w)

• Inlining of function calls (bO, bI, or b2)

• Reduction oflocal common sUbexpressions (c)

• Reduction of global common subexpressions (g)

• Global register allocation (e)

• Loop optimization (I)

• Maximization of optimizations (x)

• Aggressiveness of optimizations (z)

• Disabling of unsafe optimizations (n)

• Achieving consistent floating-point results (p)

• Use of a single exit point for each function (r)

• Optimizing for smaller code size or for faster execution speed (s or t)

There is also an option for compiling your program into p-code (/Oq), and options
that apply only when p-code is enabled (lOf, 10f-, 10v, and 10v-). See Chapter 3,
"Reducing Program Size with P-Code," for information on these options.

Any optimization or combination of options can be enabled or disabled using the
optimize pragma. For example, if you have one function that uses aliases heavily,
you need to inhibit optimizations that could cause problems with aliases. You do
not, however, want to inhibit these optimizations for code that does not do alias­
ing. To do this, use the optimize pragma as follows:

/* Function(s) that do not do aliasing. */

ifpragma optimi ze("a", off)
/* Function(s) that do aliasing. */

ifpragma optimi ze("a", on)
/* More function(s) that do not do aliasing. */

The parameters to the optimize pragma can be combined in a string to enable or
disable multiple options at once. For example,

ifpragma optimi ze("1 ge", off)

disables loop optimization, global common subexpression optimization, and
global register allocation.

8 Programming Techniques

1.4 Default Optimization
Many optimizations are not explicitly disabled by any command-line option
except IOd (disable optimizations) or If (fast compile). These optimizations are
small in scope and are almost always helpful. They include

• Short-range common subexpression elimination

• Dead-store elimination

• Constant propagation

Common Subexpression Elimination
In common subexpression elimination, the compiler finds code containing re­
peated subexpressions and produces modified code in which the subexpressions
are evaluated only once. Subexpression elimination is usually done with tem­
porary variables as shown in the following example:

a b + C * d;
x = c * d / y;

The preceding two lines contain the common subexpression c * d. This code can
be modified to evaluate c * d only once; the result is placed in a temporary vari­
able (usually a register):

tmp = c * d;
a b + tmp;
x = tmp / y;

Dead-Store Elimination
Dead-store elimination is an extension of common subexpression elimination.
Variables that contain the same value in a short piece of code can be combined
into a single temporary variable.

In the following code fragment, the compiler detects that the expression
func(x) is equivalent to func(a + b):

x a + b;
x = func(x);

Thus, the compiler can rewrite the code as follows:

x = func(a + b);

Optimizing Your Programs 9

Constant Propagation

Remove optimization
before using a sym­
bolic debugger.

When doing constant propagation, the compiler analyzes variable assignments
and determines if they can be changed to constant assignments. In the following
example, the variable i must have a value of 7 when it is assigned to j:

7 ;
j = i;

Instead of assigning to j, the constant 7 can be assigned to j:

7 ;
j 7 . .
While you could make any of these changes in the source file, doing so might
reduce the readability of the program. In many cases, optimizations not only in­
crease the efficiency of the program but allow you to write more readable code
without any actual efficiency loss.

In some cases, you might want to disable even the default optimizations. Because
optimizations may rearrange code in the object file, it can become difficult to rec­
ognize parts of your code during debugging. It is usually best to remove all optimi­
zation before using a symbolic debugger. You can remove all optimization with
the 10d (disable optimizations) option or the If (fast compile) option.

You can disable all optimizations for a function by including the statement
ffp ragma opt i mi ze (..... off). To restore optimization to its former state, use
the statement ffpragma optimi ze(..... on).

1.5 Customizing Your Optimizations
The default optimizations are sufficient for many applications, but you may want
to tune your programs according to criteria not known to the compiler. The optimi­
zation options offer you a way of providing the compiler specific goals for
optimizing your code.

Choosing Speed or Size (lOt and /Os)
In addition to the default optimizations, the Microsoft CIC++ compiler also auto­
matically uses the lOt option, which optimizes for speed. The lOt option enables
optimizations that increase speed but may also increase size. If you would rather
optimize for program size, use the lOs option. The lOs option enables optimiza­
tions that decrease program size but may also decrease program speed.

To optimize for speed or size on a per-function basis, use the optimize pragma
with the t option. The on setting instructs the compiler to optimize for speed; the

10 Programming Techniques

off setting instructs the compiler to optimize for compactness of code. For
example,

'pragma optimize("tn, off)

'pragma optimize("tn, on)

/* Optimize for smallest
code. */

/* Optimize for fastest
code. */

The lOs option is implied when you use the 10q option (p-code generation).

Generating Intrinsic Functions (fOi)
In place of some normal function calls, the C/C++ compiler can insert "intrinsic
functions," which operate more quickly. Every time a function is called, a set of in­
structions must be executed to store parameters and to create space for local varia­
bles. When the function returns, more code must be executed to release space used
by local variables and parameters and to return values to the calling routine. These
instructions take time to execute. In the context of an average-sized function, the
additional code is minimal, but if the function is only a line or two, the additional
code can comprise almost half of the function's compiled code.

One way to avoid this type of code expansion is to avoid such short functions,
especially in often-used sections of code where speed is critical. But many library
functions contain only a line or two of code. The compiler provides two forms of
certain library functions. One form is a standard C function, which requires the
overhead of a function call. The other form is a set of instructions that performs
the same action as the function without issuing a function call. This second form is
called an intrinsic function. Intrinsic functions are always faster than their function­
call equivalents and can provide significant optimizations at the object-code level.

For example, the function strcpy might be written as follows:

int strcpy(char * dest, char * source)
{

while(*dest++ = *source++);
}

The compiler contains an intrinsic form of strcpy. If you instruct the compiler to
generate intrinsic functions, any call to strcpy will be replaced with this intrinsic
form.

Note While the preceding example is written in C for clarity, most ofthe library
functions use assembly language to take full advantage of the 80x86 instruction
set. Intrinsic functions are not simply library functions defined as macros.

Optimizing Your Programs 11

Compiling with the /Oi option causes the compiler to use the intrinsic forms of the
following functions:

abs labs memset strcat
_disable _Irotl _outp strcmp
_enable _Irotr _outpw strcpy
_inp memcmp _rotl strlen
_inpw memcpy _rotr _strset

While the following floating-point functions do not have true intrinsic forms, they
do have versions that pass arguments directly to the floating-point chip instead of
pushing them on the normal argument stack:

acos fmod _acosl _fmodl
asin log _asinl _Iogl
atan log10 _atanl _loglOI
atan2 pow _atan21 _powl
ceil sin _ceill _sinl
cos sinh _cosl _sinhl
cosh sqrt _coshl _sqrtl
exp tan _expl _tanl
floor tanh _floorl _tanhl

Warning! The compiler performs optimizations assuming math intrinsics have
no side effects. This assumption is true except if you have written your own
_matherr function and that function alters global variables. If you have written
a _matherr function to handle floating-point errors, and your function has side
effects, use the function pragma to instruct the compiler not to generate intrinsic
code for math functions.

If you want the compiler to generate intrinsic functions for only a subset of the
functions listed above, use the intrinsic pragma rather than the /Oi option. The
intrinsic pragma has the following format:

#pragma intrinsic(fimctionl, ...)

If you want to have intrinsic functions generated for most of the functions above
and function calls for only a few, compile with the /Oi option and force function
use with the function pragma. The function pragma has the following format:

#pragma function(fimctionl, ...)

12 Programming Techniques

The following code illustrates the use of the intrinsic pragma:

#pragma intrinsic(abs)

void maine void
{

}

i nt i, j;

i ~ big_routine_l();
j ~ abs (i);
big_routine_2(j);

Generating intrinsic functions for this program causes the call to abs to be re­
placed with assembly-language code that takes the absolute value of a number.
The program will execute more quickly because the function-calling overhead is
no longer required when abs is called.

In the previous example, the overall speed increase is small because there is only a
single call to abs. In the following example, where the call to abs is in a loop and
there are many calls, you can save a significant amount of execution time by gener­
ating intrinsic functions.

ffpragma intrinsic(abs)

void maine void)

{

int i , j, x;

fore j 0; j < 1000; j++
{

fore 0; < 1000; i++
{

X +~ abs(i - j) ;
}

}

pri ntf("The value of x is %d\n", x) ;
}

The following is a list of restrictions on using the intrinsic forms of function calls:

• Do not use the intrinsic forms of the floating-point math functions with the
alternate math libraries (mLIBCAy.LIB).

• The IOi option is not available if you use the IOq option (p-code generation).

• If you use the lax (maximum optimization) option, you are enabling the IOi
(generate intrinsic functions) option. Be careful that your use of lax does not
conflict with the points listed previously.

Optimizing Your Programs 13

Inlining Function Calls (lObO, IOb1, and IOb2)
Inlining is similar to the use of intrinsic functions, except that it is not restricted to
a specific set of library functions. Inlining allows the compiler to insert a copy of a
function in each place it is called. This removes the overhead of calling a function
(described in the previous section), but having multiple copies of a function can
make your program larger.

You can explicitly mark a function as a candidate for inlining by declaring it with
the __ iDliDe keyword, or in C++, the iDliDe keyword. Any C++ member functions
that are defined within the class declaration are implicitly considered inline
functions.

Inlining is performed at the discretion of the compiler. If a function more than a
few lines long is declared as an inline function, the compiler ignores the __ iDliDe
keyword. The IObn option controls the degree to which the compiler performs
inlining.

The lObO option disables all inlining, even for functions explicitly declared as
inline functions. This is the default when lad is specified.

The lab I option expands all functions declared as inline, at the compiler's
discretion. This is the default when lad is not specified.

The IOb2 option expands all functions declared as inline, at the compiler's
discretion, and any other functions that the compiler considers suitable for inlining.

Assuming No Aliasing (lOa and lOw)
The lOa and law options control the assumptions the compiler makes regarding
"aliasing" when it performs optimizations. These options can significantly im­
prove the performance of your program, but there are a few situations in which
these options are not appropriate.

"Aliasing" occurs when more than one name is used to refer to a single memory
location. For example,

char c;
char *cptr;

cptr &c; /* Take the address of c */
/* c now has two names: c and *cptr */

c = 1; /* Use first name */
cptr = 2; / Use second name */

The expression *cptr is an alias for c, because it is another name for that vari­
able. If you refer to the variable by both names, you are using aliasing.

14 Programming Techniques

One optimization technique that the compiler performs is to store frequently used
variables in registers because accessing a register takes less time than accessing a
memory location. If the compiler detects the use of aliasing, it does not place the
variable in a register because modifications through an alias could lead to incon­
sistent values being used for that variable. For example, consider the code frag­
ment above. If the compiler placed c in a register, and if you modified *cpt r, the
compiler would have inconsistent values for c: one stored in a register, and
another stored in a memory location. To avoid this problem, the compiler does not
place c in a register.

The compiler can detect simple cases of aliasing like the one described above.
However, the compiler cannot identify all possible forms of aliasing. By default,
the compiler assumes that your program may be using aliasing that it cannot de­
tect, just to be on the safe side. This means that the compiler assumes that any time
you modify a memory location through a pointer, you might also be modifying the
value of one of the following:

• Any global variable

• Any local variable whose address has been taken

• The memory location referenced by any other pointer

This assumption limits the amount of optimization the compiler can perform.

The lOa option tells the compiler that your program does not perform any aliasing
(other than the very simple forms that the compiler can detect). This allows the
compiler to optimize your code more fully. However, if you specify this option
when compiling a program that does perform aliasing, the compiler may produce
incorrect code.

Here is an example of a program that performs aliasing that the compiler cannot
detect. This program generates incorrect results when compiled under lOa:

1* OATEST.C
* Fails when compiled with \Oa.
* Passes when compiled with default optimization.
*1

#include <stdio.h>
char buf[10]; 1* Global array *1

char *return_buf()
{

return buf;
}

void main()
{

char *first,
*second;

first = buf;
second = return_buf();
*first = 2;
*second = 3;
if(*first == 3)
printf("Pass\n");
else
printf("Fail\n");

Optimizing Your Programs 15

In this example, both *fi rst and *second refer to the same memory location.
This location is assigned two different values, one through each of its names. If
this program is compiled without the lOa option, the compiler assumes that the ref­
erence to *second could refer to the same memory location as does *fi rst, and
that *fi rst might be modified hy the statement *second = 3. If, however, you
do specify the lOa option, the co npiler assumes that *fi rst and *second refer to
different memory locations. The ;ompiler then assumes *fi rst retains the value
of 2, so it skips the if statement a,ld goes straight to the else clause, which prints
"Fail."

The reason the compiler cannot detect the aliasing in the previous example is that
the compiler examines code in only one function at a time when it performs op­
timization. The compiler doesn't examine the code in return_buf when it is
compiling the function rna in. Consequently, the compiler has no indication that
*fi rst and *second refer to the same variable. If you were to explicitly set
second to the value of fi r st within the function mai n, the compiler would detect
the aliasing.

The compiler can detect aliasing only when a pointer is explicitly set to the
address of a variable. Aside from that case, when lOa is in effect, the compiler as­
sumes that a variable's value is changed by operations to only that variable itself,
and not by operations to any other variable. The compiler does assume that a varia­
ble's value may be changed when the variable's address is passed to a function.
This also applies if the address is cast to an integer when the function is called. For
example,

void funcl(char *cptr) ; 1* Prototype for funcI *1
void func2(int i) ; 1* Prototype for func2 *1

void mai n ()
{

char c;
int j;

c = 'a' ;
funcI(&c) ; 1* Compiler assumes c may be modified *1

func2((int)&c) ; 1* Compiler assumes c may be modifi ed *1

16 Programming Techniques

The lOa option means
"assume no alias­
ing." The lOw option
means "assume no
aliasing, except
between functions."

/* Dangerous: compiler doesn't assume */
j = (int)&c;
func2(j);

/* that c may be modified */
}

Note that the compiler does not assume that func2 can change the value of c
when a separate integer variable is used to pass c' s address.

Another option that controls aliasing assumptions is the lOw option, which tells
the compiler that you are performing aliasing between functions. When you
specify the lOw option, the compiler assumes that calling any function may have
side effects, instead of only those functions that take pointers as parameters. That
is, calling any function may modify the value of any global variable, or any local
variable whose address has been taken, or the memory location referenced by any
pointer. (This option is useful in Windows programming, because certain Win­
dows functions may cause the contents of handles to be modified.) Consequently,
after a function call the compiler reloads the value of variables stored in registers,
and the compiler does not perform certain optimizations (such as common subex­
pression elimination or dead-store elimination) across function calls.

Here is a program that performs aliasing between functions. This program gener­
ates incorrect results when compiled with lOa, but generates correct results when
compiled with lOw:

/* OWTEST.C
* fails when compiled with -Oa
* passes when compiled with -Ow
*/

#include <stdio.h>
#include <malloc.h>
typedef struct list
{

struct list *next,
*back;

intval;
} LI ST;

LIST *glob_plist;

LIST *setup(size_t size
{

}

glob_plist = malloc(size);
return glob_plist;

void ow_func()
{

glob_plist->val 22;
}

void main()
{

LIST *plist;

plist = setup(sizeof(LIST));
plist->val = 23;

Optimizing Your Programs 17

ow_func(); 1* Function modifies plist->val *1

}

if(pl i st->val == 22)
{

printf("Pass\n");
exit(0);
}

else
{

printf("Fail\n");
exit(1);
}

In this example, both pl i st->va 1 and gl ob_pl i st->val refer to the same mem­
ory location, though each appears in a different function. If you compile this pro­
gram with lOa, the compiler assumes that the value of p 1 i s t - > val is not changed
by the call to ow_ func. As a result, the compiler assumes that pl i st->va 1 still
equals 23 in the next statement, so it skips the if statement and goes straight to the
else clause, which prints "Fail." If you compile this program with law, the com­
piler assumes that ow_ func may change the value of pl i st->val. The compiler
performs the if statement, so the program prints "Pass."

Like the lOa option, the law option assumes that code within a single function
does not perform aliasing; the only difference between the two is in their assump­
tions regarding function calls. The law option is "weaker" than the lOa option,
because it tells the compiler that you may perform a certain type of aliasing, while
the lOa option tells the compiler that you are performing none. As a result, the
law option causes the compiler to perform less optimization than the lOa option
(but more than if neither option were specified).

Take the following steps to see if the lOa or law options are appropriate for your
program:

1. When developing your program, compile your program without the lOa option.
(To make it easier to debug your program with a symbolic debugger, you
should compile your program without any optimizations, using lad.)

2. Once you're satisfied that your program executes correctly, compile the pro­
gram with lOa and any other optimizations you want.

3. If the program no longer executes correctly, your program is performing alias­
ing that the compiler cannot detect. Aliasing bugs most frequently show up as
corruption of data, where global or local variables are being assigned seemingly
random values. If you can locate the functions in which aliasing is occurring,
you can use pragmas to turn off the lOa option for those particular functions.

18 Programming Techniques

4. If you cannot find the functions in which aliasing is occurring, replace the lOa
option with lOw and recompile your program.

S. If the program still does not execute correctly, and you cannot find the func­
tions in which aliasing is occurring, remove both lOa and lOw from your com­
pile options.

If you are looking for instances of aliasing in your program, look for the following
situations:

• When a variable, particularly a global variable, is referenced through both the
variable itself and a pointer to that variable

• When multiple pointers are used to reference the same memory location(s)

In the preceding list, the term "reference" means read or write; that is, whether a
variable is on the left-hand side of an assignment statement or the right-hand side,
you are still referring to it. In addition, any function calls that use a variable as a
parameter are references to that variable.

Note that the compiler assumes the value of variables declared as volatile may
change at any time. As a result, the compiler does not perform any optimization on
such variables.

Performing Loop Optimizations (101)

The /01 option
removes invariant
code.

The 101 option enables a set of optimizations involving loops. Because loops in­
volve sections of code that are executed repeatedly, they are targets for optimiza­
tion. These optimizations all involve moving or rewriting code so that it executes
faster.

Loop optimization can be turned on with the 101 option or with the loop_opt
pragma. The following line enables loop optimization for all subsequent functions:

#pragma loop_optC on)

The following line turns it off:

#pragma loop_optC off)

An optimal loop contains only expressions whose values change through each ex­
ecution of the loop. Any subexpression whose value is constant should be eval­
uated before the body ofthe loop is executed. Unfortunately, these subexpressions
are not always readily apparent. The optimizer can remove many of these expres­
sions from the body of a loop at compile time. This example illustrates invariant
code in a loop:

i = -100;
whi 1 e(i < 0)
{

i += X + y;
}

Optimizing Your Programs 19

In the preceding example, the expression x + y does not change in the loop body.
Loop optimization removes this subexpression from the body of the loop so that it
is only executed once, not every time the loop body is executed. The optimizer
will change the code to the following fragment:

i = -100;
t = x + y;
whil e(i < 0
{

i += t;
}

Loop optimization is much more effective when the compiler can assume no alias­
ing. While you can use loop optimization without the lOa or law option, use lOa
to ensure that the most options possible are used.

Here is a code fragment that could have an aliasing problem:

i = -100;
wh i 1 e (i < 0)
{

}

i += X + y;
*P = i;

If you do not specify the lOa option, the compiler must assume that either x or y

could be modified by the assignment to *p. Therefore, the compiler cannot as­
sume the subexpression x + y is constant for each loop iteration. If you specify
that you are not doing any aliasing (with the lOa option), the compiler assumes
that modifying * p cannot affect either x or y, and that the subexpression is
indeed constant and can be removed from the loop, as in the previous example.

Note All loop optimizations specified by the 101 option or the loop_opt pragma
are safe optimizations. To enable aggressive loop optimizations, you must use the
enable aggressive optimizations (lOz) option. While the optimizations enabled by
the combination of 101 and IOz are not safe for all cases, they will work properly
for most programs.

Calling the setjmp or longjmp functions when loop optimization is in effect can
cause the compiler to generate incorrect code. Use the loop_opt pragma or the
optimize pragma with the g option to disable this optimization in functions that
call setjmp and longjmp.

20 Programming Techniques

Disabling Unsafe Loop Optimizations (IOn)
The disable unsafe loop optimizations (IOn) option is obsolete and is only retained
for compatibility with existing makefiles. Loop optimizations are, by default, safe
optimizations. The IOn option is the default and has the opposite effect of the IOz
(enable aggressive optimizations) option.

Enabling Aggressive Optimizations (lOz)
The compiler can perform extremely aggressive optimizations. These optimiza­
tions produce high code quality both in terms of speed and size. Certain programs,
however, cannot be optimized with the technologies enabled by the IOz option.
For these programs, you should not specify this option; you can still use all other
optimization options.

Because the optimization strategies enabled by the IOz option are so aggressive,
they are not part of the maximum optimization (fOx) option.

Examples of the effects of the IOz option are

• Loop optimization (/01). Loop optimization enables a technology that antici­
pates program flow and tries to remove invariant expressions from loops. When
you specify the enable aggressive optimizations option (fOz), the compiler re­
moves invariant expressions even when it might cause an error. Errors with the
enable aggressive optimizations option occur most often when an invariant ex­
pression that can cause an exception is protected by an if statement. The invari­
ant expression is hoisted out of the loop body, causing it to be evaluated prior to
the evaluation of the if statement that was designed to protect it. Here are two
examples that illustrate this problem:

for(i = 0; i 100; ++i)
if(floaLval != 0.0F)
1* Protect against divide-by-zero. *1

float result = pi I float_val;

while(condition)
if(ptr_val != NULL)

1* Protect pointer dereference. *1
char_var = *ptr_val;

• Global register allocation (fOe). The enable aggressive optimizations option
enables some register allocation strategies that can cause invalid segment selec­
tors to be placed in registers. Although this problem is benign in DOS, it causes
protection faults in Windows.

Note You can instruct the compiler to enable aggressive optimizations on a func­
tion-by-function basis by using the optimize pragma with the z option.

Optimizing Your Programs 21

Enabling Function-Level Linking (lGy)
The IGy option enables linking on a function-by-function basis. When function­
level linking is enabled, the linker removes unreferenced functions from the
executable file, making your program significantly smaller. See Chapter 13,
"CL Command Reference," of the Environment and Tools manual for more
information.

C++ member functions are always compiled with function-level linking enabled.
Use the IGy option for nonmember functions in C++ and all functions in C.

Removing Stack Probes (/Gs)
Every time a function is called, the stack provides space for all parameters and
local variables declared in that function. A short assembly function that checks for
a stack overflow condition is then called. Stack overflows are usually caused
either by infinite loops or by runaway recursive routines. Such errors can also be
caused by extremely large parameters or local variables.

Stack probes can be important during program development. Stack-overflow er­
rors alert you to problems in your code. When the program has been tested, how­
ever, stack checking often becomes unnecessary. The compiler allows you to
remove stack-checking code with either the IGs option or the check_stack
pragma. Eliminating stack probes produces programs that are smaller and that run
more quickly.

Enabling Global Register Allocation (lOe)

Variables in registers
are sometimes placed
back in memory.

The global register allocation option (/Oe) instructs the compiler to analyze your
program and allocate CPU registers as efficiently as possible. Without the global
register allocation option, the compiler uses the CPU's registers for several
purposes:

• Holding temporary copies of variables

• Holding variables declared with the register keyword

• Passing parameters to functions declared with the __ fastcall keyword (or
functions in programs compiled with the IGr command-line option)

When you enable global register allocation, the compiler ignores the register key­
word and allocates register storage to variables (and possibly to common subex­
pressions). The compiler allocates register storage to variables or subexpressions
according to frequency of use. Because of the limited number of physical regis­
ters, variables held in registers are sometimes placed back in memory to free the
register for another use.

22 Programming Techniques

Here is a C program example that demonstrates how the compiler might rewrite
your code to accomplish this:

1* Original program *1

func()
{

}

int i, j;
char *pc;

fort i = 0;
{

j = i I 3;

< 1000; ++i)

*pc++ (char)i;
}

fort j 0, -pc; j < 1000;
++j, -pc)
*pc-;

1* Example of how the compiler might optimize the
* code to move i and j in and out of registers *1

func()
{

inti,j;
char *pc;

{

register int i; 1* i is in a register for this block. *1
fort i = 0; i < 1000; ++i)
{

j = i I 3;
*pc++ (char)i;

register int j; 1* j is in a register for this block. *1
fort j = 0, -pc; j < 1000;

++j, -pc)
*pc-;

}

In the preceding example, there are blocks (enclosed in curly braces) whose only
purpose is to delimit the span of code across which variables should remain in
registers.

Note You can enable or disable global register allocation on a function-by­
function basis using the optimize pragma with the e option.

Optimizing Your Programs 23

Calling the setjmp or longjmp functions when global register optimization is in
effect can cause the compiler to generate incorrect code. Use the optimize pragma
with the e option to disable this optimization in functions that call setjmp and
longjmp.

Enabling Common Subexpression Optimization (IDe and 109)
When you use option lag (enable global common subexpression optimizations),
the compiler searches entire functions for common subexpressions. Option lac
(default common subexpression optimization) examines only short sections of
code for common subexpressions. You can disable default common subexpression
optimization with the lad option. For more information about common subexpres­
sion optimization, see "Default Optimization" on page 8.

This option is not available if you use the IOq option (p-code generation).

Note You can enable or disable block-scope common subexpression optimization
on a function-by-function basis using the optimize pragma with the c option. You
can enable or disable global common subexpression optimization on a function-by­
function basis using the optimize pragma with the g option.

Calling the setjmp or longjmp functions when global commmon subexpression
optimization is in effect can cause the compiler to generate incorrect code. Use the
optimize pragma with the g option to disable this optimization in functions that
call setjmp and longjmp.

Achieving Consistent Floating-POint Results (lOp)
Floating-point numbers stored in memory use either 32, 64, or 80 bits, depending
on whether they are of type float, type double, or type long double. The 80x87
family of coprocessors uses 80-bit registers for all operations. If a value of type
float or type double is kept in these registers through a number of operations, it
will be more accurate than if that value is moved to and from memory between
operations.

Because of the difference in precision between memory and register representation
of a floating-point number, a value stored in memory is not always equal to the
same value in the 80x87 register.

The difference in precision primarily affects strict equality or strict inequality tests
(== and !=); however, relational tests of magnitude (>, >=, <=, and <) can behave
erroneously if the coprocessor is able to maintain significant digits that memory
variables cannot.

24 Programming Techniques

You can avoid the difference in precision by using the lOp option. This option
forces floating-point values to be written to memory between floating-point opera­
tions. While storing these values to memory reduces the precision of floating-point
expressions, it also ensures that these expressions will produce consistent results
regardless of the rest of the code.

You can change the handling of floating-point results on a function-by-function
basis using the optimize pragma with the p option.

Note Using the lOp option suppresses other optimizations because the floating­
point registers are not available for storage of intermediate results. Because you
suppress these optimizations, code compiled with the lOp option executes more
slowly than code compiled without this option.

Generating Code for a Specific Processor (IGO, IG1, IG2, IG3, IG4)
The compiler generates 8086 object code (/00) unless you take special steps. Be­
cause the newer processors (the 80186, 80188, 80286, 80386, and 80486) are back­
ward-compatible with the 8086 instruction set, using this instruction set ensures
compatibility with all 80x86-based computers. While you gain compatibility
across the entire family of 80x86 processors, you lose the advantage of some of
the more powerful instructions in the newer processors.

If you know your program will only be running on an 80186,80188,80286,
80386, or 80486 processor, you can cause the compiler to generate instructions
specific to these processors. These instructions increase the speed of your pro­
gram, but you lose compatibility with machines that use older processors in the
80x86 family. Table 1.1 lists the options for processor-specific code generation:

Table 1.1 Processor Compatibility

Command-Line Option Compatible Processors

IGO 8088,8086,80188,80186,80286,80386,80486
IGI 80188,80186,80286,80386,80486

IG2 80286, 80386, 80486

IG3 80386, 80486

IG4 80486

The 103 and 104 options are only available when compiling a 32-bit program.

Optimizing for Maximum Efficiency (lOx)
The lOx option combines a number of different optimizations:

• Enable global register allocation (/Oe)

Use IOzax IGr to get
the fastest program.

Use lOse IGsy to get
the smallest program.

Optimizing Your Programs 25

• Enable global common subexpression optimization (lag)

• Enable block-scoped common subexpression optimization (lac)

• Generate intrinsic functions (lOi)

• Perform maximum inlining (lOb2)

• Perform loop optimizations (101)

• Optimize for speed (lOt)

• Remove stack probes (/Gs)

The lax option does not include several optimizations that can improve code effi­
ciency: lOa (assume no aliasing), 10z (enable aggressive optimizations), and IGr
(use fastcall calling convention). Before enabling these optimizations, you should
read the sections that describe the lOa and 10z options and the fastcall calling con­
vention to determine if they are appropriate for your application. See the next sec­
tion for linker options that can make your program faster.

If you are more concerned with executable file size than execution time, use the
lase and IGsy options. The lOa option can reduce the size of your program
further, but you should use it only if it is appropriate for your application. If your
program will be run only on an 80286 or higher processor, use the IG2 option to
produce smaller code by using the advanced instruction set. If your program will
be run only on machines with an 80x87 coprocessor, use the IFPi87 option to pro­
duce smaller code for floating-point calculations. See the next section for linker
options that can make your program smaller.

1.6 Linker (LINK) Options That Control Optimization
Most code optimization is performed before the object file is produced. There are
four optimizations that the linker can perform to speed program execution and re­
duce the disk space used by an executable file.

Enabling Far Call Optimization (IFARCALLTRANSLATION)
You can call a function two ways. In a far call, the function is called using both
the segment and the offset of the function. This allows a program to call a routine
outside a 64K segment. In a near call, both the calling statement and the function
must be located in the same segment. Only the offset is used to access the func­
tion; the segment address is implicit. You can only use near calls to routines
located in the same segment.

Because of the architecture of the processor, near function calls execute faster than
far calls. The decision to declare functions as near or far is often made when select­
ing a memory model. As it is difficult to determine where the linker will place a

26 Programming Techniques

Use IFARCALL TRANS­
LATION with IPACK­
CODE.

given function in memory, it is impractical for the programmer to choose the way
a function is called.

The IF ARCALLTRANSLA nON option enables far call optimization. When you
use this option, any function calls within the same segment as the function being
called are converted to near calls. This optimization has no effect if you have
selected the tiny, small, or compact model, because all calls are already near calls.

The abbreviation for the IF ARC ALL TRANSLATION option is IF.

How /FARCAllTRANSlATION Affects Your Code
The linker can perform a form of post-optimization (an optimization that occurs
after most of the actual code generation is complete) that translates far calls into
near calls when possible. This optimization allows a given function to be called
with both near and far calls in the same program. To perform this translation, the
linker takes a section of object code such as

CALL FAR func

where func is defined in the current segment, and replaces it with the following
code:

PUSH
CALL
NOP

CS
NEAR func

This substitution works because the linker has inserted PUSH CS to place a far
return address on the stack.

The IF ARCALLTRANSLATION option is most effective when used in con­
junction with the IPACKCODE option discussed in "Packing Code (IP ACK­
CODE)" on this page. Using the IP ACKCODE option causes far calls that were
intersegment to become intrasegment calls. The IF ARCALLTRANSLA nON fea­
ture can then take advantage of the new grouping to translate all intrasegment far
calls into near calls.

Packing Code (/PACKCODE)
The IP ACKCODE linker option groups neighboring code segments together.
When used with the IF option, the IP ACKCODE option greatly increases the
number of near calls that can be made to a function. This option can be followed
with a limit (expressed in bytes) at which to stop packing and to begin a new
group. Here is the syntax for the IP ACKCODE option:

IPACKCODE:number

Optimizing Your Programs 27

where number is an optional hexadecimal, octal, or decimal number that specifies
the limit for packing. The radix (octal, decimal, or hexadecimal) is specified just
as you would specify it to a C or C++ program.

Radix Rules for Specification

Octal Specify the octal number with a leading O. You can only use the digits
o through 7 in an octal number. For example, 07777.

Decimal Specify the decimal number without a leading O. For example, 65530.

Hexadecimal Specify the hexadecimal number with a leading Ox. For example,
Ox3FFF.

If you omit the packing limit, the linker supplies a default value of 65, 530.

The abbreviation for the IPACKCODE option is IPACKC.

Packing Data (/PACKDATA)
The IP ACKDATA option is analogous to the IP ACKCODE option, except that
it groups together neighboring data segments instead of code segments. By group­
ing data segments, you reduce the overhead needed to use them. Here is the syntax
for the IPACKDATA option:

IPACKDATA:number

where number is an optional hexadecimal, octal, or decimal number that specifies
the limit for packing. The radix (hexadecimal, octal, or decimal) is specified just
as you would specify it to a C or C++ program. For more information on specify­
ing hexadecimal, octal, or decimal numbers, see "Packing Code (IPACKCODE)"
on page 26.

If the packing limit is omitted, the linker supplies a default value of 65,535
(OxFFFF).

The abbreviation for the IP ACKDATA option is IP ACKD.

Packing the Executable File (JEXEPACK)
The executable file created by the compiler often contains sequences of repeated
bytes. You can remove these repeated sequences with the IEXEPACK option. This
decreases the size of the resulting executable file as well as program load time.

Note Because the IEXEPACK option removes debug information from the execu­
table file, you should not use it with the /CODEVIEW option.

28 Programming Techniques

Removing Unreferenced Functions (/PACKFUNCTIONS)
The IPACKFUNCTIONS option is on by default. This option removes unrefer­
enced functions from the executable file if they were compiled with IGy (enable
function-level linking). This reduces the size of your program significantly.

If you want to keep unreferenced functions in your executable (for example, for
debugging purposes), you can turn off the IP ACKFUNCTIONS option by specify­
ing INOPACKFUNCTIONS. See Chapter 14, "Linking Object Files with LINK,"
of the Environment and Tools manual for more information.

1.7 Optimizing in Different Environments
The environment in which you plan to use a program can have a bearing on the
types of optimizations that you should use.

Optimizing in DOS
You need not take special precautions for programs written under DOS unless you
are writing a terminate-and-stay-resident (TSR) program. If an interrupt-driven
routine could modify a memory location in a program, you should declare that
variable volatile.

Optimizing in Microsoft WindowsTM
Microsoft Windows™ can move segments dynamically. As a result of dynamic
heap compaction, the contents of handles can be modified. The lOw option speci­
fies that your program does not perform any aliasing except between functions, so
the compiler does not perform optimizations across function calls. See "Assuming
No Aliasing (lOa and lOw)" on page 13 for more information.

The IGA and IGD options optimize the entry/exit code for protected-mode Win­
dows applications and DLLs, respectively. For more information on these options,
see Chapter 13, "CL Command Reference," of the Environment and Tools
manual.

1.8 Choosing Function-Calling Conventions
In Microsoft C/C++, functions can call other functions using three different con­
ventions. Note that, while no calling convention has been defined as "standard,"
most C/C++ compilers use conventions similar to those described here. The C
calling convention requires the most object code to set up, but it is the only calling

Optimizing Your Programs 29

convention that supports functions with variable-length argument lists. The
FORTRAN/Pascal calling convention is more compact, but does not allow for
variable-length argument lists. c++ uses the FORTRAN/Pascal calling conven­
tion, except for functions declared with variable-length argument lists, which
implicitly use the C calling convention. The __ fastcall, or register calling con­
vention is the fastest of the three calling conventions, but it does not support
variable-length argument lists or mixed-language program interfaces.

The C Calling Convention (/Gd)
Because C allows functions to have a variable number of parameters, parameters
must be pushed onto the stack from right to left. (If parameters were pushed from
left to right, it would be difficult for the compiler to determine which parameter
was first.) If you do not specify command-line options that modify the function­
calling convention, the C calling convention is used; otherwise, the __ cdecl key­
word must be used before any function using the C calling convention.

If, for example, you use the /Gr (register calling convention) option when you
compile, and the function add_ two must have the C calling convention, declare
add_ two as follows:

int cdecl add_two(int x, int y 1;

The FORTRAN/Pascal Calling Convention (/Gc)
The FORTRAN/Pascal calling convention is used for C++ functions and any C
functions declared with either the __ fortran or __ pascal keywords. (The two
keywords currently produce identical results.) Parameters to these functions are
always pushed on the stack from left to right. While any C function can be de­
clared with the FORTRANlPascal convention, it is used primarily for prototypes
to Pascal or FORTRAN routines called from within C programs. This calling
convention can also produce smaller, faster programs.

The /Gc option (generate Pascal-style function calls) can be used to make all func­
tions in a file observe the FORTRAN/Pascal calling convention.

Note that C run-time library routines must still be called using C calling conven­
tions. Because these routines are declared using the __ cdecl keyword header files,
you must include the appropriate header files in any program using run-time
library routines.

Functions with variable-length parameter lists (such as printf) cannot use the
FORTRANlPascal calling convention.

30 Programming Techniques

The Register Calling Convention (lGr)
You can decrease execution time if parameters to functions are passed in registers
rather than on the stack. Compiling with the /Gr command-line option enables the
register calling convention for an entire file. The __ fastcall keyword enables the
register calling convention on a function-by-function basis.

The register calling convention will produce the most speed benefits in programs
that spend a significant amount of time performing function calls, such as recur­
sive programs or programs that call functions from within loops. You should com­
pile small programs with the /Gr option and use __ fastcall on only selected
functions in large programs.

Because the 80x86 processor has a limited number of registers, only the first three
parameters are allocated to registers; the rest are passed using the FORTRANlPas­
cal calling convention.

Note The compiler allocates different registers for variables declared as register
and for passing arguments using the register calling convention. This calling con­
vention will not conflict with any register variables that you may have declared.

Exercise caution when using the register calling convention for any function writ­
ten in inline assembly language. Your use of registers in assembly-language could
conflict with the compiler's use of registers for storing parameters.

The __ fastcall Calling Convention
This section describes the details of the __ fastcall calling convention. The infor­
mation is for the use of assembly-language programmers who are interested in
using either the inline assembler or the Microsoft Macro Assembler (MASM) to
write functions declared as __ fastcall. Functions declared as __ fastcall accept
arguments in registers rather than on the stack; functions declared as __ cdecl or
__ pascal accept parameters only on the stack.

Note The register usage documented here may change in future releases of the
compiler.

Argument-Passing Convention
The __ fastcall calling convention is a "strongly typed" register calling conven­
tion. This typing allows the compiler to generate better code by passing arguments
in registers that correspond to the data type you are passing. Because the compiler
chooses registers depending on the type of the argument and not in a strict linear
order, the calling program and called function must agree on the types of the
arguments in order to communicate data correctly.

Optimizing Your Programs 31

For each type of argument there is a list of register candidates. The arguments are
allocated to registers or, if no suitable register remains unused, are pushed onto the
stack left-to-right. Each argument is put in the first register candidate that does not
already contain an argument. Table l.3 shows the basic types and the register
candidate list for each.

Table 1.3 Register Candidates

Type

character

unsigned character

integer

unsigned integer

long integer

unsigned long integer

near pointer

far or huge pointer

Register Candidates

AL, DL, BL

AL,DL,BL

AX,DX,BX

AX,DX,BX

DX:AX

DX:AX

BX,AX,DX

passed on the stack

All far and huge pointers are pushed on the stack, as are all structures, unions, and
floating-point types.

Return Value Convention
The __ fastcall return value convention is based on the size of the return value,
except with floating-point types. All floating point types are returned on the top of
the NDP stack. For more information about the NDP stack and returning floating­
point values, see Chapter 7, "Controlling Floating-Point Math Operations." The
following list shows how values 4 bytes or smaller, including unions and struc­
tures, are returned from a __ fastcall function.

Size

1 Byte

2 Bytes

4 Bytes

Return Convention

AL Register

AX Register

DX, AX Registers (for pointers, the segment is returned in DX, the offset
in AX; for long integers, the most-significant byte is returned in DX, least­
significant byte in AX)

Note that the protocol for returning values 4 bytes or smaller is the same as for
functions declared as __ cdecl. To return structures and unions larger than 4 bytes,
the calling program passes a hidden parameter as the last item pushed. This para­
meter is a near pointer, implicitly SS-relative, to a buffer in which the value is to
be returned. A far pointer to SS:hidden-param must be returned in DX:AX. This is
the same convention for returning structures as __ pascal.

32 Programming Techniques

Stack Adjustment Convention
Unlike functions declared as __ cdecl, functions declared as __ fastcall must pop
the arguments off the stack. The calling program does not adjust the stack after
function return.

Register Preservation Requirement
All functions must preserve the DS, BP, SI, and DI registers. Your __ fastcall
function can modify the values in AX, BX, CX, DX, and ES.

Function-Naming Convention
The public name put into the object file for a function declared as __ fastcall is the
name given by the user with a leading "at sign" (@). No case translation is per­
formed on the function name. The function declaration

int __ fastcall FCFunc(void);

causes the compiler to place the public symbol @FCFunc in your object file at
every location FCFunc is referenced in your program.

If you do not declare the function as __ fastcall in your C or C++ program, the
compiler assumes the default calling convention. The default for C is usually the
C calling convention but can be changed by the /Gc (FORTRANlPascal Calling
Convention), /Gr (Register Calling Convention), or /Gd (C Calling Convention)
options. The default for C++ is the FORTRANlPascal calling convention. If the
linker gives you an unresolved external reference, you may have failed to declare
an external __ fastcall function properly. For more information about calling
conventions, see Chapter 11, "Programming with Mixed Languages."

Using Precompiled Header Files

Microsoft C/C++ provides the option to precompile header files. Precompilation,
especially when used in conjunction with the fast compile (If) option, can dramati­
cally reduce compile time for header files that are frequently compiled without
modification. This process saves the state of a compilation (including CodeView
information) at a point after header files have been processed. In later compila­
tions, the compiler simply restores the saved compilation state from a precompiled
header (.PCH) file, rather than recompiling the unchanged header files.

2.1 When to Use Precompiled Headers
Precompiled headers are useful during the development cycle to reduce compila­
tion time, especially if:

• You are changing the body of your source files more frequently than the header
files, or the header files comprise a significant portion of the code for that
module.

• Your program is comprised of multiple modules, all of which use a standard
set of include files. In this case, all include files can be precompiled into one
precompiled header (if all these modules use the same compilation options).

The first compilation-the one that creates the precompiled header file-takes a
bit longer than a normal compilation. Subsequent compilations can proceed more
quickly by including the precompilation of the header files.

Precompiled headers Precompiled headers work for both C and C++ programs. In C++ programming, it
work for C and C++ is common practice to separate class interface information into header files. These
programs. header files can later be included in programs that use the class. By precompiling

these headers, you can reduce the time a program takes to compile.

NOTE You can have only one precompilation per source file. The compiler saves
or restores its state at a specified point, then continues as it normally would. You
use precompiled versions of multiple header files with the same source file.

34 Programming Techniques

2.2 Creating and Using Precompiled Headers
You create a new precompiled header (.PCR) file by compiling with the N c
("create") option. This option lets you specify the name of the .PCR file and
choose the place at which to save the compilation state. You can also control these
factors using the the /Fp ("precompiled header filename") option and the optional
hdrstop pragma.

You use a precompiled header by compiling with the /Yu ("use") option, which
tells the compiler to restore the compilation state from a given precompiled
header. Like the /Y c option, this option offers alternate ways to specify filenames,
and it can make use of the hdrstop pragma.

The following sections describe the precompiled header options and the hdrstop
pragma in more detail.

2.3 Compiler Options
The compiler options described in the following sections control the creation and
use of precompiled headers. The hdrstop pragma, described in "The hdrstop
Pragma" on page 36, gives you extra control over the behavior of these options.

Create Precompiled Header Option (lYe)
The "create precompiled header" option (N c) instructs the compiler to create a
precompiled header file that represents the state of compilation at a certain point.
The syntax of this option is:

N c[filename]

Using lYe with a Filename
If you specify a filename with the N c option, the compiler creates a precompiled
header consisting of the state of the compilation up to and including the prepro­
cessing of an include file with that name that is specified in your base source file.

Consider the following code:

#include <afxwin.h> II Include header for class library
#include "resource.h" II Include resource definitions
#include "myapp.h" II Include information specific to this

II application

Using Precompiled Header Files 35

When compiled with the command:

CL IYcMYAPP.H PROG.CPP

the compiler saves all the results of processing AFXWIN.H, RESOURCE.H, and
MYAPP.H in a precompiled header file called MYAPP.PCH.

Using lYe Without a Filename
If you specify the /Y c option with no filename, the resulting precompiled header
saves the compilation state at the end of the base source file or, if the base file con­
tains a hdrstop pragma, at the place where the hdrstop pragma occurs.

The resulting .PCH file has the same base name as your base source file unless
you specify a different filename using the hdrstop pragma.

Precompiled Header Filename Option (/Fp)
The /Fp option gives you extra control over the name of the .PCH file. Use it to
specify a .PCH filename that is different from the name of the associated include
file or source file. For example, if you want to create a precompiled header file for
a debugging version of your program, you can specify a command such as:

CL IDDEBUG IYcPROG.H IFpDPROG PROG.CPP

This command creates a precompilation of all header files up to and including
PROG.H and stores it in a file called DPROG.PCH. If you need a release version
in parallel, you simply change the compilation command to:

CL IYcPROG.H IFpRPROG PROG.CPP

This command creates a separate precompilation of the header files up to and in­
cluding PROG.H and stores it in RPROG.PCH.

You can also specify the /Fp option when using (/Yu) a precompiled header.

Use Precompiled Header Option (/Yu)
The "use precompiled header" option (/Yu) instructs the compiler to restore its
state from a precompilation using a precompiled header file. The syntax of this
option is:

/Yu[filename]

36 Programming Techniques

Using !Yu with a Filename
If a filename is specified, it must correspond to one of the header files included in
the source file using an #include preprocessor directive. The compiler skips to the
specified #include directive, then restores its state from the precompiled header
file.

The precompiled header file has the same base name as the specified include file,
and a .PCR extension. Consider the following code:

#include <afxwin.h> II Include header for class library
#include "resource.h" II Include resource definitions
lfinclude "myapp.h" II Include information specific to this

II application

When compiled with the command line

CL IYuMYAPP.H PROG.CPP

the compiler does not process the three #include statements, but restores its state
from the precompiled header MY APP.PCR, thereby saving the time involved in
preprocessing all three of the files (and any files they might include).

Using !Yu Without a Filename
When you specify the /Yu option without a filename, your source program must
contain a hdrstop pragma. The compiler skips to the location of that pragma and
restores the state of the compiler from the precompiled header file specified in that
pragma. If the hdrstop pragma does not specify a filename, the name is derived
from the base name of the source file, with the .PCR extension. You can also use
the IFp option to specify a different .PCR file.

If you specify the Nu option without a filename and fail to specify a hdrstop
pragma, an error message is generated and the compilation is unsuccessful.

The hdrstop Pragma
The hdrstop pragma gives you additional control over precompilation filenames
and over the place at which the compilation state is saved. The syntax of the
hdrstop pragma is

#pragma hdrstop [(,Jilename")]

where filename is the name of the precompiled header file to use or create (depend­
ing on compilation options). If the filename does not contain a path specification,
the precompiled header file is assumed to be in the current directory.

The precompilation
facility saves the
state of the current
compilation.

Using Precompiled Header files 37

Note that the filename specified in the hdrstop pragma is a string and is therefore
subject to the constraints of any C or C++ string. In particular, you must escape
backslashes (\) when specifying paths. For example,

#pragma hdrstop("c:\\c700\\include\\myinc.pch")

You can also use preprocessing commands to perform macro replacement as
follows:

#defi ne I NCLUDE_ PATH "c: \ \c700\ \ i ncl ude\ \"
#define PCH_FNAME "PROG.PCH"

#pragma hdrstop(INCLUDE_ PATH PCHJNAME)

The hdrstop pragma is ignored unless either the /Yu or /Y c compiler option is
specified without a filename.

Placement of the hdrstop Pragma
The following rules govern where the hdrstop pragma can be placed:

• It must appear outside any data or function declaration or definition.

• It must be specified in the base file, not in any headers.

Consider the following example:

#include <windows.h> II Include several files
#include "myhdr.h"

inline Disp(char *szToDisplay) II Define an inline function

II Some code to display string
}
#pragma hdrstop

In this example, the hdrstop pragma appears after two files have been included
and an inline function has been defined. This might, at first, seem to be an odd
placement for the pragma. Consider, however, that the precompilation facility
saves the state of the current compilation, not an arbitrary symbol set for a given
header file. The correspondence is between source files and precompiled header
files, not between header files and precompiled header files.

Note If neither the compilation option nor the hdrstop pragma specifies a
filename, the base name of the source file is used.

A base file can contain as many as two hdrstop pragmas. You might do this when
compiling with both /Yu and /Y c in order to build one .PCR file from another. In

38 Programming Techniques

such a case, the first hdrstop is associated with a use (lYu) and the second with
the creation (lYc). If you're building one .PCH file from another, take care to
avoid unwanted conflicts between .PCH filenames.

Including Debugging Information (/Yd)
The IY d "debugging information" option allows you to override the default place­
ment of CodeView information in object files. It is used with precompiled headers
created with the /Zi option.

By default, any CodeView debugging information (symbols and type information)
for a precompiled header is placed in the object file for which the precompiled
header is created, rather than in the .PCH file itself. When you create other object
files using this precompiled header, the new object files do not replicate the same
debugging information. Instead, they simply cross-reference the debugging infor­
mation contained in the first object file. By cross-referencing this information,
rather than replicating it in multiple object files, you can save disk space and speed
up the build process.

For example, say that you have two base files, F.CPP and G.CPP, each of which
contains these #include statements:

#include "windows.h"
lfinclude "etc.h"

The following command creates the precompiled header file ETC.PCH and the ob­
ject file F.OBJ:

CL IYcETC.H IZi F.CPP

The object file F.OBJ includes type and symbol information for WINDOWS.H
and ETC.H (and any other header files they include). Now you can use the precom­
piled header ETC.PCH to compile the source file G.CPP:

CL IYuETC.H IZi G.CPP

The object file G.OBJ does not include the debugging information for the precom­
piled header, but simply cross-references that information in the F.OBJ file. Note
that you must link with the F.OBJ file if you choose to link with the /CODEVIEW
option.

If your precompiled header was not compiled with /Zi, you can still use it in later
compilations using /Zi. However, the debugging information will be placed in the
current object file, and local symbols for functions defined in the precompiled
header will not be available to CodeView.

Using Precompiled Header Files 39

The default behavior described above can be undesirable if you are distributing a
debugging library. The IY d option lets you override the default, in order to place
complete debugging information in every object file. The syntax for this option is:

/Yd

When you create a precompiled header using /Y d, the .PCH file itself contains the
debugging information. When you use a precompiled header using /Y d, the debug­
ging information is replicated in the resulting object file.

2.4 Consistf~ncy Rules
When you use a precompiled header, the compiler assumes the same compilation
environment that was in effect when you created the .PCH file, unless you specify
otherwise. You should take care to specify a consistent environment (using con­
sistent compiler options, pragmas, and so on) for the current compilation. If the
compiler detects an inconsistency, it issues a warning and identifies the incon­
sistency where possible. Such warnings don't necessarily indicate a problem with
the .PCH file; they simply warn you of possible conflicts. The following sections
explain the consistency requirements for precompiled headers.

Compiler Option Consistency
The following table lists compiler options that might trigger an inconsistency
warning when using a precompiled header:

Table 2.1 Compilation Option Consistency

Option Name

I AX or I Axxx Memory model
selection

ID Define constant

IE or IEP Send preprocessed
output to standard
output

Rule

Must be the same between the compilation
that created the precompiled header and the
current compilation. If these options differ, a
warning message results.

Must be the same between the compilation
that created the precompiled header and the
current compilation. The state of defined
constants is not checked, but unpredictable
results can occur if these change.

Precompiled headers do not work with the IE
or IEP options.

40 Programming Techniques

Table 2.1 (continued)

Option

IFr or IFR

IGw or/GW

IZi

Name

Generate Source
Browser information

Windows protocol
options

Generate CodeView
information

Rule

For the IFr and IFR options to be valid with
the lYu option, they must also have been in
effect when the precompiled header was
created. Subsequent compilations that use the
precompiled header also generate Source
Browser information. Browser information is
placed in a single .SBR file and is cross­
referenced by other files in the same manner
as CodeView information; see "Including
Debugging Information (lY d)," on page 38.
Unlike CodeView information, you cannot
override the placement of Source Browser
information.

Must be the same between the compilation
that created the precompiled header and the
current compilation. If these options differ, a
warning message results.

If this option is in effect when the
precompiled header is created, subsequent
compilations that use the precompilation can
use that CodeView information. If IZi is not
in effect when the precompiled header is
created, subsequent compilations that use the
precompilation and the IZi option trigger a
warning. The debugging information is
placed in the current object file, and local
symbols defined in the precompiled header
are not available to CodeView.

Note The precompiled header facility is not intended for use with files that are not
C or C++ programs. Precompiled headers are not guaranteed to work with text
files.

Include Path Consistency
A precompiled header does not contain information about the include path that
was in effect when you created the .PCH file. When you use a .PCH file, the com­
piler always uses the include path specified in the current compilation.

Using Precompiled Header Files 41

Source File Consistency
When you use a precompiled header, the compiler ignores all preprocessor direc­
tives (including pragmas) that appear before the hdrstop pragma. The compilation
specified by such preprocessor directives must be the same as the compilation
used to create the precompiled header file.

Pragma Consistency
Pragmas processed during the compilation of a precompiled header normally
affect the file in which the precompiled header is subsequently used. The
following pragmas do not affect the remainder of the compilation:

comment
linesize
listing

message
page
pagesize

skip
subtitle

title

The following pragmas are retained as part of a precompiled header. They do
affect the remainder of a compilation that uses the precompiled header.

alloctext
auto_inline
code_seg

data_seg
function
intrinsic

native_ caller
pack

same_seg
segment

Reducing Program Size with
P-Code

Most compilers translate programs into machine code that your computer can
execute directly. With Microsoft C/C++, you can compile your program into an
alternate form of code called "p-code." P-code produces much smaller programs
than machine code, but your machine cannot execute them directly. Instead, pro­
grams compiled into p-code are executed by a run-time interpreter, which is a
small program incorporated into your executable (.EXE) file. As a result, p-code
programs are slower than machine-code programs. They are meant to be used
when size is more important than speed. You can also compile selected portions of
your program into p-code and compile the rest into machine code to get a better
combination of size and speed.

This chapter describes:

• How to compile your programs into p-code.

• How p-code works.

• How to optimize your p-code program.

• How to fine-tune p-code optimization.

For information about debugging code programs, see Chapter 10, "Special
Topics," in the Environment and Tools manual.

3.1 Compiling Your Program into P-Code
You can take advantage of p-code without making any changes to your source
code. You need only specify p-code as the target code when you compile your pro­
gram from within the Programmer's Workbench or from the command line.

Selecting P-Code from Within the Programmer's WorkBench
You optimize with p-code from within the Programmer's WorkBench (PWB) inte­
grated environment by using one of PWB' s predefined project templates.

44 Programming Techniques

From the Options Menu, choose Project Templates, and then Set Project Tem­
plate. In the Set Project Template dialog box, make sure that C or C++ is selected
in the Run-Time Support list. Then move to the Project Template list and select
either DOS P-Code EXE or Windows P-Code EXE.

The following section describes the optimizations implied when you choose to
build a p-code executable.

Selecting P-Code from the Command Line
Specify 10q as the first option on the command line. For example, to make
MYPROG.C into the smallest executable file possible, type:

CL /Oq MVPROG.C

This command compiles MYPROG.C into p-code and, besides invoking LINK,
invokes the Make P-Code (MPC) utility, which is required to produce a p-code
executable file.

On average, a program compiled into p-code is about 40 percent smaller than a
program compiled into machine code, excluding the size of the p-code interpreter.
(For more information about the MPC utility, see "Controlling the P-Code Build
Process" on page 53).

Compiling with the 10q option or selecting p-code from within the Programmer's
WorkBench implies the following optimizations:

• Tum P-Code Quoting On (/0f)

• Enable Frame Sorting (lOv)

• Enable Post-Code Generation Optimization (100)

If you want to compile only selected portions of your program into p-code, you
can do so by making changes to your source code or by using the relevant
compiler options. These procedures are described in "Fine-Tuning Your P-Code
Program," on page 50.

In addition, if you want greater control over the compilation and linking process,
you can execute MPC individually, instead of having CL invoke it.

3.2 The P-Code Model
Because p-code is designed to produce the smallest code possible, it uses several
size-reduction techniques not found in ordinary assembly language. You don't
have to understand how p-code works in order to save space in your programs, but

Reducing Program Size with P-Code 45

if you want to debug a program at the p-code level using the CodeView debugger,
you need to understand the techniques p-code uses.

You should be familiar with the concepts of assembly-language programming
before reading this section.

The P-Code Stack Machine
While machine language consists of instructions for the microprocessor in your
computer, p-code consists of instructions for an imaginary processor that is simu­
lated by the run-time interpreter. This imaginary processor is known as a "stack
machine," because it uses a stack for almost all of its operations. In contrast, the
microprocessor in your computer uses its registers for most operations, and uses
its stack primarily for function calls.

The stack holds the operands used by the instructions. In assembly language, you
usually specify a source and a destination for each instruction, indicating where
the operands reside and where to place any result. For example:

ADD AX, BX

With a stack machine, you usually don't need to specify a source or a destination.
Each instruction pops its operands off the stack and pushes its result back onto the
stack. For example, the p-code instruction

AddW

implies the following operations (using C-style pseudocode):

w2 = pop();
wI = pop();
push(wl + w2);

II get first operand from stack
II get second operand from stack
II place result on stack

Omitting the source and destination saves space and helps make p-code as com­
pact as it is. Some p-code instructions do specify a source and destination if they
are modifying the value of variables, which are not stored on the stack. However,
most instructions use the stack for at least one of their arguments.

The stack can store items of different data types, including bytes, words, and
longs. However, floating-point types (float, double, and long double) are stored on
a separate stack, called the "coprocessor stack."

The stack replaces the need for the general purpose registers AX through DX.
However, the DS, SS, CS, IP, SP, and BP registers can still be accessed by the
stack machine.

In addition, there are two pseudoregisters, available only in p-code:

46 Programming Techniques

• The PQ register, used during "quoting" (see "Reducing Duplicate Code with
Quoting" on this page)

• The temporary register, whose high and low words are accessible as TH and
TL, respectively

Reducing Duplicate Code with Quoting
"Quoting" is a method of decreasing code size by avoiding duplication of code. It
is similar to using function calls: your program contains only one instance of the
code for a function, even though it may be used many times. The program calls the
function instead of repeating the function code.

Quoting extends this technique to code that isn't defined as a function. The com­
piler examines the code that it generates, looking for places where a sequence of
instructions is repeated. If it finds such repetitions, it replaces all but one of the oc­
currences with the equivalent of a function call, and makes the remaining occur­
rence the equivalent of the function body. Quoting differs from function calls in
that there are no arguments and no return value; quoting changes only the path of
execution. The low space overhead for quoting makes it worth using for sequences
only a few bytes long.

Quoting is implemented by two instructions: the QUOTE instruction indicates the
function call, and the EQUOTE instruction indicates the end of the function body.
No label marks the beginning of the function body.

A QUOTE instruction takes a one- or two-byte offset as an argument. When a
QUOTE is executed, it saves the address of the next instruction as a return
address and performs a jump to the specified offset. The return address is not
pushed onto the stack; it is stored in the PQ register instead. When an EQUOTE
instruction is executed, it checks whether PQ contains an address. If not,
EQUOTE does nothing; if it does, EQUOTE performs a jump back to that
address. This allows the quoted section of code to be executed in two ways: in
sequence with the preceding and following code or as a quote call.

The compiler does not nest quotes; that is, a quoted section of code itself cannot
contain quote instructions. However, a quoted section may contain a procedure
call, and the procedure call may execute a different section of quoted code. This is
possible because the stack frame belonging to each p-code procedure has its own
PQ register.

Quoting enabled (l0f) is the compiler default. However, quoting makes compiled
p-code difficult to read and debug. Therefore, you should use the disable-quoting
option (/Of-) during program development. See "Fine-Tuning Your P-Code
Program" on page 50.

Reducing Program Size with P-Code 47

Entry Points to P-Code Functions
If your program contains both functions compiled into p-code and functions com­
piled into machine code, it is possible that a machine code function will call a
p-code function. When this happens, your program must stop executing machine
code and turn control over to the p-code interpreter, which then begins executing
the p-code.

To enable this transition from machine code to p-code, a p-code function normally
contains a "native entry point" at its beginning, which consists of a few machine
code instrnctions. For example,

myfunc:
MOV AX,OS
NOP
CALL PcodeCallFC
DB index

_ PCOOE_myfunc:
OW????
LdcWl

II native entry point
II possible Windows preamble

II p-code entry point

These are the instructions generated when a function called myfunc() is compiled
into p-code. When myfunc() is called from a machine code function, those ma­
chine code instructions at the top are executed first. They transfer control to the
p-code interpreter, which continues execution with the p-code instructions starting
at the label _ PCOOE_myfunc. Note that the label _ PCOOE_myfunc is not actually
generated by the compiler. It is specified here for illustration purposes only.

When a p-code function is called by another p-code function, the native entry
point is bypassed and execution begins immediately with the first p-code
instruction.

Instruction-Naming Convention
The names of p-code instructions have the following general form:

operation[mode] [qualifier] data type [operand data type]

The operation portion of the instruction name indicates the operation performed
by the instruction; for example, all instructions that begin with Cmp perform a
comparison.

48 Programming Techniques

The optional mode specifies the addressing mode used by the instruction and can
have one ofthe following values:

Mode Meaning

n Near

f Far

no Near + offset

fo Far + offset

For example, the LdifBb instruction performs an indirect load of a byte using a far
pointer. The "f' in the instruction specifies that the pointer is far.

The optional qualifier specifies the conventions used by the instruction and can
have one of the following values:

Qualifier

p

s

u

fc

nc

fp

np

Meaning

Preserve data on stack after instruction

Use temporary register

Signed or scaled

Unsigned

Far C calling convention

Near C calling convention

Far Pascal calling convention

Near Pascal calling convention

For example, the CmpsL instruction compares two signed long integers. The "s"
in the instruction specifies that the operands are signed.

The data type specifies the data type on which the operation is performed. It can
have one of the following values:

Type Meaning

V Void

B Byte

Q Bit field

W Word

S Short (word-reserved for 386)

L Long (double word)

N Near pointer

A Near address

F Far pointer

H Huge pointer

Reducing Program Size with P-Code 49

Type Meaning

R Float

D Double

T Long double

For example, the CmpuW instruction compares unsigned words, and the CmpuL
instruction compares unsigned longs. An instruction can specify more than one
data type, if it produces a result whose data type is different from its operand(s).
For example, CvtBW converts a signed byte to a signed word, and MulWWL
multiplies two words to form a long word.

The optional operand data type appears in instructions that require an additional
operand be specified, rather than taking it from the stack. This field can indicate
the size of the operand that follows the instruction, or it may specify the value
itself so that no separate operand is needed.

Operand Data Type

0--9, ml

b

w

Meaning

operand encoded in instruction, where m 1 =-1

byte

word

long

For example, consider a statement using the lump-on-Not-Equal instruction:

JneWb 05

This statement pops two words off the stack and compares them. If they are not
equal, it performs a jump of length 5. The "b" in the instruction indicates that it
requires an explicit one-byte operand.

To save space, many p-code instructions have alternate forms that assume a partic­
ular value for an operand. For example,

JneW5

is a single-byte instruction that conditionally performs ajump oflength 5. There
can be a number of JneWn instructions, each with a different jump length en­
coded. This saves the space required by a separate operand.

Not all instructions have encoded operands, and not all possible values are en­
coded into the instructions that do have them. Only the most common values are
encoded; other values must appear as a separate operand with the version of the
instruction ending in "b," "w," or "I." Each p-code instruction is described fully in
Help.

Note The p-code instruction set may change in future releases of the compiler.

50 Programming Techniques

3.3 Fine-Tuning Your P-Code Program
"Compiling Your Program into P-Code" on page 43 describes the simplest way to
use p-code in your development process. To gain a better combination of size and
speed, however, you can also modify your source code before compilation or
specify additional options when compiling your program into p-code.

Mixing P-Code and Machine language

A profiler can help
fine-tune p-code
programs.

Since p-code runs slower than machine language, you may want the speed-critical
sections of your program to be compiled into machine language. If you use the
IOq option, you can specify what portions of your program are compiled into
p-code with the optimize pragma for the q option. The pragma works on a
function-by-function basis, and can only appear outside of function scope. For
example,

/fpragma optimize("q",on)

II Functions compiled into p-code

/fpragma optimize("q",off)

II Functions compiled into machine code

These pragmas are ignored if the program is not compiled with the IOq option.

The functions that are the best candidates for p-code compilation are those that in­
teract directly with the user. The execution speed of such functions is limited by
the speed of the user of the program, rather than the speed of the computer. Also
suitable for p-code are rarely used operations and sections of code associated with
error conditions. These functions can usually be converted into p-code without the
program appearing noticeably slower to the user.

To further assist you in determining which functions should be compiled into
p-code and which should remain in machine language, you can use a "profiler."
A profiler is a utility that monitors the execution of your program and lists how
much time the program spent in each of its functions. This does not necessarily
correspond to the frequency with which the functions are called; for example, a
function may be called only once during a program, but it may take up most of the
program's execution time.

You should run the profiler on your program before you compile any of it into
p-code. The functions that are the most time-consuming should remain in machine
language. The functions that take the least of your program's time can be con­
verted into p-code to give you space savings with a minimal reduction in execu­
tion speed. As a final step in tuning, the profiler can be run on the mixed p-code
and native program.

Reducing Program Size with P-Code 51

Removing Native Entry Points
"Entry Points to P-Code Functions" on page 47 describes the entry points that
allow p-code functions to be called from functions compiled into machine lan­
guage. The native entry point of a p-code function is, on average, six bytes long. If
you have p-code functions that are called only by other p-code functions, you can
omit those entry points and save those bytes by using the /Gn compiler option.

You can also control the removal of native-code entry points from within your
source code by using the native_ caller pragma. The native_ caller pragma takes
an on/off argument and works on a function-by-function basis. To tum off native
entry-point code generation for a p-code function, enter

#pragma native_caller (off)

above the definitions of those p-code functions that are only called from other
p-code functions. After the definitions of those functions, turn the native_caller
pragma back on by entering

#pragma native_caller (on)

To reset the native_callerpragma to the value entered on the command line,
include the pragma without a parameter:

#pragma native_caller ()

When optimizing native entry sequences, bear in mind that all p-code functions
that are exported, called via function pointers, or defined as _loadds require
native entry points. This includes Windows call-backs.

Warning! If you execute a program where a machine-language function calls a
p-code function without a native entry point, your program will terminate abnor­
mally. In most cases, the Make P-Code utility (MPC) can detect when a p-code
function is missing a required native entry code sequence.

Specifying Entry Tables
With the /Gp compiler option, you can specify the maximum number of entry
tables for your program. Like the other options for fine-tuning p-code discussed
in this section, the /Gp option must be used in conjunction with the /Oq option.

An entry table is needed for every segment that contains a p-code function or a
function called by a p-code function. One entry table can describe up to 256 such
functions. If a segment contains more than that, the Make P-Code utility (MPC)
creates additional entry tables.

52 Programming Techniques

If you do not specify the IGp option, n is assigned the default value of 255. In addi­
tion to the space that the actual entry tables take up, there is a four-byte overhead
for each possible entry table.

Note The MPC utility is invoked automatically when you specify the IOq option
on the CL command line.

Specify IGpn when you compile your source file. When the MPC utility processes
the resulting .EXE file, it creates up to n entry tables. MPC returns an error if the
program needs more than n entry tables.

Turning P-Code Quoting On and Off
Quoting, the p-code optimization technique that eliminates duplicate sections of
code, can be controlled with the IOf compiler option. (See "Reducing Duplicate
Code with Quoting" on page 46.)

Quoting enabled (lOt) is the default. However, quoting makes compiled p-code
difficult to read and debug. Therefore, you should use the disable-quoting option
(/Of-) during program development. Then you can tum quoting back on (lOt) to
produce a smaller, fully optimized release version of your program.

Controlling Frame Sorting
You can control a p-code size optimization that changes the order in which local
variables are allocated on the stack.

The compiler reduces the size of p-code programs by using one-byte opcodes to
reference certain local variables. These opcodes can reference a limited number of
the local variables in each function.

You can control which variables receive the available opcodes by using the IOv
option as follows:

Option

IOv

IOv-

Description

Sorts the local variables by frequency of use (default)

Sorts the local variables in the order they occur (lexical order)

In most cases, the default value for this option is satisfactory. However, if you
have a large function that exceeds the capacity of the p-code optimizer, you can
rewrite the function so that the most frequently used local variables are at the
beginning of the stack frame. Then use the second option above (/Ov-) to ensure
the maximum size reduction.

Reducing Program Size with P-Code 53

3.4 Controlling the P-Code Build Process

Invoking MPC by itself
gives more control
over the build
process.

When you compile a program into machine code from the command line, CL per­
forms the compilation and then calls LINK to do the linking. When you use the
IOq option to compile a program into p-code, CL calls one other program in addi­
tion to LINK: the Make P-Code utility (MPC).

CL calls the MPC utility after calling LINK. MPC reads the executable (.EXE) file
produced by LINK and generates several internal tables needed by the run-time
interpreter. Once MPC has added these tables, the executable file is ready to run.

MPC requires a segmented executable file as input, even if DOS is the target.
P-code object modules contain special-purpose records that force the generation
of a segmented executable.

If you want to separate the compilation phase from the link and post -link phases,
specify the Ic option in addition to the IOq option. This option tells CL to stop
after the compilation step. You can run LINK and MPC in one step by specifying
the /PCODE option for LINK. For example, the command

LINK /PCODE MYPROG.OBJ

links MYPROG.OBJ and runs MPC on the resulting executable MYPROG.EXE.

You can also invoke invoke MPC individually. If you don't specify the /PC ODE
option, LINK performs only the standard linking procedure and does not call
any additional programs. However, if the .OBJ file contains p-code, LINK cannot
produce a file that can be executed. MPC is required to make a p-code program
executable.

Use the MPC program to convert the LINK output into an .EXE file that you can
run. Specify a name for MPC's output file using the /Fe option. For example:

MPC /Fe MYPROG.EXE MYPROG.PXE

This command reads MYPROG.PXE (linker output) and produces a file named
MYPROG.EXE. If you don't specify the /Fe option, MPC uses the name of the
input file.

Managing Memory in C

When you develop advanced 16-bit applications with Microsoft C/C++, you must
pay attention to memory management-that is, how data and code are stored and
accessed in memory. A well-thought-out memory strategy will make your 16-bit
programs run faster and occupy less memory.

You can follow one or more of these memory management strategies:

• Choose a standard memory model.

• Create a mixed-model program with the __ near, __ far, __ huge, and
__ based keywords.

• Create your own customized memory model.

• Allocate memory as you need it with the malloc family of functions.

• Use virtual memory with the _ vmalloc family of functions.

This chapter explains pointers, memory models (including tiny model), variations
such as custom memory models and mixed models, based pointers, and virtual
memory.

Most of the material covered in this chapter is relevant only to 16-bit programs.
The only topics described in this chapter that apply to 32-bit programs are pointers
based on a pointer.

4.1 Pointer Sizes
One of the strengths of the C language is that it allows you to use pointers to
directly access memory locations.

Every Microsoft C program has at least two parts: the code (function definitions)
and the data (variables and constants). As a program runs, it refers to elements of
the code or the data by their addresses. These addresses can be stored in pointer
variables.

56 Programming Techniques

Pointer variables can fit into 16 bits or 32 bits, depending on the distance of the
object to which they refer.

Pointers and 64K Segments

A 16-bit pOinter can
address up to 65,536
locations.

Near Pointers

IBM personal computers and compatibles use the Intel 8086, 80186, 80286, or
80386 processors (collectively called the 80x86 family). These processors have a
"segmented" architecture, which means they all have a mode that treats memory
as a series of segments, each of which occupies up to 64K of memory. An offset
from the base of the segment allows you to access information within a given seg­
ment. Accessing more than one segment at a time requires additional machine
code.

The 64K limit is necessary because the 80x86 registers are 16 bits (2 bytes) wide.
A single register can address only 65,536 (64K) unique memory locations.

A pointer variable that fully specifies a memory address needs 16 bits for the seg­
ment location and another 16 bits for the offset within the segment, a total of 32
bits. However, if you have several variables in the same general area, your pro­
gram can set the segment register once and treat the pointers as smaller 16-bit
quantities.

The 80x86 register CS holds the base for the code segment; the register DS holds
the base for the data segment. Two other segment registers are available: the stack
segment register (SS) and the extra segment register (ES). (The 80386 has addi­
tional segment registers: FS and GS.)

If you don't explicitly specify a memory model, Microsoft C/C++ defaults to the
small model, which allots up to 64K for the code and another 64K for the data (see
Figure 4.1).

Available memory

I

64K I 64K unused
'--------,_---" IL-----,--------"

I I
Code Data

segment segment

Figure 4.1 Anatomy of a Small-Model Program

Far Pointers

Far pOinters can
address any location,
but they are bigger
and slower.

Huge Pointers

Managing Memory in C 57

When a small-model program runs, the CS and DS segment registers never
change. All code pointers and all data pointers contain 16 bits because they remain
within the 64K range.

These 16-bit pointers to objects within a single 64K segment are called "near
pointers." Accessing a near object is called "near addressing."

If your program needs more than 64K for code or data, at least some of the point­
ers must specify the memory segment, which means these pointers occupy 32 bits
instead of 16 bits.

These larger 32-bit pointers that can point anywhere in memory are called "far
pointers." Accessing a far object is called "far addressing."

Far addressing has the advantage that your program can address any available
memory location-up to 640K in DOS. The disadvantages of the larger far point­
ers is that they take up more memory (four bytes instead of two) and that any use
of the pointers (assigning, modifying, or otherwise accessing values) takes more
time.

Allowing either code or data to expand beyond 64K makes your programs larger
and slower.

A third type of pointer in Microsoft C/C++ is the "huge" pointer, which applies
only to data pointers. Code pointers cannot be declared as huge.

A huge address is similar to a far address in that both contain 32 bits, made up of a
segment value and an offset value. They differ only in the way pointer arithmetic
is performed.

For far pointers, Microsoft C/C++ assumes that code and data objects lie
completely within the segment in which they start, so pointer arithmetic operates
only on the offset portion of the address. Limiting the size of any single item to
64K makes pointer arithmetic faster.

Huge pointers overcome this size limitation; pointer arithmetic is performed on all
32 bits of the data item's address, thus allowing data items referenced by huge
pointers to span more than one segment.

58 Programming Techniques

In this code fragment,

i nt __ huge *hp;
int far *fp;

hp++;
fp++;

both hp and fp are incremented. The huge pointer is incremented as a 32-bit
value that represents the combined segment and offset. Only the offset part of the
far pointer (a 16-bit value) is incremented.

Extending the size of pointer arithmetic from 16 to 32 bits causes such arithmetic
to execute more slowly. You gain the use of larger arrays by paying a price in ex­
ecution speed.

Based Addressing
When you declare near, far, and huge variables, the Microsoft CIC++ compiler
and linker automatically manage details such as allocating memory and keeping
track of segments.

A "based pointer" is a fourth kind of pointer that operates as a 16-bit offset from a
base that you specify. In this respect, based addressing differs from near, far, or
huge addressing; you're responsible for narning the base, instead ofletting the
compiler decide. They are explained in more detail in "Using Based Pointers and
Data" on page 78.

4.2 Selecting a Standard Memory Model

A standard memory
model provides de­
fault sizes for all
pOinters.

If you want to choose one size for all pointers, there's no need to declare each vari­
able as near or far. Instead, you select a standard memory model and your choice
applies to all variables in the program.

One advantage of using standard memory models is simplicity. You specify the
way the compiler allocates storage for code and data only once. Another advan­
tage is that the standard memory models do not require the use of Microsoft­
specific keywords such as __ near and __ far, so they are best for writing code
that is portable to other (non-DOS) systems.

The disadvantage of standard memory models is that, because they make global
assumptions about the environment, they may not provide the most efficient use of
memory for a particular program.

Managing Memory in C 59

The Six Standard Memory Models
The six Microsoft C/C++ memory models are shown in Table 4.1.

Table 4.1 Memory Models

Maximum Total Memory

Model Code Data Data Arrays

Tiny <64K <64K <64K

Small 64K 64K 64K

Medium No limit 64K 64K

Compact 64K No limit 64K

Large No limit No limit 64K

Huge No limit No limit No limit

The SETUP program creates the libraries that support the six standard memory
models.

When you choose one of the standard memory models, the compiler inserts the
name of the corresponding C run-time library in the object file so the linker
chooses it automatically. Each memory model has its own library, except for the
huge memory model (which uses the large-model library) and the tiny model
(which uses the small-model library).

Limitations on Code Size and Data Size
When writing a program with Microsoft C/C++, keep in mind two limitations that
apply to all six memory models:

• No single source module can generate 64K or more of code. You must break
large programs into modules and link their individual .OBJ files to create the
.EXEfile.

• No single data item can exceed 64K unless it appears in a huge-model program
or it has been declared with the __ huge keyword.

60 Programming Techniques

The Tiny Memory Model
The tiny memory model resembles the small model with three exceptions:

• The tiny model cannot exceed 64K per program (including both code and data).
A small-model program, on the other hand, can occupy up to 128K: 64K for
code and 64K for data.

• The tiny model produces .COM, rather than .EXE, files. To produce .COM
files, compile with the / AT option. Then link with the / TINY option and link in
CRTCOM.LIB.

• The tiny model applies to DOS only; it is not available in Windows.

Although the tiny model imposes the most severe limits on code and data size, it
produces the smallest programs. The tiny memory model only offers a load-time
speed advantage over the small model; they both produce the fastest programs.

The Huge Memory Model

The huge model lifts
the limits on arrays.

The huge memory model is nearly identical to the large model. The only differ­
ence is that the huge model permits individual arrays to exceed 64K in size. For
example, an int uses two bytes, so an array of 40,000 integers, occupying 80,000
bytes of memory, would be permitted in the huge model. All other models limit
each array, structure, or other data object to no more than 64K.

Note Automatic arrays cannot be declared huge. Only static arrays and arrays
occupying memory allocated by the _halloc function can be huge.

Although the huge model lifts the limits on arrays, some size restrictions do apply.
To maintain efficient addressing, no individual array element is allowed to cross a
segment boundary. This has the following implications:

• No single element of an array can be larger than 64K. An array can be larger
than 64K, but its individual elements cannot.

• For any array larger than 128K, all elements must have a size in bytes equal to
a power of 2: 2 bytes, 4 bytes, 8 bytes, 16 bytes, and so on. If the array is 128K
or smaller, its elements can be any size, up to and including 64K.

Pointer arithmetic changes within the huge model, as well. In particular, the sizeof
operator may return an incorrect value for huge arrays. The ANSI draft standard
for C defines the value returned by sizeof to be of type size_ t (which, in Microsoft
C, is an unsigned int). The size in bytes of a huge array is an unsigned long
value, however. To find the correct value, you must use a type cast:

(unsigned long)sizeof(monster_array)

Null Pointers

There can be prob­
lems in models with
different sizes of code
and data pOinters.

Managing Memory in C 61

Similarly, the C language defines the result of subtracting two pointers as
ptrdifLt (a signed int in Microsoft C). Subtracting two huge pointers will yield
a long value. Microsoft C gives the correct result with the following type cast:

(long)(ptrl __ huge - ptr2_huge)

When you select huge model, all extern and uninitialized arrays are treated as
__ huge. Operations on data declared as _huge can be less efficient than the same
operations on data declared as __ far.

Within the medium and compact models, code pointers and data pointers differ in
size: one is 16 bits wide and the other is 32 bits wide. When using these memory
models, you should be careful in your use of the manifest constant NULL.

NULL represents a null data pointer. The library include files define it as follows
forC:

#define NULL ((void *) 0)

For C++, it is defined as follows:

#define NULL 0

In memory models where data pointers have the same size as code pointers, the
actual size of a null pointer doesn't matter. In memory models where code and
data pointers are different sizes, problems can occur. Consider this example:

void maine)
{

}

funcl(NULL);
func2(NULL);

int funcl(char *dp)
{

int func2(char (*fp)(void))
{

62 Programming Techniques

In the absence of function prototypes for funcl and func2, the compiler always
assumes that NULL refers to data and not code.

The example above works correctly in tiny, small, large, and huge models be­
cause, in those models, a data pointer is the same size as a code pointer. Under me­
dium or compact model, however, rna in passes NULL to func2 as a null data
pointer rather than as a null code pointer (a pointer to a function), which means the
pointer is the wrong size.

To ensure that your code works properly in all models, declare each function with
a prototype. For example, before rna in, include these two lines:

int funcl(char *dp);
int func2(char (*fp)(void));

If you add these prototypes to the example, the code works properly in all memory
models. Prototypes force the compiler to coerce code pointers to the correct size.
Prototypes also enable strong type-checking of parameters.

Specifying a Memory Model
If you do not specify a memory model, Microsoft CIC++ defaults to the small
model, which is adequate for many small to mid sized programs.

You can select a memory model from the Programmer's WorkBench (PWB) or
from the command line.

Selecting from Within PWB
If you're compiling from the Programmer's WorkBench, pull down the Options
menu and open the Language Options submenu. From that menu, open either the
C or C++ Compiler Options dialog box, and select a memory model there. Choose
one of the standard models or choose Customized and select the options for a cus­
tomized model.

Selecting from the Command Line
You can choose a memory model by including an option on the command line.
For example, to compile CLICK.C as a compact-model program, type this:

CL lAC CLICK.C

The lAC option selects the compact memory model. The six options and four
libraries are as follows:

Option

IAT

lAS

lAM

lAC

IAL

IAH

Managing Memory in C 63

Memory Model: Library

Tiny Model: SLIBCxx.LIB (plus CRTCOM.LIB)

Small Model: SLIBCxx.LIB

Medium Model: MLIBCxx.LIB

Compact Model: CLIBCxx.LIB

Large Model: LLIBCxx.LIB

Huge Model: LLIBCxx.LIB

4.3 Mixing Memory Models

A mixed memory
model lets you mix
near and far pOinters.

In standard memory models, explained in the preceding section, all data pointers
are the same size and all code pointers are the same size.

A mixed memory model selectively combines different types of pointers within
the same program. A mixed model extends the limits of a given memory model
while retaining its benefits.

For example, imagine a programming situation in which you add an array to a
small-model program, pushing the data segment past the 64K limit.

You could solve the problem by moving up from the small to the compact
memory model. Doing so would bump all data pointers from two to four bytes.
The .EXE file would grow accordingly. Execution time would slow.

A second and perhaps better solution is to stay within the standard small memory
model, which uses near pointers, but to declare the new array as far. You mix near
pointers and far pointers, creating a mixed model.

Microsoft C/C++ lets you override the standard addressing convention for a given
memory model by specifying that certain items are __ near, __ far, __ huge, or
__ based. These keywords are not a standard part of the C language; they are
Microsoft extensions, meaningful only on systems that use 80x86 microproces­
sors. Using these keywords may affect the portability of your code.

Note Previous versions of the Microsoft C Compiler accepted the keywords near,
far, and huge without an initial underscore, as well as with a single underscore.
Since the ANSI standard for C permits compiler implementors to reserve key­
words that begin with two underscores, all Microsoft-specific keywords have two
initial underscores. To maintain compatibility with existing source code, the com­
piler still recognizes the obsolescent versions of these keywords.

You can compile a program in the small model, for example, but declare a certain
array to be __ far. At run time, the address of that array occupies four bytes. The
program may slow slightly when accessing items in that particular far array, but

64 Programming Techniques

throughout the rest of the program, all addressing would be near. Note that all
pointers to elements of an array declared as __ far must also be declared as __ far.

Table 4.2 lists the effects of these keywords on data pointers, code pointers, and
pointer arithmetic.

Table 4.2 Addressing Declared with Microsoft Keywords

Keyword Data Code Arithmetic

__ near Data reside in default data Functions reside in 16 bits
segment; 16-bit addresses current code

segment; 16-bit
addresses

__ far Data can be anywhere in Functions can be 16 bits
memory, not necessarily in called from
the default data segment; 32- anywhere in
bit addresses memory; 32-bit

addresses
__ huge Data can be anywhere in Not applicable; code 32 bits (data

memory, not necessarily in cannot be declared only)
the default data segment. __ huge
Individual data items
(arrays) can exceed 64K in
size; 32-bit addresses

__ based Data can be anywhere in Functions reside in 16 bits
memory, not necessarily in specified code
the default data segment; 16- segment; can be
bit addresses plus a known used with __ near or
base provide the range of 32- __ far
bit addresses

Pointer Problems
When you declare items to be __ near, __ far, __ huge, or __ based, you can link
with a standard run-time library. Be aware, however, that in some cases, the mod­
ified pointers will be incompatible with standard library functions. Watch for these
problems that affect pointers:

• A library function that expects a 16-bit pointer as an argument will not function
properly with modified variables that occupy 32 bits. In other words, you can
cast a near pointer to a far pointer, because it adds the segment value and main­
tains the integrity of the address. If you cast a far pointer to near, however, the
compiler generates a warning message because the offset may not lie within the
default data segment, in which case the original far address is irretrievably lost.

Managing Memory in C 65

• A library function that returns a pointer will return a pointer of the default size
for the memory model. This is only a problem if you are assigning the return
value to a pointer of a smaller size. For example, there may be difficulties if
you compile with a model that selects far data pointers, but you have explicitly
declared the variable to receive the return value __ near.

This warning does not apply to all functions. Microsoft C/C++ provides model­
independent versions of its string and memory functions such as _fstreat, the
far version of streat.

• Based pointers pose a special problem. Based pointers are passed to other func­
tions as is (without normalization). Certain functions expect to receive based
pointers, but most do not. Therefore, in most cases, you must either explicitly
cast a based pointer to a far pointer or make sure that all functions that receive
based pointers are prototyped.

Some run-time library functions support near, far, huge, and based variables. For
example, _halloe allocates memory for a huge data array.

You can always pass the value (but not the address) of a far item to a small-model
library routine. For example,

/* Compile in small model */
#include <stdio.h>
long __ far time_ val;

void main()
{

time(&time_ val);
printf("%ld\n", time val);

/* Illegal far address */
/* Legal val ue */

When you use a mixed memory model, you should include function prototypes
with argument-type lists to ensure that all pointer arguments are passed to func­
tions correctly.

Declaring Near, Far, Huge, and Based Variables
The __ near, __ far, __ huge, and __ based keywords can modify either objects
or pointers to objects. When using them to declare variables, keep these rules in
mind:

• The keyword always modifies the object or pointer immediately to its right. In
complex declarations, think of the __ far keyword and the item to its right as
being a single unit.

66 Programming Techniques

For example, in the case of the declaration

char ~~far * ~~near *P;

P is a near pointer to a far pointer to char, which resides in the default data
segment for the memory model being used.

By contrast, the declaration

char ~~far * ~~near P;

is a far pointer to char that will always be stored in DGROUP, regardless of the
memory model being used.

• If the item immediately to the right of the keyword is an identifier, the keyword
determines whether the item will be allocated in the default data segment
(__ near) or a separate data segment (__ far, __ huge, or __ based). For
example,

char ~~ far a;

allocates a as an item of type char with a __ far address.

• If the item immediately to the right of the keyword is a pointer, the keyword de­
termines whether the pointer will hold a near address (16 bits), a based address
(16 bits), a far address (32 bits), or a huge address (also 32 bits). For example,

char ~~huge *p;

allocates p as a huge pointer (32 bits) to an item of type char. Any arithmetic
performed on the huge pointer p will affect all 32 bits. That is, the instruction
p++ increments the pointer as a 32-bit entity.

Declaring Near and Far Functions
You cannot declare functions as __ huge. The rules for using the __ near and
__ far keywords for functions are similar to those for using them with data:

• The keyword always modifies the function or pointer immediately to its right.

• If the item immediately to the right of the keyword is a function, the keyword
determines whether the function is called using a near (16-bit) or far (32-bit)
address. For example,

char ~~far funC);

defines fun as a function with a 32-bit address that returns a char. The func­
tion may be located in near memory or far memory, but it is called with the full
32-bit address. The ~~ far keyword applies to the function, not to the return
type.

Managing Memory in C 67

• If the item immediately to the right of the keyword is a pointer to a function,
the keyword determines whether the function will be called using a near
(16-bit) or far (32-bit) address. For example,

char (__ far *pfun)();

defines pfun as a far pointer (32 bits) to a function returning type char.

• Function declarations must match function definitions.

• The __ huge keyword does not apply to functions. That is, a function cannot be
huge (larger than 64K). A function can return a huge data pointer to the calling
function.

• The __ based keyword can be used to modify a function declaration, and can
be used in combination with the __ near and __ far keywords. Based functions
are described in "Using Based Addressing for Functions" on page 88. A func­
tion can return a based pointer unless it is a pointer based on __ self (see "Using
Based Pointers and Data" on page 78).

The example below declares funl as a far function returning type char:

char
char
{

}

far funl(void);
far fun(void)

1* small model *1

Here, the fun2 function is a near function that returns a far pointer to type char:

char
char
{

}

far * near fun2();
far * near fun()

1* large model *1

The example below declares pfun as a far pointer to a function that has an int re­
turn type, assigns the address ofprintfto pfun, and prints "Hello world" twice.

1* Compile in medium, large, or huge model *1

#include <stdio.h>
int (far *pfun)(char *, ...);

68 Programming Techniques

void main()
{

}

pfun = printf;
pfun("Hello world\n");
(*pfun)("Hello world\n");

Pointer Conversions

Function prototypes
prevent problems that
may occur in mixed
memory models.

Passing near or far pointers as arguments to functions can cause automatic conver­
sions in the size of the pointer argument. Passing a pointer to an unprototyped
function forces the pointer size to the larger of the following two sizes:

• The default pointer size for that type, as defined by the memory model selected
during compilation.

For example, in medium-model programs, data pointer arguments are near by
default, and code pointer arguments are far by default.

• The size of the type of the argument.

Note that if you supply a based pointer as an argument to a function and do not
specifically cast it to a far pointer type, a 16-bit offset from the base segment is
passed.

If you provide a function prototype with complete argument types, the compiler
performs type-checking and enforces the conversion of actual arguments to the
declared type of the corresponding formal argument. However, if no declaration
is present or the argument-type list is empty, the compiler will convert nonbased
pointer arguments automatically to the default type or the type of the argument,
whichever is larger. To avoid mismatched arguments, always use a prototype with
the argument types.

For example, the following program produces unexpected results in compact­
model, large-model, or huge-model programs.

void main()
{

}

int near *x;
char far *y;
int z = 1;

test_fun(x, y, z); 1* x is coerced to far
pointer in compact,
large, or huge model *1

Managing Memory in C 69

int test_fun(int
{

near *ptr1, char far *ptr2, int a)

printf("Value of a = %d\n", a);

If the preceding example is compiled as a tiny, small, or medium program, the size
of x is 16 bits, the size of y is 32 bits, and the value printed for a is 1.

However, if the example is compiled in compact, large, or huge model, both x
and yare automatically converted to far pointers when they are passed to
tesL fun. Since ptr1, the first parameter of tesL fun, is defined as a near pointer
argument, it takes only 16 bits of the 32 bits passed to it. The next parameter,
ptr2, takes the remaining 16 bits passed to ptr1, plus 16 bits of the 32 bits passed
to it. Finally, the third parameter, a, takes the leftover 16 bits from ptr2, instead
of the value of z in the main function.

This shifting process does not generate an error message, because both the func­
tion call and the function definition are legal. In this case the program does not
work as intended, however, since the value assigned to a is not the value intended.

To pass ptr1 as a near pointer, you should include a function prototype that
specifically declares this argument for tesL fun as a near pointer, as shown
below:

/* First, prototype test_fun so the compiler
* knows in advance about the near pointer argument:
*/

int test_fun(int __ near*, char far *, int);

ma in ()
{

int near *x;
char far *y;
int z = 1;

test_fun(x, y, z); /* now, x is not coerced
* to a far pointer; it is
* passed as a near pointer,
* no matter which memory
* model is used
*/

int test_fun(int __ near *ptr1, char
{

far *ptr2, int a)

printf("Value of a = %d\n", a);

70 Programming Techniques

4.4 Customizing Memory Models

In a customized
model, you select the
size of code painters
and data painters.

A third way to manage memory is to combine different features from standard
memory models to create your own customized memory model. You should have
a thorough understanding of C/C++ memory models and the architecture of 80x86
processors before creating your own nonstandard memory models.

The I Astring option lets you change the attributes of the standard memory models
to create your own memory models. The three letters in string correspond to the
code pointer size, the data pointer size, and the stack and data segment setup, re­
spectively. Because the letter allowed in each field is unique to that field, you can
give the letters in any order after I A. All three letters must be present.

The standard memory-model options (lAT, lAS, lAM, lAC, IAL, and IAR) can
be specified in the I Astring form. As an example of how to construct memory
models, the standard memory-model options are listed below with their IAstring
equivalents:

Standard Custom Equivalent

IAT IAsnd

lAS IAsnd

lAM IAlnd

lAC IAsfd

IAL IAlfd

IAR IAlhd

For example, you might want to create a huge-compact model. This model would
allow huge data items but only one code segment. The option for specifying this
model would be I Ashd.

Note Tiny model is identical to small model except that it causes the linker to
search for CRTCOM.LIB. The executable file generated when you specify tiny
model is a .COM file rather than an .EXE.

Setting a Size for Code Pointers
Within a custom memory model, you choose whether code pointers are short or
long:

Option

IAsxx

IAlxx

Size

Short (near) code pointers

Long (far) code pointers

Managing Memory in C 71

The lAs (short) option tells the compiler to generate near 16-bit pointers and
addresses for all functions. This is the default for tiny-, small-, and compact-model
programs.

The IAI (long) option means that far 32-bit pointers and addresses are used to
address all functions. Far pointers are the default for medium-, large-, and huge­
model programs.

Setting a Size for Data Pointers
Data pointers can be near, far, or huge:

Option

IAxnx

IAxfx

IAxh.x

Size

Near data pointers

Far data pointers

Huge data pointers

The IAn (near) option tells the compiler to use 16-bit pointers and addresses for all
data. This is the default for tiny-, small-, and medium-model programs.

The IAf (far) option specifies that all data pointers and addresses are 32 bits. This
is the default for compact- and large-model programs.

The IAh (huge) option specifies that all data pointers and addresses are far (32-bit)
and that arrays are permitted to extend beyond a 64K segment. This is the default
for huge-model programs.

With far data pointers, no single data item can be larger than a segment (64K)
because address arithmetic is performed only on 16 bits (the offset portion) of the
address. When huge data pointers are used, individual data items can be larger
than a segment (64K) because address arithmetic is performed on both the
segment and the offset.

Setting Up Segments
Within a customized model, you can choose to make the stack segment (SS) equal
the data segment (DS), in which case they overlap:

Option

IAxxd

IA[xx]u

IA[xx]w

Effect

SS ==DS

SS != DS; DS reloaded on function entry

SS != DS; DS not reloaded on function entry

72 Programming Techniques

Segment Setup Option lAd
The option I Ad tells the compiler that the segment addresses stored in the SS and
DS registers are equal. The stack segment and the default data segment are com­
bined into a single segment. This is the default for all standard-model programs. In
small- and medium-model programs, the stack plus all data must occupy less than
64K; thus, any data item is accessed with only a 16-bit offset from the segment
address in the SS and DS registers.

In compact-, large-, and huge-model programs, initialized global and static data
are placed in the default data segment up to a certain threshold. The address of this
segment is stored in the DS and SS registers. All pointers to data, including point­
ers to local data (the stack), are full 32-bit addresses. This is important to remem­
ber when passing pointers as arguments in multiple-segment programs. Although
you may have more than 64K of total data in these models, no more than 64K of
data can occupy the default segment. The IGt and IND options control allocation
of items in the default data segment if a program exceeds this limit.

Segment Setup Option IAu
The option I Au tells the compiler that the stack segment does not necessarily coin­
cide with the data segment. In addition, it adds the __ loadds attribute to all func­
tions within a module, forcing the compiler to generate code to load the DS
register with the correct value prior to entering the function body. Combine the
IND option with I Au to name data segments other than the default. When I Au is
combined with IND, the address in the DS register is saved upon entry to each
function, and the new DS value for the module in which the function was defined
is loaded into the register. The previous DS value is restored on exit from the func­
tion. Therefore, only one data segment is accessible at any given time. The IND
option lets you combine these segments into a single segment.

If a standard memory-model option precedes it on the command line, the IAu op­
tion can be specified without any letters indicating data pointer or code pointer
sizes. The program uses a standard memory model, but different segments are set
up for the stack and data segments.

The IAu option is useful for Microsoft Windows dynamic-link libraries (DLLs),
since it forces DS to be loaded on entry to each function. It is also useful for
writing extensions to the Programmer's WorkBench. This is a costly operation,
however, so consider using the lAw option.

Segment Setup Option lAw
The option lAw, like I Au, causes the compiler to assume that the stack segment
is separate from the data segment. The compiler does not automatically load the
DS register at each function entry point. The lAw option is useful in creating

Use caution when
writing Windows
DLLs with lAw.

Managing Memory in C 73

applications that interface with an operating system or with a program running at
the operating-system level. The operating system or the program running under
the operating system actually receives the data intended for the application pro­
gram and places that data in a segment; then the operating system or program must
load the DS register with the segment address for the application program.

As with the I Au option, the lAw option can be specified without data pointer and
code pointer letters if a standard memory-model option precedes it on the com­
mand line. In such a case, the program uses the specified memory model just as
with I Au, but the DS register is not reloaded at each function entry point.

Even though I Au and lAw indicate that the stack may be in a separate segment, the
stack's size is still fixed at the default size unless this is overridden with the IF
compiler option or the 1ST ACK linker option.

The lAw option is useful for writing Windows dynamic-link libraries (DLLs), but
exercise caution when using it. Declare all entry points to the dynamic-link library
as __ loadds to force DS to be loaded on entry to the function (exactly like the IAu
option). This adds a costly operation to each function that acts as an entry point,
but not to any of the functions that are private to the DLL. This is more efficient
than using the I Au option, because most of the DLL's functions do not have to per­
form redundant loads of the DS register. For example,

voi d __ export __ 1 oadds __ far __ pascal L i bFunc(voi d)
{

HelperFunc();
}

void HelperFunc(void
{

}

The library entry point, L i bFunc, is declared as __ loadds to force the DS register
to be loaded on entry. The function Hel perFunc, which is private to the dynamic­
link library, is declared as a normal C function. Since it cannot be called from out­
side of the module, Hel perFunc does not need to reload DS.

If you choose one of the options specifying that the stack segment is not equal to
the data segment (SS != DS), you cannot pass the address of frame variables as
arguments to functions that take near pointers. That is, in tiny, small, and medium
models, you cannot pass the address of a local variable (which is allocated on the
stack) as an argument, because the receiving function will assume the pointer is

74 Programming Techniques

relative to the data segment. However, the receiving function could solve this
problem by declaring the pointer to be the following:

based(__ segname("_STACK"»

Another solution would be to cast the pointer to a far pointer in both locations as
follows:

/* Call func with an explicit cast to far */
func((char far *)frame_var);

void func(char far *formal_var

Library Support for Customized Memory Models
Most C and C++ programs make function calls to the routines in the C run-time
library. When you write mixed-model programs, you are responsible for deter­
mining which library (if any) is suitable for your program and for ensuring that the
appropriate library is linked. Table 4.3 shows the libraries from which to extract
the startup routine for each customized memory model.

Table 4.3 Startup Routines for Customized Memory Models

Memory-Model Option

I Asnx; I AS plus lAx

I Asfx; I Ashx; lAC plus lAx

IAlnx; lAM plus lAx

I Alfx; I Alhx; I AL plus lAx;
IAH plus lAx

From Library

SLIBCfLIB

CLIBCfLIB

MLIB<:;{LIB

LLIBCfLIB

The lAx option represents either IAu or lAw. In the library names, fis either E
(emulator library), 7 (8087/80287 library), or A (alternate math library).

Placement of Data in the Compact, Large, and Huge Memory Models
In a memory model permitting multiple data segments, a global data item may be
allocated in either the default data segment or in a far data segment. The data
item's location and the way it is referenced depend on whether it is declared with
a defining declaration or a referencing declaration (see Section 3.1 of the C
Language Reference for more information).

Managing Memory in C 75

Defining Declarations
Defining declarations include initialized data items and data items declared static,
which are initialized to zero by default. The compiler can allocate space for data
items in this category. These data items are placed in the default data segment
unless their size exceeds a certain threshold. This threshold is specified by the /Gt
option.

Option Effect

IGt[number] Sets the threshold

The /Gt option causes all initialized data items whose size is greater than number
bytes to be allocated to a new data segment. When number is specified, it must fol­
low the /Gt option immediately, with no intervening spaces. When number is
omitted, the default threshold value is 256. When the /Gt option is omitted, the
default threshold value is 32,767.

This option is useful with programs that have more than 64K of initialized static
and global data in small data items. Without this option, your program fills the
default data segment and cannot be linked. The /Gt option does not apply to items
declared with the __ near or __ far keywords.

Referencing Declarations
Referencing declarations include data items declared extern and uninitialized, non­
static data items. The compiler cannot allocate space for data items in this category
because it lacks information found in the other modules. When all the modules in
the program are linked together, the linker can examine all references to these data
items and determine where they are placed.

By default in the compact, large, and huge memory models, the compiler makes
no assumptions about where the linker places those data items. All references to
those data items are done with far addressing, in case they are placed in a far seg­
ment. If you can guarantee that your uninitialized and extern data items reside in
the default data segment, you can use the /Gx option to have them referenced with
near addressing. This improves the efficiency of your application.

Note If you reference a data item with near addressing, but declare it with __ far
in the module in which it is declared, your program will produce unpredictable
results.

76 Programming Techniques

Unsized arrays are
treated as far.

This option is also useful for writing compact-, large-, and huge-model Windows
applications. If you want to run multiple instances of your Windows program
simultaneously, you cannot use far addressing with your global data. If your
global data resides in the program's default data segment, you can use the /Gx
option to reference it as near. This allows you to run multiple instances of the pro­
gram simultaneously.

The /Gx option affects how a data item is referenced only if the data's location is
not otherwise specified. If an uninitialized or extern data item is declared with
__ near or __ far, it is referenced as specified. If a data item is larger than the
threshold specified by the /Gt switch, it is referenced with far addressing. Unsized
arrays are treated as far because they might be larger than the threshold. You must
explicitly declare an unsized array with __ near if you want it referenced with
near addressing.

The /Gx option does not affect pointers. Pointers remain far by default, and the
dynamic allocation functions still return far pointers.

Naming Modules and Segments
Option

/NM modulename

/NT textsegment

/ND datasegment

Effect

Names the module

Names the code segment

Names the data segment

"Module" is another name for an object file created by the C/C++ compiler from a
single source file. Every module has a name. The compiler uses this name in error
messages if problems are encountered during processing. The module name is
usually the same as the source-file name. You can change this name using the
INM (name module) option. The new modulename can include any combination
of letters and digits. The space between INM and modulename is optional.

Every module has at least two segments: a code segment (sometimes called the
text segment) containing the program instructions, and a data segment containing
the program data.

The compiler normally creates the code and data segment names. The default
names depend on the memory model chosen for the program. For example, in
small-model programs the code segment is named _ TEXT and the data segment
is named_DATA.

Table 4.4 summarizes the naming conventions for code and data segments.

Table 4.4

Model

Tiny
Small
Medium
Compact
Large
Huge

Segment-Naming Conventions

Code Data

_TEXT _DATA

_TEXT _DATA

module_ TEXT _DATA

_TEXT _DATA

module_ TEXT _DATA

module TEXT _DATA

Managing Memory in C 77

Module

filename

filename

filename

filename

In memory models that contain multiple data segments (compact, large, and huge),
_DATA is the name of the default data segment. Other data segments have unique
private names. You can override the default names with the options INT (name
text) and IND (name data).

The IND option is commonly used to create and compile modules that contain data
only. Such modules can be accessed from other parts of the program by declaring
their variables as external.

If you change the name of the default data segment with IND, your program must
load the DS register with the segment selector of your named data segment before
it accesses it. You must therefore compile your program either with the I Astring
form of the memory-model option and the I Au option for the segment setup, or
with the IA option for a standard memory model followed by IAu. For example,

CL lAS IAu IND DATAl PROGl.C

The IAu option forces the compiler to generate code to load DS with the correct
data-segment value on entry to the code.

All modules whose data segments have the same name have these segments com­
bined into a single segment named DATAl at link time.

The functions in the small data model run-time libraries that rely on the default
data segment being named "_DATA" will fail if you use the IND option to rename
the default data segment. This restriction affects tiny-, small-, and medium-model
programs.

Specifying Code Segments
The alloc_ text pragma lets you name the segment in which particular functions
are allocated. It has the following syntax:

#pragma alloc_ text (textse gment,junctioni [,junction2] ...)

78 Programming Techniques

If you use overlays or swapping techniques to handle large programs, alloc_ text
allows you to tune the contents of their code (text) segments for maximum effi­
ciency. The alloc_ text pragma must appear before the definitions of any of the
specified functions and after the declarations of these functions. Functions refer­
enced in an alloL text pragma should be defined in the same module as the
pragma. If this is not done and an undefined function is later compiled into a
different code segment, the error may not be caught.

Another way to specify the segment in which a function resides is to use based
addressing for functions. You can also use based addressing to specify the seg­
ment in which a data item resides.

4.5 Using Based Pointers and Data

Based Pointers

Microsoft C/C++ provides the keyword __ based to give you greater control over
memory management in a segmented architecture. You can use __ based to con­
trol the placement of data or functions within segments and to get more efficient
pointer operations.

This section explains how to use based pointers and based data allocation. The use
of based functions is explained in the next section.

Based pointers combine the advantages of near and far pointers. Based pointers
are two bytes in size, like near pointers, but their range is not limited to the default
data segment. Like far pointers, they can refer to any available memory location.
Based.pointers provide a more efficient way to represent addresses outside the
default data segment by exploiting the commonality among multiple pointers.

This is possible because a based pointer contains only the offset portion of an
address. To use such a pointer, you must define a "base" for it. A base consists of
the segment portion of an address and is stored separately from the pointer itself.
If many based pointers refer to locations within the same segment, they can all
share the same base. The offset and segment values are combined whenever a
based pointer is used to access a memory location.

By comparison, every far pointer contains both an offset and a segment value,
which can result in wasted space if many far pointers refer to locations within one
segment. Near pointers contain only an offset, but they always use the DS register
for their segment value, so they are restricted to addressing the default data
segment.

Using based instead
of far pOinters makes
your program smaller.

Managing Memory in C 79

The use of based pointers instead of far pointers makes your program smaller by
saving two bytes for each pointer that shares a base with another. Under certain
conditions, based pointers can also be faster than far pointers. If your program has
many based pointers that are all based on the same segment, and if those pointers
are used consecutively, the compiler does not need to load a new segment value
each time a pointer is used. If you enable full optimizations in such circumstances,
based pointers can be almost as fast as near pointers.

Define a pointer's base using the __ based keyword, followed by a base expres­
sion in parentheses, where you might otherwise place __ near, __ far, or __ huge.
For example,

void __ near np;
void __ basedCbase) bp;

There are several types of base that you can specify for a based pointer:

• A fixed base

• A variable base

• The __ self keyword

• The void keyword

These types of base are described in the following sections.

Pointers with a Fixed Base
Pointers based on a fixed segment are restricted to accessing locations in a single
segment. This segment is specified when the based pointers are declared. You can
make assignments to the based pointers themselves, which changes the offset por­
tion of the address. Making assignments in this way causes the pointers to refer to
different locations within the segment. However, you cannot change the base that
the based pointers use.

There are two ways to specify a fixed base for based pointers: by using a named
segment or by using the segment in which a variable is stored.

Using a Named Segment You can specify a named segment as the base for
your pointers by using the __ segname keyword and a string literal. For example,
the following example declares a pointer based in the default code segment:

void __ basedC_segnameC"_CODE")) *bp;

80 Programming Techniques

The pointer bp can address any location in the default code segment. There are
four segments accessible through predefined strings:

Segment

_CODE

_CONST

_DATA

_STACK

Definition

Current code segment

Constant segment

Default data segment

Stack segment

The following example declares a pointer based in the default data segment:

char __ based(__ segname("_DATA")) *bp;

This is equivalent to a near pointer.

You can also specify user-defined segments, as long as the segment is allocated
somewhere else in the program. For example,

char __ based(__ segname("MYSEG")) *bp;

You can define MYSEG with an assembly-language file or by allocating data in a
named segment. See "Data Stored in a Named Segment" on page 86 for more
information.

Using the Segment of a Variable You can also base your pointers on the seg­
ment in which another variable is stored. Specify this type of base by casting the
address of a variable to the __ segment data type, as follows:

i nt i;
void __ based((__ segment)&i) *bp;

This declaration allows bp to access any location in the same segment that i is
stored. If i is declared as __ near, or if the program is compiled in tiny, small, or
medium model, this is equivalent to declaring bp as a near pointer.

Pointers with a Variable Base
Pointers with a variable base can access any available memory locations. When
you make assignments to the based pointers themselves, you change the offset
portion of the address, which allows you to refer to various locations within one
particular segment. You can also make assignments to the base itself. The com­
piler uses the updated value of the base whenever one of these based pointers is
used. In this way, changing a single base value effectively changes the locations
referenced by all the based pointers using that base.

Managing Memory in C 81

There are three ways to specify a variable base for based pointers: by using the
segment value of another pointer, by using a variable of type __ segment, or by
using another pointer.

Using the Segment Value of Another Pointer You can give a based pointer the
segment of another pointer as its base value. To do this, cast a pointer to the
__ segment data type, as follows:

char __ near *np;
char __ far *fp;
void __ based« __ segment)np) *bnp;
void __ based« __ segment)fp) *bfp;

Notice that this syntax is similar to that used to base a pointer on the segment in
which a variable is stored. The difference is that you cannot change where a varia­
ble is allocated, but you can change the value of a pointer.

Because np is a near pointer, it uses the DS register as its segment value. Accord­
ingly, bnp uses DS as its base and is equivalent to a near pointer.

Because fp is a far pointer, it contains a segment value, and bfp uses that seg­
ment as its base. If you change the segment portion of fp, bfp will refer to a loca­
tion in the new segment. (Remember that far pointer arithmetic is performed only
on the offset portion, so incrementing fp won't affect the base of bfp. However,
if you make an assignment to fp that changes its segment, the base of bfp will
be similarly modified.)

Using a Segment Variable In addition to using a cast to the __ segment data
type, you can define variables of type __ segment. You can then base your point­
ers on such a segment variable, as follows:

__ segment videomem; II define a segment variable
char based(videomem) *vidptr;

videomem = 0xB800; II use video memory as segment
II move to row 10, column 40

__ based(videomem) *)(2 * «80 * 9) + 39)); vidptr = (char
*vidptr = 'A'; II write an A there

In this example, vi deomem is a segment variable that contains the segment in
which video memory resides. Because vi dptr is based on vi deomem, any value
assigned to vi d p t r is interpreted as an offset into video memory. A cast is used
in the assignment to vi dpt r to prevent a compiler warning. If vi deomem were
assigned a new value, vi dptr would act as an offset from that new value and
evaluate to an entirely different address.

82 Programming Techniques

You cannot base a pointer on a constant that is cast to the __ segment type, as in
the following example:

unsigned vidptr __ based« __ segment)0xB800) *vidptr; II error

You must use a segment variable that is defined separately.

Pointers based on a segment variable are especially useful in conjunction with
based heaps. Microsoft C/C++ lets you define a special heap that resides in a seg­
ment. You can use such a based heap to allocate objects dynamically, just as you
would with a traditional heap. These dynamically allocated objects can all be refer­
enced with pointers based on that segment.

The following program demonstrates the creation of a based heap:

1* Compile in Small Model *1
#include <malloc.h>
#include <stdio.h>
#include <string.h>

__ segment segvar;
char __ based(segvar) *b_string;

void main()
{

}

if((segvar = _bheapseg(1000)) != _NULLSEG)
{

if((b_string = _bmalloc(segvar, 20)) != NULLOFF)
{

}

_fstrcpy((char __ far *)b_string, (char __ far *)"This is a test.\n");
printf("%Fs", (char __ far *)b_string);
printf("Size = %d\n", sizeof b_string); 1* Always 2 *1
bfree(segvar, b_string);

else
puts("bmalloc failed");

_bfreeseg(segvar);

else
puts("_bheapseg fail ed");

First, the program calls the library function _ bheapseg and requests 1,000 bytes in
a new based heap:

if((segvar = _bheapseg(1000)) != _NULLSEG)

If it cannot allocate the amount of memory requested, _ bheapseg returns
_NULLSEG (null segment). Otherwise, the function returns the valid address of a
segment, which is assigned to segvar.

Managing Memory in C 83

Next, the program calls _ bmalloc and requests 20 bytes of memory from the
based heap. The variable s e 9 v a r is passed to identify the based heap that _ bmal­
loc should use. Just as malloc returns a pointer to a block of memory, _ bmalloc
returns an offset to a block of memory. This offset is assigned to the based pointer
b_string:

if((b_string = _bmalloc(segvar, 20 » != _NULLOFF 1

The value _ NULLOFF means "null offset" and indicates the failure of _ bmalloc.
If the allocation succeeds, the program continues with this code:

_fstrcpy((char __ far *lb_string, (char __ far *l"This is a test.\n" l;
printf("%Fs", (char __ far *lb_string l;
printf("Size = %d\n", sizeof b_string l; 1* always 2 *1

The standard strcpy function won't work because this is a small-model program
that expects all pointers to be near. The _fstrcpy function accepts far pointers, and
it is possible to cast a based pointer to a far pointer. Then the string and its size are
printed.

Finally, the block of memory and the based heap are freed:

_bfree(segvar, b_string l;
_bfreeseg(segvar l;

The run-time library provides a complete set of memory-management functions
that work with based heaps.

Using Another Pointer You can also base your pointers on the complete address
of another pointer, instead of using only the segment portion of its address. In this
case, a based pointer acts as an offset from the pointer itself, instead of simply
sharing the segment with that pointer. For example,

int *ip;
int __ based(ipl *bp;

Whenever bp is used, the compiler adds together the offset of i p and the offset
stored in bp, and uses the segment of i p to find the address.

The following example illustrates pointers based on a pointer:

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <string.h>

int *ip;
int __ based(ipl *bp;
char __ based(ipl *cp;

1* int pointer *1
1* based on ip *1

84 Programming Techniques

void main()
{

}

int *mem1, *mem2;

bp
cp

(int __ based(ip) *)0;
(char __ based(ip) *)2;

1* bp equals *(ip+0) *1
1* cp equals *(ip+2) *1

if((mem1 = (int *)malloc(100)) 1= NULL)
if((mem2 = (int *)malloc(100)) != NULL
{

}

ip = mem1; 1* ip points to mem1 *1
*bp = 5;
strcpy((char *)cp, "String stored in mem1.");

ip = mem2; 1* ip now points to mem2 *1
*bp = 12345;
strcpy((char *)cp, "String stored in mem2.");

ip = mem1; 1* point to mem1 *1
1* which still holds previous values *1
printf("%s *bp= %i\n", (char *)cp, *bp);

ip = mem2; 1* point to mem2 *1
1* display the values there *1
printf("%s *bp= %i\n", (char *)cp, *bp);

freer mem2);
freer mem1);

else puts("Second malloc failed.");
else puts("First malloc failed.");

Two calls to malloc provide two sections of memory, whose addresses are stored
in the variables meml and mem2. When i p is assigned one of these addresses
(mem1), the pointers based on i p point somewhere within that piece of memory.
When i p is assigned the address in mem2, the effective addresses of bp and cp
also change.

Note Pointers based on pointers are the only form of based pointers that can be
used in a 32-bit program. They are the only type of based pointer that can be used
in a flat (that is, nonsegmented) address space.

If you have a group of pointers that all refer to locations within a buffer of
memory, you can define them as offsets from a pointer that references the start of
the buffer. If you relocate that buffer, you can update the entire group of pointers
by modifying just the pointer that acts as their base. If you write the buffer to disk,
you can also write the based pointers to disk. Once you reload the buffer into
memory, you can make the based pointers valid again by updating their base.

Managing Memory in C 85

Pointers Based on the __ self Keyword
You can base a pointer on the segment that the pointer itself is stored in. This is
done by using the __ self keyword, cast to the __ segment type. Consider the fol­
lowing example:

typedef struct node NODE;

struct node
{

} ;

int name;
NODE __ based« __ segment) __ self) *left;
NODE __ based« __ segment) __ self) *right;

This example declares a structure named NODE for use in a binary tree. Each node
in the tree contains pointers to its two child nodes. These pointers are self-based,
so they refer to locations within the segment in which the node itself is stored.
This is possible only when an entire tree can fit in a single segment. Based point­
ers provide an advantage over far pointers in such a data structure by reducing the
size of each node by four bytes.

If you want to build a tree out of nodes that contain self-based pointers, do not use
malloc to allocate the nodes, because it may return memory in different segments.
Instead, use a based heap along with pointers based on a segment variable. The fol­
lowing example assumes the type declaration given above:

void main()
{

}

__ segment segvar;
NODE __ based(segvar) *nodeptr;

II ignore error checking for this example
segvar = _bheapseg(30000);
nodeptr = _bmalloc(segvar, sizeof(NODE));
nodeptr-)left = _bmalloc(segvar, sizeof(NODE));
nodeptr-)right = _bmalloc(segvar, sizeof(NODE));
nodeptr-)name = 1;
nodeptr-)left-)name = 2;
nodeptr-)right-)name = 3;

This program first allocates a based heap of 30,000 bytes and uses s egv a r to store
the heap's segment. Then the program allocates NODE objects from that based
heap, so all the nodes in the tree reside in the segment specified by segvar. Note
that nodeptr is based on segvar, instead of being self-based.~A self-based pointer
declared as a local variable in a function uses the SS register as its base, which
may not be in the same segment as segvar.

86 Programming Techniques

Pointers Based on the void Keyword
The final way to declare a based pointer is to base it on void. Such a pointer is not
based on any particular segment. It is an offset that can be combined with any seg­
ment to form a full address. You can combine a segment value and a void-based
pointer using the "base operator," which consists of a colon and a greater-than
symbol (:». That is,

segment:>offset

Such an expression denotes a complete address and can be dereferenced with the
indirection operator (*). You can use the base operator only with pointers based on
void, not with other types of based pointers.

The segment value can be a variable oftype __ segment, or it can be an integer
cast to type __ segment. For example,

__ segment videomem = 0xB800; II use video memory as segment
char __ based(void) *offptr;

II set offset to row 10, col 40
offptr = (char __ based(void) *)(2 * «80 * 9) + 39));
*(videomem:>offptr) = 'A'; II write an A there
offptr += 2; II move to col 41
*«(__ segment)0xB800):>offptr) = 'A'; II do it again

The pointer offpt r can be used with any segment variable. If you have many seg­
ments organized in the same way, you can use one void-based pointer to access
the same relative location in each of them.

Based Data Allocation
The section "Using a Segment Variable" on page 81 describes dynamic allocation
of based data using the run-time library functions. Microsoft C/C++ also allows
you to statically declare data that is based in a specified segment.

There are three ways to specify that data is declared in a particular segment: by
specifying a named segment, by using a segment variable, and by using the
address of another variable.

Data Stored in a Named Segment
You can specify a named segment that a variable is to be stored in by using the
__ segname keyword and a string literal. Note that the syntax for this is the same
as that used to base a pointer on a named segment. For example,

1* Compile in Small Model *1
#include <stdio.h>

Managing Memory in C 87

#include <malloc.h>

char __ based(__ segname("_CODE")) mystring[] = "A code-based string.\n";
int __ based'-_segname("_CODE")) myint = 12345;
void main()
{

printf("%Fs %d", (char far *)mystring, myint);

The variable my s t r i n 9 is declared as an array of characters based in the code seg­
ment. The variable myi nt is an integer that is also based in the code segment.

Note that the small-model version ofprintfwould treat mystri ng as a near
pointer. The F in the format specifier %Fs forces the function to treat mystri ng
as a far pointer, and the cast to char __ far* coerces the address to four bytes.

One reason for placing data in your code segment is that you are using the small
memory model and your default data segment is full. Rather than move up to the
compact memory model, which makes all data pointers far, you can move some
data into the code segment, if you have room there.

You can also name your own segments. For example,

char __ based(__ segname("MYSEGMENT")) otherstring[] = "Another based string.\n";

This declaration creates a new segment called MYSEGMENT and places the
string there. You can reference data in that segment using far pointers or pointers
based on that named segment.

If the segment names ends in _TEXT, the compiler marks that segment as a code
segment, making it a read-only segment.

Data Based on a Segment Variable
You can also declare data that is based on a segment variable. Data declared this
way is stored at a location determined at run time. This is useful if you want to
make some variables relocatable. When you move the block of memory contain­
ing the variables, you can simply assign a new value to the segment variable. This
lets you access the variables by name, rather than by using pointers.

The following example demonstrates how to declare data based on a segment
variable:

II FILE1.C
char far c;
__ segment segvar;

88 Programming Techniques

mai n ()
{

}

segvar (__ segment)&c;
foo();

II relocate segment, assign new value to segvar

foo();

II FILE2.C
extern __ segment segvar;
extern char __ based(segvar) c;

foo()
{

c 1; II can refer to c, no matter where it is
}

The compiler uses the segment value stored in segvar whenever c is accessed in
FILE2.C.

Data Based on the Address of Another Variable
You can also allocate data in the same segment as another based variable. To do
this, cast the address of the variable to the __ segment data type. Note that this is
the same syntax used to base a pointer on the segment in which a variable is
stored. For example,

int __ based(__ segname("MYSEGMENT"» myint1;
int __ based« __ segment)&myvar1) myint2;

The variable whose segment is being used must itself be based on a named
segment.

4.6 USing Based Addressing for Functions
With Microsoft C/C++ you can declare functions as based, so you can specify the
code segment the functions reside in. Grouping functions into segments allows
you to use near functions safely and to improve performance when you swap
overlays to disk.

You can declare a function with both the __ near and __ based keywords, or with
both the __ far and __ based keywords, even though such declarations are illegal

Placing functions
correctly can reduce
swapping.

Managing Memory in C 89

for data. This is because the meaning of the __ near and __ far keywords for func­
tions differs slightly from their meaning for data. Near functions can reside any­
where in memory, but you can call them only from functions in the same code
segment. Far functions can also reside anywhere in memory, and you can call
them from functions in other code segments. Thus, you can use the __ near and
__ far keywords to describe a function's calling convention and use a __ based
expression to specify its location in memory.

The segment in which functions reside is normally determined by the memory
model of your program. In the tiny, small, and compact models, all functions are
stored in a single code segment. In the medium, large, and huge models, functions
are stored in multiple code segments; there is a separate segment for each source
file.

The location of functions in segments becomes important when tuning large
programs that use overlays. By placing the functions that most frequently call one
another within the same segment, you can reduce swapping. The location of func­
tions is also important when using near functions in a program that has multiple
segments. A function might try to call a near function that resides in another seg­
ment, causing a run-time error.

To prevent this problem, you can declare functions as based to ensure that they are
stored in the same segment. For example,

II FILE 1 - compiled under large model

void __ based(__ segname("MYSEG")) farfunc()
{

nearfunc();
}

II FILE 2 - compiled under large model

II far by default

void __ near __ based(__ segname("MYSEG")) nearfunc()
{

II
}

If these two functions were not declared as based in the same segment, they
would be placed in separate segments because they're declared in separate files.
In that situation, this program would suffer a link-time or run-time error because
farfunc cannotperformanearcallto nearfunc when nearfunc is in another
segment. However, since both functions are based in the MYSEG segment, the
program links and executes correctly.

Functions can be based only on a segment constant; unlike data, they cannot be
based on segment variables, nor can they be based on pointers, void, or the __ self
segment. The __ near or __ far keyword can appear before or after the based
expression.

90 Programming Techniques

Based addressing for functions replaces the alloc_ text pragma as a method of con­
trolling the placement of functions. If both a based expression and an alloc_ text
pragma specify a segment for a function to be placed in, the based expression
takes precedence.

4.7 Using the Virtual Memory Manager
Virtual memory is a facility for accessing storage beyond the 640K of memory
available to DOS. Microsoft C/C++ provides a virtual memory manager through a
set of functions in the run-time library. This memory manager uses expanded
memory (EMS), extended memory (XMS), and disk storage to simulate a heap of
nearly unlimited size. By using this virtual heap, your program can access those
three memory resources through a single interface and acquire far more memory
than is available from the traditional malloc family of functions.

Note that the virtual memory functions are only available for 16-bit DOS pro­
grams. Windows programs and 32-bit programs do not need to use these functions.

The virtual memory manager works by copying blocks of virtual memory into
DOS memory when they're in use, and swapping them out to auxiliary storage
when they're not. In general" a program that uses the virtual memory manager
must perform the following steps:

• Initialize the virtual memory manager by calling _ vbeapinit

• Allocate virtual memory blocks as needed by calling _ vmalloc

• Load or lock virtual memory blocks into the DOS address space in order to
access their contents, using _ vload and _ vlock

• Unlock virtual memory blocks when they're not being accessed by calling
_vunlock

• Free virtual memory blocks when they're no longer needed by calling _ vfree

• Terminate the virtual memory manager by calling _ vbeapterm

The following sections describe these steps in more detail.

Initializing the Virtual Memory Manager
You initialize the virtual memory manager by calling _ vbeapinit and passing it
three arguments: the minimum amount of DOS memory that must be available for
the virtual memory manager to be installed (in 16-byte paragraphs), the maximum
amount of DOS memory that it can use (in paragraphs), and flags indicating which
types of auxiliary storage it can use to hold swapped-out blocks.

Managing Memory in C 91

The virtual memory manager may round up the minimum value you specify. If,
after rounding, the minimum amount of memory is not available, the virtual
memory manager is not installed. The virtual memory manager needs several
kilobytes in order to function effectively.

If you want the virtual memory manager to use as much DOS memory as it can,
specify _ VM_ ALLDOS as the second argument. You should not specify this if
your program is performing tasks that require a lot offree memory, such as spawn­
ing a process.

To specify the types of auxiliary storage that the virtual memory manager can use,
use the flags _ VM_EMS, _ VM_XMS, or _ V~DISK. One or more of these
flags can be specified if they are joined by the bitwise-OR operator (I). To use all
three types, specify _ VM_ ALLSW AP. If not all forms of storage are available
when the program runs, the virtual memory manager uses what is available.

A typical call to _ vheapinit looks like this:

if (!_vheapinit(0, _VM_ALLDOS, _VM_ALLSWAP))
{

/* initialization failed - perform error handling */
}

else
/* continue with normal program execution */

This call to _ vheapinit specifies that the virtual memory manager should attempt
to install itself no matter how little memory is available, though the attempt may
fail if insufficient memory is available. This quI also specifies that the virtual
memory manager should use as much memory as is available, and that it should
use all forms of auxiliary storage.

When your program is done using virtual memory, it must call the _ vheapterm
function to terminate the virtual memory manager.

Note If your program ends without calling _ vheapterm, various system memory
resources may not be available to subsequent programs.

You can initialize and terminate the virtual memory manager as many times as
you want within your program.

Virtual Memory Handles
When you allocate a block of virtual memory, _ vmalloc does not return a pointer
the way malloc does. Instead, _ vmalloc returns a handle, which is a value of type
_ vmhmL t that uniquely identifies the block of virtual memory. You cannot use
such a handle to access memory directly, nor can you perform address arithmetic
on a handle. You can only pass a handle to other virtual memory functions.

92 Programming Techniques

Loading Blocks

In order to access the contents of a virtual memory block, you must either load it
or lock it into DOS memory.

The _ vload function takes a handle and copies the associated block of virtual
memory into DOS memory. The function returns a far pointer to the location at
which the block of memory is loaded. You use this pointer to read or modify the
contents of the block.

The _ vload function keeps the contents of the block in DOS memory only tem­
porarily. The next time you call any function of the virtual memory manager, a
loaded block may be swapped out to auxiliary storage, making the pointer returned
by _ vload invalid. Accordingly, you should access the contents of a loaded block
only until the next call to the virtual memory manager.

Dirty Blocks vs. Clean Blocks
When you load a block of virtual memory with _ vload, you must specify either
the flag _ VM_ CLEAN or _ ~DIRTY, indicating that the block is either
"clean" or "dirty." If your program reads the block of memory but does not mod­
ify its contents, the block is clean. If your program modifies the block of memory,
the block is dirty. This flag tells the virtual memory manager what to do when it
needs the region of DOS memory that the loaded block occupies. If a block is
clean, the virtual memory manager is free to overwrite it the next time it has to
load a new block of memory. If a loaded block is dirty, the virtual memory
manager must write out its contents to auxiliary storage before it loads a new
block.

Every block of virtual memory that you allocate must be flagged as dirty at least
once, if only to initialize its contents. If the block is treated as read-only from that
point forward, it can be flagged as clean during subsequent loads. Otherwise, it
must be flagged as dirty each time the program modifies it.

Note that when a dirty block is saved, its contents are retained only until the block
is freed or the virtual memory manager is terminated. If you want to save the
block's contents beyond that point, you must load the block into DOS memory
and explicitly copy its contents to a permanent disk file.

Locking and Unlocking Blocks
To retain access to a block for an arbitrarily long period of time, use the _ vlock
function. Like _ vload, _ vlock takes a handle, copies the associated block of vir­
tual memory into DOS memory, and returns a far pointer to it. However, _ vlock
locks a block of memory so that it remains in DOS memory even if you make

Keep as few blocks
locked as possible.

Managing Memory in C 93

subsequent calls to the virtual memory manager. A locked block remains in DOS
memory until it is unlocked with _ vunlock. You can lock a block multiple times;
the block is not swapped out until you have unlocked it an equal number of times.
The number of locks currently held on a virtual memory block can be determined
by calling _ vlockcnt.

You must also specify a clean or dirty flag when you unlock a locked block of vir­
tual memory with _ vunlock. With this function, you specify the flag after you
have accessed the block instead of before, as was the case with _ vload. For a
block that has been locked more than once, different clean or dirty flags can be
specified for the _ vunlock calls. If _ VM_DIRTY is specified with any of the
_ vunlock calls, the block is treated as dirty.

You can lock a block that has already been loaded into DOS memory. If you do
so, the virtual memory manager may relocate the block within DOS memory, so
you should use the pointer returned by _ vlock rather than the one previously re­
turned by _ vload.

Both _ vload and _ vlock return NULL if they are unable to load or lock a block of
virtual memory. Always test the return value of these functions before using it as a
pointer.

Having a large number of blocks locked at anyone time can interfere with the vir­
tual memory manager's ability to swap blocks in and out of DOS memory. There­
fore, you should always keep as few blocks locked as possible.

Techniques for Using Virtual Memory
Virtual memory can be used as a replacement of DOS memory in data structures.
For example, you can build a linked list that resides in virtual memory; such a
linked list could contain far more nodes than an ordinary linked list.

The declaration for the node type of such a linked list might look as follows:

#include <malloc.h>
#include <stdio.h>
#include <stdlib.h>
#include <vmemory.h>
#include <string.h>

typedef struct node NOOE;

struct node
{

} ;

int key;
char data[100];

vmhnd_ t next;

94 Programming Techniques

II globals
vmhnd t vhead _VM_NULL;
vmhnd t vlast _VM_NULL;

II first element in list
II last element in list

Each NOD E structure contains a _ vmhnd_ t field rather than a pointer to connect it
to the succeeding node.

You can use these NODE structures the same way you use the nodes of an ordinary
linked list, except that you must load each node into DOS memory before you
access its contents. For example, the following procedure adds a new node to a
linked list:

int add(NODE new_node
{

}

_ vmhnd_ t vtemp;
NODE far *temp;
NODE __ far *last;

if ((vtemp = vmalloc(sizeof(NODE))) == _VM_NULL
return 0; II could not allocate virtual memory

if ((temp = (NODE __ far *)_vload(vtemp, _VM_DIRTY)) == NULL
{

_ vfree (vtemp); II free the block we just allocated
return 0; II but could not load'

}

temp->key = new_node. key; II copy in new data
strncpy(temp->data, new_node.data, 100);
if (vhead == VM NULL) II no nodes in list yet
{

vhead vtemp;
vlast vhead;

else II add to end of 1 is t
{

last (NODE far *) vload(vlast, VM DIRTY) ;
last->next = vtemp;
vlast vtemp;

}

return 1; II node successfully added

The add function always uses two variables when manipulating a node: a handle
and a pointer. When creating the node to be added, the function uses a handle to al­
locate and load the block of memory and then uses a pointer to write the new data
into the node. Similarly, when attaching the node to the end of the list, the function
uses a handle to load the last node and then uses a pointer to modify its next
field. Note that temp and 1 ast are explicitly declared as far pointers, because no
matter what model the program is compiled under, _ vload returns far pointers.

Managing Memory in C 95

Also note that the _ V~DIRTY flag is specified in both calls to _ vload, since in
both cases the function is modifying the block of memory.

The fi nd function has similar features:

NOOE *find(int search_key
{

_vmhnd_t vcurr;
NOOE __ far *curr;
NODE *temp;

if (vhead == VM_NULL
printf("list empty \n");

vcurr vhead;
while (vcurr != _VM_NULL)
{

if «curr (NODE far *)_vload(vcurr, _VM_CLEAN))
return NULL; II could not load block

if (curr->key
{

NULL)

if ((temp = (NODE *)malloc(sizeof(NODE))) == NULL)
return NULL; II could not allocate memory

}

}

else

}

temp->key = curr->key; II copy data from node
strncpy(temp->data, curr->data, 100);
return temp;

vcurr curr->next;

return NULL;

As with the add function, the search function uses both a handle and a pointer to
access nodes. The function traverses the linked list, comparing each node's key
with the key being searched for. To examine a node, the function uses a handle to
load it into DOS memory, and then uses a pointer to access the key field. Note
that this time the _ VM_ CLEAN flag is specified in the call to _ vload, since the
function is only reading the block of memory, not writing to it.

Other standard operations on a linked list, such as deleting or modifying a node,
can be performed by making a minor modification to the usual implementations:
you must load a block before you can access its contents. If you need to access a
block many times, you should probably lock it. Or if you need to have more than
one block in memory at once (if, for instance, you're comparing their contents),
you should lock one or more of them.

Other data structures traditionally implemented with pointers, such as binary trees,
can also take advantage of virtual memory if you use handles as well as pointers.

96 Programming Techniques

Only a portion of
virtual memory is
accessible at any
one time.

Another possible technique is to maintain an array of handles, each of which refers
to a large buffer of virtual memory. Your program can switch among these
buffers, keeping just one or two of them in DOS memory at any given time.

When writing a program to use virtual memory, or converting an existing program
to use it, you should remember virtual memory's 1inlitations. While virtual mem­
ory allows a program to store a large amount of data, only a small portion of it is
immediately accessible at anyone time. If your program reads and writes a large
amount of data at all times, it will require the virtual memory manager to perform
a lot of swapping, so its performance will not be as efficient as one which accesses
only a small amount of data at a time.

Another way to make your program use extended memory, expanded memory,
and disk is to break it up into overlays. For information on creating overlays, see
Chapter 15, "Creating Overlaid DOS Programs," of the Environment and Tools
manual.

Managing Memory in C++

Chapter 4, "Managing Memory in C," describes how you can most efficiently use
memory to optimize your C program. This chapter describes how to manage
memory in your C++ program.

This chapter explains:

• How memory models apply to classes

• How to control the addressing of dynamically created objects

• How to control the placement of member functions using the __ based keyword

You should be familiar with the C++ language before reading this chapter (see the
C++ Tutorial and the C++ Language Reference manuals for information on the
C++ language). You should also have read the material in Chapter 4, "Managing
Memory in c."

The material covered in this chapter is relevant only to 16-bit programs.

5.1 Memory Models for Classes

Member functions are
stored once for the
entire class.

To understand how memory models apply to classes, it's necessary to know how
objects are represented in memory.

Each object contains its own copy of the data members defined for its class (ex­
cept for the static members). However, an object does not contain its own copy of
the code for the member functions. Member functions are stored only once for the
entire class.

When you call a member function of a particular object, the address of that object
is passed to that function as a hidden argument.

98 Programming Techniques

For example, this statement in C++

myWindow.resize();

is analogous to the C statement

resize(&myWindow);

The member function implicitly uses the address to access the object's data mem­
bers. That address is available from inside the member functions as the this
pointer.

The Ambient Memory Model
Microsoft C++ assigns a memory model to every class, known as the "ambient"
memory model for that class. The ambient model of a class affects several charac­
teristics of the objects of that class:

• The address space in which an object resides

• The address mode of a pointer or a reference to an object

• The address mode of the this pointer used in member functions of that class

The default ambient model for all classes is the model you specify for data at com­
pilation. In the tiny, small, or medium memory models, all objects reside in the
default data segment and all pointers and references to objects are near. In the
compact, large, and huge memory models, objects can reside in any segment and
all pointers and references to objects are far.

You can declare a particular class to have an ambient model other than the default
by specifying __ near or __ far before the class name. For example, the following
declaration specifies Node as a far class:

class far Node
{

public:
Node() ;
void print();
~Node();

private:
/ / ...

} ;

Objects of class Node can be stored in any data segment, no matter what memory
model the program is compiled with. Pointers and references to Node objects are
automatically far, and a far address is passed whenever a member function is
called. For example,

Managing Memory in C++

Node head; II Far allocation
Node *pNode; II Far pointer

head.print(); II Far address passed to printC)
pNode = &head; II Fa r address taken

If you explicitly specify an ambient model for a class, it must match that of its
base class. If a class has multiple base classes, all of them must have the same
ambient model. If you don't explicitly specify the __ near or __ far keywords in
a class's declaration, the class inherits the ambient model of its base class(es). If
the class has no base class(es), it uses the default model implied by the memory
model for the entire module.

Overriding the Ambient Memory Model
You can override a class's ambient model when you declare an individual object
or a pointer to an object. Place one of the addressing keywords before the
identifier:

Node __ near myNode;
Node __ near *npNode;

99

myNode.print(); II Near address converted to far when print() called
npNode = &myNode; II Near address taken

In this example, myNode is an object of type Node stored in the default data seg­
ment. Taking the address of myNode produces a near pointer. Whenever a member
function is invoked for myNode, the object's near address is converted to the far
address that the function expects.

You can use the __ near, __ far, or __ huge keywords when you declare an ob­
ject. You can also use a __ based expression, as long as you base the object on a
segment constant or a segment variable. You cannot base data on a pointer, void,
or the __ self segment.

When you override the class's ambient model for an individual object, the address
of that object has a different addressing mode from that expected by the class's
member functions. In such cases, the compiler attempts to perform a type
conversion on the address of the object.

In the previous example, the address of myNode is automatically converted from a
near address to a far address before it is passed to the Node constructor. The same
thing happens when p r i n t () is called.

100 Programming Techniques

However, consider the following class definition:

class near RecArray
{

public:
RecArray(int size);
void printNames();
-RecArray() ;

private:
II ...

} ;

In this case, the declaration and statement

RecArray __ far bigArray(5000);

bigArray.printNames();

II Error: constructor
II expects near address

II Error: printNames()
II expects near address

result in type conversion errors, because the compiler cannot convert the far
address of bi gArray into the near address expected by the constructor and the
pri ntNames () member function.

Overloading the this Pointer
If the standard conversions do not allow your objects to be passed to member func­
tions, you must overload the member functions on the addressing mode of the this
pointer. To specify the addressing mode for a member function, place the __ near,
__ far, or __ huge keyword after its parameter list. For example,

class near RecArray
{

public:
RecArray() ;
RecArray() __ far;
void printNames();
void printNames() __ far;
-RecArray() ;
-RecArray() __ far;

private:
II ...

} ;

Now when you declare a far RecArray object, the far constructor is called. Simi­
larly, if you call the pri ntNames () memberfunction for that far object, the far
pri ntNames () function is invoked.

The keyword (__ near, __ far, or __ huge) following the function name describes
the addressing mode of the this pointer within the member function. When you

Managing Memory in C++ 101

call a member function for an object, if the standard conversions can match your
call statement to more than one function, the function with the best match is
selected. You cannot declare a member function as having a based this pointer.

It is not required that you overload all the member functions on the this pointer.
You only need to overload member functions that are called for objects that don't
have the addressing mode specified for the class.

Specifying the Addressing Mode of Return Objects
When you specify the return type of a function, you usually specify an addressing
mode only if the function returns a pointer. You don't specify an addressing mode
if the function returns a built-in type. For example,

char far *funcl();
__ far char func2();

II Return a far pointer to a char
II Error: meaningless

In the declaration of fun c 1 (), the __ far keyword modifies the pointer being re­
turned. In the declaration of func2 (), the __ far keyword modifies the character
being returned, which is illegal.

However, if a function returns an object, you can specify an addressing mode.
With C++, you can invoke member functions for the temporary object returned by
a function, even if you don't assign the object to another variable. For example,

RecArray makeArray(FILE *handle); II Function returning

ma i n ()
{

II an object

makeArray(currFile).printNames(); II printNames() invoked
II for temporary object

The RecA r r ay object returned by ma keAr ray () is not assigned to another object,
and thus cannot be referenced after that line of code. It is used only to call the
p ri ntNames () member functions.

You might need to specify the addressing mode of the object returned, if the mem­
ber function you call accepts only one addressing mode. Consider the following
declaration:

class far RecArray
{

public:
RecArray() ;
void printNames();
void printAll() __ near;
~RecArray() ;

102 Programming Techniques

private:
II ...

} ;

The member function pri ntNames () can be called for far RecArray objects and
for near RecArray objects through type conversion. However, the member func­
tion pri ntA 11 () can be called only for near RecArray objects. Given the pre­
vious declaration of makeArray(), the statement

makeArray(currFi1e).printA11();

is an error, because the compiler creates a far temporary RecArray object, and its
address cannot be converted to the near address that p r i nt_ a 11 () expects.

To specify the addressing mode of a function's return type, place the class, struct,
or union keyword and the addressing mode keyword (__ near, __ far, or
__ huge) before the return type, as follows:

class __ near RecArray makeArray(FILE *hand1e);

This specifies that makeArray() returns a near RecArray object. This declaration
lets you call pri ntA 11 () for the return object. Note that this syntax can be used
only for functions that return an instance of a user-defined type, not for functions
that return built-in types.

Virtual Table Pointers

V-table pOinters'
addressing mode is
determined by the
class memory model.

If a class uses virtual functions, the compiler builds an array of function pointers
for that class. This array is known as a virtual function table, or a "v-table." Every
object of such a class contains a hidden member called a "v-table pointer." When
you call a virtual function for an object, your program uses that object's v-table
pointer to find the v-table, and then looks in the v-table to find the address of the
function that must be called.

Similarly, if a class inherits from a virtual base class, the compiler builds an array
containing the offsets of the virtual bases. This array is called the virtual base dis­
placement table, or "v-base table." Every object of such a class contains a hidden
member, called a "v-base table pointer." When you access one of an object's data
members that was defined by the virtual base, your program uses that object's
v-base table pointer to find the v-base table and then looks in the table to find the
offset of the virtual base.

The addressing mode of these virtual table pointers is determined by the memory
model of the class. The virtual tables of a near class are stored in the default data
segment, and objects of that class have near virtual table pointers. The virtual
tables of a far class are stored in an anonymous far segment in the TEXT group.
Objects of far classes have far virtual table pointers. These characteristics cannot

Managing Memory in C++ 103

be overriden by specifying a memory model keyword in the declaration of an
individual object.

You can use the INV switch to specify the name of the segment in which the vir­
tual tables are stored. For near classes, the segment specified must be one of the
segments in DGROUP. For far classes, any segment can be specified.

5.2 The Free Store
The free store in C++ corresponds to the heap in C; it provides the memory for
objects created at run time. In Microsoft C++, the operators new and delete have
been overloaded so you can allocate and deallocate near, far, and huge objects, and
objects based on a segment variable. These operators are similar to the malloc and
free functions in C.

The new Operator
Microsoft C++ has four versions of the new operator, which allocate objects in the
near, far, huge, and based address spaces. The new operator is the only operator or
function that can be overloaded on its return type; the only overloading allowed
for the return type is on the addressing mode.

By default, the return type of the new operator depends on the memory model
under which the program was compiled. For example, in the tiny, small and me­
dium memory models, new returns objects in the near address space.

If you explicitly specify an ambient model for a class, the new operator uses that
address space when allocating objects of that class. For example,

class far Node
{

} ;

Node *pN;

maine)
{

II Class is far

pN new Node; II Far allocation, even if program is
II compi 1 ed with a memory model that
II uses near data

You can override both the program's memory model and the class's ambient
model by explicitly specifying the address space of the object being allocated. To
do so, place the __ near, __ far, __ huge or __ based keyword after the name of
the type. You must use a segment variable with the __ based keyword. All the

104 Programming Techniques

The new operator for
huge objects behaves
like an array allocator.

standard conversions between pointers apply, as described in the C++ Language
Reference. The following example shows how you can use the various forms
of new:

class Node
{

} ;

Node *pN; II Depends on default memory model
Node near *npN;
Node __ far *fpN;
Node __ huge *hpN;
__ segment segvar;
Node __ based(segvar) *bpN;

maine)
{

}

pN new Node;
npN new near Node;
fpN = new __ far Node;
hpN = new __ huge Node;
segvar = _bheapseg(1000);
bpN new __ based(segvar) Node;

fpN new __ near Node;
fpN new __ based(segvar) Node;
npN new far Node;

II Depends on default memory model

II Convert near to far
II Convert based to far
II Error: cannot convert
II from far to near

You can write your own version of the new operator if you want to use a cus­
tomized memory allocation scheme (for instance, one that provides zero-initial­
ized storage or one that's optimized for your program's pattern of memory usage).
The new operator that you define must have the same return type and arguments
as the one you want to replace. To do this, you must use one of the following pro­
totypes:

void __ near *operator newt size_t size);
void __ far *operator newt size_t size);
void __ huge *operator newt unsigned long elems, size t size);
void __ based(void) *operator newt __ segment segvar, size_t size);

The argument of type size_ t is automatically set to the size of the object being
allocated. You can also define class-specific versions of any of these forms of new.

The new operator for huge objects behaves like an array allocator, even if only
one object is being allocated. It receives two arguments: the number of elements
being allocated and the size of each element. If the total size of the array is larger
than 128K, the element size must be a power of 2.

Managing Memory in C++ 105

The new operator for based objects has an additional argument, which is a seg­
ment variable. This argument receives the value of the segment used in the alloca­
tion expression.

When you redefine the new operator, you can make your version of the operator
accept additional arguments, known as "placement arguments." These arguments
must appear last when you declare new's argument list, but they must appear
before the type name and in parentheses when you call new. For example, to
define a new operator for based objects that takes a short integer as a placement
argument, you would use the following prototype:

void __ based(void) *operator new(__ segment segvar, size_t size, short
pl ace);

This prototype permits expressions like

bpN = new __ based(segvar) (112) Node;

The placement argument receives the value 112 as a short integer.

All of the default new operators have the __ cdecl calling convention.

The delete Operator
The delete operator is overloaded to accept pointers that are near, far, huge, or
based. When you delete an object, the addressing mode of the pointer determines
which delete operator is invoked. Thus, the following example invokes four
different delete operators:

npN new Node __ near;
fpN new Node __ far;
hpN new Node __ huge;
bpN new Node __ based(segvar);

delete npN; II Invokes near delete
delete fpN; II Invokes far delete
delete hpN; II Invokes huge delete
delete bpN; II Invokes based delete

The addressing mode of the pointer does not necessarily indicate the address space
of the object. For example,

Node __ far *fpN;

fpN = new Node __ near; II Type conversion: near to far

delete fpN; II Error: far delete invoked for near object

106 Programming Techniques

In this example, the compiler chooses the inappropriate delete operator for the
pointer, which results in a run-time error. To prevent this problem, you must
explicitly cast the pointer to the desired addressing mode:

delete (Node __ near *lfpN;

You must always ensure that the delete operator invoked corresponds to the new
operator used to allocate the object.

Just as with the new operator, you can write your own version of the delete opera­
tor to implement a customized memory-allocation scheme. If you want to imple­
ment different behavior for the different versions of the delete operator, you must
use one of the following prototypes:

void operator delete(void __ near *nptr l;
void operator delete(void __ far *fptr l;
void operator delete(void __ huge *hptr l;
void operator delete(__ segment segvar, void __ based(voidl *bptr l;

You can also define class-specific versions of any of these forms of delete. When
defining a class-specific version, you can specify an optional final argument of
type SiZL t. If present, the argument is automatically set to the size of the object
being deleted. You cannot define two versions of delete that are distinguished
only by the size_ t argument; that is, you cannot overload the delete operator for a
given addressing mode within class scope. However, you can define versions of
delete that have the same addressing mode but different scopes; that is, one with
global scope and one with class scope.

All the default versions of delete have the __ cdecl calling convention.

The _seCnew_handler Function
Microsoft c++ allows you to specify what actions should be taken when the free
store is exhausted. You do this by defining an error-handling function and passing
it to the _seLnew_handler function, defined in the include file NEW.H. When­
ever the new operator supplied by the compiler cannot allocate the memory re­
quested, it checks to see if an error handler has been installed. If an error handler
is defined, new calls it; otherwise new simply returns zero. You can write a simple
error handler that prints an error message, performs some cleanup tasks, and then
exits the program, or you can write a more sophisticated error handler that
attempts to recover memory so that new can retry the allocation.

The error handler you write must take the same arguments as the new function
that invokes it. For the near or far free stores, the error handler must take one argu­
ment of type SiZL t, indicating the amount of memory requested, and return an
integer. For the huge free store, the error handler must take an argument of type
unsigned long, indicating the number of elements being allocated, and one of type

All error handlers
require the __ cdecl
calling convention.

Managing Memory in C++ 107

size_ t, indicating the size of each element. An error handler for the based free
store must take an additional argument of type __ segment, indicating the segment.

The error handler should return a zero if it is unable to recover the amount of
memory requested. Otherwise, it should return a nonzero value. The __ cdecl
calling convention is required for all error handlers.

The following examples are sample prototypes for error handlers:

int my_near_handler(size_t size l;
int my_far_handler(size_t size l;
int my_huge_handler(unsigned long elems, size t size l;
int my_based_handler(__ segment segvar, size_t size l;

The _seLnew_handler function maps onto either the _seLnnew_handler or
_seLfnew_handlerfunctions, depending on the program's memory model. You
can also call these functions explicitly, or you can call the corresponding functions
for the huge and based free stores. All of these functions return a pointer to the pre­
viously installed error handler, or a NULL if no handler was installed.

The following are prototypes for the functions that install the various error han­
dlers. The types _ PNH, _ PNHH, and _ PNHB are typedefs for pointers to the error­
handling functions.

_PNH __ cdecl _set_nnew_handler(_PNH handler l;
_PNH __ cdecl _set_fnew_handler(_PNH handler l;

PNHH cdecl _set_hnew_handler(PNHH handler l;
_PNHB __ cdecl _set_bnew_handler(_PNHB handler l;

If the error handler returns a nonzero value, the new operator supplied by the com­
piler tries the allocation again. If the allocation fails again, new calls the error han­
dler again. This continues until the error handler returns zero or until the allocation
succeeds.

In multiprocess, multithreaded environments, separate error handlers exist for each
process and thread. No handlers are preinstalled when a process begins. When a
thread starts, it gets copies of its parent's handlers for all free stores.

5.3 Based Addressing for Member Functions
Just as you can declare ordinary functions as based, you can also declare member
functions as based. This is useful if you declare virtual functions as __ near,
which requires that they be called from within the same segment as they reside in.
Note that a base class's definition of a function and a derived class's definition
may reside in separate files.

108 Programming Techniques

For example, consider the following program:

II FILE 1 - Compiled under large model
class Shape
{

II
virtual void near redraw();

}

void near Shape::redraw()
{

I I ...

void __ far test(Shape *currShape
{

currShape->redraw(); II Invoke virtual function

In this example, you can safely declare redraw as a near function, since it is in the
same file as the function that calls it, and the compiler places it in the same seg­
ment. However, a derived class may be declared in another file, as follows:

II FILE 2 - Compiled under large model
class Circle public Shape
{

II
void near redraw();

}

void near Circle::redraw()
{

II
}

Because this program is compiled under large model, each file defines a separate
code segment. The test function cannot perform a near call to a redraw function
in another segment. As a result, the test function may either succeed or fail, de­
pending on whether its argument is an instance of a base class or an instance of a
derived class. For example,

Shape my_shape;
Circle my_circle;

test(&my_shape); II Okay - Shape::redraw in the same
II segment as the test function

test(&my_circle); II Error - Circle::redraw in different segment

The second function call causes a run-time error.

Managing Memory in C++ 109

The easiest way to avoid this problem is to declare all your virtual functions as
__ far, so they can be called from any segment. However, if you want to declare
your virtual functions as __ near, you can avoid problems by declaring the virtual
function to be based in the same segment as test:

vi rtual void __ near __ based(__ segname("MYSEG")) redraw();

void __ far __ based(__ segname("MYSEG")) teste Shape *curr_shape);

The __ based expression remains in effect through all subsequent redefinitions of
red raw. Derived classes can define their own versions of red raw, and they will be
stored in the same segment as the base class's version.

If redefinitions of a virtual function are declared as being based in a different seg­
ment, the compiler issues a warning.

Using the Inline Assembler

This chapter explains how to use the Microsoft c/c++ inline assembler. Assembly
language serves many purposes, such as improving program speed, reducing
memory needs, and controlling hardware. The inline assembler lets you embed
assembly-language instructions directly in your C and c++ source programs
without extra assembly and link steps. The inline assembler is built into the com­
piler-you don't need a separate assembler such as the Microsoft Macro Assem­
bler (MASM). For more information on the interaction between C and assembly
language, see Chapter 11, "Programming with Mixed Languages."

6.1 Advantages of Inline Assembly
Because the inline assembler doesn't require separate assembly and link steps, it
is more convenient than a separate assembler. Inline assembly code can use any C
variable or function name that is in scope, so it is easy to integrate it with your
program's C code. Because the assembly code can be mixed in line with C or C++
statements, it can do tasks that are cumbersome or impossible in C or C++.

The uses of inline assembly include

• Writing functions in assembly language

• Spot-optimizing speed-critical sections of code

• Calling DOS and BIOS routines with the INT instruction

• Creating TSR (terminate-and-stay-resident) code or handler routines that
require knowledge of processor states

Inline assembly is a special-purpose tool. If you plan to port an application to
different machines, you'll probably want to place machine-specific code in a sepa­
rate module. Because the inline assembler doesn't support all of MASM's macro
and data directives, you may find it more convenient to use MASM for such
modules.

112 Programming Techniques

6.2 The __ a8m Keyword

Braces can prevent
ambiguity and need­
less repetition.

The __ asm keyword invokes the inline assembler and can appear wherever a Cor
C++ statement is legal. It cannot appear by itself. It must be followed by an as­
sembly instruction, a group of instructions enclosed in braces, or, at the very least,
an empty pair of braces. The term " __ asm block" here refers to any instruction or
group of instructions, whether or not in braces.

Below is a simple __ asm block enclosed in braces. (The code prints the "beep"
character, ASCII 7.)

asm
{

mov ah, 2
mov dl, 7
int 21h

}

Alternatively, you can put __ asm in front of each assembly instruction:

asm mov ah, 2
asm mov dl, 7
asm int 21h

Since the __ asm keyword is a statement separator, you can also put assembly
instructions on the same line:

__ asm mov ah, 2 __ asm mov dl, 7 asm int 21h

All three examples generate the same code, but the first style (enclosing the
__ asm block in braces) has some advantages. The braces clearly separate as­
sembly code from C or C++ code and avoid needless repetition of the __ asm
keyword. Braces can also prevent ambiguities. If you want to put a C or C++ state­
ment on the same line as an __ asm block, you must enclose the block in braces.
Without the braces, the compiler cannot tell where assembly code stops and C or
C++ statements begin. Finally, since the text in braces has the same format as ordi­
nary MASM text, you can easily cut and paste text from existing MASM source
files.

The braces enclosing an __ asm block don't affect variable scope, as do braces in
C and C++. You can also nest __ asm blocks; nesting does not affect variable
scope.

Using the Inline Assembler 113

6.3 Using Assembly Language in __ asm Blocks
The inline assembler has much in common with other assemblers. For example, it
accepts any expression that is legal in MASM. This section describes the use of
assembly-language features in __ asm blocks.

Instruction Set
The inline assembler supports the full instruction set of the Intel 80286 and 80287
processors. To use 80286 or 80287 instructions, compile with the IG2 option. The
inline assembler for CL3232.EXE recognizes 80386- and 80387-specific instruc­
tions, so those instructions are available when you write a 32-bit program; the
inline assemblers for the other compilers do not recognize those instructions.

Expressions
Inline assembly code can use any MASM expression, which is any combination of
operands and operators that evaluates to a single value or address.

Data Directives and Operators
Although an __ asm block can reference C or c++ data types and objects, it can­
not define data objects with MASM directives or operators. Specifically, you can­
not use the definition directives DB, DW, DD, DQ, DT, and DF, or the operators
DUP or THIS. MASM structures and records are also unavailable. The inline as­
sembler doesn't accept the directives STRUC, RECORD, WIDTH, or MASK.

EVEN and ALIGN Directives
While the inline assembler doesn't support most MASM directives, it does support
EVEN and ALIGN. These directives put NOP (no operation) instructions in the
assembly code as needed to align labels to specific boundaries. This makes instruc­
tion-fetch operations more efficient for some processors (not including eight-bit
processors such as the Intel 8088).

Macros
The inline assembler is not a macro assembler. You cannot use MASM macro
directives (MACRO, REPT, IRe, IRP, and ENDM) or macro operators «>, !,
&, %, and .TYPE). An __ asm block can use C preprocessor directives, however.
See "Using C and C++ in __ asm Blocks," on page 115 for more information.

114 Programming Techniques

Segment References
You must refer to segments by register rather than by name (the segment name
_ TEXT is invalid, for instance). Segment overrides must use the register expli­
citly, as in ES:[BX].

Type and Variable Sizes
The LENGTH, SIZE, and TYPE operators have a limited meaning in inline
assembly. They cannot be used at all with the DUP operator (because you cannot
define data with MASM directives or operators). But you can use them to find the
size of C or C++ variables or types:

• The LENGTH operator can return the number of elements in an array. It
returns the value 1 for nonarray variables.

• The SIZE operator can return the size of a C or C++ variable. A variable's size
is the product of its LENGTH and TYPE.

• The TYPE operator can return the size of a C or C++ type or variable. If the
variable is an array, TYPE returns the size of a single element of the array.

For example, if your program has an eight-element int array,

int arr[8];

the following C and assembly expressions yield the size of a r r and its elements:

LENGTH arr
SIZE arr
TYPE arr

Comments

C Size

sizeof(arr)/sizeof(arr[O]) 8

sizeof (arr) 16

sizeof(arr[O]) 2

Instructions in an __ asm block can use assembly-language comments:

__ asm mov ax, offset buff; Load address of buff

Because C macros expand into a single logical line, avoid using assembly­
language comments in macros (see "Defining __ asm Blocks as C Macros" on
page 123). An __ asm block can also contain C-style comments, as noted below.

Inline assembly code
can be debugged with
CodeView.

Using the Inline Assembler 115

The _emit Pseudoinstruction
The _emit pseudoinstruction is similar to the DB directive of MASM. It allows
you to define a single immediate byte at the current location in the current text seg­
ment. However, _emit can define only one byte at a time, and it can only define
bytes in the text segment. It uses the same syntax as the INT instruction.

One use for _emit is to define 80386-specific instructions, which the inline assem­
bler does not support. The following fragment, for instance, defines the 80386
CWDE instruction:

1* Assumes 16-bit mode *1
#define cwde asm _emit 0x66 asm _emit 0x98

asm {
cwde
}

Debugging and Listings
Programs containing inline assembly code can be debugged with the Code View
debugger, assuming you compile with the /Zi option.

Within CodeView, you can set breakpoints on both C or C++ and assembly-lan­
guage lines. If you enable mixed assembly and source mode, you can display both
the source and disassembled form of the assembly code.

Note that putting multiple assembly instructions or source language statements on
one line can hamper debugging with CodeView. In source mode, the CodeView
debugger lets you set breakpoints on a single line but not on individual statements
on the same line. The same principle applies to an __ asm block defined as a C
macro, which expands to a single logical line.

If you create a mixed source and assembly listing with the !Fe compiler option, the
listing contains both the source and assembly forms of each assembly-language
line. Macros are not expanded in listings, but they are expanded during
compilation.

See the Environment and Tools manual for more information.

6.4 Using C or C++ in __ 3sm Blocks
Because inline assembly instructions can be mixed with C or C++ statements, they
can refer to C or C++ variables by name and use many other elements of those
languages.

116 Programming Techniques

Using Operators

An __ asm block can use the following language elements:

• Symbols, including labels and variable and function names

• Constants, including symbolic constants and enum members

• Macros and preprocessor directives

• Comments (both / * * / and / /)

• Type names (wherever a MASM type would be legal)

• typedefnames, generally used with operators such as PTR and TYPE or to
specify structure or union members

Within an __ asm block, you can specify integer constants with either C notation
or assembler radix notation (OxlOO and 100h are equivalent, for example). This
allows you to define (using #define) a constant in C and then use it in both C or
C++ and assembly portions of the program. You can also specify constants in
octal by preceding them with a O. For example, 0777 specifies an octal constant.

An __ asm block cannot use C or C++ specific operators, such as the « operator.
However, operators shared by C and MASM, such as the * operator, are inter­
preted as assembly-language operators. For instance, outside an __ asm block,
square brackets ([]) are interpreted as enclosing array subscripts, which C auto­
matically scales to the size of an element in the array. Inside an __ asm block, they
are seen as the MASM index operator, which yields an unscaled byte offset from
any data object or label (not just an array). The following code illustrates the
difference:

i nt array[10];

__ asm mov array[6], bx; Store BX at array+6 (not scaled)

array[6] = 0; /* Store 0 at array+12 (scaled) */

The fIrst reference to a rray is not scaled, but the second is. Note that you can
use the TYPE operator to achieve scaling based on a constant. For example, the
following statements are equivalent:

__ asm mov array[6 * TYPE int], 0 ; Store 0 at array + 12

array[6] = 0; /* Store 0 at array + 12 */

Using C or C++ Symbols
An __ asm block can refer to any C or C++ symbol in scope where the block
appears. (C and C++ symbols are variable names, function names, and labels; that

Using the Inline Assembler 117

is, names that aren't symbolic constants or enum members. You cannot call C++
member functions.)

A few restrictions apply to the use of C and C++ symbols:

• Each assembly-language statement can contain only one C or C++ symbol.
Multiple symbols can appear in the same assembly instruction only with
LENGTH, TYPE, and SIZE expressions. You can also use two symbols if
one is a register variable.

• Functions referenced in an __ asm block must be declared (prototyped) earlier
in the program. Otherwise, the compiler cannot distinguish between function
names and labels in the __ asm block.

• An __ asm block cannot use any C or C++ symbols with the same spelling as
MASM reserved words (regardless of case). MASM reserved words include
instruction names such as PUSH and register names such as SI.

• Structure and union tags are not recognized in __ asm blocks.

Accessing C or C++ Data
A great convenience of inline assembly is the ability to refer to C or C++ variables
by name. An __ asm block can refer to any symbols, including variable names,
that are in scope where the block appears. For instance, if the C variable va r is in
scope, the instruction

__ asm mov ax, var

stores the value of va r in AX.

If a class, structure or union member has a unique name, an __ asm block can
refer to it using only the member name, without specifying the variable or typedef
name before the period (.) operator. If the member name is not unique, however,
you must place a variable or typedefname immediately before the period (.) opera­
tor. For example, the following structure types share same_ name as their member
name:

struct first_type
{

} ;

char *weasel;
int same_name;

struct second_type
{

} ;

int wanton;
long same_name;

118 Programming Techniques

If you declare variables with the types

struct fi rsL type hal;
struct second_type oat;

all references to the member same_ name must use the variable name, because
same_name is not unique. But the member weasel has a unique name, so you can
refer to it using only its member name:

asm

mov bx, OFFSET hal
mov cx, [bx]hal.same_name Must use 'hal'
mov si, [bx] .weasel Can omit' hal'

Note that omitting the variable name is merely a coding convenience. The same
assembly instructions are generated whether or not the variable name is present.

You can access data members in C++ without regard to access restrictions. How­
ever, you cannot call member functions.

Writing Functions
If you write a function with inline assembly code, it's easy to pass arguments to
the function and return a value from it. The following examples compare a func­
tion first written for a separate assembler and then rewritten for the inline assem­
bler. The function, called power2, receives two parameters, multiplying the first
parameter by 2 to the power of the second parameter. Written for a separate
assembler, the function might look like this:

POWER.ASM
Compute the power of an integer

PUBLIC _power2
TEXT SEGMENT WORD PUBLIC 'CODE'

_power2 PROC

push bp
mov bp,

mov ax,
mov cx,
shl ax,
pop bp
ret

_power2 ENDP
TEXT ENDS

END

sp

[bp+4]
[bp+6]
cl

Save BP
Move SP into BP so we can refer

to arguments on the stack
Get first argument
Get second argument
AX = AX * (2 A CL)
Restore BP
Return with sum in AX

Function arguments
are usually passed on
the stack.

Using the Inline Assembler 119

Since it's written for a separate assembler, the function requires a separate source
file and assembly and link steps. C and C++ function arguments are usually passed
on the stack, so this version of the power2 function accesses its arguments by
their positions on the stack. (Note that the MODEL directive, available in MASM
and some other assemblers, also allows you to access stack arguments and local
stack variables by name.)

The POWER2.C program below writes the power2 function with inline assembly
code:

1* POWER2.C *1
#include <stdio.h>

int power2(int num, int power);

void maine void
{

}

printf("3 times 2 to the power of 5 is %d\n", \
power2(3,5));

int power2(int num, int power)
{

}

{

}

asm

mov ax, num
mov cx, power
shl ax, cl

Get first argument
Get second argument
AX = AX * (2 to the power of CL)

1* Return with result in AX *1

The inline version of the power2 function refers to its arguments by name and ap­
pears in the same source file as the rest of the program. This version also requires
fewer assembly instructions. Since C automatically preserves BP, the __ 3sm
block doesn't need to do so. It can also dispense with the RET instruction, since
the C part of the function performs the return.

Because the inline version of power2 doesn't execute a C return statement, it
causes a harmless warning if you compile at warning levels 2 or higher:

warning C4035: 'power2' : no return value

The function does return a value, but the compiler cannot tell that in the absence of
a return statement. Simply ignore the warning in this context.

120 Programming Techniques

6.5 Using and Preserving Registers

Don't use the
__ fastcall calling con­
vention for functions
with __ asm blocks.

Functions return
small values in the
AX and OX registers.

In general, you should not assume that a register will have a given value when an
__ asm block begins. An __ asm block inherits whatever register values happen to
result from the normal flow of control.

If you use the __ fastcall calling convention, the compiler passes function argu­
ments in registers instead of on the stack. This can create problems in functions
with __ asm blocks, since a function has no way to tell which parameter is in
which register. If the function happens to receive a parameter in AX and imme­
diately stores something else in AX, the original parameter is lost. In addition, you
must preserve the CX register in any function declared with __ fastcall.

To avoid such register conflicts, don't use the __ fastcall convention for functions
that contain an __ asm block. If you specify the __ fastcall convention globally
with the lOr compiler option, declare every function containing an __ asm block
with __ cdecl or __ pascal. (The __ cdecl attribute tells the compiler to use the C
calling convention for that function. The __ pascal attribute tells the compiler to
use the FORTRANlPascal convention, which is the default for C++ functions.) If
you are not compiling with lOr, avoid declaring the function with the __ fastcall
attribute.

As you may have noticed in the POWER2.C example in "Writing Functions" on
page 118, the power2 function doesn't preserve the value in the AX register.
When you write a function in assembly language, you don't need to preserve the
AX, BX, CX, OX, ES, and flags registers. However, you should preserve any
other registers you use (01, SI, OS, SS, SP, and BP).

Note If your inline assembly code changes the direction flag using the STO or
CLO instructions, you must restore the flag to its original value.

The POWER2.C example in "Writing Functions" on page 118 also shows that
functions return values in registers. This is true for return values that are four bytes
or smaller (except for structures), whether the function is written in assembly
language or in C or C++.

If the return value is short (a char, int, or near pointer), it is stored in AX. The
POWER2.C example returned a value by terminating with the desired value in AX.

If the return value is long, store the high word in OX and the low word in AX. To
return a longer value (such as a floating-point value), store the value in memory
and return a pointer to the value (in AX if near or in OX:AX if far).

Assembly instructions that appear inline with C or C++ statements are free to alter
the AX, BX, CX, and OX registers. C and C++ don't expect these registers to be
maintained between statements, so you don't need to preserve them. The same is
true of the SI and 01 registers, with some exceptions (see "Optimizing" on page

Using the Inline Assembler 121

124). You should preserve the SP and BP registers unless you have some reason to
change them-to switch stacks, for example.

6.6 Jumping to labels

Labels in asm
blocks have function
scope and are not
case sensitive.

Like an ordinary C or c++ label, a label in an __ asm block has scope throughout
the function in which it is defined (not only in the block). Both assembly instruc­
tions and goto statements can jump to labels inside or outside the __ asm block.

Labels defined in __ asm blocks are not case sensitive; both goto statements
and assembly instructions can refer to those labels without regard to case. C and
C++ labels are case sensitive only when used by goto statements. Assembly
instructions can jump to a C or C++ label without regard to case.

The following do-nothing code shows all the permutations:

void func(void
{

}

goto CDest;
goto c_dest;

goto A_Dest;
goto a_dest;

asm

jmp C Dest
jmp c dest

jmp A_ Dest
jmp a dest

a dest:

C Dest:
return;

/* Lega 1 : correct case */
/* Error: incorrect case */

/* Legal: correct case */
/* Lega 1 : incorrect case */

Legal: correct case
Lega 1 : incorrect case

Lega 1 : correct case
Legal: incorrect case

asm 1 abel

/* C label */

Don't use C library function names as labels in __ asm blocks. For instance, you
might be tempted to use ex it as a label, as follows:

; BAD TECHNIQUE: using library function name as label
jne exit

exit:
More asm code follows

122 Programming Techniques

Because exit is the name of a C library function, this code might cause a jump to
the exit function instead of to the desired location.

As in MASM programs, the dollar symbol ($) serves as the current location
counter. It is a label for the instruction currently being assembled. In __ asm
blocks, its main use is to make long conditional jumps:

jne $+5 ; next instruction is 5 bytes long
jmp farl abel

$+5

farl abel:

6.7 Calling C Functions
An __ asm block can call C functions, including C library routines. The following
example calls the printf library routine:

#include <stdio.h>

char formate] = "%5 %s\n";
char hell o[] "Hello" ;
char world[] = "world";

void maine void)

{

asm
{

mov ax, offset worl d
push ax
mov ax, offset hell 0

push ax
mov ax, offset format
push ax
ca 11 pri ntf

}
}

Since function arguments are passed on the stack, you simply push the needed
arguments-string pointers, in the example above-before calling the function.
The arguments are pushed in reverse order, so they come off the stack in the
desired order. To emulate the C statement

printf(format, hello, world);

the example pushes pointers to worl d, hello, and format, in that order, then calls
printf.

Using the Inline Assembler 123

6.8 Calling C++ Functions
An __ asm block can call only global C++ functions that are not overloaded. If
you call an overloaded global C++ function or a C++ member function, the
compiler issues an error.

You can also call any functions declared with extern "C" linkage. This allows an
__ asm block within a C++ program to call the C library functions, since all the
standard header files declare the library functions to have extern "C" linkage.

6. 9 Defining __ asm Blocks as C Macros
C macros offer a convenient way to insert assembly code into your source code,
but they demand extra care because a macro expands into a single logical line. To
create trouble-free macros, follow these rules:

• Enclose the __ asm block in braces.

• Put the __ asm keyword in front of each assembly instruction.

• Use old-style C comments (1* comment *1) instead of assembly-style com­
ments (; comment) or single-line C comments (I I comment).

To illustrate, the following example defines a simple macro:

#define BEEP asm \
1* Beep sound *1 \
{ \

asm mov ah, 2 \
asm mov dl, 7 \
asm int 21h \

At first glance, the last three __ asm keywords seem superfluous. They are
needed, however, because the macro expands into a single line:

asm 1* Beep sound *1 { __ asm mov ah, 2 __ asm mov dl, 7 __ asm int 21h }

The third and fourth __ asm keywords are needed as statement separators. The
only statement separators recognized in __ asm blocks are the newline character
and __ asm keyword. Since a block defined as a macro is one logical line, you
must separate each instruction with __ asm.

The braces are essential as well. If you omit them, the compiler can be confused
by C or C++ statements on the same line to the right of the macro invocation.
Without the closing brace, the compiler cannot tell where assembly code stops,
and it sees C or C++ statements after the __ asm block as assembly instructions.

124 Programming Techniques

Use C comments in
__ asm blocks written
as macros.

You can convert
MASM macros to C
macros.

Assembly-style comments that start with a semicolon (;) continue to the end of the
line. This causes problems in macros because the compiler ignores everything
after the comment, all the way to the end of the logical line. The same is true of
single-line C or C++ comments (I I comment). To prevent errors, use old-style C
comments (1* comment *1) in __ asm blocks defined as macros.

An __ asm block written as a C macro can take arguments. Unlike an ordinary C
macro, however, an __ asm macro cannot return a value. So you cannot use such
macros in C or C++ expressions.

Be careful not to invoke macros of this type indiscriminately. For instance, invok­
ing an assembly-language macro in a function declared with the __ fastcall con­
vention may cause unexpected results. (See "Using and Preserving Registers" on
page 120.)

Note that some MASM-style macros can be written as C macros. Below is
a MASM macro that sets the video page to the value specified in the page
argument:

setpage MACRO page
mov ah, 5
mov al, page
int 10h
ENOM

The following code defines setpage as a C macro:

/fdefine setpage(page asm \
{ \

asm mov ah, 5 \
asm mov a 1 , page \
asm int 10h \

Both macros do the same job.

6.10 Optimizing
The presence of an __ asm block in a function affects optimization in several
ways. First, the compiler doesn't try to optimize the __ asm block itself. What you
write in assembly language is exactly what you get.

Second, the presence of an __ asm block affects register variable storage. Under
normal circumstances (unless you suppress optimization with the IOd option) the
compiler automatically stores variables in registers. This is not done, however, in
any function that contains an __ asm block. To get register variable storage in
such a function, you must request it with the register keyword.

Using the Inline Assembler 125

Since the compiler stores register variables in the SI and 01 registers, these regis­
ters represent variables in functions that request register storage. The first eligible
variable is stored in SI and the second in 01. Preserve SI and 01 in such functions
unless you want to change the register variables.

Keep in mind that the name of a variable declared with register translates directly
into a register reference (assuming a register is available for such use). For
example, if you declare

register int sample;

and the variable sampl e happens to be stored in SI, the __ asm instruction

__ asm mov ax, sample

is equivalent to

__ asm mov ax, si

If you declare a variable with register and the compiler cannot store the variable
in a register, the compiler issues a warning to that effect at compile time. You
must remove the register declaration from that variable to get rid of the warning.

Register variables are the exception to the general rule that an assembly-language
statement can contain no more than one C or C++ symbol. If one of the symbols is
a register variable, for example,

register int vI;
int v2;

then an instruction can use two C or C++ symbols, as in

mov vI, v2

Finally, the presence of inline assembly code inhibits the following optimizations
for the entire function in which the code appears:

• Loop (/01)

• Global register allocation (IOe)

• Global optimizations and common subexpressions (109)

These optimizations are suppressed no matter which compiler options you use.

Controlling Floating-Point Math
Operations

This chapter describes how to control the way your Microsoft C/C++ programs
perform floating-point math operations. It describes the math packages that you
can include in the C run-time libraries when you run the SETUP program, then dis­
cusses the options you can specify in the Programmer's WorkBench (PWB) or on
the CL command line to choose the appropriate library for linking and controlling
floating-point instructions.

This chapter also explains how to override floating-point options by changing li­
braries at link time, and how to control use of the Intel math coprocessor (80x87)
using the N087 environment variable.

7.1 Declaring Floating-Point Types
Microsoft C/C++ supports three floating-point types that conform to the Institute
of Electrical and Electronics Engineers (IEEE) standard 754 format:

• Type float, a 32-bit floating-point quantity

• Type double, a 64-bit floating-point quantity

• Type long double, an 80-bit floating-point quantity (not supported in the
alternate math package)

You can declare variables as any of these types. You can also declare functions
that return any of these types.

Declaring Variables as Floating-Point Types
You can declare variables as float, double, or long double, depending on the
needs of your application. The principal differences between the three types are
the significance they can represent, the storage they require, and their range. Table
7.1 shows the relationship between significance and storage requirements.

128 Programming Techniques

Table 7.1 Floating-Point Types

Type

float
double
long double

Significant Digits

6-7
15-16

19

Number of Bytes

4

8

10

Floating-point variables are represented by a mantissa, which contains the value
of the number, and an exponent, which contains the order of magnitude of the
number.

Table 7.2 shows the number of bits allocated to the mantissa and the exponent for
each floating-point type. The most-significant bit of any float, double, or long
double is always the sign bit. If it is 1, the number is considered negative; other­
wise, it is considered a positive number.

Table 7.2 Lengths of Exponents and Mantissas

Type Exponent Length Mantissa Length

float 8 bits 23 bits

double 11 bits 52 bits

long double 15 bits 64 bits

Because exponents are stored in an unsigned form, the exponent is biased by half
its possible value. For type float, the bias is 127; for type double, it is 1,023; for
type long double, it is 16,383. You can compute the actual exponent value by
subtracting the bias value from the exponent value.

The mantissa is stored as a binary fraction greater than or equal to 1 and less than
2. For types float and double, there is an implied leading 1 in the mantissa in the
most-significant bit position, so the mantissas are actually 24 and 53 bits long,
respectively, even though the most-significant bit is never stored in memory.

Instead of the storage method just described, the floating-point package can store
binary floating-point numbers as denormalized numbers. Denormalized numbers
are nonzero floating-point numbers with reserved exponent values in which the
most-significant bit of the mantissa is zero. By using denormalized format, the
range of a floating-point number can be extended at the cost of precision. You
cannot control whether a floating-point number is represented in normalized or
denormalized form; the floating-point package determines the representation.
The floating-point packages never use denormalized form unless the exponent
becomes less than the minimum that can be represented in a normalized form.

Microsoft C/C++
observes type­
widening rules.

Controlling Floating-Point Math Operations 129

Table 7.3 shows the minimum and maximum value you can store in variables of
each floating-point type. The values listed in this table apply only to normalized
floating-point numbers; denormalized floating-point numbers have a smaller min­
imum value. Note that numbers retained in 80x87 registers are always represented
in 80-bit normal form; numbers can only be represented in denormal form when
stored in 32- or 64-bit floating-point variables (type float and type long).

Table 7.3 Range of Floating-Point Types

Type Minimum Value Maximum Value

float 1.175494351 E - 38 3.402823466 E + 38

double 2.2250738585072014 E - 308 1.7976931348623158 E + 308

long double 3.362103143112093503 E - 4932 1.189731495357231765 E + 4932

If precision is less of a concern than storage, consider using type float for floating­
point variables. Conversely, if precision is the most important criterion, use type
long double.

Floating-point variables can be promoted to a type of greater significance (for
example, from type float to type double). Promotion often occurs when you per­
form arithmetic on floating-point variables. This arithmetic is always done in as
high a degree of precision as the variable with the highest degree of precision. For
example, consider the following type declarations:

float f_short;
double Llong;
long double f_longer;

Lshort = Lshort * L long;

In the preceding example, the variable Lshort is promoted to type double and
multiplied by f _ 1 on g; then the result is rounded to type float before being
assigned to Lshort.

In the example below (which uses the declarations from the preceding example),
the arithmetic is done in float (32-bit) precision on the variables; the result is then
promoted to type long double.

Declaring Functions That Return Floating-Point Types
You can declare functions that return the floating-point types float, double, and
long double. Functions that return types float or double do not place their return
values in registers; they place their return values in a global location called the
floating-point accumulator (__ fae). Functions that return the type long double

130 Programming Techniques

You can write reen­
trant functions that
return floating-point
types.

place their return values on the NDP stack (or numeric data processor stack), a
simulated stack made up of registers in the math coprocessor.

In 32-bit programs, all functions that return floating-point values place their return
values on the NDP stack. In addition, all functions that use the __ fastcall calling
convention and return floating-point values place their return values on the NDP
stack.

Using the current thread's private stack to return values allows you to write reen­
trant functions by eliminating possible contention between threads for the floating­
point accumulator.

Note You do not need to use the __ pascal keyword with functions that return
the type long double. There is no contention between threads for the NDP stack,
because the operating system saves the values of the coprocessor's registers for
each thread.

7 .2 Run-Time Library Support of Type long double
Of the math packages offered by the Microsoft C/C++ compiler, only the emulator
package and the math coprocessor package support the long double type; the alter­
nate math package does not support it. In the math packages that support long
double, each of the normal floating-point math functions has a special version that
supports type long double. These functions have the same name as the functions
that support type float and type double, except that they end with 1. For example,
the function that returns the absolute value of a variable of type float or type
double is fabs. The long double equivalent function is _fabsl. The two excep­
tions to this rule are the _atold and _strtold functions.

7.3 Summary of Math Packages
The Microsoft C/C++ compiler offers a choice of the following three math pack­
ages for handling floating-point operations:

• Emulator (default)

• Math coprocessor (a library that supports the Intel 80x87 family of math
coprocessors)

• Alternate math

When you install Microsoft C/C++, the SETUP program allows you to build com­
bined libraries. These libraries include the floating-point math library that you
choose. Any programs linked with that library use the math package included in
the library; you must use the appropriate PWB or CL option to make sure that the
library you want is used at link time.

Controlling Floating-Point Math Operations 131

The following descriptions of these math packages are designed to help you
choose the appropriate math option for your needs when you build a library using
SETUP. For more information about SETUP and about building combined
libraries, see the Getting Started manual.

For simplicity, the names of libraries are noted in the form mLIBCfLIB, where m
is the model designator and fis the floating-point math package designator.

Emulator Package

When you use the
emulator package,
some floating-point
exceptions are
masked.

Programs created using the emulator math package automatically detect and use
an 80x87 numeric coprocessor if one is installed. If no coprocessor is installed,
these 80x87 instructions are carried out in software. The emulator package is the
default math package; SETUP uses it if you do not explicitly choose another pack­
age. Also, the emulator math option is the option selected by default by the com­
piler if no other floating-point math option is specified.

Use the emulator math package to maximize accuracy on systems without math
coprocessors or if your program will be run on some systems with coprocessors
and some systems without coprocessors.

The emulator package performs basic operations to the same degree of accuracy as
a math coprocessor. However, the emulator routines used for transcendental math
functions (such as sin, cos, tan) differ slightly from the corresponding functions
performed on a coprocessor. This difference can cause a slight discrepancy (usu­
ally within two bits) between the results of these operations when performed with
the software emulation instead of with a math coprocessor.

When you use a math coprocessor or the emulator floating-point math package,
interrupt-enable, precision, underflow, and denormalized-operand exceptions are
masked by default. The remaining floating-point exceptions are unmasked. See the
discussion of the _ controlS7 function in Help for more information about 80x87
floating-point exceptions.

Math Coprocessor Package
The math coprocessor package utilizes the 80x87 math coprocessor exclusively for
floating -point calculations. If you use the math coprocessor package, the machine
on which your application is to run must have an 80x87 coprocessor to perform
floating-point operations. This package gives you the fastest, smallest programs
possible for handling floating-point math.

132 Programming Techniques

Alternate Math Package
The alternate math package gives you the smallest and fastest programs possible
without a coprocessor. However, the program results are not as accurate as results
given by the emulator package. In addition, the alternate math package does not
support the long double type.

The alternate math package uses the same format as the IEEE standard-format
numbers with less precision and weaker error checking. The alternate math pack­
age does not support infinities, NAN s ("not a number"), and denormal numbers.

7.4 Selecting Floating-Point Options (/FP)
You can select a floating-point library and the method of accessing floating-point
routines by setting options in PWB or by specifying command-line options to CL.
You can choose between the emulator, alternate, or math coprocessor library. You
can also access the floating-point routines by issuing a function call (or calls) or by
generating inline 80x87 instructions to execute the floating-point operation. The
smallest and the fastest floating-point math option is the inline math coprocessor
package because the compiler generates true 80x87 coprocessor instructions. If,
however, you cannot depend on the target computer having a coprocessor, you
must use either the emulator or alternate math options.

To specify floating-point options on the CL command line, you must specify an
option from the list in Table 7.4. You specify these options to CL starting with the
floating-point option string !FP.

Based on the floating-point option and the memory-model option you choose, the
compiler embeds a library name in the object file that it creates. This library is
then considered the default library; that is, the linker searches in the standard
places for a library with that name. If it finds a library with that name, the linker
uses the library to resolve external references in the object file being linked. Other­
wise, it displays a message indicating that it could not find the library.

This mechanism allows the linker to automatically link object files with the appro­
priate library. However, you can link with a different library in some cases. See
Table 7.4 and "Library Considerations for Floating-Point Options," on page 137
for more information about linking with different libraries.

Table 7.4 summarizes the floating-point options and their effects. These options
are described in detail in the following sections.

Controlling Floating-Point Math Operations 133

Table 7.4 Summary of Floating-Point Options

Option Combined
forCL Use of
forPWB Method Effect

/FPi Inline Default; larger than
Inline /FPi87, but can work
Emulation without a coprocessor;

most efficient way to
get maximum
precision without a
coprocessor

/FPi87 Inline Smallest and fastest
Inline Math option available with a
Coprocessor coprocessor

/FPc Calls Slower than /FPi, but
Calls to allows use of alternate
Emulator math library at link

time

/FPc87 Calls Slower than /FPi87,
Calls to but allows use of
Math alternate math library
Coprocessor at link time

/FPa Calls Fastest and smallest
Alternate option available
Math without a coprocessor,

but sacrifices some
accuracy for speed

1 Use of the coprocessor can be suppressed by setting N087.

2 Can be linked explicitly with mLIBC7 .LID at link time.

3 Can be linked explicitly with mLIBCA.LIB at link time.

4 Can be linked explicitly with mLIBCE.LIB at link time.

Libraries
Coprocessor Selected

Uses copro- mLIBCE.LIB2
cessor if
present!

Requires mLIBC7.LIB
coprocessor

Uses copro- mLIBCE.LIB2,3
cessor if
present!

Requires mLIBC7.LIB3,4
coprocessor
unless
library
changed at
link time5

Ignores mLIBCA.LIB2,4
coprocessor

5 Use of the coprocessor can be suppressed by setting N087 if you change to the emulator library at link
time.

Optimizations such as constant propagation and constant subexpression elimina­
tion can cause some expressions to be evaluated at compile time. Such evaluations
always use IEEE format and are unaffected by the floating-point option you
choose. For more information about optimizing, see Chapter 1, "Optimizing Your
Programs."

134 Programming Techniques

You can specify
floating-point options
in the Programmer's
WorkBench.

To specify floating-point options when using the Programmer's WorkBench,
pull down the Language Options submenu of the Options menu. From that menu,
open the C or C++ Compiler Options dialog box. From that dialog box, open the
Additional Release Options dialog box and select one of the following floating­
point math options:

Option

Emulation Calls

SOxS7 Calls

Fast Alternate Math

Inline Emulation

Inline SOxS7
Instructions

Effect

Generates calls; makes emulator math library the default (!FPc)

Generates calls; makes math coprocessor library the default
(!FPcS7)

Generates calls; makes alternate math library the default (/FPa)

Generates inline instructions; makes emulator math library the
default (1FPi); this is the default option

Generates inline instructions; selects math coprocessor library
(!FPiS7)

Inline Emulator Option (/FPi)
The inline emulator option (lFPi) generates inline instructions for an 80x87 co­
processor and places the name of the emulator library (mLIBCE.LIB) in the object
file. At link time, you can specify the math coprocessor library (mLIBC7.LIB)
instead. If you do not choose a floating-point option, the compiler uses the inline
emulator option by default.

The inline emulator option is useful if you cannot be sure that an 80x87 coproces­
sor will be available on the target computer. Programs compiled using the inline
emulator option work as described below:

• If a coprocessor is present at run time, the program uses the coprocessor.

• If no coprocessor is present, the program uses the emulator. In this case, the
inline emulator option offers the most efficient way to get maximum precision
in floating-point results.

When you use the inline emulator option, the compiler does not generate inline
80x87 instructions. Instead, the compiler generates software interrupts to library
code, which then fixes up the interrupts to use either the emulator or the coproces­
sor, depending on whether a coprocessor is present. If you want true inline 80x87
instructions, use the inline math coprocessor option (lFPi87).

Inline Math Coprocessor Instructions Option (/FPi87)
The inline math coprocessor instructions option (/FPi87) instructs the compiler to
place 80x87 coprocessor instructions in your code for many math operations. It

Controlling Floating-Point Math Operations 135

also causes the name of a math coprocessor library (mLIBC7.LIB) to be embedded
in the object file.

If you use the inline math coprocessor instructions option and link with the library
mLIBC7.LIB, an SOxS7 coprocessor must be present at run time, or the program
fails and the following error message is displayed:

run-time error R6002
- floating point not loaded

Compiling with the inline math coprocessor instructions option results in the small­
est, fastest programs possible for handling floating-point results.

Calls to Emulator Option (!FPc)
The calls to emulator option (/FPc) generates floating-point calls to the emulator
library and places the names of an emulator library (mLIBCE.LIB) in the object
file. At link time, you can specify a math coprocessor library (mLIBC7.LIB) or an
alternate math library (mLIBCA.LIB) instead. Thus, !FPc gives you more flexi­
bility in the libraries you can use for linking than the inline emulator option.

U sing the calls to emulator option is also recommended in the following cases:

• If you compile modules that perform floating-point operations and plan to
include these modules in a library

• If you compile modules that you want to link with libraries other than the
libraries provided with Microsoft C/C++

You cannot link with an alternate math library if your program uses the intrinsic
forms of floating-point library routines (that is, if you have compiled the program
with the IOi or lOx option, selected the Generate Intrinsic Functions option from
the Optimizations dialog box in the Programmer' s WorkBench, or specified math
functions in an intrinsic pragma).

Calls to Math Coprocessor Option (!FPc87)
The calls to math coprocessor option (/FPcS7) generates function calls to routines
in the math coprocessor library (mLIBC7.LIB) that issue the corresponding SOxS7
instructions. As with the inline math coprocessor instructions option (!FPiS7), at
link time you can choose to link with an emulator library (mLIBCE.LIB). How­
ever, /FPc offers more flexibility in choosing libraries, since you can change your
mind and link with the appropriate alternate math library as well (mLIBCA.LIB).

136 Programming Techniques

The disadvantages of using the calls to math coprocessor option as opposed to the
inline coprocessor option are as follows:

• Your executable size is larger because a call requires more instructions than a
true coprocessor instruction.

• Your program does not execute as fast because you must issue a function call
for each floating-point operation.

You cannot link with an alternate math library if your program uses the intrinsic
forms of floating-point library routines (that is, if you have compiled the program
with the IOi or lOx option, selected the Generate Intrinsic Functions option from
the Optimizations dialog box in the Programmer's WorkBench, or specified math
functions in an intrinsic pragma).

You must have a math coprocessor installed to run programs compiled with the
/FPc option and linked with a math coprocessor library. Otherwise, the program
fails and the following error message is displayed:

run-time error R6002
- floating point not loaded

Note Certain optimizations are not performed when you use the calls to math
coprocessor option. This can reduce the efficiency of your code; also, since arith­
metic of different precision can result, there may be slight differences in your
results.

Use Alternate Math Option (/FPa)
The use alternate math option (/FPa) generates floating-point calls and selects the
alternate math library for the appropriate memory model (mLIBCA.LIB). Calls to
this library provide the fastest and smallest option for code intended to run on a
machine without an 80x87 coprocessor. With this option, you can choose an emu­
lator library (mLIBCE.LIB) or a math coprocessor library (mLIBC7.LIB) at link
time.

You cannot link with an alternate math library if your program uses the intrinsic
forms of floating-point library routines (that is, if you have compiled the program
with the IOi or lOx option, selected the Generate Intrinsic Functions option from
the Optimizations dialog box in the Programmer's WorkBench, or specified math
functions in an intrinsic pragma).

Controlling Floating-Point Math Operations 137

7.5 Library Considerations for Floating-Point Options
You may want to use libraries in addition to the default library for the floating­
point option you have chosen in your compile options. For example, you may
want to create your own libraries (or other collections of subprograms in object­
file form), then link these libraries at a later time with object files that you have
compiled using different options.

The following sections describe these cases and ways to handle them. Although
the discussion assumes that you are putting your object files into libraries, the
same considerations apply if you are simply using individual object files.

Using One Standard Library for Linking
You must use only one standard C run-time library when you link. You can
control which library is used in one of two ways:

• In the Programmer's WorkBench, pull down the Project menu, open the Edit
Project dialog box, and add the name of the C run-time library file to the pro­
ject. Then pull down the Options menu, open the LINK Options dialog box, and
select the No Default Library Search option.

• From the LINK command line, give the !NODEFAULTLIBRARYSEARCH
(!NOD) option and then specify the name of the combined library file you want
to use in the link-libinfo field of the CL command line. This overrides the
library names embedded in the object files.

Inline Instructions or Calls
When deciding on a floating-point option, you should decide whether you want to
use inline instructions. If you do, compile with the inline math coprocessor instruc­
tions (IFPi87) or inlipe emulator (!FPi) option. Otherwise, compile for floating­
point function calls using the calls to math coprocessor (IFPc87), calls to emulator
(!FPc), or alternate math (IFPa) option.

If you choose to use inline instructions for your precompiled object files, you
cannot link with an alternate math library (mLIBCA.LIB). However, inline instruc­
tions achieve the best performance from your programs on machines that have an
80x87 coprocessor installed.

If you choose to use calls, your programs are slower, but at link time you can
switch to any standard C run-time library (that is, any library created by the
SETUP program) that supports the memory model you have chosen.

138 Programming Techniques

7.6 Compatibility Between Floating-Point Options
Each time you compile a source file, you can specify a floating-point option.
When you link two or more source files to produce an executable program file,
you must ensure that floating-point operations are handled consistently and that
the environment is set up properly to allow the linker to find the required library.

If you are building libraries of C or c++ routines that contain floating-point opera­
tions, the calls to emulator option (!FPc) provides the most flexibility.

The examples that follow illustrate how you can link your program with a library
other than the default. The floating-point option and the substitute library are
compatible.

The example below compiles the program CALC. C with the medium-model option
(lAM). Because no floating-point option is specified, the default inline emulator
option (/FPi) is used. The inline emulator option generates 80x87 instructions and
specifies the emulator library MLIBCE.LIB in the object file. The /LINK field
specifies the INOOEFAULTLIBRARYSEARCH (lNOO) option and the names
of the medium-model math coprocessor library. Specifying the math coprocessor
library forces the program to use an 80x87 coprocessor; the program fails if a
coprocessor is not present.

CL lAM CALC.C Ilink MLIBC7 INDO

The example below compiles CALC. C using the small (default) memory model
and the alternate math option (lFPa). The /LINK field specifies the INOO option
and the library SLIBCE.LIB. Specifying the emulator library causes all floating­
point calls to refer to the emulator library instead of to the alternate math library.

CL IFPa CALC.C Ilink SLIBCE INDO

The example below compiles CALC. C with the calls to math coprocessor option
(lFPc87), which places the library name SLIBC7.LIB in the object file. The ILINK
field overrides this default-library specification by giving the INOO option and the
name of the small-model alternate math library (SLIBCA.LIB).

CL IFPc87 CALC.C Ilink SLIBCA.LIB/NDO

7.7 Using the NOB7 Environment Variable
Programs compiled using either the calls to emulator (/FPc) or the inline emulator
(!FPi) option automatically use an 80x87 coprocessor at run time if one is in­
stalled. You can override this and force the use of the software emulator by setting
an environment variable named N087.

Use the NOB7 environ­
ment variable to
suppress use of the
B0x87 coprocessor at
run time.

Controlling Floating-Point Math Operations 139

If N087 is set to any value when the program is executed, use of the coprocessor
is suppressed. The value of the N087 setting is printed on the standard output as a
message. The message is printed if a coprocessor is present and suppressed, or if
no coprocessor is present.

You can set an environment variable by using the SET command from the com­
mand line. For example,

SET N087=Use of coprocessor suppressed

This command causes the message Use of coprocessor suppressed to appear
when a program that uses an emulator library is executed. If you don't want a mes­
sage to be printed, set N087 equal to one or more spaces. A blank string for N087
causes a blank line to be printed.

Note that only the presence or absence of the N087 definition is important in sup­
pressing use of the coprocessor. The actual value of the N087 setting is used only
for printing the message.

The N087 variable takes effect with any program linked with an emulator library
(mLIBCE.LIB). It has no effect on programs linked with math coprocessor
libraries (mLIBC7.LIB) or on programs linked with alternate math libraries
(mLIBCA.LIB).

7.8 Incompatibility Issues
The exception handler in the libraries for 80x87 floating-point calculations
(mLIBCE.LIB and mLIBC7.LIB) is designed to work without modification on
the IBM PC family of computers and on closely compatible computers, including
the WANG PC, the AT&T 6300, and the Olivetti personal computers. Also, the
libraries need not be modified for the Texas Instruments Professional Computer,
even though it is not compatible. Any machine that uses nonmaskable interrupts
(NMI) for 80x87 exceptions will run with the unmodified libraries. If your com­
puter is not one of these, and if you are unsure whether it is completely compat­
ible, you may need to modify the math coprocessor libraries.

All Microsoft languages that support 80x87 coprocessors intercept 80x87 excep­
tions in order to produce accurate results and properly detect error conditions. To
make the libraries work correctly on incompatible machines, you can modify the
libraries. To make this easier, an assembly-language source file, EMOEM.ASM, is
included with Microsoft C/C++. Any machine that sends the 80x87 exception to
an 8259 Priority Interrupt Controller (master or master/slave) can be supported by
a simple table change to the EMOEM.ASM module. The source file contains
further instructions about how to modify EMOEM.ASM, patch libraries, and
executable files.

Compiling with the QuickWin
Windows Library

QuickWin makes it
easy to add Windows
functions to DOS
programs.

QuickWin is a set of libraries that helps you tum non-Windows DOS programs
into simple Windows applications.

Using QuickWin, many programs written for DOS can be compiled with Micro­
soft C/C++ to run in a Windows text-only window. A QuickWin window behaves
like the DOS character-mode display. You can write to the window and receive
input through it with standard C input and output routines, such as printf and
scanf, or standard C++ iostream facilities, such as cout and cin.

Note To work with QuickWin, DOS programs must meet certain qualifications.
Generally, your DOS program can be linked with the QuickWin libraries as long
as it does not use graphics, Dynamic Data Exchange (DDE), serial port I/O, or
cursor positioning and as long as it does not spawn processes.

QuickWin makes it easy for you to add a simple subset of Windows functions to
your DOS programs without having a detailed knowledge of Windows program­
ming. Note that QuickWin offers only a portion of Windows capability. You can­
not write a complete Windows application using QuickWin because you cannot
call Windows application programming interface (API) functions from your
QuickWin program. You can, however, add a Windows flavor to your applica­
tions, especially if you use the enhanced QuickWin features explained later in this
chapter.

QuickWin is also useful for experienced Windows programmers. When you have
a simple non-Windows program that you'd like to see in a window without
completely overhauling the application, use QuickWin.

Additionally, QuickWin applications have access to all of the Windows address
space and can share data with other Windows applications.

This chapter explains the user interface and the programming features provided by
QuickWin and how to use them to build your own QuickWin applications.

146 Programming Techniques

8.1 What a QuickWin Program Provides

Using QuickWin

This section explains how to use QuickWin, the QuickWin user interface, standard
and enhanced features, and the extent of Windows functionality that QuickWin
provides.

You can use QuickWin in two ways.

Simple QuickWin Programs
The simplest way to use QuickWin is to link your DOS application with the Quick­
Win libraries without altering your source code. Your program then has the stand­
ard QuickWin user interface features described in "The QuickWin User Interface"
section on page 147. Your simple QuickWin program:

• Runs in the Windows environment, in a window.

• Can be minimized or maximized, like any Windows application (minimized
child windows appear as icons in the lower part of the client window; maxi­
mized windows fill the screen).

• Provides a standard QuickWin menu bar.

• Takes advantage of the Windows Clipboard by providing Copy and Paste
commands.

• Provides Help for the QuickWin features.

• Takes advantage of the virtual memory management capabilities of Windows,
overriding the DOS 640K size limitation.

Enhanced QuickWin Programs
You can use QuickWin to take advantage of more Windows features (although not
the functions in the Windows API). To use these enhanced features, you must alter
your source code. You can:

• Add multiple child windows (also called document windows).

• Control the size and placement of child windows, including whether they are
tiled or cascaded (cascaded windows overlap; tiled windows are arranged so
that all windows are fully visible, with no overlap).

• Control the size of a window's text buffer, determining how much ofthe win­
dow's text is stored (and can be scrolled through even when it is not all visible).

• Control which child window is the currently active window (said to have the
"input focus").

Compiling with the QuickWin Windows Library 147

• Add an About dialog box customized with your text.

• Simulate mouse clicks in some of the QuickWin menus.

• Yield processing time to other Windows applications.

• Add custom application and document icons to your program.

The QuickWin User Interface
When a QuickWin program runs, it displays a Windows-style client window (also
called an application window) titled with the program's name. The window has
standard Windows controls, including a control-menu box, a window border with
corners for resizing the window, and buttons for minimizing and maximizing the
window. The client window also has a menu bar at the top and a status bar at the
bottom. The menu bar provides standard menus; the status bar provides status
information to the user. Within the client window is a child window titled
"StdinlStdout/Stderr," which displays the standard C or C++ input/output streams.
The child window also has controls and may have one or more scroll bars. Quick­
Win windows are text-only; text is black on white. Figure 8.1 shows the standard
QuickWin user interface .

.-____________ .,ersonWin

QWDEMO

Program Terminated with exit code 0
Exit Window?

Figure 8.1 Standard QuickWin User Interface

QuickWin programs that take advantage of the enhanced features can display
more than one child window. Among other things, the program can control the

148 Programming Techniques

size and position of windows and which window is currently the active window
(the foremost window).

Standard Menus
When you run your QuickWin program, the client window always contains a
standard QuickWin menu bar (you cannot add your own commands to the menus).
The menu bar contains File, Edit, State, Window, and Help menus.

File Menu The QuickWin File menu has one command, Exit, which ends the
program, closing all windows. If you exit the program in any other manner, such
as by executing an exit function, three possible events can occur. By default, any
of your program's windows that still exist remain on the screen.

You can call the _ wsetexit function in your program to alter that default. You can
specify that windows will remain on the screen (as in the default), that windows
do not remain on the screen, or that the user can choose whether windows remain
on the screen. If you specify user choice, a dialog box appears with the message
"Program terminated with exit code n; Exit window?" Responding "No" to this
dialog box allows the user to quit without closing windows. Figure 8.1 shows the
dialog box's typical appearance. The user can examine window contents or select
and copy text to the Clipboard, but further input or output is disabled. Exiting with
the Exit menu command does not bring up a dialog box. For more information
about the _ wsetexit function, see "Writing Enhanced QuickWin Programs" on
page 157.

Edit Menu The QuickWin Edit menu has commands for selecting, copying, and
pasting text within or between windows or between applications.

• The Mark command puts the active window in Mark mode, ready for you to
select text for copying to the Clipboard. The string "Mark - " is prefixed to the
window title.

You can select text with the keyboard or the mouse. Selecting text in a Quick­
Win window requires an extra step not required in selecting text in a standard
Windows program. To select with the keyboard, you must first choose the
Mark command. Then you can use the arrow keys to move the cursor from the
upper left corner of the window to any corner of the text area that you want to
select. To select, hold down the SHIFT key and press an arrow key. The se­
lected text is highlighted. To select with the mouse, click in the window and
drag out a rectangle outlining the selection. For mouse selection, choosing
Mark is unnecessary, but you may choose Mark and then select with the mouse.
If you select with the mouse, the string "Select - " is prefixed to the window
title instead of "Mark - ".

Beginning a selection either with the keyboard or with the mouse pauses the
program. The Pause command in the State menu is checked, the program does

Compiling with the QuickWin Windows library 149

not accept input, and processing time is yielded to other Windows applications.
To resume processing, choose Resume from the State menu, choose Copy or
Copy Tabs from the Edit menu, or click in the window with the mouse. The
Resume command in the State menu is checked, the program accepts input, and
the selection highlighting is removed.

When text has been selected, use the Copy or Copy Tabs command to copy the
selected text to the Clipboard.

• The Copy Tabs command copies the currently selected text to the Clipboard in
CF _TEXT format: its characters are taken from the ANSI character set, each
line ends with a carriage return and line-feed, and a null character terminates
the block of text. Before the text is placed in the Clipboard, all sequences of
blanks except leading blanks are converted to single tabs. This command is use­
ful for pasting data into applications such as Microsoft Excel, which uses tabs
to delineate input data items.

• The Copy command is like Copy Tabs, except that no tab conversion is
performed.

• The Select All command selects and highlights all text in the active window.
Using Select All is equivalent to selecting all of the text in a window with the
mouse. The window title is prefixed with "Select - ".

• The Paste command takes the most recently copied block of text from the
Clipboard and places it in the program's Paste Buffer. The text must be in
CF _TEXT format. Read calls to any window in the program are satisfied from
this buffer until it is empty. Subsequent input comes from the standard input
stream.

The status bar displays the line "Paste Input Pending" when there is text in the
Paste Buffer.

State Menu The QuickWin State menu has commands for pausing and resum­
ing the program. The Pause command temporarily suspends the program. While
the program is paused, other Windows applications can run without competition
for resources from the QuickWin program. The Resume command lets the pro­
gram resume execution and removes any highlighting. The command you select,
Pause or Resume, has a check mark in front of its name.

The State menu exists to allow pausing for text selection and for yielding time to
other Windows applications, such as a calendar application or a calculator. You do
not have to pause, for example, to make one of your program's windows in the
background the a ctive window or to perform other operations within your pro­
gram.

Window Menu The QuickWin Window menu has commands for arranging
windows, selecting the window with current input focus, clearing the Paste Buffer,
and showing or hiding the status bar. In addition, the lower portion of the menu

150 Programming Techniques

lists all open child windows. Figure 8.2 shows the Window menu as it appears in
the example program QWDEMO.C, which will be described later in this chapter.
The Window menu contains the following commands:

• The Cascade command arranges the program's document windows in an over­
lapped fashion.

• The Tile command arranges the program's document windows so they are all
visible at once.

• The Arrange Icons command organizes any iconized (minimized) child win­
dows along the bottom of the client window.

• The Input command activates the window with pending input. This command
is enabled only when there is a window with input pending. (The Status Bar
displays a message when a window has input pending.)

• The Clear Paste command clears the Paste Buffer.

• The Status Bar command toggles the status bar display on and off. A check
mark appears next to this command when the status bar is visible and disap­
pears when it is not.

• The lower portion of the Window menu lists all open child windows for the
QuickWin application. A check mark appears in front of the name of the active
child window. You can make another window active by selecting its name from
the menu.

Figure 8.2 QWDEMO.C Example Program Menu

Compiling with the QuickWin Windows Library 151

Help Menu The QuickWin Help menu has commands for calling up Windows
help for the QuickWin interface. (Note that you cannot augment this help informa­
tion with program-specific information.)

• The Index command calls up an index of Help for QuickWin.

• The Using Help command calls up information about using Help.

• The About command displays a dialog box with information about your Quick­
Win application. By default, the text describes QuickWin itself, but you can cus­
tomize the dialog box (see the next section).

Enhanced Capabilities of QuickWin

You can customize
the About dialog box.

Many C and C++ programs require no changes in order to be compiled as Quick­
Win applications. You also have the option of giving your program more of a Win­
dows look and greater flexibility using features described in this section. Details
about using the features and calling QuickWin library functions are covered in
"Writing Enhanced QuickWin Programs" on page 157.

About Dialog Box
In Windows, an "About" dialog box identifies your program by name and supplies
a copyright notice. This dialog box appears when the user chooses the About com­
mand in the QuickWin Help menu. By default, QuickWin displays information
about QuickWin itself, but you can customize the dialog box by specifying a text
string to display. Use the _ wabout function to set the About text. Figure 8.3
shows the About dialog box as it appears in the example program QWDEMO.C,
which is described later in the chapter.

Multiple Child Windows
By default, QuickWin displays a client window with a menu bar and one child
window, titled "StdinlStdout/Stderr." The default input/output streams use this
window. However, you have the option of opening additional child windows. Use
the _ fwopen or _ wopen functions to open new windows. (These functions are
described in "Writing Enhanced QuickWin Programs" on page 157.) If your pro­
gram reads or writes multiple files, you can use document windows to display
those files on the screen.

152 Programming Techniques

Figure 8.3 aWDEMO.C About Dialog Box

Active Window
When you open multiple child windows, the foremost window automatically be­
comes the active window. In Windows, the active window also is said to have the
"input focus," which means that keyboard input is directed to this window. Use
the _ wgetfocus function to examine which window is active. Use the _ wsetfocus
function to make a particular window the active window. These routines are useful
for bringing a hidden or partially obscured window to the foreground. The
QWDEMO.C program supplied on the distribution disk demonstrates using these
functions.

Program Control of Menus
Users of a Windows program can choose commands from the menu bar either
with the mouse or with the keyboard. Your program can also choose some of these
commands for its own purposes, without user intervention. While your program
cannot add menus of its own to the menu bar, it can have some control over
QuickWin's default menus by simulating a mouse click in a given menu item, as
if a user had chosen the menu command with the mouse.

The menu commands you can activate in this way are limited to the Tile, Cascade,
Arrange Icons, and Status Bar commands in the Window menu. Simulating menu
clicks is especially useful if you want your program's document windows to ap­
pear initially in certain positions on the screen. For example, you might want them
either tiled or cascaded. Use the _ wmenuclick function to activate a menu

Compiling with the QuickWin Windows Library 153

command under program control. This feature is useful for setting up the initial
configuration of windows and status bar in your program and for reconfiguring
them as conditions change.

Program Control of Windows
In your program, you can also directly control the size and position of child win­
dows and the amount of text they retain for scrolling, and you can control how
your program behaves when an exit function executes.

Use the _ wgetsize and _ wsetsize functions to determine or to reset a window's
current size and position. Use_ wgetscreenbufto get the size of a window's text
buffer (the amount of text it can retain and scroll through). Use _ wsetscreenbufto
set the size of a window's text buffer so it can retain more or less text. For ex­
ample, you can read a text file and write it into a window with an appropriately
sized buffer so that users can scroll through the entire contents of the file.

Use the _ wsetexit and _ wgetexit functions to specify whether or not your pro­
gram's windows remain on the screen when the program executes an exit func­
tion. Your program can behave in three possible ways at exit time:

• It leaves all windows on the screen by default.

• It leaves no windows on the screen.

• It allows user to choose windows or no windows using a dialog box.

Use _ wgetexit to get the current exit behavior setting. Use _ wsetexit to set the
desired exit behavior. For more information about these functions, see "Keeping
Windows on the Screen" on page 162.

QuickWin vs. Windows Applications
QuickWin provides a rich set of Windows features, but it does not provide total
Windows capability. You cannot:

• Call Windows API functions.

• Detect and respond to mouse clicks in a window.

• Use graphics in your windows.

• Display and use your own menus, controls, and dialog boxes.

• Add your own customized help information to QuickWin's Help system.

• Run your QuickWin program in real mode.

154 Programming Techniques

Running QuickWin Programs
This section explains how to run your QuickWin programs from the DOS com­
mand line or from within Windows.

From the Command line Type WI N (not case sensitive) followed by the pro­
gram name. If the program is not in the current directory or in a directory specified
by PATH, specify a path. For example,

C:WIN C:\PROGRAMS\HELLO

Note QuickWin programs that contain the enhanced features cannot be run as
DOS programs. They can only be run under Windows in Standard or Enhanced
mode.

With the Windows Run Command In Windows, choose Run from the File
menu. Type the program name, prefixed with a path if needed. Click the OK
button.

From the Windows File Manager In the Windows File Manager, double-click
the name of the program's .EXE file.

From a Windows Icon In Windows, use the New command and select the "Add
Program Item" option to add your program to a group (a collection of applications
in the Windows Program Manager window). This displays an icon for your pro­
gram, which you can double click with the mouse to run the program.

8.2 Compiling QuickWin Programs
Many DOS programs can be compiled as QuickWin programs simply by linking
them with QuickWin libraries. A DOS program can generally become a QuickWin
program as long as it doesn't make graphics calls (including cursor addressing
calls) and doesn't spawn processes. When testing your QuickWin programs,
remember that QuickWin programs do not run in real mode.

This section explains how to compile DOS programs as QuickWin programs from
the command line and from within the Programmer's WorkBench.

Compiling from the DOS Command Line
Use the IMq compiler option with CL.EXE to compile a QuickWin program from
the DOS command line. The IMq option has the following effects:

Compiling with the QuickWin Windows Library 155

• The _ WINDOWS constant is defined using the ID compiler option, causing
the QuickWin constants and functions defined in IO.H and other include files to
be compiled.

• The linker is invoked with the librariesxLIBCyWQ and LIBW, where x = S, M,
C, or L, specifying the memory model used (determined by other compiler op­
tions) and y = E or A, specifying the floating point model used. (S, M, C, and L
stand for Small, Medium, Compact, and Large, respectively. E and A specify
how the compiler does floating-point math in your program: with an alternate
math library (A) or with either a math coprocessor chip or an emulator library
(E).) If you specify only IMq, the default memory and math models for your
programming environment are used. QuickWin supports the same models as
other Windows .EXEs. You can also use the / A and /FP options to specify
different models. (Windows 3.x does not support the tiny model.)

• If no other .DEF file is given, QuickWin uses the default .DEF file, CL.DEF.
Every Windows program needs a module definition file (.DEF file) to define its
name, segments, memory requirements, and exported functions. (See the Micro­
soft Windows Software Development Kit Guide to Programming for more infor­
mation about module definition files.) CL.DEF provides reasonable defaults for
a Windows application. In particular, CL.DEF specifies PROTMODE, which
tells the linker to mark the application for execution in Windows standard or en­
hanced mode, and sets HEAPSIZE to 1024 bytes and STACKSIZE to 8096
bytes. You may want to provide your own .DEF file to change HEAPSIZE or
STACKSIZE, but you are unlikely to need to redefine any of CL.DEF' s other
default values.

You can specify other options, filenames, and libraries in the command line as
well, depending on your program's needs. To build a QuickWin C or C++ applica­
tion, the compiler must have access to the module-definition file CL.DEF. Make
sure this file is in the same directory as CL.EXE. In addition, the program
WINSTUB.EXE must be in the current directory or in a directory listed in PATH.
(WINS TUB displays the message "This program requires Microsoft Windows" if
an attempt is made to run a QuickWin program from the DOS command line.)

The program QWHELLO.C, supplied on the distribution disks, can be compiled to
run under either DOS or Windows, depending on the compiler options you
choose. This is because it contains no enhanced QuickWin features. The following
command compiles QWHELLO.C as a QuickWin program:

CL IMq QWHELLO.C

You can immediately run the resulting program, QWHELLO .EXE, in Windows.
QWHELLO writes the text "Hello, Windows!" in the standard output window.
For instructions on starting the program, see "Running QuickWin Programs" on
page 154.

156 Programming Techniques

Compiling from the Programmer's WorkBench
If you use the Programmer's WorkBench (PWB) to compile a QuickWin program,
specify the "Windows QuickWin EXE" project template and set any other com­
pile, link, browse, and debugging options you require. Then build your program.
This section describes the steps briefly. For more information about using PWB,
see the PWB tutorial in the Environment and Tools manual.

Preparing your PWB QuickWin project requires the following steps:

1. Set up your PATH, INCLUDE, and LIB environment variables so the compiler
can find your source, include, and library files. The environment should be
correct if you ran the SETUP program to install Microsoft C/C++. For more
information, see the Getting Started manual.

2. In PWB, create a new PWB project and choose the C or C++ run-time support
option and the "Windows QuickWin EXE" project template.

3. Set up the project's file list using the Edit Project dialog box that appears when
you click the OK button in the New Project dialog box. Use the Edit Project
dialog box to add files to your project. Add your files with the .C or .CPP exten­
sion. You can also add .OBl, .LIB, and .RC files if you supply custom icons for
your client and child windows (see "Using Custom Icons" on page 164). Quick­
Win programs also require a module definition file (with the .DEF extension).
If you do not supply your own .DEF file, you must add the default module defi­
nition file, CL.DEF, to your project. For more information about .DEF files, see
"Compiling from the DOS Command Line" on page 154, and consult the
Microsoft Windows Software Development Kit Guide to Programming.

4. Set build options for the project (either Debug or Release) in the dialog box
brought up by the Options/Build Options menu command.

5. Set any additional compiler, browse, link, NMake, or Code View options you
need. These options can be set in the Options menu.

6. Choose Build or Rebuild All from the Project menu.

Caution If you are running PWB from within Windows, do not execute the pro­
gram from within PWB after you build it. This will spawn a new instance of
Windows that runs in real mode. QuickWin programs cannot be run in real mode.
Instead, execute your program from your original Windows session.

The project template you selected tells the compiler which libraries to use and sets
the appropriate default compiler options. It also defines the _ WINDOWS con­
stant for you. This ensures that the QuickWin functions are defined, in case your
program uses them. For more details about the libraries and other information re­
quired to compile QuickWin programs, see "Compiling from the DOS Command
Line" on page 154.

Compiling with the QuickWin Windows Library 157

B.3 Writing Enhanced QuickWin Programs
This section explains how to program with the enhanced features of QuickWin to
improve Windows appearance and the behavior of your programs. See "Enhanced
Capabilities of QuickWin" on page 151 for an overview.

The aWDEMO.C Program
The program QWDEMO.C, supplied on the distribution disks, can be compiled as
an enhanced QuickWin program. It demonstrates the enhanced QuickWin fea­
tures. The following command compiles QWDEMO.C as a QuickWin program:

CL IMq QWINDEMO.C

Note QWDEMO.C cannot be run as a DOS program. Because it contains Quick­
Win enhancements, it can only be run under Windows in Standard or Enhanced
mode.

Figures 8.2 and 8.3 show the output of QWDEMO.C.

Customizing the About Dialog Box
Use the _ wabout function to specify the text in your program's About dialog box.
This text will appear in a dialog box if the user chooses the About command from
the QuickWin Help menu. For example, QWDEMO.C uses the following line of
code:

result = _wabout("QuickWin Demo");

Pass the function a pointer to a null-terminated string. The function returns an int.
If you don't call the _ wabout function, the About dialog box displays an OK
button and default information about QuickWin.

The function returns 0 if successful, or a nonzero value if not.

Opening Child Windows
In your QuickWin program, you may want to open new windows (child windows)
in which to display your program's data.

Depending on your needs, you can use one of two QuickWin functions to open
new child windows. The _ wopen function is a low-level routine that returns a file
handle, which you can use for window I/O or to call several other QuickWin func­
tions, such as _ wsetsize, _ wsetfocus, and _ wsetscreenbuf. You can perform I/O

158 Programming Techniques

in this kind of window with C library functions such as _ write and _ read. Using
these functions is explained later in this section.

In order to write to a window or read from it as a stream, you need a file pointer,
of type FILE *. The _fwopen function is a high-level routine that returns a file
pointer you can pass to standard input/output routines, such as fprintf and fscanf,
which require a stream argument.

Note If you open windows with _fwopen, you can use the standard fileno macro
to obtain a file handle for use with QuickWin and other routines that require a
handle argument. Do not use such a handle with the _ wclose function, however.

Both _ wopen and _fwopen require arguments of type _ wopeninfo and
_ wsizeinfo. These are defined as C structures in the Windows version ofIO.H.
The _ wopeninfo structure is declared as follows:

struct _wopeninfo {
unsigned int _version;
const char _far * _title;
long _wbufsize;
} ;

The _ version field contains the Windows version number. Use the constant
_ WINVER, declared in IO.H. The _ title field holds a null-terminated string. This
is the title of your window. The _ wbufsize field contains the size of the window
screen buffer (in bytes). The default is 2,048.

The _ wsizeinfo struct is declared as

struct wsizeinfo -

unsigned int _version; 1* Use WINVER *1
unsigned int _type; 1* Size for window *1
unsigned int _x; 1* Upper left x coordinate *1
unsigned int -y; 1* Upper left y coordinate *1
unsigned int _h; 1* Height of window *1
unsigned int _w; 1* Width of window *1
} ;

The _ version field contains the Windows version number. Use the constant
_ WINVER. For use in opening windows, the _ type field specifies the size of the
window as one of the following constants:

_ WINSIZEMIN
Minimizes the window

_ WINSIZEMAX
Maximizes the window

_ WIN SIZE CHAR
Uses the listed coordinates in the x, y, h, w fields for the window size

Compiling with the QuickWin Windows Library 159

If you specify a _ type field of _ WINSIZEMIN or _ WINSIZEMAX, you can
leave the _x, _y, _h, and _ w fields empty.

To open a document window, first declare variables of the _ wopeninfo and
_ wsizeinfo types and fill in their fields. Then call either _ wopen or _fwopen.

The _ wopen function also takes a third argument of type int, specifying the
access flags. Flags accepted are _O_BINARY,_O_RDONLY, _O_RDWR,
0 TEXT, and_O_ WRONLY. Note that_wopendoes not allow the
_O_CREAT, _0_ TRUNC, or _O_EXCL flags.

The _ fwopen function takes an argument of type pointer to char to specify stream
mode. The _fwopen function accepts the following mode values: "r", "w","r+",
and "w+". You can also append a "1" (for text) or a "b" (for binary) to the mode
string.

If you pass NULL for either the _ wsizeinfo or _ wopeninfo arguments, the
_fwopen function uses default values. The _ wopen function works similarly,
except that the _ wopeninfo argument cannot be NULL. You must pass a pointer
to a _ wopeninfo structure.

The _ wopen function returns an integer file handle to the new window if success­
ful, or -1 if not. The _fwopen function returns a stream pointer to the new win­
dow if successful, or NULL if not.

Reading from and Writing to Child Windows
Reading from or writing to a window resembles reading from or writing to a file.
QuickWin windows behave as input/output streams. You can pass the file pointer
obtained from the _fwopen function as the stream argument to standard input/
output functions.

For example, this code demonstrates writing a text prompt to a window and read­
ing a response from the user:

FILE * fp; 1* Declare a file pointer *1

fp = _fwopen(wo, NULL, "w+" l;
fprintf(fp, "Enter a filename: \n" l;
rewind(fp l;
fscanf(fp, "Is", &scan l;

1* Open a window *1
1* Write to the window *1
1* Reset the stream *1
1* Read from the window *1

Note Each time you switch from reading to writing or from writing to reading,
call the rewind function to reset the stream.

160 Programming Techniques

See the examples of using document windows for input and output in
QWDEMO.C.

Resizing and Positioning Child Windows

A child window can­
not be larger than its
client window.

To resize or reposition a window, use the _ wsetsize function. Pass it an argument
of type _ wsizeinfo (see "Opening Child Windows" on page 157 for information
about the _ wsizeinfo structure).

You can also examine the current size and position of a window by calling the
_ wgetsize function.

Both resizing functions require a file handle argument and a _ wsizeinfo argument.
The _ wgetsize function also requires an int argument specifying the "request
type." The request type can have one of two values: _ WINCURRREQ, which
returns the current size of the window, or _ WINMAXREQ, which returns the
maximum size to which the window can grow (it cannot exceed the current size
of the client window). You can also query the size of the client (application) win­
dow. Pass the manifest constant _ WINFRAMEHAND as the window handle to
_ wgetsize, which returns information about the client window.

The _ type field of the _ wsizeinfo structure can have one of four values:
_ WINSIZEMIN, for a minimized window; _ WINSIZEMAX, for a maximized
window; _ WINSIZERESTORE, to restore a minimized window to its previous
size; or _ WINSIZECHAR, which allows you to specify (in the remaining fields
ofthe _ wsizeinfo structure) the coordinates ofthe window's upper-left comer and
the window's height and width in characters.

To illustrate, the following code maximizes a child window:

FILE * fp;
struct _wsizeinfo ws;
wS._version = _WINVER;
ws._type = _WINSIZEMAX;

/* Set the window size */

/* File handle to window */
/* Size structure variable */
/* Version value */
/* Maximize window */

result = _wsetsizeC filenoC fp), &ws);

The _ wsetsize and _ wgetsize functions return 0 if successful or -1 if not. The
_ wgetsize function also fills in the _ wsizeinfo structure if successful. You can
then extract the size information from the structure.

See QWDEMO.C for additional examples.

Note A child window cannot be larger than its client window.

Compiling with the QuickWin Windows Library 161

Setting the Amount of Scrollable Text
By default, the screen buffer associated with each QuickWin document window
can store 2,048 characters. If this amount exceeds the display capacity of the win­
dow, QuickWin puts scroll bars on the window so the user can scroll through the
window's contents.

The maximum buffer size for a new window can be set by specifying the size in
the _ wbufsize field of the _ wopeninfo structure that you pass to the _fwopen
function.

You can also limit the maximum buffer size at any other time with the
_setscreenbuffunction. This function takes two arguments: a file handle to the
window and the desired upper limit on buffer size. The bufsiz argument can be a
number or one of the following constants: _ WINBUFDEF, which uses the default
window screen buffer size, or _ WINBUFINF, which places no limit on the buffer
size. Unless you use _ WINBUFINF, only the most recent characters, up to the
buffer's capacity, are stored. In any case, the buffer is always allocated dynami­
cally, so that it fits its contents.

To illustrate, the following code resizes a window's buffer to store 16,384 bytes:

#define BUFSIZE 16384
result = _wsetscreenbuf(fileno(fp), BUFSIZE);

You can also use the _ wgetscreenbuf function to examine the current size of a
window's screen buffer.

The _ wsetscreenbuf function returns 0 if successful or -1 if not. The
_ wgetscreenbuffunction returns the current buffer size (in bytes) or
_ WINBUFINF if successful, or -1 if not.

See QWDEMO.C for further examples.

Making a Child Window Active
When the user selects a document window with the mouse or the keyboard, the
selected window is highlighted and appears in front of all other windows if win­
dows are cascaded, or is simply highlighted if windows are tiled. The selected win­
dow has input focus and is called the active window.

To make a document window the active window (to bring it to the front), call the
_ wsetfocus function.

162 Programming Techniques

For example, before writing to one of several cascaded windows, you can bring
the target window to the top with _ wsetfocus and then write to it, as shown by the
following code:

/* Check result, then write to the window */
result = _wsetfocus(fileno(fp));

You can also learn whether a child window has the focus by calling the
_ wgetfocus function.

The _ wsetfocus function returns 0 if successful or -1 if not. The _ wgetfocus
function returns an integer handle to the window with the focus if successful, or
-1 if not.

See QWDEMO.C for further examples.

Closing a Child Window
Once you finish using a document window, you usually close it. For windows
opened with the _ wopen function, you can call QuickWin's _ wclose function.
For windows opened with _fwopen, you can call the standard C fclose or
_fcloseall functions. The _ wclose function takes a second argument to specify
whether the window should "persist" (remain on the screen) after closing. The
persist parameter can have one of the following values: _ WINNOPERSIST,
which erases the window, or _ WINPERSIST, which leaves the window on the
screen. A "persistent" window of this kind no longer responds to input/output
calls, but you can select and copy text from it, scroll through its text, and continue
to use the menus. To illustrate, you might write a file to a window, then allow the
user to examine the file's contents after the window is closed to further writing.
For more information about how your windows behave at exit time, see the follow­
ing section, "Keeping Windows on the Screen."

If you leave the window on the screen, you can later send another _ wclose to the
same file handle to remove the window.

The following code demonstrates closing a window without leaving it on the
screen:

result = _wclose(wfh, _WINNOPERSIST);

Keeping Windows on the Screen
Sometimes it is useful to leave your program's windows on the screen after the
program terminates. This allows the user to inspect their contents, use the scroll
bars, use the menus, and copy or paste text in the windows.

Compiling with the QuickWin Windows Library 163

As described previously, you can use _ wclose to control whether your program's
windows remain on the screen. QuickWin also gives you additional control over
the behavior of your windows when the program calls the exit function.

By default, your windows remain on the screen. But you can alter this default be­
havior by calling the _ wsetexit function. You can get the current exit setting at
any time by calling the _ wgetexit function.

Call_ wsetexit at any time to specify the state of your windows upon exit. If the
exit function is subsequently called, the behavior is based on the value you set.
You can pass one of the following manifest constants to _ wsetexit:

_ WlNEXITPROMPT
Prompts the user with a dialog box; the user can specify the behavior

_ WlNEXITNOPERSIST
Windows do not remain on the screen

_ WlNEXITPERSIST
Windows remain on the screen (default value)

The _ wsetexit function returns 0 if successful, or -1 if not.

Call _ wgetexit to learn what the current exit setting is. The function returns the
current setting (one of the values above) if successful, or -1 if not.

The following code demonstrates the use of _ wsetexit and _ wgetexit to
determine the current exit setting and then to reset it:.

nExit = _wgetexit();
if(nExit == _WINPERSIST)

_wsetexit(_WINNOPERSIST);

Simulating Mouse Clicks in the Menu Bar
Your program can activate a limited subset of menu commands using the
_ wmenuclick function. The commands you can choose are limited to a subset of
the Window menu as represented by the following constants:

_WINTILE
Tile the windows

_ WINCASCADE
Cascade the windows

_ WINARRANGE
Arrange any document icons at the bottom of the application window

_ WINSTATBAR
Toggle the status bar's visibility

164 Programming Techniques

The following code demonstrates using the _ wmenuclick function to display the
status bar:

result = _wmenuclick(_WINSTATBAR l;

The _ wmenuclick function returns 0 if successful or -1 if not.

See QWDEMO.C for further examples.

Yielding Time to Other Windows Applications

QuickWin takes care
of Windows message
processing for you.

If your QuickWin program runs concurrently with other Windows applications, it
should yield processing time to the other applications so they can service their
message queues. QuickWin attempts to yield to other applications at appropriate
times, but there may be cases where your program should make additional calls to
the _ wyield function.

If Windows appears sluggish when your program runs, insert additional_ wyield
calls. In particular, you may want to make _ wyield calls during lengthy pro­
cessing loops. This allows the user to select menu commands or switch to another
application without having to wait for your program to finish processing.

Note QuickWin programs do not require the standard Windows message loop.

The _ wyield function returns void.

Using Custom Icons
The QuickWin run-time library provides default icons for your application and its
child windows. Windows displays these icons when the user minimizes the appli­
cation's client window or its child windows. You can create your own icons and
add them to your executable file, and Windows will display them instead of the
default icons.

To add icons to your QuickWin program, follow these steps:

1. Create the icon files, using SDKPaint (provided with the Microsoft Windows
Software Development Kit) or a similar tool provided by another Windows
programming system.

2. Create a resource script with the contents

FRAMEICON ICON frame.ico
CHILDICON ICON child.ico

Providing Help

Compiling with the QuickWin Windows Library 165

where frame. ico and child. ico are the names of the files containing the frame
and child icons. The icon resources must have the resource names
FRAMEICON and CHILDICON.

3. Using the Microsoft Windows Resource Compiler (provided with the Microsoft
Windows Software Development Kit) or a similar tool, compile the icon re­
sources and add them to your executable file.

For information on using SDKPaint and the Resource Compiler, see the Tools
manual distributed with the Microsoft Windows Software Development Kit
(version 3.0) and available as a trade book from Microsoft Press.

A Help file, QWIN.HLP, is provided with Microsoft C/C++. The file contains
information on the QuickWin user interface. It should be stored in the same
directory as your QuickWin application or in a directory named in the PATH
environment variable.

You can view Help by

• Choosing Index from the Help menu

• Highlighting any command on a QuickWin menu and pressing FI

For information on moving among screens in the Help file, choose Using Help
from the Help menu.

Note QuickWin's Help is limited to information about the QuickWin user inter­
face. You cannot add your own context-sensitive help to a QuickWin program ..

Communicating with Graphics

A map, a chart, an illustration, a graph, or some other visual aid can often com­
municate information more quickly and more vividly than would several screens
of text.

The extensive Microsoft C graphics library allows you to communicate your ideas
graphically. The functions in this library range from the simple to the complex;
from functions that turn on a pixel to functions that draw graphs and charts
complete with labels and legends.

This chapter describes low-level graphics functions that draw basic shapes such as
lines, circles, and rectangles. It introduces video modes, color palettes, coordinate
systems, and synopses of the graphics and font functions. For complete function
prototypes and example programs, see Help or the Run-Time Library Reference.

Note The ANSI C standard does not define any standard graphics functions. The
functions described in this section are unique to Microsoft C/C++ and are not
portable to other implementations of C. These functions can be called from C++.

9.1 Video Modes
Graphics adapters are boards or cards inside the computer that are responsible for
displaying text and graphics on the screen. Commonly used adapters include:

• CGA (Color Graphics Adapter)

• EGA (Enhanced Graphics Adapter)

• HGC (Hercules Graphics Card)

• MCGA (Multicolor Graphics Array)

• MDPA (Monochrome Display Printer Adapter)

• VGA (Video Graphics Array)

• Super VGA (VGA plus extra high-resolution modes)

168 Programming Techniques

Video modes avail­
able depend on your
graphics adapter/
monitor.

In addition, there are Olivetti versions of the CGA, EGA, and VGA (called
OCGA, OEGA, and OVGA in this chapter).

Adapters can enter one or more "video modes." The video mode controls the reso­
lution and number of colors on the video display. Microsoft C/C++ supports 25
video modes, which fall into two broad categories:

• Text modes, where characters are displayed

• Graphics modes, where individual pixels can be turned on and off

The graphics adapter and the type of monitor in use determine which of the 25
video modes are available at run time. See "Setting a Video Mode" on page 169
for a list of video modes.

Sample Low-Level Graphics Program
The following program, ERESBOX.C, shows the steps you follow to enter and
exit a graphics mode. It sets the video mode _ERESCOLOR, draws a box, waits
for a keypress, and returns to default mode, which is the video mode in effect
when the program began running.

1* ERESBOX.C - Enters ERESCOLOR mode and draws a box *1

#include <graph.h> 1* graphics functions *1
#include <stdio.h> 1* puts *1
#include <conio.h> 1* _getch *1

maine)
{

if(_setvideomode(_ERESCOLOR)) 1* EGA 640x350 mode *1
{

_rectangle(_GBORDER, 10, 10, 110, 110); 1* draw *1
_getch(); 1* wait for a keypress *1
_setvideomode(_DEFAULTMODE); 1* return to default *1

else puts("Can't enter ERESCOLOR graphics mode.")

ERESBOX.C illustrates the steps you follow to display graphics:

1. Include the header file GRAPH.H. It contains function prototypes, macros, use­
ful structures, and symbolic constants such as _ERESCOLOR, _GBORDER,
and _DEFAULTMODE.

#include <graph.h>

Communicating with Graphics 169

2. Call the _setvideomode function, which sets the desired video mode. The
function returns 0 if the hardware does not support the requested mode. (See
"Setting a Video Mode" on this page.)

if(_setvideomode(_ERESCOLOR))

3. Draw the graphics on the screen. The example program calls the _rectangle
function. (See "Drawing Points, Lines, and Shapes" on page 189.)

_rectangle(_GBORDER, 10, 10, 110, 110)

4. Exit the graphics mode and return to whatever video mode was in effect before
the program began. Call_setvideomode, passing the constant
_DEFAULTMODE. In some cases, you might want to skip this step, exiting
the program with the graphics screen still in place.

_setvideomode(_DEFAULTMODE);

In addition, you must link with the GRAPHICS.LIB library, which contains the
function code. (If you instructed SETUP to include GRAPHICS.LIB in the com­
bined libraries, you don't need to link with GRAPHICS.LIB explicitly.) If you use
window-coordinate functions (which require floating-point calculations) and if
you have not created a standard combined library containing a floating-point
component, you must explicitly link with a floating-point math library.

SeHing a Video Mode
The _ setvideomode function turns on one of the 25 available video modes. Pass
it a single integer that tells it which mode to display. The constants in Table 9.1
are defined in the GRAPH.H file. The dimensions are listed in pixels for video
graphics mode and in columns for video text mode.

Table 9.1 Constants That Represent Video Modes

Constant (Name) Description Mode/Hardware

_MAXCOLORMODE Graphics mode with the most colors Graphics/AlIt
_MAXRESMODE Graphics mode with the highest Graphics/AlIt

resolution
_DEFAULTMODE Restores the original mode All/All
_TEXTBW40 40 column text, 16 gray Text/eGA
_TEXTC40 40 column text, 16/8 color Text/eGA
_TEXTBW80 80 column text, 16 gray Text/eGA
_TEXTC80 80 column text, 16/8 color Text/eGA
_MRES4COLOR 320 x 200, 4 color Graphics/eGA
_MRESNOCOLOR 320 x 200, 4 gray Graphics/eGA

170 Programming Techniques

Table 9.1 (continued)

Constant (Name) Description Mode/Hardware

_HRESBW 640 x 200, BW Graphics/CGA
_TEXTMONO 80 column text, monochrome TextIMDPA
_HERCMONO* 720 x 348, monochrome Graphics/HGC

_MRES16COLOR 320 x 200, 16 color Graphics/EGA

_HRES16COLOR 640 x 200, 16 color Graphics/EGA
_ERESNOCOLOR 640 x 350, 4 monochrome Graphics/EGA
_ERESCOLOR 640 x 350, 4 or 16 color Graphics/EGA

_ VRES2COLOR 640 x 480, BW GraphicsNGA

_ VRES16COLOR 640 x 480, 16 color GraphicsNGA
_MRES256COLOR 320 x 200, 256 color GraphicsNGA
_ORESCOLOR 640 x 400, 1 of 16 colors Graphics/Olivetti

_ ORES256COLOR 640 x 400, 256 colors Graphics/SVGA

_ VRES256COLOR 640 x 480, 256 colors Graphics/SVGA
_SRES16COLORI 800 x 600, 16 colors Graphics/SVGA
_SRES256COLORI 800 x 600, 256 colors Graphics/SVGA

_XRES16COLOR2 1024 x 768, 16 colors Graphics/SVGA
_XRES256COLOR2 1024 x 768,256 colors Graphics/SVGA
_ZRES16COLOR3 1280 x 1024, 16 colors Graphics/SVGA
_ZRES256COLOR3 1280 x 1024,256 colors Graphics/SVGA

* Before attempting to enter _HERCMONO mode, you must install the terminate-and-stay-resident pro­
gram MSHERC.COM, which comes in the Microsoft C/C++ package. If you have both a Hercules adapter
and an additional graphics adapter in the same computer, use the /H option to put the Hercules into HALF
mode to avoid unpredictable and undesirable results.

t _MAXRESMODE and _MAXCOLORMODE support all adapters except the MDPA. These constants
never select _SRES, _XRES, or _ZRES modes. See "Maximizing Resolution or Color," on page 172 for
definitions of these two modes.

1 Requires NEC MultiSync 3D, equivalent, or better.

2 Requires NEC MultiSync 4D, equivalent, or better.

3 Requires NEC MultiSync SD, equivalent, or better.

If the hardware does not support the selected mode, _setvideomode returns o.

Warning Do not attempt to use any of the _SRES, _XRES, or _ZRES modes
unless your display monitor supports them. Otherwise, you risk damaging your
display monitor. Micrososft assumes no responsibility for damage to video
monitors resulting from use of this software. Consult your owner's manual for
details.

Communicating with Graphics 171

Some graphics adapters are able to enter additional video modes:

• EGA adapters can display all CGA modes and _ TEXTMONO.

• HGC adapters can enter _ TEXTMONO mode.

• MCGA adapters can display all CGA modes, plus _ VRES2COLOR and
_MRES256COLOR.

• VGA adapters can display all EGA modes.

• SVGA adapters can display all VGA modes. SVGA adapters may also support
nonstandard modes that conform to the limitations listed in "Limitations of
VESA Support" on page 175.

Reading the _videoconfig Structure
At any time, you can inquire about the current video configuration by passing the
_ getvideoconflg function a structure of type _ videoconflg. The structure contains
11 members, all of which are short integers. They are listed in Table 9.2.

Table 9.2 Members of a _ videocontig Strncture

Member

numxpixels
numypixels
numtextcols
numtextrows

numcolors
bitsperpixel
numvideopages

mode*
adapter*
monitor*
memory

Description

Number of pixels on the x axis

Number of pixels on the y axis

Number of text columns available

Number of text rows available

Number of color indexes

Number of bits per pixel

Number of video pages available

Current video mode

Active display adapter

Active display monitor

Adapter video memory in kilobytes

• Possible values for the mode, adapter, and monitor items are listed in the GRAPH.H file.

The _ getvideocontig function initializes these values. Most of the values are
self-explanatory. For example, if numxpixels holds 640, the current video mode
contains 640 horizontal pixels, numbered 0 - 639.

The READVC.C example program below illustrates how to initialize and examine
a _ videoconflg structure:

1* READVC.C - Reads the _videoconfig structure *1

172 Programming Techniques

#include <graph.h>
#include <stdio.h>

maine)
{

struct _videoconfig vc;

_getvideoconfig(&vc);
printf("Text Rows = %i.\n", vc.numtextrows);

}

First, the program declares a structure vc of type _ videoconfig. Next, it calls
_ getvideoconfig to initialize the structure. Finally, it prints a member of the
structure.

Maximizing Resolution or Color
The constant _MAXRESMODE selects the highest possible resolution
for the graphics adapter and monitor currently in use. The constant
_MAXCOLORMODE selects the graphics mode with the greatest number of
colors. These constants work with all graphics adapters except the MDP A. These
constants never select the _SRES, _XRES, or _ZRES mode to avoid possible
monitor damage and to guarantee that the selected mode works. (See Table 9.3.)

Table 9.3 Constants for Maximum Resolution and Color

Adapter/Monitor _MAXRESMODE _MAXCOLORMODE

CGA _HRESBW _MRES4COLOR
EGA color _HRES16COLOR _HRES16COLOR

EGAecd64K _ERESCOLOR _HRES16COLOR

EGAecd256K _ERESCOLOR _ERESCOLOR

EGA mono _ERESNOCOLOR _ERESNOCOLOR
HOC _HERCMONO _HERCMONO

MCGA _ VRES2COLOR _MRES256COLOR

MDPA Fails Fails

OCGA _ORESCOLOR _MRES4COLOR
OEGAcolor _ORESCOLOR _ERESCOLOR
VGNOVGA _ VRES16COLOR _MRES256COLOR

SVGA* _ VRES256COLOR _ VRES256COLOR

* If your SVGA adapter does not support _ VRES256COLOR, _MAXCOLORMODE selects
_ ORES256COLOR If _ ORES256COLOR is not supported either, the VGA modes for maximum
color and maximum resolution are used.

Communicating with Graphics 173

Selecting Your Own Video Modes
A program that will run only on a single machine with a known graphics adapter
can enter the appropriate video mode immediately. However, if you attempt to run
the program on another machine with a different adapter, it may not run correctly,
if at all.

If your program might run on a variety of computers and you prefer to select
your own video modes, initialize a _ videoconfig structure by calling the
_ getvideoconfig function. Then check the adapter member and use a switch
statement to enter the selected video mode.

For example, suppose you know that a program will run on monochrome systems
equipped with either an EGA adapter or a Hercules adapter. To enter the appro­
priate mode, use code such as this:

struct _videoconfig vc;

_getvideoconfig(&vc);

switch(vc.adapter
{

case EGA:
_setvideomode(ERESNOCOLOR);
break;
case _HGC:
setvideomode(HERCMONO);

break;

Super VGA Support

Microsoft C graphics
libraries support the
VESA interface.

"Super VGA" (SVGA) does not describe a standard display adapter. Instead, it
refers to any VGA-compatible video adapter that also provides higher resolution
modes. SVGA adapters made by different manufacturers may support different
extended resolution modes.

To allow your programs to take advantage of different SVGA adapters, the
Microsoft C graphics libraries support the interface defined by the Video Electron­
ics Standards Association (VESA). VESA has defined a standard interface for
accessing the extended features of different SVGA adapters, and this interface is
widely supported by video hardware manufacturers. This allows your graphics
program to run with virtually any adapter that is VESA-compliant.

The _ setvideomode function supports eight extended resolution modes, some
or all of which are available on VESA-compliant SVGA adapters:
_ORES256COLOR, _ VRES256COLOR, _SRES16COLOR,
_SRES256COLOR, _XRES16COLOR, _XRES256COLOR,

174 Programming Techniques

_ZRES16COLOR and _ZRES256COLOR. (These modes represent BIOS
numbers OxOlOO through OxOl07, respectively, in the VESA standard.) Consult
the owner's manual to see which modes your adapter supports.

Note that having an SVGA adapter is not sufficient for using one of these ex­
tended modes. You must also have a display monitor that supports the higher
resolution. Only the first two of the extended modes can be displayed on a stand­
ard VGA analog monitor. The other extended modes require special monitors.

Warning Do not attempt to use any of the _SRES, _XRES, or _ZRES modes
unless your display monitor supports them. Otherwise, you risk damaging your
display monitor. If you use one of the extended modes in a program intended for
use by others, inform the program's users of its monitor requirements. This is
especially important with software intended for resale or for wide distribution.
Microsoft assumes no responsibility for damage to video monitors resulting
from use of this software. Consult your owner's manual for details.

You can also use _setvideomode to select a nonstandard graphics mode that is
specific to a particular manufacturer's adapter, if the adapter is VESA -compliant.
Consult your adapter's owner's manual for the BIOS number of a given mode,
and pass that number as the argument to _setvideomode. The BIOS number must
be between OxlS and Ox7F. Typically, these additional modes differ from the
eight modes listed above only in resolution, not in number of colors. The
_setvideomode function may not support all of an adapter's extended modes.

VESATSRs
Some SVGA adapters provide the VESA interface in ROM. Other adapters re­
quire that you install a TSR (Terminate-and-Stay Resident) program. Microsoft
C/C++ includes TSRs for several adapters (see the file PACKING.LST for a list of
TSRs supplied). If the TSR for your adapter is not included, contact your dealer or
video adapter manufacturer.

These TSRs are executable programs with names of the formxxxVESA.COM or
xxxVESA.EXE. You install the TSR by running the program. You must install the
TSR before you run a graphics program that uses one of the VESA extended
modes. If you don't install the TSR, your SVGA adapter behaves like a standard
VGA adapter.

NO WARRANTY These drivers are provided on an as-is, unsupported basis, without
any claim as to their correctness or suitability. Neither Microsoft nor the TSR ven­
dor makes any representations or warranties regarding the capabilities or perform­
ance of the TSR software. Should you want to distribute any of the supplied TSRs
with a software program developed using Microsoft C/C++, it is your responsi­
bility to obtain permission from VESA and/or the TSR vendor.

Communicating with Graphics 175

Limitations of VESA Support
The graphics libraries may not work with all hardware and TSR combinations.
Furthermore, VESA support has the following limitations:

• Version 1.0 of the VESA Super VGA Standard (#VS89100l) is supported.

• Only color graphics modes are supported.

• Output functions must be supported by the BIOS.

• Only single window systems, as defined in section 5.2.1 of the VESA Super
VGA Standard, are supported. The single window (window A) must be both
readable and writeable.

• The only window size (Wi nSi ze) supported is 64K. Some adapters have an op­
tion of using either a 64K single-window, or a 32K double-window mode. Your
adapter must be configured for 64K mode.

• The window granularity (w i n G ran u 1 a r i ty) must be a power of 2.

• The memory model must be either 4-plane planar (l6-color) or packed pixel
(256-color).

Consult the VESA Super VGA Standard and your adapter's owner's manual for
details. For a copy of the Super VGA Standard, write to the Video Electronics
Standards Association (VESA) in San Jose, California.

9.2 Mixing Colors and Changing Palettes

All video modes that
support color offer a
color palette.

Depending on the graphics card installed and the video mode in effect, you can dis­
play 2, 4,8,16, or 256 colors on the screen at the same time. You specify a color
by selecting a color index (sometimes called a "pixel value" or "color attribute").
The color indexes are numbered from 0 to n-l, where n is the number of colors in
the palette.

CGA adapters offer four palettes containing predefined fixed color sets.

EGA, MCGA, and VGA adapters have palettes that can be redefined to suit your
needs. You can change the visible color associated with any color index by remap­
ping to a color index a color value that describes the true color (the amount of red,
green, and blue) you want to display.

Olivetti adapters (OCGA, OEGA, and OVGA) support the standard CGA, EGA,
and VGA modes (and palettes), plus an additional Olivetti mode described in
"Olivetti Palettes" on page 177.

176 Programming Techniques

eGA Palettes

_MRESNOCOLOR
produces palettes
with shades of gray
on monochrome
monitors.

Note The distinction between a color index and a color value is important. A color
index is always a short integer. A color value is always a long integer. The only
exception to this rule involves _setbkcolor, which uses a color index cast to a
long integer in CGA and text modes.

The CGA (Color Graphics Adapter) supports two color video modes,
_MRES4COLOR and _MRESNOCOLOR, which display four colors selected
from one of several predefined palettes of colors. They display these foreground
colors against a background color that can be anyone of the 16 available colors.
With the CGA hardware, the palette of foreground colors is predefined and cannot
be changed. Each palette number is an integer. (See Table 9.4.)

Table 9.4 CGA Palettes in _MRES4COLOR Mode

Color Index

Palette Number 1 2 3

0 Green Red Brown

Cyan Magenta Light Gray

2 Light Green Light Red Yellow

3 Light Cyan Light Magenta White

The _MRESNOCOLOR video mode produces palettes containing various
shades of gray on monochrome monitors. However, the _MRESNOCOLOR
mode displays colors when used with a color display. Only two palettes are avail­
able in this mode. Table 9.5 shows the colors available in the two palettes.

Table 9.5 CGA Palettes in _MRESNOCOLOR Mode

Color Index

Palette Number 1 2

o Blue Red

Light Blue Light Red

3

Light Gray

White

OliveHi Palettes

VGA PaleHes

Communicating with Graphics 177

You can use the _selectpalette function only in the _MRES4COLOR,
_MRESNOCOLOR, and _ ORES COLOR graphics modes. To change palettes
in other video modes, use the _remappalette or _remapallpalette functions.

Olivetti graphics adapters are found in most Olivetti computers (including the
M24, M28, M240, M280, and M380) and in the AT&T 6300 series computers.
These adapters function the same as their non-Olivetti equivalents; that is, the
OCGA, OEGA, and OVGA adapters support CGA, EGA, and VGA modes,
respectively. In addition, Olivetti adapters can enter the high resolution
_ ORES COLOR mode.

In _ ORES COLOR mode, you can choose one of 16 foreground colors by passing
a value in the range 0 -15 to the _selectpalette function. The background color is
always black.

Depending on the video mode currently in effect, a VGA (Video Graphics Array)
screen has 2, 16, or 256 color indexes chosen from a pool of 262,144 (256K) color
values.

To name a color value, specify a level of intensity ranging from 0 - 63 for each of
the red, green, and blue components. The long integer that defines a color value
contains four bytes (32 bits):

Most-significant byte Least-significant byte

The most-significant byte should contain zeros. The two high bits in the remaining
three bytes should also be zero (these bits are ignored).

To mix a light red (pink), turn red all the way up, and mix in some green and blue:

Most-significant byte Least-significant byte

178 Programming Techniques

The number Ox0020203FL represents this value in hexadecimal notation. Y o,u can
also use the following macro:

#define RGB (r, g, b) (0x3F3F3FL & ((long)(b) « 16 I (g) « 8 I (r»)

To create pure yellow (100% red plus 100% green) and assign it to a variable ye 1,
use this line:

yel '" RGB(63, 63, 0);

For white, turn all the colors on: RGB (63, 63, 63). For black, set all colors to 0:
RGB(0, 0, 0).

Once you have the color value,

1. Call _ remappalette, passing a color index and a color value.

2. Call_setcolor to make that color index the current color.

3. Draw something.

The program YELLOW.C below shows how to remap a color. It draws a rectangle
in color index 3 and then changes index 3 to the color value Ox00003F3FL
(yellow).

1* YELLOW.C - Draws a yellow box on the screen *1
1* Requires VGA or EGA *1

#include <graph.h> 1* graphics functions *1
#include <conio.h> 1* _getch *1

rna in ()
{

short int index3 '" 3;
long int yellow", 0x00003F3FL;
long int old3;
if(_setvideornode(_HRESI6COLOR))
{

1* set current color to index 3*1
_setcolor(index3);

1* draw a rectangle in that color *1
_rectangle(_GBORDER, 10, 10, 110, 110);

1* wait for a keypress *1
_ getch ();

1* change index 3 to yellow *1
old3 '" _rernappalette(index3, yellow);

1* wait for a keypress *1
_getch();

1* restore the old color *1
_rernappalette(index3, old3);

MeGA Palettes

EGA Palettes

getch();
/* back to default mode */

_setvideomode(_DEFAULTMODE);

Communicating with Graphics 179

else _outtext("This program requires EGA or VGA.");

In terms of color mixing, the MCGA (Multicolor Graphics Array) adapter is the
same as the VGA. It can display any of 256K colors. It cannot enter all of the
VGA video modes, however. It is limited to CGA modes and _ VRES2COLOR
and _MRES256COLOR.

Mixing colors in EGA (Enhanced Graphics Adapter) is similar to the VGA mixing
described in "VGA Palettes" on page 177, but there are fewer levels of intensity
for the red, green, and blue (RGB) components. In the modes that offer 64 colors,
the RGB values include two bits and can range in value from 0 - 3. The long in­
teger that defines a color value looks like this:

Most-significant byte Least-significant byte

The bits marked 0 should be zeros; the bits marked ? are ignored. EGA color
values are defined this way to maintain compatibility with VGA color values.

To form a pure red color value, use the constant Ox00000030L. For cyan (blue
plus green), use Ox00303000L. The RGB macro defined above for VGA color
mixing can be used as is, or you can modify it for EGA monitors:

#define EGARGB(r, g, b) (0x303030L & «long)(b) « 20 I (g) « 12 I (r « 4)))

In this macro, you would pass values in the range 0 - 3 instead of 0 - 63.

For an example program that remaps a color index to a color value, see
YELLOW.C in "VGA Palettes" on page 177.

180 Programming Techniques

Symbolic Constants
The GRAPH.H file defines the following constants, which can be used as ready­
made color values for EGA and VGA adapters:

_BLACK
_BLUE

_BRIGHTWHITE
_BROWN
_CYAN

_GRAY

_GREEN

_LIGHTBLUE

_LIGHTCYAN

_LIGHTGREEN
_LIGHTMAGENTA

_LIGHTRED

_LIGHTYELLOW

_MAGENTA
_RED

_WHITE

For example, to change color index 1 to red, use the following line:

_ rema ppa 1 ette (1, _ RED);

This causes any object currently drawn with color index 1 to change to red. The
default color value associated with index 1 is blue.

9.3 Specifying Points Within Coordinate Systems

Graphics functions
usually use viewport
and window coordi­
nates.

A coordinate system describes points on the screen in terms of their horizontal (x)
and vertical (y) positions. You specify a certain location by providing two values
that map to a unique position.

Coordinates on the physical screen never change. Only five functions, listed in
"Physical Coordinates" on this page use physical coordinates. All other graphics
functions use one of these two coordinate systems:

• Viewport coordinates (short integers)

• Window coordinates (double-precision floating-point numbers)

Viewports and windows can occupy all of the physical screen or just part of it.
The three coordinate systems and conventions for naming points and regions of
the screen are described below.

Physical Coordinates
Within the physical screen, the upper-left corner is called the "origin." The x and y
coordinates for the origin are always (0, 0). The x axis extends in the positive direc­
tion left to right, while the y axis extends in the positive direction top to bottom.

For example, the video mode _ VRES16COLOR has a resolution of 640-by-480,
which means the x axis contains the values 0- 639 (left to right), and the y axis
contains 0- 479 (top to bottom). (See Figure 9.1.)

Communicating with Graphics 181

Origin

~ (0, 0) (639,0)

----------- x --------------

y

(0,419)

Figure 9.1 Physical Screen Coordinates

Only five functions use physical coordinates: _setcliprgn, _setvieworg,
_setviewport, _getviewcoord, and _getphyscoord.

The _setcliprgn function establishes a "clipping region." Attempts to draw
inside the region succeed, while attempts to draw outside the region are clipped
(ignored). When you first enter a graphics mode, the clipping region defaults to
the entire screen.

The _ setvieworg function changes the current location of the origin. When a pro­
gram first enters a graphics mode, the physical origin and the viewport origin are
in the upper-left corner. The following code moves the viewport origin to the
physical screen location (50, 100):

_setvieworg(50, 100);

The effect on the screen is illustrated in Figure 9.2. Note that the number of pixels
remains constant, but the range of legal x values changes from a range of a to 639
(physical screen) to -50 to 589. The legal y values change as well.

182 Programming Techniques

(-50, -100) (589, -100)

, x •
~~-~~~~~~~~~~~~~~~~~

, (0, 0)
,
,

,
,

y ,
,
,

,
,

,

(-50,319)

Figure 9.2 Coordinates Changed by _setvieworg

All graphics functions are affected by the neW origin, including _ are, _ ellipse,
_lineto, _moveto, _outgtext, _pie, and _rectangle.

The third function that uses physical coordinates is _setviewport, described
below, which establishes the boundaries of the current viewport.

Viewport Coordinates
The default viewport coordinate system is identical to the physical screen coor­
dinate system. The _ setviewport function creates a new viewport within the boun­
daries of the physical screen. A standard viewport has two distinguishing features:

• The origin of a viewport initially lies in the upper-left corner of the viewport,
not the upper-left corner of the physical screen.

• The clipping region matches the outer boundaries of the viewport.

In other words, the _ setviewport function does the same thing as would two sepa­
rate calls to _setvieworg and _setcliprgn. All graphics output functions require
values that are either viewport coordinates or window coordinates.

For example,

_setviewport(50, 50, 200, 100);

Communicating with Graphics 183

creates the viewport illustrated in Figure 9.3. The values passed to the
_setviewport function are physical screen locations of opposite corners. After
the viewport is created, the viewport origin lies in the upper-left corner.

Physical Coordinates of a Viewport

Physical origin

~ (0,0)

(50,50) (200,50)

I I
(50, 100) (200, 100)

Viewport Coordinates

Viewport origin

(0,0) (150,0)

I I
(0,50) (150,50)

Figure 9.3 A Viewport

184 Programming Techniques

Window Coordinates
The _setwindow function allows you to use floating-point coordinates instead of
integers. More importantly, it scales the screen coordinates to almost any size
within the current viewport. Window functions take double-precision arguments
and have names that end with the suffixes _ w or _ wxy. The function _lineto_ w is
the window-coordinate equivalent of the viewport function _lineto.

To create a window for charting 12 months of average temperatures ranging from
-40 to 100, use this line:

_setwindow(TRUE, 1.0, -40.0, 12.0, 100.0 l;

The first argument is the invert flag, which puts the lowest y value at the bottom of
the screen instead of the top. The minimum and maximum coordinates follow. The
new organization of the screen is shown in Figure 9.4.

(1.0, 100.0) (12.0, 100.0)

y

-------x---------+

(1.0, -40.0) (12.0, -40.0)

Figure 9.4 Window Coordinates

If you plot a point with _setpixeL w or draw a line with _lineto_ w, the values are
automatically scaled to the established window.

Communicating with Graphics 185

Window-coordinate graphics provide a lot of flexibility. You can fit an axis into a
small range (such as 151.25 to 151.45) or into a large range (-50,000 to 80,000),
depending on the type of data to be graphed. In addition, by changing the window
coordinates and redrawing a figure, you can create the effects of zooming in or
panning across a figure.

Screen Locations
A coordinate system needs two values (a horizontal and a vertical position) to de­
scribe the location of a point on the screen. There are times, however, when it is
more convenient to use one variable instead of two.

Some graphics functions require you to pass the location of a point on the screen.
Others return a value that represents a location. The GRAPH.H file defines two
structures that allow you to refer to a point with a single variable.

• An _xycoord structure contains two short integers called xcoord and ycoord
for use in viewport graphics.

• A _ wxycoord structure contains two doubles called wx and wy for use in
window-coordinate graphics.

For example, you pass four doubles to the _rectangle_ w function: an x and y
position for the upper-left corner of the window and an x and y position for the
lower-right corner. The _rectangle_ wxy function takes two _ wxycoord
structures.

Bounding Rectangles
Certain figures such as arcs and ellipses are centered within a "bounding rec­
tangle," specified by two points that define the opposite corners of the rectangle.
The center of the rectangle becomes the center of the figure, and the rectangle's
borders determine the size of the figure. Figure 9.5 shows start and end vectors
and a bounding rectangle in which a pie shape has been drawn with the _ pie
function. The first two sets of coordinates are xl, yl, x2, and y2. They define the
boundaries of the rectangle. The pie shape needs two other sets of points, x3, y3,
x4, and y4, which indicate the starting and ending lines.

186 Programming Techniques

The Pixel Cursor

(x4, y4) . - --

(x1, y1) ,----­
I
I

'"

(x3, y3) ,

I ~~ // I
I ~~~___ __-~~ I

- - - - - - -----~- - - - - --
(x2, y2)

Figure 9.5 Bounding Rectangle

A "pixel cursor" is a location on the screen. The _ moveto function positions this
cursor at a given spot. Nothing visible appears. If you call_lineto, a line is drawn
from the current pixel cursor to another point. The _lineto function also changes
the location of the pixel cursor. When you call _ outgtext to display fonted text,
the characters are drawn at the current pixel cursor location.

To draw a series of connected lines, call_lineto several times.

The _getcurrentposition function returns the cursor location in an _xycoord
structure.

9.4 Graphics Functions
This section lists the functions that work in one or more bit-mapped graphics
modes. Most of these functions are present in several forms. The function names
that end with _ w use double values as arguments and the window coordinate
system. Functions that end with _ wxy use the window coordinate system and a
_ wxycoord structure to define the coordinates. Functions with no suffix use the
viewport coordinate system.

Controlling Video Modes
The functions described below affect the current video mode, coordinate systems,
clipping regions, viewports, and windows. For more information, use Help.

Communicating with Graphics 187

_clearscreen Erases the text or graphics screen and fills it with the current back­
ground color (note that setting the video mode automatically clears the screen).
Pass one ofthe constants _GCLEARSCREEN, _GVIEWPORT, or _GWIN­
DOW. No return value.

_getphyscoord Converts viewport coordinates to physical coordinates. Pass an x
and y coordinate from the viewport. The function returns an _xycoord structure,
which includes an x and a y position from the physical screen.

_getvideoconfig Obtains the status of the current graphics environment. Pass it
the address of a structure of type _ videoconfig. See "Reading the _ videoconfig
Structure" on page 171.

_getviewcoord Converts physical coordinates to viewport coordinates. Pass two
integers: an x and y coordinate. The function returns an _xycoord structure con­
taining the equivalent position within the viewport.

_getviewcoord_w Converts window coordinates to viewport coordinates. Pass
two doubles that name points within the window. Returns the equivalent viewport
coordinates as an _xycoord structure.

_getviewcoord_wxy Converts window coordinates to viewport coordinates in
an _xycoord structure. Pass a _ wxycoord structure.

_getwindowcoord Converts viewport coordinates to window coordinates. Pass
two integers representing viewport coordinates. Returns a _ wxycoord structure.

_setcliprgn Limits graphic output to part of the screen, called the "clipping
region." Pass four values: the x and y coordinate of the upper-left comer (on the
physical screen) and the coordinates of the lower-right comer. The default clipping
region is the entire screen. See "Physical Coordinates" on page 180.

_setvideomode Selects an operating mode for the display screen. Pass a con­
stant, such as _HRES16COLOR Returns ° ifthe video mode selected is not sup­
ported by the hardware. See "Setting a Video Mode" on page 169.

_setvideomoderows Sets the video mode and the number of rows for text opera­
tions. Pass two values: a video mode and the desired number of text rows (25, 30,
43, 50, or 60). Pass the symbolic constant _MAXTEXTROWS to get the largest
available number of rows. Returns the number of rows or ° if unsuccessful.

188 Programming Techniques

Changing Colors

_setvieworg Repositions the viewport origin. Pass an x and y position: the physi­
cal screen location that will become the new origin. Returns the previous origin in
an _xycoord structure.

_setviewport Creates a viewport, including a clipping region and a new origin
in the upper-left corner of the viewport. Subsequent calls to graphics routines will
be limited to the viewport area. Pass four short integers that indicate the physical
screen locations of the x and y coordinates in the upper-left and lower-right
corners of the viewport. No return value.

_setwindow Defines a window coordinate system. Pass five values: a short in­
vert flag (TRUE or FALSE) and four doubles that represent the extreme values in
the upper-left and lower-right portions of the current viewport. See "Window
Coordinates" on page 184.

The functions below control colors and color palettes. For an introduction to this
topic, see "Mixing Colors and Changing Palettes" on page 175. For function proto­
types and more information, consult Help.

_getbkcolor Reports the current background color as a long integer. In EGA,
MCGA, and VGA video modes, this is a color value. In CGA and text modes, it is
a color index.

_getcolor Returns the current color index.

_remapallpalette Assigns new color values to all color indexes. Pass a pointer
to an array of color values. Returns 0 if unsuccessful.

_remappalette Assigns a color value to a specific color index. Pass a short
color index and a long color value (which specifies the amount of red, green, and
blue). Returns the previous color value for that index or -1 if unsuccessful. See
"CGA Palettes" on page 176.

_selectpalette Selects a predefined palette. This function applies only to the
CGA video modes _MRES4COLOR and _MRESNOCOLOR and the Olivetti
graphics mode _ ORES COLOR. To change palettes in other color video modes,
use _remappalette instead. Pass a short integer in the range 0 - 4 for CGA, or
0-15 for Olivetti mode. Returns the value of the previous palette.

Communicating with Graphics 189

_setbkcolor Sets the current background color. Always pass a long integer. In
EGA, MCGA, and VGA modes, this value is a color value. In CGA and text
modes, this is a color index cast to a long integer. Returns the old background
color or -1 if unsuccessful.

_setcolor Sets the color index to be used for graphic output. It affects later calls
to functions such as _are, _ellipse, _floodfill, _lineto, _outgtext, _outtext,
_ pie, _ rectangle, and _ setpixel. Returns the previous color or -1 if unsuccessful.

Drawing Points, Lines, and Shapes
The functions described below draw points, lines, and shapes. For a definition of
bounding rectangle and pixel cursor, see "Bounding Rectagles" on page 185 and
"The Pixel Cursor" on page 186.

_arc Draws an elliptical arc. Pass eight short integers: four pairs of x and y
coordinates. The first two pairs are the corners of the bounding rectangle. The
third and fourth are the starting and ending points of the arc. Returns 0 if un­
successful.

_arc_wxy Draws an arc within the window. Pass four wxycoord structures. The
first two are the corners of the bounding rectangle. The third and fourth are the
starting and ending points of the arc. Returns 0 if unsuccessful.

_ellipse Draws an ellipse or a circle. Pass a short fill flag (_GBORDER or
_ GFILLINTERIOR) and four short integers representing the corners of the
bounding rectangle. Returns 0 if unsuccessful.

_ellipse_w Draws an ellipse or a circle within a window. Pass a short fill flag
(_ GBORDER or _ GFILLINTERIOR) and four doubles representing the
corners of the bounding rectangle. Returns 0 if unsuccessful.

_ellipse_wxy Draws an ellipse or a circle. Pass a short fill flag (_GBORDER
or _ GFILLINTERIOR) and two _ wxycoord structures representing the two
corners of the bounding rectangle. Returns 0 if unsuccessful.

_getcurrentposition Returns the current pixel cursor position in viewport
coordinates as an _xycoord structure. The current position can be changed by
_ arc, _lineto, and _ moveto. The default position is the center of the viewport.

190 Programming Techniques

_getcurrentposition_w Returns the current position of the pixel cursor as a
_ wxycoord structure containing the x and y coordinates. Pass nothing.

_getpixel Returns a pixel's color index. Pass a short x and y coordinate (in
viewport coordinates). If the point is outside the clipping region, the function
returns -1.

_getpixel_w Returns a pixel's color index. Pass two doubles: an x and y
coordinate.

lineto Draws a line from the current pixel cursor position to a specified point.
Pass a short x and a short y position. Returns 0 if unsuccessful.

lineto_w Draws a line from the current pixel position to a specified window
coordinate point. Pass a double x and y position. Returns 0 if unsuccessful.

_moveto Moves the pixel cursor to a specified point (with no graphic output).
Pass an x and y position. Returns the coordinates of the previous position in an
_xycoord structure.

_moveto_w Moves the pixel cursor to a specified point in a window. Pass two
doubles: an x and a y coordinate. Returns the previous position as a _ wxycoord
structure.

_pie Draws a figure shaped like a pie slice. Pass a short fill flag and eight short
integers. The first four describe the bounding rectangle. The final four represent
the starting vector and ending vector. Returns 0 if unsuccessful.

_pie_wxy Draws a pie-slice figure within a window. Pass a short fill flag and
four _ wxycoord structures. The first two describe the bounding rectangle. The sec­
ond two represent the starting vector and ending vector. Returns 0 if unsuccessful.

_rectangle Draws a rectangle in the current line style. Pass a short fill flag
(_ GFILLINTERIOR or _ GBORDER) and four short integers: the x and y
coordinates of opposite corners. Returns 0 if unsuccessful.

_rectangle_w Draws a rectangle in the current line style. Pass a short fill flag
(_ GFILLINTERIOR or _ GBORDER) and four doubles: the x and y window
coordinates of opposite corners. Returns 0 if unsuccessful.

Communicating with Graphics 191

_rectangle_wxy Draws a rectangle in the current line style. Pass a short fill
flag (_ GFILLINTERIOR or _ GBORDER) and two _ wxycoord structures
describing the x and y coordinates of opposite corners. Returns 0 if unsuccessful.

_setpixel Sets a pixel to the current color (which is selected by _ setcolor). Pass
it integer x and y coordinates. Returns the previous value of the pixel or -1 if
unsuccessful.

_setpixel_w Sets a pixel to the current color (which is selected by _setcolor).
Pass it double x and y coordinates describing a position within the window.
Returns the previous value of the pixel or -1 if unsuccessful.

Defining Patterns
The following functions control the style in which straight lines are drawn and the
fill pattern used for solid shapes. For more information, use Help.

_floodfill Fills a bounded shape with the fill pattern set by _setfillmask in the
current color established by _setcolor. Pass an x and y coordinate and a boundary
color (the color index that marks the edge of the shape to be filled). Returns 0 if
unsuccessful.

_floodfill_w Fills a bounded shape with the fill pattern set by _setfillmask. Pass
doubles that describe an x and y position within the window and a boundary color
(the color index that marks the edge of the shape to be filled). Returns 0 if un­
successful.

_getfillmask Returns the address of the current fill mask, an eight-character
array, or 0 if the fill mask is not currently defined.

_getlinestyle Returns the line style, a short integer whose bits correspond to the
screen pixels turned on or off within a line.

_setfillmask Sets the current fill mask used by _floodfill and functions that
draw solid shapes (_ellipse, _pie, and _rectangle). Pass the address of an array of
eight unsigned characters, where each bit represents a pixel. The pixels are drawn
in the current color. No return value.

192 Programming Techniques

_setlinestyle Sets the current style, which is used to draw the straight lines
within _lineto, _rectangle, and _pie. Pass an unsigned short integer within which
the bits correspond to the pixels on screen. For example, OxFFFF represents a
solid line, OxAAAA is a dotted line, and OxFOFO is dashed.

Manipulating Images
The functions described below can be used to create animated graphics. The
_getimage and _ putimage functions act like a rubber stamp; after capturing a
shape, you can make copies anywhere on the screen.

_getimage Stores a screen image in memory. Pass four integers (the coordinates
ofthe bounding rectangle) and a pointer to a storage buffer. Call_imagesize to
find out how much memory is required. No return value.

_getimage_w Stores a screen image in memory. Pass four doubles (the
coordinates of the bounding rectangle) and a pointer to a storage buffer. Call
_imagesizL w to find out how much memory is required. No return value.

_getimage_wxy Same as _getimage_ w, but you pass two _ wxycoord struc­
tures and a pointer to memory.

_imagesize Returns a long integer representing the size of an image in bytes.
Call this function in preparation for a call to _getimage. Pass four integers: the x
and y coordinates of opposite corners of the portion of the screen to be saved.

_imagesize_w Returns the size of an image in bytes in preparation for a call to
_ getimage_ wand _ putimagL w. Pass four doubles: the x and y window coordi­
nates of opposite corners of the portion of the screen to be saved.

_imagesize_wxy Same as _imagesizL w, but you pass two _ wxycoord
structures.

_putimage Retrieves an image from memory and displays it on the active
screen page. The image should previously have been saved to memory with
_getimage. Pass two short integers (coordinates where the image is to be placed),
a pointer to the image, and a short integer indicating what kind of action to take:
_GAND, _GOR, _GPRESET, _GPSET, or _GXOR. No return value.

Communicating with Graphics 193

_putimage_w Displays an image from memory within a window. The image
should previously have been saved to memory with _getimage_ w. Pass two
doubles (coordinates where the image is to be placed), a pointer to the image,
and a short integer indicating what kind of action to take: _GAND, _GOR,
_GPRESET, _GPSET, or _GXOR. No return value.

9.5 Using Graphic Fonts
A "font" is a collection of stylized text characters. Each font consists of a typeface
with several type sizes.

A "typeface" is the name of the displayed text-Courier, for example, or Roman.
The list on the next page shows six of the typefaces available with the Microsoft C
font library.

"Type size" measures the screen area occupied by individual characters in units of
screen pixels. For example, "Courier 12 x 9" denotes text of Courier typeface,
with each character occupying a screen area of 12 vertical pixels by 9 horizontal
pixels.

A font's spacing can be fixed or proportional. "Fixed" means that all characters
have the same width in pixels. "Proportional" means the width varies. An i, for ex­
ample, is thinner than an M.

The Microsoft C font functions use two methods to create fonts. The first tech­
nique generates Courier, Helv, and Tms Rmn fonts through a "bit-mapping" (or
"raster-mapping") technique. Bit-mapping defines character images with binary
data. Each bit in the map corresponds to a screen pixel. If a bit is 1, its associated
pixel is set to the current screen color.

The second method creates the remaining three type styles-Modern, Script, and
Roman-as "vector-mapped" fonts. Vector-mapping represents each character in
terms oflines and arcs.

Each method has advantages and disadvantages. Bit-mapped characters are more
fully formed since the pixel mapping is predetermined. However, they cannot be
scaled. Vector-mapped text can be scaled to any size, but the characters tend to
lack the solid appearance of the bit-mapped characters.

194 Programming Techniques

The following list shows six sample typefaces:

Typeface

Courier

Relv

TmsRmn

Modern

Script

Roman

Sample Text

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abodefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

(l bcdefg hij klmnopq rstuvwxyz

AtBCE2Yh'JtJ. ')XlmrwrP2ce:!JdU/l.rwxy~

~

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

Table 9.6 lists available sizes for each font. Note that the bit-mapped fonts come in
preset sizes as measured in pixels. The vector-mapped fonts can be scaled to any
size.

Communicating with Graphics 195

Table 9.6 Typefaces and Type Sizes in the C Library

Typeface Mapping Size (in Pixels) Spacing

Courier Bit 10 x 8,12 x9, Fixed
15 x 12

Relv Bit lOx5,12x7, Proportional
15 x 8,18 x 9,
22 x 12,28 x 16

TmsRmn Bit lOx5,12x6, Proportional
15 x 8,16 x 9,
20 x 12,26 x 16

Modern Vector Scaled Proportional
Script Vector Scaled Proportional
Roman Vector Scaled Proportional

Using the C Font Library
Data for both bit-mapped and vector-mapped fonts reside in .FON files. For
example, the files MODERN.FON, ROMAN.FON, and SCRIPT.FON hold data
for the three vector-mapped fonts.

You can use Microsoft The Microsoft C .FON files are identical to the .FON files used in the Microsoft
Windows .FON files. Windows operating environment. If you have access to Windows, you can use any

of its .FON files with Microsoft C font functions. In addition, several vendors
offer software that creates or modifies .FON files, allowing you to design your
own fonts.

Your programs should follow these three steps to display fonted text:

1. Register the fonts.

2. Set the current font from the register.

3. Display text using the current font.

The following sections describe each of the three steps in detail. An example
program on page 198 demonstrates these steps.

Registering the Fonts
The fonts must first be organized into a list in memory, a process called "register­
ing." Register fonts by calling the function _registerfonts. This function reads
header information from specified .FON files, building a list of file information
but not reading any mapping data from the files.

196 Programming Techniques

The GRAPH.H file prototypes the _registerfonts function as

short far _registerfonts(unsigned char far *);

The argument points to a string containing a filename. The filename is the name of
the .FON file for the desired font. The filename can include wild cards, allowing
you to register several fonts with one call to _registerfonts.

If it successfully reads one or more .FON files, _registerfonts returns the number
of fonts. If the function fails, it returns a negative error code.

Setting the Current Font
Call the function _setfont to select a current font. This function checks to see if
the requested font is registered, then reads the mapping data from the appropriate
.FON file. A font must be registered and marked current before your program can
display text in that font.

The GRAPH.H file prototypes the_setfont function as

short far _setfont(unsigned char far *);

The function's argument is a pointer to a character string. The string consists of
letter codes that describe the desired font, as outlined here:

Option Code Meaning

b

f

hy

The best fit from the registered fonts. This option instructs _setfont to
accept the closest-fitting font if a font of the specified size is not
registered.

If at least one font is registered, the b option always sets a current font.
If you do not specify the b option and an exact matching font is not
registered, the _setfont function will fail. In this case, any existing
current font remains current. Refer to Help for a description of error
codes returned by_setfont.

The _ setfont function uses four criteria for selecting the best fit. In
descending order of precedence, the four criteria are pixel height, type­
face, pixel width, and spacing (fixed or proportional). If you request a
vector-mapped font, _setfont sizes the font to correspond with the
specified pixel height and width. If you request a raster-mapped (bit­
mapped) font, _setfont chooses the closest available size. If the
requested type size for a raster-mapped font fits exactly between two
registered fonts, the smaller size takes precedence.

Fixed-spaced font.

Character height, where y is the height in pixels.

Displaying Text

Communicating with Graphics 197

Option Code Meaning

ox Font number x, where x is less than or equal to the value returned by
_registerfonts. For example, the option n3 makes the third registered
font current, if three or more fonts are registered.

p Proportional-spaced font.

r Raster-mapped (bit-mapped) font.

t'fontname' Typeface of the font in single quotes. Thefontname string is one of the
following:

v

wx

courier
helv

modern
script

tms rrnn roman
Note the space in tms rmn. Additional font files use other names for
fontname. Refer to the vendor's documentation for these names.

Vector-mapped font.

Character width, where x is the width in pixels.

Option codes are not case sensitive and can be listed in any order. You can sepa­
rate codes with spaces or any other character that is not a valid option code. The
_setfont function ignores all invalid codes.

The _setfont function updates a data area with parameters of the current font. The
data area is in the form of a structure, defined in GRAPH.H as follows:

struct fontinfo
{

int type; 1* set = vector,clear = bit map *1
int ascent; 1* pix dist from top to base *1
int pixwidth; 1* character width in pixels *1
int pixheight; 1* character height in pixels *1
int avgwidth; 1* average character width *1
char filename[81]; 1* file name including path *1
char faceName[32]; 1* font name *1

} ;

If you want to retrieve the parameters of the current font, call the function
_ getfontinfo.

The last step, displaying text, consists of two parts. First you must select a screen
position for the text with the graphics function _moveto. Then display fonted text
at that position with the function _ outgtext. The _ moveto function takes pixel
coordinates as arguments. The coordinates locate the top left of the first character
in the text string.

198 Programming Techniques

Sample Program
The program SAMPLER.C displays sample text in all the available fonts, then
exits when a key is pressed. Make sure the .FON files are in the current directory
before running the program.

1* SAMPLER.C: Displays sample text in various fonts. *1

#include <stdiO.h>
#include <conio.h>
#include <stdlib.h>
#include <graph.h>
#include <string.h>
lldefi ne NFONTS 6

maine)

{

static unsigned char
{

"COURIER",
"HELV",
"TMS RMN",
"MODERN",
"SCRIPT",
"ROMAN",

} ;
static unsigned char
{

} ;

"t'courier''',
"t'helv''',
"t'tms rmn''',
"t'modern''',
"t'script''',
"t'roman'"

*text[2*NFONTS]

"courier",
"helv",
"tms rmn" ,
"modern",
"script",
"roman"

*face[NFONTS]

static unsigned char list[20];
struct _videoconfig vc;
int mode = _VRES16COLOR;
register i;

1* Read header info from all. FON fil es in
* current directory

if(_registerfonts("*.FON") < 0)
{

}

_outtext("Error: can't register fonts");
exit(0);

Communicating with Graphics 199

1* Set highest available video mode *1

if(_setvideomode(_MAXRESMODE) == 0)
ex it (0);

1* Copy video configuration into structure vc *1

_getvideoconfig(&vc);

1* Display six lines of sample text */

fore i = 0; i < NFONTS; i++
{

strcpy(list, face[iJ);
strcat(1 i st, "h30w24b");

if(setfont(list >= 0)
{

else
{

_setcolor(i +);
_moveto(0, (i * vc.numypixels) / NFONTS);
_outgtext(text[i * 2J);
_moveto(vc.numxpixels I 2,

(i * vC.numypixels) I NFONTS);
_outgtext(text[(i * 2) + 1J);

_setvideomode(DEFAULTMODE);
_outtext("Error: can't set font");
exit(0);

_getch();

}

_setvideomode(_DEFAULTMODE);

1* Return memory when finished with fonts */

_unregisterfonts();
ex it (0);

Using Fonts Effectively
Displaying fonts is simply another form of graphics; using fonts effectively
requires little programming effort. Still, there are a few things to watch:

• Remember that the video mode should be set only once. If you generate an
image with presentation graphics and want to add text to it, do not reset the
video mode prior to calling the font routines. Doing so will blank the screen,
destroying the original image.

200 Programming Techniques

• The _setfont function reads specified .FON files to obtain mapping data for the
current font. Each call to _setfont causes a disk access and overwrites the old
font data in memory. If you want to show text of different styles on the same
screen, display all text of one font before moving on to the others. Minimizing
the number of calls to _setfont saves time spent in disk I/O and memory
reloads.

• When your program finishes using the fonts library, you may want to free the
memory occupied by the register list by calling _ unregisterfonts. This TImc­
tion frees the memory allocated by _registerfonts. The register information for
each type size of each font takes up approximately 140 bytes of memory.

• Aesthetic suggestions for the printed page also apply to screen text. Typefaces
are more effective when they do not compete with each other for attention.
Restricting the number of styles per screen to one or two generally results in a
more pleasing, less cluttered image.

Creating Charts and Graphs
lip *

'*.IPt.*.· ... ~.!.! ••• ! .•• ! ••••.•.••••.••.••. ' .•.•• ; ~u

The low-level graphics functions described in Chapter 9, "Communicating with
Graphics," draw points, lines, and shapes. Although it is possible to use these func­
tions to generate charts and graphs, an additional set of high-level graphics func­
tions is better suited to this task.

"Presentation graphics" is a set of high-level functions that displays presentation­
quality graphics. These functions transform numeric data into pie charts, bar and
column charts, line graphs, and scatter diagrams.

This chapter describes how to use presentation graphics.

10.1 Overview of Presentation Graphics
The presentation graphics library PGCHART.LIB contains 22 functions. They are
listed in Table 10.1 for convenient reference.

Table 10.1 Presentation Graphics Functions

Primary Functions Secondary Functions

_pg_chart _ p~analyzechart _ pg_ hlabelchart
_pg_chartms _ p~analyzechartms _ pg_ resetpalette
_pg_chartpie _ pg_ analyzepie _ pg_ resetstyleset
_ pg_ chartscatter _ pg_ analyzescatter _ pg_ setchardef
_ p~ chartscatterms _ pg_ analyzescatterms _ pg_ setpalette
_ pg_ defaultchart _ pg_ getchardef _p~setstyleset

_ pg_ initchart _ p~ getpalette _ pg_ vlabelchart
_ pg_ getstyleset

202 Programming Techniques

The seven primary
functions initialize
variables and display
selected chart types.

In most cases, you will be using only seven "primary functions." These functions
initialize variables and display selected chart types. The 15 "secondary functions"
of presentation graphics do not directly display charts. Most of them retrieve or set
data in the presentation graphics chart environment.

Among the secondary functions are the "analysis functions," identified by the pre­
fix _pg_analyze. These five functions calculate default values that pertain to a
given chart type and data set. Calling an analysis function has the same effect as
calling a corresponding primary function, except that the chart is not displayed.
This allows you to pass on to the library the burden of calculating values. You can
then make modifications to the resulting values and call a primary routine to dis­
play the chart.

Use the _ p~hlabelchart and _ p~ vlabelchart functions to display text that is
not part of a title or axis label on your chart. These functions enable you to attach
notes or other messages to your chart.

10.2 Parts of a Graph
This section describes the terms used to refer to the different kinds of information
that can be plotted. The various types of charts and graphs are also defined.

Data Series
Data that are related by a common idea or purpose constitute a "series." For ex­
ample, the prices of a futures commodity over the course of a year form a single
series of data. The volume forms a second data series.

When you include several series in one chart, characteristics such as color and pat­
tern can help distinguish one from another. You can more readily differentiate
series on a color monitor than you can on a monochrome monitor. The number of
series that can appear on the same chart depends on the chart type and the number
of available colors.

Categories
"Categories" are nonnumeric data. A set of categories forms a frame of reference
for the comparison of numeric data. For example, the months of the year are cate­
gories against which numeric data such as inches of rainfall can be plotted.

Regional sales provide another example. A chart can compare a company's sales
in different parts of the country. Each region forms a category.

Creating Charts and Graphs 203

Values
"Values" are numeric data. Sales, stock prices, air temperatures, and populations
are all series of values that can be plotted against categories or against other
values.

Presentation graphics allows you to overlay different series of value data on a
single graph. For example, average monthly temperatures or monthly sales of heat­
ing oil during different years-or a combination of temperatures and sales-can
be plotted together on the same graph.

Pie Charts
"Pie charts" are used to represent data by showing the relationship of each part to
the whole. A good example is a company's annual budget. A pie chart allows you
to view each area of revenue or spending by its relative size within the context of
the entire company budget.

Presentation graphics can display either a standard or an "exploded" pie chart. The
exploded view shows the pie with one or more pieces separated for emphasis. You
can label each slice of a pie chart with a percentage figure if you wish.

Bar and Column Charts
As the name implies, a "bar chart" shows data as horizontal bars. Bar charts show
comparisons among items rather than absolute value.

"Column charts" are vertical bar charts. Column charts are frequently used to
show variations over a period of time, since they suggest time flow better than a
barchart.

Line Graphs
"Line graphs" illustrate trends or changes in data. They show how a series of
values varies against a particular category-for example, average temperatures
throughout one year.

Traditionally, line graphs show a collection of data points connected by lines. Pre­
sentation graphics can also plot points that are not connected by lines.

Scatter Diagrams
A "scatter diagram" is the only type of graph available in presentation graphics
that directly compares values with values. A scatter diagram simply plots points.

204 Programming Techniques

Scatter diagrams illustrate the relationship between numeric values in different
groups of data. They graphically show trends and correlations not easily detected
from rows and columns of raw numbers.

Scatter diagrams are most useful with large amounts of data. Consider, for ex­
ample, the relationship between personal income and family size. If you poll one
thousand wage earners for their income and family size, you have a scatter dia­
gram with one thousand points. If you combine your results so that you are left
with one average income for each family size, you have a line graph.

Axes
All presentation graphics charts except pie charts are displayed with two perpen­
dicular reference axes. The vertical, or y, axis runs from top to bottom of the chart
and is placed against the left side of the screen. The horizontal, or x, axis runs
from left to right across the bottom of the screen.

The x axis is the category axis for column and line charts and the value axis for bar
charts. The y axis is the value axis for column and line charts and the category axis
for bar charts.

Chart Windows
The "chart window" defines that part of the screen on which the chart is drawn. By
default, the window fills the entire screen, but presentation graphics allows you to
resize the window for smaller graphs. By redefining the chart window to different
screen locations, you can view separate graphs together on the same screen.

Data Windows
While the chart window defines the entire graph including axes and labels, the
"data window" defines only the actual plotting area. This is the portion of the
graph to the right of the y axis and above the x axis. You cannot specify or adjust
the size of the data window. Presentation graphics automatically determines its
size based on the dimensions of the chart window.

Chart Styles
Each of the five types of presentation graphics charts can appear in two different
"chart styles," as described in Table 10.2.

Creating Charts and Graphs 205

Table 10.2 Presentation Graphics Chart Styles

Chart Type Chart Style #1 Chart Style #2

Pie

Bar

Column

Line

Scatter

With percentages

Side-by-side

Side-by-side

Points with lines

Points with lines

Without percentages

Stacked

Stacked

Points only

Points only

Bar and column charts have only one style when displaying a single series of data.
The styles "side-by-side" and "stacked" are applicable when more than one series
appears on the same chart. The first style arranges the bars or columns for the
different series side by side, showing relative heights or lengths. The stacked style,
illustrated for a column chart in Figure 10.3, emphasizes relative sizes between
bars or columns.

legends
Legends help identify When displaying more than one data series on a chart, presentation graphics uses
individual data series. different colors, line styles, or patterns to differentiate them. Presentation graphics

also can display a "legend" that labels the different series of a chart. For a pie
chart, the legend labels individual slices of the pie.

A sample of the color and pattern used to graph the series appears next to the
series label. This identifies the set of data to which the labels belong.

You may change the font displayed by calling the _ registerfonts and _ setfont
functions (see Chapter 9, "Communicating with Graphics," for more information
about using fonts). If you don't select a font, presentation graphics defaults to an
internal font.

10.3 Writing a Presentation Graphics Program
To write a C or C++ program that uses presentation graphics, follow these steps:

1. Include the required header files, GRAPH.H and PGCHART.H, as well as any
other header files your program may need.

2. Set the video mode to a graphics mode. See Chapter 9, "Communicating with
Graphics," for a description of video modes.

3. Initialize the presentation graphics chart environment. Presentation graphics
places charting parameters in data structures. The amount of initialization that
must be done by your program depends on how extensively it relies on the
defaults.

206 Programming Techniques

Pie Charts

4. Assemble the plot data. Data can be collected in a variety of ways: by calculat­
ing it elsewhere in the program, reading it from files, or entering it from the key­
board. All plot data must be assembled in arrays because the presentation
graphics functions locate them through pointers.

5. Call presentation graphics functions to display the chart. Pause while the chart
is on the screen.

6. Reset the video mode. When your program detects the signal to continue, it
should reset the video to its original (default) mode.

After compiling the program, link it to the library modules PGCHART.LIB and
GRAPHICS.LIB.

Note If your program uses the alternate math package (i.e., if it is compiled with
IFPa), it cannot use the PGCHART.LIB module.

The sample programs on pages 206 - 212 use 5 of the 22 presentation graphics
functions: _pg_initchart, _p~defaultchart, _pg_chartpie, _pg_chart, and
_p~chartscatter. Each program is commented so that you can recognize
the steps given in this section.

The following program uses presentation graphics to display a pie chart for
monthly sales of orange juice over a year. The chart, which is shown in Figure
10.1, remains on the screen until a key is pressed.

1* PIE.C: Create sample pie chart. *1

#include <conio.h>
#include <string.h>
#include <graph.h>
#include <pgchart.h>

#define MONTHS 12

typedef enum {FALSE, TRUE} boolean;

float far value[MONTHS] =
{

} ;

33.0, 27.0, 42.0, 64.0,106.0,157.0,
182.0,217.0,128.0, 62.0, 43.0, 36.0

char far *category[MONTHS] =
{

"Jan", "Feb", "Mar", "Apr",

} ;

"May", "Jun", "Jly", "Aug",
"Sep", "Oct", "Nov", "Dec"

Creating Charts and Graphs 207

short far explode[MONTHS] = {0};

mai n ()
{

}

chartenv env;
int mode = _VRES16COLOR;

1* Set highest video mode available *1

if(_setvideomode(MAXRESMOOE) == 0)
exit(0);

1* Initialize chart library and a default pie chart *1

pg initchart();
_pg_defaultchart(&env, _PG_PIECHART, PG_PERCENT);

1* Add titles and some chart options *1

strcpy(env.maintitle.title, "Good Neighbor Grocery");
env.maintitle.titlecolor = 6;
env.maintitle.justify = _PG_RIGHT;
strcpy(env.subtitle.title, "Orange Juice Sales");
env.subtitle.titlecolor = 6;
env.subtitle.justify = _PG_RIGHT;
env.chartwindow.border = FALSE;

1* Parameters for call to _pg_chartpie are:

*
*
*
*
*
*
*1

env
category
value
explode
MONTHS

- Environment variable
- Category labels
- Data to chart

Separated pieces
- Number of data values

if(_pg_chartpie(&env, category, value,
explode, MONTHS))

{

}

_setvideomode(_DEFAULTMODE);
_outtext("Error: can't draw chart");

else
{

_getch();
_setvideomode(DEFAULTMODE);

}

return(0);

208 Programming Techniques

16.6:r.

Figure 10.1 Example Pie Chart

Bar, Column, and Line Charts

Good Neighbol' Gl'ocel'Y
OI'ange Jlli ce Sal es

• Jan
• reb • Mal'
!ill API'
.. May
:III Jlln

• Jly lii! AIlg'

ii'!il Sep
N Oct
!JJ Nov
;; Dec

The code for the PIE.C program needs only minor alterations to produce bar,
column, and line charts for the same data:

• Replace the call to _p~chartpie with _p~chart. This function produces bar,
column, and line charts depending on the value of the second argument for
_ p~ defaultchart.

• Give new arguments to _p~defaultchart that specify chart type and style.

• Assign titles for the x axis and y axis in the structure en v .

• Remove references to array exp lode, which is applicable only to pie charts.

The following example produces a bar chart for the store owner's data. The result
is shown in Figure 10.2.

/* BAR.C: Create sample bar chart. */

#include <conio.h>
#include <string.h>
#include <graph.h>
#include <pgchart.h>

Creating Charts and Graphs 209

#define MONTHS 12

typedef enum {FALSE, TRUE} boolean;

float far value[MONTHSJ =
{

} ;

33.0, 27.0, 42.0, 64.0,106.0,157.0,
182.0,217.0,128.0, 62.0, 43.0, 36.0

char far *category[MONTHSJ =
{

} ;

"Jan", "Feb", "Mar", "Apr",
"May", "Jun", "Jly", "Aug",
"Sept', "Oct", "Nov", "Dec"

maine)
{

chartenv env;
int mode = _VRES16COLOR;

1* Set highest video mode available *1

if(_setvideomode(_MAXRESMODE) == 0)
exit(0);

1* Initialize chart library and a default bar chart *1
_pg_initchart();
_pg_defaultchart(&env, _PG_BARCHART, _PG_PLAINBARS);

1* Add titles and some chart options *1

strcpy(env.maintitle.title, "Good Neighbor Grocery");
env.maintitle.titlecolor = 6;
env.maintitle.justify = _PG_RIGHT;
strcpy(env.subtitle.title, "Orange Juice Sales");
env.subtitle.titlecolor = 6;
env.subtitle.justify = _PG_RIGHT;
strcpy(env.yaxis.axistitle.title, "Months");
strcpy(env.xaxis.axistitle.title, "Quantity (cases)");
env.chartwindow.border = FALSE;

1* Parameters for call to _pg_chart are:
* env - Environment variable
* category - Category labels
* value - Data to chart
* MONTHS - Number of data values
*1

if(_pg_chart(&env, category, value, MONTHS))
{

}

_setvideomode(_DEFAULTMODE);
_outtext("Error: can't draw chart");

210 Programming Techniques

else
{

_getch();
_setvideomode(DEFAULTMODE);

}

return(0);
}

Jan

Feb

Mal'

ApI'

M May
0
n Jun
t
h
s Jly

Aug

Sep

Oct

Nov

Dec

0 50 100 150

Quanti ty (cases>

Figure 10.2 Example Bar Chart

Good Neighbop G~oce~y
Opange Juice Sales

200 250

The grocer's bar chart becomes a column chart in two easy steps. Simply specify
the new chart type when calling _ p~ defaultchart and change the axis titles. To
produce a column chart for the grocer's data, replace the call to _p~defaultchart
with

Creating Charts and Graphs 211

Replace the last two calls to strcpy with

strcpy(env.xaxis.axistitle.title, "Months");
strcpy(env.yaxis.axistitle.title, "Quantity (cases)");

Note that now the x axis is labeled "Months" and the y axis is labeled "Quantity
(cases)." Figure 10.3 shows the resulting column chart.

Q
u
a
n
t
1
t
y

(
c
a
s
e
s
)

259

299

159

199

59

Good Neighbo~ G~ocery
Orange Juice Sales

Jan Feb Ma~ Ap~ May Jun Jly Aug Sep Oct Nov Dec

Months

Figure 10.3 Example Column Chart

Creating an equivalent line chart requires only one change. Use the same code as
for the column chart and replace the call to _ p~ defaultchart with

_P9_defaultchart(&env, _PG_LINECHART, _PG_POINTANDLINE);

212 Programming Techniques

Scatter Diagram

Figure 10.4 shows the line chart for the grocer's data.

259

299
Q
u
a
n
t
i 159
t
y

(
c
a
s 199
e
s
)

59

Good Neighbo~ G~ocery
O~ange Juioe Sales

Jan Feb Mal' ApI' May Jun Jly Aug Sep Oct Nov Dec

Months

Figure 10.4 Example Line Chart

The program SCATTER.C displays a scatter diagram that illustrates the relation­
ship between the sales of orange juice and hot chocolate throughout a 12-month
period. Figure 10.5 shows the results of SCATTER.C. Notice that the scatter
points form a slightly curved line, indicating that a correlation exists between the
sales of the two products. The demand for orange juice is roughly inverse to the
demand for hot chocolate.

1* SCATTER.C: Create sample scatter diagram. *1

#include <conio.h>
#include <string.h>
#include <graph.h>
#include <pgchart.h>

#define MONTHS 12

typedef enum {FALSE, TRUE} boolean;

1* Orange juice sales *1

Creating Charts and Graphs 213

float far xvalue[MONTHSJ =
{

} ;

33.0, 27.0, 42.0, 64.0,106.0,157.0,
182.0,217.0,128.0, 62.0, 43.0, 36.0

/* Hot chocolate sales */

float far yvalue[MONTHSJ =
{

} ;

37.0, 37.0, 30.0, 19.0, 10.0, 5.0,
2.0, 1.0, 7.0, 15.0, 28.0, 39.0

mai n ()
{

chartenv env;
int mode = _VRES16COLOR;

1* Set highest video mode available *1

if(_setvideomode(_MAXRESMODE) == 0)
exit(0);

1* Initialize chart library and default
* scatter diagram
*1

pg i nitchart();
_pg_defaultchart(&env, _PG_SCATTERCHART,

_PG_POINTONLY);

1* Add titles and some chart options *1

strcpy(env.maintitle.title, "Good Neighbor Grocery");
env.maintitle.titlecolor = 6;
env.maintitle.justify = _PG_RIGHT;
strcpy(env.subtitle.title,

"Orange Juice vs Hot Chocolate");
env.subtitle.titlecolor = 6;
env.subtitle.justify = _PG_RIGHT;
env.yaxis.grid = TRUE;
strcpy(env.xaxis.axistitle.title,

"Orange Juice Sales");
strcpy(env.yaxis.axistitle.title,

"Hot Chocolate Sales");
env.chartwindow.border = FALSE;

1* Parameters for call to -pg- chartscatter

* env - Environment variable

* xvalue - X-axis data

* yvalue - Y-axis data

* MONTHS - Number of data values
*1

are:

214 Programming Techniques

}

if(_P9_chartscatter(&env, xvalue,
yvalue, MONTHS))

{

}

_setvideomode(_DEFAULTMODE);
_outtext("Error: can't draw chart");

else
{

_getch();
_setvideomode(DEFAULTMODE);

}
return((1);

Good Neighbor Grocery
Orange Juice vs Hot Chocolate

49
*

**
35

H
0 39 t

C *
h
0 25
c
0
I
a 29
t * e

S 15 a
I
e
s 19

*
5

* * 9
9 59 199 159 299 259

Orange Juice Sales

Figure 10.5 Example Scatter Diagram

10.4 Manipulating Colors and Patterns
Presentation graphics displays each data series in a way that makes it discernible
from other series. It does this by defining a separate "palette" for every data series
in a chart. Palettes consist of entries that determine color, line style, fill pattern,
and point character used to graph the series.

Presentation graphics maintains its palettes as an array of structures. The header
file PGCHART.H defines the palette structures as follows:

Color Pool
The color pool deter­
mines the colors of
graphic elements.

1* Typedef for pattern bitmap *1
typedef unsigned char _fillmap[8];

1* Typedef for palette entry definition *1
typedef struct
{

unsigned short
unsigned short
_fillmap
char

_ pa 1 etteent ry;

color;
style;
fi 11 ;

plotchar;

1* Typedef for palette definition *1

Creating Charts and Graphs 215

typedef _paletteentry _palettetype[_PG_PALETTELEN];

Do not confuse the presentation graphics palettes with the adapter display palettes,
which are register values kept by the video controller. The function _selectpalette
described in Chapter 9, "Communicating with Graphics," sets the display palette.
It does not define the data series palettes used by presentation graphics.

Presentation graphics organizes all chart colors into a "color pool." The color pool
holds the color index values valid for the current graphics mode. (Refer to Chapter
9, "Communicating with Graphics," for more information about the color index.)
Palette structures contain color codes that refer to the color pool. A palette's color
index determines the colors used to graph the data series associated with the
palette. The colors of labels, titles, legends, and axes are determined by the con­
tents of the color pool.

The first element of the color pool is always 0, which is the color index for the
screen background color. The second element is always the highest color index
available for the graphics mode. The remaining elements repeat the sequences of
available pixel values, beginning with 1.

As shown in the example in "Manipulating Colors and Patterns" on page 214, the
first member of a palette data structure is

unsigned short color;

This member defines the color index for the data series associated with the palette.

An example should make this clearer. A graphics mode of _MRES4COLOR
(320-by-200 pixels) provides four colors for display. Color index values from 0 to
3 determine the possible colors-say, black, green, red, and brown, respectively.

216 Programming Techniques

Style Pool

Use the different line
styles in the style
pool to differentiate
series.

The first eight elements of this color pool are as follows.

Color Pool Index Color Index Color

0 0 Black

1 3 Brown

2 Green

3 2 Red

4 3 Brown

5 1 Green

6 2 Red

7 3 Brown

Notice that the sequence of available foreground colors repeats from the third ele­
ment. The first data series in this case would be plotted in brown, the second series
in green, the third series in red, the fourth series again in brown, and so forth.

Video adapters such as the EGA or the Hercules InColor Card allow 16 on-screen
colors. This allows presentation graphics to graph more series without duplicating
colors.

Presentation graphics matches the color pool with a collection of different line
styles called the "style pool." Entries in the style pool define the appearance of
lines such as axes and grids. Lines can be solid, dotted, dashed, or some combina­
tion of styles.

The second member of a palette structure defines a style code as

unsigned short style;

Each palette contains a style code that refers to an entry in the style pool in the
same way that it contains a color code that refers to an entry in the color pool. The
style code value in a palette is applicable only to line graphs and lined scatter dia­
grams. The style code determines the appearance of the lines drawn between
points.

The palette's style code adds further variety to the lines of a multi series graph. It is
most useful when the number of lines in a chart exceeds the number of available
colors. For example, a graph of nine different data series must repeat colors if only
three foreground colors are available for the display. However, the style code for
each color repetition will be different, ensuring that none of the lines looks the
same.

Pattern Pool

Creating Charts and Graphs 217

Presentation graphics also maintains a pool of "fill patterns" that determine the fill
design for column, bar, and pie charts. The third member of the palette structure
holds the fill pattern. The pattern member is an array:

_fillrnap fill;

where _ fi 11 rna p is type-defined as

typedef unsigned char _fi11rnap[8];

Each fill pattern array holds an 8-by-8 bit map that defines the fill pattern for the
data series associated with the palette. Table 10.3 shows how a fill pattern of diag­
onal stripes is created with the fi 11 pattern array.

The bit map in Table 10.3 corresponds to screen pixels. Each of the eight layers
of the map is a binary number, where a solid circle signifies 1 and an open circle
signifies O. Thus the first layer of the map-that is, the first byte-represents the
binary number 10011001, which is the decimal number 153.

Table 10.3 Fill Patterns

BitMap Value in Fill

.00 •• 00. fi11[0] 153

•• 00 •• 00 fi1l[l] 204

0 •• 00 •• 0 fi11[2] 102

00 •• 00 •• fi 11[3] 51

.00 •• 00. fi11[4] 153

•• 00 •• 00 fi11[5] 204

0 •• 00 •• 0 fi11[6] 102

00 •• 00 •• fi 11[7] 51

For example, if you want to create the pattern in Table 10.3 for your chart's first
data series, you must reset the fi 11 array for the first palette structure. You can
do this in five steps:

1. Declare a structure of type _ palettetype to hold the palette parameters.

2. Call_ pg_initchart to initialize the palettes with default values.

3. Call the presentation graphics function _ pg_ getpalette to retrieve a copy of the
current palette data.

4. Assign the values given in Table 10.3 to the array fi 11 for the first palette.

5. Call the presentation graphics function _ p~ setpalette to load the modified
palette values.

218 Programming Techniques

The following lines of code demonstrate these five steps:

/* Declare a structure array for palette data. */

_palettetype palette_struct;

/* Initialize chart library */

pg i nitchart();

/* Copy current palette data into palette_struct */

_pg_getpalette(palette_struct);

/* Reinitialize fill pattern for first palette using
values in Table 10.3 */

palette_struct[1].fill[0] 153;
palette_struct[l].fill[l] 204;
palette_struct[1].fill[2] 102;
palette_struct[1].fill[3] 51;
palette_struct[1].fill[4] 153;
palette_struct[1].fill[5] 204;
palette_struct[1].fill[6] 102;
pal ette_struct[l]. fi 11 [7] 51;

/* Load new palette data */

_pg_setpalette(palette_struct);

Now when you display your bar or column chart, the first series appears filled
with the striped pattern shown in Table 10.3.

Palette structures are used differently with pie charts. Instead of clarifying multiple
series, fill patterns, line styles, and colors, palette structures are used to distinguish
individual slices in a pie chart. Palettes are recycled if the number of slices
exceeds _PG_PALETTELEN. Thus, the first palette dictates not only the appear­
ance of the first slice, but of slice number _PG_PALETTELEN as well. The sec­
ond palette determines the appearance of both the second slice and of slice number
_PG_PALETTELEN + 1, and so forth.

Character Pool

Creating Charts and Graphs 219

The last member of a palette structure is an index number in a pool of ASCII char­
acters:

char plotchar;

The member plotchar represents plot points on line graphs and scatter diagrams.
Each palette uses a different character to distinguish plot points between data
series.

10.5 Customizing the Chart Environment

You can reset any
variable in the
environment.

The presentation graphics functions are designed to be flexible. You can use the
system of default values to produce professional-looking charts with a minimum
of programming effort. Or you can fine-tune the appearance of your charts by over­
riding default values and initializing variables explicitly in your program.

The header file PGCHART.H defines a structure type _chartenv, which organizes
the chart environment variables. The chart environment describes everything
about a chart except the plots themselves. It is the blank page, in other words,
ready for plotting data. The environment determines the appearance of text, axes,
grid lines, and legends.

Colors and line styles in the chart environment are taken from palettes. In this
way, the appearance of titles and axis lines matches the colors and line styles of
plotted data series.

Calling the _ p~ defaultchart function fills the chart environment with default
values. Presentation graphics allows you to reset any variable in the environment
before displaying a chart. Except for adjusting the palette values, all initialization
of data is done through a _ chartenv type structure.

The sample chart programs provided in "Writing a Presentation Graphics Pro­
gram," on page 205 illustrate how to adjust variables in the chart environment.
These programs create a structure env of type _chartenv. The structure env con­
tains the chart environment variables, initialized by the call to the _ p~ default­
chart function. Environment variables such as the chart title are then given
specific values, as in

strcpy(env.maintitle.title, "Good Neighbor Grocery" 1;

220 Programming Techniques

Environment variables that detennine colors and line styles deserve special men­
tion. The chart environment holds several such variables, which can be recognized
by their names. For example, the variable titlecolor specifies the color of title text.
Similarly, the variable gridstyle specifies the line style used to draw the chart grid.

These variables are index numbers, but do not refer directly to the color pool or
line pool. They correspond instead to palette numbers. If you set titlecolor to 2,
presentation graphics uses the color code in the second palette to determine the
title's color. Thus, the title in this case would be the same color as the chart's sec­
ond data series. If you change the color code in the palette, you'll also change the
title's color.

A structure of type _ chartenv consists of four types of secondary structures. The
file PGCHART.H type-defines these secondary structures: _ titletype, _axistype,
_ windowtype, and _legendtype.

The remainder of this section describes the chart environment of presentation
graphics. It first examines structures of the four secondary structures that make up
the chart environment structure. The section concludes with a description of the
_ chartenv structure type. Each section begins with a brief explanation of the struc­
ture's purpose, followed by a listing of the structure type definition as it appears in
the PGCHART.H file. All symbolic constants are defined in the file
PGCHART.H.

_titletype Structures
Structures of type _titletype determine text, color, and placement of titles appear­
ing in the graph. The PGCHART.H file defines the structure type as

typedef struct
{

char titleC_PG_TITLELEN]; 1* Title text *1
short titlecolor; 1* Palette color

for title text *1
short justify; 1* _PG_LEFT, _PG_CENTER,

PG RIGHT *1
} _titletype;

The following list describes _titletype members:

Justify
An integer specifying how the title is justified within the chart window. The
symbolic constants defined in PGCHART.H for this variable are _PG_LEFT,
_PG_CENTER, and _PG_RIGHT.

titlecolor
An integer between 1 and _ PG_ PALETTELEN that specifies a title's color.
The default value for titlecolor is 1.

Creating Charts and Graphs 221

titleLPG_ TITLELEN]
A character array containing title text. For example, if env is a structure oftype
_chartenv, then env. rna i nt it 1 e. tit 1 e holds the character string used for the
main title of the chart. Similarly, env .xaxi s .axi stitl e. titl e contains the x
axis title. The number of characters in a title must be one less than
PG TITLELEN to allow room for a null terminator.

_3xistype Structures
Structures of type _axistype contain variables for the axes such as color, scale,
grid style, and tick marks. The PGCHART.H file defines the structure type as the
following:

typedef struct
{

short gri d; 1* TRUE=grid lines drawn;
FALSE=no lines *1

short gridstyle; 1* Style bytes for grid *1
_ titl etype axistitle; 1* Title definition

for axis *1
short axiscolor; 1* Color for axis *1
short labeled; 1* TRUE=ticks marks and titl es

drawn *1
short rangetype; 1* _PG_LINEARAXIS,

_PG_LOGAXIS *1
float logbase; 1* Base used if log axis *1
short autoscale; 1* TRUE=next 7 values

calculated by system *1
float scalemin; 1* Minimum value of scale *1
float scalemax; 1* Maximum value of scale *1
float scalefactor; 1* Scale factor for data on

this axis *1
_titletype scal etitl e; 1* Title definition for

scaling factor *1
float ticinterval; 1* Distance between tick marks

(world coord.) */
short ticformat; 1* - PG_EXPFORMAT or

_PG_DECFORMAT *1
short ticdecimals; 1* Number of decimals for tick

labels (max=9) *1
} _axistype;

The following list describes _axistype member variables:

autoscale
A Boolean variable. If autoscale is set to TRUE, presentation graphics automat­
ically determines values for scalefactor, scalemax, scalemin, scale title,
ticdecimals, ticformat, and ticinterval (see below). If autoscale equals FALSE,
these seven variables must be specified in your program.

222 Programming Techniques

axiscolor
An integer between 1 and _PG_PALETTELEN that specifies the color used
for the axis and parallel grid lines. (See description for gridstyle below.) Note
that this member does not determine the color of the axis title. That selection is
made through the axistitle structure.

axistitle
A _ titletype structure that defines the title of the associated axis. The title of
the y axis displays vertically to the left of the y axis, and the title of the x axis
displays horizontally below the x axis.

grid
A Boolean true/false value that determines whether grid lines are drawn for the
associated axis. Grid lines span the data window perpendicular to the axis.

gridstyle
An integer between 1 and _PG_PALETTELEN that specifies the grid's line
style. Lines can be solid, dashed, dotted, or some combination. The default
value for gridstyle is 1.

Note that the color of the parallel axis determines the color of the grid lines.
Thus, the x axis grid is the same color as the y axis, and the y axis grid is the
same color as the x axis.

labeled
A Boolean value that determines whether tick marks and labels are drawn on
the axis. Axis labels should not be confused with axis titles. Axis labels are
numbers or descriptions such as "23.2" or "January" attached to each tick mark.

logbase
If rangetype is logarithmic" the logbase variable determines the log base used
to scale the axis. The default value is 10.

rangetype
An integer that determines whether the scale of the axis is linear or logarithmic.
The variable rangetype applies only to value data.

Specify a linear scale with _PG_LINEARAXIS. A linear scale is best when
the difference between axis minimum and maximum is relatively small. For ex­
ample, a linear axis range ° -10 results in 10 tick marks evenly spaced along
the axis.

Use _PG_LOGAXIS to specify a logarithmic rangetype. Logarithmic scales
are useful when the range is very large or when the data varies exponentially.
Line graphs of exponentially varying data can be made straight with a logarith­
mic rangetype.

scalefactor
All numeric data are scaled by dividing each value by scalefactor. For rela­
tively small values, scalefactor should be 1, which is the default. But data with
large values should be scaled by an appropriate factor. For example, data in the
range 2 million - 20 million should be plotted with scalemin set to 2, scalemax
set to 20, and scalefactor set to 1 million.

Creating Charts and Graphs 223

If autoscale is set to TRUE, presentation graphics automatically determines a
suitable value for scalefactor based on the range of data to be plotted. Presenta­
tion graphics selects only values that are a factor of 1 thousand-that is, values
such as 1 thousand, 1 million, or 1 billion. It then labels the scale title appro­
priately (see the following). If you desire some other value for scaling, you
must set autoscale to FALSE and set scalefactor to the desired scaling value.

scalemax
Highest value represented by the axis.

scalemin
Lowest value represented by the axis.

scale title
A _ titletype structure defining a string of text that describes the value of
scalefactor. If autoscale is TRUE, presentation graphics automatically writes a
scale description to scaletitle. If autoscale equals FALSE and scalefactor is 1,
scaletitle.title should be blank. Otherwise your program should copy an appro­
priate scale description to scale title. title, such as "(x 1000)," "(in millions of
units)," or "times 10 thousand dollars."

For the y axis, the scaletitle text displays vertically between the axis title and
the y axis. For the x axis, the scale title appears below the x axis title.

ticdecimals
Number of digits to display after the decimal point in tick labels. Maximum
value is 9. (This variable applies only to axes with value data and is ignored for
the category axis.)

ticformat
An integer that determines format of the labels assigned to each tick mark. Set
ticformat to _PG_EXPFORMAT for exponential format or to
_PG_DECFORMATfor decimal. The default is _PG_DECFORMAT.
(This variable applies only to axes with value data and is ignored for the cate­
gory axis.)

ticinterval
Sets interval between tick marks on the axis. The tick interval is measured in
the same units as the numeric data associated with the axis. For example, if 2
sequential tick marks correspond to the values 20 and 25, the tick interval be­
tween them is 5. (This variable applies only to axes with value data and is ig­
nored for the category axis.)

_windowtype Structures
Structures of type _ windowtype contain sizes, locations, and color codes for the
three windows produced by presentation graphics: the chart window, the data win­
dow, and the legend. Windows are located on the screen relative to the screen's
logical origin. By changing the logical origin, you can display charts that are
partly or completely off the screen.

224 Programming Techniques

The PGCHART.H file defines _ windowtype as the following:

typedef struct
{

short xl; 1* Left edge of window in
pixels *1

short yl; 1* Top edge of window in
pixels *1

short x2; 1* Right edge of window in
pixels *1

short y2; 1* Bottom edge of window in
pixels *1

short border; 1* TRUE for border, FALSE
otherwise *1

short background; 1* Internal palette color for
window background *1

short borderstyle; 1* Style bytes for window
border *1

short bordercolor; 1* Internal palette color for
window border *1

} _windowtype;

The following list describes _ windowtype member variables:

background
An integer between 1 and _PG_PALETTELEN that specifies the window's
background color. The default value for background is 1.

border
A Boolean variable that determines whether a border frame is drawn around a
window.

bordercolor
An integer between 1 and _PG_PALETTELENthat specifies the color of the
window's border frame. The default value is 1.

borderstyle
An integer between 1 and _PG_PALETTELEN that specifies the line style of
the window's border frame. The default value is 1.

xl, yl,x2, y2
Window coordinates in pixels. The ordered pair (xl, y 1) specifies the coordi­
nate of the upper -left corner of the window. The ordered pair (x2, y2) specifies
the coordinate of the lower-right corner.

The reference point for the coordinates depends on the type of window. The
chart window is located relative to the logical origin, usually the upper-left
corner of the screen. The data and legend windows are located relative to the
upper-left corner of the chart window. This allows you to change the position of
the chart window without having to redefine coordinates for the other two
windows.

Creating Charts and Graphs 225

Jegendtype Structures
Structures of type _legend type contain size, location, and colors of the chart
legend. The PGCHART.H file defines the structure type as the following:

typedef struct
{

short

short

legend;

place;

short textcolor;
short autosize;

_windowtype legendwindow;

} _legendtype;

1* TRUE=draw legend;
FALSE=no legend *1

1* _ PG_ RI GHT, _ PG_ BOTTOM,
PG OVERLAY *1

1* Palette color for text*1
1* TRUE=system calculates

legend size *1
1* Window definition for

legend *1

The following list describes _legendtype member variables:

autosize
A Boolean true/false variable that determines whether presentation graphics is
to automatically calculate the size of the legend. If autosize equals FALSE,
the legend window must be specified in the legendwindow structure (see the
following).

legend
A Boolean true/false variable that determines whether a legend is to appear on
the chart. The legend variable is ignored by functions that graph single-series
charts.

legendwindow
A _ windowtype structure that defines coordinates, background color, and
border frame for the legend. Coordinates given in legendwindow are ignored if
autosize is set to TRUE.

place
An integer that specifies the location of the legend relative to the data window.
Setting place equal to the constant _PG_RIGHT positions the legend to the
right of the data window. Setting place to _PG_BOTTOM positions the
legend below the data window. Setting place to _ PG_ OVERLAY positions
the legend within the data window.

These settings influence the size of the data window. Ifplace equals
_PG_RIGHT or _PG_BOTTOM, presentation graphics automatically sizes
the data window to accommodate the legend. If place equals _PG_OVER­
LAY, the data window is sized without regard to the legend.

textcolor
An integer between 1 and _PG_PALETTELEN that specifies the color of text
within the legend window.

226 Programming Techniques

_chartenv Structures

Initialize the chart
environment with the
_pD-defaulichart
function.

A structure of type _ chartenv defines the chart environment. The following
listing shows that a _chartenv type structure consists almost entirely of structures
of the four types described above.

The PGCHART.H file defines the _chartenv structure type as the following:

typedef struct
{

short charttype; 1* Chart type *1
short chartstyle; 1* Chart style *1
_ wi ndowtype chartwindow; 1* Window definition for

overall chart *1
_ wi ndowtype datawindow; 1* Window definition for data

part of chart *1
_ t itl etype maintitle; 1* Main chart title *1
_titletype subtitl e; 1* Chart subtitl e *1
_axi stype xaxis; 1* Definition for x axis *1
_axi stype yaxis; 1* Defi niti on for y axis *1
_ legendtype legend; 1* Defi niti on for legend *1

} _chartenv;

The data in a _chartenv type structure is initialized by calling the function
_ p~ defaultchart. If your program does not call _ pg_ defaultchart, it must
explicitly define every variable in the chart environment-a tedious procedure.
The recommended method for adjusting the appearance of your chart is to initial­
ize variables for the proper chart type by calling the _ p~ defaultchart function,
and then to reassign selected environment variables such as titles.

The following list describes _ chartenv member variables:

chartstyle
An integer that determines the style of the chart (see Table 10.2). Legal values
for chartstyle are _PG_PERCENT and _PG_NOPERCENT for pie charts;
_PG_PLAINBARS and _PG_STACKEDBARS for bar and column charts;
and _PG_POINTONLY and _PG_POINTANDLINE for line graphs and
scatter diagrams. This variable corresponds to the third argument for the
_ p~ defaultchart function.

charttype
An integer that determines the type of chart displayed. The value of charttype
is _PG_BARCHART, _PG_ COLUMNCHART, _PG_LINECHART,
_PG_SCATTERCHART, or _PG_PIECHART. This variable corresponds
to the second argument for the _p~defaultchartfunction.

chartwindow
A _ windowtype structure that defines the appearance of the chart window.

datawindow
A _ windowtype structure that defines the appearance of the data window.

Creating Charts and Graphs 227

legend
A _legendtype structure that defines the appearance of the legend window.

maintitle
A _ titletype structure that defines the appearance of the main title of the chart.

subtitle
A _ titletype structure that defines the appearance of the chart's subtitle.

xaxis
An _axistype structure that defines the appearance of the x axis. (This variable
is not applicable for pie charts.)

yaxis
An _axistype structure that defines the appearance of the y axis. (This variable
is not applicable for pie charts.)

Programming with Mixed
Languages

There are times when your Microsoft C or C++ programs need to call programs
written in other languages or when programs written in other languages need to
call your C or C++ functions. This is called mixed-language programming. For
example, when a particular subprogram is available commercially in a language
other than C or C++ or when algorithms are described more naturally in a different
language, you need to use more than one language.

This chapter describes the elements of mixed-language programming-how to
make calls from programs written in one language to routines written in another.

11.1 Making Mixed-Language Calls
Mixed-language programming always involves a call to a function, procedure, or
subroutine. For example, a BASIC main module may need to execute a specific
task that you would like to program separately. Instead of calling a BASIC subpro­
gram, however, you decide to call a C function.

Mixed-language calls involve calling functions in separate modules. Instead of
compiling all of your source modules with the same compiler, you use different
compilers. In the instance mentioned above, you would compile the main-module
source file with the BASIC compiler, another source file (written in C) with the C
compiler, and then link the two object files.

230 Programming Techniques

Figure 11.1 illustrates how the syntax of a mixed-language call works, using the
instance mentioned above.

Affects
how call
is made

r-

4-

BASIC Code

DECLARE SUB Prn CDECl()

CALL Prn () <:~~~-~
END

Figure 11.1 Mixed-Language Call

C Code

- void prn ()
{

------ }

In Figure 11.1, the BASIC call to C is CALL Prn, similar to a call to a BASIC sub­
program. There are two differences between this mixed-language call and a call
between two BASIC modules:

• The subprogram Prn is implemented in C, using standard C syntax.

• The implementation of the call in BASIC is affected by the DECLARE state­
ment, which uses the CDECL keyword to create compatibility with C. The
DECLARE statement (which is described in detail in the Microsoft BASIC
Language Reference and the Microsoft BASIC Programmer's Guide) is an ex­
ample of a mixed-language "interface" statement. These interface statements
override default naming and calling conventions. Each language provides its
own form of interface.

You can make mixed-language calls to routines regardless of whether they have
return values. (In this chapter, "routine" refers to any function, procedure, or
subroutine that can be called from another module.)

Table 11.1 shows the correspondence between calls to routines in different
languages.

Programming with Mixed Languages 231

Table 11.1 Language Equivalents for Routine Calls

Language Return Value No Return Value

Assembly Language Procedure Procedure

BASIC FUNCTION procedure Subprogram

C/C++ function (void) function

FOR1RAN FUNCTION SUBROUTINE

Pascal Function Procedure

For example, a C module can make a subprogram call to a FORTRAN subroutine.
You can prototype a FORTRAN subroutine as a function with a void type.

Note BASIC DEF FN functions and GOSUB subroutines cannot be called from
another language.

11.2 Language Convention Requirements
To mix languages, the calling program must observe the same conventions as the
called program. The conventions described in this section govern the following:

• How compilers treat identifiers, including function and variable names (naming
convention)

• How the subprogram call is implemented (calling convention)

• How parameters are passed (parameter-passing convention)

Naming Convention Requirement
Both the calling program and the called subprogram must agree on the names of
identifiers. Identifiers can refer to subprograms (functions, procedures, and sub­
routines) or to variables that have a public or global scope. Each language alters
the names of identifiers.

The term "naming convention" refers to the way a compiler alters the name of the
routine before placing it in an object file. Languages may alter the identifier names
differently. You can choose between several naming conventions to ensure that
the names in the calling program agree with those in the called program. If the
names of called routines are stored differently in each object file, the linker will
not be able to find a match. It will instead report unresolved external references.

Microsoft compilers place machine code into object files; they also place the
names of all publicly accessed routines and variables in object files. The linker can
then compare the name of a routine called in one module with the name of a

232 Programming Techniques

Some languages
translate names to
uppercase.

C and C++ are case­
sensitive languages.

routine defined in another module, and recognize a match. Names are stored in the
ASCII (American Standard Code for Information Interchange) character set.

BASIC, FORTRAN, and Pascal use similar naming conventions. They translate
each letter to uppercase. BASIC type declaration characters (%, &, !, #, $) are
dropped.

Each language recognizes a different number of characters. FORTRAN recognizes
the first 31 characters of any name (unless identifier names are truncated), Pascal
the first 8, and BASIC the first 40. If a name is longer than the language will recog­
nize, additional characters are simply not placed in the object file.

Note Versions of Microsoft FORTRAN previous to version 5.0 truncated identifi­
ers to six characters. As of version 5.0, FORTRAN retains up to 31 characters of
significance unless you use the 14Yt option.

The C compiler does not translate any letters to uppercase. It inserts a leading un­
derscore (_) in front of the name of each routine. The C compiler recognizes the
first 31 characters of a name (or 32 including the underscore) . You can change the
number of characters it recognizes with the /H option; see Chapter 13, "CL Com­
mand Reference," in the Environment and Tools manual for more information.

The C++ compiler decorates identifier names to retain type information through
the linking process. The C++ compiler recognizes the first 247 characters of a
name.

Differences in naming conventions are dealt with automatically by mixed­
language keywords, as long as you follow two rules:

• If you use any FORTRAN routines that were compiled with the 14Yt command­
line option or with the $TRUNCATE metacommand enabled, make all names
six characters or less. Make all names 6 characters or less when using FOR­
TRAN routines compiled with versions of the FORTRAN compiler prior to 5.0.

• Do not use the INOIGNORECASE linker option (which causes the linker to
treat identifiers in a case-sensitive manner). With C or C++ modules, this
means that you must be careful not to rely upon differences between uppercase
and lowercase letters when programming.

CL automatically uses the INOIGNORECASE option when linking. To solve
the problems created by this behavior, either link separately with the LINK
utility, or use all lowercase letters in your C or C++ function names and public
variables (global variables that are not declared as static).

Note If you use the command-line option IGc (generate Pascal-style function
calls) when you compile, or if you declare a function or variable with the
__ pascal keyword, the compiler will translate your identifiers to uppercase.

Programming with Mixed Languages 233

Figure 11.2 illustrates a complete mixed-language development example, showing
how naming conventions enter into the process.

DECLARE affects
how BASIC
makes the call.

MAINPROG.BAS (source file)
DECLARE SUB Prn CDECL()

CALL Prn -

END

MAINPROG.OBJ (object file)

CALL_prn----

CALL _prn xxxx:

¥

_prn yyyy:

PRN.C (source file)
prn()
{

}

PRN.OBJ (objectfile)

Libraries

l Machine-level f addresses

MAINPROG.EXE

Figure 11.2 Naming Convention

234 Programming Techniques

In Figure 11.2, note that the BASIC compiler inserts a leading underscore in front
of Prn as it places the name into the object file, because the CDECL keyword
directs the BASIC compiler to use the C naming convention. BASIC will also con­
vert all letters to lowercase when this keyword is used. (Converting letters to
lowercase is not part of the C naming convention; however, it is consistent with
the programming style of many C programs.)

Calling Convention Requirement
The term "calling convention" refers to the way a language implements a call. The
choice of calling convention affects the machine instructions that a compiler gener­
ates to execute (and return from) a function, procedure, or subroutine call.

It is crucial that the two routines concerned (the routine issuing a call and the
routine being called) use the same protocol. Otherwise, the processor may receive
inconsistent instructions, causing the program to behave incorrectly.

The use of a calling convention affects programming in three ways:

• The calling routine uses a calling convention to determine the order in which to
pass arguments (parameters) to another routine. This convention can be speci­
fied in a mixed-language interface statement or declaration.

• The called routine uses a calling convention to determine the order in which to
receive the parameters passed to it. In most languages, this convention can be
specified in the routine's heading. BASIC, however, always uses its own con­
vention to receive parameters.

• Both the calling routine and the called routine must agree on which of them is
responsible for adjusting the stack in order to remove parameters.

In other words, each call to a routine uses a certain calling convention; each
routine heading specifies or assumes some calling convention. The two conven­
tions must be compatible. With all languages except BASIC, it is possible to
change the calling convention at the point of the call or at the declaration of the
called routine. Usually, however, it is easier to adopt the convention ofthe called
routine. For example, a C function would use its own convention to call another C
function, and would use the Pascal convention to call Pascal.

C++, BASIC, FORTRAN, and Pascal use the same standard calling convention.
C uses a different convention.

Effects of Calling Conventions
Calling conventions dictate three things:

Some languages pass
parameters in a differ­
ent order than C.

Programming with Mixed Languages 235

• The way parameters are communicated from one routine to another (in
Microsoft mixed-language programming, parameters or pointers to the
parameters are passed on the stack)

• The order in which parameters are passed from one routine to another

• The part of the program responsible for adjusting the stack

The C++, BASIC, FORTRAN and Pascal calling conventions push parameters
onto the stack in the order in which they appear in the source code. For example,
the BASIC statement

CALL Calc(A, B)

pushes argument A onto the stack before it pushes B. These conventions also
specify that the stack is adjusted by the called routine just before returning control
to the caller.

The C calling convention pushes parameters onto the stack in the reverse order
from their appearance in the source code. For example, the C function call

calc(a, b);

pushes b onto the stack before it pushes a. In contrast with the other high-level
languages, the C calling convention specifies that a calling routine always adjusts
the stack immediately after the called routine returns control.

The BASIC, FORTRAN, and Pascal conventions produce slightly less object
code. However, the C convention makes calling with a variable number of parame­
ters possible. (Because the first parameter is always the last one pushed, it is
always on the top of the stack; therefore it has the same address relative to the
frame pointer, regardless of how many parameters were actually passed.) If a C++
function is declared to accept a variable number of parameters, the function auto­
matically uses the C calling convention.

Note The __ fastcall keyword, which specifies that parameters are to be passed in
registers, is incompatible with programs written in other languages. Avoid using
__ fastcall or the /Gr command-line option for C or C++ functions that you intend
to make public to BASIC, FORTRAN, or Pascal programs.

Parameter-Passing Requ irement
Your programs must agree on the calling convention and the naming convention;
they must also agree on the order in which they pass parameters. It is important
that your routines send parameters in the same way to ensure proper data transmis­
sion and correct program results.

236 Programming Techniques

Microsoft compilers support three methods for passing a parameter:

Method

Near reference

Far reference

Value

Description

Passes a variable's near (offset) address. This address is expressed as
an offset from the default data segment.

This method gives the called routine direct access to the variable
itself. Any change the routine makes to the parameter changes the
variable in the calling routine.

Passes a variable's far (segmented) address.

This method is similar to passing by near reference, except that a
longer address is passed. This method is slower than passing by near
reference, but is necessary when you pass data that is outside the
default data segment. (This is an issue in BASIC or Pascal only if
you have specifically requested far memory.)

Passes only the variable's value, not its address.

With this method, the called routine knows the value of the
parameter but has no access to the original variable. Changes to a
value passed by a parameter have no affect on the value of the
parameter in the calling routine.

These different parameter-passing methods mean that you must consider the fol­
lowing when programming with mixed languages:

• You need to make sure that the called routine and the calling routine use the
same method for passing each parameter (argument). In most cases, you will
need to check the parameter-passing defaults used by each language and
possibly make adjustments. Each language has keywords or language features
that allow you to change parameter-passing methods.

• You may want to choose a specific parameter-passing method rather than using
the defaults of any language.

Table 11.2 summarizes the parameter-passing defaults for each language.

Table 11.2 Parameter-Passing Defaults

Language Near Reference Far Reference By Value

BASIC All

CtC++ Near arrays Far arrays All data except
arrays

FORTRAN All (medium All (large model) With attributes l

model)

Pascal VAR,CONST VARS, CONSTS Other parameters

1 When a PASCAL or C attribute is applied to a FORTRAN routine, passing by value becomes the default.

Programming with Mixed languages 237

11.3 Compiling and Linking
After you have written your source files and decided on a naming convention, a
calling convention, and a parameter-passing convention, you are ready to compile
and link individual modules.

Compiling with Correct Memory Models

With C or C++, not all
memory models are
compatible with other
languages.

With BASIC, FORTRAN, and Pascal, no special options are required to compile
source files that are part of a mixed-language program.

BASIC, FORTRAN, and Pascal use only far (segmented) code addresses. There­
fore, you must use one of two techniques with C or C++ programs that call one of
these languages: compile the C or C++ modules in medium, large, or huge model
(using the lAX command-line options), because these models also use far code
addresses; or apply the __ far keyword to the definitions of C or C++ functions
you make public. If you use the I AX command-line option to specify medium,
large, or huge model, all your function calls become far by default. This means
you don't have to declare your functions explicitly with the __ far keyword.

Choice of memory model affects the default data pointer size in C, C++, and
FORTRAN, although this default can be overridden with the __ near and __ far
keywords. With C, C++, and FORTRAN, choice of memory model also affects
whether data objects are located in the default data segment; if a data object is not
located in the default data segment, it cannot be passed by near reference.

For more information about code and data address sizes in C and C++, refer to
Chapter 4, "Managing Memory in C," and Chapter 5, "Managing Memory
in C++."

linking with Language libraries
In most cases, you can easily link modules compiled with different languages. Do
any of the following to ensure that all required libraries link in the correct order:

• Put all language libraries in the same directory as the source files.

• List directories containing all needed libraries in the LIB environment variable.

• Let the linker prompt you for libraries.

In each of the cases above, the linker finds libraries in the order that it requires
them. If you enter the library names on the command line, make sure you enter
them in an order that allows the linker to resolve your program's external
references.

238 Programming Techniques

Here are some points to observe when specifying libraries on the command line:

• If you are using FORTRAN to write one of your modules, you need to link
with the /NOD (no default libraries) option and explicitly specify all the librar­
ies you need on the link command line. You can also specify these libraries
with an automatic-response file (or batch file), but you cannot use a default­
library search.

• If your program uses both FORTRAN and C, specify the library for the most re­
cent of the two language products first. In addition, make sure that you choose a
C-compatible library when you install FORTRAN.

• If you are listing BASIC libraries on the LINK command line, specify those li­
braries first.

The following example shows how to link two modules, modI and mod2, with a
user library, GRAFX, the C run-time library, LLIBCE, and the FORTRAN run­
time library, LLIBFORE:

LINK INDO modI mod2",GRAFX+LLIBCE+LLIBFDRE

11.4 C Calls to High-Level Languages
Just as you can call Microsoft C routines from other Microsoft languages, you can
call routines written in Microsoft FORTRAN and Pascal from e. With
FORTRAN, Pascal, and C, freestanding routines can be written with no restric­
tion. When calling BASIC routines, however, you must write the main program in
BASIC; any subprograms are free to call one another, whether they are written in
C orBASle.

For information about how to pass particular kinds of data, see "Handling Data in
Mixed-Language Programming" on page 257.

Executing a Mixed-Language Call
The C interface to other languages uses standard C prototypes, with the
__ fortran or __ pascal keyword. Using either of these keywords causes the
routine to be called with the FORTRANlPascal naming and calling convention.
(The FORTRANlPascal convention also works for BASIC.) Here are the recom­
mended steps for executing a mixed-language call from C:

1. Write a prototype for each mixed-language routine called. The prototype should
declare the routine extern for the purpose of program documentation.

Instead of using the __ fortran or __ pascal keyword, you can simply compile
with the Pascal calling convention option (/Gc). The /Gc option causes all func­
tions in the module to use the FORTRANlPascal naming and calling conven­
tions, except where you apply the __ cdecl keyword.

Programming with Mixed Languages 239

2. Pass the values of variables or pointers to variables. You can obtain a pointer to
a variable with the address-of (&) operator.

In C, array names are always passed as pointers to the first element of the array;
they are always passed by reference.

The prototype you declare for your function ensures that you are passing the
correct length address (that is, near or far).

3. Issue a function call in your program as though you were calling a C function.

4. Always compile the C module in either medium, large, or huge model, or use
the __ far keyword in your function prototype. This ensures that a far (interseg­
ment) call is made to the routine.

Using the __ fortran or __ pascal Keyword
There are two rules of syntax that apply when you use the __ fortran or __ pascal
keyword:

• The __ fortran and __ pascal keywords modify only the item immediately to
their right.

• The __ near and __ far keywords can be used with the __ fortran and
__ pascal keywords in prototypes. The sequences __ fortran __ far and
__ far __ fortran are equivalent.

The keywords __ pascal and __ fortran have the same effect on the program;
using one or the other makes no difference except for internal program documenta­
tion. Use __ fortran to declare a FORTRAN routine, __ pascal to declare a Pascal
routine, and either keyword to declare a BASIC routine.

The example below declares func to be a BASIC, Pascal, or FORTRAN function
taking two short parameters and returning a short value.

short __ pascal func(short sargl, short sarg2);

The example below declares func to be pointer to a BASIC, Pascal, or FORTRAN
routine that takes a long parameter and returns no value. The keyword void is
appropriate when the called routine is a BASIC subprogram, Pascal procedure, or
FORTRAN subroutine, since it indicates that the function returns no value.

void (__ fortran * func)(long larg);

The example below declares func to be a __ near BASIC, Pascal, or FORTRAN
routine. The routine receives a double parameter by reference (because it expects
a pointer to a double) and returns a short value.

short __ near __ pascal func(__ near double * darg);

240 Programming Techniques

You can make C adopt
the conventions of
other languages.

The example below is equivalent to the preceding example (__ pascal __ near is
equivalent to __ near __ pascal).

short __ pascal __ near func(__ near double * darg);

When you call a BASIC subprogram, you must use the FORTRANlPascal conven­
tions to make the call. When you call FORTRAN or Pascal, however, you have a
choice. You can make C adopt the conventions described in the previous section,
or you can make the FORTRAN or Pascal routine adopt the C conventions.

To make a FORTRAN or Pascal routine adopt the C conventions, put the C attri­
bute in the heading of the routine's definition. The following example shows the
syntax for the C attribute in a FORTRAN subroutine-definition heading:

SUBROUTINE FFROMC [C] (N)
I NTEGER*2 N

The following example shows the syntax for the C attribute in a Pascal procedure­
definition heading:

PROCEDURE Pfromc(n : INTEGER) [C];

To make a C function adopt the FORTRANlPascal conventions, declare the func­
tion as __ fortran or __ pascal. For example,

void __ pascal CfromP(int n);

11.5 C Calls to BASIC
No BASIC routine can be executed unless the main program is in BASIC, because
a BASIC routine requires the environment to be initialized in a way that is unique
to BASIC. No other language will perform this special initialization.

However, your program can start up in BASIC, call a C function that does most of
the work of the program, and then call BASIC subprograms and function proce­
dures as needed. Figure 11.3 illustrates how to do this.

BASIC
startup -

BASIC
terminal ion_

CALL
END

SUB

END

BASIC Code

Csub ~

Btest STATIC ..

SUB

Figure 11.3 C Call to BASIC

Programming with Mixed Languages 241

C Code

v void csub()
{

v BTEST()

}

Follow these rules when you call BASIC from C:

1. Start up in a BASIC main module. You will need to use the DECLARE state­
ment to provide an interface to the C module.

2. In the C module, write a prototype for the BASIC routine and include type
information for parameters. Use either the __ fortran or __ pascal keyword to
modify the routine itself.

3. Make sure that all data are passed as near pointers. BASIC can pass data in a
variety of ways but is unable to receive data in any form other than near refer­
ence. With near pointers, the program assumes that the data are in the default
data segment. If you want to pass data that are not in the default data segment,
copy the data to a variable in the default data segment.

4. Compile the C module in medium or large model to ensure far (intersegment)
calls.

The example below demonstrates a BASIC program that calls a C function. The C
function then calls a BASIC function that returns twice the number passed to it
and a BASIC subprogram that prints two numbers.

, BASIC source

, The main program is in BASIC because of BASIC's startup
'requirements. The BASIC main program calls the C function
, Cprog.

242 Programming Techniques

BASIC can invoke one
of your functions as
part of the termina­
tion procedure.

, Cprog calls the BASIC subroutine Dbl. ,

DEFINT A-Z
DECLARE SUB Cprog CDECL()
CALL Cprog
END

FUNCTIDN Dbl(N) STATIC
Dbl = N*2

END FUNCTION

SUB Printnum(A,B) STATIC
PRINT "The first number is ";A
PRINT "The second number is ";B

END SUB

1* C source; compile in medium or large model *1

int __ fortran dbl(int __ near * N);
void fortran printnum(int near * A, int near * B);

void cprog()
{

int a = 5;
int b = 6;

printf("%d times 2 is %d\n", a, dbl(&a));
printnum(&a, &b);

}

In the previous example, note that the addresses of a and b are passed, since
BASIC expects to receive addresses for parameters. This is important because C
passes parameters by value unless you use the address-of (&) operator to obtain
the address, or are passing an array. Also note that the function prototype for
pri ntnum declares the parameters as near pointers. The prototype causes the varia­
bles to be passed by near reference. If a or b is declared as __ far, the C com­
piler issues a warning that you are converting a far pointer to a near pointer and
that a segment was lost in the conversion.

Calling and naming conventions are resolved by the CDECL keyword in the
BASIC declaration of Cprog, and by the __ fortran keyword in the C declaration
of dbl and printnum.

Versions of QuickBASIC later than 4.0 provide a "user entry point," B_OnExit,
which can be called directly from C. The B_ OnExit function enables you to make
sure you have performed an orderly termination. The following code shows how
to use B_ OnExit.

#include <malloc.h>
#include <stdlib.h>

1* For declaration of _fmalloc *1
1* For declaration of onexit_t *1

Programming with Mixed Languages 243

1* The prototype for B_OnExit declares it as a function
* returning type onexit_t that takes one parameter. The
* parameter is a far pointer to a function that returns
* no value.
*1

extern onexit_t __ pascal
void TermProc(void);

int * p_IntArray;

void InitProc(void
{

1* Allocate far space for 20-integer array *1

p_IntArray = (int *)_fmalloc(20 * sizeof(int));

1* Log termination routine (TermProc) with BASIC. *1

B_OnExit(TermProc);
}

void TermProc(void)
{

free(p_IntArray);
}

11.6 C Calls to FORTRAN

1* Release far space allocated *1
1* previously by InitProc. *1

This section shows two examples of C-FORTRAN programs. There are two types
of subprogram calls to FORTRAN routines: calls to subroutines and calls to func­
tions. Functions return a value, while subroutines do not. The examples in the next
sections illustrate how to handle the difference between function and subroutine
calls.

Calling a FORTRAN Subroutine from C
The example below demonstrates a C main module calling a FORTRAN sub­
routine, MAXPARAM. This subroutine adjusts the lower of two arguments to be
equal to the higher argument.

1* C source file - calls FORTRAN subroutine
* Compile in medium or large model
*1

extern void fortran maxparam(int near * I, int near * J);

244 Programming Techniques

/* Declare as void, because there is no return value.
* FORTRAN keyword causes C to use FORTRAN/Pascal
* calling and naming conventions.
* Two integer parameters, passed by near reference.
*/

mai n()
{

}

int a 5 ;
int b 7· ,

printf("a = %d, b = %d", a, b);
maxparam(&a, &b);
printf("a = %d, b = %d", a, b);

C FORTRAN source file, subroutine MAXPARAM
C
$NOTRUNCATE

C

SUBROUTINE MAXPARAM (I, J)
INTEGER*2 I [NEAR]
INTEGER*2 J [NEAR]

C I and J received by near reference,
C because of NEAR attribute
C

IF (I .GT. J) THEN
J I

ELSE
I J

ENDIF
END

In the previous example, the C program adopts the naming convention and calling
convention of the FORTRAN subroutine. The two programs must agree on
whether parameters are to be passed by reference or by value. The following key­
words affect how the two programs interface:

• The __ fortran keyword directs C to call maxpa ram with the FORTRANIPas­
cal naming convention (as MAXPARAM); __ fortran also directs C to call
maxpa ram with the FORTRANlPascal calling convention.

• Since the FORTRAN subroutine MAXPARAM may alter the value of either para­
meter, both parameters must be passed by reference. In this case, near reference
was chosen; this method is specified in C by the use of near pointers, and in
FORTRAN by applying the NEAR keyword to the parameter declarations.

Far reference could have been specified by using far pointers in C. In that case,
you would not declare the FORTRAN subroutine MAXPARAM with the NEAR
keyword. If you compile the FORTRAN program in medium model, declare
MAX P ARAM using the FAR keyword.

Programming with Mixed languages 245

Calling a FORTRAN Function from C
The example below demonstrates a C main module calling the FORTRAN func­
tion fact. This function returns the factorial of an integer value.

/* C source file - calls FORTRAN function.
* Compile in medium or large model.
*/

int fortran fact(int N);

/* FORTRAN keyword causes C to use FORTRAN/Pascal
* calling and naming conventions.
* Integer parameter passed by value.
*/

ma in ()
{

int x 3;
int y 4;

printf("The
printf("The
printf("The

}

factorial of x i s
factorial of y i s
factorial of x+y is

%4d" , fact(
%4d" , fact(
%4d" , fact(

C FORTRAN source file - factori al function
C
$NOTRUNCATE

C

INTEGER*2 FUNCTION FACT (N)
INTEGER*2 N [VALUE]

x)) ;
y)) ;
x + y

C N is received by value, because of VALUE attribute
C

INTEGER*2 I
FACT = 1
DO 100 II, N

FACT FACT * I
100 CONTINUE

RETURN
END

)) ;

In the example above, the C program adopts the naming convention and calling
convention of the FORTRAN subroutine. Both programs must agree on whether
parameters are passed by reference or by value. Note that the C program passes
the parameters by value rather than by reference. Passing parameters by value is
the default for C. To accept parameters passed by value, the keyword V ALUE is
used in the declaration of N in the FORTRAN function. The __ fortran keyword
directs C to call fact with the FORTRAN/Pascal naming convention (as FACT);
_30rtran also directs C to call fact with the FORTRAN/Pascal calling
convention.

246 Programming Techniques

When passing a parameter that should not be changed, pass the parameter by
value. Passing by value is the default method in C and is specified in FORTRAN
by applying the VALUE attribute to the parameter declaration.

11.7 C Calls to Pascal
This section shows two examples of C-Pascal programs. There are two types of
subprogram calls to Pascal routines: calls to procedures and calls to functions.
Functions return a value, while procedures do not. The examples in the next sec­
tions illustrate how to handle the difference between function and procedure calls.

Calling a Pascal Procedure from C
The following example demonstrates a C main module calling a Pascal procedure,
maxpa ram. This procedure adjusts the lower of two arguments to be equal to the
higher argument.

/* C source file - calls Pascal procedure.
* Compile in medium or large model.
*/

void __ pascal maxparam(int near * a, int near * b);

/* Declare as void, because there is no return value.
* The __ pascal keyword causes C to use FORTRAN/Pascal
* calling and naming conventions.
* Two integer params, passed by near reference.
*/

mai n ()
{

}

int a 5· ,
int b 7· ,

printf("a = %d, b = %d", a, b);
maxparam(&a, &b);
printf("a = %d, b = %d", a, b);

{ Pascal source code - Maxparam procedure. }

MODULE Psub;
PROCEDURE Maxparam(VAR a:INTEGER; VAR b:INTEGER);

{ Two integer parameters are received by near reference. }
{ Near reference is specified with the VAR keyword. }

Programming with Mixed languages 247

BEGIN

END;
END.

if a > b THEN
b . - a

ELSE
a . - b

In the example above, the C program adopts the Pascal naming convention and
calling convention. Both programs must agree on whether parameters are passed
by reference or by value; the following keywords affect the conventions:

• The __ pascal keyword directs C to call Maxpa ram with the FORTRANlPascal
naming convention (as MAXPARAM); __ pascal also directs C to call Maxparam
with the FORTRANlPascal calling convention.

• Since the procedure Maxpa ram can alter the value of either parameter, both para­
meters must be passed by reference. In this case, near reference is used; this
method is specified in C by the use of near pointers, and in Pascal with the
V AR keyword.

Far reference could have been specified by using far pointers in C. To specify
far reference in Pascal, use the V ARS keyword instead of V AR.

Calling a Pascal Function from C
The example below demonstrates a C main module calling Pascal function fact.
This function returns the factorial of an integer value.

/* C source file - calls Pascal function.
* Compile in medium or large model.
*/

int __ pascal fact(int n);

/* PASCAL keyword causes C to use FORTRAN/Pascal
* calling and naming conventions.
* Integer parameter passed by value.
*/

rna in ()
{

int x 3;
int y 4;

printf("The factorial of x is
printf("The factorial of y is
printf("The factorial of x+y is

}

%4d" , fact(
%4d", fact(
%4d" , fact(

x)) ;
y)) ;
x + y)) ;

248 Programming Techniques

{ Pascal source code - factori al functi on. }
MODULE Pfun;
FUNCTION Fact (n : INTEGER) : INTEGER;

{Integer parameters received by value, the Pascal default. }

BEGIN

END;
END.

Fact := 1;
WHILE n > 0 DO

BEGIN

END;

Fact .- Fact * n;
n.-n-1; {Parameter n modified.}

In the example above, the C program adopts the Pascal naming convention and
calling convention. Both programs must agree on whether parameters are passed
by reference or by value. The __ pascal keyword directs C to call fact with the
FORTRANlPascal naming convention (as FACT); __ pascal also directs C to call
fact with the FORTRANlPascal calling convention.

The Pascal function fact should receive a parameter by value. Otherwise, the
Pascal function will corrupt the parameter's value in the calling module. Passing
by value is the default method for both C and Pascal.

11.8 C Calls to Assembly Language
In Microsoft C/C++, you can write assembly-language programs either by using
the inline assembler or by creating a stand-alone module using the Microsoft
Macro Assembler (MASM). If you use the inline assembler, you do not need to
take any special precautions other than those outlined in Chapter 6, "Using the
Inline Assembler." This section explains the techniques for interfacing your
assembly-language routines with your C program.

When deciding whether to use the inline assembler or MASM, there are several
considerations. Here is a list of advantages MASM provides over the inline
assembler:

• MASM supports declaration of data in MASM format; inline assembly does not.

• MASM has a more powerful macro capability than does inline assembly.

• Modules written for MASM can be interfaced more easily with modules written
in more than one Microsoft high-level language.

• MASM assembles large assembly-language programs more quickly than the
inline assembler.

Programming with Mixed Languages 249

• MASM supports assembly-language code written prior to the existence of the
inline assembler.

• MASM error messages and warnings are more complete than those of the inline
assembler.

The inline assembler is far more efficient for some assembly-language program­
ming tasks. Here are some of the benefits of the inline assembler:

• You can do spot optimizations by including short sections of assembly­
language code in your C programs with the inline assembler.

• Code written in inline assembler does not necessarily incur the overhead of a
function call; code assembled using MASM always does.

• You can include inline assembly code in your C source files; code written for
MASM must be in a separate file.

Writing the Assembly-Language Procedure
You must write your assembly-language procedure so that it uses the same call­
ing conventions and naming conventions as your C program. If you follow these
conventions, you will be able to write recursive procedures (procedures that call
themselves), and you will be able to use the Code View debugger to locate errors
inthe code.

Note This section discusses only the simplified segment directives provided with
the Microsoft Macro Assembler, version 5.0 or later. If you are using a version
prior to 5.0, you have to specify complete SEGMENT directives.

The standard assembly-language interface method consists of the following steps:

1. Set up the procedure

2. Enter the procedure

3. Allocate local data (optional)

4. Preserve register values

5. Access parameters

6. Return a value (optional)

7. Exit the procedure

The next sections describe each of these steps in detail.

250 Programming Techniques

Setting Up the Procedure
The linker cannot combine the assembly-language procedure with the C program
unless you define compatible segments and declare the procedure properly. Per­
form the following steps to set up the procedure:

• Use the .MODEL directive at the beginning of the source file; this directive
automatically causes the appropriate kind of returns to be generated (NEAR for
tiny, small or compact models, FAR for medium, large, or huge models).

If you are using a version of MASM prior to 5.0, declare the procedure NEAR
for small or compact model, FAR for medium, large, or huge models.

• Use the simplified segment directives .CODE and .DATA to declare the code
and data segments.

If you are using a version of MASM prior to 5.0, declare the segments using
the SEGMENT, GROUP, and ASSUME directives. These directives are
described in the Microsoft Macro Assembler Reference.

• Use the PUBLIC directive to declare the procedure label public. This declara­
tion makes the procedure visible to other modules. Also declare any data you
want to make public as PUBLIC.

• Use the EXTRN directive to declare any global data or procedures accessed by
the routine as external. The safest way to use EXTRN is to place the directive
outside any segment definition; however, place near data inside the data
segment.

• Observe the C naming convention; precede all procedure names and global data
names with an underscore.

Entering the Procedure
When you enter the procedure, in most cases you will want to set up a "stack
frame." This allows you to access parameters passed on the stack and to allocate
local data on the stack. You do not need to set up the stack frame if your procedure
accepts no arguments and does not use the stack.

To set up the stack frame in a 16-bit program, issue the instructions:

push bp
mav bp,sp

To set up the stack frame in a 32-bit program, issue the instructions:

push ebp
mav ebp,esp

This sequence establishes BP as the frame pointer. You cannot use SP for this pur­
pose because it is not an index or base register. Also, the value of SP may change

Programming with Mixed Languages 251

as more data are pushed onto the stack. However, the value of the base register BP
remains constant for the life of the procedure unless your program changes it, so
each parameter can be addressed as an offset from BP.

The instruction sequence above preserves the value of BP, since it will be needed
in the calling procedure as soon as your assembly-language procedure returns. It
then transfers the value in SP to BP to establish a stack frame on entry to the
procedure.

Allocating Local Data
Your assembly-language procedure can use the same technique for allocating
temporary storage for local data that is used by high-level languages. To set up
local data space, decrease the contents of SP just after setting up the stack frame.
(To ensure correct execution, always increase or decrease SP by an even number.)
Decreasing SP reserves space on the stack for local data. You must restore the
space at the end of the procedure as follows:

push bp
mov bp,sp
sub sp,space

In the example above, spa c e is the total size in bytes of the local data you want
to allocate. Local variables are then accessed as fixed negative displacements
fromBP.

In the following example, the entry sequence establishes a stack frame and allo­
cates temporary local storage for two words (4 bytes) of data. Later in the ex­
ample, the program accesses the local storage, initializing both to o.
push
mov
sub

bp
bp,sp
sp,4

Save old stack frame.
Set up new stack frame.
Allocate 4 bytes of local storage.

mov WORD PTR [bp-2],0
mov WORD PTR [bp-4],0

Note that local variables are also called dynamic, stack, or automatic variables.

Preserving Register Values
A procedure called from C should preserve the values of SI, DI, SS, and DS (in
addition to BP, which is already saved). You should push any register value that
your procedure modifies onto the stack after setting up the stack frame and

252 Programming Techniques

allocating local storage, but prior to entering the main body of the procedure. Reg­
isters that your procedure does not alter need not be preserved.

Warning Routines that your assembly-language procedure calls must not alter the
SI, DI, SS, DS, or BP registers. If they do, and you have not preserved the regis­
ters, they can corrupt the calling program's register variables, segment registers,
and stack frame, causing program failure. If your procedure modifies the direction
flag using the STD or CLD instructions, you must preserve the flags register.

The following example shows an entry sequence that sets up a stack frame, allo­
cates 4 bytes of local data space on the stack, then preserves the SI, DI, and flags
registers.

push bp Save caller's stack frame.
mov bp,sp Establish new stack frame.
sub sp,4 Allocate local data space.
push si Save S1 and 01 registers.
push di
pushf Save the flags register.

In the preceding example, you must exit the procedure with the following code:

popf Restore the flags register.
pop di Restore the old value in the Dr

register.
pop si Restore the old value in the S1

register.
mov sp,bp Restore the stack pointer.
pop bp Restore the frame pointer.
ret Return to the calling routine.

If you do not issue the preceding instructions in the order shown, you will place
incorrect data in registers. Follow the rules below when restoring the calling pro­
gram's registers, stack pointer, and frame pointer:

• Pop all registers that you preserve in the reverse order from which they were
pushed onto the stack. So, in the preceding example, SI and DI are pushed, and
DI and SI are popped.

• Restore the stack pointer by transferring the value of BP into SP before
restoring the value of the frame pointer.

• Always restore the frame pointer last.

Accessing Parameters
Once you have established the frame pointer, allocated local storage (if required),
and pushed any registers that need to be preserved, you can write the main body of

Programming with Mixed Languages 253

the procedure. Figure 11.4 shows how functions that observe the C calling conven­
tion use the stack frame.

Near Function Call

High addresses

Stack grows
downward with
each push or call.

I

Low addresses

Far Function Call

High addresses

Stack grows
downward with
each push or call.

I

Low addresses

Parameter n (rightmost)

Parameter 1 (leftmost)

Return address (IP)

Saved frame pointer (BP)

Local data space

Saved SI

Saved DI

Parameter n (rightmost)

Parameter 1 (leftmost)

Return address (CS)

Return address (IP)

Saved frame pointer (BP)

Local data space

Saved SI

Saved DI

Figure 11.4 C Stack Frame

__ Frame pointer (BP)
points here.

__ Stack pointer (SP)
points to last item
placed on stack.

__ Frame pointer (BP)
points here.

__ Stack painter (SP)
points to last item
placed on stack.

254 Programming Techniques

The stack frame for the assembly-language procedure shown in Figure 11.4 is
established by the following:

1. The calling program pushes each of the parameters onto the stack, after which
SP points to the last parameter pushed.

2. The calling program issues a CALL instruction, which causes the return
address (the place in the calling program to which control will ultimately re­
turn) to be placed on the stack. This address can be either two bytes long (for
near calls) or four bytes long (for far calls). SP now points to this address.

3. The first instruction of the called procedure saves the old value of BP, with the
instruction push bp. SP now points to the saved copy ofBP.

4. BP is used to hold the current value of SP, with the instruction mav bp,s p. BP
therefore now points to the old value of BP (saved on the stack).

5. While BP remains constant throughout the procedure, SP is often decreased to
provide room on the stack for local data or saved registers.

In general, the displacement (from BP) for a parameter x is equal to the size of
return address plus 2 plus the total size of parameters between x and BP.

To calculate the size of parameters between x and BP, you must start with the
rightmost parameter because C pushes parameters from right to left. For example,
consider a FAR procedure that has one argument of type int (two bytes). The
displacement of the parameter is

Argument's displacement size of far return address + 2
4 + 2
6

The argument can thus be loaded into BP with the following instruction:

mav bX,[bp+6]

Once you determine the displacement of each parameter, you can use EQU direc­
tives or structures to refer to the parameter with a single identifier name in your
assembly source code. For example, you can use a more readable name to refer­
ence the parameter at BP+6 if you put the following statement at the beginning of
the assembly source file:

Argl EQU [bp+6]

You can then refer to the first parameter in your source as A r g 1 in any instruction.
Use of this feature is optional.

For far (segmented) addresses, Microsoft C pushes the segment address before
pushing the offset address. When pushing arguments larger than two bytes, high­
order words are always pushed before low-order words, and parameters larger
than two bytes are stored on the stack in most-significant, least-significant order.

Programming with Mixed languages 255

This standard for pushing segment addresses before pushing offset addresses facili­
tates the use of the assembly-language instructions LDS (load data segment) and
LES (load extra segment).

Returning a Value

Your procedures can
return structures.

You can return
floating-point values
from your procedures.

Your assembly-language procedure can return a value to a C calling program. All
return values of four bytes or less are passed in registers. Far pointers to return
values larger than four bytes are returned in the DX and AX registers. The DX reg­
ister contains the segment address; the AX register contains the offset relative to
the segment contained in DX.

Table 11.3 shows the register conventions for returning simple data types to a C
program.

Table 11.3 Register Conventions for Simple Return Values

Data Type

char

int, short, __ near *
long, __ far *

Registers

AL
AX
High-order portion (or segment address) in DX; low-order
portion (or offset address) in AX

To return a structure from a procedure that uses the C calling convention, you
must copy the structure to a global variable, then return a pointer to that variable in
the AX register (DX:AX, if you compiled in compact, large, or huge model).

Procedures that use the FORTRAN/Pascal calling convention return structures
similarly, with the following exceptions:

• The calling program allocates space for the return value on the stack.

• The calling program passes a pointcr to the location where the return value is to
be placed in a hidden parameter.

• Instead of copying your structure into a global data item, you copy it into the lo­
cation pointed to by the hidden parameter.

• You must still return the pointer to that location in the AX register (or DX:AX
for far data models).

Procedures that use the C calling convention and return type float or type double
must always copy their return values into the global variable __ fae. To return
floating-point values from procedures declared with the FORTRAN/Pascal calling
convention, you must return the result on the stack, just as you would a structure.

256 Programming Techniques

To return a value of type long double, you must place the value on the NDP
(80x87) stack using the FLD instruction. The C run-time math routines guarantee
that the only value on the NDP stack is a return value; your routines must observe
the same rule.

Exiting the Procedure
Before you exit your assembly-language procedure, you must perform several
steps to restore the calling program's environment. Some of these steps are de­
pendent on actions you took in allocating space for local variables and preserving
registers.

You must follow these steps (if appropriate to your procedure) in the order shown:

1. If you saved any of the registers SS, DS, SI, or DI, they must be popped off the
stack in the reverse order from which they were saved. If you pop these regis­
ters in any other order, your program will behave incorrectly.

2. If you allocated local data space at the beginning of the procedure, you must re­
store SP with the instruction mo v s p , b p.

3. Restore BP with the instruction pop bp. This step is always necessary.

4. Return to the calling program by issuing the ret instruction.

The following example shows the simplest possible entry and exit sequence. In the
entry sequence, no registers are saved and no local data space is allocated.

push bp
mov bp,sp ; Set up the new stack frame.

pop bp Restore the caller's stack frame.
ret

The following example shows an entry and exit sequence for a procedure that
saves SI and DI and allocates local data space on the stack.

push
mov
sub
push
push

pop
pop
mov

bp
bp, sp
sp,4
si
di

di
si
sp,bp

Establish local stack frame.
Allocate space for local data.
Preserve the S1 and 01 registers.

Pop saved registers.

Free local data space.

pop
ret

bp

Programming with Mixed languages 257

Restore old stack frame.

11.9 C++ Calls to High-level languages
c++ lets you specify a linkage specification to permit communication between a
c++ module and modules written in other languages. Microsoft c/c++ supports
only the "c" linkage specification.

You declare a linkage specification as follows:

extern "C"

void prn();

This example declares prn to be a function with C linkage. Calls to that function
are made using the C calling convention.

To call functions written in languages other than C, declare the function as you
would in C and use a "c" linkage specification. For example, to call the Pascal
function fa ct, declare it as follows:

extern "C" { int __ pascal fact(int n); }

This example declares fact to be a function with the Pascal calling convention.

If you want a C++ function to be called from other languages, you must declare it
with the extern "C" linkage specification. Such a function can be called from
another language in the same way a C function is called. You cannot declare a
member function with a linkage specification. You can specify a linkage specifica­
tion for only one instance of an overloaded function. All other instances of an over­
loaded function have C++ linkage.

For more information on the extern "C" linkage specification, see the C++
Language Reference.

11.10 Handling Data in Mixed-language Programming
This section contains detailed information about naming and calling conventions
in a mixed-language program. It also describes how various languages represent
strings, numerical data, arrays, and logical data.

258 Programming Techniques

Default Naming and Calling Conventions
Each language has its own default naming and calling conventions (Table 11.4).

Table 11.4 Default Naming and Calling Conventions

Calling Naming
Language Convention Convention Parameter Passing

BASIC FORTRAN/Pascal Case insensitive Near reference

C C Case sensitive Value (scalar variables),
reference (arrays and pointers)

C++ FORTRAN/Pascal Case sensitive Value (scalar variables),
reference (arrays and pointers)

FORTRAN FORTRAN/Pascal Case insensitive Reference

Pascal FORTRAN/Pascal Case insensitive Value

BASIC Conventions
When you call BASIC routines from C, you must pass all arguments by near refer­
ence (near pointer). You can modify the conventions observed by BASIC routines
that interface with C functions by using the DECLARE, BYV AL, SEG, and
CALLS keywords. For more information on these keywords, see the Microsoft
BASIC Language Reference or the Microsoft BASIC Programmer's Guide.

FORTRAN Conventions
You can modify the conventions observed by FORTRAN routines that call C
functions by using the INTERFACE, VALUE, PASCAL, and C keywords. For
more information about the use of these keywords, see the Microsoft FORTRAN
Reference.

Pascal Conventions
You can modify the conventions observed by Pascal routines that interface with C
functions by using the V AR, CONST, ADR, V ARS, CONSTS, ADRS, and C
keywords. For more information about the use of these keywords, see the
Microsoft Pascal Compiler User's Guide.

Numeric Data Representation
Table 11.5 shows how to declare numeric variables of similar type in different
languages.

Strings

Programming with Mixed Languages

Table 11.5 Equivalent Numeric Data Types

BASIC C/C++ FORTRAN Pascal

x% short INTEGER*2 INTEGER2
INTEGER int INTEGER

(default)
unsigned shortl WORD
unsigned

x& long INTEGER*4 INTEGER4
LONG INTEGER (default)

unsigned longl
x! float REAL*4 REAL4
x (default) REAL REAL (default)
SINGLE
x# double REAL*8 REAL8
DOUBLE DOUBLE

PRECISION
long double
unsigned char CHARACTER*12 CHAR

1 Types unsigned short and unsigned long are not supported by BASIC or FORTRAN. Type
unsigned long is not supported by Pascal. A signed integral type can be substituted. but the maximum
range will be less.

2 The FORTRAN type CHARACTER*l is not the same as LOGICAL.

259

The FORTRAN types COMPLEX*8 and COMPLEX*16 are not implemented
in C but can be represented with structures.

The FORTRAN types LOGICAL*2 and LOGICAL*4 are not implemented in C.
LOGICAL*2 is stored as a one-byte Boolean indicator followed by an unused
byte; LOGICAL*4 is stored as a one-byte Boolean indicator followed by three
unused bytes.

Each language implements strings differently. This section describes the ways that
strings are implemented in Microsoft languages.

C and C++ String Format
C and c++ store strings as arrays of bytes and use a null character (. \ 13') as an
end-of-string delimiter. For example, consider the following string:

char cstring[] = "C text string";

260 Programming Techniques

To pass a BASIC
string to C, append a
null character.

This string is represented in memory as follows:

c s t r n g I \0 I

Because c_ s t r in g is an array like any other, C and C++ pass it by reference in
function calls.

Note that this does not apply to string classes written in C++.

BASIC String Format
BASIC stores strings as four-byte descriptors pointing to the actual string data.
The format of the descriptor is as follows:

String length (two bytes) Address (relative to DS)

The first field of the string descriptor contains an integer indicating the length (in
bytes) of the string. The second field contains the address of the string in the
default data segment.

Do not attempt to alter the length of BASIC strings, because they are managed by
BASIC string-space management routines. You cannot count on a particular string
remaining at a given offset during the execution of a BASIC program because the
BASIC string-space management routines allocate strings to different areas of
memory depending on program requirements.

The format of the string at DS:Address is a simple array of characters. The string
is exactly the length indicated in the descriptor.

Because C needs the null character to delimit the end of the string, you should
append chr$ (0) to your BASIC string before passing it to your C function. For
example,

A$ "I am a BASIC string"
A$ = A$ + chr$(0)

CALL CFunc(SADD(A$)

Use a string descrip­
tor to pass a C string
to BASIC.

Programming with Mixed Languages 261

Note that the BASIC call is made by near reference using the SADD keyword.

To pass a C string to BASIC, create a structure for the string descriptor. For
example,

char c_string[J - "C String Data";

struct tagBASICStringDes
{

char * sd_addr;
int sd_len;

str_des;

str_des.sd_addr - c_string;
str_des.sd_len - strlen(c_string l;

BASICFunction(&str_des);

FORTRAN String Format
FORTRAN stores strings as a series of bytes at a fixed location in memory. There
is no delimiter at the end of the string. Consider the string declared as follows:

STR - 'FORTRAN STRING'

The string is stored in memory as follows:

F I 0 I R I T I R I A I N I I S I T I R I I I N I G I

FORTRAN passes strings by reference, as it does all other data.

Note FORTRAN's variable length strings cannot be used in mixed-language pro­
gramming because the temporary variable used to communicate string length is
not accessible to other languages.

To pass a C string to FORTRAN (or Pascal), pass the variable by reference as you
normally would. In your FORTRAN or Pascal routine, you must specify the
length of the string; strings that are passed as arguments from one language to
another must be of fixed length.

262 Programming Techniques

To pass a fixed-length
string to C, append a
nu II character.

Pascal String Format
Pascal represents strings as fixed-length arrays of CHAR or as strings with a
length byte followed by the string data.

To pass a fixed-length string to a C function, use the concatenation operator (*)
to append a null character. Then pass the string to the C function by reference (by
declaring the string as CONST, CONSTS, VAR, or VARS). For example,

PROGRAM PasStr(input, output l;
type

stype15 = string(15l; {fixed-length}
var

str : stype15;

PROCEDURE PasStrToC(VAR sl stype15 l [C]; EXTERN;

BEGIN

END.

str := 'Pass this to C' * chr(0 l;
PasStrToC(str);

A more flexible way to pass Pascal strings to C functions is to declare them as
type ADRMEM or ADSMEM, then pass the address of the string. For example,

PROCEDURE PasStrToC(sladr : ADRMEM) [C]; EXTERN;

Then you can call the C function with this code:

PasStrToC(ADR str);

Using this method, you can pass strings of different lengths to C functions.

Note The Pascal type LSTRING is not compatible with C; you can pass a string
declared as LSTRING by first assigning it to another variable of type STRING,
then passing that variable.

Whenever you pass a variable of type STRING or type LSTRING by value,
Pascal pushes the whole string onto the stack and passes the length of the string as
another parameter. C cannot access strings passed in this manner.

Passing a string from a C function to a Pascal function or procedure is identical to
passing a string from a C function to a FORTRAN routine. The only provision you
must make is to specify the length of the string to your Pascal function.

Arrays

To pass a BASIC array
to a C function, use
the VARPTR and
VARSEG keywords.

Programming with Mixed Languages 263

When you use an array in a program written in a single language, the method for
array handling is consistent. When you mix languages, you need to be aware of
the differences between array-handling techniques in various languages.

Unlike most Microsoft languages, BASIC keeps an array descriptor, which is simi­
lar to the BASIC string descriptor discussed in "Strings" on page 259. This array
descriptor is necessary because BASIC handles memory allocation for arrays dy­
namically (at run time). Dynamic allocation requires BASIC to shift arrays in
memory.

The V ARPTR and V ARSEG keywords obtain the address of the first element of
the array and its segment, respectively. The following example shows how to call
a C function with a near reference and a far reference to an array:

DIM ARRAY%(20)
DECLARE CNearArray CDECL(BYVAL Addr AS INTEGER)
DECLARE CFarArray CDECL(BYVAL Addr AS INTEGER, BYVAL Seg AS INTEGER)

CALL CNearArray(VARPTR(ARRAY%(0)))
CALL CFarArray(VARPTR(ARRAY%(0)), VARSEG(ARRAY%(0)))

The C functions receiving ARRAY can be declared as follows:

cdecl CNearArray(int * array);
__ cdecl CFarArray(int far * array);

The routine that receives the array must not make a call back to BASIC. If it does,
the location of the array data could change, and the address that was passed to the
routine would become meaningless.

If you only need to pass one member of the array from BASIC to your C function,
you can pass it by value as follows:

CALL CFunc(ARRAY%(8))

Array Declaration and Indexing
Each language varies in the way that arrays are declared and indexed. Array index­
ing is a source-level consideration and involves no transformation of data. There
are two differences in the way elements are indexed by each language:

• The value of the lower array bound is different among Microsoft languages.

By default, FORTRAN indexes the first element of an array as 1. BASIC and
C index it as o. Pascal lets you begin indexing at any integer value. Recent

264 Programming Techniques

versions of BASIC and FORTRAN also give you the option of specifying
lower bounds at any integer value.

• Some languages vary subscripts in row-major order; others vary subscripts in
column-major order.

This issue only affects arrays with more than one dimension. With row-major
order (used by C and Pascal), the rightmost dimension changes first. With
column-major order (used by FORTRAN, and BASIC by default), the leftmost
dimension changes first. Thus, in C, the first four elements of an array declared
as X[3][3] are

X[0][0] X[0][1] X[0][2] X[I][0]

In FORTRAN, the four elements are

X(1,l) X(2,l) X(3,l) X(1,2)

The preceding C and FORTRAN arrays illustrate the difference between row­
major and column-major order as well as the difference in the assumed lower
bound between C and FORTRAN. Table 11.6 shows equivalences for array
declarations in each language. In this table, r is the number of elements of the
row dimension (which changes most slowly), and c is the number of elements
of the column dimension (which changes most quickly).

Table 11.6 Equivalent Array Declarations

Language Array Declaration Notes

BASIC DIMx(r-l, c-l) With default lower bounds
of 0

C type x[r][c] When passed by reference
struct { type x[r][c]; } x When passed by value

FORTRAN type x(c, r) With default lower bounds
of 1

Pascal x: ARRAY [a .. a+r-l, h .. h+c-l] OF type

The order of indexing extends to any number of dimensions you declare. For
example, the C declaration

int arrl[2][10][15][20];

is equivalent to the FORTRAN declaration

INTEGER*2 ARRl(20, 15, 10, 2)

The constants used in a C array declaration represent dimensions, not upper
bounds as they do in other languages. Therefore, the last element in the C array
declared as i nt a rr [5][5] is a rr[4][4], not a rr [5] [5].

Programming with Mixed Languages 265

Structures, Records, and User-Defined Types

External Data

The C struct type, the BASIC user-defined type, the FORTRAN record (defined
with the STRUCTURE keyword), and the Pascal record type are equivalent.
Therefore, these data types can be passed between C, FORTRAN, Pascal, and
BASIC.

These types can be affected by the storage method. By default, C, FORTRAN,
and Pascal use word alignment for types shorter than one word (type char and
unsigned char). This storage method specifies that occasional bytes can be
inserted as padding so that word and double-word objects start on an even bound­
ary. (In addition, all nested structures and records start on a word boundary.)

If you are passing a structure or record across a mixed-language interface, your
calling routine and called routine must agree on the storage method and parameter­
passing convention. Otherwise, data will not be interpreted correctly.

Because Pascal, FORTRAN, and C use the same storage method for structures and
records, you can interchange data between routines without taking any special pre­
cautions unless you modify the storage method. Make sure the storage methods
agree before interchanging data between C, FORTRAN, and Pascal.

BASIC packs user-defined types, so your C function must also pack structures
(using the /Zp command-line option or the pack pragma) to agree.

The C++ class type has the same layout as the corresponding C struct type, unless
the class defines virtual functions or has base classes. Classes that lack those fea­
tures can be passed in the same way as C structures.

You can pass structures as parameters by value or by reference. Both the calling
program and the called program must agree on the parameter-passing convention.
See "Parameter-Passing Requirement" on page 235 for more information about
the language you are using.

External data refers to data that is both static and public; that is, the data is stored
in a set place in memory as opposed to being allocated on the stack, and the data is
visible to other modules.

External data can be defined in C, C++, Pascal, and assembly language. Note that
a data definition is distinct from an external declaration. A data definition causes a
compiler to create a data object; an external declaration informs a compiler that
the object is to be found in another module. FORTRAN can only define external
data in COMMON blocks. (See "Common Blocks," on page 267 for more infor­
mation about sharing external data with FORTRAN programs.)

266 Programming Techniques

There are three requirements for programs that share external data between
languages:

• One of the modules must define the data.

You can define a static data object in a C module by defining a data object out­
side all functions. (If you use the static keyword in C, however, the data object
will not be made public.)

You can make a C++ data object visible to other languages by declaring it with
the extern "C" linkage specification. However, you cannot use any C++ speci­
fic features of such data items. For example, you cannot call any member func­
tions for an object declared extern "C".

• The other modules that will access the data must declare the data as external.

In C, you can declare data as external by using an extern declaration, similar to
the extern declaration for functions. In FORTRAN and Pascal, you can declare
data as external by adding the EXTERN attribute to the data declaration.

• Resolve naming-convention differences.

In C, you can adopt the FORTRANIPascal naming convention by applying
__ fortran or __ pascal to the data declaration. In C++, you can adopt the C
naming convention by using the extern "C" linkage specification, and you can
adopt the FORTRANIPascal naming convention by adding the __ fortran or
__ pascal keywords. In FORTRAN and Pascal, you can adopt the C naming
convention by applying the C attribute to the data declaration.

Pointers and Address Variables
Rather than passing data directly, you may want to pass the address of a piece of
data. Passing the address amounts to passing the data by reference. In some cases,
such as in BASIC arrays, there is no other way to pass a data item as a parameter.

C and C++ programs always pass array variables by address. All other types are
passed by value unless you use the address-of (&) operator to obtain the address.

The Pascal ADR and ADS types are equivalent to near and far pointers, respec­
tively, in C and C++. You can pass ADR and ADS variables as ADRMEM or
ADSMEM. BASIC and FORTRAN do not have formal address types. However,
they do provide ways for storing and passing addresses.

BASIC programs can access a variable's segment address with the VARSEG func­
tion and its offset address with the V ARPTR function. The values returned by
these intrinsic functions should then be passed or stored as ordinary integer vari­
ables. If you pass them to another language, pass by value. Otherwise you will be
attempting to pass the address of the address, rather than the address itself.

Common Blocks

Programming with Mixed Languages 267

To pass a near address, pass only the offset; if you need to pass a far address, you
may have to pass the segment and the offset separately. Pass the segment address
first, unless CDECL is in effect.

FORTRAN programs can determine near and far addresses with the LOC and
LOCFAR functions. Store the result of the LOC function as INTEGER*2 and
the result of the LOCFAR function as INTEGER*4.

As with BASIC, if you pass the result of LOC or LOCF AR to another language,
be sure to pass by value.

You can pass individual members of a FORTRAN or BASIC common block in an
argument list, just as you can any data item. However, you can also give a differ­
ent language module access to the entire common block at once.

C or C++ modules can reference the items of a common block by first declaring a
structure with fields that correspond to the common-block variables. Having de­
fined a structure with the appropriate fields, the C or C++ module must then con­
nect with the common block itself. The next two sections present methods for
gaining access to common blocks.

PaSSing the Address of a Common Block
To pass the address of a common block, simply pass the address of the first varia­
ble in the block. (In other words, pass the first variable by reference.) The receiv­
ing C or C++ module should expect to receive a structure by reference.

In the example below, the C function i ni tcb receives the address of the variable
N, which it considers to be a pointer to a structure with three fields:

C FORTRAN SOURCE CODE
C

COMMON ICBLOCK/N, X, Y
INTEGER*2 N
REAL*8 X, Y

CALL INITCB(N)

268 Programming Techniques

You cannot access
common blocks
directly using BASIC
common blocks.

/* C source code */

/* Explicitly set structure packing to word-alignment */
#pragma pack(2)

struct block_type
{

} ;

int n' .
double x;
double y;

initcb(struct block_type * block_hed
{

}

block_hed->n 1;
block_hed->x 10.0;
block_hed->y 20.0;

Accessing Common Blocks Directly
You can access FORTRAN common blocks directly by defining a structure with
the appropriate fields and then using the methods described in "External Data" on
page 265. Here is an example of accessing common blocks directly:

struct block_type
{

} ;

int n' .
double x;
double y;

extern struct block_type fortran cblock;

Note that the technique of accessing common blocks directly works with
FORTRAN common blocks, but not with BASIC common blocks. If your C or
C++ module must work with both FORTRAN and BASIC common blocks, pass
the address of the common block as a parameter to the function ..

Using a Varying Number of Parameters
Some C functions (for example print!) accept a variable number of parameters.
To call such a function from another language, you need to suppress the type­
checking that normally forces a call to be made with a fixed number of parame­
ters. In BASIC, you can remove this type-checking by omitting a parameter list
from the DECLARE statement. In FORTRAN or Pascal, you can call routines

Programming with Mixed Languages 269

with a variable number of parameters by including the VARYING attribute in
your interface to the routine, along with the C attribute. You must use the C
attribute because a variable number of parameters is feasible only with the C
calling convention. In C++, functions that accept a variable number of parameters
automatically use the C calling convention.

Writing Portable C Programs

Because C compilers exist on a variety of computers, some C applications devel­
oped for one computer system can be ported to other systems. However, some
aspects of language behavior depend on how a particular C compiler is imple­
mented and how a specific computer operates. Therefore, when designing a
program to be ported to another system, it is important that you examine program­
ming assumptions.

This chapter describes programming assumptions that can affect writing portable
programs.

The American National Standards Institute Standard for the C Language (the
ANSI Standard) details every instance where language behavior is defined by the
implementation. Appendix B in the C Language Reference manual summarizes
implementation-defined behavior for Microsoft C.

12.1 Assumptions About Hardware
To make C programs portable, you must examine two aspects of your code: hard­
ware assumptions and compiler dependency. This section deals with hardware
assumptions. "Assumptions About the Compiler," on page 285 deals with com­
piler dependency.

Size of Basic Types

Don't make assump­
tions about the size of
data types.

In C, the size of basic types (char, signed int, unsigned int, float, double, and
long double) is implementation-defined, so relying on a particular data type to be
a given size reduces the portability of a program.

Because the size of basic types is left to the implementation, do not make assump­
tions about the size or alignment of data types within aggregate types. Use only
the sizeof operator to determine the size or amount of storage required for a varia­
ble or a type.

272 Programming Techniques

Following are some rules governing the size of data types.

Type char
Type char is the smallest of the basic types, but it must be large enough to hold
any ofthe characters in the implementation's basic character set. Normally, varia­
bles of type char are one byte.

Type int and Type short int
Type int often corresponds to the register size of the target machine. Type short
int may be less than or equal to the size of type int. Both int and short are greater
than or equal to the size of type char but less than or equal to the size of type long.

If you assume that type int is a certain size, your code may not be portable because

• An int can be defined as a 16-bit (two-byte) or a 32-bit quantity.

• An int is not always large enough to hold array indexes. For large arrays, you
must use unsigned int; for extremely large arrays, use long or unsigned long.
To be certain your code is portable, define your array indexes as type size_ t.
You may not know, before porting your code, the maximum value to expect an
array index of type int to hold. The file LIMITS.H contains manifest constants,
listed below, for the maximum and minimum values of each basic integral type.

Constant Value

CHALBIT
CHALMIN
CHALMAX
SCHALMIN

SCHALMAX
UCHALMAX
SHRLMIN
SHRT_MAX

USHRLMAX
INLMIN
INLMAX
UINT_MAX

LONG_MIN
LONG_MAX

ULONG_MAX

Number of bits in a variable oftype char

Minimum value a variable of type char can hold

Maximum value a variable of type char can hold

Minimum value a variable of type signed char can hold

Maximum value a variable of type signed char can hold

Maximum value a variable of type unsigned char can hold

Minimum value a variable of type short can hold

Maximum value a variable of type short can hold

Maximum value a variable of type unsigned short can hold

Minimum value a variable of type int can hold

Maximum value a variable of type int can hold

Maximum value a variable of type unsigned int can hold

Minimum value a variable of type long can hold

Maximum value a variable of type long can hold

Maximum value a variable of type unsigned long can hold

Writing Portable C Programs 273

Type float, Type double, and Type long double
Type float is the smallest of the basic floating-point types. Type double is usually
larger than type float, and type long double is usually the largest of the floating­
point types. You can make the following portability assumptions about floating­
point types:

• Any value that can be represented as type float can be represented as type
double (type float is a subset of type double).

• Any value that can be represented as type double can be represented as type
long double (type double is a subset oftype long double).

The file FLOAT.H contains manifest constants, listed below, for the maximum
and minimum values of each basic floating-point type.

Constant

DBL_MAX

DBL_MA~lO_EXP

DBL_MIN
DBL_MIN_IO_EXP

FLT_MAX

FLT_MA~lO_EXP

FLT_MIN
FLT_MIN_IO_EXP

Value

Number of decimal digits of precision a variable of type
double can hold

Maximum value a variable of type double can hold

Maximum value (base 10) the exponent of a variable of
type double can hold

Maximum value (base 2) the exponent of a variable of type
double can hold

Minimum positive value a variable of type double can hold

Minimum value (base 10) the exponent of a variable of
type double can hold

Minimum value (base 2) the exponent of a variable of type
double can hold

Number of decimal digits of precision a variable of type
float can hold

Maximum value a variable of type float can hold

Maximum value (base 10) the exponent of a variable of
type float can hold

Maximum value (base 2) the exponent of a variable of type
float can hold

Minimum positive value a variable of type float can hold

Minimum value (base 10) the exponent of a variable of
type float can hold

Minimum value (base 2) the exponent of a variable of type
float can hold

Number of decimal digits of precision a variable of type
long double can hold

Maximum value a variable oftype long double can hold

274 Programming Techniques

Constant Value

LDBL_MA~ lO_EXP Maximum value (base 10) the exponent of a variable of
type long double can hold

LDBL_MA~EXP Maximum value (base 2) the exponent of a variable of type
long double can hold

LDBL_MIN Minimum positive value a variable of type long double can
hold

LDBL_MIN_IO_EXP Minimum value (base 10) the exponent of a variable of
type long double can hold

LDBL_MIN_EXP Minimum value (base 2) the exponent of a variable of type
long double can hold

Microsoft C Type Sizes
Table 12.1 summarizes the size of the basic types in Microsoft c.

Table 12.1 Size of Basic Types in Microsoft C

Type Number of Bytes

char, unsigned char 1

short, unsigned short 2
int, unsigned int 2or4*

near pointer 2 or 4*
long, unsigned long 4
far pointer 4 or 8*

float 4
double 8
long double 10

* These data types have different sizes in 16- and 32-bit environments.

Storage Order and Alignment
The C language does not define any specific layout for the storage of data items
relative to one another. The layout for storage of structure elements, or unions
within a structure or union, is defined by the implementation.

Some processors require that data longer than one byte be aligned to two-byte or
four-byte boundaries. Other processors, such as the 80x86 family, do not have
such a restriction. However, the 80x86 processors work more efficiently with
aligned data.

You can write code
that makes no as­
sumptions about
storage order.

Writing Portable C Programs 275

Structure Order and Alignment
The following example illustrates how alignment can affect your program. In the
example, a structure is cast to type long because the programmer knew the order
in which a particular implementation stored data.

1* Nonportable code *1
struct time
{

} ;

cha r hour; 1* 0 < hour < 24 fits ina
cha r minute; 1* 0 < minute < 60 fits ina
char second; 1* 0 < second < 60 fits in a

struct time now, alarm_time;

if C *Clong *l&now >= *Clong *l&alarm_time l
{

1* sound an alarm *1

char
cha r
cha r

The preceding code makes these nonportable assumptions:

*1
*1
*1

• The data for h 0 u r will be stored in a higher order position than min ute or
second. Because C does not guarantee storage order or alignment of structures
or unions, the code may not be portable to other machines.

• Three variables of type char will be shorter than or the same length as a varia­
ble of type long. Thus, the code is not portable according to the rules governing
the size of basic types, as described in "Size of Basic Types" on page 271.

If either of these assumptions proves false, the comparison (if statement) is invalid.

To make the program in the preceding example portable, you can break the com­
parison between the two long integers into a component-by-component compari­
son. This technique is illustrated in the following example:

1* Portable code *1
struct time
{

cha r hour; 1* 0 < hour < 24 - fits in a char *1
char minute; 1* 0 < minute < 60 - fits in a char *1

276 Programming Techniques

} ;
char second; /* 0 < second < 60 - fits in a char */

struct time now, alarm_time;

if (time_cmp(now, alarm_time) >= 0)
{

/* sound an alarm */

int time_cmp(struct time tl, struct time t2)
{

}

if(tl.hour != t2.hour)
return(t2.hour - tl.hour);

if(tl.minute != t2.minute)
return(t2.minute - tl.minute);

return(t2.second - tl.second);

Union Order and Alignment
Programmers use unions most often for two purposes: to store data whose exact
type is not known until run time or to access the same data in different ways.

Unions falling into the second category are usually not portable. For example, the
following union is not portable:

} ;

char bytes_in_long[4J;
1 0 n 9 a_ 1 0 n 9 ;

The intent of the preceding union is to access the individual bytes of a variable of
type long. However, the union may not work as intended when ported to other
computers because

• It relies on a constant size for type long.

• It may assume byte ordering within a variable of type long. (Byte ordering is
described in detail in "Byte Order in a Word" on page 277.)

The first problem can be addressed by coding the union as follows:

Writing Portable C Programs 277

char bytes_in_long[sizeof(long) / sizeof(char)];
long a_long;

} ;

Note the use of the sizeof operator to determine the size of a data type.

Byte Order in a Word
The order of bytes within an integral type longer than a byte (short, int, or long)
can vary among machines. Code that assumes an internal order is not portable, as
shown by this example:

/*
* Nonportable structure to access an
* int in bytes.
*/

struct tag_int_bytes
{

} ;

cha r 1 obyte;
char hibyte;

A more portable way to access the individual bytes in a word is to define two mac­
ros that rely on the constant CHAR-BIT, defined in LIMITS.H:

#define LOBYTE(a) (char)«a) & 0xff)
#define HIBYTE(a) (char)«unsigned)(a) » CHAR_BIT)

The LOBYTE macro is still not completely portable. It assumes that a char is
eight bits long, and it uses the constant 0xff to mask the high-order eight bits.
Because portable programs cannot rely on a given number of bits in a byte, con­
sider the revision below:

#define LOBYTE(a) (char)«a) & «unsigned)-0»CHAR_BIT))
#define HIBYTE(a) (char)«unsigned)(a) » CHAR_BIT)

The new LOBYTE macro performs a bitwise complement on 0; that is, all zero
bits are turned into ones. It then takes that unsigned quantity and shifts it right far
enough to create a mask of the correct length for the implementation.

The following code assumes that the order of bytes in a word will be least­
significant first:

int c;

fread (&c, s i zeof (cha r), 1, fp);

278 Programming Techniques

The code attempts to read one byte as an int, without converting it from a char.
However, the code will fail in any implementation where the low-order byte is not
the first byte of an int. The following solution is more portable. In this example,
the data is read into an intermediate variable of type char before being assigned to
the integer variable.

int c;
char ch;

fread(&ch, sizeof(char l, I, fp l;
c = ch;

The following example shows how to use the C run-time function fgetc to return
the value. The fgetc function returns type char, but the value is promoted to type
int when it is assigned to a variable of type int.

int c;

c = fgetc(fp l;

Microsoft C Specific
Microsoft C normally aligns data types longer than one byte to an even-byte
address for improved performance. See the /Zp compiler option in Chapter 13,
"CL Command Reference," of the Environment & Tools manual; see the pack
pragma in the C Language Reference or in Help for information about controlling
structure packing in Microsoft C.

Reading and Writing Structures
Many C programs read data from disk into structures and write data to disk from
structures. The functions that perform disk 110 in C require you to specify the num­
ber of bytes to be transferred. You should always use the sizeof operator to obtain
the size of the data to be read or written because differing data type sizes or align­
ment schemes may alter the size of a given structure. For example,

fread(&my_struct, sizeof(my_structl, I, fp l;

Microsoft C Specific
When performing disk input and output in Microsoft C, structures may be differ­
ent sizes depending on the structure-packing option you have selected (see the /Zp

Writing Portable C Programs 279

compiler option in Chapter 13, "CL Command Reference," of the Environment
and Tools manual; see the pack pragma in the C Language Reference or in Help).

Bit Fields in Structures
The Microsoft C compiler implements bit fields. However, many C compilers
do not.

Bit fields allow you to access the individual bits within a data item. While the prac­
tice of accessing the bits in a data item is inherently nonportable, you can improve
your chances of porting a program that uses bit fields if you make no assumptions
about order of assignment, or size and alignment of bit fields.

Order of Assignment
The order of assignment of bit fields in memory is left to the implementation, so
you cannot rely on a particular entry in a bit field structure to be in a higher order
position than another. (This problem is similar to the portability constraint im­
posed by alignment of basic data types in structures. The C language does not de­
fine any specific layout for the storage of data items relative to one another.) See
"Storage Order and Alignment" on page 274 for more information.

Size and Alignment of Bit Fields
The Microsoft C compiler supports bit fields up to the size of the type long. Each
individual member of the bit field structure can be up to the size of the declared
type. Some compilers do not support bit field-structure elements that are longer
than type int.

The following example defines a bit field, short_ bi tfi el d, that is shorter than
type int:

struct short_bitfield
{

unsigned usr_bkup 1; 1* 0 <= usr_bkup < 1 *1
unsigned usr sec 4; 1* 9 <= usr sec < 16 *1

} ;

The following example defines a bit field, 1 ong_ bi tfi e 1 d, that has an element
longer than type int in a 16-bit environment:

struct long_bitfield
{

unsigned long disk_pos 22; 1* 0 <= disk_pos < 4,194,304 *1
unsigned long rec no 10; 1* 0 <= rec no < 1,024 *1

} ;

280 Programming Techniques

The bit field s h 0 r t_ bit fie 1 d is likely to be supported by more implementations
than long_bitfield.

Microsoft C Specific
The following example introduces another portability issue: alignment of data
defined in bit fields.

struct long_bitfield
{

unsigned int day 5· , /* 0 <= day < 32 */
unsigned int month 4· , /* 0 <= month < 16 */
unsigned int year 11; /* 0 <= year < 2048 */

} ;

In a 16-bit environment, Microsoft C does not allow an element in a structure to
cross a word boundary. The first two elements, day and month, take up nine bits.
The third, year, would cross a word boundary ifit were to begin right after month,
so instead it must begin on the next word boundary. There is thus a seven-bit gap
between the month and year elements in Microsoft C's representation of this
structure. However, other compilers may not use the same storage techniques.

Note that in a 32-bit environment, all three elements can fit within a single word,
so there is no gap between any of the elements in Microsoft C' s representation of
the structure.

Processor Arithmetic Mode
Two types of arithmetic are common on digital computers: one's-complement
arithmetic and two's-complement arithmetic. Some programs assume that all tar­
get computers perform two' s-complement arithmetic. If you take advantage of the
fact that a given operation causes a particular bit pattern to be set on either a one' s­
complement or two's-complement computer, your program will not be portable.
For example, two's-complement machines represent the eight-bit integer value-l
as a binary 11111111. A one' s-complement machine represents the same decimal
value (-1) as 11111110. Some programmers assume that -1 will fill a byte or a
word with ones, and use it to construct a mask template that they later shift. This
will not work correctly on one's-complement machines, but the error will not sur­
face until the least-significant bit is used.

In two's-complement arithmetic, there is only one value that represents zero. In
one's-complement arithmetic, there is a value for zero and a value for negative
zero. Use the C relational operators to handle this anomaly correctly; if you write
code that deliberately circumvents the C relational operators, tests for zero or
NULL may not operate correctly.

Pointers

Writing Portable C Programs 281

Microsoft C Specific
Microsoft C produces code only for the Intel 80x86 processors, which perform
two's-complement arithmetic.

One of the most powerful but potentially dangerous features of the C language is
its use of indirect addressing through pointers. Bugs introduced by misusing point­
ers can be difficult to detect and isolate because the error often corrupts memory
unpredictably.

Casting Pointers
Be sure you do not make nonportable assumptions when casting pointers to differ­
ent types.

1* Nonportable coercion */
char c[4];
long *lp;

lp = (long *)c;
*lp = 0x12345678L;

This code is nonportable because using a cast to change an array of char to a
pointer of type long assumes a particular byte-ordering scheme. This is discussed
in greater detail in "Byte Order in a Word" on page 277.

Pointer Size
A pointer can be assigned (or cast) to any integer type large enough to hold it, but
the size of the integer type depends on the machine and the implementation. (In
fact, it can even depend on the memory model.) Therefore, you cannot assume that
a pointer is the same size as an integer; that is:

sizeof(char *) == sizeof(int)

To determine the size of any unmodified data pointer, use

sizeof(void *)

This expression returns the size of a generic data pointer.

282 Programming Techniques

Pointer Subtraction
Code that assumes that pointer subtraction yields an int value is nonportable.
Pointer subtraction yields a result of type ptrdifLt (defined in STDDEF.H). Port­
able code must always use variables of type ptrdiff_ t for storing the result of
pointer subtraction.

The Null Pointer
In most implementations, NULL is defined as O. In Microsoft C, it is defined as
((v 0 i d *) 0) . Because code pointers and data pointers are often different sizes,
using 0 for the null pointer for both can lead to nonportability. The difference in
size between code pointers and data pointers will cause problems for functions
that expect pointer arguments longer than an int. To avoid these problems, use the
null pointer, as defined in the include file STDDEF.H; use prototypes; or explicitly
cast NULL to the correct data type. Here is a portable way to use the null pointer:

1* Portable use of the null pointer *1
main()
{

}

funcl((char *)NULL);
func2((void *(*)())NULL);

void funcl(char * c)
{
}

void func2(void *(* func)())
{
}

The invocations of funcl and func2 explicitly cast NULL to the correct size. In
the case of func1, NULL is cast to type char *; in the case of func2, it is cast to a
pointer to a function that returns type void.

Microsoft C Specific
Subtraction of pointers to huge arrays that have more than 32,767 elements may
yield a long result. The __ huge keyword is implementation-defined by Microsoft
C and is not portable. Here is how to subtract pointers to huge arrays:

cha r __ huge *a;
cha r __ huge *b;
10l1g d;

d (long)(a - b);

Address Space

Writing Portable C Programs 283

In Microsoft C, the memory model selected and the special keywords __ near,
__ far, and __ huge can change the size of a pointer. The Microsoft memory
models and extended keywords are nonportable, but you should be aware of their
effects.

Sizes of generic pointers and default pointer sizes are shown in Tables 12.2 and
12.3, respectively.

Table 12.2 Size of Generic Pointers

Declaration

void __ near *
void __ far *
void __ huge *

Name

Generic near pointer

Generic far pointer

Generic huge pointer

Size

16 bits

32 bits

32 bits

Table 12.3 Default Pointer Sizes in 16-Bit Programs

Memory Model Code Pointer Size Data Pointer Size

Tiny 16 bits 16 bits

Small 16 bits 16 bits

Medium 32 bits 16 bits

Compact 16 bits 32 bits

Large 32 bits 32 bits

Huge 32 bits 32 bits

The amount of available memory and the address space on systems varies, de­
pending on many factors outside your control. A program designed with portabil­
ity in mind should handle insufficient-memory situations. To ensure that your
program handles these situations, you should always check the error return from
any of the dynamic memory allocation routines, such as malloc, calloc, strdup,
and realloc.

These situations occur not only because of a lack of installed memory but also
because too many other applications are using memory. For example,

• Installed resident software can cause your program to fail. In DOS, these pro­
grams are usually device drivers or terminate-and-stay-resident (TSR) utilities.

• An event or combination of events in a multitasking operating system such as
OS/2 or XENIX can cause your program to fail. These failures are complex and
difficult to predict. Here is an example: the user has installed a daemon to "pop

284 Programming Techniques

Character Set

up" every so often and check the system status. The user is running your appli­
cation along with enough other large applications to cause a critical shortage of
memory. When the daemon pops up, your program may fail on a memory allo­
cation request.

• An application running under Windows can use an extraordinary amount of the
global heap and not return it to the free pool. This type of behavior will cause
Windows to deny a GlobalAlloc request.

The C language does not define the character set used in an implementation. This
means that any programs that assume the character set to be ASCII are non­
portable.

The only restrictions on the character set are these:

• No character in the implementation's character set can be larger than the size of
type char.

• Each character in the set must be represented as a positive value by type char,
whether it is treated as signed or unsigned. So, in the case of the ASCII charac­
ter set and an eight-bit char, the maximum value is 127 (128 is a negative num­
ber when stored in a char variable).

Character Classification
The standard C run-time support contains a complete set of character classification
macros and functions. These functions are defined in the CTYPE.H file and are
guaranteed to be portable:

isalnum
isalpha
iscntrl

isdigit
isgraph
islower

isprint
ispunct
isspace

isupper
isxdigit

The following code fragment is not portable to implementations that do not use the
ASCII character set:

1* Nonportable *1
if(c >= . A' && c <= • z·)

1* uppercase alphabetic *1

Instead, consider using this:

1* Portable *1
if(isalpha(c) && isupper(c)

1* uppercase alphabetic *1

Writing Portable C Programs 285

The first example above is nonportable, because it assumes that uppercase A is
represented by a smaller value than uppercase z, and that no lowercase characters
fall between the values of A and z. The second example is portable, because it
uses the character classification functions to perform the tests.

In a portable program, you should not perform any comparison on variables of
type char except strict equality (==). You cannot assume the character set follows
an increasing sequence-that may not be true on a different machine.

Case Translation
Translation of characters from upper- to lowercase or from lower- to uppercase is
called "case translation." The following example shows a coding technique for
case translation not portable to implementations using a non-ASCII character set.

#define make_upper(c) «c)&0xcf)
#define make_lower(c) «c)10x20)

This code takes advantage of the fact that you can map uppercase to lowercase
simply by changing the state of bit 6. It is extremely efficient but nonportable. To
write portable code, use the case-translation macros toupper and tolower (defined
in CTYPE.H).

12.2 Assumptions About the Compiler

Sign Extension

Different compilers translate C source code into object code in different ways. The
ANSI draft standard for the C programming language defines how many of these
translations must be done; others are implementation-defined.

This section describes assumptions about how the compiler translates your C code,
which can make your programs nonportable. For a complete description of how
Microsoft C handles implementation-defined operations, see Appendix B of the
C Language Reference.

"Sign extension" is the propagation of the sign bit to fill unoccupied space when
promoting to a more-significant type or when performing bitwise right-shift
operations.

Promotion from Shorter Types
Integral promotions from shorter types occur when you make an assignment, per­
form arithmetic, perform a comparison, or perform an explicit cast.

286 Programming Techniques

The behavior of integral promotion is well defined, except for type char. The
implementation defines whether type char is treated as signed or unsigned. The
following code fragment is an example of promotion as a result of assignment:

char cl = -3;
i nt i1 ;

i1 = cl;

In this example, the expected result of the assignment statement is that i 1 will be
set to -3. If the implementation defines type char as unsigned, however, sign
extension will not occur, and i 1 will be 253 (on a two's-complement machine).

Promotion can also occur as a result of a comparison of different types:

char c;

if(c 0x80)

This comparison will never evaluate as true on an implementation that sign­
extends char types but treats hexadecimal constants as unsigned. Use a character
constant of the form '\x80', or explicitly cast the constant to type char to perform
the comparison correctly.

The following comparison, which is an example of promotion as a result of a cast,
is also nonportable:

char c;
unsigned int u;

if(u == (unsigned)c

There are two problems with this code:

• The char type may be treated as signed or unsigned, depending on the
implementation.

• If the char type is treated as signed, it can be converted to unsigned in two
ways: the char value may first be sign-extended to int, then converted to
unsigned; or the char may be converted to unsigned char, then sign-extended
to int length.

It is always safe to compare a signed int with a char constant because C requires
all character constants to be positive.

Variables of type char are promoted to type int when passed as arguments to a
function. This will cause sign extension on some machines. Consider the follow­
ing code:

Writing Portable C Programs 287

char c = 128;

printf("%d\n", C);

Microsoft C Specific
Microsoft C allows you to treat type char as signed or unsigned. By default, a
char is considered signed, but if you change the default char type using the /J
compiler option, you can treat it as unsigned.

Bitwise Right-Shift Operations
Positive or unsigned integral types (char, short, int, and long) yield positive or
zero values after a right bitwise shift (») operation. For example,

(char)l20 » 4

yields 7,

(unsigned char)240 » 8

yields 0,

(i nt)500 » 8

yields 1, and

(unsigned int)65535 » 4

yields 4,095.

Negative-signed integral types yield implementation-defined values after a bitwise
right-shift operation. This means that you must know whether you want to do a
signed or unsigned shift, then code accordingly.

If you don't know how the implementation performs, you may get unexpected
results. For example, (s i gned cha r) 0x80 » 3 yields OxfO ifthe implementation
performs sign extension on right bitwise shifts. lfthe implementation does not per­
form the sign extension, the result is Ox 1 O.

You can use right shifts to speed up division when the divisor can be represented
by powers of 2 and the dividend is positive. To maintain portability, you should
use the division operator.

To perform an unsigned shift, explicitly cast the data to an unsigned type. To per­
form a shift that extends the sign bit, use the division operator as follows: divide
by 2n, where n is the number of bits you want to shift.

288 Programming Techniques

Length and Case of Identifiers
Some implementations do not support long identifiers. Some allow only 6 charac­
ters, while others allow as many as 32. They may report each identifier that
exceeds the maximum length or truncate identifiers to a given length. Truncation
causes serious problems, especially if you have a number of similarly named vari­
ables within the scope of a block of code, such as the following:

double aeet_reeeivable_30_days;
double aeet_reeeivable_60_days;
double aeet_reeeivable_90_days;
double eurrent_interest_rate;

If your target system retains only six significant characters, you will have to
rename all your aeeL reeei vabl e variables.

Case sensitivity also affects portability. C is usually a case-sensitive language.
That is, Cal eul atelnterest is not considered the same identifier as
ea 1 eul atei nterest. Some systems are not case sensitive, however, so to write
portable code, differentiate your identifiers by something other than case.

These problems with identifiers can occur in two locations: the compiler and the
linker or loader. Even if the compiler can handle long and case-differentiated iden­
tifiers, if the linker or loader cannot, you can get duplicate definitions or other un­
expected errors.

Microsoft C Specific
The Microsoft C compiler issues the INOIGNORECASE command to the
Microsoft Segmented-Executable Linker (LINK), specifically instructing it to con­
sider the case of identifiers.

Register Variables
The number and type of register variables in a function depend on the implementa­
tion. You can declare more variables as register than the number of physical regis­
ters the implementation uses. In such a case, the compiler treats the excess register
variables as automatic.

Since the types that qualify for register class differ among implementations, in­
valid register declarations are treated as automatic.

If you declare variables as register to optimize performance, declare them in
decreasing order of importance to ensure that the compiler allocates a register to
the most important variables.

Writing Portable C Programs 289

Microsoft C Specific
The compiler ignores register declarations if you select the global register alloca­
tion optimization. You can select global register allocation as follows:

Environment Selection

CL command line Specify either the IOe or lOx option.

PWB Select the Global Register Allocation option in the Optimizations
dialog box.

pragma Use the optimize pragma with the e parameter.

Functions with a Variable Number of Arguments

Evaluation Order

Functions that accept a variable number of arguments are not portable. Although
both the ANSI Standard and The C Programming Language specify how to write
these functions and how they behave, differences still exist among compiler imp le­
mentors about how to use variable argument lists.

Many UNIX systems support a standard that differs from the ANSI Standard for
variable arguments. Although this may change, it currently presents a portability
concern.

Microsoft C run-time libraries and macros allow you to use whichever version of
variable argument support you expect to be most portable for your application.

The C language does not guarantee the evaluation order of most expressions.
A void writing constructs that depend on evaluation within an expression to
proceed in a particular manner. For example,

i = 0;
func(i++; i++);

func(int a, int b)
{

A compiler could evaluate this code fragment and pass 0 as a and 1 as b. It could
also pass 1 as a and 0 as b and conform equally with the standards.

The C language does guarantee that an expression will be completely evaluated at
any given "sequence point." A sequence point is a point in the syntax of the lan­
guage at which all side effects of an expression or series of expressions have been
completed.

290 Programming Techniques

These are the sequence points in the C language:

• The semicolon (;) statement separator

• The call to a function after the arguments have been evaluated

• The end of the first operand of one of the following:

• Logical AND (&&)

• Logical OR (II)

• Conditional (?)

• Comma separator (,) when used to separate statements or in expressions; the
comma separator is not a sequence point when it is used between variables
in declaration statements or between parameters in a function invocation

• The end of a full expression, such as:

• An initializer

• The expression in an expression statement (for example, any expression
inside parentheses)

• The controlling expression of a while or do statement

• Any of the three expressions of a for statement

• The expression in a return statement

Function and Macro Arguments with Side Effects
Run-time support functions can be implemented either as functions or as macros.
Avoid including expressions with side effects inside function invocations unless
you are sure the function will not be implemented as a macro. Here is an illustra­
tion of how an argument with side effects can cause problems:

Ifdefine limiLnumber(x) ((x> 1000) ? 1000 : (x))

a = limit_number(a++);

If a is greater than 1000, it is incremented once. If a is less than or equal to
1000, it is incremented twice, which is probably not the intended behavior.

A macro can be used safely with an argument that has side effects if it evaluates its
parameter only once. You can determine whether a macro is safe only by inspect­
ing the code.

A common example of a run-time support function that is often implemented as a
macro is toupper. You will find your program's behavior confusing if you use the
following code:

Writing Portable C Programs 291

char c;

c = toupper(getc());

If toupper is implemented as a function, getc will be called only once, and its
return value will be translated to uppercase. However, iftoupper is implemented
as a macro, getc will be called once or twice, depending on whether c is upper­
or lowercase. Consider the following macro example:

#define toupper(c) ((islower(c» ? _toupper(c) : (c))

If you include the toupper macro in your code, the preprocessor expands it as
follows:

1* What you wrote *1
c = toupper(getc());

1* Macro expansion *1
ch = (islower((getc()) ? _toupper(getc()) : (getc(»);

The expansion ofthe macro shows that the argument to toupper will always be
called twice: once to determine if the character is lowercase and the next time to
perform case translation (if necessary). In the example, this double evaluation calls
the getc function twice. Because getc is a function whose side effect is to read a
character from the standard input device, the example requests two characters
from standard input.

Environment Differences
Many programs perform some file I/O. When writing these programs for portabil­
ity, consider the following:

• Do not hard-code filenames or paths. Use constants you define either in a
header file or at the beginning of the program.

• Do not assume the use of any particular file system. For example, the UNIX­
model, hierarchical file system is prevalent on small computers. On larger sys­
tems, the file system often follows a different model.

• Do not assume a particular display size (number of rows and columns).

• Do not assume that display attributes exist. Some environments do not support
such attributes as color, underlined text, blinking text, highlighted text, inverse
text, protected text, or dim text.

292 Programming Techniques

12.3 Portability of Data Files
Data files are rarely portable across different CPUs. Structures, unions, and arrays
have varying internal layout and alignment requirements on different machines. In
addition, byte ordering within words and actual word length may vary.

The best way to achieve data-file portability is to write and read data files as one­
dimensional character arrays. This procedure prevents alignment and padding
problems if the data are written and read as characters. The only portability prob­
lem you are likely to encounter if you follow this course is a conflict in character
sets; many computers have character-set conversion utilities.

12.4 Portability Concerns Specific to Microsoft C
Microsoft C offers extensions that let you take advantage of the full capabilities
of the computer. These extensions are not portable to other compilers or environ­
ments. See Chapter 1, "Elements of C," of the C Language Reference for a list of
Microsoft-specific keywords.

The Run-Time Library Reference contains compatibility information for every
function in the run-time library. Any function or macro that does not have the
ANSI box marked may not be portable to other compilers or computer systems.

12.5 Microsoft C Byte Ordering
Tables 12.4 and 12.5 summarize Microsoft C byte ordering for short and long
types, respectively. In these tables, the least-significant byte of the data item is bO;
the next byte is denoted by b 1, and so on.

Since byte ordering is machine specific, any program that uses this byte ordering
will not be portable.

Writing Portable C Programs 293

Table 12.4 Byte Ordering for Short Types

CPU Byte Order

8086 bO bI
80286 bO bI
80386 bO bI
PDP-II bO bI
VAX-II bO bI
M68000 bI bO
Z8000 bI bO

Table 12.5 Byte Ordering for Long Types

CPU Byte Order

8086 bO bI b2 b3
80286 bO bi b2 b3
80386 bO bi b2 b3
PDP-II b2 b3 bO bi
VAX-ll bO bi b2 b3
M68000 b3 b2 bi bO
Z8000 b3 b2 bi bO

P-Code Instruction Tables : 4JlPe""iX,

""'A'····.

IlL,'

OW\ ~ ,It' l'
'i: ¥

'" '" '
4I[

The following tables provide a complete list of one-byte and extended p-code
instructions. Each instruction is represented by a specific hexadecimal number.
For example, LDCW2 is in the row marked "60" and the column marked "I" or
"9." Thus, it has a value of 61 hexadecimal. LDCW5 is in the same column but
one row down, so it has a value of 69 hexadecimal.

The syntax for p-code instruction names is described in Chapter 3, "Reducing
Program Size with P-Code." The p-code opcodes are fully described in the Help
file PCODE.HLP.

298 Programming Techniques

TableA.l One-Byte Instructions

0 1 2 3 4 5 6 7

8 9 A B C D E F

0 NOP LdfWb LdfWw IncfWwb IncfWbb IncgWbb LdfW16 LdfWlS

8 LdfW14 LdfW13 LdfW12 LdfWll LdfWIO LdfW9 LdfW8 LdfW7

10 LdfW6 LdfWS LdfW4 LdfW3 LdfW2 LdfWl LdfWO LdfAb

18 LdfAw LdfA9 LdfA8 LdfA7 LdfA6 LdfAS LdfA4 LdfA3
20 LdfA2 LdfAl LdfAO StfWb StfWw StfpWb StfW13 StfW12

28 StfWll StfWIO StfW9 StfW8 StfW7 StfW6 StfWS StfW4

30 StfW3 StfW2 StfWl StfWO IncfWb IncfW8 IncfW7 IncfW6

38 IncfWS IncfW4 IncfW3 IncfW2 IncfWl IncfWO LdgWb LdgWO
40 LdgWl LdgW2 LdgW3 LdgW4 LdgW5 LdgW6 LdgW7 LdgW8

48 LdgW9 LdgWlO LdgWll LdgW12 LdgW13 StfpLb ClrfBb LdgAb

50 LdgAO LdgAl LdgA2 LdgA3 LdgA4 LdinWb LdinWO LdinWl

58 LdinW2 LdinW3 LdinW4 LdinWS LdinW6 LdinW7 LdcWub LdcWw

60 LdcWO LdcW2 LdcW4 LdcW6 LdcW8 LdcWlO LdcWml LdcWl

68 LdcW3 LdcWS LdcW7 LdcW9 IncWb IncW2 IncW4 IncW6

70 IncW8 IncWlO IncW12 IncW14 IncW16 IncWl IncW3 CvtWuQb

78 RepW Gotonb AddW SubW LdinLO StinLO Quoteb Equote

80 StinWb LdinoW StinoW LdinoB StinoB StinWO StinWl StinW2

88 StinBO StinpBO StinQWb CallfpWb CallfpW2 CallfpWl CallfpWO CallfcWb

90 CallfcW2 CallfcWI CallfcWO CallfcV2 CallfcVl CallfcVO IncWw CallfcLl

98 CallfcLO CallfpVO StfpBb StgWb StgWw StgWO StgWl StgW2 StgW3

aO StgW4 StgWS StgW6 StgW7 LdinBb LdinBl LdinB3 LdinBO

a8 LdinB2 LdinB4 LdtW SttW LdintA StintW LdintB StintB

bO Gotob Gotow Goto2 Goto4 Goto6 Gotol Goto3 GotoS

b8 JeqWb JzrWb JzrW2 JzrW4 JzrW6 JzrW8 JzrWl JzrW3

cO JzrWS JzrW7 JneWb JneW2 JneW4 JneWl JneW3 JneWS

c8 JnzWb JnzW2 JnzW4 IncfBb INT3 SetfBb JleWb JltWb

dO JgtWb JgeWb DecWl AndW OrW ShlW ShlWl ShrW

d8 MulW DivW DropW NegW Ret CaseW CmpuW

eO SwapW AddWP CmpsL AddL SubL CvtWL Exo

e8 LdgBb StgBb PushIPb DecWb LdifBb LdifWb LditLb PopIP

fO CvtBW LdfBb StfBb LdgLb JnzWl JnzW3 JnzWS LdtLb

f8 SttLb LdpLb LdpWb StgLb LdpWO LdpWI LdpW2 LdpW3

P-Code Instruction Tables 299

TableA.2 Extended Instructions

0 1 2 3 4 5 6 7

8 9 A B C D E F
0 NOP XorW PushWb PopWb MulL DivL SarW LdintW

8 RepL MulWWL DivLWW BltNNB BltFFB

10 StifBb StifWb StifLb StinBb LdihoB StinLb LdihoW StihoW

18 LdinoL StinoL LdinLb CmpuL CmpD StifQWb CvtWsQb RetMB

20 BltNNBN BltFFBF

28 AddHLH LdtL LdiftW StiftW LdiftB StiftB LdihrW

30 LdifoB StifoB LdcLl StifoW LdifoL CallfcVb

38 RemuW DivuW NegL RemuL DivuL CallfcLb NotW RemW

40 RemL AndL OrL ShlL ShILl ShrL NotL XorL

48 SarL CaseL OverW CalinpV CallifpV CallincV CallifcV CallinpW

50 CallifpW CallincW CallifcW CallinpL CallifpL CallincL CallifcL PushDS

58 PushCS PushSS CallnpVb CallnpWb CallnpLb CallncVb CallncWb

60 CallncLb DivB RemB IncfWw CallfpV2 CallfpVl

68 CallfpVO CallfpLb CallfpL2 CallfpLI CallfpLO Quotew JeqW3 ntW3

70 JgtW3 neW3 JgeW3 LdfgA IncfBw

78 LdfBw StfBw LdfLw SttLw

80 IncfWbw IncfWww IncfBbb IncfFbb IncfBwb IncfFbw IncfLbb IncfLbw

88 IncfLbl IncfLwb IncfLww IncfLwl IncgBbb IncgFbb IncgWbw IncgLbb

90 IncgLbw IncgLbl IncfFwb IncfFww IncfHbb IncfHbw IncfHwb IncfHww

98 IncgFbw IncgHbb IncgHbw PushIPw

aO
a8
bO
b8
cO
c8 LdcRr LdcDd

dO LdcTt LdtRw LdfDw LdfI\v LdgRb LdgDb LdgTb LdinR

d8 LdinD LdinT SttRw StfDw Stffw StgRb StgDb StgTb

eO StinR StinD StinT PushR PushD PushT SpillTb UnspillTb

e8 CvtWT CvtLT CvtTW CvtTL AddT SubT MulT DivT

ro NegT CmpT DupT SwapT DropT LditR LdifD Ldiff

f8 StitR StifD Stiff PopR CvtuWT CvtuLT CvtTuW CvtTuL

Index

$ (dollar sign), label jumps, inline assembly, 122
* operator, inline assembly, using in, 116
» bitwise shift operator, portability guidelines, 287
[] (square brackets), inline assembly, using in, 116
[[]] (double square brackets), xviii-xix
{ } (braces), __ asm blocks, 112

A
IA command-line options, consistency rules,

precompiled headers, 39
About command, QuickWin

described,151
dialog box, customizing, 151, 157

lAC command-line option, 62--63
acos function, intrinsic form, 11
3cosl function, intrinsic form, 11
Active window, QuickWin

described, 152
setting, 161-162

lAd command-line option, 72
Adapters, graphics (list), 167-168
Address space, portability guidelines, 283-284
Addresses

array variables, mixed-language programming,
266-267

common blocks, mixed-language programming,
268-269

pointers
described, 55
portability guidelines, 281-283

Addressing modes
based

described,58
functions, 88-90
member functions, C++, 107-109
pointers, 78-86

far, 57
huge, 57-58
indirect, portability guidelines, 281-283
keywords, 64--66
near, 56-57
p-codeinstructions, 48

Addressing modes (continued)
return objects, 101-102
this pointer, 100-101
v-table pointers, 103

IAf command-line option, 71
Aggressive optimization, enabling, 20
IAR command-line option, 63
IAh command-line option, 71
IAL command-line option, 63
IAI command-line option, 70-71
Aliasing, optimization assumptions, 13-18
ALIGN directive, inline assembler support, 113
alloc_textpragma, 41, 77-78, 90
Allocating

based data
dynamic,81-83
static, 86-88

local variables, p-code, 52
registers

optimization, 21-22
portability guidelines, 289

Alternate floating-point math package
command-line option, 136
described, 132

lAM command-line option, 63
Ambient memory models, C++ classes

described, 98-99
overriding default, 99-100

IAn command-line option, 71
Analysis functions, presentation graphics, 202
Animated graphics functions (list), 192-193
_arc function, 189
_arc_wxy function, 189
Arguments

See also Parameters
lists, variable, portability limitations, 289
side effects, portability guidelines, 290-291

Arithmetic modes, portability guidelines, 280-281
Arithmetic, pointer

mixed memory model effect, 64
speed,57-58
huge memory model effect, 60--61

Arrange Icons command, QuickWin, 150

302 Index

Arrays
mixed-language programming, 263-264
v-table pointers, 102-103

lAS command-line option, 63
lAs command-line option, 70-71
ASCII character set, portability guidelines, 284-285
asin function, intrinsic form, 11
_asinl function, intrinsic form, 11
__ asm blocks

described, 112
__ fastcall calling convention limitations, 120-121
features, 113-115
function calls

C,122
C++,123

labels, 121-122
language elements, using, 115-119
macros, defining as, 123-124
optimization, effects on, 124-125
registers, 120-121

__ asm keyword, 112
Assembly groups, 112
Assembly, inline. See Inline assembly
Assembly language

inline assembly. See Inline assembly
mixed-language programming, 248-257

IAstring command-line options, 70
Assumptions

aliasing, optimization options, 13-18
compiler, effect on portability, 285
hardware, effect on portability, 271

IATcommand-line option, 63
atan function, intrinsic form, 11
atan2 function

intrinsic form, 11
_atan21 function, intrinsic form, 11
_atanl function, intrinsic form, 11
Attaching labels to charts, 202
Attributes, colors, selecting, 175-176
IAu command-line option, 72
auto_inline pragma, precompiled header

compilation, effect on, 41
lAw command-line option, 72-74
Axes, presentation graphics

described,204
structure types, 221-223

_axis type structures, presentation graphics,
221-223

B
B_OnExit QuickBASIC function, 242
Barcharts

described, 203
sample program, 208, 211-212
styles, 204-205

BAR.C sample presentation graphics program, 208,
211-212

Based addressing
described, 58
functions, 88-90
member function, C++, 107-109
pointers

described, 78-79
fixed base, 79-80
__ self keyword, 85
variable base, 80-84
__ void keyword, 86

__ based keyword, 64-66, 78-79
Based data

dynamically allocated, 81-83
statically allocated, 86-88

Based heap, 82
Based pointers

described, 58, 78-79
fixed base, 79-80
__ self keyword, 85
variable base, 80-84
__ void keyword, 86

Based variables, declaring, 65-66
BASIC, mixed-language programming, 240-243
_bheapseg function, 82
Binary numbers

floating-point, storing as normalized numbers,
128-129

processor arithmetic modes, 280-281
Bit fields, portability guidelines, 279-280
Bitwise shift (») operator, portability guidelines,

287
_BLACK constant, 180
Blocks

__ asm. See __ asm blocks
mixed-language programming, 267-268
virtual memory

dirty vs. clean, specifying, 92
loading, 92
locking and unlocking, 92-93

_BLUE constant, 180
_bmalloc function, 83
Bold type, document conventions, xviii-xix

Bounding rectangles, coordinate systems, 185
Braces ({ }), __ asm blocks, 112
Brackets ([])

document conventions, xviii-xix
inline assembly, using in, 116

_BRIGHTWHITE constant, 180
_BROWN constant, 180
Buffer size, QuickWin, 161
Byte order, portability guidelines, 277-278,

292-293

c
C calling convention, 28-29
C macros, defining as __ asm blocks, 123-124
c option, optimize pragma, 23
Calling conventions

C,29
far, 64, 66-68, 88-89
__ fastcall, 30-32
FORTRAN/Pascal, 29
mixed-language programming, 234--235, 258
overview, 29
register, 30

Calling functions. See Function calls
Calls to emulator option, floating-point math, 135
Calls to math coprocessor option, floating-point

math, 134-136
Cascade command, QuickWin, 150, 152-153
Case sensitivity, labels, inline assembler, 121-122
Case translation, portability guidelines, 285
Categories, presentation graphics, 202
__ cdecl keyword, 29
ceil function, intrinsic form, 11
_ceill function, intrinsic form, 11
Changing palettes, graphics, 175-176
char type

integral promotion, portability guidelines, 285-287
portability guidelines, 272

Character classification functions, portability
guidelines, 284-285

Character set, portability guidelines, 284-285
Characters, presentation graphics pool, 219
Chart windows, presentation graphics, 204
_chartenv structures, presentation graphics,

219-220,226-227
Charts

See also Presentation graphics
axes

described, 204
structure types, 221-223

Charts (continued)
barcharts

described, 203
sample program, 208-212
styles, 204-205

categories, 202
chart windows, 204
column charts

described, 203
sample program, 208-212
style, 204-205

data series, 202
data windows, 204
environment variables, 219-227
features described, 202-205
labels, 202
legends

described, 205
structure types, 225

line graphs
described, 203
sample program, 208-212
styles, 204--205

pie charts
described, 203
sample program, 206-208
styles, 204-205

scatter diagrams
described, 203-204
sample program, 212-214
styles, 204--205

styles
described, 204--205
pool, 216

types described, 202-205
values, 203
windows

chart, 204
data, 204
structure types, 223-224

check_stack pragma, 21
Checking stacks, disabling, 21
Checking video configuration, 171-172
Child windows, QuickWin

closing, 162
displaying, 147-148
(list), 150
opening, 151. 157-158
reading from, 159-160
sizing, positioning, 153, 160
writing to, 159-160

Index 303

304 Index

Classes
ambient memory models

described, 98-99
overriding default, 99-100

memory models
See also ambient memory models
overview, 97-98
return object addressing modes, 101-102
this pointer, overloading, 100-10 1
v-table pointers, 102-103

Clear Paste command, QuickWin, 150
_c1earscreen function, 187
Client windows, QuickWin, user interface, 147-148
Clipboard, QuickWin

copying, 148-149
pasting, 149

Closing child windows, QuickWin, 162
Code pointers. See Pointers
Code segments

naming, custom memory models, 76-77
packing, 26-27
pointers, 56
specifying, custom memory models, 77-78

code_seg pragma, precompiled header compilation,
effect on, 41
Code View

information in object files, overriding, 38-39
inline assembly code, debugging, 115
p-code,45

Colors
attributes, selecting, 175-176
CGA palettes, 176-177
EGA palettes, 179
graphics

controlling functions (list), 188-189
maximizing, 172

MCGA palettes, 179
Olivetti palettes, 177
presentation graphics

color pool, 215-216
palettes, 214-215

VGA palettes, 177-179
Column charts

described, 203
sample program, 208, 211-212
styles, 204-205

Command line
floating-point math package options, 132-136
memory model options, 62-63, 70, 76-77

Command line (continued)
optimization options

aggressive, enabling, 20
aliasing assumptions, 13-18
calling conventions, 29-30
common subexpression elimination, 23
entry points, removing, 51
entry tables, specifying, 51-52
floating-point result handling, 23-24
frame sorting, 52
function-level linking, 21
inlining, 13
intrinsic function generation, 10-12
loops, 18-19
loops, disabling unsafe, 20
maximizing efficiency, 24-25
overview, 6
p-code,44
processor selection, 24
register allocation, 21-22
size, 9-10, 24-25
speed, 9-10, 24-25
stack probe removal, 21

p-code compiling, 44
precompiled header options, 34-36, 38-40
QuickWin program options, 154-155
running programs, QuickWin, 154

Commands, QuickWin, 148-151
comment pragma, precompiled header compilation,

effect on, 41
Comments, inline assembly, 114-116
Common subexpression elimination, 8, 23
Compact memory models

command-line option, 63
null pointers, 61-62

Compatibility, floating-point math options,
138-139

Compiling
header file. See precompiled headers, using
mixed-language programming, 237
optimization. See Optimization
p-code

from PWB, 43-44
from the command line, 44
options, 50-52

portability guidelines, 285
precompiled headers, using, 33
QuickWin programs

from PWB, 156
from the command line, 154-155

Compiling (continued)
speed

increasing using precompiled headers, 33
p-code use, effect on, 43

Consistency
floating-point math operations, 23-24, 138
precompiled header rules, 39-41

Constants
graphics (table), 169-170
inline assembly, 115-116
symbolic

graphics, 180
inline assembly, 115-116

windows (list), 158
Controlling

frame sorting, p-code, 52
optimization

from PWB, 5-6
from the command line, 6
from the linker, 25-28
using pragmas, 6-7

QuickWin menus, 152
quoting, p-code, 52

Converting
DOS applications to Windows applications. See

QuickWin
pointer size, 68-69

Coordinate systems
bounding rectangles, 185
described, 180
physical coordinates

described, 180-182
using, functions listed, 181

pixel cursors, 186
screen locations, 185
viewport coordinates, 182-183
window coordinates, 184-185

Coprocessor, floating-point math. See Math
coprocessor floating-point math package

Copy command, QuickWin, 149
Copy Tabs command, QuickWin, 149
Copying text, QuickWin, 148-149
cos function, intrinsic form, 11
cosh function, intrinsic form, 11
_coshl function, intrinsic form, 11
_cosl function, intrinsic form, 11
Creating

charts and graphs, presentation graphics, 205-206
child windows, QuickWin, 151, 157-158
macros, __ asm blocks, 123-124
precompiled headers, 34-36

Creating (continued)
QuickWin programs

enhanced, 146-147, 157-165
simple, 146

Cursors, pixel, coordinate systems, 186
Customizing

About dialog box, QuickWin, 151, 157
icons, QuickWin, 164-165
memory models

code pointer sizing, 70-71
code segments, specifying, 77-78
command-line options, 70
data placement, 74-76
data pointer sizing, 71

Index 305

declarations, defining and referencing, 74-76
library support, 74
module naming, 76-77
segment nami1lg, 76-77
segment setup options, 7 1-74

optimization, 9
presentation graphics, 219-220

_CYAN constant, 180

D
ID command-line options, consistency rules,

precompiled headers, 39
Data allocation

See also Memory models
based, 86-88
far, 65-66

Data directives, inline assembly limitations, 113
Data files, portability limitations, 292
Data members, accessing, inline assembly, 117-118
Data pointers. See Pointers
Data segments

naming, custom memory modcls, 76-77
packing, 27
stack segments, equality with, 71-74

Data series described, 202
Data storage, portability guidelines, 274-276
Data threshold, 75
Data types

p-code instructions, 48-49
portability guidelines, 271-274

Data windows, presentation graphics, 204
data_seg pragma, precompiled header compilation,

effect on, 41
Dead-store elimination, 8
Debugger, symbolic, removing optimizations, 9

306 Index

Debugging
information, overriding CodeView, 38-39
inline-assembly code, with Code View , 115
p-code,45
precompiled header object files, 38-39

Declarations, custom memory models, defining and
referencing in, 74-76

Declaring
addresses, keywords for, 64-66
arrays, mixed-language programming, 263, 265
functions, __ near and __ far, 66-68
variables

floating-point types, 127-129
near, far, huge and based, 65-66

Decreasing program size, 9-10
_DEFAULTMODE constant, 168-169
Defaults

floating-point math packages, 131
memory models, 56, 62-63
optimization, 8-9
pointer sizes, 58, 283

Defining macros, __ asm blocks, 123-124
delete operator, C++, 105-106
Denormalized numbers, floating-point math

packages, 128-129
Diagrams. See Charts; Graphs
Dialog boxes, About command, QuickWin,

customizing, 151, 157
Directives, inline assembly

limitations, 113
using in, 115-116

Disabling
optimizations

all,9
loop, unsafe, 20

p-code quoting, 46
stack checking, 21

Displaying fonts, 197
Document conventions, xviii-xix
Dollar sign ($), inline assembly, 122
DOS applications

optimizing precautions, 28
Windows applications, converting to. See

QuickWin
double type

portability guidelines, 273
variables, declaring as, 127-129

Drawing functions (list), 189-191
DS register, equal to SS, 71-74
Dynamic allocation, based data, 81-83

E
IE option

command line, 39
LINK,27

e option, optimize pragma, 22
Edit menu, QuickWin, 148-149
Efficiency, program, increasing, 24-25
Eliminating

common subexpressions, 8, 23
dead store, 8
stack probes, 21

_ellipse function, 189
ellipse w function, 189
_ellipse_wxy function, 189
_emit pseudoinstruction, 115
EMOEM.ASM, floating-point math libraries,

modifying with, 139
Emulator floating-point math package

command-line options, 134-135
described, 131
environment variable, N087, 138

Entry points
p-code functions

described,47
removing, 51

QuickBASIC, B_OnExit function, 242
Entry tables, p-code, specifying maximum, 51-52
Environment variables

N087, software emulator, 138
presentation graphics

_axistype structures, 221-223
_chartenv structures, 219-220, 226-227
described,219-220
_legendtype structures, 225
resetting, 219
_titletype structures, 220-221
_ windowtype structures, 223-224

Environments
1/0 portability guidelines, 291
optimization precautions, 28

fEp command-line option, consistency rules,
precompiled headers, 39

EQUOTE p-code instruction, 46
ERESBOX.C sample graphics program, 168-169
_ERESCOLOR constant, 168-170
_ERESNOCOLOR constant, 170
Error handler, C++, 106-107
Evaluation order, portability guidelines, 289-290
EVEN directive, inline assembler support, 113
Exception handler, floating-point libraries, 139

.EXE files. See Executable (.EXE) files
Executable (.EXE) files, packing, 27
/EXEP ACK option, LINK, 27
Exit command, QuickWin, 148
Exiting

See also Terminating
QuickWin programs, 148, 162-163

exp function, intrinsic form, 11
_expl function, intrinsic form, 11
Exponents, floating-point variables, 128
Expressions

evaluation order, 289-290
MASM, use in inline assembly, 113

Extended instructions, p-code (table), 297-299
extern "C" linkage specification, 257
External data, mixed-language programming,

265-266

F
IF option, LINK, 25-26
__ fac floating-point accumulator, 130
Far function calls, translating to near calls, 25-26
far functions, 64, 66-68
_jar keyword, 64-68, 239-240
Far objects, accessing, 57
Far pointers, 57
Far variables, 65-66
IFARCALL option, LINK, 25-26
IFARCALLTRANSLATION option, LINK, 25-26
__ fastcall calling convention

described, 30-32
in1ine assembly limitations, 120-121

_jastcall keyword, 30-32
fclose function, 162
_fcloseall function, 162
File menu, QuickWin, 148
Files

executable. See Executable (.EXE) files
font. See Font (.FON) files
header. See Header (.H) files
icon. See Icon (.ICO) files
linker output (.PXE). See LINK
precompiled header (.PCH). See Precompiled

headers
resource script. See Resource script (.RC) files

Fill patterns
graphics, functions (list), 191-192
presentation graphics, 217-218

float type
portability guidelines, 273
variables, declaring as, 127-129

Floating-point accumulator Cjac), 129
Floating-point math functions

intrinsic forms, 11
long double type support, 130

Floating-point math libraries
exception handler, 139
linking, 137
selecting, 132
SETUP program, 130-131

Floating-point math packages
alternate

command-line option, 136
described, 132

Index 307

denormalized numbers, storing, 128-129
emulator

command-line options, 134--135
described, 131

inline instructions, 137
(list), 130
math coprocessor

command-line options, 135-136
described, 131

optimization, effect, 133
options, 132-136, 138

Floating-point numbers
denormalized numbers, storing as, 128-129
precision, increasing, 23-24

Floating-point types
functions that return, declaring, 130
promoting, 129
supported types (list), 127
variables, declaring as, 127-129

Floating-point variables
described, 128
promoting, 129

_floodfill function, 191
_floodfilC w function, 191
floor function, intrinsic form, 11
_flood function, intrinsic form, 11
fmod function, intrinsic form, 11
_fmodl function, intrinsic form, 11
.FON files. See Font (.FON) files
Font (.FON) files, 195
Fonts

document conventions, xviii-xix
graphics

described, 193-195
displaying, 197

308 Index

Fonts (continued)
graphics (continued)

library, using, 195
registering, 195-196
sample program, 198-199
setting, 196-197
using effectively, 199-200

FORTRAN, mixed-language programming,
238-240,243-246

__ fortran keyword, 29, 239-240, 244-245
FORTRAN/Pascal calling convention, 29
IFp command-line option, 35
IFP command-line options, 132-136
IFr command-line option, consistency rules,

precompiled headers, 40
Frame sorting, controlling p-code, 52
Free store

delete operator, 105-106
described, 103
error handler, 106-107
new operator, 103-105

Function calls
conventions

__ fastcall calling convention, 30-32
C calling convention, 29
FORTRANlPascal calling convention, 29
overview, 29
register calling convention, 30

inline assembly
C,122
C++, 123

mixed-language programming, 229-231
optimizing, 25-26
p-code,47

function pragma
format, 11
precompiled header compilation, effect on, 41
using, 11

Function-level linking, enabling, 21
Functions

aliasing between functions, 13-18
argument lists, variable, portability limitations, 289
arguments with side effects, portability guidelines,

290-291
based addressing, 88-90
declaring, __ near and __ far, 66-68
floating-point math, long double type support, 130
floating-point types, returning, declaring, 130

Functions (continued)
inline assembly

calling, C, 122
calling, C++, 123
versions, 118-119

inlining, 13
intrinsic forms, generating, 10-12
member, C++. See Member functions
p-code, native entry points

described, 47
removing, 51

pointers. See Pointers, code
unreferenced, removing, 28
writing, inline assembly, 118-119

_fwopen function, 151, 157-158

G
g option, optimize pragma, 23
/GO command-line option, 24
/Gl command-line option, 24
/G2 command-line option, 24
/G3 command-line option, 24
/G4 command-line option, 24
_GBORDER constant, 168
/Gc command-line option, 29
/Gd command-line option, 29
Generating

code, selecting processor, 24
intrinsic functions, 10-12

~etbkcolor function, 188
~etcolor function, 188
~etcurrentposition function, 186, 189
getcurrentposition w function, 190
_getfillmask function, 191
_getfontinfo function, 197
_getimage function, 192
_getimage_w function, 192
~etimage_wxy function, 192
~etlinestyle function, 191
_getphyscoord function, 181, 187
_getpixel function, 190
_getpixeC w function, 190
_getvideoconfig function, 171-173, 187
~etviewcoord function, 181, 187
_getviewcoord_w function, 187
getviewcoord wxy function, 187
~etwindowcoord function, 187
Global register allocation

optimization option, 21-22
portability guidelines, 289

/Gn command-line option, 51
goto statements, inline assembly, 121-122
/Gp command-line option, 51-52
/Gr command-line option, 30
Graphics

adapters
(list), 167-168
terminate-and-stay-resident program requirements,

174
bounding rectangles, 185
colors, attributes, selecting, 175-176
coordinate systems

described, 180
physical coordinates, 180-182
viewport coordinates, 182-183
window coordinates, 184-185

fonts
described,193-195
displaying, 197
library, using, 195
registering, 195-196
sample program, 198-199
setting, 196-197
using effectively, 199-200

functions (lists)
animation, 192-193
color and palette control, 188-189
drawing, 189-191
pattern control, 191-192
video mode control, 186-188

library, 167
modes

described, 167-168
selecting, 173
setting, 168-171

palettes
eGA,176-177
changing, 175-176
EGA,179
MCGA,179
Olivetti, 177
VGA,I77-179

pixel cursors, 186
presentation. See Presentation graphics
resolution, maximizing, 172
sample programs

ERESBOX.C, 168-169
READVC.C, 171-172
SAMPLER.C, 198-199
YELLOW.C, 178

screen locations, 185

Graphics (continued)
SuperVGA support, 173-175
typefaces, 193-195
video configuration checking, 171-172

Graphs
See also Presentation graphics
axes

described,204
structure types, 221-223

bar charts
described, 203
sample program, 208-212
styles, 204-205

categories, 202
chart windows, 204
column charts

described, 203
sample program, 208-212
styles, 204-205

data series, 202
data windows, 204
environment variables, 219-227
features described, 202-205
labels, 202
legends

described, 205
structure types, 225

line graphs
described, 203
sample program, 208-212
styles, 204-205

pie charts
described, 203
sample program, 206-208
styles, 204-205

scatter diagrams
described,203-204
sample program, 212-214
styles, 204-205

styles
described, 204-205
pool,216

types described, 202-205
values, 203
windows

chart,204
data, 204
structure types, 223-224

_GRAY constant, 180
_GREEN constant, 180
/Gs command-line option, 21

Index 309

310 Index

/Gt command-line option, 75-76
/Gw command-line option, consistency rules,

precompiled headers, 40
/Gx command-line option, 75-76
/Gy command-line option, 21

H
.H files. See Header (.H) files
Handles, virtual memory, 91-92
hdrstop pragma, 34-38
Header (.H) files

graphics, 180, 196
precompiled

consistency rules, 39-41
creating, 34-36
debug information, overriding CodeView, 38-39
described, 33
hdrstop pragma, 36-38
include path consistency, 40
options, 34-36, 38-40
pragma consistency, 41
source file consistency, 41
using, 33-36

presentation graphics, palette structures, 214-215
Heaps

based,82
C++. See Free store

Help, QuickWin, 165
Help menu, QuickWin, 151
. HERCMONO constant, 170

=HRES16COLOR constant, 170
_HRESBW constant, 170
__ huge keyword, 64-66
Huge memory models

command-line option, 63
described, 60-61

Huge pointers, 57-58
Huge variables, declaring, 65-66

Icon (.ICO) files, QuickWin, custom, 164-165
Icons, customizing, QuickWin, 164-165
Identifiers, portability guidelines, 288
IEEE. See Institute of Electrical and Electronics

Engineers
Images, animated graphics functions (list), 192-193
_image size function, 192
_imagesize_w function, 192
_imagesize_wxy function, 192

Include path, consistency rules, precompiled
headers, 40

Increasing
portability. See Portability guidelines
program speed, 9-10

Index command, QuickWin, 151
Indexing arrays, mixed-language programming,

263-264
Indirect addressing, portability guidelines, 281-283
Initializing virtual memory manager, 90-91
Inline assembly

advantages, 111
__ asm blocks

described,112
__ fastcall calling convention limitations, 120-121
features, 113-115
function calls, C, 122
function calls, C++, 123
labels, 121-122
language elements, using, 115-119
macros, defining as, 123-124
optimization, effects on, 124-125
registers, 120-121

__ asm keyword, 112
comments, 114
data directives, limitations, 113
data members, 117-118
debugging with Code View, 115
_emit pseudoinstruction, 115
expressions, using, 113
_jastcall calling convention, 120-121
function calls

C,122
C++,123

functions, writing, 118-119
instruction set, 113
labels, 121-122
macros

defining __ asm blocks as, 123-124
limitations, 113

MASM compatibility limitations, 113
operators, limitations, 113-114, 116
optimization concerns, 124-125
registers, 120-121
segment referencing, 114
structure types, 117-118
symbols, 117
type and variable sizes, 114
using, 111
variables, 117-118

Inline emulator option, floating-point math, l34,
l37

inline keyword, 13
__ inline keyword, 13
Inline math coprocessor option, floating-point

math, l34-l35, l37
Inlining, 13
Input command, QuickWin, 150
Input focus, active window, QuickWin, 152,

161-162
Institute of Electrical and Electronics Engineers,

floating-point types format, 127
Instructions

inline assembler, 112-113, 121-122
inline, floating-point math options, 137
p-code

data types, 48-49
modes, 48
naming conventions, 47-49
qualifiers, 48
(table),297-299

processor, generating specific, 24
Insufficient memory handling, portability

guidelines, 283-284
int type, portability guidelines, 272
Integral promotion, portability guidelines, 285-287
Interpreter, run-time, p-code, 43, 45-46
Intrinsic functions, generating, 10-12
intrinsic pragma

format, 11
precompiled header compilation, effect on, 41
using, 12

Invariant code, removing, 18-19
110, portability guidelines, 291 Italics, document

conventions, xviii-xix

J
Jumping to labels, inline assembly, 121-122

K
Keywords, addressing mode, specifying, 64-66

L
Labels

charts and graphs, 202
inline assembly, 121-122

Language Options menu, PWB, 134
Large memory models, command-line option, 63

Legends, presentation graphics
described,205
structure types, 225

Index 311

_legendtype structures, presentation graphics, 225
LENGTH operator, inline assembler use, 114
Libraries

floating-point math, l32, l37, l39
fonts, 195
graphics, 167
linking, mixed-language programs, with, 237-238
memory models, 59, 74
presentation graphics, PGCHART.LIB, 201-202
QuickWin, 145

_LIGHTBLUE constant, 180
_LIGHTCYAN constant, 180
_LIGHTGREEN constant, 180
_LIGHTMAGENT A constant, 180
_LIGHTRED constant, 180
_LIGHTYELLOW constant, 180
Line graphs

described, 203
sample program, 208-212
styles, 204-205

Lines
drawing functions, 186, 189-191
pattern control functions, 191-192

linesize pragma, precompiled header compilation,
effect on, 41

_lineto function, 186, 190
_lineto_w function, 190
LINK

libraries, floating-point math, 137
optimization, controlling, 25-28
output (.PXE) files, MPC utility, 53
p-code,53

Linkage specification, extern "C", 257
Linker. See LINK
Linking

See also LINK
floating-point math libraries, l37
function-level, enabling, 21
mixed-language programs, 237-238
p-code,53

listing pragma, precompiled header compilation,
effect on, 41

Loading virtual memory blocks, 92
Local variables, allocating, p-code, 52
Locking virtual memory blocks, 93
log function, intrinsic form, 11
log 10 function, intrinsic form, 11
_log 1 01 function, intrinsic form, 11

312 Index

_logl function, intrinsic form, 11
long double type

portability guidelines, 273
supportive functions, 130
variables, declaring as, 127-129

long type, byte ordering, 292-293
loop_opt pragma, 18
Loops, optimizing

described, 18-19
disabling unsafe, 20

Lowercase letters, document conventions, xviii-xix

M
Machine code

mixing with p-code, 50
transition to p-code, 47

Macro Assembler, inline assembly. See Inline
assembly

Macros
__ asm blocks,-defining as, 123-124
inline assembly

limitations, 113
using in, 115-116

side effects, portability guidelines, 290-291
_MAGENTA constant, 180
Make P-Code (MPC) utility, 44, 51-53
malloc function, 83-84
Managing memory. See Memory management
Mantissas, floating-point variables, 128
Mark command, QuickWin, 148-149
MASM, inline assembly. See Inline assembly
Math coprocessor floating-point math package

command-line options, 135-136
described, 131

Math packages, floating-point. See Floating-point
math packages

_matherr function, math intrinsics, precautions, 11
_MAXCOLORMODE constant, 169
Maximizing

color, graphics, 172
efficiency, optimization, 24-25
resolution, graphics, 172

_MAXRESMODE constant, 169
Medium memory models

command-line option, 63
null pointers, 61-62

Member functions, based addressing, 107-109
Memory availability assumptions, portability

guidelines, 283-284

Memory locations
aliasing, 13-18
pointers. See Pointers

Memory management, C++
free store, 103-107
memory models for classes, 97-103

pointers. See Pointers
strategies (list), 55
virtual memory

handles, 91-92
using, techniques, 93-96

virtual memory blocks
dirty vs. clean, specifying, 92
loading, 92
locking and unlocking, 93

virtual memory manager
described, 90
initializing, 90-91
terminating, 91

Memory models
ambient

described, 98-99
overriding default, 99-100

classes
overview, 97-98
return object addressing modes, 101-102
this pointer, overloading, 100-101
v-table pointers, 102-103

command-line options, 62-63, 70, 76-77
compact

command-line option, 63
null pointers, 61-62

customizing
code pointer sizing, 70-71
code segments, specifying, 77-78
command-line options, 70
data placement, 74-76
data pointer sizing, 71
declarations, defining and referencing, 74-76
library support, 74
module naming, 76-77
segment naming, 76-77
segment setup options, 71-74

default, 56, 62-63
huge

command-line option, 63
described, 60-61

large, command-line option, 63
limitations, 59

Memory models (continued)
medium

command-line option, 63
null pointers, 61-62

mixed
described, 63-64
functions, declaring, 66-68
pointer problems, 64-65
pointer size conversion, 68-69
variables, declaring, 65-66

null pointers, 61-62
selecting

command-line options, 62-63
standard six, 58

small, command-line option, 63
standard six

(list),59
selecting, 58

this pointer, overloading, 100-101
tiny

command-line option, 63
described, 60

Menus, QuickWin. See QuickWin
message pragma, precompiled header compilation,

effect on, 41
Microsoft Macro Assembler, inline assembly. See
Inline assembly
Mixed-language programming

addresses, 266-267
arrays

declaring and indexing, 263-265
passing, 263

assembly language
See also Inline assembly, 248
described, procedures, 248-257

BASIC, 240-243
C++ linkage specification, 257
calling conventions, 234-235, 258
common blocks, 267-269
compiling, 237
described, 229-231
external data, 265-266
FORTRAN, 238-240, 243-246
high-level languages, 238-240
language conventions, 231, 257
language equivalents (table), 231
linking, 237-238
naming conventions, 231-234, 258
parameterpassing requirement, 235-236
Pascal, 238-240, 246-248
pointers, 266-267

Mixed-language programming (continued)
QuickBASIC,242
records, 265
strings, 259-262
structures, 265

Index 313

types, user-defined, 265 variable declaration,
258-259

Mixed memory models
described,63-64
functions, declaring, 66-68
pointer problems, 64-65
pointer size conversion, 68-69
variables, declaring, 65-66

Models, memory. See Memory models
Modes

addressing
based, 58, 88-90
based, member functions, C++, 107-109
based, pointers, 78-86
far, 57
huge, 57-58
indirect, portability guidelines, 281-283
keywords, 64-66
p-code instructions, 48
return objects, 10 1-102
this pointer, 100-101
v-table pointers, 103
near, 56-57

processor arithmetic, portability guidelines,
280-281

text, 167-168
video

controlling functions (list), 186-188
described, 167-168
selecting, 173
setting, 168-171
Super VGA support, 173-175

Modules, naming, custom memory models, 76-77
Mouse clicks, simulating in QuickWin menus,

163-164
_moveto function, 186, 190
_moveto_w function, 190
MPC utility, 44, 51-53
/Mq command-line option, 154-155
_MRES 16COLOR constant, 170
_MRES256COLOR constant, 170
_MRES4COLOR constant, 169
_MRESNOCOLOR constant, 169

314 Index

N
Naming

conventions, mixed-language programming,
231-234,258

modules, custom memory models, 76-77
p-code instructions, 47-49
segments, custom memory models, 76-77

Native entry points, p-code functions
described,47
removing, 51

native_caller pragma, 41, 51
IND command-line option, 76-77
NDP stack. See Numeric data processor stack
near functions, 64, 66-68
Near function calls, translating far calls to, 25-26
__ near keyword, 64-68, 239-240
Near objects, accessing, 56-57
Near pointers, 56-57
Near variables, declaring, 65-66
new operator, C++, 103-105
INM command-line option, 76-77
N087 environment variable, floating-point math,

138
INOD option, LINK, 137
INODEFAULTLIBRARYSEARCH option, LINK,

137
INOPACKF option, LINK, 28
INOPACKFUNCTIONS option, LINK, 28
INT command-line option, 76-77
Null pointers

memory models, using with, 61-62
portability guidelines, 282

Numeric data processor stack, floating-point return
values, 130

o
lOa command-line option, 13-18
lObO command-line option, 13
lObI command-line option, 13
IOb2 command-line option, 13
Object (.OBl) files, precompiled headers, 38-39
Objects

address space
far objects, 57
near objects, 56-57

C++
return, addressing modes, specifying, 1 ° 1-1 02
v-table pointers, 103

Objects (continued)
modifying with __ near, _jar, __ huge and

__ based, 65-66
pointers to, modifying with __ near, __ far, __ huge

and __ based, 65-66
IOc command-line option, 23
IOe command-line option, 21-22, 125
109 command-line option, 23, 125
IOi command-line option, 10-12
101 command-line option, 18-20, 125
One's-complement arithmetic, portability

guidelines, 280-281
One-byte instructions, p-code (table), 297-299
lOp command-line option, 23-24, 52
opcodes,p-code, 52,297-299
Opening child windows, QuickWin, 151,157-158
Operand data types, p-code instructions, 49
Operators

bitwise shift (»), portability guidelines, 287
inline assembly limitations, 113-114, 116

Optimization
aggressive, enabling, 20

asm blocks, effect of, 124-125
controlling

from PWB, 5-6
from the command line, 6
from the linker, 25-28
using pragmas, 6-7

customizing, 9
defaults, 8-9
disabling

all,9
loop, unsafe, 20

environmental considerations, 28
floating-point math packages, 133
LINK options, 25-28
maximum efficiency, 24-25
options

aggressive, enabling, 20
aliasing assumptions, 13-18
calling conventions, 29-32
code segment packing, 26-27
common subexpression elimination, 23
data segment packing, 27
entry points, removing, 51
entry tables, specifying, 51-52
executable file packing, 27
far call translation, 25-26
floating-point result handling, 23-24
frame sorting, 52
function-level linking, 21

Optimization (continued)
options (continued)

inlining, 13
intrinsic function generation, 10-12
loops, 18-19
loops, disabling unsafe, 20
maximizing efficiency, 24-25
overview, 6
p-code,44
processor selection, 24
register allocation, 21-22
size, 9-10, 24-25
speed, 9-10,24-25
stack probe removal, 21
unreferenced function removal, 28

pragmas, 6-7
precautions

debuggers, 9
DOS programs, 28
math intrinsics, 11
Windows programs, 28

PWB options, 5-6
restoring to former state, 9
types described, 5

optimize pragma
described, 7
disabling, 9
options

common subexpression elimination, 23
disabling subexpression elimination, 23
floating-point result handling, 24
p-code,50
register allocation, 22
speed vs. size, 10

Options
floating-point math packages, 131-136, 138
LINK, 25-28
memory models, 62-63, 70-77
optimization

aggressive, enabling, 20
aliasing assumptions, 13-18
calling conventions, 29-32
code segment packing, 26-27
common subexpression elimination, 23
data segment packing, 27
entry points, removing, 51
entry tables, specifying, 51-52
executable file packing, 27
far call translation, 25-26
floating-point result handling, 23-24
frame sorting, 52

Options (continued)
optimization (continued)

function-level linking, 21
inlining, 13
intrinsic function generation, 10-12
loops, 18-19
loops, disabling unsafe, 20
maximizing efficiency, 24-25
overview, 6
p-code,44
processor selection, 24
register allocation, 21-22
size, 9-10, 24-25
speed, 9-10, 24-25
stack probe removal, 21
unreferenced function removal, 28

p-code compiling, 50-52
precompiled headers, 34-36, 38-40

10q command-line option, 44

Index 315

Order of evaluation, portability guidelines, 289-290
_ ORES256COLOR constant, 170
_ ORES COLOR constant, 170
Origin, coordinate systems

defined, 180
location, changing, 181

lOs command-line option, 9-10
lOt command-line option, 9-10
Overloading

delete operator, 105
new operator, 103
this pointer, 100-101

lOw command-line option, 13-18
lOx command-line option, 24-25
10z command-line option, 20

p
p option, optimize pragma, 24
pack pragma, precompiled header compilation,

effect on, 41
IP ACKC option, LINK, 26-27
IP ACKCODE option, LINK, 26-27
IP ACKD option, LINK, 27
IPACKDATA option, LINK, 27
IP ACKF option, LINK, 28
IP ACKFUNCTIONS option, LINK, 28
Packing

code segments, 26-27
data segments, 27
executable files, 27
unreferenced functions, 28

316 Index

page pragma, precompiled header compilation,
effect on, 41

pagesize pragma, precompiled header compilation,
effect on, 41

Palettes
graphics

CGA,176-177
changing, 175-176
controlling functions (list), 188-189
EGA,179
MCGA,179
Olivetti, 177
VGA,I77-179

presentation graphics
character pool, 219
color pool, 215-216
described,214-215
fill pattern pool, 217-218
style pool, 216

Parameters
See also Arguments
mixed-language programming, 269
passing, mixed-language programming, 235-236

Pascal
calling convention, 29
mixed-language programming, 238-240, 246--248

__ pascal keyword, 29, 239-240, 247-248
Passing arrays, mixed-language programming, 263
Paste buffer, QuickWin, 149-150
Paste command, QuickWin, 149
Pasting text, QuickWin, 149
Patterns

fill patterns, presentation graphics, 217-218
graphics, functions (list), 191-192

Pause command
QuickWin, 148-149

.PCH files. See Precompiled headers
P-code

build process, 53
compiling

from PWB, 43-44
from the command line, 44
options, 50--52

debugging, 45
described, 43
entry points

described, 47
removing, 51

entry tables, specifying maximum, 51-52
fine-tuning, 50
frame sorting, 52

P-code (continued)
function calls, 47
functions, native entry points

described, 47
removing, 51

instructions
data types, 48--49
modes, 48
naming conventions, 47--49
qualifiers, 48
(table),297-299

linking, 53
mixing with machine code, 50
modifying before compiling, 50
naming conventions, instructions, 47--49
native entry points

described, 47
removing, 51

opcodes, 52, 297-299
quoting

controlling, 52
described, 46
disabling, 46

stack machine, 45--46
stacks, local variable allocation order, 52
transition from machine code, 47

/PCODE option, LINK, 53
_pg_analyzechart function, 201-202
_pg_analyzechartms function, 201-202
_pg_analyzepie function, 201-202
_pg....analyzescatter function, 201-202
_pg_ana1yzescatterms function, 201-202
_pg....chart function, 201-202
PGCHART.LIB,201-202
_pg_chartms function, 201-202
_pg....chartpie function, 201-202
_pg_chartscatter function, 201-202
_pg_chartscatterms function, 201-202
_pg_defaultchart function, 201-202
_puetchardeffunction, 201-202
_puetpalette function, 201-202
_Puetstyleset function, 201-202
_pg_hlabelchart function, 201-202
_pg_initchart function, 201-202
_pg....resetpalette function, 201-202
_pg....resetstyleset function, 201-202
_pg....setchardef function, 201-202
_pg....setpalette function, 201-202
_pg_setstyleset function, 201-202
_pg_vlabelchart function, 201-202

Physical coordinates
described, 180-182
using, functions listed, 181

Pie charts
described, 203
sample program, 206, 208
styles, 204-205

_pie function, 190
PIE.C sample presentation graphics program,

206-208
pie wxy function, 190
Pixel cursors, coordinate systems, 186
Platforms, optimization precautions, 28
Pointer arithmetic

huge memory model, 60-61
mixed memory model, 64
speed, 57-58

Pointers
address storage, 55
based

described, 58, 78-79
fixed base, 79-80
__ self keyword, 85
variable base, 80-84
__ void keyword, 86

code, sizes, 56-57, 64, 66-68
data, sizes, 56-58, 64-66
far pointers, 57
huge pointers, 57-58
mixed-language programming, 266-267
mixed memory models, problems caused by, 64-65
near pointers, 56-57
null

memory models, using with, 61-62
portability guidelines, 282

portability guidelines, 281-283
SIze

code pointers, custom memory model, 70-71
converting, 68-69
data pointers, custom memory model, 71
defaults, 58
(table), 283

this pointer, overloading, 100-10 1
v-table, described, 102-103

Points, drawing functions (list), 189-191
Pools, presentation graphics

character pool, 219
color pool, 215-216
fill pattern, 217-218 style pool, 216

Portability guidelines
address space, 283-284
argument lists, variable, 289
bit fields, 279-280
byte order, 277-278, 292-293
case translation, 285
character set, 284-285
compiler assumptions, 285
data files, 292
data types, 271-274
environments, 291
evaluation order, 289-290
function and macro arguments, 290-291
global register allocation, 289
hardware assumptions, 271
I/O, 291
identifiers, 288

Index 317

memory availability assumptions, 283-284
Microsoft C specific issues, 292
pointers, 281-283
processor arithmetic modes, 280-281
register variables, 288-289
sign extension, 285, 287
storage order and alignment, 274-276
structures

bit fields, 279-280
order and alignment, 275-276
reading and writing, 278-279

type promotion, 285-287
unions, 276-277

pow function, intrinsic form, 11
_powl function, intrinsic form, 11
Pragmas

consistency rules, precompiled headers, 41
optimization, 6-7

Precompiled headers
consistency rules, 39--41
creating, 34-36
debugging information, overriding CodeView,

38-39
described, 33
hdrstop pragma

placement, 37-38
syntax, 36-37

include path consistency, 40
options, 34-36, 38--40
pragma consistency, 41
source file consi stency, 41
using, 33-36

Preprocessor directives, inline assembly, using in,
115-116

318 Index

Presentation graphics
See also Charts
analysis functions, 202
character pool, 219
chart types and features, 202-205
color pool, 215-216
customizing, 219-220
defined, 201
environment variables

_axistype structures, 221-223
_chartenv structures, 219-220, 226-227
described, 219-220
_legendtype structures, 225
_titletype structures, 220-221
_ windowtype structures, 223-224

fill patterns, 217-218
graph types and features, 202-205
library, PGCHART.LIB, 201-202
palettes

character pool, 219
color pool, 215-216
described, 214-215
fill pattern pool, 217-218
style pool, 216

pattern pool, 217-218
pools

character, 219
color, 215-216
fill pattern, 217-218
style, 216

primary functions (list), 201-202
programs

See also sample programs
writing steps, 205-206

sample programs
BAR.C,208-212
PIE.C,206-208
SCATTER.C,212-214

secondary functions (list), 201-202
style pool, 216

Processor arithmetic modes, portability guidelines,
280-281

Processors
p-code run-time interpreter, 45-46
selecting, generating instructions, 24

Profiler
machine code vs. p-code, 50
p-code vs. machine code, 50

Programmer's WorkBench. See PWB
Programming, mixed-language. See

Mixed-language programming

Programs
efficiency, increasing, 24-25
size

optimizing, 9-10
p-code use, effect on, 43

speed
optimizing, 9-10
p-code use, effect on, 43

Promoting
data types, portability guidelines
floating-point types, 129

Propagating constants, 9
Pseudoinstructions, _emit, 115
_putimage function, 192
putimage w function, 193
PWB

floating-point math packages options, 134
Language Options menu, 134
linking, floating-point math libraries, 137
memory model, selecting, 62
optimization, controlling, 5-6
p-code compiling, 43-44
QuickWin programs, compiling, 156

.PXE files. See LINK

a
q option, optimize pragma, 50
QHELLO.C sample QuickWin program, 154-155
Qualifiers, p-code instructions, 48
QuickBASIC, mixed-language programming, 242
QuickWin

About command
described, 151
dialog box, customizing, 151, 157

active window
described, 152
setting, 161-162

Arrange Icons command, 150
buffer size, 161
Cascade command, 150
child windows

closing, 162
displaying, 147-148
(list), 150
opening, 151, 157-158
reading from, 159-160
sizing, positioning, 153, 160
writing to, 159-160

Clear Paste command, 150

QuickWin (continued)
compiling

from PWB, 156
from the command line, 154-155

Copy command, 149
Copy Tabs command, 149
described, 145
Exit command, 148
exiting

closing all windows, 162
leaving windows open, 162-163

Help file, 165
icons, customizing, 164-165
Index command, 151
Input command, 150
libraries, 145
limitations, 153
Mark command, 148-149
menus

controlling, 152
Edit, 148-149
File, 148
Help, 151
simulating mouse clicks in, 163-164
State, 149
Window, 149-150, 163-164

mouse clicks, simulating, 163-164
Paste command, 149
Pause command, 149
programs

enhanced,creating, 146-147, 157-165
exiting, 148
running, 154
simple, creating, 146

Resume command, 149
sample programs

QHELLO.C, 154-155
QWDEMO.C, 157

screen buffer, 161
Select All command, 149
Status Bar command, 150
Tile command, 150
user interface described, 147-148
Using Help command, 151
yielding to other applications, 164

QUOTE p-code instruction, 46
Quoting, p-code

controlling, 52
described, 46
disabling, 46

Index 319

QWDEMO.C sample QuickWin program, 157
QWIN.HLP file, 165

R
READVC.C sample graphics program, 171-172
Records

inline assembly limitations, 113
mixed-language programming, 265

_rectangle function, 169, 190
Rectangles, bounding, coordinate systems, 185
_rectangle_w function, 190
_rectangle_wxy function, 191
_RED constant, 180
Reducing program size

optimization. See Optimization
p-code. See P-code

Register allocation
optimization, 21-22
portability guidelines, 289

Register calling convention, 30
register keyword, 124-125, 288-289
Register variables

portability guidelines, 288-289
storage, __ asm block effect on, 124-125

jegisterfonts function, 195-196
Registering fonts, 195-196
Registers

__ asm blocks, 120-121
p-code, 45-46

_remapallpalette function, 188
_remappalette function, 188
Removing

invariant code, 18-19
native entry points, p-code, 51
optimizations, 9
stack probes, 21
unreferenced functions, 28

Resetting chart environment variables, 219
Resolution, graphics, maximizing, 172
Resource script (.RC) files, QuickWin icons,

164-165
Restoring, optimization state, 9
Resume command, QuickWin, 149
Return objects, addressing modes, specifying,

101-102
Return values

floating-point types, 130
inline assembly, registers, 120-121

rewind function, 159-160

320 Index

Run-time interpreter, p-code, 43, 45-46
Running programs, QuickWin, 154

s
same_seg pragma, precompiled header

compilation, effect on, 41
Sample programs

graphics
See also presentation graphics
ERESBOX.C,168-169
READVC.C,I71-172
SAMPLER.C, 198-199
YELLOW.C, 178

presentation graphics
BAR.C,208-212
PIE.C,206-208
SCATTER.C,212-214

QuickWin
QHELLO.C, 154-155
QWDEMO.C, 157

SAMPLER.C sample fonts program, 198-199
Scatter diagrams

described, 203-204
sample program, 212, 214
styles, 204-205

SCATTER.C sample presentation graphics
program, 212-214

Scope oflabels in __ asm blocks, 121-122
Screen

coordinates, 185
pixel cursor, 186

Screen buffer, QuickWin windows, 161
segment pragma, precompiled header compilation,

effect on, 41
Segments

code segments
naming, custom memory models, 76-77
packing, 26-27
pointers, 56
specifying, custom memory models, 77-78

data segments
naming, custom memory models, 76-77
packing, 27
stack segments, equality with, 71-74

naming, custom memory models, 76-77
references to, inline assembly, 114
stack segments, equality with data segments, 71-74

__ segname keyword, 79-80
Select All command, QuickWin, 149

Selecting
colors, graphics, 175-176
floating-point libraries, 132
memory models, 58, 62-63
video configuration, 173

_selectpalette function, 188
__ self keyword, 85
Sequence points, expression evaluation, 289-290
_setbkcolor function, 189
_setcliprgn function, 181, 187
_setcolor function, 189
_setfillmask function, 191
_setfont function, 196-197
_setlinestyle function, 192
_seCnew _handler function, 106-107
_setpixel function, 191
_setpixeC w function, 191
Setting

active window, QuickWin, 161-162
fonts, 196-197
graphics modes, 168-171

SETUP program
floating-point math library, 130-131
memory model support, 59

setvideomode function, 169-171, 187
_setvideomoderows function, 187
_setvieworg function, 181, 188
_setviewport function, 181-183, 188

setwindow function, 184, 188
Shapes, drawing functions (list), 189-191
short int type, portability guidelines, 272
short type, byte ordering, 292-293
Sign extension, portability guidelines, 285, 287
Significance, floating-point types, 127-129
sin function, intrinsic form, 11
sinh function, intrinsic form, 11

sinhl function, intrinsic form, 11
=sinl function, intrinsic form, 11
Size

pointers
code, custom memory model, 70-71
converting, 68-69
data, custom memory model, 71
defaults, 58
segments, 56
(table),283

program
optimizing, 9-10
p-code use, effect on, 43

SIZE operator, inline assembler use, 114

skip pragma, precompiled header compilation,
effect on, 41

Small memory models, command-line option, 63
Source files, consistency rules, precompiled

headers, 41
Speed

compile
increasing using precompiled headers, 33
p-code use, effect on, 43

pointer arithmetic, 57-58
program, optimizing, 9-10

sqrt function, intrinsic form, 11
_sqrtl function, intrinsic form, 11
Square brackets ([]), inline assembly, using in, 116
_SRES 16COLOR constant, 170
_SRES256COLOR constant, 170
SS register, equal to DS, 71-74
Stack checking, disabling, 21
Stack segments, equality with data segments, 71-74
Stacks

numeric data processor, floating-point values, 130
p-code

local variables allocation order, 52
uses, 45-46

Standard memory models. See Memory models
State menu, QuickWin, 149
Status Bar command, QuickWin, 150
Storage

floating-point type requirements, 127-129
portability guidelines, 274-276
register variables, __ asm block effect on, 124-125

strcmp function, intrinsic form, 11
strcpy function, intrinsic form, 11
Strings, mixed-language programming, 259-262
strlen function, intrinsic form, 11
_strset function, intrinsic form, 11
Structure types

inlineassembly,117-118
presentation graphics

_axistype,221-223
described, 219-220
_chartenv, 219-220, 226-227
_legendtype, 225
_titletype,220-221
_ windowtype, 223-224

Structures
inline assembly limitations, 113
mixed-language programming, 265

Structures (continued)
portability guidelines

bit fields, 279-280
order and alignment, 275-276
reading and writing, 278-279

Styles, presentation graphics
described, 204-205
style pool, 216

Subexpression elimination, 8, 23

Index 321

subtitle pragma, precompiled header compilation,
effect on, 41

Symbolic constants
graphics, 180
inline assembly, using in, 115-116

Symbolic debugger, optimizations, removing, 9
Symbols, inline assembly, using in, 115-117

T
t option, optimize pragma, 10
tan function, intrinsic form, 11
tanh function, intrinsic form, 11
_tanhl function, intrinsic form, 11
_tanl function, intrinsic form, 11
Terminate-and-stay-resident programs, graphics

adapter requirements, 174
Terminating

QuickWin programs, 148
virtual memory manager, 91

Text
copying, QuickWin, 148-149
fonts. See Fonts
modes, 167-168

_TEXT ... constants, 169
_TEXTMONO constant, 170
this pointer, overloading, 100-101
Tile command, QuickWin, 150
Tiny memory models

command-line option, 63
described, 60

title pragma, precompiled header compilation,
effect on, 41

Titles, presentation graphics, 220-221
_titletype structures, presentation graphics, 220-221
Transition from machine code to p-code, 47
Translating far calls to near calls, 25-26
TSRs. See Terminate-and-stay-resident programs
Two' s-complement arithmetic, portability

guidelines, 280-281
TYPE operator, inline assembler use, 114
Type size, graphics, 193

322 Index

typedef names, inline assembly using in, 115-116
Typefaces, graphics, 193-195
Types

u

inline assembly, 114
mixed-language programming, 258-259, 265
names, inline assembly, using in, 116
portability guidelines, 271-274
promoting, portability guidelines, 285-287
user-defined, mixed-language programming, 265

Unions, portability guidelines, 276-277
Unlocking virtual memory blocks, 93
Uppercase letters, document conventions, xviii-xix
User interface, QuickWin, 147-148
Using Help command, QuickWin, 151
Utilities, Make P-Code (MPC), 44, 51-53

v
V -table pointers, 102-103
Values, presentation graphics, 203
Values, return

floating-point types, 130
inline assembly, registers, 120-121

Variables
arrays, addresses, mixed-language programming,

266-267
based, declaring, 65-66
changing to constants, 9
common subexpression elimination, 8, 23
dead-store elimination, 8
declaring

floating-point types, 127-129
mixed-language programming, 258-259
near, far, huge and based, 65-66

environment, presentation graphics, 219-227
far, declaring, 65-66
floating-point, described, 128
huge, declaring, 65-66
inline assembly, 114, 117-118
local, allocating, p-code, 52
near, declaring, 65-66
register

declaring as, portability guidelines, 288-289
storage, __ asm block effect on, 124-125

VESA. See Video Electronics Standards
Association

_ vheapinit function, 90-91
_ vheapterm function, 91

Video configuration
checking, 171-172
selecting, 173

Video Electronics Standards Association, 173-175
Video modes

controlling functions (list), 186-188
described, 167-168
selecting, 173
setting, 168-169, 171
Super VGA support, 173-175

Viewport coordinates, 182-183
Virtual function table pointers. See V-table pointers
Virtual memory

blocks
dirty vs. clean, specifying, 92
loading, 92
locking and unlocking, 93

handles, 91-92
using, techniques, 93-96

Virtual memory manager
described, 90
initializing, 90-91
terminating, 91

_ vload function, 92
vlock function, 93

_ vmalloc function, 91-92
__ void keyword, 86, 239

VRES 16COLOR constant, 170
- VRES256COLOR constant, 170
= VRES2COLOR constant, 170
_ vunlock function, 93

w
_waboutfunction, 151, 157
_wclose function, 162-163
_ wgetexit function, 163
_wgetfocus function, 152, 161-162
_ wgetscreenbuffunction, 161
_wgetsize function, 153, 160

WHITE constant, 180
-WINARRANGE constant, 163
= WINBUFINF constant, 161
_ WINBUFDEF constant, 161

WINCASCADE constant, 163
- WINCURREQ constant, 160
Window coordinates, 184-185
Window menu, QuickWin, 150-151, 163-164

Windows
active. See Active window
arranging, QuickWin, 149-150
child. See Child windows
client. See Client windows
presentation graphics

chart windows, 204
data windows, 204
structure types, 223-224

reading from, QuickWin, 159-160
selecting, QuickWin, 149-150
writing to, QuickWin, 159"160

Windows applications
DOS applications, converting from. See QuickWin
optimizing precautions, 28
yielding, QuickWin, 164

_ windowtype structures, presentation graphics,
223-224

_ WlNEXITNOPERSIST constant, 163
_ WlNEXITPERSIST constant, 163
_ WlNEXITPROMPT constant, 163
_ WlNFRAMEHAND constant, 160
_ WlNMAXREQ constant, 160
_ WINOPERSIST constant, 162
_ WlNPERSIST constant, 162
_ WlNSIZECHAR constant, 158, 160
_ WINSIZEMAX constant, 158-160
_ WlNSIZEMIN constant, 158-160
_ WlNSIZERESTORE constant, 160
_ WlNST ATBAR constant, 163
_ WlNTILE constant, 163
_ WINVER constant, 158
_wmenuclickfunction, 152-153, 163-164
_wopen function, 151, 157-158
_wopeninfo struct, 158-159
Writing functions, inline assembly code, 118-119
_ wsetexit function, 148, 163
_wsetfocus function, 152, 161-162
_wsetscreenbuffunction, 153, 160-161
_wsetsize function, 153, 160
_wsizeinfo struct, 158-159
_ wxycoord structure, 185
_ wyield function, 164

x
_XRES256COLOR constant, 170
_xycoord structure, 185

Index 323

y
IYc command-line option, 34-35
IYd command-line option, 38-39
YELLOW.C sample graphics program, 178
Yielding processing time, QuickWin applications,

164
IYu command-line option, 35-36

z
/Zi command-line option, consistency rules
precompiled headers, 40
_ZRES 16COLOR constant, 170
_ZRES256COLOR constant, 170

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

1191 Part No. 24775

