Microsoft

Microsoft. C/C++

Version 7.0

C++ Language Reference

For MS-D0Se and Windows™ Operating Systems

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commit-
ment on the part of Microsoft Corporation. The software and/or databases described in this document
are furnished under a license agreement or nondisclosure agreement. The software and/or databases
may be used or copied only in accordance with the terms of the agreement. It is against the law to
copy the software on any medium except as specifically allowed in the license or nondisclosure agree-
ment. The licensee may make one copy of the software for backup purposes. No part of this manual
and/or databases may be reproduced or transmitted in any form or by any means, electronic or me-
chanical, including photocopying, recording, or information storage and retrieval systems, for any pur-
pose other than the licensee’s personal use, without the express written permission of Microsoft
Corporation.

©1991 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

Microsoft, MS, MS-DOS, and XENIX are registered trademarks, and Windows is a trademark of
Microsoft Corporation.

U.S. Patent No. 4955066
IBM is a registered trademark of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.
UNIX is a registered trademark of American Telephone and Telegraph Company.

Document No. 1L.N24772-91

109 87 654321

Contents Overview

Introduction

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13

Appendixes

Appendix A
Appendix B
Appendix C

.. Xvil
Lexical CONVENTIONSccovvvieiieiiiieieeeiieeee e eeeee et 1
Basic CONMCEPLSeeivtireiiieiiieiietieieteete ettt ettt ettt 25
Standard CONVETSIONScocvviiiiieirreeeieeeireieeeeeeeeeiieeeeeeeereeeeeeas 65
EXPIESSIONSeevieneieiiriieieieie ettt sttt st 77
STALEIMEINES ...ttt ettt e ee e e e e e eeeaae e e e s eeannnees 133
DECIATAtIONS.vvveeieeeciiiiieee et e e et e e e enaee e 155
DECIATALOTS ..coovveiiiiiiiiiice e 183
CLASSES ...ttt eete e et e e ee et e e et e e et e s e e aeeeenteeeneees 227
DEriVEd ClaSSEScovviiieeieiieeteiieeee et eesteee et eeeaare e s eeaeeeseneeenns 259
Member-Access CONtrol............ooovviuviiieeiiiiiiieeieeeeeeceee e, 285
Special Member FUnctionsccccccevevieeeeieenieenerncenieneeniene 299
OVETIOAITIEZ.eeeieiieiiii ettt 339
PreproCeSSINGocveiiiiieriieieeieeie sttt ettt seaeanans 365
Phases of Translationecoivieeiieeiiiiieeieee e 395
Microsoft-Specific MOIfierscoccecevieeiinienienieeceieeieiene 397
Grammar SUMMATYcooveererrieenieerie e eeeeeseeeseeesieeeeeeeseeenes 423

Contents

Chapter 1

Chapter 2

INErOdUCHION...........oo e Xvii
Scope and Organization of This Manual...........ccccceceeerieiinreienreeienieieneie e Xvii
Document CONVENTIONSeeeeuureererereererreeeeirreesiseeessseessssessssseesssssesssssssesssseesas Xix
Special TErmMINOIOZYccc.evvueevirriieniiriiereetentenieete st et e e e st sbeeseeseesnesneennee XXi
Lexical Conventions 1
1.1 TOKENS ..ottt e e e e etee e e e e aas e e e e ababe e e e e e braaeeseennsraaeaaens 2
1.2 COmMIMENLS......uiieiiiiiiiiieeeeeecieieeeeeeeesiteeeeeeeeessreeeeeetasseesessassaeesessaassssessnsssnnnnes 3
1.3 TACIUTIETS....ovviiieeeiiceeei ettt ettt ere e e eebeee s ete e e eeateeeeaenas 5
CONSLIAINLS.eeeevireeereeeecieeeeeireeeeeerteeeeiteeeesseeeessaseessseeassseeessneeeassseeesassensesseessnnsrees 6
1.4 CHt KEYWOIAS «.eeeiieiiiiiiieeieeteetee ettt ettt 6
1.5 PUNCIUALOIS ..ooecvvieciee ettt e ette et eeeve e e e tre e s e reeeesassesesaneessnnseeas 9
1.6 OPCIALOTS ..eovieueeeiiieeietiesteetesitee et ete e besaeetesatesbeseeesbeetesueeseebesasesaeenseenne 10
1.7 LEEETALS vttt e e e e e teeesraeeeraeaeenaae e eeraeeeennneaens 14
INtE@ET CONSLANES. .. .cueeiivieiiieeiieeireeeteeeseeee e esreeeeeseeeseaesseeesssaesseeansessnsesssneenns 14
Character CONSLANLSc.eeeeeeieieeieiereeieeeeeitreeeieeeesreeesreesesseeesssseessseessessneeesnns 16
Floating-Point CONSLANTS.........ccoeeeuerrierrieesienieieetenienteieeeeeereesseeeeseesneneesees 19
SEEANE LALETAIS ...cuveiieriieeeeeieeteee ettt st 20
Basic Concepts 25
2.1 OIS oottt e e eevee e e e eeeaate e e e e baaea e e e neaaaaaeeeennraraes 25
2.2 Declarations and DefinitionS...........coovveeeiiuiiieieeeinieeeeeeeeeeeeeeeeveeeeereeeeeanes 27
DIECIATALIONS.c.uveeierieeeetiieeeeieeeeccte e e e e e tteeetaeeeetbeesaeaeeesseeeensaeeesssneensnneeens 27
DEfINItIONS.eiiiviieeerieeeetieeecteee et e ceeteeeeetreeeetreeeetreeeesaeeeesesesenseesessasessanaennns 28
2.3 SCOPE cutitieiieteeieeete ettt ettt ettt ettt ettt et et at st e bt bessaenaen 28
Point Of DeCIarationcoeeuviiieiiiieeeiieeeeieeeeeteeeeeeeeeereeeenreeeenreeeeesaeeenreeaas 29
Hiding NAMESccveevirierieiieieienieneeteieee ettt eeete e sae e sresae e enesbe s enees 30

Scope of Formal Arguments to FUNCHONS.........cccoevievivrenieniniieeereceiieeeeee 33

vi

C++ Language Reference

Chapter 3

2.4 Program and Linkageccccverienieininiinienencnecccreeene et 33
TYPEs Of LINKAZE.....cvrueeuiieeeieiieicireeeec ettt 33
Linkage in Names with File SCOPEcccevvtrrirreriniiniinineesceeeie et 34
Linkage in Names with Class SCOPE.......cccceveruiereeriininienieninienieseestesieseeveneens 34
Linkage in Names with BIOCK SCOPE......ccccecvriiririniriiineniirieeee et 34
Names With NO LinKagecccvieerierienininieese ettt 35
Linkage to Non-C++ FUNCHONSccovirieiiriiniieieieieeeiecee e sre e eseesreeseennas 36

2.5 Startup and Terminationcecuevueeeeierererieereereneeeneneeeessessesnessesseenes 38
Program Startup—the main Function...........ccccocevininineninioninieienn e 38
Program Terminationcocccererrereneereeniesene ettt sttt sbe st esee e 42
Additional Startup Considerations.........cc.ceeeeeeeeerireerentenereeeresereereeesresrensenes 43
Additional Termination Considerations...........coevueeeererreererriesreesreesseesseeeeeenes 44

2.6 StOrage ClaSSEScoueuerueuerienieierieteieitetesteteste sttt ebeeebes bt et e st sbe et et enas 46
AULOMALIC ..ottt ettt ettt ee st st st besres e sbe b esaeseeabeenbesbeeneens 46
STATIC .ttt ettt ettt ettt sttt b bttt ae bt e et et aeebeeaan 46
REGISTOT ... ivieeeeeieeieietete ettt et e b e e e se et ssensesseseessensensseseensenseesnans 46
EXEEINALoeoiiiiiinieiiiieee ettt ettt s 47
Initialization Of ODJECES....ccvivuieeiieeecieecieeeee ettt ettt 47

2.7 TPttt ettt st 49
Fundamental TYPEScc.ecveieierieienereeeeienestietetete st eessesseaessessaeraesseessessans 50
DEriVed TYPES ...veueeeiieiieieieiert ettt sttt ee et eb e st benens 52
TYPE INAIMIES.eeiveirireeiieeertee ettt ettt et st st e s e sse e st e s ee s b enes 59

2.8 L-Values and R-ValUesccceeveevuirieieninenieeeeeceeiesiteee e 60

2.9 NAIME SPACES....eeuiruiirerenririirieeeertertenteetestesieestestesaestesbesesseesessesssennesseensesen 61

2.10 Numerical LImitS......ccccoeverirereeieininiieeeeenrenineeresenressesveeseensesiesnesvesaeas 61
Integral LAMItScceveeiiiiiiieiieieeeete ettt ettt et e saa e s 62
F1oating LIMIILS «..cveiiieiieieieteteie ettt ettt sttt 63

Standard Conversions 65

3.1 Integral PrOmMOLIONS ...ccceeveiruerieieiriinieneceenteeceteeeteecreee et 66

3.2 Integral CONVEISIONS. ...c.ceeirriereuirerterieteteeiest et ertee e ebesbe et sbeaens 67
Converting Signed to UnSigned...........oceeeverierieniieniincieninieseeseeeeeseeesreeaens 67
Converting Unsigned t0 Signedcccoeeierienienienieieee ettt 67
Standard CONVEISIONc.eeirviruieeirierierrerteeienteeeeteeesaesteseserseseessessasseensensens 68

3.3 Floating CONVETSIONS.....c..ccuerververrereiesenreseesiessaaseesessessesssessessessesssessensanns 68

3.4 Floating and Integral CONVEISIONScceevveerererirenieruereeeeerienseneessensaens 69
Floating to INte@ral...........cccevieeieriereneeiee st re et eae 69
Integral to FLOAtingccccveviiririniinitetee ettt 69

3.5 ArithmetiC CONVEISIONS.ccovruiiiirieieeieieieeceteeeecieeeeereesesareeeeraaeesssnnsanesens 69

vii Contents

Chapter 4

Chapter 5

3.6 POINter CONVEISIONS ...ccveeuieeeieieeiieieeiesieentesteetesteesteeseesites e essnenseetesseeneas 71
INUIL POINEETS ..ottt ettt b et e s s e e e s 71
Pointers t0 TYPE VOIAccevuiririiieieierieriieteeeceeneneree ettt 71
POINLETS 10 ODJECLS ...ttt ettt sttt s 71
POINters to FUNCHONS.......co.viiiiiieeieeieeeeee ettt 71
POINETS 10 CLASSES ..veuvenveurauieienieiieenteiieterie ettt ere s s eseenesaesaennens 72
EXPIESSIONSuvenienienieiieiieiieteiterte ettt cet ettt eateste b eseentese e s estesbesbesbesmesbeeraeneas 73
Pointers Modified by Microsoft Keywords.........c.ccovecinicincniiiiiniiinienens 74

3.7 Reference CONVETSIONS.ccverteruierieerieeienteeeesieereetereesbeeseesssesaeesseenseenas 75

3.8 Pointer-to-Member CONVETSIONS.........ocveruerierereeeeeiesreenieeneeeneeseeseensenne 75
Integral Constant EXPreSSIOnscecveecerueerieriirreestenenieneesieeseeseeseesieeneesnenne 75
Pointers to Base-Class MEMDETScoceveriiniriieninienieeeeeeeeeeee e 76

Expressions mn

4.1 Types Of EXPIeSSIONS.ccveruieriirieeieniteieeitete ettt st setevee e eeesesesbeens 77
Primary EXPreSSIONSccouerierierriieieeieesetesie ettt et ete et s sae e enis 78
Expressions with Unary Operatorsc..cocceeeererenenenieneneeeenenvensensensennenne 91
Expressions with Binary OPeratorsceceeeevereeniereenenreenieneeneeseeneeneens 102
Expressions with the Conditional Operator..............ccccooucveiiicinnniniincenns 117
Constant EXPrESSIONSccuevverieriirieieeiertesteeiteeeeeteeseesee et see s esee e saees 118
Expressions with Explicit Type COnversions..........ccceecverveerveeseeneerneenneenenne 119
Expressions with Pointer-to-Member Operatorscooevveeveereerieerveereennnes 124

4.2 Semantics Of EXPresSiOnS.......cceevieiueerierieeiieiieniieciestesieeieeee et see e eae 127
Order Of EValUQtion..........coeeeeieieieieieicrenteeie sttt 127
Notation iN EXPIeSSIONSccueevuirveeieniieitierieeiteitereeetete et et et eseseesaeeneees 130

Statements 133

5.1 OVEIVIEW ettt ettt ettt ettt nesne e s ne e 134

5.2 Labeled Statements.........coeouuieieiieieeiirieeieeeeiteenteeesiteeeeeieeesebeeeenneeenanee 134
Using Labels with the goto Statement..............cccccveiiniininiiiiiincnicneen, 134
Using Labels in the case Statementceeveveerieiiieenienneenniieeieeneee e 135

5.3 EXPression StateTentc.ccovceereeruerrieniereesteseesieseeseeesreseeseesseessessesnes 136
The NUIL STAEMENTcoiuiiiiiieeieeierieeeteee ettt 136

54 Compound Statements (BIOCKS)........cccuevieeieririiiniinenicreeccceeeneiene 137

5.5 Selection StatemMENnts.........coceeeeerierierierieriereenrenteeeseesresreesesneeteneenseseeneenns 138
The if StAtEMENLcceeiirieriireeieeeee et 138

The SWItCh StAtEIMENLceveiiiiiieiiiieieieeeeeeeee e ee e e e eeeeeeeeeas 139

viii

C++ Language Reference

Chapter 6

Chapter 7

5.6 Iteration StatemMENLS.........ccveeeereereeeirieerreeeereeteeerreeereeesseeeeareeessneeenseeeeseeens 142
The While StatemMENt..........ecevieireecieeeiieereeeie et eee e e erveeeree e rreeerreeebeeeseeas 143
The dO StatemMENL.......ccoveierieeieeeieecree ettt et et e e e ete e e eereeeearesereeenns 144
The fOr StAtEIMENT.......eiivveiieiiieeeeieee ettt eee e eere e e estreeeesereeeeens 145

5.7 JUMP SEAEIMENLSvevereerierieientieteeetetetetee et et besbeseeetesbeensesbesanenes 147
The break Statement............cceeevveeeeveerieeieie et ettt ereeeeareeerreeeereeeeaeeeeanes 147
The continue StAtEMENL...........cccvvviieeieeieeiieeeeeeereeeeereeeeereeeeeetreeeeeeareeeesrens 147
The return StateMENTc..vvvieeeeieeiiiiieieeeeereeeeeeerreeeeeerbrnrereeeeeeeeseearsaneseeens 148
The ZOtO STAEIMENLcoveeviriiriieieriiriieieieertertete ettt ettt st e b s eas 149

5.8 Declaration StatemMENtSccveerveieireiereeeereeeeeeereeereesireeeenreeesreeeeseeennees 149
Declaration of Automatic ODJECLScceeueriereriirrieieeienteeeeee et 149
Declaration of Static OBJECEScoeevuiiiiiiriiiiiinieeee et 152

Declarations 155

6.1 SPECIIETS ..ottt 156
Storage-Class SPECIIETS ...c..coveueruirieeirireieirtetriteeee et 157
FUNCtion SPECIIETS....c..eoveruiririiriiiiineeieeecee ettt 159
tYPEAET SPECITILT ...ouineeieieicceiteeee ettt sttt 163
TIENd SPECITIETeveieiiiiceteic et 167
TYPE SPECIFICTS. ...ttt sttt 168

6.2 Enumeration Declarationscccecoevveeiieiuirieieeeeeiieeeeiiieeeeeeveeeeeeereeeennns 173
Enumerator NAMESccovievierrreecereeereeerecceeerecireeveesseeeeressesaesenseeensseennnas 176
Definition of Enumerator CONSLANLScoeveeeveerreeeieeeereecereeeeereeeereeenseeeenens 177
Conversions and Enumerated TYPeSs.......cocueeeerverriereinieieeeiieeeeenieeseeneeeee e 177

6.3 Linkage SpecifiCationsccovcivriiiiniiiiiiiiiciieccse 178

Declarators 183

7.1 OVEIVIEW.....veeierieeeeieieeeceeeeeetteeeeeetteeeesaeeeseseesessseeeesvaseetsaeaseesssseeeseseienannes 183

7.2 TYPE NAIMES ...cveeuieriieiieieeie ettt ettt et ettt bt n e saeesmaenaeen 185
Ambiguity RESOIUHONeviieeiiiiieiieieieierenescre sttt e 187

7.3 ADStract DECLAratorseeevveeiiieeeieeeireieiieereeereeereeeeeeeebeeeeseeeesseesneens 187
POINEETS.....ccoviiiiieeeei ettt ettt et ee e eete e eete e e veeeseeesseeteesesseeetseeessnesnreeenns 188
RETETEINCES ..ottt ettt e e erne e ereeeeareeenees 190
POINLETS t0 MEIMDETSvvvieiiviieeeiieieeeeee et ettt ee e e e eane e e s ettt e e eeareeeeenes 196
ATTAYS .ttt sttt st sttt ee e e eae 199
FUNCHIONS ...ttt e e e e e e s tar e e s eare e e e enbaeseennnes 203
Default ATZUMENLSc.veveiiriieeieiieienieereeeetetetestetestesessesseetesaesseenseaseensennes 210

7.4 Function DefinitiOnscooveiiieiiiiiiiieieeieeeeeiee e eeieeeeeeeaee e eevaeeeeeanee s 213

Functions with Variable Argument Lists.........ccoccooevineniniiiiiiiicnien, 214

ix Contents

Chapter 8

7.5 INIHANZEIS .eovieuieiieieieiee ettt ettt ettt 217
Initializing Pointers to const ObJECtScocvrereriecenierieeeneeceneeeeeeeseeenenne 218
UninitialiZe€d ODJECES.eouerueeiiiieiiieieeeee ettt eas 218
Initializing Static MEMDETS.cccouirteriirieeieeiinteeeniesie ettt ereene 219
Initializing AZEIEGALES.....c.eeueeuiruernierieieceietente ettt ettt ettt ebe et eseenaens 219
Initializing Character AITAYS.......cccccceerteeruermeereeteteereeentereneeseetee e eresseaeenes 222
Initializing REfErencesc.coveieieieiiieeceeeeee e 223

Classes 227

Bl OVEIVIBW ..ttt sttt ettt b ettt b et b et sae et e aens 227
Defining Class TYPES.....ccueieiriririesienieieiese ettt ean 228
Class-TYPE ODJECES ...uveeveeieeiieieeiieritetteeeete ettt ettt ae st e b b eane s 230

8.2 ClasS NAIMESeeveeeierieieeieeieese ettt et sttt seeesae e e e saeentesatesseens 232
Declaring and Accessing Class Names..........ccoceeerererineneneneneneneneeeennes 233
typedef Statements and CIaSSeScc.ecverierieririeieiirieieireeteeeee e 234

8.3 Class MEMDETScc.coueruiruieriniirieeiieiieieeesteie et eresaesne et saeseene st 235
Class-Member Declaration SYNtaXccceeeeereeerieneenenieneerseeneeseseesesneeens 237
Using Type Names Within Class Declarationscceeceeeereevierceeneeniennee. 238
Declaring Unsized Arrays in Member Lists (Microsoft Specific)................. 239
Storage of Class-Member Data...........cceoeeeeiiiirienieneninincececrc e 239
Member Naming ReStriCtiONSceveviererrieerieerienienteie e eee e e 240

8.4 Member FUNCHONS......c.cccviriririeieieeneneeecteeeeeeeeee e 240
Overview of Member FUNCtionsccccecceeevienineneninincniinceeneeeneeeeeeane 241
The this POINLETcccveeiieiieiieiieieeieeeeee ettt et ae st sb e e tenreenne 244
Inline Member FUNCLIONScccoeirireniiirienetcenieeeeseee et 246

8.5 Static Data MEmMDETSccccceruiuiriiiiriiicieenieteereee et 247

8.0 UNIOMS.c.ecuiiiiiiieiirictete ettt sttt ettt 249
Member Functions in UniONScceecvevierieeniieniinienieieneenreeeesieevesee e 250
Unions as Class TYPESc.coveerrerreuirieneirierieeeineteereeesiereee s eenens 250
Union Member Datacoeveierininiinenieieiesenie et sre e 250
ANONYMOUS UNIONSeouviiiiiiiieiieieeteeieeiteeieeetesie ettt e ees 250

8.7 BItFICLAS. ..ottt 252
Restrictions on Use of Bit Fieldsccccecueviinenininininincnincnencncececeene 254

8.8 Nested Class Declarations..........coccveeeeuireenienienenenienenienienienesessesenseens 254
Access Privileges and Nested Classescccevveeiereereenienieneenieeieseenieesseneens 255
Member Functions in Nested Classes.......c.ceerveeierierieneenieieneenreneneenenresennes 255
Friend Functions and Nested Classescceveeverrieerienenierceieeieeceee e 256

8.9 Type Names in Class SCOPE.....cccuevteriererriterieierienieneenieeteereesreesresreens 257

X

C++ Language Reference

Chapter 9

Chapter 10

Derived Classes

0.1 OVEIVIEW ...ttt sttt ettt et e s e e s st sae s e saseebeebessneenaenn
Single INheTitance...........coeveeiiiriiiiniiiii s
Multiple INhEIItANCEcueereieiitieeeeceieteert ettt et
Virtual FUNCHOMS......ccueervieieeieeieeeereeeteeee ettt
ADSITACE CLASSES .uvevviinvirireeieeiienieesteeteeiteete st e st et e s s stesbesaeesseeesaeesaeesaeessaennes
BaSE CLASSES ...euvvenreeniieieeienereeeeeeeeetee e ste st e stesbesste st s te st eeeeense e seeeseesse e enne

9.2 Multiple Base Classes.......c.coeeueureuereeueenreteineerieneeeeereeenesneeeessesiesnenes
Virtual Base CLasSes.......ccceurruerieriererieieieniertesiestesiessesuessesseeseesseessessessesssennes
NamME AMDIGUILIES ...ccuvervrerieiieiieieeieeteetenee e te st e saeeseeeatesee et e saeesseesaeesaes

9.3 Virtual FUNCHONScc.eoiuiiiiiieeieteeeteteeeseeeete e

9.4 ADSITACE ClaASSES....uviiueereeereereeieeeeeeeseete ettt et e sae st ebe e saessseesbesseesseenee
Restrictions on Using Abstract CLassesccovevererverereereenensieneneneeneennes

9.5 Summary of SCOPe RUIESc.cceorririniiiiiieinceceteeescseeeeieeeaen
AMDIGUILY . .ottt ettt et ae e ae e s s s sae e neseenens
GLODAL NAMES.....ecveitierieieniieeeeieete ettt ettt et ere st e sbeesre et e sseesbbeessesnnessenee
Names and Qualified Namesc.ccooceevuieviriieriienieieeieeeereeee e
Function Argument NAMEScccoveeerireerienienienienieneeneeeeeestesseessessesmeessensens
ConStructor INTHALIZETScevevereerereeieientestesiestesieseeeeereere e sae s eennes

Member-Access Control

10.1 Controlling Access to Class MEmDbEIScceoeveiieriiiniininiiinienieen,
10.2 ACCESS SPECIIETS ...cvinviiiiieiieieierierite ettt st
10.3 Access Specifiers for Base Classesooevuererercnienenincenicieecceecne
Access Control and Static MEMDETScccvvveeeeiieieieeeeciieeeereeeeeeneeeeeenens
104 FLIENAS ..ovvveeiieeieieeeeeteee ettt ettt ettee et eeeae e e erseeeeeaaeeeeeansaeeeeasasaeennnneas
Friend FUNCHONS.ceiieiiieciiiceeeeecetee et et eeeaee e aar e e e evaeeeeensaeeas
Class Member Functions and Classes as Friendscccoevveeeeeeivreeecinveeennnns
Friend DECIarationsccoveeeeveeeereeiireeeieeeteeeereeeseesseeesreeesseeesssseessesesssssnnes
Defining Friend Functions In Class Declarations............cocceceeveeeeenieneneeeene
10.5 Protected MemDET ACCESScccveeevreerieeiieeieenreesaeeeieesseeessreesseessseesnnes
10.6 Access to Virtual FUNCHONSccveeieviieeeiiieeeieececieeeecereeeeeeeireeeeenneeeens
107 MUILPIE ACCESS ...envvineeenrieiiiieeiieeieeteete et st et et e st et ae e et e sne e b e saeesnees

259

259
259
264
265
265
266
267
268
271
275
280
280
282
282
282
282
283
284

Xi Contents

Chapter 11 Special Member Functions 299
L11.1 CODSIIUCLOTS. c..veeuteiiieriieieniieteeetete ettt e e et et s e sae e ser e be e e e ne s eneenne 300
What @ ConsStructor DOEScccueerieerieiniiiiieeieeeiee ettt 301
Rules for Declaring CONSLIUCLOTSeoueeruiereieienieniieieeee st see et ee e seeas 302
Constructors and ATTAYSccvevveerieruiereeeiieeierieeieeseereeseeseeseeesresseesseeseesaenans 305
Order Of CONSITUCHONeuviteiiieieietetent ettt ettt et et eree e et et eereene 305
11,2 DESIIUCLOTS. c..ceeeeeiieiieieiteteeieetceeeetesit ettt e sa et ebeebe et enne s enesaeneseennns 305
Declaring DESIIUCIOTSevuieieriiriieiieieeieeie sttt eir s esee st e eee 306
USING DESIIUCTOTS. ...ceuvientieiieiieiieiieiieeite ettt ettt steete et e bt saensesaeenae s 307
Order Of DESITUCTIONc.ceveuiruieirieieeeetenteiete ettt s 308
Explicit Destructor CallS..........coeverierienenininececeeienreienre e 310
11.3 Temporary ODJECESecueieieieiieieie ettt sresre st sreseenneaenes 311
11.4 CONVEISIONS ...eiuiieiieieenieeieeteeieeteete et steeteeebessae st esaeeeeesaeesaeesee st enesnenee 312
Conversion CONSITUCTOTS.cc.titerteireteetereeeeteeeeseetenseeeeeresreeseeseensesmeennes 313
Conversion FUNCHIONSc..coevuiiiriiiiiienenenirereeieet e 315
11.5 The new and delete OPEratorS..........cevueeruierrieerierrieenteenireeeieeereesreesaeeens 318
The operator New FUNCHONcocevveriieiriiiiieneeceeeeeeee e 318
Handling Insufficient Memory Conditions...........cecceveerveeerineiiueniecnccenenns 321
The operator delete Functionc.ocoecveviiiiniiiniiiniiiiiiiiiciccneiee 323
11.6 Initialization Using Special Member Functionscc.cceceeveeveeneneennen. 325
EXPlicit INTtHAlIZAION.eevuieieieeieeieecieeie ettt 326
INItialiZING ATTAYS . .eeuveiiriieieieteiet ettt r e s 328
Initializing Static ODJECTS......eeveruerrirrerierieeieieteteeie ettt eveennens 329
Initializing Bases and Members.............ccoerereneriinieienieiereiceicsesreeeeenne 329
117 Copying Class ODJECLScceevirreerueeireieeieeitenteeteesteeteeeteieetesreeresseeneeas 333
Compiler-Generated COPYING........oevereeruereerieeiieeieeienreeseeseeseeseeseeseessennes 334
Memberwise Assignment and Initialization.............coeeeeeveenenienieneneeneenn 335
Chapter 12 Overloading 339
12,1 OVEIVIEW ..ttt ettt sttt et st sttt sae et sttt et et ese st e eaeas 339
Argument Type Differencescccooeevveviiviiniviniiiiiiiiiiiiciccecne 340
Restrictions on Overloaded FUnctions............ccceeeveriviiinniinicnicniincnieiennee. 341
12.2 Declaration MatChingcoveeeiiiiiiiiinieiieneeeneeeeeciecceee e 342
12.3 Argument MatChingcccceveeierienienieeiieieeieneesee et siee st 344
Argument Matching and the this Pointer............cccocoevviniiinnninnnnn. 345
Argument Matching and CONVerSions.........c..cccecereeueeremeieeieenieninneinneneene 346

12.4 Address of Overloaded FUNCHionS..........oooevvvveiieeiiiiirieeeceeereeeeee e 351

Xii C++ Language Reference

Chapter 13

Appendixes
Appendix A
Appendix B

12.5 Overloaded OPerators...........ccuererueereriienerirertentesreesseesseessessesssessessenae
General Rules for Operator Overloading...........coceeveeveeeeenieeseenseenensicnneenne
UNATY OPEIALOTS . .vevveeurernieeierteeiientesieestesteesesstesseesseseessseessessseesseesseesseessesaes
Binary OPETAtOrScc.cevteeuerrererieieieteeeseenteetesteseessestesseeeessessesssessessessessenves
ASSIZIIMCIL..c.euveutetieeeniieterteste et et ete e ete st e stes e et estestebeeaeesaessesstensensessessessens
FUNCtion Call........c.oociiviereriiieieerieeicie sttt ee s st e s sbeaene
SUDSCIIPHNG. ...ttt ettt et st sbe et et e st saeeseesbesat e beneeneeeenes
ClasS-MEMDET ACCESS.......ccuerueruerreeiemieneiteieeeieeterentenseenesaesaeesaenesaessesssonens

Preprocessing

13.1 The PreproCeSSOr ...c..coverutrerienienierierieniestesieteneeseesseereseesneeee e eseeeeseeneenes
G T80 Y F: T3 (oL USRI
The Role of Preprocessing in C+.......co.ecceveereeneeineninenenenienreneeeeenreeenenees
The #efine DITECHVE.ccuveeereeeereeeireeccieieeeeere e ereeeereeeerreeeteeesareeereeeeveereees
The #undef DIrECtIVE.cccovviieeereeeeeieecetteeeee e eerre e e et e e e re e e e reeeareas
Predefined IMACTOSccveeeeeeieeie ettt e e e aeeeenaeeanas
13.3 INCIUAE FIIES ...ttt et an e ennes
13.4 Conditional COMPIlAtionceeerererierienenereneeieneneeseesieeeeeesiesseneens
The #if, #elif, #else, and #endif DITECHIVES......veevievuveiiereeeeeeireeeeeiree e
The #ifdef and #fndef DIreCtivescoovvveeveeevreeiieeeeeeereeccte e e e e
The NUIL DIreCtiVe (F) ..veeieeiueeeieeieieeeeee ettt ettt e eeteeeeeereeeeeeeareeeeearreeenareeen
13,5 LiNE CONLIOL...cuviiiiieeiieciieecieesteestteetesveeseeeeseteetaeseaee s saeesssessnsasessaenenes

Phases of Translation

Microsoft-Specific Modifiers

B.1 Memory-Model MOQIfIers.........coceveruererenenieneeieienieeeeeenieeeeienieneeeens
Memory-Model Modifiers and ObJectsccecuevrererereereeneenienienennieneeneeneas
Memory-Model Modifiers and Nonmember Functionsccecceeveecueennnne.
Memory-Model Modifiers and Member Functions.........ccccccecveveiveverreeneennnn.
Memory-Model Modifiers and Classesc.ccoevvererenveeruenerieenesenencereenens
Memory-Model Specifiers and Overloadingccceceveeveenernienecrenenennens

Xiii Contents

B.2 Calling and Naming Convention Modifiers.........cc.ccoverreeeneereerersennenenes 415
BTttt st s b st naenreanen 416
_FASECALL. .ttt et e enen 417
__fortran/__pascal.........ccccceimiiiiniic 418
10 (o7 1 | H OO SRS UR TR UUSURRURRt 419

B.3 Special MOGIfierscoeeererinirieneneeieeesieseerese ettt 419
O 4 010) 4 AP O O ETPOS OO R POP PO PRI 419

ANEETTUPL. . ceeteeieneeeie ettt ierte ettt ettt stesbe bt sbe et e beseeneeseeenessesseemeenens 420

o JOAAAS ettt nneen 421

L SAVETEES.ccueerrerueeerrenseestesstesseessesstensesntesseestenstensessteeseessaesseestestensesseenseensens 422

AppendixC Grammar Summary 423

C.l KEYWOIAS...cuiiiieieiiriieieteierieeeieteesieest et esee e sae st ssessaeessaesaesaesnen 424

C.2 EXPIESSIONS...ccuiriieerenrieertentesteteteeiesiesseeseeseestetesseseesstssesseesseseesnessessenses 424

C.3 DECLArAtiONS.....ccvevuerverrenrerieniereriesestesteseestessessessesaesseeseeseessessesessessesneesens 427

Ci4 DEClarators....cc.eeeuieeuieeieriieiteriestteteertesteste st esieseesbesteatesseesseeseeneesnesanes 429

C.5 ClASSES uviruririeriieeieritete et te et st ste st st st sb e s be s e st ene e e sreeseenaes 431

C.0 SHALCIMENLS....ceveiiureereeeeeeteriteertenteesteetesteeseeestesseessesssesssesstesseesseessessesesnes 433

C.T PIOPIOCESSOT ...covevnriieeeieneeitneeceteteneenseee et sr e sbe s sbe s sae s nis 434

C.8 Microsoft EXtENSIONS.ccccieveiueeieriieienreseenteseestesee e e e e see st sae e 435

Figures and Tables

Figures

Figure 1.1
Figure 2.1
Figure 3.1

Figure 4.1
Figure 4.1
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 8.1
Figure 8.2
Figure 8.3
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.6
Figure 9.7
Figure 9.8
Figure 9.9
Figure 9.10
Figure 9.11
Figure 10.1
Figure 10.2
Figure 10.3
Figure 11.1
Figure 12.1
Figure 12.2

Escapes and String Concatenationcceevereeerueneenreneeeeennes 23
Block Scope and Name Hiding...........ccceeeeuiiiiiiniininiiiinncnen. 30
Inheritance Graph for Illustration

of Base-Class Accessibility........cooceevueevuerrierreenieenennicnienicnne. 72
Expression-Evaluation Order with Parentheses.............cc.c....... 128
Expression-Evaluation Order.........c.ccoeeeeeeceenieneinieiciieennnenens 128
Specifiers, Modifiers, and Declarators...........ccecceeerueenieeneennen. 183
Conceptual Layout of Multidimensional Array..........cccccecueeueen. 199
Parts of a Function Definition..........cccceeevenineericncnicnienecneenenne 213
Decision Graph for Initialization of Reference Types............... 225
Storage of Data in NumericType Unionccceceeveevecereneenene. 250
Memory Layout of Date Object........ccoveeevieinnieineiennienneenieene 253
Layout of Date Object with Zero-Length Bit Field.................... 253
Simple Single Inheritance Graphcccceecveevveeveenieeiiennenneenen. 260
Sample of Directed Acyclic Graph..........coceeecevevvevicrencnennenne. 261
Simple Multiple-Inheritance Graphcccccevererinveerennencnne. 264
Multiple Instances of a Single Base Class........cc.ccceeevuevennennens 267
Simulated Lunch-Line Graph...........cccceeeveriiereneeninrienenenenens 268
Simulated Lunch-Line ObjJect........cceeveevienieneenienienienecenienes 269
Simulated Lunch-Line Object with Virtual Base Classes......... 270
Virtual and Nonvirtual Components of the Same Class............ 270
Object Layout with Virtual and Nonvirtual Inheritance............ 271
Virtual vs. Nonvirtual Derivationcc.ccccceeevievencnceccnniennns 273
Ambiguous Conversion of Pointers to Base Classes................. 275
Access Control in CIaSSEScceeveruereerienrerienienienieneeienrenieneenne 286
Implications of friend Relationshipcccceevveeveenienennienneennen. 294
Access Along Paths of an Inheritance Graphcc.ccccceeeeuenee. 297
Inheritance Graph Showing Virtual Base Classes...........c......... 309
Graph Illustrating Preferred Conversions..........cccccveververeennnne. 348

Multiple Inheritance Graph
Illustrating Preferred Conversionsc..cocceeeveeeevenennennn. 348

XV Contents

Tables

Table 1.1
Table 1.2
Table 1.3
Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6
Table 2.7
Table 3.1
Table 3.2
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 5.1
Table 5.2
Table 5.3
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 7.1
Table 8.1

Table 8.2

Table 10.1
Table 10.2
Table 11.1
Table 11.2
Table 11.3
Table 11.4
Table 11.5
Table 11.6
Table 11.7
Table 12.1
Table 12.2
Table 12.3
Table 12.4
Table 12.5
Table 13.1
Table B.1

Microsoft C/C++ Predefined Identifiers.........ccooeeeeveeeveneerneenncn. 8
C++ Operator Precedence, Syntax, and Associativity................. 11
C++ Reserved or Nongraphic Characters........ccoccevveeveeeenvennenne. 18
CH+ Terminology......c.cecuerieririieieieeieeeste ettt 26
Results of Parsing Command Lines.........ccoccoveeeveninenenecnnncnne. 41
Fundamental Types of the C++ Languagecocceeveeeuenerennne 50
Sizes of Fundamental Types.........coccoueeerenneneneenenincencreeene. 51
Operators and Constructs Used with Pointers to Members......... 55
Limits for Integral TYPescccecerireeiirienerieniinenesesese s 62
Limits for Floating TYPEScccecveieierieierieiereeseeesieere e seeeeeneas 63
Conditions for Type CONVerSiOn..........cccvectreeereeseeneeneeneeneennens 69
Base-Class AcCesSIDIlItYcoceevirviirirneirienieieeeeeeeee e 72
Types Used with Additive Operatorscc.cceceveeeeervcncrcennens 105
Relational and Equality Operators..........cccccevevvevenenenenieneneene 107
Assignment OPETators........ccceeveuieverrererrermnrenreteesreeseeseseeesenenne 113
Operand Types Acceptable to Operators..........ceceeeeevvereeenenneens 131
Switch Statement Behavior........c..cccoocevevenineciniiiiicnreneneenne. 140
C+ Tteration Statementsc.eeveeeereeeerenenreereeneereeneeeeneenene 143
for Loop Elements.........cccocuevieiieniinieieeciee e 145
Use of static and eXLerM.......coceeerererereenieirieieneeseneeseeseesieneens 158
Type Name Combinationscc.ccecerveveinueneerneneeeneeenreneneens 169
C and C++ Calling Conventions...........cceeeeeeeererreneeerercrreecenens 179
Effects of Linkage Specifications............ccocuevveruenirnrenennnieneenn. 180
Overloading Considerations.............cceecveeverveeuereeneenvennenennens 205
Access Control and Constraints of Structures,

Classes, and UMONSc.coeverereerinenieenreneeneneeeneeeereneenens 229
Semantics of this MOAIfiersc.cccecevvevennincnninecncceeene, 246
Member-Access CONtrol........cceeeverenerininereeneneeeeeeeneene 285
Determining Base-Class Member ACCESSceccvrvvereerieeeenens 288
Summary of Function Behavior...........cccecveveevienineiennncnenn. 300
Default and Copy Constructors.ccoeveeueruereeerenereereecrnenenne 302
Destruction Points for Temporary Objects..........ccceeveevevenuenennee 312
Scope for operator new Functionsc.ceceeeeercnveenercncncencns 318
Declarations for new Operator...........cceceeceveeerreeirienieeeeneeneenes 320
Functions Used to Set New Handlersc.cccceveeenenicenennenne. 322
List of New-Handler TYPescccceeeerrieriieneenieeiieereneeeeseeiee 323
Trivial CONVEISIONS.....ceueeviririeerieereeiesieniesierreereeaesreeseeresensenees 347
Dedefinable Operatorsc.coueeeeeeerenieerereeneeerereneeenenennens 352
Nonredefinable Operators............cccoeieveevvieniinieciinineniiiriieeens 353
Redefinable Unary Operatorscccoeceveerierieneeneereenieeneennens 355
Redefinable Binary Operators.........cocceecveveeerrieneenceeneeneeseneenens 358
Predefined Macroscoeeeveeirerneenienienencneseeenie e 374

Introduction

This manual explains the C++ programming language as it is implemented in
Microsoft C++ version 7.0. Microsoft C++ is based on The Annotated C++
Reference Manual by Margaret Ellis and Bjarne Stroustrup (the ANSI base
document for C++). For information about the Microsoft C compiler, see the C
Language Reference manual.

If you are new to C++, you might learn more quickly by starting with the C++
Tutorial manual.

Note Microsoft documentation uses the term “DOS” to refer to both the
MS-DOSe and IBM Personal Computer DOS operating systems. The name of a
specific operating system is used to note features unique to that system.

Scope and Organization of This Manual

C++, like C, is a language that is heavily reliant on a rich set of library functions to
provide the following:

= Portable operating-system interface (file and screen 1/0)

= String and buffer manipulation

» Floating-point math transformations

® Character classification information

® Other supporting functionality

For information about the run-time library functions, see the Run-Time Library

Reference manual. For information about the Microsoft Foundation class library or
the iostream classes, see the Class Libraries Reference manual.

This manual is intended for programmers who have already learned the fundamen-
tals of C++ programming; it is not intended as a learning guide. For information
about learning C++, see the C++ Tutorial.

This manual is organized as follows:

Chapter 1, “Lexical Conventions,” introduces the fundamental elements of a C++
program, as they are meaningful to the compiler. These elements, called “lexical

Xviii

C++ Language Reference

elements,” are used to construct statements, definitions, declarations, and so on,
which are used to construct complete programs.

Chapter 2, “Basic Concepts,” explains concepts such as scope, linkage, program
startup and termination, storage classes, and types. These concepts are key to un-
derstanding C++. Terminology used in this book is also introduced in this chapter.

Chapter 3, “Standard Conversions,” describes the type conversions the compiler
performs between built-in, or “fundamental,” types. It also explains how the com-
piler performs conversions among pointer, reference, and pointer-to-member types.

Chapter 4, “Expressions,” describes C++ expressions—sequences of operators and
operands that are used for computing values, designating objects or functions, or
generating other side effects.

Chapter 5, “Statements,” explains the C++ program elements that control how,
and in what order, programs are executed. Among the statements covered are ex-
pression statements, compound statements, selection statements, iteration state-
ments, jump statements, declaration statements, and null statements.

Chapter 6, “Declarations,” is one of three chapters devoted to how complete decla-
rations are used to form declaration statements. This chapter describes such topics
as storage-class specifiers, function definitions, initializations, enumerations,
class, struct, and union declarations, and typedef declarations. Related informa-
tion can be found in Chapter 7, “Declarators,” and Appendix B, “Microsoft-
Specific Modifiers.”

Chapter 7, “Declarators,” explains the portion of a declaration statement that
names an object, type, or function.

Chapter 8, “Classes,” introduces C++ classes. C++ treats an object declared with
the class, struct, or union keyword as a class type. This chapter explains how to
use these class types.

Chapter 9, “Derived Classes,” covers the details of inheritance—a process by
which you can define a new type as having all the attributes of an existing type,
plus any new attributes you add.

Chapter 10, “Member-Access Control,” explains how you can control access to
class members. Use of access-control specifiers can help produce more robust
code because you can limit the number of ways an object’s state can be changed.

Chapter 11, “Special Member Functions,” describes special functions unique to
class types. These special functions perform initialization (constructor functions),
cleanup (destructor functions), and conversions. This chapter also describes the
new and delete operators, which are used for dynamic memory allocation.

Introduction

Xix

Chapter 12, “Overloading,” explains a C++ feature that allows you to define a
group of functions with the same name but different arguments. Which function in
the group is called depends on the argument list in the actual function call. In
addition, this chapter covers overloaded operators, a mechanism for defining your
own behavior for C++ operators.

Chapter 13, “Preprocessing,” describes the C++ preprocessor, as well as the prag-
mas recognized by Microsoft C++.

Appendix A, “Phases of Translation,” explains in what order a C++ program is
translated from source code to an executable file.

Appendix B, “Microsoft-Specific Modifiers,” describes the modifiers specific to

Microsoft C++. These modifiers control memory addressing, calling conventions,

and so on.

Appendix C, “Grammar Summary,” is a summary of the C++ grammar with the

Microsoft extensions. Portions of this grammar are shown throughout this manual

in “Syntax” sections.

Document Conventions

This book uses the following typographic conventions:

Example

Description

STDIO.H

char, _setcolor,
__far

expression

grammar-elementpt

Uppercase letters indicate filenames, segment names,
registers, and terms used at the operating-system
command level.

Bold type indicates C and C++ keywords, operators,
language-specific characters, and library routines.
Within discussions of syntax, bold type indicates that
the text must be entered exactly as shown.

Many functions and constants begin with either a
single or double underscore. These are part of the
name and are mandatory. For example, to have the
__cplusplus manifest constant be recognized by the
compiler, you must enter the leading double
underscore.

Words in italic indicate placeholders for information
you must supply, such as a filename.

The opt subscript indicates that this element of the
grammar is optional and can be omitted.

XX C++ Language Reference

[[option]]
#pragma pack {112}

#include <io.h>
CL [[option...]| file...
while()

{

}

CTRL+ENTER

“argument”

"C string”

Color Graphics
Adapter (CGA)

Items inside double square brackets are optional.

Braces and a vertical bar indicate a choice among two
or more items. You must choose one of these items
unless double square brackets ([J) surround the
braces.

This font is used for examples, user input, program
output, and error messages in text.

Three dots (an ellipsis) following an item indicate that
more items having the same form may appear.

A column or row of three dots tells you that part of an
example program has been intentionally omitted.

Small capital letters are used to indicate the names of
keys on the keyboard. When you see a plus sign (+)
between two key names, you should hold down the
first key while pressing the second.

The carriage-return key, sometimes marked as a bent
arrow on the keyboard, is called ENTER.

Quotation marks enclose a new term the first time it is
defined in text.

Some language constructs, such as strings, require
quotation marks. Quotation marks required by the
language have the form " " and ' ' rather than
and *’.

[T 1]

The first time an acronym is used, it is usually spelled
out.

Introduction

XXi

Microsoft Specific

32-Bit Specific

Special Terminology

This manual documents the C++ language, as it is
implemented in Microsoft C/C++ version 7.0. As a
result, some of the features of C++ that are
implementation dependent or undefined in the ANSI
base document are defined by the Microsoft
implementation. You can find these features by
looking for the “Microsoft Specific” heading in the
left margin.

Your version of Microsoft C/C++ may have the
capability of generating 32-bit flat-model code. Such
compilations may differ slightly from compilations
targeting 16-bit computers.

When a particular feature is specific only to 32-bit
compilations, it is marked by the “32-Bit Specific”
heading in the left margin. In text, such compilations
are referred to as “32-bit target compilations.”

In this manual, the term “argument” refers to the entity that is passed to a function.

In some cases, it is modified by “actual” or “formal,” which mean the argument
specified in the function call and the argument specified in the function header,

respectively.

The term “variable” refers to a simple C-type data object. The term “object” refers
to both C++ objects and variables; it is an inclusive term.

For more information on terminology used in this manual, see “Terms” in Chapter

2, on page 25.

Lexical Conventions

This chapter introduces the fundamental elements of a C++ program, as they are
meaningful to the compiler. These elements, called “lexical elements,” are used to
construct statements, definitions, declarations, and so on, which are used to con-
struct complete programs. These elements are:

Tokens
Comments
Identifiers
C++ keywords
Punctuators
Operators
Literals

Although the C++ operators are summarized in this chapter, a complete discussion
of operators is deferred until Chapter 4, “Expressions.”

C++ programs, like C programs, consist of one or more files. Each of these files is
translated in the following conceptual order (the actual order follows the “as if”
rule: translation must occur as if these steps had been followed):

1.

2.

Lexical tokenizing. In this translation phase, character mapping and trigraph
processing, line splicing, and tokenization are performed.

Preprocessing. This translation phase brings in ancillary source files referenced
by #include directives, handles “stringizing” and “charizing” directives, and
performs token pasting and macro expansion (see Chapter 13, “Preprocessing,”
for more information about preprocessor behavior). The result of the prepro-
cessing phase is a sequence of “tokens,” which, taken together, defines a “trans-
lation unit.”

Preprocessor directives always begin with the number-sign (#) character (that
is, the first non-white-space character on the line must be a number sign). Only
one preprocessor directive can appear on a given line. For example:

2 C++ Language Reference

1.1 Tokens

f#include <jostream.h> // Include text of iostream.h in
// translation unit.

f#fidefine NDEBUG // Define NDEBUG (NDEBUG contains empty
// text string).

3. Code generation. This translation phase uses the tokens generated in the prepro-
cessing phase to generate object code.

During this phase, syntactic and semantic checking of the source code is per-
formed.

See Appendix A, “Phases of Translation,” for more specific information about
how a source program is translated.

Note The C++ preprocessor is a strict superset of the ANSI C preprocessor. It
differs in its support for the single-line comment, its definition of the __cplusplus
constant, and in its support of the C++ operators:

" %
B >

(For more information about these operators, see “Operators” on page 10 and
Chapter 4, “Expressions”’; for more information about comments, see “Com-
ments” on page 3.)

A token is the smallest element of a C++ program that is meaningful to the com-
piler. The C++ parser recognizes these kinds of tokens: identifiers, keywords,
literals, operators, and other separators. A stream of these tokens makes up a trans-
lation unit.

Tokens are most commonly separated by “white space.” White space can be one
or more:

= Blanks

® Horizontal or vertical tabs
= New lines

= Formfeeds

= Comments

Lexical Conventions 3

Syntax

token:

keyword
identifier
constant
operator
punctuator

preprocessing-token:

header-name

identifier

pp-number

character-constant

string-literal

operator

punctuator

each non-white-space character that cannot be one of the above

The parser separates tokens out of the input stream by creating the longest token
possible using the input characters. Consider the following code fragment:

a

= i+++j;

The intention of the programmer who wrote the code might have been one of the
following:

Preincrement j, add the values of i and j, and assign the sum to a (where the
tokens are i, +, and ++j). For more information about prefix incrementing, see
“Increment and Decrement Operators” in Chapter 4 on page 94.

This interpretation is equivalent to the expression a = i + (++j).

Add the values of i and j, assign the sum to a, then postincrement i (where
the tokens are i, ++, +, and j). For more information about postincrementing,
see “Postfix Increment and Decrement Operators” in Chapter 4 on page 90.

This interpretation is equivalent to the expression a = (i++) + j.

Because the parser creates the longest token possible from the input stream, it
chooses the second interpretation, making the tokens i++, +, and j.

1.2 Comments

A comment is text that the compiler ignores but is useful for programmers. Com-
ments are normally used to annotate code for future reference. The compiler treats

them as white space. Occasionally, comments are used to render certain lines of
code inactive for test purposes; however, the #if/#fendif preprocessor directives
work better for this.

4

C++ Language Reference

A C++ comment is written in one of the following ways:

m The /* (slash, asterisk) characters, followed by any sequence of characters (in-
cluding new lines), followed by the */ characters. This syntax is the same as
ANSIC.

= The // (two slashes) characters, followed by any sequence of characters. A new
line not immediately preceded by a backslash terminates this form of comment.
Therefore, it is commonly called a “single-line comment.”

The comment characters (/*, */,and //) have no special meaning within a char-
acter constant, string literal, or comment. Comments using the first syntax, there-
fore, cannot be nested. Consider this example:

/* Intent: Comment out this block of code.

Problem: Nested comments on each line of code are illegal.
FileName = String("hello.dat"); /* Initialize file string */
cout << "File: " << FileName << "\n"; /#* Print status message */
*/

The preceding code will not compile because the compiler scans the input stream
from the first /* to the first */ and considers it a comment. In this case, the first
*/ occurs at the end of the Initialize file string comment. The last %/, then,
is no longer paired with an opening /*.

Note that the single-line form (//) of a comment followed by the line-continuation
token (\) can have surprising effects. Consider this code:

#include <stdio.h>

int main()
{
printf("This is a number %d", // \
5);

return 0;
}

After preprocessing, the preceding code appears as follows:

#include <stdio.h>

int main()
{
printf("This is a number %d", // 5);

return 0;
}

Because the single-line comment causes all further text on the same logical line to
be considered a comment, the preceding program generates error messages.

Lexical Conventions

5

1.3 ldentifiers

Syntax

An identifier is a sequence of characters used to denote one of the following:

= Object or variable name

® (Class, structure, or union tag

= Enumerated type

= Member of a class, structure, union, or enumeration
= Function or class-member function

= typedef name

= [abel name

= Macro name

= Macro parameter

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of
_abcdefghijklm
nopqrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

digit: one of
0123456789

Microsoft C++ identifiers are sequences of characters that must form a name
shorter than 247 characters (actually, only the first 247 characters are significant).
This restriction is complicated by the fact that names for user-defined types are
“decorated” by the compiler to preserve type information; the resultant name, in-
cluding the type information, cannot be longer than 247 characters. Factors that
can influence the length of a decorated identifier are:

= Whether the identifier denotes an object of user-defined type

= Whether the identifier denotes a function

= The number of arguments to a function

= Whether the identifier names an object of user-defined type

The first character of an identifier must be an alphabetic character, either upper-

case or lowercase, or an underscore (_). Because C++ identifiers are case sensi-
tive, fileName is different from FileName.

6 C++ Language Reference

Constraints

Identifiers cannot be exactly the same spelling and case as keywords (see “C++
Keywords” on page 6 for more information). (Identifiers that contain keywords
are legal. For example, Pint is a legal identifier, even though it contains int,
which is a keyword.)

Use of two sequential underscore characters (__) at the beginning of an identifier,
or a single leading underscore followed by a capital letter, is reserved for C++ im-

plementations in all scopes. Use of one leading underscore followed by a lower-
case letter should be avoided for names with file scope because of possible

conflicts with current or future reserved identifiers.

1.4 C++ Keywords

Keywords are predefined reserved identifiers that have special meanings. They

Syntax

cannot be used as identifiers in your program.

The second section of keywords below are particular to Microsoft C++; these key-
words are disabled when the /Za (ANSI-conformance) option is used during

compilation.

keyword: one of

7

asm float signed
auto for sizeof
break friend static
case goto struct
catch® if switch
char inline template®
class int this
const long throw®
continue new try®
default operator typedef
delete private union

do protected unsigned
double public virtual
else register void
enum return volatile
extern short while

Lexical Conventions 7

__asm!? __finally!® __segment!*
__based! __fortran'* __segname1
__cdecl! __huge"* __self!
__emit!? __interrupt! __stdcall!
__except!® __loadds'* __syscall!
__export1 __near' __tryl’6
__far! __pascal"*

__fastcall"* __saveregs"

1Microsoft-speciﬁc keyword.

2Replaces C++ asm syntax.

3The __based keyword has limited uses for 32-bit target compilations. In such compilations, __based is

supported syntactically and for disambiguation purposes, but only the declaration of objects based on a
pointer is supported semantically. Types that are based on a pointer are considered 32-bit displacements to a
32-bit base.

4Supponed syntactically and for disambiguation purposes, but not meaningful in 32-bit compilations.

5__emit is not, strictly speaking, a keyword; rather it is a pseudoinstruction for the inline assembler.
__emit is not supported for 32-bit compilations.

6Microsoft structured exception-handling keywords, __try, __except, and __finally are meaningful only
for 32-bit targets.

7Reserved for compatibility with other C++ implementations, but not implemented. Use __asm.
8Not implemented in Microsoft C/C++ version 7.0.

Note The Microsoft extended keywords listed above are prefaced with a double
underscore for ANSI compliance. For backward compatibility, however, the
single-underscore versions of these keywords are supported unless the /Za (ANSI
compliance) compilation option is specified.

Note that the keywords near, far, huge, cdecl, fortran, pascal, and interrupt are
available with no leading underscores unless the /Za (ANSI compliance) compila-
tion option is specified.

In addition to the C++ keywords shown above, Microsoft C++ defines the names
in Table 1.1 as macros. Some of these macros can be tested using the #ifdef or
#ifdefined preprocessor directive.

8 C++ Language Reference

Table 1.1 Microsoft C/C++ Predefined Identifiers

Identifier

Compatibility

Value

__cplusplus

__DATE__

__FILE__

__LINE__

—_STDC__

__TIME__

—_TIMESTAMP__

_MSC_VER

-MSDOS

_M_I86

_M_I8086

C++

ANSIC, C++

ANSI C, C++

ANSI C, C++

ANSIC

ANSI C, C++

Microsoft

Microsoft

Microsoft

Microsoft

Microsoft

The value of this macro is not
significant. If it is defined, the
program is compiled as C++. This
macro is not defined for translation
units compiled as C.

The date of compilation of the
source file. The date is a character
string of the form "Mmm dd yyyy".
The quotes are included to form a
proper C++ string.

The name of the current source file.
_ _FILE_ _ expands to a string
surrounded by double quotes.

The line number in the current
source file. The line number is a
decimal number.

Defined equal to 1 only if /Za
(ANSI-conformance) compilation
option used; otherwise undefined.

The time of compilation of the
source file. The time is a character
string of the form "hh:mm:ss". The
quotes are included to form a proper
C++ string.

The date and time of translation of
the current source file. The
timestamp is a character string of the
form "Ddd Mmm dd hh:mm:ss".
The quotes are included to form a
proper C++ string.

Defines the compiler version as a
string literal in the form ddd. For
Microsoft C/C++ version 7.0, the
string is "700".

Always defined. Identifies target
operating system as MS-DOS.
Always defined. Identifies target
machine as a member of the 8086
family.

Defined when compilation targets

8086 and 8088 processors (default
or /GO compiler option).

Lexical Conventions

Table 1.1 (continued)

Identifier Compatibility

Value

_M_1286 Microsoft

_M_1386 Microsoft

_M_I86mM Microsoft

__DLL Microsoft

NO_EXT_KEYS Microsoft

_CHAR_UNSIGNED Microsoft

Defined when compilation targets
80286 processor (/G2 compiler
option).

Defined when compilation targets
80386 processor (/G3 flat-model
compilation—not available on
compilers that target 16-bit
applications).

Always defined. Identifies memory
model, where m is either S (small or
tiny model), M (Medium model), C
(compact model), L (large model),
or H (huge model). If huge model is
used, both _M_I86LLM and
_M_I86HM are defined.

Small model is the default. For more
information about memory models,
see Appendix B, “Microsoft-Specific
Modifiers.”

Defined for run-time library as a
DLL (/MD compiler option).

No longer emitted by the compiler.
This macro was defined in previous
versions of Microsoft C for
compilations that used the /Za
(ANSI-conformance) option. In
Microsoft C/C++ version 7.0, the
__STDC__ macro is used instead.

Defined only when the /J compiler
option is given to make char
unsigned by default.

1.5 Punctuators

Punctuators in C++ have syntactic and semantic meaning to the compiler, but do
not, of themselves, specify an operation that yields a value. Some punctuators,
either alone or in combination, can also be C++ operators or be significant to the

preprocessor.

10 C++ Language Reference

Syntéx punctuator: one of
'% "&*()-+={}I~
[I\;’:"<>?,./#

The punctuators [], (), and { } must appear in pairs after translation phase 4. (For
more information, see Appendix A, “Phases of Translation.”)

1.6 Operators

Operators specify an evaluation to be performed on one of the following:

® One operand (unary operator)

= Two operands (binary operator)

= Three operands (ternary operator)

The C++ language includes all C operators and adds several new operators. The

following syntax lists those operators unique to C++ first, and it then lists the oper-
ators shared between C and C++.

Syntax operator: one of
C++ Operators .* = delete
—>* new
C/C++ Operators [% *=
1 << =
(>> Y=
) < +=
> -
- <= <<=
++ >= >>=
_ == &=
& 1= A=
* |=
+ | !
- && #
~ I #H
! ? > (Microsoft C and C++ specific)
sizeof

/ =

Lexical Conventions 11

Operators follow a strict precedence. This precedence defines the evaluation order
of expressions containing these operators. Operators associate with either the ex-
pression on their left or the expression on their right; this is called “associativity.”
Table 1.2 shows the precedence and associativity of C++ operators (from highest
to lowest precedence).

Table 1.2 C++ Operator Precedence, Syntax, and Associativity
Operator Name or Meaning Syntax Associativity
== Equality equality-expression == Left to right
relational-expression
Scope resolution class-name :: name None
: Global 2 name None
[1 Array subscript postfix-expression [expressiongpt Left to right
@) Function call postfix-expression Left to right
(expression-listopt)
() Conversion simple-type-name None
(expression-listopt)
Member selection postfix-expression . name Left to right
(object)
- Member selection postfix-expression —> name Left to right
(pointer)
++ Postfix increment postfix-expression ++ None
-— Postfix decrement postfix-expression — — None
new Allocate object $iopt N€W placementopt None
new-type-name new-initializeropt
:iopt N€W placementopt None
(type-name) new-initializeropt
delete Deallocate object siopt delete cast-expression None
delete[] ::opt delete [] cast-expression None
++ Prefix increment ++ unary-expression None
-— Prefix decrement — — unary-expression None
* Dereference * cast-expression None
& Address-of & cast-expression None
+ Unary plus + cast-expression None
- Arithmetic — cast-expression None

negation (unary)

12

C++ Language Reference

Table 1.2 (continued)
Operator Name or Meaning Syntax Associativity
! Logical NOT ! cast-expression None
~ Bitwise ~ cast-expression None
complement
o> Base operator base-expression :> expression None
sizeof Size of object sizeof unary-expression None
sizeof () Size of type sizeof(type-name) None
(type) Type cast (type-name) cast-expression Right to left
(conversion)
R Apply pointer to pm-expression ¥ cast-expression Left to right
class member
(objects)
—>* Dereference pm-expression —>% cast-expression Left to right
pointer to class
member
* Multiplication multiplicative-expression * Left to right
pm-expression
/ Division multiplicative-expression | Left to right
pm-expression
% Remainder multiplicative-expression % Left to right
(modulus) pm-expression
+ Addition additive-expression + Left to right
multiplicative-expression
- Subtraction additive-expression — Left to right
multiplicative-expression
<< Left shift shift-expression << Left to right
additive-expression
>> Right shift shift-expression >> Left to right
additive-expression
< Less than relational-expression < Left to right
shift-expression
> Greater than relational-expression > Left to right

shift-expression

Lexical Conventions

Table 1.2 (continued)

Operator Name or Meaning Syntax Associativity
<= Less than or equal relational-expression <= Left to right
to shift-expression
>= Greater than or relational-expression >= Left to right
equal to shift-expression
e Inequality equality-expression != Left to right
relational-expression
& Bitwise AND and-expression & Left to right
equality-expression
A Bitwise exclusive exclusive-or-expression N Left to right
OR and-expression
| Bitwise OR inclusive-or-expression | Left to right
exclusive-or-expression
&& Logical AND logical-and-expression && Left to right
inclusive-or-expression
I Logical OR logical-or-expression |l Left to right
logical-and-expression
el?e2:¢3 Conditional logical-or-expression ? Right to left
expression :
conditional-expression
= Assignment unary-expression = Right to left
assignment-expression
*= Multiplication unary-expression *= Right to left
assignment assignment-expression
/= Division unary-expression = Right to left
assignment assignment-expression
Yo= Modulus unary-expression %= Right to left
assignment assignment-expression
+= Addition unary-expression += Right to left
assignment assignment-expression
—-= Subtraction unary-expression —= Right to left
assignment assignment-expression
<<= Left-shift unary-expression <<= Right to left

assignment

assignment-expression

14 C++ Language Reference

Table 1.2 (continued)

Operator Name or Meaning Syntax Associativity

>>= Right-shift unary-expression >>= Right to left
assignment assignment-expression

&= Bitwise AND unary-expression &= Right to left
assignment assignment-expression

I= Bitwise inclusive unary-expression = Right to left
OR assignment assignment-expression

Az Bitwise exclusive unary-expression "= Right to left
OR assignment assignment-expression

, Comma expression, assignment-expression Left to right

The [], (), and ? : operators (array subscript, function call, and conditional, re-
spectively) can be used only as pairs. However, these operators can be separated
by expressions (see Chapter 4, “Expressions,” for more information).

The # and ## operators can occur only in #define preprocessor directives.

1.7 Literals

Invariant program elements are called “literals” or “constants.” The terms “literal”
and “constant” are used interchangeably here. Literals fall into four major catego-
ries: integer, character, floating-point, and string literals.

Syntax literal:
integer-constant
character-constant
floating-constant
string-literal

Integer Constants

Integer constants are constant data elements that have no fractional parts or ex-
ponents. They always begin with a digit. Integer constants can be specified in deci-
mal, octal, or hexadecimal form. They can specify signed or unsigned types and

long or short types.

Lexical Conventions

15

Syntax

integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixqp
hexadecimal-constant integer-suffixopt
'c-char-sequence'

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0

octal-constant octal-digit

hexadecimal-constant:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit. one of
01234567

hexadecimal-digit: one of
0123456789
abcdef
ABCDEF

integer-suffix:
unsigned-suffix long-suffixopt
long-suffix unsigned-suffixopt

unsigned-suffix: one of
ulU

long-suffix: one of
1L

To specify integer constants using octal or hexadecimal notation, use a prefix that
denotes the base. To specify an integer constant of a given integral type, use a suf-

fix that denotes the type.

16 C++ Language Reference

To specify a decimal constant, begin the specification with a nonzero digit. For
example:

int i = 157; // Decimal constant
int j = 0198; // Not a decimal number; erroneous octal constant
int k = @365; // Leading zero specifies octal constant, not decimal

To specify an octal constant, begin the specification with 0, followed by a
sequence of digits in the range O through 7. The digits 8 and 9 are errors in the
specification of an octal constant. For example:

int i
int j

0377 // Octal constant
0397; // Error: 9 is not an octal digit

To specify a hexadecimal constant, begin the specification with @x or oX (the
case of the “x” does not matter), followed by a sequence of digits in the range o
through 9 and a (or A)through f (or F). Hexadecimal digits a or A through
f or F) represent values in the range 10 through 15. For example:

int

i = Ox3fff; // Hexadecimal constant
int j =

OX3FFF; // Equal to i

To specify an unsigned type, use either the u or U suffix. To specify a long type,
use either the 1 or L suffix. For example:

unsigned uVal = 328u; // Unsigned value

lTong 1Val = Ox7FFFFFL; // Long value specified
// as hex constant

unsigned Tong ulVal = @776745ul; // Unsigned long value

Character Constants

Microsoft Specific

Character constants are one or more members of the “source character set,” the
character set in which a program is written, surrounded by single quotation marks
("). They are used to represent characters in the “execution character set,” the char-
acter set on the machine where the program executes.

For Microsoft C++, the source and execution character sets are both ASCII. ¢

There are three kinds of character constants:
= Normal character constants

= Multicharacter constants

= Wide character constants

Note Use wide character constants in place of multicharacter constants to ensure
portability and upward compatibility.

Lexical Conventions 17

Syntax

Character constants are specified as one or more characters enclosed in single
quotation marks. For example:

char ch = "x'; // Specify normal character constant.
int mbch = 'ab'; // Specify system-dependent

// multicharacter constant.
wchar_t wcch = L'ab'; // Specify wide character constant.

Note that mbch is of type int. If it were declared as type char, the second byte
would not be retained. The number of meaningful characters in a multicharacter
constant is equal to the expression sizeof(int). For 16-bit targets (/G0, /G1, and
/G2 compilation options), this is 2; for 32-bit targets (flat-model compilation), this
is 4. Specifying too many characters for a multicharacter constant generates an
error message.

character-constant:
'c-char-sequence’
L' c-char-sequence'

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except the single quote ('),
backslash (\), or newline character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: one of
LU VAR
\a\b\f\n\r\t\lw

octal-escape-sequence:
\octal-digit
\octal-digit octal-digit
\octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Microsoft C++ supports normal multicharacter, and wide character constants. Use
wide character constants to specify members of the extended execution character

18

C++ Language Reference

set (for example, to support an international application). Normal character con-
stants have type char, multicharacter constants have type int, and wide character
constants have type wchar_t. (The type wchar_t is defined in the standard in-
clude files STDDEF.H, STDLIB.H, and STRING.H. The wide-character func-
tions, however, are prototyped only in STDLIB.H.)

The only difference in specification between normal and wide character constants
is that wide character constants are preceded by the letter L. For example:

char schar = 'x'; // Normal character constant
wchar_t wchar = L'\x81\x19"'; // Wide character constant

Table 1.3 shows reserved or nongraphic characters that are system dependent or
not allowed within character constants. These characters should be represented
with escape sequences.

Table 1.3 C++ Reserved or Nongraphic Characters

ASCII
Character Representation ASCII Value Escape Sequence
Newline NL (LF) 10 or 0x0a \n
Horizontal tab HT 9 \t
Vertical tab VT 11 or 0x0Ob \v
Backspace BS 8 \b
Carriage return CR 13 or 0x0d \r
Formfeed FF 12 or 0x0c \f
Alert BEL 7 \a
Backslash \ 92 or 0x5¢ \
Question mark ? 63 or 0x3f \?
Single quotation ' 39 or 0x27 \'
mark
Double quotation " 34 or 0x22 \"
mark
Octal number 000 — \ooo
Hexadecimal hhh e \xhhh
Number
Null character NUL 0 \0

Important If the character following the backslash does not specify a legal escape
sequence, the result is implementation defined. In Microsoft C++, the character fol-
lowing the backslash is taken literally, as though the escape were not present, and
alevel 1 warning (“unrecognized character escape sequence”) is issued.

Lexical Conventions 19

Octal escape sequences, specified in the form \ooo, consist of a backslash and one,
two, or three octal characters. Hexadecimal escape sequences, specified in the
form \xhhh, consist of the characters \x followed by a sequence of hexadecimal
digits. Unlike octal escape constants, there is no limit on the number of hexadeci-
mal digits in an escape sequence.

Octal escape sequences are terminated by the first character that is not an octal
digit, or when three characters are seen. For example:

wchar_t och = L'\@76a'; // Sequence terminates at a
char ch = "\233"; // Sequence terminates after 3 characters

Similarly, hexadecimal escape sequences terminate at the first character that is not
a hexadecimal digit. Because hexadecimal digits include the letters a through f
(and A through F), make sure the escape sequence terminates at the intended
digit.

Because the single quotation mark (') encloses character constants, use the escape
sequence \' to represent enclosed single quotation marks. The double quotation
mark (") can be represented without an escape sequence. The backslash character
(\) is a line-continuation character when placed at the end of a line. If you want a
backslash character to appear within a character constant, you must type two
backslashes in a row (\\). (See Appendix A, “Phases of Translation,” for more
information about line continuation.)

Floating-Point Constants

Syntax

Floating-point constants specify values that must have a fractional part. These
values contain decimal points (.) and may contain exponents.

floating-constant:
fractional-constant exponent-partop floating-suffixopt
digit-sequence exponent-part floating-suffixop

fractional-constant:
digit-sequenceop, . digit-sequence
digit-sequence .

exponent-part:
e signopt digit-sequence
E signop digit-sequence

20 C++ Language Reference

String Literals

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
flFL

Floating-point constants have a “mantissa,” which specifies the value of the num-
ber, an “exponent,” which specifies the magnitude of the number, and an optional
suffix that specifies the constant’s type. The mantissa is specified as a sequence of
digits followed by a period, followed by an optional sequence of digits repre-
senting the fractional part of the number. For example:

18.46
38.

The exponent, if present, specifies the magnitude of the number as a power of 10,
as shown in the following example:

18.46€0 // 18.46
18.46el // 184.6

If an exponent is present, the trailing decimal point is unnecessary in whole
numbers such as 18E0.

Floating-point constants default to type double. By using the suffixes f or1 (or F
or L—the suffix is not case sensitive), the constant can be specified as float or
long double, respectively.

A string literal consists of zero or more characters from the source character set
surrounded by double quotation marks ("). A string literal represents a sequence of
characters, which, taken together, forms a null-terminated string. While some C++
class libraries, including the Microsoft libraries, supply sophisticated string-
handling functionality, the strings defined in the language are relatively simple.

Lexical Conventions

21

Syntax

Microsoft Specific

string-literal:
"'s-char-sequence op"
L"s-char-sequenceop"

s-char-sequence:
s-char
s-char-sequence s-char

s-char:

any member of the source character set except double quotation marks ("),

backslash (\), or newline
escape-sequence

C++ strings have these types:

= Array of char[n], where n is the length of the string (in characters) plus 1 for

the terminating '\O' that marks the end of the string

= Array of wchar_t, for wide-character strings

The result of modifying a string constant is undefined. For example:

char *szStr = "1234";
szStr[2] = 'A"; // Results undefined

In some cases, identical string literals may be “folded” to save space in the execu-
table file. In string-literal folding, the compiler causes all references to a particular
string literal to point to the same location in memory, instead of having each refer-

ence point to a separate instance of the string literal:

f#include <iostream.h>

f#include <string.h>

// Define two pointers that refer to identical
// string Titerals.

char *sz1 = "A String";

char *sz2 = "A String";

void main()
{
// Reverse szl
for(int i = 0, j = strlen(sz1) - 1; i < j; ++i, --j
{
char chTmp = sz1[i];
sz1[i] = sz1[j1;
sz1[j] = chTmp;
}

// Display the result of the program.
cout << "szl = " << sz1 << endl;
cout << "sz2 " KK sz2 <K endl;

22

C++ Language Reference

If the literals are not folded, the output of the program is:

szl
sz2

gnirtS A
A String

However, if the strings are folded, the output of the program is:

szl
sz2

gnirtS A
gnirtS Ae

When specifying string literals, adjacent strings are concatenated. Therefore, this
declaration:

char szStr[] = "12" "34";

is identical to this declaration:

char szStr[] = "1234";

This concatenation of adjacent strings makes it easy to specify long strings across
multiple lines:

cout << "Four score and seven years "
"ago, our forefathers brought forth "
"upon this continent a new nation.";

In the preceding example, the entire string “Four score and seven years ago, our
forefathers brought forth upon this continent a new nation.” is spliced together.
This string might also have been specified using line splicing as follows:

cout << "Four score and seven years \
ago, our forefathers brought forth \
upon this continent a new nation.";

After all adjacent strings in the constant have been concatenated, the NULL char-
acter, '\0', is appended to provide an end-of-string marker for C string-handling
functions.

When the first character of the first string is an escape character, string concatena-
tion can yield surprising results. Consider the following two declarations:

char szStrl1[] = "\@1" "23";
char szStr2[] = "\0123";

While it is natural to assume that szStrl1 and szStr2 contain the same values,
the values they actually contain are shown in Figure 1.1.

Lexical Conventions 23

Microsoft Specific

"\e1" "23"
ve1] 2 [3 [ve]
"\g123"

\012

Figure 1.1 Escapes and String Concatenation

The maximum length of a string literal is 2,048 bytes. This limit applies both to
strings of type char[] and wchar_t[]. ¢

Determine the size of string objects by counting the number of characters and
adding 1 for the terminating *\o' .

Because the double quotation mark (") encloses strings, use the escape sequence
(\") to represent enclosed double quotation marks. The single quotation mark (')
can be represented without an escape sequence. The backslash character (\) is a
line-continuation character when placed at the end of a line. If you want a
backslash character to appear within a string, you must type two backslashes
(\\). (For more information about line continuation, see Appendix A, “Phases of
Translation.”)

To specify a string of type wide character (wchar_t[]), precede the opening
double quotation mark with the character L. For example:

wchar_t wszStr[] = L"lalg";

All normal escape codes listed in the “Character Constants” example on page 16
are valid in string constants. For example:

cout << "First Tine\nSecond line";
cout << "Error! Take corrective action\a";

Because the escape code terminates at the first character that is not a hexadecimal
digit, specification of string constants with embedded hexadecimal escape codes
can cause unexpected results. The following example is intended to create a string
literal containing ASCII 5, followed by the characters five:

"\x05five"

The actual result is a hexadecimal S5F, which is the ASCII code for an underscore,
followed by the characters ive. The following example produces the desired
results:

"\005five" // Use octal constant.
"\x@5" "five" // Use string splicing.

Basic Concepts

&

Lg ?Eﬁapteg

2.1 Terms

This chapter explains some concepts that are key to the understanding of C++.
While many of these concepts are familiar to C programmers, there are some
subtle differences that can cause unexpected program results. Some of the topics
covered in this chapter are:

Terminology. Terms used later in this book are introduced and defined.

Scope. The scope of a C++ object or function is different from C; the scoping
rules are defined. See “Scope” on page 28.

Linkage. Linkage rules are described as is the definition of a “program.” See
“Program and Linkage” on page 33.

Program startup, termination, and the main function. The sequence of startup
and termination is discussed, as is defining the purpose and behavior of the
main function. See “Startup and Termination” on page 38.

Storage classes. The treatment of auto and static objects in C++, including
initialization and destruction, is discussed. See “Storage Classes” on page 46.

Types. The behavior of C++ fundamental (built-in) types is explained. The dis-
cussion includes derived types, type names, name spaces, and limits for each
type. See “Types” on page 49.

The following short definitions explain C++ terminology used in this chapter and
in the rest of the book, as well.

26

C++ Language Reference

Table 2.1 C++ Terminology

Term

Meaning

Declaration

Definition

Dereference
Lifetime

Linkage

Name

Object

Scope
Storage class
Type

Variable

A declaration introduces names and their types into a program
without necessarily defining an associated object or function.
However, many declarations do serve as definitions.

A definition provides information that allows the compiler to allocate
memory for objects or generate code for functions.

Dereferencing converts a pointer value to an r-value.

The lifetime of an object is the period during which an object exists,
including its creation and destruction.

Names can have external linkage, internal linkage, or no linkage.
Within a program (a set of translation units), only names with
external linkage denote the same object or function. Within a
translation unit, names with either internal or external linkage denote
the same object or function (except when functions are overloaded).
(For more information on translation units, see Appendix A, “Phases
of Translation.”) Names with no linkage denote unique objects or
functions.

A name denotes an object, function, set of overloaded functions,
enumerator, type, class member, template, value, or label. C++
programs use names to refer to their associated language element.
Names can be type names or identifiers.

An object is an instance (a data item) of a user-defined type (a class
type). The difference between an object and a variable is that
variables retain state information, whereas objects may also have
behavior.

This manual draws a distinction between objects and variables:
“object” means instance of a user-defined type, whereas “variable”
means instance of a fundamental type.

In cases where either object or variable is applicable, the term
“object” is used as the inclusive term, meaning “‘object or variable.”

Names can be used only within specific regions of program text.
These regions are called the scope of the name.

The storage class of a named object determines its lifetime,
initialization, and, in certain cases, its linkage.

Names have associated types that determine the meaning of the value
or values stored in an object or returned by a function.

A variable is a data item of a fundamental type (for example, int,
float, or double). Variables store state information but define no
behavior for how that information is handled. See the list item
“Object” above for information about how the terms “variable” and
“object” are used in this manual.

Basic Concepts 27

2.2 Declarations and Definitions

Declarations

Declarations explain to the compiler that a program element or name exists; defini-
tions specify to the compiler what code or data the name describes. A name must
be declared before it can be used.

A declaration introduces one or more names into a program. Declarations also
serve as definitions, except in the following cases:

= The declaration is a function prototype (a function declaration with no function
body).

= The declaration contains the extern specifier but no initializer (objects and
variables) or function body (functions). This signifies that the definition is not
necessarily in the current translation unit and gives the name external linkage.

m The declaration is of a static data member inside a class declaration.

Because static class data members are discrete variables shared by all objects of
the class, they must be defined and initialized outside the class declaration. (For
more information about classes and class members, see Chapter 8, “Classes.”)

= The declaration is a class name declaration with no following definition.

= The declaration is a typedef statement.

Examples of declarations that are also definitions are:

// Declare and define int variables i and j.
int i;
int j = 10;

// Declare enumeration suits.
enum suits { Spades = 1, Clubs, Hearts, Diamonds };

// Declare class CheckBox.
class CheckBox : public Control
{
public:
Boolean IsChecked();
virtual int ChangeState() = 0;
};

Some declarations that are not definitions are:

extern int 1i;
char *strchr(const char *Str, const char Target);

28 C++ Language Reference

Definitions

2.3 Scope

A definition is a unique specification of an object or variable, function, class, or
enumerator. Because definitions must be unique, a program can contain only one
definition for a given program element. Note that because declarations can occur
more than once in a program, classes, structures, enumerated types, and so on can
be declared for each compilation unit. The constraint on this multiple declaration
is that all declarations must be identical.

There can be a many-to-one correspondence between declarations and definitions.
There are two cases in which a program element can be declared and not defined:

= A function is declared but never referenced with a function call or with an
expression that takes the function’s address.

® A class is used only in a way that does not require its definition be known.
However, the class must be declared. The following code illustrates such a case:

class WindowCounter; // Forward reference; no definition

class Window
{
static WindowCounter windowCounter; // Definition of
// WindowCounter
// not required.

C++ names can be used only in certain regions of a program. This area is called
the “scope” of the name. Scope determines the “lifetime” of a name that does not
denote a static object. Scope also determines the visibility of a name, when class
constructors and destructors are called, and when variables local to the scope are
initialized. (For more information, see “Constructors” and “Destructors” in
Chapter 11, on pages 300 and 305, respectively.) There are five kinds of scope:

= Local scope. A name declared within a block is accessible only within that
block and blocks enclosed by it, and only after the point of declaration. The
names of formal arguments to a function in the scope of the outermost block of
the function have local scope, as if they had been declared inside the block
enclosing the function body. Consider the following code fragment:

{
int i;
}

Because the declaration of i is in a block enclosed by curly braces, i has
local scope.

Basic Concepts 29

® Function scope. Labels are the only names that have function scope. They can
be used anywhere within a function but are not accessible outside that function.

» File scope. Any name declared outside all blocks or classes has file scope. It is
accessible anywhere in the translation unit after its declaration. Names with file
scope that do not declare static objects are often called “global” names.

® Class scope. Names of class members have class scope. Class member func-
tions can be accessed only by using the member-selection operators (. or —=>) or
pointer-to-member operators (.* or —>*) on an object or pointer to an object of
that class; nonstatic class member data is considered local to the object of that
class. Consider the following class declaration:

class Point
{
int x;
int y;
b

The class members x and y are considered to be in the scope of class Point.

= Prototype scope. Names declared in a function prototype are visible only until
the end of the prototype. The following prototype declares two names (szDest
and szSource); these names go out of scope at the end of the prototype:

char *strcpy(char #*szDest, const char #*szSource);

Point of Declaration

A name is considered declared immediately after its declarator but prior to its (op-
tional) initializer. (For more information on declarators, see Chapter 7.) An
enumerator is considered declared immediately after the identifier that names it
but prior to its (optional) initializer.

Consider this example:

double dVar = 7.0;

int main()
{

double dVar = dVar;
}

If the point of declaration were after the initialization, then dVar would be initial-
ized to 7.0, the value of the global variable dvar. However, since that is not the
case, dvar is initialized to an undefined value.

Enumerators follow the same rule. However, enumerators are exported to the en-
closing scope of the enumeration. In the following example, the enumerators
Spades, Clubs, Hearts, and Diamonds are declared. Because the enumerators are

30 C++ Language Reference

exported to the enclosing scope, they are considered to have global scope. The
identifiers in the following example are already defined in global scope.

Consider the following code:

const int Spades = 1, Clubs = 2, Hearts = 3, Diamonds = 4;

enum Suits
{
Spades = Spades,
Clubs,
Hearts,
Diamonds

};

Because the identifiers in the preceding code are already defined in global scope,
an error message is generated.

Note Using the same name to refer to more than one program element—for ex-
ample, an enumerator and an object—is considered poor programming practice
and should be avoided. In the preceding example, this practice causes an error.

Hiding Names

A name can be hidden by declaring that name in an enclosed block. In Figure 2.1,
i is redeclared within the inner block, thereby hiding the variable associated
with i in the outer block scope.

Sample::Func(char *szWhat)

Outer block contains
Inner block local-scope object i
contains and formal parameter
local-scope szWhat.

objects i and j.

Figure 2.1 Block Scope and Name Hiding

Basic Concepts 31

The output from the program shown in Figure 2.1 is:

—_ Gy e
{1 I | 1 |
[S IV IR NN)

Note The argument szWhat is considered to be in the scope of the function. There-
fore, it is treated as if it had been declared in the outermost block of the function.

Hiding Names with File Scope

Names with file scope can be hidden by explicitly declaring the same name in
block scope. However, these names can be accessed using the scope-resolution
operator (::). For example:

f#include <iostream.h>

int i = 7; // i has file scope--declared
// outside all blocks

int main(int argc, char *argv[])

{
int i = 5; // i has block scope--hides
// the i with file scope
cout << "Block-scoped i has the value: " << i << "\n";
cout << "File-scoped i has the value: " << ::i << "\n";
return 0;
}

The result of the preceding code is:

Block-scoped i has the value: 5
File-scoped i has the value: 7

Hiding Class Names

Class names can be hidden by declaring a function, object or variable, or enumera-
tor in the same scope. However, the class name can still be accessed when pre-
fixed by the keyword class.

32

C++ Language Reference

// Declare class Account at file scope.
class Account

{
public:
Account(double InitialBalance)
{ balance = InitialBalance; }
double GetBalance()
{ return balance; }
double Deposit(double HowMuch)
{ return balance += HowMuch; }
double Withdraw(double HowMuch)
{ return balance -= HowMuch; }
private:
double balance;
};
double Account = 15.37; // Hides class name Account

int main(int argc, char *argv[])
{
class Account Checking(Account);

cout << "Opening account with balance of: "
<< Checking.GetBalance() << "\n";

cout << "Depositing $10.57, for a remaining balance of: "
<< Checking.Deposit(10.57) << "\n";

cout << "Withdrawing $27.16, for a remaining balance of: "
<< Checking.Withdraw(27.16) << "\n";

return 0;
}

Note that any place the class name (Account) is called for, the keyword class must
be used to differentiate it from the function-scoped variable Account. This rule
does not apply when the class name occurs on the left side of the scope-resolution
operator (::). Names on the left side of the scope-resolution operator are always
considered class names. The following example demonstrates how to declare a
pointer to an object of type Account using the class keyword:

class Account *Checking = new class Account(Account);

Note that the Account in the initializer (in parentheses) in the preceding statement
has function scope; it is of type double.

(For more information about pointers, see “Derived Types” on page 52. For infor-
mation about declaration and initialization of class objects, see Chapter 8,
“Classes.” For information about using the new and delete free-store operators,
see Chapter 11, “Special Member Functions.”)

Basic Concepts 33

Scope of Formal Arguments to Functions

Formal arguments (arguments specified in function headers) to functions are con-
sidered to be in the scope of the outermost block of the function body.

2.4 Program and Linkage

A program consists of one or more translation units linked together. Execution
(conceptually) begins in the translation unit that contains the function main. (For
more information about translation units, see Appendix A, “Phases of Transla-
tion.” For more information about the main function, see “Program Startup—the
main Function” on page 38.)

Types of Linkage

The way the names of objects and functions are shared between translation units is
called “linkage.” These names can have:

= Internal linkage, in which case they refer only to program elements inside their
own translation units; they are not shared with other translation units.

The same name in another translation unit may refer to a different object or a
different class. Names with internal linkage are sometimes referred to as being
“local” to their translation units. An example declaration of a name with inter-
nal linkage is:

static int 1; // The static keyword ensures internal linkage.

= External linkage, in which case they can refer to program elements in any trans-
lation unit in the program—the program element is shared among the transla-
tion units.

The same name in another translation unit is guaranteed to refer to the same ob-
jector class. Names with external linkage are sometimes referred to as being
“global.”

An example declaration of a name with external linkage is:

extern int i;

= No linkage, in which case they refer to unique entities. The same name in
another scope may not refer to the same object. (Note, however, that you can
pass a pointer to an object with no linkage. This makes the object accessible in
other translation units.)

34 C++ Language Reference

Linkage in Names with File Scope

The following linkage rules apply to names (other than typedef and enumerator
names) with file scope:

If a name is explicitly declared as static, it has internal linkage and identifies a
program element inside its own translation unit.

If a function name with file scope is explicitly declared as inline, it has external
linkage (Microsoft specific).

If a name is declared as const but not as extern, the name still has external
linkage (Microsoft specific).

A class has internal linkage if it meets these criteria (Microsoft specific):

= Uses no C++ functionality (for example, member-access control, member
functions, constructors, destructors, and so on).

= Not used in the declaration of another name that has external linkage. This
constraint means that objects of class type that are passed to functions with
external linkage cause the class to have external linkage.

Enumerator names and typedef names have no linkage.
All other names with file scope have external linkage.

Linkage in Names with Class Scope

The following linkage rules apply to names with file scope:

Static class members have external linkage.
Class member functions have external linkage.

Functions declared as friend functions must have external linkage. Declaring a
static function as a friend is an error (Microsoft specific).

Enumerators and typedef names do not have external linkage.

Linkage in Names with Block Scope

The following linkage rules apply to names with block scope (local names):

Names declared as extern have external linkage unless they were previously
declared as static.

All other names with block scope have no linkage.

Basic Concepts 35

Names with No Linkage

The only names that have no linkage are:

= Function parameters.
= Block-scoped names not declared as extern or static.
® Enumerators.

= Names declared in a typedef statement. An exception is when the typedef state-
ment is used to provide a name for an unnamed class type. The name may then
have external linkage if the class has external linkage. The following example
shows a situation in which a typedef name has external linkage:

typedef struct

{
short x;
short y;
} POINT;

extern int MoveTo(POINT pt);

The typedef name, POINT becomes the class name for the unnamed structure.
It is then used in the declaration of a function with external linkage.

Because typedef names have no linkage, their definitions can differ between trans-
lation units. Because the compilations take place discretely, there is no way for the
compiler to detect these differences. As a result, errors of this kind are not detected
until link time. Consider the following case:

// Translation unit 1
typedef int INT

INT myInt;
// Translation unit 2
typedef short INT

extern INT myInt;

The preceding code generates an “unresolved external” error at link time.

36 C++ Language Reference

C++ functions can be defined only in file or class scope. The following example il-
lustrates how to define functions and shows an erroneous function definition:

#include <iostream.h>

void ShowChar(char ch); // Declare function ShowChar.
void ShowChar(char ch) // Define function ShowChar.
{ // Function has file scope.
cout << ch;
}
struct Char // Define class Char.
{
char Show(); // Declare Show function.
char Get(); // Declare Get function.
char ch;
};
char Char::Show() // Define Show function
{ // with class scope.
cout << ch;
return ch;
}
void GoodFuncDef(char ch) // Define GoodFuncDef
{ // with file scope.
int BadFuncDef(int i) // Erroneous attempt to
{ // nest functions.
return i * 7;
}
for(int i = @; i < BadFuncDef(2); ++i)
cout << ch;
cout << "\n";

Linkage to Non-C++ Functions

C functions and data can be accessed only if they are previously declared as
having C linkage. However, they must be defined in a separately compiled transla-
tion unit.

Syntax linkage-specification:
extern string-literal{ declaration-listopt}
extern string-literal declaration

declaration-list.
declaration
declaration-list declaration

Basic Concepts 37

Microsoft C++ supports the strings "C" and "C++" in the string-literal field. The
following example shows alternative ways to declare names that have C linkage:

// Declare printf with C linkage.
extern "C" int printf(const char *fmt, ...);

// Cause everything in the header file "cinclude.h"
// to have C Tinkage.

extern "C"

{

#include <cinclude.h>

}

// Declare the two functions ShowChar and GetChar
// with C Tinkage.
extern "C"
{
char ShowChar(char ch);
char GetChar(void)
}

// Define the two functions ShowChar and GetChar
/7 with C linkage.
extern "C" char ShowChar(char ch)

{
putchar(ch);
return ch;
}
extern "C" char GetChar(void)
{
char ch;
ch = getchar()
return ch;
}

// Declare a global variable, errno, with C Tinkage.
extern "C" 1int errno;

38 C++ Language Reference

2.5 Startup and Termination

Program startup and termination is facilitated by using two functions: main and
exit. Additionally, other startup and termination code may be executed.

Program Startup—the main Function

A special function called main is the entry point to all C++ programs. This func-
tion is not predefined by the compiler; rather, it must be supplied in the program
text. The declaration syntax for main is as follows:

int main();
or, optionally:
int main(int argc[[, char *argv[] [, char *envp[11 1);

Alternatively, the main function can be declared as returning void (no return
value). If you declare main as returning void, you cannot return an exit code to the
parent process or operating system using a return statement; to return an exit code
when main is declared as void, you must use the exit function.

Argument Definitions
The arguments in the prototype

int main(int argc[[, char *argv[1[I, char *envp[11 11);

allow convenient command-line parsing of arguments and, optionally, access to
environment variables. The argument definitions are as follows:

argc Aninteger that contains the count of arguments that follow in argv. The
argc parameter is always greater than or equal to 1.

argv An array of null-terminated strings representing command-line arguments
entered by the user of the program. By convention, argv[0] is the command
with which the program is invoked, argv[1] is the first command-line argument,
and so on, until argv[argc], which is always NULL.

The first command-line argument is always argv[1] and the last one is
argvlargec - 1].

envp (Microsoft specific.) The envp array, which is a common extension in
many UNIX systems, is used in Microsoft C++. It is an array of strings repre-
senting the variables set in the user’s environment. This array is terminated by a
NULL entry.

Basic Concepts 39

The following example shows how to use the argc, argv, and envp arguments to
main:

/% Program to type out the environment variables.
If the /n command-Tline option is specified,

* the listing of environment variables is Tine-
numbered.

*

*

*/

#include <iostream.h>
#include <string.h>

ffdefine NL "\n"

int main(int argc, char *argv[], char *envp[])

{
int iNumberLines = 0; // Default is no line numbers.
// If more than .EXE filename supplied, and
// user supplies /n or /N, flag option for line numbers.
if(argc == 2 && stricmp(argv[1l], "/n" =0)
iNumberLines = 1;
// Walk through 1list of strings until a NULL is encountered.
for(int i = @; envp[i] != NULL; ++i)
{
if(iNumberLines)
cout << i;
cout << ": " << envp[i] << NL;
}
return 0;
}

Note The return 0 statement at the end of the program is necessary because
main is a function declared as returning an int value. If no return statement is pre-
sent, or if the return statement does not specify a value, an error message is
generated.

Wildcard Expansion (Microsoft Specific) You can use wildcards—the question
mark (?) and asterisk (*)—to specify filename and path arguments on the com-
mand line.

Command-line arguments are handled by a routine called _setargv. By default,
_setargv does not expand wildcards into separate strings in the argv string array.
However, by linking with the SETARGV.OBI/ file, you can replace the

default _setargv routine with a version that handles wildcards.

To include SETARGV.OBJ, either add it to your project in PWB, or specify it on
the CL command line. In either case, the /NOE (no extended dictionary search)

40 C++ Language Reference

must be supplied to the linker to avoid multiple-definition errors for the _setargv
function. A sample CL. command follows:

CL PROG.C \C7\LIB\SETARGV.O0BJ /LINK /NOE;

The result of the preceding command is that wildcard filenames are expanded in
the same manner as MS-DOS commands. (See your MS-DOS user’s guide if you
are unfamiliar with these characters.) Enclosing a command-line argument in quo-
tation marks (" ") suppresses the wildcard expansion. Within quoted arguments,
you can represent quotation marks literally by preceding the double quotation
mark with a backslash (V).

Note If you write your own _setargv function, it must be specified as extern "'C"'
for the linker to recognize it.

If no matches are found for the wildcard argument, the argument is passed literally.

Parsing Command-Line Arguments (Microsoft Specific)

Microsoft C startup code uses the following rules when interpreting arguments
given on the MS-DOS command line:

® Arguments are delimited by white space, which is either a space or a tab.

= The caret character (*) is not recognized as an escape character or delimiter.
The character is handled completely by the command-line parser in the operat-
ing system before being passed to the argv array in the program.

= A string surrounded by double quotation marks ("string") is interpreted as a
single argument, regardless of white space contained within. A quoted string
can be embedded in an argument.

= A double quotation mark preceded by a backslash (\") is interpreted as a literal
double quotation mark character (").

= Backslashes are interpreted literally, unless they immediately precede a double
quotation mark.

» [f an even number of backslashes is followed by a double quotation mark, then
one backslash is placed in the argv array for every pair of backslashes, and the
double quotation mark is interpreted as a string delimiter.

= [f an odd number of backslashes is followed by a double quotation mark, then
one backslash is placed in the argv array for every pair of backslashes, and the
double quotation mark is “escaped” by the remaining backslash, causing a lit-
eral double quotation mark (") to be placed in argv.

Basic Concepts 'y

The following program demonstrates how command-line arguments are passed:

#include <iostream.h>

int main(int argc, // Number of strings in array argv
char *argv[], // Array of command-line argument strings
char *envp[]l) // Array of environment variable strings

int count;

// Display each command-line argument.
cout << "\nCommand-Tline arguments:\n";
for(count = @; count < argc; count++)
cout << " argv[" << count << "] "
<< argv[count] << "\n";

return 0;
}

Table 2.2 shows example input and expected output, demonstrating the rules in the
preceding list.

Table 2.2 Results of Parsing Command Lines

Command-Line Input argv[1] argv[2] argv[3]

"abc"de abc d e
a\\\b d"e f"g h a\\\b de fg h
a\\\"b c d a\"b C d
a\\\\"b c" d e a\\b ¢ d e

Customizing Command-Line Processing (Microsoft Specific) If your program
does not take command-line arguments, you can save a small amount of space by
suppressing use of the library routine that performs command-line processing.
This routine is called _setargv and is described in “Wildcard Expansion” on page
39. To suppress its use, define a routine that does nothing in the file containing the
main function, and name it _setargv. The call to _setargy is then satisfied by
your definition of _setargv, and the library version is not loaded.

Similarly, if you never access the environment table through the envp argument,
you can provide your own empty routine to be used in place of _setenvp, the en-
vironment-processing routine. Just as with the _setargv function, _setenvp must
be declared as extern "'C"'.

42 C++ Language Reference

Your program might make calls to the spawn or exec family of routines in the C
run-time library. If this is the case, you should not suppress the environment-
processing routine, since this routine is used to pass an environment from the
parent process to the child process.

main Function Restrictions

Several restrictions apply to the main function that do not apply to any other C++
functions. The main function:

= Cannot be overloaded (See Chapter 12, “Overloading”).

= Cannot be declared as inline.

= Cannot be declared as static.

= Cannot have its address taken.

= Cannot be called.

Program Termination
There are several ways to exit a program:
m Call the exit function.
= Call the abort function.
® Fail an assert test.

m Execute a return statement from main.

exit Function

The exit function, declared in the standard include file STDLIB.H, terminates a
C++ program.

The value supplied as an argument to exit is returned to the operating system as
the program’s return code or exit code. By convention, a return code of zero
- means that the program completed successfully.

Note You can use the constants EXIT_FAILURE and EXIT_SUCCESS,
defined in STDLIB.H, to indicate success or failure of your program.

Issuing a return statement from the main function is equivalent to calling the exit
function with the return value as its argument.

Basic Concepts 43

abort Function

The abort function, also declared in the standard include file STDLIB.H, termi-
nates a C++ program. The difference between exit and abort is that exit allows
the C run-time termination processing to take place, and abort causes immediate
program termination.

assert Macro

The assert macro allows programmers to insert conditional failure code inline to
assist in debugging. Should the programmer’s “assertion” prove false, the location
of the assertion is printed on the standard output device and the program termi-

nates.

See the Run-Time Library Reference manual for more information about using
exit, abort, and assert to terminate program execution.

return Statement

Issuing a return statement from main is functionally equivalent to calling the exit
function. Consider the following example:

int main()
{
exit(3);
return 3;
}

The exit and return statements in the preceding example are functionally identi-
cal. However, C++ requires that functions that have return types other than void
return a value. The return statement allows you to return a value from main.

Additional Startup Considerations

In C++, object construction and destruction can involve executing user code.
Therefore, it is important to understand which initializations happen before entry
to main, and which destructors are invoked after exit from main. (For detailed in-
formation about construction and destruction of objects, see “Constructors” and
“Destructors” in Chapter 11, on pages 300 and 305, respectively.)

The following initializations take place prior to entry to main:

® Default initialization of static data to zero. All static data without explicit initial-
izers are set to zero prior to executing any other code, including run-time initial-
ization. Static data members must still be explicitly defined.

44 C++ Language Reference

» [Initialization of global static objects in a translation unit. This may occur either
before entry to main or before the first use of any function or object in the ob-
ject’s translation unit.

Microsoft Specific In Microsoft C/C++, global static objects are initialized before entry to main. ¢

Global static objects that are mutually interdependent but in different transla-
tion units may cause incorrect behavior.

Additional Termination Considerations

You can terminate a C++ program by using exit, return, or abort. You can add
exit processing using the atexit function. These are discussed in the following sec-
tions.

Using exit or return

When you call exit or execute a return statement from main, static objects are de-
stroyed in the reverse order of their initialization. This example shows how such
initialization and cleanup works:

f#include <stdio.h>

class ShowData
{
public:
// Constructor opens a file.
ShowData(const char *szDev)
{
OutputDev = fopen(szDev, "w");
}

// Destructor closes the file.
~ShowData() { fclose(OutputDev); }

// Disp method shows a string on the output device.
void Disp(char *szData)
{
fputs(szData, OutputDev);
}
private:
FILE *QutputDev;
};

// Define a static object of type ShowData. The output device
// selected is "CON" -- the standard output device.
ShowData sdl = "CON";

Basic Concepts 45

// Define another static object of type ShowData. The output
// is directed to a file called "HELLO.DAT"
ShowData sd2 = "hello.dat";

int main()

{
sd1.Disp("hello to default device\n");
sd2.Disp("hello to file hello.dat\n");
return 0;

}

In the preceding example, the static objects sd1 and sd2 are created and initial-
ized before entry to main. After this program terminates using the return state-
ment, first sd2, then sd1 is destroyed. The destructor for the ShowData class
closes the files associated with these static objects. (For more information about
initialization, constructors, and destructors, see Chapter 11, “Special Member
Functions.”)

Note Another way to write this code is to declare the ShowData objects with block
scope, allowing them to be destroyed when they go out of scope:

int main()

{
ShowData sdl, sd2("hello.dat");
sd1.Disp("hello to default device\n");
sd2.Disp("hello to file hello.dat\n");
return 0;

}

Using atexit

The atexit function allows you to specify an exit-processing function that executes
prior to program termination. No global static objects initialized prior to the call to
atexit are destroyed prior to execution of the exit-processing function.

Using abort

Calling the abort function causes immediate termination. It bypasses the normal
destruction process for initialized global static objects. It also bypasses any special
processing that was specified using the atexit function.

46 C++ Language Reference

2.6 Storage Classes

Automatic

Static

Register

Storage classes govern the lifetime, linkage, and treatment of objects and variables
in C++. A given object can have only one storage class. The following sections dis-
cuss the C++ storage classes for data: automatic, static, register, and external.

Objects and variables with automatic storage are local to a given instance of a
block. In recursive or multithreaded code, automatic objects and variables are
guaranteed to have different storage in different instances of a block. Microsoft
C++ stores automatic objects and variables on the program’s stack.

Objects and variables defined within a block have auto storage unless otherwise
specified using the extern or static keyword. Automatic objects and variables can
be specified using the auto keyword, but explicit use of auto is unnecessary. Auto-
matic objects and variables have no linkage.

Automatic objects and variables persist only until the end of the block in which
they are declared.

To optimize the generated code, the compiler may put automatic variables in regis-
ters. However, the program always behaves as if automatic variables are allocated
on the stack.

Objects and variables declared as static retain their values for the duration of the
program’s execution. In recursive code, a static object or variable is guaranteed to
have the same state in different instances of a block of code.

Objects and variables defined outside all blocks have static lifetime and external
linkage by default. A global object or variable that is explicitly declared as static
has internal linkage.

Static objects and variables persist for the duration of the program’s execution.

Variables declared as register are allocated to a CPU register if there is a suitable
register available. These variables behave as automatic variables, except that the
compiler gives them preference over automatic variables when allocating register
storage.

Basic Concepts 47

Only function arguments and local variables can be declared with the register
storage class.

Like automatic variables, register variables persist only until the end of the block
in which they are declared.

External

Objects and variables declared as extern declare an object that is defined in
another translation unit or in an enclosing scope as having external linkage.

Declaration of const variables with the extern storage class forces the variable to
have external linkage. An initialization of an extern const variable is allowed in
the defining translation unit. Initializations in translation units other than the defin-
ing translation unit produce undefined results.

The following code shows two extern declarations, DefinedElsewhere (which
refers to a name defined in a different translation unit) and DefinedHere (which
refers to a name defined in an enclosing scope):

extern int DefinedElsewhere; // Defined in another translation
// unit.
int main()
{
int DefinedHere;
{
extern int DefinedHere; // Refers to DefinedHere in
// the enclosing scope.
}
return 0;
}

Initialization of Objects

A local automatic object or variable is initialized every time the flow of control
reaches its definition. A local static object or variable is initialized the first time
the flow of control reaches its definition. Consider the following example, which
defines a class that logs initialization and destruction of objects, then defines three
objects, 11, 12, and I3:

48 C++ Language Reference

#include <iostream.h>
J#include <string.h>

// Define a class that logs initializations and destructions.
class InitDemo
{
public:
InitDemo(const char *szWhat);
~InitDemo();
private:
char *szO0bjName;
};

// Constructor for class InitDemo
InitDemo::InitDemo(const char #*szWhat)

{
if(szWhat !'= @ && strien(szWhat) > 0)
{
// Allocate storage for szObjName, then copy
// initializer szWhat into szObjName.
szObjName = new char[strlen(szWhat) + 1 1;
strcpy(szObjName, szWhat);
cout << "Initializing: " << szObjName << "\n";
}
else
szObjName = 0;
}

// Destructor for InitDemo
InitDemo::~InitDemo()

{
if(szObjName != 0@)
{
cout << "Destroying: " << szObjName << "\n";
delete szObjName;
}
}
// Enter main function
int main()
{
InitDemo I1("Auto I1");
{
cout << "In block.\n";
InitDemo I2("Auto I2");
static InitDemo I3("Static I3");
}

cout << "Exited block.\n";

return 0;

Basic Concepts 49

2.7 Types

The preceding code demonstrates how and when the objects 11, 12, and I3 are
initialized and when they are destroyed. The output from the program is:

Initializing: Auto Il
In block.

Initializing: Auto 12
Initializing: Static I3
Destroying: Auto 12
Exited block.
Destroying: Auto Il
Destroying: Static I3

There are several points to note about the program.

First, 11 and 12 are automatically destroyed when the flow of control exits the
block in which they are defined.

Second, in C++, it is not necessary to declare objects or variables at the beginning
of a block. Furthermore, these objects are initialized only when the flow of control
reaches their definitions. (12 and 13 are examples of such definitions.) The out-
put shows exactly when they are initialized.

Finally, static local variables such as 13 retain their values for the entire duration
of the program but are destroyed as the program terminates.

C++ supports three kinds of object types:

= Fundamental types, which are built into the language (such as int, float, or
double). Instances of these fundamental types are often called “variables.”
These are discussed in “Fundamental Types” on page 50.

= Derived types, which are new types derived from built-in types. These are dis-
cussed in “Derived Types” on page 52.

= (Class types, which are new types created by combining existing types. These
are discussed in Chapter 8, “Classes.”

50 C++ Language Reference

Fundamental Types

Fundamental types in C++ are divided into three categories: “integral,” “floating,”
“void,” and “segment.” Integral types are capable of handling whole numbers,
while floating types are capable of specifying values that may have fractional parts.

The void type describes an empty set of values. No variable of type void may be
specified—it is primarily used in declaring functions that return no values or in de-
claring “generic” pointers to untyped or arbitrarily typed data. Any expression can
be explicitly converted or cast to type void. However, such expressions are re-
stricted to the following uses:

= An expression statement. (See Chapter 4, “Expressions,” for more information.)

m The left operand of the comma operator. (See “The Comma Operator” in Chap-
ter 4, on page 116 for more information.)

® The second or third operand of the conditional operator (? :). (See “Expressions
with the Conditional Operator” in Chapter 4, on page 117 for more
information.)

The __segment type is used only when specifying the segment for a based object
or pointer.

Table 2.3 explains the restrictions on type sizes. These restrictions are independent
of the Microsoft implementation.

Table 2.3 Fundamental Types of the C++ Language

Category Type Contents

Integral char Type char is an integral type that usually contains members
of the execution character set—in Microsoft C++, this is
ASCIL.

Variables of type char may be declared as signed char or
unsigned char; in either case, they are the same size as a
variable declared simply as type char. The C++ compiler
treats variables of type char, signed char, and unsigned
char as having different types. Variables of type char are
treated as type signed char by default, unless the /J
compilation option is used, in which case they are treated as
type unsigned char.

short Type short int (or simply short) is an integral type that is
larger than or equal to the size of type char, and shorter
than or equal to the size of type int.

Objects of type short may be declared as signed short or
unsigned short; in either case, they are the same size as an
object declared simply as type short. The C++ compiler
treats objects of type short and signed short as different
from unsigned short .

Basic Concepts

51

Table 2.3 (continued)

Category Type

Contents

int

long

float
double

Floating

long double

Type int is an integral type that is larger than or equal to the
size of type short int and shorter than or equal to the size of
type long.

Objects of type int may be declared as signed int or
unsigned int; in either case, they are the same size as an
object declared simply as type int. The C++ compiler treats
objects of type int and signed int as different from
unsigned int.

Type long (or long int) is an integral type that is larger than
or equal to the size of type int.

Objects of type long may be declared as signed long or
unsigned long; in either case, they are the same size as
objects declared simply as type long. The C++ compiler
treats objects of type long and signed long as different from
unsigned long.

Type float is the smallest floating type.

Type double is a floating type that is larger than or equal to
type float but shorter than or equal to the size of type long
double.

Type long double is a floating type that is larger than or
equal to type double.

In Microsoft C++, variables of various fundamental types require different
amounts of storage, depending on whether the program is compiled for a 16- or
32-bit target. Table 2.4 shows these differences.

Table 2.4 Sizes of Fundamental Types

Type

16-bit Target Compilation 32-bit Target Compilation

char, unsigned char,
signed char

short, short int, signed
short, unsigned short

int, unsigned int, signed
int

long, long int, unsigned
long, signed long

float

double

long double

1 byte 1 byte

2 bytes 2 bytes
2 bytes 4 bytes
4 bytes 4 bytes
4 bytes 4 bytes
8 bytes 8 bytes
10 bytes 10 bytes

52 C++ Language Reference

Derived Types

For more information about type conversion, see Chapter 3, “Standard
Conversions.”

Derived types are new types that can be used in a program. They can conceptually
be divided into types that are directly derived and types that are composed of other
types. Both types are discussed in this section.

Directly Derived Types

New types derived directly from existing types are types that point to, refer to, or
(in the case of functions) transform type data to return a new type. These types are
discussed in the sections that follow.

Arrays of Variables or Objects Arrays of variables or objects can contain a
specified number of a particular type. For example, an array derived from integers
is an array of type int. The following code sample declares and defines an array of
10 int variables and an array of 5 objects of class SampleClass:

int ArrayOfInt[10];
SampleClass aSampleClass[5];

Functions Functions take zero or more arguments of given types and return ob-
jects of a specified type (or return nothing, if the function has a void return type).

Pointers of a Given Type Pointers to variables or objects select an object in
memory. The object can be global, local (or stack-frame), or dynamically allo-
cated. Pointers to functions of a given type allow a program to defer selection of
the function used on a particular object or objects until run time. The following ex-
ample shows declaration and definition of a pointer to a variable of type char:

char *szPathStr = new char[_MAX_PATH];

Basic Concepts 53

References to Objects References to objects provide a convenient way to
access objects by reference but use the same syntax required to access objects by
value. The following example demonstrates how to use references as arguments to
functions, and as return types of functions:

BigClassType &func(BigClassType &objname)
{

objname.DoSomething(); // Note that member-of operator(.)
// is used.
objname.SomeData = 7; // Data passed by non-const

// reference is modifiable.
return objname;
}

The important points about passing objects to a function by reference are:

= Public member data can be read or modified. See Chapter 10, “Member-Access
Control,” for information about access specifiers such as public.

= The syntax for accessing members of class, struct, and union objects is the
same as if they were passed by value: the member-of operator (.).

= The objects are not copied prior to the function call; their addresses are passed.
This can reduce the overhead of the function call.

Additionally, functions that return a reference need only return the address of the
object to which they refer, instead of a copy of the whole object.

Although the preceding example describes references only in the context of com-
munication with functions, references are not constrained to this use. Consider, for
example, a case where a function needs to be an 1-value—a common requirement
for overloaded operators:

class Vector

{
public:
Point &operator[](int nSubscript); // Function returns a
// reference type
};

The preceding declaration specifies a user-defined subscript operator for class
Vector. In an assignment statement, two possible conditions occur:

Vector vl;

int i

Point p;

vli[7] = p; // Vector used as an 1-value

p = v1i[7]; // Vector used as an r-value

54

C++ Language Reference

The latter case, where v1[7] isused as an r-value, can be implemented without
use of references. However, the former case, where v1[7] is used as an l-value,
cannot be implemented easily without functions that are of reference type. Concep-
tually, the last two statements in the preceding example translate to the following
code:

vl.operator[1(7) = 3; // Vector used as an 1-value
i = vl.operator[](7); // Vector used as an r-value

When viewed in this way, it is easier to see that the first statement must be an
I-value to be semantically correct on the left side of the assignment statement.

For more information about overloading, and about overloaded operators in partic-
ular, see “Overloaded Operators” in Chapter 12, on page 351.

Another use for references is in declaring a const reference to a variable or object.
A reference declared as const retains the efficiency of passing an argument by ref-
erence, while preventing the called function from modifying the original object.
Consider the following code:

// IntValue is a const reference.
void PrintInt(const int &IntValue)
{

printf("%d\n", IntValue);
}

Reference initialization is different from assignment to a variable of reference
type. Consider the following code:

7
5

int i
int j

// Reference initialization
int &ri i; // Initialize ri to refer to i.
int &rj J; // Initialize rj to refer to j.

// Assignment

ri = 3; // i now equal to 3.
rj = 12; // j now equal to 12.
ri =rj; // i now equals j (12).

Constants See “Literals” in Chapter 1, on page 14 for more information about
the various kinds of constants allowed in C++.

Basic Concepts 55

Pointers to Class Members These pointers define a type that points to a class
member of a particular type. Such a pointer can be used by any object of the class
type or any object of a type derived from the class type.

Use of pointers to class members enhances the type safety of the C++ language.

Several new operators and constructs are used with pointers to members, as shown
in Table 2.5.

Table 2.5 Operators and Constructs Used with Pointers to Members

Operator or
Construct Syntax Use

e type::¥*ptr-name Declaration of pointer to member. The type
specifies the class name, and ptr-name
specifies the name of the pointer to member.
Pointers to members may be initialized. For

example:
MyType::*pMyType = &MyType::i;
R obj-name.*ptr-name Dereference a pointer to a member using an
object. For example:
int j = Object.*pMyType;
—>* obj-ptr—>*ptr-name Dereference a pointer to a member using a

pointer to an object. For example:
int j = pObject->*pMyType;

Consider this example that defines a class AType and the derived type pDAT,
which points to the member I11:

#include <iostream.h>

// Define class AType.
class AType
A

public:

int I1;

Show() { cout << I1 << "\n"; }
};

// Define a derived type pDAT that points to I1 members of
// objects of type AType.
int AType::*pDAT = &AType::11;

56 C++ Language Reference

int main()
{
AType aType; // Define an object of type AType.
AType *paType = &aType; // Define a pointer to that object.
int 1;
aType.*pDAT = 7777; // Assign to aType::I1 using .* operator.
aType.Show();
i = paType->*pDAT; // Dereference a pointer using .->
operator.

cout << i << "\n";

return 0;
}

The pointer to member pDAT is a new type derived from class AType. It is more
strongly typed than a “plain” pointer because it points only to int members of
class AType (in this case, I11). Pointers to static members are plain pointers rather
than pointers to class members. Consider the following example:

class HasStaticMember

{
public:

static int SMember;
}.

int HasStaticMember::SMember = 0;

int *pSMember = &HasStaticMember::SMember;

Note that the type of the pointer is “pointer to int,” and not “pointer to
HasStaticMember::int.”

Pointers to members can refer to member functions as well as member data.
Consider the following code:

#include <stdio.h>

// Declare a base class, A, with a virtual function, Identify.
// (Note that in this context, struct is the same as class.)
struct A
{

virtual void Identify() = @; // No definition for class A.
};

Basic Concepts

57

// Declare a pointer to the Identify member function.
void (A::*pldentify)() = &A::Identify;

// Declare class B derived from class A.
struct B : public A
{
void Identify();
};

// Declare class C derived from class A.
struct C : public A
{
void Identify();
};

// Define Identify functions for classes B and C.
void B::Identify()

{
printf("Identification is B::Identify\n");
}
void C::Identify()
{
printf("Identification is C::Identify\n");
}
int main()
{
B BObject; // Declare objects of type B
C CObject; // and type C.
A *pA; // Declare pointer to type A.
pA = &BObject; // Make pA point to an object of type B.
(pA->xpIdentify)(); // Call Identify function through pointer
// to member pldentify.
pA = &CObject; // Make pA point to an object of type C.
(pA->*pIdentify)(); // Call Identify function through pointer
// to member pldentify.
return 0;
}

The output from this program is:

Identification is B::Identify
Identification is C::Identify

The function is called through a pointer to type A. However, because the function
is a virtual function, the correct function for the object to which pA refers is called.

58

C++ Language Reference

Composed Derivative Types

The following sections discuss composed derivative types. Information about
aggregate types and initialization of aggregate types can be found in “Initializing
Aggregates” in Chapter 7, on page 219.

Classes Classes are a composite group of member objects, functions to manipu-
late these members, and (optionally) access-control specifications to member ob-
jects and functions.

By grouping composite groups of objects and functions in classes, C++ allows pro-
grammers to create derivative types that define not only data but also the behavior
of objects.

Class members default to private access and private inheritance. Classes are
covered in Chapter 8, “Classes”; access control is covered in Chapter 10,
“Member-Access Control.”

Structures C++ structures are the same as classes, except that all member data
and functions default to public access, and inheritance defaults to public inheri-
tance.

For more information about access control, see Chapter 10, “Member-Access
Control.”

Unions Unions allow programmers to define types capable of containing differ-
ent kinds of variables in the same memory space. The following code shows how
you can use a union to store several different types of variables:

// Declare a union that can hold data of types char, int, long,
// float, double, or char =*.
union ToPrint
{
char chVar;

int iVar;
long 1Var;
float fVar;

double dVar;
char *szVar;

Basic Concepts

59

Type Names

// Declare an enumerated type that describes what type to print.
enum PrintType { CHAR_T, INT_T, LONG_T,
FLOAT_T, DOUBLE_T, STRING_T };

void Print(ToPrint Var, PrintType Type)

{

switch(Type)

{

case CHAR_T:
printf("%c", Var.chVar);
break;

case INT_T:
printf("%d", Var.iVar);
break;

case LONG_T:
printf("%1d", Var.1Var);
break;

case FLOAT_T:
printf("%d", Var.fVar);
break;

case DOUBLE_T:
printf("%f", Var.dVar);
break;

case STRING_T:
printf("%s", Var.szVar);
break;

}

}

Synonyms for both fundamental and derived types can be defined using the
typedef keyword. The following code illustrates the use of typedef:

typedef unsigned char BYTE; // 8-bit unsigned entity.

typedef BYTE =* PBYTE; // Pointer to BYTE.
BYTE Ch; // Declare a variable of type BYTE.
PBYTE pbCh; // Declare a pointer to a BYTE

// variable.

60 C++ Language Reference

The preceding example shows uniform declaration syntax for the fundamental
type unsigned char and its derivative type unsigned char *. The typedef con-
struct is also helpful in simplifying declarations. The following example declares a
type name (PVFN) representing a pointer to a function that returns type void. The
advantage of this declaration is that, later in the program, an array of these pointers
is declared very simply.

#include <iostream.h>
#include <stdlib.h>

// Prototype two functions.
void funcl();
void func2();

// Define PVFN to represent a pointer to a function that
// returns type void.
typedef void (*PVFN)();

// Declare an array of pointers to functions.
PVEN pvfn[]l = { funcl, func2 };

// Invoke one of the functions.
(xpvfn[11)();

2.8 L-Values and R-Values

Expressions in C++ can evaluate to “I-values” or “r-values.” L-values are expres-
sions that evaluate to a type other than void and that designate a variable.

L-values appear on the left side of an assignment statement (hence the “1” in
l-value). Variables that would normally be 1-values can be made nonmodifiable by
using the const keyword; these may not appear on the left of an assignment
statement.

Reference types are always l-values.

Basic Concepts 61

Some examples of correct and incorrect usages are:

i=7; // Correct. A variable name, i, is an 1-value.

7 =1; // Error. A constant, 7, is an r-value.
J*x4=17; // Error. The expression j * 4 yields an r-value.
*p o= i3 // Correct. A dereferenced pointer is an 1-value.
const int ci = 7; // Declare a const variable.

ci =9; // ci is a nonmodifiable 1-value, so the

// assignment causes an error message to
// be generated.
((1 <3) 21 : // Correct. Conditional operator (? :)
Jj) = returns an 1-value.

l
~
~
~

Note The previous example illustrates correct and incorrect usage when operators
are not overloaded. By overloading operators, you can make an expression such
as j = 4 an l-value.

2.9 Name Spaces

“Name space” refers to the place the compiler keeps symbols used to refer to
various program elements. The place a symbol is kept influences whether two pro-
gram symbols will conflict. C has two name spaces, but C++ maintains only one
name space.

The two C name spaces are:

® Variable, function, typedef, and enumerator name space

= Structure, enumeration, and union tag name space

In C++, all these names share a single name space.

2.10 Numerical Limits

The two standard include files, LIMITS.H and FLOAT.H, define the “numerical
limits,” or minimum and maximum values, a variable of a given type can hold.
These minimums and maximums are guaranteed to be portable to any C++ com-
piler that uses the same data representation as ANSI C. The LIMITS.H include file
defines the numerical limits for integral types, and FLOAT.H defines the numeric
limits for floating types.

62

C++ Language Reference

Integral Limits

The limits (constant names, meanings, and values) for integral types are defined in

the standard include file LIMITS.H. They are shown in Table 2.6.

Table 2.6 Limits for Integral Types

Constant Meaning Value
CHAR_BIT Number of bits in the smallest variable that 8
is not a bit field.
SCHAR_MIN Minimum value for a variable of type -127
signed char.
SCHAR_MAX Maximum value for a variable of type 127
signed char.
UCHAR_MAX Maximum value for a variable of type 255 (0xff)
unsigned char.
CHAR_MIN Minimum value for a variable of type char. Same as —127;
0 if /J option used.
CHAR_MAX Maximum value for a variable of type char. Same as 127; 255
if /J option used.
MB_LEN_MAX Maximum number of bytes in a 2
multicharacter constant.
SHRT_MIN Minimum value for a variable of type short. -32767
SHRT_MAX Maximum value for a variable of type 32767
short.
USHRT_MAX Maximum value for a variable of type 65535 (Oxffff)
unsigned short.
INT_MIN Minimum value for a variable of type int!. -32767
INT_MAX Maximum value for a variable of type int2. 32767
UINT_MAX Maximum value for a variable of type 65535 (Oxfftf)
unsigned int3.
LONG_MIN Minimum value for a variable of type long. -2147483647
LONG_MAX Maximum value for a variable of type long. 2147483647
ULONG_MAX Maximum value for a variable of type 4294967295
unsigned long. ((O5iiiviisg)

1The value for INT_MIN is —2147483648 for 32-bit target compilations

2

3

The value for INT_MAX is 2147483647 for 32-bit target compilations

The value for UINT_MAX is 4294967295 (Oxffffffff) for 32-bit target compilations

Basic Concepts 63

Floating Limits

The limits (constant names, meanings, and values) for floating types are defined in
the standard include file FLOAT.H. They are:

Table 2.7 Limits for Floating Types

Constant Meaning Value
FLT_DIG Number of digits, ¢, 7
DBL_DIG such that a floating- 15
LDBL_DIG point number with ¢ 19

FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

FLT_MAX
DBL_MAX
LDBL_MAX

FLT_MAX_10_EXP
DBL_MAX_10_EXP

LDBL_MAX_10_EXP

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

FLT_MIN
DBL_MIN
LDBL_MIN

decimal digits can be
rounded into a
floating-point
representation and
back, without loss of
precision.

Smallest positive
number x, such that x
#1.0+x

Number of digits in
the radix specified by
FLT_RADIX in the
floating-point
significand. In
Microsoft C/C++, the
radix is 2; hence
these values specify
bits.

Maximum
representable floating-
point number.

Maximum integer
such that 10 raised to
that number is a
representable floating-
point number.

Maximum integer
such that
FLT_RADIX raised
to that number is a
representable floating-
point number.
Minimum positive
normalized floating-
point number.

1.192092896¢-07F
2.2204460492503131e-016
5.4210108624275221706e-020

24
53
64

3.402823466e+38F
1.7976931348623158e+308
1.189731495357231765e+4932L

38
308
4932

128
1024
16384

1.175494351e-38F
2.2250738585072014e-308
3.3621031431120935063e-4932L

64 C++ Language Reference

Table 2.7 (continued)

Constant Meaning Value
FLT_MIN_10_EXP Minimum negative =37
DBL_MIN_10_EXP integer such that 10 =307

LDBL_MIN_10_EXP raised to that number =~ —4931
is a representable
floating-point number.

FLT_MIN_EXP Minimum negative -125
DBL_MIN_EXP integer such that -1021
LDBL_MIN_EXP FLT_RADIX raised -16381

to that number is a
representable floating-
point number.

FLT_RADIX Radix of exponent 2
DBL_RADIX representation. 2
LDBL_RADIX 2
FLT_ROUNDS Rounding mode for 1 (near)
DBL_ROUNDS floating-point 1 (near)

LDBL_ROUNDS addition. 1 (near)

Standard Conversions

The C++ language defines conversions between its fundamental types. It also de-
fines conversions for pointer, reference, and pointer-to-member derived types.
These conversions are called “standard conversions.” (For more information about
types, standard types, and derived types, see “Types” in Chapter 2, on page 49.)

This chapter discusses the following standard conversions:

= [ntegral promotions

= [ntegral conversions

= Floating conversions

® Floating and integral conversions

= Arithmetic conversions

= Pointer conversions

= Reference conversions

= Pointer-to-member conversions

Note User-defined types can specify their own conversions. Conversion of user-

defined types is covered in “Constructors” and “Conversions” in Chapter 11, on
pages 300 and 312, respectively.

The following code causes conversions (in this example, integral promotions):

long Tnuml, Tnum2;
int inum;

// inum promoted to type long prior to assignment.
Tnuml = inum;

// inum promoted to type long prior to
// multiplication.
Tnum2 = inum * Tnum2;

C++ Language Reference

Note The result of a conversion is an 1-value only if it produces a reference type.
For example, a user-defined conversion declared as

MyType &operator int()

returns a reference and is an 1-value. However, a conversion declared as

MyType operator int()

returns an object and is not an l-value.

3.1 Integral Promotions

Objects of an integral type can be converted to another wider integral type (that is,
a type that can represent a larger set of values). This widening type of conversion
is called “integral promotion.” Integral promotion allows the following to be used
in an expression wherever another integral type can be used:

= Objects, literals, and constants of type char and short int
® Enumeration types
= int bit fields

= Enumerators

C++ promotions are “value-preserving.” That is, the value after the promotion is
guaranteed to be the same as the value before the promotion. In value-preserving
promotions, objects of shorter integral types (such as bit fields or objects of type
char) are promoted to type int if int can represent the full range of the original
type. If int cannot represent the full range of values, then the object is promoted to
type unsigned int. While this strategy is the same as that used by ANSI C, value-
preserving conversions do not preserve the “signedness” of the object.

Value-preserving promotions and promotions that preserve signedness normally
produce the same results. However, they can produce different results if the pro-
moted object is one of the following:

= Anoperand of /, %, I=, %=, <, <=,>, or >=

These operators rely on sign for determining the result. Therefore, value-
preserving and sign-preserving promotions produce different results when ap-
plied to these operands.

® The left operand of >> or >>=

These operators treat signed and unsigned quantities differently when perform-
ing a shift operation. For signed quantities, shifting a quantity right causes the
sign bit to be propagated into the vacated bit positions. For unsigned quantities,
the vacated bit positions are zero-filled.

Standard Conversions 67

= An argument to an overloaded function or operand of an overloaded operator
that depends on the sign of that operand for argument matching. (See “Over-
loaded Operators” in Chapter 12, on page 351 for more about defining over-
loaded operators.)

3.2 Integral Conversions

Integral conversions are performed between integral types. The integral types are
char, int, and long (and the short, signed, and unsigned versions of these types).

Converting Signed to Unsigned

Objects of signed integral types can be converted to corresponding unsigned types.
When these conversions occur, the actual bit pattern does not change; however,
the interpretation of the data changes. Consider this code:

#include <iostream.h>

int main()

{
short 1 = -3;
unsigned short u;

cout << (u = i) << "\n";

return 0;
}

The following output results:

65533

In the preceding example, a signed short, 1, is defined and initialized to a nega-
tive number. The expression (u = i) causes i to be converted to an unsigned
short prior to the assignment to u.

Converting Unsigned to Signed

Objects of unsigned integral types can be converted to corresponding signed types.
However, such a conversion can cause misinterpretation of data if the value of the

C++ Language Reference

unsigned object is outside the range representable by the signed type, as demon-
strated in the following example:

#include <iostream.h>

void main()

{

short 1i;

unsigned short u = 65533;

cout << (i = u) << "\n";
}

The following output results:

-3

In the preceding example, u is an unsigned short integral object that must be con-
verted to a signed quantity to evaluate the expression (i = u). Because its value
cannot be properly represented in a signed short, the data is misinterpreted as
shown.

Standard Conversion

Objects of integral types can be converted to shorter signed or unsigned integral
types. However, this can result in loss of data if the value of the original object is
outside the range representable by the shorter type. Such a conversion is called
“standard conversion.”

Note The compiler issues a high-level warning when a conversion to a shorter
type takes place.

3.3 Floating Conversions

An object of a floating type can be safely converted to a more precise floating
type—that is, the conversion causes no loss of significance. For example, conver-
sions from float to double or from double to long double are safe, and the value
is unchanged.

An object of a floating type can also be converted to a less precise type, if itisin a
range representable by that type. (See “Floating Limits” in Chapter 2, on page 63
for the ranges of floating types.) If the original value cannot be represented pre-
cisely, it can be converted to either the next higher or the next lower representable
value. If no such value exists, the result is undefined. Consider the following
example:

Standard Conversions 69

cout << (float)1E30@ << endl;

The maximum value representable by type float is 3.402823466E38—a much
smaller number than 1E300. Therefore, the number is converted to infinity, and
the result is 1.#INF.

3.4 Floating and Integral Conversions

Certain expressions can cause objects of floating type to be converted to integral
types, or vice versa.

Floating to Integral

When an object of floating type is converted to an integral type, the fractional part
is truncated. No rounding takes place in the conversion process. Truncation means
that a number like 1.3 is converted to 1, and —1.3 is converted to —1.

Integral to Floating

When an object of integral type is converted to a floating type and the original
value cannot be represented exactly, the result is either the next higher or next
lower representable value.

3.5 Arithmetic Conversions

Many binary operators (discussed in “Expressions with Binary Operators” in
Chapter 4, on page 102) cause conversions of operands and yield results the same
way. The way these operators cause conversions is called “usual arithmetic conver-
sions.” Arithmetic conversions of operands of different types are performed as
shown in Table 3.1.

Table 3.1 Conditions for Type Conversion

Conditions Met Conversion

Either operand is of type long double. Other operand is converted to type long
double.

Preceding condition not met and either Other operand is converted to type double.

operand is of type double.

Preceding conditions not met and either Other operand is converted to type float.
operand is of type float.

70

C++ Language Reference

Table 3.1 (continued)

Conditions Met Conversion
Preceding conditions not met (none of Integral promotions are performed on the
the operands are of floating types). operands as follows:

= If either operand is of type unsigned
long, the other operand is converted to
type unsigned long.

= If preceding condition not met, and if
either operand is of type long and the
other of type unsigned int, the operand
of type unsigned int is converted to type
long (in 16-bit compilations) or both
operands are converted to type unsigned
long (in 32-bit compilations).

= If the preceding two conditions are not
met, and either operand is of type long,
the other operand is converted to type
long.

= If the preceding three conditions are not
met, and either operand is of type
unsigned int, the other operand is
converted to type unsigned int.

= If none of the preceding conditions are
met, both operands are converted to type
int.

The following code illustrates the conversion rules described in Table 3.1:

float fVal;

double dVal;

int ivVal;

unsigned long ulVal;

dval = ival * ulval; // iVal converted to unsigned long;
// result of multiplication converted to double.
dval = ulval + fVal; // ulVal converted to float;

// result of addition converted to double.

The first statement in the preceding example shows multiplication of two integral
types, iVal and ulVal. The condition met is that neither operand is of floating
type and one operand is of type unsigned int. Therefore, the other operand, ivail,
is converted to type unsigned int. The result is assigned to dVal. The condition
met is that one operand is of type double; therefore, the unsigned int result of the
multiplication is converted to type double.

Standard Conversions A

The second statement in the preceding example shows addition of a float and an
integral type, fval and ulval. The ulval variable is converted to type float
(third condition in Table 3.1). The result of the addition is converted to type
double (second condition in Table 3.1) and assigned to dval.

3.6 Pointer Conversions

Null Pointers

Pointers can be converted during assignment, initialization, comparison, and other
expressions. These conversions are described in the following sections.

An integral constant expression that evaluates to zero, or such an expression cast
to type void *, is converted to a pointer called the “null pointer.” This pointer is
guaranteed to compare unequal to a pointer to any valid object or function (except
for pointers to based objects, which can have the same offset and still point to
different objects).

Pointers to Type void

Pointers to type void can be converted to pointers to any other type, but only with
an explicit type cast. (See “Expressions with Explicit Type Conversions” in Chap-
ter 4, on page 119 for more information about type casts). A pointer to any type
can be converted implicitly to a pointer to type void.

A pointer to an incomplete object of a type can be converted to a pointer to void
and back. The result of such a conversion is equal to the value of the original
pointer. An incomplete object is an object that is declared, but for which insuffi-
cient information is available to determine its size.

Pointers to Objects

A pointer to any object that is not const or volatile can be converted to a pointer
of type void *.

Pointers to Functions

A pointer to a function can be converted to type void *, if type void * is large
enough to hold that pointer.

72 C++ Language Reference

Microsoft Specific In medium-model 16-bit target compilations, the data pointer size is 2 bytes, and
the code pointer size is 4 bytes. Therefore, a pointer to type void is too small to
hold a pointer to a function. ¢

Pointers to Classes

There are two cases in which a pointer to a class can be converted to a pointer to a
base class.

The first case is when the specified base class is accessible and the conversion is
unambiguous. (See “Multiple Base Classes” in Chapter 9, on page 267 for more in-
formation about ambiguous base-class references.)

Whether a base class is accessible depends on the kind of inheritance used in
derivation. Consider the inheritance situation illustrated in Figure 3.1.

Figure 3.1 Inheritance Graph for Illustration of Base-Class
Accessibility

Table 3.2 shows the base-class accessibility for the situation illustrated in
Figure 3.1.

Table 3.2 Base-Class Accessibility

Type of Function Derivation Conversion from B* to A* Legal?
External (not class-scoped) function Private No
Protected No
Public Yes
B member function (in B scope) Private Yes
Protected Yes
Public Yes
C member function (in C scope) Private No
Protected Yes

Public Yes

Standard Conversions 73

Expressions

The second case in which a pointer to a class can be converted to a pointer to a
base class is when you use an explicit type conversion. (See “Expressions with Ex-
plicit Type Conversions” in Chapter 4, on page 119 for more information about ex-
plicit type conversions.

The result of such a conversion is a pointer to the “subobject,” the portion of the
object that is completely described by the base class.

The following code defines two classes, A and B, where B is derived from A.
(For more information on inheritance, see Chapter 9, “Derived Classes.”) It then
defines bObject, an object of type B, and two pointers (pA and pB) that point to
the object.

class A
{
public:
int AComponent;
int AMemberFunc();
};

class B : public A
{
public:
int BComponent;
int BMemberFunc();
};

B bObject;
A *pA = &bObject;
B *pB = &bObject;

pA->AMemberFunc(); // OK in class A
pB->AMemberFunc(); // OK: inherited from class A
pA->BMemberFunc(); // Error: not in class A

The pointer pA is of type A *, which can be interpreted as meaning “pointer to an
object of type A.” Members of bObject (such as BComponent and BMemberFunc)
are unique to type B and are therefore inaccessible through pA. The pA pointer
allows access only to those characteristics (member functions and data) of the ob-
ject that are defined in class A.

Any expression with an array type can be converted to a pointer of the same type.
The result of the conversion is a pointer to the first array element. The following
example demonstrates such a conversion:

char szPath[_MAX_PATH]; // Array of type char.
char #*pszPath = szPath; // Equals &szPath[@].

74 C++ Language Reference

An expression that results in a function returning a particular type is converted to a
pointer to a function returning that type, except when:

® The expression is used as an operand to the address-of operator (&).
® The expression is used as an operand to the function-call operator.

Pointers Modified by Microsoft Keywords

The Microsoft keywords __near, __far, __huge, and __based modify types to
specify the addressing desired. The following standard conversions between point-
ers modified by these keywords are performed (provided the types obey the con-
version rules discussed elsewhere in this chapter):

® A near pointer can be promoted to a far pointer.

= Any pointer can be converted to a huge pointer by first converting the pointer to
a far pointer, then converting it to a huge pointer.

® A huge pointer can be converted to a far pointer. Because far addressing has
different implications than huge addressing, the compiler issues a warning.

= A pointer based on a near address can be converted to a near pointer.

= A pointer based on any segment other than void can be converted to a far
pointer.

Microsoft C++ supplies no standard conversions to any form of based pointer or
from any form of address that contains or implies segment information (far, huge,
or based) to a near pointer.

C++ does not supply a standard conversion from a const or volatile type to a type
that is not const or volatile. However, any sort of conversion can be specified
using explicit type casts (including conversions that are unsafe).

Note C++ pointers to members, with the exception of pointers to static members,
are different from normal pointers and do not have the same standard conversions.
Pointers to static members are normal pointers and have the same conversions as
normal pointers. (See “Pointers to Class Members” in Chapter 2, on page 55 for
more information.)

Standard Conversions 75

3.7 Reference Conversions

A reference to a class can be converted to a reference to a base class in the follow-
ing cases:

= The specified base class is accessible (as defined in “Pointers to Classes” on
page 72).

® The conversion is unambiguous. (See “Multiple Base Classes” in Chapter 9, on
page 267 for more information about ambiguous base-class references.)

The result of the conversion is a pointer to the subobject that represents the base
class.

For more information about references, see “References to Objects” in Chapter 2,
on page 53.

3.8 Pointer-to-Member Conversions

Pointers to class members can be converted during assignment, initialization, com-
parison, and other expressions. These conversions are discussed in the next two
sections.

Integral Constant Expressions

An integral constant expression that evaluates to zero is converted to a pointer
called the “null pointer.” This pointer is guaranteed to compare unequal to a
pointer to any valid object or function (except for pointers to based objects, which
can have the same offset and still point to different objects).

The following code illustrates the definition of a pointer to member i in class A.
The pointer, pai, is initialized to 0, which is the null pointer.

class A
{

public:
int i;

}s;

int A::*pai = 0;

76 C++ Language Reference

Pointers to Base-Class Members

A pointer to a member of a base class can be converted to a pointer to a member
of a class derived from it, when the following conditions are met:

= The inverse conversion, from derived class to base class pointer, is accessible.
® The derived class does not inherit virtually from the base class.

Expressions

This section describes C++ expressions. Expressions are sequences of operators
and operands that are used for one or more of these purposes:

= Computing a value from the operands.
= Designating objects or functions.

= Generating “side effects.” (Side effects are any actions other than the evaluation
of the expression—for example, modifying the value of an object.)

In C++, operators can be overloaded and their meanings can be user-defined. How-
ever, their precedence and the number of operands they take cannot be modified.
This chapter describes the syntax and semantics of operators as they are supplied
with the language, not overloaded. (For more information about overloaded opera-
tors, see “Overloaded Operators” in Chapter 12, on page 351.)

Note Operators for built-in types cannot be overloaded; their behavior is
predefined.

4.1 Types of Expressions

C++ expressions are divided into several categories:

= Primary expressions. These are the building blocks from which all other expres-
sions are formed. (See “Primary Expressions” on page 78.)

m Postfix expressions. These are primary expressions followed by an operator—
for example, the array subscript or postincrement operator. (See “Postfix Ex-
pressions” on page 81.)

= Expressions formed with unary operators. Unary operators act on only one oper-
and in an expression. (See “Expressions with Unary Operators” on page 91.)

® Expressions formed with binary operators. Binary operators act on two oper-
ands in an expression. (See “Expressions with Binary Operators” on page 102.)

78 C++ Language Reference

= Expressions formed with the conditional operator. The conditional operator is a
ternary operator—the only such operator in the C++ language—and takes three
operands. (See “Expressions with the Conditional Operator” on page 117.)

= Constant expressions. Constant expressions are formed entirely of constant
data. (See “Constant Expressions” on page 118.)

= Expressions with explicit type conversions. Explicit type conversions, or
“casts” can be used in expressions. (See “Expressions with Explicit Type
Conversions” on page 119.)

m Expressions with pointer-to-member operators. (See “Expressions with Pointer-
to-Member Operators” on page 124.)

Primary Expressions

Primary expressions are the building blocks of more complex expressions. They
are literals, names, and names qualified by the scope-resolution operator (::).

Syntax ' primary-expression:
literal
this
:: identifier
i1 operator-function-name
it qualified-name
(expression)
name

A literal is a constant primary expression. Its type depends on the form of its speci-
fication. See “Literals” in Chapter 1, on page 14 for complete information about
specifying literals.

The this keyword is a pointer to a class object. It is available within nonstatic
member functions and points to the instance of the class for which the function
was invoked. The this keyword cannot be used outside the body of a class-mem-
ber function.

The type of the this pointer is type *const (where fype is the class name) within
functions not specifically modifying the this pointer. The following example
shows member function declarations and the types of this:

Expressions 79

Microsoft Specific

Syntax

class Example

{
public:
void Func(); // Example: * const this
void Func() const; // Example: const * const this
void Func() volatile; // Example: volatile * const this
};

See “Type of this Pointer” in Chapter 8, on page 245 for more information about
modifying the type of the this pointer.

The this pointer has an associated addressing model—from the compilation op-
tions, the “ambient data model” of the class, or one that is explicitly specified in
the declaration of an object of class type. Therefore, the this pointer can be a near,
far, or huge pointer. For more information about addressing models as they affect
classes, see “Memory-Model Modifiers and Member Functions” in Appendix B,
on page 400. ¢

The scope-resolution operator (::), followed by an identifier, operator-function-
name, or qualified-name constitutes a primary expression. The type of this expres-
sion is determined by the declaration of the identifier, operator-function-name, or
name. It is an 1-value if the declaring name is an l-value. The scope-resolution
operator allows a global name to be referred to, even if that name is hidden in the
current scope. See “Scope” in Chapter 2, on page 28 for an example of how to use
the scope-resolution operator.

An expression enclosed in parentheses is a primary expression whose type and
value are identical to those of the unparenthesized expression. It is an 1-value if the
unparenthesized expression is an l-value.

Names

A name is a primary expression that can appear only after the member-selection
operators (. or =>).

name:
identifier
operator-function-name
conversion-function-name
~ class-name
qualified-name

Any identifier that has been declared is a name.
An operator-function-name is a name that is declared in the form:

operator operator-name(argument 1 [, argument 2]);

C++ Language Reference

Syntax

See “Overloaded Operators” in Chapter 12, on page 351 for more information
about declaration of operator-function-name.

A conversion-function-name is a name that is declared in the form:
operator type-name()

Note You can supply a derivative type name, such as char * in place of the
type-name when declaring a conversion function.

Conversion functions supply conversions to and from user-defined types. For
more information about user-supplied conversions, see “Conversion Functions” in
Chapter 11, on page 315.

A name declared as ~ class-name is taken as the “destructor” for objects of a class
type. Destructors typically perform cleanup operations at the end of an object’s
lifetime. Destructors are discussed in-depth in “Destructors” in Chapter 11, on
page 305.

Qualified Names

qualified-name:
qualified-class-name :: name

If a qualified-class-name is followed by the scope-resolution operator (::), and
then the name of a member of either that class or a base of that class, then the
scope-resolution operator is considered a qualified-name. The type of a qualified-
name is the same as the type of the member, and the result of a qualified-name ex-
pression is the member. If the member is an I-value, then the qualified-name is
also an I-value. For information about declaring qualified-class-name, see “Type
Specifiers” in Chapter 6, on page 168 or “Class Names” in Chapter 8, on page 232.

The class-name part of a qualified-class-name can be hidden by redeclaration of
the same name in the current or enclosing scope; the class-name is still found and
used. See “Scope” in Chapter 2, on page 28 for an example of how to use a
qualified-class-name to access a hidden class-name.

Note Class constructors and destructors of the form class-name :: class-name, and
class-name :: ~ class-name, respectively, must refer to the same class-name.

A multiply-qualified name, such as the following, designates a member of a nested
class:

class-name :: class-name :: name

Expressions 81

Postfix Expressions

Syntax

Postfix expressions consist of primary expressions or expressions in which postfix
operators (see Table 4.1) follow a primary expression.

Table 4.1 Postfix Operators

Operator Name Operator Notation
Subscript operator []

Function-call operator)

Explicit type conversion type-name()
operator

Member-selection operator . or —>
Postfix increment operator ~ ++
Postfix decrement operator ——

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (expression-listopt)
simple-type-name (expression-listop)
postfix-expression . name
postfix-expression —> name
postfix-expression ++
postfix-expression — —

expression-list:
assignment-expression
expression-list , assignment-expression

Subscript Operator

A postfix-expression followed by the subscript operator, [], specifies array index-
ing. One of the expressions must be of pointer or array type—that is, it must have
been declared as type* or type[]. The other expression must be of an integral type
(including enumerated types). In common usage, the expression enclosed in the
brackets is the one of integral type, but that is not strictly required. Consider the
following example:

MyType m[10]; // Declare an array of a user-defined type.

MyType nl
MyType n2

m[2]; // Select third element of array.
2[m]; // Select third element of array.

82 C++ Language Reference

In the example above, the expression m[2] is identical to 2[m]. Although m is
not of an integral type, the effect is the same. The reason that m[2] is equivalent
to 2[m] is that the result of a subscript expression el[e2] is given by:

*((e2) + (el))

The address yielded by the above expression is not e2 bytes from the address el.
Rather, the address is scaled to yield the next object in the array e2. For example:

#include <iostream.h>

int main()
{
double aDb1[2];

cout << "Address of first element is: "
<< &aDb1[@] << "\n";

cout << "Address of second element is: "
<< &aDb1[1] << "\n";

return 0;

}

The preceding program prints two addresses that are 8 bytes apart—the size of an
object of type double. This scaling according to object type is done automatically
by the C++ language, and is defined in “Additive Operations” on page 104 where
addition and subtraction of operands of pointer type is discussed.

Positive and Negative Subscripts The first element of an array is element 0.
Therefore, the range of a C++ array is from array[0] to array[size — 1]. However,
since C++ supports both positive and negative subscripts, it can be convenient to
use them in arrays. Although C++ permits negative subscripts, they must fall
within the array boundaries or the results are unpredictable. The following code il-
lustrates this concept:

f#include <iostream.h>

main()
{
int iNumberArray[10247];
int *iNumberline = &iNumberLine[512];

cout << iNumberArray[-256] << "\n"; // Run-time error
cout << iNumberLine[-2561 << "\n"; // 0K

return 0;

Expressions 83

The negative subscriptin iNumberArray can produce a run-time error because it
yields an address 256 bytes lower in memory than the actual origin of the array.
The object iNumberLine is initialized to the middle of iNumberArrays; it is there-
fore possible to use both positive and negative array indices on it. Array subscript
errors do not generate compile-time errors, but they yield unpredictable results.

The subscript operator is commutative. Therefore, the expressions array[index]
and index[array] are guaranteed to be equivalent as long as the subscript operator
is not overloaded (see “Overloaded Operators” in Chapter 12, on page 351). The
first form is the most common coding practice, but either works.

Function-Call Operator

A postfix-expression followed by the function-call operator, (), specifies a func-
tion call. The arguments to the function-call operator are zero or more expressions
separated by commas—the actual arguments to the function.

The postfix-expression must be of one of these types:

® Function returning type T. An example declaration is
T func(int i)

= Pointer to a function returning type T. An example declaration is
T (#func)(int i)

= Reference to a function returning type T. An example declaration is
T (&func)(int 1)

= Pointer-to-member function dereference returning type T. Example function
calls are:
(pObject->*pmf)();
(Object.*pmf)();

Formal and Actual Arguments Calling programs pass information to called
functions in “actual arguments.” The called functions access the information using
corresponding “formal arguments.”

When a function is called, the following tasks are performed:

= All actual arguments (those supplied by the caller) are evaluated. There is no
implied order in which these arguments are evaluated, but all arguments are
evaluated and all side effects completed prior to entry to the function.

= Each formal argument is initialized with its corresponding actual argument in
the expression list. (A formal argument is an argument that is declared in the
function header and used in the body of a function.) Conversions are done as if
by initialization—both standard and user-defined conversions are performed in
converting an actual argument to the correct type. The initialization performed
is illustrated conceptually by the following code: ,

84

C++ Language Reference

void Func(int i); // Function prototype

Func(7); // Execute function call

The conceptual initializations prior to the call are shown below:

int Temp_i = 7;
Func(Temp_i);

Note that the initialization is performed as if using the equal-sign syntax instead
of the parentheses syntax. A copy of i is made prior to passing the value to

the function. (For more information, see “Initializers” in Chapter 7, on page
217 and “Conversions,” “Initialization Using Special Member Functions,” and
“Explicit Initialization” in Chapter 11, on pages 312, 325, and 326, respectively.

Therefore, if the function prototype (declaration) calls for an argument of type
long, and the calling program supplies an actual argument of type int, the ac-
tual argument is promoted using a standard type conversion to type long (see
Chapter 3, “Standard Conversions”).

It is an error to supply an actual argument for which there is no standard or user-
defined conversion to the type of the formal argument.

For actual arguments of class type, the formal argument is initialized by calling
the class’s constructor. (See “Constructors” in Chapter 11, on page 300 for
more about these special class member functions.)

The function call is executed.

The following program fragment demonstrates a function call:

void func(Tong paraml, double param2);

int main()

{

}

int i, j;

// Call func with actual arguments i and j.
func(i, j);

// Define func with formal parameters paraml
// and param2.
void func(long paraml, double param2)

{
}

Expressions 85

When func is called from main, the formal parameter paraml is initialized with
the value of i (i is converted to type long to correspond to the correct type using
a standard conversion), and the formal parameter param2 is initialized with the
value of j (j is converted to type double using a standard conversion).

Treatment of Argument Types Formal arguments declared as const types cannot
be changed within the body of a function. Functions can change any argument that
is not of type const. However, the change is local to the function and does not af-
fect the actual argument’s value unless the actual argument was a reference to an
object not of type const.

The following functions illustrate some of these concepts:

int funcl(int i, int j, char *c)

{
i=7; // Error: i is const.
j=1; // 0K, but value of j is
// lost at return.
*c = 'a' + j; // OK: changes value of ¢
// in calling function.
return i;
}
double& func2(double& d, const char *c)
{
d = 14.387; // 0K: changes value of d
// in calling function.
*C = 'a'; // Error: c is a pointer to
// a const object.
return d;
}

Ellipses and Default Arguments Functions can be declared to accept fewer ar-
guments than specified in the function definition, using one of two methods: ellip-
sis (.. .) or default arguments.

Ellipses denote that arguments may be required but that the number and types are
not specified in the declaration. This is normally poor C++ programming practice
because it defeats one of the benefits of C++: type safety. Different conversions
are applied to functions declared with ellipses than to those functions for which
the formal and actual argument types are known:

86 C++ Language Reference

m Jf the actual argument is of type float, it is promoted to type double prior to the
function call.

= Any signed or unsigned char, short, enumerated type, or bit field is converted
to either a signed or unsigned int using integral promotion.

= Any argument of class type is passed by value as a data structure; the copy is
created by binary copying instead of by invoking the class’s copy constructor
(if one exists).

Ellipses, if used, must be declared last in the argument list. For more information
about the use of ellipses to pass a variable number of arguments, see the Run-Time
Library Reference manual, under the topics: va_arg, va_list, and va_start.

Default arguments allow the programmer to specify the value an argument should
assume if none is supplied in the function call. The following code fragment
shows how default arguments work (for more information about default argu-
ments, see “Default Arguments” in Chapter 7, on page 210):

f#include <iostream.h>

// Declare the function print that prints a string,
// then a terminator.
void print(const char #string,

const char *terminator = "\n");

int main()

{
print("hello,");
print("world!");

print("good morning”, " ,");
print("sunshine.");

return @;
}

// Define print.
void print(char *string, char *terminator)

{
if(string != NULL)
cout << string;
if(terminator != NULL)
cout << terminator;
}

The above program declares a function, print, that takes two arguments. How-
ever, the second argument, terminator, has a default value, "\n". In main, the

Expressions 87

first two calls to print allow the default second argument to supply a new line to
terminate the printed string. The third call specifies an explicit value for the sec-
ond argument. The output from the program is:

hello,
world
good morning, sunshine.

Function Call Results A function call evaluates to an r-value unless the function
is declared as a reference type. Functions with reference return type evaluate to
l-values, and it is legal to use them on the left side of an assignment statement as
follows:

#include <iostream.h>

class Point
{
public:
// Define "accessor" functions as
// reference types.
unsigned& x() { return _x; }
unsigned& y() { return _y; }
private:
unsigned _x;
unsigned _y;

}s;
int main()
{
Point ThePoint;
ThePoint.x() = 7; // Use x() as an I-value.
unsigned y = ThePoint.y(); // Use y() as an r-value.
// Use x() and y() as rvalues.
cout << "x = " << ThePoint.x() << "\n"
<K "y =" <L ThePoint.y() << "\n";
return 9;
}

The above code defines a class called Point, which contains private data objects
that represent x and y coordinates. These data objects must be modified and their
values retrieved. The above program is only one of several designs for such a
class; use of the GetX and SetX or GetY and SetY functions is another possible
design.

A function returning a pointer to an object can appear on the left side of an assign-
ment statement as follows:

88 C++ Language Reference

struct A
{

int i;
};

A *func();

func()->1 = 7;

The above statement is legal because func returns a pointer to an object of type
A. Therefore, the member-selection operator, ->, dereferences the pointer, making
it an I-value. See “L-Values and R-Values” in Chapter 2, on page 60 for more
about expressions that are l-values.

Functions that return class types, pointers to class types, or references to class
types can be used as the left operand to member-selection operators. Therefore,
the following code is legal:

class A

{

public:
int SetA(int i) { return (I = 1); }
int GetA() { return I; }

private:
int I;

};

// Declare three functions:

// funcl, which returns type A

// func2, which returns a pointer to type A
// func3, which returns a reference to type A
A funcl();

A% func2();

A& func3();

int iResult = funcl().GetA();
func2()->SetA(3);
func3().SetA(7);

Functions can be called recursively. For more information about function declara-
tions, see “Function Specifiers” in Chapter 6, on page 159 and “Member Func-
tions” in Chapter 8, on page 240. Related material is in “Program and Linkage” in
Chapter 2, on page 33.

Expressions 89

Member-Selection Operator

A postfix-expression followed by the member-selection operator (.) and a name is

also a postfix-expression. The first operand of the member-selection operator must
be a class object (an object declared as class, struct, or union type) or a reference
to a class object, and the second operand must identify a member of that class.

The result of the expression is the value of the member, and it is an l-value if the
named member is an l-value.

A postfix-expression followed by the member-selection operator (—>) and a name
is a postfix expression. The first operand of the member-selection operator must be
a pointer to a class object (an object declared as class, struct, or union type), and
the second operand must identify a member of that class.

The result of the expression is the value of the member, and it is an I-value if the
named member is an 1-value. The —> operator dereferences the pointer. Therefore,
the expressions e->member and (*e).member (where e represents an expression)
yield identical results (except when the operators —> or * are overloaded).

When a value is stored through one member of a union but retrieved through
another member, no conversion is performed. The following program stores data
into the object U as int, but retrieves the data as two separate bytes of type char:

f#tinclude <iostream.h>

int main()
{
struct ch
{
char bl;
char b2;
};
union u
{
struct ch uch;
int i3
1

u U;

U.i = @x6361; // Bit pattern for "ac"
cout << U.uch.bl << U.uch.b2 << "\n";

return 0;
}

Note The preceding code is not portable because it assumes an int is two bytes
long while a char is one byte long. In 32-bit target compilations, this assumption
is false.

C++ Language Reference

Postfix Increment and Decrement Operators

C++ provides prefix and postfix increment and decrement operators; this section
describes only the postfix increment and decrement operators. (For more informa-
tion, see “Increment and Decrement Operators” on page 94.) The difference be-
tween the two is that in the postfix notation, the operator appears after
postfix-expression, whereas in the prefix notation, the operator appears before ex-
pression. The following example shows a postfix-increment operator:

i++

The effect of applying the postfix increment, or “postincrement,” operator (++) is
that the operand’s value is increased by one unit of the appropriate type. Similarly,
the effect of applying the postfix decrement or “postdecrement” operator (- —) is
that the operand’s value is decreased by one unit of the appropriate type.

For example, applying the postincrement operator to a pointer to an array of ob-
jects of type long actually adds four to the internal representation of the pointer.
This behavior causes the pointer, which previously referred to the nth element of
the array, to refer to the (n+1)th element.

The operands to postincrement and postdecrement operators must be modifiable
(not const) l-values of arithmetic or pointer type. The result of the postincrement
or postdecrement expression is the value of the postfix-expression prior to applica-
tion of the increment operator. The type of the result is the same as that of the
postfix-expression, but it is no longer an l-value.

Postincrement and postdecrement, when used on enumerated types, yield integral
values. Therefore, the following code is illegal:

enum Days {
Sunday = 1,
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday
}s
int main()
{
Days Today = Tuesday;
Days SaveToday;
SaveToday = Today++;

return 9;

Expressions 91

The intent of the above code is to save today’s day, then move to tomorrow. How-
ever, the result is that the expression Today++ yields an int—an error when as-

signed to an object of the enumerated type Days.

Expressions with Unary Operators

Unary operators are those operators that act on only one operand in an expression.
The unary operators are:

Syntax

These operators have right-to-left associativity.

Indirection operator (*)
Address-of operator (&)

Unary plus operator (+)

Unary negation operator (=)
Logical NOT operator (!)
One’s complement operator (~)
Preincrement operator (++)
Predecrement operator (- —)
sizeof operator

new operator

delete operator

unary-expression:

postfix-expression
++unary-expression

—— unary-expression
unary-operator cast-expression
sizeof unary-expression

sizeof (type-name)
allocation-expression
deallocation-expression

unary-operator: one of

*&+-!~

92

C++ Language Reference

Indirection Operator (*)

The unary indirection operator (¥) “dereferences” a pointer; that is, it converts a
pointer value to an l-value. The operand of the indirection operator must be a
pointer to a type. The result of the indirection expression is the type from which
the pointer type is derived. The use of the * operator in this context is different
from its meaning as a binary operator, which is multiplication.

Address-0f Operator (&)

The unary address-of operator (&) takes the address of its operand. The address-of
operator can be applied only to the following:

= Functions (although its use for taking the address of a function is unnecessary)
=] .-values

" qualified-names

In the first two cases listed above, the result of the expression is a pointer type (an
r-value) derived from the type of the operand. For example, if the operand is of
type char, the result of the expression is of type pointer to char. The address-of
operator, applied to const or volatile objects, evaluates to const type * or volatile
type *, where type is the type of the original object.

The result produced by the third case, applying the address-of operator to a qual-
ified-name, depends on whether the qualified-name specifies a static member. If
so, the result is a pointer to the type specified in the declaration of the member. If
the member is not static, the result is a pointer to the member name of the class in-
dicated by qualified-class-name. (See “Primary Expressions” on page 78 for more
about qgualified-class-name.) The following code fragment shows how the result
differs, depending on whether the member is static:

class PTM
{
public:
int iValue;
static float fValue;
};

int PTM: :*piValue
float PTM::*pfValue
float *spfValue

&PTM::iValue; // OK: non-static
&PTM::fValue; // Error: static
&PTM::fValue; // OK

In the above example, the expression &PTM::fValue yields type float * instead
of type float PTM::* because fValue is a static member.

Expressions 93

The address of an overloaded function can be taken only when it is clear which
version of the function is being referred to. See “Address Of Overloaded
Functions” in Chapter 12, on page 351 for information about how to obtain the
address of a particular overloaded function.

Applying the address-of operator to a reference type gives the same result as apply-
ing the operator to the object to which the reference is bound. The following pro-
gram demonstrates this concept:

#include <iostream.h>

int main()

{
double d; // Define an object of type double.
double& rd = d; // Define a reference to the object.

// Compare the address of the object to the address
// of the reference to the object.
if(& == &rd)
cout << "&d equals &rd" << "\n";
else
cout << "&d is not equal to &rd" << "\n";

return 0;
}

The output from the program is always &d equals &rd.

Unary Plus Operator (+)

The result of the unary plus operator (+) is the value of its operand. The operand to
the unary plus operator must be of an arithmetic type.

Integral promotion is performed on integral operands. The resultant type is the
type to which the operand is promoted. Thus, the expression +ch, where ch is of
type char, results in type int; the value is unmodified.

See “Integral Promotions” in Chapter 3, on page 66 for more information about
how the promotion is done.

Unary Negation Operator (-)

The unary negation operator (—) produces the negative of its operand. The operand
to the unary negation operator must be of an arithmetic type.

Integral promotion is performed on integral operands, and the resultant type is the
type to which the operand is promoted. See “Integral Promotions” in Chapter 3, on
page 66 for more information on how the promotion is done.

94 C++ Language Reference

Microsoft Specific

Unary negation of unsigned quantities is performed by subtracting the value of the
operand from 2", where n is the number of bits in an object of the given unsigned
type. (Microsoft C++ runs on processors that utilize two’s-complement arithmetic.
On other processors, the algorithm for negation can differ.) ¢

Logical NOT Operator (!)

The result of the logical NOT operator (!) is O if its operand evaluates to a nonzero
value; the result is 1 only if the operand is equal to 0. The operand must be of arith-
metic or pointer type. The result is of type int.

For an expression e, the unary expression !e is equivalent to the expression
(e == 0), except where overloaded operators are involved.

One’s Complement Operator (~)

The one’s complement operator (~), sometimes called the “bitwise complement”
operator, yields a bitwise one’s complement of its operand. That is, every bit that
is set in the operand is O in the result. Conversely, every bit that is O in the operand
is set in the result. The operand to the one’s complement operator must be an inte-

gral type.

Integral promotion is performed on integral operands, and the resultant type is the
type to which the operand is promoted. See “Integral Promotions” in Chapter 3,
on page 66 for more information on how the promotion is done.

Increment and Decrement Operators (++, ——)

The prefix increment operator (++), also called the “preincrement” operator, adds
one to its operand; this incremented value is the result of the expression. The oper-
and must be an l-value not of type const. The result is an I-value of the same type
as the operand.

The prefix decrement operator (- —), also called the “predecrement” operator, is
analogous to the preincrement operator, except that the operand is decremented by
one and the result is this decremented value.

Both the prefix and postfix increment and decrement operators affect their oper-
ands. The key difference between them is when the increment or decrement takes
place in the evaluation of an expression. (For more information, see “Postfix Incre-
ment and Decrement Operators” on page 90). In the prefix form, the increment or

Expressions 95

decrement takes place before the value is used in expression evaluation, so the
value of the expression is different from the value of the operand. In the postfix
form, the increment or decrement takes place after the value is used in expression
evaluation, so the value of the expression is the same as the value of the operand.

Because increment and decrement operators have side effects, using expressions
with increment or decrement operators in a macro can have undesirable results
(see “The Role of Preprocessing in C++” in Chapter 13, on page 367 for more in-
formation about macros). Consider this example:

fidefine max(a,b) ((a)<(b))?(b):(a)

int i, j, k;
k = max(++i, j);

In the code fragment above, the macro expands to:

ko= ((#+1)<(3N2(F) : (1)
If i is greater than or equal to j, it will be incremented twice.

Note C++ inline functions are preferable to macros in many cases because they
eliminate side effects such as those described above, and they allow the language
to perform more complete type checking.

sizeof Operator

The sizeof operator yields the size of its operand with respect to the size of type
char (the size in chars). The result of the sizeof operator is of type size_t, an inte-
gral type defined in the include file STDDEF.H. The operand to sizeof can be one
of the following:

= A type name. To use sizeof with a type name, the name must be enclosed in
parentheses.

= An expression. When used with an expression, sizeof can be specified with or
without the parentheses. The expression is not evaluated.

When the sizeof operator is applied to an object of type char, it yields 1. When the
sizeof operator is applied to an array, it yields the total number of bytes in that
array. For example:

96

C++ Language Reference

#include <iostream.h>

int main()
{
char szHello[] = "Hello, world!";

cout << "The size of the type of " <K szHello << " is: "
<< sizeof(char) << "\n";

cout << "The length of "™ << szHello << " is: "
<< sizeof szHello << "\n";

return 0;
}

The program output is:

The size of the type of Hello, world! is: 1
The length of Hello, world! is: 14

When the sizeof operator is applied to a class, struct, or union type, the result is
the number of bytes in an object of that class, struct, or union type, plus any pad-
ding added to align members on word boundaries. (The /Zp compiler option and
the pack pragma affect alignment boundaries for members.) The sizeof operator
never yields 0, even for an empty class.

The sizeof operator cannot be used with the following operands:

» Functions. (However, sizeof can be applied to pointers to functions.)
= Bit fields.

= Undefined classes.

= The type void.

= [ncomplete types.

® Parenthesized names of incomplete types.

When the sizeof operator is applied to a reference, the result is the same as if
sizeof had been applied to the object itself.

The sizeof operator is often used to calculate the number of elements in an array
using an expression of the form:

sizeof array / sizeof array[@]

Expressions 97

new Operator

The new operator attempts to dynamically allocate (at run time) one or more ob-
jects of type-name. The new operator cannot be used to allocate a function; how-
ever, it can be used to allocate a pointer to a function.

Syntax allocation-expression:
tiopt NEW modelop placementop: new-type-name new-initializerop
*iopt NeW modelqgp placementqy (- type-name) new-initializerop

placement:
(expression-list)

new-type-name:
type-specifier-list new-declaratorop

The new operator is used to allocate objects and arrays of objects. The new opera-
tor allocates from an area of program memory called the “free store.” In C, the
free store is often referred to as the “heap.”

When new is used to allocate a single object, it yields a pointer to that object; the
resultant type is new-type-name * or type-name *. When new is used to allocate a
singly dimensioned array of objects, it yields a pointer to the first element of the
array, and the resultant type is new-type-name * or type-name *. When new is
used to allocate a multiply dimensioned array of objects, it yields a pointer to the
first element of the array, and the resultant type preserves the size of all but the
left-most array dimension. For example:

new float[10]1[25]1[10]

yields type float (*)[25]1[10]. Therefore, the following code will not work be-
cause it attempts to assign a pointer to an array of float with the dimensions
[25][10] to a pointer to type float:

float *fp;
fp = new float[10]1[25]1[10];

The correct expression is:

float (*cp)[251[101;
cp = new float[10]1[25][10];

The definition of cp allocates a pointer to an array of type float with dimen-
sions [25]1[10]—it does not allocate an array of pointers.

All array dimensions but the leftmost must be constant expressions that evaluate to
positive values; the leftmost array dimension may be any expression that evaluates
to a positive value. When allocating an array using the new operator, the first di-
mension can be zero—the new operator returns a unique pointer.

98

C++ Language Reference

The type-specifier-list may not contain const, volatile, class declarations, or
enumeration declarations. Therefore, the following expression is illegal:

volatile char *vch = new volatile char[20];

The new operator does not allocate reference types because they are not objects.

Lifetime of Objects Allocated with new Objects allocated with the new opera-
tor are not destroyed when the scope in which they are defined is exited. Because
the new operator returns a pointer to the objects it allocates, the program must de-
fine a pointer with suitable scope to access those objects. For example:

int main()

{
// Use new operator to allocate an array of 2@ characters.
char *AnArray = new char[20];

for(int i = @; 1 < 20; ++i)

{
// On the first iteration of the loop, allocate
// another array of 2@ characters.
if(i ==0)
{
char *AnotherArray = new char[20];
}
}

delete AnotherArray; // Error: pointer out of scope.
delete AnArray; // 0OK: pointer still in scope.
}

By letting the pointer AnotherArray go out of scope in the above example, the
programmer has allocated an object that can no longer be deleted.

Initializing Objects Allocated with new An optional new-initializer field is in-
cluded in the syntax for the new operator. This allows new objects to be initialized
with user-defined constructors. For more information about how initialization is
done, see “Initializers” in Chapter 7, on page 217.

The following example illustrates how to use an initialization expression with the
new operator:

Expressions 99

#include <iostream.h>

class Acct
{
public:
// Define default constructor and a constructor that accepts
// an initial balance.
Acct() { balance = 0.0; }
Acct(double init_balance) { balance = init_balance; }
private:
double balance;

};

int main()

{
Acct *CheckingAcct = new Acct;
Acct =*SavingsAcct = new Acct (34.98);
double *HowMuch = new double (43.0);
return @;

}

In the example above, the object CheckingAcct is allocated using the new opera-
tor, but no default initialization is specified. Therefore, the default constructor for
the class, Acct(), is called. Then, the object SavingsAcct is allocated the same
way, except that it is explicitly initialized to 34.98. Because 34.98 is of type
double, the constructor that takes an argument of that type is called to handle the
initialization. Finally, the nonclass type HowMuch is initialized to 43.0.

If an object is of a class type, and that class has constructors (as in the above ex-
ample), the object can be initialized by the new operator only if one of these condi-
tions is met:

® The arguments provided in the initializer agree with those of a constructor

m The class has a default constructor (a constructor that can be called with no
arguments)

Access control and ambiguity control are performed on operator new and on the
constructors according to the rules set forth in “Ambiguity” in Chapter 9, on page
282 and “Initialization Using Special Member Functions” in Chapter 11, on page
325.

No explicit per-element initialization can be done when allocating arrays using the
new operator; only the default constructor, if present, is called. (Note that a default
constructor is a constructor that takes no arguments. Constructors declared with all
default arguments are default constructors.)

100 C++ Language Reference

If the memory allocation fails (operator new returns a value of 0), no initializa-
tion is performed. This protects against attempts to initialize data that does not
exist.

As with function calls, the order of evaluation of initialization expressions is not
defined. Furthermore, it is unsafe to rely on these expressions being completely
evaluated before the memory allocation is performed. If the memory allocation
fails and the new operator returns zero, it is possible that not all expressions in the
initializer are completely evaluated.

How new Works The allocation-expression—the expression containing the new
operator—does three things:

= Locates and reserves storage for the object or objects to be allocated. When this
stage is complete, the correct amount of storage is allocated, but it is not yet an
object.

» Tnitializes the object(s). Once initialization is complete, enough information is
present for the allocated storage to be an object.

® Returns a pointer to the object(s) of a pointer type derived from new-type-name
or type-name. This pointer is used by the program to access the newly allocated
object.

The new operator actually invokes the function operator new. For arrays of any
type, and for objects that are not of class, struct, or union types, a global function,
::operator new, is called to allocate storage. Class-type objects can define their
own operator new on a per-class basis.

When the compiler encounters the new operator to allocate an object of type type,
it issues a call to type::operator new(sizeof(type)), or if no user-defined opera-
tor new is defined, ::operator new(sizeof(type)). Therefore, the new operator
can allocate the correct amount of memory for the object.

Note The argument to operator new is of type size_t. This type is defined in
DIRECT.H, MALLOC.H, MEMORY .H, SEARCH.H, STDDEF.H, STDIO.H,
STDLIB.H, STRING.H, and TIME.H.

An option in the syntax allows specification of placement (see the new operator
syntax on page 97). The placement field can be used only for user-defined im-
plementations of operator new<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>