
C++ Tutorial

Microsoft® C/C++
Version 7.0

c++ Tutorial

For MS-DOS® and Windows™ Operating Systems

Microsoft Corporation

Infonnation in this document is subject to change without notice and does not represent a commit­
ment on the part of Microsoft Corporation. The software and/or databases described in this document
are furnished under a license agreement or nondisclosure agreement. The software and/or databases
may be used or copied only in accordance with the terms of the agreement. It is against the law to
copy the software on any medium except as specifically allowed in the license or nondisclosure agree­
ment. The licensee may make one copy of the software for backup purposes. No part of this manual
and/or databases may be reproduced or transmitted in any form or by any means, electronic or me­
chanical, including photocopying, recording, or information storage and retrieval systems, for any pur­
pose other than the licensee's personal use, without the express written permission of Microsoft
Corporation.

© 1991 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

Microsoft, MS, and MS-DOS are registered trademarks of Microsoft Corporation.

Document No. LN24 77 4-1191
1098765432

Contents Overview

Introduction .. xi

Part 1 Introduction to C++
Chapter 1
Chapter 2
Chapter 3

A First Look at C++ .. 5
C++ Enhancements to C....... 11
References .. 25

Part 2 Classes

Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8

Introduction to Classes .. 39
Classes and Dynamic Memory Allocation 63
More Features of Classes... 85
Inheritance and Polymorphism .. 107
Operator Overloading and Conversion Functions 135

Part 3 Object-Oriented Design

Chapter 9
Chapter 10

Fundamentals of Object-Oriented Design 161
Design Example: A Windowing Class 181

Index .. 201

Contents

Introduction .. xi

About This Book. .. xi
Document Conventions ... xii

Part 1 Introduction to C++

Chapter 1 A First Look at C++ .. 5

U sing Streams for Input and Output.. S
The Standard Output Stream ... S
Formatted Output .. 7
The Standard Error Stream ... 7
The Standard Input Stream .. 8

C++ Comments .. <)
Function Prototypes ... 9

Chapter 2 C++ Enhancements to C ... 11
Default Function Arguments... 11
Placement of Variable Declarations 13
The Scope Resolution Operator.. ... 14
Inline Functions ... 1 S
The const Qualifier .. 17
Enumerations ... 19
Overloaded Functions ... 20
Linkage Specifications .. 23

Chapter 3 References .. 25
References as Aliases .. 2S
Initializing a Reference .. 27
References and Pointers: Similarities and Differences '" 27
References as Function Parameters ... 29
References as Return Values ... 32
Summary .. 32

vi Contents

Part 2 Classes

Chapter 4 Introduction to Classes ... 39
Creating a New Data Type in C ... 39
Creating a New Data Type in C++ .. 41

Declaring the Class ... 41
Using the Class .. 43

Class Members ... 44
Class Member Visibility ... 45
Member Functions .. 45
The Constructor .. 47
The Destructor .. 49

The Creation and Destruction of Objects .. 49
Accessing Data Members .. 51

Access Functions VS. Public Data Members ... 54
Returning a Reference ... 55

const Objects and Member Functions ... 56
Member Objects ... 58
U sing Header and Source Files ... 60

Chapter 5 Classes and Dynamic Memory Allocation ... 63
The Free Store .. 63

The new Operator .. 64
The delete Operator ... 65
The Free Store and Built-In Types .. 65

Classes with Pointer Members .. 66
The Assignment Operator .. 71
The this Pointer .. 74

Using *this in a Return Statement .. 75
Bad Uses of the this Pointer .. 76

Assignment VS. Initialization ... 77
The Copy Constructor ... 78
Passing and Returning Objects ... 79
Passing and Returning References to Objects.. 81

Chapter 6 More Features of Classes .. 85
Static Members .. 85

Static Data Members , .. 86
Static Member Functions .. 88

Contents vii

Friends ... 89
Friend Classes ... 89
Friend Functions ... 94

Arrays of Class Objects ... 94
The Free Store and Class Arrays .. 95

Advanced Free Store Techniques .. 99
The _seCnew _handler Function ... 99
Overloading the new and delete Operators ... 101
Class-Specific new and delete Operators 103

Chapter 7 Inheritance and Polymorphism ... 107
Handling Related Types in C 107
Handling Related Types in C++ 11 0

Redefining Members of the Base Class............................ 114
Derived Class Constructors ... 115
Conversions Between Base and Derived Classes ... 116
Collections Using Base Class Pointers ... 118

Virtual Functions ... 120
Polymorphism ... 123
Dynamic Binding .. 123
How Virtual Functions are Implemented.................. 125
Pure Virtual Functions .. 127
Destructors in Base and Derived Classes ... 129

Protected Members .. 130
Public and Private Base Classes .. 131
Multiple Inheritance ... 132

Chapter 8 Operator Overloading and Conversion Functions .. 135
Operator Overloading .. 135

Rules of Operator Overloading ... 136
When Not to Overload Operators ... 138

Overloading Operators for a Numeric Class.............. ... 139
Defining Operators as Friend Functions ... 143
Tips for Overloading Arithmetic Operators ... 144

Overloading Operators for an Array Class .. 144
Class Conversions .. 148

Conversion by Constructor ... 148
Conversion Operators ... 150
Ambiguities with Conversions and Operators .. 152
Ambiguities Between Conversions... 153

viii Contents

Part 3 Object-Oriented Design

Chapter 9 Fundamentals of Object-Oriented Design .. 161
Features of Object-Oriented Programming.. 161

Abstraction .. 161
Encapsulation .. i 65
Class Hierarchies ... 169

Designing an Object-Oriented System .. 172
Identifying the Classes .. 173
Assigning Attributes and Behavior........ 174
Finding Relationships Between Classes ... 176
Arranging Classes into Hierarchies .. 177

Chapter 10 Design Example: A Windowing Class ... 181
Examining the Requirements ... 181
Designing the Classes .. 182

Identifying Candidate Classes ... 183
Attributes and Behavior for Windows.. 183
Refining the Window Classes 184
Attributes and Behavior for Events.. 185
Identifying Relationships Between Classes 186

Defining Preliminary Class Interfaces...... 187
The Window Classes ... 187
The Window Manager .. 191
The Event Hierarchy ... 193
Limitations of Polymorphism in C++ 195

Expanding the Hierarchies... 196
New Window Classes ... 197
New Control Elements .. 198
What Doesn't Fit in This Hierarchy .. 200

Index ... 201

Figures and Tables

Figures
Figure 5.1
Figure 5.2
Figure 6.1
Figure 6.2
Figure 6.3
Figure 7.1
Figure 7.2
Figure 7.3
Figure 9.1
Figure 10.1
Figure 10.2
Figure 10.3
Figure lOA
Figure 10.5
Figure 10.6
Figure 10.7
Figure 10.8

Tables
Table 8.1

Default Assignment Behavior .. 70
Correct Assignment Behavior .. 72
A Static Data Member. ... 86
Incorrect Behavior for Deleting an Array.... 97
Correct Behavior for Deleting an Array. 98
Data Members in Base and Derived Classes. 111
Employee Class Hierarchy... 113
How Virtual Functions Are Implemented 126
Hiding Data with Functions 166
Character-Based Windows ... 182
First Window Class Hierarchy... 185
Event Hierarchy ... 185
Relationships Between Classes .. 186
Event Passing... 192
Revised Window Class Hierarchy ... 197
Final Window Class Hierarchy.. 199
Window with Buttons .. 200

Overloadab1e Operators ... 136

Introduction

The C++ Tutorial provides an introduction to the C++ language and object­
oriented programming. This book is intended for people who are familiar with C,
and therefore doesn't cover the parts of the C++ language that are also found in C.
In some places this book compares C++ with C in order to demonstrate how the
same problem might be solved in each language.

This book is not an exhaustive description of the C++ language. It introduces the
major features of C++ and gives examples of how they can be used. For more
detailed information on C++, see the C++ Language Reference.

About This Book
The following list summarizes the book's contents:

• Part 1, "Introduction to C++,"describes some ofthe simple enhancements that
C++ has made to C. These features are not object-oriented, but they provide
conveniences that C programmers can readily appreciate.

• Part 2, "Classes," covers the most important elements of C++: classes, inheri­
tance, and polymorphism. These features are what make C++ an object­
oriented language.

• Part 3, "Object-Oriented Design," covers the conceptual aspects of object­
oriented programming. This section describes how to design an object-oriented
program and provides an in-depth example.

You should read the chapters in order, since each one assumes that you know the
material covered in previous chapters.

Most of the example programs in this book are included on disk. This allows you
to load, run, and experiment with example programs as you read.

xii C++ Tutorial

Document Conventions
This book uses the following document conventions:

Example

STDIO.H

printf

expression

void main()
{

}

whil e(
{

"inheritance"

American National Standards
Institute (ANSI)

Description

Uppercase letters indicate filenames, segment
names, registers, and terms used at the DOS
command level.

Boldface letters indicate C or C++ keywords,
operators, language-specific characters, and
library functions. Within discussions of syntax,
bold type indicates that the text must be entered
exactly as shown.

Words in italic indicate placeholders for
information you must supply, such as a
filename. Italic type is also occasionally used
for emphasis in the text.

This font is used for example programs,
program fragments, and the names of user­
defined functions and variables. It also indicates
user input and screen output.

A vertical ellipsis tells you that part of the
example program has been intentionally omitted.

Quotation marks enclose a new term the first
time it is defined in text.

The first time an acronym is used, it is often
spelled out.

A First Look at C++

The c++ language is derived from C. With a few exceptions, it is a superset of C,
meaning that everything available in C is also available in c++. c++ adds some
simple enhancements to C's own features and some major new features that don't
exist in C.

This chapter covers some of the differences in conventions between C and C++. It
begins with a new way of handling input and output, which you'll need to know
for later programs that print results on the screen. This chapter also covers C++
comments and function prototypes.

Using Streams for Input and Output
Here is HELLO.CPP, a very simple C++ program:

#include <iostream.h>
void main()
{

cout « "Hello, world\n";

This program is the C++ version of the C program HELLO.C. However, instead of
including STDIO.H, the program includes IOSTREAM.H, and instead of a printf
call, it uses an unfamiliar syntax with an undefined variable named COllt, the
bitwise left shift operator «<), and a string.

The Standard Output Stream
In C++, there are facilities for performing input and output known as "streams."
The example programs throughout this book use streams to read and display infor­
mation. The name COllt represents the standard output stream. You can use COllt to
display information.

cout « "Hello, world\n";

6 C++ Tutorial

The string "He 110, wo r 1 d \ n" is sent to the standard output device, which is the
screen. The« operator is called the "insertion" operator. It points from what is
being sent (the string) to where it is going (the screen).

Suppose you want to print an integer instead of a string. In C you would use printf
with a format string that describes the parameters:

printf("%d" , amount);

In C++, you don't need the format string:

#include <iostream.h>

void maine)
{

}

int amount = 123;
cout « amount;

The program prints 123.

You can send any built-in data types to the output stream without a format string.
The cout stream is aware of the different data types and interprets them correctly.

The following example shows how to send a string, an integer, and a character con­
. stant to the output stream using one statement.

#include <iostream.h>

void maine)
{

int amount 123;
cout « "The value of amount is " « amount « , ' . . ,

This program sends three different data types to cout: a string literal, the in-
teger amount variable, and a character constant ' , to add a period to the end of
the sentence. The program prints this message:

The value of amount is 123.

Notice how multiple values are displayed using a single statement: the « operator
is repeated for each value.

A First Look at C++ 7

Formatted Output
So far, the examples haven't sent formatted output to coot. Suppose you want to
display al1 integer using hexadecimal instead of decimal notation. The printf func­
tion handles this well. How does coot do it?

Note Whenever you wonder how to get C++ to do something that C does, remem­
ber that the entire C language is part of C++. In the absence of a better way, you
can revert to C.

C++ associates a set of "manipulators" with the output stream. They change the de­
fault format for integer arguments. You insert the manipulators into the stream to
make the change. The manipulators' names are dec, oct, and hex.

The next example shows how you can display an integer value in its three possible
configurations.

#include <iostream.h>

ma in ()
{

int amount = 123;
cout « dec « amount «

« oct « amount «
« hex « amount;

The example inserts each of the manipulators (dec, oct, and hex) to convert the
value in amount into different representations.

This program prints this:

123 173 7b

Each of the values shown is a different representation of the decimal value 123
from the amount variable.

The Standard Error Stream
To send output to the standard error device, use cerr instead of coot. You can use
this technique to send messages to the screen from programs that have their stand­
ard output redirected to another file or device.

8 C++ Tutorial

The Standard Input Stream
In addition to printing messages, you may want to read data from the keyboard.
C++ includes its own version of standard input in the form of cin. The next ex­
ample shows you how to use cin to read an integer from the keyboard.

#include <iostream.h>

void maine)
{

int amount;
cout « "Enter an amount ... \n";
cin » amount;
cout « "The amount you entered was" « amount;

This example prompts you to enter an amount. Then cin sends the value that you
enter to the variable amount. The next statement displays the amount using cout to
demonstrate that the cin operation worked.

You can use cin to read other data types as well. The next example shows how to
read a string from the keyboard.

#include <iostream.h>

void main()
{

char name[20];
cout « "Enter a name ... \n";
cin » name;
cout « "The name you entered was" « name;

The approach shown in this example has a serious flaw. The character array is
only 20 characters long. If you type too many characters, the stack overflows and
peculiar things happen. The get function solves this problem. It is explained in
Chapter 18, "The Fundamentals of iostream Programming" in the Class Libraries
User's Guide. For now, the examples assume that you will not type more charac­
ters than a string can accept.

Note Recall that printf and scanf are not part of the C language proper, but are
functions defined in the run-time library. Similarly, the cin and cout streams are
not part of the C++ language. Instead, they are defined in the stream library, which
is why you must include IOSTREAM.H in order to use them. Furthermore, the
meaning of the « and » operators depend on the context in which they are used.
They can display or read data only when used with cout and cin.

A Fi rst look at C++ 9

c++ Comments
c++ supports the C comment format where 1* begins a comment and *1 ends it.
But C++ has another comment format which is preferred by many programmers.
The C++ comment token is the double-slash (II) sequence. Wherever this sequence
appears (unless it is inside a string), everything to the end of the current line is a
comment.

The next example adds comments to the previous program.

II c++ comments
#include <iostream.h>

void main()
{

char name[20]; II Declare a string
cout « "Enter a name ... \n"; II Request a name
cin » name; II Read the name
cout « "The name you entered was" « name;

Function Prototypes
In standard C you can declare a function before you define it. The declaration de­
scribes the function's name, its return value, and the number and types of its para­
meters. This feature, called a "function prototype," allows the compiler to compare
the function calls to the prototype and to enforce type checking.

C does not require a prototype for each function. If you omit it, at worst you get a
warning. C++, on the other hand, requires every function to have a prototype.

The next example uses a function named display to print "Hello, world."

II A program without function prototypes
II Note: This will not compile.
#include <iostream.h>

void main()
{

display("Hello, world");
}

void display(char *s)
{

cout « s;

10 C++ Tutorial

Because the di spl ay function has no prototype, this program does not survive the
syntax-checking phase of the C++ compiler.

The next example adds a function prototype to the previous program. Now the pro­
gram compiles without errors.

A program with a function prototype
#include <iostream.h>

void display(char *s);

void maine)
{

display("Hello, world");

void display(char *s)
{

cout « s;

In some C programs, the function definitions declare the types of the parameters
between the parameter list and the function body. C++ requires that function defi­
nitions declare the types of all parameters within the parameter list. For example:

void display(char *s) II New style required in C++
{

cout « s;
}

void display(s)
char *s
{

cout « s;

II Error: old style doesn't work

If you define a function before you call it, you don't need a separate prototype; the
function definition acts as the prototype. However, if you don't define the function
until after you call it, or if the function is defined in another file, you must provide
a prototype.

Keep in mind that the prototype requirement is an exception to the general rule
that a C++ compiler can handle a C program. If your C programs do not have func­
tion prototypes and new-style function-declaration blocks, then you must add them
before compiling the programs in C++.

Note If you need to generate new-style function prototypes for existing C pro­
grams, use the CL.EXE program with the /Zg option. See Chapter 13, "CL Com­
mand Reference," in Environment and Tools for more details.

c++ Enhancements to C

This chapter introduces some simple enhancements and improvements that C++
offers the C programmer. New features covered in this chapter include the
following:

• Default function arguments

• The placement of variable declarations

• The scope resolution operator

• Inline functions

• The const keyword

• Enumerations

• Overloaded functions

This chapter also describes how to link C and C++ modules together.

Default Function Arguments
A C++ function prototype can list default values for some of the parameters. If
you omit the corresponding arguments when you call the function, the compiler
automatically uses the default values. If you provide your own arguments, the
compiler uses them instead of the defaults. The following prototype illustrates this
feature:

void myfunc(int i = 5, double d = 1.23);

Here, the numbers 5 and 1.23 are the default values for the parameters. You could
call the function in several ways:

myfunc(12,3.45);
myfunc(3);
myfunc() ;

II Overrides both defaults
II Same as myfunc(3, 1.23
II Same as myfunc(5, 1.23

12 C++ Tutorial

If you omit the first argument, you must omit all arguments that follow. You can
omit the second argument, however, and override the default for the first. This rule
applies to any number of arguments. You cannot omit an argument unless you
omit all the arguments to its right. For example, the following function call is
illegal:

myfunc (, 3.5); II Error: cannot omit only first argument

A syntax like this is error-prone and would make reading and writing function
calls more difficult.

The following example uses default arguments in the show function.

II A program with default arguments in a function prototype
#include <iostream.h)

void show(int = 1, float

void maine)
{

show();
show(5);
show(6, 7.8);
show(9, 10.11, 12L);

2.3, long 4);

II All three arguments default
II Provide 1st argument
II Provide 1st and 2nd
II Provide all three argument

void show(int first, fl oat second, long third)

{

cout « "\nfirst = " « first;
cout « " second = " « second;
cout « " third = " « third; ,

When you run this example, it prints

first 1 , second 2.3, third 4
first 5. second 2.3, third = 4
first 6. second 7.8, third = 4
first 9, second 10.11 , third 12

Default values provide a lot of flexibility. For example, if you usually call a func­
tion using the same argument values, you can put them in the prototype and later
call the function without supplying the arguments.

c++ Enhancements to C 13

Placement of Variable Declarations
C requires you to declare variables at the beginning of a block. c++ allows you to
declare a variable anywhere in the code, as long as you declare it before you refer­
ence it. This feature lets you place the declaration of a variable closer to the code
that uses it, making the program more readable.

The following example shows how you can position the declaration of a variable
near its first reference.

II Declaring a variable near its first reference
#include <iostream.h>

void main()
{

cout « "Enter a number: ";
int n;
cin » n;
cout « "The number is: " « n;

The freedom to declare a variable anywhere in a block makes expressions such as
the following one possible:

fort int ctr = 0; ctr < MAXCTR; ctr++)

However, you cannot have expressions like the following:

if(i nt i == 0) II Error

while(int j == 0 II Error

Such expressions are meaningless, since there is no need to test the value of a vari­
able the moment it is declared.

14 C++ Tutorial

The following example declares a variable in a block.

II Variable declaration placement
#include <iostream.h>

void maine)
{

fore int lineno = 0; lineno < 3; lineno++)
{

int temp = 22;
cout « "\nThis is line number" « lineno

« "and temp is " « temp;
}

if(lineno == 4) II lineno still accessible
cout « "\nOops";

II Cannot access temp

This example produces the following output:

This is 1 i ne number 0 and temp is 22
This is 1 i ne number 1 and temp is 22
This is 1 i ne number 2 and temp is 22

Note that the two variables 1 i neno and temp have different scopes. The
1 i neno variable is in scope for the current block (in this case, until main ends)
and all blocks subordinate to the current one. Its scope, however, begins where the
declaration appears. c++ statements that appear before a variable's declaration
cannot refer to the variable even though they appear in the same block. The temp
variable, however, goes out of scope when the for loop ends. It is accessible only
from within the loop.

You should exercise care when declaring variables in places other than the begin­
ning of a block. If you scatter declarations haphazardly throughout your program,
a person reading your program may have difficulty finding where a variable is
declared.

The Scope Resolution Operator
In C, a local variable takes precedence over a global variable with the same name.
For example, if both a local variable and a global variable are called count, all oc­
currences of count while the local variable is in scope refer to the local variable.
It's as if the global variable becomes invisible.

c++ Enhancements to C 15

In C++, you can tell the compiler to use the global variable rather than the local
one by prefixing the variable with ::, the scope resolution operator. For example:

II Scope resolution operator
#include <iostream.h>

int amount = 123; II A global variable

void main()
{

int amount = 456; II A local variable

cout « : : amount; II Print the global variable
cout « '\n' ;
cout « amount; II Print the 1 ocal variable

The example has two variables named amount. The first is global and contains the
value 123. The second is local to the main function. The two colons tell the com­
piler to use the global amount instead of the local one. The program prints this on
the screen:

123
456

Note that if you have nested local scopes, the scope resolution operator doesn't
provide access to variables in the next outermost scope. It provides access to only
the global variables.

The scope resolution operator gives you more freedom in naming your variables
by letting you distinguish between variables with the same name. However, you
shouldn't overuse this feature; if two variables have different purposes, their
names should reflect that difference.

Inline Functions
C++ provides the inline keyword as a function qualifier. This keyword causes a
new copy of the function to be inserted in each place it is called. If you call an in­
line function from 20 places in your program, the compiler inserts 20 copies of
that function into your .EXE file.

16 C++ Tutorial

Inserting individual copies of functions eliminates the overhead of calling a func­
tion (such as loading parameters onto the stack) so your program runs faster. How­
ever, having multiple copies of a function can make your program larger. You
should use the inline function qualifier only when the function is very small or is
called from few places.

Inline functions are similar to macros declared with the #define directive; how­
ever, inline functions are recognized by the compiler, while macros are imple­
mented by a simple text substitution. One advantage of this is that the compiler
performs type checking on the parameters of an inline function. Another advan­
tage is that an inline function behaves just like an ordinary function, without any
of the side effects that macros have. For example:

II A macro vs. an inline function

#define MAX(A, B) «A) > (B) ? (A) (B))

inline int max(int a, int b)
{

if (a > b) return a;
return b;

}

void main()
{

}

int i, x, y;

x 23; y = 45;
MAX(x++, Y++); II Side-effect:

II larger value incremented twice
cout « "x = " « x « " Y = " « y « '\n';

x = 23; y = 45;
i = max(x++, y++); II Works as expected
cout « "x = " « x « " y = " «y « '\n';

This example prints the following:

x 24 y 47
x = 24 y = 46

If you want a function like max to accept arguments of any type, the way a macro
does, you can use overloaded functions. These are described in the section "Over­
loaded Functions" on page 20.

c++ Enhancements to C 17

To be safe, always declare inline functions before you make any calls to them. If
an inline function is to be called by code in several source files, put its declaration
in a header file. Any modifications to the body of an inline function require recom­
pilation of all the files that call that function.

The inline keyword is only a suggestion to the compiler. Functions larger than
a few lines are not expanded inline even if they are declared with the inline
keyword.

Note Microsoft C/C++ provides the __ inline keyword for C, which has the same
meaning as inline does in C++.

The const Qualifier
C++, like C, supports the const qualifier, which turns variables into constants. In
C, the const qualifier specifies that a variable is read-only, except during its one­
time initialization. Only through initialization can a program specify a const vari­
able's value. C++ goes a step further and treats such variables as if they are true
constant expressions (such as 123). Wherever you can use a constant expression,
you can use a const variable. For example:

II The const qualifier
#include <iostream.h>

void main()
{

const int SIZE
char cs[SIZE];

5· ,

cout « "The size of cs is " « sizeof cs;

This program is illegal in C, because C does not let you use a const variable to
specify the size of an array. However, even in C++ you cannot initialize a const
variable with anything other than a constant expression. For example, even
though S I Z E is declared within a function, you cannot initialize it with a parame­
ter of the function. This means you cannot use const to declare an array whose
size is determined at run time. To dynamically allocate an array in C++, see Chap­
ter 5, "Classes and Dynamic Memory Allocation."

You can use const declarations as a replacement for constants defined with the
#define directive. C++ lets you place const declarations in header files, which is
illegal in C. (If you try doing this in C, the linker generates error messages if the
header file is included by more than one module in a program.) Constants declared
with const have an advantage over those defined by #define in that they are acces­
sible to a symbolic debugger, making debugging easier.

18 C++ Tutorial

You can also use const in pointer declarations. In such declarations, the placement
of const is significant. For example:

char *const ptr = mybuf; II const pointer
*ptr = 'a'; II Change char that p points to; legal
ptr = yourbuf; II Change pointer; error

This declares ptr as a constant pointer to a string. You can modify the string that
ptr points to, but you cannot modify ptr itself by making it point to another
string.

However, the following declaration has a different meaning:

const char *ptr = mybuf; II Pointer to const
ptr = yourbuf; II Change pointer; okay
*ptr = 'a'; II Change char that p points to; error

This declares pt r as a pointer to a constant string. You can modify pt r itself so
that it points to another string, but you cannot modify the string that ptr points to.
In effect, this makes pt r a "read-only" pointer.

You can use const when declaring a function to prevent the function from modify­
ing one of its parameters. Consider the following prototype:

II Node is a large structure
int readonly(const struct Node *nodeptr);

This prototype declares that the readonl y function cannot modify the Node struc­
ture that its parameter points to. Even if an ordinary pointer is declared inside the
function, the parameter is still safeguarded, because you cannot assign a read-only
pointer to an ordinary pointer. For example:

int readonly(const struct Node *nodeptr)
{

struct Node *writeptr; II Ordinary pointer

writeptr = nodeptr; II Error - illegal assignment

If such an assignment were legal, the Node structure could be modified through
writeptr.

c++ Enhancements to C 19

Enumerations
An enumeration is a user-defined data type whose values consist of a set of named
constants. In C++, you declare an enumeration with the enum keyword, just as in
C. The only difference between enumerations in the two languages is that in C,
declarations of instances of an enumeration must include the enum keyword. In
C++, an enumeration becomes a data type when you define it. Once defined, it is
known by its identifier alone (the same as any other type) and declarations can use
the identifier name alone.

The following example demonstrates how a C++ program can reference an
enumeration by using the identifier without the enum qualifier.

II enum as a data type
#include <iostream.h>

enum color { red, orange, yellow, green, blue, violet };

void main()
{

color myFavorite;

myFavorite = blue;

Notice that the declaration of myFavori te uses only the identifier color; the
enum keyword is unnecessary. Once color is defined as an enumeration, it be­
comes a new data type. (In later chapters, you'll see that classes have a similar
property. When a class is defined, it becomes a new data type.)

Each element of an enumeration has an integer value, which, by default, is one
greater than the value of the previous element. The first element has the value 0,
unless you specify another value. You can also specify values for any subsequent
element, and you can repeat values. For example:

enum color { red, orange, yellow, green, blue, violet);
II Values: 0, 1, 2, 3, 4, 5

enum day { sunday = 1, monday,
tuesday, wednesday = 24,
thursday, friday, saturday};

II Values: 1, 2, 3, 24, 25, 26, 27

enum direction { north = l,south,
east = 1, west };

II Values: 1, 2, 1, 2

20 C++ Tutorial

You can convert an enumeration into an integer. However, you cannot perform the
reverse conversion unless you use a cast. For example:

color myFavorite, yourFavorite;
i nt i;

myFavorite = blue;
i = myFavorite;

yourFavorite = 5;

myFavorite = (color)4;

II Lega i; i = 4

II Error: cannot convert
II from int to color
I I Legal

Explicitly casting an integer into an enumeration is generally not safe. If the in­
teger is outside the range ofthe enumeration, or if the enumeration contains dupli­
cate values, the result of the cast is undefined.

Overloaded Functions
Function overloading is a C++ feature that can make your programs more read­
able. For example, suppose you write one square root function that operates on in­
tegers, another square root function for floating-point variables, and yet another
for doubles. In C, you have to give them three different names, even though they
all perform essentially the same task. But in C++, you can name them all
squa re_ root. By doing so, you "overload" the name squa re_ root; that is, you
give it more than one meaning.

When you declare multiple functions with the same name, the compiler distin­
guishes them by comparing the number and type of their parameters. The follow­
ing example overloads the di spl ay_ time function to accept either a tm structure
or a time_ t value.

II Overloaded functions for different data formats
#include <iostream.h>
#include <time.h>

void display_time(const struct tm *tim)
{

cout « "1. It is now" « asctime(tim);
}

void display_time(const time_t *tim
{

cout « "2. It is now" « ctime(tim l;

void main()
{

}

time_t tim = time(NULL l;
struct tm *ltim = localtime(&tim l;

display_time(ltim l;
display_time(&tim l;

c++ Enhancements to C 21

The example gets the current date and time by calling the time and localtime func­
tions. Then it calls its own overloaded dis play _ time function once for each of
the formats. The compiler uses the type of the argument to choose the appropriate
function for each call.

Depending on what time it is, the previous example prints something like this:

1. It is now Wed Jan 31 12:05:20 1992
2. It is now Wed Jan 31 12:05:20 1992

The different functions described by an overloaded name can have different return
types. This makes it possible to have a max function that compares two integers
and returns an integer, and one that compares two floats and returns a float, and so
on. However, the functions must also have different parameter lists. You cannot
declare two functions that differ only in their return type. For example:

int search(char *key l;
char *search(char *name l; II Error: has same parameter list

The compiler considers only the parameter lists when distinguishing functions
with the same name.

You can also overload a name to describe functions that take different numbers of
parameters but perform similar tasks. For example, consider the C run-time library
functions for copying strings. The strcpy function copies a string from the source
to the destination. The strncpy function copies a string, but stops copying when
the source string terminates or after it copies a specified number of characters.

22 C++ Tutorial

The following example replaces strcpy and strncpy with the single function name
strin~copy.

II An overloaded function
#include <iostream.h>
#include <string.h>

inline void string_copy(char *dest, const char *src)
{

strcpy(dest, src);

inline void string_copy(char *dest, const char *src, int len)
{

strncpy(dest, src, len);

static char stringa[20], stringb[20];

void maine)
{

string_copy(stringa, "That");
string_copy(stringb, "This is a string", 4);
cout « stringb « " and" « stringa;

}

This program has two functions named stri ng_copy, which are distinguished by
their different parameter lists. The first function takes two pointers to characters.
The second function takes two pointers and an integer. The C++ compiler tells the
two functions apart by examining their different parameter lists.

Default arguments can make one function's parameter list look like another's. Con­
sider what happens if you give the second stri ng_ copy function a default value
for the 1 en parameter, as follows:

string_copy(char *dest, const char *src, int len = 10);

In this case, the following function call is ambiguous:

string_copy(stringa, "That"); II Error

This function call matches both the string_copy that takes two parameters and
the one that takes three parameters with a default argument supplied. The compiler
cannot tell which function should be called, and gives an error.

You shouldn't overload a function name to describe completely unrelated func­
tions. For example, consider the following pair:

void home();
char *home(char *name);

II Move screen cursor to (0, 0)
II Look up person's home address
II and return it as a string

c++ Enhancements to C 23

Since these functions perform totally different operations, they should have differ­
ent names.

Linkage Specifications
This next feature is not so much a C++ extension to C as a way to let the two lan­
guages co-exist. A "linkage specification" makes C functions accessible to a C++
program. Because there are differences in the way the two languages work, if you
call functions originally compiled in C, you must inform the C++ compiler of that
fact.

The following example uses a linkage specification to tell the C++ compiler that
the functions in MYLIB.H were compiled by a C compiler.

II Linkage specifications
#include <iostream.h>

extern "c"
{ II The linkage specification
inc 1 u de" my 1 i b . h" /I tell s C++ t hat my 1 i b fun c t ion s
} II were compiled with C

void main()
(

cout « myfunc();

The extern "C" statement says that everything in the scope of the braces is com­
piled by a C compiler. If you do not use the braces, the linkage specification ap­
plies only to the declaration that follows the extern statement on the same line.

You can also put the linkage specification in the header file that contains the proto­
types for the C functions. Microsoft C supports both C and C++ and includes the
linkage specification in the standard C header files. You don't need to use the
extern "e" statement when you're calling standard library functions.

Sometimes, however, you need to use linkage specifications for other C header
files. If you have a large library of custom C functions to include in your C++ pro­
gram, and you do not want to port them to C++, you must use a linkage specifica­
tion. For example, perhaps you have libraries, but not the original source code.

Occasionally you need to tell the C++ compiler to compile a function with C link­
ages. You would do this if the function was to be called from another function that
was itself compiled with C linkage.

24 C++ Tutorial

The following example illustrates a function that is to be compiled with C linkage
because it is called from a C function.

II Linkage specifications
#include <iostream.h>
#include <stdlib.h>
#include <string.h>

II ----- Prototype for a C function
extern "CD int comp(canst void *a, canst void *b);

void maine)
{

1/

II --------- Array of string pointers to be sorted
static char *brothers[] = {

"Frederick William",
"Joseph Jensen",
"Harry Alan",
"Walter El sworth",
"Julian Paul"

} ;
II ---------- Sort the strings in alphabetical order
qsort(brothers, 5, sizeof(char *), comp);
II ---------- Display the brothers in sorted order
fore int i = 0; i < 5; i++)

cout « '\n' « brothers[i];

---------- A function compiled with C linkage
extern "e"
{

int comp(const void *a, const void *b)

{

return strcmp(*(char **)a, *(char **)b) ;

This program calls the C qsort function to sort an array of character pointers. The
qsort function expects you to provide a function that compares two items. But
qsort is a C function, so you must provide a C-compatible comp function. Be­
cause this program is a C++ program, you must tell the C++ compiler to use C
linkage for this function alone. Both the prototype and the function definition have
the extern "c" linkage specification.

References
I"" ' "1; Chapt
& ..

:§-
,+

This chapter explains how to use references, a new type of variable that c++ pro­
vides. References are primarily used to pass parameters to functions and return
values back from functions. However, before you see how references are useful in
those situations, you need to understand the properties of references. The first four
sections of this chapter describe some characteristics of references, and the later
sections explain the use of references with functions.

References as Aliases
You can think of a C++ reference as an alias for a variable; that is, an alternate
name for that variable. When you initialize a reference, you associate it with a vari­
able. The reference is permanently associated with that variable; you cannot
change the reference to be an alias for a different variable later on.

The unary & operator identifies a reference, as illustrated below:

int actualint;
int &otherint = actualint; II Reference declaration

These statements declare an integer named actua 1 i nt and tell the compiler that
actual i nt has another name, otheri nt. Now all operations on either name have
the same result.

26 C++ Tutorial

The following example shows how you can use a variable and a reference to that
variable interchangeably:

II The reference
#include <iostream.h>

void main()
{

int actualint 123;
int &otherint actualint;

cout « · \n' « actualint;
cout « · \n' « otherint;
otherint++;
cout « · \n' « actualint;
cout « · \n' « otherint;
actualint++;
cout « · \n' « actualint;
cout « · \n' « otherint;

}

The example shows that operations on otheri nt act upon actual i nt. The pro­
gram displays the following output, showing that otheri nt and actua 1 i nt are
simply two names for the same item:

123
123
124
124
125
125

A reference is not a copy of the variable to which it refers. Instead, it is the same
variable under a different name.

The following example displays the addresses of a variable and a reference to that
variable.

II Addresses of references
#include <iostream.h>

void main()
{

int actualint 123;
int &otherint actualint;

cout « &actualint « .. « &otherint;
}

References 27

When you run the program, it prints the same address for both identifiers, the
value of which depends on the configuration of your system.

Note that the unary operator & is used in two different ways in the example above.
In the declaration of otheri nt, the & is part of the variable's type. The variable
otheri nt has the type int &, or "reference to an int." This usage is unique to
c++. In the coot statement, the & takes the address of the variable it is applied to.
This usage is common to both C and c++.

Initializing a Reference
A reference cannot exist without a variable to refer to, and it cannot be manipu­
lated as an independent entity. Therefore, you normally initialize a reference, expli­
citly giving it something to refer to, when you declare it.

There are some exceptions to this rule. You need not initialize a reference in the
following situations:

• It is declared with extern, which means it has been initialized elsewhere.

• It is a member of a class, which means it is initialized in the class's constructor
function (see Chapter 4).

• It is declared as a parameter in a function declaration or definition, which
means its value is established when the function is called.

• It is declared as the return type of a function, which means its value is estab­
lished when the function returns something.

As you work through the examples in this and later chapters, note that a reference
is initialized every time it is used, unless it meets one of these criteria.

References and Pointers: Similarities and Differences
You can also view references as pointers that you can use without the usual
dereferencing notation. In the first example in this chapter, the reference
otheri nt can be replaced with a constant pointer, as follows:

int actualint = 123;
int *const intptr = &actualint; II Constant pointer

II points to actualint

28 C++ Tutorial

A declaration like this makes *intptr another way of referring to actual into
Consider the similarities between this and a reference declaration. Any assign­
ments you make to *i ntptr affect actual i nt, and vice versa. As described
earlier, a reference also has this property, but without requiring the *, or indirec­
tion operator. And because i ntptr is a constant pointer, you cannot make it point
to another integer once it's been initialized to actual i nt. Again, the same is true
for a reference.

However, references cannot be manipulated like pointers. With a pointer, you can
distinguish between the pointer itself and the variable it points to by using the *
operator. For example, i ntptr describes the pointer, while *i ntptr describes the
integer being pointed to. Since you don't use a * with a reference, you can manipu­
late only the variable being referred to, not the reference itself.

As a result, there are a number of things that you cannot do to references
themselves:

• Point to them

• Take the address of one

• Compare them

• Assign to them

• Do arithmetic with them

• Modify them

If you try to perform any of these operations on a reference, you will instead be ac­
ting on the variable that the reference is associated with. For example, if you incre­
ment a reference, you actually increment what it refers to. If you take the address
of a reference, you actually take the address of what it refers to.

Recall that with pointers, you can use the const keyword to declare constant point­
ers and pointers to constants. Similarly, you can declare a reference to a constant.
For example:

int actualint = 123;
const int &otherint = actualint; II Reference to constant int

This declaration makes otheri nt a read-only alias for actua 1 i nt. You cannot
make any modifications to otheri nt, only to actual i nt. The similarity to point­
ers does not go any further, however, because you cannot declare a constant
reference:

int &const otherint = actualint; II Error

References 29

This declaration is meaningless because all references are constant by definition.

As mentioned earlier, the first sections of this chapter are intended to demonstrate
the properties of references, but not their purpose. The previous examples
notwithstanding, references should not be used merely to provide another name
for a variable. The most common use of references is as function parameters.

References as Function Parameters
In C, there are two ways to pass a variable as a parameter to a function:

• Passing the variable itself. In this case, the function gets its own copy of the
variable to work on. Creating a new copy of the variable on the stack can be
time-consuming if, for example, the variable is a large structure.

• Passing a pointer to the variable. In this case, the function gets only the address
of a variable, which it uses to access the caller's copy of the variable. This tech­
nique is much faster for large structures.

In C++, you have a third option: passing a reference to the variable. In this case,
the function receives an alias to the caller's copy of the variable.

The following example illustrates all three techniques:

II Reference parameters for reducing overhead
II and eliminating pointer notation
#include <iostream.h>

II ---------- A big structure
struct bigone
{

int serno;
char text[1000]; II A lot of chars

} bo = { 123, "This is a BIG structure" };

II -- Three functions that have the
void valfunc(bigone vI);
void ptrfunc(const bigone *pl);
void reffunc(const bigone &rl);

void main()
{

structure as a parameter
II Call by value
II Call by pointer
II Call by reference

valfunc(bo);
ptrfunc(&bo);
reffunc (bo);

II Passing the variable itself

}

II Passing the address of the variable
II Passing a reference to the variable

30 C++ Tutorial

II ---- Pass by value
void valfunc(bigone vI
{

}

cout « '\n' « vl.serno;
cout « '\n' « vl.text;

II Pass by pointer
void ptrfunc(const bigone *pl
{

cout « '\n' « pl-)serno;
cout « '\n' « pl-)text;

II ---- Pass by reference
void reffunc(const bigone &rl
{

cout « '\n' « rl.serno;
cout « '\n' « rl.text;

II Pointer notation

II Reference notation

The parameter rl is a reference that is initialized with the variable bo when
reffunc is called. Inside reffunc, the name rl is an alias for boo Unlike the pre­
vious examples of references, this reference has a different scope from that of the
variable it refers to.

When you pass a reference as a parameter, the compiler actually passes the ad­
dress of the caller's copy of the variable. Passing a reference is therefore just as
efficient as passing a pointer, and, when passing large structures, far more efficient
than passing by value. However, the syntax for passing a reference to a variable is
identical to that for passing the variable itself. No & is needed in the function call
statement, and no -> is needed when using the parameter within the function. Pass­
ing a reference thus combines the efficiency of passing a pointer and the syntacti­
cal cleanliness of passing by value.

When you pass a reference as a parameter, any modifications to the parameter are
actually modifications to the caller's copy of the variable. This is significant be­
cause, unlike the syntax of passing a pointer, the syntax of passing a reference
doesn't give any indication that such a modification is possible. For example:

valfunc(bo);
ptrfunc(&bo);
reffunc (bo);

II Function can't modify bo
II & implies that function can modify bo
II Same syntax as valfunc;
II implies that function can't modify bo

The syntax for calling reffunc could make you think that the function cannot mo­
dify the variable you pass. In the case of reffunc, this assumption is correct. Be­
cause reffunc's parameter is a reference to a constant, its parameter is a read-only
alias for the caller's copy of the variable. The reffunc function cannot modify
the bo variable.

References 31

But you can also use an ordinary reference as a parameter instead of a reference to
a constant. This allows the function to modify the caller's copy of the parameter,
even though the function's calling syntax implies that it can't. For example:

II BAD TECHNIQUE: modifying a parameter through a reference

void print(int &parm
{

} ;

cout « pa rm;
parm = 0;

void main()
{

int a= 5;

print(a); II Parameter is modified;
II unexpected side effect

Using references this way could be very confusing to someone reading your
program.

For precisely this reason, you should use caution when passing references as func­
tion parameters. Don't assume that a reader of your program can tell whether a
function modifies its parameters or not just by looking at the function's name.
Without looking at the function's prototype, it is impossible to tell whether a func­
tion takes a reference or the variable itself. The function's calling syntax provides
no clues.

To prevent such confusion, you should use the following guidelines when writing
functions that take parameters too large to pass by value:

• If the function modifies the parameter, use a pointer.

• If the function doesn't modify the parameter, use a reference to a constant.

These rules are consistent with a common C-programming convention: when you
explicitly take the address of a variable in order to pass it to a function, the func­
tion can modify the parameter. By following this convention, you make your C++
program more readable to C programmers. This is strictly a coding convention,
and cannot be enforced by the compiler. These rules do not make your programs
correct or more efficient, but they do make them easier to read and understand.

Note that references are only needed when the parameter to be passed is a large,
user-defined type. Parameters of built-in types, such as characters, integers, or
floats, can be efficiently passed by value.

32 C++ Tutorial

References as Return Values

Summary

Besides passing parameters to a function, references can also be used to return
values from a function. For example:

int rnynurn = 0; II Global variable

int &nurn()
{

return rnynurn;
}

void rnai n()
{

int i' ,

i = nurn() ;
num() = 5; II rnynurn set to 5

}

In this example, the return value of the function n urn is a reference initialized with
the global variable rnynurn. As a result, the expression nurn() acts as an alias for
rnynurn. This means that a function call can appear on the receiving end of an assign­
ment statement, as in the last line of the example.

You'll learn some more practical applications of this technique in Chapter 5,
"Classes and Dynamic Memory Allocation," and Chapter 8, "Operator Overload­
ing and Conversion Functions."

Passing a reference to a function and returning a reference from a function are the
only two operations that you should perform on references themselves. Perform
other operations on the object it refers to.

You will use references extensively when you build C++ classes, the subject of
Part 2. As you do so, remember the following points about references:

• A reference is an alias for an actual variable.

• A reference must be initialized and cannot be changed.

• References are most useful when passing user-defined data types to a function,
and when returning values from a function.

References 33

Reference declarations are sometimes confused with the operation of taking the
address of a variable, because both have the form &identifier. To distinguish be­
tween these two uses of &, remember the following rules:

• When &identifier is preceded by the name of a type, such as int or char, the &
means "reference to" the type. This occurs only in declarations, such as declar­
ing the type of a reference variable, the type of a parameter, or a function's re­
turn type.

• When &identifier is not preceded by the name of a type, the & means "address
of' the variable. This occurs most commonly when passing an argument to a
function or when assigning a value to a pointer.

Note that there is no difference between type &identifier and type& identifier;
both syntaxes declare references.

Introduction to Classes

The most important feature of C++ is its support for user-defined types, through a
mechanism called "classes." Classes are far more powerful than the user-defined
types you can create in C. While an instance of a built-in type is called a variable,
an instance of a class is called an "object," hence the phrase "object-oriented pro­
gramming." Part 2 ofthis book describes classes, and Part 3 describes object­
oriented programming.

This chapter covers the following topics:

• Declaring a class

• Using objects of a class

• Data members and member functions

• Constructors and destructors

• const objects and member functions

• Member objects

• Header and source files

Before explaining how to define a class in C++, let's consider one way you can
create a new data type in C.

Creating a New Data Type in C
Suppose you're writing a C program that frequently manipulates dates. You might
create a new data type to represent dates, using the following structure:

struct date
{

int month;
int day;
int year;

} ;

40 C++ Tutorial

This structure contains members for the month, day, and year.

To store a particular date, you can set the members of a date structure to the ap­
propriate values:

struct date my_date;

my_date.month = 1;
my_date.day = 23;
my_date.year = 1985;

You cannot print a date by passing a d ate structure to printf. You must either
print each member of the structure individually, or write your own function to
print the structure as a whole, as follows:

void display_date(struct date *dt)
{

static char *name[] =
{

} ;

"zero", "January", "February", "March", "April", "May",
"June", "July", "August", "September", "October",
"November", "December"

printf("%s %d, %d", name[dt->month], dt->day, dt->year);

This function prints the contents of a date structure, printing the month in string
form, the day, and the year.

To perform other operations on dates, such as comparing two of them, you can
compare the structure members individually, or you can write a function that ac­
cepts date structures as parameters and does the comparison for you.

When you define a structure type in C, you are defining a new data type. When
you write functions to operate on those structures, you define the operations per­
mitted on that data type.

This technique for implementing dates has some drawbacks:

• It does not guarantee that a date structure contains a valid date. You could ac­
cidentally set the members of a structure to represent a date like February 31 ,
1985, or you might have an uninitialized structure whose members represent
the one-thousand-and-fifty-eighth day of the eighteenth month of a certain year.
Any function that blindly uses such a variable will generate nonsense results.

Introduction to Classes 41

• Once you've used the date data type in your programs, you cannot easily
change its implementation. Suppose later you become concerned about the
amount of space that your da te variables are taking up. You might decide to
store both the month and day using a single integer, either by using bit fields or
by saving only the day of the year (as a number from I to 365). Such a change
would save two bytes per instance. To make this change, every program that
uses the date data type must be rewritten. Every expression that accesses the
month or day as separate integer members must be rewritten.

You could avoid these problems with more programming effort. For example, in­
stead of setting the members of a date structure directly, you could use a function
that tests the specified values for validity. And instead of reading the members of
the structure directly, you could call functions that returned the value of a struc­
ture's members. Unfortunately, many programmers don't follow such practices
when using a new data type in C. They find it more convenient to access the mem­
bers of a date structure directly. As a result, their programs are more difficult to
maintain.

Unlike C, C++ was designed to support the creation of user-defined data types. As
a result, you don't have to expend as much programming effort to create a data
type that is safe to use.

Creating a New Data Type in C++
With C++, you define both the data type and its operations at once, by declaring a
"class." A class consists of data and functions that operate on that data.

Declaring the Class
A class declaration looks similar to a structure declaration, except that it has both
functions and data as members, instead of just data. The following is a preliminary
version of a class that describes a date.

II The Date class
#include <iostream.h>

II --- -------- a Date class
class Date
{

public:
Date(int mn, int dy, int yr);
void display();
~Date();

private:
int month, day, year;

} ;

II Constructor
II Function to print date
II Destructor

II Private data members

42 C++ Tutorial

This class declaration is roughly equivalent to the combination of an ordinary
structure declaration plus a set of function prototypes. It declares the following:

• The contents of each instance of Date: the integers month, day, and year.
These are the class's "data members."

• The prototypes of three functions that you can use with Date: Date, -Date,
and d i sp 1 ay. These are the class's "member functions."

You supply the definitions of the member functions after the class declaration.
Here are the definitions of Date's member functions:

II some useful functions
inline int max(int a, int b)
{

if(a > b
return b;

return a;

inline int mine int a, int b)
{

if(a < b
return b;

return a;

II ---------- The constructor
Date::Date(int mn, int dy, int yr
{

static int length[] = { 0, 31, 28, 31, 30, 31, 30,
31,31,30,31,30,31 };

II Ignore leap years for simplicity
month max(1, mn);
month = mine month, 12);

day max(1, dy);
day mine day, length[month]);

year = max(1, year);

II -------- Member function to printdate
void Date::display()
{

static char *name[]
{

} ;

"zero", "January", "February", "March", "April", "May",
"June", "Jul y", "August", "September", "October",
"November","December"

cout « name[month] « .. « day «" "« year;

Using the Class

Introduction to Classes 43

II ---------- The destructor
Date: :-Date()
{

II do nothing

The di spl ay function looks familiar, but the Date and -Date functions are new.
They are called the "constructor" and "destructor," respectively, and they are used
to create and destroy objects, or instances of a class. They are described later in
this chapter.

These are not all the member functions that a Date class needs, but they are suffi­
cient to demonstrate the basic syntax for writing a class. Later in this chapter,
we'll add more functionality to the class.

Here's a program that uses the rudimentary Date class:

II ========== Program that demonstrates the Date class
void main()
{

Date myDate(3, 12, 1985); II Declare a Date
Date yourDate(23, 259, 1966); II Declare an invalid Date

myDate.display();
cout « '\n';
yourDate.display();
cout « '\n';

Once you've defined a class, you can declare one or more instances of that type,
just as you do with built-in types like integers. As mentioned before, an instance
of a class is called an "object," rather than a variable.

In the previous example, the main function declares two instances of the Da te
class called myDate and yourDate:

Date myDate(3, 12, 1985); II Declare a Date
Date yourDate(23, 259, 1966); II Declare an invalid Date

These are objects, and each one contains month, day, and year values.

The declaration of an object can contain a list of initializers in parentheses. The
declarations of myDate and yourDate each contain three integer values as their in­
itializers. These values are passed to the class's constructor, described on page 47.

44 C++ Tutorial

Note the syntax for displaying the contents of Date objects. In C, you would pass
each structure as an argument to a function, as follows:

II Displaying dates in C
display_date(&myDate);
display_date(&yourDate);

In C++, you invoke the member function for each object, using a syntax similar to
that for accessing a structure's data member:

II Displaying dates in C++
myDate.display();
yourDate.display();

This syntax emphasizes the close relationship between the data type and the func­
tions that act on it. It makes you think of the dis play operation as being part of
the Date class.

However, this joining of the functions and the data appears only in the syntax.
Each Da te object does not contain its own copy of the dis play function's code.
Each object contains only the data members.

Class Members
Now consider how the class declaration differs from a structure declaration:

class Date
{

public:
Date(int mn, int dy. int yr);
void display();
-Date();

private:
int month. day. year;

} ;

II Constructor
II Function to print date
II Destructor

II Private data members

Like a structure declaration, it declares three data members: the integers month,
day, and year. However, the class declaration differs from a structure declaration
in several ways:

• It has the keywords public and private.

• It declares functions, like dis play.

• It includes the constructor Date and the destructor -Date.

Let's examine these differences one by one.

Introduction to Classes 45

Class Member Visibility
The private and public labels in the class definition specify the visibility of the
members that follow the labels. The mode invoked by a label continues until
another label occurs or the class definition ends.

Private members can be accessed only by member functions. (They can also be
accessed by friend classes and functions; friends are discussed in Chapter 6.) The
private members define the internal workings of the class. They make up the
class's "implementation."

Public members can be accessed by member functions, and by any other functions
in the program as long as an instance of the class is in scope. The public members
determine how the class appears to the rest of the program. They make up the
class's "interface."

The Date class declares its three integer data members as private, which makes
them visible only to functions within the class. If another function attempts to
access one of these private data members, the compiler generates an error. For ex­
ample, suppose you try to access the private data members of a Date object:

void main()
{

i nt i;
Date myDate(3, 12, 1985);

i = myDate.month;
myDate.day = 1;

II Error: can't read private member
II Error: can't modify private member

By contrast, the dis play function is public, which makes it visible to outside
functions.

You can use the private and public labels as often as you want in a class defini­
tion, but most programmers group the private members together and the public
members together. All class definitions begin with the private label as the default
mode, but it improves readability to explicitly label all sections.

The Date class demonstrates a common C++ convention: its public interface con­
sists entirely of functions. You can view or modify a private data value only by cal­
ling a public member function designed for that purpose. This convention is
discussed further in the section "Accessing Data Members" on page 51.

Member Functions
The Date class has a member function named di spl ay. This function corre­
sponds to the di spl ay_date function in C, which prints the contents of a date
structure. However, notice the following differences.

46 C++ Tutorial

First, consider the way the function is declared and defined. The function's proto­
type appears inside the declaration of Date, and when the function is defined, it is
called Da te : : dis play (). This indicates that it is a member of the class and that its
name has "class scope." You could declare another function named di spl ay out­
side the class, or in another class, without any conflict. The class name (combined
with ::, the scope resolution operator) prevents any confusion between the
definitions.

You can also overload a member function, just like any other function in C++, as
long as each version is distinguishable by its parameter list. All you have to do is
declare each member function's prototype in the class declaration, and prefix its
name with the class name and:: when defining it.

Now compare the implementation of the di spl ay member function with that of
the corresponding function in C, di spl ay_date. The C function refers to
dt.month, dt.day, and dt.year. In contrast, the C++ member function refers to
month, day, and yea r; no object is specified. Those data members belong to the
object that the function was called for. For example:

myDate.display();
yourDate.display();

The first time di spl ay is called, it uses the data members of myDate. The second
time it's called, it uses the members of yourDate. A member function automat­
ically uses the data members of the "current" object, the object to which it belongs.

You can also call a member function through a pointer to an object, using the ->
operator. For example:

Date myDate(3, 12, 1985);
Date *datePtr = &myDate;

datePtr->display();

This code declares a pointer to a Date object and calls di spl ay through that
pointer.

You can even call a member function through a reference to an object. For
example:

Date myDate(3, 12, 1985);
Date &otherDate = myDate;

otherDate.display();

This code calls di spl ay through the reference variable otherDate. Because
otherDate is an alias for myDate, the contents of myDate are displayed.

The Constructor

Introduction to Classes 47

These techniques for calling a member function work only if the function is de­
clared public. If a member function is declared private, only other member func­
tions within the same class can call it. For example:

class Date
{
public:

void display();
II ...

private:

} ;

int daysSoFar();
II ...

II Public member function

II Private member function

II --------- Display date in form "DDD VVVV"
void Date::display()
{

cout « daysSoFar() II Call private member function
« " " « year;

II -------- Compute number of days elapsed
void Date::daysSoFar()
{

}

int total = 0;
static int length[] { 0, 31, 28, 31, 30, 31, 30,

31, 31, 30, 31, 30, 31 };

fort int i = 1; i month; i++)
total += length[i];

total += day;
return total;

Notice that dis play calls day s S 0 Far directly, without preceding it with an object
name. A member function can use data members and other member functions with­
out specifying an object. In either case, the "current" object is used implicitly.

Remember that the date structure in C had the drawback of not guaranteeing that
it contained valid values. In C++, one way to ensure that objects always contain
valid values is to write a constructor. A constructor is a special initialization func­
tion that is called automatically whenever an instance of your class is declared.
This function prevents errors resulting from the use of uninitialized objects.

The constructor must have the same name as the class itself. For example, the con­
structor for the Date class is named Date.

48 C++ Tutorial

Look at the implementation ofthe Date constructor:

Date::Date(int mn, int dy, int yr
{

static int length[] = { 0, 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31 };

II Ignore leap years for simplicity
month max(I, mn l;
month = min(month, 12 l;

day max(I, dy l;
day min(day, length[month] l;

year = max(I, year l;

Not only does this function initialize the object's data members, it also checks that
the specified values are valid; if a value is out of range, it substitutes the closest
legal value. This is another way that a constructor can ensure that objects contains
meaningful values.

Whenever an instance of a class comes into scope, the constructor is executed. Ob­
serve the declaration of myDate in the main function:

Date myDate(3, 12, 1985 l;

The syntax for declaring an object is similar to that for declaring an integer vari­
able. You give the data type (in this case, Date) and then the name of the object,
myDate.

However, this object's declaration also contains an argument list in parentheses.
These arguments are passed to the constructor function and are used to initialize
the object. When you declare an integer variable, the program merely allocates
enough memory to store the integer; it doesn't initialize that memory. When you
declare an object, your constructor function initializes its data members.

You cannot specify a return type when declaring a constructor, not even void. Con­
sequently, a constructor cannot contain a return statement. A constructor doesn't
return a value, it creates an object.

You can declare more than one constructor for a class if they have different para­
meter lists; that is, you can overload the constructor. This is useful if you want to
initialize your objects in more than one way. This is demonstrated in the section
"Accessing Data Members" on page 51.

The Destructor

Introduction to Classes 49

You aren't required to define any constructors when you define a class, but it is a
good idea to do so. If you don't define any, the compiler automatically generates a
do-nothing constructor that takes no parameters, just so you can declare instances
of the class. However, this compiler-generated constructor doesn't initialize any
data members, so any objects you declare are not any safer than C structures.

The destructor is the counterpart of the constructor. It is a member function that is
called automatically when a class object goes out of scope. Its purpose is to per­
form any cleanup work necessary before an object is destroyed. The destructor's
name is the class name with a tilde (-) as a prefix.

The Date class doesn't really need a destructor. One is included in this example
simply to show its format.

Destructors are required for more complicated classes, where they're used to re­
lease dynamically allocated memory. Chapter 5 describes such classes.

There is only one destructor for a class; you cannot overload it. A destructor takes
no parameters and has no return value.

The Creation and Destruction of Objects
The following example defines a constructor and destructor that print messages, so
you can see exactly when these functions are called.

#include <iostream.h>
#include <string.h>

class Demo
{

publ i c:
Demo(const char *nm);
-Demo();

private:
char name[20];

} ;

Demo::Demo(const char *nm)
{

strncpy(name, nm, 20);
cout « "Constructor called for" « name « '\n';

50 C++ Tutorial

Demo: :~Demo ()
{

cout « "Destructor called for" « name « '\n';
}

void func()
{

Demo localFuncObject("localFuncObject" l;
static Demo staticObject("staticObject");

cout « "Inside func\n";

Demo globalObject("globalObject");

void main()
{

Demo localMainObject("localMainObject");

cout « "In main, before calling func\n";
func() ;
cout « "In main, after calling func\n";

The program prints the following:

Constructor called for globalObject
Constructor called for localMainObject
In main, before calling func
Constructor called for localFuncObject
Constructor called for staticObject
Inside func
Destructor called for localFuncObject
In main, after calling func
Destructor called for localMainObject
Destructor called for staticObject
Destructor called for globalObject

For local objects, the constructor is called when the object is declared, and the de­
structor is called when the program exits the block in which the object is declared.

For global objects, the constructor is called when the program begins and the
destructor is called when the program ends. For static objects, the constructor is
called before the first entry to the function in which they're declared and the de­
structor is called when the program ends.

Introduction to Classes 51

Accessing Data Members
As it is currently defined, the Date class does not permit any access to its in­
dividual month, day, and year components. For example, you cannot read or mod­
ify the month value of a Date object. To remedy this, you can revise the Date
class as follows:

class Date
{

public:
Date(int mn, int dy, int yr);

int getMonth();
i nt getDay();
int getYear();
void setMonth(int mn);
void setDay(int dy);
void setYear(int yr);
void display();
-Date();

private:
int month, day, year;

} ;

II
II
II
II
II
II
II
II
II
II

II

Constructor
Member functions:

Get month
Get day
Get year
Set month
Set day
Set year
Print date

Destructor

Private data members

This version of Date includes member functions to read and modify the month,
day, and year members. The function definitions are as follows:

inline int Date::getMonth()
{

return month;

inline int Date::getDay()
{

return day;

inline int Date::getYear()
{

return year;
}

void Date::setMonth(int mn
{

month max(1, mn);
month mint month, 12);

52 C++ Tutorial

void Date::setDay(int dy
{

static int length[] { 0, 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31 };

day max(1, dy);
day mi n (day, 1 ength [month]);

}

void Date::setYear(int yr
{

year = max(1, yr);
}

The various get functions simply return the value of the appropriate data mem­
ber. However, the set functions do not simply assign a new value to a data mem­
ber. These functions also check the validity of the specified value before assigning
it. This is another way to ensure that Date objects contain valid values.

The following example uses these new member functions:

void main()
{

i nt i;
Date deadline(3, 10, 1980);

i = deadline.getMonth(); II Read month value
deadline.setMonth(4); II Modify month value
deadline.setMonth(deadline.getMonth() + 1); II Increment

Notice that the get functions are declared inline because they're so short. Be­
cause those functions have no function call overhead, calling them is as efficient
as directly accessing public data members.

Member functions can also be declared inline without using the inline keyword.
Instead, you can place the body of the function inside the class declaration, as
follows:

class Date
{

public:
Date(int mn, int dy, int yr);
int getMonth() { return month; }
int getDay() { return day; }
int getYear() { return year; }

II etc
} ;

II Inline member functions

Introduction to Classes 53

This style of declaration has precisely the same effect as using the inline keyword
with separate function definitions. You can use whichever style you find more
readable.

Now that the class has member functions to set its values, you can change the way
a Date object is constructed. You can overload constructors in the same way you
overload other functions. The following example defines two versions of Date's
constructor, one that takes parameters and one that doesn't:

class Date
{

public:
Date(); II Constructor with no parameters
Date(int mn, int dy, int yr); II Constructor with parameters

I I etc
} ;

Date: :Date()
{

month = day year 1 ; II Initialize data members

Date: :Date(int mn, int dy, int yr)
{

setMonth(mn);
setDay(dy);
setYear(yr);

voidmain()
{

Date myDate; II Declare a date without arguments
Date yourDate(12, 25, 1990);

myDate.setMonth(3); II Set values for myDate
myDate.setDay(12);
myDate.setYear(1985);

The declaration of myDate doesn't specify any initial values. As a result, the first
constructor is used to create myDate and initialize it with the default value
"January 1, 1." The values for myDate are specified later with the set functions.
In contrast, the declaration of yourDate specifies three arguments. The second

54 C++ Tutorial

constructor is used to create yourDate, and this constructor calls the member func­
tions to set the data members to the specified values. It is legal for a constructor to
call member functions, as long as those functions don't read any uninitialized data
members.

The first constructor in the example above is known as a "default constructor," be­
cause it can be called without arguments. If you define a default constructor, the
compiler calls it automatically in certain situations; see page 58, "Member Ob­
jects," and page 94, "Arrays of Class Objects" in Chapter 6.

Access Functions VS. Public Data Members
Writing access functions might seem like a lot of needless work. You may argue
that it's much simpler to declare the data members as public and manipulate them
directly. After all, why call a setMonth and getMonth function when you could
simply access the month member itself?

The advantages of access functions become apparent when we recall the example
of the date structure defined in C. Access functions ensure that your objects
never contain invalid values. You can always be sure that you can display the con­
tents of a Date object without printing out nonsense.

More importantly, access functions let you change the implementation of your
class easily. For example, remember the scenario in which you decide to encode
the month and day within the bits of a single integer in order to save space. In C,
you have to modify every program that uses date structures. This could involve
thousands of lines of code.

In C++, however, all you have to rewrite are the class's member functions, which
constitute far fewer lines. This change has no effect on any programs that use
your Date class. They can still call getMonth and setMonth,just as they did
before. The use of access functions instead of public members saves you a huge
amount of rewriting.

By using member functions to control access to private data, you hide the repre­
sentation of your class. Access functions let you change the implementation of a
class without affecting any of the programs that use it. This convention is known
as "encapsulation," which is one of the most important principles of object­
oriented programming. Encapsulation is discussed in more detail in Chapter 9,
"Fundamentals of Object -Oriented Design."

Introduction to Classes 55

Returning a Reference
Occasionally you may see a c++ program that declares member functions that act
like public data members. Such functions return references to private data mem­
bers. For example:

II BAD TECHNIQUE: Member function that returns a reference
class Date
{

public:
Date(int mn, int dy, int yr);
int &month();
-Date();

II Constructor
II Set/get month
II Destructor

private:

} ;

int month_member,
day_member,
year_member;

II (_member appended to
II distinguish names from
II member functions)

int &Date::month()
{

II

month_member = max(1, month_member);
month_member = min(month_member, 12);
return month_member;

The month member function returns a reference to the data member. This means
that the function call expression month () can be treated as an alias for the private
data member. For example:

II BAD TECHNIQUE: using member function that returns a reference
void main()
{

i nt i;
Date deadline(3, 10, 1980);

i = deadline.month();
deadline.month() = 4;
deadline.month()++;

II Read month value
II Modify month value
II Increment

The member function behaves just like a data member. Consequently, the function
call de ad 1 i n e . m 0 nth () can appear on the left side of an assignment, in the same
way that deadline.month_member could if the data member were public. You can
even increment its value with the ++ operator.

56 C++ Tutorial

You can assign an illegal value to month_member this way, but the month function
performs range-checking to correct any such illegal values the next time it is
called. As long as all of Date's other member functions don't access the data
member directly, but always use that function instead, the Date class functions
correctly.

You should not use this technique for a variety of reasons. First, the syntax can be
very confusing to people reading your program. Second, range checking is per­
formed every time a data member is read, which is inefficient. Finally, and most
importantly, this technique essentially makes the data member public. With this de­
sign, you cannot change the implementation of a private data member without re­
writing all the programs that use the class. If you wanted to encode the month and
day values within a single integer, you would have to change the member func­
tions and rewrite all the programs that used Date.

To retain the benefits that member functions offer, you should always give your
classes separate member functions to read and modify private data members.

const Objects and Member Functions
Just as you can use the const keyword when declaring a variable, you can also use
it when declaring an object. Such a declaration means that the object is a constant,
and none of its data members can be modified. For example:

const Date birthday(7, 4, 1776 l;

This declaration means that the value of bi rthday cannot be changed.

When you declare a variable as a constant, the compiler can usually identify opera­
tions that would modify it (such as assignment), and it can generate appropriate er­
rors when it detects them. However, this is not true when you declare an object as
a constant. The compiler can't tell whether a given member function might modify
one of an object's data members, so it plays it safe and prevents you from calling
any member functions for a const object.

However, some member functions don't modify any of an object's data members,
so you should be able to call them for a const object. If you place the const key­
word after a member function's parameter list, you declare the member function as

Introduction to Classes 57

a read-only function that doesn't modify its object. The following example de­
clares some of the Date class's member functions as const.

class Date
{

public:
Date(int mn, int dy, int yr);

int getMonth() const;
int getDay() const;
int getYear() const;
void setMonth(int mn);
void setDay(int dy);
void setYear(int yr);
void display() const;
-Date();

private:

II
II
II
II
II
II
II
II
II
II

Constructor
Member functions:

Get month - read-only
Get day - read-only
Get year - read-only
Set month
Set day
Set year
Print date - read-only

Destructor

int month, day, year; II Private data members
} ;

inline int Date::getMonth() const
{

return month;
}

I I etc ...

The various get functions and the di spl ay function are all read-only functions.
Note that the const keyword is used in both the declaration and the definition of
each member function. These functions can be safely called for a constant object.

With the Date class modified in this way, the compiler can ensure that bi rthday
is not modified:

i nt i;
const Date birthday(7, 4, 1776);

i = birthday.getYear();
birthday.setYear(1492);

I I Legal
II Error: setYear not const

The compilerlets you call the const member function getYea r for the bi rthday
object, but not the function setYear, which is a non-const function.

A member function that is declared with const cannot modify any data members
of the object, nor can it call any non-const member functions. If you declare any
of the set functions as const, the compiler generates an error.

You should declare your member functions as const whenever possible. This al­
lows people using your class to declare constant objects.

58 C++ Tutorial

Member Objects
You can write a class that contains objects as members. This is known as "com­
position," the act of making a new class by using other classes as components.
Suppose that you want a Person Info class that stores a person's name, address,
and birthday. You can give that class a Date as a member, as follows:

class Person Info
{

public:
II public member functions ...

private:

} ;

char name[30];
char address[60];
Date birthday; II member object

This declaration specifies a private member named bi rthday, which is a Date
object. Note that no arguments are specified in the declaration of bi rthday. How­
ever, this does not mean that the default constructor is called. The bi rthday ob­
ject is not constructed until a Person I nfo object is constructed.

To call the constructor for a member object, you must specify a "member initial­
izer." Place a colon after the parameter list of the containing class's constructor,
and follow it with the name of the member and a list of arguments. For example,
the constructorfor Person Info is written as follows:

class Person Info
{

public:
PersonInfo(char *nm, char *addr, int mn, int dy, int yr);
I I ...

private:
II ...

} ;

PersonInfo::PersonInfo(char *nm, char *addr,
i nt mn, i nt dy, i nt yr

: birthday(mn, dy, yr) II Member initializer

strncpy(name, nm, 30);
strncpy(address, addr, 60);

This syntax causes the Date class constructor to be invoked for the bi rthday
member object, using the three arguments specified. The Date constructor is
called first, so the bi rthday member is initialized before the Person I nfo con­
structor begins executing. If your class has more than one member object, you can
specify a list of member initializers, separating each with a comma.

Introduction to Classes 59

If you don't use the member initializer syntax, the compiler implicitly calls the de­
fault constructor for the member object before constructing the containing object.
You can then assign values to the member object using its access functions. For ex­
ample, since Date has a default constructor, you could write the Person Info con­
structor as follows:

PersonInfo: :PersonInfo(char *nm, char *addr, int mn, int dy, int yr)
II Default constructor sets birthday to January 1, 1
{

strncpy(name, nm, 30);
strncpy(address, addr, 60);
birthday.setMonth(mn);
birthday.setDay(dy);
birthday.setYear(yr);

If the member object's class doesn't define a default constructor, the compiler
generates an error.

However, this is an inefficient technique because the value of bi rthday is set
twice. First it is initialized to January 1, 1, by the default constructor, and then it is
assigned the value specified by the member functions. In general, you should use
member initializers to initialize your member objects, unless the default construc­
tor performs all the initialization you need.

A member initializer is required when you have a constant member object. Since a
person's birthday never changes, you can declare bi rthday with the const key­
word. In this case, omitting the member initializer syntax is fatal. For example:

class PersonInfo
{

public:
II ...

private:
char name[30];
char address[60];
const Date birthday; II Constant member object

} ;

Personlnfo: :PersonInfo(char *nm, char *addr, int mn, int dy, int yr)
II Default constructor sets birthday to January 1, 1
{

strncpy(name, nm, 30);
strncpy(address, addr, 60
birthday.setMonth(mn);
birthday.setDay(dy);
birthday.setYear(yr);

) ;
II Error
II Error
II Error

60 C++ Tutorial

Since bi rthday is a const object, you can't call any of its set member functions,
because those are non-const functions. Thus, you have no way to change the value
of bi rthday from the value that the default constructor initialized it to.

The same is true of any member declared const, even if it's a variable of a built-in
type, like an integer. A const integer member cannot be assigned a value in the
constructor; you must use a member initializer. For example:

class Count
{

public:
Count(int i);

private:
canst int cnt;

} ;

Count(int i)

II Constructor

II Constant integer member

: cnt(i) II Member initializer for integer
{
}

Use a member initializer to initialize any const member, whether or not it's an
object.

Using Header and Source Files
In C++, it's common practice to divide your source code into header and source
files. You place the class declarations in the header files and place the definitions
of the member functions in the source files. Header files usually have the suffix .H
and source files have the suffix .CPP. For example, here's the header file for the
Date class:

II DATE.H
#if ldefined(DATE H

class Date
{

} ;

Date() ;
int getMonth() canst;
II ...

inline Date::getMonth() canst
{

return month;

Introduction to Classes 61

I I etc ...

#endif II DATE H

Notice that this header file contains the definitions for inline member functions.
The compiler must have access to the source code of an inline function in order to
insert the code each time the function is called.

Also note that the header file uses the #ifpreprocessor directive and the defined
preprocessor operator for conditional compilation. This prevents multiple inclu­
sion of header files in a multimodule program.

Here's the source file for the Date class:

II DATE. CPP
#include "date.h"

Date:: Date()
{

II ...
}

II etc ...

Note that the source file includes its corresponding header file.

In general, you should use one header file and one source file for each class unless
you are writing very small classes, or classes that are very closely related and
should always be used together.

Roughly speaking, a header file describe a class's interface and a source file de­
scribes its implementation. This distinction is important when your classes may be
used by other programmers. To use the Date class, for example, other program­
mers would simply include the header file DATE.H in their source files. Those
programmers don't need to see how the member functions are implemented; all
they need to see are the prototypes of the member functions. As long as they can
link with DATE.OBJ when linking their program, they don't need to see
DATE.CPP. If you rewrite DATE.CPP, you can simply recompile it to produce a
new DATE.OBJ file; the other programmers don't need to change their code.

Unfortunately, it's necessary that some aspects of a class's implementation be re­
vealed in the header file. The private members of a class are visible in the header
file, even though they aren't accessible. Furthermore, if your class has inline mem­
ber functions, their implementation is also visible. If you change the private mem­
bers or inline functions of your class, those changes are reflected in the header file,
and all the programmers who use that class must recompile their code with the
new header file. However, they still don't have to rewrite any of their code, as
long as the class's interface hasn't changed-that is, as long as you haven't
changed the prototypes of the public member functions.

62 C++ Tutorial

You should also consider whether your #include statements need to be in
your header file or your source file. For example, if one of your class's
member functions takes a time_ t structure as a parameter, you have to place
If; nc 1 ude "t; me. h" in the header file. On the other hand, if the time_t
structure is used only in the internal computations of a member function,
and is not visible to someone calling the function, then you should place
ifi ncl ude "t; me. h" in the source file instead. In the first case, Ll}e interface
requires TIME.H, and in the second case, the implementation requires it.
Don't place #include statements in your header files if placing them in the
source file suffices.

By separating a class's interface and implementation, you make your classes as
self-contained as possible, so they don't depend on each other's implementation
details. This practice follows the principle of encapsulation, which is discussed in
more detail in Chapter 9, "Fundamentals of Object-Oriented Design."

Classes and
Dynamic Memory Allocation

Chapter

:.51

.•.

1

'1."'.' , ;, , .•.. '
M/

,. ,~;;jiG; ;;11

'11111

With the classes described in the previous chapter, each object remains the same
size during its lifetime. It's also possible to write a class whose objects can change
in size dynamically. This chapter describes some of the issues relating to dynami­
cally resizeable classes.

This chapter covers the following topics:

• The free store

• The assignment operator

• The this pointer

• The copy constructor

• Passing and returning objects

• Passing and returning references

Before continuing the discussion of classes, let's consider how you perform dy­
namic memory allocation in C++.

The Free Store
In C, the region of memory that is available at run time is called the heap. In C++,
the region of available memory is known as the free store. The difference between
the two lies in the functions you use to access this memory.

To request memory from the heap in C, you use the manoe function. For instance,
you can dynamically allocate a date structure as follows:

struct date *dateptr;

dateptr = (struct date *)malloc(sizeof(struct date));

The manoe function allocates a block of memory large enough to hold a date
structure, and returns a pointer to it. The manoe function returns a void pointer,

64 C++ Tutorial

which you must cast to the appropriate type when you assign it to datept r. You
can now treat that block of memory as a d ate structure.

In C++, however, malloc is not appropriate for dynamically allocating a new in­
stance of the Date class, because Date's constructor is supposed to be called
whenever a new object is created. If you used malloc to create a new Date object,
you would have a pointer to an uninitialized block of memory. You could then call
member functions for an improperly constructed object, which would probably
produce erroneous results. For example:

Date *dateptr;
i nt i;
datePtr = (Date *)malloc(sizeof(Date));
i = datePtr->getMonth(); II Returns undefined month value

If you use malloc to allocate objects, you lose the safety benefits that constructors
provide. A better technique is to use the new operator.

The new Operator
As an alternative to malloc, C++ provides the new operator for allocating memory
from the free store. The malloc function knows nothing about the type of the vari­
able being allocated; it takes a size as a parameter and returns a void pointer. In
contrast, the new operator knows the class of the object you're allocating, and it
automatically calls the class's constructor to initialize the memory it allocates.
Compare the previous example with the following:

Date *firstPtr, *secondPtr;
i nt i;
firstPtr = new Date;
i = firstPtr->getMonth();

II Default constructor called
II Returns 1 (default value)

secondPtr = new Date(3, 15, 1985);
i = secondPtr->getMonth();

II Constructor called
II Returns 3

The new operator calls the appropriate Date constructor, depending on whether
you specify arguments or not. This ensures that any objects you allocate are prop­
erly constructed.

Also notice the syntax for new. It is not a function, so it doesn't have an argument
list in parentheses; it is an operator that you apply to a the name of a type. You
don't have to use sizeofto find the size of a Date object, because new can tell
what size it is.

The new operator returns a pointer, but you don't have to cast it to a different type
when you assign it to a pointer variable. The compiler checks that the type of the
pointer matches that of the object being allocated, and generates an error if they
don't match. For example:

Classes and Dynamic Memory Allocation 65

void *ptr;

ptr = new Date; II Error; type mismatch

If new cannot allocate the memory requested, it returns O. In C++, a null pointer
has the value 0 instead of the value NULL.

The delete Operator
Just as the malloe function has the free function as its counterpart, the new opera­
tor has the delete operator as its counterpart. The delete operator deallocates
blocks of memory, returning them to the free store for subsequent allocations.

The syntax for delete is simple:

Date *firstptr;
i nt i;
firstPtr = new Date(3, 15, 1985); II Constructor called
i = firstPtr->getMonth(); II Returns 3

delete firstptr; II Destructor called, memory freed

The delete operator automatically calls the destructor for the object before it deal­
locates the memory. Since the Date class's destructor doesn't do anything, this
feature is not demonstrated in this example.

You can only apply delete to pointers that were returned by new, and you can
only delete them once. Deleting a pointer not obtained from new or deleting a
pointer twice will cause your program to behave strangely, and possibly to crash.
It is your responsibility to guard against these errors; the compiler cannot detect
them. You can, however, delete a null pointer (a pointer with value 0) without any
adverse effects.

The Free Store and Built-In Types
The new and delete operators can be used not only with classes that you've de­
fined, but also with built-in types like integers and characters. For example:

int *ip;

ip = new int;
II use ip
delete ip;

II Allocate an integer

66 C++ Tutorial

You can also allocate arrays whose size is determined at run time:

int length;
char *cp;

II Assign value to length, depending on user input
cp = new char[length]; II Allocate an array of chars
/1 Use cp
delete [] cp;

Notice the syntax for declaring an array: you place the array size within brackets
after the name of the type. Also note the syntax for deleting an array: you place an
empty pair of brackets before the name of the pointer. The compiler ignores any
number you place inside the brackets.

You can even allocate multidimensional arrays with new, as long as all of the
array dimensions except the first are constants. For example:

int (*matrix)[10];
int size;

II Assign value to size, depending on user input
matrix = new int[size][10]; II Allocate a 2-D array
II Use matrix
delete [] matrix;

Dynamic allocation of arrays of objects, as opposed to arrays of built-in types, is
discussed in Chapter 6.

Classes with Pointer Members
You can use the new and delete operators from within the member functions of a
class. Suppose you wanted to write a Stri ng class, where each object contains a
character string. It's inappropriate to store the strings as arrays, since you don't

Classes and Dynamic Memory Allocation 67

know how long they'll be. Instead, you can give each object a character pointer as
a member, and dynamically allocate an appropriate amount of memory for each
object. For example:

#include <iostream.h>
#include <string.h>

II ------- A string class
class String
{

public:
String();
String(const char *s);
String(char c, int n);
void set(int index, char newchar);
char get(int index) const;
int getLength() const { return length; }
void display() const { cout « buf; }
~String();

private:
int length;
char *buf;

} ;

II Default constructor
String::String()
{

}

buf = 0;
length = 0;

II ---------- Constructor that takes a const char *
String: :String(const char *s)
{

length = strlen(s);
buf = new char[length + 1];
strcpy(buf, s);

II ---------- Constructor that takes a char and an int
String::String(char c, int n)
{

length = n;
buf = new char[length + 1];
memset(buf, c, length);
buf[length] = '\0'; }

II ---------- Set a character in a String
void String::set(int index, char newchar
{

}

if((index> 0) && (index <= length))
buf[index - 1] = newchar;

68 C++ Tutorial

II ---------- Get a character in a String
char String::get(int index) const
{

if((index> 0) && (index <= length)
return buf[index - 1];
else
return 0;

II ---------- Destructor for a String
String::-String()
{

delete buf; II Works even for empty String; delete 0 is safe

mai n ()
{

String myString("here's my string");
myString.set(1, 'H');

The Stri ng constructor that takes a character pointer uses the new operator to al­
locate a buffer to contain the string. It then copies the contents of the string into
the buffer. As a result, a Stri ng object is not a contiguous block of memory the
way a structure variable is. Each Stri ng object consists oftwo blocks of memory,
one that contains 1 ength and buf, and another that stores the characters them­
selves.

If you call sizeof to find the size of a S t r in 9 object, you get only the size of the
block containing the integer and the pointer. However, different St ri ng objects
may have character buffers of different lengths.

In fact, you can write a member function that changes the length of a Stri ng ob­
ject's character buffer. For example:

void String::append(const char *addition
{

}

char *temp;

length += strlen(addition);
temp = new char[length + 1];
strcpy(temp, buf);
strcat(temp, addition);
delete buf;
buf = temp;

II Allocate new buffer
II Copy contents of old buffer
II Append new string
II Deallocate old buffer

Classes and Dynamic Memory Allocation 69

This function appends a new string to the contents of an existing S t r i n 9 object.
For example:

String myString("here's my string" 1;

myString.append(" and here's more of it" 1;
II myString now holds "here's my string and here's more of it"

A Stri ng object is thus dynamically resizeable. In C, most programmers resize a
character buffer explicitly, which requires a lot of work. In C++, however, you can
resize St ri ng objects very easily; all the details ofthe resizing are handled by the
member functions.

The Stri ng class is an example of a class that requires a destructor. When a
St ri ng object goes out of scope, the block of memory containing 1 ength and
buf is deallocated automatically. However, the character buffer was allocated with
new, so it must be deallocated explicitly. As a result, the Stri ng class defines a
destructor that uses the delete operator to deallocate the character buffer. If the
class didn't have a destructor, the character buffers would never be deallocated
and the program might eventually run out of memory.

The Stri ng class has potential problems, however. Suppose you added the follow­
ing code to the main function in this example:

String yourString("here's your string" 1;
yourString = myString;

The program constructs a Stri ng object named yourStri ng and then assigns the
contents of myStri ng to it. This looks harmless enough, but it actually causes
problems.

When you assign one object to another, the compiler performs a memberwise as­
signment; that is, it does the equivalent of the following:

II Hypothetical equivalent of yourString = myString
yourString.length = myString.length;
yourString.buf = myString.buf;

The assignment ofthe 1 ength member is no problem. However, the buf member
is a pointer. The result of the pointer assignment is that yourStri ng. buf and

70 C++ Tutorial

my S t r in 9 . b u f point to the same location in memory. The two objects share the
same character buffer. This is illustrated in Figure 5.1.

Before assignment

myString

buf ~6 length

yourString

buf ~8 length

Result of you r S t r i n 9 = my S t r i n 9 using default assignment behavior:

myString

~ length

~ buf

yourString

16 length

buf

Figure 5.1 Default Assignment Behavior

This means that any modifications to one of the Stri ng objects affects both of
them. If you call myStri ng. set(), you will modify yourStri ng as well. This be­
havior probably isn't what you desired.

Classes and Dynamic Memory Allocation 71

More serious problems arise when the objects go out of scope. When the S t r i n 9

class's destructor is called for my S t r i n g, it deletes the object's b u f pointer, deallo­
cating the memory that it points to. Then the destructor is called again for
yourStri ng, and it deletes that object's buf pointer. But both buf members have
the same value, which means the pointer is deleted twice. This can cause unpre­
dictable results. Furthermore, the original buffer in yourStri ng, containing
"here's your string," is lost. That block of memory is never deleted.

These problems occur for any class that has pointer members and allocates mem­
ory from the free store. The compiler's default behavior for assigning one object
to another is unsatisfactory for such classes. The solution is to replace the com­
piler's default behavior by writing a special function to perform the assignment,
called the "assignment operator."

The Assignment Operator
As described in Chapter 2, in C++ you can overload a function name so that it ap­
plies to more than one function. Similarly, you can overload the assignment opera­
tor (the = sign) to have more than one meaning; you can specify what happens
when it is applied to instances of a particular class. This is known as "operator
overloading." Chapter 8 explains operator overloading in greater detail.

To redefine the meaning of the assignment operator for a class, you write a mem­
ber function with the name operator=. If your class defines such a function, the
compiler calls it to whenever one object is assigned to another. The compiler inter­
prets an assignment statement like this

yourstring = mystring;

as a function call that looks like this:

yourstring.operator=(mystring l;

In fact, you can explicitly use the second syntax to perform assignments; however,
you should use the first syntax because it is more readable.

The assignment operator for Stri ng can be written as follows:

II Class Assignment
#include <iostream.h>
#include <string.h>

72 C++ Tutorial

class String
{

public:
String();
String(const char *s);
String(char c, int n);
void operator=(const String &other);

! I etc ...
} ;

II ----------- Assignment operator
void String::operator=(const String &other)
{

length = other.length;
delete buf;
buf = new char[length + 1];
strcpy(buf, other.buf);

The assignment operator takes a reference to an object as its parameter. (Note that
a reference to a constant is used, indicating that the function doesn't modify the ob­
ject.) To perform the assignment, the function first copies the 1 ength data mem­
ber. Next, it deletes the receiving object's buf pointer, returning that block of
memory to the free store (this is safe even for an uninitialized string, because delet­
ing a 0 pointer has no effect). Then the function allocates a new buffer and copies
the other buffer's contents into it. This is illustrated in Figure 5.2.

Result of yourStri ng = myStri ng after assignment operator has been defined:

myString

16 length

yourString

buf ~6 length

Figure S.2 Correct Assignment Behavior

Classes and Dynamic Memory Allocation 73

Here's a program that uses the new S t r i n 9 class with its assignment operator:

maine)
{

String myString("here's my string");
myString.display();
cout « '\n';

String yourString("here's your string");
yourString.display();
cout « '\n';

yourString = myString;
yourString.display();
cout « '\n';

This program prints the following messages.

here's my string
here's your string
here's my string

What if a programmer using the Stri ng class accidentally assigns an object to it­
self? For instance:

myString = myString; II Self-assignment

Few people would write such a statement, but self-assignment can take other
forms. For instance:

String *stringPtr = &myString;

II Later ...
myString = *stringPtr; II Inconspicuous self-assignment

What happens during such an assignment? The operator= defined above first de­
letes myStri ng's buffer, and allocates a new buffer. Then it copies the contents of
myStri ng's newly allocated buffer into itself. This causes unpredictable behavior
in your program.

In order for the operator= function to work safely in all cases, it must check
against self-assignment. This requires the use of the this pointer.

74 C++ Tutorial

The this Pointer
The this pointer is a special pointer that is accessible to member functions. The
this pointer points to the object for which the member function is called. (There is
no this pointer accessible to static member functions. Static member functions are
described in Chapter 6.)

When you call a member function for an object, the compiler assigns the address
of the object to the this pointer and then calls the function. Every time a member
function accesses one of the class's data members, it is implicitly using the this
pointer.

For example, consider the following C++ code fragment, describing a member
function definition and function call:

void Date::setMonth(int mn)
{

month = mn;
}

II Member function call
myDate.setMonth(3);

This is roughly equivalent to the following C fragment:

II C equivalent of C++ member function
void Date_setMonth(Date *const this, int mn)
{

this->month = mn;
}

II Function call
Date_setMonth(&myDate, 3);

Notice that the type of this is Date * for member functions of Date; the type is
different for member functions of other classes.

When you write a member function, it is legal to explicitly use the this pointer
when accessing any members, though it is unnecessary. You can also use the ex­
pression *this to refer to the object for which the member function was called.
Thus, in the following example, the three statements are equivalent:

void Date::month_display()
{

}

cout « month;
cout « this->month;
cout « (*this).month;

II These three statements
II do the same thing

Classes and Dynamic Memory Allocation 75

A member object can use the this pointer to test whether an object passed as a par­
ameter is the same object that the member function is called for. For example, the
operator= function for the Stri ng class can be rewritten as follows:

void String::operator=(canst String &other)
{

if(&other == this)
return;

delete buf;
length = other.length;
buf = new char[length + 1];
strcpy(buf, other.buf);

The function tests whether the address of the other object is equal to the value of
the this pointer. If so, a self-assignment is being attempted, so the function exits
without doing anything. Otherwise it performs the assignment normally.

Using *this in a Return Statement
The this pointer can also be used in the return statement of a member function. In
both C and C++, an assignment statement can be treated as an expression, which
has the value of what was being assigned. For example, the statement

i = 3;

is an expression with the value 3.

One result of this is that you can chain together multiple assignment statements:

a = b = c;

The assignment operator is right associative, so the expression is evaluated from
right to left. This means the expression is equivalent to the following:

a = (b = c);

To make your overloaded class assignments work this way, you must make the as­
signment function return the result of the assignment. You want the assignment
operator to return the object to which it belongs. You get the address of the object
from the this pointer.

76 C++ Tutorial

Returning *this involves a simple modification to the assignment operator (in the
operator= function):

String &String::operator=(const String &other)
{

if(&other == this
return *this;

delete buf;
length = other.length;
buf = new char[length + 1];
strcpy(buf, other.buf);
return *this;

With this version of the operator= function, you can chain together assignments
of Stri ng objects:

herString = yourString = myString;

Note that the function returns a reference to a St ri ng. This is more efficient that
returning an actual S t r i n 9 object; see the section "The Copy Constructor" on
page 78 for more information on returning objects from functions.

The practice of returning *this also explains how the chained co u t statements
used in previous examples work. You have seen many statements similar to the
following:

cout « a « b « c;

The left-shift operator is left-associative, so this expression is evaluated from left
to right. The overloaded left-shift operator returns *this, which is the cout object,
so each variable is printed successively.

Bad Uses of the this Pointer
The this pointer is a const pointer, so a member function cannot change the
pointer's value to make it point to something else. In early versions of C++, the
this pointer was not a const pointer. This allowed a programmer to make assign­
ments to the this pointer in order to perform customized memory allocation. For
example:

II BAD TECHNIQUE: assignment to this
class foo
{

public:

} ;

foo() { this = my_alloc(sizeof(foo));
-foo() { my_dealloc(this); this = 0; }

Classes and Dynamic Memory Allocation 77

This type of special processing is not allowed in the current version of C++. If you
need customized memory allocation, you can write your own versions of new and
delete. See the section "Class-Specific new and delete Operators" on page 103.

Early versions of C++ also let you examine the this pointer to distinguish between
objects allocated on the stack and those allocated with the free store. On entry to a
constructor, the this pointer had a value of 0 if the constructor was being called for
an object allocated with new, and had a nonzero value otherwise. This allowed
you to perform different processing for dynamically allocated objects. This be­
havior is not supported in the current version of C++.

Assignment vs. Initialization
Consider the following two code fragments:

i nt i;

i = 3;

and

int i = 3;

In C, these two fragments have the same effect, and can be regarded as the same.
In C++, however, they are very different. In the first example, the integer i is
assigned a value. In the second example, it is initialized with a value.

The differences are as follows:

• An assignment occurs when the value of an existing object is changed; an ob­
ject can be assigned new values many times.

• An initialization occurs when an object is given an initial value when it is first
declared; an object can be initialized only once.

One way to illustrate the difference is to consider variables declared as const. A
constant variable can only be initialized; it cannot be assigned a new value. (Simi­
larly, references are initialized with a variable, but they cannot be assigned a new
variable.)

78 C++ Tutorial

This distinction becomes important when using objects. Consider the previous ex­
amples with the integers replaced by Stri ng objects. Here's an assignment:

String myString("this is my string" l;
String yourString;

yourString = myString; II Assign one String the value of another

Here's an initialization:

String myString("this is my string" l;
String yourString = myString; II Initialize one String with another

As previously described, the assignment statement causes the compiler to invoke
the operator= function defined for the class. However, the initialization does not
invoke the same function. The operator= function can only be called for an object
that has already been constructed. In the above example, yourStri ng is being con­
structed at the same time that it receives the value of another object. To construct
an object in this way, the compiler invokes a special constructor called the "copy
constructor. "

The Copy Constructor
A copy constructor is a constructor that takes an object of the same type as an argu­
ment. It is invoked whenever you initialize an object with the value of another. It
can be invoked with the = sign, as in the example above, or with function-call syn­
tax. For example, the initialization in the example above could be rewritten with
the following syntax:

String yourString(myString l;

This follows the traditional syntax for calling a constructor.

The way the Stri ng class is currently written, the compiler executes the above
statement by initializing each member of yourStri ng with the values of the mem­
bers of myStri ng. Just as with the default behavior during assignment, this is
generally undesirable when the class contains pointers as members. The result
of the above initialization is to give both yourStri ng and myStri ng the same
character buffer, which can cause errors when the objects are destroyed by the
destructor.

Classes and Dynamic Memory Allocation 79

The solution is to write your own copy constructor. The copy constructor for the
Stri ng class can be written as follows:

#include <iostream.h>
#include <string.h>

II ------- string class
class String
{

public:
String();
String(const char *s l;
String(char c, int n l;
String(const String &other l;

II etc ...
} ;

II ----------- Copy constructor
String::String(const String &other
{

length = other.length;
bUf = new char[length + 1];
strcpy(buf, other.buf l;

II Copy constructor

The implementation of the copy constructor is similar to that of the assignment
operator in that it allocates a new character buffer for the object being created.
Note that the copy constructor actually takes a reference to an object, instead-of an
object itself, as a parameter.

In general, there are only a few differences between copy constructors and assign­
ment operators:

• An assignment operator acts on an existing object, while a copy constructor
creates a new one. As a result, an assignment operator may have to delete the
memory originally allocated for the receiving object.

• An assignment operator must check against self-assignment. The copy construc­
tor doesn't have to, because self-initialization is impossible.

• To permit chained assignments, an assignment operator must return *this. Be­
cause it is a constructor, a copy constructor has no return value.

Passing and Returning Objects
There are two other situations besides ordinary declarations in which the copy con­
structor may be called:

• When a function takes an object as a parameter.

• When a function returns an object.

80 C++ Tutorial

The following example shows a function that takes an object as a parameter:

II Function that takes a String parameter
void consume(String parm)
{

II Use the parm object
}

void main()
{

String myString("here's my string");

consume(myString);
}

The function consume takes a Stri ng object passed by value. That means that the
function gets its own private copy of the object.

The function's parameter is initialized with the object that is passed as an argu­
ment. The compiler implicitly calls the copy constructor to perform this initializa­
tion. It does the equivalent of the following:

II Hypothetical initialization of parameter
String parm(myString); II Call copy constructor

Consider what happens if you don't define a copy constructor to handle initializa­
tion. As a result of the compiler's default initialization, the function's copy of the
object has the same character buffer as the caller's copy; any operations on
parm's buffer also modify myStri ng's buffer. More importantly, the parameter
has local scope, so the destructor is called to destroy it when the function finishes
executing. That means that myStri ng has a pointer to deleted memory, which
makes it unsafe to use after the function is done.

The following example shows a function that returns an object:

II Function that returns a String
String emit()
{

String retValue("here's a return value");

return retValue;
}

void main()
{

String yourString;

yourString = emit();
}

Classes and Dynamic Memory Allocation 81

The function em i t returns a S t r i n g object. The compiler calls the copy construc­
tor to initialize a hidden temporary object in the caller's scope, using the object
specified in the function's return statement.This hidden temporary object is then
used as the right-hand side ofthe assignment statement. That is, the compiler per­
forms the equivalent of the following:

II Hypothetical initialization of return value
String temp(retValue); II Call copy constructor
yourString = temp; II Assignment of temp object

Once again, a copy constructor is needed. Otherwise, the temporary object shares
the same character buffer as retVal ue, which is deleted when the function finishes
executing, and the subsequent assignment to yourStri ng is not guaranteed to
work.

As a rule, you should always define both a copy constructor and an assignment
operator whenever you write a class that contains pointer members and allocates
memory from the free store.

Passing and Returning References to Objects
There is some overhead involved in calling the copy constructor every time an ob­
ject is passed by value to a function. However, you can duplicate the effect of pass­
ing the parameter by value, while avoiding the expense of the constructor call, by
passing a reference to a constant object. For example:

void consume(const String &parm)
{

II Use the parm object
}

void main()
{

String myString("here's my string");

consume(myString);

The copy constructor is not called when a parameter is passed this way, because a
new object is not being constructed. Instead, a reference is initialized with the ob­
ject being passed. The compiler performs the equivalent of the following:

II Hypothetical initialization of reference parameter
const String &parm = myString; II Initialize reference

As a result, the function uses the same object as the caller.

82 C++ Tutorial

Notice that the const keyword is used. Because a reference to a constant is passed,
the function cannot modify the parameter, so the caller is guaranteed that the ob­
ject remains safe. Only const member functions (that is, read-only member func­
tions) can be invoked on the object.

Note that the copy constructor itself takes a reference to an object, rather than an
object, as its parameter. If the copy constructor took an object itself as a parame­
ter, it would have to call itself in order to initialize the parameter. This would
cause an infinite recursion.

Returning a reference from a function can also be more efficient than returning an
object. Recall the example of the operator= function:

String &String::operator=(const String &other)
{

I I . ..
return *this;

void main()
{

}

String myString("here's my string");
String yourString, herString;

herString = yourString = myString;

The copy constructor is not called when the function returns, because a temporary
object is not being created: only a temporary reference is created. When the
herString object receives the value ofthe yourString = myString assignment
statement, the compiler performs the equivalent of the following:

II Hypothetical initialization of reference return value
String &tempRef = yourString; II Initialize reference

II NOTE: yourString == *this
herString = tempRef; II Assignment of temp reference

II Equivalent to herString = yourString

However, you must use caution when returning a reference to objects or variables
other than *this. The rules for returning references are similar to those for return­
ing pointers. You cannot return a pointer to an automatic variable. For example:

II BAD TECHNIQUE: returning pointer to automatic variable
int *emitPtr()
{

i nt i;

return &i;
}

Classes and Dynamic Memory Allocation 83

The integer i is an automatic variable, so it goes out of scope at the end of the
function. That means the function returns a pointer to an integer which no longer
exists. It is unsafe for the calling program to use such a pointer.

The same restriction applies to references:

II BAD TECHNIQUE: returning reference to automatic variable
i nt &emi tRef ()
{

i nt i;

return i;

It is safe, however, to return a reference or a pointer to a variable that has been dy­
namically allocated. Dynamically allocated objects remain in existence until they
are deallocated, so references and pointers to them remain valid even after the
function has exited. You can also safely return references or pointers to static or
global variables.

More Features of Classes

This chapter describes the following additional features of classes:

• Static members

• Friend classes and functions

• Creating arrays of objects

• The _seLnew_handler function

• Writing your own new and delete operators

Static Members
Suppose you write a class Savi ngsAccount to represent savings accounts at a
bank. Each object represents a particular customer's account, and has data mem­
bers storing the customer's name and the account's current balance. The class also
has a member function to increase an account's balance by the interest earned in
one day.

In such a class, how would you represent the daily interest rate? The interest rate
may change, so it has to be a variable instead of a constant. You could make it a
member of the class, but then each object would have its own copy. This is not
only a waste of space, but it also requires you to update every single object each
time the interest rate changes, which is inefficient and could lead to
inconsistencies.

You could make the interest rate a global variable, but then every function would
be able to modify its value. What you want is a kind of global variable for an in­
dividual class. For such situations, C++ lets you declare a member of a class to be
static.

86 C++ Tutorial

Static Data Members
When a data member is declared static, only one copy of it is allocated, no matter
how many instances of the class are declared. However, it can be treated like an or­
dinary data member by the class's member functions. If it is declared private,
only the member functions can access it. For example, here's a declaration of a
Sa vi ngsAccount class that contains a static member called currentRate:

class SavingsAccount
{

public:
SavingsAccount();
void earnlnterest() { total += currentRate * total; }
/ / ...

private:

} ;

char name[30];
float total;
static float currentRate;
II ...

Only one copy of currentRate exists, and it is accessible to all Savi ngsAccount
objects. Whenever the earnlnterest member is called for any SavingsAccount
object, the same value of currentRate is used. This is illustrated in Figure 6.1.

name John Smi th name Mary Brown name Bill Shapiro

total 5000.0 total 10000.0 total 3000.0

current Rate 0.000154

Figure 6.1 A Static Data Member

You can declare a static member public, making it visible to the rest of the pro­
gram. You can then access it as if it were an ordinary data member of an object.

More Features of Classes 87

For example, if currentRate were a public member, you could access it as
follows:

II If currentRate were a public member
void main()
{

SavingsAccount myAccount;

myAccount.currentRate = 0.000154;

However, this syntax is misleading, because it implies that only the interest rate of
myAccount is being modified, when in fact the interest rate of all Sa vi ngsAccount
objects is being modified. A better way of referring to a static member is to prefix
its name with the class name and the scope resolution operator. For example:

II If currentRate were a public member
void main()
{

SavingsAccount: :currentRate 0.000154;

This syntax reflects the fact that the value being modified applies to the class as a
whole, rather than an individual object. You can use this syntax even if you
haven't declared any Savi ngsAccount objects; a static data member exists even if
no instances of the class are declared.

You cannot initialize a static data member from within a constructor of the class,
because the constructor may be called many times, and a variable can be initial­
ized only once. A static data member must be initialized at file scope, as if it were
a global variable. The access specifier for a static data member is not in effect
during initialization; private static members are initialized in the same way as pub­
lic ones. For example:

II SAVINGS.CPP
#include "savings.h"

II Initialize private static member at file scope
float SavingsAccount::currentRate = 0.0001;

SavingsAccount: :SavingsAccount()

I I ...
}

I I etc

Notice that the initialization is not placed in a header file, because that file may be
included more than once in a program. The initialization is placed in the source
module that contains the definitions of the class's member functions. Also note

88 C++ Tutorial

that the type of the static member is specified, because it is an initialization rather
than an assignment. The static member is being declared at that point, not inside
the class.

Static Member Functions
If you have a member function that accesses only the static data members of a
class, you can declare the function static as well. For example:

class SavingsAccount
{

public:
SavingsAccount();
void earnlnterest() { total += currentRate * total; }
static void setInterest(float newValue)

{ currentRate = newValue; }
I I . ..

private:

} ;

char name[30];
float total;
static float currentRate;
I I . ..

Static member functions can be called using the same syntax as that used for ac­
cessing static data members. That is:

II Calling a static member function
void main()
{

SavingsAccount myAccount;

myAccount.setInterest(0.000154);
SavingsAccount::setInterest(0.000154);

Since a static member function doesn't act on any particular instance of the class,
it has no this pointer. Consequently, a static member function cannot access any of
the class's nonstatic data members or call any nonstatic member functions, since
doing so would mean implicitly using the this pointer. For example, the function
set Interest cannot access the total data member; ifit could, which object's
value of tota 1 would it use?

Static members are useful for implementing common resources that all the objects
need, or maintaining state information about the objects. One use of static mem­
bers is to count how many instances of a class exist at any particular moment. This

Friends

Friend Classes

More Features of Classes 89

is done by incrementing a static member each time an object is created and
decrementing it each time an object is destroyed. For example:

class Airplane
{

public:
Airplane() { count++; }
static int howMany() { return count; }

~Ai rpl ane() { count--; }
private:

static int count;
} ;

II Initialize static member at file scope
int Airplane::count = 0;

By calling howMany, you can get the number of Ai rpl ane objects that exist at any
particular time.

As mentioned in Chapter 4, you should declare your class's data members
private, so that they're inaccessible to functions outside of the class. This lets you
change the implementation of a class without affecting the programs that use the
class.

Sometimes, however, you may find that two or more classes must work together
very closely-so closely that it's inefficient for them to use each other's access
functions. You may want one class to have direct access to another class's private
data. You can permit this by using the friend keyword.

In the following example, the class YourCl ass declares that the YourOtherCl ass
class is a friend. This permits member functions of YourOtherCl ass to directly
read or modify the private data of YourCl ass:

class YourClass
{

friend class YourOtherClass;
private:

int topSecret;
} ;

90 C++ Tutorial

class YourOtherClass
{

public:
void change(YourClass yc)

} ;

void YourOtherClass: :change(YourClass yc)

yc.topSecret++; II Can access private data

The friend declaration is not affected by the public or private keywords; you can
place it anywhere in the class's declaration.

Notice that the friend declaration appears in YourCl ass. When you write
You r C 1 ass, you specify those classes that you wish to have access to You r C 1 ass's

private data. Another programmer cannot write a class called Hi sCl ass and de­
clare it to be a friend in order to gain access. For example:

class HisClass
{

II Cannot declare itself to be a friend of YourClass
public:

void change(YourClass yc)
} ;

void HisClass::change(YourClass yc)
{

yc.topSecret++; II Error: can't access private data

Thus, you control who has access to the classes you write.

Notice that the friend keyword provides access in one direction only. While
YourOtherCl ass is a friend of YourCl ass, the reverse is not true. Friendship is not
mutual unless explicitly specified as such.

A list class demonstrates the usefulness of friend classes more realistically. Sup­
pose you want to maintain a list of names and phone numbers, and you want to be
able to specify someone's name and find his or her phone number. You could
write a class like the following:

#include <string.h>

struct Record
{

} ;

char name[30];
char number[10];

const int MAX LENGTH 100;

class PhoneList
{

friend class PhoneIter;
public:

PhoneList();
int add(const Record &newRec);
Record *search(char *searchKey);

private:
Record aray[MAXLENGTH];

More Features of Classes 91

int firstEmpty; II First unused element
} ;

PhoneList: :PhoneList()
{

firstEmpty = 0;

int PhoneList::add(const Record &newRec
{

if(firstEmpty < MAXLENGTH - 1)
{

aray[firstEmpty++] = newRec;
return 1; II Indicate success

else return 0;

Record *PhoneList::search(char *searchKey
{

}

fore int i = 0; i < firstEmpty; i++)
i f(! strcmp(aray[i]. name. searchKey)

return &aray[i];

return 0;

Each PhoneL i st object contains an array of Record structures. You can add new
entries and search through the existing entries by specifying a name. You can cre­
ate as many PhoneL i st objects as you need for storing separate lists of names.

Now suppose you want to examine each of the entries stored in a PhoneL i st ob­
ject, one by one; that is, you want to "iterate" through all the entries. One way to
do this is to write an iterator class that is a friend of the PhoneL i st class.

92 C++ Tutorial

Here's the friend class Phone Iter:

cl ass Phone Iter
{
public:

PhoneIter(PhoneList &m);
Record *getFirst();
Record *getLast();
Record *getNext();
Record *getPrev();

private:

} ;

PhoneList *const mine;
int currIndex;

II Pointer to a PhoneList object

Phonelter::PhoneIter(canst PhoneList &m)
: mine(&m) II Initialize the constant member

currIndex = 0;

Record *PhoneIter: :getFirst()
{

currIndex = 0;
return &(mine->aray[currIndex]);

Record *PhoneIter::getLast()
{

currIndex = mine->firstEmpty - 1;
return &(mine->aray[currIndex]);

Record *PhoneIter::getNext()
{

if(currIndex < mine->firstEmpty - 1)
{

currIndex++;
return &(mine->aray[currIndex]);

else return 0;

Record *Phonelter: :getPrev()
{

if(currIndex > 0
{

currIndex--;
return &(mine->aray[currIndex]);

else return 0;

More Features of Classes 93

When you declare a Phonelter object, you initialize it with a PhoneL i st object.
The Phonelter object stores your current position within the list. Here's a func­
tion that demonstrates the use of a Phone Iter object:

void printList(PhoneList aList)
{

Record *each;
Phonelter anlter(aList);

each = anlter.getFirst();
cout « each->name « ' , « each->number « '\n';
while(each = anlter.getNext())
{

cout « each->name « ' , « each->number « '\n';

By calling the get Next and getprev member functions, you can move the cur­
rent position forward or back, reading the elements in the list at the same time.
With the getFi rst and getLast functions, you can start at either end of the list.

The Phone Iter class is useful because you can declare several iterator objects for
a particular PhoneL i st class. Thus you can maintain several current positions
within the list, like bookmarks, and you can move each one back and forth inde­
pendently. This type of functionality is cumbersome to implement using only
member functions.

An important characteristic of the Phon eLi s t class is that users of the class don't
know that it's implemented with an array. You could replace the array with a
doubly-linked list without affecting the class's interface. You would have to re­
write the add function to append a new node to the linked list, and rewrite the
search function to traverse the list, but the prototypes of those functions would re­
main the same as they are now. Programs that call the add and search functions
don't have to be modified at all.

If you were to rewrite the Ph 0 n eLi s t class in this way, you would also have to re­
write the Phone I ter class. Instead of containing the index of the current element,
each Phone Iter object would contain a pointer to the current node. However, the
available operations would not change; the class's interface would remain the
same. (Together, the PhoneL i st and Phone Iter classes form an "abstract" phone
list, which is defined only by its operations, not by its internal workings. Abstrac­
tion is discussed in Chapter 9, "Fundamentals of Object-Oriented Design.")

When you use the friend mechanism in C++, you are no longer writing a class that
stands alone; you are writing two or more classes that are always used together. If
you rewrite one class, you must also rewrite the other(s). You should therefore use
the friend mechanism very sparingly; otherwise you may have to rewrite large
amounts of code whenever you change one class.

94 C++ Tutorial

Friend Functions
You can also declare a single function with the friend keyword, instead of an en­
tire class. For example:

class YourClass
{

friend void YourFunction(YourClass yc);
private:

int topSecret;
} ;

void YourFunction(YourClass yc)
{

yc.topSecret++; II Modify private data

Friend functions are often used for operator overloading. See Chapter 8, "Operator
Overloading and Conversion Functions," for more information.

Arrays of Class Objects
You can declare arrays of objects in the same way that you can declare arrays of
any other data type. For example:

Date birthdays[10];

When you declare an array of objects, the constructor is called for each element in
the array. If you want to be able to declare arrays without initializing them, the
class must have a default constructor (that is, one that can be called without argu­
ments). In the above example, the default Date constructor is called, initializing
each element in the array to January 1,1.

You can also provide initializers for each element in the array by explicitly calling
the constructor with arguments. If you don't provide enough initializers for the en­
tire array, the default constructor is called for the remaining elements. For
example:

Date birthdays[10] = { Date(2, 10, 1950),
Date(9, 16, 1960),
Date(7, 31, 1953),
Date(1, 3, 1970),
Date(12, 2, 1963) };

More Features of Classes 95

The above example calls the Date constructor that takes three parameters for the
first five elements of the array, and the default constructor for the remaining five
elements.

Notice the syntax for calling a constructor explicitly. Unlike the usual syntax
which declares an object and initializes it, this syntax creates an object with a par­
ticular value directly. This is analogous to specifying the integer constant 123 in­
stead of declaring an integer variable and initializing it.

If the class has a constructor that takes only one argument, you can specify just the
argument as the initializer for an element. You can also mix different styles of in­
itializer. For example:

Stri ng message[10] = { "Fi rst 1 i ne of message\n",
"Second line of message\n",
Stri ng("Thi rd 1 i ne of message\n"),
String('-',25),
String() };

In the above example, the single-parameter constructor is called for the first three
elements of the array, implicitly for the first two elements, and explicitly for the
third. The two-parameter constructor is called explicitly for the fourth element.
The default constructor is called explicitly for the fifth element, and implicitly for
the remaining five elements.

The Free Store and Class Arrays
You can also use the new operator to dynamically allocate arrays of objects. For
example:

String *text;

text = new String[5];

There is no way to provide initializers for the elements of an array allocated with
new. The default constructor is called for each element in the array.

96 C++ Tutorial

When you deallocate an array of objects with delete, you must specify a pair of
empty brackets to indicate that an array is being deleted. The consequences of
using the wrong syntax are serious. For example:

delete text; II Incorrect syntax for deleting array

When the above statement is executed, the compiler treats text as a pointer to a
Stri ng, so it calls the destructor for the object *text, and then it deallocates the
space pointed to by text. However, text points to an entire array, not just a
single object. The destructor is called only for text [0], not for the text[1]
through text [4]. As a result, the character buffers allocated for those four
St ri ng objects are never deallocated. This is illustrated in Figure 6.2.

If you use the correct syntax for deleting arrays, the destructor is called properly.
For example:

delete [] text;

This syntax tells the compiler that text points to an array. The compiler looks up
the size of the array, which was stored when the array was first allocated with
new. Then the compiler calls the destructor for all the elements in the array, from
text[0] to text[4]. The destructor deallocates the buffer for each ofthe objects
in turn, and then the compiler deallocates the space pointed to by text. This is il­
lustrated in Figure 6.3.

In earlier versions of C++, you had to specify the size of the array within the brack­
ets when you called delete, and errors resulted if you specified a different size
than that used in the call to new. In the latest version of C++, the compiler stores
the sizes of all arrays allocated with new and ignores any number you specify
when calling delete.

Steps taken during del ete text;

before deletion

text G--... ·

call -5 t ri ng for *text

text G ·

deallocate *text

text G ·

4 3

4 3

5 4 4

4 , -
I

5 4 4

4 T -
I

More Features of Classes 97

I I I

I I

I I

I I

Figure 6.2 Incorrect Behavior for Deleting an Array

98 C++ Tutorial

Steps taken during de 1 ete [] text;

before deletion

text G---~ 4 3 5 4 4

4 , , -
L=:

call ~stri ng for text[0] through text[4]

text G ~

deallocate Hext

text Gr----

4 ,
I

Figure 6.3 Correct Behavior for Deleting an Array

I I

More Features of Classes 99

If you're using a class that has no destructor, it is possible, although inadvisable,
to delete an array of objects without specifying the []. For example, since the
Date class has no destructor, the following example works:

II BAD TECHNIQUE: deleting array of objects without [J
II for a class that has no destructor
Date *appointments;

appointments = new Date[10];
II Use the array
delete appointments; II Same as delete [J appointments;

In this case, the compiler notices that the Date class doesn't have a destructor, so
it immediately deallocates the space pointed to by appoi ntments. Because the
Date objects have no buffers attached to them, no problems result from the lack of
the destructor calls.

However, you should always use the [] syntax when deleting arrays, even for
classes that have no destructors. The reason is that a class may be reimplemented
later on, and the new implementation could perform dynamic memory allocation
and require a destructor. (For example, you might implement a class using an
array, and then switch to a linked list later. The first version doesn't require a de­
structor, but the second version does.) If your programs assume that the class
doesn't have a destructor, they might have to be modified later on. By consistently
using the [] syntax whenever you delete arrays, you ensure that your programs
work properly no matter how the class is implemented.

Advanced Free Store Techniques
c++ gives you much more control over dynamic allocation of memory than C
does. The following sections describe ways you can customize the memory alloca­
tion in your program.

The seCnew_handler Function
The C function malloc returns NULL when it cannot allocate the requested
amount of memory. When programming in C, it is good practice to check for a
NULL return value every time you call malloc. This way your program can exit
gracefully instead of crashing as a result of trying to dereference a NULL pointer.

Similarly, the new operator returns 0 when it cannot allocate the requested
amount of memory. Just as in C, you can check for a 0 return value every time you
call new. However, C++ provides a more convenient alternative in the
_seLnew_handlerfunction (declared in the include file NEW.H).

100 C++ Tutorial

The _seLnew_handler function takes a function pointer as an argument. This
pointer must point to an error-handling function that you write. By calling
_seLnew_handler, you install this function as the error-handler for the free
store. When new cannot allocate the memory requested, it checks to see if an error­
handler has been installed. Ifno error-handler is installed (which is the default),
new returns o. If you have installed an error-handler, new calls it.

You can write a simple error-handling function that prints an error message and
exits the program. For example:

II Free store exhaustion and the set_new_handler function
#include <iostream.h>
#include <stdlib.h>
#include <new.h>

int all_gone(size_t size
{

cerr « "\n\aThe free store is empty\n";
ex it (1);
return 0;

void main()
{

set_new_handler(all_gone);
long total = 0;
while(1)
{

char *gobble = new char[10000];
total += 10000;
cout « "Got 10000 for a total of " « total « '\n';

This example executes a loop that consumes memory and displays the total
amount of memory currently allocated. When new cannot allocate any more mem­
ory, it calls the a 11_ gone function, which prints an error message and exits. Note
that the a 11_ go n e function takes a parameter of type size_ t, which represents the
size of the block requested when new failed, and that it returns an integer. Any
error-handling function you write must have this parameter and return type.

The above example might print the following messages, depending on how much
memory is available:

Got 10000 for a total of 10000
Got 10000 for a total of 20000
Got 10000 for a total of 30000
Got 10000 for a total of 40000
Got 10000 for a total of 50000
The free store is empty

More Features of Classes 101

An error-handling function like this removes the need for you to check the return
value of new every time you call it. You can write code to handle the possibility of
memory exhaustion in just one place, rather than throughout your program.

Overloading the new and delete Operators
c++ lets you redefine the behavior of the new and delete operators if you want to
perform customized memory management. For example, suppose you want new to
initialize the contents of a memory block to zero before returning it. You can im­
plement this by writing special functions named operator new and operator
delete. For example:

II Customized new and delete
#include <iostream.h>
#include <stdlib.h>
#include <stddef.h>

II ------------- Overloaded new operator
void *operator new(size_t size)
{

void *rtn = calloc(I, size);
return rtn;

}

II ----------- Overloaded delete operator
void operator delete(void *ptr)
{

free(ptr);

void main()
{

}

II Allocate a zero-filled array
int *ip = new int[10];
II Display the array
for(int i = 0; i < 10; i++

cout « " " « ip[i];
II Release the memory
delete [] ip;

Note that the new operator takes an parameter of type size_ t. This parameter
holds the size of the object being allocated, and the compiler automatically sets its
value whenever you use new. Also note that the new operator returns a void
pointer. Any new operator you write must have this parameter and return type.

In this particular example, new calls the standard C function calloc to allocate
memory and initialize it to zero.

102 C++ Tutorial

The delete operator takes a void pointer as a parameter. This parameter points to
the block to be deallocated. Also note that the delete operator has a void return
type. Any delete operator you write must have this parameter and return type.

In this example, delete simply calls the standard C function free to deallocate the
memory.

Redefining new to initialize memory this way does not eliminate the call to a
class's constructor when you dynamically allocate an object. Thus, if you allocate
a Date object using your version of new, the Date constructor is still called to ini­
tialize the object after the new operator returns the block of memory.

You can also redefine new to take additional parameters. The following example
defines a new operator that fills memory with the character specified when you al­
locate memory.

II new and delete with character fill
#include <iostream.h>
#include <stdlib.h>
#include <string.h>
#include <stddef.h>

II ------------- Overloaded new operator
void *operator new(size_t size, int filler
{

}

void *rtn;
if((rtn = malloc(size » != NULL

memset(rtn, filler, size);
return rtn;

II ----------- Overloaded delete operator
void operator delete(void *ptr)
{

free(ptr);
}

void main()
{

II Allocate an asterisk-filled array
char *cp = new('*') char[10];
II Display the array
for(int i = 0; i < 10; i++

cout « " " « cp[i];
II Release the memory
delete [] cp;

More Features of Classes 103

Notice that when you call this version of new, you specify the additional argument
in parentheses.

For information about the behavior of new, delete, and seLnew_handler in
mixed-model programs, see Chapter 5, "Managing Memory in C++," in Program­
ming Techniques.

Class-Specific new and delete Operators
You can also write versions of the new and delete operators that are specific to a
particular class. This lets you perform memory management that is customized for
a class's individual characteristics.

For example, you might know that there will never be more than a certain small
number of instances of a class at anyone time, but they'll be allocated and deallo­
cated frequently. You can use this information to write class-specific versions of
new and delete that work faster than the global version. You can declare an array
large enough to hold all the instances of the class, and then have new and delete
manage the array.

To write class-specific new and delete operators, you declare member functions
named operator new and operator delete. These operators take precedence over
the global new and delete operators, in the same way that any member function
takes precedence over a global function with the same name. These operators are
called whenever you dynamically allocate objects of that class. For example:

II Class-specific new and delete operators
#include <iostream.h>
#include <string.h>
#include <stddef.h>

const int MAX NAMES 100;

class Name
{

public:
Name(const char *s) { strncpy(name, s, 25); }
void display() const { cout « '\n' « name; }
void *operator new(size_t size);
void operator delete(void *ptr);
-Name() {}; II do-nothing destructor

private:
char name[25];

} ;

104 C++ Tutorial

II -------- Simple memory pool to handle fixed number of Names
char pool [MAXNAMES] [sizeof(Name)];
int inuse[MAXNAMES];

II -------- Overloaded new operator for the Name class
void *Name: :operator newt size_t size)
{

fore int p ;;; 0;
if(linuse[p])
{

Y'\ / M II V f\1 A M C C'. n...J.....J.. f.J " j'IMAIV""\I'ILJ, ...,' I

inuse[p] = 1;
return pool + p;

return 0;

II --------- Overloaded delete operator for the Names class
void Name::operator delete(void *ptr)
{

inuse[((char *)ptr - pool[0]) I sizeof(Name)] 0;

void main()
{

Name *directory[MAXNAMES];
char name[25];

fort int i = 0; i < MAXNAMES; i++)
{

cout « "\nEnter name if " « i+1 « ". ";
cin » name;
directory[i] = new Name(name);

fort i = 0; i < MAXNAMES; i++
{

directory[i]->display();
delete directory[i];

This program declares a global array called pool that can store all the Name ob­
jects expected. There is also an associated integer array called i nuse, which
contains true/false flags that indicate whether the corresponding entry in the pool
is in use.

When the statement di rectory[i] = new Name(name) is executed, the compiler
calls the class's new operator. The new operator finds an unused entry in pool,
marks it as used, and returns its address. Then the compiler calls Name's construc­
tor, which uses that memory and initializes it with a character string. Finally, a
pointer to the resulting object is assigned to an entry in di rectory.

More Features of Classes 105

When the statement del ete di rectory[i] is executed, the compiler calls Name's
destructor. In this example, the destructor does nothing; it is defined only as a
placeholder. Then the compiler calls the class's delete operator. The delete opera­
tor finds the specified object's location in the array and marks it as unused, so the
space is available for subsequent allocations.

Note that new is called before the constructor, and that delete is called after the de­
structor. The following example illustrates this more clearly by printing messages
when each function is called:

II Class-specific new and delete operators with constructor, destructor
#include <iostream.h>
#include <malloc.h>

class Name
{

public:
Name() {cout« "\nName's constructor running"; }
void *operator new(size_t size);
void operator delete(void *ptr);
-Name() { cout « "\nName's destructor running"; }

private:
char name[25];

} ;

II -------- Simple memory pool to handle one Name
char pool[sizeof(Name)];

II -------- Overloaded new operator for the Name class
void *Name::operator new(size_t)
{

cout « "\nName's new running";
return pool;

}

II --------- Overloaded delete operator for the Name class
void Name::operator delete(void *p)
{

cout « "\nName's delete running";
}

void main()
{

}

cout « "\nExecuting: nm = new Name";
Name *nm = new Name;
cout « "\nExecuting: delete nm";
delete nm;

106 C++ Tutorial

The following example does nothing with the class except display the following
messages as the various functions execute:

Executing: nm = new Name
Name's new running
Name's constructor running
Executing: delete nm
Name's destructor running
Name's delete running

One consequence of the order in which new and delete are called is that they are
static member functions, even if they are not declared with the static keyword.
This is because the new operator is called before the class's constructor is called;
the object does not exist yet, so it would be meaningless for new to access any of
its members. Similarly, the delete operator is called after the destructor is called,
and the object no longer exists. To prevent new and delete from accessing any
nonstatic members, the operators are always considered static member functions.

The class-specific new and delete operators are not called when you allocate or
deallocate an array of objects; instead the global new and delete are called for
array allocations. You can explicitly call the global versions of the operators
when you allocate a single object by using the scope resolution operator (::). For
example:

Name *nm = ::new Name; II Use global new

If you have also redefined the global new operator, this syntax calls your version
of the operator. The same syntax works for delete.

Inheritance and Polymorphism

Besides making it easy for you to define new data types, C++ also lets you express
relationships between those types. This is done with two ofC++'s features: the
first is "inheritance," which lets you define one type to be a subcategory of
another. The second is "polymorphism," which lets you use related types together.

This chapter describes the mechanics of inheritance and polymorphism. In Part 3,
"Object-Oriented Design," you'll see how these features playa role when you de­
sign a program.

This chapter covers the following topics:

• Base and derived classes

• Redefining members of a base class

• Conversions between base and derived classes

• Virtual functions and late binding

• Abstract classes

• The protected keyword

Before describing in detail C++'s features for handling related types, let's consider
how you might do so in C.

Handling Related Types in C
Suppose you need a program that maintains a database of all the employees in a
company. The company has several different types of employee: regular em­
ployees, salespersons, managers, temporary employees, etc., and your program
must be able to handle all of them.

If you're writing this program in C, you could define a structure type called
emp 1 oyee that has fields for the name, birthdate, social security number, and other
characteristics. However, each type of employee requires slightly different infor-

108 C++ Tutorial

mation. For example, a regular employee's salary is based on an hourly wage and
the number of hours worked, while a salesperson's salary also includes a commis­
sion on the number of sales made, and a manager's salary is a fixed amount per
week.

It's difficult to find a way to represent the information about each employee. You
could define a different structure type for each type of employee, but then you
couldn't write a function that worked on any kind of employee; you couldn't pass
a manager structure to a function expecting an employee structure. Another possi­
bility is to include all the possible fields in the emp 1 oyee structure type, but that
would be a waste of space, since several fields would be empty for any given
employee.

One solution in C is to define a structure that contains a union. For example:

1* Example of implementing related types in C *1

struct wage_pay
{

} ;

float wage;
float hrs;

struct sales_pay
{

} ;

float wage;
float hrs;
float commission;
float sales_made;

struct mgr_pay
{

float weekly_salary;
} ;

enum WAGE_EMPLOYEE, SALESPERSON, MANAGER} EMPLOYEE_TYPE;

struct employee
{

} ;

char name[30];
EMPLOYEE_TYPE type;
union
{

} ;

struct wage_pay worker;
struct sales_pay seller;
struct mgr_pay mgr;

II Anonymous union

Inheritance and Polymorphism 109

The emp 1 oyee structure contains a union of the various salary structures. The pro­
gram uses the type field to indicate the type of employee and to keep track of
which form of salary is stored in the union.

Now consider how you would compute the salary of an employee. You might
write a function that looks like this:

1* Example of type-specific processing in C *1

float compute_pay(struct employee *emp)
{

switch(emp->type)
{

case WAGE_EMPLOYEE:
return emp->worker.hrs * emp->worker.wage;
break;

case SALESPERSON:
return emp->seller.hrs * emp->seller.wage +

emp->seller.commissions * emp->seller.sales_made;
break;

case MANAGER:

II
} ;

return emp->mgr.weekly_salary;
break;

This function uses the value of the type field to determine how it accesses the
contents of the union. This way the function can perform a different salary com­
putation for each type of employee.

Salary computation is only one example of a task that is different for each type of
employee. The employee-database program might use unions and switch state­
ments for a wide variety of tasks, such as health plan management or vacation
computation.

These switch statements have a couple of disadvantages:

• They can be difficult to read, especially if there is common processing for two
or more types. It's also difficult to isolate the code that describes a particular
type; for example, the code to handle the Sa 1 esPerson class is spread
throughout the program.

• They are difficult to maintain. If you add a new type of employee, you have to
add a new case statement that handles that type to every switch statement in the
program. This makes updating the program error-prone, since it's possible to
overlook a switch statement somewhere. In addition, every time you modify
the code that handles one type, you must recompile the code that handles all the
other types. This can be time-consuming when you're testing code for a new
type of employee.

110 C++ Tutorial

There are other ways to write this program in C, but they require much more pro­
gramming effort. C doesn't provide an easy and maintainable way to express rela­
tions among multiple user-defined types. One of the goals in designing C++ was
to remedy C's weakness in this area.

Handling Related Types in C++
Suppose you're writing the employee-database program in C++. First, define a
class called Emp 1 oyee that describes the common characteristics of all employees.
For example:

class Employee
{

publ i c:
Employee();
Employee(const char *nm);
char *getName() const;

private:
char name[30];

} ;

For simplicity, this Employee class stores only a name, though it could store many
other characteristics as well, such as a birthdate, a social-security number, and an
address.

Next, you can define a WageEmployee class that describes a particular type of em­
ployee: those who are paid by the hour. These employees have the characteristics
common to all employees, plus some additional ones.

There are two ways you can use Employee when you define the WageEmployee

class. One way is to give WageEmployee an Employee object as a data member.
However, that doesn't properly describe the relationship between the two types. A
wage-earning employee doesn't contain a generic employee; rather, a wage­
earning employee is a special type of employee.

The second possibility is inheritance, which makes one class a special type of
another. You can make WageEmployee inherit from Employee with the following
syntax:

class WageEmployee
{

public:

public Employee

WageEmployee(const char *nm);
void setWage(float wg);
void setHours(float hrs);

private:

} ;

fl oat wage;
float hours;

Inheritance and Polymorphism 111

WageEmployee is a "derived class," and Employee is its "base class." To declare a
derived class, you follow its name with a colon and the keyword public, followed
by the name of its base class (you can also use the keyword private; this is de­
scribed in the section "Public and Private Base Classes" on page 131). In the decla­
ration ofthe derived class, you declare the members that are specific to it; that is,
you describe the additional qualities that distinguish it from the base class.

Each instance of WageEmployee contains all of Employee's data members, in addi­
tion to its own. You can call any of Employee's or WageEmpl oyee's member func­
tions for a WageEmployee object. For example:

WageEmployee aWorker("Bi 11 Shapi ro");
char *str;

aWorker.setHours(40.0);
str = aWorker.getName();

II call WageEmployee: :setHours
II call Employee::getname

Figure 7.1 illustrates the members contained in Employee and WageEmp 1 oyee.

Employee

name I John Smith I

WageEmployee

name John Smi th

wage 8.0

hours 40.0

Figure 7.1 Data Members in Base and Derived Classes

The member functions of a derived class do not have access to the private mem­
bers of its base class. For example, the member functions of WageEmpl oyee cannot

112 C++ Tutorial

access the private members of its base class Employee. For example, suppose you
write the following function:

void WageEmployee: :printName() const
{

cout « "Worker's name: "
« name « '\n'; II Error: name is private

II member of Employee

Since name is one of the private members of the base class, it is inaccessible to
any member function of WageEmp 1 oyee.

This restriction may seem surprising. After all, if a WageEmployee is a kind of
Emp 1 oyee, why shouldn't it have access to its own Emp 1 oyee characteristics? This
restriction is designed to enforce encapsulation. If a derived class had access to its
base class's private data, then anyone could access the private data of a class by
simply deriving a new class from it. The point of making data private is to prevent
programmers who use your class from writing code that depends on its implemen­
tation details, and this includes programmers who write derived classes. If the orig­
inal class's implementation were changed, every class that derived from it would
have to be rewritten as well.

Consequently, a derived class must use the base class's public interface, just like
any other user of the class. You could rewrite the previous example as follows:

void WageEmployee::printName() const
{

cout « "Worker's name: "
« getName() « '\n'; II Call Employee::getName

This function uses Employee's public interface to get the information it needs.

To make this C++ example more like the employee example in C, you can also de­
fine classes that describe salespersons and managers. Since salespersons are a kind
of wage-earning employee, you can derive the Sa 1 es Person class from the
WageEmployee class.

class SalesPerson
{

public WageEmployee

public:
SalesPerson(const char *nm);
void setCommission(float comm);
void setSales(float sales);

private:

} ;

float commission;
float salesMade;

Inheritance and Polymorphism 113

A SalesPerson object contains all the data members defined by Employee and
WageEmpl oyee, as well as the ones defined by Sal esPerson. Similarly, you can call
any of the member functions defined in these three classes for a Sal esPerson ob­
ject. (The Employee class is considered an "indirect" base class of Sa 1 es Person,
while the WageEmployee class is a "direct" base class of Sal eSPerson.)

Notice that this declaration means that WageEmp 1 oyee is both a derived class and a
base class. It derives from the Emp 1 oyee class and serves as the base for the
Sa 1 es Pe rson class. You can define as many levels of inheritance as you want.

Managers are a type of employee who receive a fixed salary. Accordingly, you can
derive the Manager class from Employee, as follows:

class Manager: public Employee
{

public:
Manager(const char *nm);
void setSalary(float salary);

private:
float weeklySalary;

} ;

The inheritance relationships among all of these classes are shown in Figure 7.2.
This figure illustrates a "class hierarchy," or a group of user-defined types organ­
ized according to their relationship to one another. The class at the top represents
the most general type, and the classes at the bottom represent the more specialized
types. As you'll learn in Part 3, "Object-Oriented Design," designing an appro­
priate class hierarchy is one of the most important steps in writing an object­
oriented program.

Manager

Salesperson

Figure 7.2 Employee Class Hierarchy

114 C++ Tutorial

Notice that Employee acts as a base class for more than one class (WageEmpl oyee
and Manager). Any number of derived classes can inherit from a given base class.

Also notice that the Manager class shares members only with Employee. It doesn't
have any of the members defined by WageEmployee or SalesPerson.

Redefining Members of the Base Class
Now consider how to compute the weekly pay of the various types of employees.
You can define a member function for WageEmployee called computePay. For
example:

float WageEmployee::computePay() const
{

return wage * hours;

You can also give the Sal esPerson class a computePay member function,just
like its base class. As mentioned above, this function cannot access any private
members of WageEmp 1 oyee, so the following function generates an error:

float SalesPerson: :computePay() const
{

return hours * wage +
commission * salesMade;

II Error: hours and
II wages are private

You must call a public member function of the base class. The following im­
plementation calls such a function, but it does not work either:

float SalesPerson::computePay() const
{

return computePay() + II Bad recursive call
commission * salesMade;

The compiler assumes that computePay refers to Sal eSPerson's version of the
function. This results in infinite recursion. You must use the scope resolution oper­
ator (::) to specify the base class's version of the function. For example:

float SalesPerson::computePay() const
{

II Call base class's version of computePay
return WageEmployee: :computePay() +

commission * salesMade;

Inheritance and Polymorphism 115

This technique is commonly used when redefining a member function in a derived
class. The derived class's version calls the base class's version and then performs
any additional operations needed.

When you call a redefined member function for an object of a derived class, the
derived class's version of the function is used. For example, when using a
Sal esPerson object, any call to computePay invokes Sal esPerson's version of
the function. For example:

Sal esPerson aSell er("John Smith");

aSeller.setHours(40.0);
aSeller.setWage(6.0);
aSeller.setCommission(0.05);
aSeller.setSales(2000.0);
II Call Sal esPerson:: computePay
cout« "Seller salary: "

« aSeller.computePay() « '\n';

Within this class, the compute Pay function defaults to the definition in the
Sa 1 es Person class. Again, to call the base class's version of the function, you
must use the scope resolution operator. For example:

cout « "Sell er base sal ary: "
« aSeller.WageEmployee::computePay() « '\n';

You can also give the Manager class a computePay member function:

float Manager: :computePay() const
{

return weeklySalary;

This function involves no redefining of the similarly-named functions in
WageEmployee or Sal esPerson, because neither of those classes are derived or
base classes of Manager.

Derived Class Constructors
An instance of a derived class contains all the members of the base class, and all
of those members must be initialized. Consequently, the base class's constructor
has to be called by the derived class's constructor. When you write the constructor
for a derived class, you must specify a "base initializer," using syntax similar to

116 C++ Tutorial

that of the member initializer list for constructing member objects. Place a colon
after the argument list ofthe derived class's constructor, and follow it with the
name of the base class and an argument list. For example:

II Constructor function for WageEmployee
WageEmployee::WageEmployee(const char *nm)

: Employee(nm)

wage = 0.0;
hours = 0.0;

II Constructor function for SalesPerson
SalesPerson: :SalesPerson(const char *nm

: WageEmployee(nm)

}

commission = 0.0;
salesMade = 0.0;

II Constructor function for Manager
Manager::Manager(const char *nm)

: Employee(nm)

weeklySalary = 0.0;

When you declare an object of a derived class, the compiler executes the construc­
tor for the base class first, and then executes the constructor for the derived class.
(If the derived class contains member objects, their constructors are executed after
the base class's constructor, but before the derived class's constructor.)

You can omit the base initializer if the base class has a default constructor. As
with member objects, however, you should use the base initializer syntax rather
than perform redundant initialization.

You can specify both a member initializer list and a base initializer if you're defin­
ing a derived class that also has member objects. However, you cannot define
member initializers for member objects defined in the base class, since that would
permit multiple initializations.

Conversions between Base and Derived Classes
Since a salesperson is a kind of wage-earning employee, it makes sense to be able
to use a Sal esPerson object whenever an WageEmployee object is needed. To sup­
port this relationship, c++ lets you implicitly convert an instance of a derived
class into an instance of a base class. For example:

Inheritance and Polymorphism 117

WageEmployee aWorker;
SalesPerson aSeller("John Smith" l;

aWorker = aSeller; II Convert SalesPerson to WageEmployee
II derived => base

All the members of the Sal esPerson object receive the values of the correspond­
ing members in the WageEmployee object. However, the reverse assignment is not
legal:

aSeller = aWorker; II Error; cannot convert

Since Sal esPerson has members that WageEmployee doesn't, their values would
be undefined after such an assignment. This restriction follows the conceptual rela­
tionship between the types of employee: a worker is not necessarily a salesperson.

You can also implicitly convert a pointer to a derived class object into a pointer to
a base class object. For example:

Employee *empPtr;
WageEmployee aWorker("Bill Shapiro" l;
SalesPerson aSeller("John Smith" l;
Manager aBoss("Mary Brown" l;

empPtr
empPtr
empPtr

&aWorker;
&aSell er;
&aBoss;

II Convert WageEmployee * to Employee *
II Convert SalesPerson * to Employee *
II Convert Manager * to Employee *

You can use a pointer to an Employee to point to a WageEmployee object, a
Sal esPerson object, or a Manager object.

When you refer to an object through a pointer, the type of the pointer determines
which member functions you can call. If you refer to a derived class object with a
base class pointer, you can call only the functions defined by the base class. For
example:

SalesPerson aSeller("John Smith" l;
SalesPerson *salePtr;
WageEmployee *wagePtr;

salePtr &aSeller;
wagePtr &aSeller;

wagePtr->setHours(40.0 l;
salePtr->setWage(6.0 l;
wagePtr->setSales(1000.0 l;

salePtr->setSales(1000.0 l;
salePtr->setCommission(0.05 l;

II Call WageEmployee::setHours
II Call WageEmployee::setWage
II
II
II
II

Error;
no WageEmployee::setSales

Call SalesPerson::setSales
Call SalesPerson::setCommission

118 C++ Tutorial

Both wagePtr and salePtr point to a single SalesPerson object. You cannot
call setSal es through wagePtr, because WageEmployee doesn't define that mem­
ber function. You have to use sal e Pt r to call the member functions that
Sal esPerson defines.

If you call a member function that is defined by both the base class and the derived
class, the function that is called depends on the type of the pointer. For example:

float base, total;

base = wagePtr->computePay();
total = salePtr->computePay();

II Call WageEmployee::computePay
II Call SalesPerson::computePay

When you use wagePtr, you call the version defined by WageEmpl oyee. When you
use sal ePtr, you call the version defined by Sal esPerson.

To perform the reverse conversion (that is, from a pointer to a base class to a
pointer to a derived class), you must use an explicit cast.

WageEmployee *wagePtr = &aSeller;
SalesPerson *salePtr;

salePtr = (SalesPerson *)wagePtr; II Explicit cast required
II base => derived

This conversion is dangerous, because you can't be sure what type of object the
base class pointer points to. Suppose empPtr points to something other than a
Sa 1 es Person object:

Employee *empPtr = &aWorker;
SalesPerson *salePtr;

salePtr = (SalesPerson *)empPtr;
salePtr->setCommission(0.05);

II Legal, but incorrect
II Error: aWorker has no
II setCommission member

This can cause your program to crash. Accordingly, you should be extremely care­
ful when converting a base class pointer to a derived class pointer.

Collections Using Base Class Pointers
The conversion from a derived class pointer to a base class pointer is very useful.
For example, if you have a function that expects a pointer to an Emp 1 oyee as a par­
ameter, you can pass this function a pointer to any type of employee.

Inheritance and Polymorphism 119

One application of this is to maintain a collection of employees. You could write
an Emp 1 oyee Lis t class that maintains a linked list, each node holding a pointer to
an Employee object. For example:

class EmployeeList
{

public:
EmployeeList();
add(Employee *newEmp);
II ...

private:
I I ...

} ;

Using the add function, you can insert any type of employee into an
Empl oyeeL i st object:

EmployeeList myDept;
WageEmployee *wagePtr;
SalesPerson *salePtr;
Manager *mgrPtr;

II Allocate new objects
wagePtr = new WageEmployee("Bill Shapiro");
salePtr = new SalesPerson("John Smith");
mgrPtr = new Manager("Mary Brown");
II Add them to the list
myDept.add(wagePtr);
myDept.add(salePtr);
myDept.add(mgrPtr);

Once you have a list of employees, you can manipulate its contents using the
Emp 1 oyee class's interface, even though it contains all different types of em­
ployees. For example, you can define an iterator class called Emp I te r (like the
one described in Chapter 6), which can return each element of an Emp 1 oyee Lis t.
Then you can print a list of all the employees' names as follows:

void printNames(EmployeeList &dept)
{

}

int count = 0;
Employee *person;
Emplter anlter(dept); II Iterator object

while(person = anlter.getNext())
{

count++;
cout « count « ' ,

« person->getName() « '\n';

120 C++ Tutorial

This function iterates through all the elements in the Empl oyeeL i st object passed
as a parameter. For each employee in the list, no matter what type it is, the iterator
returns an Emp 1 oyee pointer. Using this pointer, the function prints out the em­
ployee's name.

The problem with this technique is that you cannot treat an object as anything
more than a generic Emp 1 oyee. For instance, how could you compute the weekly
salary of each employee in the list? If you were to give the Employee class a
compute Pay function, calling that function wouldn't invoke the compute Pay func­
tions defined in the derived classes. As mentioned earlier, the function that is
called is determined by the type of the pointer. Accordingly, calling compute Pay
using only Employee pointers would perform the same computation for every type
of employee, which is clearly unsatisfactory.

What you need is a way to call each class's individual version of compute Pay
while still using generic Emp 1 oyee pointers. C++ provides a way to do this using
virtual functions.

Virtual Functions
A "virtual function" is a member function that you expect to be redefined in
derived classes. When you call a virtual function through a pointer to a base class,
the derived class's version ofthe function is executed. This is precisely the op­
posite behavior of ordinary member functions.

A virtual function is declared by placing the keyword virtual before the declara­
tion of the member function in the base class. The virtual keyword is not neces­
sary in the declarations in the derived classes; all subsequent versions of a virtual
function are implicitly declared virtual. For example, here is a revised version of
the employee class hierarchy, having a virtual computePay function:

class Employee
{

public:
Employee(const char *nm);
char *getName() const;
virtual float computePay() canst;
virtual -Emplayee() {}

private:
char name[30];

};

class WageEmployee public Employee
{

publ i c:
WageEmployee(const char *nm);
void setWage(float wg);
void setHours(float hrs);

Inheritance and Polymorphism 121

float computePay() const; II Implicitly virtual
private:

} ;

float wage;
float hours;

class SalesPerson
{

public WageEmployee

public:
SalesPerson(const char *nm);
void setCommission(float comm);
void setSales(float sales);
float computePay() const; II Implicitly virtual

private:

} ;

float commission;
float salesMade;

class Manager public Employee
{

public:
Manager(const char *nm);
void setSalary(float salary
float computePay() const;

) ;
II Implicitly virtual

private:
float weeklySalary;

} ;

The definitions of each class's version of compute Pay do not have to be modified.
However, since compute Pay has been added to the base class, a definition for that
version of the function is needed:

float Employee::computePay() const
{

}

cout « "No salary computation defined\n";
return 0.0;

122 C++ Tutorial

This function is needed primarily as a placeholder. It would be called if a plain
Emp 1 oyee object were used, or if one of the derived classes did not provide its own
definition of compute Pay.

Now consider what happens when compute Pay is called through an Employee
pointer:

Employee *empPtr;
float salary;

empPtr= &aWorker;
salary empPtr->computePay(); II Call WageEmployee::computePay
empPtr &aSeller;
salary empPtr->computePay(); II Call SalesPerson::computePay
empPtr &aBoss;
salary empPtr->computePay(); II Call Manager::computePay

If computePay hadn't been declared virtual, each statement would call
Employee: :computePay, which would return 0.0. However, since compute Pay is
a virtual function, the function executed is different for each call, even though the
calls are exactly the same. The function called is the one appropriate for the actual
object that empPtr points to. (You can also use the scope resolution operator to
explicitly specify a different version of the function if you want.)

To calculate the weekly payroll for a department, you can write a function like the
following:

float computePayroll(EmployeeList &dept)
{

}

float payroll = 0;
Employee *person;
Emplter anlter(dept);

person = anlter.getFirst();
payroll += person->computePay();
while(person = anlter.getNext()
{

}

II Call appropriate function
II for each type of employee
payroll += person->computePay();

return payroll;

Polymorphism

Inheritance and Polymorphism 123

The statement person->computePay executes the appropriate function, no matter
what type of employee person points to.

The ability to call member functions for an object without specifying the object's
exact type is known as "polymorphism." The word "polymorphism" means "the
ability to assume many forms," referring to the ability to have a single statement
invoke many different functions. In the above example, the pointer person can
point to any type of employee, and the name computePay can refer to any of the
salary computation functions.

Compare this with the implementation in C provided earlier in this chapter. In C,
if all you have is a pointer to an employee, you have to call the compute_ pay func­
tion shown earlier, which must execute a switch statement to find the exact type.
In C++, the statement person->computePay() calls the appropriate function auto­
matically, without requiring you to examine the type of object that person points
to. (There is only a tiny amount of overhead, as described in the section "How
Virtual Functions are Implemented" on page 125.) No switch statement is needed.

Computing salaries is just one example of a task that differs depending on the type
of employee. A more realistic Emp 1 oyee class would have several virtual func­
tions, one for each type-dependent operation. An employee-database program
would have many functions like computePayroll, all of which manipulate em­
ployees using Emp 1 oyee pointers and virtual functions.

In such a program, all the information about any particular type of employee is
localized in a single class. You don't have to look at every employee-database
function to see how salespersons are handled. All the specialized salesperson pro­
cessing is contained in the Sal e s Per son class. It's also easy to add a new type of
employee, due to a property known as "dynamic binding."

Dynamic Binding
At compile time, the compiler cannot identify the function that is called by the
statement person - >compute Pay (), since it could be any of several different func­
tions. The compiler must evaluate the statement at run time, when it can tell what
type of object person points to. This is known as "late binding" or "dynamic

124 C++ Tutorial

binding." This behavior is very different from function calls in C, or nonvirtual
function calls in C++. In both cases, the function call statement is translated at
compile time into a call to a fixed function address. This is known as "early bind­
ing" or "static binding."

Dynamic binding lets you modify the behavior of code that has already been com­
piled. You can make an existing module handle new types without having to mod­
ify the source and recompile it.

For example, suppose that the function computePayroll and all the other
employee-database functions have been compiled into a module called
EMPUTIL.OBJ. Now suppose that you want to define a new type of employee
called a Consul tant, and use it with all the existing employee-database functions.

You don't have to modify the source code for computePayroll or any other
functions in EMPUTIL.OBJ. You simply derive Consul tant from the Employee
class, define its member functions in a new source file CONSULT.CPP, and com­
pile it into CONSULT.OBJ. Then you modify your program's user interface to
allow users to enter information on consultants. After you've recompiled that por­
tion of the program, you can link it with CONSUL T.OBJ and EMPUTIL.OBJ to
produce a new executable.

You can then add Consultant objects to the EmployeeList object that the
program already maintains. When you compute the payroll, the computePayroll
function works just it did before. If there are any Cons u 1 ta nt objects in
the list, the statement person->computePay() automatically calls
Consul tant:: computePay, even though that function didn't exist when
the statement was first compiled.

Dynamic binding lets you provide a library of classes that other programmers can
extend even if they don't have your source code. All you need to distribute are the
header files (the .R files) and the compiled object code (.OBJ or .LIB files) for the
hierarchy of classes you've written and for the functions that use those classes.
Other programmers can derive new classes from yours and redefine the virtual
functions you declared. Then the functions that use your classes can handle the
classes they've defined.

Inheritance and Polymorphism 125

How Virtual Functions Are Implemented
An obvious question about dynamic binding is "how much overhead is involved?"
Is the added convenience gained at the expense of execution speed? Fortunately,
virtual functions are very efficient, so calling one takes only slightly longer than
calling a normal function.

In some situations, a virtual function call can be implemented as a normal function
call; that is, using static binding. For example:

SalesPerson aSeller("John Smith");
SalesPerson *salePtr;
float salary;

saleptr = &aSeller;
salary aSeller.computePay();
salary = salePtr->computePay();

II Static binding possible
II Static binding possible

In this example, the type of aSeller isknown,so SalesPerson::computePay can
be called directly. Similarly, the type of the object that sal ePt r points to is know,
and again the function can be called directly. In situations where the compiler can­
not use static binding, such as the statement person->computePay() in the earlier
example, the compiler uses dynamic binding.

Dynamic binding is implemented in C++ through the use of a virtual function
table, or a "v-table." This is an array of function pointers that the compiler con­
structs for every class that uses virtual functions. For example, WageEmp 1 oyee,
Sal esPerson, and Manager each have their own v-table.

The v-table contains one function pointer for each virtual function in the class. All
of the employee classes have only one virtual function, so all of their v-tables con­
tain just one pointer. Each pointer points to the version of the function that is ap­
propriate to that class. Thus, the v-table for Sal esPerson has a pointer to

126 C++ Tutorial

Sa 1 es Pe r s an: : camp u te P ay, and the v-table for Ma n a ge r has a pointer to
Manager: : camputePay. This is illustrated in Figure 7.3.

Employee
Pointer

G----------------.. Sal e s Per son

Employee
Pointer

name

wage

hours

commission

salesMade

~----------------•• SalesPerson

Employee
Pointer

name

wage

hours

commission

salesMade

~~--------------.. Manager

V-TABLE PT R
I
I

SalesPerson's V-TABLE

'----
SalesPerson:: compute Pay

~

{

I
I

V-TABLE PT R

}

Employee
Pointer

name I ~E PTR

weeklySalary'-____ 1 L Manager's V-TABLE

~~--------------.. Manager Manager:: compute Pay

name I ~
weeklySalary ~----~

1..... ------'V-TABLE PTR
{

}

Figure 7.3 How Virtual Functions Are Implemented

Inheritance and Polymorphism 127

Note that it is not required for a derived class to redefine a virtual function de­
clared in its base class. For example, suppose Sa 1 esPerson did not define a
computePay function. Then Sa 1 es Person's v-table would contain a pointer to
Wage Emp 1 oyee: : compute Pay . If WageEmp 1 oyee in turn did not define compute Pay,
both classes' v-tables would have pointers to Employee:: compute Pay.

Each instance of a class contains a hidden pointer to the class's v-table. When a
statement like person->computePay () is executed, the compiler dereferences the
v-table pointer in the object pointed to by person. The compiler then calls the
compute Pay function pointed to by the pointer in the v-table. In this way, the com­
piler calls a different function for each type of object.

The only difference between a normal function call and a virtual function call is
the extra pointer dereferencing. A virtual function call usually executes as fast as
or faster than the switch statement that would otherwise be used.

Pure Virtual Functions
In the example of the employee-database program, the Employee class defines a
do-nothing computePay function. This solution is somewhat inelegant, since the
function is intended never to be called.

A better solution is to declare compute Pay as a "pure virtual function." This is
done by specifying an equal sign and a zero after the member function's proto­
type, as follows:

class Employee
{

publ ic:
I I ...
virtual float computePay() const 0; II Pure virtual

} ;

A pure virtual function requires no definition; you don't have to write the body of
Employee: : compute Pay. It is intended to be redefined in all derived classes. In the
base class, the function serves no purpose except to provide a polymorphic inter­
face for the derived classes.

You cannot declare any instances of a class in which a function is declared as pure
virtual. For example, since compute Pay is now a pure virtual function, you cannot
declare any objects of type Employee.

This restriction is necessary to prevent anyone from calling a pure virtual function
for an object. If you could declare generic Employee objects, you could call
computePay for it, which would be meaningless. You can only declare objects of
the derived classes which provide a definition for compute Pay.

128 C++ Tutorial

A class that defines pure virtual functions is known as an "abstract class," because
you cannot declare any instances of it. (Classes that you can declare instances of
are sometimes called "concrete classes.") It is legal, however, to declare pointers
to an abstract class. For example, you can declare Emp 1 oyee pointers and use them
for manipulating objects of derived classes. This is the way computePayroll and
the other employee-database functions work.

If a derived class does not provide a definition for a pure virtual function, the func­
tion is inherited as pure virtual, and the derived class becomes an abstract class
too. This does not happen with ordinary virtual functions, because when a derived
class omits a definition of an ordinary virtual function, it uses the base class's ver­
sion. With pure virtual functions, this is impossible, since the base class doesn't
have a version. Thus, if WageEmployee did not define a version of computePay, it
would be an abstract class too.

It's common to write a class hierarchy consisting of one or more abstract classes at
the top which act as base classes for the concrete classes at the bottom. You cannot
derive an abstract class from a concrete class.

Sometimes it's useful to write an abstract class that has little or no data members
or code, consisting primarily of pure virtual functions. Most of the data and the
code for the functions is defined when a new class is derived from such a base
class. This is desirable when the base class's interface embodies a set of properties
or operations that you'd like many other classes to have, but whose implementa­
tions differ for each class.

For example, consider a So rted Lis t class that can store objects of any class.

class SortedList
{

public:
SortedL i st();
void addltem(const SortableObject &newltem);
/ / ...

private:
/ / ...

} ;

A SortedL i st object stores pointers to objects of class Sortab 1 eObj ect. This is
an abstract class that has pure virtual functions named i sEqual and i sLessThan:

class SortableObject
{

public:

} ;

virtual int isEqual(canst SortableObject &other) const = 0;
virtual int isLessThan(const SortableObject &other) const = 0;

Inheritance and Polymorphism 129

If you want to store names in a SortedL i st, you can derive a class called
SortableName from SortableObject.Youcanthenimplement isEqual and
is LessThan to perform string comparisons. For example:

class SortableName : public SortableObject
{
public:

int isEqual(const SortableObject &other) const;
int isLessThan(const SortableObject &other) const;

private:
char name[30];

} ;

int SortableName::isEqual(const SortableObject &other) const
{

return (strncmp(name, other.name, 30) == 0);
} ;

II Similar implementation for isLessThan

Similarly, if you want to store ZIP codes, you can derive a class SortableZIP
from Sortabl eObject and implement the member functions to compare numbers.
Sortabl eObject thus provides a template for you to use when writing your own
classes. By itself, Sortabl eObject isn't a useful class, because it contains no code
or data. You supply those when you derive a class from it.

Destructors in Base and Derived Classes
If destructors are defined for a base and a derived class, they are executed in the
reverse order that the constructors are executed. When an object of a derived class
goes out of scope, the destructor for the derived class is called and then the destruc­
tor for the base class is called.

When destroying dynamically created objects with the delete operator, a problem
can arise. If delete is applied to a base class pointer, the compiler calls the base
class destructor, even if the pointer points to an instance of a derived class.

The solution is to declare the base class's destructor as virtual. This causes the
destructors of all derived classes to be virtual, even though they don't share the
same name as the base class's destructor. Then if delete is applied to a base class
pointer, the appropriate destructor is called, no matter what type of object the
pointer is pointing to.

Notice that Emp 1 oyee has a virtual destructor, even though the destructor does
nothing. Whenever you write a class that has virtual functions, you always should
give it a virtual destructor, even if the class doesn't need one. The reason is that a
derived class might require a destructor. For example, suppose you derive a class

130 C++ Tutorial

from Employee called Consul tant, and that derived class defines a destructor. By
defining a virtual destructor in the base class, you ensures that the derived class's
destructor is called when needed.

Note that while destructor functions can be virtual, constructor functions cannot.

Protected Members
Besides the public and private keywords, C++ provides a third keyword control­
ling the visibility of a class's members: the protected keyword. Protected mem­
bers are just like private members except that they are accessible to the member
functions of derived classes.

As noted earlier, derived classes have no special privileges when it comes to ac­
cessing a class's private members. If you want to permit access by only the
derived classes, and not by anyone else, you can declare some of your data mem­
bers as protected. For example:

class Base
{

public:
protected:

int secret;
private:

int topSecret;
} ;

class Derived: public Base
{

public:
voi d func () ;

} ;

void Derived::func()
{

secret = 1;
top Secret = 1;

II Can access protected member
II Error: can't access private member

void maine)
{

Base aBase;
Derived aDerived;

Inheritance and Polymorphism 131

aBase. secret = 1; II Error:

aBase.topSecret 1;
aDerived.secret 1;

II
II
II
II
II

can't access protected member
Error: can't access private member
Error:

can't access protected member
in derived class either

In this example, the private member topSecret is inaccessible to the derived
class's member functions, but the protected member secret is accessible. How­
ever, the protected member is never accessible to outside functions.

Protected members in the base class are protected members in the derived class
too. Functions using the derived class cannot access its protected members.

You should use the protected keyword with care. If the protected portion of a
base class is rewritten, all the derived classes that used those protected members
must be rewritten as well.

Public and Private Base Classes
The derived classes in this chapter all specify the keyword public in front of the
base class's name. This specifies public derivation, which means that the public
members of the base class are public members of the derived class, and protected
members of the base class are protected members of the derived class.

You can also specify the keyword private in front of the base class's name. This
specifies private derivation, which means that both the public and protected mem­
bers of the hase class are private members of the derived class. Those members are
accessible to the derived class's member functions, but not to anyone using the
derived class.

Private derivation is rarely used. Someone using the class cannot implicitly con­
vert a pointer to a derived class object into a pointer to a base class object, or use
polymorphism. (However, within the member functions of the derived class, you
can perform such conversions and use polymorphism). Private derivation is very
similar to defining a member object of another class; it's a method of using
another class, but it's not appropriate for indicating that one class is a subtype of
another.

132 C++ Tutorial

Multiple Inheritance
The previous examples in this chapter demonstrate "single inheritance," where a
class is derived from a single base class. C++ also supports "multiple inheritance,"
where a class can be derived from more than one base class.

For example, suppose you wanted to declare a class Sa 1 esManagf'r to describe em­
ployees who have characteristics of both the Sa 1 es Person and Ma nager classes:

class SalesManager : public SalesPerson, public Manager
{

II
} ;

The Sal esManager class inherits all the data members and member functions of
SalesPerson and Manager.

You cannot specify a class as a direct base class more than once (for example,
you cannot enter Manager twicein the list of base classes). However, a class
can be an indirect base class more than once. For example, Sal e sMa nag e r has
Employee as an indirect base class twice: once through Sal esPerson and once
through Man age r. As a result, each Sal e sMa nag e r object contains two copies of
Employee's data members.

If a class acts as an indirect base class more than once, it is more complicated to
call member functions defined by that base class. For example:

SalesManager aSellerBoss;
char *str;

str = aSellerBoss.getName(); II Error: ambiguous

The problem is that the compiler can't tell which copy of Emp 1 oyee should be
used; since each copy's data members might contain different values, the value re­
turned by get N a me depends on which copy is used. You must specify which copy
you want, using the scope resolution operator:

str = aSellerBoss.Manager::getName();

This statement uses the name stored in the Manager's copy of Employee's data
members.

The same ambiguity problem can arise even if an indirect base class is not re­
peated. If a base class (either direct or indirect) defines a member with the same
name as a member defined in another base class, you must again use the scope
resolution operator to specify whose member you want.

Inheritance and Polymorphism 133

If a class acts as an indirect base more than once, there are also possible ambigui­
ties when performing conversions between base and derived classes. For example,
suppose you want to convert a pointer to a Sa 1 esManager into a pointer to an
Employee:

Employee *empPtr;
SalesManager *salemgrPtr;

empPtr = salemgrPtr; II Error: ambiguous

Once again, the compiler can't tell which copy of Emp 1 oyee it should use for
empPtr. To disambiguate, you must use a cast:

empPtr = (Manager *)salemgrPtr;

This statement converts sal emgrPtr into a pointer to a Manager, and then con­
verts that into a pointer to an Employee. As a result, empPtr points to Manager's
copy of Employee's data members.

Since salesmanagers don't have two names and two social security numbers, the
Sal esManager class shouldn't contain two copies of Employee. To avoid this dupli­
cation, you can make Employee a "virtual base class."

To do this, the classes that specify Employee as a direct base class must use the
virtual keyword:

class WageEmployee : public virtual Employee
{

I I ...
} ;

class Manager public virtual Employee
{

II ...
} ;

Note that only WageEmployee and Manager need to use the virtual keyword.
SalesPerson and SalesManager do not, because Employee is an indirect base
class for them.

Bymaking Employee a virtual base class, each instance of SalesManager now
has only one copy of Employee's data members; there is no duplication. Any refer­
ences to members defined by Emp 1 oyee are unambiguous, and so are conversions
frama SalesManager pointertoa Employee pointer.

134 C++ Tutorial

For a class like Sa 1 esManager, virtual base classes save space and allow a more ac­
curate representation. However, virtual base classes impose a greater processing
overhead. Consequently, you should use virtual base classes sparingly.

See Chapter 9, "Fundamentals of Object-Oriented Design," for information on de­
sign issues surrounding multiple inheritance. See the c++ Language Reference
for more information on single inheritance, virtual functions, multiple inheritance,
and virtual base classes.

Operator Overloading
and Conversion Functions

Classes are useful for representing numeric data types that are not built into the
language. This chapter covers two features of C++ that can make these classes be­
have more like the built-in types: operator overloading, which allows you to use
operators with your classes, and conversion functions, which allow you to convert
between classes.

This chapter covers the following topics:

• Overloading operators as member functions

• Overloading operators as friend functions

• Constructors that perform conversions

• Conversion operators

Operator Overloading
Chapter 5 described how you can redefine the meaning of the assignment operator
(=) when used to assign objects of a class you write. That was an example of oper­
ator overloading, and the assignment operator is the operator most commonly over­
loaded when writing classes.

You can overload other operators to make your code more readable. For example,
suppose you needed a function that compares Date objects, to see if one comes
before another. You can write a function called 1 essThan and use it as follows:

if(lessThan(myDate, yourDate))
/ / ...

As an alternative, you can overload the less-than operator «) to compare two
Date objects. This would allow you to write an expression like the following:

if(myDate < yourDate)
/ / ...

136 c++ Tutorial

This format is more intuitive and convenient to use than the previous one.

You have already seen overloaded operators in many examples in the previous
chapters. All of the example programs printed their output with the« operator,
which is overloaded in the iostream class library.

Operator overloading is most useful when writing classes that represent numeric
types. For example, scientific programs often use complex numbers; that is, num­
bers with a real and an imaginary component. You could write a class Camp 1 ex to
represent these numbers. To perform tasks like adding and multiplying complex
numbers, you could write functions with names like add and m~l t, but this often
results in lengthy statements that are hard to understand. For exa:mple:

a = mult(mult(add(b, c), add(d, e)), f);

Typing an equation in this format is tedious and error-prone, and reading an unfa­
miliar equation in this format is even more difficult.

A better alternative is to overload the + and * operators to work on Campl ex ob­
jects. This results in statements like this:

a = (b + c) * (d + e) * f;

This format is easier for both the programmer writing the equation and the pro­
grammer who reads it later.

Rules of Operator Overloading
You can overload any of the following operators:

Table 8.1 Overloadable Operators

+ * 1 % A &
= < > <= >=

++ « » -- != && II

+= -= *= 1= %= A= &= 1=
«= »= [] () -> ->* new delete

The last two operators, new and delete, are the free store operators, which were de­
scribed in Chapter 5. The last operator before those (->*) is the pointer-to-member
operator, which is described in Chapter 5 of the C++ Language Reference.

Certain operators can be used as either a binary or a unary operators. For example,
the - operator means subtraction when used as a binary operator and negation

Operator Overloading and Conversion Functions 137

when used as a unary operator. You can overload such operators to have different
meanings in their different usages.

You can use overloaded operators in ways that, if they were not overloaded, would
be meaningless. Consider the following expression:

cout « "Hell 0";

If the « operator were not overloaded, this expression would left-shift cout a
number of bits equal to the value of the pointer to the string. The compiler would
generate a run-time error when trying to execute this statement. But the statement
is syntactically legal, so you can write an overloaded operator function that ex­
ecutes when this statement appears. (For information on overloading the « and
»operators to make your classes work with streams, see Chapter 18, "The
Fundamentals of iostream Programming," in the Class Libraries User's Guide.)

There are a number of restrictions on operator overloading:

• You cannot extend the language by inventing new operators. For example, you
cannot create your own "exponentiation" operator using the characters **.
Those characters do not form a legal operator in C or C++ and you cannot make
them one. You must limit yourself to existing operators.

• You cannot change an operator's arity, that is, the number of operands that it
takes. For example, the logical-NOT operator (-) is a unary operator, meaning
that it takes one operand. You cannot use it as a binary operator for built-in
types, so you cannot overload it to act as a binary operator for your class. For
example:

a ~b;

a = b ~ c;
II Legal
II Error

• You cannot change an operator's precedence. For example, the multiplication
operator has a higher precedence than the addition operator, so the multiplica­
tion is performed first when the following expression is evaluated:

a = b + C * d; II Same as a = b + (c * d);

You cannot overload the * and + operators in such a way that the addition is
performed first. You must use parentheses to alter the order of evaluation. For
example:

a=(b+c)*d; II Parentheses control evaluation

One consequence of this is that the operator you choose may not have the prece­
dence appropriate for the meaning you give it. For example, the A operator
might seem an appropriate choice to perform exponentiation, but its precedence
is lower than that of addition, which could confuse people using it.

138 C++ Tutorial

• You cannot change an operator's associativity. When an operand is between
two operators that have the same precedence, it is grouped with one or the other
depending on its associativity. For example, the addition and subtraction opera­
tors are both left-associative, so the following expressions is evaluated from left
to right:

a = b + C - d; II Same as a = (b + c) - d;

You cannot overload the + and - operators in such a way that the subtraction is
performed first. You must use parentheses to alter the order of evaluation. For
example:

a=b+(c-d); II Parentheses control evaluation

• You cannot change the wayan operator works with built-in data types. For ex­
ample, you cannot change the meaning of the + operator for integers.

• You cannot overload the following operators:

Operator

.*

?:

Definition

class member operator

pointer-to-member operator

scope resolution operator

conditional expression operator

c++ lets you overload any of the other operators. However, just because you can
overload an operator doesn't necessarily mean it's a good idea.

When Not to Overload Operators
You should overload operators only when the meaning of the operator is clear and
unambiguous. The arithmetic operators like + and * are meaningful when applied
to numeric classes, such as complex numbers, but not to everything. For example,
consider overloading the + operator for Date objects:

laterDate = myDate + yourDate; II Meaning?

It's anyone's guess what this statement means.

Many programmers overload the + operator for a Stri ng class to perform con­
catenation of two Stri ng objects. However, overloading relational operators for
a St ri ng class might not be appropriate:

String myString("John Smith"),
yourString("JOHN SMITH");

if(myString == yourString)
I I ...

II True or false?

Operator Overloading and Conversion Functions 139

A person reading this statement cannot tell whether the comparison being per­
formed is case-sensitive or not. You could define a separate function to control
case-sensitivity, but the combination might not be as clear as using named member
functions.

Sometimes an overloaded operator clearly suggests a particular meaning to one
programmer but suggests a different meaning to another programmer. For ex­
ample, consider having a class Set, where each object represents a collection of
objects. It would be useful to be able to calculate the "union" of two sets, that is,
the set that contains the contents of both without duplications. Someone might
pick the && operator for this purpose. For example:

ourSet = mySet && yourSet; II Clearly union

The programmer who wrote this statement might think it clearly indicates that
ourSet contains everything in mySet combined with everything in yourSet. But
another programmer might use the operator in the following way:

II Intersection or union?
targetSet = wealthySet && unmarriedSet;

Does targetSet contains everyone who is both wealthy and unmarried? Or does
it contains everyone who is either wealthy, or unmarried?

Too many overloaded operators, or even a few badly chosen operators, can make
your programs exceedingly difficult to read. Don't use overloaded operators
simply to make it easier for you to type in your programs. Other programmers
may have to maintain your programs later on, and it's much more important that
they be able to understand your code. Accordingly, choose your overloaded opera­
tors with great care, and use them sparingly.

Since numeric classes are usually the best candidates for operator overloading,
let's consider how to overload arithmetic operators for such a class.

Overloading Operators for a Numeric Class
As an example of a numeric class, consider a class called Fraction, which stores
a number as the ratio of two long integers. This is useful because many numbers
cannot be expressed exactly in floating-point notation. For example, the quantity
1/3 is represented as 0.33333. The expression 113 + 113 + 1/3 should add up to 1,
but instead it adds up to 0.99999. Over the course of a lengthy calculation, this
type of error is cumulative and can become quite significant. A Fraction class re­
moves this type of error.

140 C++ Tutorial

To add two Fract i on objects, you can overload the + operator as follows:

II Overloading the + operator
#include <stdlib.h>
#include <math.h>
#include <iostream.h>

class Fraction

public:
Fraction();
Fraction(long num, long den);
void display() const;
Fraction operator+(const Fraction &second) const;

private:

} ;

static long gcf(long first, long second);
long numerator,

denominator;

II ----------- Default constructor
Fraction::Fraction()
{

}

numerator = 0;
denominator = 1;

II ----------- Constructor
Fract ion: : Fract ion (long num, long den)
{

}

int factor;

if(den == 0
den = 1;

numerator = num;
denominator den;
if(den < 0
{

numerator -numerator;
denominator = -denominator;

}

factor = gcf(num, den);
if(factor> 1)
{

numerator 1= factor;
denominator 1= factor;

Operator Overloading and Conversion Functions 141

II ----------- Function to print a Fraction
void Fraction::display() const
{

cout « numerator « 'J' « denominator;
}

II ----------- Overloaded + operator
Fraction Fraction::operator+(const Fraction &second) const
{

}

long factor,
multI,
mult2;

factor = gcf(denominator, second.denominator);
multI denominator I factor;
mult2 = second.denominator I factor;

return Fraction(numerator * mult2 + second.numerator * multI,
denominator * mult2);

II ----------- Greatest common factor
II computed using iterative version of Euclid's algorithm
long Fraction::gcf(long first, long second)
{

}

int temp;

first = labs(first);
second = labs(second);

while(second> 0)
{

}

temp = first % second;
first = second;
second = temp;

return first;

A Fracti on object is declared with two integers, the numerator and the denomina­
tor. The constructor checks that the denominator is nonzero and nonnegative, and
simplifies the fraction if possible. The class defines a private static function
named gcf to calculate the greatest common factor of two numbers.

142 C++ Tutorial

The following program uses the F r act ion class and demonstrates the use of the
overloaded + operator.

void main()
{

}

Fraction a,
b(23, 11),
c(2, 3);

a = b + c;

a.display();
cout « '\n';

Theexpression b + c is interpreted as b.operator+(c). The operator+func­
tion is called for the b object, using c as a parameter.

An overloaded operator doesn't have to have objects for both operands. You can
add a Fracti on and an integer as well by writing another function:

Fraction Fraction::operator+(long second) const
{

}

return Fraction(numerator + second * denominator,
denominator);

This permits statements like the following:

void main()
{

Fraction a,
b(2, 3);

a b + 1234;
}

However, you cannot write a statement like this:

a = 1234 + b; II Error

Since operator+ is defined as a member function, the previous statement is inter­
preted as follows:

a = (1234).operator+(b); II Error

This statement is clearly an error, since an integer doesn't have a member function
that can be invoked to perform the addition.

To allow expressions where a variable of a built-in type is the first operand, you
must use friend functions (described in Chapter 6).

Operator Overloading and Conversion Functions 143

Defining Operators as Friend Functions
To overload an operator using a non-member function, you define a function
named operator+ that takes two arguments, as follows:

class Fraction
{

public:

/J
} ;

/J

Fraction(long num, long den);
Fraction operator+(const Fraction &second) const;
Fraction operator+(long second) const;
friend Fraction operator+(long first,

const Fraction &second);

Fraction operator+(long first, const Fraction &second)
{

return Fraction(second.numerator + first * second.denominator,
second.denominator);

With a function like this, an expression like this

a = 1234 + b; II Friend function called

is interpreted as follows:

a = operator+(1234, b); II Friend function called

Notice that the friend function requires two parameters while the member function
requires only one. The + operator requires two operands. When operator+ is de­
fined as a member function, the first operand is the object for which it is called
and the second operand is the parameter. In contrast, when operator+ is defined
as a friend function, both of the operands are parameters to the function.

You cannot define both a friend function and member function that define the
same operator.

You can also use either a member function or a friend function to implement a
unary operator. For example, suppose you want to implement the negation (-) oper­
ator. You could do it as a member function that takes no parameters:

inline Fraction Fraction::operator-() const
{

return Fraction(-numerator, denominator);

144 C++ Tutorial

You could also implement it as a friend function that takes one parameter:

inline Fraction operator-(Fraction &one)
{

return Fraction(-one.numerator, one.denominator);

When you overload an operator using a friend function, you must make at least
one of the function's parameters an object. That is, you cannot write a binary
operator+ function that took two integers as parameters. This prevents you from
redefining the meaning of operators on built-in types.

Notice that you have to define three separate functions to handle the addition of
Fracti on objects and long integers. If you overload other arithmetic operators,
such as * or I, you must also provide three functions for each operator. A tech­
nique for avoiding multiple versions of each operator is described in the section
"Class Conversions" on page 148.

Tips for Overloading Arithmetic Operators
Overloading the + operator does not mean that the += operator is overloaded. You
must overload that operator separately. If you do, make sure that the normal iden­
tity relationships are maintained, that is, a += b has the same effect as a = a + b.

If you're overloading operators for a class whose objects are relatively large, you
should pass parameters as references rather than by value. You should also be sure
to pass references to constants, which allows constant objects to be operands.

The return type of an overloaded operator depends on the specific operator. Over­
loaded + or * operators for the Fracti on class must return Fracti on objects.
Operators like += and *=, on the other hand, can return references to F r act ion
objects for efficiency. This is because + and * create temporary objects containing
new values, and they cannot return references to objects created within the func­
tion. In contrast, += and *= modify an existing object, *this, so they can safely re­
turn references to that object. (Recall that the overloaded = operator, described in
Chapter 5, also returns a reference to an object.)

Overloading Operators for an Array Class
The array mechanism that is built into C is very primitive; it is essentially an alter­
nate syntax for using pointers. An array doesn't store its size, and there is no way
to keep someone from accidentally indexing past the end of the array. In C++, you
can define a much safer and more powerful array type using a class. To make such
a class look more like an array, you can overload the subscript operator ([D.

Operator Overloading and Conversion Functions 145

The following example defines the IntArray class, where each object contains an
array of integers. This class overloads the [] operator to perform range checking.

II Overloaded [] operator
#include <iostream.h>
#include <string.h>

class IntArray
{

public:
IntArray(int len);
int getLength() const;
int &operator[](int index);
-IntArray() ;

private:
int length;
int *aray;

} ;

II ------------ Constructor
IntArray: :IntArray(int len
{

}

if (1 en > 0)
{

}

else
{

}

1 ength = 1 en;
aray = new int[len];
II initialize contents of array to zero
memset(aray, 0, sizeof(int) * len);

1 ength = 0;
aray = 0;

II ------------ Function to return length
inline int IntArray::getLength() const
{

return length;
}

146 C++ Tutorial

II ------------ Overloaded subscript operator
II Returns a reference
int &IntArray::operator[](int index
{

}

static int dummy = 0;

if((index = 0) &&
(index < length))
return aray[index];

else
{

}

cout « "Error: index out of range.\n";
return dummy;

II ------------ Destructor
IntArray::~IntArray()

{

delete aray;
}

void main()
{

}

IntArray numbers(10);
i nt i;

fore i = 0; i < 10; i++)
numbers[i] = i; II Use numbers[i] as lvalue

fore i = 0; i < 10; i++)
cout « numbers[i] « '\n';

This program first declares an In tA r r ay object that can hold ten integers. Then it
assigns a value to each element in the array. Notice that the array expression ap­
pears on the left side of the assignment. This is legal because the operator[]] func­
tion returns a reference to an integer. This means the expression numbers [i] acts
as a alias for an element in the private array, so it can be the recipient of an assign­
ment statement. In this situation, returning a reference is not simply more efficient,
but is necessary.

The operator[] function checks whether the specified index value is within range
or not. If it is, the function returns a reference to the corresponding element in the
private array. If it isn't, the function prints out an error message and returns a refer­
ence to a static integer. This prevents out-of-range array references from overwrit­
ing other regions of memory, though it will probably cause unexpected program
behavior. As an alternative, you could have the operator[] function exit the pro­
gram when it receives an out-of-range index value.

Operator Overloading and Conversion Functions 147

As it is currently implemented, the index values for an IntArray object of size n
range from 0 to n-l, but that is not a requirement. You can use any value you want
for the bounds of the array, or even have the bounds specified when an object is
declared.

The IntArray class has a number of advantages over conventional arrays in C.
The size of an IntArray doesn't have to be a constant; you can determine the size
at run time without having to use new and delete. An IntArray object also stores
its size, so you can pass one to a function without having to pass the size sepa­
rately. One possible enhancement is to make In tA r r ay s resizeable, so that you
could expand one if it became full.

You can also overload operator[] for classes that aren't implemented as arrays.
For example, you could write a linked list class and allow users to use array nota­
tion to access the nodes in the list. You can even use values other than integers for
indexing. For example, consider the following prototype:

int &operator[](const char *key);

This operator[] function takes a string as an index. This permits expressions like
the following:

salary["John Smith"] = 25000;

You could use the string as a key for searching through a data structure, which
could be an array or a linked list or something else. Since it would be difficult to
iterate through such a class using a for loop, this class would probably benefit
from having an iterator implemented with a friend class, as mentioned in
Chapter 6.

The operator[] function takes only one parameter. You cannot give it multiple
parameters to simulate a multidimensional array. For example:

int &SquareArray::operator[](int row, int col); II Error

You can, however, overload the 0 operator, which can take an arbitrary number of
parameters. For example:

int &SquareArray::operator()(int row, int col);

This allows statements like the following:

SquareArray myArray;

myArray(3, 4) = 1;

Note that this is not standard array notation in C, so it may be confusing for other
programmers reading your code.

148 C++ Tutorial

The operator[] function cannot be defined as a friend function. It must be a non­
static member function.

Class Conversions
Both C and c++ have a set of rules for converting one type to another. These rules
are used in the following situations:

• When assigning a value. For example, if you assign an integer to an variable of
type long, the compiler converts the integer to a long.

• When performing an arithmetic operation. For example, if you add an integer
and a floating-point value, the compiler converts the integer to a float before it
performs the addition.

• When passing an argument to a function; for example, if you pass an integer to
a function that expects a long.

• When returning a value from a function; for example, if you return a float from
a function that has double as its return type.

In all of these situations, the compiler performs the conversion implicitly. You can
make the conversion explicit by using a cast expression.

When you define a class in C++, you can specify the conversions that the compiler
can apply when you use instances of that class. You can define conversions be­
tween classes, or between a class and a built-in type.

Conversion by Constructor
Chapter 4 described constructors, the functions that create objects. A constructor
that takes only one parameter is considered a conversion function; it specifies a
conversion from the type of the parameter to the type of the class. For example,
suppose you specify a default value for the denomi nator parameter of the

F r act ion constructor, as follows:

class Fraction
{

public:
Fraction(long num, long den 1);
/ / ...

} ;

Operator Overloading and Conversion Functions 149

This constructor not only lets you initialize a Fraction object using only one
number, it also lets you assign integers to a Fracti on object directly. For example:

Fraction a(2); II Equivalent to Fraction a(2 , 1);

a = 7; II Equivalent to a Fraction(7);
II a Fraction(7, 1);

In the above statement, the compiler uses the single-argument constructor to impli­
citly convert an integer into a temporary Fracti on object, and then uses the object
for the assignment. Similarly, if you pass an integer to a function that expects a
Fracti on object, the integer is converted before the function is called.

To be more precise, when you pass the Fracti on constructor an integer, the com­
piler actually performs a standard conversion and a user-defined conversion at
once. For example:

a = 7; II int -) long -) Fraction

The compiler first performs a standard conversion to make the integer into a long
integer. Then it converts the long integer into a Fracti on and performs the
assignment.

One result of defining an implicit conversion is that one operator function can
handle several different types of expression. Suppose you define just one
operator+ function for the Fracti on class:

class Fraction
{

public:
Fraction(long num, long den = 1);
friend Fraction operator+(const Fraction &first,

const Fraction &second);
I I ...

} ;

The combination of that constructor and that operator function accepts all of these
expressions:

Fraction a,
b(2,
c(4,

a b + c;
a b + 1234;
a 1234 + b;

3
5

a 1234 + 5678;

),
);

II Okay as is
II a b + Fraction(1234);
II a Fraction(1234) + b;
II a Fraction(6912);

When the compiler evaluates each expression, it looks for an operator+ function
that fits. If it can't find one, it tries to convert one or more of the operands so that

150 C++ Tutorial

they match the operator+ function that does exist. As a result, the compiler con­
verts the integers into Fracti on objects, and performs the addition on them.

Notice that in the last assignment statement the compiler does not convert the in­
tegers into Fracti on objects. It is able to add the integers directly. The compiler
then converts the resulting sum into a temporary Fracti on object to perform the
assignment.

A single-argument constructor defines an implicit conversion that turns instances
of other types into objects of your class, so that your class is the target of the con­
version. You can also define an implicit conversion that turns objects of your class
into instances of other types, making your class the source of the conversion. To
do this, you define a "conversion operator."

Conversion Operators
Suppose you want to be able to pass a F ra ct i on object to a function that expects a
float, that is, you want to convert Fracti on objects into floating-point values.
The following example defines a conversion operator to do just that:

II Conversion member function
#include <iostream.h>

class Fraction
{

public:
Fraction(long num, long den 1);
operator float() const;
I I ...

} ;

Fraction::operator float() const
{

return (float)numerator I (float)denominator;
}

The function operator float converts a Fracti on objectto a floating-point
value. Notice that the operator function has no return type and takes no parame­
ters. A conversion operator must be a nonstatic member function; you cannot
define it as a friend function.

Operator Overloading and Conversion Functions 151

You can call the conversion operator using a variety of syntaxes:

Fraction a;
float f;

f
f
f
f

a.operator float();
float(a);
(fl oat)a;
a;

II Convert using explicit call
II Convert using constructor syntax
II Convert using cast syntax
II Convert implicitly

The compiler can perform a standard conversion and a user-defined conversion at
once. For example:

Fraction a(123, 12);
i nt i;

i = a; II Fraction -> float -> integer

The compiler first converts the Fracti on object into a floating-point number.
Then it performs a standard conversion, making the floating-point number into an
integer, and performs the assignment.

A conversion operator doesn't have to convert from a class to a built-in type. You
can also use a conversion operator that converts one class into another. For ex­
ample, suppose you had defined the numeric class Fi xed Poi nt to store fixed­
point numbers. You could define a conversion operator as follows:

class Fraction
{

public:
operator FixedPoint() const;

} ;

This operator would permit implicit conversions of a Fraction object into a
FixedPoint object.

Conversion operators are useful for defining an implicit conversion from your
class to a class whose source code you don't have access to. For example, if you
want a conversion from your class to a class that resides within a library, you can­
not define a single-argument constructor for that class. Instead, you must use a
conversion operator.

152 C++ Tutorial

Ambiguities with Conversions and Operators
The inclusion ofthe operator fl oat conversion operator creates problems for
the Fracti on class. Consider the following statement:

a = b + 1234; II Error: ambiguous
II a (float)b + 1234;
II a = b + Fraction(1234);

The compiler could either convert b to a floating-point number and then add that
together with the integer, or it could convert 1234 to a Fracti on and then add the
two Fract i on objects. That is, the compiler could add the two values as built-in
types, or it could add them as objects. The compiler has no basis for choosing one
conversion over the other, so it generates an error.

There are a few ways to resolve this ambiguity. One solution is to use an ordinary
member function to perform addition, instead of overloading the + operator. For
example:

class Fraction
{

} ;

friend Fraction add(const Fraction &first,
const Fraction &second);

Since this function does not look like the + operator, there is no confusion between
adding two values as Fracti on objects or adding them as built-in types.

Another solution is to remove one of the implicit conversions. You could remove
the implicit conversion from an integer to a Fracti on by getting rid of the single­
argument constructor. This requires that you rewrite the previous statement as
follows:

a = b + Fraction(1234, 1);

If you wanted to add them as built-in types, you would have to write the following:

a = Fraction(b + 1234, 1);

Or you could remove the implicit conversion from a Fracti on to a floating-point
number, by changing the conversion operator into an ordinary member function.
For example:

class Fraction
{

publ i c:

} ;

float cvtToFloat() const;
II ...

Operator Overloading and Conversion Functions 153

This leaves only one interpretation for the following statement:

a = b + 1234; II a = b + Fraction(1234);

If you wanted to add the two values as built-in types, you would have to write the
following:

a = b.cvtToFloat() + 1234;

If you wish to retain the convenience of both of these implicit conversions, as well
as use operator overloading, you must explicitly define all three versions of the
operator+ function:

class Fraction
{

friend Fraction operator+(const Fraction &first,
const Fraction &second) ;

friend Fraction operator+(long first,
const Fraction &second);

friend Fraction operator+(const Fraction &first,
long second) ;

II ...
} ;

If all three functions are defined, the compiler doesn't have to perform any conver­
sions to resolve expressions that mix Fraction objects and integers. The compiler
simply calls the function that matches each possibility. This solution requires more
work when writing the class, but it makes the class more usable.

As this example illustrates, you must use care if you define both overloaded opera­
tors and implicit conversions.

Ambiguities between Conversions
An ambiguity can arise when two classes define the same conversion. For
example:

class FixedPoint;

class Fraction
{

public:
Fraction(FixedPoint value);

} ;

class FixedPoint
{
public:

operator Fraction();
} ;

II FixedPoint -> Fraction

II FixedPoint -> Fraction

154 C++ Tutorial

void main()
{

Fraction a;
FixedPoint b;

a = b; II Error; ambiguous
II a Fraction(b l;
II a = b.operator Fraction();

}

The compiler cannot choose between the constructor and the conversion operator.
You can explicitly specify the conversion operator, but not the constructor:

a b.operator Fraction(l;
a Fraction(b l;
a (Fractionlb;

II Call conversion operator
II Error: still ambiguous
II Error: still ambiguous

This type of ambiguity is easy to avoid, since it occurs only when the classes
know of each other, which means that they were written by the same program­
mer(s). If you simply remove one ofthe conversion functions, the problem does
not arise.

Ambiguities can also arise when multiple classes define similar implicit conver­
sions. For example, suppose you have the Fracti on class and some associated
functions that use Fracti on objects, as follows:

class Fraction
{

public:
Fraction(float value l;

} ;

void calc(Fraction parm l;

II float -> Fraction

You might also have a Fi xed Po i nt class that includes a similar set of associated
functions:

class FixedPoint
{

public:
FixedPoint(float value l;

} ;

void calc(FixedPoint parm l;

II float -> FixedPoint

Operator Overloading and Conversion Functions 155

Now consider what happens if you try to use both the F rae t ion and the
Fi xed Poi nt classes in the same program:

voidmainC)
{

ealeC 12.34); II Error: ambiguous
II ealeC FraetionC 12.34));
II ealeC FixedPointC 12.34));

The compiler cannot choose which conversion to apply when calling the ea 1 e
function. This type of ambiguity is difficult to avoid, because it can occur even if
Fraeti on and Fi xedPoi nt are written by different programmers. Neither program­
mer would have noticed the problem because it doesn't appear when either class is
used by itself; the ambiguity arises only when they are used together. This prob­
lem can be solved if the user of the classes explicitly specifies a conversion by
using the constructor for the class desired.

It is difficult to anticipate all possible ambiguities that may involve your class.
When you write a class, you might define only a small number of conversions.
However, when other programmers write their classes, they can also define conver­
sions involving your class. They can define constructors that convert an object of
your class into one of theirs, or they can define conversion operators that turn an
object of their class into one of yours.

To reduce the likelihood of ambiguities, you should define implicit conversions
for your classes only when there is a clear need for them. You can always perform
conversions explicitly by using constructors that require more than one argument,
or by using ordinary member functions to perform conversions (for example,
evtToOtherType).

See the C++ Language Reference for a complete description of the rules govern­
ing conversions.

Fundamentals of
Object-Oriented Design

The preceding chapters covered the basic syntax of the C++ language. This chap­
ter and the next one discuss object-oriented programming, the style of program­
ming that C++ is designed to support. This chapter describes the key principles of
object-oriented programming and how to apply them. The next chapter describes
an example program written in C++ using those principles.

Section 9.1 discusses the major concepts of object-oriented programming. Section
9.2 outlines the process of designing an object-oriented program.

Features of Object-Oriented Programming

Abstraction

In the traditional, procedure-oriented view of programming, a program describes a
series of steps to be performed; that is, an algorithm. In the object-oriented view of
programming, a program describes a system of objects interacting. It's possible to
use C++ as a strictly procedural language. An object-oriented approach, however,
lets you take full advantage of C++' s features.

Object-oriented programming involves a few key concepts. The most basic of
these is abstraction, which makes writing large programs simpler. Another is en­
capsulation, which makes it easier to change and maintain a program. Finally,
there is the concept of class hierarchies, a powerful classification tool that can
make a program easily extensible. While you can apply these concepts using any
language, only object-oriented languages support them explicitly.

"Abstraction" is the process of ignoring details in order to concentrate on essential
characteristics. A programming language is traditionally considered "high-level" if
it supports a high degree of abstraction. For example, consider two programs that
perform the same task, one written in assembly language, one in C. The assembly­
language program contains a very detailed description of what the computer does
to perform the task, but programmers usually aren't concerned with what happens

162 C++ Tutorial

at that level. The C program gives a much more abstract description of what the
computer does, and that abstraction makes the program clearer and easier to
understand.

While traditional languages support abstraction, object-oriented languages provide
much more powerful abstraction mechanisms. To understand how, consider the
different types of abstraction.

Procedural Abstraction
The most common form of abstraction is "procedural abstraction," which lets you
ignore details about processes.

There are many levels of procedural abstraction. For example, it's possible to de­
scribe what a program does in even greater detail than assembly language does, by
listing the individual steps that the CPU performs when executing each assembly
language instruction. On the other hand, a program written in the macro language
of an application program can describe a given task on a much higher level than C
does.

When you write a program in a given language, you aren't restricted to using the
level of abstraction that the language itself provides. Most languages allow you to
write programs at a higher level of procedural abstraction, by supporting user­
defined functions (also known as procedures or subroutines). By writing your own
functions, you define new terms to express what your program does.

As a simple example of procedural abstraction, consider a program that frequently
has to check whether two strings are the same, ignoring case:

while (*s != '\0')
{

}

if ((*s == *t) II
((*s >= 'A') && (*s <= 'Z') && « *s + 32)
((*t >= 'A') && (*t <= 'Z') && « *t + 32)

s++; t++;

el se break;

if (*s == '\0'
printf("equal \n");

else
printf("not equal \n");

*t)) II
*s)))

By writing a program this way, you are constantly reminded of the comparisons
that the program performs to check whether two strings are equal. An alternate
way to write this program is to place the string comparison in a function:

i f (! s t r i cmp (s, t))
printf("equal \n");

else
pri ntf("not equal \n");

Fundamentals of Object-Oriented Design 163

The use of stricmp does more than save you a lot of typing. It also makes the pro­
gram easier to understand, because it hides details that can distract you. The pre­
cise steps performed by the function aren't important. What's important is that a
case-insensitive string comparison is being performed.

Functions make large programs easier to design by letting you think in terms of
logical operations, rather than in specific statements of the programming language.

Data Abstraction
Another type of abstraction is "data abstraction," which lets you ignore details of
how a data type is represented.

For example, all computer data can be viewed as hexadecimal or binary numbers.
However, since most programmers prefer to think in terms of decimal numbers,
most languages support integer and floating-point data types. You can simply type
"3.1416" rather than some hexadecimal bytes. Similarly, Basic provides a string
data type, which lets you perform operations on strings intuitively, ignoring the
details of how they're represented. On the other hand, C does not support the ab­
straction of strings, since the language requires you to manipulate strings as series
of characters occupying consecutive memory locations.

Data abstraction always involves some degree of procedural abstraction as well.
When you perform operations on variables of a given data type, you don't know
the format of the data, so you can ignore the details of how operations are per­
formed on those data types. How floating -point arithmetic is performed in binary
is, thankfully, something C programmers don't have to worry about.

Compared to their capacity for procedural abstraction, most languages have very
limited support for creating new levels of data abstraction. C supports user-defined
data types through structures and typedefs. Most programmers use structures as
no more than aggregates of variables. For example:

struct Person Info
{

} ;

char name[30];
long phone;
char addressl[30];
char address2[30];

164 C++ Tutorial

Such a user-defined type is convenient because it lets you manipulate several
pieces of information as a unit instead of individually. However, this type doesn't
provide any conceptual advantage. There's no point in thinking about the structure
without thinking about the three pieces of information it contains.

A better example of data abstraction is the FILE type defined in STDIO.H:

typedef struct _ iobuf
{

char far *_ptr;
int _cnt;
char far *_base;
char_flag;
char _file;

FILE;

A FILE structure is conceptually much more than the fields contained within it.
You can think about FILEs without knowing how they're represented. You
simply use a FILE pointer with various library functions, and let them handle the
details.

Notice that it's possible to declare a structure without declaring the functions
needed to use the structure. The C language lets you view data abstraction and pro­
cedural abstraction as two distinct techniques, when in fact they're integrally
linked.

Classes
This is where object-oriented programming comes in. Object-oriented languages
combine procedural and data abstraction, in the form of classes. When you define
a class, you describe everything about a high-level entity at once. When using an
object of that class, you can ignore the built-in types contained in the class and the
procedures used to manipulate them.

Consider a simple class: polygonal shapes. You might think of a polygon as a ser­
ies of points, which can be stored as a series of paired numbers. However, a poly­
gon is conceptually much more than the sum of its vertices. A polygon has a
perimeter, an area, and a characteristic shape. You might want to move one, rotate
it, or reflect it. Given two polygons, you might want to find their intersection or
their union, or see if their shapes are identical. All of these properties and opera­
tions are perfectly meaningful without reference to any low-level entities that

Encapsu lati on

Fundamentals of Object-Oriented Design 165

might make up a polygon. You can think about polygons without thinking about
the numbers that might be stored in a polygon object, and without thinking about
the algorithms for manipulating them.

With support for combined data abstraction and procedural abstraction, object­
oriented languages make it easy for you create an additional layer of separation be­
tween your program and the computer. The high-level entities you define have the
same advantage that floating-point numbers and printf statements have when
compared to bytes and MOV instructions: they make it easier to write long and
complex applications.

Classes can also represent entities that you usually wouldn't consider data types.
For example, a class can represent a binary tree. Each object is not simply a node
in a tree, the way a C structure is; each object is a tree in itself. It's just as easy to
create multiple binary trees as it is to create one. More importantly, you can ignore
all the nonessential details of a binary tree. What features of a binary tree are you
really interested in? The ability to quickly search for an item, to add or delete
items, and to enumerate all the items in sorted order. It really doesn't matter what
data structure you use, as long as you can perform the same set of operations on it.
It might be a tree implemented with nodes and pointers, or a tree implemented
with an array, or some data structure you've never heard of.

Such a class shouldn't be called Bi na ryTree, since that name implies a particular
implementation. Based on the operations that can be performed on it, the class
should be called SortedL i st or something similar.

By designing your program around abstract entities that have their own set of
operations, rather than using data structures made of built-in types, you make your
program more independent from implementation details. This leads to another
advantage of object-oriented programming: encapsulation.

"Encapsulation," which was mentioned in Chapter 4, is the process of hiding the
internal workings of a class to support or enforce abstraction. This requires draw­
ing a sharp distinction between a class's "interface," which has public visibility,
and its "implementation," which has private visibility. A class's interface de­
scribes what a class can do, while its implementation describes how it does it. This
distinction supports abstraction by exposing only the relevant properties of a class;
a user views an object in terms of the operations it can perform, not in terms of its
data structure.

166 C++ Tutorial

Sometimes encapsulation is defined as the act of combining functions and data,
but this is slightly misleading. You can join functions and data together in a class
and make all the members public, but that is not an example of encapsulation.
A truly encapsulated class "surrounds" or hides its data with its functions, so
that you can access the data only by calling the functions. This is illustrated in
Figure 9.1.

Object with public data members.

FUNC

DATA FUNC

FUNC

Object with private data members.

FUNC I FUNC

FUNC DATA FUNC

FUNC I FUNC

Figure 9.1 Hiding Data with Functions

Encapsulation is not unique to object-oriented programming. The principle of
"data hiding" in traditional structured programming is the same idea applied to
modules rather than classes. It is common practice to divide a large program into
modules, each of which has a clearly defined interface of functions that the other
modules can use. The aim of data hiding is to make each module as independent
of one another as possible. Ideally, a module has no knowledge of the data struc­
tures used by other modules, and it refers to those modules only through their inter­
faces. The use of global variables or data structures is kept to a minimum to limit
the opportunity for modules to affect one another.

For example, suppose a program needs to maintain a table of information. All the
functions acting on the table could be defined in one module, the file TABLE.C,
and their prototypes could be declared in a file called T ABLE.H:

Fundamentals of Object-Oriented Design 167

1* TABLE.H *1
#include "record.h" 1* get definition of RECORD data type *1

void add_item(RECORD *new_ item);
RECORD *search_ item(char *key);

If any function in the program needs to use the table, it calls one of the functions
defined in T ABLE.H. The T ABLE.C module might implement the table as an
array, but the other modules don't know about it. If that array is declared static, it
is actually inaccessible outside of T ABLE.C. Only the interface is visible then,
while the implementation is completely hidden.

Data hiding provides a number of benefits. One of them is abstraction, which was
described previously; you can use a module without having to think about how it
works. Another is "locality," which means that changes to one part of the program
don't require changes to the other parts. A program with poor locality is very
fragile; modifying one section causes other sections to break, because they all de­
pend on one another. A program with good locality is stable and easier to main­
tain; the effects of a change are confined to a small portion of the program. If you
change the array in T ABLE.C to a linked list or some other data structure, you
don't have to rewrite any module that uses the table.

Hiding data within a module has its limitations. In the example mentioned above,
the TABLE module does not permit you to have more than one table of informa­
tion in your program, nor does it let you declare a table that is local to a particular
function. You can gain these capabilities by using structures and pointers. For ex­
ample, you could use pointers as handles to tables, and write functions that take a
table pointer as a parameter:

1* TABLE.H *1
#include "record.h"

1* define TABLE with a typedef *1

TABLE *create_table();
void add_ item(TABLE *handle, RECORD *new_item);
RECORD *search_item(TABLE *handle, char *key);
void *destroy_table(TABLE *handle);

This technique is considerably more powerful than that used in the previous ex­
ample. It lets you use multiple tables at once and have separate tables for different
functions. However, the TABLE type provided by this module cannot be used as
easily as built-in data types. For example, local tables are not automatically de­
stroyed upon exit from a function. Like dynamically allocated variables, these
tables require extra programming effort to be used properly.

168 C++ Tutorial

Now consider the corresponding implementation in C++:

II TABLE.H
#include "record.h"

class Table
{

public:
Table();
void addltem(Record *newltem);
Record *searchltem(char *key);
-Table();

private:
I I ..

} ;

II PROG.CPP
#include "table.h"

void func()
{

Table first, second;

I I . ..
}

This class has two advantages over the technique of using table handles in C. The
first one, as mentioned earlier, is ease of use. You can declare instances of Table
the same way you declare integers or floating-point numbers, and the same scop­
ing rules apply to all of them.

Second, and more important, the class enforces encapsulation. In the technique
using table pointers, it is only a matter of convention that programmers do not
access what's behind the table handle. Many programmers may choose to circum­
vent the interface of functions and manipulate a table directly. If the implementa­
tion of a table changes, it's very time consuming to locate every place in the
source code where the programmer's assumptions about the data structure are now
invalid. Such errors might not be detected by the compiler and might remain unde­
tected until run time, when (for example) a null pointer is dereferenced and the pro­
gram fails. Even minor changes to the implementation can create such problems.
Sometimes the changes are intended to correct bugs, but instead cause new ones
because other functions depend on the specifics of an implementation.

Fundamentals of Object-Oriented Design 169

In contrast, by declaring Tabl e as a class, you can use the access rules of C++ to
hide the implementation. You don't have to rely on the self-restraint of program­
mers who use your class. Any program that attempts to access the private data of
a Tabl e object won't compile. This makes it much more likely that locality will
be maintained.

A common reason programmers break convention and access a data structure
directly is that they can easily perform an operation that is cumbersome to do
using only the functions in the interface. A well-designed class interface can min­
imize this problem if it reflects the important properties of the class. While no in­
terface can make all possible operations convenient, it's usually best to forbid
access to a class's internal data structure, even if it means an occasional piece of
inefficient code. The minor loss in convenience is far outweighed by the increased
maintainability of the program that encapsulation provides. By eliminating the
need to modify most of the modules in a large program whenever a change is
made, object-oriented languages can dramatically reduce the time and effort
needed to develop new systems or update existing ones.

Even if the class interface changes in the future, it is still a good idea to use an en­
capsulated class rather than accessible data structures. In most cases, the changes
to the interface can be formulated solely as additions to the existing interface, pro­
viding for upward compatibility. Any code that uses the old interface still works
correctly. The code has to be recompiled, but that involves only computer time,
not programmer time.

Note that, in C++, encapsulation does not provide a guarantee of safety. A pro­
grammer who is intent on using a class's private data can always use the & and *
operators to gain access to them. Encapsulation simply protects against casual use
of a class's internal representation.

Class Hierarchies
One feature of object-oriented programming that is not found at all in procedural
programming is the ability to define a hierarchy of types. In C++ you can define
one class as a subtype, or special category, of another class by deriving it from that
class. You can also express similarities between classes, or define them as subcate­
gories of a single broad category, by deriving them all from one base class. By
contrast, the C language treats all types as completely independent of one another.

Identifying a common base class for several classes is a form of abstraction. A
base class is a high-level way to view those classes. It specifies what the derived
classes have in common, so you can concentrate on those shared traits and ignore
their individual characteristics. This abstraction technique lets you view entities in

170 C++ Tutorial

terms of a small number of categories instead of a large number. This technique is
often used in everyday thinking; for example, it's easier to think "mammals" in­
stead of "lions, tigers, bears ... " and "bears" rather than "grizzly bears, black bears,
polar bears "

Whereas a base class is a generalization of a group of classes, a derived class is a
specialization of another class. A derived class identifies a subtype of a previously
recognized type, and describes it in terms of its additional characteristics. For
example, lions are mammals, but they also have certain traits not found in all
mammals.

There are two practical benefits of defining a class hierarchy: the derived class can
share the base class's code, or it can share the base class's interface. These two
benefits are not mutually exclusive, though a hierarchy designed for code reuse
often has different characteristics from one designed to give a common interface.

Inheriting Code
If you are writing a class and want to incorporate the functionality of an existing
class, you can simply derive your class from the existing one. This is a situation in
which inheritance allows code reuse. For example, the Sa 1 esperson class in Chap­
ter 7 incorporated the functionality of the WageEmployee class.

If you're implementing several classes at once that share features, a class hierar­
chy can reduce redundant coding. You can describe and implement those common
features just once in a base class, rather than repeatedly in each derived class.

For example, consider a program for designing data entry forms, where users fill
out fields onscreen. The program allows forms to contain fields that accept names,
fields that accept dates, fields that accept monetary values, and so forth. Each field
accepts only the appropriate type of data. You could make each type of field a sep­
arate class, with names like NameFi el d, DateFi el d, and MoneyFi el d, each with its
own criteria for validating input. Note that all the fields share some functionality.
Each field is accompanied by a description telling the user what's requested, and
the procedure for defining and displaying that description is the same for all fields.
As a result, all the classes have identical implementations for their setprompt,
di spl ayPrompt, and other functions.

You can save yourself effort as well as reduce the size of the program by defining
a base class called Fi el d that implements those functions. The NameFi el d,
DateFi el d, and MoneyFi el d classes can be derived from Fi el d and inherit those
functions. Such a class hierarchy also reduces the effort required to fix bugs or add
features, because the changes only have to be made in one place.

Fundamentals of Object-Oriented Design 171

A class hierarchy designed for code sharing has most of its code in the base
classes (near the top of the hierarchy). This way the code can be reused by many
classes. The derived classes represent specialized or extended versions of the base
class.

Inheriting an Interface
Another inheritance strategy is for a derived class to inherit just the names of its
base class's member functions, not the code; the derived class provides its own
code for those functions. The derived class thus has the same interface as the base
class but performs different things with the same functions.

This strategy lets different classes use the same interface, thus reinforcing the high­
level similarity in their behavior. However, the main benefit of inheriting an inter­
face is polymorphism, which was exhibited by the Employee class in Chapter 7.
All the classes derived from Employee shared its interface, making it possible to
manipulate them as generic Emp 1 oyee objects.

In the example of the data entry forms, Fie 1 d has a member function called
getVa 1 ue, butthe function doesn't do anything useful. NameFi el d inherits that
member function and provides it with code to validate input as a legal name.
DateFi el d and MoneyFi el d do the same, each providing different code for the
function. Thus, individual field objects may have various types and exhibit differ­
ent behaviors, but they all share the same interface and can all be treated as Fi e 1 d
objects.

A data entry form can simply maintain a list of Fie 1 d objects and ignore the dis­
tinctions between types of fields. To read values into all the fields, a form can it­
erate through its list of Fi el ds and call getVa 1 ue for each without even knowing
what types of fields are defined. The individual fields automatically get input
using their own versions of getVa 1 ue.

The example of the data entry forms uses inheritance for both code sharing and in­
terface sharing. However, you can also design a class strictly for interface sharing
by writing an abstract base class. The Sortabl eObject class in Chapter 7 is an
example of a class designed for pure interface sharing. The class's interface de­
scribes the necessary properties for an object to be stored in a So rted Lis t object.
However, the Sortab 1 eObj ect class contains no code itself.

A class hierarchy designed for interface sharing has most of its code in the derived
classes (near the bottom of the hierarchy). The derived classes represent working
versions of an abstract model defined by the base class.

172 C++ Tutorial

In summary, classes provide support for abstraction, encapsulation, and hierar­
chies. Classes are a mechanism for defining an abstract data type along with all the
accompanying operations. Classes can be encapsulated, compartmentalizing your
program and increasing its locality. Lastly, classes can be organized into hierar­
chies, highlighting their relationships to each other while letting you minimize re­
dundant coding.

To gain the most benefit from object-oriented programming, you must do more
than simply write your program in C++. The next section describes how you actu­
ally design an object-oriented program.

Designing an Object-Oriented System
In top-down structured programming, the first design step is to specify the pro­
gram's intended function. You must answer the question, "What does the program
do?" First you describe the major steps that the program must perform, using high­
level pseudocode or flowcharts, and then you refine that description by breaking
each major step into smaller ones. This technique is known as "procedural decom­
position." It treats a program as a description of a process, and breaks it down into
subprocesses.

Object-oriented design differs dramatically from this technique. In object-oriented
design, you don't analyze a problem in terms of tasks or processes. Nor do you de­
scribe it in terms of data; you don't begin by asking "What data does the program
act upon?" Instead, you analyze the problem as a system of objects interacting.
The first question you ask is, "What are the objects?" or "What are the active enti­
ties in this program?"

Not only does object-oriented design begin from a different premise from proce­
dural decomposition, it proceeds in a different manner. Procedural decomposition
is a top-down approach, starting with an abstract view of the program and ending
with a detailed view. However, object-oriented design is not a top-down tech­
nique. You do not first identify large classes and then break them down into
smaller ones. Nor is it necessarily a bottom-up process, where you start with small
classes and build up from them (though class libraries can be used for this kind of
approach). Object-oriented design involves working at both high and low levels of
abstraction at all stages.

Object-oriented design requires you to do the following:

• Identify the classes

• Assign attributes and behavior

• Find relationships between the classes

• Arrange the classes into hierarchies

Fundamentals of Object-Oriented Design 173

While you should begin by performing these steps in the order shown, remember
that object-oriented design is an iterative process. If you perform each step in the
process just once, without regard for the later steps, it's unlikely that you'll create
a useful set of classes. Each step in the process may alter the assumptions you
used in a previous step, requiring you to go back and repeat that step with new in­
formation. This does not mean that you shouldn't give any thought to your initial
design. A good initial design is always desirable and will speed up the develop­
ment process. However, you should expect revisions to occur. You will succes­
sively refine your class descriptions throughout the design process.

Identifying the Classes
The first step is to find the classes that the program needs. This is more difficult
than identifying the primary function of a program. You cannot simply perform a
procedural decomposition of the problem, take the resulting structure types or data
structures, and make them into classes. Your classes must be the central, active en­
tities in your program.

One technique for identifying classes is to write a description of the program's pur­
pose, list all the nouns that appear in the description, and choose your classes from
that list. This is a simplistic approach whose success depends on how well the orig­
inal description is written, but it can help give you ideas if you are new to object­
oriented design.

It's easiest to identify classes for a program that models physical objects. For ex­
ample, if your program handles airline seating reservations, you will probably
need an Ai rpl ane class and a Passenger class. If your program is an operating
system, a Devi ce class for representing disk drives and printers is a likely candi­
date class.

However, many programs don't model physical entities. For these situations, you
must identify the conceptual entities that the program manipulates. Sometimes
these are readily identifiable: a Rectangl e class and a Ci rcl e class are obvious
candidates for a graphic drawing program. In other cases, these are not as easy to
visualize. For example, a compiler might need a SyntaxTree class, and an operat­
ing system might need a Process class.

Less obvious candidates for classes are events (things that happen to an object)
and interactions (things that happen between objects). For example, a
Transacti on class could represent things like loans, deposits, or funds transfers in
a bank program. A Command class could represent actions performed by the user
in a program.

You may see possible hierarchies for your classes. If you've identified
Bi naryFi 1 e and TextFi 1 e as candidate classes, you might derive them from a
base class called Fi 1 e. However, it is not always obvious when a hierarchy is ap­
propriate. For instance, a bank program could use a single Transacti on class, or

174 C++ Tutorial

it could use separate Loan, Deposi t, and Transfer classes derived from
Transacti on. As with the classes themselves, any hierarchies identified at this
stage are simply candidates to be refined or discarded later in the design process.

All of the above candidate classes are meant to model elements in the problem
you're trying to solve. Your program may also need another category of candidate
classes: those that can be used to implement the other classes you've found. For
instance, you may have identified a class that can be implemented using the
So rted Lis t class that you previously wrote. In that case, So rted Lis t becomes a
candidate class, even if your program description didn't explicitly mention sorted
lists. In general, it is too early to think about how each class should be imple­
mented, but it is appropriate to find ways to build classes using existing class
libraries.

Assigning Attributes and Behavior
Once you've identified a class, the next task is to determine what responsibilities it
has. A class's responsibilities fall into two categories:

• The information that an object of that class must maintain. ("What does an ob­
ject of this class know?")

• The operations that an object can perform or that can be performed on it.
("What can this object do?")

Every class has attributes, which are the properties or characteristics that describe
it. For example, a Rectangl e class could have height and width attributes, a
GraphCursor class could have a shape (arrow, crosshairs, etc.), and a Fi 1 e class
could have a name, access mode, and current position. Every instance of a class
has a state that it must remember. An object's state consists of the current values
of all its attributes. For example, a Fi 1 e object could have the name FOO.TXT,
the access mode "read only," and the position "twelve bytes from the beginning of
the file." Some attributes may never change value, while others may change
frequently. An attribute's value can be stored as a data member, or it can be com­
puted each time it is needed.

It is important not to confuse attributes and classes; you should not define a class
to describe an attribute. A Rectangl e class is useful, but Hei ght and Wi dth
classes probably are not. Deciding whether to have a Shape class is not so easy.
When a shape is used only to describe a cursor's state, it is an attribute. If a shape
has attributes that can have different values, and a set of operations that can be per­
formed on it, then it should be a class in itself. Moreover, even if a program needs
a Shape class, other classes may still have shape as an attribute. The Shape ob­
jects that a program manipulates are unrelated to the shape of a GraphCursor
object.

Fundamentals of Object-Oriented Design 175

Every class also has behavior, which is how an object interacts with other objects
and how its state changes during those interactions. There is a wide variety of
possible behaviors for classes. For example, a Ti me object can display its current
state without changing it. A user can push or pop elements off a Stack object,
which does change its internal state. One Po 1 ygon object can intersect with
another, producing a third.

When deciding what a class should know and what it can do, you must examine it
in the context of the program. What role does the class play? The program as a
whole has information that makes up its state, and behavior that it performs, and
all of those responsibilities must be assigned to one class or another. If there is in­
formation that no class is keeping, or operations that no class is performing, a new
class may be needed. It is also important that the program's work be distributed
fairly evenly among classes. If one class contains most of the program, you should
probably split it up. Conversely, if a class does nothing, you should probably dis­
card it.

The act of assigning attributes and behaviors gives you a much clearer idea of
what constitutes a useful class. If a class's responsibilities are hard to identify, it
probably does not represent a well-defined entity in the program. Many of the can­
didate classes found in the first step may be discarded after this step. If certain at­
tributes and behavior are repeated in a number of classes, they may describe a
useful abstraction not previously recognized. It may be worthwhile to create a new
class containing just those characteristics, for other classes to use.

One common mistake among programmers new to object-oriented programming
is to design classes that are nothing more than encapsulated processes. Instead of
representing types of objects, these classes represent the functions found by a pro­
cedural decomposition. These false classes can be identified during this stage of
the design by their lack of attributes. Such a class doesn't store any state informa­
tion; it just has behavior. If, when describing a class's responsibilities, you say
something like, "This class takes an integer, squares it, and returns the result," you
have a function. Another characteristic of such classes is an interface consisting of
just one member function.

Once you've identified the attributes and behavior of a class, you have some candi­
date member functions for the class's interface. The behavior you've identified
usually implies member functions. Some attributes require member functions to
query or set their state. Other attributes are only apparent in the class's behavior.

The specific member functions and their parameters and return types won't be fi­
nalized until the end of the design process. Furthermore, implementation issues
play only a small role in the design process at this point. These include questions
like deciding whether attributes should be stored or computed, what type of repre­
sentation should be used, and how to implement the member functions.

176 C++ Tutorial

Finding Relationships Between Classes
The immediate extension of the previous step, deciding the features of each class,
is deciding how the classes use each other's features. While some of the classes
you identify can exist in isolation, many of them cannot. Classes build upon and
cooperate with other classes.

Often one class depends upon another class because it cannot be used unless the
other class exists. This is necessary when one class calls the member functions of
the other class. For example, a Time class may have conversions functions that
provide conversions between it and a Stri ng object. Such functions must call the
constructor and access functions of the S t r i n 9 class.

Another way one class can depend on another is when it has the other class
embedded within it, meaning that it contains objects of the other class as members.
For example, a Ci rcl e object might have a Poi nt object representing its center,
as well as an integer representing its radius.

This type of relationship is called a "containing relationship." Classes that contain
other classes are "aggregate" or "composite classes." The process of containing
member objects of other classes, known as "composition," was described in Chap­
ter 4. Composition is sometimes confused with inheritance; the distinction be­
tween these two is discussed in the next section.

Most relationships between classes arise because one class's interface depends on
another. For example, the class Ci rcl e may have a getCenter function that re­
turns a Point object,sousersmustknowabout Point touse Circle 'sinterface.
However, it is also possible for a class's implementation to depend on another
class. For example, you might design AddressBook with a private member object
of the SortedL i st class. Users of AddressBook don't need to know anything
about SortedL i st. They need only know about the interface of AddressBook. This
provides another layer of encapsulation, since it is possible to change the im­
plementation of AddressBook without changing the interface.

When identifying relationships, you must consider how a class performs its as­
signed behavior. Does it need to know information that is maintained by other
classes? Does it use the behavior of other classes? Conversely, do other classes
need to use this class's information or behavior?

As you define the relationships between classes more fully, you'll probably mod­
ify some of the decisions you made in previous steps. Information or behavior that
was previously assigned to one class may be more appropriate in another. Don't
give objects too much information about their context. For example, suppose you
have a Book class and a Library classforstoring Book objects. There's no need
for a Book object to know which Library holds it; the Library objects already
store that information. By adjusting the borders between classes, you refine your
original ideas of each class's purpose.

Fundamentals of Object-Oriented Design 177

You might be tempted to use friend classes when you have one class that needs
special knowledge about another class. However, the friend mechanism in C++
should be used very sparingly, because it breaks the encapsulation of a class. Mod­
ifying one class may require rewriting all its friend classes.

After identifying the relationships that one class has with others, you reach a
closer approximation of the class's interface. You know which attributes require
member functions to set them and which attributes require only query functions.
You have a clearer idea of how best to divide the class's behavior into separate
functions.

Arranging Classes into Hierarchies
Creating class hierarchies is an extension of the first step, identifying classes, but
it requires information gained during the second and third steps. By assigning at­
tributes and behavior to classes, you have a clearer idea of their similarities and
differences; by identifying the relationships between classes, you see which
classes need to incorporate the functionality of others.

One indication that a hierarchy might be appropriate is the use of a switch state­
ment on an object's type. For example, you might design an Account class with a
data member whose value determines whether the account is a checking or savings
account. With such a design, the class's member functions might perform different
actions depending on the type of the account:

class Account
{

public:
int withdraw(int amount);
I I ...

private:

} ;

int accountType;
I I ...

int Account::withdraw(int amount)
{

}

switch (accountType)
{
case CHECKING:

II perform checking-specific processing
break;

case SAVINGS:

II
} ;

II perform savings-specific processing
break;

178 C++ Tutorial

A switch statement like this usually means that a class hierarchy with polymor­
phism is appropriate. As described in Chapter 7, polymorphism lets you call mem­
ber functions for an object without specifying its exact type, by using virtual
functions.

In the example above, the Account class can be made into an abstract base class
with two derived classes, Say; ngs and Checki ng. The withdra\~ fu.l1ction can be
declared virtual, and the two derived classes can each implement their own version
of it. Then you can call wi thdraw for an object without examining the object's pre­
cise type.

On the other hand, a hierarchy isn't needed just because you can identify different
categories of a class. For example, is it necessary to have Sedan and Van as
derived classes of Ca r? If you perform the same processing for every type of car,
then a hierarchy is unnecessary. In this case, a data member is appropriate for stor­
ing the type of car.

Composition vs. Inheritance
Both composition and inheritance enable a class to reuse the code of another class,
but they imply different relationships. Many programmers automatically use in­
heritance whenever they want to borrow the functionality of an existing class,
without considering whether inheritance accurately describes the relationship be­
tween their new class and the existing one. Composition should be used when one
class has another class, while inheritance should be used when one class is a kind
of another class. For example, a circle is not a kind of point; it has a point. Con­
versely, a numeric data field does not contain a generic data field; it is a data field.

Sometimes it is difficult to determine whether inheritance or composition is appro­
priate. For example, is a stack a kind of list with a special set of operations, or
does a stack contain a list? Is a window a kind of text buffer that can display itself,
or does a window contain a text buffer? In such cases, you have to examine how
the class fits in with the other classes in your design.

One indication that inheritance is the appropriate relationship is when you want to
use polymorphism. With inheritance, you can refer to a derived object with a
pointer to its base class and call virtual functions for it. With composition, how­
ever, you cannot refer to a composite object with a pointer to one of its member's
classes, and you cannot call virtual functions.

If you want to borrow another class's functionality more than once, composition is
probably more appropriate. For example, if you're writing a Fi 1 eStamp class and
you want each object to store a file's creation date, last modification date, and last
read date, composition is clearly preferable to inheritance. Rather than use a com­
plicated multiple inheritance design, it's much simpler to include three Date ob­
jects as members.

Fundamentals of Object-Oriented Design 179

Designing Classes for Inheritance
Building class hierarchies usually involves creating new classes as well as modify­
ing or discarding ones previously identified. Most of the classes identified during
the first step are probably ones that you intend to instantiate. However, when the
common features of several classes are isolated, they often don't describe a class
that is useful to instantiate. As a result, the new classes you create when forming a
hierarchy may be abstract classes, which are not meant to have instances.

Adding abstract classes increases the ability to reuse a class. For example, you
might create one abstract class that five classes inherit from directly. However, if
two of those deriving classes share features that the others don't, those features
can't be placed in the base class. As a result, they would have to be implemented
in each class they appeared in. To prevent this, you can create an intermediate ab­
stract class that is itself derived from the base, but adds new features. The two
classes can inherit their shared characteristics from this class. This also gives you
greater flexibility when extending the hierarchy later on.

However, abstract classes should not be created indiscriminately. As an extreme
example, it's possible to create a series of abstract classes, each of which inherits
from another and adds only one new function. While in theory this promotes reusa­
bility, in practice it creates a very clumsy hierarchy.

It is desirable to place common features as high in a hierarchy as possible to maxi­
mize their reuse. On the other hand, you should not burden a base class with fea­
tures that few derived classes will use. Attributes and behavior may be shifted up
and down the hierarchy as you decide which features should be placed in a base
class.

Inheritance not only affects the design of class hierarchies, it can also affect the de­
sign of classes that stand alone. Any class you write might later be used as a base
class by another programmer. This requires a refinement to the distinction be­
tween a class's interface and implementation. A class has two types of clients:
classes or functions that use the class; and derived classes that inherit from the
class. When designing a class, you must decide whether you want to define differ­
ent interfaces for these two types of clients. The protected keyword allows you to
make members visible to the derived classes but not to the users. You can thus
give derived classes more information about your class than you give users.

A protected interface can reveal information about a class's implementation,
which violates the principle of encapsulation. Modifying the protected portion
of a class means that all derived classes must be modified too. Accordingly, the
protected keyword should be used with care.

180 C++ Tutorial

Multiple Inheritance
Multiple inheritance can be useful for maximizing reuse while avoiding base
classes with unnecessary functionality. For example, remember the example of the
abstract base class So rtab 1 eObj ect, which has the interface that a class needs in
order to be stored in a SortedL i st. Now consider a similar abstract base class
called Pri ntab 1 eObj ect, which has an interface that all printable classes can use.
You might have some classes that are printable, some that are sortable, and some
that are both. Multiple inheritance lets you inherit the properties you need from the
abstract base classes.

This scenario is difficult to model using only single inheritance. To avoid
duplicating functions in different classes, you'd have to define a base class
P ri nta b 1 eSortab 1 eObj ect and derive all your other classes from it. Certain
classes would have to suppress the functions of the printable interface, while
others would have to suppress the functions of the sortable interface. Such a class
hierarchy is top-heavy, having too much functionality in its base class.

Virtual base classes are often used in hierarchies built around multiple inheritance.
One drawback of virtual base classes, besides the processing overhead they entail,
is that the need for them only becomes apparent when you design an entire hierar­
chy at once. Consider the example of the Sal esManager class in Chapter 7. The
need to make Employee a virtual base class doesn't arise until SalesManager is
defined. If you didn't define Sal e sMa nag e r at the outside, but instead defined it
after the other classes have been used in many programs, you must modify the ex­
isting hierarchy, causing extensive recompilation. If modifying the hierarchy isn't
practical, you must use some other solution instead of virtual base classes.

Just as with single inheritance, multiple inheritance is often used inappropriately.
Many situations where multiple inheritance is used are better modeled with com­
position or with a combination of composition and single inheritance. You should
always examine one ofthese options when considering multiple inheritance.

Now that you've seen the major steps in designing object-oriented programs, the
next chapter gives a concrete example of how this design technique can be applied.

Design Example:
A Windowing Class

Chapter 9 described a technique for designing an object-oriented program. This
chapter illustrates that technique by using it to design a simple character-based
windowing package written in C++. The source code for the classes can be found
in the sample program directory.

The primary purpose of this chapter is not to describe windowing systems but to
provide an demonstration of object-oriented design. Accordingly, the classes de­
scribed in this chapter are intended to be examples only, not for use as a full­
fledged windowing package. However, the decisions that go into the design of
these classes should be useful in guiding you if you design a complete set of win­
dowing classes.

Examining the Requirements
No matter what design technique you employ, you must define what the program
is supposed to do before you can begin designing. Consider how the completed
program should behave.

The windowing package does not form a stand-alone application. It is meant to be
used by a client who is writing a stand-alone program that displays text in multi­
ple, overlapping windows. The windows can scroll in both vertical and horizontal
directions, so a window can contain more text than it can display at once. The win­
dows can be manipulated with either the keyboard or the mouse. For example, the
user can scroll a window by moving its cursor with the keyboard cursor keys or by
clicking on its scroll bar(s) with the mouse. It's possible to create windows in
which the user can enter text or execute commands. (Note that the user is not nec­
essarily the client; the user is the person who uses the program that the client has
written.)

182 C++ Tutorial

TexUJin2-,

~n~~,,~~o~hiili
ere was a !i~~
little gir:::!
I who liud'TextWinl
d in a cot::::han that

:a~~~::~::IIII:!~::ir~
eke wi

inspire
heeth

and the

Figure 10.1 Character-Based Windows

Because a user can interact with only one window at a time, whether scrolling or
entering text, you need a way to specify which window receives input. That win­
dow is the active window. Only one window can be active at any given time.

The active window must be fully displayed. It cannot have any portion obscured
by other windows. Whenever an inactive window becomes active, it must be redis­
played over any windows that might cover it (like a sheet of paper being moved to
the top of a stack of paper). The user changes the active window by clicking the
mouse on an inactive window or by entering a keyboard command.

The program is illustrated in Figure 10.1.

Designing the Classes
As described in the previous chapter, the major steps in object-oriented design are:

• Identify the basic classes

• Assign attributes and behavior

• Find the relationships between the classes

• Arrange the classes into hierarchies

The following sections describe how these steps apply to the windowing package,
but the sections don't have an exact one-to-one correspondence with the steps
listed above. That's because the steps are all interrelated, so that more than one
step is performed at the same time, and they're performed iteratively, so that some
steps are performed more than once.

Design Example: A Windowing Class 183

Identifying Candidate Classes
What classes are needed for this program? An obvious choice is a window class,
where each window is an object. The first candidate class is therefore called Wi n.

The program handles user actions such as keyboard input and mouse clicks. These
actions are significant, because they can change the state of a window. There
should also be an Event class to describe such user events. For example, when a
user clicks the mouse over a window, an Event object is passed to the appro­
priate Wi n object, and the Wi n object responds accordingly. This is an example
of a class that describes things that happen to objects.

If there are multiple windows, should the client program be responsible for keep­
ing track of the active window and directing events to it? That's an unreasonable
burden to place on the client program. The package should provide a class that
maintains information about all windows and mediates between them and the user.
This candidate class is called Wi nMgr. This class doesn't model an entity men­
tioned in our description of the program. It is created because there is information
that must be maintained by the program, but that information isn't stored by any
other classes.

Since this program frequently manipulates positions, it is convenient to represent
positions using a simple Poi nt class, instead of a pair of integers. Similarly, since
the program uses rectangular windows, a Rect class is a reasonable candidate.
These classes are extremely simple ones, being little more than convenient
structures.

Attributes and Behavior for Windows
What information does a Win Mg r object maintain? Should it store the positions of
the windows? No, because it's more appropriate for each window itself to know
that. However, in keeping with the guideline that objects shouldn't know too much
about their context, a window shouldn't know whether it lies above or below other
windows. Instead, Wi nMgr should maintain the stacking order of the windows.
Since the topmost window is always the active one, Wi nMgr always knows which
window is active.

What can a Wi nMgr object do? It directs user-generated events to the active win­
dow, but it can't pass all of them to that window. For example, the user can click
on an inactive window to make it active; such an event cannot be sent to the active
window. Wi nMgr must respond to that event and restack the windows, so that a
newly active window moves from its previous position in the stack to the top.

What information does a Wi n object maintain? It knows its size and position on
the screen. It stores all the text that it must display, which, for a scrollable win­
dow, includes the text that is outside the window's bounds. The window knows

184 C++ Tutorial

where the displayed section is located relative to the entire text, so it can position
the slider on the scroll bar.

What can a Wi n object do? It can display itself on the screen. It can respond to the
keyboard by moving its cursor, and, if it's an editing window, by modifying its
text. It can also respond to the mouse. It can position the cursor if the mouse is
clicked on the text and scroll the text if the mouse is clicked on the scroll bar.

Refining the Window Classes
Consider the behavior of the scroll bar more closely. If the user clicks on either
end, the text moves one line in the appropriate direction. If the user clicks on
either side of the slider, the text moves one page in the appropriate direction.
(We'll ignore dragging on the slider itself.)

This is a fairly complex set of responses for a window to perform. Moreover, a
window might have two scroll bars, one vertical and one horizontal, which re­
quires a lot of repetition in the code for responding to a mouse click. Instead of
making a window responsible for scroll-bar behavior, you can make scroll bars a
separate class. A text window is thus responsible for interpreting mouse clicks on
the text, while a scroll bar is responsible for interpreting mouse clicks on its sur­
face. Objects of these two classes interact to perform text scrolling.

What information does a Scroll Ba r object maintain? It knows its size, but what
about its position? Suppose it knows its absolute position on the screen. With such
a design, consider how you would move a scrollable window. Not only would you
update the window's position attributes, you'd also have to update the attributes of
both scroll bars. This is an example of giving an object too much information
about its context. By knowing its absolute position, Sera 11 Ba r is implicitly aware
of the position of the window containing it. Instead, let Se ra 11 Ba r store only its
relative position, as an offset from the comer of the window containing. With this
distribution of information, moving a window requires updating only the win­
dow's position attributes.

How is Scroll Bar related to the classes already defined? It has a number of simi­
larities to the Wi n class: it knows its size and relative position, and it can display
itself and respond to mouse clicks. You can factor out this common behavior,
place it in a base class, and make scroll bars and text windows derived classes.

Thus, the fundamental entities in our program are not text windows but something
more primitive. This new class represents a screen area that interacts with the user
as a logical unit, so call it Interaetar.1t should be an abstract base class, since
there's no such thing as a generic interactive area. A Wi n is an Interaetar, and
soisa SerallBar.

The Interaetar class is an example of a class that wasn't among the original can­
didates classes, but was created after examining the attributes and behavior of the

Design Example: A Windowing Class 185

candidates. The class represents an entity that wasn't immediately evident in the
description of the program. The class hierarchy is shown in Figure 10.2.

Figure 10.2 First Window Class Hierarchy

Remember that this is only the first approximation of the window class hierarchy,
and that it may change as you design the classes in more detail.

Attributes and Behavior for Events
What information is stored in an Event object? If the event comes from the key­
board, the relevant information is the key that was pressed. If the event comes
from the mouse, the relevant information is the location of the mouse cursor and
the status of the mouse buttons. These are two distinct types of event, so you can
make two separate classes, KbdEvent and MouseEvent.

What can a KbdEvent or a MouseEvent do? These classes don't do much, except
report the information they contain. They're little more than fancy structures.

Even though these two classes don't appear to share anything in common, you can
derive them both from an abstract base class Event as a way of indicating that
both represent types of events. This provides a single means of referring to both
types of events so that, if desired, objects of either type could be passed to a func­
tion. This technique will be discussed in more detail in the section "The Event
Hierarchy."

This event hierarchy is shown in Figure 10.3.

KbdEvent MouseEvent

Figure 10.3 Event Hierarchy

186 C++ Tutorial

Identifying Relationships Between Classes
What are the relationships between the classes identified thus far? A text window
can have one or two scroll bars. Each scroll bar is said to be a child of the text win­
dow, and the text window is the parent of the scroll bares). This can be represented
as a containing relationship, where Win contains one or two instances of
ScrollBar as member objects. ~~in therefore uses ScrollBar.

The interaction between windows and scroll bars requires two-way communica­
tion, since using the scroll bar affects the window and moving the window's cur­
sor affects the scroll bar. As a result, scroll bars must also have knowledge of text
windows. This differs from the situation where, for instance, a circle contains a
point to represent its center; Ci re1 e must know about Poi nt, but the reverse is
not true. Se ro 11 Ba r must know about the interface of Win to communicate with it.

Events are passed to interactors, whether text windows or scroll bars, so
Interaetor must have a member function that accepts an Event object as a
parameter. Interaetor thus uses Event.

Note that Wi n must be defined before Wi nMgr, since Wi nMgr manipulates Wi n ob­
jects. Since it's possible to have an arbitrary number of windows, Wi ns cannot be
member objects. Instead, you can make Wi nMgr a collection class, which allows
you to insert or delete Wi n objects. Wi nMgr also uses Events, since it passes them
to the windows.

However, since scroll bars never exist independently and are never stacked on
each other, it is unnecessary for a Wi nMg r to manipulate Sera 11 Ba r or generic
Interaetor objects.

The relationships between the classes are shown in Figure 10.4.

uses

contains

contains communicates
with

ScrollBar

Figure 10.4 Relationships Between Classes

Design Example: A Windowing Class 187

Defining Preliminary Class Interfaces
The hierarchies are very simple at this point, so there's no need to restructure
them. You can wait until later in the design process to work on their organization.
However, it is appropriate to decide which features belong in the base classes and
which belong in the derived classes. This requires a closer examination of the
classes' attributes and behavior, so you should make a first approximation of the
classes' public interfaces.

The Window Classes
The window hierarchy consists of a base Interactor class, with Wi nand
Scro 11 Ba r as derived classes. Let's consider these classes in tum, starting at the
top of the hierarchy and moving down.

Interactors
What are the common characteristics of all interactors, including both text win­
dows and scroll bars? They all have a size and a relative position, and this informa­
tion must be accessible. They can check whether a given pair of coordinates falls
within their borders, indicating that they should respond to a mouse click. In addi­
tion, all interactors have the ability to display themselves and to respond to events.
However, since there is no way for a generic Interactor object to paint itself or
to respond to events, those member functions should be declared as pure virtual
functions.

Recall that Poi nt and Rect classes are available for use. Using these classes, we
can write a preliminary interface for Interactor as follows:

class Interactor
{

public:
int width();
int heightC);
Point originC);
int withinBoundsC Point pas);
virtual void paintC) = 0;
virtual void handleEventC Event &action) 0;

protected:
Rect area;

} ;

Because of its pure virtual functions, the Interactor class cannot be instantiated.
However, the simple functions wi thi nBounds, wi dth, hei ght, and ori gi n can
all be implemented here, since those functions are the same for all interactors.

188 C++ Tutorial

Text Windows
The Wi n class is derived from the Interactor class. What additional information
does Win maintain, besides that stored by Interactor? As mentioned earlier, a
text window must store all the text it can display. An array can be used to hold the
text; something dynamically resizeable, such as a linked list, is more flexible, but
for this example each window will have a fixed amount of text.

The window might contain one or two scroll bars, or none at all, depending on the
length and width of the text being displayed. Should there be separate classes for
windows with two scroll bars, windows with one, and windows with none? That
seems unnecessary. It's simpler to have a single, flexible window class that can
have zero, one, or two scroll bars. Because the scroll bars are optional, they
shouldn't be contained as member objects, since that would require a non­
scrolling window to store unnecessary objects. Instead, you can use pointers to
Scro 11 Ba rs. Wi n 's constructor can allocate Scro 11 Ba r objects if the text is larger
than the window and set the pointers to NULL otherwise.

If the window is scrollable, the text document being displayed is larger than the
window, so the document's dimensions must also be stored. Similarly, it is also
necessary to store the position of the window relative to the document as a whole.
A window can optionally have a title, which must be stored as well. A preliminary
interface for Wi n therefore looks like this:

class Win: public Interactor
{

public:
void paint();
void handleEvent(Event &action);
void setchar(Point pos, char newchar);
char retchar(Point pos);
void putstr(Point pos, char *newstr);
i nt rows () ;
int columns();
void setTitle(char *newtitle);

private:

} ;

ScrollBar *hscroller;
ScrollBar *vscroller;
char *textBuffer;
int textrows, textcolumns;
Point position;
Point cursorPos;
char *title;

II Position of window in text

Design Example: A Windowing Class 189

This is a lot of information for one class to maintain. You can create a new class,
Buffer, that stores the text, and include it as a member of Wi n. For example:

class Buffer
{
public:

int rows();
int columns();
void setchar(Point pas, char newchar);
char retchar(Point pas);
void putstr(Point pas, char *newstr);

private:
int width, length;
char *textArray;

} ;

class Win
{

public:

public Interactor

void paint();
void handleEvent(Event &action);
void setTitle(char *newtitle);

private:

} ;

ScrollBar *hscroller;
ScrollBar *vscroller;
Buffer canvas;
Point position;
Point cursorPos;
char *title;

II Position of window on text

This design divides the responsibilities of the previous Wi n class into two catego­
ries: storing the text and displaying the text on screen. Each Wi n object contains a
pointer to its associated Buffer object, which stores the text that the window
displays.

Scroll Bars
What additional information does Sc ro 11 Ba r maintain, besides that stored by
I nteractor? A scroll bar knows whether it is vertical or horizontal, and that infor­
mation can be represented as a flag. It knows the position of the slider, which can
be represented as a number between 1 and 100.

190 C++ Tutorial

A scroll bar is constrained to be one character wide if it's vertical, or one character
high ifit's horizontal. It cannot exist separately from a text window. A text win­
dow must exist before a scroll bar can be created. The S c r 0 1 1 Bar constructor can
ensure these conditions.

Is any other member function needed to use a Scroll Ba r object? If the user
scrolls a text window by moving the cursor with the arrow keys, the scroll bar's
slider should move. It doesn't seem appropriate to send keyboard events to the
scroll bar; the text window itself should handle those. Sc ro 11 Ba r should therefore
have a function that sets the slider position, which Wi n can call. This means the
preliminary interface to Scroll Bar looks like this:

class ScrollBar : public Interactor
{

public:
void paintC);
void handleEventC Event &action);
void setSliderC int pos);

private:

} ;

Win *parentWin;
i nt sl i derPos;
int orientation;

How do a scroll bar and its parent interact? When the mouse is clicked on a scroll
bar, the text in the window scrolls and the slider moves. A Sc ro 11 Ba r object must
tell its associated Win object to perform a scrolling action; it can do this by send­
ing a new type of event, a Scroll Event, that contains the direction (backward or
forwards) and the amount (one line or one page).

Should Scroll Bar move its slider by itself? How does it know how far to move
the slider? Consider: if the text is four times as long as the window, scrolling
down one page means moving the slider one-fourth of the way down the scroll
bar. However, if the text is twenty times as long as the window, scrolling down
one page means moving the slider one-twentieth of the way down the scroll bar.
Scrolling one line at a time is similar. Thus, to calculate the distance the slider
should move, S c roll Bar would have to know the length of the document and the
height of the window (or the corresponding ratio for horizontal scrolling). That
would be a duplication of responsibilities, since those values are already stored by
Win. Therefore, S c roll Bar does not move its slider when the mouse is clicked. It
only adjusts the slider when Win calls its setSlider function. Win is responsible
for computing the proper position for the slider.

Design Example: A Windowing Class 191

The Window Manager
The Wi nMgr class maintains the order of the text windows and passes them events
from the user. You can implement Wi nMgr as a collection class of Wi n objects,
but what type of collection class should you use?

On the screen, the windows appear stacked like sheets of paper on a desktop, with
the topmost window being the active one. This suggests a collection class that im­
plements a stack data structure. However, a stack data structure permits access to
only the topmost element. Wi nMgr must have access to windows other than the ac­
tive one in order to make non-active windows active. Therefore, a stack class is in­
appropriate. Some kind of list class that provides access to all the elements is
needed.

Consider the order in which Wi nMg r must access the windows to see which one
should receive a mouse event. More than one window may occupy the position
where the mouse was clicked, but only the exposed one receives the event. To find
the exposed window, Wi nMgr must test the windows in order, starting from the top
of the stack and going to the bottom. However, suppose Wi nMgr must refresh the
screen, painting all the overlapping windows over again. This time WinMgr must
access the windows starting from the bottom of the stack and going to the top.
Thus, Wi nMg r needs a collection class that permits iteration of its elements in both
directions.

Accordingly, aLi s t class that allows operations in both directions is appropriate.
Such a class could be implemented with a doubly-linked list or an array. The
Wi nMgr class can have a member object of type List.

Most of the behavior of Wi nMgr is implemented by its handl eEvent function. The
interface is therefore fairly simple:

class WinMgr
{

public:
void handleEvent(Event &action);
void addWindow(Win *newWindow);
void deleteWindow();
void repaint();

private:
List winlist;

} ;

192 C++ Tutorial

Consider how Win M 9 r, Win, and S c roll Bar work together in a typical scenario
(This is illustrated in Figure 10.5). The user clicks the mouse on a scroll bar in a
text window. An Event object, containing the location at which the click oc­
curred, is sent to the Win Mg r object, which queries the windows in order to see
which one is exposed at that location. Wi nMgr then passes the event to the appro­
priate Wi n object, which in tum queries its scroll bars to see if either of them

D
1. User clicks

on scroll bar

MouseEvent

WinMgr

MouseEvent

Win

2. MouseEvent
sent to WinMgr

3. WinMgr passes
MouseEvent
to exposed Win

4. Win passes
MouseEvent
to ScrollBar

MouseEvent ScrollEvent
5. ScrollBar sends

ScrollEvent
to its parent

ScrollBar

Figure 10.5 Event Passing

Design Example: A Windowing Class 193

should receive it. It passes the event to the appropriate Sc ro 11 Ba r, which checks
the location of the mouse click and interprets it as meaning "scroll forward one
line." The Scroll Bar object creates a new Event object containing this scrolling
information and sends it to its parent. The text window scrolls the text it contains
and updates the position of the scroll bar's slider.

The Event Hierarchy
Now consider the interfaces to the various event classes. As mentioned earlier,
having Event as a base class for all types of events allows any of them to be
passed to the single handl eEvent function in the interface to Interactor. How­
ever, an Interactor needs to know specifically which type of event it's received,
since it has different responses to keyboard events than to mouse events.

For this reason, the Event class defines a virtual getType function, which returns
a constant indicating the type of the event. The interfaces of Event and its derived
classes look like this:

class Event
{

public:
vi rtua 1 EventType getType () 0;

} ;

class KbdEvent public Event
{

public:
EventType getType() { return KBD_EVENT; }
unsigned int vale)

private:

} ;

char asci i;
char scancode;

class MouseEvent public Event
{

public:
EventType getType() { return MOUSE_EVENT; }
Point getPosition()
int getButton()

private:
Point pos;
i nt buttons;

} ;

Since there is no type associated with generic Event objects, the getType func­
tion is declared as pure virtual. Each derived class overrides getType to return a
unique constant.

194 C++ Tutorial

This design is analogous to the use of a union in C:

II Analogous situation in C

struct Event
{

} ;

EventType type;
union
{

struct KbdEvent keyAction;
struct MouseEvent mouseAction;

} ;

The generic Event interface corresponds to a structure containing a union, and
the KbdEvent and MouseEvent classes correspond to possible contents of the
union. The getType function acts like a discriminator field in the structure, indi­
cating the current type of the contents of the union.

This design can be extended to include a third type of event, Scroll Event, which
was mentioned in the previous section. This type of event contains the direction
and amount of scrolling that is requested. However, this isn't enough information
to perform scrolling. If a text window contains two scroll bars and receives a
Scroll Event, it doesn't know whether to scroll the text vertically or horizontally
unless it knows which scroll bar sent the message. Therefore, a S c r 0 1 1 Eve n t also
contains a pointer to the Sc ro 11 Ba r that created it. Its interface is as follows:

class ScrollEvent : public Event
{
public:

EventType getType() { return SCROLL_EVENT; }
int getDirection();
int getDistance();
ScrollBar *getSource();

private:

} ;

int direction;
int distance;
ScrollBar *source;

Notice that you can interpret a Scroll Event to have a meaning other than "scroll
text." You can use scroll bars to adjust the volume of a beeper, change the shading
of a colored panel, or perform other similar actions.

Design Example: A Windowing Class 195

A window's handl eEvent function must use a switch statement to determine the
type of event received. For example:

void Win::handleEvent(Event &action
{

switch(action.getType()
{

case KBO_EVENT:
KbdEvent &keyAction = (KbdEvent &)action; II Cast
II Respond to keyboard event
break;

case MOUSE_EVENT:
MouseEvent &mouseAction (MouseEvent &)action; II Cast
II Respond to mouse event
break;

I I ...
} ;

Once the type of the event is found, the handl eEvent function converts the base
class pointer to a derived class pointer (this is not generally a safe conversion in
C++, but it works properly in this case because the return value of getType
guarantees the type ofthe object). This allows handl eEvent to access the informa­
tion specific to that type of event and respond with the appropriate action.

To add a new type of event, you must derive a new class from Event. If you want
an existing window class to respond to the new type of event, you have to change
that class's handl eEvent function. You can extend the switch statement by
adding a case clause for the new event type.

Limitations of Polymorphism in C++
The event-handling scheme described above sounds like a situation that calls for
polymorphism. It seems like it should be possible to replace the switch statement
with virtual functions. For example, you could give each subclass of Event a vir­
tual respond function. A different action would be taken for each type of event,
and you could then write the following:

II Hypothetical example with polymorphic Events

void Win::handleEvent(Event &action)
{

action.respond();
}

196 C++ Tutorial

However, this would mean that the actions taken for each event would be the same
for every type of interactor. A scroll bar would behave in the same way as a text
window. This is clearly unsatisfactory.

What is needed is a way to vary the behavior of handl eEvent on two parameters:
the type of interactor and the type of event. In C it would look like this:

handleEvent(mylnteractor, currAction);

Such a function in C would contain a giant switch statement based on the type of
interactor, with each case clause containing another switch statement based on the
type of event. Through polymorphism in C++, the interactor parameter can be re­
moved by giving the interactor class a virtual handl eEvent function, as follows:

mylnteractor-)handleEvent(currAction);

Unfortunately, C++ does not allow an additional level of polymorphism, which
would allow you to remove the event parameter. To retain the polymorphism al­
ready in place, you must use a switch statement for the event parameter.

This illustrates a situation where language limitations influence the design. Since
C++ doesn't support an ideal solution, this example program has to use a tech­
nique that's less than optimal. You should remember that, in general, it's not good
practice to use a switch statement to examine an object's type. Only when your de­
sign calls for multiple levels of polymorphism is the technique permissible. (A
technique that avoids the use of switch statements is outlined in the comments to
the source code.)

Remember that the classes' public interfaces are not final until the implementation
phase. See the files in the sample program directory for the final interfaces and the
implementation code for this example.

Expanding the Hierarchies
The classes are already in small hierarchies, but now that you have a first approxi­
mation ofthe class interfaces, it's appropriate to take another look at those hierar­
chies and see if they need to be restructured. The goal during this stage is to
maximize reuse of code and to take advantage of polymorphism. These can often
be achieved by adding new base classes, so you should look for opportunities to
expand the hierarchies.

Design Example: A Windowing Class 197

New Window Classes
The scroll able text window is useful, but the client may want other kinds of win­
dows as well. The client should be able to define a new window class while still
taking advantage of Wi nMg r and the existing event-passing scheme.

You can support this by changing Wi n to an abstract class descended from
Interactor. We'll change the name of our text window class to TextWi n and
derive it from Wi n. Wi n acts as the base for any type of window, including those
that the client defines. Wi nMgr treats all the windows it manages as generic Wi n
objects and passes events to them. Furthermore, a scroll bar considers its parent to
be a generic Wi n, so it can be a child of any type of window, not just text windows.

Thus, Wi n provides a polymorphic interface through which Wi nMgr and
Scroll Bar can access all windows. To a lesser degree, Wi n can also permit code
reuse if you give it the common characteristics of all windows (for example, a data
member to store a title and a function to set the title).

The revised window hierarchy is shown in Figure 10.6.

I Scroll Bar I
~

) TextWin~ ...

r--E d-l-· t-w-;"""n:""""1 •••

Figure 10.6 Revised Window Class Hierarchy

Suppose you want an editable text window. Such a window should have all the
scrolling and cursor movement capabilities of the non-editable window already
defined, plus the ability to accept text from the user. This situation calls for
inheritance.

You can define a class EditWi n that derives from TextWi n. Since a pointer to a
derived class object can be treated like a pointer to a base class object, you can in­
sert these editable windows into Wi nMgr.

198 C++ Tutorial

The main difference between TextWi n and Edi tWi n is in their behavior. When a
printable characteris received from the keyboard, TextWi n ignores it. EditWi n
responds by writing that character at the current cursor location and moving the
cursor one space to the right. EditWi nand TextWi n respond identically to all
other events, such as mouse clicks or cursor key presses.

The new behavior must be implemented in the handl eEvent function of EditWi n,
overriding the handl eEvent function of TextWi n. However, it is not necessary to
reimplement all the behavior that the windows share. The handl eEvent function
of Edi tWi n can call the handl eEvent function of TextWi n and pass it all events
that it doesn't handle itself. For example:

EditWin::handleEvent(Event &action
{

} ;

switch (action.getType()
{

} ;

KbdEvent &keyAction = (KbdEvent &) action;
if (printable(keyAction.val()))

II Modify text buffer, move cursor
else II Pass on other keyboard events

TextWin::handleEvent(action);
break;

default: II Pass on all other events
TextWin::handleEvent(action);
break;

In this manner, Edi tWi n can reuse selected portions of TextWi n's event handling.
This technique, having a derived class's member function call the base class's
member function, can be used in many situations.

New Control Elements
A window can contain other interactive elements besides scroll bars. For example,
a window can contain a button that performs some action when pressed. You can
create a new class, Pus hButton, to represent this type of interactor.

What information does a PushButton store, besides that stored by all Interactor
objects? All buttons have a label indicating what they do; a button must retain the
text string that it displays as its label. What can a PushButton do? Any button
should momentarily reverse its displayed colors to give the user some feedback.
Beyond that, the action performed as a result of pressing the button is entirely de­
termined by the client. Just as a scroll bar can be used for different purposes, a but­
ton can be used for almost anything. The only thing a button by itself can do is
inform its parent window that it has been pressed. To do this, a button sends its
parent a new type of event, a Pus h Eve n t.

Design Example: A Windowing Class 199

A Push Event contains a pointer to the button that created it, so the parent window
can identify the button that was pressed. It is then up to the parent to perform some
function in response.

You could define PushButton as a descendant of Interactor, but it is very simi­
lar to the Sc ro 11 Ba r class. Both are always children of windows, and thus contain
a pointer to a parent of class Win. You can create an abstract base class for both
ScrollBar and PushButton and put the pointer in that class. This new class is
named Control, since its descendants are all control elements for windows, and it
itself is a descendant of Interactor.

By isolating the common features of all control elements, Cant ro 1 provides some
code reuse. In the current design, Cant ro 1 isn't used for polymorphism. However,
in a possible alternate design, Wi n objects could contain a collection of generic
Control objects, instead of a fixed number of specific Control S, like two scroll
bars. In such a design, Control would provide a useful abstract interface to scroll
bars, buttons, and any other interactive elements you define.

The revised hierarchy is shown in Figure 10.7.

~ ~
I ScrollS" II 'UShSUttO? T'Tn '(...

I EditWin II LifeWin I ...

Figure 10.7 Final Window Class Hierarchy

200 C++ Tutorial

You can now define new types of windows, descended from w; n, that contain but­
tons. For example, imagine a class L; feW; n that runs the game of Life in a win­
dow. This class can inherit the scrolling and cursor movement functionality of
TextW; n, but it can respond differently to mouse actions on the window, as well as
provide commands through buttons. This is illustrated in Figure 10.8.

IextWin2,.
Once upon im
a tillle. thi'"

~;::~:b·..::
tage on thiiiis soot /

~ t~:~:~~:~IIII~~!~;::~
<-------'ed is th

~~
Figure 10.8 Window with Buttons

• •

What Doesn't Fit in This Hierarchy
Is it possible to define pull-down menus as a type of window? Consider a menu's
characteristics. A menu's position is restricted to the top ofthe screen. Its size is
determined by the number of items it contains and the width of the longest item. A
menu appears only when an entry on the menu bar is activated, and disappears
when the command is executed. This type of behavior doesn't fit easily into the
current windowing hierarchy. Pull-down menus thus require a separate hierarchy,
which is beyond the scope of this chapter.

Remember that the classes developed here are simply a small example for demon­
strating the process of object-oriented design. To write a professional windowing
package, you would need to design a much larger class hierarchy. Also, note that
the design presented in this chapter is only one of several possible designs for the
windowing package described here.

Index

+(addition operator), overloading, 140, 142
&(address-of operator), compared with reference

operator, 33
=(assignment operator)

copy constructors, 79
default behavior for objects, 69
overloading

overview, 71-73, 76
this pointer, 75

«(insertion operator), 6
&(reference operator)

compared with address-of operator, 33
overview, 25

::(scope resolution operator), 15
[] (subscript operator), overloading, 144, 146-147

A
Abstract classes

design issues, 179
overview, 128

Abstraction
base classes, 169
classes, 164-165
data, 163-164
defined, 161
overview, 93
procedural, 162-163

Access control
base classes, 131
design issues, 169
members, 45

Aliases, 25-27
Ambiguities conversion, 152-155
Arguments, default

overloaded functions, 22
overview, 11-12

Arrays
allocating with new, 66, 95
deallocating with delete, 66, 96, 99
initialization, 95
of objects

declaring, 94
initialization, 95

Assigning attributes and behavior, 174
Assignment

class objects, 77-78
initialization, 77-78

Assignment operator
copy constructors, 79
default behavior for objects, 69
overloading

overview, 71-73, 76
this pointer, 75

Associativity, operator overloading, 138
Attributes

of a class, 174
relationships between classes, 176

B
Base classes

abstraction, 169
access from derived classes, 112, 130-131
conversion to derived class, 118
direct, 113, 132
indirect, 113, 132
initialization, 116
private, 131
public, 111, 131
tutorial information, 111
virtual

design issues, 180
overview, 133-134

Base initializer, 116
Behavior

of a class, 175
relationships between classes, 176

c
calloc,101
cerr,7
cin,8
Class hierarchies

abstract classes, 128
overview, 113

202 Index

Classes
abstract, 128
abstraction, 164-165
arrays of objects, 94--95
base, 111
compared with C structures, 41
composite

design issues, 176
overview, 58-60

concrete, 128
customized memory management, 103-104, 106
data members, 44
declaration, 42
defined,41
derived, 111
design issues

assigning responsibilities, 174-175
common mistakes, 175
hierarchies, 177-180
identifying, 173-174
overview, 172
relationships, 176-177

friend, 89-91, 93
header and source files, 60-62
hierarchies

design issues, 169-170, 178-180
overview, 177-178

inheritance, 110
lifetime of objects, 49-50
member functions, 45
requiring destructors, 69

Comments, C++ format, 9
Composition

compared with inheritance, 178
relationship between classes, 176

Concrete classes, 128
const

member functions, 57
objects, 56-57
parameters, 18
pointers, 18
variables, 17

Constructors
array allocation, 95
base class initialization, 116
called by new operator, 64, 95, 102, 105
calling member functions, 54
conversion, 148-150
copy, 78-81

Constructors (continued)
default, 54, 59, 94, 116
global objects, 50
member initialization, 58-60
overloading, 48, 53
overview, 43, 47
static objects, 50

Conversion
constructors, 148-150
operators, 150-151

Conversions
ambiguities, 152-155
base to derived class, 118
derived to base class, 116

Copy constructors
assignment operator, 79
default,78
overview, 78-81

cout, 5-6

D
Data abstraction, 163-164
Data hiding. See encapsulation
Data members

overview, 42
static, 86-88

Declarations, placement, 13-14
Declaring

classes, 42
objects, 43, 48

Decomposition
object-oriented, 172
procedural, 172

Default arguments
overloaded functions, 22
tutorial information, 11-12

Default constructors, 54, 59, 94, 116
defined directive, C++ header file, 61
delete operator

array deallocation, 66, 96, 99
class scope, 103-104, 106
overloading, 101-102
overview, 65

Derived classes
access to base classes, 112, 130-131
conversion to base class, 116
overview, 111

Design, object-oriented
principles, 161, 172-173

Destructors
array deallocation, 99
base classes, 129
called by delete operator, 65, 96, 99, 105
classes requiring, 69
global objects, 50
overview, 43, 49, 69, 71
static objects, 50
virtual, 129

Dynamic binding, 124

E
Encapsulation

access to base classes, 112
defined, 165
design principle, 165-169
header files, 61-62
member functions, 54

enum,19-20
Enumerations, 19-20
Error stream, C++, 7
Event classes

designing, 183, 185
hierarchy, 193-195
relationships, 186

Event passing, 193
extern "C", linkage specification, 23-24

F
Finding relationships between classes, 176
Free store. See new or delete
Free store exhaustion. See set new handler
Friend - - -

classes
design issues, 93, 177
overview, 89-91, 93

functions, 94
overview, 89

Function prototypes, 9-10
Functions

friend, 94
inline

macros, 16
overview, 15, 17

overloaded, 20-23

H
Header files

encapsulation, 61-62
suffix, 60

Hierarchies
abstract classes, 128
design issues, 177-180
identifying, 174
overview, 113

Identifying classes, 173-174
#if directive, C++ header file, 61
Implementation, class

private members, 45, 54
source files, 61-62

#include directive, C++ header files, 62
Inheritance

compared with composition, 178
design issues

code reuse, 170-171
interface reuse, 171
overview, 169-170, 177-180

multiple
design issues, 180
overview, 132-134

overview, 110
Initialization

assignment, 77-78
base classes, 116
class objects, 77-78
const members, 60
member objects, 58-60
references, 27, 77

Inline functions
header files, 61
macros, 16
member functions, 52
overview, 15, 17

Input stream, C++, 8
Insertion operator, 6
Interface, designing, 175
Interface, class

header files, 61-62
public members, 45

IOSTREAM.H, 5, 8

Index 203

204 Index

iostreams
cerr, 7
cin, 8
cout, 5-6
manipulators, 7

Iterators, 91, 93

L
Linkage specifications, 23-24
Linking C and C++ modules, 23-24
Locality, design principle, 167

M
Macros, inline functions, 16
malloc, 63-64, 99
Manipulators, 7
Member functions

called by constructors, 54
encapsulation, 54
inline,52
overview, 42-43, 45-47, 51-52
pure virtual, 127-129
returning references, 55-56
static, 88
virtual, 120-123

Member initializer, 58-60
Member objects

initialization, 58-60
overview, 58

Memberwise assignment, 69
Mixed-language programming, C and C++ 23-24
Multiple inheritance, 132-134 '

N
new operator

array allocation, 66, 95
class scope, 103-104, 106
overloading, 10 1-102
overview, 64-65

Null pointer, 99
delete operator, 65
new operator, 65

o
Ob~ect-oriented decomposition, 172
Object-oriented design

example, 181-182
principles, 161, 172-173

Ob~ect-oriented programming, design concepts, 161
Objects

creation and destruction, 49-50
declaration, 43
declaring, 48
defined,43
lifetime, 49-50

operator delete
array deallocation, 66, 96, 99
class scope, 103-104, 106
overloading, 101-102
overview, 65

operator new
array allocation, 66, 95
class scope, 103-104, 106
overloading, 101-102
overview, 64-65

Operator overloading
friend functions, 143-144
guidelines, 138-139, 144
member functions, 139-142, 145-147
overview, 135-139
restrictions, 137

Operator+, overloading, 140, 142
Operator[], 144, 146-147
Operator:

copy constructors, 79
default behavior for objects, 69
overloading

overview, 71-73, 76
this pointer, 75

Operators, conversion, 150-151
Output stream, C++, 5-6
Overloading

p

addition operator, 140, 142
assignment operator, 71-73, 75-76
constructors, 48, 53
functions, 20-23
operators

friend functions, 143-144
guidelines, 138-139, 144
member functions, 139-142, 145-147
overview, 135-139
restrictions, 137

subscript operator, 144, 146-147

Parameters, references, 29-31
Pointers, returning, 82

Polymorphism
defined, 123
design issues, 178
limitations, 195-196

Precedence, operator overloading, 137
private

base classes, 131
members, 45, 112

Procedural abstraction, 162-163
Procedural decomposition, 172
protected members, 130-131, 179
Prototypes, function, 9-10
public

base classes, 111, 131
members, 45

Pure virtual functions, 127-129

R
Redefining, members of base class, 114-115
References

compared with pointers, 27-29
guidelines, 31-32
initialization, 27, 77
overview, 25-27
parameters, 29-31, 72, 79, 81
returning, 32, 55-56, 76, 82-83

Relationships between classes, 176
Resolving ambiguities, conversions, 152-155
Responsibilities

distributing among classes, 175
of a class, 174

Return values, references, 32
Reuse

s

code inheritance, 170-171
interface inheritance, 171

Scope resolution operator, 15
_seCnew _handler, 99-100
Setting default arguments, 11-12
Source files, suffix, 60
State of an object, 174
Static binding, 124
Static members

data members, 86-88
member functions, 88
overview, 85-86, 88-89

Streams, C++. See iostreams

Structures, as user-defined types, 39-41
switch statements

drawbacks, 109
replacing with polymorphism, 177

T
Temporary objects, 81
this pointer

v

assignment operator, 75
modifying, 76
overview, 74
returning *this, 75
static member functions, 88

V-table tutorial information, 125, 127
Variable declarations, placement, 13-14
Virtual base classes

design issues, 180
overview, 133-134

Virtual destructors, 129
Virtual functions

overhead, 125, 127

w

overview, 120-123
pure, 127-129

Window classes
designing, 183
hierarchy, 197-200
interfaces, 187-191
refining, 184-185
relationships, 186
requirements, 181-182

Index 205

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

1191 Part No. 24774

