RunTime Library Reference

Microsoft

Microsoft. C/C++

Version 7.0

Run-Time Library Reference

For MS-D0Se and Windows™ Operating Systems

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commit-
ment on the part of Microsoft Corporation. The software and/or databases described in this document
are furnished under a license agreement or nondisclosure agreement. The software and/or databases
may be used or copied only in accordance with the terms of the agreement. It is against the law to
copy the software on any medium except as specifically allowed in the license or nondisclosure agree-
ment. The licensee may make one copy of the software for backup purposes. No part of this manual
and/or databases may be reproduced or transmitted in any form or by any means, electronic or me-
chanical, including photocopying, recording, or information storage and retrieval systems, for any pur-
pose other than the licensee’s personal use, without the express written permission of Microsoft
Corporation.

©1989, 1991 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

Microsoft, MS, MS-DOS, CodeView, QuickC, and XENIX are registered trademarks and Windows is
a trademark of Microsoft Corporation.

U.S. Patent No. 4955066
AT&T and UNIX are registered trademarks of American Telephone and Telegraph Company.
Hercules is a registered trademark of Hercules Computer Technology.

IBM is a registered trademark of International Business Machines Corporation.
Olivetti is a registered trademark of Ing. C. Olivetti.

Document No. LN24773-1191

10987 654321

Contents Overview

IO AUCHION ..ottt e ix

Part1 Overview

Chapter 1 Using the Run-Time Library.........ccoccoovervieeieneenienieseeeee e 5
Chapter 2 Run-Time Routines by Categorycccceceereveiniereeriinieereenneenns 17
Chapter 3 Global Variables and Standard Typescocccevveverercneneneeeenn 61

Part2 Run-Time Functions

About the Run-Time Reference...........cocueveirieniininiiiiniiieseceeecieniesee e 75
Alphabetic Function Referenceccooveeierieeiiniiniiiieeeie st 76

Contents

INEPOAUCTION. ...t ix
About the Microsoft® Run-Time Library...........cccccceeierereienieenneenceenennenienennenns ix
ADOUL ThiS BOOK.......iiiiiiiiiiiiiiiie ettt e ettt e e e e e earae e e e eeanees Xii
Other BOOKS Of INTEIEST.......uviiiiiiiiiiiiie et eeaee e e e e et e e e naneeas Xiii
Document CONVENTIONSuvviiiiiiiiieiieeeeeieieeeeeeieeeeeeeeereeeeeeeesssaseeeeeeerseaeeeesennareens X1V

Part1 Overview

Chapter 1

Chapter 2

Using the Run-Time Library 5
1.1 Calling Library ROULINESccveeierierieienieiieienteiceieeeter et 5
1.2 Using Header Filescocvvniiniiniininiiecieecccececceeciee e 6

Including Necessary Definitions.coeeveveriierienieiienicneeneeeeenee e 6

Including Function Declarations............coceeeevierienieienicneenecnecneeeeeee e 7
1.3 Paths and FIlenamescoceeerierinenieniisence e 8
1.4 Choosing Between Functions and Macros...........cccooeviiiiiiiiiiininiiniinns 9
1.5 Stack Checking on Entrycoccocoevieiiniiviiiiiiiiniiiiiiiiccceeeicies 11
1.6 Handling EITOTScc.ooviiiiiiiieieeeee e e 12
1.7 Operating-System Considerations.............cccceeueiueiiiiiniiniieiiniiiiieeeeeeen 13
1.8 Floating-Point SUPPOTTcc.eiriiriiiiiniiiieieeeieeereee e 14
1.9 Using Huge Arrays with Library Functions............cccceecveeieninvcncnnicnnenne. 16
Run-Time Routines by Category 17
2.1 Buffer Manipulation........ccccceoeieiiiiiiininininiiiinieie e 18
2.2 Character Classification and CONVEISiOn..........coceveuerveerrieeneeneeneneeniennenns 19
2.3 Data CONVEISIONeeutirritintirteetentertentententetestesressesse st st nessesaesaesne s o sns 20
2.4 DIrectory CONIOLecveeiiiieiiriieienieie ettt et et 20
2.5 File HANAINGcviiiiiiiiiieieeee ettt 21
2.0 GIAPNICS.c.vetitietieieteeeeietete ettt sttt ettt st st sre s sae 22

Low-Level Graphics and Character-Font Functionsc..cceceeeeeveneenennnen. 22

Presentation-Graphics FUNCHONSccoevririreririeiiicieieneceeeeceec e 29
2.7 Input and OULPUL.....cooouiieriiiiiericcitetcrte ettt 31

Text and Binary MOAES.........oocverieierieiiniieieeteseestesit et 32

Sream ROULINES ...oeoiiiiiiiiiiiiee ettt e e eetaeee e e e e e e esbteeeeeeeatrreeeeesenaens 33

vi

Contents

Chapter 3

LOW-LEeVEl ROULINEScceiiiiieiiieeeieeeeciiee et cereee e e et ene e s eaeees 38

Increasing the Maximum Number of File Handles and Streams 40

Console and POrt I/uuiiiieciiieeeeciieee ettt s e e 43
2.8 InternationaliZation.............cceovueerreeiieeinieeeeieeeereeeeeeete et e e etre e ereeeeaee s 44
2.9 MR ettt eaee s 44
2.10 Memory ALIOCALIONcccvevveeiirieeieiceieeieee ettt ettt sttt st e 46

Near and Far HEapS.......ccoveeuierieiieeieeeieeie ettt 48

Based HEaPS ...c.veeovieiiriiiiiiieeeeeeece ettt ettt st 49
2.11 Process and Environment COntrol............cccveevveeeeeieeeeeeeeeeeeceeeneeeeeee e 49
2,12 QUICKWIIL ..ottt ettt tae e eneesaaeeneesreeesaneenns 53
2.13 Searching and SOTITING.........ccccecerirerieirierierereereneeeenee et ste et ee e s 54
2.14 String Manipulation...........ccceoereierienenenenieteseteee et ens 54
2,15 SyStem Calls c..ccveeuieieieieieieiieieeie ettt sttt ettt ens 55

BIOS INTEITACE ..uveiieeveeeiieeie ettt ettt eev e reeeae e e saeeeareeereeenesenneean 55

DOS INEEITACE...cuuviievieeeeeceteece ettt es ettt eseeeeaeeeneeesnneen 56
2,160 TIIMC .oocueeeeeeeieieeeeeee ettt et e et e e eete e e e e ateseesaaeeeesbeseseaeeeenteeesaeesenes 58
2.17 Variable-Length Argument LiStsc.cccceverireriinienenienenenienenereeienes 59
2.18 Virtual Memory AllOCALIONccueveruerieniiriieieteieneentesieeresiesiestesessesaenaens 60
Global Variables and Standard Types 61
3.1 _AMDIKSIZ . evieeiciiie e ettt eaaae s 61
3.2 _daylight, _timezone, _tZNAme..........cccceevreeruerveeerrereenrreneeenieneesseereesenseenns 62
3.3 _doserrno, errno, SyS_errlist, SYS_NEITcccccccervurrceereeresreeresivesreseenseens 63
B4 EINOAE e ettt e e e e e e e e e reaae e —————— 64
3.5 LOCAIE MIACTOSveeeiieeiiieiieiie ettt e tte e e vee et e eateeseaeenaeeaaeetaeetvesaneeenee s 65
3.6 _osmajor, _osminor, _osmode, _osversion, _cpumode...........ccceeveereennne 65
A< 11§ (o) 1 ST TR 66
38 PSP creeeerenee ettt et st b e bbb st b et st b et e a e ae e 66
3.9 _PEIMPLT ettt sttt ettt b b 67
3.10 Standard TYPESccueeeeueeierinierieriinierieeieree ettt ettt sae s ean 67

Part2 Run-Time Functions

About the Run-Time Referenceccccoveverineneninienineneneccneseseeeeeenen 75
Alphabetic Function Reference.............cccoeovvinieciiinincnnincenccncceeecee 76

Tables

Tables

Table 2.1
Table 3.1
Table R.1
Table R.2
Table R.3
Table R.4
Table R.5
Table R.6
Table R.7
Table R.8
Table R.9
Table R.10
Table R.11
Table R.12

Table R.13

Forms of the _spawn and _exec Routinesccccccocceeveinninnne. 52
errmo Values and Their Meanings.........cocccevevveererienienenseeneennes 64
HEeX ValUues ..ot 160
Type Characters for printf............coccoveieiiiniininenceeee 587
Flag Characters for printf..........cccooeriiiiiniiinininienencee ... 588
How printf Precision Values Affect Typeccccoceevivccninnces 589
Type Characters for scanfcocooeviiiiiiiiiies 638
_MRES4COLOR Palette Colorscccevvevrnreeieieeienieienieeeenne 647
_MRESNOCOLOR Mode CGA Palette Colorscccceeureeueee 648
_MRESNOCOLOR Mode EGA Palette Colorscccerunee 648
_ORESCOLOR Mode ColOrs.....cccvvviieeeeriiieeeeeeieeee e 648
Manifest Constants for Screen Modeccocevevivencercnicencne 690
VESA Manifest Constants for Screen Mode.........cccccevevennenne. 691
Modes Selected by _MAXRESMODE and

_MAXCOLORMODE........cccoooiiiiriieiteieienicnreeie e 692

Signals and ReSponsesoccueeveerieeneinieenieeeieeceeccneceees 707

Introduction

The Microsofte run-time library is a set of more than 550 ready-to-use functions
and macros designed for use in C and C++ programs. The run-time library makes
programming easier by providing

» Fast and efficient routines to perform common programming tasks (such as
string manipulation), sparing you the time and effort needed to write such
routines

= Reliable methods of performing operating-system functions (such as opening
and closing files)

The run-time library is important because it provides basic functions not provided
by the C and C++ languages themselves. These functions include input and output,
memory allocation, process control, graphics, and many others.

This book describes the run-time library routines included with Microsoft C/C++
version 7.0. These comprise all of the routines included with earlier versions of
Microsoft C, as well as many new routines.

About the Microsoft. Run-Time Library

The Microsoft run-time library contains routines and features that support Ameri-
can National Standards Institute (ANSI) C and UNIX C compatibility, DOS and
Microsoft Windowsw programming, and sophisticated graphics programming.

To ease the task of transporting programs between operating systems and com-
pilers, the description of each run-time library routine includes a compatibility
section. A routine with full compatibility has the following entries:

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

(In this book, references to UNIX systems also encompass XENIXe and other
UNIX-like systems.)

X

Run-Time Library Reference

ANSI C Compatibility

The run-time library routines are designed for compatibility with the ANSI C
standard, which the Microsoft C and C++ compilers support. Functions that are
ANSI C compatible are marked as ANSI in the compatibility section.

Type Checking

The major innovation of ANSI C is to permit argument-type lists in function proto-
types (declarations). Given the information in the function prototype, the compiler
can check later references to the function to make sure that the references use the
correct number and type of arguments and the correct return value.

To take advantage of the compiler’s type-checking ability, the include files that ac-
company the run-time library have been expanded. In addition to the definitions
and declarations required by library routines, the include files now contain func-
tion declarations with argument-type lists. Several new include files have also
been added. The names of these files are chosen to maximize compatibility with
the ANSI C standard and with UNIX and XENIX names.

Underscores and OLDNAMES.LIB

With Microsoft C/C++, all Microsoft-specific run-time functions, constants, varia-
bles, type definitions, structures, and macros (such as, respectively, _open,
_VRES16COLOR, _cpumode, _HEAPINFO, _heapinfo, and __isascii) are
ANSI compatible. The Microsoft-specific run-time functions, constants, variables,
type definitions, and structures begin with a single underscore; Microsoft-specific
run-time macros begin with two underscores.

For compatibility with previous versions of Microsoft C, Microsoft C/C++ pro-
vides a library named OLDNAMES.LIB, which contains alias records mapping
the names to the new names. For instance, open is mapped to _open.

You have to link with OLDNAMES.LIB to link Microsoft C/C++ programs with
object files created by previous versions of Microsoft C. However, by default the
compiler emits a library search record—the only time you must link explicitly
with OLDNAMES.LIB is under one of the following situations:

= Compiling with a combination of the default /Ze option (use Microsoft exten-
sions) and the /ZI1 option (omit default library name from object file)

= Compiling with the default /Ze option (use Microsoft extensions) and a combi-
nation of the /link option (linker-control) and the /NOD option (no default-
library search)

For more information on the CL command-line options, see Chapter 13 of
Environment and Tools (in the Microsoft C/C++ version 7.0 documentation set).

Introduction Xi

Note The compiler views a structure with both an old name and a new name as
two different types; you cannot copy from an old type to a new type. Also, old pro-
totypes that take struct pointers use the old struct names in the prototype. So, you
must be consistent—match the old names for routines with the old names for the
parameters and be similarly consistent with the new routine names and parameters.

UNIX C Compatibility

Most of the functions in the Microsoft run-time library are compatible with like-
named UNIX routines. For additional compatibility, the math library functions
have been extended to provide exception handling in the same manner as the
UNIX System V math functions. Functions that are UNIX and XENIX compatible
are marked as UNIX in the compatibility section.

DOS and Microsoft Windows.. Programming

QuickWin

Microsoft run-time library routines are designed to maintain maximum compati-
bility between DOS, Windows, and UNIX or XENIX systems. The run-time
library offers a number of operating-system interface routines that allow you to
take advantage of specific DOS and Windows features. Functions that are DOS
and Windows compatible are marked, respectively, as DOS and WIN in the com-
patibility section. Note that for Windows the compatibility section also contains
information on dynamic-link library (DLL) compatibility.

Many run-time library functions are designed to work with the Microsoft DOS
Extender. The DOS Extender is a shell between a program and DOS that allows
the program to run in the 32-bit flat memory model. Currently, the Microsoft C
and C++ compilers are hosted under the DOS Extender; when Microsoft C/C++
provides 32-bit targeting, you can use the functions listed as DOS32X compatible
to develop and run 32-bit flat model programs under DOS.

The Microsoft run-time library now contains several QuickWin functions that
make it possible to compile non-Windows DOS programs as simple text-only
Windows applications. DOS programs compiled with the /Mq compiler option
have a limited Windows user interface, including a standard menu bar, standard
online help (for the QuickWin features), and a client (or application) window with
a child (document) window for the C input/output streams stdin, stdout, and
stderr. You can also add other child windows of your own. QuickWin applica-
tions support the Windows Clipboard, and you can use standard C functions to
write to and read from a QuickWin application’s windows, which behave as
streams. Functions that are QuickWin compatible are marked as QWIN in the
compatibility section.

Xii Run-Time Library Reference

Expanded Graphics Library

The Microsoft run-time library contains more than one hundred graphics routines.
The core of this library consists of several dozen low-level graphics routines that
allow your programs to select video modes, set points, draw lines, change colors,
and draw shapes such as rectangles and ellipses. You can display real-valued data,
such as floating-point values, within windows of different sizes by using various
coordinate systems.

The graphics library includes presentation graphics and fonts. The presentation-
graphics library provides powerful tools for adding presentation-quality graphics
to your programs. These routines can display data as a variety of graphs, including
pie charts, bar and column charts, line graphs, and scatter diagrams.

The fonts library allows your programs to display various styles and sizes of text
in graphics images or charts. You can use font-manipulation routines with any
graphics routines that display text, including presentation graphics.

About This Book

This book provides a guide to the run-time library provided with Microsoft C/C++.

This book has two parts. Part 1, “Overview,” introduces the Microsoft run-time li-
brary. It describes general rules for using the library and summarizes the main cate-
gories of library routines. Part 1 contains the following chapters:

= Chapter 1, “Using the Run-Time Library,” gives general rules for under-
standing and using library routines and mentions special considerations that
apply to certain routines. It is recommended that you read this chapter before
using the run-time library; you may also want to turn to Chapter 1 when you
have questions about library procedures.

= Chapter 2, “Run-Time Routines by Category,” lists the library routines by cate-
gory and discusses considerations that apply to each category. This chapter
makes it easy to locate routines by task. Once you find the routine you want,
turn to the reference page in Part 2 for a detailed description.

= Chapter 3, “Global Variables and Standard Types,” describes variables and
types that are used by library routines. Global variables and standard types are
also described in the reference descriptions of the routines that use them.

Part 2, “Run-Time Functions,” describes the library routines in alphabetical order.
Once you are familiar with the run-time library rules and procedures, you will
probably use this part most often.

Introduction xiii

Other Books of Interest

The following books cover a variety of topics that you may find useful. They are
listed only for your convenience. With the exception of its own publications,
Microsoft does not endorse these books or recommend them over others on the
same subject.

» Barkakati, Nabajyoti. The Waite Group’s Microsoft C Bible. Indianapolis, IN:
Howard W. Sams, 1988.

A topical guide to the Microsoft C run-time library. A similar volume is availa-
ble for the Microsoft QuickCe product.

m Campbell, Joe. C Programmer’s Guide to Serial Communications. Indi-
anapolis, IN: Howard W. Sams & Company, 1987.

A comprehensive guide to the specialized area of serial communication pro-
gramming in C.
m Christian, Kaare. C++ Programming. Redmond, WA: Microsoft Press, 1992.

An introduction to object-oriented programming concepts, C++ fundamentals,
and Microsoft C/C++ version 7.0, particularly the Foundation class libraries.

= Harbison, Samuel P., and Guy L. Steele, Jr. C: A Reference Manual, 2d ed.
Englewood Cliffs, NJ: Prentice Hall, 1987.

A comprehensive guide to the C language and the standard library.

s Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language,
2d ed. Englewood Cliffs, NJ: Prentice Hall, 1988.

The first edition of this book is the classic definition of the C language. The
second edition includes new information on the ANSI C standard.

» Lafore, Robert. Microsoft C Programming for the IBM. Indianapolis, IN:
Howard W. Sams & Company, 1987.

The first half of this book teaches C. The second half concentrates on specifics
of the PC environment, such as BIOS calls, memory, and video displays.

» Mark Williams Company. ANSI C: A Lexical Guide. Englewood Cliffs, NJ:
Prentice Hall, 1988.

A dictionary-style guide to the ANSI C standard.

= Plauger, P. J., and Jim Brodie. ANSI and ISO Standard C: A Guide for
Programmers. Redmond, WA: Microsoft Press, 1992.

A reference to the ANSI and ISO C implementation by the secretary and chair-
man of the ANSI- and ISO-authorized C Programming Language Standards
Committee.

Xiv Run-Time Library Reference

® Plum, Thomas. Reliable Data Structures in C. Cardiff, NJ: Plum Hall, 1985.
An intermediate-level look at data structures using the C language.

® Plum, Thomas, and Jim Brodie. Efficient C. Cardiff, NJ: Plum Hall, 1985.
A guide to techniques for increasing the efficiency of C programs.

® Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes in C: The Art of Scientific Computing. New
York: Cambridge University Press, 1988.

A comprehensive look at numerical techniques using the C language.

m Schustack, Steve. Variations in C: Building Professional Applications with
Microsoft C. Second Edition. Redmond, WA: Microsoft Press, 1989.

An intermediate-level guide to developing business applications in C.
® Ward, Robert. Debugging C. Indianapolis, IN: Que Corporation, 1986.
An advanced guide to the theory and practice of debugging C programs.

» Wilton, Richard. Programmer’s Guide to PC and PS/2 Video Systems: Maxi-
mum Video Performance from the EGA, VGA, HGC, & MCGA. Redmond,
WA: Microsoft Press, 1987.

An advanced guide to all the PC and PS/2 video modes.

Document Conventions

This book uses the following typographic conventions:

Example Description

STDIO.H Uppercase letters indicate filenames, segment names,
registers, and terms used at the operating-system
command level.

char, _setcolor, Bold type indicates C and C++ keywords, operators,

__far language-specific characters, and library routines.
Within discussions of syntax, bold type indicates that
the text must be entered exactly as shown.

Many functions and constants begin with either a
single or double underscore. These are part of the
name and are mandatory. For example, to have the
__cplusplus manifest constant be recognized by the
compiler, you must enter the leading double
underscore.

expression Words in italics indicate placeholders for information
you must supply, such as a filename.

Introduction

XV

Example

Description

[[option]|
#pragma pack {112}

#include <io.h>
CL [[option...] file...
while()

{

}

CTRL+ENTER

“argument”

"C string"”

Color Graphics
Adapter (CGA)

Items inside double square brackets are optional.

Braces and a vertical bar indicate a choice among two
or more items. You must choose one of these items
unless double square brackets ([) surround the
braces.

This font is used for examples, user input, program
output, and error messages in text.

Three dots (an ellipsis) following an item indicate that
more items having the same form may appear.

A column or row of three dots tells you that part of an
example program has been intentionally omitted.

Small capital letters are used to indicate the names of
keys on the keyboard. When you see a plus sign (+)
between two key names, you should hold down the
first key while pressing the second.

The carriage-return key, sometimes marked as a bent
arrow on the keyboard, is called ENTER.

Quotation marks enclose a new term the first time it is
defined in text.

Some C constructs, such as strings, require quotation
marks. Quotation marks required by the language
have the form " " and ' ' rather than “” and ’’.

The first time an acronym is used, it is usually spelled
out.

Note Microsoft documentation uses the term “DOS” to refer to both the
MS-DOSe and IBM Personal Computer DOS operating systems. The name
of a specific operating system is used to note features unique to that system.

Using the Run-Time Library

i

This chapter provides basic information about how to use the Microsoft run-time
library routines. It also describes some special rules, such as path-name and
filename conventions, that apply to particular routines. You should read this chap-
ter before you begin to use the run-time library routines, and you may also want to
refer back to it if you have questions about library procedures.

1.1 Calling Library Routines

To use a library routine, simply call it in your program, just as if it is defined there.
For instance, suppose you write the following program and name it SAMPLE.C:

#include <stdio.h>
void main(void)
{
printf("Microsoft C/C++\n");
}

The program prints Microsoft C/C++ by calling the printf routine, which is part
of the run-time library. Calling a library routine normally involves two groups of
files:

® Header (“include”) files that contain declarations, constants, and type defini-
tions required by library routines

» Library files that contain the library routines in compiled form

Header files and library files are both included with Microsoft C/C++. Header files
are used when compiling, and library files are used when linking.

You include the necessary header files in your program source code with #include
directives. The description of each library routine in Part 2, “Run-Time Func-
tions,” tells you what header file the routine requires. Since printf requires the
STDIO.H header file, the SAMPLE.C program contains the following line:

#include <stdio.h>

6

Run-Time Library Reference

This line causes the compiler to insert the contents of STDIO.H into the source file
SAMPLE.C.

After you compile the source file, you link the resulting object (.OBJ) file with the
appropriate library (.LIB) file to create an executable (.EXE) file. Your object file
contains the name of every routine that your program calls, including library
routines. If a routine is not defined in your program, the linker searches for its
code in a library file and includes that code in the executable file.

Normally, the code for standard library routines is contained in the “default li-
brary” that you create when installing Microsoft C/C++. Since the linker automat-
ically searches the default library, you do not need to specify that library’s name
when linking your program. The following command links the example program
with the default library:

link sample,,,;

If you call a library routine that is not contained in the default library, you must
give the linker the name of the library file that contains the routine. For instance, if
your program uses a Microsoft graphics routine, you would link the program using
a line that includes GRAPHICS .LIB:

link sample,,, graphics.lib;

For more information about installing libraries and linking, see Getting Started
and Part 3 of Environment and Tools (both are in the Microsoft C/C++ version 7.0
documentation set) or consult the installation documentation for your compiler.

1.2 Using Header Files

As stated in the previous section, you should include header files when using
library routines. This section describes particular reasons why header files are
required.

Including Necessary Definitions

Many run-time library routines use constants, type definitions, or macros defined
in a header file. To use the routine, you must include the header file containing the
needed definition(s). The following list gives examples:

Definition Example

Macro If a library routine is implemented as a macro, the macro
definition appears in a header file. For instance, the toupper
macro is defined in the header file CTYPE.H.

Using the Run-Time Library 7

Definition Example

Manifest constant Many library routines refer to constants that are defined in
header files. For instance, the _open routine uses constants such
as _O_CREAT, which is defined in the header file FCNTL.H.

Type definition Some library routines return a structure or take a structure as an

argument. For example, stream input/output routines use a
structure of type FILE, which is defined in STDIO.H.

Including Function Declarations

The run-time library header files also contain function declarations for every func-
tion in the run-time library. These declarations are in the style recommended by
the ANSI C standard. Given these declarations, the compiler can perform “type
checking” on every reference to a library function, making sure that you have used
the correct return type and arguments. Function declarations are sometimes called
“prototypes,” since the declaration serves as a prototype or template for every sub-
sequent reference to the function.

A function declaration lists the name of the function, its return type, and the
number and type of its arguments. For instance, this is the declaration of the
pow library function from the header file MATH.H:

double pow(double x, double y);

The example declares that pow returns a value of type double and takes two argu-
ments of type double. Given this declaration, the compiler can check every refer-
ence to pow in your program to ensure that the reference passes two double
arguments to pow and takes a return value of type double.

The compiler can perform type checking only for function references that appear
after the function declaration. Because of this, function declarations normally ap-
pear near the beginning of the source file, prior to any use of the functions they
declare.

Function declarations are especially important for functions that return a value of
some type other than int, which is the default. For example, the pow function re-
turns a double value. If you do not declare such a function, the compiler treats its
return value as int, which can cause unexpected results.

It is also a good practice to provide declarations for functions that you write. If

you do not want to type the declarations by hand, you can generate them automat-
ically by using the /Zg compiler option. This option causes the compiler to
generate ANSI-standard function declarations for every function defined in the cur-
rent source file. Redirect this output to a file, then insert the file near the beginning
of your source file.

8 Run-Time Library Reference

Your program can contain more than one declaration of the same function, as long
as the declarations do not conflict. This is important if you have old programs
whose function declarations do not contain argument-type lists. For instance, if
your program contains the declaration

char *calloc();

you can later include the following declaration:

char *calloc(unsigned, unsigned);

Because the two declarations are compatible, even though they are not identical,
no conflict occurs. The second declaration simply gives more information about
function arguments than the first. A conflict would arise, however, if the declara-
tions gave a different number of arguments or gave arguments of different types.

Some library functions can take a variable number of arguments. For instance, the
printf function can take one argument or several. The compiler can perform only

limited type checking on such functions, a factor that affects the following library
functions:

= |n calls to _cprintf, _cscanf, printf, and scanf, only the first argument (the for-
mat string) is type checked.

= [n calls to fprintf, fscanf, _snprintf, sprintf, and sscanf, only the first two ar-
guments (the file or buffer and the format string) are type checked.

= [n calls to _open, only the first two arguments (the path name and the _open
flag) are type checked.

= In calls to _sopen, only the first three arguments (the path name, the _open
flag, and the sharing mode) are type checked.

= In calls to _execl, _execle, _execlp, and _execlpe, only the first two argu-
ments (the path name and the first argument pointer) are type checked.

= |n calls to _spawnl, _spawnle, _spawnlp, and _spawnlpe, only the first three
arguments (the mode flag, the path name, and the first argument pointer) are
type checked.

1.3 Paths and Filenames

Many library routines take strings representing paths and filenames as arguments.
If you plan to transport your programs to the UNIX (or XENIX) operating system,
you should remember that UNIX uses path-name and filename conventions that
are different from those used by DOS. If you do not plan to transport your pro-
grams to UNIX, you can skip this section.

Using the Run-Time Library 9

Case Sensitivity

The DOS operating system is not case sensitive (it does not distinguish between
uppercase and lowercase letters). Thus, SAMPLE.C and Sample.C refer to the
same file. However, the UNIX operating system is case sensitive. In UNIX,
SAMPLE.C and Sample.C refer to different files. To transport programs to UNIX,
choose path names and filenames that work correctly in UNIX, since either case
works in DOS. For instance, the following directives are identical in DOS, but
only the second works in UNIX:

f##include <STDIO.H>
#include <stdio.h>

Subdirectory Conventions
Under UNIX, certain header files are normally placed in a subdirectory named
SYS. Microsoft C follows this convention to ease the process of transporting pro-

grams to UNIX. If you do not plan to transport your programs, you can place the
SYS header files elsewhere.

Path-Name Delimiters

UNIX uses the slash (/) in path names, while DOS uses the backslash (\). To trans-
port programs to UNIX, it is advantageous to use path-name delimiters that are
compatible with UNIX whenever possible.

1.4 Choosing Between Functions and Macros

This book uses the words “routine” and “function” interchangeably. However, the
term “routine” actually encompasses both functions and macros. Because func-
tions and macros have different properties, you should pay attention to which form
you are using. The descriptions in the reference section indicate whether routines
are implemented as functions or as macros.

Most routines in the Microsoft run-time library are functions. They consist of com-
piled C code or assembled Microsoft Macro Assembler (MASM) code. However,
a few library routines are implemented as macros that behave like functions. You
can pass arguments to library macros and invoke them in the same way you in-
voke functions.

The main benefit of using macros is faster execution time. Every library macro is
defined with a #define directive in a header file. A macro is expanded (replaced
by its definition) during preprocessing, creating inline code. Thus, macros do not
have the overhead associated with function calls. On the other hand, each use of a
macro inserts the same code in your program, whereas a function definition occurs
only once regardless of how many times it is called. Functions and macros thus
offer a trade-off between speed and size.

10

Run-Time Library Reference

Apart from speed and size issues, macros and functions have some other important
differences:

= Some macros treat arguments with side effects incorrectly when the macro eval-
uates its arguments more than once (see the example that follows this list). Not
every macro has this effect. To determine if a macro handles side effects as
desired, examine its definition in the appropriate header file.

m A function name evaluates to an address, but a macro name does not. Thus, you
cannot use a macro name in contexts requiring a function pointer. For instance,
you can declare a pointer to a function, but you cannot declare a pointer to a
macro.

®= You can declare functions, but you cannot declare macros. Thus, the compiler
cannot perform type checking of macro arguments as it does of function argu-
ments. However, the compiler can detect when you pass the wrong number of
arguments to a macro.

The following example demonstrates how some macros can produce unwanted
side effects. It uses the toupper routine.

#include <ctype.h>

int a = 'm";
a = toupper(a++);

The example increments a when passing it as an argument to the toupper
routine, which is implemented as a macro. It is defined in CTYPE.H:

ffdefine toupper(c) ((islower(c)) ? _toupper(c) : (c))

The definition uses the conditional operator (? :). The conditional expression eval-
uates the argument ¢ twice: once to check if it is lowercase and again to create the
result. This macro evaluates the argument a++ twice, increasing a by 2 instead of
1. As a result, the value operated on by islower differs from the value operated on
by _toupper.

Like some other library routines, toupper is provided in both macro and function
versions. The header file CTYPE.H not only declares the toupper function but
also defines the toupper macro.

Choosing between the macro version and function version of such routines is easy.
If you wish to use the macro version, you can simply include the header file that
contains the macro definition. Because the macro definition of the routine always
appears after the function declaration, the macro definition normally takes prece-
dence. Thus, if your program includes CTYPE.H and then calls toupper, the com-
piler uses the toupper macro:

Using the Run-Time Library 1

#include <ctype.h>

int a = 'm';
a = toupper(a);

You can force the compiler to use the function version of a routine by enclosing
the routine’s name in parentheses:

#include <ctype.h>

inta="'m";
a = (toupper) (a);

Because the name toupper is not immediately followed by a left parenthesis, the
compiler cannot interpret it as a macro name. It must use the toupper function.

A second way to do this is to “undefine” the macro definition with the #undef
directive:

#include <ctype.h>
ffundef toupper

Since the macro definition no longer exists, subsequent references to toupper use
the function version.

A third way, not generally recommended, to make sure the compiler uses the func-
tion version is to declare the function explicitly:

#include <ctype.h>
int toupper(int _c);

Since this function declaration appears after the macro definition in CTYPE.H, it
causes the compiler to use the toupper function.

1.5 Stack Checking on Entry

For certain library routines, the compiler performs stack checking on entry. (The
“stack” is a memory area used for temporary storage.) Upon entry to such a
routine, the stack is checked to determine if it has enough room for the local varia-
bles used by that routine. If it does, space is allocated by adjusting the stack
pointer. Otherwise, a “stack overflow” run-time error occurs. If stack checking is
disabled, the compiler assumes there is enough stack space; if there is not, you
might overwrite memory locations in the data segment and receive no warning—
unpredictable program behavior may result.

12

Run-Time Library Reference

Typically, stack checking is enabled only for functions with large local-variable re-
quirements (more than about 150 bytes), since there is enough free space between
the stack and data segments to handle functions with smaller requirements. If the
function is called many times, stack checking slows execution slightly.

Stack checking is enabled for the following library functions:

_execvp scanf system
_execvpe _Spawnvp vprintf
fprintf _spawnvpe _write
fscanf sprintf
printf sscanf

You can enable or disable stack checking with the /Gs and /Ge compiler options
(see Chapter 13 of Environment and Tools) or the check_stack pragma (see
Chapter 7 of the C Language Reference). Both books are in the Microsoft C/C++
version 7.0 documentation set.

1.6 Handling Errors

Many library routines return a value that indicates an error condition. To avoid un-
expected results, your code should always check such error values and handle all
of the possible error conditions. The description of each library routine in the refer-
ence section lists the routine’s return value(s).

Some library functions do not have a set error return. These include functions that
return nothing and functions whose range of return values makes it impossible to
return a unique error value.

To aid in error handling, some functions set the value of a global variable named
errno. If the reference description of a routine states that it sets the errno variable,
you can use errno in two ways:

» Compare errno to the values defined in the header file ERRNO.H.

= Handle errno with the perror or strerror library routine. The perror routine
prints a system error message to the standard error (stderr). The strerror
routine stores the same information in a string for later use.

When you use errno, perror, and strerror, remember that the value of errno
reflects the error value for the last call that set errno. To avoid confusion, you
should always test the return value to verify that an error actually occurred. Once
you determine that an error has occurred, use strerror or perror immediately.
Otherwise, the value of errno may be changed by intervening calls.

Using the Run-Time Library 13

Library math routines set errno by calling the _matherr or _matherrl library
routine; both are described in the reference section. If you wish to handle math
errors differently from these routines, you can write your own routine and name
it _matherr or _matherrl. Your routine must follow the rules listed in the
_matherr reference description.

The ferror library routine allows you to check for errors in stream input/output
operations. This routine checks if an error indicator has been set for a given
stream. Closing or rewinding the stream automatically clears the error indicator.
You can also reset the error indicator by calling the clearerr library routine.

The feof library routine tests for end-of-file on a given stream. An end-of-file con-
dition in low-level input and output can be detected with the _ eof routine or when
a _read operation returns 0 as the number of bytes read.

The _grstatus library routine allows you to check for errors after calling certain
graphics library operations. See the reference page on the _grstatus function for
details.

1.7 Operating-System Considerations

The library routines listed in this section behave differently under different
operating-system versions. For more information on an individual routine, see the
description of that routine in the reference section.

Routine Restrictions

_locking These routines are effective only in DOS versions 3.0 and later.

_sopen

_fsopen

_dosexterr The _dosexterr routine provides error handling for system call 0x59
(get extended error) in DOS versions 3.0 and later.

_dup The _dup and _dup2 routines can cause unexpected results in DOS

—dup2 versions earlier than 3.0. If you use _dup or _dup2 to create a

duplicate file handle for stdin, stdout, stderr, stdaux, or stdprn,
calling the _close function with one handle causes errors in later I/O
operations that use the other handle. This anomaly does not occur in
DOS versions 3.0 and later.

_exec When using the _exec and _spawn families of functions under DOS
_Spawn versions earlier than 3.0, the value of the arg0 argument (or argv[0]
to the child process) is not available to the user; a null string ("")

is stored in that position instead. In DOS versions 3.0 and later, the
arg0 argument contains the complete command path.

14

Run-Time Library Reference

Microsoft C/C++ defines global variables that indicate the version of the current
operating system. You can use these to determine the operating-system version in
which a program is executing. See Chapter 3, “Global Variables and Standard
Types,” for more information.

1.8 Floating-Point Support

Microsoft math library routines require floating-point support to perform calcula-
tions with real numbers (numbers that can contain fractions). This support can be
provided by the floating-point libraries that accompany your compiler software or
by an 8087, 80287, or 80387 coprocessor. The names of the functions that require

floating-point support are listed below:

acos
_acosl

asin

_asinl

atan
_atanl
atan2
_atan2l
atof
_atold
Bessel
_cabs
_cabsl

ceil

_ceill
_clear87
_control87

cos
_cosl

cosh

_coshl
_dieeetomsbin
difftime
_dmsbintoieee
_ecvt

exp

_expl

fabs

_fabsl

_fevt
_fieeetomsbin
floor

_floorl

fmod

_fmodl
_fmsbintoieee
_fpreset
frexp
_frexpl
_gevt
_hypot
_hypotl
ldexp
_ldexpl
log
_logl
log10
_log101
modf
_modfl
pow

_powl
sin
_sinl
sinh
_sinhl
sqrt
_sqrtl
_status87
strtod
_strtold
tan
_tanl
tanh
_tanhl

Note that the Bessel routine does not correspond to a single function, but to 12
functions named _j0, _j1, _jn, _y0, _y1, _yn, _jOl, _j1lI, _jnl, _yOl, _y1l, and
_ynl. Also note that the _clear87 and _control87 functions are not available with
the /FPa compiler option.

Using the Run-Time Library 15

Also requiring floating-point support is the printf family of functions (_ cprintf,
fprintf, printf, _snprintf, sprintf, vfprintf, vprintf, _ vsnprintf, and vsprintf).
These functions require support for floating-point input and output if used to print
floating-point values.

The compiler tries to detect whether floating-point values are used in a program so
that supporting functions are loaded only if required. This behavior saves a consid-
erable amount of space for programs that do not require floating-point support.

When you use a floating-point type specifier in the format string for a printf or
scanf call, make sure you specify floating-point values or pointers to floating-
point values in the argument list. These must correspond to any floating-point type
specifiers in the format string. The presence of floating-point arguments allows the
compiler to detect that floating-point support code is required. If a floating-point
type specifier is used to print an integer argument, for example, floating-point
values will not be detected because the compiler does not actually read the format
string used in the printf and scanf functions. For instance, the following program
produces an error at run time:

void main(void) /* This example causes an error */
{

long f = 10L;

printf("%f", f);
}

In the preceding example, the functions for floating-point support are not loaded
because

= No floating-point arguments are given in the call to printf.
= No floating-point values are used elsewhere in the program.
As a result, the following error occurs:

Floating point not loaded

Here is a corrected version of the above call to printf in which the long integer
value is cast to double:

void main(void) /* This example works correctly =/
{

long f = 10L;

printf("%f", (double) f);

16 Run-Time Library Reference

1.9 Using Huge Arrays with Library Functions

In programs that use small, compact, medium, and large memory models, the com-
piler allows you to use arrays exceeding the 64K (kilobyte) limit of physical
memory in these models by explicitly declaring the arrays as __huge. However,
generally, you cannot pass huge pointers as arguments to run-time library func-
tions. In the compact-model library used by compact-model programs and in the
large-model library used by both large-model and huge-model programs, only the
functions listed below use pointer arithmetic that works with huge items:

bsearch _fmemmove mememp
fread _fmemset memcpy
fwrite _halloc _memicmp
_fmemccpy _hfree memmove
_fmemchr _Ifind memset
_fmemcmp _lIsearch gsort
_fmemcpy _memccpy

_fmemicmp memchr

With this set of functions, you can read from, write to, search, sort, copy, initial-
ize, compare, or dynamically allocate and free huge arrays; the huge array can be
passed without difficulty to any of these functions in a compact-, large-, or huge-
model program. The model-independent routines in the above list (those beginning
with _f) are available in all memory models.

The memset, memcpy, and mememp library routines are available in two ver-
sions: as C functions and as intrinsic (inline) code. The function versions of these
routines support huge pointers in compact and large memory models, but the in-
trinsic versions do not support huge pointers. (The function version of such
routines generates a call to a library function, whereas the intrinsic version inserts
inline code into your program. For information on how to select the intrinsic ver-
sions of library routines, see the /Oi option in Chapter 13 of Environment and
Tools (in the Microsoft C/C++ version 7.0 documentation set) or consult your
compiler documentation.)

Run-Time Routines by Category

Microsoft run-time library routines handle various kinds of tasks. If you know the
type of task you need done, but don’t know exactly which routine to use, the cate-
gorized lists of routines in this chapter can help. The descriptions here are intended
only to give you a brief overview of the capabilities of the run-time library. For a
complete description of the behavior, syntax, and use of each routine, see Part 2,
“Run-Time Functions.”

The main categories of library routines are

» Buffer manipulation

® Character classification and conversion
= Data conversion

= Directory control

= File handling

= Graphics

= [nput and output

= [nternationalization

= Math

= Memory allocation

® Process and environment control
= QuickWin

= Searching and sorting

= String manipulation

= System calls

= Time

= Variable-length argument lists

= Virtual memory allocation

18 Run-Time Library Reference

2.1 Buffer Manipulation

The buffer-manipulation routines are useful for working with areas of memory on
a byte-by-byte basis. A “buffer” is an array of bytes, similar to a character string.
However, unlike strings, buffers are not usually terminated with a null character
(’\0”) and can contain non-ASCII data. Therefore, the buffer-manipulation
routines always take a length or count argument. Function declarations for the
buffer-manipulation routines are given in the include files MEMORY.H and
STRING.H, except for the _swab function, which appears in STDLIB.H.

Routines beginning with _f are model independent; the _f stands for far. These
routines are useful in writing mixed-model programs because they can be called
from any program, regardless of the memory model being used.

Routine Use

_memccpy, _fmemccpy Copy characters from one buffer to another until a given
character or a given number of characters has been
copied

memchr, _fmemchr Return a pointer to the first occurrence, within a
specified number of characters, of a given character in
the buffer

mememp, _fmememp Compare a specified number of characters from two
buffers

memcpy, _fmemcpy Copi/1 a specified number of characters from one buffer to
another

_memicmp, _fmemicmp Compare a specified number of characters from two
buffers without regard to the case of the letters
(uppercase and lowercase treated as equivalent)

memmove, _fmemmove Copy a specified number of characters from one buffer to

another

memset, _fmemset Use a given character to initialize a specified number of
bytes in the buffer

_swab Swaps bytes of data and stores them at the specified
location

When the source and target areas overlap, only the memmove and _fmemmove
functions are guaranteed to copy the full source properly. (The memcpy and
_fmemcpy routines do not always copy the full source in such cases.)

Run-Time Routines by Category 19

2.2 Character Classification and Conversion

The character classification and conversion routines allow you to test individual
characters in a variety of ways and to convert between uppercase and lowercase

characters.

Routine Use

isalnum Tests for alphanumeric character

isalpha Tests for alphabetic character

__isascii Tests for ASCII character

iscntrl Tests for control character

__iscsym Tests for letter, underscore, or digit

__iscsymf Tests for letter or underscore

isdigit Tests for decimal digit

isgraph Tests for printable character except space
islower Tests for lowercase character

isprint Tests for printable character

ispunct Tests for punctuation character

isspace Tests for white-space character

isupper Tests for uppercase character

isxdigit Tests for hexadecimal digit

__toascii Converts character to ASCII code

tolower Tests character and converts to lowercase if uppercase
_tolower Converts character to lowercase (unconditional)
toupper Tests character and converts to uppercase if lowercase
_toupper Converts character to uppercase (unconditional)

The classification routines identify characters by finding them in a table of classifi-
cation codes. Using these routines to classify characters is generally faster than
writing a test expression such as the following:

if ((c >= @) || (c <= 0x7f))

All of these routines are implemented in two versions: as functions and as macros.
The function prototypes and macro definitions appear in CTYPE.H. “Choosing
Between Functions and Macros” on page 9 explains how to choose the appropriate
version. The toupper and tolower functions are also declared in the STDLIB.H
header file.

20 Run-Time Library Reference

2.3 Data Conversion

The data-conversion routines convert numbers to strings of ASCII characters and
vice versa. These routines are implemented as functions, all of which are declared

in the include file STDLIB.H. The atof function, which converts a string to a
floating-point value, is also declared in MATH.H.

Routine

Use

abs
atof
atoi
atol
_atold
_ecvt
_fevt
_gevt
_itoa
labs
_Itoa
strtod
strtol
_strtold
strtoul
_ultoa

2.4 Directory Control

The directory-control routines let a program access, modify, and obtain informa-
tion about the directory structure. These routines are functions and are declared in

DIRECT .H.

Routine

Finds absolute value of integer

Converts string to float

Converts string to int

Converts string to long

Converts string to long double

Converts double to string

Converts floating-point number to string
Converts floating-point number to string and stores it in a buffer
Converts int to string

Finds absolute value of long integer
Converts long to string

Converts string to double

Converts string to a long integer

Converts string to long double

Converts string to an unsigned long integer
Converts unsigned long to string

Use

_chdir
_chdrive
_getewd
_getdrive
_mkdir
_rmdir
_searchenv

Changes current working directory

Changes current drive

Gets current working directory for the specified drive
Gets current working directory

Makes a new directory

Removes a directory

Searches for a given file on specified paths

Run-Time Routines by Category 21

2.5 File Handling

The file-handling routines let you create, manipulate, and delete files. They also
set and check file-access permissions.

File-handling routines work on a file designated by a path name or by a “file
handle,” an integer assigned by the operating system that identifies an open file.
These routines modify or give information about the designated file. Most of them
are declared in the include file IO.H, with the exceptions being the _fstat and
_stat functions (declared in SYS\STAT.H), the _fullpath routine (declared in
DIRECT.H), and the remove and rename functions (also declared in STDIO.H).

Routine Use

_access Checks file-permission setting

_chmod Changes file-permission setting

_chsize Changes file size

_filelength Gets file length

_fstat Gets file-status information on handle

_fullpath Makes an absolute path name from a relative path name
_isatty Checks for character device

_locking Locks areas of file (available with DOS versions 3.0 and later)
_makepath Merges path-name components into a single, full path name
_mktemp Creates unique filename

remove Deletes file

rename Renames file

_setmode Sets file-translation mode

_splitpath Splits a path name into component pieces

_stat Gets file-status information on named file

_umask Sets default-permission mask

_unlink Deletes file

The _access, _chmod, _fullpath, _makepath, remove, rename, _splitpath,
_stat, and _unlink routines operate on files specified by a path name or filename.

The _chsize, _filelength, _fstat, _isatty, _locking, and _setmode routines work
with files designated by a file handle.

The _mktemp and _umask routines have functions that are slightly different
from the other routines. The _mktemp routine creates a unique filename; you can
use _mktemp to create unique filenames that do not conflict with the names of ex-
isting files. The _umask routine sets the default permission mask for any new
files created in a program. The mask can override the permission setting given in
the _open or _creat call for the new file.

22

Run-Time Library Reference

2.6 Graphics

The Microsoft run-time library includes a set of graphics routines that offer a wide
variety of graphics functions, low-level graphics primitives, font functions, and
presentation graphics (displays such as graphs and pie charts).

Graphics functions are supplied in two libraries that must be explicitly linked with
your program. The GRAPHICS.LIB library provides support for low-level
graphics and character-font routines. The library PGCHART.LIB supports
presentation-graphics routines.

Low-Level Graphics and Character-Font Functions

The low-level graphics and font functions are declared in the include file
GRAPH.H.

The library can be divided into the eight categories listed below, which correspond
to the different tasks involved in creating and manipulating graphic objects.

Category Task

Configuring mode and environment Selects the proper display mode for the
hardware and establishes memory areas for
writing and displaying images

Setting coordinates Specifies the logical origin and the active
display area within the screen

Setting low-level graphics palettes Specifies a palette mapping for low-level
graphics routines
Setting attributes Specifies background and foreground colors,

fill masks, and line styles for low-level
graphics routines

Creating graphics output Draws and fills figures

Creating text output Writes text on the screen

Transferring images Stores images in memory and retrieves them

Displaying fonts Displays text in character fonts compatible
with Microsoft Windows

The following sections explain each of these categories.

Configuring Mode and Environment

Routines that configure the mode and environment establish the graphics or text
mode of operation, determine the current graphics environment, and control the
display of the cursor.

Run-Time Routines by Category 23

Routine Use

_clearscreen Erases the screen and fills it with the current background
color

_getactivepage Gets the current active page number

_getbkcolor Returns the current background color

_getvideoconfig Obtains status of current graphics environment

_getvisualpage Gets the current visual page number

_grstatus Returns the status of the most recent graphics function call

_setactivepage Sets memory area for the active page for writing images

_setbkcolor Sets the current background color

_settextrows Sets the number of text rows

_setvideomode Selects an operating mode for the display screen

_setvideomoderows Sets the video mode and the number of rows for text
operations

_setvisualpage Sets memory area for the current visual page

Setting Coordinates

The “set coordinates” routines set the current text or graphics position and convert
pixel coordinates between the various graphics coordinate systems.

The Microsoft graphics functions recognize three sets of coordinates:

® Fixed physical coordinates

® View coordinates defined by the application

= Window coordinates that can include floating-point values

The functions in this category establish window and view coordinate systems and
translate between physical, view, and window coordinate systems.

Routine

Use

_getcurrentposition Determines current position in view coordinates
_getcurrentposition_w Determines current position in window coordinates
_getphyscoord

_getviewcoord

Converts view coordinates to physical coordinates
Converts physical coordinates to view coordinates
_getviewcoord_w Converts window coordinates to view coordinates

getviewcoord wxy Converts window coordinates in _ wxycoord structure to

view coordinates

_getwindowcoord Converts view coordinates to window coordinates
_setcliprgn Limits graphic output to a region of the screen
_setvieworg Positions the view-coordinate origin

24

Run-Time Library Reference

Routine Use

_setviewport Limits graphics output to a region of the screen and
positions the view-coordinate origin to the upper-left
corner of that region

_setwindow Defines a floating-point window coordinate system

The default view coordinate system is identical to the physical screen coordinate
system. The physical origin (0, 0) is always in the upper-left corner of the display.
The x axis extends in the positive direction left to right, while the y axis extends in
the positive direction top to bottom.

The physical horizontal and vertical dimensions depend on the hardware display
configuration and the selected mode. These values are accessible at run time by ex-
amining the numxpixels and numypixels fields of the _ videoconfig structure re-
turned by _getvideoconfig. (The _getvideoconfig routine is listed in the previous
section.)

The _setvieworg function allows you to move the viewport origin to a new posi-
tion relative to the physical screen.

Routines that refer to coordinates on the physical screen or viewport require in-
teger values. However, in real-world graphing applications, you might wish to use
floating-point values, such as stock prices or average rainfall. The window coordi-
nate system allows you to display graphics using floating-point values instead of
integers.

The _getcurrentposition and _ getcurrentposition_ w routines allow you to
determine the location of the current graphics-output point.

The _setcliprgn function defines a restricted active display area on the screen.
The _setviewport function does the same thing and also resets the viewport origin
to the upper-left corner of the restricted active display area.

The physical coordinates of any view-coordinate point can be determined with the
_getphyscoord function, and the view coordinates of any physical point can be
determined with the _ getviewcoord function.

The view coordinates of any window coordinate can be determined with the
_getviewcoord_w and _ getviewcoord_ wxy functions. The window coordinates
of any view coordinate can be determined with the _ getwindowcoord function.

The _setwindow function defines the current viewport as a real-coordinate win-
dow bound by the specified floating-point values.

Run-Time Routines by Category 25

Setting Low-Level Graphics Palettes
Use the low-level palette routines to select or remap color palettes.

Routine Use

_remapallpalette Changes all color indexes in the current palette
_remappalette Changes a single color index in the current palette
_selectpalette Selects a predefined palette

Some video modes support a “color palette,” which is a table of the color values
that can be displayed together on the screen at any given time. A “color value” is a
long integer representing a color that can be displayed on your system.

In CGA color graphics modes, you can use the _selectpalette routine to choose
one of several predefined palettes.

On EGA, MCGA, VGA, and SVGA video systems, you can “remap” (change) the
palette using the _ remappalette or _remapallpalette routines. For instance, the
EGA _ERESCOLOR mode offers a total of 64 color values, of which 16 can be
displayed at a time. In this mode, the palette contains 16 “color indices,” or slots to
which you can assign color values.

The _remappalette routine changes a single color index to a specified color
value. The _remapallpalette routine changes all of the available palette entries
simultaneously.

Setting Attributes

The low-level output functions that draw lines, arcs, ellipses, and other basic
figures do not specify color or line-style information. Instead, the low-level
graphics functions rely on a set of attributes that are set independently by the
following functions:

Routine Use

_getarcinfo Determines the endpoints in viewport coordinates of the most
recently drawn arc or pie

_getcolor Gets the current color

_getfillmask Gets the current fill mask

_getlinestyle Gets the current line-style mask

_getwritemode Gets the current logical write mode

_setcolor Sets the current color

_setfillmask Sets the current fill mask

_setlinestyle Sets the current line-style mask

_setwritemode Sets logical write mode for line drawing

26 Run-Time Library Reference

The _getcolor and _setcolor functions get or set the current color index for
graphics and font output. The _getbkcolor and _setbkcolor functions get or set
the current background color. (The _getbkcolor and _setbkcolor functions are
listed in “Configuring Mode and Environment” on page 22.)

The _getfillmask and _setfillmask functions get or set the current fill mask. The
mask is an 8-by-8-bit template array, with each bit representing a pixel. If a bit is
0, the pixel in memory is left untouched, as the mask is transparent to that pixel. If
a bit is 1, the pixel is assigned the current color value. The template is repeated as
necessary over the entire fill area.

The _getlinestyle and _setlinestyle functions get or set the current line style. The
line style is determined by a 16-bit template buffer with each bit corresponding to
a pixel. If a bit is 1, the pixel is set to the current color. If a bit is 0, the pixel is not
changed. The template is repeated for the length of the line.

The _getwritemode and _setwritemode functions get or set the logical write
mode for straight-line drawing. The default mode, _ GPSET, causes lines to be
drawn in the current graphics color. Other modes combine the current graphics
color and the original screen image using various logical operations.

Creating Graphics Output

The graphics output functions use a set of specified coordinates and draw various
figures. They use the current or default attributes for line-style mask, fill mask,
write mode, background color, and foreground color.

The name of each function announces its task or the figure it draws, as the
following list indicates:

Routine Use

—arc, _arc_w, _arc_wxy Draw an arc

_ellipse, _ellipse_w, Draw an ellipse or circle

_ellipse_wxy

_floodfill, _floodfill_w Flood-fill an area of the screen with the current color

_ getcurrentposition, Obtain the current graphic-output position used by

_getcurrentposition_w _lineto and _ outgtext

_getpixel, _getpixel_w Obtain a pixel’s color

_lineto, _lineto_w Draw a line from the current graphic-output position to a
specified point

_moveto, _moveto_w Move the current graphic-output position to a specified
point

_pie, _pie_w, _pie_wxy Draw a pie-slice-shaped figure

_polygon, _polygon_w, Draw or scan-fill a polygon

_polygon_wxy

Run-Time Routines by Category

Routine

Use

_rectangle,
_rectangle_w,
_rectangle_wxy

_setpixel, _setpixel_w

Draw or scan-fill a rectangle

Set a pixel’s color

Most of these routines are available in several forms, which are indicated by their
names. Output functions without a suffix use the view coordinate system. Func-
tions that end with _w take double values as arguments and use the window
coordinate system. Functions that end with _ wxy use _ wxycoord structures to
define the coordinates and use the window coordinate system.

Circular figures, such as arcs and ellipses, are centered within a “bounding rec-
tangle” specified by two points that define the diagonally opposed corners of the
rectangle. The center of the rectangle becomes the center of the figure, and the
rectangle’s borders determine the size of the figure.

Creating Text Output

The next group of routines provides text output in both graphics and text modes.
Unlike the standard console I/O library routines, these functions recognize text-
window boundaries and use the current text color.

Routine Use

_displaycursor Sets the cursor on or off upon exit from a graphics routine
_gettextcolor Obtains the current text color

_ gettextcursor Returns the current cursor attribute (text modes only)
_gettextposition Obtains the current text-output position

_gettextwindow Gets the current text window boundaries

_outmem Prints text of a specified length from a memory buffer
_outtext Outputs a text string to the screen at the current text position
_scrolltextwindow Scrolls the current text window up or down

_settextcolor Sets the current text color

_settextcursor Sets the current cursor attribute (text modes only)
_settextposition Relocates the current text position

_settextwindow Defines the current text-display window

_wrapon Enables or disables line wrap

The _outtext and _outmem routines provide no formatting. If you want to output
integer or floating-point values, you must convert the values into a string variable
(using the sprintf function) before calling these routines.

28 Run-Time Library Reference

The _outtext routine recognizes the \n (newline character) and \r (carriage return)
sequences. The _outmem routine treats these sequences as printable graphics
characters.

Transferring Images

The functions in this category transfer screen images between memory and the dis-
play, using a buffer allocated by the application, or determine the size in bytes of
the buffer needed to store a given image.

The functions that end with _w or _wxy use window coordinates; the other func-
tions in this set use view coordinates.

Routine Use

_getimage, Store a screen image in memory

_getimage_w,

getimage wxy

_imagesize, Return the size (in bytes) of the buffer needed to store the
_imagesize_w, image

imagesize wxy '

_putimage, Retrieve an image from memory and display it
_putimage_w

In some cases, the buffer needed to store an image with the _getimage functions
must be larger than 64K (65,534) bytes. Use the _halloc routine to allocate a

buffer larger than 64K.

Displaying Fonts

The functions listed in this section control the display of font-based characters on

the screen.

Routine Use

_getfontinfo Obtains the current font characteristics

_getgtextextent Determines the width in pixels of specified text in the current
font

_getgtextvector Gets orientation of font text output

_outgtext Outputs text in the current font to the screen at the specified
pixel position

_registerfonts Initializes font library

_setfont Finds a single font that matches a specified set of characteristics

and makes this font the current font for use by the _outgtext
function

Run-Time Routines by Category 29

Routine Use
_setgtextvector Sets the current orientation for font text output
_ungisterfonts Frees memory allocated by _registerfonts

Presentation-Graphics Functions

The presentation-graphics functions are declared in the PGCHART.H include file.
The library can be divided into the three categories listed below, corresponding to
the different tasks involved in creating and manipulating graphic objects:

Category Task

Displaying presentation graphics Initializes video structures for presentation
graphics and establishes the default chart
type. Displays presentation-graphics chart:
bar, column, pie, scatter, or line chart.

Analyzing presentation-graphics data ~ Analyzes data (does not display chart).

Manipulating presentation-graphics Modifies basic chart structures (e.g., palettes,
structures cross-hatching styles).

Displaying Presentation Graphics

The functions listed in this section initialize the presentation-graphics library and
display the specified graph type.

Because the _pg_initchart routine initializes the presentation-graphics library, it
must be called before any other function in the presentation-graphics library. The
_pg_defaultchart function initializes the variables in the chart environment.

The other routines in this category display the specified graph. The single-series
versions plot one set of data, and the multiseries versions (those ending with an ms
suffix) plot several sets of data in the same chart style.

Presentation-graphics programs can display text in different font sizes by taking
advantage of font-based characters (see the previous section, “Displaying Fonts”).
Call the _registerfonts and _setfont routines to select a font before calling the
_pg_initchart routine. Subsequent charts use the selected font. You can later call
the _unregisterfonts routine to restore the default character font and free the
memory previously allocated for fonts.

Note If your program uses the alternate math package—if it is compiled with
/FPa—it cannot use the PGCHART.LIB module.

30 Run-Time Library Reference

Routine Use

_pg_chart Displays a single-series bar, column, or line chart

_pg_chartms Displays a multiseries bar, column, or line chart

_pg_chartpie Displays a pie chart

_pg_chartscatter Displays a scatter diagram for a single series of data

—pg_chartscatterms Displays a scatter diagram for more than one series of data

_pg_defaultchart Initializes all necessary variables in the chart environment for
a specified chart type

_pg_initchart Initializes the presentation-graphics library

Analyzing Presentation-Graphics Charts

These routines calculate default values for the specified graph type but do not dis-
play the chart. The single-series versions analyze one set of data, and the multi-
series versions analyze several sets of data in the same chart style.

Routine Use

_pg_analyzechart Analyzes a single series of data for a bar, column, or line
chart

_pg_analyzechartms Analyzes a multiseries of data for a bar, column, or line
chart

_pg_analyzepie Analyzes data for a pie chart

_pg_analyzescatter Analyzes a single series of data for a scatter diagram

_pg_analyzescatterms Analyzes a multiseries of data for a scatter diagram

Manipulating Presentation-Graphics Structures

These functions control low-level aspects of the presentation-graphics package.

Routine Use

_pg_getchardef Retrieves the current 8-by-8-pixel bit map for a specified

character
_pg_getpalette Retrieves current colors, line styles, fill patterns, and plot
characters for all presentation-graphics palettes
_pg_getstyleset Retrieves the contents of the current styleset

_pg_hlabelchart Writes text horizontally on the screen

_pg_resetpalette Sets current colors, line styles, fill patterns, and plot characters
to the default values for the current screen mode

_pg_resetstyleset Resets the contents of the current styleset to the default value for
the current screen mode

_pg_setchardef Sets the 8-by-8-pixel bit map for a specified character

Run-Time Routines by Category 3

Routine Use
_pg_setpalette Sets current colors
_pg_setstyleset Sets the contents of the current styleset

_pg_vlabelchart Writes text vertically on the screen

2.7 Input and Output

The input and output (I/O) routines allow you to read and write data to and from
files and devices. In C, there are no predefined file structures; all data items are
treated as sequences of bytes. The following three types of I/O functions are
available:

= Stream
n [ow-level

= Console and port

The stream I/O functions treat data as a stream of individual characters. By
choosing among the many stream functions available, you can process data in
different sizes and formats, from single characters to large data structures. Stream
/O also provides buffering, which can significantly improve performance.

The low-level I/O routines do not perform buffering and formatting. Instead, they
invoke the operating system’s input and output capabilities directly. These
routines let you access files and peripheral devices at a more basic level than the
stream functions.

The console and port I/O routines allow you to read or write directly to a console
(keyboard and screen) or an I/O port (such as a printer port). The port I/O routines
simply read and write data in bytes. With console I/O routines, some additional
options are available, such as detecting whether a character has been typed at the
console. You can also choose between echoing characters to the screen as they are
read or reading characters without echoing.

The run-time library also provides a number of direct DOS I/O system-call
routines. These are described in “System Calls” on page 55.

You can perform file 1/O operations in two modes: text and binary. The following
section describes these modes and their use. You can also ensure that the fflush
and _flushall routines write data to storage media rather than to just the operating
system’s buffers. See “Stream Routines” on page 33.

32 Run-Time Library Reference

Warning! Because stream routines are buffered and low-level routines are not, the
two types of routines are generally incompatible. You should use either stream or
low-level routines consistently for processing a given file.

Text and Binary Modes

Many C and C++ programs use data files for input and output. With DOS, data
files are normally processed in text mode. In this mode, each carriage-return—
line-feed (CR-LF) combination is translated into a single line-feed character
during input. During output, each line-feed character is translated into a CR-LF
combination.

Sometimes you may want to process a file without making those translations. In
these cases you use binary mode, which suppresses CR-LF translations.

You can control the file translation mode in the following ways:

® To process a few selected files in binary mode, while retaining the default text
mode for most files, you can specify binary mode when you open the selected
files. The fopen routine opens a file in binary mode when you specify the letter
b in the access-mode string for the file. The _open routine opens a file in bi-
nary mode when you specify the _O_BINARY flag in the oflag argument. For
more information about fopen and _open, see the reference description of each
routine.

® To process most or all files in binary mode, you can change the default mode to
binary. The global variable _fmode controls the default translation mode,
which is normally text. If you set _fmode to _O_BINARY, the default mode
is binary except for stdaux and stdprn, which are opened in binary mode by
default.

You can change the value of _fmode in two ways:

® Link with the file BINMODE.OBJ (supplied with Microsoft C/C++). This
changes the initial setting of _fmode to the _O_BINARY flag, causing all
files except stdin, stdout, and stderr to be opened in binary mode.

= Change the value of _fmode directly by setting it to the _ O_BINARY flag in
your program. This has the same effect as linking with BINMODE.OBJ.

You can still override the default mode (now binary) for a particular file by
opening it in text mode. Specify the letter t when using fopen, or specify the
—O_TEXT flag when using _open.

By default, the stdin, stdout, and stderr files are opened in text mode, and the
stdaux and stdprn files are opened in binary mode. The _setmode routine allows
you to change these defaults or change the mode of a file after it has been opened.
See the reference description of _setmode for details.

Run-Time Routines by Category 33

Stream Routines

Stream I/0 functions handle data as a continuous stream of characters. To use the
stream functions, you must include the file STDIO.H in your program. This file de-
fines constants, types, and structures used in the stream functions, and contains
function declarations and macro definitions for the stream routines.

When a file is opened for I/O using the stream functions, the opened file is as-
sociated with a structure of type FILE (defined in STDIO.H) containing basic in-
formation about the file. A pointer to the FILE structure is returned when the
stream is opened. Subsequent operations use this pointer (also called the “stream
pointer,” or just “stream”) to refer to the file.

The stream functions provide for buffered, formatted, or unformatted input and
output. When a stream is buffered, data that is read from or written to the stream is
collected in an intermediate storage location called a “buffer.” In write operations,
the output buffer’s contents are written to the appropriate final location when the
buffer is full, the stream is closed, or the program terminates normally. The buffer
is said to be “flushed” when this occurs. In read operations, a block of data is
placed in the input buffer. When the input buffer is empty, the next block of data is
transferred into the buffer.

Buffering produces efficient I/O because the system can transfer a large block of
data in a single operation rather than performing an I/O operation each time a data
item is read from or written to a stream. However, if a program terminates abnor-
mally, output buffers may not be flushed, resulting in loss of data.

You can use the fflush and _ flushall routines to ensure that the buffer associated
with the specified file or all of the open buffers are flushed to the operating sys-
tem. If a file was opened with fopen or _fdopen and the c flag, or if the program
is linked with COMMODE.OBJ, the contents of a flushed buffer are written to
disk.

Some of the constants defined in STDIO.H may be useful in your program. The
manifest constant EOF is defined to be the value returned at end-of-file. NULL is
the null pointer. FILE is the structure that maintains information about a stream.
BUFSIZ defines the default size of stream buffers, in bytes.

Routine Use

clearerr Clears the error indicator for a stream

fclose Closes a stream

_fcloseall Closes all open streams

_fdopen Associates a stream with an open file handle
feof Tests for end-of-file on a stream

ferror Tests for error on a stream

fflush Flushes a stream

34 Run-Time Library Reference

Routine Use

fgetc Reads a character from a stream (function version)
_fgetchar Reads a character from stdin (function version)
fgetpos Gets the position indicator of a stream

fgets Reads a string from a stream

_fileno Gets the file handle associated with a stream
_flushall Flushes all streams

fopen Opens a stream

fprintf Writes formatted data to a stream

fputc Writes a character to a stream (function version)
_fputchar Writes a character to stdout (function version)
fputs Writes a string to a stream

fread Reads unformatted data from a stream

freopen Reassigns a FILE pointer to a new file

fscanf Reads formatted data from a stream

fseek Moves file position to a given location

fsetpos Sets the position indicator of a stream

_fsopen Opens a stream with file sharing

ftell Gets current file position

fwrite Writes unformatted data items to a stream

getc Reads a character from a stream

getchar Reads a character from stdin

gets Reads a line from stdin

_getw Reads a binary int item from a stream

printf Writes formatted data to stdout

putc Writes a character to a stream

putchar Writes a character to stdout

puts Writes a line to a stream

_putw Writes a binary int item to a stream

rewind Moves file position to beginning of a stream
_rmtmp Removes temporary files created by tmpfile
scanf Reads formatted data from stdin

setbuf Controls stream buffering

setvbuf Controls stream buffering and buffer size
_snprintf Writes formatted data of a specified length to a string
sprintf Writes formatted data to a string

sscanf Reads formatted data from a string

Run-Time Routines by Category 35

Routine Use

_tempnam Generates a temporary filename in given directory
tmpfile Creates a temporary file

tmpnam Generates a temporary filename

ungetc Places a character in the buffer

viprintf Writes formatted data to a stream

vprintf Writes formatted data to stdout

_vsnprintf Writes formatted data of a specified length to a string
vsprintf Writes formatted data to a string

Opening a Stream

A stream must be opened using the _fdopen, fopen, freopen, or _fsopen function
before input and output can be performed on that stream. When opening a stream,
the named stream can be opened for reading, writing, or both, and it can be opened
in either text or binary mode.

The _fdopen, fopen, freopen, and _fsopen functions return a FILE pointer. You
normally assign the pointer value to a variable and use the variable to refer to the
opened stream. For instance, if your program contains the lines

FILE *infile
infile = fopen ("test.dat™, "r");

you can use the FILE pointer variable infile to refer to the stream.

Using Predefined Stream Pointers

When a program begins execution, the startup code automatically opens several
streams: standard input, standard output, and standard error. By default, the stand-
ard input, standard output, and standard error streams are directed to the console
(keyboard and screen). This means that when a program expects input from the
“standard input,” it receives that input from the console. Similarly, a program that
writes to the “standard output” prints its data to the console. Error messages
generated by the library routines are sent to the “standard error,” meaning that
error messages appear on the user’s console.

With DOS, two additional streams are opened: standard auxiliary and standard
print. The assignment of standard auxiliary and standard print depends on the ma-
chine configuration. These streams usually refer to the first serial port and a printer
port, but those ports may not be available on some systems. Be sure to check your
machine configuration before using these streams.

36

Run-Time Library Reference

You can refer to the standard streams with the following predefined stream
pointers:

Pointer Stream

stdin Standard input

stdout Standard output

stderr Standard error

stdaux Standard auxiliary (DOS only)
stdprn Standard print (DOS only)

You can use these pointers in any function that requires a stream pointer as an ar-
gument. Some functions, such as getchar and putchar, are designed to use stdin
or stdout automatically. The pointers stdin, stdout, stderr, stdaux, and stdprn

are constants, not variables; do not try to assign them a new stream pointer value.

DOS allows you to redirect a program’s standard input and standard output at the
operating-system command level. See your operating-system user’s manual for a
complete discussion of redirection.

Within your program, you can use freopen to redirect stdin, stdout, stderr,
stdaux, or stdprn so that it refers to a disk file or to a device. See the reference
description of freopen for more details.

Controlling Stream Buffering

As mentioned earlier, stream routines can use in-memory buffers to speed I/O
operations. Files opened using the stream routines are buffered by default, except
for stdaux and stdprn, which are normally unbuffered. The stdout and stderr
streams are flushed whenever they are full or (if you are writing to a character
device) after each library call.

By using the setbuf or setvbuf function, you can cause a stream to be unbuffered,
or you can associate a buffer with an unbuffered stream. Buffers allocated by the
system are not accessible to you, but buffers allocated with setbuf or setvbuf refer
to arrays in your program and can be manipulated. Buffers can be any size up to
INT_MAX bytes. This size is set by the manifest constant BUFSIZ in STDIO.H
if you use seftbuf; if you use setvbuf, you can set the size of the buffer yourself.
(See the descriptions of setbuf and setvbuf in the reference section for more
details.)

Note These routines affect only buffers created by the run-time library routines.
They have no effect on buffers created by the operating system.

Run-Time Routines by Category 37

Committing Buffer Contents to Disk

Normally, both the fflush and the _flushall functions pass the contents of a pro-
gram buffer to the operating system, which can cache data before writing it to
disk. In the case of a system failure, data cached by the operating system will be
lost. The commit-to-disk feature ensures that the flushed contents of a buffer are
written to storage media.

There are two ways to commit buffer contents to disk:

» Link with the file COMMODE.OBJ (provided with Microsoft C/C++) to set a
global commit flag. The default setting of the global flag is “no-commit.”

= Set the ¢ “commit” flag with fopen or _fdopen to open the file in commit
mode. The n flag specifies the “no-commit” mode.

COMMODE.OBJ allows existing code to use the commit feature. Any file
specifically opened with either the c or the n flag will behave according to the
flag, regardless of the state of the global commit/no-commit flag. Thus, some files
can be opened with committing contents to disk and some without.

Closing Streams

The fclose and _fcloseall functions close a stream or streams. The felose routine
closes a single specified stream; _fcloseall closes all open streams except stdin,
stdout, stderr, stdaux, and stdprn. If your program does not explicitly close a
stream, the stream is automatically closed when the program terminates. How-
ever, it is a good practice to close a stream when your program is finished with it,
as the number of streams that can be open at a given time is limited.

Reading and Writing Data

The stream functions allow you to transfer data in a variety of ways. You can read
and write binary data (a sequence of bytes), or specify reading and writing by
characters, lines, or more complicated formats.

Reading and writing operations on streams always begin at the current position of
the stream, known as the “file pointer” for the stream. The file pointer is changed
to reflect the new position after a read or write operation takes place. For example,
if you read a single character from a stream, the file pointer is increased by one
byte so that the next operation begins with the first unread character. If a stream is
opened for appending, the file pointer is automatically positioned at the end of the
file before each write operation.

38

Run-Time Library Reference

When switching directly between output and input, there must be an intervening
call to the fflush function or to a file-positioning function (fseek, fsetpos, or
rewind). Input can be directly followed by output without an intervening call to a
file-positioning function if the input operation encounters end-of-file.

The fseek and fsetpos functions allow you to position the file pointer anywhere in
a file. The next operation occurs at the position you specified. The rewind routine
positions the file pointer at the beginning of the file. Use the ftell or fgetpos
routine to determine the current position of the file pointer.

The feof macro detects an end-of-file condition on a stream. Once the end-of-file
indicator is set, it remains set until the file is closed, or until clearerr, fseek,
fsetpos, or rewind is called.

Streams associated with a character-oriented device (such as a console) do not
have file pointers. Data coming from or going to a console cannot be accessed ran-
domly. Routines that set or get the file-pointer position (such as fseek, fgetpos,
fsetpos, ftell, or rewind) have undefined results if used on a stream associated
with a character-oriented device.

Detecting Errors

When an error occurs in a stream operation, an error indicator for the stream is set.
You can use the ferror macro to test the error indicator and determine whether an
error has occurred. Once an error has occurred, the error indicator for the stream
remains set until the stream is closed, or until you explicitly clear the error indica-
tor by calling clearerr or rewind.

Low-Level Routines

Low-level input and output calls do not buffer or format data. Declarations for the
low-level functions are given in the include files IO.H, FCNTL.H, SYS\TYPES .H,
and SYS\STAT.H. Unlike the stream functions, low-level functions do not require
the include file STDIO.H. However, some common constants are defined in
STDIO.H; for example, the end-of-file indicator (EOF) may be useful. If your
program requires these constants, you must include STDIO.H.

Routine Use

_close Closes a file

_commit Flushes a file to disk

_creat Creates a file ‘
_dup Creates a second handle for a file
_dup2 Reassigns a handle to a file

_eof Tests for end-of-file

Run-Time Routines by Category 39

Routine Use

_lseek Repositions file pointer to a given location
_open Opens a file

_read Reads data from a file

_sopen Opens a file for file sharing

_tell Gets current file-pointer position

_umask Sets default file-permission mask

_write Writes data to a file

Opening a File

You must open a file before performing I/O functions on it. The _open function
opens a file; it can also create the file when opening it. With DOS versions 3.0 and
later, you can use _sopen to open a file with file-sharing attributes. The _creat
function can create and open a file.

The file can be opened for reading, writing, or both, and opened in either text or bi-
nary mode (see “Text and Binary Modes” on page 32). The include file FCNTL.H
must be included when opening a file, as it contains definitions for flags used in
_open. In some cases, the files SYS\TYPES.H and SYS\STAT.H must also be in-
cluded; for more information, see the reference description for the _open function.

These functions return a file handle, which is normally assigned to an integer
variable. You use the variable to refer to the opened file.

Reading and Writing Data

Use the _read and _ write routines to read and write to files. These operations
begin at the current position in the file. The current position is updated each time a
read or write operation occurs.

The _Iseek function allows you to place the file pointer anywhere in the file. The
next operation occurs at the position you specified. The _tell function indicates
the current position of the file pointer. The _eof routine tests for the end of the file.

Low-level 1/0 routines set the errno variable when an error occurs. Chapter 3,
“Global Variables and Standard Types,” describes errno.

Character-oriented devices, such as the console, do not have file pointers. The
_Iseek and _tell routines have undefined results if used on a handle associated
with a device.

40

Run-Time Library Reference

Closing Files

The _close function closes an open file. Open files are automatically closed when
a program terminates. However, it is a good practice to close a file when your pro-
gram is finished with it, as there is a limit to the number of files that can be open at
one time.

Using Predefined Handles

When a program begins execution, five files are automatically opened: standard
input, standard output, standard error, standard auxiliary, and standard print.

Low-level routines can access these files using the following predefined handles:

Stream Handle
stdin 0
stdout 1
stderr 2
stdaux (DOS only) 3
stdprn (DOS only) 4

You can use these file handles without previously opening the files. The files are
opened and the handles are assigned when the program starts.

The _dup and _dup?2 functions allow you to assign multiple handles for the same
file. These functions are typically used to associate the predefined file handles
with different files.

With DOS and Windows, you can redirect the standard input and standard output
at the operating-system command level. See your operating-system user’s manual
for a complete discussion of redirection.

Increasing the Maximum Number of File Handles and Streams

You can change the maximum number of file handles and streams that your pro-
gram can handle. The process is simple and involves changing some constants in
the startup source files, which are provided with Microsoft C/C++, and then com-
piling and linking the new startup code with your program. The following sections
describe the process.

Run-Time Routines by Category 1

Increasing File Handles

DOS, Windows, and QuickWin use the value of the constant _NFILE_ to establish
the maximum number of available file handles. To increase the number of file han-
dles, edit the startup source file CRTODAT.ASM and change the line

_NFILE. = 20

so that NFILE is set to the desired maximum. For example, to increase the maxi-
mum number of available file handles to 40, change the line as shown here:

_NFILE. = 40

CRTODAT.ASM contains a section of conditional code that is automatically
enabled when you change the value of _NFILE_.

QuickWin uses the constant _WFILE_ to establish the maximum number of availa-
ble text child windows. You can edit CRTODAT.ASM to change _WFILE_.
Change the line

_WFILE. = 20

so that _WFILE_ is set to the desired maximum. For example, to increase the maxi-
mum number of available text child windows to 40, change the line as shown here:

WFILE = 40

Note Increasing the number of file handles allows you to use low-level I/O func-
tions, such as _open and _read, with more files. However, it does not affect the
number of stream-level I/O files (that is, the number of FILE * streams).

Increasing Streams

To increase the maximum number of streams, edit one or more of the following
source files and constants:

System Source File Constant
DOS _FILE.C _NFILE_
Windows and QuickWin FILE.ASM _NFILE_

QuickWin WFILE.ASM _WFILE_

42

Run-Time Libréry Reference

For DOS, Windows, and QuickWin, change the line
NFILE equ 20

toset _NFILE_ to the desired maximum. For example, to allow a maximum of 40
streams, change the line as shown here:

NFILE equ 40

In addition, you can change the value of the constant _WFILE_, found in
WFILE.ASM, to increase the maximum number of available QuickWin text child
windows. :

Increasing the number of streams allows you to use stream-level I/O functions,
such as fopen and fread, with more files.

Note The number of low-level file handles must be greater than or equal to the
number of stream-level files. For example, if you increase the value of _NFILE_
in the module _FILE.C, you must also increase the value of _NFILE_ in the mod-
ule CRTODAT.ASM. Similarly, if you increase the value of _WFILE_ in the mod-
ule WFILE.ASM, you must also increase the value of _WFILE_ in the module
CRTODAT.ASM.

Increasing the System Limit

To use more than 20 files at a time, you must increase the file limit imposed on
your process by the operating system.

To increase the system-wide limit, increase the number of files available on your

system as a whole by editing your system configuration file (CONFIG.SYS). For
example, to allow 50 open files at a time on your system, put this statement in the
configuration file:

FILES=50

Using the Modified Startup Files

After you modify one or more of the startup source files, you need to recompile
the file(s) using the batch file CSTARTUP.BAT. Be sure to read the file
README.TXT, which is located in the same directory as CSTARTUP.BAT,
before running the batch file.

To use a new object file, either explicitly link your program with it or replace it in
the appropriate model of the run-time library. For example, after you assemble
CRTODAT.ASM, the object file will be CRTODAT-.OBIJ.

Run-Time Routines by Category 43

Console and Port 1/0

The console and port I/O routines are implemented as functions and are declared
in the include file CONIO.H. These functions perform reading and writing opera-
tions on your console or on the specified port. The _cgets, _cscanf, _getch,
_getche, and _kbhit routines take input from the console, while _ cprintf,
_cputs, _putch, and _ungetch write to the console. The input or output of these
functions can be redirected.

Routine Use

_cgets Reads a string from the console

_cprintf Writes formatted data to the console

_cputs Writes a string to the console

_cscanf Reads formatted data from the console

_getch Reads a character from the console

_getche Reads a character from the console and echoes it
_inp Reads one byte from the specified I/O port

_inpw Reads a two-byte word from the specified 1/O port
_kbhit Checks for a keystroke at the console

_outp Writes one byte to the specified I/O port

_outpw Writes a two-byte word to the specified I/O port
_putch Writes a character to the console

_ungetch “Ungets” the last character read from the console so that it becomes

the next character read

Note Programs that need only run under DOS can also use a number of direct
DOS I/O system calls (_dos_open, _dos_read, _dos_close, etc.). These are
described in detail in “System Calls” on page 55.

The console or port does not have to be opened or closed before 1/0 is performed,
so there are no open or close routines in this category. The port I/O routines _inp
and _outp read or write one byte at a time from the specified port. The _inpw and
_outpw routines read and write two-byte words, respectively.

The console I/O routines allow reading and writing of strings (_cgets and
_cputs), formatted data (_cscanf and _ cprintf), and characters. Several options
are available when reading and writing characters.

The _ putch routine writes a single character to the console. The _getch and
_getche routines read a single character from the console: _getche echoes the
character back to the console, while _getch does not. The _ungetch routine
“ungets” the last character read; the next read operation on the console begins
with the “ungotten” character.

44 Run-Time Library Reference

The _kbhit routine determines whether a key has been struck at the console. This
routine allows you to test for keyboard input before you attempt to read from the
console.

Note The console I/O routines are not compatible with stream or low-level library
routines and should not be used with them.

2.8 Internationalization

2.9 Math

Internationalization routines are useful for creating different versions of a
program for international markets. These routines are declared in the header file
LOCALE.H, except for strftime, which is declared in TIME.H.

Routine Use

localeconv Sets a structure with appropriate values for formatting numeric
quantities

setlocale Selects the appropriate locale for the program

strcoll Compares strings using locale-specific information

strftime Formats a date and time string

strxfrm Transforms a string based on locale-specific information

Currently only the "C" locale is supported by Microsoft C/C++.

The math routines allow you to perform common mathematical calculations. All
math routines work with floating-point values and therefore require floating-point
support (see “Floating-Point Support” on page 14).

The math library provides two versions of some routines. The first version of the
routine supports double arguments and return values. The second version supports
an 80-bit data type, allowing the routine to take long double arguments and return
a long double value. The second version usually has the same name with the suf-
fix 1. For instance, the acos routine supports double arguments and return values,
while _acosl supports long double arguments and return values.

Routines which support long double values are not available when you compile
with the /FPa (alternate math) compiler option. The same is true of the _clear87,
_control87, and _status87 routines.

Run-Time Routines by Category 45

Most math declarations are in the include file MATH.H. However, the _clear87,
_control87, _fpreset, and _status87 routines are defined in FLOAT.H; the abs
and labs functions are defined in MATH.H and STDLIB.H; and the div and ldiv
routines are declared in STDLIB.H.

Routine Use

acos, _acosl Calculate the arccosine
asin, _asinl Calculate the arcsine
atan, _atanl Calculate the arctangent

atan2, _atan2l
Bessel

_cabs, _cabsl
ceil, _ceill
_clear87
_control87

cos, _cosl
cosh, _coshl
_dieeetomsbin

div
_dmsbintoieee

exp, _expl
fabs, _fabsl
_fieeetomsbin

floor, _floorl
fmod, _fmodl
_fmsbintoieee

_fpreset

frexp, _frexpl
_hypot, _hypotl
ldexp, _ldexpl
Idiv

log, _logl
log10, _log101
_lIrotl, _lrotr

Calculate the arctangent

Calculates Bessel functions

Find the absolute value of a complex number
Find the integer ceiling

Gets and clears the floating-point status word

Gets the old floating-point control word and sets a new control-
word value

Calculate the cosine
Calculate the hyperbolic cosine

Converts IEEE double-precision number to Microsoft (MS)
binary format

Divides one integer by another, returning the quotient and
remainder

Converts Microsoft binary double-precision number to IEEE
format

Calculate the exponential function
Find the absolute value

Converts IEEE single-precision number to Microsoft binary
format

Find the largest integer less than or equal to the argument
Find the floating-point remainder

Converts Microsoft binary single-precision number to IEEE
format

Reinitializes the floating-point-math package
Calculate an exponential value

Calculate the hypotenuse of a right triangle
Calculate the product of the argument and 2ex

Divides one long integer by another, returning the quotient and
remainder

Calculate the natural logarithm
Calculate the base-10 logarithm
Shift an unsigned long int item left (_Irotl) or right (_Irotr)

Run-Time Library Reference

Routine Use
_matherr, Handle math errors
_matherrl

__max, __min

Return the larger or smaller of two values

modf, _modfl Split the argument into integer and fractional parts
pow, _powl Calculate a value raised to a power

rand Gets a pseudorandom number

_rotl, _rotr Shift an unsigned int item left (_rotl) or right (_rotr)
sin, _sinl Calculate the sine

sinh, _sinhl Calculate the hyperbolic sine

sqrt, _sqrtl Find the square root

srand Initializes a pseudorandom series

_status87 Gets the floating-point status word

tan, _tanl Calculate the tangent

tanh, _tanhl Calculate the hyperbolic tangent

The Bessel routine does not correspond to a single function, but to 12 functions
named _j0, _j1, _jn, _y0, _yl, _yn, _joOL _j1l, _jnl, _yOl, _y1l, and _ynl.

The _matherr and _matherrl routines are invoked by the math functions when

errors occur. The _matherr routine handles functions that return a double value,
and _matherrl handles routines that return a long double.

These routines are defined in the library, but you can redefine them for different
error handling. The user-defined function, if given, must follow the rules given in
the reference description of _matherr and _matherrl.

You are not required to supply a definition for the _matherr routines. If no defini-
tion is present, the default error returns for each routine are used. The reference
description of each routine describes that routine’s error returns.

2.10 Memory Allocation

The memory-allocation routines allow you to allocate, free, and reallocate
blocks of memory. Memory-allocation routines are declared in the include file
MALLOC.H. The C++ _set_new_handler functions allow you to redefine the
action of the C++ new operator and are declared in include file NEW.H.

Run-Time Routines by Category 47
Routine Use
_alloca Allocates a block of memory from
the program’s stack
_bfreeseg Frees a based heap
_bheapseg Allocates a based heap

calloc, _bcalloc, _fcalloc, _ncalloc
_expand, _bexpand, _fexpand, _nexpand

free, _bfree, _ffree, _free
_freect

_halloc
_heapadd, _bheapadd

_heapchk, _bheapchk, _fheapchk,
_nheapchk

_heapmin, _bheapmin,
_fheapmin, _nheapmin

_heapset, _bheapset, _fheapset, _nheapset

_heapwalk, _bheapwalk, _fheapwalk,
_nheapwalk

_hfree
malloc, _bmalloc, _fmalloc, _nmalloc
_memavl

—_Imemmax

_msize, _bmsize, _fmsize, _nmsize
realloc, _brealloc, _frealloc, _nrealloc

_set_new_handler, _set_bnew_handler,
_set_fnew_handler, _set_hnew_handler,
_set_nnew_handler

_stackavail

Allocate storage for an array

Expand or shrink a block of memory
without moving its location

Free an allocated block

Returns approximate number of items
of given size that could be allocated
in the near heap

Allocates storage for huge array
Add memory to a heap
Check a heap for consistency

Release unused memory in a heap

Fill free heap entries with a specified
value

Return information about each entry
in a heap

Frees a block allocated by _halloc
Allocate a block of memory

Returns approximate number of bytes
available for allocation in the near
heap

Returns size of largest contiguous
free block in the near heap

Return size of an allocated block
Reallocate a block to a new size
Enable an error-handling mechanism

Returns size of stack space available
for allocation with _alloca

48

Run-Time Library Reference

Some memory-management routines, such as malloc, are available in different
versions that begin with _b, _f, or _n. These variations are described in the
following section.

The malloc and free routines allocate and free memory space, respectively, while
a program runs. The malloc routine allocates memory from the “heap,” which is
a pool of memory not otherwise used by your program. In tiny-, small-, and
medium-model programs, the heap consists of unused memory in your program’s
default data segment. In compact-, large-, and huge-model programs, it is unused
memory outside the default data segment.

The malloc and free routines satisfy the memory-allocation requirements of most
programs. More specialized memory-management routines are discussed below.

The realloc and _expand routines can expand or shrink an allocated memory
block. They behave differently in cases in which there is not enough room to
expand the block in its current location. In this case, realloc moves the block as
needed, but _expand does not.

The calloc routine allocates memory for an array and initializes every byte in the
allocated block to 0.

The _halloc routine is similar to calloc, except that it can allocate memory for a
huge array (one that exceeds 64K in size). This routine is useful when you need a
very large data object, or if you need to return allocated memory to the operating
system for subsequent calls to the _spawn family of functions.

Near and Far Heaps

As mentioned in the previous section, heap memory can reside inside or outside
your program’s default data segment, depending on what memory model your
program uses. When it lies inside the default data segment, the heap is called the
“near heap,” since it can be accessed with near pointers. The “far heap” is memory
that spans one or more segments outside the default data segment. The far heap
can be accessed only with far pointers.

In various memory models, malloc automatically allocates memory from the near
heap or far heap, as appropriate. The run-time library also includes near and far
versions of malloc, free, and other memory-management routines, which allow
you to specify the near and far heaps explicitly. These have the same names as
standard memory routines, but are preceded by _n (for near) or _f (for far).

Run-Time Routines by Category 49

For instance, the _nmalloc routine always allocates memory from the near heap
and returns a near pointer, no matter which memory model your program uses.
Use _nfree to release memory allocated with _nmalloc.

Similarly, _fmalloc always allocates memory from the far heap and returns a far
pointer, regardless of memory model. Use the _ffree routine to release memory
allocated with _fmalloc.

Based Heaps

You can also allocate memory from a “based heap,” which is a single segment that
lies outside the default data segment. Based-heap routines generally use the same
names as standard memory routines, but begin with _b. For instance, _bmalloc
allocates a memory block from the based heap and _bfree frees the block.

Based heaps offer the following advantages:

»] ocalized data. Based heaps allow you to group related data in a single seg-
ment. This can simplify the management of related data.

= Faster pointer arithmetic. Although the based heap lies in the far data segment,
pointers to its data items are the same size as near pointers. Thus, pointer arith-
metic on items in a based heap is faster than pointer arithmetic on items in the
far heap.

The _bheapseg routine allocates a based heap segment, from which you can then
allocate blocks of memory. You can call _bheapseg more than once to allocate as
many based-heap segments as needed (within the confines of available memory).

The _bfreeseg routine frees a based-heap segment. This routine frees every
block in the based-heap segment, whether or not you previously freed the blocks
individually.

Note Near-, far-, and based-heap calls are not ANSI compatible and will make
your program less portable.

2.11 Process and Environment Control

The process-control routines allow you to start, stop, and manage processes from
within a program. Environment-control routines allow you to get and change infor-
mation about the operating-system environment.

50 Run-Time Library Reference

A “process” is a program being executed by the operating system. It consists of
the program’s code and data, plus information about the process, such as the num-
ber of open files. Whenever you execute a program at the operating-system level,
you start a process. All process-control functions except signal are declared in the
include file PROCESS.H. The signal function is declared in SIGNAL.H. The
abort, exit, and system functions are also declared in the STDLIB.H include file.
The environment-control routines (getenv and _ putenv) are declared in

STDLIB.H.

Routine Use

abort Aborts a process without flushing buffers or calling functions
registered by atexit and _onexit

assert Tests for logic error

atexit Schedules routines for execution at program termination

_cexit Performs the exit termination procedures (such as flushing buffers)
and returns control to the calling program

_c_exit Performs the _exit termination procedures and returns control to the
calling program

_execl Executes child process with argument list

_execle Executes child process with argument list and given environment

_execlp Executes child process using PATH variable and argument list

_execlpe Executes child process using PATH variable, given environment, and
argument list

_execv Executes child process with argument array

_execve Executes child process with argument array and given environment

_execvp Executes child process using PATH variable and argument array

_execvpe Executes child process using PATH variable, given environment, and
argument array

exit Calls functions registered by atexit and _ onexit, then flushes all
buffers and closes all open files before terminating the process

_exit Terminates process without processing atexit or _onexit functions or
flushing buffers

_fatexit Schedules routines for execution at program termination (memory-
model independent)

_fonexit Schedules routines for execution at program termination (memory-
model independent)

getenv Gets the value of an environment variable

_getpid Gets process ID number

longjmp Restores a saved stack environment

Run-Time Routines by Category 51

Routine Use

_onexit Schedules routines for execution at program termination

perror Prints error message

_putenv Adds or changes the value of an environment variable

raise Sends a signal to the calling process

setjmp Saves a stack environment

signal Handles an interrupt signal

_spawnl Executes child process with argument list

_spawnle Executes child process with argument list and given environment

_spawnlp Executes child process using PATH variable and argument list

_spawnlpe Executes child process using PATH variable, given environment, and
argument list

_Spawnv Executes child process with argument array

—Spawnve Executes child process with argument array and given environment

_Spawnvp Executes child process using PATH variable and argument array

_spawnvpe Executes child process using PATH variable, given environment, and

argument array
system Executes an operating-system command

The atexit and _onexit routines create a list of functions to be executed when the
calling program terminates. The only difference between the two is that atexit is
part of the ANSI standard. The _onexit function is offered for compatibility with
previous versions of Microsoft C.

The _exit routine terminates a process immediately, whereas exit terminates the
process only after flushing buffers and calling any functions previously registered
by atexit and _onexit. The _cexit and _c_exit routines are identical to exit and
_exit, respectively, except that they return control to the calling program without
terminating the process.

The setjmp and longjmp routines save and restore a stack environment. These
allow you to execute a nonlocal goto.

The _exec and _spawn routines start a new process called the “child” process.
The difference between the _exec and _spawn routines is that the _spawn
routines are capable of returning control from the child process to its caller (the
“parent” process). Both the parent process and the child process are present in
memory (unless _P_OVERLAY is specified). In the _exec routines, the child
process overlays the parent process, so returning control to the parent process is
impossible (unless an error occurs when attempting to start execution of the child
process).

52

Run-Time Library Reference

There are eight forms each of the _exec and _spawn routines (see Table 2.1). The
differences among the forms involve the method of locating the file to be executed
as the child process, the method for passing arguments to the child process, and
the method of setting the environment.

Passing an argument list means that the arguments to the child process are listed
separately in the _exec or _spawn call. Passing an argument array means that the
arguments are stored in an array, and a pointer to the array is passed to the child
process. The argument-list method is typically used when the number of argu-
ments is constant or is known at compile time. The argument-array method is use-
ful when the number of arguments must be determined at run time.

Table 2.1 Forms of the _spawn and _exec Routines

Argument-Passing

Routines Locating the File = Convention Environment Settings

_execl, _spawnl Do not use PATH Argument list Inherited from parent

_execle, Do not use PATH Argument list Pointer to environment

_spawnle table for child process
passed as last argument

_execlp, Use PATH Argument list Inherited from parent

_spawnlp

_execlpe, Use PATH Argument list Pointer to environment

_spawnlpe table for child process
passed as last
argument

_execv, Do not use PATH Argument array Inherited from parent

_spawnv

_execve, Do not use PATH Argument array Pointer to environment

_Spawnve table for child process
passed as last
argument

_execvp, Use PATH Argument array Inherited from parent

_spawnvp

_execvpe, Use PATH Argument array Pointer to environment

_spawnvpe table for child process
passed as last
argument

The assert macro is typically used to test for logic errors. It prints a message when
a given “assertion” fails to hold true. Defining the identifier NDEBUG to any
value causes occurrences of assert to be removed from the source file, thus allow-
ing you to turn off assertion checking without modifying the source file.

Run-Time Routines by Category 53

2.12 QuickWin

The QuickWin functions make it possible to compile non-Windows DOS pro-
grams as simple text-only Windows applications. DOS programs compiled with
the /Mq compiler option have a limited Windows user interface, including a stand-
ard menu bar, standard online help (for the QuickWin features), and a client (or ap-
plication) window with a child (document) window for the input/output streams
stdin, stdout, and stderr. You can also add other child windows of your own.
QuickWin applications support the Windows Clipboard, and you can use standard
C and C++ functions to write to and read from a QuickWin application’s win-
dows, which behave as streams.

Unless you use the functions covered in this section, you do not need to alter your
program’s source code. However, by using these functions in your source, you can
take advantage of enhanced capabilities in your QuickWin programs.

Note that there are some restrictions on the kinds of DOS programs that can be
compiled with QuickWin. Programs that use graphics or that spawn processes can-
not take advantage of QuickWin. For full details about QuickWin, see Chapter 8
of Programming Techniques (in the Microsoft C/C++ version 7.0 documentation
set).

QuickWin programs cannot be run in real mode.

QuickWin uses Windows libraries and the QWIN.LIB library. QuickWin con-
stants, structures, and functions are declared in the Windows version of IO.H and
STDIO.H. The /Mq compiler option defines the - WINDOWS constant, declared
in the Windows version of STDIO.H.

Routine Use

_fwopen Opens a new window stream

_wabout Sets the string that appears in the About dialog box
_wclose Closes a window’s file handle

_wgetexit Gets a QuickWin program’s current exit behavior setting
_wgetfocus Returas a file handle to the window with the input focus
_wgetscreenbuf Gets a window’s current screen-buffer size

_wgetsize Gets a window’s current size and position on the screen
_wmenuclick Chooses a menu command

_wopen Opens a window, returning a file handle to it

_ wsetexit Sets the way a QuickWin program behaves when exit is called
_wsetfocus Makes a window the active window (sets its focus)
_wsetscreenbuf Sets a window’s screen-buffer size

_wsetsize Sets a window’s size and position on the screen

_wyield Yields processor time to Windows for queue servicing

Run-Time Library Reference

2.13 Searching and Sorting

Search and sort routines provide binary-search, linear-search, and quick-sort capa-
bilities. They are all declared in SEARCH.H.

Routine Use

bsearch Performs binary search

_Ifind Performs linear search for given value

_Isearch Performs linear search for given value, which is added to array if not
found

gsort Performs quick sort

2.14 String Manipulation

The string functions are declared in the include file STRING.H. They allow you to
compare strings, copy them, search for strings and characters, and perform various

other operations.

Routines beginning with _f are model-independent versions of the corresponding
routines and are useful in mixed-model programs. These routines can be called
from any point in the program, regardless of which model is being used.

Routine

Use

strcat, _fstrcat
strchr, _fstrchr
stremp, _fstremp
strepy, _fstrepy
strespn, _fstrespn

_strdup, _fstrdup,
_nstrdup

strerror

_strerror

_stricmp, _fstricmp
strlen, _fstrlen
_strlwr, _fstriwr
strncat, _fstrncat
strncmp, _fstrnemp
strncpy, _fstrncpy
_strnicmp, _fstrnicmp

Append one string to another

Find first occurrence of a given character in a string
Compare two strings

Copy one string to another

Find first occurrence of a character from a given
character set in a string

Duplicate a string

Maps an error number to a message string
Maps a user-defined error message to a string
Compare two strings without regard to case
Find length of string

Convert string to lowercase

Append characters of a string

Compare characters of two strings

Copy characters of one string to another

Compare characters of two strings without regard
to case

Run-Time Routines by Category 55

Routine

Use

_strnset, _fstrnset
strpbrk, _fstrpbrk

strrchr, _fstrrchr
_strrev, _fstrrev
_strset, _fstrset
strspn, _fstrspn
strstr, _fstrstr
strtok, _fstrtok
_strupr, _fstrupr

Set characters of a string to a given character

Find first occurrence of a character from one string in
another

Find last occurrence of a given character in string
Reverse a string

Set all characters of a string to a given character

Find first substring from a given character set in a string
Find first occurrence of a given string in another string
Find next token in a string

Convert a string to uppercase

All string functions work on null-terminated character strings. When working with
character arrays that do not end with a null character, you can use the buffer-
manipulation routines, described in “Buffer Manipulation” on page 18.

2.15 System Calls

The following routines give access to IBM-PC BIOS interrupts and DOS system
calls. These routines are for DOS application programs only.

BIOS Interface

The functions in this category provide direct access to the BIOS interrupt services.
They are all declared in BIOS.H.

Routine

Use

_bios_disk

_bios_equiplist
_bios_keybrd
_bios_memsize
_bios_printer
_bios_serialcom
_bios_timeofday

Issues service requests for both hard and floppy disks, using
INT 0x13

Performs an equipment check, using INT Ox11

Provides access to keyboard services, using INT 0x16
Obtains information about available memory, using INT 0x12
Performs printer output services, using INT 0x17

Performs serial communications tasks, using INT 0x14
Provides access to system clock, using INT Ox1A

Note BIOS routines are hardware dependent. Some of them may not work as ex-
pected on machines whose hardware differs from the IBM PC.

56 Run-Time Library Reference

DOS Interface

These routines are implemented as functions and declared in DOS.H.

Routine Use

_bdos Invokes DOS system call; uses only DX and AL registers
_chain_intr Chains one interrupt handler to another

_disable Disables interrupts

_dos_allocmem
_dos_close
_dos_commit
_dos_creat

_dos_creatnew
_dos_findfirst
_dos_findnext

_dos_freemem
_dos_getdate
_dos_getdiskfree
_dos_getdrive
_dos_getfileattr

_dos_getftime

_dos_gettime
_dos_getvect

_dos_keep

_dos_open
_dos_read
_dos_setblock

_dos_setdate
_dos_setdrive
_dos_setfileattr
_dos_setftime

_dos_settime

Allocates a block of memory, using DOS system call 0x48
Closes a file, using DOS system call 0x3E
Flushes a file to disk, using DOS system call 0x68

Creates a new file and erases any existing file having the same
name, using DOS system call 0x3C

Creates a new file and returns an error if a file having the same
name exists, using DOS system call 0x5B

Finds first occurrence of a given file, using DOS system call
0x4E

Finds subsequent occurrences of a given file, using DOS system
call 0x4F

Frees a block of memory, using DOS system call 0x49

Gets the system date, using DOS system call 0x2A

Gets information on a disk volume, using DOS system call 0x36
Gets the current default drive, using DOS system call 0x19

Gets current attributes of a file or directory, using DOS system
call 0x43

Gets the date and time a file was last written, using DOS system
call 0x57

Gets the current system time, using DOS system call 0x2C

Gets the current value of a specified interrupt vector, using DOS
system call 0x35

Installs terminate-and-stay-resident (TSR) programs using DOS
system call 0x31

Opens an existing file, using DOS system call 0x3D
Reads a file, using DOS system call 0x3F

Changes the size of a previously allocated block, using DOS
system call 0x4A

Sets the current system date, using DOS system call 0x2B
Sets the default disk drive, using DOS system call 0xOE
Sets the current attributes of a file, using DOS system call 0x43

Sets the date and time that the specified file was last written,
using DOS system call 0x57

Sets the system time, using DOS system call 0x2D

Run-Time Routines by Category 57

Routine

Use

_dos_setvect

Sets a new value for the specified interrupt vector, using DOS
system call 0x25

_dos_write Sends output to a file, using DOS system call 0x40

_dosexterr Obtains in-depth error information from DOS system call 0x59

_enable Enables interrupts

_FP_OFF Returns offset portion of a far pointer

_FP_SEG Returns segment portion of a far pointer

_harderr Establishes a hardware error handler

_hardresume Returns to DOS after a hardware error

_hardretn Returns to the application after a hardware error

_int86 Invokes DOS interrupts

_int86x Invokes DOS interrupts with segment register values

_intdos Invokes DOS system call using registers other than DX and AL

_intdosx Invokes DOS system call using registers other than DX and AL
with segment register values

_segread Returns current values of segment registers

The _dosexterr function obtains and stores the error information returned by
DOS system call 0x59 (extended error handling). This function is provided for use
with DOS versions 3.0 and later.

The _bdos routine is useful for invoking DOS calls that use either or both of the
DX (DH/DL) and AL registers for arguments. However, _bdos should not be
used to invoke system calls that return an error code in AX if the carry flag is set;
since your program cannot detect whether the carry flag is set, it cannot determine
whether the value in AX is a legitimate value or an error value. In this case, the
_intdos routine should be used instead, since it allows the program to detect
whether the carry flag is set. The _intdos routine can also be used to invoke DOS
calls that use registers other than DX and AL.

The _intdosx routine is similar to the _intdos routine, but is used when ES is re-
quired by the system call, when DS must contain a value other than the default
data segment (for instance, when a far pointer is used), or when making the system
call in a large-model program. When calling _intdosx, give an argument that
specifies the segment values to be used in the call.

The _int86 routine can be used to invoke any interrupt. The _int86x routine is
similar; however, like the _intdosx routine, it is designed to work with large-
model programs and far items, as described in the preceding paragraph.

The _FP_OFF and _FP_SEG routines allow easy access to the segment and off-
set portions of a far pointer value. _FP_OFF and _FP_SEG are implemented as
macros and defined in DOS.H.

58 Run-Time Library Reference

2.16 Time

The _segread routine returns the current values of the segment registers. This
routine is typically used with the _intdosx and _int86x routines to obtain the
correct segment values.

The _chain_intr routine is useful for chaining interrupt handlers together. The
_enable routine enables interrupts, while the _disable routine disables interrupts.

The routines prefixed with _dos_ are all direct system interfaces that use the
system calls noted above. More detailed information on these system calls can be
found in the MS-DOS Encyclopedia (Duncan, ed.; Redmond, WA: Microsoft
Press, 1988) or the Programmer’s PC Sourcebook 2nd ed. (Hogan; Redmond,
WA: Microsoft Press, 1991).

Note The DOS interface I/O routines are generally incompatible with console,
low-level, and stream I/O routines. Do not mix different types of I/O routines in
the same source file.

The time functions allow you to obtain the current time, then convert and store it
according to your particular needs. The current time is always taken from the
system time.

Routine Use

asctime Converts time from type struct tm to a character string

clock Returns the elapsed CPU time for a process

ctime Converts time from type time_t to a character string

difftime Computes the difference between two times

_ftime Puts current system time in variable of type struct _timeb
gmtime Converts time from type time_t to struct tm

localtime Converts time from type time_t to struct tm with local correction
mktime Converts time to a calendar value

_strdate Returns the current system date as a string

strftime Formats a date and time string

_strtime Returns the current system time as a string

time Gets current system time as type time_t

_tzset Sets external time variables from the environment time variable
_utime Sets file-modification time

The time and _ftime functions return the current time as the number of seconds
elapsed since midnight, on December 31, 1899, Universal Coordinated Time. This
value can be converted, adjusted, and stored in a variety of ways by using the

Run-Time Routines by Category 59

asctime, ctime, gmtime, localtime, and mktime functions. The _utime function
sets the modification time for a specified file, using either the current time or a
time value stored in a structure.

Note In versions of Microsoft C/C++ prior to 7.0, the time and _ ftime functions
return the current time as the number of seconds elapsed since midnight, on
January 1, 1970.

The clock function returns the elapsed CPU time for the calling process.

The _ftime function requires two files: SYS\TYPES.H and SYS\TIMEB.H. It is
declared in SYS\TIMEB.H. The _utime function also requires two include files:
SYS\TYPES.H and SYS\UTIME.H. It is declared in SYS\UTIME.H. The re-
mainder of the time functions are declared in the include file TIME.H.

When you want to use _ftime or localtime to make adjustments for local time,
you must define an environment variable named TZ. For more information on TZ
and the global variables _daylight, _timezone, and _tzname, refer to “_daylight,
_timezone, and _tzname” on page 62. TZ is also described on the _tzset reference
page in Part 2 of this book.

The _strdate and _strtime routines return strings containing the current date and
time, respectively, in the DOS and Windows date and time format rather than in
the UNIX-style formats.

The strftime function is useful for creating international versions of a program.
See “Internationalization” on page 44.

2.17 Variable-Length Argument Lists

The va_arg, va_end, and va_start routines are macros that provide a portable
way to access the arguments to a function when the function takes a variable num-
ber of arguments. Two versions of the macros are available: the macros defined in
the VARARG.H include file, which are compatible with the UNIX System V defi-
nition, and the macros defined in STDARG.H, which conform to the ANSI C

standard.

Routine Use

va_arg Retrieves argument from list

va_end Resets pointer

va_start Sets pointer to beginning of argument list

For more information on the differences between the two versions and for an ex-
planation of how to use the macros, see their descriptions in Part 2 of this book.

Run-Time Library Reference

2.18 Virtual Memory Allocation

The virtual memory functions allow you to allocate, free, reallocate, lock, and un-
lock blocks of memory. The virtual memory functions are declared in the include
file VMEMORY .H.

Routine Use

_vfree Frees an allocated block of virtual memory

_vheapinit Initializes the virtual memory manager

_vheapterm Terminates the virtual memory manager

_vload Loads an allocated block of virtual memory

_vlock Locks an allocated block of virtual memory

_vlockent Returns the number of locks held on a block of virtual memory
—vmalloc Allocates a block of virtual memory

_vmsize Returns the size of an allocated block of virtual memory
—vrealloc Reallocates a block of virtual memory to a new size
—vunlock Unlocks a locked block of virtual memory

The _vheapinit function specifies how much DOS memory the virtual memory
manager can use and whether it should use expanded memory, extended memory,
or disk storage. You must call this function before calling any of the other virtual
memory functions.

The _vmalloc function returns a handle of type _ vmhnd_t, which is used to refer
to a block of virtual memory.

The _vfree, _vrealloc, _vload, _vlock, _vunlock, _vlockent, and _ vmsize func-
tions work on blocks of virtual memory specified by handles of type _ vindhnd_t.

The _ vheapterm function frees all the resources used by the virtual memory
manager. You must call this function after you have finished using virtual
memory.

Global Variables
and Standard Types

The Microsoft run-time library contains definitions for a number of variables and
standard types used by library routines. You can access these variables and types
by including in your program the files in which they are declared, or by giving
appropriate declarations in your program, as shown in the following sections.

3.1 _amblksiz

The _amblksiz variable controls memory heap granularity.
It is declared in the MALLOC.H include file as follows:
extern unsigned int _amblksiz;

The value of _amblksize is used to control how memory is obtained from the
operating system for the heap. The initial requested size for a segment of memory
for the heap manager is based on the amount of current allocation request plus
overhead for the heap manager’s bookkeeping chores—that is, just enough to
satisfy the allocation request at hand (for example, a malloc or calloc). However,
when the heap manager grows a segment, it does so in multiples of _amblksize.
The value of _amblksize represents a trade-off between the number of times the
operating system must be called to grow a segment to its maximum size (no more
than 640K for DOS) and the amount of memory potentially wasted (available but
not used) at the end of the heap.

The default value of _amblksize is 8K. The value can be changed by direct assign-
ment in your program. For example:

_amblksize = 2048;
The actual value used internally by the heap manager will be the given value,

rounded up to the nearest whole power of 2 (so an _amblksize value of 4K-1 is
the same as a value of 4K).

62 Run-Time Library Reference

Note that adjusting the value of _amblksize affects allocation in the near, far, and
based heaps. The value of _amblksize has no effect on huge memory blocks
(those allocated with _halloc and similar functions).

3.2 _daylight, _timezone, _tzname

The _daylight, _timezone, and _tzname variables are global time-zone variables
used in time functions.

They are declared in the TIME.H include file as follows:
extern int _daylight;

extern long _timezone;

extern char *_tzname[2];

Some time and date routines use the _daylight, _timezone, and _tzname varia-
bles to make local-time adjustments. Whenever a program calls the _ ftime,
localtime, or _tzset function, the value of _daylight, _timezone, and _tzname is
determined from the value of the TZ environment variable. If you do not explicitly
set the value of TZ, the default value of “PST8PDT” is used. The following list
shows each variable and its value:

Variable Value

_daylight Nonzero if a daylight-saving-time zone (DST) is specified in TZ;
otherwise, 0. Default value is 1.

_timezone Difference in seconds between Universal Coordinated Time and the
local time. Default value is 28,800.

_tzname[0] Three-letter time-zone name derived from the TZ environment
variable. Default value is “PST” (Pacific standard time).

_tzname[1] Three-letter daylight-saving-time-zone name derived from the TZ

environment variable. Default value is “PDT” (Pacific daylight time).
If the DST zone is omitted from TZ, _tzname[1] is an empty string.

Global Variables and Standard Types 63

3.3 _doserrno, errno, sys_ errlist, sys_nerr

The _doserrno, errno, sys_ errlist, and sys_nerr variables contain error codes
and are used by the perror and strerror routines to print error information.

These variables are declared in the STDLIB.H include file. Manifest constants for
the errno variables are declared in the ERRNO.H include file. The declarations
are as follows:

extern int _doserrno;
extern int errno;

extern char *sys_errlist[];
extern int sys_nerr;

The errno variable is set to an integer value to reflect the type of error that has oc-
curred in a system-level call. Each errno value is associated with an error mes-
sage, which can be printed with the perror routine or stored in a string with the
strerror routine.

Note that only some routines set the errno variable. If a routine sets errno, the
description of the routine in the reference section says so explicitly.

The value of errno reflects the error value for the last call that set errno. How-
ever, this value is not necessarily reset by later successful calls. To avoid confu-
sion, test for errors immediately after a call.

The include file ERRNO.H contains the definitions of the errno values. However,
not all of the definitions given in ERRNO.H are used in DOS. Some of the values
in ERRNO.H are present to maintain compatibility with the UNIX (and XENIX)
operating system.

The errno values in DOS are a subset of the values for errno in XENIX systems.
Thus, the errno value is not necessarily the same as the actual error code returned
by a DOS system call. To access the actual DOS error code, use the _doserrno
variable, which contains this value.

In general, you should use _doserrno only for error detection in operations involv-
ing input and output, since the errno values for input and output errors have DOS
error-code equivalents. In other cases, the value of _doserrno is undefined.

- 64 Run-Time Library Reference

The sys_errlist variable is an array; the perror and strerror routines use it to
process error information. The sys_nerr variable tells how many elements the
sys_errlist array contains.

Table 3.1 gives the errno values for DOS, the system error message for each

value, and the value of each constant. Note that only the ERANGE and EDOM
constants are specified in the ANSI standard.

Table 3.1 errno Values and Their Meanings

Constant Meaning Value
E2BIG Argument list too long 7
EACCES Permission denied 13
EBADF Bad file number 9
EDEADLOCK Resource deadlock would occur 36
EDOM Math argument 33
EEXIST File exists 17
EINVAL Invalid argument 22
EMFILE Too many open files 24
ENOENT No such file or directory 2
ENOEXEC Exec format error 8
ENOMEM Not enough memory 12
ENOSPC No space left on device 28
ERANGE Result too large 34
EXDEV Cross-device link 18

3.4 fmode

The _fmode variable controls the default file-translation mode.
It is declared in the STDLIB.H include file as follows:
extern int _fmode;

By default, the value of _fmode is _ O_TEXT, causing files to be translated in
text mode (unless specifically opened or set to binary mode). When _fmode is set
to _O_BINARY, the default mode is binary. You can set _fmode to the flag
—O_BINARY by linking with BINMODE.OBJ or by assigning _fmode the
_O_BINARY value.

Global Variables and Standard Types 65

3.5 Locale Macros

The two ANSI macros, MB_LEN_MAX and MB_CUR_MAX, are useful when
writing portable programs for international markets. The following list describes
them and gives the include file where each is defined.

Macro Description

MB_CUR_MAX The MB_ CUR_MAX macro, defined in STDLIB.H, expands to
the maximum number of bytes in a multibyte character of the
current locale.

MB_LEN_MAX The MB_LEN_MAX macro, defined in LIMITS.H, gives the
maximum number of bytes in a multibyte character.

3.6 _osmajor, _osminor, _osmode, _osversion, _cpumode

The _osmajor, _osminor, _osmode, _osversion, and _cpumode variables
specify the version number of the operating system or the current mode of
operation.

They are declared in the STDLIB.H include file as follows:
extern unsigned char _osmajor;

extern unsigned char _osminor;

extern unsigned char _osmode;

extern unsigned char _osversion;

extern unsigned char _cpumode;

The _osmajor, _osminor, and _osversion variables specify the version number
of DOS or Windows in use. The _osmajor variable holds the “major” version
number, and the _osminor variable stores the “minor” version number. Thus,
under DOS version 5.0, _osmajor is 5 and _osminor is 0. The _osversion varia-
ble holds both values: its low byte contains the major version number and its high
byte contains the minor version number.

These variables are useful for creating programs that run in different versions of
DOS and Windows. For example, you can test the _osmajor variable before
making a call to _sopen; if the major version number is earlier (less) than 3,
—open should be used instead of _sopen.

66 Run-Time Library Reference

3.7 environ

3.8 _psp

The _osmode variable indicates the currently running operating system—
—DOS_MODE, which is defined as 0, and - WIN_MODE, which is defined as 2.

The _cpumode variable indicates the mode of the currently running operating ’
system—_REAL_MODE, which is defined as 0, and _PROT_MODE, which is
defined as 2.

The environ variable is a pointer to the strings in the process environment.
It is declared in the STDLIB.H include file as follows:
extern char *environ[|;

The environ variable provides access to memory areas containing process-specific
information.

The environ variable is an array of pointers to the strings that constitute the
process environment. The environment consists of one or more entries of the form

NAME-=string

where NAME is the name of an environment variable and string is the value of
that variable. The string can be empty. The initial environment settings are taken
from the operating-system environment at the time of program execution.

The getenv and _putenv routines use the environ variable to access and modify
the environment table. When _putenv is called to add or delete environment set-
tings, the environment table changes size; its location in memory may also change,
depending on the program’s memory requirements. The environ variable is ad-
justed in these cases and always points to the correct table location.

The _psp variable contains the segment address of the program segment prefix
(PSP) for the process. It is declared in the STDLIB.H include file as follows:

extern unsigned int _ psp;

The PSP contains execution information about the process, such as a copy of the
command line that invoked the process and the return address on process termina-
tion or interrupt. The _psp variable can be used to form a long pointer to the PSP,
where _psp is the segment value and O is the offset value.

Global Variables and Standard Types 67

Note that the _psp variable is supported only in DOS.

3.9 _pgmptr

The _pgmptr variable is automatically initialized at startup to point to the full
path of the executing program. It is defined as a global variable in the run-time
library and declared in CRTODAT.ASM, which is part of the startup code. This
code is linked to any module that contains a main function. Declaring _ pgmptr
in your own code is all that is required to make the full path available to your
program:

extern char __far *_pgmptr;

The following program demonstrates the use of _ pgmptr:

#include <stdio.h>

extern char __far *_pgmptr;

void main(void)

{ printf("The full path of the executing program is : %Fs\n",

_pgmptr);
}

In DOS versions 3.0 and later, argv[0] also contains a pointer to the full path of
the executing program.

3.10 Standard Types

A number of library routines use values whose types are defined in include files.
The following list describes these types and gives the include file where they are
defined.

Standard Type Description

clock_t The clock_t type, defined in TIME.H, stores time values. It is
used by the clock function.

_complex The _complex structure, defined in MATH.H, stores the real and
imaginary parts of complex numbers. It is used by the _cabs
function.

_diskfree_t The _diskfree_t structure, defined in DOS.H, stores disk
information used by the _dos_ getdiskfree routine.

_diskinfo_t The _diskinfo_t structure, defined in BIOS.H, records

information about disk drives returned by the _bios_disk routine.

Run-Time Library Reference

Standard Type

Description

div_t, Idiv_t

_dosdate_t

_dostime_t

_DOSERROR

_exception

FILE

_find_t

fpos_t

jmp_buf

Iconv

_onexit_t

ptrdiff_t

—REGS

sig_atomic_t

size_t

The div_t and Idiv_t structures, defined in STDLIB.H, store the
values returned by the div and ldiv functions, respectively.

The _dosdate_t structure, defined in DOS.H, records the current
system date used in the _dos_getdate and _dos_setdate
routines.

The _dostime_t structure, defined in DOS.H, records the current
system time used in the _dos_gettime and _dos_settime
routines.

The _DOSERROR structure, defined in DOS.H, stores values
returned by DOS system call 59H (available with DOS versions
3.0 and later).

The _exception structure, defined in MATH.H, stores error
information for math routines. It is used by the _matherr routine.

The FILE structure, defined in STDIO.H, is the structure used in
all stream input and output operations. The fields of the FILE
structure store information about the current state of the stream.

The _find_t structure, defined in DOS.H, stores file-attribute
information returned by the _dos_findfirst and _dos_findnext
routines.

The fgetpos and fsetpos functions use the fpos_t object type,
defined in STDIO.H, to record all the information necessary to
uniquely specify every position within the file.

The jmp_buf type, defined in SETIMP.H, is an array type rather
than a structure type. A buffer of this type is used by the setjmp
and longjmp routines to save and restore the program
environment.

The lconv type, defined in LOCALE.H, is a structure containing
formatting rules for numeric values in different countries.

The _onexit routine is declared as an _onexit_t pointer type,
which is defined in STDLIB.H.

The ptrdiff_t type is used for the signed integral result of the
subtraction of two pointers.

The _REGS union, defined in DOS.H, stores byte and word
register values to be passed to and returned from calls to the DOS
interface functions.

The sig_atomic_t type, defined in SIGNAL.H, is the integral
type of an object that can be modified as an atomic entity, even in
the presence of asynchronous interrupts. It is used in conjunction
with the signal routine.

The size_t type, defined in STDDEF.H and several other include
files, is the unsigned integral result of the sizeof operator.

Global Variables and Standard Types

69

Standard Type

Description

_SREGS

_stat
time_t
_timeb

tm

_utimbuf

va_list

_vmhnd_t

wchar_t

_wopeninfo

_ wsizeinfo

The _SREGS structure, defined in DOS.H, stores the values of
the ES, CS, SS, and DS registers. This structure is used by the
DOS interface functions that require segment register values
(—int86x, _intdosx, and _segread).

The _stat structure, defined in SYS\STAT.H, contains file-status
information returned by the _stat and _fstat routines.

The time_t type, defined in TIME.H, represents time values in
the mktime and time routines.

The _timeb structure, defined in SYS\TIMEB.H, is used by the
_ftime routine to store the current system time.

The tm structure, defined in TIME.H, is used by the asctime,
gmtime, and localtime functions to store and retrieve time
information.

The _utimbuf structure, defined in SYS\UTIME.H, stores file
access and modification times used by the _utime function to
change file-modification dates.

The va_list array type, defined in STDARG.H, is used to hold

information needed by the va_arg macro and the va_end routine.

The called function declares a variable of type va_list, which can
be passed as an argument to another function.

The _vmhnd_t type, defined in VMEMORY.H, represents the
handles to blocks of virtual memory. Handles of this type are
returned by _vmalloc and used by the virtual memory routines.

The wchar_t type, defined in STDDEF.H and STDLIB.H, is the
internal type of a wide character. It is required by the ANSI
standard for the C language and is useful when writing portable
programs for international markets.

The _wopeninfo type is a structure containing information
needed to open a new QuickWin window. It is defined in I0.H.

The _ wsizeinfo type is a structure containing information needed
to initialize the size of a new QuickWin window, to examine the
size of an existing QuickWin window, or to resize an existing
QuickWin window. It is defined in IO.H.

About the Run-Time Reference

The following pages describe, in alphabetical order, the more than 550 functions
and macros in the Microsoft run-time library. In some cases, related routines are
clustered in the same description. For example, the based, near, and far versions of
_heapwalk are in the same discussion, as are the regular and long double versions
of the math functions, such as acos and atan. Differences are noted where appro-
priate. Refer to Chapter 2, “Run-Time Routines by Category,” or to the index to lo-
cate any function that does not appear in the expected position within the
alphabetical reference.

The discussion of each function (or group of functions) is divided into the follow-

ing sections:

= Description. Summarizes the routine’s effect, names the include file(s) contain-
ing its declaration, illustrates the syntax, and briefly describes the arguments.

= Remarks. Gives a more detailed description of the routine and how it is used.

= Return Value. Describes the value returned by the routine.

= Compatibility. Tells whether the routine is compatible with ANSI C, UNIX,
DOS, QuickWin, Windows, and the DOS Extender (DOS32X).

= See Also. Names related routines.
= Example. Gives a complete program showing the use of the routine.
= Qutput. Shows the output from the example program.

76 abort

Description

Remarks

Return Value

Compatibility

See Also

abort

Aborts the current process and returns an error code.

#include <process.h> Required only for function declarations; use either
#include <stdlib.h> PROCESS.H or STDLIB.H

void abort(void);

The abort function prints the message

abnormal program termination

to stderr, then calls raise(SIGABRT). The action taken in response to the
SIGABRT signal depends on what action has been defined for that signal in a
prior call to the signal function. The default SIGABRT action is for the calling
process to terminate with exit code 3, returning control to the parent process or
operating system.

In Windows, the abort function does not call raise(SIGABRT). Instead, it termi-
nates the process with an “Abnormal Program Termination” pop-up message. In
Windows multithread libraries, the abort function does not call raise(SIGABRT).
Instead, it terminates the process with exit code 3.

The abort function does not flush stream buffers or do atexit /_onexit processing.

The abort function does not return control to the caller. Rather, it terminates the
process and, by default, returns an exit code of 3 to the parent process.

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_exec functions, exit, _exit, raise, signal, _spawn functions

abort 77

Example

Output

/* ABORT.C: This tries to open a file and aborts if the attempt fails. */

#include <stdio.h>
#include <stdlib.h>

void main(void)

{
FILE *stream;
if((stream = fopen("NOSUCHF.ILE", "r")) == NULL)
{
perror("Couldn't open file");
abort();
}
else
fclose(stream);
}

Couldn't open file: No such file or directory

abnormal program termination

78 abs

Description

Remarks

Return Value

Compatibility

See Also

Example

abs

Calculates the absolute value.

#include <stdlib.h> Required only for function declarations; use either
#include <math.h> STDLIB.H or MATH.H

int abs(int n);

n Integer value

The abs function returns the absolute value of its integer argument n.

The abs function returns the absolute value of its argument. There is no error
return.

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_cabs, fabs, labs

/* ABS.C: This program computes and displays the absolute values of

* several numbers.

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

void main(void)

{

int ix = -4, iy;
Tong 1x = -41567L, ly;
double dx = -3.141593, dy;

iy = abs(ix);
printf("The absolute value of %d is %d\n", ix, iy);

ly = Tabs(1x);
printf("The absolute value of %1d is %1d\n", 1x, 1ly);

abs

79

Output

dy = fabs(dx);
printf("The absolute value of %f is %f\n", dx, dy);

The absolute value of -4 is 4
The absolute value of -41567 is 41567
The absolute value of -3.141593 is 3.141593

80 _access

Description

Remarks

Return Value

_access

Determines file-access permission.

#include <io.h> Required only for function declarations

#include <errno.h> Required for definition of errno constants
int _access(char *pathname, int mode);

pathname File or directory path name

mode Permission setting

With files, the _access function determines whether the specified file exists and
can be accessed in mode. The possible mode values and their meanings in the
_access call are as follows:

Value Meaning

00 Check for existence only

02 Check for write permission

04 Check for read permission

06 Check for read and write permission

With directories, _access determines only whether the specified directory exists;
in DOS, all directories have read and write access.

The _access function returns the value 0 if the file has the given mode. A return
value of —1 indicates that the named file does not exist or is not accessible in the
given mode, and errno is set to one of the following values:

Value Meaning

EACCES Access denied: the file’s permission setting does not allow the
specified access.

ENOENT File or path name not found.

_access 81

Compatibility Standards: UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

Use _access for compatibility with ANSI naming conventions of non-ANSI func-
tions. Use access and link with OLDNAMES.LIB for UNIX compatibility.

See Also _chmod, _fstat, _open, _stat

Example /* ACCESS.C: This example uses _access to check the file named "data"
* to see if it exists and if writing is allowed.
*/
J#include <io.h>
#include <stdio.h>
#include <stdlib.h>

void main(void)

{
/* Check for existence */
if((_access("access.c", 0)) != -1)
{
printf("File exists\n");
/* Check for write permission */
if((_access("access.c", 2)) l= -1)
printf("File has write permission\n");
}
}
Output File exists

File has write permission

82 acos Functions

Description

Remarks

Return Value

Compatibility

See Also

acos Functions

Calculate the arccosine.

#include <math.h>

#include <errno.h> Required for definition of errno constant

double acos(double x);

long double _acosl(long double x);

X Value whose arccosine is to be calculated

The acos functions return the arccosine of x in the range O to 7t radians. The value
of x must be between —1 and 1. The _acosl function is the 80-bit counterpart,
which uses an 80-bit, 10-byte coprocessor form of arguments and return values.
See the reference page on the long double functions for more details on this

data type.

The acos functions return the arccosine result. If x is less than -1 or greater than 1,
the function sets errno to EDOM, prints a_DOMAIN error message to stderr,
and returns 0. Error handling can be modified with the _matherr (or _matherrl)
routine.

acos
Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_acosl

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

asin functions, atan functions, cos functions, _matherr, sin functions, tan
functions

acos Functions

83

Example

OQutput

/* ASINCOS.C: This program prompts for a value in the range -1 to 1.

* Input values outside this range will produce _DOMAIN error messages.
#* If a valid value is entered, the program prints the arcsine and the
* arccosine of that value.

#include <math.h>

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

void main(void)

{

double x, y;

printf("Enter a real number between -1 and 1: ");
scanf("%1f", &x);

y = asin(x);

printf("Arcsine of %f = %f\n", x, y);

y = acos(x);

printf("Arccosine of %f = %f\n", x, y);

Enter a real number between -1 and 1: .32696
Arcsine of 0.326960 = 0.333085
Arccosine of 0.326960 = 1.237711

84 _alloca

Description

Remarks

_alloca

Allocates memory on the stack.
#include <malloc.h> Required only for function declarations
void *_alloca(size_t size);

size Bytes to be allocated from stack

The _alloca routine allocates size bytes from the program’s stack. The allocated
space is automatically freed when the calling function is exited.

Observe the following restrictions when using _alloca:

@ When you compile with optimization on (either by default or by using one of

the /O options), the stack pointer may not be restored properly in functions that
have no local variables and that also reference the _alloca function. (This re-
striction does not apply to DOS32X.) The following program demonstrates the
problem:

/* Compile with CL /AM /0x /Fc =/
#include <malloc.h>

void main(void)

{ func(10);

ioid func(register int i)
{ _alloca(i);

}

To ensure that the stack pointer is properly restored, make sure that any func-
tion referencing _alloca declares at least one local variable.

The pointer value returned by _alloca should never be passed as an argument
to free.

The _alloca function should never be used in an expression that is an argument
to a function.

_alloca 85

Return Value

The _alloca routine returns a void pointer to the allocated space, which is
guaranteed to be suitably aligned for storage of any type of object. To get a pointer
to a type other than char, use a type cast on the return value. The return value is
NULL if the space cannot be allocated.

Compatibility Standards: UNIX

See Also

Example

Output

16-Bit: DOS
32-Bit: DOS32X

Use _alloca for compatibility with ANSI naming conventions of non-ANSI func-
tions. Use alloca and link with OLDNAMES.LIB for UNIX compatibility.

calloc functions, malloc functions, realloc functions

/% ALLOCA.C: This program checks the stack space available before
* and after using the _alloca function to allocate space on the stack.
*/

#include <malloc.h>
#include <stdio.h>

void main(void)

{
char xbpuffer;
printf("Bytes available on stack: %u\n", _stackavail());
/* Allocate memory for string. */
buffer = _alloca(120 * sizeof(char));
printf("The _alloca function just allocated");
printf(" memory from the program stack.\n");
printf("Enter a string: ");
gets(buffer);
printf("\"%s\" was stored in the program stack.\n", buffer);
printf("Bytes available on stack: %u\n", _stackavail());
}

Bytes available on stack: 1744

The _alloca function just allocated memory from the program stack.
Enter a string: Store this on the stack.

"Store this on the stack." was stored in the program stack.

Bytes available on stack: 1614

86 _arc Functions

Description

Remarks

_arc Functions

Draw elliptical arcs.

#include <graph.h>

short __far _arc(short x/, short y/, short x2, short y2, short x3, short y3,
short x4, short y4);

short __far _arc_w(double x/, double y/, double x2, double y2, double x3,
double y3, double x4, double y4);

short __far _arc_wxy(struct _wxycoord __far *pwxyl,
struct _wxycoord __far *pwxy2, struct _wxycoord __far *pwxy3,
struct _wxycoord __far *pwxy4);

xI, yl Upper-left corner of bounding rectangle

x2,y2 Lower-right corner of bounding rectangle

x3,y3 Second point of start vector (center of bounding
rectangle is first point)

x4, y4 Second point of end vector (center of bounding rec-
tangle is first point)

pwxyl Upper-left corner of bounding rectangle

pwxy2 Lower-right corner of bounding rectangle

pwxy3 Second point of start vector (center of bounding
rectangle is first point)

pwxy4 Second point of end vector (center of bounding rec-
tangle is first point)

The _arc functions draw elliptical arcs. The center of the arc is the center of the
bounding rectangle, which is defined by points (x/, y/) and (x2, y2) for _arc and
_arc_w and by points pwxy! and pwxy2 for _arc_wxy. The arc starts where it in-
tersects an imaginary line extending from the center of the arc through (x3, y3) for
_arc and _arc_w and through pwxy3 for _arc_wxy. It is drawn counterclock-
wise about the center of the arc, ending where it intersects an imaginary line ex-
tending from the center of the arc through (x4, y4) for _arc and _arc_w and
through pwxy4 for _arc_wxy.

_arce Functions 87

Return Value

The _arc routine uses the view coordinate system. The _arc_w and _arc_wxy
functions use the real-valued window coordinate system.

In each case, the arc is drawn using the current color. Since an arc does not define
a closed area, it is not filled.

These functions return a nonzero value if the arc is successfully drawn; otherwise,
they return 0.

Compatibility Standards: None

See Also

Example

16-Bit: DOS
32-Bit: None

_ellipse functions, _lineto functions, _pie functions, _rectangle functions,
_setcolor

/* ARC.C: This program draws a simple arc. */

#include <graph.h>
#include <stdlib.h>
#include <conio.h>

void main(void)
{
short x, y;
struct _xycoord xystart, xyend, xyfill;

/* Find a valid graphics mode */
if(!_setvideomode(_MAXRESMODE))
exit(1);

/* Draw arcs */

x = 100; y = 100;

_arc(x - 60, y - 60, x, y, x - 30, y - 60, x - 60, y - 30);
_arc(x + 60, y + 60, x, y, X, y + 30, x + 30, y);

/* Get endpoints of second arc and enclose the figure, then fill it. %/
_getarcinfo(&xystart, &xyend, &xyfill);

_moveto(xystart.xcoord, xystart.ycoord);

_Tineto(xyend.xcoord, xyend.ycoord);

_floodfill(xyfill.xcoord, xyfill.ycoord, _getcolor());

_getch();
_setvideomode(_DEFAULTMODE);

88 asctime

asctime

Description Converts a tm time structure to a character string.
#include <time.h>
char *asctime(const struct tm *timeptr);

timeptr Time/date structure

Remarks The asctime function converts a time stored as a structure to a character string.
The timeptr value is usually obtained from a call to gmtime or localtime, both of
which return a pointer to a tm structure, defined in TIME.H. (See gmtime for a
complete description of the tm structure fields.)

The tm structure contains the following elements:

Element Description

int tm_sec Seconds after the minute (0-59)
int tm_min Minutes after the hour (0-59)
int tm_hour Hours since midnight (0-23)
int tm_mday Day of the month (0-31)

int tm_mon Months since January (0-11)
int tm_year Years since 1900

int tm_wday Days since Sunday (0-6)

int tm_yday Days since January 1 (0-365)
int tm_isdst Daylight-saving-time flag

The string result produced by asctime contains exactly 26 characters and has the
form of the following example:

Wed Jan 02 02:03:55 1980\n\0@

A 24-hour clock is used. All fields have a constant width. The newline character
(\n) and the null character (°\0’) occupy the last two positions of the string. The
asctime function uses a single statically allocated buffer to hold the return string.
Each call to this routine destroys the result of the previous call.

Return Value The asctime function returns a pointer to the character string result. There is no
error return.

asctime 89

Compatibility Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

See Also ctime, _ftime, gmtime, localtime, time, _ tzset

Example

Output

/* ASCTIME.C: This program places the system time in the long integer aclock,
* translates it into the structure newtime and then converts it to

* string form for output, using the asctime function.

*/

#include <time.h>
#include <stdio.h>

struct tm *newtime;
time_t aclock;

void main(void)

{
time(&aclock); /* Get time in seconds */
newtime = localtime(&aclock); /* Convert time to struct tm form */
/* Print local time as a string */
printf("The current date and time are: %s\n", asctime(newtime));
}

The current date and time are: Tue Jun 15 06:57:59 1999

90 asin Functions

Description

Remarks

Return Value

Compatibility

See Also

asin Functions

Calculate the arcsine.

#include <math.h>

#include <errno.h>

double asin(double x);

long double _asinl(long double x);

X Value whose arcsine is to be calculated

The asin functions calculate the arcsine of x in the range —/2 to 7/2 radians. The
value of x must be between —1 and 1. The _asinl function is the 80-bit counterpart,
which uses an 80-bit, 10-byte coprocessor form of arguments and return values.
See the reference page on the long double functions for more details on this

data type.

The asin functions return the arcsine result. If x is less than —1 or greater than 1,
asin sets errno to EDOM, prints a_DOMAIN error message to stderr, and re-
turns 0.

Error handling can be modified by using the _matherr (or _matherrl) routine.

asin

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_asinl

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

acos functions, atan functions, cos functions, _matherr, sin functions, tan
functions

asin Functions

91

Example

Output

/%
ES
*
%

*/

ASINCOS.C: This program prompts for a value in the range -1 to 1.
Input values outside this range will produce _DOMAIN error messages.
If a valid value is entered, the program prints the arcsine and the
arccosine of that value.

f#include <math.h>

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

void main(void)

{

double x, y;

printf("Enter a real number between -1 and 1: ");
scanf("%1f", &x);

y = asin(x);

printf("Arcsine of %f = %f\n", x, y);

y = acos(x);

printf("Arccosine of %f = %f\n", x, y);

Enter a real number between -1 and 1: .32696
Arcsine of 0.326960 = 0.333085
Arccosine of 0.326960 = 1.237711

92 assert

Description

Remarks

Return Value

Compatibility

See Also

assert

Prints an error message and aborts the program.

#include <assert.h>

#include <stdio.h>
void assert(int expression);

expression C expression specifying assertion being tested

The assert routine prints a diagnostic message and calls the abort routine if
expression is false (0). The diagnostic message has the form

Assertion failed: expression, file filename, Tine linenumber

where filename is the name of the source file and linenumber is the line number of
the assertion that failed in the source file. No action is taken if expression is true
(nonzero).

In Windows, the diagnostic message appears in an “Assertion Failed” pop-up
window.

The assert routine is typically used in program development to identify program
logic errors. The given expression should be chosen so that it holds true only if the
program is operating as intended. After a program has been debugged, the special
“no debug” identifier NDEBUG can be used to remove assert calls from the pro-
gram. If NDEBUG is defined (by any value) with a /D command-line option or
with a #define directive, the C preprocessor removes all assert calls from the pro-
gram source.

The assert routine is implemented as a macro.
None.

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

abort, raise, signal

assert

93

Example

Output

/* ASSERT.C: In this program, the analyze_string function uses the
assert function to test several conditions related to string and
length. If any of the conditions fails, the program prints a

* message indicating what caused the failure.

*/

* ¥

f#Hinclude <stdio.h>
#include <assert.h>
#include <string.h>
void analyze_string(char *string); /* Prototype */

void main(void)

{
char testl[] = "abc", =*test2 = NULL, test3[] = "";
printf ("Analyzing string '%s'\n", testl);
analyze_string(testl);
printf ("Analyzing string '%s'\n", test2);
analyze_string(test2);
printf ("Analyzing string '%s'\n", test3);
analyze_string(test3);

}

/* Tests a string to see if it is NULL, empty, or Tonger than @ characters =/
void analyze_string(char * string)

{

assert(string != NULL); /* Cannot be NULL */

assert(*string != '\0@0'); /* Cannot be empty */

assert(strlen(string) > 2); /#* Length must be greater than 2 */
}

Analyzing string 'abc'
Analyzing string '(null)’
Assertion failed: string != NULL, file assert.c, line 28

abnormal program termination

9 atan Functions

Description

Remarks

Return Value

Compatibility

atan Functions

Calculate the arctangent of x (atan and _atanl) and the arctangent of y/x (atan2
and _atan2l).

#include <math.h>

double atan(double x);
double atan2(double y, double x);
long double _atanl(long double x);

long double _atan2I(long double y, long double x);

X,y Any number

The atan family of functions calculates the arctangent of x, and the atan2 family
of functions calculates the arctangent of y/x. The atan group returns a value in the
range —1/2 to 7/2 radians, and the atan2 group returns a value in the range —m to 7t
radians. The atan2 functions use the signs of both arguments to determine the
quadrant of the return value. The atan2 functions are well defined for every point
other than the origin, even if x equals 0 and y does not equal 0.

The atan family of functions returns the arctangent result. If both arguments of
atan2 or _atan2l are 0, the function sets errno to EDOM, prints a _DOMAIN
error message to stderr, and returns O.

Error handling can be modified by using the _matherr (or _matherrl) routine.

atan, atan2
Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

atan Functions

95

See Also

Example

Output

_atanl, _atan2l

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

acos functions, asin functions, cos functions, _matherr, sin functions, tan

functions

/* ATAN.C: This program calculates the arctangent of 1 and -1. %/

f#include <math.h>
#include <stdio.h>
f#include <errno.h>

void main(void)
{
double x1, x2, y;

printf("Enter a real number: ");

scanf("%1f", &x1);

y = atan(x1);

printf("Arctangent of %f: %f\n", x1, y);
printf("Enter a second real number: ™);
scanf("%1f", &x2);

y = atan2(x1, x2);

printf("Arctangent of %f / %f: %f\n", x1, x2, y);

Enter a real number: -862.42

Arctangent of -862.420000: -1.569637

Enter a second real number: 78.5149

Arctangent of -862.420000 / 78.514900: -1.480006

96 atexit, _ fatexit

Description

Remarks

Return Value

Compatibility

atexit, _fatexit

Process the specified function at exit.
#include <stdlib.h> Required only for function declarations

int atexit(void (__cdecl *func)(void));

int __far _fatexit(void (__cdecl __far *func)(void));

Sfunc Function to be called

The atexit function is passed the address of a function (func) to be called when the
program terminates normally. Successive calls to atexit create a register of func-
tions that are executed in LIFO (last-in-first-out) order. No more than 32 functions
can be registered with atexit or _onexit. The functions passed to atexit cannot
take parameters.

For DOS32X, atexit and _onexit use the heap to hold the “register of functions.”
Thus, the number of functions that can be registered is limited only by heap
memory.

The _fatexit function is a far version of atexit; it can be used with any memory
model.

Both atexit and _fatexit return O if successful, or a nonzero value if an error oc-
curs (e.g., if there are already 32 exit functions defined).

atexit

Standards: ANSI

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

Use the ANSI-standard atexit function (rather than the similar _onexit function)
whenever ANSI portability is desired.

atexit, _ fatexit 97

See Also

Example

Output

_fatexit

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

abort, exit, _exit, _onexit

/* ATEXIT.C: This program pushes four functions onto the stack of functions
* to be executed when atexit is called. When the program exits, these

* programs are executed on a "last in, first out" basis.

*/

f#include <stdlib.h>
#include <stdio.h>
void fnl(void), fn2(void), fn3(void), fn4(void);

void main(void)

{
atexit(fnl);
atexit(fn2);
atexit(fn3);
atexit(fn4);
printf("This is executed first.\n");
}
void fnl()
{
printf("next.\n");
}
void fn2()
{
printf("executed ");
}
void fn3()
{
printf("is ");
}
void fn4()
{
printf("This ");
}

This is executed first.
This is executed next.

98 atof, atoi, atol, _atold

Description

Remarks

atof, atoi, atol, _atold

Convert strings to double (atof), long double (_atold), integer (atoi), or long
(atol).

#include <math.h> atof, _atold
#include <stdlib.h> atof, _atold, atoi, atol

double atof(const char *string);
long double _atold(const char *string);
int atoi(const char *string);

long atol(const char *string);

string String to be converted

These functions convert a character string to a double-precision floating-point
value (atof), an integer value (atoi), a long integer value (atol), or a long double
value (_atold). The input string is a sequence of characters that can be interpreted
as a numerical value of the specified type.

The string size that can be handled by the atof or _atold function is limited to 100
characters.

The function stops reading the input string at the first character that it cannot rec-
ognize as part of a number. This character may be the null character (°\0’) termi-
nating the string.

The atof and _atold functions expect string to have the following form:
[whitespace] [lsign]l [digits]] [.digits] [{d D |el E}[signlldigits]]

A whitespace consists of space and/or tab characters, which are ignored; sign is
either plus (+) or minus (-); and digits are one or more decimal digits. If no digits
appear before the decimal point, at least one must appear after the decimal point.
The decimal digits may be followed by an exponent, which consists of an intro-
ductory letter (d, D, e, or E) and an optionally signed decimal integer.

atof, atoi, atol, _atold 99

The atoi and atol functions do not recognize decimal points or exponents. The
string argument for these functions has the form

[[whitespace]] [[signlldigits

where whitespace, sign, and digits are exactly as described above for atof.

Return Value Each function returns the double, long double, int, or long value produced by in-
terpreting the input characters as a number. The return value is O (for atoi), OL (for
atol), and 0.0 (for atof and _atold) if the input cannot be converted to a value of
that type. The return value is undefined in case of overflow.

Compatibility atof, atoi, atol
Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_atold

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

See Also _ecvt, _fevt, _gevt, strtod

ExanuMe /* ATOF.C: This program shows how numbers stored as strings can be
* converted to numeric values using the atof, atoi, and atol functions.
*/

#include <stdlib.h>
#include <stdio.h>

void main(void)

{
char *s; double x; int i; Tong 1;
s =" -2309.12E-15"; /* Test of atof */
x = atof(s);
printf("atof test: ASCII string: %s\tfloat: %»e\n", s, x);

S "7.8912654773d210"; /* Test of atof */
x = atof(s);
printf("atof test: ASCII string: %s\tfloat: %e\n", s, x);

100 atof, atoi, atol, _atold
s =" -9885 pigs"; /* Test of atoi */
i = atoi(s);
printf("atoi test: ASCII string: %s\t\tinteger: %d\n", s, i);
s = "98854 dollars"; /* Test of atol */
1 = atol(s);
printf("atol test: ASCII string: %s\t\tlong: %1d\n", s, 1);
}
Output atof test: ASCII string: -2309.12E-15 float: -2.309120e-012
atof test: ASCII string: 7.8912654773d210 float: 7.891265e+210
atoi test: ASCII string: -9885 pigs integer: -9885
atol test: ASCII string: 98854 dollars long: 98854

_bdos 101

Description

Remarks

Return Value

Compatibility

See Also

_bdos

Invokes the DOS system call.
#include <dos.h>

int _bdos(int dosfunc, unsigned int dosdx, unsigned int dosal);

dosfunc Function number
dosdx DX register value
dosal AL register value

The _bdos function invokes the DOS system call specified by dosfunc after
placing the values specified by dosdx and dosal in the DX and AL registers,
respectively. The _bdos function executes an INT 21H instruction to invoke the
system call. When the system call is complete, _bdos returns the contents of the
AX register.

The _bdos function is intended to be used to invoke DOS system calls that either
take no arguments or take arguments only in the DX (DH, DL) and/or AL registers.

Do not use the _bdos function to call interrupts that modify the DS register. In-
stead, use the _intdosx or _int86x function. The _intdosx and _int86x functions
load the DS and ES registers from the segregs argument and also store the DS and
ES registers into segregs after the function call.

This call should not be used to invoke system calls that indicate errors by setting
the carry flag. Since C programs do not have access to this flag, your program can-
not determine whether the return value is an error code. The _intdos function
should be used in these cases.

The _bdeos function returns the value of the AX register after the system call has
completed.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

_intdos, _intdosx

102 _bdos

Example /* BDOS.C: This example calls DOS function @x9 (display string)
* to display a $-terminated string.
®/

#include <dos.h>

/% Function 0x09 assumes that DS will contain segment of the string.

* This will be true for all memory models if the string is declared near.
*/

char __near str[] = "Hello world!\r\n$";

void main(void)

{
/% 0ffset of string must be in DX, segment in DS. AL is not needed,
* s0 @ i1s used.
*/
_bdos(0x09, (int)str, 0);
}

Output Hello world!

Bessel Functions

103

Description

Remarks

Bessel Functions

Compute the Bessel function.
#include <math.h>

double _jO(double x);

double _j1(double x);

double _jn(int n, double x);
double _y0(double x);

double _y1(double x);

double _yn(int n, double x);
long double _jOI(long double x);
long double _jnl(int n, long double x);
long double _j1l(long double x);
long double _y0l(long double x);
long double _y1l(long double x);

long double _ynl(int », long double x);

Floating-point value

Integer order

The _j0, _j1, and _jn routines return Bessel functions of the first kind—orders 0,

1, and n, respectively.

The _y0, _y1, and _yn routines return Bessel functions of the second kind—

orders 0, 1, and n, respectively. The argument x must be positive.

104 Bessel Functions

Return Value

Compatibility

See Also

Example

The long double versions of these functions are the 80-bit counterparts and use the
80-bit, 10-byte coprocessor form of arguments and return values. See the reference
page on the long double functions for more details on this data type.

The Bessel functions are explained more fully in most mathematics reference
books, such as the Handbook of Mathematical Functions (Abramowitz and
Stegun; Washington: U.S. Government Printing Office, 1964). These functions are
commonly used in the mathematics of electromagnetic wave theory.

These functions return the result of a Bessel function of x.

For _y0, _yl1, or _yn, if x is negative, the routine sets errno to EDOM, prints a
DOMAIN error message to stderr, and returns ~-HUGE VAL.

Error handling can be modified by using the _matherr (or _matherrl) routine.

~j0,_j1, _jn, _y0, _yl, _yn

Standards: UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _j0, _j1, _jn, _y0, _y1, and _yn for compatibility with ANSI naming con-
ventions of non-ANSI functions. Use j0, j1, jn, y0, y1, and yn and link with
OLDNAMES.LIB for UNIX compatibility.

~Jjon, _j1I, _jnl, _yOl, _y1l, _ynl

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None
_matherr

/* BESSEL.C: This program illustrates Bessel functions, including:

_je _Jl _Jn _yo _yl _yn

f#include <math.h>
#include <stdio.h>

Bessel Functions 105

void main(void)

{
double x = 2.387;
int n =3, c;
printf("Bessel functions for x = %f:\n", x);
printf(" Kind\t\tOrder\t\Function\tResult\n\n");
printf(" First\t\to\t_jo(x)\t\t%Zf\n", _jo(x));
printf(" First\t\tI\t_jl(x)\t\t%f\n", _j1(x));
for(¢ = 2; ¢ < 5; ct++)
printf(" First\t\t%Zd\t_jn(n, x)\t%f\n", c, _jnC c, x));
printf(" Second\t@\t yo(x)\t\t%f\n", _yo(x));
printf(" Second\tI\t_yl(x)\t\t%f\n", _yl(x));
for(¢ = 2; ¢ < 5; ct+)
printf(" Second\t%d\t_yn(n, x)\t%f\n", c, _ynC c, x));
}
Output Bessel functions for x = 2.387000:

Kind Order Function Result

First] _joC x) 0.009288

First 1 _J1C x) 0.522941

First 2 _jnCn, x) 0.428870

First 3 _jnCn, x) 0.195734

First 4 _jnCn, x) 0.063131

Second 0 _ye(x) 0.511681

Second 1 _yl(x) 0.094374

Second 2 _yn(n, x) -0.432608

Second 3 _yn(n, x) -0.819314

Second 4 _yn(n, x) -1.626833

106 _bfreeseg

Description

Remarks

Return Value

Compatibility

See Also

Example

_bfreeseg

Frees a specified based heap.
#include <malloc.h> Required only for function declarations
int _bfreeseg(__segment seg);

seg Segment selected

The _bfreeseg function frees a based heap. The seg argument is a based heap re-
turned by an earlier call to _bheapseg. It specifies the based heap to be freed.

The specified segment is freed completely regardless of whether the blocks it con-

tains are free or allocated. After a _bfreeseg call, the seg value is invalid and
should not be used.

The _bfreeseg function returns 0 if successful and —1 in the case of an error.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

_bheapseg, calloc functions, free functions, malloc functions, realloc functions

See the example for _bheapseg.

_bheapseg 107

Description

Remarks

Return Value

Compatibility

See Also

_bheapseg

Allocates a based heap.

#include <malloc.h> Required only for function declarations
__segment _bheapseg(size_t size);

size Segment size to allocate

The _bheapseg function allocates a based-heap segment of at least size bytes.
(The block may be larger than size bytes because of space required for alignment
and for maintenance information.)

The value returned by _bheapseg is the identifier of the based-heap segment. This
value should be saved and used in subsequent calls to other based-heap functions.
If the original block of memory is depleted (e.g., by calls to _bmalloc and
_brealloc), the run-time code will try to enlarge the heap as necessary.

The _bheapseg function can be called repeatedly. For each call, the run-time
library will allocate a new based-heap segment.

The _bheapseg function returns the newly allocated segment selector; save this
value for use in subsequent based-heap functions. A return value of _NULLSEG
indicates failure.

Always check the return from the _bheapseg function (especially when it is used
in real mode), even if the amount of memory requested is small.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

calloc functions, free functions, malloc functions, realloc functions

108 _bheapseg

Example /* BHEAPSEG.C: This program C illustrates dynamic allocation of based
* memory using functions _bheapseg, _bfreeseg, _bmalloc, and _bfree.
*/

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <string.h>

void main(void)

{
__segment seg;
char __based(seg) *outstr, __based(seg) *instr;
char __based(seg) *pout, _based(seg) =pin;
char tmpstr[801;
int len;

printf("Enter a string: ");
gets(tmpstr);

/* Request a based heap. Use based so that memory won't be taken from
* near heap.
*/
if((seg = _bheapseg(1000)) == _NULLSEG)
exit(1);

/% Allocate based memory for two strings. */
len = strlen(tmpstr);

if(((instr = _bmalloc(seg, len + 1)) == _NULLOFF) ||
((outstr = _bmalloc(seg, len + 1)) == _NULLOFF))
exit(1);

/* Copy a lowercased string to dynamic memory. The based memory is
* far when addressed as a whole.
*/

_fstrlwr(_fstrcpy((char __far *)instr, (char __far *)tmpstr));

/* Copy input string to output string in reversed order. When reading
* and writing individual characters from a based heap, the compiler will
* try to process them as near, thus speeding up the processing.
*/
for(pin = instr + len - 1, pout = outstr;
pout < outstr + len; pin--, pout++)

*pout = *pin;

*pout = '\0@';

_bheapseg 109

/* Display strings. Again, strings as a whole are far. */
printf("Input: %Fs\n", (char __far *)instr);

printf("Output: %Fs\n", (char __far *)outstr);

/* Free blocks and release based heap. */
_bfree(seg, instr);

_bfree(seg, outstr);

_bfreeseg(seg);

Output Enter a string: Was I god
Input: was i god
Qutput: dog i saw

110 _bios_disk

Description

Remarks

bios disk

Calls BIOS disk services, using INT 0x13.
#include <bios.h>
unsigned _bios_disk(unsigned service, struct _diskinfo_t *diskinfo);

service Disk function desired

diskinfo Disk parameters

The _bios_disk routine uses INT 0x13 to provide several disk-access functions.
The service parameter selects the function desired, while the diskinfo structure pro-
vides the necessary parameters. Note that the low-level disk operations allowed by
the _bios_disk routine are very dangerous to use because they perform direct
manipulation of the disk.

The diskinfo structure provides the following parameters:

Element Description

unsigned drive Drive number

unsigned head Head number

unsigned track Track number

unsigned sector Starting sector number

unsigned nsectors Number of sectors to read, write, or compare

void far *buffer Memory location to write to, read from, or compare

The service argument can be set to one of the following manifest constants:

Constant Function

_DISK_FORMAT Formats the track specified by diskinfo. The head and track
fields indicate the track to format. Only one track can be
formatted in a single call. The buffer field points to a set of
sector markers. The format of the markers depends on the type
of disk drive; see a technical reference to the PC BIOS to
determine the marker format. The high-order byte (AH) of the
return value contains the status of the call; O equals success. If
there is an error, the high-order byte will contain a set of status
flags, as defined below under Return Value.

_bios_disk 11

Return Value

Constant

Function

_DISK_READ

_DISK_RESET

_DISK_STATUS

_DISK_VERIFY

_DISK_WRITE

Reads one or more disk sectors into memory. This service uses
all fields of the structure pointed to by diskinfo, as defined

earlier in this section. If no error occurs, the function returns 0 in
the high-order byte and the number of sectors read in the low-
order byte. If there is an error, the high-order byte (AH) will
contain a set of status flags, as defined below under Return Value.

Forces the disk controller to do a hard reset, preparing for floppy-
disk I/O. This is useful after an error occurs in another operation,
such as a read. If this service is specified, the diskinfo argument
is ignored. Status is returned in the 8 high-order bits (AH) of the
return value. If there is an error, the high-order byte will contain
a set of status flags, as defined below under Return Value.

Obtains the status of the last disk operation. If this service is
specified, the diskinfo argument is ignored. Status is returned in
the 8 low-order bits (AL) of the return value. If there is an error,
the low-order byte (AL) will contain a set of status flags, as
defined below under Return Value.

Checks the disk to be sure the specified sectors exist and can be
read. It also runs a CRC (cyclic redundancy check) test. This
service uses all fields (except buffer) of the structure pointed to
by diskinfo, as defined earlier in this section. If no error occurs,
the function returns O in the high-order byte (AH) and the
number of sectors compared in the low-order byte (AL). The
error status flags are listed below under Return Value.

Writes data from memory to one or more disk sectors. This
service uses all fields of the structure pointed to by diskinfo, as
defined earlier in this section. If no error occurs, the function
returns 0 in the high-order byte (AH) and the number of sectors
written in the low-order byte (AL). If there is an error, the high-
order byte will contain a set of status flags, as defined below
under Return Value.

The _bios_disk function returns the value in the AX register after the BIOS

interrupt.

Bits Meaning

0x00 No error

0x01 Invalid request or a bad command
0x02 Address mark not found

0x03 Disk write protected

0x04 Sector not found

0x05 Reset failed

0x06 Floppy disk removed

0x07 Drive parameter activity failed

112 _bios_disk

Bits Meaning

0x08 Direct Memory Access (DMA) overrun

0x09 DMA crossed 64K boundary

0x0A Bad sector flag detected

0x0B Bad track flag detected

0x0C Media type not found

0x0D Invalid number of sectors on format

0x0E Control data access mark detected

0xOF DMA arbitration level out of range

0x10 Data read (CRC or ECC) error

0x11 Corrected data read (ECC) error

0x20 Controller failure

0x40 Seek error

0x80 Disk timed out or failed to respond

0xAA Drive not ready

0xBB Undefined error

0xCC Write fault on drive

0xEO Status error

OxFF Sense operation failed
Compatibility Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

Exanuﬂe /* BDISK.C: This program first attempts to verify a disk by using an
* invalid disk head number. After printing the return value error code,
* the program verifies the disk by using a valid disk head code.
*/

#include <conio.h>
#include <stdio.h>
#include <bios.h>

_bios_disk

113

Output

void main(void)

{

unsigned status = 0;
struct _diskinfo_t disk_info;

disk_info.drive
disk_info.head
disk_info.track
disk_info.sector
disk_info.nsectors

0; /* Invalid head number */

n
ON R~ -
.o .

printf("Insert disk in drive A: and press any key\n");

_getch();

status = _bios_disk(_DISK_VERIFY, &disk_info);

printf("Return value: 0x%.4x\n", status);

if(status & 0xffeo) /* Error if high byte is 0 */
printf("Seek error\n");

else
printf("No seek error\n");

printf("Press any key\n");

_getch();

disk_info.head = 0; /* Valid head number */

status = _bios_disk(_DISK_VERIFY, &disk_info);

printf("Return value: 0x%.4x\n", status);

if(status & 0xffee) /% Error if high byte is @ */
printf("Seek error\n");

else
printf("No seek error\n");

Insert disk in drive A: and press any key
Return value: 0x0400

Seek error

Press any key

Return value: 0x0008

No seek error

114 _hios_equiplist

_bios_equiplist

Description Calls BIOS equipment-list service, using INT Ox11.
#include <bios.h>

unsigned _bios_equiplist(void);

Remarks The _bios_equiplist routine uses INT Ox11 to determine what hardware and
peripherals are currently installed on the machine.

Return Value The function returns the AX value, which is a set of bits indicating what equip-
ment is installed, as defined below:
Bits Meaning
0 True (1) if disk drive(s) installed
1 True (1) if math coprocessor installed
2-3 System RAM in 16K blocks (16—-64K)
4-5 Initial video mode:

00 = Reserved

01 =40 x 25 color

10 = 80 x 25 color

11 = 80 x 25 monochrome

6-7 Number of floppy-disk drives installed (00 =1, 01 =2, etc.)
8 False (0) if and only if a Direct Memory Access (DMA) chip is
installed
9-11 Number of RS232 serial ports installed
12 True (1) if and only if a game adapter is installed
13 True (1) if and only if an internal modem is installed
14-15 Number of printers installed
Compatibility Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

_hios_equiplist

115

Example

Output

/* BEQUIPLI.C: This program checks for the presence of diskettes. */

#include <bios.h>
#include <stdio.h>

void main(void)
{
unsigned equipment;

equipment = _bios_equiplist();

printf("Equipment bits: 0x%.4x\n", equipment);

if(equipment & 0x1000) /* Check for game adapter bit =*/
printf("Game adapter installed\n");

else
printf("No game adapter installed\n");

Equipment bits: 0x4061
No game adapter installed

16 _bhios_keybrd

_bios_keybrd

Description Calls BIOS keyboard services, using INT 0x16.

#include <bios.h>

unsigned _bios_keybrd(unsigned service);

service

Keyboard function desired

Remarks The _bios_keybrd routine uses INT 0x16 to access the keyboard services. The
service argument can be any of the following manifest constants:

Constant

Meaning

_KEYBRD_READ,
_NKEYBRD_READ

_KEYBRD_READY,
_NKEYBRD_READY

Reads the next character from the keyboard. If no
character has been typed, the call will wait for
one. If the low-order byte of the return value is
nonzero, the call contains the ASCII value of the
character typed. The high-order byte contains the
keyboard scan code for the character. The
_NKEYBRD_READ constant is used with
enhanced keyboards to obtain the scan codes for
function keys F11 and F12 and the cursor control
keys.

Checks whether a keystroke is waiting to be read
and, if so, reads it. The return value is O if no
keystroke is waiting, or it is the character waiting
to be read, in the same format as the
_KEYBRD_READ or _NKEYBRD_READ
return. This service does not remove the waiting
character from the input buffer, as does the
_KEYBRD_READ or _NKEYBRD_READ
service. The _.NKEYBRD_READY constant is
used with enhanced keyboards to obtain the scan
codes for function keys F11 and F12 and the
cursor control keys.

_hios_keybrd 117

Return Value

Compatibility

Constant Meaning
_KEYBRD_SHIFTSTATUS, Returns the current SHIFT-key status.
_NKEYBRD_SHIFTSTATUS _KEYBRD_SHIFTSTATUS returns only low

byte. The _.NKEYBRD_SHIFTSTATUS
constant is used to get a full 16-bit status value.
Any combination of the following bits may be set:

Bit Meaning if True

00H Rightmost SHIFT key pressed
01H Leftmost SHIFT key pressed
02H Either CTRL key pressed
3H Either ALT key pressed

04H SCROLLLOCK on

05H NUM LOCK on

06H CAPS LOCK on

07H In insert mode (INS)

08H Left CTRL key pressed

09H Left ALT key pressed

0AH Right CTRL key pressed
0BH Right ALT key pressed

0CH SCROLL LOCK key pressed
ODH NUM LOCK key pressed
OEH CAPS LOCK key pressed
OFH SYS REQ key pressed

With the ...READ and ...SHIFTSTATUS arguments, the _bios_keybrd function
returns the contents of the AX register after the BIOS call.

With the ...READY argument, _bios_keybrd returns 0 if there is no key. If there
is a key, _bios_keybrd returns the key waiting to be read (i.e., the same value as
_KEYBRD_READ).

With the ...READ and the ...READY arguments, the _bios_keybrd function re-
turns —1 if CTRL+BREAK has been pressed and is the next keystroke to be read.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

118 _bios_keybrd

Example /% BKEYBRD.C: This program prints a message on the screen until the
* right SHIFT key is pressed.
*/

#include <bios.h>
#include <stdio.h>

void main(void)
{
while(!(_bios_keybrd(_KEYBRD_SHIFTSTATUS) & @001))
printf("Use the right SHIFT key to stop this message\n");
printf("Right SHIFT key pressed\n");
}

Output Use the right SHIFT key to stop this message
Use the right SHIFT key to stop this message
Use the right SHIFT key to stop this message
Use the right SHIFT key to stop this message
Right SHIFT key pressed

_bios_memsize 119

Description

Remarks

Return Value

Compatibility

Example

__bios_memsize

Calls the BIOS memory-size service, using INT 0x12.
#include <bios.h>

unsigned _ bios_ memsize(void);

The _bios_memsize routine uses INT 0x12 to determine the total amount of main
memory installed.

The routine returns the total amount of installed memory in 1K blocks. The maxi-
mum return value is 640, representing 640K of main memory.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

/* BMEMSIZE.C: This program displays the amount of memory installed. =/

#include <bios.h>
f#Hinclude <stdio.h>

void main(void)

unsigned memory;

memory = _bios_memsize();
printf (“"The amount of memory installed is: %dK\n", memory);

Output The amount of memory installed is: 648K

120 _bios_printer

Description

Remarks

Return Value

bios printer

Calls BIOS printer services, using INT 0x17.
#include <bios.h>

unsigned _bios_printer(unsigned service, unsigned printer, unsigned data);

service Printer function desired
printer Target printer port
data Output data

The _bios_ printer routine uses INT 0x17 to perform printer output services for
parallel printers. The printer argument specifies the affected printer, where 0 is
LPT1, 1 is LPT?2, and so forth.

Some printers do not support the full set of signals. As a result, the “Out of Paper”
condition, for example, may not be returned to your program.

The service argument can be any of the following manifest constants:

Constant Meaning

_PRINTER_INIT Initializes the selected printer. The data argument is
ignored.

_PRINTER_STATUS Returns the printer status. The data argument is ignored.

_PRINTER_WRITE Sends the low-order byte of data to the printer specified
by printer.

The _bios_printer function returns the value in the AX register after the BIOS in-
terrupt. The high-order byte (AH) of the return value indicates the printer status
after the operation, as defined below:

Bit Meaning if True Bit Meaning if True
0 Printer timed out 4 Printer selected

1 Not used 5 Out of paper

2 Not used 6 Acknowledge

3 I/O error 7 Printer not busy

_bios_printer 121

Compatibility

Example

Output

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

/* BPRINTER.C: This program checks the status of the printer attached to
* LPT1 when it is off line, then initializes the printer.
*/

finclude <bios.h>
f#include <conio.h>
f#include <stdio.h>

J#define LPT1 @

void main(void)
{
unsigned status;

printf ("Place printer off line and press any key\n");
_getch();

status = _bios_printer(_PRINTER_STATUS, LPT1, @);

printf("Status with printer off line: 0x%.4x\n\n", status);
printf("Put the printer on Tine and then\n");

printf("Press any key to initialize printer\n");

_getch();

status = _bios_printer(_PRINTER_INIT, LPT1, @);
printf("Status after printer initialized: @x%.4x\n", status);

Place printer off line and press any key
Status with printer off line: 0x0018

Put the printer on 1line and then
Press any key to initialize printer
Status after printer initialized: 0x0090

122 _hios_serialcom

Description

Remarks

_bios_serialcom

Calls BIOS communications services, using INT 0x14.
#include <bios.h>

unsigned _bios_serialcom(unsigned service, unsigned serial_port,
unsigned data);

service Communications service
serial_port Serial port to use
data Port configuration bits

The _bios_serialcom routine uses INT 0x14 to provide serial communications
services. The serial_port argument is set to O for COM1, to 1 for COM2, and
$O on.

The _bios_serialcom routine may not be able to establish reliable communica-
tions at baud rates in excess of 1,200 baud (_COM_1200) due to the overhead
associated with servicing computer interrupts. Faster data communication rates
are possible with more direct programming of serial-port controllers. See

C Programmer’s Guide to Serial Communications for more details on serial-
communications programming in C.

The service argument can be set to one of the following manifest constants:

Constant Service

—COM_INIT Sets the port to the parameters specified in the data
argument

_COM_SEND Transmits the data characters over the selected serial port

_COM_RECEIVE Accepts an input character from the selected serial port

_COM_STATUS Returns the current status of the selected serial port

_bios_serialcom 123

The data argument is ignored if service is set to _COM_RECEIVE or
_COM_STATUS. The data argument for _ COM_INIT is created by combining

(with the OR operator) one or more of the following constants:

Constant Meaning
_COM_CHR7 7 data bits
_COM_CHRS 8 data bits
_COM_STOP1 1 stop bit
_COM_STOP2 2 stop bits
_COM_NOPARITY No parity

_COM_EVENPARITY Even parity
_COM_ODDPARITY 0Odd parity

_COM_110 110 baud
_COM_150 150 baud
_COM_300 300 baud
—_COM_600 600 baud
_COM_1200 1,200 baud
_COM_2400 2,400 baud
_COM_4800 4,800 baud
_COM_9600 9,600 baud

The default value of data is 1 stop bit, no parity, and 110 baud.

Return Value The function returns a 16-bit integer whose high-order byte contains status bits.
The meaning of the low-order byte varies, depending on the service value. The
high-order bits have the following meanings:

Bit Meaning if Set

15 Timed out

14 Transmission-shift register empty
13 Transmission-hold register empty
12 Break detected

11 Framing error

10 Parity error

9 Overrun error

8 Data ready

When service is _COM_SEND, bit 15 will be set if data could not be sent.

124 _bios_serialcom
When service is - COM_RECEIVE, the byte read will be returned in the low-
order bits if the call is successful. If an error occurs, any of the bits 9, 10, 11, or 15
will be set.
When service is _ COM_INIT or _COM_STATUS, the low-order bits are de-
fined as follows:
Bit Meaning if Set
7 Receive-line signal detected
6 Ring indicator
5 Data set ready
4 Clear to send
3 Change in receive-line signal detected
2 Trailing-edge ring indicator
1 Change in data-set-ready status
0 Change in clear-to-send status
Note that this function works only with IBM personal computers and true
compatibles.
Compatibility Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None
Example /% BSERIALC.C: This program checks the status of serial port COMl. =/

Output

#include <bios.h>
#include <stdio.h>

void main(void)

{
unsigned coml_status;
coml_status = _bios_serialcom(_COM_STATUS, @, @);
printf ("COMl status: @x%.4x\n", coml_status);

}

COM1 status: 0x6000

_bios_timeofday 125

_bios_timeofday

Description Calls BIOS time and date services, using INT Ox1A.
#include <bios.h>

unsigned _ bios_ timeofday(unsigned service, long *timeval);

service Time function desired
timeval Clock count
Remarks The _bios_timeofday routine uses INT Ox1A to get or set the clock count. The

service argument can be either of the following manifest constants:

Constant Meaning

_TIME_GETCLOCK Copies the current value of the clock count to the
location pointed to by timeval. If midnight has not passed
since the last time the system clock was read or set, the
function returns 0; otherwise, the function returns 1.

_TIME_SETCLOCK Sets the current value of the system clock to the value in
the location pointed to by timeval. There is no return
value.
Return Value The _bios_timeofday function returns the value in the AX register after the BIOS
interrupt.
Compatibility Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None

126 _bios_timeofday

Example /* BTIMEOFD.C: This program gets the current system clock count before and after
* a "do-nothing" loop and displays the difference.
*/

f##include <bios.h>
fHinclude <stdio.h>

void main(void)

{
Tong i, begin_tick, end_tick;
_bios_timeofday(_TIME_GETCLOCK, &begin_tick);
printf("Beginning tick count: %lu\n", begin_tick);
for(i = 1; i <= 900000; i++)
_bios_timeofday(_TIME_GETCLOCK, &end_tick);
printf("Ending tick count: %1u\n", end_tick);
printf("Elapsed ticks: %1u\n", end_tick - begin_tick);

}

Output Beginning tick count: 1114255
Ending tick count: 1114287

ETapsed ticks: 32

bsearch 127

Description

Remarks

bsearch

Performs a binary search of a sorted array.

#include <stdlib.h> Required for ANSI compatibility

#include <search.h> Required only for function declarations

void *bsearch(const void *key, const void *base, size_t num, size_t width,
int (__cdecl *compare)(const void *elem1, const void *elem?2));

key Object to search for

base Pointer to base of search data

num Number of elements

width Width of elements

compare Function that compares two elements: elem] and
elem?2

eleml Pointer to the key for the search

elem?2 Pointer to the array element to be compared with
the key

The bsearch function performs a binary search of a sorted array of num elements,
each of width bytes in size. The base value is a pointer to the base of the array to
be searched, and key is the value being sought.

The compare argument is a pointer to a user-supplied routine that compares two
array elements and returns a value specifying their relationship. The bsearch func-
tion calls the compare routine one or more times during the search, passing point-
ers to two array elements on each call. The routine compares the elements, then
returns one of the following values:

Value Meaning

<0 eleml less than elem?2
=0 eleml identical to elem2
>0 eleml greater than elem?2

If the array you are searching is not in ascending sort order, bsearch does not
work properly. If the array contains duplicate records with identical keys, there is
no way to predict which of the duplicate records will be located by bsearch.

128 hsearch

Return Value The bsearch function returns a pointer to an occurrence of key in the array pointed
to by base. If key is not found, the function returns NULL.

Compatibility Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

See Also _Ifind, _lsearch, gsort

Exannﬂe /* BSEARCH.C: This program reads the command-line arguments, sorting them
* with gsort, and then uses bsearch to find the word "cat."
*/

#include <search.h>
#include <string.h>
#include <stdio.h>

int compare(char **argl, char =*%arg2); /* Declare a function for compare */

void main(int argc, char **argv)
{

char *xresult;

char *key = "cat";

int i;

/* Sort using Quicksort algorithm: */
gsort((char =*)argv, argc, sizeof(char *), compare);

for(i = 0; i < argc; ++i) /* Qutput sorted Tist =/
printf("%s ", argv[il);

/* Find the word "cat" using a binary search algorithm: */
result = (char **x)bsearch((char *) &key, (char *)argv, argc,
sizeof(char *), compare);
if(result)
printf("\n%s found at %Fp\n", *result, result);
else
printf("\nCat not found!\n");
}

int compare(char **xargl, char #**arg2)
{
/* Compare all of both strings: */
return _strcmpi(*argl, *arg2);

Output [C:\LIBREF] bsearch dog pig horse cat human rat cow goat
bsearch cat cow dog goat horse human pig rat
cat found at 0292:0FD0O

_cabhs, _cabsl 129

Description

Remarks

Return Value

Compatibility

_cabs, _cabsl

Calculate the absolute value of a complex number.
#include <math.h>

double _cabs(struct _ complex 7);

long double _cabsl(struct _complexl z);

z Complex number

The _cabs and _ cabsl functions calculate the absolute value of a complex num-
ber, which must be a structure of type _complex (or _complexl). The structure z
is composed of a real component x and an imaginary component y. A call to one of
the _cabs routines is equivalent to the following:

sqrt(z.x*z.x + zy*z.y)

The _cabsl function is the 80-bit counterpart and it uses the 80-bit, 10-byte co-
processor form of arguments and return values. See the reference page on the long
double functions for more details on this data type.

On overflow, these functions call _matherr or _matherrl, return HUGE_VAL,
and set errno to ERANGE.

_cabs
Standards: UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _cabs for compatibility with ANSI naming conventions of non-ANSI func-
tions. Use cabs and link with OLDNAMES.LIB for UNIX compatibility.

130 _cabs, _cabsl

_cabsl

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

See Also abs, fabs, labs

Example /* CABS.C: Using _cabs, this program calculates the absolute value of
* a complex number.
*/

#include <math.h>
f#include <stdio.h>

void main(void)

{
struct _complex number = { 3.0, 4.0 };
double d;

d = _cabs(number);

printf("The absolute value of %f + %fi is %f\n",
number.x, number.y, d);

Output The absolute value of 3.000000 + 4.0000001 is 5.000000

calloc Functions 131

Description

Remarks

Return Value

calloc Functions

Allocate an array in memory with elements initialized to O.

#include <stdlib.h> For ANSI compatibility (calloc only)
#include <malloc.h> Required only for function declarations

void *calloc(size_t num, size_t size);
void __based(void) *_bcalloc(__segment seg, size_t num, size_t size);
void __far *_fcalloc(size_t num, size_t size);

void __near *_ncalloc(size_t num, size_t size);

num Number of elements
size Length in bytes of each element
seg Segment selector

The calloc family of functions allocates storage space for an array of num ele-
ments, each of length size bytes. Each element is initialized to 0.

In large data models (compact-, large-, and huge-model programs), calloc maps
to _fcalloc. In small data models (tiny-, small-, and medium-model programs),
calloc maps to _ncalloc.

The various calloc functions allocate storage space in the data segments shown in
the list below:

Function Data Segment

calloc Depends on data model of program

_bcalloc Based heap, specified by seg segment selector
_fcalloc Far heap (outside default data segment)
_ncalloc Near heap (inside default data segment)

The calloc functions return a pointer to the allocated space. The storage space
pointed to by the return value is guaranteed to be suitably aligned for storage of
any type of object. To get a pointer to a type other than void, use a type cast on the
return value.

132 calloc Functions

The _fealloc and _ncalloc functions return NULL if there is insufficient memory
available. The _bcalloc function returns _ NULLOFF in this case.

Compatibility calloc
Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_bcalloc, _fcalloc, _ncalloc

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

See Also free functions, _halloc, _hfree, malloc functions, realloc functions

Example /* CALLOC.C: This program uses calloc to allocate space for 4@ long integers.
It initializes each element to zero.
*/

f#Finclude <stdio.h>
#include <malloc.h>

void main(void)

{
Tong *buffer;
buffer = (long *)calloc(40, sizeof(long));
if(buffer != NULL)
printf("Allocated 40 long integers\n");
else
printf{ "Can't allocate memory\n");
free(buffer);
}

Output Allocated 40 long integers

ceil, _ceill 133

ceil, _ceill

Description Calculate the ceiling of a value.
#include <math.h>

double ceil(double x);

long double _ ceill(long double x);

X Floating-point value

Remarks The ceil and _ ceill functions return a double (or long double) value representing
the smallest integer that is greater than or equal to x.

The _ ceill function is the 80-bit counterpart and it uses the 80-bit, 10-byte co-
processor form of arguments and return values. See the reference page on the long
double functions for more details on this data type.

Return Value These functions return the double or long double result. There is no error return.
Compatibility ceil

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_ceill

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

See Also floor, fmod

134 ceil, _ceill

Example /% FLOOR.C: This example displays the largest integers less than or equal
* to the floating-point values 2.8 and -2.8. It then shows the smallest
* integers greater than or equal to 2.8 and -2.8.
*/

#include <math.h>
J#include <stdio.h>

void main(void)
{
double y;

y = floor(2.8);

printf("The floor of 2.8 is %f\n", y);
y = floor(-2.8);

printf("The floor of -2.8 is %f\n", y);

y = ceil(2.8);
printf("The ceil of 2.8 is %f\n", y);
y = ceil(-2.8);
printf("The ceil of -2.8 is %f\n", y);

Output The floor of 2.8 is 2.000000
The floor of -2.8 is -3.000000
The ceil of 2.8 is 3.000000
The ceil of -2.8 is -2.000000

_cexit, _c_exit 135

_cexit, _c¢_exit

Description Perform cleanup operations and return without terminating the process.
#include <process.h>

void _ cexit(void);

void _c_exit(void);

Remarks The _ cexit function calls, in LIFO (“last in, first out”) order, the functions regis-
tered by atexit and _onexit. Then the _cexit function flushes all I/O buffers and
closes all open streams before returning.

The _c_exit function is the same as the _exit function but returns to the calling
process without processing atexit or _onexit or flushing stream buffers.

The behavior of the exit, _exit, _cexit, and _c_exit functions is described in the
following list:

Function Action

exit Performs complete C library termination procedures, terminates
the process, and exits with the supplied status code

_exit Performs “quick” C library termination procedures, terminates
the process, and exits with the supplied status code

_cexit Performs complete C library termination procedures and returns
to caller, but does not terminate the process

_c_exit Performs “quick” C library termination procedures and returns
to caller, but does not terminate the process

Return Value None.

Compatibility Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

See Also abort, atexit, _exec functions, exit, _onexit, _spawn functions, system

136 _cgets

Description

Remarks

Return Value

Compatibility

See Also

_cgets

Gets a character string from the console.

#include <conio.h> Required only for function declarations
char *_cgets(char *buffer);

buffer Storage location for data

The _cgets function reads a string of characters directly from the console and
stores the string and its length in the location pointed to by buffer. The buffer
argument must be a pointer to a character array. The first element of the array,
buffer[0], must contain the maximum length (in characters) of the string to be
read. The array must contain enough elements to hold the string, a terminating null
character (°\0°), and two additional bytes.

The _ cgets function continues to read characters until a carriage-return—line-feed
(CR-LF) combination is read, or the specified number of characters is read. The
string is stored starting at str[2]. If a CR-LF combination is read, it is replaced
with a null character (°\0’) before being stored. The _cgets function then stores the
actual length of the string in the second array element, buffer{1].

Because all DOS editing keys are active when you call _cgets, pressing F3 repeats
the last entry.

The _cgets function returns a pointer to the start of the string, at buffer[2]. There
1S no error return.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_getch, _getche

_cgets 137

Exarnple /* CGETS.C: This program creates a buffer and initializes the first byte
* to the size of the buffer - 2. Next, the program accepts an input string
* using _cgets and displays the size and text of that string.
*/

#include <conio.h>
#include <stdio.h>

void main(void)

{
char buffer[82] = { 80 }; /* Maximum characters in first byte */
char *result;
printf("Input line of text, followed by carriage return:\n");
result = _cgets(buffer); /* Input a Tine of text */
printf("\nLine length = %d\nText = %s\n", buffer[1], result);

}

Qutput Input Tine of text, followed by carriage return:

This is some text
Line length = 17
Text = This is some text

138 _chain_intr

Description

Remarks

_chain_intr

Chains an interrupt from one handler to another.
#include <dos.h>
void _chain_ intr(void(__cdecl __interrupt __far *target)());

target Target interrupt routine

The _chain_intr routine passes control from one interrupt handler to another. The
stack and the registers of the first routine are passed to the second, allowing the
second routine to return as if it had been called directly.

The _chain_intr routine is generally used when a user-defined interrupt handler
begins processing, then chains to the original interrupt handler to finish processing.

Chaining is one of two techniques, listed below, that can be used to transfer con-
trol from a new interrupt routine to an old one:

= Call _chain_intr with the interrupt routine as an argument. Do this if your
routine is finished and you want the second interrupt routine to terminate the in-
terrupt call.

void __interrupt new_int(unsigned _es, unsigned _ds,

unsigned _di, unsigned _si,...)
{
++_di; /* Initial processing here */
_chain_intr(old_int); /* New DI passed to old_int =/
--_di; /* This is never executed */
}

= Call the interrupt routine (after casting it to an interrupt function if necessary).
Do this if you need to do further processing after the second interrupt routine
finishes.

void __interrupt new_int(unsigned _es, unsigned _ds,

unsigned _di, unsigned _si,...)
{
++_di; /* Initial processing here =x/
(*¥01d_1int) (); /* New DI passed to old_int =/
__asm mov _di, di /* Put real DI from old_int =/
/* into _di for return */

_chain_intr 139

Return Value

Compatibility

See Also

Note that the real registers set by the old interrupt function are not automatically
set to the pseudoregisters of the new routine.

Use the _chain_intr function when you do not want to replace the default inter-
rupt handler, but you do need to see its input. An example is a TSR (terminate-and-
stay-resident) program that checks all keyboard input for a particular “hot key”
sequence.

The _chain_intr function should be used only with C functions that have been de-
clared with __interrupt. The __interrupt declaration ensures that the proce-
dure’s entry/exit sequence is appropriate for an interrupt handler.

The _chain_intr function does not return to the caller.

Standards: None
16-Bit: DOS
32-Bit: None

—dos_getvect, _dos_Kkeep, _dos_setvect

140 _chdir

Description

Remarks

Return Value

_chdir

Changes the current working directory.

#include <direct.h> Required only for function declarations

#include <errno.h> Required for errno constants
int _chdir(char *dirname);

dirname Path name of new working directory

The _chdir function changes the current working directory to the directory
specified by dirname. The dirname argument must refer to an existing directory.

This function can change the current working directory on any drive; it cannot be
used to change the default drive itself. For example, if A: is the default drive and
\BIN is the current working directory, the following call changes the current work-
ing directory for drive C:

_chdir("c:\\temp");

Notice that you must place two backslashes (\\) in a C string in order to represent
a single backslash (\); the backslash is the escape character for C strings and
therefore requires special handling.

This function call has no apparent immediate effect. However, when the _ chdrive
function is called to change the default drive to C:, the current working directory
becomes C:\TEMP.

With DOS, the new directory set by the program becomes the new current work-
ing directory.

The _chdir function returns a value of 0 if the working directory is successfully
changed. A return value of —1 indicates an error, in which case errno is set to
ENOENT, indicating that the specified path name could not be found.

_chdir 141

Compatibility Standards: UNIX

See Also

Example

Output

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

Use _chdir for compatibility with ANSI naming conventions of non-ANSI func-
tions. Use chdir and link with OLDNAMES.LIB for UNIX compatibility.

_dos_setdrive, _mkdir, _rmdir, system

/* CHGDIR.C: This program uses the _chdir function to verify that a

* given directory exists. Under real mode that directory also becomes
* the current directory. Under protected mode, it is only the default
* directory for the current process.

*/

#include <direct.h>
f#Hinclude <stdio.h>
f#include <stdlib.h>

void main(int argc, char *argv[])

{
if(_chdir(argv[1l]))
printf("Unable to locate the directory: %s\n", argv[l]);
else
system("dir *.c");
}

[C:\LIBREF] chgdir \tmp

The volume Tabel in drive C is ZEPPELIN.
Directory of C:\TMP

DUP C 232 4-18-99 11:18a
TEST C 713 4-07-98 2:49p
2 File(s) 14155776 bytes free

142 _chdrive

_chdrive

Description Changes the current working drive.
#include <direct.h> Required only for function declarations
int _chdrive(int drive);

drive Number of new working drive

Remarks The _chdrive function changes the current working drive to the drive specified by
drive. The drive argument uses an integer to specify the new working drive (1=A,
2=B, etc.).

This function changes only the working drive; the _chdir function changes the
working directory.

With DOS, the new drive set by the program becomes the new working drive.

Return Value The _chdrive function returns a value of 0 if the working drive is successfully
changed. A return value of —1 indicates an error.

Compatibility Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

See Also _chdir, _dos_setdrive, _fullpath, _getcwd, _getdrive, _mkdir, _rmdir,
system

Example /* GETDRIVE.C illustrates drive functions including:

* _getdrive _chdrive _getdcwd
*/ .
finclude <stdio.h> s

#include <conio.h>
#include <direct.h>
#include <stdlib.h>

_chdrive 143

Output

void main(void)
{

int ch, drive, curdrive;
static char path[_MAX_PATHI;

/* Save current drive. */
curdrive = _getdrive();

printf("Available drives are: \n");

/* If we can switch to the drive, it exists. */
for(drive = 1; drive <= 26; drive++)
if(!_chdrive(drive))
printf("%c: ", drive + A" - 1);

while(1)
{

printf("\nType drive letter to check or ESC to quit: ");
ch = _getch();
if(ch == 27)

break;

if(isalpha(ch))
_putch(ch);

if(_getdcwd(toupper(ch) - 'A' + 1, path, _MAX_PATH) != NULL)
printf("\nCurrent directory on that drive is %s\n", path);

}

/* Restore original drive. This is only necessary for DOS. Under 0S/2
* the current drive of the calling process is always restored.

*/

_chdrive(curdrive);

printf("\n");

Available drives are:

A: B: C:

Type drive letter
Type drive letter
Current directory

Type drive letter
Current directory

Type drive letter

to
to
on

to
on

to

check or ESC to quit: q
check or ESC to quit: a
that drive is A:\

check or ESC to quit: c
that drive is C:\LIBREF

check or ESC to quit:

144 _chmod

Description

Remarks

Return Value

_chmod

Changes the file-permission settings.

#include <sys\types.h>
#include <sys\stat.h>
#include <errno.h>

#include <io.h> Required only for function declarations
int _chmod(char *filename, int pmode);

filename Path name of existing file

pmode Permission setting for file

The _chmod function changes the permission setting of the file specified by
filename. The permission setting controls read and write access to the file. The
constant expression pmode contains one or both of the manifest constants
—S_IWRITE and _S_IREAD, defined in SYS\STAT.H. Any other values for
pmode are ignored. When both constants are given, they are joined with the
bitwise-OR operator (|). The meaning of the pmode argument is as follows:

Value Meaning

_S_IWRITE Writing permitted
-S_IREAD Reading permitted
_S_IREAD | _S_IWRITE Reading and writing permitted

If write permission is not given, the file is read-only. Note that all files are always
readable; it is not possible to give write-only permission. Thus the modes
_S_IWRITE and _S_IREAD | _S_IWRITE are equivalent.

The _chmod function returns the value 0 if the permission setting is successfully
changed. A return value of —1 indicates an error; in this case, errno is set to
ENOENT, indicating that the specified file could not be found.

_chmod 145

Compatibility

See Also

Example

Output

Standards: UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DO0OS32X

Use _chmod for compatibility with ANSI naming conventions of non-ANSI func-
tions. Use chmod and link with OLDNAMES.LIB for UNIX compatibility.

_access, _creat, _fstat, _open, _stat

/* CHMOD.C: This program uses _chmod to change the mode of a file to
* read-only. It then attempts to modify the file.
*/

#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdio.h>
#include <stdlib.h>

void main(void)
{
/* Make file read-only: */
if(_chmod("CHMOD.C", _S_IREAD) == -1)
perror("File not found\n");
else
printf("Mode changed to read-only\n");
system("echo /#* End of file %/ >> CHMOD.C");

/* Change back to read/write: =/

if(_chmod("CHMOD.C", _S_IWRITE) == -1)
perror("File not found\n");

else
printf("Mode changed to read/write\n");

Mode changed to read-only
Access denied
Mode changed to read/write

146 _chsize

_chsize

Description Changes the file size.

#include <io.h> Required only for function declarations

#include <errno.h>

int _ chsize(int handle, long size);

handle Handle referring to open file
size New length of file in bytes
Remarks The _chsize function extends or truncates the file associated with sandle to the

length specified by size. The file must be open in a mode that permits writing. Null
characters (’\0”) are appended if the file is extended. If the file is truncated, all data
from the end of the shortened file to the original length of the file is lost.

In DOS and Windows, the directory update is done when a file is closed. Con-
sequently, while a program is running, requests to determine the amount of free
disk space may receive inaccurate results.

Return Value The _ chsize function returns the value 0 if the file size is successfully changed. A
return value of —1 indicates an error, and errno is set to one of the following
values:

Value Meaning

EACCES Specified file is locked against access.

EBADF Specified file is read-only or an invalid file handle.
ENOSPC No space is left on device.

Compatibility Standards: UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

Use _chsize for compatibility with ANSI naming conventions of non-ANSI func-
tions. Use chsize and link with OLDNAMES.LIB for UNIX compatibility.

See Also _close, _creat, _open

_chsize

147

Example

Output

/* CHSIZE.C: This program uses _filelength to report the size of a

* file before and after modifying it with _chsize.

*/

#include
#include
#include
#include
#include

<io.h>
<fentl1.h>
<sys\types.h>
<sys\stat.h>
<stdio.h>

void main(void)

{

int fh, result;
unsigned int nbytes = BUFSIZ;

/* Open a file */
if((fh = _open("data"™, _O_RDWR | _O_CREAT, _S_IREAD | _S_IWRITE)) != -1)

{

printf("File Tength before: %1d\n", _filelength(fh));

if(_chsize(fh, 329678) == 0)

printf("Size successfully changed\n");

else

printf("Problem in changing the size\n");
printf("File Tength after:

_close(fh);

File length before: @
Size successfully changed
File length after: 329678

%1d\n", _filelength(fh));

148 _clear87

Description

Remarks

Return Value

Compatibility

See Also

_clear87

Gets and clears the floating-point status word.
#include <float.h>

unsigned int _clear87(void);

The _clear87 function gets and clears the floating-point status word. The floating-
point status word is a combination of the 8087/80287 status word and other condi-
tions detected by the 8087/80287 exception handler, such as floating-point stack
overflow and underflow.

The bits in the value returned indicate the floating-point status. See the FLOAT.H
include file for a complete definition of the bits returned by _ clear87.

Many of the math library functions modify the 8087/80287 status word, with un-
predictable results. Return values from _clear87 and _status87 become more reli-
able as fewer floating-point operations are performed between known states of the
floating-point status word.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_control87, _status87

Example /% CLEAR87.C: This program creates various floating-point problems,

* % ¥

then uses _clear87 to report on these problems.
Compile this program with Optimizations disabled (/0d). Otherwise
the optimizer will remove the code associated with the unused

* floating-point values.

*/

#include <stdio.h>
#include <float.h>

_clear87 149

void main(void)

{
double a = 1le-40, b;
float x, y;

printf("Status: %.4x - clear\n", _clear87());
/* Store into y is inexact and underflows: */
y = a;

printf("Status: %.4x - inexact, underflow\n", _clear87());

/* y is denormal: =x/

b =1y;
printf("Status: %.4x - denormal\n", _clear87());
}
Output Status: 0000 - clear

Status: 0030 - inexact, underflow
Status: 0002 - denormal

150 clearerr

Description

Remarks

Return Value

Compatibility

See Also

clearerr

Resets the error indicator for a stream.
#include <stdio.h>
void clearerr(FILE *stream);

stream Pointer to FILE structure

The clearerr function resets the error indicator and end-of-file indicator for
stream. Error indicators are not automatically cleared; once the error indicator for
a specified stream is set, operations on that stream continue to return an error
value until clearerr, fseek, fsetpos, or rewind is called.

None.

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_eof, feof, ferror, perror

Example /* CLEARERR.C: This program creates an error on the standard input
* stream, then clears it so that future reads won't fail.

*/

f#include <stdio.h>

void main(void)

{

int c;

/* Create an error by writing to standard input. */
putc('c', stdin);
if(ferror(stdin))

{

perror("Write error");
clearerr(stdin);

clearerr 151

/* See if read causes an error. */
printf("Will input cause an error? ");
¢ = getc(stdin);

if(ferror(stdin))

{
perror("Read error");
clearerr(stdin);
}
}
Output Write error: Error @

Will input cause an error? n

152 _clearscreen

Description

Remarks

Return Value

Compatibility

See Also

Example

_clearscreen

Clears the specified area of the screen.
#include <graph.h>
void __far _clearscreen(short area);

area Target area

The _clearscreen function erases the target area, filling it with the current back-
ground color. The area argument can be one of the following manifest constants
(defined in GRAPH.H):

Constant Action

—GCLEARSCREEN Clears and fills the entire screen

_GVIEWPORT Clears and fills only within the current view port
_GWINDOW Clears and fills only within the current text window
None.

Standards: None
16-Bit: DOS
32-Bit: None

_getbkcolor, _setbkcolor

/% CLRSCRN.C =/

#include <conio.h>
f#include <graph.h>
f#include <stdlib.h>

_clearscreen

153

void main(void)

{

short xhalf, yhalf, xquar, yquar;
struct _videoconfig vc;

/* Find a valid graphics mode. */
if(!_setvideomode(_MAXRESMODE))
exit(1);

_getvideoconfig(&vc);

xhalf = vc.numxpixels / 2;
yhalf = vc.numypixels / 2;
xquar = xhalf / 2;
yquar = yhalf / 2;

_setviewport(@, @, xhalf - 1, yhalf - 1);
_rectangle(_GBORDER, @, @, xhalf - 1, yhalf - 1);
_ellipse(_GFILLINTERIOR, xquar / 4, yquar / 4,
xhalf - (xquar / 4), yhalf - (yquar / 4));
_getch();
_clearscreen(_GVIEWPORT);

_getch();
_setvideomode(_DEFAULTMODE);

154 clock

Description

Remarks

Return Value

Compatibility

See Also

clock

Calculates the time used by the calling process.
#include <time.h>

clock_t clock(void);

The clock function tells how much processor time has been used by the calling
process. The time in seconds is approximated by dividing the clock return value
by the value of the CLOCKS_PER_SEC constant.

In other words, the clock function returns the number of processor timer ticks that
have elapsed. A timer tick is approximately equal to 1I/CLOCKS_PER_SEC
seconds.

In versions of Microsoft C prior to version 6.0, the CLOCKS_PEIL SEC
constant was called CLK_TCK.

The clock function returns the product of the time in seconds and the value of the
CLOCKS_PER_SEC constant. If the processor time is not available, the func-
tion returns the value —1, cast as clock_t.

In DOS, clock returns the time elapsed since the process started. This may not be
equal to the actual processor time used by the process.

Standards: ANSI
16-Bit: DOS, QWIN, WIN
32-Bit: DOS32X

difftime, time

clock

155

Example

Output

/#* CLOCK.C: This example prompts for how long the program is to run and
* then continuously displays the elapsed time for that period.
*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void sleep(clock_t wait);

void main(void)

{
long i = 600000L;
clock_t start, finish;
double duration;

/* Delay for a specified time. */
printf("Delay for three seconds\n");
sleep((clock_t)3 * CLOCKS_PER_SEC);
printf("Donel!\n");

/* Measure the duration of an event. */
printf("Time to do %1d empty loops is ", i);
start = clock();

while(i--)

finish = clock();
duration = (double)(finish - start) / CLOCKS_PER_SEC;
printf("%2.1f seconds\n", duration);

}

/* Pauses for a specified number of microseconds. */
void sleep(clock_t wait)
{

clock_t goal;

goal = wait + clock();
while(goal > clock())

’

Delay for three seconds
Done!
Time to do 600000 empty loops is 2.0 seconds

156 _close

_close

Description Closes a file.

#include <io.h> Required only for function declarations
#include <errno.h>

int _close(int handle);

handle Handle referring to open file

Remarks The _ close function closes the file associated with handle.

Return Value The _close function returns 0 if the file was successfully closed. A return value of
-1 indicates an error, and errno is set to EBADF, indicating an invalid file-handle
argument.

Compatibility Standards: UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

Use _close for compatibility with ANSI naming conventions of non-ANSI func-
tions. Use close and link with OLDNAMES.LIB for UNIX compatibility.

See Also _chsize, _creat, _dup, _dup2, _open, _unlink

Example /% OPEN.C: This program uses _open to open a file named OPEN.C for input
* and a file named OPEN.OUT for output. The files are then closed.
*/

fkinclude <fcntl.h>
f#include <sys\types.h>
f#include <sys\stat.h>
f#Hinclude <io.h>
#include <stdio.h>

_close 157

void main(void)

{

int fhl, fh2;

fhl = _open("OPEN.C"™, _O_RDONLY);

if(fhl == -1)
perror("open failed on input file");

else

{
printf("open succeeded on input file\n"™);
_close(fhl);

}

fh2 = _open("OPEN.OUT", _O_WRONLY | _O_CREAT, _S_IREAD | _S_IWRITE);

if(fh2 == -1)
perror("open failed on output file");

else

{
printf("open succeeded on output file\n");
_close(fh2);

}

}
Qutput open succeeded on input file

open succeeded on output file

158 _commit

Description

Remarks

Return Value

_commit

Flushes a file directly to disk.

#include <io.h> Required only for function declarations

#include <errno.h>
int _commit(int iandle);

handle Handle referring to open file

The _ commit function forces the operating system to write the file associated
with handle to disk. This call ensures that the specified file is flushed immedi-
ately—not at the operating system’s discretion.

The _commit function returns O if the file was successfully flushed to disk. A
return value of —1 indicates an error, and errno is set to EBADF, indicating an in-
valid file-handle argument.

Compatibility Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

See Also _creat, _open, _read, _write

Example

/* COMMIT.C illustrates Tow-level file I/0 functions including:
_close _commit memset _open _write

This is example code, to keep the code simple and readable
return values are not checked.

*
*
*
*
*
*/

#include <io.h>

f#include <stdio.h>

#include <fcntl.h>

J#define MAXBUF 32

int log_receivable(int);

_commit

159

void main(void)

{
int fhandle;
fhandle = _open("TRANSACT.LOG", _O_APPEND | _0_CREAT |
_0_BINARY | _O_RDWR);
log_receivable(fhandle);
_close(fhandle);
}

int log_receivable(int fhandle)

{

/* The log_receivable function prompts for a name and a monetary amount
* and places both values into a buffer (buf). The _write function

* writes the values to the operating system and the _commit function

* ensures that they are written to a disk file.

*/

int 1;
char Dbuf[MAXBUF];

memset(buf, '\@', MAXBUF);
/* Begin Transaction. */

printf("Enter name: ");
gets(buf);
for(i = 1; buf[i] != "\@'; i++);

/* Write the value as a '\@' terminated string. */
_write(fhandle, buf, i+l);
printf("\n");

memset(buf, '\@', MAXBUF);

printf("Enter amount: $");

gets(buf);

for(i = 1; buf[i]l != "\@'; i++);

/* Write the value as a '"\@' terminated string. =/
_write(fhandle, buf, i+l);

printf("\n");

return _commit(fhandle);

/* The _commit function ensures that two important pieces of data are
safely written to disk. The return value of the _commit function

* is returned to the calling function.

*/

160 _control87

Description

Remarks

_control87

Gets and sets the floating-point control word.
#include <float.h>
unsigned int _control87(unsigned int new, unsigned int mask);

new New control-word bit values

mask Mask for new control-word bits to set

The _control87 function gets and sets the floating-point control word. The float-
ing-point control word allows the program to change the precision, rounding, and
infinity modes in the floating-point-math package. Floating-point exceptions can

also be masked or unmasked using the _ control87 function.

If the value for mask is equal to 0, then _ control87 gets the floating-point control
word. If mask is nonzero, then a new value for the control word is set in the follow-
ing manner: for any bit that is on (equal to 1) in mask, the corresponding bit in new
is used to update the control word. To put it another way,

fpentrl = ((fpentrl & ~mask) | (new & mask))
where fpentrl is the floating-point control word.

The possible values for the mask constant (mask) and new control values (new) are
shown in Table R.1.

Table R.1 Hex Values

Mask Hex Value Constant Hex Value
MCW_EM 0x003F
(Interrupt
exception)
_EM_INVALID 0x0001

_EM_DENORMAL 0x0002
—EM_ZERODIVIDE 0x0004
_EM_OVERFLOW 0x0008
_EM_UNDERFLOW 0x0010
_EM_INEXACT 0x0020

_control87 161

Table R.1 Hex Values (continued)

Mask Hex Value Constant Hex Value
MCW_IC 0x1000
(Infinity
control)
_IC_AFFINE 0x1000

_IC_PROJECTIVE 0x0000

MCW_RC 0x0C00

(Rounding

control)
RC_CHOP 0x0C00
RC_UP 0x0800
_RC_DOWN 0x0400
_RC_NEAR 0x0000

MCW_PC 0x0300

(Precision

control)
_PC_24 (24 bits) 0x0000
_PC_53 (53 bits) 0x0200
_PC_64 (64 bits) 0x0300

Return Value The bits in the value returned indicate the floating-point control state. See the

FLOAT.H include file for a complete definition of the bits returned by _ control87.

Compatibility Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

See Also _clear87, _status87

162 _control87

Example /% CNTRL87.C: This program uses _control87 to output the control word,
* set the precision to 24 bits, and reset the status to the default.
*/

#include <stdio.h>
#include <float.h>

void main(void)
{
double a = 0.1;

/* Show original control word and do calculation. */
printf("Original: 0x%.4x\n", _control87(@, @));
printf("%1.1f % %1.1f = %.15e\n", a, a, a * a);

/* Set precision to 24 bits and recalculate. */
printf("24-bit: 0x%.4x\n", _control87(_PC_24, MCW_PC));
printf("%1.1f = %1.1f = %.15e\n", a, a, a * a);

/* Restore to default and recalculate. */
printf("Default: @x%.4x\n", _control87(CW_DEFAULT, oxffff));
printf("%1.1f * %1.1f = %.15e\n", a, a, a * a);

Output Original: @x1332
0.1 * 0.1 = 1.000000000000000¢-002
24-bit: @x1332
0.1 * 0.1 = 9.999999776482582e-003
Default: 0x1032
0.1 * 0.1 = 1.000000000000000e-002

cos Functions 163

Description

Remarks

Return Value

Compatibility

cos Functions

Calculate the cosine (cos and _cosl) or hyperbolic cosine (cosh and _ coshl).
#include <math.h>

double cos(double x);
double cosh(double x);
long double _ cosl(long double x);

long double _coshl(long double x);

x Angle in radians

The cos and cosh functions return the cosine and hyperbolic cosine, respectively,
of x.

The _cosl and _ coshl functions are the 80-bit counterparts and use the 80-bit, 10-
byte coprocessor form of arguments and return values. See the reference page on
the long double functions for more details on this data type.

If x is large, a partial loss of significance in the result may occur in a call to cos, in
which case the function generates a _PLOSS error. If x is so large that signifi-
cance is completely lost, cos prints a _ TLOSS message to stderr and returns 0. In
both cases, errno is set to ERANGE.

If the result is too large in a cosh call, the function returns HUGE_VAL and sets
errno to ERANGE. This behavior can be changed with _matherr.

cos, cosh
Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

164 cos Functions

_cosl, _coshl

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

See Also acos functions, asin functions, atan functions, _matherr, sin functions, tan
functions

Example /* SINCOS.C: This program displays the sine, hyperbolic sine, cosine,
* and hyperbolic cosine of pi / 2.
*/

f#include <math.h>
#include <stdio.h>

void main(void)

{
double pi = 3.1415926535;
double x, y;
x =pi / 2;
y = sin(x);
printf("sin(%f) = %Zf\n", x, y)3
y = sinh(x);
printf("sinh(%f) = %f\n",x, y);
y = cos(x);
printf("cos(%f) = %f\n", x, y);
y = cosh(x);
printf("cosh(%f) = %Zf\n",x, y);
}
Qutput sin(1.570796) = 1.000000

sinh(1.570796) = 2.301299
cos(1.570796) = 0.000000
cosh(1.570796) = 2.509178

_cprintf 165

Description

Remarks

Return Value

Compatibility

See Also

_cprintf

Formats and prints to the console.
#include <conio.h> Required only for function declarations
int _cprintf(char *format [, argument]] ...);

format Format control string

argument Optional arguments

The _ cprintf function formats and prints a series of characters and values directly
to the console, using the _ putch function to output characters. Each argument (if
any) is converted and output according to the corresponding format specification
in format. The format has the same form and function as the format argument for
the printf function; see printf for a description of the format and arguments.

Note that unlike the fprintf, printf, and sprintf functions, _cprintf does not trans-
late line-feed characters into carriage-return—line-feed (CR-LF) combinations on
output.

The _ cprintf function returns the number of characters printed.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_cscanf, fprintf, printf, sprintf, vprintf

166 _cprintf

Example /* CPRINTF.C: This program displays some variables to the console. */
#include <conio.h>

void main(void)

{
int i=-16, h = 29;
unsigned u = 62511;
char c="A";
char s[] = "Test";
/* Note that console output does not translate \n as
* standard output does. Use \r\n instead.
*/
_cprintf("%d %.4x %u %c %s\r\n", i, h, u, c, s);
}

Output -16 001d 62511 A Test

_cputs 167

Description

Remarks

Return Value

Compatibility

See Also

Example

_cputs

Puts a string to the console.
#include <conio.h> Required only for function declarations
int _ cputs(char *string);

string Output string

The _cputs function writes the null-terminated string pointed to by string directly
to the console. Note that a carriage-return—line-feed (CR-LF) combination is not
automatically appended to the string.

If successful, _cputs returns a 0. If the function fails, it returns a nonzero value.

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X
—putch

/* CPUTS.C: This program first displays a string to the console. */

#include <conio.h>

void main(void)

Output

/* String to print at console. Note the \r (return) character. */
char *buffer = "Hello world (courtesy of _cputs)!\r\n";

_cputs(buffer);

Hello world (courtesy of _cputs)!

168 _creat

Description

Remarks

_creat

Creates a new file.

#include <sys\types.h>
#include <sys\stat.h>
#include <errno.h>

#include <io.h> Required only for function declarations
int _creat(char *filename, int pmode);

filename Path name of new file

pmode Permission setting

The _creat function either creates a new file or opens and truncates an existing
file. If the file specified by filename does not exist, a new file is created with the
given permission setting and is opened for writing. If the file already exists and its
permission setting allows writing, _creat truncates the file to length 0, destroying
the previous contents, and opens it for writing.

The permission setting, pmode, applies to newly created files only. The new file re-
ceives the specified permission setting after it is closed for the first time. The
integer expression pmode contains one or both of the manifest constants
_S_IWRITE and _S_IREAD, defined in SYS\STAT.H. When both of the con-
stants are given, they are joined with the bitwise-OR operator (|). The pmode ar-
gument is set to one of the following values:

Value Meaning

_S_IWRITE Writing permitted
~S_IREAD Reading permitted
_S_IREAD | _S_IWRITE Reading and writing permitted

If write permission is not given, the file is read-only. Note that all files are always
readable; it is not possible to give write-only permission. Thus, the modes
_S_IWRITE and _S_IREAD | _S_IWRITE are equivalent. With DOS ver-
sions 3.0 and later, files opened using _creat are always opened in compatibility
mode (see _sopen). With DOS32X, the files are always opened with
_SH_DENYNO.

_creat 169

The _creat function applies the current file-permission mask to pmode before
setting the permissions (see _umask).

Note that the _ creat routine is provided primarily for compatibility with previous
libraries. A call to _open with _O_CREAT and _O_TRUNC in the oflag argu-
ment is equivalent to _creat and is preferable for new code.

Return Value If successful, _creat returns a handle for the created file. Otherwise, it returns —1
and sets errno to one of the following constants:

Value Meaning
EACCES Path name specifies an existing read-only file or specifies a
directory instead of a file
EMFILE No more handles available (too many open files)
ENOENT Path name not found
Compatibility Standards: UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _creat for compatibility with ANSI naming conventions of non-ANSI func-
tions. Use creat and link with OLDNAMES.LIB for UNIX compatibility.

See Also _chmod, _chsize, _close, _dup, _dup2, _open, _sopen, _umask

Example /% CREAT.C: This program uses _creat to create the file (or truncate the
* existing file) named data and open it for writing.
*/

#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdio.h>
#include <stdlib.h>

170 _creat

void main(void)

{
int fh;
fh = _creat("data", _S_IREAD | _S_IWRITE);
if(fh == -1)
perror("Couldn't create data file");
else
{
printf("Created data file.\n");
_close(fh);
}
}

Output Created data file.

_cscanf 17

Description

Remarks

Return Value

Compatibility

See Also

_cscanf

Reads formatted data from the console.
#include <conio.h> Required only for function declarations
int _cscanf(char *format [, argument]] ...);

format Format-control string

argument Optional arguments

The _ cscanf function reads data directly from the console into the locations given
by argument. The _getche function is used to read characters. Each optional argu-
ment must be a pointer to a variable with a type that corresponds to a type speci-
fier in format. The format controls the interpretation of the input fields and has the
same form and function as the format argument for the scanf function; see scanf
for a description of format.

While _ escanf normally echoes the input character, it will not do so if the last call
was to _ungetch.

The _ cscanf function returns the number of fields that were successfully con-
verted and assigned. The return value does not include fields that were read but
not assigned.

The return value is EOF for an attempt to read at end-of-file. This may occur
when keyboard input is redirected at the operating system command-line level. A
return value of 0 means that no fields were assigned.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_cprintf, fscanf, scanf, sscanf

172 _cscanf

Example /% CSCANF.C: This program prompts for a string and uses _cscanf to read
* in the response. Then _cscanf returns the number of items matched,
* and the program displays that number.
®/

#include <stdio.h>
f#include <conio.h>

void main(void)
{
int result, i[3]1;

_cprintf("Enter three integers: ");
result = _cscanf("%i %i %i", &i[0], &i[1l], &i[2]);
_cprintf(C "\r\nYou entered ");
while(result--)
_cprintf("%i ", ilresult]);
_cprintfC "\r\n");
}

Output Enter three integers: 34 43 987k
You entered 987 43 34

ctime 173

Description

Remarks

Return Value

Compatibility

See Also

ctime

Converts a time stored as a time_t value to a character string.
#include <time.h> Required only for function declarations
char *ctime(const time_t *timer);

timer Pointer to stored time

The ctime function converts a time stored as a time_t value to a character string.
The timer value is usually obtained from a call to time, which returns the number
of seconds elapsed since midnight (00:00:00), December 31, 1899, Universal
Coordinated Time.

The string result produced by ctime contains exactly 26 characters and has the
form of the following example:

Wed Jan 02 02:03:55 1980\n\@

A 24-hour clock is used. All fields have a constant width. The newline character
(\n) and the null character (*\0°) occupy the last two positions of the string.

Calls to the ctime function modify the single statically allocated buffer used by the
gmtime and the localtime functions. Each call to one of these routines destroys
the result of the previous call. The ctime function also shares a static buffer with
the asctime function. Thus, a call to ctime destroys the results of any previous call
to asctime, localtime, or gmtime.

The ctime function returns a pointer to the character string result. If time repre-
sents a date before midnight, December 31, 1899, Universal Coordinated Time,
ctime returns NULL.

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

asctime, _ftime, gmtime, localtime, time

174 ctime

ExanuMe /% CTIME.C: This program gets the current time in time_t form, then uses
* ctime to display the time in string form.
*/

f#include <time.h>
#include <stdio.h>

void main(void)

{

time_t Ttime;

time(<ime);

printf("The time is %s\n", ctime(<ime));
}

Output The time is Tue Jun 15 16:08:18 1999

_dieeetomshin, _dmshintoieee 175

Description

Remarks

Return Value

Compatibility

See Also

_dieeetomshin, _dmsbhintoieee

Convert between IEEE double value and Microsoft (MS) binary double value.
#include <math.h>

int _dieeetomsbin(double *src8, double *dsz8);

int _dmsbintoieee(double *src8, double *dst8);

src8 Buffer containing value to convert

dst8 Buffer to store converted value

The _dieeetomsbin routine converts a double-precision number in IEEE (Institute
of Electrical and Electronic Engineers) format to Microsoft (MS) binary format.
The routine _dmsbintoieee converts a double-precision number in MS binary for-
mat to IEEE format.

These routines allow C programs (which store floating-point numbers in the IEEE
format) to use numeric data in random-access data files created with those ver-
sions of Microsoft Basic that store floating-point numbers in MS binary format,
and vice versa.

The argument src8 is a pointer to the double value to be converted. The result is
stored at the location given by dst8.

These routines do not handle IEEE NANSs (“not a number”) and infinities. IEEE
denormals are treated as O in the conversions.

These functions return O if the conversion is successful and 1 if the conversion
causes an overflow.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

_fieeetomsbin, _fmsbintoiecee

176 difftime

difftime
Description Finds the difference between two times.

#include <time.h> Required only for function declarations

double difftime(time_t timerl, time_t timer0);

timerQ Beginning time
timerl Ending time

Remarks The difftime function computes the difference between the supplied time values,
timer0 and timerl.

Return Value The difftime function returns, in seconds, the elapsed time from timer0 to timerl.

The value returned is a double-precision number.

Compatibility Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

See Also time

Example /% DIFFTIME.C: This program calculates the amount of time needed to
* do a floating-point multiply 50000 times.
*/

f#include <stdio.h>
f#include <stdlib.h>
f#include <time.h>

difftime 177

void main(void)

{
time_t start, finish;
unsigned loop;
double result, elapsed_time;

printf("This program will do a floating point multiply 50000 times\n");
printf("Working...\n");

time(&start);

for(Toop = @; loop < 50000L; loop++)
result = 3.63 * 5.27;

time(&finish);

elapsed_time = difftime(finish, start);
printf("\nProgram takes %6.2f seconds.\n", elapsed_time);

Output This program will do a floating point multiply 50000 times
Working...

Program takes 4.00 seconds.

178 _disable

_disable

Description Disables interrupts.
#include <dos.h>

void _disable(void);

Remarks The _disable routine disables interrupts by executing an 8086 CLI machine in-
struction. Use _disable before modifying an interrupt vector.

Return Value None.

Compatibility Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

See Also _enable

_displaycursor 179

Description

Remarks

Return Value

Compatibility

See Also

Example

_displaycursor

Sets the cursor toggle for graphics functions.
#include <graph.h>
short __ far _displaycursor(short flag);

flag Cursor state

Upon entry into each graphic routine, the screen cursor is turned off. The
_displaycursor function determines whether the cursor will be turned back on
when programs exit graphic routines. If flag is set to _GCURSORON, the
cursor will be restored on exit. If flag is set to _ GCURSOROFTF, the cursor
will be left off.

The function returns the previous value of flag. There is no error return.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

_gettextcursor, _settextcursor

/* DISCURS.C: This program changes the cursor shape using _gettextcursor
* and _settextcursor, and hides the cursor using _displaycursor.

#include <conio.h>
#include <graph.h>

180 _displaycursor

void main(void)
{
short oldcursor;
short newcursor = 0x007; /* Full block cursor =/

/* Save old cursor shape and make sure cursor is on */
oldcursor = _gettextcursor();

_clearscreen(_GCLEARSCREEN);

_displaycursor(_GCURSORON);

_outtext("\n0ld cursor shape: ");

_getch();

/* Change cursor shape */

_outtext("\nNew cursor shape: ");
_settextcursor(newcursor);
_getch();

/* Restore original cursor shape */
_outtext("\n");
_settextcursor(oldcursor);

div 181

Description

Remarks

Return Value

Compatibility

See Also

div
Computes the quotient and the remainder of two integer values.
#include <stdlib.h>

div_t div(int numer, int denom);

numer Numerator

denom Denominator

The div function divides numer by denom, computing the quotient and the re-
mainder. The div_t structure contains the following elements:

Element Description
int quot Quotient
int rem Remainder

The sign of the quotient is the same as that of the mathematical quotient. Its
absolute value is the largest integer that is less than the absolute value of the
mathematical quotient. If the denominator is 0, the program will terminate with
an error message.

The div function returns a structure of type div_t, comprising both the quotient
and the remainder. The structure is defined in STDLIB.H.

Standards: ANSI
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

1div

182 div

Exanuﬂe /% DIV.C: This example takes two integers as command-line arguments and
displays the results of the integer division. This program accepts

* two arguments on the command Tine following the program name, then
calls div to divide the first argument by the second. Finally,

* it prints the structure members quot and rem.

*/

*

*

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

void main(int argc, char *argv[])

{
int x,y;
div_t div_result;
x = atoi(argv[1l]);
y = atoi(argv[2]);
printf("x is %d, y is %d\n", x, y);
div_result = div(x, y);
printf("The quotient is %d, and the remainder is %d\n",
div_result.quot, div_result.rem);
}
Output [C:\LIBREF] div 876 13

x is 876, y is 13
The quotient is 67, and the remainder is 5

_dos_allocmem 183

Description

Remarks

Return Value

Compatibility

See Also

_dos_allocmem

Allocates a block of memory, using DOS service 0x48.

#include <dos.h>

#include <errno.h>
unsigned _dos_allocmem(unsigned size, unsigned *seg);

size Block size to allocate

seg Return buffer for segment descriptor

The _dos_allocmem function uses DOS service 0x48 to allocate a block of
memory size paragraphs long. (A paragraph is 16 bytes.) Allocated blocks are al-
ways paragraph aligned. The segment descriptor for the initial segment of the new
block is returned in the word that seg points to. If the request cannot be satisfied,
the maximum possible size (in paragraphs) is returned in this word instead.

If successful, the _dos_allocmem returns 0. Otherwise, it returns the DOS error
code and sets errno to ENOMEM, indicating insufficient memory or invalid
arena (memory area) headers.

Standards: None
16-Bit: DOS
32-Bit: None

_alloca, calloc functions, _dos_freemem, _dos_setblock, _halloc, malloc
functions

184 _dos_allocmem

Example /* DALOCMEM.C: This program allocates 20 paragraphs of memory, increases
* the allocation to 40 paragraphs, and then frees the memory space.
*/

f#include <dos.h>
#include <stdio.h>

void main(void)

{
unsigned segment;
unsigned maxsize;

/* Allocate 20 paragraphs */

if(_dos_allocmem(20, &segment) != 0)
printf("allocation failed\n");

else
printf("allocation successful\n");

/* Increase allocation to 40 paragraphs */

if(_dos_setblock(40, segment, &maxsize) != 0)
printf("allocation increase failed\n");

else
printf("allocation increase successful\n");

/* free memory */
if(_dos_freemem(segment) != 0)
printf("free memory failed\n");
else
printf("free memory successful\n");

Output allocation successful
allocation increase successful
free memory successful

_dos_close 185

_dos_close

Description Closes a file using system call 0x3E.

#include <dos.h>

#include <errno.h>

unsigned _dos_ close(int handle);

handle Target file handle

Remarks The _dos_close function uses system call 0x3E to close the file indicated by
handle. The file’s handle argument is returned by the call that created or last
opened the file.

Return Value The function returns 0 if successful. Otherwise, it returns the DOS error code and

sets errno to EBADF, indicating an invalid file handle.

Do not use the DOS interface I/O routines with the console, low-level, or stream
I/0 routines.

Compatibility Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

See Also _close, _creat, _dos_creat functions, _dos_open, _dos_read, _dos_write,
_dup, _open

Example /% DOPEN.C: This program uses DOS I/0 functions to open and close a file. */

#include <fcntl.h>
#include <stdio.h>
f#include <dos.h>

186 _dos_close

void main(void)
{
int fh;

/* Open file with _dos_open function */
if(_dos_open("datal", _O_RDONLY, &fh) 1= 0)
perror("Open failed on input file\n");
else
printf("Open succeeded on input file\n");

/* Close file with _dos_close function */
if(_dos_close(fh) !=0)

perror("Close failed\n");
else

printf("File successfully closed\n");

Output Open succeeded on input file
File successfully closed

_dos_commit 187

_dos_commit

Description Flushes a file to disk using system call 0x68.

#include <dos.h>

#finclude <errno.h>

unsigned _ dos_commit(int handle);

handle Target file handle

Remarks The _dos_commit function uses system call 0x68 to flush to disk the DOS
buffers associated with the file indicated by handle. It also forces an update on the
corresponding disk directory and the file allocation table. System call 0x68 en-
sures that the specified file is flushed directly to disk and not flushed at the operat-
ing system’s discretion.

The system call used to implement _dos_commit is only available in DOS ver-
sions 3.3 and later. Using _dos_commit in earlier versions of DOS results in un-
defined behavior.

Do not use the DOS interface I/O routines with the console, low-level, or stream
I/0 routines.

Return Value The function returns O if successful. Otherwise, it returns the DOS error code and
sets errno to EBADF, indicating an invalid file handle.

Compatibility Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None
See Also _close, _creat, _dos_creat functions, _dos_open, _dos_read, _dos_write,
_dup, _open
Example /*% DCOMMIT.C illustrates DOS file I/0 functions including:
* _dos_commit _dos_creatnew _dos_write
* _dos_creat _dos_close

*/

188 _dos_commit

#include <dos.h>
#include <errno.h>
#include <conio.h>

void main(void)
{

char saveit[] "Straight to disk. ",

prompt[] "File exists, overwrite? [y|n] ",
err[] = "Error occured. ",
newline[] = "\n\r";

int hfile, ch;
unsigned count;

/* Open file and create, overwriting if necessary. */
if(_dos_creatnew("COMMIT.LOG", _A_NORMAL, &hfile) != 0)

{
if(errno == EEXIST)
{
/* Use _dos_write to display prompts. Use bdos to call
* function 1 to get and echo keystroke.
*/
_dos_write(1, prompt, sizeof(prompt) - 1, &count);
ch = bdos(1, @, @) & 0x00ff;
if((ch == "'y") || (ch == "'Y"))
_dos_creat("COMMIT.LOG", _A_NORMAL, &hfile);
_dos_write(1, newline, sizeof(newline) - 1, &count);
}
}
/* Write to file; output passes through operating system's buffers.
if(_dos_write(hfile, saveit, sizeof(saveit), &count) != 0)
{

_dos_write(1, err, sizeof(err) - 1, &count);
_dos_write(1, newline, sizeof(newline) - 1, &count);
}

/* Write directly to file with no intermediate buffering %/
if(_dos_commit(hfile) l= 0)
{
_dos_write(1, err, sizeof(err) - 1, &count);
_dos_write(1, newline, sizeof(newline) - 1, &count);
}

/* Close file. */

if(_dos_close(hfile) !=0)

{
_dos_write(1, err, sizeof(err) - 1, &count);
_dos_write(1, newline, sizeof(newline) - 1, &count);

*/

_dos_creat Functions 189

Description

Remarks

Return Value

_dos_creat Functions

Create a new file.

#include <dos.h>

#include <errno.h>

unsigned _ dos_ creat(char *filename, unsigned attrib, int *handle);

unsigned _ dos_creatnew(char *filename, unsigned attrib, int *handle);

filename File path name
attrib File attributes
handle Handle return buffer

The _dos_creat and _dos_creatnew routines create and open a new file named
filename; this new file has the access attributes specified in the attrib argument.
The new file’s handle is copied into the integer location pointed to by handle. The
file is opened for both read and write access. If file sharing is installed, the file is
opened in compatibility mode.

The _dos_creat routine uses system call 0x3C, and the _dos_ creatnew routine
uses system call 0x5B. If the file already exists, _dos_creat erases its contents
and leaves its attributes unchanged; however, the _dos_ creatnew routine fails if
the file already exists.

If successful, both routines return 0. Otherwise, they return the DOS error code
and set errno to one of the following values:

Constant Meaning

EACCES Access denied because the directory is full or, for _dos_ creat
only, the file exists and cannot be overwritten

EEXIST File already exists (_dos_creatnew only)

EMFILE Too many open file handles

ENOENT Path or file not found

190 _dos_creat Functions

Compatibility Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

Example /* DCREAT.C: This program creates a file using the _dos_creat function. The
* program cannot create a new file using the _dos_creatnew function
* because it already exists.
*/

f#include <stdio.h>
#include <stdlib.h>
#include <dos.h>

void main(void)

{
int fhl, fh2;
int result;
if(_dos_creat("data", _A_NORMAL, &fhl) != 0@)
printf("Couldn't create data file\n");
else
{
printf("Created data file.\n");
/* If _dos_creat is successful, the _dos_creatnew call
will fail since the file exists
*/
if(_dos_creatnew("data", _A_RDONLY, &fh2) != 0)
printf("Couldn't create data file\n");
else
{
printf("Created data file.\n");
_dos_close(fh2);
}
_dos_close(fhl);
}
}
Output Created data file.

Couldn't create data file

_dos_find Functions

Description

Remarks

_dos_find Functions

Find the file with the specified attributes or find the next file with the specified
attributes.
#include <dos.h>
#include <errno.h>
unsigned _ dos_findfirst(char *filename, unsigned attrib,
struct _find_t *fileinfo);

unsigned _ dos_findnext(struct _find_t *fileinfo);

filename Target filename
attrib Target attributes
fileinfo File-information buffer

The _dos_findfirst routine uses system call 0x4E to return information about the
first instance of a file whose name and attributes match filename and attrib.

The filename argument may use wildcards (* and ?). The attrib argument can be
any of the following manifest constants:

Constant Meaning

_A_ARCH Archive. Set whenever the file is changed, and cleared by
the DOS BACKUP command.

_A_HIDDEN Hidden file. Cannot be found with the DOS DIR

command. Returns information about normal files as
well as about files with this attribute.

_A_NORMAL Normal. File can be read or written without restriction.

_A_RDONLY Read-only. File cannot be opened for writing, and a file
with the same name cannot be created. Returns
information about normal files as well as about files with
this attribute.

_A_SUBDIR Subdirectory. Returns information about normal files as
well as about files with this attribute.

192 _dos_find Functions

Constant Meaning

_A_SYSTEM System file. Cannot be found with the DOS DIR
command. Returns information about normal files as
well as about files with this attribute.

_A_VOLID Volume ID. Only one file can have this attribute, and it
must be in the root directory.

Multiple constants can be combined (with the OR operator), using the vertical-bar
(I') character.

If the artrib argument to either of these functions is _A_RDONLY,
_A_HIDDEN, _A_SYSTEM, or _A_SUBDIR, the function also returns
any normal attribute files that match the filename argument. That is, a normal
file does not have a read-only, hidden, system, or directory attribute.

Information is returned in a _find_t structure, defined in DOS.H. The _find_t
structure contains the following elements:

Element Description

char reserved[21] Reserved for use by DOS

char attrib Attribute byte for matched path

unsigned wr_time Time of last write to file

unsigned wr_date Date of last write to file

long size Length of file in bytes

char name[13] Null-terminated name of matched file/directory, without
the path

The formats for the wr_time and wr_date elements are in DOS format and are
not usable by any other C run-time function. The time format is shown below:

Bits Contents

0-4 Number of 2-second increments (0—29)
5-10 Minutes (0—59)

11-15 Hours (0-23)

The date format is shown below:

Bits Contents
0-4 Day of month (1-31)
5-8 Month (1-12)

9-15 Year (relative to 1980)

_dos_find Functions 193

Return Value

Do not alter the contents of the buffer between a call to _dos_findfirst and a sub-
sequent call to the _dos_findnext function. Also, the buffer should not be altered
between calls to _dos_findnext.

The _dos_findnext routine uses system call 0x4F to find the next name, if any,
that matches the filename and artrib arguments specified in a prior call to
_dos_findfirst. The fileinfo argument must point to a structure initialized by a pre-
vious call to _dos_findfirst. The contents of the structure will be altered as de-
scribed above if a match is found.

If successful, both functions return 0. Otherwise, they return the DOS error code
and set errno to ENOENT, indicating that filename could not be matched.

Compatibility Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None
Example /* DFIND.C: This program finds and prints all files in the current directory

Output

* with the .c extension.
*/

#include <stdio.h>
#include <dos.h>

void main(void)

{

struct _find_t c_file;

/* find first .c file in current directory */

_dos_findfirst("x.c", _A_NORMAL, &c_file);

printf("Listing of .c files\n\n");

printf("File: %s is %1d bytes\n", c_file.name, c_file.size);

/* find the rest of the .c files */

while(_dos_findnext(&c_file == 0)

printf("File: %s is %1d bytes\n", c_file.name, c_file.size);

}

Listing of .c files

File: CHDIR.C is 524 bytes
File: SIGFP.C is 2674 bytes
File: MAX.C is 258 bytes
File: CGETS.C is 577 bytes
File: FWRITE.C is 1123 bytes

194 _dos_freemem

Description

Remarks

Return Value

Compatibility

See Also

Example

_dos_freemem

Releases a block of memory (0x49).

#include <dos.h>

#include <errno.h>
unsigned _dos_freemem(unsigned seg);

seg Block to be released

The _dos_freemem function uses system call 0x49 to release a block of memory
previously allocated by _dos_allocmem. The seg argument is a value returned by
a previous call to _dos_allocmem. The freed memory may no longer be used by
the application program.

If successful, _dos_freemem returns 0. Otherwise, it returns the DOS error code
and sets errno to ENOMEM,, indicating a bad segment value (one that does not
correspond to a segment returned by a previous _dos_allocmem call) or invalid
arena headers.

Standards: None
16-Bit: DOS
32-Bit: None

_dos_allocmem, _dos_setblock, free functions

/* DALOCMEM.C: This program allocates 20 paragraphs of memory, increases
* the allocation to 40 paragraphs, and then frees the memory space.

f#include <dos.h>
#include <stdio.h>

_dos_freemem 195

void main(void)

{
unsigned segment;
unsigned maxsize;

/* Allocate 20 paragraphs */

if(_dos_allocmem(20, &segment) != 0)
printf("allocation failed\n");

else
printf("allocation successful\n"™);

/* Increase allocation to 40 paragraphs =/

if(_dos_setblock(40, segment, &maxsize) != 0)
printf("allocation increase failed\n");

else
printf("allocation increase successful\n");

/* Free memory */
if(_dos_freemem(segment) != 0)
printf("free memory failed\n");
else
printf("free memory successful\n");

Output allocation successful
allocation increase successful
free memory successful

196 _dos_getdate

_dos_getdate

Description Gets current system date using system call 0x2A.
#include <dos.h>
void _dos_getdate(struct _dosdate_t *date);

date Current system date

Remarks The _dos_getdate routine uses system call 0x2A to obtain the current system
date. The date is returned in a _dosdate_t structure, defined in DOS.H.

The _dosdate_t structure contains the following elements:

Element Description
unsigned char day 1-31
unsigned char month 1-12
unsigned int year 1980-2099
unsigned char dayofweek 0-6 (0 = Sunday)
Return Value None.
Compatibility Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None
See Also _dos_gettime, _dos_setdate, _dos_settime, gmtime, localtime, mktime,

_strdate, _strtime, time

_dos_getdate 197

Example /* DGTIME.C: This program gets and displays current date and time values. */

#include <stdio.h>
#include <dos.h>

void main(void)

{
struct _dosdate_t date;
struct _dostime_t time;

/* Get current date and time values */

_dos_getdate(&date);
_dos_gettime(&time);

printf("Today's date is %d-%d-%d\n", date.month, date.day, date.year);
printf("The time is %02d:%02d\n", time.hour, time.minute);

Output Today's date is 12-15-1999
The time is 18:07

198 _dos_getdiskiree

Description

Remarks

Return Value

Compatibility

See Also

dos getdiskfree

Gets disk information using system call 0x36.

#include <dos.h>

#include <errno.h>
unsigned _ dos_getdiskfree(unsigned drive, struct _diskfree_t *diskspace);

drive Drive number (default is 0)

diskspace Buffer to hold disk information

The _dos_ getdiskfree routine uses system call 0x36 to obtain information on the
disk drive specified by drive. The default drive is 0, drive A is 1, drive B is 2, and
so on. Information is returned in the _diskfree_t structure (defined in DOS.H)
pointed to by diskspace.

The struct _diskfree_t structure contains the following elements:

Element Description

unsigned total_clusters Total clusters on disk
unsigned avail_clusters Available clusters on disk
unsigned sectors_ per_cluster Sectors per cluster
unsigned bytes_per_sector Bytes per sector

If successful, the function returns 0. Otherwise, it returns a nonzero value and sets
errno to EINVAL, indicating that an invalid drive was specified.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

—dos_getdrive, _dos_setdrive

_dos_getdiskiree 199

Example

Output

/* DGDISKFR.C: This program displays information about the default disk drive.
*/

f#Hinclude <stdio.h>
f#include <dos.h>

void main(void)
{
struct _diskfree_ t drive;

/* Get information on default disk drive @ */

_dos_getdiskfree(@, &drive);

printf("total clusters: %d\n", drive.total_clusters);

printf("available clusters: %d\n", drive.avail_clusters);
printf("sectors per cluster: %d\n", drive.sectors_per_cluster);
printf("bytes per sector: %d\n", drive.bytes_per_sector);

total clusters: 9013
available clusters: 6030
sectors per cluster: 4
bytes per sector: 512

200 _dos_getdrive

Description

Remarks

Return Value

Compatibility

See Also

_dos_getdrive

Gets the current disk drive using system call 0x19.
#include <dos.h>
void _dos_getdrive(unsigned *drive);

drive Current-drive return buffer

The _dos_getdrive routine uses system call 0x19 to obtain the current disk
drive. The current drive is returned in the word that drive points to: 1 = drive A,
2 =drive B, and so on.

None.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

_dos_getdiskfree, _dos_setdrive, _getdrive

Example /# DGDRIVE.C: This program prints the letter of the current drive,

* changes the default drive to A, then returns the number of disk drives.

#include <stdio.h>
#include <dos.h>

void main(void)

{

unsigned olddrive, newdrive;
unsigned number_of_drives;

/* Print current default drive information */

_dos_getdrive(&olddrive);

printf("The current drive is: %c\n"™, 'A' + olddrive - 1);

_dos_getdrive 201

/* Set default drive to be drive A %/
printf("Changing default drive to A\n");
_dos_setdrive(1, &number_of_drives);

/* Get new default drive information and total number of drives */
_dos_getdrive(&newdrive);

printf("The current drive is: %c\n", 'A' + newdrive - 1);
printf("Number of logical drives: %d\n", number_of_drives);

/* Restore default drive */
_dos_setdrive(olddrive, &number_of_drives);

Output The current drive is: C
Changing default drive to A
The current drive is: A
Number of logical drives: 26

202 _dos_getfileattr

Description

Remarks

Return Value

Compatibility

See Also

dos getfileattr

Gets the current attributes of a file or directory, using system call 0x43.

#include <dos.h>

#include <errno.h>
unsigned _dos_getfileattr(char *pathname, unsigned *artrib);

pathname Full path of target file/directory
attrib Word to store attributes in

The _dos_ getfileattr routine uses system call 0x43 to obtain the current attributes
of the file or directory pointed to by pathname. The attributes are copied to the
low-order byte of the attrib word. Attributes are represented by manifest con-
stants, as described below:

Constant Meaning

_A_ARCH Archive. Set whenever the file is changed, or cleared by the
DOS BACKUP command.

_A_HIDDEN Hidden file. Cannot be found by a directory search.

_A_NORMAL Normal. File can be read or written without restriction.

—A_RDONLY Read-only. File cannot be opened for a write, and a file with the
same name cannot be created.

_A_SUBDIR Subdirectory.

_A_SYSTEM System file. Cannot be found by a directory search.

_A_VOLID Volume ID. Only one file can have this attribute, and it must be

in the root directory.

If successful, the function returns 0. Otherwise, it returns the DOS error code and
sets errno to ENOENT, indicating that the target file or directory could not be
found.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

_access, _chmod, _dos_setfileattr, _umask

_dos_getfileattr 203

Example /* DGFILEAT.C: This program creates a file with the specified attributes,
* then prints this information before changing the file attributes back
* to normal.
*/

f#include <stdio.h>
f#Hinclude <dos.h>

void main(void)

{
unsigned oldattrib, newattrib;
int fh;

/* Get and display file attribute */
_dos_getfileattr("DGFILEAT.C", &oldattrib);
printf("Attribute: @x%.4x\n", oldattrib);
if((oldattrib & _A_RDONLY) != 0)

printf("Read only file\n");
else

printf("Not a read only file.\n");

/* Reset file attribute to normal file */
_dos_setfileattr("DGFILEAT.C", _A_RDONLY);
_dos_getfileattr("DGFILEAT.C", &newattrib);
printf("Attribute: 0x%.4x\n", newattrib);

/* Restore file attribute */
_dos_setfileattr("DGFILEAT.C", oldattrib);
_dos_getfileattr("DGFILEAT.C", &newattrib);
printf("Attribute: 0x%.4x\n", newattrib);

Output Attribute: 0x0020
Not a read only file.
Attribute: 0x0001
Attribute: 0x0020

204 _dos_getftime

_dos_getftime

Description Gets the date and time a file was last written, using system call 0x57.

#include <dos.h>

#include <errno.h>

unsigned _dos_getftime(int handle, unsigned *date, unsigned *time);

handle Target file
date Date-return buffer
time Time-return buffer
Remarks The _dos_getftime routine uses system call 0x57 to get the date and time that the

specified file was last written. The file must have been opened with a call to
—dos_open or _dos_creat prior to calling _dos_getftime. The date and time are
returned in the words pointed to by date and time. The values appear in the DOS
date and time format:

Time Bits Meaning
0-4 Number of 2-second increments (0 -29)
5-10 Minutes (0-59)
11-15 Hours (0-23)
Date Bits Meaning
0-4 Day (1-31)
5-8 Month (1-12)
9-15 Year (1980 -2099)
Return Value If successful, the function returns 0. Otherwise, it returns the DOS error code and

sets errno to EBADF, indicating that an invalid file handle was passed.

Compatibility Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

See Also _dos_setftime, _fstat, _stat

_dos_getftime

205

Example

/* DGFTIME.C: This program displays and modifies the date and time
* fields of a file.
*/

f#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <dos.h>

void main(void)
{

/* FEDC BA98 7654 3210 */
unsigned new_date 0x26¢cf; /* 0010 0110 1100 1111 12/15/99 */
unsigned new_time 0x48e0; /* 0100 1000 1110 0000 9:07 AM */
unsigned old_date, old_time;

int fh;

/* Open file with _dos_open function */
if(_dos_open("dgftime.obj", _O_RDONLY, &fh) != 0)
exit(1);

/% Get file date and time */

_dos_getftime(fh, &old_date, &old_time);
printf("01d date field: @x%.4x\n", old_date);
printf("01d time field: 0x%.4x\n", old_time);
system("dir dgftime.obj");

/* Modify file date and time %/

if(!_dos_setftime(fh, new_date, new_time))

{
_dos_getftime(fh, &new_date, &new_time);
printf("New date field: @x%.4x\n", new_date)
printf("New time field: 0x%.4x\n", new_time)
system("dir dgftime.obj");

/* Restore date and time */
_dos_setftime(fh, old_date, old_time);
}
_dos_close(fh);

206 _dos_getftime

Output 01d date field: @x274f
01d time field: 0x94bb

Volume in drive C is ZEPPELIN
Directory of C:\LIBREF

DGFTIME O0BJ 3923 6-15-99 6:37p
1 File(s) 13676544 bytes free

New date field: @x26¢cf
New time field: 0x48e0@

Volume in drive C is ZEPPELIN
Directory of C:\LIBREF

DGFTIME OBJ 3923 12-15-99 9:07a
1 File(s) 13676544 bytes free

_dos_gettime 207

_dos_gettime

Description Gets the current system time, using system call 0x2C.
#include <dos.h>
void _dos_ gettime(struct _dostime_t *fime);

time Current system time

Remarks The _dos_gettime routine uses system call 0x2C to obtain the current system
time. The time is returned in a _dostime_t structure, defined in DOS.H.

The dostime_t structure contains the following elements:

Element Description
unsigned char hour 0-23
unsigned char minute 0-59
unsigned char second 0-59

unsigned char hsecond 1/100 second; 0-99

Return Value None.

Compatibility Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

See Also _dos_getdate, _dos_setdate, _dos_settime, gmtime, localtime, _strtime

208 _dos_gettime

ExanuMe /* DGTIME.C: This program gets and displays current date and time values. */

#include <stdio.h>
#include <dos.h>

void main(void)

{
struct _dosdate_t date;
struct _dostime_t time;

/* Get current date and time values */

_dos_getdate(&date);
_dos_gettime(&time);

printf("Today's date is %d-%d-%d\n", date.month, date.day, date.year);
printf("The time is %02d:%02d\n", time.hour, time.minute);

Output Today's date is 12-15-1999
The time is 18:07

_dos_getvect 209

Description

Remarks

Return Value

Compatibility

See Also

_dos_getvect

Gets the current value of the interrupt vector, using system call 0x35.
#include <dos.h>
void (__cdecl __interrupt __far *_dos_getvect(unsigned intnum))();

intnum Target interrupt vector

The _dos_getvect routine uses system call 0x35 to get the current value of the in-
terrupt vector specified by intnum.

This routine is typically used in conjunction with the _dos_setvect function. To
replace an interrupt vector, first save the current vector of the interrupt using
_dos_getvect. Then set the vector to your own interrupt routine with
_dos_setvect. The saved vector can later be restored, if necessary, using
_dos_setvect. The user-defined routine may also need the original vector in order
to call that vector or chain to it with _chain_intr.

The function returns a far pointer for the intnum interrupt to the current handler, if
there is one.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

_chain_intr, _dos_keep, _dos_setvect

210 _dos_keep

Description

Remarks

_dos_keep

Installs TSR (terminate-and-stay-resident) programs in memory, using system call
0x31.

#include <dos.h>

void _dos_keep(unsigned retcode, unsigned memsize);

retcode Exit status code
memsize Allocated resident memory (in 16-byte
paragraphs)

The _dos_keep routine installs TSRs (terminate-and-stay-resident programs) in
memory, using system call 0x31.

The routine first exits the calling process, leaving it in memory. It then returns the
low-order byte of retcode to the parent of the calling process. Before returning ex-
ecution to the parent process, _dos_keep sets the allocated memory for the now-
resident process to memsize 16-byte paragraphs. Any excess memory is returned
to the system.

The _dos_Kkeep function calls the same internal routines called by exit. It there-
fore takes the following actions:

= Calls any functions that have been registered by atexit or _onexit calls.
= Flushes all file buffers.

m Restores interrupt vectors replaced by the C startup code. The primary one is in-
terrupt O (divide by zero). If the emulator math library is used and there is no co-
processor, interrupts 0x34 through 0x3D are restored. If there is a coprocessor,
interrupt 2 is restored.

Do not use the emulator math library in TSRs unless you are familiar with the
startup code and the coprocessor. Use the alternate math package if the TSR must
do floating-point math.

Do not run programs that use _dos_keep from inside the Microsoft Programmer’s
WorkBench environment, since doing so causes subsequent memory problems.
The _dos_keep function terminates the program when executed in the
Programmer’s WorkBench environment.

_dos_keep 211

Return Value None.

Compatibility Standards: None
16-Bit: DOS
32-Bit: None

See Also _cexit, _chain_intr, _dos_getvect, _dos_setvect, _exit

212 _dos_open

Description

Remarks

_dos_open

Opens a file, using system call 0x3D.

#include <dos.h>

#include <errno.h>

#include <fentl.h> Access mode constants
#include <share.h> Sharing mode constants

unsigned _dos_open(char *filename, unsigned mode, int *handle);

filename Path to an existing file
mode Permissions
handle Pointer to integer

The _dos_open routine uses system call 0x3D to open the existing file pointed to
by filename. The handle for the opened file is copied into the integer pointed to by
handle. The mode argument specifies the file’s access, sharing, and inheritance
modes by combining (with the OR operator) manifest constants from the three
groups shown below. At most, one access mode and one sharing mode can be
specified at a time.

Constant Mode Meaning
_O_RDONLY Access Read-only
_~O_WRONLY Access Write-only
_O_RDWR Access Both read and write
—SH_COMPAT Sharing Compatibility
_SH_DENYRW Sharing Deny reading and writing
_SH_DENYWR Sharing Deny writing
_SH_DENYRD Sharing Deny reading
_SH_DENYNO Sharing Deny neither
_O_NOINHERIT Inheritance by the child File is not inherited
process

Do not use the DOS interface I/O routines in conjunction with the console, low-
level, or stream I/O routines.

_dos_open 213

Return Value

If successful, the function returns 0. Otherwise, it returns the DOS error code and
sets errno to one of the following manifest constants:

Constant Meaning

EACCES Access denied (possible reasons include specifying a directory
or volume ID for filename, or opening a read-only file for write
access)

EINVAL Sharing mode specified when file sharing not installed, or access-
mode value is invalid

EMFILE Too many open file handles

ENOENT Path or file not found

Compatibility Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

See Also

Example

Output

_dos_close, _dos_read, _dos_write

/* DOPEN.C: This program uses DOS I/0 functions to open and close a file. */
#include <fcntl.h>

#include <stdio.h>

#include <dos.h>

void main(void)

{
int fh;
/* Open file with _dos_open function */
if(_dos_open("datal", _O_RDONLY, &fh) != 0)
perror("Open failed on input file\n");
else
printf("Open succeeded on input file\n");
/* Close file with _dos_close function */
if(_dos_close(fh) !=0)
perror("Close failed\n");
else
printf("File successfully closed\n");
}

Open succeeded on input file
File successfully closed

214 _dos_read

Description

Remarks

Return Value

Compatibility

See Also

_dos_read

Reads data from a file, using system call Ox3F.
#include <dos.h>

unsigned _dos_read(int handle, void __far *buffer, unsigned count,
unsigned *numread);

handle File to read

buffer Buffer to write to

count Number of bytes to read
numread Number of bytes actually read

The _dos_read routine uses system call 0x3F to read count bytes of data from the
file specified by handle. The routine then copies the data to the buffer pointed to
by buffer. The integer pointed to by numread will show the number of bytes actu-
ally read, which may be less than the number requested in count. If the number of
bytes actually read is 0, it means the routine tried to read at end-of-file.

Do not use the DOS interface I/O routines in conjunction with the console, low-
level, or stream I/O routines.

If successful, the function returns 0. Otherwise, it returns the DOS error code and
sets errno to one of the following constants:

Constant Meaning
EACCES Access denied (handle is not open for read access)
EBADF File handle is invalid

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

_dos_close, _dos_open, _dos_write, _read

_dos_read 215

Example

Output

/+* DREAD.C: This program uses the DOS I/0 operations to read the contents

* of a file.

f#include <fcntl.hd>
#include <stdlib.h>
#include <stdio.h>
#include <dos.h>

void main(void)

{

int fh;
char buffer[50];
unsigned number_read;

/* Open file with _dos_open function */

if(_dos_open("dread.c", _O_RDONLY, &fh) != 0)
perror("Open failed on input file\n");

else
printf("Open succeeded on input file\n");

/* Read data with _dos_read function */
_dos_read(fh, buffer, 50, &number_read);
printf("First 40 characters are: %.40s\n\n", buffer);

/* Close file with _dos_close function =%/
_dos_close(fh);

Open succeeded on input file
First 40 characters are: /* DREAD.C: This program uses the DOS I/

216 _dos_sethlock

Description

Remarks

Return Value

Compatibility

See Also

Example

_dos_sethlock

Changes the size of a memory segment, using system call 0x4A.
#include <dos.h>

unsigned _dos_setblock(unsigned size, unsigned seg, unsigned *maxsize);

size New segment size
seg Target segment
maxsize Maximum-size buffer

The _dos_setblock routine uses system call 0x4A to change the size of seg, pre-
viously allocated by _dos_allocmem, to size paragraphs. If the request cannot be
satisfied, the maximum possible segment size is copied to the buffer pointed to by
maxsize.

The function returns O if successful. If the call fails, it returns the DOS error code
and sets errno to ENOMEM, indicating a bad segment value was passed. A bad
segment value is one that does not correspond to a segment returned from a pre-
vious _dos_allocmem call, or one that contains invalid arena headers.

Standards: None
16-Bit: DOS
32-Bit: None

_dos_allocmem, _dos_freemem, realloc functions

/* DALOCMEM.C: This program allocates 20 paragraphs of memory, increases
* the allocation to 40 paragraphs, and then frees the memory space.

#include <dos.h>
#include <stdio.h>

_dos_sethlock 217

void main(void)

{
unsigned segment;
unsigned maxsize;

/* Allocate 20 paragraphs */

if(_dos_allocmem(20, &segment) != 0)
printf("allocation failed\n");

else
printf("allocation successful\n");

/* Increase allocation to 40 paragraphs */

if(_dos_setblock(4@, segment, &maxsize) =0)
printf("allocation increase failed\n");

else
printf("allocation increase successful\n");

/* Free memory =/
if(_dos_freemem(segment) != 0)
printf("free memory failed\n");
else
printf("free memory successful\n");

Output allocation successful
allocation increase successful
free memory successful

218 _dos_setdate

_dos_setdate

Description Sets the current system date, using system call 0x2B.
#include <dos.h>
unsigned _dos_setdate(struct _dosdate_t *date);

date New system date

Remarks The _dos_setdate routine uses system call 0x2B to set the current system date.
The date is stored in the _dosdate_t structure pointed to by date, defined in
DOS.H. The _dosdate_t structure contains the following elements:

Element Description
unsigned char day 1-31
unsigned char month 1-12
unsigned int year 1980-2099
unsigned char dayofweek 0-6 (0 = Sunday)
Return Value If successful, the function returns 0. Otherwise, it returns a nonzero value and sets

errno to EINVAL, indicating an invalid date was specified.

Compatibility Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None
See Also _dos_getdate, _dos_gettime, _dos_settime, gmtime, localtime, mktime,

_strdate, _strtime, time

_dos_setdate 219

Exanuﬂe /* DSTIME.C: This program changes the time and date values and displays the
* new date and time values.
*/

#include <dos.h>

#include <conio.h>
#include <stdio.h>
#include <time.h>

void main(void)

{
struct _dosdate_t olddate, newdate
struct _dostime_t oldtime, newtime
char datebuf[40], timebuf[40];

Yy, {71}, {1999 } };
Y, {453, {301}, {01} };

non
~ o~

/* Get current date and time values */

_dos_getdate(&olddate);

_dos_gettime(&oldtime);

printf("%s %s\n" , _strdate(datebuf), _strtime(timebuf));

/* Modify date and time structures */

_dos_setdate(&newdate);

_dos_settime(&newtime);

printf("%s %s\n" , _strdate(datebuf), _strtime(timebuf));

/* Restore old date and time */
_dos_setdate(&olddate);
_dos_settime(&oldtime);

Output 12/15/99 18:26:09
07/04/99 03:45:30

220 _dos_setdrive

Description

Remarks

Return Value

Compatibility

See Also

Example

_dos_setdrive

Sets the default drive, using system call OxOE.
#include <dos.h>
void _dos_setdrive(unsigned drive, unsigned *numdrives);

drive New default drive

numdrives Total drives available

The _dos_setdrive routine uses system call OxOE to set the current default drive
to the drive argument: 1 = drive A, 2 = drive B, and so on. The numdrives argu-
ment indicates the total number of drives in the system. If this value is 4, for ex-
ample, it does not mean the drives are designated A, B, C, and D; it means only
that four drives are in the system.

There is no return value. If an invalid drive number is passed, the function fails
without indication. Use the _dos_getdrive routine to verify whether the desired
drive has been set.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

_dos_getdiskfree, _dos_getdrive

/* DGDRIVE.C: This program prints the letter of the current drive,
* changes the default drive to A, then returns the number of disk drives.

#include <stdio.h>
#include <dos.h>

_dos_setdrive 221

void main(void)

{
unsigned olddrive, newdrive;
unsigned number_of_drives;
/* Print current default drive information */
_dos_getdrive(&olddrive);
printf("The current drive is: %c\n", 'A' + olddrive - 1);
/* Set default drive to be drive A */
printf("Changing default drive to A\n");
_dos_setdrive(1, &number_of_drives);
/* Get new default drive information and total number of drives */
_dos_getdrive(&newdrive);
printf("The current drive is: %c\n", 'A' + newdrive - 1);
printf("Number of logical drives: %d\n", number_of_drives);
/* Restore default drive */
_dos_setdrive(olddrive, &number_of_drives);

}

Output The current drive is: C

Changing default drive to A
The current drive is: A
Number of logical drives: 26

222 _dos_setfileattr

dos setfileattr

Description Sets the attributes of the file or directory, using system call 0x43.
#include <dos.h>

unsigned _ dos_setfileattr(char *pathname, unsigned attrib);

pathname Full path of target file/directory
attrib New attributes
Remarks The _dos_setfileattr routine uses system call 0x43 to set the attributes of the file

or directory pointed to by pathname. The actual attributes are contained in the low-
order byte of the attrib word. Attributes are represented by manifest constants, as

described below:

Constant Meaning

_A_ARCH Archive. Set whenever the file is changed, or cleared by the
DOS BACKUP command.

_A_HIDDEN Hidden file. Cannot be found by a directory search.

_A_NORMAL Normal. File can be read or written to without restriction.

_A_RDONLY Read-only. File cannot be opened for writing, and a file with the
same name cannot be created.

_A_SUBDIR Subdirectory.

_A_SYSTEM System file. Cannot be found by a directory search.

_A_VOLID Volume ID. Only one file can have this attribute, and it must be
in the root directory.

Return Value The function returns O if successful. Otherwise, it returns the DOS error code and

sets errno to one of the following:

Constant Meaning

EACCES Access denied; cannot change the volume ID or the subdirectory.
ENOENT No file or directory matching the target was found.

_dos_setfileattr 223

Compatibility Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

See Also _dos_getfileattr

Example /* DGFILEAT.C: This program creates a file with the specified attributes,
* then prints this information before changing the file attributes back
* to normal.
*/

#include <stdio.h>
#include <dos.h>

void main(void)

{
unsigned oldattrib, newattrib;
int fh;

/* Get and display file attribute */
_dos_getfileattr("DGFILEAT.C", &oldattrib);
printf("Attribute: 0x%.4x\n", oldattrib);
if((oldattrib & _A_RDONLY) != 0)

printf("Read only file\n");
else

printf("Not a read only file.\n");

/* Reset file attribute to normal file */
_dos_setfileattr("DGFILEAT.C"™, _A_RDONLY);
_dos_getfileattr("DGFILEAT.C", &newattrib);
printf("Attribute: 0x%.4x\n", newattrib);

/* Restore file attribute =/
_dos_setfileattr("DGFILEAT.C", oldattrib);
_dos_getfileattr("DGFILEAT.C", &newattrib);
printf("Attribute: 0x%.4x\n", newattrib);

Output Attribute: 0x0020
Not a read only file.
Attribute: 0x0001
Attribute: 0x0020

224 _dos_setftime

Description

Remarks

Return Value

Compatibility

_dos_setftime

Sets the date and time for a file, using system call 0x57.
#include <dos.h>

unsigned _ dos_setftime(int handle, unsigned date, unsigned time);

handle Target file
date Date of last write
time Time of last write

The _dos_setftime routine uses system call 0x57 to set the date and time at which
the file identified by handle was last written to. These values appear in the DOS
date and time format, described in the following lists:

Time Bits Meaning

0-4 Number of two-second increments (0 —29)

5-10 Minutes (0-59)

11-15 Hours (0-23)

Date Bits Meaning

0-4 Day (1-31)

5-8 Month (1-12)

9-15 Year since 1980 (for example, 1999 is stored as 9)

If successful, the function returns 0. Otherwise, it returns the DOS error code and
sets errno to EBADF, indicating that an invalid file handle was passed.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

_dos_setftime

225

See Also

Example

_dos_getftime, _fstat, _stat

/* DGFTIME.C: This program displays and modifies the date and time
* fields of a file.

*/

#include
fFinclude
#Finclude
#include

<fcntl.h>
<stdio.h>
<stdlib.h>
<dos.h>

void main(void)

{

unsigned new_date
unsigned new_time

/% FEDC BA98 7654 3210 */
0x26cf; /* 0010 0110 1100 1111 12/15/99 */
0x48e0; /* 0100 1000 1110 0000 9:07 AM =/

unsigned old_date, old_time;

int fh;

/* Open file with _dos_open function */
if(_dos_open("dgftime.obj", _O_RDONLY, &fh) != @)
exit(1);

/* Get file date and time */

dos_getftime(fh, &old_date, &old_time);

printf("01d date field: @x%.4x\n", old_date);
printf("01d time field: @x%.4x\n", old_time);
system("dir dgftime.obj");

/* Modify file date and time */
if(!_dos_setftime(fh, new_date, new_time))

{

_dos_getftime(fh, &new_date, &new_time);

printf("New date field: @x%.4x\n", new_date)
printf("New time field: 0x%.4x\n", new_time)

we we

system("dir dgftime.obj");

VES

Restore date and time x/

_dos_setftime(fh, old_date, old_time);

}

_dos_close(fh);

226 _dos_setftime

Output 01d date field: 0x274f
01d time field: @x94bb

Volume in drive C is ZEPPELIN
Directory of C:\LIBREF

DGFTIME 0BJ 3923 6-15-99 6:37p
1 File(s) 13676544 bytes free

New date field: @x26cf
New time field: 0x48e0

Volume in drive C is ZEPPELIN
Directory of C:\LIBREF

DGFTIME O0BJ 3923 12-15-99 9:07a
1 File(s) 13676544 bytes free

_dos_settime 227

Description

Remarks

Return Value

Compatibility

See Also

_dos_settime

Sets the current system time, using system call 0x2D.
#include <dos.h>
unsigned _ dos_settime(struct _dostime_t *time);

time New system time

The _dos_settime routine uses system call 0x2D to set the current system time to
the value stored in the _dostime_t structure that fime points to, as defined in
DOS.H. The _dostime_t structure contains the following elements:

Element Description

unsigned char hour 0-23

unsigned char minute 0-59

unsigned char second 0-59

unsigned char hsecond Hundredths of a second; 0-99

If successful, the function returns 0. Otherwise, it returns a nonzero value and sets
errno to EINVAL, indicating an invalid time was specified.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

_dos_getdate, _dos_gettime, _dos_setdate, gmtime, localtime, mktime,
_strdate, _strtime

228 _dos_settime

Example /* DSTIME.C: This program changes the time and date values and displays the
* new date and time values.
*/

#include <dos.h>

#include <conio.h>
f#include <stdio.h>
#include <time.h>

void main(void)

{
struct _dosdate_t olddate, newdate
struct _dostime_t oldtime, newtime
char datebuf[40], timebuf[40];

{443, {73, {1999 } };
({31}, {451, {303, {0} };

/* Get current date and time values */

_dos_getdate(&olddate);

_dos_gettime(&oldtime);

printf("%s %s\n" , _strdate(datebuf), _strtime(timebuf));

/* Modify date and time structures */

_dos_setdate(&newdate);

_dos_settime(&newtime);

printf("%s %s\n" , _strdate(datebuf), _strtime(timebuf));

/* Restore old date and time */
_dos_setdate(&olddate);
_dos_settime(&oldtime);

Output 12/15/99 18:26:09
07/04/99 03:45:30

_dos_setvect 229

Description

Remarks

_dos_setvect

Sets the current value of the interrupt vector, using system call 0x25.
#include <dos.h>

void _dos_setvect(unsigned intnum,
void(__cdecl __interrupt __far *handler)());

inthum Target-interrupt vector

handler Interrupt handler for which to assign inthum

The _dos_setvect routine uses system call 0x25 to set the current value of the in-
terrupt vector intnum to the function pointed to by handler. Subsequently, when-
ever the intnum interrupt is generated, the handler routine will be called. If
handler is a C function, it must have been previously declared with the interrupt
attribute. Otherwise, you must make sure that the function satisfies the require-
ments for an interrupt-handling routine. For example, if handler is an assembler
function, it must be a far routine that returns with an IRET instead of a RET.

The interrupt attribute indicates that the function is an interrupt handler. The
compiler generates appropriate entry and exit sequences for the interrupt-handling
function, including saving and restoring all registers and executing an IRET in-
struction to return.

The _dos_setvect routine is generally used with the _dos_getvect function. To
replace an interrupt vector, first save the current vector of the interrupt using
_dos_getvect. Then set the vector to your own interrupt routine with
_dos_setvect. The saved vector can later be restored, if necessary, using
_dos_setvect. The user-defined routine may also need the original vector in
order to call it or to chain to it with _chain_intr.

Registers and Interrupt Functions

When you call an interrupt function, the DS register is initialized to the C data seg-
ment. This allows you to access global variables from within an interrupt function.

230

_dos_setvect

In addition, all registers except SS are saved on the stack. You can access these
registers within the function if you declare a function parameter list containing a
formal parameter for each saved register. The following example illustrates such a
declaration:

void __interrupt __far int_handler(unsigned _es, unsigned _ds,
unsigned _di, unsigned _si,
unsigned _bp, unsigned _sp,
unsigned _bx, unsigned _dx,
unsigned _cx, unsigned _ax,
unsigned _ip, unsigned _cs,
unsigned _flags)

}
The formal parameters must appear in the opposite order from which they are
pushed onto the stack. You can omit parameters from the end of the list in a decla-

ration, but not from the beginning. For example, if your handler needs to use only
DI and SI, you must still provide ES and DS, but not necessarily BX or DX.

You can pass additional arguments if your interrupt handler will be called directly
from C rather than by an INT instruction. To do this, you must declare all register
parameters and then declare your parameter at the end of the list.

The compiler always saves and restores registers in the same, fixed order. Thus,
no matter what names you use in the formal parameter list, the first parameter in
the list refers to ES, the second refers to DS, and so on. If your interrupt routines
will use inline assembler, you should distinguish the parameter names so that they
will not be the same as the real register names.

If you change any of the register parameters of an interrupt function while the
function is executing, the corresponding register contains the changed value when
the function returns. For example:

void __interrupt __far int_handler(unsigned _es, unsigned _ds,
unsigned _di, unsigned _si)

This code causes the DI register to contain —1 when the handler function returns.
It is not a good idea to modify the values of the parameters representing the IP and
CS registers in interrupt functions. If you must modify a particular flag (such as
the carry flag for certain DOS and BIOS interrupt routines), use the OR operator
(1) so that other bits in the flag register are not changed.

_dos_setvect 231

Return Value

Compatibility

See Also

When an interrupt function is called by an INT instruction, the interrupt-enable
flag is cleared. If your interrupt function needs to do significant processing, you
should use the _enable function to set the interrupt flag so that interrupts can be
handled.

Precautions for Interrupt Functions

Since DOS is not reentrant (a DOS interrupt cannot be called from inside a DOS
interrupt), it is usually not safe to call from inside an interrupt function any stand-
ard library function that calls DOS INT 21H. Similar precautions apply to many
BIOS functions. Functions that rely on INT 21H calls include I/O functions and
the _dos family of functions. Functions that rely on the machine’s BIOS include
graphics functions and the _bios family of functions. It is usually safe to use func-
tions that do not rely on INT 21H or BIOS, such as string-handling functions.
Before using a standard library function in an interrupt function, be sure that you
are familiar with the action of the library function.

None.

Standards: None
16-Bit: DOS
32-Bit: None

—chain_intr, _dos_getvect, _dos_keep

232 _dos_ write

Description

Remarks

Return Value

Compatibility

See Also

_dos_write

Writes a buffer to a file, using system call 0x40.
#include <dos.h>

unsigned _dos_ write(int handle, void __far *buffer, unsigned count,
unsigned *numwrt);

handle File to write to

buffer Buffer to write from

count Number of bytes to write
numwrt Number of bytes actually written

The _dos_write routine uses system call 0x40 to write data to the file that handle
references; count bytes of data from the buffer to which buffer points are written
to the file. The integer pointed to by numwrt will be the number of bytes actually
written, which may be less than the number requested.

Do not use the DOS interface routines with the console, low-level, or stream I/O
routines.

If successful, the function returns 0. Otherwise, it returns the DOS error code and
sets errno to one of the following manifest constants:

Constant Meaning
EACCES Access denied (handle references a file not open for write access)
EBADF Invalid file handle

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

_dos_close, _dos_open, _dos_read, _write

_dos_write 233

Exanune /* DWRITE.C: This program uses DOS I/0 functions to write to a file. */

#include <fcntl.h>
f#include <stdio.h>
#include <stdlib.h>
#include <dos.h>

void main(void)

{
char out_buffer[] = "Hello";
int fh;
unsigned n_written;

/* Open file with _dos_creat function */
if(_dos_creat("data", _A_NORMAL, &fh) == 0)
{
/* Write data with _dos_write function */
_dos_write(fh, out_buffer, 5, &n_written);
printf("Number of characters written: %d\n", n_written);

_dos_close(fh);
printf("Contents of file are:\n");
system("type data");

Output Number of characters written: 5
Contents of file are:
Hello

234 _dosexterr

Description

Remarks

Return Value

Compatibility

_dosexterr

Gets register values returned by 0x59.
#include <dos.h>
int _dosexterr(struct _DOSERROR *errorinfo);

errorinfo Extended DOS error information

The _desexterr function obtains the extended error information returned by DOS
system call 0x59 and stores the values in the structure pointed to by errorinfo.
This function is useful when making system calls with DOS versions 3.0 or later,
which offer extended error handling.

The structure type _DOSERROR is defined in DOS.H. The _DOSERROR
structure contains the following elements:

Element Description

int exterror AX register contents
char errclass BH register contents
char action BL register contents
char locus CH register contents

Giving a NULL pointer argument causes _dosexterr to return the value in AX
without filling in the structure fields. See MS-DOS Encyclopedia (Duncan, ed.;
Redmond, WA: Microsoft Press, 1988) or Programmer’s PC Sourcebook 2nd ed.
(Hogan; Redmond, WA: Microsoft Press, 1991) for more information on the
register contents.

The _dosexterr function returns the value in the AX register (identical to the
value in the exterror structure field).

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

The _dosexterr function should be used only with DOS versions 3.0 or later.

_dosexterr

235

See Also

Example

Output

perror

/* DOSEXERR.C: This program tries to open the file test.dat.
If the attempted open operation fails, the program uses
* _dosexterr to display extended error information.

*/
#include <dos.h>
#include <io.h>
#include <fcntl.h>
#include <stdio.h>
void main(void)
{
struct _DOSERROR doserror;
int fd;
/* Attempt to open a non-existent file */
if((fd = _open("NOSUCHF.ILE", _O_RDONLY)) == -1)
{
_dosexterr(&doserror);
printf("Error: %d Errclass: %d Action: %d Locus: %d\n",
doserror.exterror, doserror.errclass,
doserror.action, doserror.locus);
}
else
{
printf("Open succeeded so no extended information printed\n");
_close(fd);
}
}
Error: 2 Errclass: 8 Action: 3 Locus: 2

236 _dup, _dup2

Description

Remarks

Return Value

_dup, _dup2

Create a second handle for an open file (_dup), or reassign a file handle (_dup2).
#include <io.h> Required only for function declarations

int _dup(int handle);
int _dup2(int handlel, int handle?);

handle, handlel Handle referring to open file
handle?2 Any handle value

The _dup and _dup2 functions cause a second file handle to be associated with a
currently open file. Operations on the file can be carried out using either file
handle. The type of access allowed for the file is unaffected by the creation of a
new handle.

The _dup function returns the next available file handle for the given file. The
_dup2 function forces handle?2 to refer to the same file as handlel. If handle? is
associated with an open file at the time of the call, that file is closed.

Note that in a QuickWin application you cannot use the _dup and _dup2 func-
tions on stdin, stdout, or stderr (defined in STDIO.H). You can, however, use the
_dup and _dup2 functions on other handles.

The _dup function returns a new file handle. The _dup2 function returns O to indi-
cate success. Both functions return —1 if an error occurs and set errno to one of
the following values:

Value Meaning

EBADF Invalid file handle
EMFILE No more file handles available (too many open files)

_dup, _dup2 237

Compatibility Standards: UNIX

See Also

Example

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

Use _dup and _dup2 for compatibility with ANSI naming conventions of non-
ANSI functions. Use dup and dup2 and link with OLDNAMES.LIB for UNIX
compatibility.

_close, _creat, _open

/* DUP.C: This program uses the variable old to save the original stdout.
* It then opens a new file named new and forces stdout to refer

* to it. Finally, it restores stdout to its original state.

*/

f#include <io.h>
#include <stdlib.h>
#include <stdio.h>

void main(void)

{
int old;
FILE *new;
old = _dup(1); /* "o01d" now refers to "stdout"™ =*/
/* Note: file handle 1 == "stdout" */
if(old == -1)
{

perror("_dup(1) failure");

exit(1);
}
write(old, "This goes to stdout first\r\n", 27);
if((new = fopen("data™, "w")) == NULL)

{
puts("Can't open file 'data'\n");
exit(1);
}
/* stdout now refers to file "data" */
if(-1 == _dup2(_fileno(new), 1))
{

perror("Can't _dup2 stdout"™);
exit(1);

}

puts("This goes to file 'data'\r\n");

/* Flush stdout stream buffer so it goes to correct file */
fflush(stdout);
fclose(new);

238 _dup, _dup2

/* Restore original stdout */
_dup2(old, 1);

puts("This goes to stdout\n");
puts("The file 'data' contains:");
system("type data");

Output This goes to stdout first
This goes to stdout

The file 'data' contains:
This goes to file 'data’

_ecvt 239

Description

Remarks

Return Value

Compatibility

See Also

_ecvt

Converts a double number to a string.
#include <stdlib.h> Required only for function declarations

char *_ecvt(double value, int count, int *dec, int *sign);

value Number to be converted
count Number of digits stored

dec Stored decimal-point position
sign Sign of converted number

The _ecvt function converts a floating-point number to a character string. The
value argument is the floating-point number to be converted. The _ecvt function
stores up to count digits of value as a string and appends a null character ("\0”). If
the number of digits in value exceeds count, the low-order digit is rounded. If
there are fewer than count digits, the string is padded with zeros.

Only digits are stored in the string. The position of the decimal point and the sign
of value can be obtained from dec and sign after the call. The dec argument points
to an integer value giving the position of the decimal point with respect to the
beginning of the string. A 0 or negative integer value indicates that the decimal
point lies to the left of the first digit. The sign argument points to an integer indi-
cating the sign of the converted number. If the integer value is 0, the number is
positive. Otherwise, the number is negative.

The _ecvt and _fevt functions use a single statically allocated buffer for the con-
version. Each call to one of these routines destroys the result of the previous call.

The _ecvt function returns a pointer to the string of digits. There is no error return.

Standards: UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

Use _ecvt for compatibility with ANSI naming conventions of non-ANSI func-
tions. Use ecvt and link with OLDNAMES.LIB for UNIX compatibility.

atof, atoi, atol, _fcvt, _gcvt

240 _ecvt

Example /* ECVT.C: This program uses _ecvt to convert a floating-point
* number to a character string.
*/

#include <stdlib.h>
#include <stdio.h>

void main(void)

{
int decimal, sign;
char *buffer;
int precision = 10;
double source = 3.1415926535;
buffer = _ecvt(source, precision, &decimal, &sign);
printf("source: %2.10f buffer: '%s' decimal: %d sign: %d\n",
source, buffer, decimal, sign);
}

Output source: 3.1415926535 buffer: '3141592654' decimal: 1 sign: 0

_ellipse Functions 241

Description

Remarks

_ellipse Functions

Draw ellipses.
#include <graph.h>

short __ far _ ellipse(short control, short x1, short y/, short x2, short y2);

short __far _ellipse_ w(short control, double wx/, double wyl, double wx2,
double wy2);

short __far _ellipse_ wxy(short control, struct _wxycoord __far *pwxyl,
struct _wxycoord __far *pwxy2);

control Fill flag

x1,yl Upper-left corner of bounding rectangle
x2,y2 Lower-right corner of bounding rectangle
wxl, wyl Upper-left corner of bounding rectangle
wx2, wy2 Lower-right corner of bounding rectangle
pwxyl Upper-left corner of bounding rectangle
pwxy2 Lower-right corner of bounding rectangle

The _ellipse functions draw ellipses or circles. The borders are drawn in the cur-
rent color. In the _ellipse function, the center of the ellipse is the center of the
bounding rectangle defined by the view-coordinate points (x/, y/) and (x2, y2).

In the _ellipse_w function, the center of the ellipse is the center of the bounding
rectangle defined by the window-coordinate points (wx!, wyl) and (wx2, wy2).

In the _ellipse_ wxy function, the center of the ellipse is the center of the bound-
ing rectangle defined by the window-coordinate points (pwxyl) and (pwxy2).

If the bounding-rectangle arguments define a point or a vertical or horizontal line,
no figure is drawn.

242 _ellipse Functions

The control argument can be one of the following manifest constants:

Constant Action
_GFILLINTERIOR Uses _floodfill to fill the ellipse using the current fill mask
_GBORDER Does not fill the ellipse

The control option given by _ GFILLINTERIOR is equivalent to a subsequent
call to the _floodfill function, using the center of the ellipse as the starting point
and the current color (set by _setcolor) as the boundary color.

Return Value The _ellipse functions return a nonzero value if the ellipse is drawn successfully;
otherwise, they return 0.

Compatibility Standards: None
16-Bit: DOS
32-Bit: None
See Also _arc functions, _floodfill, _grstatus, _lineto functions, _pie functions,

_polygon functions, _rectangle functions, _setcolor, _setfillmask

Example /% ELLIPSE.C: This program draws a simple ellipse. */

f#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void main(void)
{
/* Find a valid graphics mode. */
if(!_setvideomode(_MAXRESMODE))
exit(1);

_ellipse(_GFILLINTERIOR, 80, 50, 240, 150);

/% Strike any key to clear screen. */
_getch();
_setvideomode(_DEFAULTMODE);

}

_enable

243

Description

Remarks

Return Value

Compatibility

See Also

_enable

Enables interrupts.

#include <dos.h>

void _enable(void);

The _enable routine enables interrupts by executing an 8086 STI machine

instruction.

None.

Standards:
16-Bit:
32-Bit:

_disable

None
DOS, QWIN, WIN, WIN DLL
None

244 _eof

Description

Remarks

Return Value

Compatibility

See Also

_eof

Tests for end-of-file.
#include <io.h> Required only for function declarations
int _eof(int handle);

handle Handle referring to open file

The _eof function determines whether the end of the file associated with kandle
has been reached.

The _eof function returns the value 1 if the current position is end-of-file, or O if it
is not. A return value of —1 indicates an error; in this case, errno is set to EBADF,
indicating an invalid file handle.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

clearerr, feof, ferror, perror

Example /* EOF.C: This program reads data from a file ten bytes at a time

* until the end of the file is reached or an error is encountered.

#include <io.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

_eof

245

Output

void main(void)

{
int fh, count, total = 0;
char buf[10];

if((fh = _open("_eof.c"™, _O_RDONLY)) == - 1)
exit(1);

/* Cycle until end of file reached: =*/

while(!_eof(fh))

{
/* Attempt to read in 10 bytes: */
if((count = _read(fh, buf, 10)) == -1)
{
perror("Read error");
break;
}
/* Total up actual bytes read */
total += count;
}

printf("Number of bytes read = %d\n", total);
_close(fh);

Number of bytes read = 715

246 _exec Functions

_exec Functions

Description Load and execute new child processes.
#include <process.h> Required only for function declarations

int _execl(char *cmdname, char *arg0, ... char *argn, NULL);

int _execle(char *cmdname, char *arg0, ... char *argn, NULL, char **envp);
int _execlp(char *cmdname, char *arg0, ... char *argn, NULL);

int _execlpe(char *cmdname, char *arg0, ... char *argn, NULL, char **envp);
int _execv(char *cmdname, char **argv);

int _execve(char *cmdname, char **argv, char **envp);

int _execvp(char *cmdname, char **argv);

int _execvpe(char *cmdname, char **argv, char **envp);

cmdname Path name of file to be executed

argo, ... argn List of pointers to arguments

argv Array of pointers to arguments

envp Array of pointers to environment settings
Remarks The _exec functions load and execute new child processes. When the call is

successful in DOS, the child process is placed in the memory previously occupied
by the calling process. Sufficient memory must be available for loading and ex-
ecuting the child process.

All of the _exec functions use the same operating system function. The letter(s) at
the end of the function name determine the specific variation, as shown in the
following list:

_exec Functions 247

Letter Variation

e An array of pointers to environment arguments is explicitly passed to
the child process.

1 Command-line arguments are passed individually to the _exec
function.

P Uses the PATH environment variable to find the file to be executed.

v Command-line arguments are passed to the _exec function as an

array of pointers.

The cmdname argument specifies the file to be executed as the child process. It
can specify a full path (from the root), a partial path (from the current working
directory), or just a filename. If cmdname does not have a filename extension or
does not end with a period (.), the _exec function searches for the named file; if
the search is unsuccessful, it tries the same base name, first with the extension
.COM, then with the extension .EXE. If cmdname has an extension, only that ex-
tension is used in the search. If cmdname ends with a period, the _exec calls
search for cmdname with no extension. The _execlp, _execlpe, _execvp, and
_execvpe routines search for cmdname (using the same procedures) in the directo-
ries specified by the PATH environment variable.

If cmdname contains a drive specifier or any slashes (that is, if it is a relative path
name), the _exec call searches only for the specified file; the path is not searched.
Note that the DOS APPEND command cannot be used with the _exec functions.

Arguments are passed to the new process by giving one or more pointers to charac-
ter strings as arguments in the _exec call. These character strings form the argu-
ment list for the child process. The combined length of the strings forming the
argument list for the new process must not exceed 128 bytes (in real mode only).
The terminating null character (°\0”) for each string is not included in the count,
but space characters (inserted automatically to separate the arguments) are counted.

The argument pointers can be passed as separate arguments (_execl, _execle,
_execlp, and _execlpe) or as an array of pointers (_execv, _execve, _execvp, and
_execvpe). At least one argument, arg0, must be passed to the child process; this
argument is argv|[0] of the child process. Usually, this argument is a copy of the
cmdname argument. (A different value will not produce an error.) Under versions
of DOS earlier than 3.0, the passed value of arg0 is not available for use in the
child process. However, with DOS versions 3.0 and later, cmdname is available as
arg0.

The _execl, _execle, _execlp, and _execlpe calls are typically used when the
number of arguments is known in advance. The argument arg0 is usually a pointer
to cmdname. The arguments arg! through argn point to the character strings form-
ing the new argument list. A null pointer must follow argn to mark the end of the
argument list.

248

_exec Functions

The _execv, _execve, _execvp, and _execvpe calls are useful when the number
of arguments to the new process is variable. Pointers to the arguments are passed
as an array, argv. The argument argv[0] is usually a pointer to cmdname. The argu-
ments argv[1] through argv[n] point to the character strings forming the new argu-
ment list. The argument argv[n+1] must be a NULL pointer to mark the end of the
argument list.

Files that are open when an _exec call is made remain open in the new process. In
the _execl, _execlp, _execv, and _execvp calls, the child process inherits the en-
vironment of the parent. The _execle, _execlpe, _execve, and _execvpe calls
allow the user to alter the environment for the child process by passing a list of en-
vironment settings through the envp argument. The argument envp is an array of
character pointers, each element of which (except for the final element) points to a
null-terminated string defining an environment variable. Such a string usually has
the form

NAME=value

where NAME is the name of an environment variable and value is the string value
to which that variable is set. (Note that value is not enclosed in double quotation
marks.) The final element of the envp array should be NULL. When envp itself is
NULL, the child process inherits the environment settings of the parent process.

A program executed with one of the _exec family of functions is always loaded
into memory as if the “maximum allocation” field in the program’s .EXE file
header is set to the default value of 0XFFFFH. You can use the EXEHDR utility to
change the maximum allocation field of a program; however, such a program in-
voked with one of the _exec functions may behave differently from a program in-
voked directly from the operating-system command line or with one of the
_spawn functions. ‘

Note that COMMAND.COM checks the first two bytes of a file to determine
whether it is an .EXE file or a .COM file—you can execute a file named by any ex-
tension, as long as its content is truly executable.

The _exec calls do not preserve the translation modes of open files. If the child
process must use files inherited from the parent, the _setmode routine should be
used to set the translation mode of these files to the desired mode.

You must explicitly flush (using fflush or _flushall) or close any stream prior to
the _exec function call.

Signal settings are not preserved in child processes that are created by calls to
_exec routines. The signal settings are reset to the default in the child process.

_exec Functions 249

Return Value

Compatibility

See Also

Example

The _exec functions do not normally return to the calling process. If an _exec
function returns, an error has occurred and the return value is —1. The errno varia-
ble is set to one of the following values:

Value Meaning

E2BIG The argument list exceeds 128 bytes, or the space required for
the environment information exceeds 32K.

EACCES The specified file has a locking or sharing violation (DOS
version 3.0 or later).

EMFILE Too many files open (the specified file must be opened to
determine whether it is executable).

ENOENT File or path name not found.

ENOEXEC The specified file is not executable or has an invalid executable-

file format.

ENOMEM Not enough memory is available to execute the child process; or
the available memory has been corrupted; or an invalid block
exists, indicating that the parent process was not allocated

properly.
Standards: UNIX
16-Bit: DOS
32-Bit: DOS32X

Use _exec for compatibility with ANSI naming conventions of non-ANSI func-
tions. Use exec and link with OLDNAMES.LIB for UNIX compatibility.

Because of differences in DOS versions 2.0 and 2.1, child processes generated by
the _exec family of functions (or by the equivalent _spawn functions with the
_P_OVERLAY argument) may cause fatal system errors when they exit. If you
are running DOS 2.0 or 2.1, you must upgrade to DOS version 3.0 or later to use
these functions.

Bound programs cannot use the _exec family of functions in real mode.

abort, atexit, exit, _exit, _onexit, _spawn functions, system

EXEC.C: This program accepts a number in the range 1 through 8 from the
* command line. Based on the number it receives, it executes one of the
eight different procedures that spawn the process named child. For

* some of these procedures, the child.exe file must be in the same

* directory; for others, it need only be in the same path.

f#include <stdio.h>
f#finclude <process.h>

250 _exec Functions

char *my_env[] = {
"THIS=environment will be",
"PASSED=to child.exe by the",
" _EXECLE=and",
" _EXECLPE=and",
"_EXECVE=and",
"_EXECVPE=functions",
NULL
};

void main(int argc, char *argv[])
{

char *args[4];

int result;

args[0]
args[1]
args[2]
args[3]

"child"; /* Set up parameters to send */
"_execv??";

"two";

NULL;

switch(argv[1][0]) /* Based on first letter of argument */
{

case 'l':
_execl(argv[2], argv[2], "_execl", "two", NULL);
break;

case '2':
_execle(argv[2], argv[2], "_execle", "two", NULL, my_env);
break;

case '3':
_execlp(argv[2], argv[2], "_execlp", "two", NULL);
break;

case '4':
_execlpe(argv[2], argv[2],
break;

case '5':
_execv(argv[2], args);
break;

case '6':
_execve(argv[2], args, my_env);
break;

case '7':
_execvp(argv[2], args);
break;

case '8':
_execvpe(argv[2], args, my_env);
break;

default:
printf("SYNTAX: EXEC <1-8> <childprogram>\n");
exit(1);

_execlpe"”, "two", NULL, my_env);

}
printf("Process was not spawned.\n");
printf("Program 'child' was not found.");

exit, _exit 251

exit, _exit

Description Terminate the calling process after cleanup (exit) or immediately (_exit).
#include <process.h> Required only for function declarations
#include <stdlib.h> Use either PROCESS.H or STDLIB.H

void exit(int status);

void _exit(int status);

status Exit status

Remarks The exit and _ exit functions terminate the calling process. The exit function first
calls, in LIFO (last-in—first-out) order, the functions registered by atexit and
_onexit, then flushes all file buffers before terminating the process. The _exit
function terminates the process without processing atexit or _onexit functions or
flushing stream buffers. The status value is typically set to O to indicate a normal
exit and set to some other value to indicate an error.

Although the exit and _exit calls do not return a value, the low-order byte of
status is made available to the waiting parent process, if one exists, after the
calling process exits. The status value is available to the operating-system batch
command ERRORLEVEL.

The behavior of the exit, _exit, _cexit, and _c_exit functions is as follows:

Function Action

exit Performs complete C library termination procedures, terminates
the process, and exits with the supplied status code.

_exit Performs “quick” C library termination procedures, terminates
the process, and exits with the supplied status code.

_cexit Performs complete C library termination procedures and returns
to caller, but does not terminate the process.

_c_exit Performs “quick” C library termination procedures and returns
to caller, but does not terminate the process.

Return Value None.

252 exit, _exit

Compatibility exit
Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN
32-Bit: DOS32X

_exit

Standards: None
16-Bit: DOS, QWIN, WIN
32-Bit: DOS32X

See Also abort, atexit, _cexit, _exec functions, _onexit, _spawn functions, system

Example /* EXITER.C: This program prompts the user for a yes or no and returns
a DOS error code of 1 if the user answers Y or y; otherwise it
* returns @. The error code could be tested in a batch file.
*/

#include <conio.h>
#include <stdlib.h>

void main(void)
{
char ch;

_cputs("Yes or no? ");
ch = _getch();
_cputs("\r\n");
if(toupper(ch) == "Y')
exit(1);
else
exit(@);

exp, _expl 253

Description

Remarks

Return Value

Compatibility

See Also

exp, _expl

Calculate the exponential.
#include <math.h>

double exp(double x);
long double _expl(long double x);

X Floating-point value

The exp and _expl functions return the exponential function of their floating-point
arguments (x).

The _expl function is the 80-bit counterpart; it uses an 80-bit, 10-byte coprocessor
form of arguments and return values. See the reference page on the long double
functions for more details on this data type.

These functions return e*. The functions return HUGE_VAL on overflow and set
errno to ERANGE; on underflow, they return 0 but do not set errno. This be-
havior can be changed with the _matherr function.

exp

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

_expl

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

log functions

254 exp, _expl

Example /% EXP.C */
#include <math.h>
#include <stdio.h>

void main(void)

{

double x = 2.302585093, y;

y = exp(x);

printf("exp(%f) = %f\n", X, y);
}

Output exp(2.302585) = 10.000000

_expand Functions 255

Description

Remarks

_expand Functions

Change the size of a memory block.

#include <malloc.h> Required only for function declarations

void *_expand(void *memblock, size_t size);

void __based(void) *_bexpand(__segment seg,
void _ _based(void) *memblock, size_t size);

void __far *_fexpand(void __far *memblock, size_t size);

void __near *_nexpand(void __near *memblock, size_t size);

memblock Pointer to previously allocated memory block
size New size in bytes
seg Value of base segment

The _expand family of functions changes the size of a previously allocated
memory block by attempting to expand or contract the block without moving its lo-
cation in the heap. The memblock argument points to the beginning of the block.
The size argument gives the new size of the block, in bytes. The contents of the
block are unchanged up to the shorter of the new and old sizes.

The memblock argument can also point to a block that has been freed, as long as
there has been no intervening call to calloc, _expand, malloc, or realloc. If
memblock points to a freed block, the block remains free after a call to one of the
_expand functions.

The seg argument is the segment address of the __based heap.

In large data models (compact-, large-, and huge-model programs), _expand
maps to _fexpand. In small data models (tiny-, small-, and medium-model pro-
grams), _expand maps to _nexpand.

256 _expand Functions

Return Value

Compatibility

See Also

The various _expand functions change the size of the storage block in the data
segments shown in the list below:

Function Data Segment

_expand Depends on data model of program

_bexpand Based heap specified by seg, or in all based heaps if seg is zero
_fexpand Far heap (outside default data segment)

_nexpand Near heap (inside default data segment)

The _expand family of functions returns a void pointer to the reallocated memory
block. Unlike realloc, _expand cannot move a block to change its size. This
means the memblock argument to _ expand is the same as the return value if there
is sufficient memory available to expand the block without moving it.

With the exception of the _bexpand function, these functions return NULL if
there is insufficient memory available to expand the block to the given size
without moving it. The _bexpand function returns - NULLOFF if insufficient
memory is available. The item pointed to by memblock will have been expanded
as much as possible in its current location.

The storage space pointed to by the return value is guaranteed to be suitably
aligned for storage of any type of object. The new size of the item can be checked
with one of the _msize functions. To get a pointer to a type other than void, use a
type cast on the return value.

—expand
Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_bexpand, _fexpand, _nexpand
Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

calloc functions, free functions, malloc functions, _msize functions, realloc
functions

_expand Functions

257

Example

Output

/% EXPAND.C =/
#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

void main(void)

{

char =xbufchar;

printf("Allocate a 512 element buffer\n");
if((bufchar = (char *)calloc(512, sizeof(char))) == NULL)
exit(1);
printf("Allocated %d bytes at %Fp\n",
_msize(bufchar), (void __far =*)bufchar);

if((bufchar = (char *)_expand(bufchar, 1024)) == NULL)
printf("Can't expand");
else
printf("Expanded block to %d bytes at %Fp\n",
_msize(bufchar), (void __far =*)bufchar);

/* Free memory */
free(bufchar);
exit(@);

Allocate a 512 element buffer
Allocated 512 bytes at 0067:142A
Expanded block to 1024 bytes at 0067:142A

258 fabs, _fabsl

Description

Remarks

Return Value

Compatibility

See Also

fabs, fabsl

Calculate the absolute value of their floating-point arguments.
#include <math.h>

double fabs(double x);

long double _fabsl(long double x);

x Floating-point value

The fabs and _fabsl functions calculate the absolute value of their floating-point
arguments.

The _fabsl function is the 80-bit counterpart; it uses an 80-bit, 10-byte coproces-
sor form of arguments and return values. See the reference page on the long
double functions for more details on this data type.

These functions return the absolute value of their arguments. There is no error
return.

fabs

Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_fabsl

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

abs, _cabs, labs

fabs, _fabsl 259

Example /* ABS.C: This program computes and displays the absolute values of
* several numbers.
*/

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

void main(void)
{
int ix
long Tx
double dx

-4, 1}’;
-41567L, ly;
-3.141593, dy;

iy = abs(ix);
printf("The absolute value of %d is %d\n", ix, iy);

ly = labs(1x);
printf("The absolute value of %1d is %1d\n", 1x, ly);

dy = fabs(dx);
printf("The absolute value of %f is %f\n", dx, dy);

Output The absolute value of -4 is 4
The absolute value of -41567 is 41567
The absolute value of -3.141593 is 3.141593

260 fclose, _fcloseall

Description

Remarks

Return Value

Compatibility

See Also

fclose, _fcloseall

Closes a stream (fclose) or closes all open streams (_fcloseall).
#include <stdio.h>

int fclose(FILE *stream);

int _fcloseall(void);

stream Pointer to FILE structure

The fclose function closes stream. The _feloseall function closes all open streams
except stdin, stdout, stderr (and in DOS, stdaux and stdprn). It also closes and
deletes any temporary files created by tmpfile.

In both functions, all buffers associated with the stream are flushed prior to clos-
ing. System-allocated buffers are released when the stream is closed. Buffers as-
signed by the user with setbuf and setvbuf are not automatically released.

The fclose function returns 0 if the stream is successfully closed. The _fcloseall
function returns the total number of streams closed. Both functions return EOF to
indicate an error.

fclose

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_fcloseall

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_close, _fdopen, fflush, fopen, freopen

fclose, _fcloseall 261

Example /* FOPEN.C: This program opens files named "data" and "data2". It uses
* fclose to close "data" and _fcloseall to close all remaining files.
*/
#include <stdio.h>

FILE *stream, *stream2;

void main(void)

{
int numclosed;
/* Open for read (will fail if 'data does not exist) =*/
if((stream = fopen("data", "r")) == NULL)
printf("The file 'data' was not opened\n");
else
printf("The file 'data' was opened\n");
/* Open for write */
if((stream2 = fopen("data2"™, "w+")) == NULL)
printf("The file 'data2' was not opened\n");
else
printf("The file 'data2' was opened\n");
/* Close stream */
if(fclose(stream))
printf("The file 'data' was not closed\n");
/% A11 other files are closed: */
numclosed = _fcloseall();
printf("Number of files closed by _fcloseall: %u\n", numclosed);
}
Output The file 'data' was opened

The file 'data2' was opened
Number of files closed by _fcloseall: 1

262 _fovt

Description

Remarks

Return Value

Compatibility

_feut

Converts a floating-point number to a string.
#include <stdlib.h> Required only for function declarations

char *_fevt(double value, int count, int *dec, int *sign);

value Number to be converted

count Number of digits after decimal point
dec Pointer to stored decimal-point position
sign Pointer to stored sign indicator

The _fevt function converts a floating-point number to a null-terminated character
string. The value argument is the floating-point number to be converted. The _fevt
function stores the digits of value as a string and appends a null character (*\0?).
The count argument specifies the number of digits to be stored after the decimal
point. Excess digits are rounded off to count places. If there are fewer than count
digits of precision, the string is padded with zeros.

Only digits are stored in the string. The position of the decimal point and the sign
of value can be obtained from dec and sign after the call. The dec argument points
to an integer value; this integer value gives the position of the decimal point with
respect to the beginning of the string. A zero or negative integer value indicates
that the decimal point lies to the left of the first digit. The argument sign points to
an integer indicating the sign of value. The integer is set to O if value is positive
and is set to a nonzero number if value is negative.

The _ecvt and _fevt functions use a single statically allocated buffer for the con-
version. Each call to one of these routines destroys the results of the previous call.

The _fevt function returns a pointer to the string of digits. There is no error return.

Standards: UNIX
16-Bit: DOS, QWIN, WIN, WIN'DLL
32-Bit: DOS32X

Use _fevt for compatibility with ANSI naming conventions of non-ANSI func-
tions. Use fevt and link with OLDNAMES.LIB for UNIX compatibility.

_fevt 263

See Also atof, atoi, atol, _ecvt, _gcvt

Exanuﬂe /* FCVT.C: This program converts the constant 3.1415926535 to a string and
* sets the pointer *buffer to point to that string.
*/

#include <stdlib.h>
#include <stdio.h>

void main(void)
{
int decimal, sign;
char xbuffer;
double source = 3.1415926535;

buffer = _fcvt(source, 7, &decimal, &sign);

printf("source: %2.10f buffer: '%s' decimal: %d sign: %d\n",
source, buffer, decimal, sign);

Output source: 3.1415926535 buffer: '31415927"' decimal: 1 sign: 0

264 _fdopen

Description

Remarks

_fdopen

Associates a stream with a file that was previously opened for low-level I/O.
#include <stdio.h>

FILE *_fdopen(int handle, char *mode);

handle Handle referring to open file

mode Type of access permitted

The _fdopen function associates an input/output stream with the file identified by
handle, thus allowing a file opened for low-level I/O to be buffered and formatted.
(For an explanation of stream I/O and low-level I/O see “Input and Output” on
page 31.) The mode character string specifies the type of access requested for the
file, as shown below. The following list gives the mode string used in the fopen
and _fdopen functions and the corresponding oflag arguments used in the _open
and _sopen functions. A complete description of the mode string argument is
given in the remarks section of the fopen function.

Type String Equivalent Value for _open/_sopen

"r" _O_RDONLY

"w' _O_WRONLY (usually _O_WRONLY | _O_CREAT |
_O_TRUNC)

"a" _O_WRONLY | _O_APPEND (usually _O_WRONLY |
_O_CREAT | _O_APPEND)

"r+" _O_RDWR : »

"w+" _O_RDWR (usually _O_RDWR | _O_CREAT |
_O_TRUNC)

"a+" _O_RDWR | _O_APPEND (usually _O_RDWR |

_O_APPEND | _O_CREAT)

In addition to the values listed above, one of the following characters can be in-
cluded in the mode string to specify the translation mode for new lines. These char-
acters correspond to the constants used in the _open and _sopen functions, as
shown below:

Mode Equivalent Value for _open/_sopen

t _O_TEXT
b _O_BINARY

_fdopen 265

Return Value

Compatibility

See Also

Example

If t or b is not given in the mode string, the translation mode is defined by the
default-mode variable _fmode.

In addition to the file attribute and the text or binary mode listed above, the mode
string accepts either ¢ or n to specify commit to disk, or do not commit to disk, re-
spectively. These characters have no correspondence to constants used in the
—open and _sopen functions. For more information on the commit feature, see
“Committing Buffer Contents to Disk” on page 3737.

Mode Description

c Commit to disk, no _open/_sopen equivalent.
No commit, no _open/_sopen equivalent. Default.

If ¢ or n is not given in the mode string, n is the default mode.

The _fdopen function returns a pointer to the open stream. A null pointer value in-
dicates an error.

Standards: UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

Use _fdopen for compatibility with ANSI naming conventions of non-ANSI func-
tions. Use fdopen and link with OLDNAMES.LIB for UNIX compatibility.

The t, ¢, and n options are not part of the ANSI standard for fopen and _fdopen,
but are instead Microsoft extensions and should not be used where ANSI portabil-
ity is desired.

—dup, _dup?, fclose, _fcloseall, fopen, freopen, _open

/% _FDOPEN.C: This program opens a file using Tow-level I/0, then uses
* _fdopen to switch to stream access. It counts the lines in the file.

#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

266 _fdopen

void main(void)

{
FILE *stream;
int fh, count = 0;
char inbuf[128];
/* Open a file handle. */
if((fh = _open("_fdopen.c", _O_RDONLY)) == -1)
exit(1);
/* Change handle access to stream access. */
if((stream = _fdopen(fh, "r")) == NULL)
exit(1);
while(fgets(inbuf, 128, stream) != NULL)
count++;
/* After _fdopen, close with fclose, not _close. */
fclose(stream);
printf("Lines in file: %d\n", count);
}

Output Lines in file: 31

feof 267

Description

Remarks

Return Value

Compatibility

See Also

Example

feof

Tests for end-of-file on a stream.
#include <stdio.h>
int feof(FILE *stream);

stream Pointer to FILE structure

The feof routine (implemented both as a function and as a macro) determines
whether the end of stream has been reached. Once the end of the file is reached,
read operations return an end-of-file indicator until the stream is closed or until
rewind, fsetpos, fseek, or clearerr is called against it.

The feof function returns a nonzero value after the first read operation that at-
tempts to read past the end of the file. It returns O if the current position is not end-
of-file. There is no error return.

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DO0S32X

clearerr, _eof, ferror, perror

/* FEOF.C: This program uses feof to indicate when it reaches the end
* of the file FEOF.C. It also checks for errors with ferror.

#include <stdio.h>
#include <stdlib.h>

268 feof

void main(void)

{
int count, total = 0;
char buffer[100];
FILE *stream;

if((stream = fopen("feof.c", "r")) == NULL)
exit(1);

/* Cycle until end of file reached: */
while(!feof(stream))
{
/* Attempt to read in 10 bytes: */
count = fread(buffer, sizeof(char), 100, stream);
if(ferror(stream))
{
perror("Read error");
break;
}

/* Total up actual bytes read */

total += count;
}
printf("Number of bytes read = %d\n", total);
fclose(stream);

Output Number of bytes read = 697

ferror 269

Description

Remarks

Return Value

Compatibility

See Also

Example

ferror

Tests for an error on a stream.
#include <stdio.h>
int ferror(FILE *stream);

stream Pointer to FILE structure

The ferror routine (implemented both as a function and as a macro) tests for a
reading or writing error on the file associated with stream. If an error has oc-
curred, the error indicator for the stream remains set until the stream is closed or
rewound, or until clearerr is called against it.

If no error has occurred on stream, ferror returns 0. Otherwise, it returns a non-
zero value.

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

clearerr, _eof, feof, fopen, perror

/* FEOF.C: This program uses feof to indicate when it reaches the end
* of the file FEOF.C. It also checks for errors with ferror.

#include <stdio.h>
#include <stdlib.h>

270 ferror

void main(void)

{
int count, total = 0;
char buffer[100];
FILE *stream;

if((stream = fopen("feof.c", "r")) == NULL)
exit(1);

/* Cycle until end of file reached: */
while(!feof(stream))
{
/* Attempt to read in 10 bytes: */
count = fread(buffer, sizeof(char), 100, stream);
if(ferror(stream))
{
perror("Read error”);
break;
}

/% Total up actual bytes read =*/

total += count;
}
printf("Number of bytes read = %d\n", total);
fclose(stream);

Output Number of bytes read = 697

fflush 271

Description

Remarks

Return Value

Compatibility

See Also

fflush

Flushes a stream.
#include <stdio.h>
int fflush(FILE *stream);

stream Pointer to FILE structure

If the file associated with stream is open for output, fflush writes to that file the
contents of the buffer associated with the stream. If the stream is open for input,
fflush clears the contents of the buffer. The fflush function negates the effect of
any prior call to ungetc against stream.

Buffers are automatically flushed when they are full, when the stream is closed,
or when a program terminates normally without closing the stream. Also,
fflush(NULL) flushes all streams opened for output.

The stream remains open after the call. The fflush function has no effect on an un-
buffered stream.

The fflush function returns the value 0 if the buffer was successfully flushed. The
value 0 is also returned in cases in which the specified stream has no buffer or is
open for reading only. A return value of EOF indicates an error.

Note If fflush returns EOF, data may have been lost because of a failed write.
When setting up a critical error handler, it is safest to turn buffering off with the
setvbuf function or to use low-level I/O routines such as _open, _close, and
_write instead of the stream I/O functions.

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

fclose, _flushall, setbuf

272 fflush
Example /% FFLUSH.C %/
f#include <stdio.h>
#include <conio.h>
void main(void)
{
int integer;
char string[81];
/* Read each word as a string. */
printf("Enter a sentence of four words with scanf: ");
for(integer = @; integer < 4; integer++)
{
scanf("%s", string);
printf("%s\n", string);
}
/* You must flush the input buffer before using gets. */
fflush(stdin);
printf("Enter the same sentence with gets: ");
gets(string);
printf("%s\n", string);
}
Qutput Enter a sentence of four words with scanf: This is a test
This
is
a
test

Enter the same sentence with gets: This is a test
This is a test

fgetc, _fgetchar 273

Description

Remarks

Return Value

Compatibility

See Also

fgetc, _fgetchar

Read a character from a stream (fgetc) or stdin (_fgetchar).
#include <stdio.h>

int fgetc(FILE *stream);

int _fgetchar(void);

stream Pointer to FILE structure

The fgetc function reads a single character from the current position of the file as-
sociated with stream. The character is converted and returned as an int. The func-
tion then increments the associated file pointer (if any) to point to the next
character. The _fgetchar function is equivalent to fgetc(stdin).

The fgetc and _fgetchar routines are identical to getc and getchar, but they are
functions rather than macros.

The fgetc and _fgetchar functions return the character read. They return EOF to
indicate an error or end-of-file. Use feof or ferror to distinguish between an error
and an end-of-file condition.

fgetc
Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_fgetchar

Standards: None
16-Bit: DOS, QWIN
32-Bit: DOS32X

fputc, _fputchar, getc, getchar

2714 fgetc, _fgetchar

Example /* FGETC.C: This program uses getc to read the first 8@ input characters
* (or until the end of input) and place them into a string named buffer.
*/

f#finclude <stdio.h>
#include <stdlib.h>

void main(void)

{
FILE *stream;
char buffer[81];
int 1, ch;
/* Open file to read line from: */
if((stream = fopen("fgetc.c", "r")) == NULL)
exit(@);
/* Read in first 80 characters and place them in "buffer": */
ch = fgetc(stream);
for(i=0; (i < 80) && (feof(stream) == 0); i++)
{
buffer[i] = ch;
ch = fgetc(stream);
}
/* Add null to end string */
buffer[i] = "\0"';
printf("%s\n", buffer);
fclose(stream);
}
Output /* FGETC.C: This program uses getc to read the first 80 input characters

/* (or

fgetpos 275

Description

Remarks

Return Value

Compatibility

See Also

fgetpos

Gets a stream’s file-position indicator.
#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);

stream Target stream

pos Position-indicator storage

The fgetpos function gets the current value of the stream argument’s file-position
indicator and stores it in the object pointed to by pos. The fsetpos function can
later use information stored in pos to reset the stream argument’s pointer to its
position at the time fgetpos was called.

The pos value is stored in an internal format and is intended for use only by the
fgetpos and fsetpos functions.

If successtul, the fgetpos function returns 0. On failure, it returns a nonzero value
and sets errno to one of the following manifest constants (defined in STDIO.H):

Constant Meaning
EBADF The specified stream is not a valid file handle or is not accessible.
EINVAL The stream value is invalid.

Standards: ANSI
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

fsetpos

276 fgetpos

Example /#* FGETP0S.C: This program opens a file and reads bytes at several
* different locations.
*/
#include <stdio.h>

void main(void)

{
FILE *stream;
fpos_t pos;
int val;
char buffer[20];
if((stream = fopen("fgetpos.c”, "rb")) == NULL)
printf("Trouble opening file\n");
else
{
/* Read some data and then check the position. */
fread(buffer, sizeof(char), 10, stream);
if(fgetpos(stream, &pos) != 0)
perror("fgetpos error");
else
{
fread(buffer, sizeof(char), 10, stream);
printf("10 bytes at byte %1d: %.10s\n", pos, buffer);
}
/* Set a new position and read more data */
pos = 140;
if(fsetpos(stream, &pos) != 0)
perror("fsetpos error");
fread(buffer, sizeof(char), 10, stream);
printf("10 bytes at byte %1d: %.10s\n", pos, buffer);
fclose(stream);
}
}
Output 10 bytes at byte 1@: .C: This p

10 bytes at byte 140: FILE *

fgets 277

Description

Remarks

Return Value

Compatibility

See Also

fgets

Gets a string from a stream.
#include <stdio.h>

char *fgets(char *string, int n, FILE *stream);

string Storage location for data
n Number of characters stored
stream Pointer to FILE structure

The fgets function reads a string from the input stream argument and stores it in
string. Characters are read from the current stream position up to and including the
first newline character (°\n”), up to the end of the stream, or until the number of
characters read is equal to n — 1, whichever comes first. The result is stored in
string, and a null character (’\0”) is appended. The newline character, if read, is in-
cluded in the string. If n is equal to 1, string is empty (""). The fgets function is
similar to the gets function; however, gets replaces the newline character with
NULL.

If successful, the fgets function returns szring. It returns NULL to indicate either
an error or end-of-file condition. Use feof or ferror to determine whether an error
occurred.

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

fputs, gets, puts

278 fgets

Example /* FGETS.C: This program uses fgets to display a line from a file on the
* screen.
*/
#include <stdio.h>

FILE *stream;

void main(void)

{
char 1ine[100], *result;
if((stream = fopen("fgets.c", "r")) != NULL)
{
if(fgets(1ine, 100, stream) == NULL)
printf("fgets error\n");
else
printf("%s", line);
fclose(stream);
}
}

Output /* FGETS.C: This program uses fgets to display a line from a file on the

_fieeetomshin, _fmshintoieee 279

Description

Remarks

Return Value

Compatibility

See Also

_fieeetomshin, _fmshintoieee

Convert floating-point numbers between IEEE and Microsoft binary formats.
#include <math.h>

int _fieeetomsbin(float *src4, float *dst4);

int _fmsbintoieee(float *src4, float *dst4);

scrd Value to be converted

dst4 Converted value

The _fieeetomsbin routine converts a single-precision floating-point number in
IEEE (Institute of Electrical and Electronic Engineers) format to Microsoft (MS)
binary format.

The _fmsbintoieee routine converts a floating-point number in Microsoft binary
format to IEEE format.

These routines allow C programs (which store floating-point numbers in the IEEE
format) to use numeric data in random-access data files created with Microsoft
Basic (which stores floating-point numbers in the Microsoft binary format), and
vice versa.

The argument src4 points to the float value to be converted. The result is stored at
the location given by dst4.

These routines do not handle IEEE NANSs (“not a number”) and infinities. IEEE
denormals are treated as O in the conversions.

These functions return O if the conversion is successful and 1 if the conversion
causes an overflow.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_dieeetomsbin, _dmsbintoieee

280 _filelength

Description

Remarks

Return Value

Compatibility

See Also

_filelength

Gets the length of a file.
#include <io.h> Required only for function declarations
long _filelength(int handle);

handle Target file handle

The _filelength function returns the length, in bytes, of the target file associated
with handle.

The _filelength function returns the file length in bytes. A return value of —1L in-
dicates an error, and an invalid handle sets errno to EBADF.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_chsize, _fileno, _fstat, _stat

Exanuﬂe /* CHSIZE.C: This program uses _filelength to report the size of a

* file
*/

before and after modifying it with _chsize.

#include <io.h>
#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <stdio.h>

_filelength 281

void main(void)
{
int fh, result;
unsigned int nbytes = BUFSIZ;

/* Open a file */
if((fh = _open("data™, _O_RDWR | _O_CREAT,

_S_IREAD l _S_IWRITE)) t= -1)
{
printf("File length before: %1d\n", _filelength(fh));
if(_chsize(fh, 329678) == 0)
printf("Size successfully changed\n");
else
printf("Problem in changing the size\n");
printf("File length after: %1d\n", _filelength(fh));
_close(fh);
}
}
Output File length before: 8

Size successfully changed
File length after: 329678

282 _fileno

Description

Remarks

Return Value

Compatibility

See Also

_fileno

Gets the file handle associated with a stream.
#include <stdio.h>
int _fileno(FILE *stream);

stream Pointer to FILE structure

The _fileno routine returns the file handle currently associated with stream. This
routine is implemented both as a function and as a macro.

The _fileno routine returns the file handle. There is no error return. The result is
undefined if stream does not specify an open file.

Standards: UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

Use _fileno for compatibility with ANSI naming conventions of non-ANSI func-
tions. Use fileno and link with OLDNAMES.LIB for UNIX compatibility.

_fdopen, _filelength, fopen, freopen

Example /% FILENO.C: This program uses _fileno to obtain the file handle for
* some standard C streams.

*/

#include <stdio.h>

void main(void)

{
printf("The file handle for stdin is %d\n", _fileno(stdin));
printf("The file handle for stdout is %d\n", _fileno(stdout));
printf("The file handle for stderr is %d\n", _fileno(stderr));
}
Output The file handle for stdin is @

The file handle for stdout is 1
The file handle for stderr is 2

_floodfill, _floodfill_w 283

Description

Remarks

Return Value

Compatibility

See Also

_floodfill, _floodfill_w

Fill an area of a display using the current color and fill mask.
#include <graph.h>

short __ far _floodfill(short x, short y, short boundary);

short __far _floodfill_w(double wx, double wy, short boundary);

X,y Start point
WX, wy Start point
boundary Boundary color of area to be filled

The functions in the _floodfill family fill an area of the display, using the current
color and fill mask. The _floodfill routine begins filling at the view-coordinate
point (x, y). The _floodfill_w routine begins filling at the window-coordinate
point (wx, wy).

If this point lies inside the figure, the interior is filled; if it lies outside the figure,
the background is filled. The point must be inside or outside the figure to be filled,
not on the figure boundary itself. Filling occurs in all directions, stopping at the
color of boundary.

The _floodfill functions return a nonzero value if the fill is successful. They return
0 if the fill could not be completed, the starting point lies on the boundary color, or
the start point lies outside the clipping region.

Standards: None
16-Bit: DOS
32-Bit: None

_ellipse functions, _getcolor, _getfillmask, _grstatus, _pie functions,
_setfillmask, _setcliprgn, _setcolor

284 _floodfill, _floodfill_w

Example /* FLOODFIL.C: This program draws a series of nested rectangles in
* different colors, constantly changing the background color.
*/

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void main(void)
{

int Toop;

int xvar, yvar;

/* find a valid graphics mode */
if(!_setvideomode(_MAXCOLORMODE))
exit(1);

for(xvar = 163, Toop = @; xvar < 320; Tloop++, xvar += 3)
{
_setcolor(loop % 16);
yvar = xvar * 5 / 8;
_rectangle(_GBORDER, 32@0-xvar, 200-yvar, xvar, yvar);
_setcolor(rand() % 16);
_floodfill(@, @, Toop % 16);
}
_getch();
_setvideomode(_DEFAULTMODE);
}

floor, _floorl 285

floor, _floorl

Description Calculate the floor of a value.
#include <math.h>

double floor(double x);

long double _floorl(long double x);

X Floating-point value

Remarks The floor and _floorl functions return a floating-point value representing the
largest integer that is less than or equal to x.

The _floorl function is the 80-bit counterpart, and it uses the 80-bit, 10-byte co-
processor form of arguments and return values. See the reference page on the long
double functions for more details on this data type.

Return Value These functions return the floating-point result. There is no error return.

Compatibility floor
Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_floorl

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

See Also ceil, fmod

286 floor, _floorl

Example /% FLOOR.C: This example displays the lTargest integers less than or equal
* to the floating-point values 2.8 and -2.8. It then shows the smallest
* integers greater than or equal to 2.8 and -2.8.
*/

#include <math.h>
#include <stdio.h>

void main(void)
{
double y;

y = floor(2.8);

printf("The floor of 2.8 is %f\n", y);
y = floor(-2.8);

printf("The floor of -2.8 is %f\n", y);

y = ceil(2.8);

printf("The ceil of 2.8 is %f\n", y);
y = ceil(-2.8);

printf("The ceil of -2.8 is %f\n", y);

Output The floor of 2.8 is 2.000000
The floor of -2.8 is -3.000000
The ceil of 2.8 is 3.000000
The ceil of -2.8 is -2.000000

_flushall 287

Description

Remarks

Return Value

Compatibility

See Also

Example

_flushall

Flushes all streams; clears all buffers.
#include <stdio.h>

int _flushall(void);

The _flushall function writes to its associated files the contents of all buffers as-
sociated with open output streams. All buffers associated with open input streams
are cleared of their current contents. The next read operation (if there is one) then
reads new data from the input files into the buffers.

Buffers are automatically flushed when they are full, when streams are closed, or
when a program terminates normally without closing streams.

All streams remain open after the call to _flushall.

The _flushall function returns the number of open streams (input and output).
There is no error return.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

fflush

/* FLUSHALL.C: This program uses _flushall to flush all open buffers. */

#include <stdio.h>

Output

void main(void)
int numflushed;

numflushed = _flushall();
printf("There were %d streams flushed\n", numflushed);

There were 3 streams flushed

288 fmod, _fmodl

Description

Remarks

Return Value

Compatibility

See Also

fmod, _

fmodi

Calculate the floating-point remainder.

#include <math.h>

double fmod(double x, double y);

long double _fmodl(long double x, long double y);

X,y

Floating-point values

The fmod and _fmodl functions calculate the floating-point remainder fof x / y
such that x = i * y + f, where i is an integer, f has the same sign as x, and the abso-
lute value of f is less than the absolute value of y.

The _fmodl function is the 80-bit counterpart; it uses the 80-bit, 10-byte coproces-
sor form of arguments and return values. See the discussion of the long double
functions for more details on this data type.

These functions return the floating-point remainder. If y is 0, the function returns 0.

fmod
Standards:
16-Bit:
32-Bit:
_fmodl
Standards:
16-Bit:
32-Bit:

ANSI, UNIX
DOS, QWIN, WIN, WIN DLL
DOS32X

None
DOS, QWIN, WIN, WIN DLL
None

ceil, fabs, floor

fmod, _fmodl

289

Example

Output

/* FMOD.C: This program displays a floating-point remainder. %/

#include <math.h>
#include <stdio.h>

void main(void)

{

double x = -10.0, y = 3.0, z;

z = fmod(x, y);

printf("The remainder of %.2f / %.2f is %f\n", x, y, z);
}

The remainder of -10.00 / 3.00 is -1.000000

290 fopen

Description

Remarks

fopen

Opens a file.
#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);

filename Path name of file

mode Type of access permitted

The fopen function opens the file specified by filename. The character string mode
specifies the type of access requested for the file, as follows:

Type Description

"r" Opens for reading. If the file does not exist or cannot be found, the
fopen call will fail.

"w' Opens an empty file for writing. If the given file exists, its contents
are destroyed.

"a" Opens for writing at the end of the file (appending); creates the file
first if it doesn’t exist.

"r+" Opens for both reading and writing. (The file must exist.)

"w+"! Opens an empty file for both reading and writing. If the given file
exists, its contents are destroyed.

"a+" Opens for reading and appending; creates the file first if it doesn’t

exist.

When a file is opened with the "'a'" or ""a+"' access type, all write operations occur
at the end of the file. Although the file pointer can be repositioned using fseek or
rewind, the file pointer is always moved back to the end of the file before any
write operation is carried out. Thus, existing data cannot be overwritten.

When the "r+", "w+'", or "a+'"" access type is specified, both reading and writing
are allowed (the file is said to be open for “update”). However, when you switch
between reading and writing, there must be an intervening fsetpos, fseek, or
rewind operation. The current position can be specified for the fsetpos or fseek
operation, if desired.

fopen 291

In addition to the values listed above, the following characters can be included in
mode to specify the translation mode for newline characters:

Mode Meaning

t Open in text (translated) mode. In this mode, carriage-return—line-
feed (CR-LF) combinations are translated into single line feeds (LF)
on input and LF characters are translated to CR-LF combinations on
output. Also, CTRL+Z is interpreted as an end-of-file character on
input. In files opened for reading or for reading/writing, fopen checks
for a CTRL+Z at the end of the file and removes it, if possible. This is
done because using the fseek and ftell functions to move within a file
that ends with a CTRL+Z may cause fseek to behave improperly near

the end of the file.

b Open in binary (untranslated) mode; the above translations are
suppressed.

c Enable the commit flag for the associated filename so that the

contents of the file buffer are written directly to disk if either fflush
or _flushall is called.

n Reset the commit flag for the associated filename to “no-commit”.
This is the default. It will also override the global commit flag if you
have linked your program with COMMODE.OBJ. The global
commit flag default is “no-commit” unless you explicitly link your
program with COMMODE.OB]J.

If t or b is not given in mode, the translation mode is defined by the default-mode
variable _fmode. If t or b is prefixed to the argument, the function will fail and re-
turn NULL.

For a discussion of text and binary modes see “Input and Output” on page 31.

Return Value The fopen function returns a pointer to the open file. A null pointer value indicates
an error.

Compatibility Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

Note that the ¢, n, and t options are not part of the ANSI standard for fopen; they
are Microsoft extensions and should not be used where ANSI portability is desired.

See Also fclose, _fcloseall, _fdopen, ferror, _fileno, freopen, _open, _setmode

292 fopen

Example /* FOPEN.C: This program opens files named "data" and "data2". It uses
* fclose to _close "data" and _fcloseall to close all remaining files.
*/

#include <stdio.h>
FILE *stream, *stream2;

void main(void)
{
int numclosed;

/* Open for read (will fail if 'data' does not exist) */
if((stream = fopen("data"™, "r")) == NULL)

printf("The file 'data' was not opened\n");
else

printf("The file 'data' was opened\n");

/* Open for write */
if((stream2 = fopen("data2", "w+")) == NULL)
printf("The file 'data2' was not opened\n");
else
printf("The file 'data2' was opened\n");

/* Close stream */
if(fclose(stream))
printf("The file 'data' was not closed\n");

/* A11 other files are closed: */

numclosed = _fcloseall();
printf("Number of files closed by _fcloseall: %u\n", numclosed);
}
Output The file 'data' was opened

The file 'data2' was opened
Number of files closed by _fcloseall: 1

_FP_OFF, _FP_SEG 293

Description

_FP_OFF, _FP_SEG

Get or set a far-pointer offset (_FP_OFF) or a far-pointer segment (_FP_SEG).
#include <dos.h>

unsigned _FP_OFF(void __far *address);
unsigned _FP_SEG(void __far *address);

address Far pointer to memory address

Remarks The _FP_OFF and _FP_SEG macros can be used to set or get the offset and seg-
ment, respectively, of the far pointer at address.

Return Value The _FP_OFF macro returns an offset. The _FP_SEG macro returns a segment
address.

Compatibility Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

Example /* _FP_SEG.C: This program uses _FP_SEG and _FP_OFF to obtain

* the segment and offset of the long pointer p.
*/

#include <dos.h>
f#finclude <malloc.h>
#include <stdio.h>

void main(void)

{
void __far *p;
unsigned int seg_val;

—— unsigned int off_val;

p = _fmalloc(100); /* Points pointer at something =/
seg_val = _FP_SEG(p); /* Gets address pointed to */
off_val = _FP_OFF(p);

printf("Segment is %.4X; Offset is %.4X\n", seg_val, off_val);

294 _FP_OFF, _FP_SEG

Output Segment is @@C7; Offset is 0016

_fpreset 295

Description

Remarks

Return Value

Compatibility

See Also

_fpreset

Resets the floating-point package.
#include <float.h>

void _fpreset(void);

The _fpreset function reinitializes the floating-point-math package. This function
is usually used in conjunction with signal, system, or the _exec or _spawn
functions.

If a program traps floating-point error signals (SIGFPE) with signal, it can safely
recover from floating-point errors by invoking _fpreset and using longjmp.

In DOS versions prior to 3.0, a child process executed by _exec, _spawn, or
system may affect the floating-point state of the parent process if an 8087, 80287,
or 80387 coprocessor is used. If you are using either coprocessor, the following
precautions are recommended:

® The _exec, _spawn, and system functions should not be called during the eval-
uation of a floating-point expression.

= The _fpreset function should be called after these routines if there is a possi-
bility of the child process performing any floating-point operations.

None.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_exec functions, signal, _spawn functions

296 _fpreset

Exanuﬂe /* FPRESET.C: This program uses signal to set up a routine for handling
* floating-point errors.
*/

#include <stdio.h>
#include <signal.h>
#include <setjmp.h>
#include <stdlib.h>
#Finclude <float.h>
f#include <math.h>

#include <string.h>

jmp_buf mark; /* Address for long jump to jump to */
int fperr; /* Global error number =/

void fphandler(int sig, int num); /* Prototypes */
void fpcheck(void);

void main(void)

{
double nl1, n2, r;
int jmpret;

/% Set up floating-point error handler. The compiler
* will generate a warning because it expects
* signal-handling functions to take only one argument.
*/
if(signal(SIGFPE, fphandler) == SIG_ERR)
{
fprintf(stderr, "Couldn't set SIGFPE\n");
abort();
}

/* Save stack environment for return in case of error. First time
* through, jmpret is @, so true conditional is executed. If an
* error occurs, jmpret will be set to -1 and false conditional
* will be executed.

*/

Jjmpret = setjmp(mark);

if(jmpret == 0)

{

printf("Test for invalid operation - ");
printf("enter two numbers: ™);
scanf("%1f %1f", &nl, &n2);

r =nl/ n2;
/* This won't be reached if error occurs. */
printf("\n\n%4.3g / %4.39 = %4.3g9\n", nl, n2, r);

_fpreset

297

r =nl * n2;
/* This won't be reached if error occurs. */
printf("\n\n%4.3g * %4.3g9 = %4.3g\n", nl, n2, r);

}
else
fpcheck();

}

/= fphandler handles SIGFPE (floating-point error) interrupt. Note
* that this prototype accepts two arguments and that the prototype
* for signal in the run-time library expects a signal handler to
* have only one argument.

*
* The second argument in this signal handler allows processing of
* _FPE_INVALID, _FPE_OVERFLOW, _FPE_UNDERFLOW, and _FPE_ZERODIVIDE
* all of which are Microsoft-specific symbols that augment the
* information provided by SIGFPE. The compiler will generate a
* warning, which is harmless and expected.
*/
void fphandler(int sig, int num)
{
/* Set global for outside check since we don't want
* to do I/0 in the handler.
*/
fperr = num;
/* Initialize floating-point package. */
_fpreset();
/* Restore calling environment and jump back to setjmp. Return -1
* so that setjmp will return false for conditional test.
*/
longjmp(mark, -1);
}

void fpcheck(void)
{
char fpstr[30];

switch(fperr)
{
case _FPE_INVALID:
strcpy(fpstr, "Invalid number"”);
break;

case _FPE_OVERFLOW:
strcpy(fpstr, "Overflow");
break;

case _FPE_UNDERFLOW:
strcpy(fpstr, "Underflow™);
break;

298 _fpreset
case _FPE_ZERODIVIDE:
strcpy(fpstr, "Divide by zero");
break;
default:
strcpy(fpstr, "Other floating point error™);
break;
}
printf("Error %d: %s\n", fperr, fpstr);
}
Output Test for invalid operation - enter two numbers: 5 @

Error 131: Divide by zero

fprintf 299

Description

Remarks

Return Value

Compatibility

See Also

fprintf

Prints formatted data to a stream.
#include <stdio.h>

int fprintf(FILE *stream, const char *format [| , argument ...);

stream Pointer to FILE structure
format Format-control string
argument Optional arguments

The fprintf function formats and prints a series of characters and values to the out-
put stream. Each argument (if any) is converted and output according to the corre-
sponding format specification in format.

The format argument has the same form and function that it does for the printf
function; see the Remarks section for the printf function for more information on
format and argument.

The fprintf function returns the number of characters printed, or a negative value
in the case of an output error.

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN
32-Bit: DOS32X

_cprintf, fscanf, printf, sprintf

300

fprintf

Example

Output

/% FPRINTF.C: This program uses fprintf to format various data and
* print them to the file named FPRINTF.OUT. It then displays

* FPRINTF.OUT on the screen using the system function to invoke

* the DOS TYPE command.

*/

#include <stdio.h>
f#include <process.h>

FILE *stream;

void main(void)
{
int i=10;
double fp = 1.5;
char s[] = "this is a string";
char c="'\n";

stream = fopen("fprintf.out”, "w");
fprintf(stream, "%s%c", s, c);
fprintf(stream, "%d\n", i);
fprintf(stream, "%f\n", fp);
fclose(stream);

system("type fprintf.out");

this is a string
10
1.500000

fputc, _fputchar 301

Description

Remarks

Return Value

Compatibility

See Also

fputc, _fputchar

Write a character to a stream (fputc) or to stdout (_fputchar).
#include <stdio.h>

int fputc(int ¢, FILE *stream);

int _fputchar(int ¢);

c Character to be written

stream Pointer to FILE structure

The fputc function writes the single character c to the output stream at the current
position. The _fputchar function is equivalent to fputc(c, stdout).

The fputc and _fputchar routines are similar to putc and putchar, but are func-
tions rather than macros.

The fputc and _fputchar functions return the character written. A return value of
EOF indicates an error.

fputc
Standards: ANSI, UNIX

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_fputchar

Standards: None

16-Bit: DOS, QWIN
32-Bit: DOS32X

fgetc, _fgetchar, putc, putchar

302 fputc, _fputchar

Example /% FPUTC.C: This program uses fputc and _fputchar to send a character
* array to stdout.
*/

#include <stdio.h>

void main(void)
{
char strptrl[]
char strptr2[]
char =*p;

"This is a test of fputc!!\n";
"This is a test of _fputchar!!\n";

/% Print line to stream using fputc. */
p = strptrl;
while((*p != '\@') && fputc(=(p++), stdout) != EOF)

/*% Print Tine to stream using _fputchar. */

p = strptr2;
while((*p != '\@') && _fputchar(*(p++)) != EOF)
}
Output This is a test of fputc!!

This is a test of _fputchar!!

fputs 303

Description

Remarks

Return Value

Compatibility

See Also

Example

fputs

Writes a string to a stream.
#include <stdio.h>
int fputs(const char *string, FILE *stream);

string String to be output

stream Pointer to FILE structure
The fputs function copies string to the output stream at the current position. The
terminating null character (°\0”) is not copied.

The fputs function returns a nonnegative value if it is successful. If an error oc-
curs, it returns EOF.

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

fgets, gets, puts

/* FPUTS.C: This program uses fputs to write a single line to the
* stdout stream.

#include <stdio.h>

void main(void)

fputs("Hello world from fputs.\n", stdout);

Output Hello world from fputs.

304 fread

Description

Remarks

Return Value

Compatibility

See Also

fread

Reads data from a stream.
#include <stdio.h>

size_t fread(void *buffer, size_t size, size_t count, FILE *stream);

buffer Storage location for data

size Item size in bytes

count Maximum number of items to be read
stream Pointer to FILE structure

The fread function reads up to count items of size bytes from the input stream and
stores them in buffer. The file pointer associated with stream (if there is one) is in-
creased by the number of bytes actually read.

If the given stream is opened in text mode, carriage-return—line-feed pairs are re-
placed with single line-feed characters. The replacement has no effect on the file
pointer or the return value.

The file-pointer position is indeterminate if an error occurs. The value of a par-
tially read item cannot be determined.

The fread function returns the number of full items actually read, which may be
less than count if an error occurs or if the file end is encountered before reaching
count.

The feof or ferror function should be used to distinguish a read error from an end-
of-file condition. If size or count is 0, fread returns O and the buffer contents are
unchanged.

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

fwrite, _read

fread

305

Example

Output

/* FREAD.C: This program opens a file named FREAD.OUT and writes 25

*
*
*

*/

characters to the file. It then tries to open FREAD.OUT and
read in 25 characters. If the attempt succeeds, the program
displays the number of actual items read.

#include <stdio.h>

void main(void)

{

FILE *stream;
char 1ist[30];
int i, numread, numwritten;

/* Open file in text mode: */
if((stream = fopen("fread.out", "w+t")) != NULL)
{
for (i =0; i < 25; i++)
list[i]l = 'z' - i;
/* Write 25 characters to stream */
numwritten = fwrite(1ist, sizeof(char), 25, stream);
printf("Wrote %d items\n", numwritten);
fclose(stream);
}
else
printf("Problem opening the file\n");

if((stream = fopen("fread.out™, "r+t")) != NULL)

{
/* Attempt to read in 25 characters */
numread = fread(1ist, sizeof(char), 25, stream);
printf("Number of items read = %d\n", numread);
printf("Contents of buffer = %.25s\n", 1ist);
fclose(stream);

}

else
printf("Was not able to open the file\n");

Wrote 25 items
Number of items read = 25
Contents of buffer = zyxwvutsrqponmlkjihgfedcb

306 free Functions

Description

Remarks

free Functions

Deallocate a memory block.

#include <stdlib.h> For ANSI compatibility (free only)

#include <malloc.h> Required only for function declarations

void free(void *memblock);
void _bfree(__segment seg, void __based(void) *memblock);
void _ffree(void __far *memblock);

void _nfree(void _ _near *memblock);

memblock Allocated memory block
seg Based-heap segment selector

The free family of functions deallocates a memory block. The argument
memblock points to a memory block previously allocated through a call to calloc,
malloc, or realloc. The number of bytes freed is the number of bytes specified
when the block was allocated (or reallocated, in the case of realloc). After the call,
the freed block is available for allocation.

The seg argument specifies the based heap containing the memory block to be
freed by the _bfree function.

Attempting to free an invalid pointer may affect subsequent allocation and cause
errors. An invalid pointer is one not allocated with the appropriate call.

The following restrictions apply to use of the free, _bfree, _ffree, and _nfree
functions:

Blocks allocated with: Should be freed with:
calloc, malloc, realloc free

_bcalloc, _bmalloc, _brealloc _bfree

_fcalloc, _fmalloc, _frealloc _ffree

_ncalloc, _nmalloc, _nrealloc _nfree

free Functions 307

A NULL pointer argument is ignored.

In large data models (compact-, large-, and huge-model programs), free maps to
_ffree. In small data models (tiny-, small-, and medium-model programs), free
maps to _nfree.

The various free functions deallocate a memory block in the segments shown in
the list below:

Function Data Segment
free Depends on data model of program
_bfree Based heap specified by seg value
_ffree Far heap (outside default data segment)
_nfree Near heap (inside default data segment)
Return Value None.
Compatibility free
Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_bfree, _ffree, _nfree

Standards: None

16-Bit: DOS, WIN, WIN DLL
32-Bit: None
See Also calloc functions, malloc functions, realloc functions

Example /* MALLOC.C: This program allocates memory with malloc, then frees
* the memory with free.
*/

#include <stdlib.h> /* Definition of _MAX_PATH %/
#include <stdio.h>
f#finclude <malloc.h>

308 free Functions

void main(void)

{
char *string;
/* Allocate space for a path name */
string = malloc(_MAX_PATH);
if(string == NULL)
printf("Insufficient memory available\n");
else
printf("Memory space allocated for path name\n");
free(string);
printf("Memory freed\n");
}
Output Memory space allocated for path name

Memory freed

_freect 309

_freect

Description Returns the amount of memory available for memory allocation.
#include <malloc.h> Required only for function declarations
unsigned int _freect(size_t size);

size Item size in bytes

Remarks The _freect function tells you how much memory is available for dynamic
memory allocation in the near heap. It does so by returning the approximate num-
ber of times your program can call _nmalloc (or malloc in small data models) to
allocate an item size bytes long in the near heap (default data segment).

Return Value The _freect function returns the number of calls as an unsigned integer.
Compatibility Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: None
See Also calloc functions, _expand functions, malloc functions, _memavl, _msize func-

tions, realloc functions

Example /#* FREECT.C: This program determines how much free space is available for
* integers in the default data segment. Then it allocates space for
* 1,000 integers and checks the space again, using _freect.
*/

f#include <malloc.h>
f#include <stdio.h>

310 _freect

void main(void)
{
int i;

/* First report on the free space: */
printf("Integers (approximate) available on heap: %u\n\n",
_freect(sizeof(int)));

/* Allocate space for 1000 integers: */
for(i = 0; i < 1000; ++i)
malloc(sizeof(int));

/* Report again on the free space: */

printf("After allocating space for 1000 integers:\n");

printf("Integers (approximate) available on heap: %u\n\n",
_freect(sizeof(int)));

Output Integers (approximate) available on heap: 15212

After allocating space for 1000 integers:
Integers (approximate) available on heap: 14084

freopen 3N

Description

Remarks

freopen

Reassigns a file pointer.
#include <stdio.h>

FILE *freopen(const char *filename, const char *mode, FILE *stream);

filename Path name of new file
mode Type of access permitted
stream Pointer to FILE structure

The freopen function closes the file currently associated with stream and reas-
signs stream to the file specified by filename. The freopen function is typically
used to redirect the pre-opened files stdin, stdout, and stderr to files specified by
the user. The new file associated with stream is opened with mode, which is a char-
acter string specifying the type of access requested for the file, as follows:

Type Description

"r" Opens for reading. If the file does not exist or cannot be found, the
freopen call fails.

"w'' Opens an empty file for writing. If the given file exists, its contents are
destroyed.

"a" Opens for writing at the end of the file (appending); creates the file first

if it does not exist.

"r+ Opens for both reading and writing. (The file must exist.)

w4 Opens an empty file for both reading and writing. If the given file exists,
its contents are destroyed.

"a+" Opens for reading and appending; creates the file first if it does not exist.

Use the ""w'' and ""w+'"' types with care, as they can destroy existing files.

When a file is opened with the ""a'" or ""a+'" access type, all write operations take
place at the end of the file. Although the file pointer can be repositioned using
fseek or rewind, the file pointer is always moved back to the end of the file before
any write operation is carried out. Thus, existing data cannot be overwritten.

312 freopen

Return Value

Compatibility

See Also

When the "r+", ""w+", or ""a+"" access type is specified, both reading and writing
are allowed (the file is said to be open for “update”). However, when you switch
between reading and writing, there must be an intervening fsetpos, fseek, or
rewind operation. The current position can be specified for the fsetpos or fseek
operation, if desired.

In addition to the values listed above, one of the following characters may be in-
cluded in the mode string to specify the translation mode for new lines.

Mode Meaning

t Open in text (translated) mode; carriage-return—line-feed
(CR-LF) combinations are translated into single line-feed (LF)
characters on input; LF characters are translated to CR-LF combinations
on output. Also, CTRL+Z is interpreted as an end-of-file character on
input. In files opened for reading, or writing and reading, the run-time
library checks for a CTRL+Z at the end of the file and removes it, if
possible. This is done because using the fseek and ftell functions to
move within a file may cause fseek to behave improperly near the end
of the file.

b Open in binary (untranslated) mode; the above translations are
suppressed.

If t or b is not given in the mode string, the translation mode is defined by the de-
fault mode variable _fmode.

See “Input and Output” on page 31 for a discussion of text and binary modes.

The freopen function returns a pointer to the newly opened file. If an error occurs,
the original file is closed and the function returns a NULL pointer value.

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

The t option is not part of the ANSI standard for freopen; it is a Microsoft exten-
sion that should not be used where ANSI portability is desired.

fclose, _fcloseall, _fdopen, _fileno, fopen, _open, _setmode

freopen 313

Example /* FREOPEN.C: This program reassigns stdaux to the file
* named FREOPEN.OUT and writes a line to that file.
*/

#include <stdio.h>
#Finclude <stdlib.h>

FILE *stream;

void main(void)

{
/* Reassign "stdaux" to "freopen.out": */
stream = freopen("freopen.out", "w", stdaux);

if(stream == NULL)
fprintf(stdout, "error on freopen\n");
else
{
fprintf(stream, "This will go to the file 'freopen.out'\n");
fprintf(stdout, "successfully reassigned\n");
fclose(stream);

}
system("type freopen.out");
}
Output successfully reassigned

This will go to the file 'freopen.out'

314 frexp, _frexpl

Description

Remarks

Return Value

Compatibility

See Also

frexp, _frexpl

Get the mantissa and exponent of a floating-point number.
#include <math.h>

double frexp(double x, int *expptr);

long double _frexpl(long double x, int *expprr);

X Floating-point value

expptr Pointer to stored integer exponent

The frexp and _frexpl functions break down the floating-point value (x) into a
mantissa (m) and an exponent (7), such that the absolute value of m is greater than
or equal to 0.5 and less than 1.0, and x = m*2" The integer exponent 7 is stored at
the location pointed to by expptr.

The _frexpl function is the 80-bit counterpart and uses an 80-bit, 10-byte co-
processor form of arguments and return values. See the reference page on the long
double functions for more details on this data type.

These functions return the mantissa. If x is 0, the function returns O for both the
mantissa and the exponent. There is no error return.

frexp

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_frexpl

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

Idexp functions, modf

frexp, _frexpl 315

Exanuﬂe /* FREXP.C: This program calculates frexp(16.4, &n), then displays y
* and n.
*/

#include <math.h>
#include <stdio.h>

void main(void)

{

double x, y;

int n;

x = 16.4;

y = frexp(x, &n);

printf("frexp(%f, &n) = %f, n = %d\n", x, y, n);
}

Output frexp(16.400000, &n) = 0.512500, n = 5

316 fscanf

Description

Remarks

Return Value

Compatibility

See Also

fscanf

Reads formatted data from a stream.
#include <stdio.h>

int fscanf(FILE *stream, const char *format [[, argument]...);

stream Pointer to FILE structure
format Format-control string
argument Optional arguments

The fscanf function reads data from the current position of stream into the loca-
tions given by argument (if any). Each argument must be a pointer to a variable
with a type that corresponds to a type specifier in format. The format controls the
interpretation of the input fields and has the same form and function as the format
argument for the scanf function; see scanf for a description of format.

The fscanf function returns the number of fields that were successfully converted
and assigned. The return value does not include fields that were read but not
assigned.

The return value is EOF for an error or end-of-file on stream before the first con-
version. A return value of 0 means that no fields were assigned.

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN
32-Bit: DOS32X

_cscanf, fprintf, scanf, sscanf

fscanf

317

Example

Output

/* FSCANF.C: This program writes formatted data to a file. It
* then uses fscanf to read the various data back from the file.

*/

fFinclude <stdio.h>

FILE *stream;

void main(void)

{
long 1;
float fp;
char s[81];
char c;
int result;
stream = fopen("fscanf.out", "w+");
if(stream == NULL)
printf("The file fscanf.out was not opened\n");
else
{
fprintf(stream, "%s %1d %f%c", "a-string"™, 65000, 3.14159, 'x');
/* Set pointer to beginning of file: */
fseek(stream, @L, SEEK_SET);
/* Read data back from file: */
fscanf(stream, "%s", s);
fscanf(stream, "%1d"™, &1);
fscanf(stream, "%f", &fp);
fscanf(stream, "%c", &c);
/* Qutput data read: */
printf("%s\n", s);
printf("%1d\n", 1);
printf("%f\n", fp);
printf("%c\n", c);
fclose(stream);
}
}
a-string
65000
3.141590

X

318 fseek

Description

Remarks

fseek

Moves the file pointer to a specified location.
#include <stdio.h>

int fseek(FILE *stream, long offset, int origin);

stream Pointer to FILE structure
offset Number of bytes from origin
origin Initial position

The fseek function moves the file pointer (if any) associated with stream to a new
location that is offset bytes from origin. The next operation on the stream takes
place at the new location. On a stream open for update, the next operation can be
either a read or a write.

The argument origin must be one of the following constants defined in STDIO.H:

Origin Definition

SEEK_CUR Current position of file pointer
SEEK_END End of file

SEEK_SET Beginning of file

The fseek function can be used to reposition the pointer anywhere in a file. The
pointer can also be positioned beyond the end of the file. However, an attempt to
position the pointer in front of the beginning of the file causes an error.

The fseek function clears the end-of-file indicator and negates the effect of any
prior ungetc calls against stream.

When a file is opened for appending data, the current file position is determined
by the last I/O operation, not by where the next write would occur. If no I/O opera-
tion has yet occurred on a file opened for appending, the file position is the start of
the file.

fseek 319

For streams opened in text mode, fseek has limited use because carriage-return—
line-feed translations can cause fseek to produce unexpected results. The only
fseek operations guaranteed to work on streams opened in text mode are

w Seeking with an offset of O relative to any of the origin values

= Seeking from the beginning of the file with an offset value returned from a call
to ftell

Return Value If successful, fseek returns 0. Otherwise, it returns a nonzero value. On devices in-
capable of seeking, the return value is undefined.

Compatibility Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DO0S32X

See Also ftell, _lseek, rewind

Example /% FSEEK.C: This program opens the file FSEEK.OUT and
* moves the pointer to the file's beginning.
*/
f#include <stdio.h>

void main(void)
{
FILE *stream;
char 1ine[81];
int result;

stream = fopen("fseek.out", "w+");
if(stream == NULL)
printf("The file fseek.out was not opened\n");
else
{
fprintf(stream, "The fseek begins here: "
"This is the file 'fseek.out'.\n");
result = fseek(stream, 23L, SEEK_SET);
if(result)
perror("Fseek failed");
else
{
printf("File pointer is set to middle of first line.\n");
fgets(line, 80, stream);
printf("%s", line);
}
fclose(stream);

320 fseek

Output File pointer is set to middle of first line.
This is the file 'fseek.out'.

fsetpos 321

Description

Remarks

Return Value

Compatibility

See Also

fsetpos

Sets the stream-position indicator.
#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos) ;

stream Target stream

pos Position-indicator storage

The fsetpos function sets the file-position indicator for stream to the value of pos,
which is obtained in a prior call to fgetpos against stream.

The function clears the end-of-file indicator and undoes any effects of the ungetc
function on stream. After calling fsetpos, the next operation on stream may be
either input or output.

If successful, the fsetpos function returns 0. On failure, the function returns a non-
zero value and sets errno to one of the following manifest constants (defined in
ERRNO.H):

Constant Meaning

EBADF The object that stream points to is not a valid file handle, or the
file is not accessible.

EINVAL An invalid stream value was passed.

Standards: ANSI
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

fgetpos

322 fsetpos

Example /* FGETP0OS.C: This program opens a file and reads bytes at several
* different locations.
*/
#include <stdio.h>

void main(void)

{
FILE *stream;
fpos_t pos;
int val;
char buffer[20];
if((stream = fopen("fgetpos.c", "rb")) == NULL)
printf("Trouble opening file\n");
else
{
/* Read some data and then check the position. */
fread(buffer, sizeof(char), 10, stream);
if(fgetpos(stream, &pos) != 0)
perror("fgetpos error");
else
{
fread(buffer, sizeof(char), 10, stream);
printf("10 bytes at byte %1d: %.1@0s\n", pos, buffer);
}
/* Set a new position and read more data. */
pos = 140;
if(fsetpos(stream, &pos) != 0)
perror("fsetpos error");
fread(buffer, sizeof(char), 10, stream);
printf("10 bytes at byte %1d: %.1@0s\n", pos, buffer);
fclose(stream);
}
}
Output 10 bytes at byte 1@: .C: This p

10 bytes at byte 140: FILE =

_fsopen 323

Description

Remarks

_fsopen

Opens a stream with file sharing.

#include <stdio.h>

#include <share.h> shflag constants

FILE *_fsopen(const char *filename, const char *mode, int shflag);

filename Filename to open
mode Type of access permitted
shflag Type of sharing allowed

The _fsopen function opens the file specified by filename as a stream and pre-
pares the file for subsequent shared reading or writing, as defined by the mode and
shflag arguments.

The character string mode specifies the type of access requested for the file, as
follows:

Type Description

"r" Opens for reading. If the file does not exist or cannot be found, the
_fsopen call will fail.

"w'! Opens an empty file for writing. If the given file exists, its contents
are destroyed.

"a" Opens for writing at the end of the file (appending); creates the file
first if it does not exist.

"r+" Opens for both reading and writing. (The file must exist.)

"w+'' Opens an empty file for both reading and writing. If the given file

exists, its contents are destroyed.

" "

a+ Opens for reading and appending; creates the file first if it does not

exist.

Use the "w'" and ""w+'"" types with care, as they can destroy existing files.

"nan

When a file is opened with the "'a' or "a+'' access type, all write operations occur
at the end of the file. Although the file pointer can be repositioned using fseek or
rewind, the file pointer is always moved back to the end of the file before any
write operation is carried out. Thus, existing data cannot be overwritten.

324 _fsopen

Return Value

When the "'r+", ""w+", or "a+"" access type is specified, both reading and writing
are allowed (the file is said to be open for “update”). However, when switching be-
tween reading and writing, there must be an intervening fsetpos, fseek, or rewind
operation. The current position can be specified for the fsetpos or fseek operation,
if desired.

In addition to the values listed above, one of the following characters can be in-
cluded in mode to specify the translation mode for new lines:

Mode Meaning

t Open in text (translated) mode. In this mode, carriage-return—
line-feed (CR-LF) combinations are translated into single line
feeds (LF) on input and LF characters are translated to CR-LF
combinations on output. Also, CTRL+Z is interpreted as an end-
of-file character on input. In files opened for reading or
reading/writing, _fsopen checks for a CTRL+Z at the end of the
file and removes it, if possible. This is done because using the
fseek and ftell functions to move within a file that ends with a
CTRL+Z may cause fseek to behave improperly near the end of
the file.

b Open in binary (untranslated) mode; the above translations are
suppressed.

If t or b is not given in mode, the translation mode is defined by the default-mode
variable _fmode. If t or b is prefixed to the argument, the function will fail and
will return NULL.

See “Input and Output” on page 31 for a discussion of text and binary modes.

The argument siflag is a constant expression consisting of one of the following
manifest constants, defined in SHARE.H. If SHARE.COM—or SHARE.EXE for
some versions of DOS—is not installed, DOS ignores the sharing mode. (See your
system documentation for detailed information about sharing modes.)

Constant Meaning

—SH_COMPAT Sets compatibility mode
_SH_DENYNO Permits read and write access
_SH_DENYRD Denies read access to file
_SH_DENYRW Denies read and write access to file
_SH_DENYWR Denies write access to file

The _fsopen function should be used only under DOS versions 3.0 and later.
Under earlier versions of DOS, the shflag argument is ignored.

The _fsopen function returns a pointer to the stream. A NULL pointer value indi-
cates an error.

_fsopen 325

Compatibility Standards: None

See Also

Example

Qutput

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

fclose, _fcloseall, _fdopen, ferror, _fileno, fopen, freopen, _open, _setmode,
_sopen

/* FSOPEN.C: This program opens files named "data" and "data2". It uses
* fclose to close "data" and _fcloseall to close all remaining files.
*/

#include <stdio.h>
f#include <share.h>

FILE *stream;

void main(void)

{
FILE *stream;
/* Open output file for writing. Using _fsopen allows us to ensure
* that no one else writes to the file while we are writing to it.
*/
if((stream = _fsopen("outfile™, "wt™, _SH_DENYWR)) != NULL)
{
fprintf(stream, "No one else in the network can write "
"to this file until we are done.\n");
fclose(stream);
}
/* Now others can write to the file while we read it. */
system("type outfile");
}

No one else in the network can write to this file until we are done.

326 _ fstat

Description

Remarks

Return Value

_fstat

Gets information about an open file.

#include <sys\types.h>

#include <sys\stat.h>
int _fstat(int handle, struct _stat *buffer);

handle Handle of open file

buffer Pointer to structure to store results

The _fstat function obtains information about the open file associated with handle
and stores it in the structure pointed to by buffer. The structure, whose type _stat
is defined in SYS\STAT.H, contains the following fields:

Field Value

st_atime Time of last access of file.

st_ ctime Time of creation of file.

st_dev Either the drive number of the disk containing the file, or handle
in the case of a device (same as st_rdev).

st_mode Bit mask for file-mode information. The _S_IFCHR bit is set if

handle refers to a device. The _S_IFREG bit is set if handle
refers to an ordinary file. The read/write bits are set according to
the file’s permission mode. (_S_IFCHR and other constants are

defined in SYS\ STAT.H.)

st_mtime Time of last modification of file.

st_nlink Always 1.

st_rdev Either the drive number of the disk containing the file, or handle
in the case of a device (same as st_dev).

st_size Size of the file in bytes.

If handle refers to a device, the size and time fields in the _stat structure are not
meaningful.

The _fstat function returns the value O if the file-status information is obtained. A
return value of —1 indicates an error; in this case, errno is set to EBADF, indicat-
ing an invalid file handle.

_ fstat 327

Compatibility Standards: UNIX

See Also

Example

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

Use _fstat for compatibility with ANSI naming conventions of non-ANSI func-
tions. Use fstat and link with OLDNAMES.LIB for UNIX compatibility.

—access, _chmod, _filelength, _stat

/* FSTAT.C: This program uses _fstat to report the size of a file
* named FSTAT.OUT.
*/

#include <io.h>
include <fcntl.h>
#include <time.h>
#include <sys\types.h>
#include <sys\stat.h>
f#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void main(void)
{
struct _stat buf;
int fh, result;
char buffer[] = "A Tine to output";

if((fh = _open("f_stat.out™, _O_CREAT | _O_WRONLY | _O_TRUNC)) == -1)
exit(1);
_write(fh, buffer, strlen(buffer));

/* Get data associated with "fh": %/
result = _fstat(fh, &buf);

/* Check if statistics are valid: =/
if(result 1= 0)
printf("Bad file handle\n");
else
{
printf("File size : %1d\n", buf.st_size);
printf("Drive number : %d\n", buf.st_dev);
printf("Time modified : %s", ctime(&buf.st_atime));
}
_close(fh);

328 _ fstat

Output File size : 16
Drive number : @
Time modified : Tue Jun 15 21:38:46 1999

ftell 329

Description

Remarks

Return Value

ftell

Gets the current position of a file pointer.
#include <stdio.h>
long ftell(FILE *stream);

stream Target FILE structure

The ftell function gets the current position of the file pointer (if any) associated
with stream. The position is expressed as an offset relative to the beginning of the
stream.

Note that when a file is opened for appending data, the current file position is de-
termined by the last I/O operation, not by where the next write would occur. For
example, if a file is opened for an append and the last operation was a read, the file
position is the point where the next read operation would start, not where the next
write would start. (When a file is opened for appending, the file position is moved
to end-of-file before any write operation.) If no I/O operation has yet occurred on
a file opened for appending, the file position is the beginning of the file.

The ftell function returns the current file position. The value returned by ftell may
not reflect the physical byte offset for streams opened in text mode, since text
mode causes carriage-return—line-feed translation. Use ftell in conjunction with
the fseek function to return to file locations correctly. On error, the function re-
turns —1L and errno is set to one of the following constants, defined in ERRNO.H:

Constant Description

EBADF Bad file number. The stream argument is not a valid file-handle value
or does not refer to an open file.

EINVAL Invalid argument. An invalid stream argument was passed to the
function.

On devices incapable of seeking (such as terminals and printers), or when stream
does not refer to an open file, the return value is undefined.

330 ftell

Compatibility Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

See Also fgetpos, fseek, _lseek, _tell

Example /* FTELL.C: This program opens a file named FTELL.C for reading and
* tries to read 100 characters. It then uses ftell to determine the
position of the file pointer and displays this position.
*/
#include <stdio.h>
FILE *stream;

void main(void)

{
long position;
char Tist[100];
if((stream = fopen("ftell.c", "rb"™)) != NULL)
{
/* Move the pointer by reading data: */
fread(list, sizeof(char), 100, stream);
/* Get position after read: */
position = ftell(stream);
printf("Position after trying to read 100 bytes: %1d\n", position);
fclose(stream);
}
}

Output Position after trying to read 100 bytes: 100

_ftime 331

_ftime

Description Gets the current time.

#include <sys\types.h>

#include <sys\timeb.h>
void _ftime(struct _timeb *timeptr);

timeptr Pointer to structure defined in SYS\TIMEB.H

Remarks The _ ftime function gets the current time and stores it in the structure pointed to
by timeptr. The _timeb structure is defined in SYS\TIMEB.H. It contains four
fields (dstflag, millitm, time, and timezone), which have the following values:

Field Value

dstflag Nonzero if daylight saving time is currently in effect for the local
time zone. (See _tzset for an explanation of how daylight saving
time is determined.)

millitm Fraction of a second in milliseconds. The last digit is always 0 since
millitm is incremented to the nearest one-hundredth of a second.

time Time in seconds since midnight (00:00:00), December 31, 1899.

timezone Difference in minutes, moving westward, between Universal

Coordinated Time and local time. The value of timezone is set from
the value of the global variable _timezone (see _tzset).

Return Value The _ftime function gives values to the fields in the structure pointed to by
timeptr. It does not return a value.

Compatibility Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

See Also asctime, ctime, gmtime, localtime, time, _ tzset

332 _ftime

Example /* FTIME.C: This program uses _ftime to obtain the current time
* and then stores this time in timebuffer.
*/

#include <stdio.h>
#include <sys\timeb.h>
#include <time.h>

void main(void)

{
struct _timeb timebuffer;
char *timeline;

_ftime(&timebuffer);
timeline = ctime(& (timebuffer.time));

printf("The time is %.19s.%hu %s",
timeline, timebuffer.millitm, &timeline[20]);

Output The time is Tue Jun 15 21:40:34.870 1999

_fullpath 333

Description

Remarks

Return Value

Compatibility

See Also

_fullpath

Makes an absolute path name from a relative path name.
#include <stdlib.h>

char *_fullpath(char *buffer, const char *pathname, size_t maxlen);

buffer Full path-name buffer
pathname Relative path name
maxlen Length of the buffer pointed to by buffer

The _fullpath routine converts the partial path stored in pathname to a fully qual-
ified path that is stored in buffer. Unlike _makepath, the _fullpath routine can be
used with .\ and ..\ in the path.

If the length of the fully qualified path is greater than the value of maxlen, then
NULL is returned; otherwise, the address of buffer is returned.

If the buffer is NULL, _fullpath will allocate a buffer of _ MAX_PATH size
using malloc and the maxlen argument is ignored. It is the caller’s responsibility
to deallocate this buffer (using free) as appropriate.

If the pathname argument specifies a disk drive, the current directory of this drive
is combined with the path. If the drive is not valid, _fullpath returns NULL.

The _fullpath function returns a pointer to the buffer containing the absolute path
(buffer). If there is an error, _fullpath returns NULL.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_getewd, _getdcwd, _makepath, _splitpath

334 _fullpath

Example /* FULLPATH.C: This program demonstrates how _fullpath creates a full
* path from a partial path.
*/

#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

#include <direct.h>

char full[_MAX_PATH], part[_MAX_PATH];

void main(void)

{
while(1)
{
printf("Enter partial path or ENTER to quit: ");
gets(part);
if(part[0] == 0)
break;
if(_fullpath(full, part, _MAX_PATH) != NULL)
printf("Full path is: %s\n", full);
else
printf("Invalid path\n");
}
}
Output Enter partial path or ENTER to quit:

Full path is: C:\

Enter partial path or ENTER to quit: ..\include
Full path is: C:\include

Enter partial path or ENTER to quit: p:

Full path is: P:\

Enter partial path or ENTER to quit: fullpath.c
Full path is: C:\LIBREF\fullpath.c

Enter partial path or ENTER to quit:

_fwopen 335

Description

Remarks

_fwopen

Opens a new file stream for a QuickWin window.
#include <stdio.h>

FILE * _fwopen(struct _wopeninfo *wopeninfo,
struct _ wsizeinfo *wsizeinfo, char * mode);

wopeninfo Pointer to a _ wopeninfo structure
wsizeinfo Pointer to a _ wsizeinfo structure
mode Type of access permitted

The _fwopen function is a high-level call that opens a new QuickWin window, re-
turning a file-stream pointer. This routine is used only in QuickWin programs; it is
not part of the Windows API. For full details about QuickWin, see Chapter 8 of

Programming Techniques (in the Microsoft C/C++ version 7.0 documentation set).

The _wopeninfo and _ wsizeinfo structures, declared in STDIO.H, are used to
pass window initialization information, including the window’s initial size and
position on the screen. You can pass NULL for these arguments to accept Quick-
Win defaults or declare variables of these two structure types and fill in their fields.

If you declare _wopeninfo and _wsizeinfo variables, assign the _ WINVER
macro to the _version field. - WINVER is the current QuickWin version, defined
in STDIO.H.

For the _ wopeninfo variable, assign a null-terminated string to the _title field con-
taining the desired window title. You can also optionally set the size of the win-
dow’s screen buffer in the _ wbufsize field. The default is 2,048 bytes, but you can
pass some other number or the value _ WINBUFINF. This causes the buffer to be
reallocated continually so that all window output is retained for scrolling.

For the _ wsizeinfo variable, assign one of the following values to the _type field:

Value Meaning
_WINSIZEMIN Minimize the window
_WINSIZEMAX Maximize the window

_WINSIZECHAR Use character coordinates for the window size

336 _fwopen

Return Value

Compatibility

See Also

If the type is _ WINSIZECHAR, you must supply the _x, _y, _h, and _w values
in the remainder of the structure. They specify the upper-left corner and the height
and width of the window (in characters).

The mode parameter is a pointer to the stream I/O mode. The _fwopen function
accepts the same mode values as the STDIO.H fopen function:

Type Description

"r" Opens for reading

"w' Opens for writing

"r+" Opens for both reading and writing
"w+"' Opens for both reading and writing

In addition to the values listed above, one of the following characters can be in-
cluded in mode to specify the translation mode for newline characters:

Mode Meaning
t Open in text (translated) mode
b Open in binary (untranslated) mode

If t or b is not given in mode, the translation mode is defined by the default-mode
variable _fmode. If t or b is prefixed to the argument, the function fails and re-
turns NULL. See “Input and Output” on page 31 for a discussion of text and bi-
nary modes.

If _fwopen is successful, the returned stream can be passed to standard STDIO.H
functions such as fread, fwrite, and fprintf. If you write to a stream and then read
from it, or if you read from a stream and then write to it, call the STDIO.H rewind
function between the I/O calls. To close an open window stream, call the
STDIO.H function fclose. If you have opened a window with _fwopen, you can
use the _fileno macro to obtain a file handle, which you can then pass to other
QuickWin calls, such as _ wsetscreenbuf or _ wsetsize.

If successful, the _fwopen function returns a stream pointer (FILE *) to the new
window. A return value of NULL indicates an error.

Standards: None
16-Bit: QWIN
32-Bit: None

fclose, _fileno, _wabout, _wclose, _wgetfocus, _wgetscreenbuf, _ wgetsize,
_wmenuclick, _wopen, _wsetfocus, _wsetscreenbuf, _wsetsize, _wyield

_fwopen 337

Example

/* FOWPEN.C - Demonstrate opening QuickWin windows with _fwopen */

#include <io.h>
#include <stdio.h>

f#fdefine OPENFLAGS "w" /* Access permission */

void main(void)

{
struct _wopeninfo wininfo; /* Open information */
char wintitle[32] = "QuickWin "; /* Title for window */
FILE *wp; /* FILE ptr to window */
int nRes; /% 1/0 result =/

/* Set up window info structure for _fwopen */
wininfo._version = _WINVER;

wininfo._title = wintitle;

wininfo._wbufsize = _WINBUFDEF;

/* Create a new window */
/* NULL second argument accepts default size/position */
wp = _fwopen(&wininfo, NULL, OPENFLAGS);
if(wp == NULL)
{
printf("**+xERROR: _fwopen\n");
exit(-1);
}

/* Write in the window */
nRes = fprintf(wp, "Hello, QuickWin!\n");

/* Close the window */
nRes = fclose(wp);

exit(@);

338 fwrite

Description

Remarks

Return Value

Compatibility

See Also

fwrite

Writes data to a stream.
#include <stdio.h>

size_t fwrite(const void *buffer, size_t size, size_t count, FILE *stream);

buffer Pointer to data to be written

size Item size in bytes

count Maximum number of items to be written
stream Pointer to FILE structure

The fwrite function writes up to count items, of length size each, from buffer to
the output stream. The file pointer associated with stream (if there is one) is incre-
mented by the number of bytes actually written.

If stream is opened in text mode, each carriage return is replaced with a carriage-
return—line-feed pair. The replacement has no effect on the return value.

The fwrite function returns the number of full items actually written, which may
be less than count if an error occurs. Also, if an error occurs, the file-position in-
dicator cannot be determined.

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

fread, _write

fwrite

339

Example

Output

VES
3
*
%

*/

FREAD.C: This program opens a file named FREAD.OUT and writes 25

characters to the file. It then tries to open FREAD.OUT and
read in 25 characters. If the attempt succeeds, the program
displays the number of actual items read.

#include <stdio.h>

void main(void)

{

FILE *stream;
char 1ist[30];
int 1, numread, numwritten;

/+ QOpen file in text mode: =/
if((stream = fopen("fread.out", "w+t")) != NULL)
{
for (1 =0; 1< 25; i++)
Tist[i] = "z' - i;
/* Write 25 characters to stream */
numwritten = fwrite(list, sizeof(char), 25, stream);
printf("Wrote %d items\n", numwritten);
fclose(stream);
}
else
printf("Problem opening the file\n");

if((stream = fopen("fread.out", "r+t")) != NULL)

{
/* Attempt to read in 25 characters */
numread = fread(list, sizeof(char), 25, stream);
printf("Number of items read = %d\n", numread);
printf("Contents of buffer = %.25s\n", list);
fclose(stream);

}

else
printf("Was not able to open the file\n");

Wrote 25 items
Number of items read = 25
Contents of buffer = zyxwvutsrqponmlkjihgfedcb

340 _gevt

Description

Remarks

Return Value

Compatibility

See Also

_govt

Converts a floating-point value to a string, which it stores in a buffer.
#include <stdlib.h> Required only for function declarations

char *_gcvt(double value, int digits, char *buffer);

value Value to be converted
digits Number of significant digits stored
buffer Storage location for result

The _gcevt function converts a floating-point value to a character string (which in-
cludes a decimal point and a possible sign byte) and stores the string in buffer. The
buffer should be large enough to accommodate the converted value plus a terminat-
ing null character (°\0”), which is appended automatically. If a buffer size of signif-
icant digits + 1 is used, the function will overwrite the end of the buffer. This is
because the converted string includes a decimal point and can contain sign and ex-
ponent information. There is no provision for overflow.

The _gcevt function attempts to produce digits significant digits in decimal format.

If this is not possible, it produces digits significant digits in exponential format.
Trailing zeros may be suppressed in the conversion.

The _gevt function returns a pointer to the string of digits. There is no error return.

Standards: UNIX
16-Bit: DOS, QWIN, WIN
32-Bit: DOS32X

Use _gevt for compatibility with ANSI naming conventions of non-ANSI func-
tions. Use gevt and link with OLDNAMES.LIB for UNIX compatibility.

atof, atoi, atol, _ecvt, _fcvt

_gevt

N

Example

Output

/* _GCVT.C: This program converts -3.1415e5 to its string representation. */

fHinclude <stdlib.h>
#include <stdio.h>

void main(void)
{
char buffer[50];
double source = -3.1415e5;

_gcvt(source, 7, buffer);

printf("source: %f buffer:

_gcvt(source, 7, buffer);

printf("source: %e buffer:

source: -314150.000000 buffer:
source: -3.141500e+005 buffer:

'%s'\n", source, buffer);

'%s'\n", source, buffer);

'-314150."
'-314150."

342 _getactivepage
_getactivepage
Description Gets the current active page number.
#include <graph.h>
short __far _getactivepage(void);
Remarks The _getactivepage function returns the number of the current active page.

Return Value

The function returns the number of the current active video page. All hardware
combinations support at least one page (page number 0).

Compatibility Standards: None

See Also

Example

16-Bit: DOS
32-Bit: None

_getvideoconfig, _getvisualpage, _grstatus, _setactivepage, _setvideomode,
_setvisualpage

/* PAGE.C illustrates video page functions including:
* _getactivepage _getvisualpage _setactivepage _setvisualpage
*/

#include <conio.h>
f#include <graph.h>
#include <stdlib.h>

void main(void)

{
short oldvpage, oldapage, page, row, col, line;
struct _videoconfig vc;
char buf[801;

_getvideoconfig(&vc);
if(vc.numvideopages < 4)

exit(1); /* Fail for or monochrome. */
oldapage = _getactivepage();
oldvpage = _getvisualpage();

_displaycursor(_GCURSOROFF);

_getactivepage 343

/* Draw arrows in different place on each page. */
for(page = 1; page < 4; paget++)

{
_setactivepage(page);
_settextposition(12, 16 * page);
_outtext(">>>>>>>>");

}

while(!_kbhit())
/* Cycle through pages 1 to 3 to show moving image. */
for(page = 1; page < 4; pagett)
_setvisualpage(page);
_getch();

/* Restore original page (normally @) to restore screen. */
_setactivepage(oldapage);

_setvisualpage(oldvpage);

_displaycursor(_GCURSORON);

344 _getfarcinfo

Description

Remarks

Return Value

Compatibility

See Also

Example

_getarcinfo

Determines the endpoints in viewport coordinates of the most recently drawn arc
or pie.

#include <graph.h>

short __far _getarcinfo(struct _xycoord __ far *start,
struct _xycoord __far *end, struct _xycoord __far *fillpoint);

start Starting point of arc
end Ending point of arc
fillpoint Point at which pie fill will begin

The _getarcinfo function determines the endpoints in viewport coordinates of the
most recently drawn arc or pie.

If successful, the _ getarcinfo function updates the start and end _xycoord struc-
tures to contain the endpoints (in viewport coordinates) of the arc drawn by the
most recent call to one of the _arc or _pie functions.

In addition, fillpoint specifies a point from which a pie can be filled. This is
useful for filling a pie in a color different from the border color. After a call to
_getarcinfo, change colors using the _setcolor function. Use the color, along
with the coordinates in fillpoint, as arguments for the _floodfill function.

The _getarcinfo function returns a nonzero value if successful. If neither the _arc
nor the _pie function has been successfully called since the last time the screen
was cleared or a new graphics mode or viewport was selected, the _getarcinfo
function returns 0.

Standards: None
16-Bit: DOS
32-Bit: None

_arc functions, _floodfill, _getvideoconfig, _grstatus, _pie functions

See the example for _arc.

_getbkcolor 345

Description

Remarks

Return Value

Compatibility

See Also

Example

_getbkcolor

Gets the current background color.
#include <graph.h>

long __far _getbkcolor(void);

The _getbkcolor function returns the current background color. The default is 0.

In a color text mode such as _ TEXTCS80, _setbkcolor accepts, and _getbkcolor
returns, a color index. For example, _setbkcolor(2L) sets the background color to
color index 2. The actual color displayed depends on the palette mapping for color
index 2. The default for color index 2 is green in a color text mode.

In a color graphics mode such as _ERESCOLOR, _setbkcolor accepts, and
_getbkcolor returns, a color value (as used in _remappalette). The value for the
simplest background colors is given by the manifest constants defined in the
GRAPH.H include file. For example, _setbkcolor(_ GREEN) sets the back-
ground color in a graphics mode to green. These manifest constants are provided
as a convenience in defining and manipulating the most common colors. In
general, the actual range of colors is much greater.

In most cases, whenever a color argument is long, it refers to a color value, and
whenever it is short, it refers to a color index. The two exceptions are _setbkcolor
and _getbkcolor, described above. For a more complete discussion of colors, see
_remappalette.

The function returns the current background color. There is no error return.

Standards: None
16-Bit: DOS
32-Bit: None

_remappalette, _setbkcolor

See the example for _getcolor.

346 getc, getchar

Description

Remarks

Return Value

Compatibility

See Also

getc, getchar

Reads a character from a stream (getc), or gets a character from stdin (getchar).
#include <stdio.h>

int gete(FILE *stream);

int getchar(void);

stream Current stream

The getc routine reads a single character from the stream position and increments
the associated file pointer (if there is one) to point to the next character. The
getchar routine is identical to getc(stdin).

The gete and getchar routines are similar to fgetc and _fgetchar, respectively,
but are implemented both as macros and functions.

Both getc and getchar return the character read. A return value of EOF indicates
an error or end-of-file condition. Use ferror or feof to determine whether an error
or end-of-file occurred.

getc

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X
getchar

Standards: ANSI, UNIX
16-Bit: DOS, QWIN

32-Bit: DOS32X

fgetc, _fgetchar, _getch, _getche, putc, putchar, ungetc

getc, getchar 347

Example /* GETC.C: This program uses getchar to read a single line of input
* from stdin, places this input in buffer, then terminates the
* string before printing it to the screen.
*/

f#include <stdio.h>

void main(void)

{
char buffer[81];
int i, ch;
printf("Enter a line: ");
/* Read in single line from "stdin": %/
for(i = 0; (i < 80) && ((ch = getchar()) != EOF) && (ch != '\n'); i++)

buffer[i] = ch;

/* Terminate string with null character: =/
buffer[i]l = '\0';
printf("%s\n", buffer);

}

Qutput Enter a line: This is a line of text.

This is a line of text.

348 _getch, _getche

Description

Remarks

Return Value

Compatibility

See Also

_getch, _getche

Get a character from the console without echo (_getch) or with echo (_getche).
#include <conio.h> Required only for function declarations

int _getch(void);

int _getche(void);

The _getch function reads a single character from the console without echoing.
The _getche function reads a single character from the console and echoes the
character read. Neither function can be used to read CTRL+C.

When reading a function key or cursor-moving key, the _getch and _getche func-
tions must be called twice; the first call returns 0 or OxEO, and the second call re-
turns the actual key code.

Both the _getch and _getche functions return the character read. There is no error
return.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_cgets, getchar, _ungetch

Example /% GETCH.C: This program reads characters from the keyboard until it
* receives a 'Y' or 'y'.

*/

#include <conio.h>
#include <ctype.h>

_getch, _getche

349

Output

void main(void)

{
int ch;
_cputs("Type 'Y' when finished typing keys: ");
do
{
ch = _getch();
ch = toupper(ch);
} while(ch = 'Y');
_putch(ch);
_putch("\r"'); /* Carriage return */
_putch(C '\n"); /* Line feed */
}

Type 'Y' when finished typing keys: Y

350 _getcolor

Description

Remarks

Return Value

Compatibility

See Also

Example

_getcolor

Gets the current color.
#include <graph.h>

short __far _getcolor(void);

The _getcolor function returns the current graphics color index. The default is the
highest legal index in the current palette.

The _getcolor function returns the current color index.

Standards: None
16-Bit: DOS
32-Bit: None

_setcolor

/* OUTTXT.C: This example illustrates text output functions:

_gettextcolor _getbkcolor _gettextposition _outtext
_settextcolor _setbkcolor _settextposition

#include <conio.h>
#include <stdio.h>
#include <graph.h>

char buffer [80];

void main(void)

{

/* Save original foreground, background, and text position. */
short blink, fgd, oldfgd;

long bgd, oldbgd;

struct _rccoord oldpos;

/* Save original foreground, background, and text position. */

oldfgd = _gettextcolor();
oldbgd = _getbkcolor();
oldpos = _gettextposition();

_clearscreen(_GCLEARSCREEN);

_getcolor 351

/* First time no blink, second time blinking. */
for(blink = @; blink <= 16; blink += 16)
{
/* Loop through 8 background colors. */
for(bgd = 0; bgd < 8; bgd++)
{
_setbkcolor(bgd);
_settextposition((short)bgd + ((blink / 16) * 9) + 3, 1);
_settextcolor(7);
sprintf(buffer, "Back: %d Fore:", bgd);
_outtext(buffer);

/* Loop through 16 foreground colors. */
for(fgd = @; fgd < 16; fgd++)
{
_settextcolor(fgd + blink);
sprintf(buffer, "™ %2d ", fgd + blink);
_outtext(buffer);

}
}
_getch();

/* Restore original foreground, background, and text position. */
_settextcolor(oldfgd);
_setbkcolor(oldbgd);
_clearscreen(_GCLEARSCREEN);
_settextposition(oldpos.row, oldpos.col);
}

352 _getcurrvntposition Functions

Description

Remarks

Return Value

_getcurrentposition Functions

Get the current position and return it as a structure.
#include <graph.h>

struct _xycoord _ _far _ getcurrentposition(void);

struct _wxycoord __far _ getcurrentposition_ w(void);

The _getcurrentposition functions return the coordinates of the current graphics
output position. The _getcurrentposition function returns the position as an
—xycoord structure, defined in GRAPH.H.

The _xycoord structure contains the following elements:

Element Description
short xcoord x coordinate
short ycoord y coordinate

The _getcurrentposition_w function returns the position as a _wxycoord struc-
ture, defined in GRAPH.H.

The _wxycoord structure contains the following elements:

Element Description
double wx window x coordinate
double wy window y coordinate

The current position can be changed by the _lineto, _moveto, and _outgtext
functions.

The default position, set by _setvideomode, _setvideomoderows, or
_setviewport, is the center of the viewport.

Only graphics output starts at the current position; these functions do not affect
text output, which begins at the current text position. (See _settextposition for
more information.)

The _getcurrentposition functions return the coordinates of the current graphics
output position. There is no error return.

_getcurrentposition Functions 353

Compatibility Standards: None
16-Bit: DOS
32-Bit: None
See Also _grstatus, _lineto functions, _moveto functions, _outgtext

Exanuﬂe /* GCURPOS.C: This program sets a random current location, then gets that
* location with _getcurrentposition.
*/

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
f#include <graph.h>

char buffer[255];

void main(void)

{
struct _videoconfig vc;
struct _xycoord position;

/* Find a valid graphics mode. */

if(!_setvideomode(_MAXRESMODE))
exit(1);

_getvideoconfig(&vc);

/* Move to random location and report that location. */

_moveto(rand() % vc.numxpixels, rand() % vc.numypixels);

position = _getcurrentposition();

sprintf(buffer, "x = %d, y = %d", position.xcoord, position.ycoord);
_settextposition(1, 1);

_outtext(buffer);

_getch();
_setvideomode(_DEFAULTMODE);

354 _getcwd

Description

Remarks

Return Value

_getcwd

Gets the current working directory.
#include <direct.h> Required only for function declarations
char *_getcwd(char *buffer, int maxlen);

buffer Storage location for path name

maxlen Maximum length of path name

The _getcwd function gets the full path name of the current working directory for
the default drive and stores it at buffer. The integer argument maxlen specifies the
maximum length for the path name. An error occurs if the length of the path name
(including the terminating null character) exceeds maxlen.

The buffer argument can be NULL; a buffer of at least size maxlen (more only if
necessary) will automatically be allocated, using malloc, to store the path name.
This buffer can later be freed by calling free and passing it the _getcwd return
value (a pointer to the allocated buffer).

Note that _getcwd returns a string that represents the path name of the current
working directory. If the current working directory is set to the root, the string will
end with a backslash (\). If the current working directory is set to a directory other
than the root, the string will end with the name of the directory and not with a
backslash.

The _getcwd function returns a pointer to buffer. A NULL return value indicates
an error, and errno is set to one of the following values:

Value Meaning

ENOMEM Insufficient memory to allocate maxlen bytes (when a NULL
argument is given as buffer)

ERANGE Path name longer than maxlen characters

_getcwd 355

Compatibility Standards: UNIX

See Also

Example

Output

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

Use _getewd for compatibility with ANSI naming conventions of non-ANSI func-
tions. Use getewd and link with OLDNAMES.LIB for UNIX compatibility.

_chdir, _mkdir, _rmdir

/* This program places the name of the current directory in the buffer

* array, then displays the name of the current directory on the screen.
* Specifying a length of _MAX_DIR Teaves room for the longest legal

* directory name.

*/

J#include <direct.h>
#include <stdlib.h>
#include <stdio.h>

void main(void)

{
char buffer[MAX_DIR];
/* Get the current working directory: =/
if(_getcwd(buffer, _MAX_DIR) == NULL)
perror("_getcwd error");
else
printf("%s\n", buffer);
}
C:\LIBREF

356 _getdewd

Description

Remarks

Return Value

_getdcwd

Gets full path name of current working directory on the specified drive.
#include <direct.h> Required only for function declarations

char *_getdcwd(int drive, char *buffer, int maxlen);

drive Disk drive
buffer Storage location for path name
maxlen Maximum length of path name

The _getdewd function gets the full path name of the current working directory
on the specified drive and stores it at buffer. The argument maxlen specifies the
maximum length for the path name. An error occurs if the length of the path name
(including the terminating null character) exceeds maxlen.

The drive argument specifies the drive (0 = default drive, 1=A, 2=B, etc.). The
buffer argument can be NULL; a buffer of at least size maxlen (more only if neces-
sary) will automatically be allocated, using malloc, to store the path name. This
buffer can later be freed by calling free and passing it the _getdewd return value
(a pointer to the allocated buffer).

Note that _getdcwd returns a string that represents the path name of the current
working directory. If the current working directory is set to the root, the string will
end with a backslash (V). If the current working directory is set to a directory other
than the root, the string will end with the name of the directory and not with a
backslash.

The _getdcwd function returns buffer. A NULL return value indicates an error,
and errno is set to one of the following values:

Value Meaning

ENOMEM Insufficient memory to allocate maxlen bytes (when a NULL
argument is given as buffer)

ERANGE Path name longer than maxlen characters

_getdcwd

357

Compatibility Standards: None

See Also

Example

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_chdir, _getcwd, _getdrive, _mkdir, _rmdir

/* GETDRIVE.C illustrates drive functions including:
* _getdrive _chdrive _getdcwd
*/

#include <stdio.h>
f#include <conio.h>
#include <direct.h>
#include <stdlib.h>

void main(void)

{
int ch, drive, curdrive;
static char path[_MAX_PATH];

/* Save current drive. */
curdrive = _getdrive();

printf("Available drives are: \n");

/* If we can switch to the drive, it exists. %/
for(drive = 1; drive <= 26; drive++)
if(!_chdrive(drive))
printf("%c: ", drive + 'A" - 1);

while(1)
{
printf("\nType drive letter to check or ESC to quit: ");
ch = _getch();
if(ch == 27)
break;
if(isalpha(ch))
_putch(ch);
if(_getdcwd(toupper(ch) - '"A' + 1, path, _MAX_PATH) != NULL)
printf("\nCurrent directory on that drive is %s\n", path);
}

/* Restore original drive. This is only necessary for DOS.*/
_chdrive(curdrive);
printf("\n");

358

_getdewd

Qutput

Available drives are:

A: B: C:

Type drive Tletter
Type drive letter
Current directory

Type drive letter
Current directory

Type drive letter

to
to
on

to
on

to

check or ESC to quit: g
check or ESC to quit: a
that drive is A:\

check or ESC to quit: ¢
that drive is C:\LIBREF

check or ESC to quit:

_getdrive

359

Description

Remarks
Return Value

Compatibility

See Also

Example

_getdrive

Gets the current disk drive.
#include <direct.h>

int _getdrive(void);

The _getdrive function returns the current (default) drive (1=A, 2=B, etc.).
The return value is stated above. There is no error return.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_chdrive, _dos_getdrive, _dos_setdrive, _getcwd, _getdcwd

See the example for _getdcwd.

360 getenv

Description

Remarks

Return Value

Compatibility

See Also

getenv

Gets a value from the current environment.
#include <stdlib.h> Required only for function declarations
char *getenv(const char *varname);

varname Name of environment variable

The getenv function searches the list of environment variables for an entry corre-
sponding to varname. Environment variables define the environment in which a
process executes. (For example, the LIB environment variable defines the default
search path for libraries to be linked with a program.) Because the getenv function
is case sensitive, the varname variable should match the case of the environment
variable.

The getenv function returns a pointer to an entry in the environment table. It is,
however, only safe to retrieve the value of the environment variable using the re-
turned pointer. To modify the value of an environmental variable, use the _ putenv
function.

The getenv and _ putenv functions use the copy of the environment contained in
the global variable environ to access the environment. Programs that use the envp
argument to main and the _ putenv function may retrieve invalid information. The
safest programming practice is to use getenv and _puteny.

The getenv function operates only on the data structures accessible to the run-time
library and not on the environment “segment” created for the process by the oper-
ating system.

The getenv function returns a pointer to the environment table entry containing the
current string value of varname. The return value is NULL if the given variable is
not currently defined.

Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

_putenv

getenv

361

Example

Output

/* GETENV.C: This program uses getenv to retrieve the LIB environment
* variable and then uses _putenv to change it to a new value.
*/

#include <stdlib.h>
#include <stdio.h>

void main(void)

{
char *1ibvar;
/* Get the value of the LIB environment variable. */
libvar = getenv("LIB"™);
if(Tibvar != NULL)
printf("Original LIB variable is: %s\n", libvar);
/* Attempt to change path. Note that this only affects the environment
* variable of the current process. The command processor's environment
* is not changed.
*/
_putenv("LIB=c:\\mylib;c:\\yourlib");
/* Get new value. */
libvar = getenv("LIB");
if(Tibvar != NULL)
printf("New LIB variable is: %s\n", libvar);
}

Original LIB variable is: C:\LIB
New LIB variable is: c:\mylib;c:\yourlib

362 _geffillmask

Description

Remarks

Return Value

Compatibility

See Also

_getfillmask

Gets the current fill mask for some graphics routines.
#include <graph.h>
unsigned char __far * __far _getfillmask(unsigned char __far *mask);

mask Mask array

Some graphics routines (_ellipse, _floodfill, _pie, _polygon, and _rectangle)
can fill part or all of the screen with the current color. The fill mask controls the
pattern used for filling.

The _getfillmask function returns the current fill mask. The mask is an 8-by-8-bit
array, in which each bit represents a pixel. If the bit is 1, the corresponding pixel is
set to the current color; if the bit is 0, the pixel is left unchanged. The mask is re-
peated over the entire fill area. If no fill mask is set, or if mask is NULL, a solid
(unpatterned) fill is performed using the current color.

If no mask is set, the function returns NULL. Otherwise, it returns the current fill
mask.

Standards: None
16-Bit: DOS
32-Bit: None

_ellipse functions, _floodfill, _pie functions, _polygon functions, _rectangle
functions, _setfillmask

_getfillmask 363

Example /* GFILLMSK.C: This program illustrates _getfillmask and _setfillmask. */

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void ellipsemask(short x1, short yl, short x2, short y2, char __far *newmask);
unsigned char mask1[8]

unsigned char mask2[8]
char oldmask[8];

{ 0x43, 0x23, @x7c, @0xf7, @0x8a, 0x4d, 0x78, 0x39 };
{ 0x18, Oxad, @xc@, 0x79, Oxf6, Oxc4, 0xa8, 0x23 };

void main(void)
{
int loop;

/* Find a valid graphics mode. */
if(!_setvideomode(_MAXRESMODE))
exit(1);

/* Set first fill mask and draw rectangle. */
_setfillmask(maskl);

_rectangle(_GFILLINTERIOR, 20, 20, 100, 100);
_getch();

/* Call routine that saves and restores mask. */
ellipsemask(60, 60, 150, 150, mask2);
_getch();

/* Back to original mask. */
_rectangle(_GFILLINTERIOR, 120, 120, 190, 190);
_getch();

_setvideomode(_DEFAULTMODE);
exit(@);
}

/* Draw an ellipse with a specified fill mask. */
void ellipsemask(short x1, short yl, short x2, short y2, char __far #newmask)

{
unsigned char savemask[8];
_getfillmask(savemask); /* Save mask */
_setfillmask(newmask); /* Set new mask */
_ellipse(_GFILLINTERIOR, x1, yl, x2, y2); /* Use new mask */
_setfillmask(savemask); /* Restore original =*/

364 _getfontinfo

Description

Remarks

Return Value

Compatibility

See Also

Example

_getfontinfo

Gets the current font characteristics.
#include <graph.h>
short __far _getfontinfo(struct _fontinfo __far *fontbuffer);

fontbuffer Buffer to hold font information

The _getfontinfo function gets the current font characteristics and stores them in a
_fontinfo structure, defined in GRAPH.H.

The _fontinfo structure contains the following elements:

Element Contents

int type Specifies vector (1) or bitmapped (0) font

int ascent Specifies pixel distance from top to baseline

int pixwidth Specifies the character width in pixels; 0 indicates a
proportional font

int pixheight Specifies the character height in pixels

int avgwidth Specifies the average character width in pixels

char filename [81] Specifies the filename, including the path

char facename [32] Specifies the font name

The _getfontinfo function returns a negative number if a font has not been regis-
tered or loaded.

Standards: None
16-Bit: DOS
32-Bit: None

_getgtextextent, _outgtext, _registerfonts, _setfont, _setgtextvector,
_unregisterfonts

See the example for _outgtext.

_getgtextextent 365

Description

Remarks

Return Value

Compatibility

See Also

Example

_ getgtextextent

Gets the width in pixels of font-based text.
#include <graph.h>
short __far _ getgtextextent(const char __far *text);

text Text to be analyzed

The _getgtextextent function returns the width in pixels that would be required to
print the zext string using _outgtext with the current font.

This function is particularly useful for determining the size of text that uses propor-
tionally spaced fonts.

The _getgtextextent function returns the width in pixels. It returns —1 if a font has
not been registered.

Standards: None
16-Bit: DOS
32-Bit: None

_getfontinfo, _outgtext, _registerfonts, _setfont, _unregisterfonts

See the example for _outgtext.

366 _ getgtextvector

Description

Remarks

Return Value

Compatibility

See Also

_getgtextvector

Changes the orientation of font text output.
#include <graph.h>

struct _xycoord __far _ getgtextvector(void);

The _getgtextvector function gets the current orientation for font text output. The
current orientation is used in calls to the _outgtext function.

The text-orientation vector, which determines the direction of font-text rotation on
the screen, is returned in a structure of type _xycoord. The xcoord and ycoord
members of the structure describe the vector. The text-rotation options are shown
below:

x,y) Text Orientation

(1,0 Horizontal text (default)

0,1) Rotated 90 degrees counterclockwise
(-1,0) Rotated 180 degrees

0,-1) Rotated 270 degrees counterclockwise

The _getgtextvector function returns the current text-orientation vector in a struc-
ture of type _xycoord.

Standards: None
16-Bit: DOS
32-Bit: None

_getgtextextent, _grstatus, _outgtext, _setfont, _setgtextvector

_getimage Functions 367

Description

Remarks

Return Value

_getimage Functions

Store images in buffers.
#include <graph.h>

void _ _far _getimage(short x/, short y/, short x2, short y2,
char __huge *image);

void __far _getimage_w(double wx/, double wy/, double wx2, double wy2,
char __huge *image);

void __far _getimage_ wxy(struct_wxycoord __far *pwxyl,
struct_ wxycoord __ far *pwxy2, char __huge *image);

xI,yl Upper-left corner of bounding rectangle
x2,y2 Lower-right corner of bounding rectangle
wxl, wyl Upper-left corner of bounding rectangle
wx2, wy2 Lower-right corner of bounding rectangle
pwxyl Upper-left corner of bounding rectangle
pwxy2 Lower-right corner of bounding rectangle
image Storage buffer for screen image

The _getimage functions store the screen image defined by a specified bounding
rectangle into the buffer pointed to by image.

The _getimage function defines the bounding rectangle with the view coordinates
(x1, yI) and (x2, y2).

The _getimage_ w function defines the bounding rectangle with the window
coordinates (wxI, wyl) and (wx2, wy2).

The _getimage_ wxy function defines the bounding rectangle with the window-
coordinate pairs pwxyl and pwxy?2.

The buffer must be large enough to hold the image. You can determine the size by

calling the appropriate _imagesize function at run time, or by using the formula
described on the _imagesize reference page.

None. Use _grstatus to check success.

368 _getimage Functions
Compatibility Standards: None
16-Bit: DOS
32-Bit: None
See Also _grstatus, _imagesize functions, _putimage functions
Example /* GIMAGE.C: This example illustrates animation routines including:

* _imagesize _getimage _putimage
*/

f#include <conio.h>
#include <stddef.h>
#include <stdlib.h>
#include <malloc.h>
#include <graph.h>

short action[5]
char *descrip[5]

{ _GPSET, _GPRESET, _GXOR, _GOR, _GAND };
{ "PSET n’ "PRESET", "XOR n' "OR ", "AND " };

void exitfree(char __huge *buffer);

void main(void)

{
char __huge *buffer; /* Far pointer (with _fmalloc) could be used.
long imsize;
short i, x, y = 30;

if(!_setvideomode(_MAXRESMODE))
exit(1);

/* Measure the image to be drawn and allocate memory for it. =*/
imsize = (size_t)_imagesize(-16, -16, +16, +16);

buffer = _halloc(imsize, sizeof(char));
if (buffer == (char __far *)NULL)
exit(1);

_setcolor(3);
for (i =0; 1 <5; i++)
{
/* Draw ellipse at new position and get a copy of it. =/
X = 50; y += 40;
_ellipse(_GFILLINTERIOR, x - 15, y - 15, x + 15, y + 15);
_getimage(x - 16, y - 16, x + 16, y + 16, buffer);
if(_grstatus())
exitfree(buffer); /* Quit on error x/

*/

_getimage Functions 369

/* Display action type and copy a row of ellipses with that type. */
_settextposition(1, 1);

_outtext(descrip[i]);

while(x < 260)

{
X += b;
_putimage(x - 16, y - 16, buffer, action[i]);
if(_grstatus() < @) /* Ignore warnings, quit on errors. */
exitfree(buffer);
}
_getch();

}
exitfree(buffer);
}

void exitfree(char __huge *buffer)
{
_hfree(buffer);
exit(!_setvideomode(_DEFAULTMODE));

370 _getlinestyle

Description

Remarks

Return Value

Compatibility

See Also

Example

_getlinestyle

Gets the current line style.
#include <graph.h>

unsigned short __far _getlinestyle(void);

Some graphics routines (_lineto, _ polygon, and _rectangle) output straight lines
to the screen. The type of line can be controlled with the current line-style mask.

The _ getlinestyle function returns the current line-style mask. The mask is a 16-
bit array in which each bit represents a pixel in the line being drawn. If the bit is 1,
the corresponding pixel is set to the color of the line (the current color). If the bit is
0, the corresponding pixel is left unchanged. The mask is repeated over the length
of the line. The default mask is OXFFFF (a solid line).

If no mask has been set, _getlinestyle returns the default mask.

Standards: None
16-Bit: DOS
32-Bit: None

_lineto functions, _polygon functions, _rectangle functions, _setlinestyle,
_setwritemode

/% GLINESTY.C: This program illustrates _setlinestyle and _getlinestyle. */

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void zigzag(short x1, short yl, short size);

_getlinestyle 37

void main(void)

{
/* Find a valid graphics mode. */
if(!_setvideomode(_MAXCOLORMODE))
exit(1);
/* Set line style and draw rectangle. */
_setlinestyle(@x4d);
_rectangle(_GBORDER, 10, 10, 60, 60);
_getch();
/* Draw figure with function that changes and restores line style. */
zigzag(100, 100, 90);
_getch();
/* 0riginal style reused. */
_rectangle(_GBORDER, 190, 190, 130, 130);
_getch();
_setvideomode(_DEFAULTMODE);
}

/* Draw box with changing line styles. Restore original style. */
void zigzag(short x1, short yl, short size)
{
short x, y, oldcolor;
unsigned short oldstyle;
unsigned short style[16] = { 0x0001, 0x0003, 0x0007, 0x000f,
0x001f, 0x003f, 0x007f, @0x0Q0ff,
0xQ1ff, Ox03ff, @x07ff, @OxQfff,
Ox1fff, Ox3fff, Ox7fff, Oxffff };

oldcolor = _getcolor();

oldstyle = _getlinestyle(); /* Save old line style. */
for(x = 3, y = 3; x < size; x += 3, y += 3)

{

_setcolor(x % 16);
_setlinestyle(style[x % 16]); /* Set and use new line styles */
_rectangle(_GBORDER, x1 - x, yl -y, x1 + x, yl +y);
}
_setlinestyle(oldstyle); /* Restore old 1ine style. */
_setcolor(oldcolor);

372 _getphyscoord

Description

Remarks

Return Value

Compatibility

See Also

Example

_getphyscoord

Gets physical coordinates.
#include <graph.h>
struct _xycoord _ _far _getphyscoord(shert x, short y);

X,y View coordinates to translate

The _getphyscoord function translates the view coordinates (x, y) to physical
coordinates and returns them in an _xycoord structure, defined in GRAPH.H.

The _xycoord structure contains the following elements:

Element Description
short xcoord x coordinate
short ycoord y coordinate
None.

Standards: None
16-Bit: DOS
32-Bit: None

_getviewcoord functions, _ grstatus, _setvieworg, _setviewport

See the example for _setwindow.

_getpid 373

_getpid

Description Gets the process identification.

#include <process.h> Required only for function declarations

int _getpid(void);

Remarks The _getpid function returns the process ID, an integer that uniquely identifies the
calling process.
Return Value The _getpid function returns the process ID. There is no error return.
Compatibility Standards: UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL

32-Bit: DOS32X

Use _getpid for compatibility with ANSI naming conventions of non-ANSI func-
tions. Use getpid and link with OLDNAMES.LIB for UNIX compatibility.

See Also _mktemp

Example /* GETPID.C: This program uses _getpid to obtain the process ID and
* then prints the ID.
*/

f#include <stdio.h>
f#include <process.h>

void main(void)

{
/* If run from DOS, shows different ID for DOS than for DOS shell.
* If execed or spawned, shows ID of parent.
*/
printf("\nProcess id of parent: %d\n", _getpid());
}

Output Process id of parent: 828

374 _getpixel Functions

Description

Remarks

Return Value

Compatibility

See Also

_getpixel Functions

Get pixel values.
#include <graph.h>

short __far _getpixel(short x, short y);

short __far _ getpixel_w(double wx, double wy);

X,y Pixel position

wx, wy Pixel position

The functions in the _ getpixel family return the pixel value (a color index) at a
specified location. The _getpixel function uses the view coordinate (x, y). The
_getpixel_w function uses the window coordinate (wx, wy). The range of possible
pixel values is determined by the current video mode. The color translation of
pixel values is determined by the current palette.

If successful, the function returns the color index. If the function fails (for ex-
ample, the point lies outside the clipping region, or the program is in a text mode),
it returns —1.

Standards: None
16-Bit: DOS
32-Bit: None

_getvideoconfig, _grstatus, _remapallpalette, _remappalette,
_selectpalette, _setpixel functions, _setvideomode

_getpixel Functions 375

Example

/* GPIXEL.C: This program assigns different colors to randomly
* selected pixels.
*/

#include <conio.h>
#include <stdlib.h>
#include <graph.h>

void main(void)

{
short xvar, yvar;
struct _videoconfig vc;

/* Find a valid graphics mode. */

if(!_setvideomode(_MAXCOLORMODE))
exit(1);

_getvideoconfig(&vc);

/* Draw filled ellipse to turn on certain pixels. */
_ellipse(_GFILLINTERIOR, vc.numxpixels / 6, vc.numypixels / 6,
vc.numxpixels / 6 * 5, vc.numypixels / 6 * 5);

/* Draw random pixels in random colors... */
while(!_kbhit())
{

/* ...but only if they are already on (inside the ellipse). */
xvar = rand() % vc.numxpixels;
yvar = rand() % vc.numypixels;
if(_getpixel(xvar, yvar) l=0)
{
_setcolor(rand() % 16);
_setpixel(xvar, yvar);
}
}

_getch(); /* Throw away the keystroke. */
_setvideomode(_DEFAULTMODE);
exit(0);

376 gets

gets

Description Gets a line from the stdin stream.
#include <stdio.h>
char *gets(char *buffer);

buffer Storage location for input string

Remarks The gets function reads a line from the standard input stream stdin and stores it in
buffer. The line consists of all characters up to and including the first newline char-
acter (\n). The gets function then replaces the newline character with a null charac-
ter (°\0”) before returning the line. In contrast, the fgets function retains the

newline character.

Return Value If successful, the gets function returns its argument. A NULL pointer indicates an
error or end-of-file condition. Use ferror or feof to determine which one has
occurred.

Compatibility Standards: ANSI, UNIX

16-Bit: DOS, QWIN
32-Bit: DOS32X

See Also fgets, fputs, puts

Example /* GETS.C #*/
#Hinclude <stdio.h>

void main(void)
{
char Tine[81];

printf("Input a string: ");

gets(Tine);

printf("The line entered was: %s\n", line);
}

gets 377

Qutput Input a string: This is a string
The 1ine entered was: This is a string

378 _gettextcolor

Description

Remarks

Return Value

Compatibility

See Also

Example

_gettextcolor

Gets the current text color.
#include <graph.h>

short __far _gettextcolor(void);

The _gettextcolor function returns the color index of the current text color. The
text color is set by the _settextcolor function and affects text output with the
_outtext and _outmem functions only. The _setcolor function sets the color for
font text output using the _outgtext function.

The default is 7 in text modes; it is the highest legal color index of the current
palette in graphics modes.

The _gettextcolor function returns the color index of the current text color.

Standards: None
16-Bit: DOS
32-Bit: None

_getvideoconfig, _outmem, _outtext, _remappalette, _selectpalette,
_setcolor, _settextcolor

See the example for _ gettextposition.

_gettextcursor 379

Description

Remarks

Return Value

Compatibility

See Also

Example

_gettextcursor

Gets the current cursor attribute.
#include <graph.h>

short __ far _gettextcursor(void);
The _gettextcursor function returns the current cursor attribute (i.e., the shape).
This function works only in text video modes.

The function returns the current cursor attribute, or —1 if an error occurs (such as a
call to the function in a graphics mode).

Standards: None
16-Bit: DOS
32-Bit: None

_displaycursor, _grstatus, _settextcursor

See the example for _settextcursor.

380 _gettextposition

Description

Remarks

Return Value

Compatibility

See Also

Example

_gettextposition

Gets the current text position.
#include <graph.h>

struct _rccoord __far _gettextposition(void);

The _ gettextposition function returns the current text position as an _reccoord
structure, defined in GRAPH.H.

The _rccoord structure contains the following elements:

Element Description
short row Row coordinate
short col Column coordinate

The text position given by the coordinates (1,1) is defined as the upper-left corner
of the text window.

Text output from the _outtext and _outmem functions begins at the current text
position. Font text is not affected by the current text position. Font text output
begins at the current graphics output position, which is a separate position. Use the
—moveto function to set the graphics output position.

None.

Standards: None
16-Bit: DOS
32-Bit: None

_getcurrentposition functions, _moveto functions, _outmem, _outtext,
_settextposition, _settextwindow, _wrapon

/* QUTTXT.C: This example illustrates text output functions:

_gettextcolor _getbkcolor _gettextposition _outtext
_settextcolor _setbkcolor _settextposition

_gettextposition

381

f#include <conio.h>
#include <stdio.h>
f#include <graph.h>

char buffer [80];

void main(void)
{
/* Save original foreground, background, and text position. */
short blink, fgd, oldfgd;
long bgd, oldbgd;
struct _rccoord oldpos;

/* Save original foreground, background, and text position. */
oldfgd = _gettextcolor();

oldbgd = _getbkcolor();

oldpos = _gettextposition();

_clearscreen(_GCLEARSCREEN);

/* First time no blink, second time blinking. =/
for(blink = @; blink <= 16; blink += 16)

{
/* Loop through 8 background colors. */
for(bgd = @; bgd < 8; bgd++)
{
_setbkcolor(bgd);
_settextposition((short)bgd + ((blink / 16) * 9) + 3, 1);
_settextcolor(7);
sprintf(buffer, "Back: %d Fore:", bgd);
_outtext(buffer);
/* Loop through 16 foreground colors. */
for(fgd = @; fgd < 16; fgd++)
{
_settextcolor(fgd + blink);
sprintf(buffer, " %2d ", fgd + blink);
_outtext(buffer);
}
}
}
_getch();

/* Restore original foreground, background, and text position. */
_settextcolor(oldfgd);
_setbkcolor(oldbgd);
_clearscreen(_GCLEARSCREEN);
_settextposition(oldpos.row, oldpos.col);
}

382 _gettextwindow

Description

Remarks

Return Value

Compatibility

See Also

Example

_gettextwindow

Gets the boundaries of the current text window.
#include <graph.h>

void _ _far _gettextwindow(short __far *r/, short __far *c/,
short __far *r2, short __far *c2);

rl Top row of current text window

cl Leftmost column of current text window
r2 Bottom row of current text window

c2 Rightmost column of current text window

The _ gettextwindow function finds the boundaries of the current text window.
The text window is the region of the screen to which output from the _outtext and
_outmem functions is limited. By default, this is the entire screen, unless it has
been redefined by the _settextwindow function.

The window defined by _settextwindow has no effect on output from the
_outgtext function. Text displayed with _outgtext is limited to the current
viewport.

None.

Standards: None
16-Bit: DOS
32-Bit: None

_gettextposition, _outmem, _outtext, _scrolltextwindow, _settextposition,
_settextwindow, _wrapon

See the example for _scrolltextwindow.

_getvideoconfig 383

Description

Remarks

_getvideoconfig

Gets graphics video configuration information.
#include <graph.h>

struct _videoconfig __far * __far _getvideoconfig(struct _videoconfig
__far *config);

config Configuration information

The _getvideoconfig function returns the current graphics environment configura-
tion in a _ videoconfig structure, defined in GRAPH.H.

The values returned reflect the currently active video adapter and monitor, as well
as the current video mode.

The _ videoconfig structure contains the following members, each of which is of

type short:

Member Contents

numxpixels Number of pixels on the x axis
numypixels Number of pixels on the y axis
numtextcols Number of text columns available
numtextrows Number of text rows available
numcolors Number of color indices
bitsperpixel Number of bits per pixel
numvideopages Number of available video pages
adapter Active display adapter

mode Current video mode

monitor Active display monitor

memory Adapter video memory in kilobytes

384 _getvideoconfig

Return Value

The values for the adapter member of the _ videoconfig structure are given by the
manifest constants shown in the list below. For any applicable adapter (_ CGA,
_EGA, or _VGA), the corresponding Olivetti adapter (_OCGA, _OEGA, or
_OVGA) represents a superset of graphics capabilities.

Adapter Constant Meaning

_CGA Color Graphics Adapter

~EGA Enhanced Graphics Adapter

_HGC Hercules Graphics Card

_MCGA Multicolor Graphics Array

—~MDPA Monochrome Display Printer Adapter
~0CGA Olivetti (AT&T) Color Graphics Adapter
_OEGA Olivetti (AT&T) Enhanced Graphics Adapter
~OVGA Olivetti (AT&T) Video Graphics Array
-VGA Video Graphics Array

-SVGA Super Video Graphics Array (VESA)

The values for the monitor member of the _ videoconfig structure are given by
the manifest constants listed below:

Monitor Constant Meaning

_ANALOG Analog monochrome and color

_ANALOGCOLOR Analog color only

_ANALOGMONO Analog monochrome only

_COLOR Color (or enhanced monitor emulating a color monitor)
_ENHCOLOR Enhanced color

_MONO Monochrome monitor

In every text mode, including monochrome, the _ getvideoconfig function returns
the value 32 for the number of available colors. The value 32 indicates the range
of values (0-31) accepted by the _settextcolor function. This includes 16 normal
colors (0-15) and 16 blinking colors (16—31). Blinking is selected by adding 16 to
the normal color index. Because monochrome text mode has fewer unique display
attributes, some color indices are redundant. However, because blinking is
selected in the same manner, monochrome text mode has the same range (0-31)
as other text modes.

The _getvideoconfig function returns the video configuration information in a
structure, as noted above. There is no error return.

_getvideoconfig

385

Compatibility Standards: None
16-Bit: DOS
32-Bit: None

See Also

Example

Output

_setvideomode, _setvideomoderows

/* GVIDCFG.C: This program displays information about the current
* video configuration.

*/

#include <stdio.h>
#include <graph.h>

n(void)

struct _videoconfig vc;

void mai
{
short
char

C;
b[500];

_getvideoconfig(&vc);

/% Write all
c = sprintf(
c += sprintf(
c += sprintf(
c += sprintf(
c += sprintf(
¢ += sprintf(
c += sprintf(
c += sprintf(
c += sprintf(
c += sprintf(
c += sprintf(
_outtext(b);
}
X pixels: [}
Y pixels: 0
Text columns: 80
Text rows: 25
Colors: 32

Bits/pixel: 0
Video pages: 1

Mode:
Adapter:
Monitor:
Memory:

256

T TOUOOTCOTUTOTUTUOTUTT

T T T S

c,
c,
c,
c,
c,
c,
c,
c,
c,
C,

"X pixels:

"Y pixels:
"Text columns:
"Text rows:
"Colors:
"Bits/pixel:
"Video pages:
"Mode:
"Adapter:
"Monitor:
"Memory:

/* Buffer for string */

information to a string, then

%d\n",
%d\n",
%d\n",
%d\n",
%d\n",
%d\n",
%d\n",
%d\n",
%d\n",
%d\n",
%d\n",

output string. */

.numxpixels);
.numypixels);
.numtextcols);
.numtextrows);
.numcolors);
.bitsperpixel);
.numvideopages);
.mode);
.adapter);
.monitor);
.memory);

386 _getviewcoord Functions

Description

Remarks

Return Value

_getviewcoord Functions

Translate coordinates to view coordinates.
#include <graph.h>

struct _xycoord __far _ getviewcoord(short x, short y);
struct _xycoord __far _getviewcoord_w(double wx, double wy);

struct _xycoord __far _getviewcoord_ wxy(struct _wxycoord
__far *pwxyl);

X,y Physical point to translate
WX, Wy Window point to translate
pwxyl Window point to translate

The _getviewcoord routines translate the specified coordinates (x, y) from one
coordinate system to view coordinates and then return them in an _xycoord struc-
ture, defined in GRAPH.H. The _xycoord structure contains the following
elements:

Element Description
short xcoord x coordinate
short ycoord y coordinate

The various _getviewcoord routines translate in the following manner:

Routine Translation

_getviewcoord Physical coordinates (x, y) to view coordinates

_getviewcoord_w Window coordinates (wx, wy) to view coordinates

getviewcoord wxy Window coordinates structure (pwxyl) to view
coordinates

In Microsoft C version 5.1, the function _getviewcoord was called _getlogcoord.

The _getviewcoord function returns the coordinates as noted above. There is no
error return.

_getviewcoord Functions 387

Compatibility Standards: None
16-Bit: DOS
32-Bit: None
See Also _getphyscoord, _getwindowcoord, _grstatus

Example See the example for _setwindow.

388 _getvisualpage

Description

Remarks

Return Value

Compatibility

See Also

Example

_getvisualpage

Gets the current visual page number.
#include <graph.h>

short __far _getvisualpage(void);

The _getvisualpage function returns the current visual page number.

The function returns the number of the current visual page. All hardware combina-
tions support at least one page (page number 0).

Standards: None
16-Bit: DOS
32-Bit: None

_getactivepage, _gettextcolor, _gettextposition, _outtext, _setactivepage,
_settextcolor, _settextposition, _settextwindow, _setvideomode,
_setvisualpage, _wrapon

See the example for _ getactivepage.

_getw 389

Description

Remarks

Return Value

Compatibility

See Also

_getw

Gets an integer from a stream.
#include <stdio.h>
int _getw(FILE *stream);

stream Pointer to FILE structure

The _getw function reads the next binary value of type int from the file associated
with stream and increments the associated file pointer (if there is one) to point to
the next unread character. The _getw function does not assume any special align-
ment of items in the stream.

The _getw function returns the integer value read. A return value of EOF may
indicate an error or end-of-file. However, since the EOF value is also a legitimate
integer value, feof or ferror should be used to verify an end-of-file or error
condition.

Standards: UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

Use _getw for compatibility with ANSI naming conventions of non-ANSI func-
tions. Use getw and link with OLDNAMES.LIB for UNIX compatibility.

The _getw function is provided primarily for compatibility with previous librar-

ies. Note that portability problems may occur with _getw, since the size of the int
type and the ordering of bytes within the int type differ across systems.

_putw

390 _getw

Example /* GETW.C: This program uses _getw to read a word from a stream,
* then performs an error check.
*/

#include <stdio.h>
#include <stdlib.h>

void main(void)

{
FILE *stream;
int i;
if((stream = fopen("_getw.c", "rb"™)) == NULL)
printf("Couldn't open file\n");
else
{
/* Read a word from the stream: */
i = _getw(stream);
/* If there is an error... */
if(ferror(stream))
{
printf("_getw failed\n");
clearerr(stream);
}
else
printf("First data word in file: @x%.4x\n", i);
fclose(stream);
}
}

Output First data word in file: @x2a2f

_getwindowcoord 391

Description

Remarks

Return Value

Compatibility

See Also

Example

_getwindowcoord

Translates view coordinates to window coordinates.
#include <graph.h>
struct _wxycoord __far _getwindowcoord(short x, short y);

X,y Viewport coordinate to translate

The _getwindowcoord function translates the view coordinates (x, y) to window
coordinates and returns them in the _ wxycoord structure, defined in GRAPH.H.

The _wxycoord structure contains the following elements:

Element Description
double wx x coordinate
double wy y coordinate

The function returns the coordinates in the _ wxycoord structure. There is no error
return.

Standards: None
16-Bit: DOS
32-Bit: None

_getphyscoord, _getviewcoord functions, _moveto functions, _setwindow

See the example for _setwindow.

392 _getwritemode

Description

Remarks

Return Value

Compatibility

See Also

Example

_getwritemode

Gets the current logical mode for line drawing.
#include <graph.h>

short __ far _getwritemode(void);

The _getwritemode function returns the current logical write mode, which is used
when drawing lines with the _lineto, _pelygon, and _rectangle functions.

The default value is _ GPSET, which causes lines to be drawn in the current
graphics color. The other possible return values are _GXOR, _GAND, _GOR,
and _ GPRESET. See _putimage for more details on these manifest constants.

The _getwritemode function returns the current logical write mode, or —1 if not in
graphics mode.

Standards: None
16-Bit: DOS
32-Bit: None

_grstatus, _lineto functions, _ putimage functions, _rectangle functions,
_setcolor, _setlinestyle, _setwritemode

/* GWRMODE.C: This program illustrates _getwritemode and _setwritemode. */

#include <conio.h>
#include <stdlib.h>
f#include <graph.h>

short wmodes[5]
char *wmstr[5]

{ _GPSET, _GPRESET, _GXOR, _GOR, _GAND };
{ "PSET ", "PRESET", "XOR ", "OR ", "AND " };

void box(short x, short y, short size, short writemode, short fillmode);

_getwritemode 303

void main(void)

{
short i, x, y;
/* Find a valid graphics mode. */
if(! _setvideomode(_MAXCOLORMODE))
exit(1);
X =Yy =70;

box(x, y, 50, _GPSET, _GFILLINTERIOR);
_setcolor(2);
box(x, y, 40, _GPSET, _GFILLINTERIOR);
for(i = 0; i < 5; i++)
{
_settextposition(1, 1);
_outtext(wmstr[i]);
box(x += 12, y += 12, 50, wmodes[i], _GBORDER);
_getch();
}
_setvideomode(_DEFAULTMODE);
exit(@);
}

void box(short x, short y, short size, short writemode, short fillmode)
{

short wm, side;

wm = _getwritemode(); /* Save write mode and set new. */
_setwritemode(writemode);

_rectangle(fillmode, x - size, y - size, x + size, y + size);
_setwritemode(wm); /* Restore original write mode. */

394 gmtime

Description

Remarks

gmtime

Converts a time value to a structure.
#include <time.h>
struct tm *gmtime(const time_t *time);

timer Pointer to stored time

The gmtime function converts the timer value to a structure. The timer argument
represents the seconds elapsed since midnight (00:00:00), December 31, 1899,
Universal Coordinated Time. This value is usually obtained from a call to the time
function.

The gmtime function breaks down the timer value and stores it in a structure of
type tm, defined in TIME.H. The structure result reflects Universal Coordinated
Time, not local time.

The fields of the structure type tm store the following values, each of which is
an int:

Field Value Stored

tm_sec Seconds

tm_min Minutes

tm_hour Hours (0-24)

tm_mday Day of month (1-31)

tm_mon Month (0-11; January = 0)
tm_year Year (current year minus 1900)
tm_wday Day of week (0—6; Sunday = 0)
tm_yday Day of year (0—365; January 1 =0)
tm_isdst Always O for gmtime

The gmtime, mktime, and localtime functions use a single statically allocated
structure to hold the result. Each call to one of these routines destroys the result of
any previous call.

If timer represents a date before midnight, December 31, 1899, gmtime returns
NULL.

gmtime 395

Return Value The gmtime function returns a pointer to the structure result. There is no error
return.

Compatibility Standards: ANSI, UNIX
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: DOS32X

See Also asctime, ctime, _ftime, localtime, time

Exarnple /* GMTIME.C: This program uses gmtime to convert a long-integer
* representation of Universal Coordinated Time to a structure named newtime,
* then uses asctime to convert this structure to an output string.
*/

#include <time.h>
#include <stdio.h>

void main(void)

{
struct tm *newtime;
Tong 1time;

time(&Ttime);
/* 0btain Universal Coordinated Time: */

newtime = gmtime(&1time);
printf("Universal Coordinated Time is %s\n", asctime(newtime));

Output Universal Coordinated Time is Wed Jun 16 16:37:53 1999

396 _grstatus

Description

Remarks

_grstatus

Returns the status of the most recent graphics function call.

#include <graph.h>

short __far _grstatus(void);

The _grstatus function returns the status of the most recently used graphics func-
tion. The _grstatus function can be used immediately following a call to a
graphics routine to determine if errors or warnings were generated. Return values
less than O are errors, and values greater than 0 are warnings.

The following manifest constants are defined in the GRAPH.H header file for use
with the _grstatus function:

Value Constant Meaning

0 —~GROK Success.

-1 _GRERROR Graphics error.

-2 _GRMODENOTSUPPORTED Requested video mode not
supported.

-3 _GRNOTINPROPERMODE Requested routine only works in
certain video modes.

—4 _GRINVALIDPARAMETER One or more parameters invalid.

-5 _GRFONTFILENOTFOUND No matching font file found.

-6 _GRINVALIDFONTFILE One or more font files invalid.

-7 _GRCORRUPTEDFONTFILE One or more font files inconsistent.

-8 _GRINSUFFICIENTMEMORY Not enough memory to allocate
buffer or to complete a _floodfill
operation.

-9 _GRINVALIDIMA GEBUFFER Image buffer data inconsistent.

1 _GRNOOUTPUT Nothing drawn.

2 _GRCLIPPED Output was clipped to viewport.

3 _GRPARAMETERALTERED One or more input parameters was

altered to be within range, or pairs
of parameters were interchanged to
be in the proper order.

_grstatus 397

After a graphics call, use an if statement to compare the return value of _grstatus
to _GROK. For example:

if(_grstatus < _GROK)
/*handle graphics error*/ ;

The functions listed below cannot cause errors, and they all set _grstatus to

_GROK:

_displaycursor _ gettextposition —outtext
_getactivepage _ gettextwindow _unregisterfonts
_getbkcolor _getvideoconfig _wrapon

_ getgtextvector _getvisualpage

_gettextcolor _outmem

See the list below for the graphics functions that affect _grstatus. The list shows
error or warning messages that can be set by the graphics function. In addition to
the error codes listed, any of these functions can produce the _GRERROR error

code.

Possible _grstatus Possible _grstatus

Function Error Codes Warning Codes

_arc functions _GRNOTINPROPERMODE, _GRNOOUTPUT,
_GRINVALIDPARAMETER _GRCLIPPED

_clearscreen _GRNOTINPROPERMODE,
_GRINVALIDPARAMETER

_ellipse functions _GRNOTINPROPERMODE, _GRNOOUTPUT,
_GRINVALIDPARAMETER, _GRCLIPPED
_GRINSUFFICIENTMEMORY

_floodfill functions _GRNOTINPROPERMODE, _GRNOOUTPUT
_GRINVALIDPARAMETER,
_GRINSUFFICIENTMEMORY

_getarcinfo _GRNOTINPROPERMODE

_getcurrentposition _GRNOTINPROPERMODE

functions

_getfontinfo (_GRERROR only)

_getgtextextent (_GRERROR only)

_getgtextvector _GRPARAMETERALTERED

_getimage functions _GRNOTINPROPERMODE _GRPARAMETERALTERED

_getphyscoord _GRNOTINPROPERMODE

_getpixel functions _GRNOTINPROPERMODE

_gettextcursor _GRNOTINPROPERMODE

_getviewcoord functions _GRNOTINPROPERMODE
_getwindowcoord _GRNOTINPROPERMODE

398

_grstatus

Possible _grstatus

Possible _grstatus

Function Error Codes Warning Codes

_getwritemode _GRNOTINPROPERMODE

_imagesize functions _GRNOTINPROPERMODE

_lineto functions _GRNOTINPROPERMODE _GRNOOUTPUT,

_GRCLIPPED
_moveto functions _GRNOTINPROPERMODE
_outgtext _GRNOTINPROPERMODE _GRCLIPPED,
_GRNOOUTPUT

_pie functions _GRNOTINPROPERMODE, _GRNOOUTPUT,
_GRINVALIDPARAMETER, _GRCLIPPED
_GRINSUFFICIENTMEMORY

_polygon functions _GRNOTINPROPERMODE, _GRNOOUTPUT,
_GRINVALIDPARAMETER, _GRCLIPPED
_GRINSUFFICIENTMEMORY

_ putimage functions _GRERROR, _GRPARAMETERALTERED,
_GRNOTINPROPERMODE, _GRNOOUTPUT
_GRINVALIDPARAMETER,
_GRINVALIDIMAGEBUFFER

_rectangle functions _GRNOTINPROPERMODE, _GRNOOUTPUT,
_GRINVALIDPARAMETER, _GRCLIPPED
_GRINSUFFICIENTMEMORY

_registerfonts _GRCORRUPTEDFONTFILE,
_GRFONTFILENOTFOUND,
_ GRINSUFFICIENTMEMORY,
_GRINVALIDFONTFILE

_remappalette _GRERROR,
_GRINVALIDPARAMETER

_remapallpalette _GRERROR,
_GRINVALIDPARAMETER

_scrolltextwindow _GRNOOUTPUT

_selectpalette _GRNOTINPROPERMODE,
_GRINVALIDPARAMETER

_setactivepage _GRINVALIDPARAMETER

—setbkcolor _GRINVALIDPARAMETER _GRPARAMETERALTERED

_setcliprgn _GRNOTINPROPERMODE _GRPARAMETERALTERED

_setcolor _GRNOTINPROPERMODE _GRPARAMETERALTERED

_setfont _GRERROR,
_GRFONTFILENOTFOUND,
_GRINSUFFICIENTMEMORY,
_GRPARAMETERALTERED

_setgtextvector _GRPARAMETERALTERED

_setpixel _GRNOTINPROPERMODE _GRNOOUTPUT

_grstatus

399

Possible _grstatus

Possible _grstatus

Function Error Codes Warning Codes
_settextcolor _GRPARAMETERALTERED
_settextcursor _GRNOTINPROPERMODE
_settextposition _GRPARAMETERALTERED
_settextrows _GRINVALIDPARAMETER _GRPARAMETERALTERED
_settextwindow _GRPARAMETERALTERED
_setvideomode _GRERROR,
_GRMODENOTSUPPORTED,
_GRINVALIDPARAMETER
_setvideomoderows _GRERROR,
_GRMODENOTSUPPORTED,
_GRINVALIDPARAMETER
_setvieworg _GRNOTINPROPERMODE
_setviewport _GRNOTINPROPERMODE _GRPARAMETERALTERED
_setvisualpage _GRINVALIDPARAMETER
_setwindow _GRNOTINPROPERMODE, _GRPARAMETERALTERED
_GRINVALIDPARAMETER
_setwritemode _GRNOTINPROPERMODE,
_GRINVALIDPARAMETER

Return Value

The _grstatus function returns the status of the most recently used graphics

_arc functions, _ellipse functions, _floodfill functions, _lineto functions,
_pie functions, _remapallpalette, _setactivepage, _setbkcolor, _setcolor,

_setpixel functions, _settextcolor, _settextcursor, _setvisualpage,
_setwindow, _setwritemode

function.
See Also
Compatibility Standards:
16-Bit:
32-Bit:

None
DOS
None

400 _halloc

Description

Remarks

Return Value

Compatibility

See Also

_halloc

Allocates a huge memory block.
#include <malloc.h> Required only for function declarations
void __huge *_halloc(long num, size_t size);

num Number of elements

size Length in bytes of each element

The _halloc function allocates a huge array from the operating system consisting
of num elements, each of which is size bytes long. Each element is initialized to 0.
If the size of the array is greater than 128K (131,072 bytes), the size of an array
element must then be a power of 2.

Use the _hfree function to deallocate a block of memory returned by halloc.

The _halloc function returns a void huge pointer to the allocated space, which is
guaranteed to be suitably aligned for storage of any type of object. To get a pointer
to a type other than void huge, use a type cast on the return value. If the request
cannot be satisfied, the return value is NULL.

Standards: None
16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

calloc functions, free functions, _hfree, malloc functions

_halloc 401

Exarnple /* HALLOC.C: This program uses _halloc to allocate space for 30,000 Tong
* integers, then uses _hfree to deallocate the memory.
*/

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>

void main(void)

{
long __huge *hbuf;
/* Allocate huge buffer %/
hbuf = (long __huge *)_halloc(30000L, sizeof(Tong));
if (hbuf == NULL)
printf("Insufficient memory available\n");
else
printf("Memory successfully allocated\n");
/* Free huge buffer =/
_hfree(hbuf);
}

Qutput Memory successfully allocated

402 _hard Functions

Description

Remarks

_hard Functions

Handle critical error conditions.
#include <dos.h>

void _harderr(void(__far *handler)());
void _hardresume(int result);

void _hardretn(int error);

handler () New INT 0x24 handler
result Handler return parameter
error Error to return from

These three functions are used to handle critical error conditions that use DOS in-
terrupt 0x24. The _harderr function installs a new critical-error handler for inter-
rupt 0x24.

When a critical error occurs, control is passed to the function specified in the
_harderr call. The _hardresume and _hardretn functions control how the pro-
gram will return from the critical error handler.

The _hardresume function returns to DOS the code that encountered the critical
error.

The _hardretn function returns directly to the application program that issued the
INT 0x21 DOS system call, which, in turn, encountered the critical error.

The _harderr function does not directly install the handler pointed to by handler;
instead, _harderr installs a handler that calls the function referenced by handler.
The handler calls the function with the following parameters:

handler(unsigned deverror, unsigned errcode, unsigned _ _far *devhdr);

The deverror argument is the device error code. It contains the AX register value
passed by DOS to the INT 0x24 handler. The errcode argument is the DI register

_hard Functions 403

value that DOS passes to the handler. The low-order byte of errcode can be one of
the following values:

Q
(=]
(="
®

Meaning

Attempt to write to a write-protected disk
Unknown unit

Drive not ready

Unknown command
Cyclic-redundancy-check error in data
Bad drive-request structure length

Seek error

Unknown media type

Sector not found

o RN AN R NN =D

Printer out of paper
Write fault

Read fault

General failure

etk
o=

The devhdr argument is a far pointer to a device header that contains descriptive
information about the device on which the error occurred. The user-defined han-
dler must not change the information in the device-header control block.

Errors on Disk Devices

If the error occurred on a disk device, the high-order bit (bit 15) of the deverror
argument will be set to 0, and the deverror argument will indicate the following:

Bit Meaning
15 Disk error if false (0).
14 Not used.
13 “Ignore” response not allowed if false (0).
12 “Retry” response not allowed if false (0).
11 “Fail” response not allowed if false (0). Note that DOS changes “fail”
to “abort”.
10,9 Code Location
00 DOS
01 File allocation table
10 Directory
11 Data area

8 Read error if false; write error if true.

404

_hard Functions

The low-order byte of deverror indicates the drive in which the error occurred (0 =
drive A, 1 =drive B, etc.).

Errors on Other Devices

If the error occurs on a device other than a disk drive, the high-order bit (bit 15) of
the deverror argument is 1. The attribute word located at offset 4 in the device-
header block indicates the type of device that had the error. If bit 15 of the at-
tribute word is 0, the error is a bad memory image of the file allocation table. If
the bit is 1, the error occurred on a character device and bits 0—3 of the attribute
word indicate the type of device, as shown in the following list:

Bit Meaning

0 Current standard input
1 Current standard output
2 Current null device

3 Current clock device

Restrictions on Handler Functions

The user-defined handler function can issue only system calls 0x01 through 0x0C,
or 0x59. Thus, many of the standard C run-time functions (such as the I/O and
_heap functions) cannot be used in a hardware error handler. System call 0x59
can be used to obtain further information about the error that occurred.

Using _hardresume and _harderr
If the handler returns, it can do so in several different ways:

® Via the return statement
= By calling the _hardresume function
® By calling the _hardretn function

If the handler returns from _hardresume or from a return statement, control
returns to DOS.

The _hardresume function should be called only from within the user-defined
hardware error-handler function. The result supplied to _hardresume must be one
of the following constants:

Constant Action
_HARDERR_ABORT Aborts the program by issuing INT 0x24
_HARDERR_FAIL Fails the system call that is in progress (this is not

supported on DOS 2.x)
_HARDERR_IGNORE Ignores the error
_HARDERR_RETRY Retries the operation

_hard Functions 405

Return Value

Compatibility

See Also

The _hardretn function allows the user-defined hardware error handler to return
directly to the application program rather than returning to DOS. The application
resumes at the point just after the failing I/O function request. The _hardretn
function should be called only from within a user-defined hardware error-handler
function.

The error parameter of _hardretn should be a DOS error code, as opposed to the
XENIX-style error code that is available in errno. Refer to MS-DOS Encyclopedia
(Duncan, ed.; Redmond, Wa.: Microsoft Press, 1988) or Programmer’s PC
Sourcebook 2nd ed. (Hogan; Redmond, Wa.: Microsoft Press, 1991) for informa-
tion about the DOS error codes that may be returned by a given DOS function call.

If the failing I/O function request is an INT 0x21 function greater than or equal to
function 0x38, _hardretn will then return to the application with the carry flag set
and the AX register set to the _hardretn error parameter. If the failing INT 0x21
function request is less than function 0x38 and the function can return an error, the
AL register will be set to OXFF on return to the application. If the failing INT 0x21
does not have a way of returning an error condition (which is true of certain INT
0x21 functions below 0x38), the error parameter of _hardretn is not used, and no
error code is returned to the application.

None.

Standards: None
16-Bit: DOS
32-Bit: None

_chain_intr, _dos_getvect, _dos_setvect

406 _heapadd Functions

Description

Remarks

Return Value

Compatibility

See Also

_heapadd Functions

Add memory to the heap (_heapadd) or to the based heap (_bheapadd).
#include <malloc.h> Required only for function declarations

int _heapadd(void __far *memblock, size_t size);

int _bheapadd(__segment seg, void __based (void) *memblock, size_t size);

seg Based-heap segment selector
buffer Pointer to heap memory
size Size in bytes of memory to add

The _heapadd and _bheapadd functions add an unused piece of memory to the
heap. The _bheapadd function adds the memory to the based heap specified by
seg. The _heapadd function looks at the segment value and, if it is DGROUP,
adds the memory to the near heap. Otherwise, _heapadd adds the memory to the
far heap.

These functions return O if successful, or —1 if an error occurred.

_headadd

Standards: None
16-Bit: DOS

32-Bit: DOS32X

_bheadadd

Standards: None

16-Bit: DOS, QWIN, WIN, WIN DLL
32-Bit: None

free functions, _halloc, _hfree, malloc functions, realloc functions

_heapadd Functions 407

Example

/% HEAPMIN.C: This program illustrates heap management using
* _heapadd and _heapmin.
*/

#include <stdio.h>
#include <conio.h>
#include <process.h>
#include <malloc.h>

void heapdump(char *msg); /* Prototype */

char s1[]
char s2[]

{ "Here are some strings that we use at first, then don't\n" };
{ "need any more. We'll give their space to the heap.\n" };

void main(void)
{
int *p[3]1, 1;

printf("%s%s", sl, s2);
heapdump("Initial heap");

/* Give space of used strings to heap. */

if (_heapadd(sl, sizeof(sl)) == -1)
printf("Error.\n");
if (_heapadd(s2, sizeof(s2)) == -1)

printf("Error.\n");
heapdump("After adding used strings");

/* Allocate some blocks. Some may use string blocks from _heapadd. */
for(i =0; 1 < 2; i++)
if((p[i] = (int *)calloc(10 * (i + 1), sizeof(int))) == NULL)
{
__-i;
break;
}
heapdump("After allocating memory");

/* Free some of the blocks. */
free(p[1l]);

free(p[2]);

heapdump("After freeing memory");

/* Minimize heap. */
_heapmin();
heapdump("After compacting heap");

408 _heapadd Functions
/* Walk through heap entries, displaying information about each block. */
void heapdump(char *msg)
{
_HEAPINFO hi;
printf("%s\n", msg);
hi._pentry = NULL;
while(_heapwalk(&hi) == _HEAPOK)
printf("\t%s block at %Fp of size %u\t\n",
hi._useflag == _USEDENTRY ? "USED" : "FREE",
hi._pentry,
hi._size);
printf("Press any key.\n");
_getch();
}
Output Here are some strings that we use at first, then don't

need any more. We'll give their space to the heap.

Initial heap
USED block at 2D39:0E9C
USED block at 2D39:100A
USED block at 2D39:1030
FREE block at 2D39:1232
After adding used strings

FREE
FREE
USED
USED
USED
USED
FREE

block
block
block
block
block
block
block

at
at
at
at
at
at
at

After allocating

USED
USED
FREE
USED
USED
USED
USED
FREE

bTock
block
block
block
block
bTock
block
bTock

After freeing

USED
FREE
FREE
USED
USED
USED
USED
FREE

block
block
block
bTock
block
bTock
bTock
block

at
at
at
at
at
at
at
at

2D39
2D39
2D39
2D39

10044
:007A
:00AE
:QE9C
2D39:
2D39:
2D39:

100A
1030
1232

memory

2D39
2D39
2D39
2D39
2D39
2D39

memory

at
at
at
at
at
at
at
at

2D39
2D39
2D39

10044
:005A
10084
:Q0AE
:QE9C
:100A
2D39:
2D39:

1030
1232

10044
:005A
10084
2D39:
2D39:
2D39:
2D39:
2D39:

0OAE
0E9C
100A
1030
1232

of
of
of
of

of
of
of
of
of
of
of

of
of
of
of
of
of
of
of

of
of
of
of
of
of
of
of

size
size
size
size

size
size
size
size
size
size
size

size
size
size
size
size
size
size
size

size
size
size
size
size
size
size
size

364
36

512
460

52
50
3564
364
36
512
460

20
40
40
3564
364
36
512
460

20
40
40
3564
364
36
512
460

_heapadd Functions

409

After compacting

USED
FREE
USED
USED
USED
USED
FREE

block
block
block
block
block
block
block

at
at
at
at
at
at
at

heap
2D39
2D39
2D39
2D39

:0044
:005A
:00AE
:QE9C
2D39:
2D39:
2D39:

100A
1030
1232

of
of
of
of
of
of
of

size
size
size
size
size
size
size

20
82
3564
364
36
512
12

410 _heapchk Functions

_heapchk Functions

Description Run consistency checks on the heap.
#include <malloc.h>

int _heapchk(void);

int _bheapchk(__segment seg);
int _fheapchk(void);

int _nheapchk(void);

seg Specified base heap
Remarks The _heapchk routines help to debug heap-related problems by checking for mini-
mal consistency of the heap. Each function checks a particular heap, as listed
below:
Function Heap Checked
_heapchk Depends on data model of program
_bheapchk Based heap specified by seg value
_fheapchk Far heap (outside the default data segment)
_nheapchk Near heap (inside the default data segment)

In large data models (that is, compact-, large-, and huge-model programs),
—heapchk maps to _fheapchk. In small data models (tiny-, small-, and medium-
model programs), _heapchk maps to _nheapchk.

For _heapchk, if the seg value is _NULLSEG, all based heap segments are
checked; otherwise, only the specified one is checked.

_heapchk Functions 411

Return Value

Compatibility

See Also

Example

All four routines return an integer