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Introduction 

This manual explains the C++ programming language as it is implemented in 
Microsoft C++ version 7.0. Microsoft C++ is based on The Annotated c++ 
Reference Manual by Margaret Ellis and Bjarne Stroustrup (the ANSI base 
document for C++). For information about the Microsoft C compiler, see the C 
Language Reference manual. 

If you are new to C++, you might learn more quickly by starting with the C+ + 
Tutorial manual. 

Note Microsoft documentation uses the term "DOS" to refer to both the 
MS-DOS® and IBM Personal Computer DOS operating systems. The name of a 
specific operating system is used to note features unique to that system. 

Scope and Organization of This Manual 
C++, like C, is a language that is heavily reliant on a rich set of library functions to 
provide the following: 

• Portable operating-system interface (file and screen 110) 

• String and buffer manipulation 

• Floating-point math transformations 

• Character classification information 

• Other supporting functionality 

For information about the run-time library functions, see the Run-Time Library 
Reference manual. For information about the Microsoft Foundation class library or 
the iostream classes, see the Class Libraries Reference manual. 

This manual is intended for programmers who have already learned the fundamen­
tals of C++ programming; it is not intended as a learning guide. For information 
about learning C++, see the C++ Tutorial. 

This manual is organized as follows: 

Chapter 1, "Lexical Conventions," introduces the fundamental elements of a C++ 
program, as they are meaningful to the compiler. These elements, called "lexical 
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elements," are used to construct statements, definitions, declarations, and so on, 
which are used to construct complete programs. 

Chapter 2, "Basic Concepts," explains concepts such as scope, linkage, program 
startup and termination, storage classes, and types. These concepts are key to un­
derstanding C++. Terminology used in this book is also introduced in this chapter. 

Chapter 3, "Standard Conversions," describes the type conversions the compiler 
performs between built-in, or "fundamental," types. It also explains how the com­
piler performs conversions among pointer, reference, and pointer-to-member types. 

Chapter 4, "Expressions," describes C++ expressions-sequences of operators and 
operands that are used for computing values, designating objects or functions, or 
generating other side effects. 

Chapter 5, "Statements," explains the C++ program elements that control how, 
and in what order, programs are executed. Among the statements covered are ex­
pression statements, compound statements, selection statements, iteration state­
ments, jump statements, declaration statements, and null statements. 

Chapter 6, "Declarations," is one of three chapters devoted to how complete decla­
rations are used to form declaration statements. This chapter describes such topics 
as storage-class specifiers, function definitions, initializations, enumerations, 
class, struct, and union declarations, and typedef declarations. Related informa­
tion can be found in Chapter 7, "Declarators," and Appendix B, "Microsoft­
Specific Modifiers." 

Chapter 7, "Declarators," explains the portion of a declaration statement that 
names an object, type, or function. 

Chapter 8, "Classes," introduces C++ classes. C++ treats an object declared with 
the class, struct, or union keyword as a class type. This chapter explains how to 
use these class types. 

Chapter 9, "Derived Classes," covers the details of inheritance-a process by 
which you can define a new type as having all the attributes of an existing type, 
plus any new attributes you add. 

Chapter 10, "Member-Access Control," explains how you can control access to 
class members. Use of access-control specifiers can help produce more robust 
code because you can limit the number of ways an object's state can be changed. 

Chapter 11, "Special Member Functions," describes special functions unique to 
class types. These special functions perform initialization (constructor functions), 
cleanup (destructor functions), and conversions. This chapter also describes the 
new and delete operators, which are used for dynamic memory allocation. 
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Chapter 12, "Overloading," explains a C++ feature that allows you to define a 
group of functions with the same name but different arguments. Which function in 
the group is called depends on the argument list in the actual function call. In 
addition, this chapter covers overloaded operators, a mechanism for defining your 
own behavior for C++ operators. 

Chapter 13, "Preprocessing," describes the C++ preprocessor, as well as the prag­
mas recognized by Microsoft C++. 

Appendix A, "Phases of Translation," explains in what order a C++ program is 
translated from source code to an executable file. 

Appendix B, "Microsoft-Specific Modifiers," describes the modifiers specific to 
Microsoft C++. These modifiers control memory addressing, calling conventions, 
and so on. 

Appendix C, "Grammar Summary," is a summary ofthe C++ grammar with the 
Microsoft extensions. Portions of this grammar are shown throughout this manual 
in "Syntax" sections. 

Document Conventions 
This book uses the following typographic conventions: 

Example 

STDIO.H 

char, _setcolor, 
__ far 

expression 

grammar-elementopt 

Description 

Uppercase letters indicate filenames, segment names, 
registers, and terms used at the operating-system 
command level. 

Bold type indicates C and C++ keywords, operators, 
language-specific characters, and library routines. 
Within discussions of syntax, bold type indicates that 
the text must be entered exactly as shown. 

Many functions and constants begin with either a 
single or double underscore. These are part of the 
name and are mandatory. For example, to have the 
__ cplusplus manifest constant be recognized by the 
compiler, you must enter the leading double 
underscore. 

Words in italic indicate placeholders for information 
you must supply, such as a filename. 

The opt subscript indicates that this element of the 
grammar is optional and can be omitted. 
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[option] 

#pragma pack {1 I 2} 

Ifinclude <io.h> 

CL [option ... ]file ... 

while() 
{ 

} 

CTRL+ENTER 

"argument" 

"C string" 

Color Graphics 
Adapter (CGA) 

Items inside double square brackets are optional. 

Braces and a vertical bar indicate a choice among two 
or more items. You must choose one of these items 
unless double square brackets ([ ]) surround the 
braces. 

This font is used for examples, user input, program 
output, and error messages in text. 

Three dots (an ellipsis) following an item indicate that 
more items having the same form may appear. 

A column or row of three dots tells you that part of an 
example program has been intentionally omitted. 

Small capital letters are used to indicate the names of 
keys on the keyboard. When you see a plus sign (+) 
between two key names, you should hold down the 
first key while pressing the second. 

The carriage-return key, sometimes marked as a bent 
arrow on the keyboard, is called ENTER. 

Quotation marks enclose a new term the first time it is 
defined in text. 

Some language constructs, such as strings, require 
quotation marks. Quotation marks required by the 
language have the form " " and ' , rather than " " 
and' '. 

The first time an acronym is used, it is usually spelled 
out. 



Microsoft Specific 

32·Bit Specific 

Special Terminology 
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This manual documents the C++ language, as it is 
implemented in Microsoft C/C++ version 7.0. As a 
result, some of the features of C++ that are 
implementation dependent or undefined in the ANSI 
base document are defined by the Microsoft 
implementation. You can find these features by 
looking for the "Microsoft Specific" heading in the 
left margin. 

Your version of Microsoft C/C++ may have the 
capability of generating 32·bit flat-model code. Such 
compilations may differ slightly from compilations 
targeting 16-bit computers. 

When a particular feature is specific only to 32-bit 
compilations, it is marked by the "32-Bit Specific" 
heading in the left margin. In text, such compilations 
are referred to as "32-bit target compilations." 

In this manual, the term "argument" refers to the entity that is passed to a function. 
In some cases, it is modified by "actual" or "formal," which mean the argument 
specified in the function call and the argument specified in the function header, 
respectively. 

The term "variable" refers to a simple C-type data object. The term "object" refers 
to both C++ objects and variables; it is an inclusive term. 

For more information on terminology used in this manual, see "Terms" in Chapter 
2, on page 25. 





Lexical Conventions 

This chapter introduces the fundamental elements of a C++ program, as they are 
meaningful to the compiler. These elements, called "lexical elements," are used to 
construct statements, definitions, declarations, and so on, which are used to con­
struct complete programs. These elements are: 

• Tokens 

• Comments 

• Identifiers 

• C++ keywords 

• Punctuators 

• Operators 

• Literals 

Although the C++ operators are summarized in this chapter, a complete discussion 
of operators is deferred until Chapter 4, "Expressions." 

C++ programs, like C programs, consist of one or more files. Each of these files is 
translated in the following conceptual order (the actual order follows the "as if' 
rule: translation must occur as if these steps had been followed): 

1. Lexical tokenizing. In this translation phase, character mapping and trigraph 
processing, line splicing, and tokenization are performed. 

2. Preprocessing. This translation phase brings in ancillary source files referenced 
by #include directives, handles "stringizing" and "charizing" directives, and 
performs token pasting and macro expansion (see Chapter 13, "Preprocessing," 
for more information about preprocessor behavior). The result of the prepro­
cessing phase is a sequence of "tokens," which, taken together, defines a "trans­
lation unit." 

Preprocessor directives always begin with the number-sign (#) character (that 
is, the first non-white-space character on the line must be a number sign). Only 
one preprocessor directive can appear on a given line. For example: 
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1.1 Tokens 

#include <iostream.h> II Include text of iostream.h in 
II translation unit. 

#define NDEBUG II Define NDEBUG (NDEBUG contains empty 
II text string). 

3. Code generation. This translation phase uses the tokens generated in the prepro­
cessing phase to generate object code. 

During this phase, syntactic and semantic checking of the source code is per­
formed. 

See Appendix A, "Phases of Translation," for more specific information about 
how a source program is translated. 

Note The C++ preprocessor is a strict superset of the ANSI C preprocessor. It 
differs in its support for the single-line comment, its definition of the __ cplusplus 
constant, and in its support of the C++ operators: 

• .* 
• ->* · .. 
(For more information about these operators, see "Operators" on page 10 and 
Chapter 4, "Expressions"; for more information about comments, see "Com­
ments" on page 3.) 

A token is the smallest element of a C++ program that is meaningful to the com­
piler. The C++ parser recognizes these kinds of tokens: identifiers, keywords, 
literals, operators, and other separators. A stream of these tokens makes up a trans­
lation unit. 

Tokens are most commonly separated by "white space." White space can be one 
or more: 

• Blanks 

• Horizontal or vertical tabs 

• Newlines 

• Formfeeds 

• Comments 



Syntax token: 
keyword 
identifier 
constant 
operator 
punctuator 

preprocessing-token: 
header-name 
identifier 
pp-number 
character-constant 
string-literal 
operator 
punctuator 
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each non-white-space character that cannot be one of the above 

The parser separates tokens out of the input stream by creating the longest token 
possible using the input characters. Consider the following code fragment: 

a = i+++j; 

The intention of the programmer who wrote the code might have been one of the 
following: 

• Preincrement j, add the values of i and j, and assign the sum to a (where the 
tokens are i, +, and ++j). For more information about prefix incrementing, see 
"Increment and Decrement Operators" in Chapter 4 on page 94. 

This interpretation is equivalent to the expression a = i + (++ j ). 

• Add the values of i and j, assign the sum to a, then postincrement i (where 
the tokens are i, ++, +, and j). For more information about postincrementing, 
see "Postfix Increment and Decrement Operators" in Chapter 4 on page 90. 

This interpretation is equivalent to the expression a = (i ++) + j. 

Because the parser creates the longest token possible from the input stream, it 
chooses the second interpretation, making the tokens i ++, +, and j. 

1.2 Comments 
A comment is text that the compiler ignores but is useful for programmers. Com­
ments are normally used to annotate code for future reference. The compiler treats 
them as white space. Occasionally, comments are used to render certain lines of 
code inactive for test purposes; however, the #if/#endif preprocessor directives 
work better for this. 
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A C++ comment is written in one of the following ways: 

• The 1* (slash, asterisk) characters, followed by any sequence of characters (in­
cluding new lines), followed by the *1 characters. This syntax is the same as 
ANSIC. 

• The I I (two slashes) characters, followed by any sequence of characters. A new 
line not immediately preceded by a backslash terminates this form of comment. 
Therefore, it is commonly called a "single-line comment." 

The comment characters (I *, * I, and I I) have no special meaning within a char­
acter constant, string literal, or comment. Comments using the first syntax, there­
fore, cannot be nested. Consider this example: 

1* Intent: Comment out this block of code. 
Problem: Nested comments on each line of code are illegal. 

FileName = String( "hello.dat" ); 1* Initialize file string *1 
cout « "File: " « FileName « "\n"; 1* Print status message *1 
*1 

The preceding code will not compile because the compiler scans the input stream 
from the fIrst I * to the first * I and considers it a comment. In this case, the first 
*1 occurs at the end of the Initialize file string comment. The last *I,then, 
is no longer paired with an opening 1*. 

Note that the single-line form (1/) of a comment followed by the line-continuation 
token (\) can have surprising effects. Consider this code: 

#include <stdio.h> 

int main() 
{ 

} 

printf( "This is a number %d", II \ 
5 ); 

return 0; 

After preprocessing, the preceding code appears as follows: 

#include <stdio.h> 

int main() 
{ 

printf( "This is a number %d", II 5 ); 

return 0; 
} 

Because the single-line comment causes all further text on the same logical line to 
be considered a comment, the preceding program generates error messages. 
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1.3 Identifiers 

Syntax 

An identifier is a sequence of characters used to denote one of the following: 

• Object or variable name 

• Class, structure, or union tag 

• Enumerated type 

• Member of a class, structure, union, or enumeration 

• Function or class-member function 

• typedef name 

• Labelname 

• Macroname 

• Macro parameter 

identifier: 
nondigit 
identifier nondigit 
identifier digit 

nondigit: one of 
_ abcdefghijklm 
nopqrstnvwxyz 
AB CDEFGHIJKLM 
NOPQRSTUVWXYZ 

digit: one of 
0123456789 

Microsoft C++ identifiers are sequences of characters that must form a name 
shorter than 247 characters (actually, only the first 247 characters are significant). 
This restriction is complicated by the fact that names for user-defined types are 
"decorated" by the compiler to preserve type information; the resultant name, in­
cluding the type information, cannot be longer than 247 characters. Factors that 
can influence the length of a decorated identifier are: 

• Whether the identifier denotes an object of user-defined type 

• Whether the identifier denotes a function 

• The number of arguments to a function 

• Whether the identifier names an object of user-defined type 

The first character of an identifier must be an alphabetic character, either upper­
case or lowercase, or an underscore C). Because C++ identifiers are case sensi­
tive, fi 1 eName is different from Fi 1 eName. 
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Constraints 
Identifiers cannot be exactly the same spelling and case as keywords (see "C++ 
Keywords" on page 6 for more information). (Identifiers that contain keywords 
are legal. For example, Pi nt is a legal identifier, even though it contains int, 
which is a keyword.) 

Use of two sequential underscore characters C_) at the beginning of an identifier, 
or a single leading underscore followed by a capital letter, is reserved for C++ im­
plementations in all scopes. Use of one leading underscore followed by a lower­
case letter should be avoided for names with file scope because of possible 
conflicts with current or future reserved identifiers. 

1.4 C++ Keywords 

Syntax 

Keywords are predefined reserved identifiers that have special meanings. They 
cannot be used as identifiers in your program. 

The second section of keywords below are particular to Microsoft C++; these key­
words are disabled when the /Za (ANSI-conformance) option is used during 
compilation. 

keyword: one of 

asm7 float signed 
auto for sizeof 
break friend static 
case goto struct 
catch8 if switch 
char inline template8 

class int this 
const long throw8 

continue new try8 

default operator typedef 
delete private union 
do protected unsigned 
double public virtual 
else register void 
enum return volatile 
extern short while 



__ asml,2 

__ basedl,3 

__ cdecll 
__ emitl,S 
__ exceptl,6 
__ exportl 
__ Carl 
__ CastcaUl ,4 

IMicrosoft-specific keyword. 

~eplaces C++ 3sm syntax. 

__ finaUyl,6 
__ Cortranl ,4 
__ hugel ,4 

__ interruptI 
__ loaddsl,4 

__ nearl 
__ pascall,4 

__ saveregsl,4 
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__ segmentl,4 
I __ segname 

__ seICl 

__ stdcaUI 
__ syscaUI 
__ tryl,6 

3The __ b3sedkeyword has limited uses for 32-bit target compilations. In such compilations, __ based is 

supported syntactically and for disambiguation purposes, but only the declaration of objects based on a 

pointer is supported semantically. Types that are based on a pointer are considered 32-bit displacements to a 

32-bit base. 

4Supported syntactically and for disambiguation purposes, but not meaningful in 32-bit compilations. 

5 __ emit is not, strictly speaking, a keyword; rather it is a pseudoinstruction for the inline assembler. 

__ emit is not supported for 32-bit compilations. 

~icrosoft structured exception-handling keywords, __ try, __ except, and __ finally are meaningful only 

for 32-bit targets. 

7Reserved for compatibility with other C++ implementations, but not implemented. Use __ 3sm. 

8Not implemented in Microsoft C/C++ version 7.0. 

Note The Microsoft extended keywords listed above are prefaced with a double 
underscore for ANSI compliance. For backward compatibility, however, the 
single-underscore versions of these keywords are supported unless the /Za (ANSI 
compliance) compilation option is specified. 

Note that the keywords near, far, huge, cdecl, Cortran, pascal, and interrupt are 
available with no leading underscores unless the /Za (ANSI compliance) compila­
tion option is specified. 

In addition to the c++ keywords shown above, Microsoft c++ defines the names 
in Table 1.1 as macros. Some of these macros can be tested using the #iCdeC or 
#iCdefined preprocessor directive. 
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Table 1.1 Microsoft C/C++ Predefined Identifiers 

Identifier Compatibility 

__ cplusplus C++ 

ANSIC,C++ 

ANSIC,C++ 

ANSIC, c++ 

ANSIC 

ANSIC,C++ 

__ TIMESTAMP __ Microsoft 

Microsoft 

_MSDOS Microsoft 

Microsoft 

Microsoft 

Value 

The value of this macro is not 
significant. If it is defined, the 
program is compiled as C++. This 
macro is not defined for translation 
units compiled as C. 

The date of compilation of the 
source file. The date is a character 
string of the form "Mmm dd yyyy". 
The quotes are included to form a 
proper C++ string. 

The name of the current source file. 
__ FlLE __ expands to a string 
surrounded by double quotes. 

The line number in the current 
source file. The line number is a 
decimal number. 

Defined equal to 1 only if /Za 
(ANSI-conformance) compilation 
option used; otherwise undefined. 

The time of compilation of the 
source file. The time is a character 
string of the form "h h : mm : s s ". The 
quotes are included to form a proper 
C++ string. 

The date and time of translation of 
the current source file. The 
timestamp is a character string of the 
form "Ddd Mmm dd hh:mm:ss". 
The quotes are included to form a 
proper C++ string. 

Defines the compiler version as a 
string literal in the form ddd. For 
Microsoft C/C++ version 7.0, the 
string is "700". 

Always defined. Identifies target 
operating system as MS-DOS. 

Always defined. Identifies target 
machine as a member of the 8086 
family. 

Defined when compilation targets 
8086 and 8088 processors (default 
or /GO compiler option). 
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Table 1.1 ( continued) 

Identifier Compatibility Value 

_~I286 Microsoft Defined when compilation targets 
80286 processor (/G2 compiler 
option). 

_~I386 Microsoft Defined when compilation targets 
80386 processor (/G3 flat-model 
compilation-not available on 
compilers that target 16-bit 
applications). 

_~I86mM Microsoft Always defined. Identifies memory 
model, where m is either S (small or 
tiny model), M (Medium model), C 
(compact model), L (large model), 
or H (huge model). If huge model is 
used, both _~I86LM and 
_~I86HM are defined. 

Small model is the default. For more 
information about memory models, 
see Appendix B, "Microsoft-Specific 
Modifiers." 

__ DLL Microsoft Defined for run-time library as a 
DLL (IMD compiler option). 

NO_EXT_KEYS Microsoft No longer emitted by the compiler. 
This macro was defined in previous 
versions of Microsoft C for 
compilations that used the /Za 
(ANSI-conformance) option. In 
Microsoft C/C++ version 7.0, the 
__ STDC __ macro is used instead. 

_ CHAIL UNSIGNED Microsoft Defined only when the IJ compiler 
option is given to make char 
unsigned by default. 

1.5 Punctuators 
Punctuators in C++ have syntactic and semantic meaning to the compiler, but do 
not, of themselves, specify an operation that yields a value. Some punctuators, 
either alone or in combination, can also be C++ operators or be significant to the 
preprocessor. 

9 
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Syntax punctuator: one of 
!%A&*()_+={}I_ 
[]\;':"<>?,./# 

The punctuators [ ], ( ), and { } must appear in pairs after translation phase 4. (For 
more information, see Appendix A, "Phases of Translation.") 

1.6 Operators 

Syntax 

C++ Operators 

C/C++ Operators 

Operators specify an evaluation to be performed on one of the following: 

• One operand (unary operator) 

• Two operands (binary operator) 

• Three operands (ternary operator) 

The C++ language includes all C operators and adds several new operators. The 
following syntax lists those operators unique to C++ fIrst, and it then lists the oper­
ators shared between C and C++. 

operator: one of 

.* 
->* 

[ 

] 

( 

) 

-> 

++ 

& 

* 
+ 

sizeof 

I 

new 

% 

« 
» 
< 
> 
<= 
>= 

!= 

" 
1 

&& 

II 

? 

= 

delete 

*= 
/= 

%= 

+= 
-= 
«= 
»= 
&= 

"= 
1= 

# 

## 

:> (Microsoft C and C++ specific) 
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Operators follow a strict precedence. This precedence defines the evaluation order 
of expressions containing these operators. Operators associate with either the ex­
pression on their left or the expression on their right; this is called "associativity." 
Table 1.2 shows the precedence and associativity of C++ operators (from highest 
to lowest precedence). 

Table 1.2 C++ Operator Precedence, Syntax, and Associativity 

Operator Name or Meaning Syntax Associativity 

-- Equality equality-expression == Left to right 
relational-expression 

.. Scope resolution class-name :: name None 

.. Global ::name None 

[ ] Array subscript postfix-expression [ expressionopt ] Left to right 

() Function call postfix-expression Left to right 
( expression-listopt ) 

() Conversion simple-type-name None 
( expression-lis1opt ) 

Member selection postfix-expression. name Left to right 
(object) 

-> Member selection postfzx-expression -> name Left to right 
(pointer) 

++ Postfix increment postfix-expression ++ None 

Postfix decrement postfix-expression -- None 

new Allocate object ::opt new placementopt None 
new-type-name new-initializer opt 

::opt new placementopt None 
(type-name) new-initializeropt 

delete Deallocate object ::opt delete cast-expression None 

delete[ ] ::opt delete [] cast-expression None 

++ Prefix increment ++ unary-expression None 

Prefix decrement - - unary-expression None 

* Dereference * cast-expression None 

& Address-of & cast-expression None 

+ Unary plus + cast-expression None 

Arithmetic - cast-expression None 
negation (unary) 
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Table 1.2 (continued) 

Operator Name or Meaning Syntax Associativity 

Logical NOT ! cast-expression None 

Bitwise - cast-expression None 
complement 

:> Base operator base-expression :> expression None 

sizeof Size of object sizeof unary-expression None 

sizeof () Size of type sizeof( type-name) None 

(type) Type cast ( type-name) cast-expression Right to left 
(conversion) 

* Apply pointer to pm-expression.* cast-expression Left to right 
class member 
(objects) 

->* Dereference pm-expression ->* cast-expression Left to right 
pointer to class 
member 

* Multiplication multiplicative-expression * Left to right 
pm-expression 

I Division multiplicative-expression I Left to right 
pm-expression 

% Remainder multiplicative-expression % Left to right 
(modulus) pm-expression 

+ Addition additive-expression + Left to right 
multiplicative-expression 

Subtraction additive-expression - Left to right 
multiplicative-expression 

« Left shift shift-expression « Left to right 
additive-expression 

» Right shift shift-expression » Left to right 
additive-expression 

< Less than relational-expression < Left to right 
shift-expression 

> Greater than relational-expression> Left to right 
shift-expression 
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Table 1.2 ( continued) 

Operator Name or Meaning Syntax Associativity 

<= Less than or equal relational-expression <= Left to right 
to shift-expression 

>= Greater than or relational-expression >= Left to right 
equal to shift-expression 

!= Inequality equality-expression != Left to right 
relational-expression 

& Bitwise AND and-expression & Left to right 
equality-expression 

A Bitwise exclusive exclusive-or-expression A Left to right 
OR and-expression 

Bitwise OR inclusive-or-expression I Left to right 
exclusive-or-expression 

&& Logical AND logical-and-expression && Left to right 
inclusive-or-expression 

Logical OR logical-or-expression II Left to right 
logical-and-expression 

el?e2:e3 Conditional logical-or-expression ? Right to left 
expression: 
conditional-expression 

= Assignment unary-expression = Right to left 
assignment -expres sion 

*= Multiplication unary-expression *= Right to left 
assignment assignment-expression 

1= Division unary-expression 1= Right to left 
assignment assignment-expression 

%= Modulus unary-expression %= Right to left 
assignment assignment-expression 

+= Addition unary-expression += Right to left 
assignment assignment-expression 

Subtraction unary-expression -= Right to left 
assignment assignment-expression 

«= Left-shift unary-expression «= Right to left 
assignment assignment-expression 
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1.7 Literals 

Syntax 

Table 1.2 (continued) 

Operator Name or Meaning Syntax Associativity 

»= Right-shift unary-expression »= Right to left 
assignment assignment-expression 

&= Bitwise AND unary-expression &= Right to left 
assignment assignment-expression 

1= Bitwise inclusive unary-expression 1= Right to left 
OR assignment assignment-expression 

A= Bitwise exclusive unary-expression A= Right to left 
OR assignment assignment-expression 

Comma expression, assignment-expression Left to right 

The [ ], ( ), and ? : operators (array subscript, function call, and conditional, re­
spectively) can be used only as pairs. However, these operators can be separated 
by expressions (see Chapter 4, "Expressions," for more information). 

The # and ## operators can occur only in #define preprocessor directives. 

Invariant program elements are called "literals" or "constants." The terms "literal" 
and "constant" are used interchangeably here. Literals fall into four major catego­
ries: integer, character, floating-point, and string literals. 

literal: 
integer-constant 
character-constant 
floating-constant 
string-literal 

Integer Constants 
Integer constants are constant data elements that have no fractional parts or ex­
ponents. They always begin with a digit. Integer constants can be specified in deci­
mal, octal, or hexadecimal form. They can specify signed or unsigned types and 
long or short types. 



Syntax inte ge r-constant: 
decimal-constant integer-suffixopt 
octal-constant integer-suffixopt 
hexadecimal-constant integer-suffixopt 
. c-char-sequence' 

decimal-constant: 
nonzero-digit 
decimal-constant digit 

octal-constant: 
o 
octal-constant octal-digit 

hexadecimal-constant: 
Ox hexadecimal-digit 
OX hexadecimal-digit 
hexadecimal-constant hexadecimal-digit 

nonzero-digit: one of 
123456789 

octal-digit: one of 
01234567 

hexadecimal-digit: one of 
0123456789 
abcdef 
ABCDEF 

integer-suffix: 
unsigned-suffix long-suffixopt 
long-suffix unsigned-suffixopt 

unsigned-suffix: one of 
uU 

long-suffix: one of 
lL 
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To specify integer constants using octal or hexadecimal notation, use a prefix that 
denotes the base. To specify an integer constant of a given integral type, use a suf­
fix that denotes the type. 
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To specify a decimal constant, begin the specification with a nonzero digit. For 
example: 

int I I Decimal constant 
i nt j 
int k 

157; 
0198; 
0365; 

II Not a decimal number; erroneous octal constant 
II Leading zero specifies octal constant, not decimal 

To specify an octal constant, begin the specification with 0 , followed by a 
sequence of digits in the range 0 through 7. The digits 8 and 9 are errors in the 
specification of an octal constant. For example: 

int i 0377; II Octal constant 
int j = 0397; II Error: 9 is not an octal digit 

To specify a hexadecimal constant, begin the specification with 0x or 0X (the 
case of the "x" does not matter), followed by a sequence of digits in the range 0 
through 9 and a (or A ) through f (or F). Hexadecimal digits a or A through 
f or F) represent values in the range 10 through 15. For example: 

int i 0x3fff; II Hexadecimal constant 
int j = 0X3FFF; II Equal to i 

To specify an unsigned type, use either the u or U suffix. To specify a long type, 
use either the I or L suffix. For example: 

unsigned uVal = 328u; 
long 1 Val = 0x7FFFFFL; 

unsigned long ulVal = 0776745ul; 

II Unsigned value 
II Long value specified 
II as hex constant 
II Unsigned long value 

Character Constants 

Microsoft Specific 

Character constants are one or more members of the "source character set," the 
character set in which a program is written, surrounded by single quotation marks 
( '). They are used to represent characters in the "execution character set," the char­
acter set on the machine where the program executes. 

For Microsoft C++, the source and execution character sets are both ASCII.. 

There are three kinds of character constants: 

• Normal character constants 

• Multicharacter constants 

• Wide character constants 

Nole Use wide character constants in place of multicharacter constants to ensure 
portability and upward compatibility. 
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Character constants are specified as one or more characters enclosed in single 
quotation marks. For example: 

char ch = 'x'; 
int mbch = 'ab'; 

wchar_t wcch = L'ab'; 

II Specify normal character constant. 
II Specify system-dependent 
II multicharacter constant. 
II Specify wide character constant. 

Note that mbch is of type into If it were declared as type char, the second byte 
would not be retained. The number of meaningful characters in a multi character 
constant is equal to the expression sizeof( int ). For 16-bit targets (/GO, /G 1, and 
/G2 compilation options), this is 2; for 32-bit targets (flat-model compilation), this 
is 4. Specifying too many characters for a multi character constant generates an 
error message. 

character-constant: 
'c-char-sequence' 
L' c-char-sequence' 

c-char-sequence: 
c-char 
c-char-sequence c-char 

c-char: 
any member of the source character set except the single quote ('), 
backslash (\), or newline character 

escape-sequence 

escape-sequence: 
simple-escape-sequence 
octal-escape-sequence 
hexadecimal-escape-sequence 

simple-escape-sequence: one of 
\' \" \? \\ 
\a \b \f \n \r \t \v 

octal-escape-sequence: 
\octal-digit 
\octal-digit octal-digit 
\octal-digit octal-digit octal-digit 

hexadecimal-escape-sequence: 
\x hexadecimal-digit 
hexadecimal-escape-sequence hexadecimal-digit 

Microsoft C++ supports normal multicharacter, and wide character constants. Use 
wide character constants to specify members of the extended execution character 
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set (for example, to support an international application). Normal character con­
stants have type char, multi character constants have type int, and wide character 
constants have type wchac t. (The type wchar _ t is defined in the standard in­
clude files STDDEF.H, STDLIB.H, and STRING.H. The wide-character func­
tions, however, are prototyped only in STDLIB.H.) 

The only difference in specification between normal and wide character constants 
is that wide character constants are preceded by the letter L. For example: 

char schar = 'x'; 
wchar_t wchar = L'\x81\x19'; 

I I Normal character constant 
II Wide character constant 

Table 1.3 shows reserved or nongraphic characters that are system dependent or 
not allowed within character constants. These characters should be represented 
with escape sequences. 

Table 1.3 C++ Reserved or Nongraphic Characters 

ASCII 
Character Representation ASCII Value Escape Sequence 

Newline NL(LF) 10 or OxOa \n 

Horizontal tab HT 9 \t 
Vertical tab VT 11 or OxOb \v 

Backspace BS 8 \b 

Carriage return CR 13 or OxOd \r 

Formfeed FF 12 or OxOc \f 

Alert BEL 7 \a 
Backsla-sh \ 92 or Ox5c \\ 

Question mark 7 63 or Ox3f \7 

Single quotation 39 or Ox27 \' 
mark 
Double quotation 34 or Ox22 \,. 

mark 
Octal number 000 \000 

Hexadecimal hhh \xhhh 
Number 
Null character NUL 0 \0 

Important If the character following the backslash does not specify a legal escape 
sequence, the result is implementation defined. In Microsoft C++, the character fol­
lowing the backslash is taken literally, as though the escape were not present, and 
a level 1 warning ("unrecognized character escape sequence") is issued. 
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Octal escape sequences, specified in the form \000, consist of a backslash and one, 
two, or three octal characters. Hexadecimal escape sequences, specified in the 
form \xhhh, consist of the characters \x followed by a sequence of hexadecimal 
digits. Unlike octal escape constants, there is no limit on the number of hexadeci­
mal digits in an escape sequence. 

Octal escape sequences are terminated by the first character that is not an octal 
digit, or when three characters are seen. For example: 

wchar_t och = L'\076a'; II Sequence terminates at a 
char ch = '\233'; II Sequence terminates after 3 characters 

Similarly, hexadecimal escape sequences terminate at the first character that is not 
a hexadecimal digit. Because hexadecimal digits include the letters a through f 
(and A through F), make sure the escape sequence terminates at the intended 
digit. 

Because the single quotation mark (') encloses character constants, use the escape 
sequence \' to represent enclosed single quotation marks. The double quotation 
mark (") can be represented without an escape sequence. The backslash character 
( \) is a line-continuation character when placed at the end of a line. If you want a 
backslash character to appear within a character constant, you must type two 
backslashes in a row ( \ \ ). (See Appendix A, "Phases of Translation," for more 
information about line continuation.) 

Floating-Paint Constants 

Syntax 

Floating-point constants specify values that must have a fractional part. These 
values contain decimal points (.) and may contain exponents. 

floating-constant: 
fractional-constant exponent-partoptfloating-suffixopt 
digit-sequence exponent-part floating-suffixopt 

fractional-constant: 
digit-sequenceopt . digit-sequence 
digit-sequence 

exponent-part: 
e signopt digit-sequence 
E signopt digit-sequence 
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String Literals 

sign: one of 
+-

digit-sequence: 
digit 

digit-sequence digit 

floating-suffix: one of 
flFL 

Floating-point constants have a "mantissa," which specifies the value of the num­
ber, an "exponent," which specifies the magnitude of the number, and an optional 
suffix that specifies the constant's type. The mantissa is specified as a sequence of 
digits followed by a period, followed by an optional sequence of digits repre­
senting the fractional part of the number. For example: 

18.46 
38. 

The exponent, if present, specifies the magnitude of the number as a power of 10, 
as shown in the following example: 

18.46e0 
18.46e1 

II 18.46 
II 184.6 

If an exponent is present, the trailing decimal point is unnecessary in whole 
numbers such as 18E0. 

Floating-point constants default to type double. By using the suffixes f or I (or F 
or L-the suffix is not case sensitive), the constant can be specified as float or 
long double, respectively. 

A string literal consists of zero or more characters from the source character set 
surrounded by double quotation marks ("). A string literal represents a sequence of 
characters, which, taken together, forms a null-terminated string. While some C++ 
class libraries, including the Microsoft libraries, supply sophisticated string­
handling functionality, the strings defined in the language are relatively simple. 
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Microsoft Specific 

string-literal: 
.. s-char-sequence opt" 

L" s-char-sequence opt" 

s-char-sequence: 
s-char 
s-char-sequence s-char 

s-char: 
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any member of the source character set except double quotation marks ("), 
backs lash (\), or newline 

escape-sequence 

c++ strings have these types: 

• Array of char[n], where n is the length of the string (in characters) plus 1 for 
the terminating '\0' that marks the end of the string 

• Array of wchaL t, for wide-character strings 

The result of modifying a string constant is undefined. For example: 

char *szStr = "1234"; 
szStr[2] = 'A'; II Results undefined 

In some cases, identical string literals may be "folded" to save space in the execu­
table file. In string-literal folding, the compiler causes all references to a particular 
string literal to point to the same location in memory, instead of having each refer­
ence point to a separate instance of the string literal: 

#include <iostream.h> 
#include <string.h> 
II Define two pointers that refer to identical 
II string literals. 
char *szl "A String"; 
char *sz2 ="A String"; 

void main() 
{ 

II Reverse szl 
fore int i = 0, j = strlen( szl ) - 1; 
{ 

char chTmp = szl[i]; 
szl[ i] szl[j] ; 
szl[j] = chTmp; 

} 

II Display the result of the program. 
cout «"szl "« szl « endl; 
cout « "sz2 = " « sz2 « endl; 

< j; ++i, - - j 
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If the literals are not folded, the output of the program is: 

szl gnirtS A 
sz2 = A String 

However, if the strings are folded, the output of the program is: 

szl gnirtS A 
sz2 = gni rtS A+ 

When specifying string literals, adjacent strings are concatenated. Therefore, this 
declaration: 

char szStr[] = "12" "34"; 

is identical to this declaration: 

char szStr[] = "1234"; 

This concatenation of adjacent strings makes it easy to specify long strings across 
multiple lines: 

cout « "Four score and seven years" 
"ago, our forefathers brought forth" 
"upon this continent a new nation."; 

In the preceding example, the entire string "Four score and seven years ago, our 
forefathers brought forth upon this continent a new nation." is spliced together. 
This string might also have been specified using line splicing as follows: 

cout « "Four score and seven years \ 
ago, our forefathers brought forth \ 
upon this continent a new nation."; 

After all adjacent strings in the constant have been concatenated, the NULL char­
acter, . \0', is appended to provide an end-of-string marker for C string-handling 
functions. 

When the first character of the first string is an escape character, string concatena­
tion can yield surprising results. Consider the following two declarations: 

char szStr1[] "\01" "23"; 
char szStr2[] = "\0123"; 

While it is natural to assume that szStr1 and szStr2 contain the same values, 
the values they actually contain are shown in Figure 1.1. 
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"\01" "23" 

"\0123" 

[\012[ 3 [ \0 [ 

Figure 1.1 Escapes and String Concatenation 

The maximum length of a string literal is 2,048 bytes. This limit applies both to 
strings of type char[] and wchac t[]. • 

Determine the size of string objects by counting the number of characters and 
adding 1 for the terminating . \ 0' . 

Because the double quotation mark (") encloses strings, use the escape sequence 
(\ ") to represent enclosed double quotation marks. The single quotation mark ( .) 
can be represented without an escape sequence. The backslash character ( \) is a 
line-continuation character when placed at the end of a line. If you want a 
backslash character to appear within a string, you must type two backslashes 
( \ \). (For more information about line continuation, see Appendix A, "Phases of 
Translation. ") 

To specify a string of type wide character (wchact[]), precede the opening 
double quotation mark with the character L. For example: 

wchar_t wszStr[J = L"la1g"; 

All normal escape codes listed in the "Character Constants" example on page 16 
are valid in string constants. For example: 

cout « "First line\nSecond line"; 
cout « "Error! Take corrective action\a"; 

Because the escape code terminates at the first character that is not a hexadecimal 
digit, specification of string constants with embedded hexadecimal escape codes 
can cause unexpected results. The following example is intended to create a string 
literal containing ASCII 5, followed by the characters fi ve: 

"\x05five" 

The actual result is a hexadecima15F, which is the ASCII code for an underscore, 
followed by the characters i ve. The following example produces the desired 
results: 

"\005five" II Use octal constant. 
"\x05" "five" II Use string splicing. 





Basic Concepts 

2.1 Terms 

This chapter explains some concepts that are key to the understanding of C++. 
While many of these concepts are familiar to C programmers, there are some 
subtle differences that can cause unexpected program results. Some of the topics 
covered in this chapter are: 

• Terminology. Terms used later in this book are introduced and defined. 

• Scope. The scope of a C++ object or function is different from C; the scoping 
rules are defined. See "Scope" on page 28. 

• Linkage. Linkage rules are described as is the definition of a "program." See 
"Program and Linkage" on page 33. 

• Program startup, termination, and the main function. The sequence of startup 
and termination is discussed, as is defining the purpose and behavior of the 
main function. See "Startup and Termination" on page 38. 

• Storage classes. The treatment of auto and static objects in C++, including 
initialization and destruction, is discussed. See "Storage Classes" on page 46. 

• Types. The behavior of C++ fundamental (built-in) types is explained. The dis­
cussion includes derived types, type names, name spaces, and limits for each 
type. See "Types" on page 49. 

The following short definitions explain C++ terminology used in this chapter and 
in the rest of the book, as well. 



26 C++ language Reference 

Table 2.1 C++ Terminology 

Term Meaning 

Declaration A declaration introduces names and their types into a program 
without necessarily defining an associated object or function. 
However, many declarations do serve as definitions. 

Definition A definition provides information that allows the compiler to allocate 
memory for objects or generate code for functions. 

Dereference Dereferencing converts a pointer value to an r-value. 

Lifetime The lifetime of an object is the period during which an object exists, 
including its creation and destruction. 

Linkage Names can have external linkage, internal linkage, or no linkage. 
Within a program (a set of translation units), only names with 
external linkage denote the same object or function. Within a 
translation unit, names with either internal or external linkage denote 
the same object or function (except when functions are overloaded). 
(For more information on translation units, see Appendix A, "Phases 
of Translation.") Names with no linkage denote unique objects or 
functions. 

Name A name denotes an object, function, set of overloaded functions, 
enumerator, type, class member, template, value, or label. C++ 
programs use names to refer to their associated language element. 
Names can be type names or identifiers. 

Object An object is an instance (a data item) of a user-defined type (a class 
type). The difference between an object and a variable is that 
variables retain state information, whereas objects may also have 
behavior. 

This manual draws a distinction between objects and variables: 
"object" means instance of a user-defined type, whereas "variable" 
means instance of a fundamental type. 

In cases where either object or variable is applicable, the term 
"object" is used as the inclusive term, meaning "object or variable." 

Scope Names can be used only within specific regions of program text. 
These regions are called the scope of the name. 

Storage class The storage class of a named object determines its lifetime, 
initialization, and, in certain cases, its linkage. 

Type Names have associated types that determine the meaning ofthe value 
or values stored in an object or returned by a function. 

Variable A variable is a data item of a fundamental type (for example, int, 
float, or double). Variables store state information but define no 
behavior for how that information is handled. See the list item 
"Object" above for information about how the terms "variable" and 
"object" are used in this manual. 
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2.2 Declarations and Definitions 

Declarations 

Declarations explain to the compiler that a program element or name exists; defini­
tions specify to the compiler what code or data the name describes. A name must 
be declared before it can be used. 

A declaration introduces one or more names into a program. Declarations also 
serve as definitions, except in the following cases: 

• The declaration is a function prototype (a function declaration with no function 
body). 

• The declaration contains the extern specifier but no initializer (objects and 
variables) or function body (functions). This signifies that the definition is not 
necessarily in the current translation unit and gives the name external linkage. 

• The declaration is of a static data member inside a class declaration. 

Because static class data members are discrete variables shared by all objects of 
the class, they must be defined and initialized outside the class declaration. (For 
more information about classes and class members, see Chapter 8, "Classes.") 

• The declaration is a class name declaration with no following definition. 

• The declaration is a typedef statement. 

Examples of declarations that are also definitions are: 

II Declare and define int variables i and j. 
i nt i; 
int j = 10; 

II Declare enumeration suits. 
enum suits { Spades = 1, Clubs, Hearts, Diamonds }; 

II Declare class CheckBox. 
class CheckBox public Control 
{ 
public: 

Boolean IsChecked(); 
vi rtual i nt ChangeState() 0; 

} ; 

Some declarations that are not definitions are: 

extern int i; 
char *strchr( const char *Str, const char Target ); 
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Definitions 

2.3 Scope 

A definition is a unique specification of an object or variable, function, class, or 
enumerator. Because definitions must be unique, a program can contain only one 
definition for a given program element. Note that because declarations can occur 
more than once in a program, classes, structures, enumerated types, and so on can 
be declared for each compilation unit. The constraint on this multiple declaration 
is that all declarations must be identical. 

There can be a many-to-one correspondence between declarations and definitions. 
There are two cases in which a program element can be declared and not defined: 

• A function is declared but never referenced with a function call or with an 
expression that takes the function's address. 

• A class is used only in a way that does not require its definition be known. 
However, the class must be declared. The following code illustrates such a case: 

class WindowCounter; 

class Window 
{ 

II Forward reference; no definition 

static WindowCounter windowCounter; II Definition of 
II WindowCounter 
II not required. 

} ; 

c++ names can be used only in certain regions of a program. This area is called 
the "scope" of the name. Scope determines the "lifetime" of a name that does not 
denote a static object. Scope also determines the visibility of a name, when class 
constructors and destructors are called, and when variables local to the scope are 
initialized. (For more information, see "Constructors" and "Destructors" in 
Chapter 11, on pages 300 and 305, respectively.) There are five kinds of scope: 

• Local scope. A name declared within a block is accessible only within that 
block and blocks enclosed by it, and only after the point of declaration. The 
names of formal arguments to a function in the scope of the outermost block of 
the function have local scope, as if they had been declared inside the block 
enclosing the function body. Consider the following code fragment: 

{ 

} 
i nt i; 

Because the declaration of i is in a block enclosed by curly braces, has 
local scope. 
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• Function scope. Labels are the only names that have function scope. They can 
be used anywhere within a function but are not accessible outside that function. 

• File scope. Any name declared outside all blocks or classes has file scope. It is 
accessible anywhere in the translation unit after its declaration. Names with file 
scope that do not declare static objects are often called "global" names. 

• Class scope. Names of class members have class scope. Class member func­
tions can be accessed only by using the member-selection operators (. or -» or 
pointer-to-member operators (. * or ->*) on an object or pointer to an object of 
that class; nonstatic class member data is considered local to the object of that 
class. Consider the following class declaration: 

class Point 
{ 

} ; 

int x; 
int y; 

The class members x and y are considered to be in the scope of class Poi nt. 

• Prototype scope. Names declared in a function prototype are visible only until 
the end ofthe prototype. The following prototype declares two names (szDest 
and szSource); these names go out of scope at the end of the prototype: 

char *strcpy( char *szDest, const char *szSource ); 

Point of Declaration 
A name is considered declared immediately after its declarator but prior to its (op­
tional) initializer. (For more information on declarators, see Chapter 7.) An 
enumerator is considered declared immediately after the identifier that names it 
but prior to its (optional) initializer. 

Consider this example: 

double dVar = 7.0; 

int maine) 
{ 

double dVar dVar; 

If the point of declaration were after the initialization, then d Va r would be initial­
ized to 7.0, the value of the global variable d Va r. However, since that is not the 
case, d V a r is initialized to an undefined value. 

Enumerators follow the same rule. However, enumerators are exported to the en­
closing scope of the enumeration. In the following example, the enumerators 
Spades, Cl ubs, Hearts, and Di amonds are declared. Because the enumerators are 
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Hiding Names 

exported to the enclosing scope, they are considered to have global scope. The 
identifiers in the following example are already defined in global scope. 

Consider the following code: 

const int Spades = I, Clubs 

enum Suits 
{ 

} ; 

Spades Spades, 
Clubs, 
Hearts, 
Diamonds 

2, Hearts 3, Diamonds 4' , 

Because the identifiers in the preceding code are already defined in global scope, 
an error message is generated. 

Note Using the same name to refer to more than one program element-for ex­
ample, an enumerator and an object-is considered poor programming practice 
and should be avoided. In the preceding example, this practice causes an error. 

A name can be hidden by declaring that name in an enclosed block. In Figure 2.1, 
i is redeclared within the inner block, thereby hiding the variable associated 
with i in the outer block scope. 

Inner block -{ 
contains 
local-scope 
objects i and j . 

Sample::Func( char *szWhat) 

Figure 2.1 Block Scope and Name Hiding 

Outer block contains 
local-scope object i 
and formal parameter 
szWhat. 



The output from the program shown in Figure 2.1 is: 

o 
7 

j 9 
o 
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Note The argument szWhat is considered to be in the scope ofthe function. There­
fore, it is treated as if it had been declared in the outermost block of the function. 

Hiding Names with File Scope 
Names with file scope can be hidden by explicitly declaring the same name in 
block scope. However, these names can be accessed using the scope-resolution 
operator (::). For example: 

#include <iostream.h> 

int i = 7; II i has file scope--declared 
II outside all blocks 

int main( int argc, char *argv[] ) 

{ 

int i = 5· , II i has block scope--hides 
II the i with fil e scope 

cout« "Block-scoped i has the value: "« i «"\n"; 
cout « "File-scoped i has the value: " « ::i « "\n"; 

return 0; 

The result of the preceding code is: 

Block-scoped i has the value: 5 
File-scoped i has the value: 7 

Hiding Class Names 
Class names can be hidden by declaring a function, object or variable, or enumera­
tor in the same scope. However, the class name can still be accessed when pre­
fixed by the keyword class. 
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II Declare class Account at file scope. 
class Account 
{ 

public: 
Account( double InitialBalance ) 

{ balance = InitialBalance; } 
double GetBalance() 

{ return balance; } 
double Deposit( double HowMuch 

{ return balance += HowMuch; } 
double Withdraw( double HowMuch ) 

{ return balance HowMuch;} 
private: 

double balance; 
} ; 

double Account = 15.37; II Hides class name Account 

int main( int argc, char *argv[] ) 
{ 

class Account Checking( Account ); 

cout « "Opening account with balance of: " 
« Checking.GetBalance() « "\n"; 

cout « "Depositing $10.57, for a remaining 
« Checking.Deposit( 10.57 ) « "\n"; 

cout « "Withdrawing $27.16, for a remal nl ng 
« Checking.Withdraw( 27.16 ) « "\n"; 

return 0; 
} 

balance of: " 

balance of: " 

Note that any place the class name (Account) is called for, the keyword class must 
be used to differentiate it from the function-scoped variable Account. This rule 
does not apply when the class name occurs on the left side of the scope-resolution 
operator (::). Names on the left side ofthe scope-resolution operator are always 
considered class names. The following example demonstrates how to declare a 
pointer to an object of type Account using the class keyword: 

class Account *Checking = new class Account( Account ); 

Note that the Account in the initializer (in parentheses) in the preceding statement 
has function scope; it is of type double. 

(For more information about pointers, see "Derived Types" on page 52. For infor­
mation about declaration and initialization of class objects, see Chapter 8, 
"Classes." For information about using the new and delete free-store operators, 
see Chapter 11, "Special Member Functions.") 
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Scope of Formal Arguments to Functions 
Formal arguments (arguments specified in function headers) to functions are con­
sidered to be in the scope of the outermost block of the function body. 

2.4 Program and linkage 

Types of Linkage 

A program consists of one or more translation units linked together. Execution 
(conceptually) begins in the translation unit that contains the function main. (For 
more information about translation units, see Appendix A, "Phases of Transla­
tion." For more information about the main function, see "Program Startup-the 
main Function" on page 38.) 

The way the names of objects and functions are shared between translation units is 
called "linkage." These names can have: 

• Internal linkage, in which case they refer only to program elements inside their 
own translation units; they are not shared with other translation units. 

The same name in another translation unit may refer to a different object or a 
different class. Names with internal linkage are sometimes referred to as being 
"local" to their translation units. An example declaration of a name with inter­
nallinkage is: 

static int i; II The static keyword ensures internal linkage. 

• External linkage, in which case they can refer to program elements in any trans­
lation unit in the program-the program element is shared among the transla­
tion units. 

The same name in another translation unit is guaranteed to refer to the same ob­
ject or class. Names with external linkage are sometimes referred to as being 
"global." 

An example declaration of a name with external linkage is: 

extern int i; 

• No linkage, in which case they refer to unique entities. The same name in 
another scope may not refer to the same object. (Note, however, that you can 
pass a pointer to an object with no linkage. This makes the object accessible in 
other translation units.) 
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Linkage in Names with File Scope 
The following linkage rules apply to names (other than typedef and enumerator 
names) with file scope: 

• If a name is explicitly declared as static, it has internal linkage and identifies a 
program element inside its own translation unit. 

• If a function name with file scope is explicitly declared as inline, it has external 
linkage (Microsoft specific). 

• If a name is declared as const but not as extern, the name still has external 
linkage (Microsoft specific). 

• A class has internal linkage if it meets these criteria (Microsoft specific): 

• Uses no c++ functionality (for example, member-access control, member 
functions, constructors, destructors, and so on). 

• Not used in the declaration of another name that has external linkage. This 
constraint means that objects of class type that are passed to functions with 
external linkage cause the class to have external linkage. 

• Enumerator names and typedef names have no linkage. 

• All other names with file scope have external linkage. 

Linkage in Names with Class Scope 
The following linkage rules apply to names with file scope: 

• Static class members have external linkage. 

• Class member functions have external linkage. 

• Functions declared as friend functions must have external linkage. Declaring a 
static function as a friend is an error (Microsoft specific). 

• Enumerators and typedef names do not have external linkage. 

Linkage in Names with Block Scope 
The following linkage rules apply to names with block scope (local names): 

• Names declared as extern have external linkage unless they were previously 
declared as static. 

• All other names with block scope have no linkage. 
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Names with No Linkage 
The only names that have no linkage are: 

• Function parameters. 

• Block-scoped names not declared as extern or static. 

• Enumerators. 

• Names declared in a typedef statement. An exception is when the typedef state­
ment is used to provide a name for an unnamed class type. The name may then 
have external linkage if the class has external linkage. The following example 
shows a situation in which a typedef name has external linkage: 

typedef struct 
{ 

short x; 
short y; 

} POINT; 
extern int MoveTo( POINT pt l; 

The typedefname, POINT becomes the class name for the unnamed structure. 
It is then used in the declaration of a function with external linkage. 

Because typedef names have no linkage, their definitions can differ between trans­
lation units. Because the compilations take place discretely, there is no way for the 
compiler to detect these differences. As a result, errors of this kind are not detected 
until link time. Consider the following case: 

II Translation unit 1 
typedef int INT 

INT myInt; 

II Translation unit 2 
typedef short INT 

extern INT myInt; 

The preceding code generates an "unresolved external" error at link time. 
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c++ functions can be defined only in file or class scope. The following example il­
lustrates how to define functions and shows an erroneous function definition: 

#include <iostream.h> 

void ShowChar( char 

void ShowChar( char 
{ 

cout « ch; 
} 

struct Char 
{ 

} ; 

char Show(); 
char Get(); 
char ch; 

char Char::Show() 
{ 

} 

cout « ch; 
return ch; 

ch 

ch 

) ; 

void GoodFuncDef( char ch 
{ 

int BadFuncDef( int 
{ 

return * 7; 
} 

II Declare function ShowChar. 

II Define function ShowChar. 
II Function has file scope. 

II Define class Char. 

II Declare Show function. 
II Declare Get function. 

II Define Show function 
II with class scope. 

II Define GoodFuncDef 
II with file scope. 
II Erroneous attempt to 
II nest functions. 

fort int i 0; 
cout « ch; 

cout « "\n"; 

< BadFuncDef( 2 ); ++i ) 

} 

Linkage to Non-C++ Functions 

Syntax 

C functions and data can be accessed only if they are previously declared as 
having C linkage. However, they must be defined in a separately compiled transla­
tion unit. 

linkage-specification: 
extern string-literal {declaration-listopt } 

extern string-literal declaration 

declaration-list: 
declaration 
declaration-list declaration 
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Microsoft C++ supports the strings "c" and "C++" in the string-literal field. The 
following example shows alternative ways to declare names that have C linkage: 

II Declare printf with C linkage. 
extern .. c .. int printf( const char *fmt, ... ); 

II Cause everything in the header file "cinclude.h" 
II to have C linkage. 
extern "e" 
{ 

#include <cinclude.h> 
} 

II Declare the two functions ShowChar and GetChar 
II with C linkage. 
extern .. c .. 
{ 

} 

char ShowChar( char ch ); 
char GetChar( void ) 

II Define the two functions ShowChar and GetChar 
II with C linkage. 
extern .. c .. char ShowChar( char ch ) 
{ 

} 

putchar( ch ); 
return ch; 

extern .. c .. char GetChar( void) 
{ 

} 

char ch; 

ch = getchar() 
return ch; 

II Declare a global variable, errno, with C linkage. 
extern "c" int errno; 
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2.5 Startup and Termination 
Program startup and termination is facilitated by using two functions: main and 
exit. Additionally, other startup and termination code may be executed. 

Program Startup-the main Function 
A special function called main is the entry point to all C++ programs. This func­
tion is not predefined by the compiler; rather, it must be supplied in the program 
text. The declaration syntax for main is as follows: 

int mainO; 

or, optionally: 

int main(int argc[, char *argv[ ] [, char *envp[ ] ] ] ); 

Alternatively, the main function can be declared as returning void (no return 
value). If you declare main as returning void, you cannot return an exit code to the 
parent process or operating system using a return statement; to return an exit code 
when main is declared as void, you must use the exit function. 

Argument Definitions 
The arguments in the prototype 

int main(int argc[, char *argv[ ] [, char *envp[] ] ] ); 

allow convenient command-line parsing of arguments and, optionally, access to 
environment variables. The argument definitions are as follows: 

argc An integer that contains the count of arguments that follow in argv. The 
argc parameter is always greater than or equal to 1. 

argv An array of null-terminated strings representing command-line arguments 
entered by the user of the program. By convention, argv[O] is the command 
with which the program is invoked, argv[l] is the first command-line argument, 
and so on, until argv[argc], which is always NULL. 

The first command-line argument is always argv[l] and the last one is 
argv[argc - 1]. 

envp (Microsoft specific.) The envp array, which is a common extension in 
many UNIX systems, is used in Microsoft C++. It is an array of strings repre­
senting the variables set in the user's environment. This array is terminated by a 
NULL entry. 



Basic Concepts 39 

The following example shows how to use the argc, argv, and envp arguments to 
main: 

1* Program to type out the environment variables. 
* If the In command-line option is specified, 
* the listing of environment variables is line­
* numbered. 
*1 

#include <iostream.h> 
#include <string.h> 

#define NL "\n" 

int main( int argc, char *argv[], char *envp[] ) 
{ 

} 

int iNumberLines = 0; II Default is no line numbers. 

II If more than .EXE filename supplied, and 
II user supplies In or IN, flag option for line numbers. 
if( argc == 2 && stricmp( argv[I], "In" ) == 0 ) 

iNumberLines = I; 

II Walk through list of strings until a NULL is encountered. 
for( int i = 0; envp[i] != NULL; ++i ) 
{ 

if( iNumberLines ) 
cout « i; 

cout « ": " « envp[i] « NL; 
} 

return 0; 

Note The return 0 statement at the end of the program is necessary because 
main is a function declared as returning an int value. If no return statement is pre­
sent, or if the return statement does not specify a value, an error message is 
generated. 

Wildcard Expansion (Microsoft Specific) You can use wildcards-the question 
mark (?) and asterisk (*)-to specify filename and path arguments on the com­
mandline. 

Command-line arguments are handled by a routine called _setargv. By default, 
_ setargv does not expand wildcards into separate strings in the a r g v string array. 
However, by linking with the SETARGV.OBJ file, you can replace the 
default _ setargv routine with a version that handles wildcards. 

To include SETARGV.OBJ, either add it to your project in PWB, or specify it on 
the CL command line. In either case, the /NOE (no extended dictionary search) 
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must be supplied to the linker to avoid multiple-definition errors for the _setargv 
function. A sample CL command follows: 

CL PROG.C \C7\LIB\SETARGV.OBJ ILINK INOE; 

The result of the preceding command is that wildcard filenames are expanded in 
the same manner as MS-DOS commands. (See your MS-DOS user's guide if you 
are unfamiliar with these characters.) Enclosing a command-line argument in quo­
tation marks (" ") suppresses the wildcard expansion. Within quoted arguments, 
you can represent quotation marks literally by preceding the double quotation 
mark with a backslash (\). 

Note If you write your own _setargv function, it must be specified as extern "c" 
for the linker to recognize it. 

If no matches are found for the wildcard argument, the argument is passed literally. 

Parsing Command-Line Arguments (Microsoft Specific) 
Microsoft C startup code uses the following rules when interpreting arguments 
given on the MS-DOS command line: 

• Arguments are delimited by white space, which is either a space or a tab. 

• The caret character (") is not recognized as an escape character or delimiter. 
The character is handled completely by the command-line parser in the operat­
ing system before being passed to the a rgv array in the program. 

• A string surrounded by double quotation marks ("string") is interpreted as a 
single argument, regardless of white space contained within. A quoted string 
can be embedded in an argument. 

• A double quotation mark preceded by a backslash ( \") is interpreted as a literal 
double quotation mark character ("). 

• Backslashes are interpreted literally, unless they immediately precede a double 
quotation mark. 

• If an even number of backslashes is followed by a double quotation mark, then 
one backslash is placed in the a rgv array for every pair of backslashes, and the 
double quotation mark is interpreted as a string delimiter. 

• If an odd number of backslashes is followed by a double quotation mark, then 
one backslash is placed in the a r 9 v array for every pair of backslashes, and the 
double quotation mark is "escaped" by the remaining backslash, causing a lit­
eral double quotation mark (") to be placed in a rgv. 
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The following program demonstrates how command-line arguments are passed: 

#include <iostream.h> 

int maine int argc, II Number of strings in array argv 
char *argv[], 
char *envp[] ) 

II Array of command-line argument strings 
II Array of environment variable strings 

{ 

int count; 

II Display each command-line argument. 
cout « "\nCommand-line arguments:\n"; 
fore count = 0; count < argc; count++ ) 

} 

cout «" argv["« count « "] 
« argv[count] « "\n"; 

return 0; 

Table 2.2 shows example input and expected output, demonstrating the rules in the 
preceding list. 

Table 2.2 Results of Parsing Command Lines 

Command-Line Input argv[l] argv[2] argv[3] 

"abc"de abc d e 
a\\\b dUe f"g h a\\ \b de fg h 
a\\\"b c d a\"b c d 
a\\ \\"b c" d e a\\b c d e 

Customizing Command-Line Processing (Microsoft Specific) If your program 
does not take command-line arguments, you can save a small amount of space by 
suppressing use of the library routine that performs command-line processing. 
This routine is called _setargv and is described in "Wildcard Expansion" on page 
39. To suppress its use, define a routine that does nothing in the file containing the 
main function, and name it _setargv. The call to _setargv is then satisfied by 
your definition of _setargv, and the library version is not loaded. 

Similarly, if you never access the environment table through the envp argument, 
you can provide your own empty routine to be used in place of _setenvp, the en­
vironment-processing routine. Just as with the _setargv function, _setenvp must 
be declared as extern "C". 
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Your program might make calls to the spawn or exec family of routines in the C 
run-time library. If this is the case, you should not suppress the environment­
processing routine, since this routine is used to pass an environment from the 
parent process to the child process. 

main Function Restrictions 
Several restrictions apply to the main function that do not apply to any other c++ 
functions. The main function: 

• Cannot be overloaded (See Chapter 12, "Overloading"). 

• Cannot be declared as inline. 

• Cannot be declared as static. 

• Cannot have its address taken. 

• Cannot be called. 

Program Termination 
There are several ways to exit a program: 

• Call the exit function. 

• Call the abort function. 

• Fail an assert test. 

• Execute a return statement from main. 

exit Function 
The exit function, declared in the standard include file STDLID.H, terminates a 
C++ program. 

The value supplied as an argument to exit is returned to the operating system as 
the program's return code or exit code. By convention, a return code of zero 
means that the program completed successfully. 

Note You can use the constants EXIT_FAILURE and EXIT_SUCCESS, 
defined in STDLIB.H, to indicate success or failure of your program. 

Issuing a return statement from the main function is equivalent to calling the exit 
function with the return value as its argument. 
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abort Function 
The abort function, also declared in the standard include file STDLIB.H, termi­
nates a c++ program. The difference between exit and abort is that exit allows 
the C run-time termination processing to take place, and abort causes immediate 
program termination. 

assert Macro 
The assert macro allows programmers to insert conditional failure code inline to 
assist in debugging. Should the programmer's "assertion" prove false, the location 
of the assertion is printed on the standard output device and the program termi­
nates. 

See the Run-Time Library Reference manual for more information about using 
exit, abort, and assert to terminate program execution. 

return Statement 
Issuing a return statement from main is functionally equivalent to calling the exit 
function. Consider the following example: 

intmain() 
{ 

ex it ( 3 ); 
return 3; 

The exit and return statements in the preceding example are functionally identi­
cal. However, C++ requires that functions that have return types other than void 
return a value. The return statement allows you to return a value from main. 

Additional Startup Considerations 
In C++, object construction and destruction can involve executing user code. 
Therefore, it is important to understand which initializations happen before entry 
to main, and which destructors are invoked after exit from main. (For detailed in­
formation about construction and destruction of objects, see "Constructors" and 
"Destructors" in Chapter 11, on pages 300 and 305, respectively.) 

The following initializations take place prior to entry to main: 

• Default initialization of static data to zero. All static data without explicit initial­
izers are set to zero prior to executing any other code, including run-time initial­
ization. Static data members must still be explicitly defined. 
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Microsoft Specific 

• Initialization of global static objects in a translation unit. This may occur either 
before entry to main or before the first use of any function or object in the ob­
ject's translation unit. 

In Microsoft C/C++, global static objects are initialized before entry to main .• 

Global static objects that are mutually interdependent but in different transla­
tion units may cause incorrect behavior. 

Additional Termination Considerations 
You can terminate a c++ program by using exit, return, or abort. You can add 
exit processing using the atexit function. These are discussed in the following sec­
tions. 

Using exit or return 
When you call exit or execute a return statement from main, static objects are de­
stroyed in the reverse order of their initialization. This example shows how such 
initialization and cleanup works: 

#include <stdio.h> 

class ShowData 
{ 

public: 
II Constructor opens a file. 
ShowData( const char *szDev ) 
{ 

DutputDev = fopen( szDev, "w" ); 

II Destructor closes the file. 
-ShowData() { fclose( OutputDev ); } 

II Disp method shows a string on the output device. 
void Disp( char *szData ) 
{ 

fputs( szData, OutputDev ); 

private: 
FILE *OutputDev; 

} ; 

II Define a static object of type ShowData. The output device 
II selected is "CON" -- the standard output device. 
ShowData sdl = "CON"; 
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II Define another static object of type ShowData. The output 
II is directed to a file called "HELLO.DAT" 
ShowData sd2 = "hello.dat"; 

int main() 
{ 

sdl.Disp( "hello to default device\n" ); 
sd2.Disp( "hello to file hello.dat\n" ); 

return 0; 

In the preceding example, the static objects sdl and sd2 are created and initial­
ized before entry to rna in. After this program terminates using the retu rn state­
ment, first sd2, then sdl is destroyed. The destructor for the ShowData class 
closes the files associated with these static objects. (For more information about 
initialization, constructors, and destructors, see Chapter 11, "Special Member 
Functions. ") 

Note Another way to write this code is to declare the ShowData objects with block 
scope, allowing them to be destroyed when they go out of scope: 
int main() 
{ 

ShowData sdl, sd2( "hello.dat" ); 

sdl.Disp( "hello to default device\n" ); 
sd2.Disp( "hello to file hello.dat\n" ); 

return 0; 

Using at exit 
The atexit function allows you to specify an exit-processing function that executes 
prior to program termination. No global static objects initialized prior to the call to 
atexit are destroyed prior to execution of the exit-processing function. 

Using abort 
Calling the abort function causes immediate termination. It bypasses the normal 
destruction process for initialized global static objects. It also bypasses any special 
processing that was specified using the atexit function. 
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2.6 Storage Classes 

Automatic 

Static 

Register 

Storage classes govern the lifetime, linkage, and treatment of objects and variables 
in C++. A given object can have only one storage class. The following sections dis­
cuss the C++ storage classes for data: automatic, static, register, and external. 

Objects and variables with automatic storage are local to a given instance of a 
block. In recursive or multithreaded code, automatic objects and variables are 
guaranteed to have different storage in different instances of a block. Microsoft 
C++ stores automatic objects and variables on the program's stack. 

Objects and variables defined within a block have auto storage unless otherwise 
specified using the extern or static keyword. Automatic objects and variables can 
be specified using the auto keyword, but explicit use of auto is unnecessary. Auto­
matic objects and variables have no linkage. 

Automatic objects and variables persist only until the end of the block in which 
they are declared. 

To optimize the generated code, the compiler may put automatic variables in regis­
ters. However, the program always behaves as if automatic variables are allocated 
on the stack. 

Objects and variables declared as static retain their values for the duration of the 
program's execution. In recursive code, a static object or variable is guaranteed to 
have the same state in different instances of a block of code. 

Objects and variables defined outside all blocks have static lifetime and external 
linkage by default. A global object or variable that is explicitly declared as static 
has internal linkage. 

Static objects and variables persist for the duration of the program's execution. 

Variables declared as register are allocated to a CPU register if there is a suitable 
register available. These variables behave as automatic variables, except that the 
compiler gives them preference over automatic variables when allocating register 
storage. 
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Only function arguments and local variables can be declared with the register 
storage class. 

Like automatic variables, register variables persist only until the end of the block 
in which they are declared. 

Objects and variables declared as extern declare an object that is defined in 
another translation unit or in an enclosing scope as having external linkage. 

Declaration of const variables with the extern storage class forces the variable to 
have external linkage. An initialization of an extern const variable is allowed in 
the defining translation unit. Initializations in translation units other than the defin­
ing translation unit produce undefined results. 

The following code shows two extern declarations, Defi nedEl sewhere (which 
refers to a name defined in a different translation unit) and Defi nedHere (which 
refers to a name defined in an enclosing scope): 

extern int DefinedElsewhere; 

int main() 
{ 

int DefinedHere; 
{ 

extern int DefinedHere; 

} 

return 0; 

II Defined in another translation 
II unit. 

II Refers to DefinedHere in 
II the enclosing scope. 

Initialization of Objects 
A local automatic object or variable is initialized every time the flow of control 
reaches its definition. A local static object or variable is initialized the first time 
the flow of control reaches its definition. Consider the following example, which 
defines a class that logs initialization and destruction of objects, then defines three 
objects, II, 12, and 13: 
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#include <iostream.h> 
#include <string.h> 

II Define a class that logs initializations and destructions. 
cl ass InitDemo 
{ 

public: 
InitDemo( const char *szWhat ); 
-InitDemo(); 

private: 
char *szObjName; 

} ; 

II Constructor for class InitDemo 
InitDemo: :InitDemo( const char *szWhat 
{ 

} 

if( szWhat != 0 && strlen( szWhat ) > 0 ) 
{ 

} 

II Allocate storage for szObjName, then copy 
II initializer szWhat into szObjName. 
szObjName = new char[ strlen( szWhat ) + 1 ]; 
strcpy( szObjName, szWhat ); 

cout « "Initializing: " « szObjName « "\n"; 

else 
szObjName 0' , 

II Destructor for InitDemo 
InitDemo::-InitDemo() 
{ 

} 

if( szObjName != 0 
{ 

} 

cout « "Destroying: " « szObjName « "\n"; 
delete szObjName; 

II Enter main function 
int main() 
{ 

In itDemo I1 ( "Auto I1" ); 
{ 

} 

cout « "In block.\n"; 
InitDemo I2( "Auto I2" ); 
stati c InitDemo I3( "Stati c 13" ); 

cout « "Exited block.\n"; 

return 0; 
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The preceding code demonstrates how and when the objects II, 12, and 13 are 
initialized and when they are destroyed. The output from the program is: 

Initializing: Auto II 
In block. 
Initializing: Auto 12 
Initializing: Static 13 
Destroying: Auto 12 
Exited block. 
Destroying: Auto II 
Destroying: Static 13 

There are several points to note about the program. 

First, II and 12 are automatically destroyed when the flow of control exits the 
block in which they are defined. 

Second, in C++, it is not necessary to declare objects or variables at the beginning 
of a block. Furthermore, these objects are initialized only when the flow of control 
reaches their definitions. (I2 and 13 are examples of such definitions.) The out­
put shows exactly when they are initialized. 

Finally, static local variables such as 13 retain their values for the entire duration 
of the program but are destroyed as the program terminates. 

C++ supports three kinds of object types: 

• Fundamental types, which are built into the language (such as int, float, or 
double). Instances of these fundamental types are often called "variables." 
These are discussed in "Fundamental Types" on page 50. 

• Derived types, which are new types derived from built-in types. These are dis­
cussed in "Derived Types" on page 52. 

• Class types, which are new types created by combining existing types. These 
are discussed in Chapter 8, "Classes." 
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Fundamental Types 
Fundamental types in C++ are divided into three categories: "integral," "floating," 
"void," and "segment." Integral types are capable of handling whole numbers, 
while floating types are capable of specifying values that may have fractional parts. 

The void type describes an empty set of values. No variable of type void may be 
specified-it is primarily used in declaring functions that return no values or in de­
claring "generic" pointers to untyped or arbitrarily typed data. Any expression can 
be explicitly converted or cast to type void. However, such expressions are re­
stricted to the following uses: 

• An expression statement. (See Chapter 4, "Expressions," for more information.) 

• The left operand of the comma operator. (See "The Comma Operator" in Chap­
ter 4, on page 116 for more information.) 

• The second or third operand of the conditional operator (? :). (See "Expressions 
with the Conditional Operator" in Chapter 4, on page 117 for more 
information. ) 

The __ segment type is used only when specifying the segment for a based object 
or pointer. 

Table 2.3 explains the restrictions on type sizes. These restrictions are independent 
of the Microsoft implementation. 

Table 2.3 Fundamental Types of the C++ Language 

Category Type 

Integral char 

Contents 

Type char is an integral type that usually contains members 
of the execution character set-in Microsoft C++, this is 
ASCII. 

Variables of type char may be declared as signed char or 
unsigned char; in either case, they are the same size as a 
variable declared simply as type char. The C++ compiler 
treats variables of type char, signed char, and unsigned 
char as having different types. Variables of type char are 
treated as type signed char by default, unless the IJ 
compilation option is used, in which case they are treated as 
type unsigned char. 

short Type short int (or simply short) is an integral type that is 
larger than or equal to the size of type char, and shorter 
than or equal to the size of type int. 
Objects of type short may be declared as signed short or 
unsigned short; in either case, they are the same size as an 
object declared simply as type short. The C++ compiler 
treats objects of type short and signed short as different 
from unsigned short. 
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Category Type 

int 

long 

Floating float 
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Contents 

Type int is an integral type that is larger than or equal to the 
size of type short int and shorter than or equal to the size of 
type long. 
Objects of type int may be declared as signed int or 
unsigned int; in either case, they are the same size as an 
object declared simply as type into The C++ compiler treats 
objects of type int and signed int as different from 
unsigned int. 

Type long (or long int) is an integral type that is larger than 
or equal to the size of type int. 

Objects of type long may be declared as signed long or 
unsigned long; in either case, they are the same size as 
objects declared simply as type long. The C++ compiler 
treats objects of type long and signed long as different from 
unsigned long. 

Type float is the smallest floating type. 

double Type double is a floating type that is larger than or equal to 
type float but shorter than or equal to the size of type long 
double. 

long double Type long double is a floating type that is larger than or 
equal to type double. 

In Microsoft C++, variables of various fundamental types require different 
amounts of storage, depending on whether the program is compiled for a 16- or 
32-bit target. Table 2.4 shows these differences. 

Table 2.4 Sizes of Fundamental Types 

Type 

char, unsigned char, 
signed char 

short, short int, signed 
short, unsigned short 

int, unsigned int, signed 
int 

long, long int, unsigned 
long, signed long 

float 
double 

long double 

16-bit Target Compilation 32-bit Target Compilation 

I byte 

2 bytes 

2 bytes 

4 bytes 

4 bytes 

8 bytes 

10 bytes 

1 byte 

2 bytes 

4 bytes 

4 bytes 

4 bytes 

8 bytes 

10 bytes 
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Derived Types 

For more information about type conversion, see Chapter 3, "Standard 
Conversions." 

Derived types are new types that can be used in a program. They can conceptually 
be divided into types that are directly derived and types that are composed of other 
types. Both types are discussed in this section. 

Directly Derived Types 
New types derived directly from existing types are types that point to, refer to, or 
(in the case of functions) transform type data to return a new type. These types are 
discussed in the sections that follow. 

Arrays of Variables or Objects Arrays of variables or objects can contain a 
specified number of a particular type. For example, an array derived from integers 
is an array of type int. The following code sample declares and defines an array of 
10 int variables and an array of 5 objects of class Sampl eCl ass: 

int ArrayOflnt[10]; 
SampleClass aSampleClass[5]; 

Functions Functions take zero or more arguments of given types and return ob­
jects of a specified type (or return nothing, if the function has a void return type). 

Pointers of a Given Type Pointers to variables or objects select an object in 
memory. The object can be global, local (or stack-frame), or dynamically allo­
cated. Pointers to functions of a given type allow a program to defer selection of 
the function used on a particular object or objects until run time. The following ex­
ample shows declaration and definition of a pointer to a variable of type char: 

char *szPathStr = new char[_MAX_PATH]; 
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References to Objects References to objects provide a convenient way to 
access objects by reference but use the same syntax required to access objects by 
value. The following example demonstrates how to use references as arguments to 
functions, and as return types of functions: 

BigClassType &func( BigClassType &objname 
{ 

objname.DoSomething(); 

objname.SomeData = 7; 

return objname; 

II Note that member-of operator(.) 
II 
II 
II 

is used. 
Data passed by non-canst 

reference is modifiable. 

The important points about passing objects to a function by reference are: 

• Public member data can be read or modified. See Chapter 10, "Member-Access 
Control," for information about access specifiers such as pUblic. 

• The syntax for accessing members of class, struct, and union objects is the 
same as if they were passed by value: the member-of operator C.). 

• The objects are not copied prior to the function call; their addresses are passed. 
This can reduce the overhead of the function call. 

Additionally, functions that return a reference need only return the address of the 
object to which they refer, instead of a copy of the whole object. 

Although the preceding example describes references only in the context of com­
munication with functions, references are not constrained to this use. Consider, for 
example, a case where a function needs to be an l-value-a common requirement 
for overloaded operators: 

class Vector 
{ 

public: 
Point &operator[]( int nSubscript ); II Function returns a 

II reference type 

} ; 

The preceding declaration specifies a user-defined subscript operator for class 
Vector. In an assignment statement, two possible conditions occur: 

Vector vI; 
i nt i; 
Point p; 
v1[?] = p; 
p=v1[?]; 

II Vector used as an l-value 
II Vector used as an r-value 
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The latter case, where v1[l] is used as an r-value, can be implemented without 
use of references. However, the former case, where v1[l] is used as an I-value, 
cannot be implemented easily without functions that are of reference type. Concep­
tually, the last two statements in the preceding example translate to the following 
code: 

v1.operator[]( 7) 3; 
i = v1.operator[]( 7 ); 

II Vector used as an l-value 
II Vector used as an r-value 

When viewed in this way, it is easier to see that the first statement must be an 
I-value to be semantically correct on the left side of the assignment statement. 

For more information about overloading, and about overloaded operators in partic­
ular, see "Overloaded Operators" in Chapter 12, on page 351. 

Another use for references is in declaring a const reference to a variable or object. 
A reference declared as const retains the efficiency of passing an argument by ref­
erence, while preventing the called function from modifying the original object. 
Consider the following code: 

II IntValue is a canst reference. 
void Printlnt( canst int &IntValue 
{ 

printf( "%d\n", IntValue ); 

Reference initialization is different from assignment to a variable of reference 
type. Consider the following code: 

i nt i 7; 
i nt j = 5; 

II Reference 
int &ri i ; 
int &rj = j; 

II Assignment 
ri 3; 
rj 12 ; 
ri rj; 

i niti al i zati on 
II Initi al ize ri to refer to i. 
II Initi al i ze rj to refer to j. 

II now equal to 3. 
II j now equal to 12. 
II now equals j (12) . 

Constants See "Literals" in Chapter 1, on page 14 for more information about 
the various kinds of constants allowed in C++. 
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Pointers to Class Members These pointers define a type that points to a class 
member of a particular type. Such a pointer can be used by any object of the class 
type or any object of a type derived from the class type. 

Use of pointers to class members enhances the type safety of the C++ language. 
Several new operators and constructs are used with pointers to members, as shown 
in Table 2.5. 

Table 2.5 Operators and Constructs Used with Pointers to Members 

Operator or 
Construct 

::* 

.* 

->* 

Syntax Use 

type::*ptr-name Declaration of pointer to member. The type 
specifies the class name, and ptr-name 
specifies the name of the pointer to member. 
Pointers to members may be initialized. For 
example: 

MyType::*pMyType = &MyType::i; 

obj-name.*ptr-name Dereference a pointer to a member using an 
object. For example: 

int j = Object.*pMyType; 

obj-ptr->*ptr-name Dereference a pointer to a member using a 
pointer to an object. For example: 

int j pObject->*pMyType; 

Consider this example that defines a class AType and the derived type pDAT, 
which points to the member 11: 

#include <iostream.h> 

II Define class AType. 
class AType 
{ 

public: 
int 11; 
Show() { cout « Il « "\n"; } 

} ; 

II Define a derived type pDAT that points to 11 members of 
II objects of type AType. 
int AType::*pDAT = &AType::11; 
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int maine) 
{ 

AType aType; 
AType *paType 

II Define an object of type AType. 
&aType; II Define a pointer to that object. 

int i· , 

aType.*pDAT 7777; 
aType.Show(); 

i = paType->*pDAT; 
operator. 

cout « i « "'n"; 

return 0; 

II Assign to aType::Il using .* operator. 

II Dereference a pointer using .-> 

The pointer to member pDAT is a new type derived from class AType. It is more 
strongly typed than a "plain" pointer because it points only to int members of 
class AType (in this case, I 1). Pointers to static members are plain pointers rather 
than pointers to class members. Consider the following example: 

class HasStaticMember 
{ 

public: 
static int SMember; 

} ; 
int HasStaticMember::SMember = 0; 

int *pSMember = &HasStaticMember::SMember; 

Note that the type of the pointer is "pointer to int," and not "pointer to 
HasStati cMember:: i nt." 

Pointers to members can refer to member functions as well as member data. 
Consider the following code: 

#include <stdio.h> 

II Declare a base class, A, with a virtual function, Identify. 
II (Note that in this context, struct is the same as class.) 
struct A 
{ 

virtual void Identify() 0; II No definition for class A. 
} ; 



II Declare a pointer to the Identify member function. 
void (A::*pIdentify)() = &A::Identify; 

II Declare class B derived from class A. 
struct B public A 
{ 

void Identify(); 
} ; 

II Declare class C derived from class A. 
struct C public A 
{ 

void Identify(); 
} ; 

II Define Identify functions for classes Band C. 
void B::Identify() 
{ 

printf( "Identification is B::Identify\n" ); 
} 

void C::Identify() 
{ 

printf( "Identification is C::Identify\n" ); 
} 

int main() 
{ 

B BObject; 
C CObject; 
A *pA; 

II Declare objects of type B 
II and type C. 
II Declare pointer to type A. 
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pA = &BObject; 
(pA->*pIdentify)(); 

II Make pA point to an object of type B. 
II Call Identify function through pointer 
II to member pIdentify. 

pA = &CObject; 
(pA->*pIdentify)(); 

return 0; 

II Make pA point to an object of type C. 
II Call Identify function through pointer 
II to member pIdentify. 

The output from this program is: 

Identification is B::Identify 
Identification is C::Identify 

The function is called through a pointer to type A. However, because the function 
is a virtual function, the correct function for the object to which pA refers is called. 
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Composed Derivative Types 
The following sections discuss composed derivative types. Information about 
aggregate types and initialization of aggregate types can be found in "Initializing 
Aggregates" in Chapter 7, on page 219. 

Classes Classes are a composite group of member objects, functions to manipu­
late these members, and (optionally) access-control specifications to member ob­
jects and functions. 

By grouping composite groups of objects and functions in classes, C++ allows pro­
grammers to create derivative types that define not only data but also the behavior 
of objects. 

Class members default to private access and private inheritance. Classes are 
covered in Chapter 8, "Classes"; access control is covered in Chapter 10, 
"Member-Access Control." 

Structures C++ structures are the same as classes, except that all member data 
and functions default to public access, and inheritance defaults to public inheri­
tance. 

For more information about access control, see Chapter 10, "Member-Access 
Control." 

Unions Unions allow programmers to define types capable of containing differ­
ent kinds of variables in the same memory space. The following code shows how 
you can use a union to store several different types of variables: 

II Declare a union that can hold data of types char, int, long, 
II float, double, or char * 
union ToPrint 
{ 

} ; 

char 
int 
long 
float 
double 

chVar; 
iVa r; 
1 Va r; 
fVar; 
dVar; 

char *szVar; 
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II Declare an enumerated type that describes what type to print. 
enum PrintType {CHAR_T, INT_T, LONG_T, 

FLOAT_T, DOUBLE_T, STRING_T }; 

void Print( ToPrint Var, PrintType Type) 
{ 

} 

switch( Type 
{ 

case CHAR_ T: 
printf( "%c", Var.chVar ); 
break; 

case INT_ T: 
printf( "%d", Var.iVar ); 
break; 

case LONG_ T: 
printf( "%ld", Var.1Var ); 
break; 

case FLOAT_ T: 
printf( "%d", Var.fVar ); 
break; 

case DOUBLE_ T: 
printf( "%f", Var.dVar ); 
break; 

case STRING_ T: 

} 

printf( "%s", Var.szVar ); 
b rea k; 

Synonyms for both fundamental and derived types can be defined using the 
typedef keyword. The following code illustrates the use of typedef: 

typedef unsigned char BYTE; 
typedef BYTE * PBYTE; 

BYTE Ch; 
PBYTE pbCh; 

II 8-bit unsigned entity. 
II Pointer to BYTE. 

II Declare a variable of type BYTE. 
II Declare a pointer to a BYTE 
II variable. 
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The preceding example shows uniform declaration syntax for the fundamental 
type unsigned char and its derivative type unsigned char *. The typedef con­
struct is also helpful in simplifying declarations. The following example declares a 
type name (pv FN) representing a pointer to a function that returns type void. The 
advantage of this declaration is that, later in the program, an array of these pointers 
is declared very simply. 

#include <iostream.h> 
#include <stdlib.h> 

II Prototype two functions. 
void func1(); 
void func2(); 

II Define PVFN to represent a pOinter to a function that 
II returns type void. 
typedef void (*PVFN)(); 

II Declare an array of pointers to functions. 
PVFN pvfn[] = { funcl, func2 }; 

II Invoke one of the functions. 
(*pvfn[l])(); 

2.8 L-Values and R-Values 
Expressions in c++ can evaluate to "I-values" or "r-values." L-values are expres­
sions that evaluate to a type other than void and that designate a variable. 

L-values appear on the left side of an assignment statement (hence the "1" in 
I-value). Variables that would normally be I-values can be made nonmodifiable by 
using the const keyword; these may not appear on the left of an assignment 
statement. 

Reference types are always I-values. 
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Some examples of correct and incorrect usages are: 

7 ; II Co r recto A variable name, i , is an l-value. 
7 = i· , II Error. A constant, 7, is an r-value. 
j * 4 = 7 ; II Error. The expression j * 4 yields an r-value. 
*p = i· , II Correct. A dereferenced pointer is an l-value. 
const int ci 7· , II Declare a const variable. 
ci = 9· , II ci is a nonmodifiable l-value, so the 

II assignment causes an error message to 
II be generated. 

((i < 3) ? i II Correct. Conditional operator ( ? : ) 
j) 7· , II returns an l-value. 

Note The previous example illustrates correct and incorrect usage when operators 
are not overloaded. By overloading operators, you can make an expression such 
as j * 4 an I-value. 

2.9 Name Spaces 
"N ame space" refers to the place the compiler keeps symbols used to refer to 
various program elements. The place a symbol is kept influences whether two pro­
gram symbols will conflict. C has two name spaces, but c++ maintains only one 
name space. 

The two C name spaces are: 

• Variable, function, typedef, and enumerator name space 

• Structure, enumeration, and union tag name space 

In C++, all these names share a single name space. 

2.10 Numerical Limits 
The two standard include files, LIMITS.H and FLOAT.H, define the "numerical 
limits," or minimum and maximum values, a variable of a given type can hold. 
These minimums and maximums are guaranteed to be portable to any C++ com­
piler that uses the same data representation as ANSI C. The LIMITS.H include file 
defines the numerical limits for integral types, and FLOAT.H defines the numeric 
limits for floating types. 



62 C++ Language Reference 

Integral Limits 
The limits (constant names, meanings, and values) for integral types are defined in 
the standard include file LIMITS.H. They are shown in Table 2.6. 

Table 2.6 Limits for Integral Types 

Constant Meaning 

CHAlLBIT Number of bits in the smallest variable that 
is not a bit field. 

SCHAlL MIN Minimum value for a variable of type 
signed char. 

SCHAlL MAX Maximum value for a variable of type 
signed char. 

UCHAlLMAX Maximum value for a variable of type 
unsigned char. 

CHAlLMIN Minimum value for a variable of type char. 

CHAlLMAX Maximum value for a variable of type char. 

MB_LEN_MAX Maximum number of bytes in a 
multicharacter constant. 

SHRLMIN Minimum value for a variable of type short. 

SHRLMAX Maximum value for a variable of type 
short. 

USHRT_MAX Maximum value for a variable of type 
unsigned short. 

INLMIN Minimum value for a variable of type inti. 

INLMAX Maximum value for a variable of type int2. 

UINT_MAX Maximum value for a variable of type 
unsigned int3. 

LONG_MIN Minimum value for a variable of type long. 

LONG_MAX Maximum value for a variable of type long. 

ULONG_MAX Maximum value for a variable of type 
unsigned long. 

IThe value for INT_MIN is -2147483648 for 32-bit target compilations 

2The value for INT_MAX is 2147483647 for 32-bit target compilations 

Value 

8 

-127 

127 

255 (Oxff) 

Same as -127; 
o if /J option used. 

Same as 127; 255 
if /J option used. 

2 

-32767 
32767 

65535 (Oxffff) 

-32767 
32767 
65535 (Oxffff) 

-2147483647 
2147483647 
4294967295 
(Oxffffffff) 

3The value for UINT_MAX is 4294967295 (Oxffffffff) for 32-bit target compilations 
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The limits (constant names, meanings, and values) for floating types are defined in 
the standard include file FLOAT.H. They are: 

Table 2.7 Limits for Floating Types 

Constant 

FLT_DlG 
DBL_DlG 
LDBL_DlG 

FLT_EPSILON 
DBL_EPSILON 
LDBL_EPSILON 

FLT_MANT _DIG 
DBL_MANT_DlG 
LDBL_MANLDlG 

FLLMAX 
DBL_MAX 
LDBL_MAX 

FLLMA~lO_EXP 

DBL_MA~ lO_EXP 
LDBL_MAX_IO_EXP 

FLT_MA~EXP 

DBL_MA~EXP 

LDBL_MAX_EXP 

FLT_MIN 
DBL_MIN 
LDBL_MIN 

Meaning 

Number of digits, q, 
such that a floating­
point number with q 
decimal digits can be 
rounded into a 
floating-point 
representation and 
back, without loss of 
precision. 

Smallest positive 
number x, such that x 
oj:. 1.0 + x 

Number of digits in 
the radix specified by 
FLLRADIX in the 
floating-point 
significand. In 
Microsoft C/C++, the 
radix is 2; hence 
these values specify 
bits. 

Maximum 
representable floating­
point number. 

Maximum integer 
such that 10 raised to 
that number is a 
representable floating­
point number. 

Maximum integer 
such that 
FLT_RADIX raised 
to that number is a 
representable floating­
point number. 

Minimum positive 
normalized floating­
point number. 

Value 

7 
15 
19 

1. 192092896e-07F 
2.2204460492503131 e-O 16 
5A210108624275221706e-020 

24 
53 
64 

3 A02823466e+ 3 8F 
1.7976931348623158e+308 
1.189731495357231765e+4932L 

38 
308 
4932 

128 
1024 
16384 

1.175494351 e-38F 
2.22507385850720 14e-308 
3.3621031431120935063e-4932L 
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Table 2.7 (continued) 

Constant Meaning Value 

FLT_MIN_IO_EXP Minimum negative -37 
DBL_MIN_IO_EXP integer such that 10 -307 
LDBL_MIN_IO_EXP raised to that number -4931 

is a representable 
floating-point number. 

FLLMIN_EXP Minimum negative -125 
DBLMIN_EXP integer such that -1021 
LDBL_MIN_EXP FLT_RADIX raised -16381 

to that number is a 
representable floating-
point number. 

FLLRADIX Radix of exponent 2 
DBLRADIX representation. 2 
LDBL_RADIX 2 
FLLROUNDS Rounding mode for 1 (near) 
DBL_ROUNDS floating-point 1 (near) 
LDBLROUNDS addition. 1 (near) 
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The C++ language defines conversions between its fundamental types. It also de­
fines conversions for pointer, reference, and pointer-to-member derived types. 
These conversions are called "standard conversions." (For more infommtion about 
types, standard types, and derived types, see "Types" in Chapter 2, on page 49.) 

This chapter discusses the following standard conversions: 

• Integral promotions 

• Integral conversions 

• Floating conversions 

• Floating and integral conversions 

• Arithmetic conversions 

• Pointer conversions 

• Reference conversions 

• Pointer-to-member conversions 

Note User-defined types can specify their own conversions. Conversion of user­
defined types is covered in "Constructors" and "Conversions" in Chapter II, on 
pages 300 and 312, respectively. 

The following code causes conversions (in this example, integral promotions): 

long lnuml,lnum2; 
int inurn; 

II inurn promoted to type long prior to assignment. 
lnuml = inurn; 

II inurn promoted to type long prior to 
II multiplication. 
lnum2 = inurn * lnum2; 
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Note The result of a conversion is an I-value only if it produces a reference type. 
For example, a user-defined conversion declared as 
MyType &operator int() 

returns a reference and is an I-value. However, a conversion declared as 

MyType operator int() 

returns an object and is not an I-value. 

3.1 Integral Promotions 
Objects of an integral type can be converted to another wider integral type (that is, 
a type that can represent a larger set of values). This widening type of conversion 
is called "integral promotion." Integral promotion allows the following to be used 
in an expression wherever another integral type can be used: 

• Objects, literals, and constants of type char and short int 

• Enumeration types 

• int bit fields 

• Enumerators 

c++ promotions are "value-preserving." That is, the value after the promotion is 
guaranteed to be the same as the value before the promotion. In value-preserving 
promotions, objects of shorter integral types (such as bit fields or objects of type 
char) are promoted to type int if int can represent the full range of the original 
type. If int cannot represent the full range of values, then the object is promoted to 
type unsigned int. While this strategy is the same as that used by ANSI C, value­
preserving conversions do not preserve the "signedness" of the object. 

Value-preserving promotions and promotions that preserve signedness normally 
produce the same results. However, they can produce different results if the pro­
moted object is one of the following: 

• An operand of I, %,1=, %=, <, <=, >, or >= 

These operators rely on sign for determining the result. Therefore, value­
preserving and sign-preserving promotions produce different results when ap­
plied to these operands. 

• The left operand of »or »= 

These operators treat signed and unsigned quantities differently when perform­
ing a shift operation. For signed quantities, shifting a quantity right causes the 
sign bit to be propagated into the vacated bit positions. For unsigned quantities, 
the vacated bit positions are zero-filled. 
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• An argument to an overloaded function or operand of an overloaded operator 
that depends on the sign of that operand for argument matching. (See "Over­
loaded Operators" in Chapter 12, on page 351 for more about defining over­
loaded operators.) 

3.2 Integral Conversions 
Integral conversions are performed between integral types. The integral types are 
char, int, and long (and the short, signed, and unsigned versions of these types). 

Converting Signed to Unsigned 
Objects of signed integral types can be converted to corresponding unsigned types. 
When these conversions occur, the actual bit pattern does not change; however, 
the interpretation of the data changes. Consider this code: 

#include <iostream.h> 

int main() 
{ 

} 

short i = -3; 
unsigned short u; 

cout « (u = i) « "\n"; 

return 0; 

The following output results: 

65533 

In the preceding example, a signed short, i, is defined and initialized to a nega­
tive number. The expression (u = i) causes i to be converted to an unsigned 
short prior to the assignment to u. 

Converting Unsigned to Signed 
Objects of unsigned integral types can be converted to corresponding signed types. 
However, such a conversion can cause misinterpretation of data if the value of the 
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unsigned object is outside the range representable by the signed type, as demon­
strated in the following example: 

#include <iostream.h> 

void maine) 
{ 

short i; 
unsigned short u = 65533; 

cout « (i = u) « "\n"; 
} 

The following output results: 

-3 

In the preceding example, u is an unsigned short integral object that must be con­
verted to a signed quantity to evaluate the expression (i = u). Because its value 
cannot be properly represented in a signed short, the data is misinterpreted as 
shown. 

Standard Conversion 
Objects of integral types can be converted to shorter signed or unsigned integral 
types. However, this can result in loss of data if the value of the original object is 
outside the range representable by the shorter type. Such a conversion is called 
"standard conversion." 

Note The compiler issues a high-level warning when a conversion to a shorter 
type takes place. 

3.3 Floating Conversions 
An object of a floating type can be safely converted to a more precise floating 
type-that is, the conversion causes no loss of significance. For example, conver­
sions from float to double or from double to long double are safe, and the value 
is unchanged. 

An object of a floating type can also be converted to a less precise type, if it is in a 
range representable by that type. (See "Floating Limits" in Chapter 2, on page 63 
for the ranges of floating types.) If the original value cannot be represented pre­
cisely, it can be converted to either the next higher or the next lower representable 
value. If no such value exists, the result is undefined. Consider the following 
example: 
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cout « (float)lE300 « endl; 

The maximum value representable by type float is 3.402823466E38-a much 
smaller number than lE300. Therefore, the number is converted to infinity, and 
the result is 1.#INF. 

3.4 Floating and Integral Conversions 
Certain expressions can cause objects of floating type to be converted to integral 
types, or vice versa. 

Floating to Integral 
When an object of floating type is converted to an integral type, the fractional part 
is truncated. No rounding takes place in the conversion process. Truncation means 
that a numberlike 1.3 is converted to 1, and -1.3 is converted to-1. 

Integral to Floating 
When an object of integral type is converted to a floating type and the original 
value cannot be represented exactly, the result is either the next higher or next 
lower representable value. 

3.5 Arithmetic Conversions 
Many binary operators (discussed in "Expressions with Binary Operators" in 
Chapter 4, on page 102) cause conversions of operands and yield results the same 
way. The way these operators cause conversions is called "usual arithmetic conver­
sions." Arithmetic conversions of operands of different types are performed as 
shown in Table 3.1. 

Table 3.1 Conditions for Type Conversion 

Conditions Met 

Either operand is of type long double. 

Preceding condition not met and either 
operand is of type double. 

Preceding conditions not met and either 
operand is of type float. 

Conversion 

Other operand is converted to type long 
double. 

Other operand is converted to type double. 

Other operand is converted to type float. 
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Table 3.1 (continued) 

Conditions Met 

Preceding conditions not met (none of 
the operands are of floating types). 

Conversion 

Integral promotions are performed on the 
operands as follows: 

• If either operand is of type unsigned 
long, the other operand is converted to 
type unsigned long. 

• If preceding condition not met, and if 
either operand is of type long and the 
other of type unsigned int, the operand 
of type unsigned int is converted to type 
long (in 16-bit compilations) or both 
operands are converted to type unsigned 
long (in 32-bit compilations). 

• If the preceding two conditions are not 
met, and either operand is of type long, 
the other operand is converted to type 
long. 

• If the preceding three conditions are not 
met, and either operand is of type 
unsigned int, the other operand is 
converted to type unsigned into 

• If none of the preceding conditions are 
met, both operands are converted to type 
into 

The following code illustrates the conversion rules described in Table :r.l: 

float fVal; 
double dVal; 
int iVal; 
unsigned long ulVal; 

dVal = iVal * ulVal; II iVal converted to unsigned long; 
II result of multiplication converted to double. 

dVal ulVal + fVal; II ulVal converted to float; 
II result of addition converted to double. 

The first statement in the preceding example shows multiplication of two integral 
types, i Val and u 1 Val. The condition met is that neither operand is of floating 
type and one operand is of type unsigned int. Therefore, the other operand, iVa 1 , 
is converted to type unsigned int. The result is assigned to d Va 1. The condition 
met is that one operand is of type double; therefore, the unsigned int result of the 
multiplication is converted to type double. 
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The second statement in the preceding example shows addition of a float and an 
integral type, fVa 1 and u 1 Val. The u 1 Val variable is converted to type float 
(third condition in Table 3.1). The result of the addition is converted to type 
double (second condition in Table 3.1) and assigned to dVal. 

3.6 Pointer Conversions 

Null Pointers 

Pointers can be converted during assignment, initialization, comparison, and other 
expressions. These conversions are described in the following sections. 

An integral constant expression that evaluates to zero, or such an expression cast 
to type void *, is converted to a pointer called the "null pointer." This pointer is 
guaranteed to compare unequal to a pointer to any valid object or function (except 
for pointers to based objects, which can have the same offset and still point to 
different objects). 

Pointers to Type void 
Pointers to type void can be converted to pointers to any other type, but only with 
an explicit type cast. (See "Expressions with Explicit Type Conversions" in Chap­
ter 4, on page 119 for more information about type casts). A pointer to any type 
can be converted implicitly to a pointer to type void. 

A pointer to an incomplete object of a type can be converted to a pointer to void 
and back. The result of such a conversion is equal to the value of the original 
pointer. An incomplete object is an object that is declared, but for which insuffi­
cient information is available to determine its size. 

Pointers to Objects 
A pointer to any object that is not const or volatile can be converted to a pointer 
of type void *. 

Pointers to Functions 
A pointer to a function can be converted to type void *, if type void * is large 
enough to hold that pointer. 
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Microsoft Specific In medium-mode116-bit target compilations, the data pointer size is 2 bytes, and 
the code pointer size is 4 bytes. Therefore, a pointer to type void is too small to 
hold a pointer to a function .• 

Pointers to Classes 
There are two cases in which a pointer to a class can be converted to a pointer to a 
base class. 

The fIrst case is when the specified base class is accessible and the conversion is 
unambiguous. (See "Multiple Base Classes" in Chapter 9, on page 267 for more in­
formation about ambiguous base-class references.) 

Whether a base class is accessible depends on the kind of inheritance used in 
derivation. Consider the inheritance situation illustrated in Figure 3.1. 

Figure 3.1 Inheritance Graph for Illustration of Base-Class 
Accessibility 

Table 3.2 shows the base-class accessibility for the situation illustrated in 
Figure 3.1. 

Table 3.2 Base-Class Accessibility 

Type of Function. Derivation 

External (not c1ass-scoped) function Private 

Protected 

Public 

B member function (in B scope) Private 

Protected 
Public 

C member function (in C scope) Private 

Conversion from B* to A * Legal? 

No 

No 

Yes 

Yes 

Yes 

Yes 

No 

Protected Yes 

Public Yes 
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The second case in which a pointer to a class can be converted to a pointer to a 
base class is when you use an explicit type conversion. (See "Expressions with Ex­
plicit Type Conversions" in Chapter 4, on page 119 for more information about ex­
plicit type conversions. 

The result of such a conversion is a pointer to the "subobject," the portion of the 
object that is completely described by the base class. 

The following code defines two classes, A and B, where B is derived from A. 
(For more information on inheritance, see Chapter 9, "Derived Classes.") It then 
defines bObject, an object of type B, and two pointers (pA and pB) that point to 
the object. 

class A 
{ 

public: 
int AComponent; 
int AMemberFunc(); 

} ; 

class B public A 
{ 
public: 

int BComponent; 
int BMemberFunc(); 

} ; 

B bObject; 
A *pA = &bObject; 
B *pB = &bObject; 

pA->AMemberFunc(); 
pB->AMemberFunc(); 
pA->BMemberFunc(); 

II OK in class A 
II OK: inherited from class A 
II Error: not in class A 

The pointer pA is of type A *, which can be interpreted as meaning "pointer to an 
object oftype A." Members of bObject (such as BComponent and BMemberFunc) 
are unique to type B and are therefore inaccessible through pA. The pA pointer 
allows access only to those characteristics (member functions and data) of the ob­
ject that are defined in class A. 

Any expression with an array type can be converted to a pointer of the same type. 
The result of the conversion is a pointer to the first array element. The following 
example demonstrates such a conversion: 

char szPath[_MAX_PATH]; II Array of type char. 
char *pszPath = szPath; II Equals &szPath[0]. 
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An expression that results in a function returning a particular type is converted to a 
pointer to a function returning that type, except when: 

• The expression is used as an operand to the address-of operator (&). 

• The expression is used as an operand to the function-call operator. 

Pointers Modified by Microsoft Keywords 
The Microsoft keywords __ near, __ far, __ huge, and __ based modify types to 
specify the addressing desired. The following standard conversions between point­
ers modified by these keywords are performed (provided the types obey the con­
version rules discussed elsewhere in this chapter): 

• A near pointer can be promoted to a far pointer. 

• Any pointer can be converted to a huge pointer by first converting the pointer to 
a far pointer, then converting it to a huge pointer. 

• A huge pointer can be converted to a far pointer. Because far addressing has 
different implications than huge addressing, the compiler issues a warning. 

• A pointer based on a near address can be converted to a near pointer. 

• A pointer based on any segment other than void can be converted to a far 
pointer. 

Microsoft C++ supplies no standard conversions to any form of based pointer or 
from any form of address that contains or implies segment information (far, huge, 
or based) to a near pointer. 

C++ does not supply a standard conversion from a const or volatile type to a type 
that is not const or volatile. However, any sort of conversion can be specified 
using explicit type casts (including conversions that are unsafe). 

Note C++ pointers to members, with the exception of pointers to static members, 
are different from normal pointers and do not have the same standard conversions. 
Pointers to static members are normal pointers and have the same conversions as 
normal pointers. (See "Pointers to Class Members" in Chapter 2, on page 55 for 
more information.) 
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3.7 Reference Conversions 
A reference to a class can be converted to a reference to a base class in the follow­
ing cases: 

• The specified base class is accessible (as defined in "Pointers to Classes" on 
page 72). 

• The conversion is unambiguous. (See "Multiple Base Classes" in Chapter 9, on 
page 267 for more information about ambiguous base-class references.) 

The result of the conversion is a pointer to the subobject that represents the base 
class. 

For more information about references, see "References to Objects" in Chapter 2, 
on page 53. 

3.8 Pointer-to-Member Conversions 
Pointers to class members can be converted during assignment, initialization, com­
parison, and other expressions. These conversions are discussed in the next two 
sections. 

Integral Constant Expressions 
An integral constant expression that evaluates to zero is converted to a pointer 
called the "null pointer." This pointer is guaranteed to compare unequal to a 
pointer to any valid object or function (except for pointers to based objects, which 
can have the same offset and still point to different objects). 

The following code illustrates the definition of a pointer to member i in class A. 
The pointer, pa i, is initialized to 0, which is the null pointer. 

class A 
{ 

public: 
i nt i; 

} ; 

intA::*pai 0· , 
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Pointers to Base-Class Members 
A pointer to a member of a base class can be converted to a pointer to a member 
of a class derived from it, when the following conditions are met: 

• The inverse conversion, from derived class to base class pointer, is accessible. 

• The derived class does not inherit virtually from the base class. 
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This section describes C++ expressions. Expressions are sequences of operators 
and operands that are used for one or more of these purposes: 

• Computing a value from the operands. 

• Designating objects or functions. 

• Generating "side effects." (Side effects are any actions other than the evaluation 
of the expression-for example, modifying the value of an object.) 

In C++, operators can be overloaded and their meanings can be user-defined. How­
ever, their precedence and the number of operands they take cannot be modified. 
This chapter describes the syntax and semantics of operators as they are supplied 
with the language, not overloaded. (For more information about overloaded opera­
tors, see "Overloaded Operators" in Chapter 12, on page 351.) 

Note Operators for built-in types cannot be overloaded; their behavior is 
predefined. 

4.1 Types of Expressions 
C++ expressions are divided into several categories: 

• Primary expressions. These are the building blocks from which all other expres­
sions are formed. (See "Primary Expressions" on page 78.) 

• Postfix expressions. These are primary expressions followed by an operator­
for example, the array subscript or postincrement operator. (See "Postfix Ex­
pressions" on page 81.) 

• Expressions formed with unary operators. Unary operators act on only one oper­
and in an expression. (See "Expressions with Unary Operators" on page 91.) 

• Expressions formed with binary operators. Binary operators act on two oper­
ands in an expression. (See "Expressions with Binary Operators" on page 102.) 
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• Expressions formed with the conditional operator. The conditional operator is a 
ternary operator-the only such operator in the C++ language-and takes three 
operands. (See "Expressions with the Conditional Operator" on page 117.) 

• Constant expressions. Constant expressions are formed entirely of constant 
data. (See "Constant Expressions" on page 118.) 

• Expressions with explicit type conversions. Explicit type conversions, or 
"casts" can be used in expressions. (See "Expressions with Explicit Type 
Conversions" on page 119.) 

• Expressions with pointer-to-member operators. (See "Expressions with Pointer­
to-Member Operators" on page 124.) 

Primary Expressions 

Syntax 

Primary expressions are the building blocks of more complex expressions. They 
are literals, names, and names qualified by the scope-resolution operator (::). 

primary-expression: 
literal 
this 
•• identifier 
:: operator-Junction-name 
:: qualified-name 
( expression ) 
name 

A literal is a constant primary expression. Its type depends on the form of its speci­
fication. See "Literals" in Chapter 1, on page 14 for complete information about 
specifying literals. 

The this keyword is a pointer to a class object. It is available within nonstatic 
member functions and points to the instance of the class for which the function 
was invoked. The this keyword cannot be used outside the body of a class-mem­
ber function. 

The type of the this pointer is type *const (where type is the class name) within 
functions not specifically modifying the this pointer. The following example 
shows member function declarations and the types of this: 
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Syntax 

class Example 
{ 

public: 
void Func(); 
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II Example: * const this 
II Example: const * const this void Func() const; 

void Func() volatile; II Example: volatile * const this 
} ; 

See "Type of this Pointer" in Chapter 8, on page 245 for more information about 
modifying the type of the this pointer. 

The this pointer has an associated addressing model-from the compilation op­
tions, the "ambient data model" of the class, or one that is explicitly specified in 
the declaration of an object of class type. Therefore, the this pointer can be a near, 
far, or huge pointer. For more information about addressing models as they affect 
classes, see "Memory-Model Modifiers and Member Functions" in Appendix B, 
on page 400.+ 

The scope-resolution operator (::), followed by an identifier, operator-Junction­
name, or qualified-name constitutes a primary expression. The type of this expres­
sion is determined by the declaration of the identifier, operator-Junction-name, or 
name. It is an I-value if the declaring name is an I-value. The scope-resolution 
operator allows a global name to be referred to, even if that name is hidden in the 
current scope. See "Scope" in Chapter 2, on page 28 for an example of how to use 
the scope-resolution operator. 

An expression enclosed in parentheses is a primary expression whose type and 
value are identical to those of the unparenthesized expression. It is an I-value if the 
unparenthesized expression is an I-value. 

Names 
A name is a primary expression that can appear only after the member-selection 
operators (. or -». 

name: 
identifier 
operator-Junction-name 
conversion-Junction-name 
- class-name 
qualified-name 

Any identifier that has been declared is a name. 

An operator-Junction-name is a name that is declared in the form: 

operator operator-name( argument 1 [, argument 2] ); 



80 C++ Language Reference 

Syntax 

See "Overloaded Operators" in Chapter 12, on page 351 for more information 
about declaration of operator-Junction-name. 

A conversion-Junction-name is a name that is declared in the form: 

operator type-name( ) 

Note You can supply a derivative type name, such as char * in place of the 
type-name when declaring a conversion function. 

Conversion functions supply conversions to and from user-defined types. For 
more information about user-supplied conversions, see "Conversion Functions" in 
Chapter 11, on page 315. 

A name declared as - class-name is taken as the "destructor" for objects of a class 
type. Destructors typically perform cleanup operations at the end of an object's 
lifetime. Destructors are discussed in-depth in "Destructors" in Chapter 11, on 
page 305. 

Qualified Names 

qualified-name: 
qualified-class-name :: name 

If a qualified-class-name is followed by the scope-resolution operator (::), and 
then the name of a member of either that class or a base of that class, then the 
scope-resolution operator is considered a qualified-name. The type of a qualified­
name is the same as the type of the member, and the result of a qualified-name ex­
pression is the member. If the member is an I-value, then the qualified-name is 
also an I-value. For information about declaring qualified-class-name, see "Type 
Specifiers" in Chapter 6, on page 168 or "Class Names" in Chapter 8, on page 232. 

The class-name part of a qualified-class-name can be hidden by redeclaration of 
the same name in the current or enclosing scope; the class-name is still found and 
used. See "Scope" in Chapter 2, on page 28 for an example of how to use a 
qualified-class-name to access a hidden class-name. 

Note Class constructors and destructors of the form class-name :: class-name, and 
class-name :: - class-name, respectively, must refer to the same class-name. 

A multiply-qualified name, such as the following, designates a member of a nested 
class: 

class-name :: class-name :: name 
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Postfix Expressions 

Syntax 

Postfix expressions consist of primary expressions or expressions in which postfix 
operators (see Table 4.1) follow a primary expression. 

Table 4.1 Postfix Operators 

Operator Name Operator Notation 

Subscript operator [ ] 

Function-call operator ( ) 

Explicit type conversion type-name( ) 
operator 

Member-selection operator . or-> 

Postfix increment operator ++ 
Postfix decrement operator 

postfix-expression: 
primary-expression 
postfix-expression [ expression] 
postfix-expression ( expression-!istopt ) 
simple-type-name ( expression-listopt ) 
postfix-expression. name 
postfix-expression -> name 
postfix-expression ++ 
postfix-expression - -

expression-list: 
assignment-expression 
expression-list, assignment-expression 

Subscript Operator 
A postfix-expression followed by the subscript operator, [ ], specifies array index­
ing. One of the expressions must be of pointer or array type-that is, it must have 
been declared as type* or type[ ]. The other expression must be of an integral type 
(including enumerated types). In common usage, the expression enclosed in the 
brackets is the one of integral type, but that is not strictly required. Consider the 
following example: 

MyType m[10]; II Declare an array of a user-defined type. 

MyType nl 
MyType n2 

m[2]; II Select third element of array. 
2[m]; II Select third element of array. 
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In the example above, the expression m [2 J is identical to 2 [m J. Although m is 
not of an integral type, the effect is the same. The reason that m[2J is equivalent 
to 2[mJ is that the result of a subscript expression el[ e2 ] is given by: 

*( (e2) + (el) ) 

The address yielded by the above expression is not e2 bytes from the address el. 
Rather, the address is scaled to yield the next object in the array e2. For example: 

#include <iostream.h> 

int maine) 
{ 

doubl e aDbl [2J; 

cout « "Address of fi rst el ement is: " 
« &aDbl[0J « "\n"; 

cout « "Address of second element is: " 
« &aDbl [1J « "\n"; 

return 0; 

The preceding program prints two addresses that are 8 bytes apart-the size of an 
object of type double. This scaling according to object type is done automatically 
by the C++ language, and is defined in "Additive Operations" on page 104 where 
addition and subtraction of operands of pointer type is discussed. 

Positive and Negative Subscripts The first element of an array is element O. 
Therefore, the range of a C++ array is from array[O] to array[size - 1]. However, 
since C++ supports both positive and negative subscripts, it can be convenient to 
use them in arrays. Although C++ permits negative subscripts, they must fall 
within the array boundaries or the results are unpredictable. The following code il­
lustrates this concept: 

#include <iostream.h> 

ma in ( ) 
{ 

int iNumberArray[1024J; 
int *iNumberLine = &iNumberLine[512J; 

cout « iNumberArray[-256J « "\n"; II Run-time error 
cout « iNumberLine[-256J «"\n"; II OK 

return 0; 
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The negative subscript in i NumberArray can produce a run-time error because it 
yields an address 256 bytes lower in memory than the actual origin of the array. 
The object i NumberL i ne is initialized to the middle of i NumberArray; it is there­
fore possible to use both positive and negative array indices on it. Array subscript 
errors do not generate compile-time errors, but they yield unpredictable results. 

The subscript operator is commutative. Therefore, the expressions array[index] 
and index[array] are guaranteed to be equivalent as long as the subscript operator 
is not overloaded (see "Overloaded Operators" in Chapter 12, on page 351). The 
first form is the most common coding practice, but either works. 

Function-Call Operator 
A postfix-expression followed by the function-call operator, ( ), specifies a func­
tion call. The arguments to the function-call operator are zero or more expressions 
separated by commas-the actual arguments to the function. 

The postfix-expression must be of one of these types: 

• Function returning type T. An example declaration is 
T func( int i ) 

• Pointer to a function returning type T. An example declaration is 
T (*fune)( int i ) 

• Reference to a function returning type T. An example declaration is 
T (&fune)(int i) 

• Pointer-to-member function dereference returning type T. Example function 
calls are: 
(pObject->*pmf)(); 
(Obj eet. *pmf) ( ) ; 

Formal and Actual Arguments Calling programs pass information to called 
functions in "actual arguments." The called functions access the information using 
corresponding "formal arguments." 

When a function is called, the following tasks are performed: 

• All actual arguments (those supplied by the caller) are evaluated. There is no 
implied order in which these arguments are evaluated, but all arguments are 
evaluated and all side effects completed prior to entry to the function. 

• Each formal argument is initialized with its corresponding actual argument in 
the expression list. (A formal argument is an argument that is declared in the 
function header and used in the body of a function.) Conversions are done as if 
by initialization-both standard and user-defined conversions are performed in 
converting an actual argument to the correct type. The initialization performed 
is illustrated conceptually by the following code: 
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void Func( int ); II Function prototype 

Func( 7 ); II Execute function call 

The conceptual initializations prior to the call are shown below: 

i n t T emp_ i = 7; 
Func( Temp_ i ); 

Note that the initialization is performed as if using the equal-sign syntax instead 
of the parentheses syntax. A copy of i is made prior to passing the value to 
the function. (For more information, see "Initializers" in Chapter 7, on page 
217 and "Conversions," "Initialization Using Special Member Functions," and 
"Explicit Initialization" in Chapter 11, on pages 312, 325, and 326, respectively. 

Therefore, if the function prototype (declaration) calls for an argument of type 
long, and the calling program supplies an actual argument of type int, the ac­
tual argument is promoted using a standard type conversion to type long (see 
Chapter 3, "Standard Conversions"). 

It is an error to supply an actual argument for which there is no standard or user­
defined conversion to the type of the formal argument. 

For actual arguments of class type, the formal argument is initialized by calling 
the class's constructor. (See "Constructors" in Chapter 11, on page 300 for 
more about these special class member functions.) 

• The function call is executed. 

The following program fragment demonstrates a function call: 

void func( long paraml, double param2 ); 

in t rna in ( ) 
{ 

int i, j; 

II Call func with actual arguments and j. 
func( i, j ); 

II Define func with formal parameters paraml 
II and param2. 
void func( long paraml, double param2 
{ 

} 
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When func is called from main, the fonnal parameter pa ramI is initialized with 
the value of i (i is converted to type long to correspond to the correct type using 
a standard conversion), and the formal parameter param2 is initialized with the 
value of j (j is converted to type double using a standard conversion). 

Treatment of Argument Types Fonnal arguments declared as const types cannot 
be changed within the body of a function. Functions can change any argument that 
is not of type const. However, the change is local to the function and does not af­
fect the actual argument's value unless the actual argument was a reference to an 
object not of type const. 

The following functions illustrate some of these concepts: 

int funcl( int i, int j, char *c ) 
{ 

7· , 
j i ; 

*c = 'a' 

return i; 
} 

+ j; 

II Error: i is canst. 
II OK, but value of j is 
II lost at return. 
II OK: changes value of c 
II in calling function. 

double& func2( double& d, canst char *c 
{ 

d = 14.387; 

*c = 'a'; 

return d; 

II OK: changes value of d 
II in calling function. 
II Error: c is a pointer to 
II a canst object. 

Ellipses and Default Arguments Functions can be declared to accept fewer ar­
guments than specified in the function definition, using one of two methods: ellip­
sis ( ... ) or default arguments. 

Ellipses denote that arguments may be required but that the number and types are 
not specified in the declaration. This is normally poor C++ programming practice 
because it defeats one of the benefits of C++: type safety. Different conversions 
are applied to functions declared with ellipses than to those functions for which 
the formal and actual argument types are known: 
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• If the actual argument is of type float, it is promoted to type double prior to the 
function call. 

• Any signed or unsigned char, short, enumerated type, or bit field is converted 
to either a signed or unsigned int using integral promotion. 

• Any argument of class type is passed by value as a data structure; the copy is 
created by binary copying instead of by invoking the class's copy constructor 
(if one exists). 

Ellipses, if used, must be declared last in the argument list. For more information 
about the use of ellipses to pass a variable number of arguments, see the Run-Time 
Library Reference manual, under the topics: vLarg, va_list, and vLstart. 

Default arguments allow the programmer to specify the value an argument should 
assume if none is supplied in the function call. The following code fragment 
shows how default arguments work (for more information about default argu­
ments, see "Default Arguments" in Chapter 7, on page 210): 

#include <iostream.h> 

II Declare the function print that prints a string, 
II then a terminator. 
void print( const char *string, 

const char *terminator "\n"); 

int main() 
{ 

print( "hello," ) ; 
print( "world!" ) ; 

print( "good morning", " " ) ; 
print( "sunshine." ) ; 

return 0· , 
} 

II Define print. 
void print( char *string, char *terminator ) 
{ 

if( string != NULL) 
cout « string; 

if( terminator != NULL 
cout « terminator; 

The above program declares a function, pri nt, that takes two arguments. How­
ever, the second argument, termi nator, has a default value, "\n". In main, the 
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first two calls to pri nt allow the default second argument to supply a new line to 
terminate the printed string. The third call specifies an explicit value for the sec­
ond argument. The output from the program is: 

hello, 
world 
good morning, sunshine. 

Function Call Results A function call evaluates to an r-value unless the function 
is declared as a reference type. Functions with reference return type evaluate to 
I-values, and it is legal to use them on the left side of an assignment statement as 
follows: 

#include <iostream.h> 

class Point 
{ 

public: 
II Define "accessor" functions as 
II reference types. 
unsigned& xC) { return _x; } 
unsigned& yC) { return _y; } 

private: 
unsigned _x; 
unsigned _y; 

} ; 

int main() 
{ 

Point ThePoint; 

ThePoint.x() = 7; 
unsigned y ThePoint.yC); 

II Use xC) as an l-value. 
II Use yC) as an r-value. 

II Use xC) and yC) as rvalues. 
cout «"x "« ThePoint.xC) « "\n" 

«"y "« ThePoint.yC) « "\n"; 

return 0; 
} 

The above code defines a class called Poi nt, which contains private data objects 
that represent x and y coordinates. These data objects must be modified and their 
values retrieved. The above program is only one of several designs for such a 
class; use ofthe GetX and SetX or GetY and SetY functions is another possible 
design. 

A function returning a pointer to an object can appear on the left side of an assign­
ment statement as follows: 
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struct A 
{ 

i nt i; 
} ; 

A *func(); 

func( )->i = 7; 

The above statement is legal because func returns a pointer to an object of type 
A. Therefore, the member-selection operator, ->, dereferences the pointer, making 
it an I-value. See "L-Values and R-Values" in Chapter 2, on page 60 for more 
about expressions that are I-values. 

Functions that return class types, pointers to class types, or references to class 
types can be used as the left operand to member-selection operators. Therefore, 
the following code is legal: 

class A 
{ 

public: 
int SetAe int ) { return (I i);} 
int GetA() {return I; } 

private: 
i nt I; 

} ; 

II Declare three functions: 
II funcl, which returns type A 
II func2, which returns a pointer to type A 
II func3, which returns a reference to type 
Afunc1(); 
A* func2(); 
A& func3(); 

int iResult = funcl().GetA(); 
func2()->SetA( 3 ); 
func3().SetA( 7 ); 

A 

Functions can be called recursively. For more information about function declara­
tions, see "Function Specifiers" in Chapter 6, on page 159 and "Member Func­
tions" in Chapter 8, on page 240. Related material is in "Program and Linkage" in 
Chapter 2, on page 33. 
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Member-Selection Operator 
A postfix-expression followed by the member-selection operator (.) and a name is 
also a postfix-expression. The first operand of the member-selection operator must 
be a class object (an object declared as class, struct, or union type) or a reference 
to a class object, and the second operand must identify a member of that class. 

The result of the expression is the value of the member, and it is an I-value if the 
named member is an I-value. 

A postfix-expression followed by the member-selection operator (-» and a name 
is a postfix expression. The first operand of the member-selection operator must be 
a pointer to a class object (an object declared as class, struct, or union type), and 
the second operand must identify a member of that class. 

The result of the expression is the value of the member, and it is an I-value if the 
named member is an I-value. The -> operator dereferences the pointer. Therefore, 
the expressions e->member and (*e).member (where e represents an expression) 
yield identical results (except when the operators -> or * are overloaded). 

When a value is stored through one member of a union but retrieved through 
another member, no conversion is performed. The following program stores data 
into the object U as int, but retrieves the data as two separate bytes of type char: 

#include <iostrearn.h> 

int 
{ 

} 

rna in () 

struct ch 
{ 

char bl; 
char b2; 

} ; 
union u 

struct ch uch; 
i nt i ; 

} ; 

u U; 

U.i = 0x6361; II Bit pattern for Hac" 
cout « U.uch.bl « U.uch.b2 « "\n"; 

return 0; 

Note The preceding code is not portable because it assumes an int is two bytes 
long while a char is one byte long. In 32-bit target compilations, this assumption 
is false. 
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Postfix Increment and Decrement Operators 
c++ provides prefix and postfix increment and decrement operators; this section 
describes only the postfix increment and decrement operators. (For more informa­
tion, see "Increment and Decrement Operators" on page 94.) The difference be­
tween the two is that in the postfix notation, the operator appears after 
postfix-expression, whereas in the prefix notation, the operator appears before ex­
pression. The following example shows a postfix-increment operator: 

i++ 

The effect of applying the postfix increment, or "postincrement," operator (++) is 
that the operand's value is increased by one unit of the appropriate type. Similarly, 
the effect of applying the postfix decrement or "postdecrement" operator (- -) is 
that the operand's value is decreased by one unit of the appropriate type. 

For example, applying the postincrement operator to a pointer to an array of ob­
jects of type long actually adds four to the internal representation of the pointer. 
This behavior causes the pointer, which previously referred to the nth element of 
the array, to refer to the (n+ l)th element. 

The operands to postincrement and postdecrement operators must be modifiable 
(not const) I-values of arithmetic or pointer type. The result of the postincrement 
or postdecrement expression is the value of the postfix-expression prior to applica­
tion of the increment operator. The type of the result is the same as that of the 
postfix-expression, but it is no longer an I-value. 

Postincrement and postdecrement, when used on enumerated types, yield integral 
values. Therefore, the following code is illegal: 

enum Days { 
Sunday = 1, 
Monday, 
Tuesday, 
Wednesday, 
Thursday, 
Friday, 
Saturday 

} ; 

intmainC) 
{ 

Days Today = Tuesday; 
Days SaveToday; 

SaveToday = Today++; 

return 0; 
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The intent of the above code is to save today's day, then move to tomorrow. How­
ever, the result is that the expression Today++ yields an int-an error when as­
signed to an object of the enumerated type Days. 

Expressions with Unary Operators 

Syntax 

Unary operators are those operators that act on only one operand in an expression. 
The unary operators are: 

• Indirection operator (*) 

• Address-of operator (&) 

• Unary plus operator (+) 

• Unary negation operator (-) 

• Logical NOT operator (!) 

• One's complement operator (-) 

• Preincrement operator (++ ) 

• Predecrement operator (- -) 

• sizeof operator 

• new operator 

• delete operator 

These operators have right-to-Ieft associativity. 

unary-expression: 
postfix-expression 
++unary-expression 
-- unary-expression 
unary-operator cast-expression 
sizeof unary-expression 
sizeof ( type-name) 
allocation-expression 
deallocation-expression 

unary-operator: one of 
*&+-!-
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Indirection Operator (*) 
The unary indirection operator (*) "dereferences" a pointer; that is, it converts a 
pointer value to an I-value. The operand of the indirection operator must be a 
pointer to a type. The result of the indirection expression is the type from which 
the pointer type is derived. The use of the * operator in this context is different 
from its meaning as a binary operator, which is multiplication. 

Address-Of Operator (&) 
The unary address-of operator (&) takes the address of its operand. The address-of 
operator can be applied only to the following: 

• Functions (although its use for taking the address of a function is unnecessary) 

• L-values 

• qualified-names 

In the first two cases listed above, the result of the expression is a pointer type (an 
r-value) derived from the type ofthe operand. For example, if the operand is of 
type char, the result of the expression is of type pointer to char. The address-of 
operator, applied to const or volatile objects, evaluates to const type * or volatile 
type *, where type is the type of the original object. 

The result produced by the third case, applying the address-of operator to a qual­
ified-name, depends on whether the qualified-name specifies a static member. If 
so, the result is a pointer to the type specified in the declaration of the member. If 
the member is not static, the result is a pointer to the member name of the class in­
dicated by qualified-class-name. (See "Primary Expressions" on page 78 for more 
about qualified-class-name.) The following code fragment shows how the result 
differs, depending on whether the member is static: 

class PTM 
{ 
public: 

int iValue; 
static float fValue; 

} ; 

int PTM::*piValue 
float PTM: :*pfValue 
fl oat *spfVal ue 

&PTM::iValue; 
&PTM::fValue; 
&PTM::fValue; 

II OK: non-static 
II Error: static 
II OK 

In the above example, the expression &PTM::fValue yieldstype float * instead 
of type fl oa t PTM:: * because fVa 1 ue is a static member. 
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The address of an overloaded function can be taken only when it is clear which 
version of the function is being referred to. See "Address Of Overloaded 
Functions" in Chapter 12, on page 351 for information about how to obtain the 
address of a particular overloaded function. 

Applying the address-of operator to a reference type gives the same result as apply­
ing the operator to the object to which the reference is bound. The following pro­
gram demonstrates this concept: 

#include <iostream.h> 

int main() 
{ 

double d; 
double& rd = d; 

II Define an object of type double. 
II Define a reference to the object. 

II Compare the address of the object to the address 
II of the reference to the object. 
if( &d == &rd ) 

cout « n&d equals &rd n « "\n"; 
else 

cout « "&d is not equal to &rd" « "\n"; 

return 0; 

The output from the program is always &d equa 1 s & rd. 

Unary Plus Operator (+) 
The result of the unary plus operator (+) is the value of its operand. The operand to 
the unary plus operator must be of an arithmetic type. 

Integral promotion is performed on integral operands. The resultant type is the 
type to which the operand is promoted. Thus, the expression +ch, where ch is of 
type char, results in type iot; the value is unmodified. 

See "Integral Promotions" in Chapter 3, on page 66 for more information about 
how the promotion is done. 

Unary Negation Operator (-) 
The unary negation operator (-) produces the negative of its operand. The operand 
to the unary negation operator must be of an arithmetic type. 

Integral promotion is performed on integral operands, and the resultant type is the 
type to which the operand is promoted. See "Integral Promotions" in Chapter 3, on 
page 66 for more information on how the promotion is done. 
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Microsoft Specific Unary negation of unsigned quantities is performed by subtracting the value of the 
operand from 2n, where n is the number of bits in an object of the given unsigned 
type. (Microsoft C++ runs on processors that utilize two' s-complement arithmetic. 
On other processors, the algorithm for negation can differ.) • 

logical NOT Operator (!) 
The result of the logical NOT operator (!) is 0 if its operand evaluates to a nonzero 
value; the result is I only if the operand is equal to O. The operand must be of arith­
metic or pointer type. The result is of type int. 

For an expression e, the unary expression !e is equivalent to the expression 
(e == 0), except where overloaded operators are involved. 

One's Complement Operator (-) 
The one's complement operator (-), sometimes called the "bitwise complement" 
operator, yields a bitwise one's complement of its operand. That is, every bit that 
is set in the operand is 0 in the result. Conversely, every bit that is 0 in the operand 
is set in the result. The operand to the one's complement operator must be an inte­
gral type. 

Integral promotion is performed on integral operands, and the resultant type is the 
type to which the operand is promoted. See "Integral Promotions" in Chapter 3, 
on page 66 for more information on how the promotion is done. 

Increment and Decrement Operators (++, --) 

The prefix increment operator (++), also called the "preincrement" operator, adds 
one to its operand; this incremented value is the result of the expression. The oper­
and must be an I-value not oftype const. The result is an I-value of the same type 
as the operand. 

The prefix decrement operator (- -), also called the "predecrement" operator, is 
analogous to the preincrement operator, except that the operand is decremented by 
one and the result is this decremented value. 

Both the prefix and postfix increment and decrement operators affect their oper­
ands. The key difference between them is when the increment or decrement takes 
place in the evaluation of an expression. (For more information, see "Postfix Incre­
ment and Decrement Operators" on page 90). In the prefix form, the increment or 



Expressions 95 

decrement takes place before the value is used in expression evaluation, so the 
value of the expression is different from the value of the operand. In the postfix 
form, the increment or decrement takes place after the value is used in expression 
evaluation, so the value of the expression is the same as the value of the operand. 

Because increment and decrement operators have side effects, using expressions 
with increment or decrement operators in a macro can have undesirable results 
(see "The Role of Preprocessing in C++" in Chapter 13, on page 367 for more in­
formation about macros). Consider this example: 

#define max(a,b) «a)«b))?(b):(a) 

inti,j,k; 

k = max( ++i, j ); 

In the code fragment above, the macro expands to: 

k = «++i)«j))?(j):(++i); 

If i is greater than or equal to j, it will be incremented twice. 

Note C++ inline functions are preferable to macros in many cases because they 
eliminate side effects such as those described above, and they allow the language 
to perform more complete type checking. 

sizeof Operator 
The sizeof operator yields the size of its operand with respect to the size of type 
char (the size in chars). The result of the sizeof operator is of type SiZL t, an inte­
gral type defined in the include file STDDEF.H. The operand to sizeof can be one 
of the following: 

• A type name. To use sizeof with a type name, the name must be enclosed in 
parentheses. 

• An expression. When used with an expression, sizeof can be specified with or 
without the parentheses. The expression is not evaluated. 

When the sizeof operator is applied to an object of type char, it yields 1. When the 
sizeof operator is applied to an array, it yields the total number of bytes in that 
array. For example: 
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#include <iostream.h> 

int main() 
{ 

char szHello[] = "Hello, world!"; 

cout « "The size of the type of " « szHello 
« sizeof( cha r ) « "\n"; 

cout « "The length of " « szHello « 
« sizeof szHello « n\n"; 

return 0; 
} 

The program output is: 

The size of the type of Hello, world! is: 1 
The length of Hello, world! is: 14 

" is: 

« " is: 

" 

When the sizeof operator is applied to a class, struct, or union type, the result is 
the number of bytes in an object of that class, struct, or union type, plus any pad­
ding added to align members on word boundaries. (The /Zp compiler option and 
the pack pragma affect alignment boundaries for members.) The sizeof operator 
never yields 0, even for an empty class. 

The sizeof operator cannot be used with the following operands: 

• Functions. (However, sizeof can be applied to pointers to functions.) 

• Bit fields. 

• Undefined classes. 

• The type void. 

• Incomplete types. 

• Parenthesized names of incomplete types. 

When the sizeof operator is applied to a reference, the result is the same as if 
sizeof had been applied to the object itself. 

The sizeof operator is often used to calculate the number of elements in an array 
using an expression of the form: 

sizeof array / sizeof array[0] 
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new Operator 
The new operator attempts to dynamically allocate (at run time) one or more ob­
jects of type-name. The new operator cannot be used to allocate a function; how­
ever, it can be used to allocate a pointer to a function. 

allocation-expression: 
::opt new modeloptplacementopt new-type-name new-initializeropt 
::opt new modeloptplacementopt ( type-name) new-initializeropt 

placement: 
( expression-list) 

new-type-name: 
type-speciJier-list new-declaratoropt 

The new operator is used to allocate objects and arrays of objects. The new opera­
tor allocates from an area of program memory called the "free store." In C, the 
free store is often referred to as the "heap." 

When new is used to allocate a single object, it yields a pointer to that object; the 
resultant type is new-type-name * or type-name *. When new is used to allocate a 
singly dimensioned array of objects, it yields a pointer to the first element of the 
array, and the resultant type is new-type-name * or type-name *. When new is 
used to allocate a multiply dimensioned array of objects, it yields a pointer to the 
first element of the array, and the resultant type preserves the size of all but the 
left-most array dimension. For example: 

new float[10][25][10] 

yields type flo a t C * ) [25] [ 10]. Therefore, the following code will not work be­
cause it attempts to assign a pointer to an array of fl oat with the dimensions 
[25] [10] to a pointer to type fl oa t: 

float *fp; 
fp = new float[10][25][10]; 

The correct expression is: 

float C*cp)[25][10]; 
cp = new float[10][25][10]; 

The definition of cp allocates a pointer to an array oftype fl oat with dimen­
sions [25] [10 ]-it does not allocate an array of pointers. 

All array dimensions but the leftmost must be constant expressions that evaluate to 
positive values; the leftmost array dimension may be any expression that evaluates 
to a positive value. When allocating an array using the new operator, the first di­
mension can be zero-the new operator returns a unique pointer. 
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The type-speciJier-list may not contain const, volatile, class declarations, or 
enumeration declarations. Therefore, the following expression is illegal: 

volatile char *vch = new volatile char[20]; 

The new operator does not allocate reference types because they are not objects. 

lifetime of Objects Allocated with new Objects allocated with the new opera­
tor are not destroyed when the scope in which they are defined is exited. Because 
the new operator returns a pointer to the objects it allocates, the program must de­
fine a pointer with suitable scope to access those objects. For example: 

int main() 
{ 

II Use new operator to allocate an array of 20 characters. 
char *AnArray = new char[20]; 

for( int i = 0; i < 20; ++i ) 
{ 

} 

liOn the first iteration of the loop, allocate 
II another array of 20 characters. 
if ( i == 0 ) 
{ 

char *AnotherArray new char[20]; 

delete AnotherArray; II Error: pointer out of scope. 
delete AnArray; II OK: pointer still in scope. 

By letting the pointer AnotherArray go out of scope in the above example, the 
programmer has allocated an object that can no longer be deleted. 

Initializing Objects Allocated with new An optional new-initializer field is in­
cluded in the syntax for the new operator. This allows new objects to be initialized 
with user-defined constructors. For more information about how initialization is 
done, see "Initializers" in Chapter 7, on page 217. 

The following example illustrates how to use an initialization expression with the 
new operator: 



#include <iostream.h> 

class Acct 
{ 

public: 

Expressions 99 

II Define default constructor and a constructor that accepts 
II an initial balance. 
Acct() { balance = 0.0; } 
Acct( double init balance) {balance init_balance;} 

private: 
double balance; 

} ; 

int main() 
{ 

Acct *CheckingAcct = new Acct; 
Acct *SavingsAcct = new Acct 34.98); 
double *HowMuch = new double ( 43.0 ); 

return 0; 

In the example above, the object Checki ngAcct is allocated using the new opera­
tor, but no default initialization is specified. Therefore, the default constructor for 
the class, Acct(), is called. Then, the object Savi ngsAcct is allocated the same 
way, except that it is explicitly initialized to 34.98. Because 34.98 is of type 
double, the constructor that takes an argument of that type is called to handle the 
initialization. Finally, the nonclass type HowMuch is initialized to 43.0. 

If an object is of a class type, and that class has constructors (as in the above ex­
ample), the object can be initialized by the new operator only if one of these condi­
tions is met: 

• The arguments provided in the initializer agree with those of a constructor 

• The class has a default constructor (a constructor that can be called with no 
arguments) 

Access control and ambiguity control are performed on operator new and on the 
constructors according to the rules set forth in "Ambiguity" in Chapter 9, on page 
282 and "Initialization Using Special Member Functions" in Chapter 11, on page 
325. 

No explicit per-element initialization can be done when allocating arrays using the 
new operator; only the default constructor, if present, is called. (Note that a default 
constructor is a constructor that takes no arguments. Constructors declared with all 
default arguments are default constructors.) 
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If the memory allocation fails (operator new returns a value of 0), no initializa­
tion is performed. This protects against attempts to initialize data that does not 
exist. 

As with function calls, the order of evaluation of initialization expressions is not 
defined. Furthermore, it is unsafe to rely on these expressions being completely 
evaluated before the memory allocation is performed. If the memory allocation 
fails and the new operator returns zero, it is possible that not all expressions in the 
initializer are completely evaluated. 

How new Works The allocation-expression-the expression containing the new 
operator-does three things: 

• Locates and reserves storage for the object or objects to be allocated. When this 
stage is complete, the correct amount of storage is allocated, but it is not yet an 
object. 

• Initializes the object(s). Once initialization is complete, enough information is 
present for the allocated storage to be an object. 

• Returns a pointer to the object(s) of a pointer type derived from new-type-name 
or type-name. This pointer is used by the program to access the newly allocated 
object. 

The new operator actually invokes the function operator new. For arrays of any 
type, and for objects that are not of class, struct, or union types, a global function, 
::operator new, is called to allocate storage. Class-type objects can define their 
own operator new on a per-class basis. 

When the compiler encounters the new operator to allocate an object of type type, 
it issues a call to type: : operator new( sizeof( type) ), or if no user-defined opera­
tor new is defined, : : operator new( sizeof( type) ). Therefore, the new operator 
can allocate the correct amount of memory for the object. 

Note The argument to operator new is of type size_ t. This type is defined in 
DIRECT.H, MALLOC.H, MEMORY.H, SEARCH.H, STDDEF.H, STDIO.H, 
STDLIB.H, STRING.H, and TIME.H. 

An option in the syntax allows specification of placement (see the new operator 
syntax on page 97). The placement field can be used only for user-defined im­
plementations of operator new; it allows extra information to be passed to 
operator new. An expression with a placement field such as: 

T *TObject = new ( 0x0040 ) T; 

is translated to 

T *TObject = T::operator new( sizeof( T ), 0x0040 ); 
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The original intention of the placement field was to allow hardware-dependent ob­
jects to be allocated at user-specified addresses. 

Note Although the example above shows only one argument in the placement 
field, there is no restriction on how many extra arguments can be passed to 
operator new this way. 

Even when operator new has been defined for a class type, the global operator 
can be used by using the form of this example: 

T *TObject =::new TObject; 

The scope-resolution operator (::) forces use of the global new operator. 

delete Operator 
The delete operator deallocates an object created with the new operator. The 
delete operator has a result of type void and therefore does not return a value. 
The operand to delete must be a pointer returned by the new operator. 

U sing delete on a pointer to an object not allocated with new gives unpredictable 
results. You can, however, use delete on a pointer with the value O. This provision 
means that, because new always returns 0 on failure, deleting the result of a failed 
new operation is harmless. 

deallocation-expression: 
::opt delete cast-expression 
::opt delete [ ] cast-expression 

Using the delete operator on an object deallocates its memory. A program that 
dereferences a pointer after the object is deleted can have unpredictable results or 
crash. 

If the operand to the delete operator is a modifiable I-value, its value is undefined 
after the object is deleted. 

Pointers to const objects cannot be deallocated with the delete operator. 

How delete Works The delete operator actually invokes the function operator 
delete. For objects of class types (class, struct, and union), the delete operator in­
vokes the destructor for an object prior to de allocating memory (if the pointer is 
not nUll). For objects not of class type, the global delete operator is invoked. For 
objects of class type, the delete operator can be defined on a per-class basis; if 
there is no such definition for a given class, then the global operator is invoked. 



102 C++ Language Reference 

Microsoft Specific Microsoft C++ allows multiple delete operators to be present for a given class 
type---one for each addressing option. This guarantees that the correct object is de­
leted when the delete operator is invoked in the program. See "Declaring Destruc­
tors" in Chapter 11, on page 306, "Overloaded Operators" in Chapter 12, on page 
351, and "Memory-Model Specifiers and Overloading" in Appendix B, on page 
401.+ 

Using delete There are two syntactic variants for the delete operator: one for 
single objects and the other for arrays of objects. The following code fragment 
shows how these differ: 

int main() 
{ 

} 

II Allocate a user-defined object, UDObject, and an object 
II of type double on the free store using the 
II new operator. 
UDType *UDObject = new UDType; 
double *dObject = new double; 

II Delete the two objects. 
delete UDObject; 
delete dObject; 

II Allocate an array of user-defined objects on the 
II free store using the new operator. 
UDType (*UDArr)[7] = new UDType[5][7]; 

II Use the array syntax to delete the array of objects. 
delete [] UDArr; 

return 0; 

These two cases produce undefined results: using the array form of delete 
(delete [ ]) on an object, and using the nonarray form of delete on an array. 

Expressions with Binary Operators 
Binary operators act on two operands in an expression. The binary operators are: 

• Multiplication (*) 

• Division (I) 

• Modulus (% ) 

• Addition (+) 

• Subtraction (-) 

• Right shift(») 
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• Left shift «<) 

• Less than «) 
• Greater than (» 

• Less than or equal to «=) 

• Greater than or equal to (>=) 

• Equal to (==) 

• Not equal to (!=) 

• Bitwise AND (&) 

• Bitwise exclusive OR (A) 

• Bitwise inclusive OR (I) 

• Logical AND (&&) 

• Logical OR (II) 

Multiplicative Operators 
The multiplicative operators are: 

• Multiplication (*) 

• Division (I) 

• Modulus or "remainder from division" (%) 

These binary operators have left-to-right associativity. 

multiplicative-expression: 
pm-expression 
multiplicative-expression * pm-expression 
multiplicative-expression 1 pm-expression 
multiplicative-expression % pm-expression 
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The multiplicative operators take operands of arithmetic types. The modulus opera­
tor (%) has a stricter requirement in that its operands must be of integral type. (To 
get the remainder of a floating-point division, use the run-time function, fmod.) 
The conversions covered in "Arithmetic Conversions" in Chapter 3, on page 69 
are applied to the operands, and the result is of the converted type. 

The multiplication operator yields the result of multiplying the first operand by the 
second. 

The division operator yields the result of dividing the ftrst operand by the second. 
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The modulus operator yields the remainder given by the following expression, 
where el is the first operand and e2 is the second: el - (el / e2) * e2, where both 
operands are of integral types. 

Division by 0 in either a division or modulus expression is undefined and causes a 
run-time error. Therefore the following expressions generate undefined, erroneous 
results: 

i % 0 
f / 0.0 

If both operands to a multiplication, division, or modulus expression have the 
same sign, the result is positive. Otherwise, the result is negative. The result of a 
modulus operation's sign is implementation-defined. 

In Microsoft C++, the result of a modulus expression is always the same as the 
sign of the first operand. • 

If the computed division of two integers is inexact and only one of the operands is 
negative, the result is the largest integer (in magnitude, disregarding the sign) that 
is less than the exact value the division operation would yield. For example, the 
exact value of -11 /3 is -3.666666666 (not a rational number). The result of that 
integral division is -3. 

The relationship between the multiplicative operators is given by the identity 
(el / e2) * e2 + el % e2 == el. 

Additive Operators 
The additive operators are: 

• Addition (+) 

• Subtraction (-) 

These binary operators have left-to-right associativity. 

additive-expression: 
multiplicative-expression 
additive-expression + multiplicative-expression 
additive-expression - multiplicative-expression 

The additive operators take operands of arithmetic or pointer types. The result of 
the addition (+) operator is the sum of the operands. The result of the subtraction 
(-) operator is the difference between the operands. If one or both of the operands 
are pointers, they must be pointers to objects, not to functions. 
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Additive operators take operands of arithmetic, integral, and scalar types. These 
are defined in Table 4.2: 

Table 4.2 Types Used with Additive Operators 

Type 

arithmetic 

integral 

scalar 

Meaning 

Integral and floating types are collectively called "arithmetic" 
types. 

Types char and int of all sizes (long, short) and enumerations 
are "integral" types. 

Scalar operands are operands of either arithmetic or pointer type. 

The legal combinations for these operators are: 

arithmetic + arithmetic 
scalar + integral 
integral + scalar 
arithmetic - arithmetic 
scalar - scalar 

Note that addition and subtraction are not equivalent operations. 

If both operands are of arithmetic type, then the conversions covered in "Arith­
metic Conversions" in Chapter 3, on page 69 are applied to the operands, and the 
result is of the converted type. 

Addition of Pointer Types If one of the operands in an addition operation is a 
pointer to an array of objects, the other must be of integral type. The result is a 
pointer that is of the same type as the original pointer and that points to another 
array element. The following code fragment illustrates this concept: 

short IntArray[10]; II Objects of type short occupy 2 bytes 
short *plntArray = IntArray; 

fore int i = 0; i < 10; ++i ) 
{ 

} 

*plntArray = i; 
cout « *plntArray « "n"; 
plntArray = plntArray + 1; 
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Although the integral value I is added to plntArray, it does not mean "add I to 
the address"; rather it means "adjust the pointer to point to the next object in the 
array" (which happens to be 2 bytes away). 

Note Code of the form plntArray = plntArray + 1 is rarely found in C++ pro­
grams; to perform an increment, these forms are preferable: plntArray++ or 
plntArray += 1. 

Subtraction of Pointer Types If both operands are pointers, then the result of 
subtraction is the difference (in array elements) between the operands. The subtrac­
tion expression yields a signed integral result of type ptrdiff_ t (defined in the 
standard include file STDDEF.H). 

One of the operands can be of integral type, as long as it is the second operand. 
The result of the subtraction is of the same type as the original pointer. The value 
of the subtraction is a pointer to the (n - i)th array element, where n is the element 
pointed to by the original pointer and i is the integral value of the second operand. 

Shift Operators 
The bitwise shift operators are: 

• Right shift (») 

• Left shift «<) 

These binary operators have left-to-right associativity. 

shift-expression: 
additive-expression 
shift-expression « additive-expression 
shift-expression » additive-expression 

Both operands of the shift operators must be of integral types. Integral promotions 
are performed according to the rules described in "Integral Promotions" in Chapter 
3, on page 66. The type of the result is the same as the ~pe of the left operand. 
The value of a right shift expression el » e2 is el/2e ,and the value of a left 
shift expression el « e2 is el * 2e2. 

The results are undefined if the right operand of a shift expression is negative, or if 
the right operand is greater than or equal to the number of bits in the (promoted) 
left operand. 
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The left-shift operator causes the bit pattern in the first operand to be shifted left 
the number of bits specified by the second operand. Bits vacated by the shift opera­
tion are zero-filled. The shift is a logical shift as opposed to a shift-and-rotate 
operation. 

The right-shift operator causes the bit pattern in the first operand to be shifted right 
the number of bits specified by the second operand. Bits vacated by the shift opera­
tion are zero-filled for unsigned quantities. For signed quantities, the sign bit is 
propagated into the vacated bit positions. The shift is a logical shift if the left oper­
and is an unsigned quantity; otherwise, it is an arithmetic shift. 

The result of a right shift of a signed negative quantity is implementation depend­
ent. Although Microsoft C++ propagates the most-significant bit to fill vacated bit 
positions, there is no guarantee other implementations will do likewise .• 

Relational and Equality Operators 
The relational and equality operators determine equality, inequality, or relative 
values of their operands. The relational operators are shown in Table 4.3. 

Table 4.3 Relational and Equality Operators 

Operator 

!= 

< 
> 
<= 

>= 

Meaning 

Equal to 

Not equal to 

Less than 

Greater than 

Less than or equal to 

Greater than or equal to 

Relational Operators The binary relational operators determine the following 
relationships: 

• Less than 

• Greater than 

• Less than or equal to 

• Greater than or equal to 
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Syntax relational-expression: 
shift-expression 
relational-expression < shift-expression 
relational-expression> shift-expression 
relational-expression <= shift-expression 
relational-expression >= shift-expression 

The relational operators have left-to-right associativity. Both operands ofre­
lational operators must be of arithmetic or pointer type. They yield values of type 
int. The value returned is 0 if the relationship in the expression is false; otherwise, 
it is 1. Consider the following code that demonstrates several relational 
expressions: 

#include <iostream.h> 

intmain() 
{ 

cout « 
« 

cout « 
« 

"The true expression 3 > 
(3 > 2) « "\n"; 
"The false expression 20 
(20 < 10) « "\n"; 

2 yields: " 

< 10 yields: 

cout « "The expression 10 < 20 < 5 yields: " 
« (10 < 20 < 5) « "\n"; 

return 0; 
} 

The output from this program is: 

The true expression 3 < 2 yields 1 
The false expression 20 < 10 yields 0 
The expression 10 < 20 < 5 yields 1 

" 

The expressions in the example above must be parenthesized because the insertion 
operator «<) has higher precedence than the relational operators. Therefore, the 
first expression without the parentheses would be evaluated as follows: 

(cout « "The true expression 3 > 2 yields: " « 3) < (2 « "\n"); 

Note that the third expression evaluates to I-because ofthe left-to-right associa­
tivity of relational operators, the explicit grouping of the expression 10 < 20 < 5 
IS: 

(10 < 20) < 5 
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Therefore, the test performed is: 

1 < 5 

and the result is 1 (or true). 
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The usual arithmetic conversions covered in "Arithmetic Conversions" in Chapter 
3, on page 69 are applied to operands of arithmetic types. 

Comparing Pointers Using Relational Operators When two pointers to objects 
of the same type are compared, the result is determined by the location of the ob­
jects pointed to in the program's address space. Pointers can also be compared to a 
constant expression that evaluates to 0 or to a pointer of type void *. If a pointer 
comparison is made against a pointer of type void *, the other pointer is implicitly 
converted to type void *. Then the comparison is made. 

Two pointers of different types cannot be compared unless: 

• One type is a class type derived from the other type. 

• At least one of the pointers is explicitly converted (cast) to type void *. (The 
other pointer is implicitly converted to type void * for the conversion.) 

Two pointers of the same type that point to the same object are guaranteed to com­
pare equal. If two pointers to nonstatic members of an object are compared, the fol­
lowing rules apply: 

• If the class type is not a union, and if the two members are not separated by an 
access-specifier, such as public, protected, or private, the pointer to the mem­
ber declared last will compare greater than the pointer to the member declared 
earlier. (For information on access-specifier, see the "Syntax" section on page 
286 in Chapter 10.) 

• If the two members are separated by an access-specifier, the results are 
undefined. 

• If the class type is a union, pointers to different data members in that union 
compare equal. 

If two pointers point to elements of the same array or to the element one beyond 
the end of the array, the pointer to the object with the higher subscript compares 
higher. Comparison of pointers is guaranteed valid only when the pointers refer to 
objects in the same array or to the location one past the end of the array. 

In Microsoft C++, far pointers that are compared for magnitude (using any opera­
tor other than ==) are compared using their offsets only. The segments are not con­
sidered in the comparison. Far pointers compared for equality, however, are 
compared using a segment and offset comparison .• 
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Equality Operators The binary equality operators compare their operands for 
strict equality or inequality. 

equality-expression: 
relational-expression 
equality-expression == relational-expression 
equality-expression != relational-expression 

The equality operators, equal to (==) and not equal to (!=), have lower precedence 
than the relational operators, but they behave similarly in all other respects. 

The equal-to operator (==) returns true if both operands have the same value; 
otherwise it returns false. The not-equal-to operator (!=) returns true if the oper­
ands do not have the same value; otherwise it returns false. 

Equality operators can compare pointers to members of the same type. In such a 
comparison, pointer-to-member conversions, as discussed in "Pointer-to-Member 
Conversions" in Chapter 3, on page 75, are performed. Pointers to members can 
also be compared to a constant expression that evaluates to O. 

Bitwise Operators 
The bitwise operators are: 

• Bitwise AND (&) 

• Bitwise exclusive OR (A) 

• Bitwise inclusive OR (I) 

These operators return bitwise combinations of their operands. 

Bitwise AND Operator The bitwise AND operator (&) returns the bitwise AND 
of the two operands. All bits that are on (1) in both the left and right operand are 
on in the result; bits that are off (0) in either the left or the right operand are off in 
the result. 

and-expression: 
relational-expression 
and-expression & equality-expression 

Both operands to the bitwise AND operator must be of integral types. The usual 
arithmetic conversions covered in "Arithmetic Conversions" in Chapter 3, on page 
69 are applied to the operands. 



Syntax 

Syntax 

Syntax 

Expressions 111 

Bitwise Exclusive OR Operator The bitwise exclusive OR operator (A) returns 
the bitwise exclusive OR of the two operands. All bits that are on (1) in either the 
left or right operand, but not both, are on in the result. Bits that are the same 
(either on or off) in both operands are off in the result. 

exclusive-or-expression: 
and-expression 
exclusive-or-expression A and-expression 

Both operands to the bitwise exclusive OR operator must be of integral types. The 
usual arithmetic conversions covered in "Arithmetic Conversions" in Chapter 3, 
on page 69 are applied to the operands. 

Bitwise Inclusive OR Operator The bitwise inclusive OR operator (I) returns 
the bitwise inclusive OR ofthe two operands. All bits that are on (1) in either the 
left or right operand are on in the result. Bits that are off (0) in both operands are 
off in the result. 

inclusive-or-expression: 
exclusive-or-expression 
inclusive-or-expression 1 exclusive-or-expression 

Both operands to the bitwise inclusive OR operator must be of integral types. The 
usual arithmetic conversions covered in "Arithmetic Conversions" in Chapter 3, 
on page 69 are applied to the operands. 

Logical Operators 
The logical operators, logical AND (&&) and logical OR (II), are used to combine 
mUltiple conditions formed using relational or equality expressions. 

Logical AND Operator The logical AND operator (&&) returns the integral 
value 1 if both operands are nonzero; otherwise it returns O. Logical AND has 
left -to-right associati vi ty . 

logical-and-expression: 
inclusive-or-expression 
logical-and-expression && inclusive-or-expression 

The operands to the logical AND operator need not be of the same type, but they 
must be of integral or pointer type. The operands are commonly relational or equal­
ityexpressions. 
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The first operand is completely evaluated and all side effects are completed before 
continuing evaluation of the logical AND expression. 

The second operand is evaluated only if the first operand evaluates to true 
(nonzero). This "short-circuit" evaluation eliminates needless evaluation of the sec­
ond operand when the logical AND expression has already been determined false. 
Short-circuit evaluation can be used to prevent null-pointer dereferencing as 
shown in the following example: 

char *pch = 0; 

(pch) && (*pch = • a • ) ; 

If pch is null (0), the right side of the expression is never evaluated. Therefore, 
the assignment through a null pointer is impossible. 

logical OR Operator The logical OR operator (II) returns the integral value 1 if 
either operand is nonzero; otherwise it returns O. Logical OR has left-to-right 
associativity. 

logical-or-expression: 
logical-and-expression 
logical-or-expression IIlogical-and-expression 

The operands to the logical OR operator need not be of the same type, but they 
must be of integral or pointer type. The operands are commonly relational or equal­
ityexpressions. 

The first operand is completely evaluated and all side effects are completed before 
continuing evaluation of the logical OR expression. 

The second operand is evaluated only if the first operand evaluates to false (0). 
This "short-circuit" evaluation eliminates needless evaluation of the second oper­
and when the logical OR expression has already been determined true. 

Assignment Operators 
Assignment operators store a value in the object designated by the left operand. 
There are two kinds of assignment operations: "simple assignment," in which the 
value of the second operand is stored in the object specified by the first operand, 
and "compound assignment," in which an arithmetic, shift, or bitwise operation is 
performed prior to storing the result. All of the assignment operators in Table 4.4 
except the = operator are compound assignment operators. 
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Table 4.4 Assignment Operators 

Operator Meaning 

= Store the value of the second operand in the object specified by the first 
operand ("simple assignment"). 

*= Multiply the value of the first operand by the value of the second operand; 
store the result in the object specified by the first operand. 

1= Divide the value of the first operand by the value of the second operand; 
store the result in the object specified by the first operand. 

%= Take modulus of the first operand specified by the value of the second 
operand; store the result in the object specified by the first operand. 

+= Add the value of the second operand to the value of the first operand; store 
the result in the object specified by the first operand. 

- - Subtract the value of the second operand from the value of the first 
operand; store the result in the object specified by the first operand. 

«= Shift the value of the first operand left the number of bits specified by the 
value of the second operand; store the result in the object specified by the 
first operand. 

»= Shift the value of the first operand right the number of bits specified by the 
value of the second operand; store the result in the object specified by the 
first operand. 

&= Obtain the bitwise AND of the first and second operands; store the result 
in the object specified by the first operand. 

A= Obtain the bitwise exclusive OR of the first and second operands; store the 
result in the object specified by the first operand. 

1= Obtain the bitwise inclusive OR of the first and second operands; store the 
result in the object specified by the first operand. 

assignment-expression: 
conditional-expression 
unary-expression assignment-operator assignment-expression 

assignment-operator: one of 
= 
*= 
1= 
%= 
+= 

«= 
»= 
&= 
A= 

1= 
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Result of Assignment Operators The assignment operators return the value of 
the object specified by the left operand after the assignment. The resultant type is 
the type of the left operand. The result of an assignment expression is always an 
I-value. These operators have right-to-Ieft associativity. The left operand must be 
an I-value not of type const. 

Note In ANSI C, the result of an assignment expression is not an I-value. There­
fore, the legal C++ expression (a += b) += c is illegal in C. 

Simple Assignment The simple assignment operator (=) causes the value of the 
second operand to be stored in the object specified by the first operand. If both ob­
jects are of arithmetic types, the right operand is converted to the type of the left, 
prior to storing the value. 

A const pointer of a given type can be assigned to a pointer of the same type. How­
ever, a pointer that is not const cannot be assigned to a const pointer. The follow­
ing code shows correct and incorrect assignments: 

int *const cpObject = 0; 
int *pObject; 

int main() 
{ 

} 

pObject = cpObject; II OK 
cpObject = pObject; II Error 

return 0; 

Objects of const and volatile types can be assigned to I-values of types that are 
just volatile or that are neither const nor volatile. 

When the left operand is a pointer to member, the right operand must be of pointer­
to-member type or be a constant expression that evaluates to O. This assignment is 
valid only in the following cases: 

• The right operand is a pointer to a member of the same class as the left operand. 

• The left operand is a pointer to a member of a class derived publicly and unam­
biguously from the class of the right operand. 

Just as with other assignments, when a pointer to member assignment is evaluated, 
the right operand is converted to the type of the left operand before carrying out 
the assignment. 
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Assignment to objects of class type (struct, union, and class types) is performed 
by a function named operator=. The default behavior of this operator function is 
to perform a bitwise copy; however, this behavior can be modified using over­
loaded operators. (See "Overloaded Operators" in Chapter 12, on page 351 for 
more information about operator overloading.) 

An object of any unambiguously derived class from a given base class can be as­
signed to an object of the base class; the reverse is not true. For example: 

#include <iostream.h> 

class ABase 
{ 

public: 
ABase() { cout « "constructing ABase\n"; } 

} ; 

class AOerived public ABase 
{ 
public: 

AOerived() { cout « "constructing AOerived\n"; } 
} ; 

int maine) 
{ 

ABase aBase; 
AOerived aOerived; 

aBase = aOerived; II OK 
aOerived = aBase; II Error 

return 0; 

Assignments to reference types behave as if the assignment were being made to 
the object to which the reference points. 

For class-type objects, assignment is different from initialization. To illustrate how 
different assignment and initialization can be, consider the code: 

UserTypel A; 
UserType2 B = A; 
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Syntax 

The above code shows an initializer; it calls the constructor for UserTypel that 
takes an argument of type UserTypel. Given the code 

UserTypel A; 
UserType2 B; 

B = A; 

the assignment statement 

B = A; 

can have one of the effects listed below: 

• Call the function operator= for UserType2, provided operator= is provided 
with a UserTypel argument. 

• Call the explicit conversion function UserTypel:: operator 
UserType2, if such a function exists. 

• Call a constructor UserType2:: UserType2, provided such a constructor is 
provided, that takes a UserTypel argument, then copy the result. 

Compound Assignment The compound assignment operators, shown in Table 
4.4, are specified in the form el op= e2, where el is an I-value not of const type, 
and e2 is one of the following: 

• An arithmetic type 

• A pointer, if op is + or-

Compound assignment to an enumerated type generates an error message. If the 
left operand is of a pointer type, the right operand must be of pointer type, or it 
must be a constant expression that evaluates to O. If the left operand is of an inte­
gral type, the right operand must not be of a pointer type. 

Comma Operator 
The comma operator allows grouping two statements where one is expected. 

expression: 
assignment-expression 
expression, assignment-expression 

The comma operator has left-to-right associativity. Two expressions separated by 
a comma are evaluated left to right. The left operand is guaranteed evaluated, and 
all side effects are completed before evaluation of the right operand. 
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Consider the expression 

el ,e2 

The type and value of the expression are the type and value of e2; the result of 
evaluating el is discarded. The result is an I-value if the right operand is an I-value. 

Where the comma has special meaning (for example in actual arguments to func­
tions or aggregate initializers), the comma operator and its operands must be en­
closed in parentheses. Therefore, the following function calls are not equivalent: 

II Declare functions: 
void Func( int, int ); 
void Func( int ); 

Func( argl, arg2); 1/ Call Func( int, int 
Func( (argl, arg2)); 1/ Call Func( int) 

Expressions with the Conditional Operator 

Syntax 

The conditional operator (? :) is a ternary operator (it takes three operands). The 
conditional operator works as follows: 

• The first operand is evaluated and all side effects are completed before 
continuing. 

• If the first operand evaluates to true (a nonzero value), the second operand is 
evaluated. 

• If the first operand evaluates to false (0), the third operand is evaluated. 

The result of the conditional operator is the result of whichever operand is eval­
uated-the second or the third. Only one of the last two operands is evaluated in a 
conditional expression. 

conditional-expression: 
logical-or-expression 
logical-or-expression ? expression: conditional-expression 

Conditional expressions have no associativity. The first operand must be of inte­
gral or pointer type. The following rules apply to the second and third expressions: 

• If both expressions are of the same type, the result is of that type. 

• If both expressions are of arithmetic types, usual arithmetic conversions 
(covered in "Arithmetic Conversions" in Chapter 3, on page 69) are performed 
to convert them to a common type. 
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• If both expressions are of pointer types or if one is a pointer type and the other 
is a constant expression that evaluates to 0, pointer conversions are performed 
to convert them to a common type. 

• If both expressions are of reference types, reference conversions are performed 
to convert them to a common type. 

• If both expressions are of type void, the common type is type void. 

• If both expressions are of a given class type, the common type is that class type. 

Any combinations of second and third operands not in the list above are illegal. 
The type of the result is the common type, and it is an I-value if both the second 
and third operands are of the same type and both are I-values. 

Constant Expressions 

Syntax 

c++ requires constant expressions-expressions that evaluate to a constant-for 
declarations of: 

• Array bounds 

• Selectors in case statements 

• Bit-field length specification 

• Enumeration initializers 

constant-expression: 
conditional-expression 

The only operands that are legal in constant expressions are: 

• Literals 

• Enumeration constants 

• Values declared as const that are initialized with constant expressions 

• sizeof expressions 

Non-integral constants must be converted (either explicitly or implicitly) to inte­
gral types to be legal in a constant expression. Therefore, the following code is 
legal: 

const double Size = 11.0; 

char chArray[(int)Size]; 

Explicit conversions to integral types are legal in constant expressions; all other 
types and derived types are illegal except when used as operands to the sizeof 
operator. 
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The comma operator and assignment operators cannot be used in constant 
expressions. 

Expressions with Explicit Type Conversions 
c++ provides implicit type conversion, as described in Chapter 3, "Standard Con­
versions." You can also specify explicit type conversions when you need more pre­
cise control of the conversions applied. 

Explicit Type Conversion Operator 
C++ allows explicit type conversion using a syntax similar to the function-call syn­
tax. A simple-type-name followed by an expression-list enclosed in parentheses 
constructs an object of the specified type using the specified expressions. The fol­
lowing example shows an explicit type conversion to type int: 

int i = int( d ); 

The following example uses the Poi nt class defined in "Function Call Results" 
on page 87 with a few modifications. 

#include <iostream.h> 

class Point 
{ 

public: 
II Define default constructor. 
Pointe) {_x = _y = 0; } 
II Define another constructor. 
Pointe int X, int Y ) { _x = X; _y Y;} 

II Define "accessor" functions as 
II reference types. 
unsigned& xC) { return _x; } 
unsigned&y() {return _y;} 
void Show() {cout« "x "« _x « ", 

«"y "« _y « "'n"; } 
private: 

unsigned _x; 
unsigned _y; 

} ; 
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int maine) 
{ 

Point Point1, Point2; 

II Assign Point1 the explicit conversion 
II of ( 10, 10 ). 
Point1 = Pointe 10, 10 ); 

II Use xC) as an l-value by assigning an explicit 
II conversion of 20 to type unsigned. 
Point1.x() = unsigned( 20 ); 
Point1.Show(); 

II Assign Point2 the default Point object. 
Point2 = Pointe); 
Point2.Show(); 

return 0; 

The output from this program is: 

20, 10 
0, 0 

Although the above example demonstrates explicit type conversion using con­
stants, the same technique works to perform these conversions on objects. The 
following code fragment demonstrates this: 

int i = 7; 
float d; 

d=float(i); 

Explicit type conversions can also be specified using the "cast" syntax. The 
previous example, rewritten using the cast syntax, follows: 

d = (float)i; 

Both cast and function-style conversions have the same results when converting 
from single values. However, in the function-style syntax, you can specify more 
than one argument for conversion. This difference is important for user-defined 
types. Consider a Poi nt class, and its conversions: 
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struct Point 
{ 

Point( short x, short y ) { x x; _y y;} 

} ; 

Point pt = Point( 3, 10 ); 
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The example above, which uses function-style conversion, shows how to convert 
two values (one for x and one for y) to the user-defined type Poi nt. 

Important Explicit type conversions override the C++ compiler's built-in type 
checking. These conversions should be used with care. 

cast-expression: 
unary-expression 
( type-name) cast-expression 

The cast notation must be used for conversions to types that do not have a simple­
type-name (pointer or reference types, for example). Conversion to types that can 
be expressed with a simple-type-name can be written in either form. See "Type 
Specifiers" in Chapter 6, on page 168 for more information about what constitutes 
a simple-type-name. 

Type definition within casts is illegal. Therefore, the following code generates an 
error: 

int AnAction = 2; 

Action ThisAction (enum Action{ Deposit=l, Withdraw, 
GetBalance }) AnAction; 

legal Conversions 
Explicit conversions from a given type to another type can be done if the conver­
sion can be done using standard conversions. The results are the same. 

In addition, the conversions described in the following sections are legal; any 
other conversions not explicitly defined by the user (for a class type) are illegal. 
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A value of integral type can be explicitly converted to a pointer if the pointer is 
large enough to hold the integral value. A pointer that is converted to an integral 
value can be converted back to a pointer; its value is the same. This identity is 
given by the following (where p represents a pointer of any type): 

p == (type *) integral-conversion(p) 

Note that with explicit conversions, the compiler does not check whether the con­
verted value fits in the new type except when converting from pointer to integral 
type or vice versa. 

Converting Pointer Types A pointer to one object type can be explicitly con­
verted to a pointer of another object type. A pointer declared as void * is con­
sidered a pointer to any object type. 

A pointer to a base class can be explicitly converted to a pointer to a derived class 
as long as these conditions are met: 

• There is an unambiguous conversion. 

• The base class is not declared as virtual at any point. 

Because conversion to type void * can change the representation of an object, 
there is no guarantee that the conversion typel* void * type2* is equivalent to the 
conversion typel* type2* (which is a change in value only). 

When such a conversion is performed, the result is a pointer to the subobject of the 
original object representing the base class. 

See Chapter 9, "Derived Classes," for more information about ambiguity and vir­
tual base classes. 

A pointer to a function can be explicitly converted to a pointer-to-object type, pro­
vided the pointer to the object has enough bits. This restriction is sensitive to 
memory-model selection; as a result, memory-model selection can change the size 
of pointers to functions. Code that works in small model can fail in medium 
model, as shown in this example: 

voi d func(); 

int main() 
{ 

int iPtr; 
void (*fPtr)() = func; 

iPtr (int)fPtr; 

return 0; 
} 
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In small model (for the 16-bit compiler), both objects of type int and pointers to 
functions are 16 bits. However, changing to medium model changes pointers to 
functions to 32-bit pointers, causing a compilation error. 

c++ allows explicit conversions of pointers to objects or functions to type void *. 

Pointers to object types can be explicitly converted to pointers to functions if the 
function pointer type has enough bits to accommodate the pointer to object type. 

A pointer to a const object can be explicitly converted to a pointer not of const 
type. The result of this conversion points to the original object. An object of const 
type, or a reference to an object of const type, can be cast to a reference to a non­
const type. The result is a reference to the original object. The original object was 
probably declared as const because it was to remain constant across the duration 
of the program. Therefore, an explicit conversion defeats this safeguard, allowing 
modification of such objects. The behavior in such cases is undefined. 

A pointer to an object of volatile type can be cast to a pointer to a nonvolatile 
type. The result of this conversion refers to the original object. Similarly, an object 
of volatile type can be cast to a reference to a nonvolatile type. 

Converting the Null Pointer The null pointer (0) is converted into itself. 

Converting to a Forward-Reference Class Type A class that has been declared 
but not yet defined (a forward reference) can be used in a pointer cast. In this case, 
the compiler returns a pointer to the original object, not to a subobject as it might 
if the class's relationships were known. 

Converting to Reference Types Any object whose address can be converted to 
a given pointer type can also be converted to the analogous reference type. For ex­
ample, any object whose address can be converted to type char * can also be con­
verted to type char &. No constructors or class conversion functions are called to 
make a conversion to a reference type. 

Objects or values can be converted to class-type objects only if a constructor or 
conversion operator has been provided specifically for this purpose. For more in­
formation about these user-defined functions, see "Conversion Constructors" in 
Chapter 11, on page 313. 
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Conversion of a reference to a base class, to a reference to a derived class (and 
vice versa) is done the same way as for pointers. 

A cast to a reference type results in an I-value. The results of casts to other types 
are not I-values. Operations perfonned on the result of a pointer or reference cast 
are still performed on the original object. 

Converting Among Pointer-to-Member Types A pointer to a member can be 
converted to a different pointer-to-member type subject to these rules: Either the 
pointers must both be pointers to members in the same class or they must be point­
ers to members of classes, one of which is derived unambiguously from the other. 
When converting pointer-to-member functions, the return and argument types 
must match. 

Expressions with Pointer-to-Member Operators 
The pointer-to-member operators, • * and ->*, return the value of a specific class 
member for the object specified on the left side of the expression. The following 
example shows how to use these operators: 

#include <iostream.h> 

class Window 
{ 

public: 

} ; 

void Paint(); II Causes window to repaint. 
int Windowld; 

II Define derived types pmfnPaint and pmWindowld. 
II These types are pointers to members Paint() and 
II Windowld, respectively. 
void (Window::*pmfnPaint)() = &Window::Paint; 
int Window::*pmWindowld = &Window::Windowld; 

intmain() 
{ 

Window AWindow; 
Window *pWindow new Window; 
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} 

II Invoke the Paint function normally, then 
II use pointer to member. 
AWindow.Paint(); 
(AWindow.*pmfnPaint)(); 

pWindow->Paint(); 
(pWindow->*pmfnPaint)(); 

int Id; 
II Retrieve window id. 
Id AWindow.*pmWindowId; 
Id = pWindow->*pmWindowId; 

return 0; 
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In the above example, a pointer to a member, pmfnPai nt, is used to invoke the 
member function Pai nt. Another pointer to a member, pmWi ndowId, is used to 
access the Wi ndowId member. 

pm-expression: 
cast-expression 
pm-expression. * cast-expression 
pm-expression ->* cast-expression 

The binary operator. * combines its first operand, which must be an object of class 
type, with its second operand, which must be a pointer-to-member type. 

The binary operator ->* combines its first operand, which must be a pointer to an 
object of class type, with its second operand, which must be a pointer-to-member 
type. 

In an expression containing the. * operator, the first operand must be of the class 
type of the pointer to member specified in the second operand or of a type unam­
biguously derived from that class. 

In an expression containing the ->* operator, the first operand must be of the type 
"pointer to the class type" of the type specified in the second operand, or it must 
be of a type unambiguously derived from that class. 
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Consider the following classes and program fragment: 

class BaseClass 
{ 

public: 
BaseClass(); II Base class constructor. 
void Funcl(); 

} ; 

II Declare a pointer to member function Funcl. 
void (BaseClass::*pmfnFuncl)() &BaseClass::Funcl; 

class Derived: public BaseClass 
{ 

public: 
Derived(); II Derived class constructor. 
void Func2(); 

} ; 

II Declare a pointer to member function Func2. 
void (Derived::*pmfnFunc2)() &Derived::Func2; 

in t ma in () 
{ 

BaseClass ABase; 
Derived ADerived; 

(ABase.*pmfnFuncl)(); 
(ABase.*pmfnFunc2)(); 

(ADerived.*pmfnFuncl)(); 

(ADerived.*pmfnFunc2)(); 

return 0; 

II OK: defined for BaseClass. 
II 
II 
II 
II 
II 
II 

Error: cannot use base class to 
access pointers to members of 
derived classes. 

OK: Derived is unambiguously 
derived from BaseClass. 

OK: defined for Derived. 

The result of the. * or ->* pointer-to-member operators is an object or function of 
the type specified in the declaration of the pointer to member. So, in the example 
above, the result of the expression ADeri ved .*pmfnFuncl() is a pointer to a func­
tion that returns void. This result is an I-value if the second operand is an I-value. 

Note If the result of one of the pointer-to-member operators is a function, then the 
result can be used only as an operand to the function call operator. 
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4.2 Semantics of Expressions 
This section explains when, and in what order expressions are evaluated ("Order 
of Evaluation" on this page and "Sequence Points" on page 129). In addition, it de­
scribes certain expressions that are ambiguous in their meaning ("Gray Expres­
sions" on page 130) and compatible types that can be used in expressions 
("Notation in Expressions" on page 130). 

Order of Evaluation 
This section discusses the order in which expressions are evaluated but does not 
explain the syntax or the semantics of the operators in these expressions. The ear­
lier sections in this chapter provide a complete reference for each of these 
operators. 

Expressions are evaluated according to the precedence and grouping of their opera­
tors. (Table 1.2 in Chapter 1, "Lexical Conventions," shows the relationships the 
C++ operators impose on expressions.) Consider this example: 

#include <iostrearn.h> 

in t rna in ( ) 
{ 

} 

int a = 2, b = 4, c = 9; 

cout « a + b * c « "\n"; 
cout « a + (b * c) « "\n"; 
cout « (a + b) * c « "\n"; 

return 0; 

The output from the above code is: 

38 
38 
54 
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Figure 4.1 shows the order in which the expressions are evaluated. 

cout « a + b * c « "\n"; 

Figure 4.1 Expression-Evaluation Order 

The order in which the expression shown in Figure 4.1 is evaluated is determined 
by the precedence and associativity of the operators: 

1. Multiplication (*) has the highest precedence in this expression; hence the sub­
expression b * c is evaluated first. 

2. Addition (+ ) has the next highest precedence, so a is added to the product of b 

and c. 

3. Left shift «<) has the lowest precedence in the expression, but there are two oc­
currences. Because the left-shift operator groups left-to-right, the left subexpres­
sion is evaluated, then the right one. 

When parentheses are used to group the subexpressions, they alter the precedence 
and also the order in which the expression is evaluated, as shown in Figure 4.2. 

cout « (a + b) * c « "\n"; 

Figure 4.1 Expression-Evaluation Order with Parentheses 

Expressions such as those shown in Figure 4.2 are evaluated purely for their side 
effects-in this case, to transfer information to the standard output device. 
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Note The left-shift operator is used to insert an object in an object of class 
ostream. It is sometimes called the "insertion" operator when used with iostream. 
For more about the iostream library, see Chapters 18 and 19 of the Class Libraries 
User's Guide manual and Part 3 of the Class Libraries Reference manual. 

Sequence Points 
An expression can modify an object's value only once between consecutive 
"sequence points." 

The C++ language definition does not currently specify sequence points, Micro­
soft C++ uses the same sequence points as ANSI C for any expression involving C 
operators and not involving overloaded operators. When operators are overloaded, 
the semantics change from operator sequencing to function-call sequencing. Micro­
soft C++ uses the following sequence points: 

• Left operand of the logical AND operator. The left operand of the logical AND 
operator is completely evaluated and all side effects completed before continu­
ing. There is no guarantee that the right operand of the logical AND operator 
will be evaluated. 

• Left operand of the logical OR operator. The left operand of the logical OR 
operator is completely evaluated and all side effects completed before continu­
ing. There is no guarantee that the right operand of the logical OR operator will 
be evaluated. 

• Left operand of the comma operator. The left operand of the comma operator is 
completely evaluated and all side effects completed before continuing. Both 
operands of the comma operator are always evaluated. 

• Function-call operator. All arguments to a function, including default argu­
ments, are evaluated and all side effects completed prior to entry to the func­
tion. No order of evaluation among the arguments or the function-call 
expression is specified. 

• First operand of the conditional operator. The first operand of the conditional 
operator is completely evaluated and all side effects completed before 
continuing. 
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• The end of a full initialization expression. 

• The expression in an expression statement. Expression statements consist of an 
optional expression followed by a semicolon (;). The expression is completely 
evaluated for its side effects. 

• The controlling expression in a selection (if or switch) statement. The expres­
sion is completely evaluated and all side effects completed before the code 
dependent on the selection is executed. 

• The controlling expression of a while or do statement. The expression is 
completely evaluated and all side effects completed before any statements in 
the next iteration of the while or do loop are executed. 

• Each of the three expressions of a for statement. Each expression is completely 
evaluated and all side effects completed before moving to the next expression. 
The three expressions are (collectively) completely evaluated and all side ef­
fects completed before any statements in the next iteration of the for loop are 
executed. 

• The expression in a return statement. The expression is completely evaluated 
and all side effects completed before control returns to the calling function .• 

Gray Expressions 
Certain expressions, called "gray expressions," are ambiguous in their meaning. 
These expressions occur most frequently when an object's value is modified more 
than once in the same expression. Gray expressions rely on a particular order of 
evaluation where the language does not define one. Consider the following 
example: 

int i = 7; 

func( i, ++i l; 

The C++ language does not guarantee in which order the arguments to a function 
call are evaluated. Therefore, in the example above, func could receive the values 
7 and 8, or 8 and 8 for its parameters, depending on whether the parameters are 
evaluated from left to right or from right to left. 

Notation in Expressions 
The C++ language specifies certain compatibilities when specifying operands. 
Table 4.5 shows the types of operands acceptable to operators that require oper­
ands of type type. 



Table 4.5 Operand Types Acceptable to Operators 

Type Expected 

type 

type* 

const type 

volatile type 

Types Allowed 

const type 
volatile type 
type& 
consttype& 
volatile type& 
volatile const type 
volatile const type& 

type* const 
type* volatile 
type* volatile const 
type 
const type 
consttype& 

type 
volatile type 
volatile type& 
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Because the preceding rules can always be used in combination, a const pointer to 
a volatile object can be supplied where a pointer is expected. 





Statements 

c++ statements are the program elements that control how, and in what order, ob­
jects are manipulated. 

Statements fall into one of the following categories: 

• Expression statements. These statements, discussed on page 136, evaluate an 
expression either for its side effects or for its return value. 

• Null statements. These statements, discussed on page 136, can be provided 
where a statement is required by the C++ syntax but where no action is to be 
taken. 

• Compound statements. These statements, discussed on page 137, are groups of 
statements enclosed in curly braces ({ }). They can be used wherever the gram­
mar calls for a single statement. 

• Selection statements. These statements, discussed on page 138, perform a test; 
they then execute one section of code if the test evaluates to true (nonzero). 
They may execute another section of code if the test evaluates to false. 

• Iteration statements. These statements, discussed on page 142, provide for re­
peated execution of a block of code until some termination criterion is met. 

• Jump statements. These statements, discussed on page 147, either transfer con­
trol immediately to another location in the function or return control from the 
function. 

• Declaration statements. Declarations, discussed on page 149, introduce a name 
into a program. (Chapter 6 provides more detailed information about 
declarations. ) 
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5.1 Overview 

Syntax 

c++ statements are executed sequentially, except when an expression statement, a 
selection statement, an iteration statement, or a jump statement specifically modi­
fies that sequence. 

statement: 
labeled-statement 
expression-statement 
compound-statement 
selection-statement 
iteration-statement 
jump-statement 
declaration-statement 

In most cases, the C++ statement syntax is identical to that of ANSI C. The pri­
mary difference between the two is that in C, declarations are allowed only at the 
start of a block; C++ adds the declaration-statement, which effectively removes 
this restriction. This allows introduction of variables at a point in the program 
where a precomputed intialization value is present. 

Declaring variables inside blocks also allows you to exercise precise cOJ.ltrol over 
the scope and lifetime of those variables. 

5.2 Labeled Statements 

Syntax 

In order for program control to be transferred directly to a given statement, the 
statement must be labeled. 

labeled-statement: 
identifier : statement 
case constant-expression statement 
default : statement 

Using Labels with the goto Statement 
The appearance of an identifier label in the source program declares a label. Only 
a goto statement can transfer control to an identifier label. The following code 
fragment illustrates use of the goto statement and an identifier label to escape a 
tightly nested loop: 



for( p = 0; P < NUM_PATHS; ++p ) 
{ 

} 

NumFiles = FillArray( pFileArray, pszFNames ) 
for( i = 0; i < NumFiles; ++i ) 
{ 

if( (pFileArray[i] = fopen( pszFNames[i], "r" » 
goto FileOpenError; 

II Process the files that were opened. 

Fil eOpenError: 
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NULL ) 

cerr « "Fatal file open error. Processing interrupted.\n" ); 

In the above example, the goto statement transfers control directly to the statement 
that prints an error message if an unknown file-open error occurs. 

The label has function scope and cannot be redec1ared within the function. How­
ever, the same name can be used as a label in different functions. 

Using Labels in the case Statement 
Labels that appear after the case keyword cannot also appear outside a switch 
statement. (This restriction also applies to the default keyword.) The following 
code fragment shows the correct use of case labels: 

II Sample Microsoft Windows message processing loop. 
switch( msg ) 
{ 

case WM_TIMER: II Process timer event. 
SetClassWord( hWnd, GCW_HICON, ahIcon[nlcon++] ); 
ShowWindow( hWnd, SW_SHOWNA ); 
nIcon %= 14; 
Yield(); 
break; 

case WM_PAINT: 
II Obtain a handle to the device context. 
II BeginPaint will send WM_ERASEBKGND if appropriate. 

memset( &ps, 0x00, sizeof(PAINTSTRUCT) ); 
hDC = BeginPaint( hWnd, &ps ); 

II Inform Windows that painting is complete. 

EndPaint( hWnd, &ps ); 
break; 
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case WM_CLOSE: 
II Close this window and all child windows. 

KillTimer( hWnd, TIMERI ); 
DestroyWindow( hWnd ); 
if( hWnd == hWndMain ) 

PostQuitMessage( 0); II Quit the application. 

break; 

default : 

} 

II This choice is taken for all messages not specifically 
II covered by a case statement. 

return DefWindowProc( hWnd, Message, wParam, lParam ); 
break; 

5.3 Expression Statement 

Syntax 

Expression statements cause expressions to be evaluated. No transfer of control or 
iteration takes place as a result of an expression statement. 

expression-statement: 
expressionopt ; 

All expressions in an expression statement are evaluated and all side effects are 
complete before the next statement is executed. The most common expression 
statements are assignments and function calls. C++ also provides a null statement. 

The Null Statement 
The "null statement" is an expression statement with the expression missing. It is 
useful when the syntax of the language calls for a statement but no expression eval­
uation is called for. It consists of a semicolon. 

Null statements are commonly used as placeholders in iteration statements or as 
statements on which to place labels at the end of compound statements or 
functions. 

The following code fragment shows how to copy one string to another and incor­
porates the null statement: 



char *strcpy( char *Oest. const char *Source ) 
{ 

char *OestStart = Oest; 

II Assign value pOinted to by Source to 
II Oest until the end-of-string 0 is 
II encountered. 
while( *Oest++ = *Source++ ) 

II Null statement. 

return OestStart; 
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5.4 Compound Statements (Blocks) 

Syntax 

A compound statement consists of zero or more statements enclosed in curly 
braces ({ }). A compound statement can be used anywhere a statement is 
expected. Compound statements are commonly called "blocks." 

compound-statement: 
{ statement-listopt } 

statement-list 
statement 
statement-list statement 

The following example uses a compound statement as the statement part of the if 
statement (see "The if Statement" on page 138 for details about the syntax): 

if( Amount> 100 ) 
{ 

} 

else 

cout « "Amount was too large to handle\n"; 
Alert(); 

Balance -= Amount; 

Note Because a declaration is a statement, a declaration can be one of the state­
ments in the statement-list. The result of this is that names declared inside a com­
pound statement, but not explicitly declared as static, have local scope and (for 
objects) lifetime. See "Scope" in Chapter 2, on page 28 for details about treatment 
of names with local scope. 



138 C++ Language Reference 

5.5 Selection Statements 

Syntax 

The if Statement 

The C++ selection statements, if and switch, provide a means to conditionally 
execute sections of code. 

selection-statement: 
if ( expression ) statement 
if ( expression ) statement else statement 
switch ( expression ) statement 

The statement in the if, else, and switch statements cannot be a declaration. 

The if statement evaluates the expression enclosed in parentheses. The expression 
must be of arithmetic or pointer type, or it must be of a class type that defines an 
unambiguous conversion to an arithmetic or pointer type. (For information about 
conversions, see Chapter 3, "Standard Conversions.") 

In both forms of the if syntax, if the expression evaluates to a nonzero value (true), 
the statement dependent on the evaluation is executed; otherwise it is skipped. 

In the if ••• else syntax, the second statement is executed if the result of evaluating 
the expression is zero. 

The else clause of an if ••• else statement is associated with the if statement immedi­
ately preceding it. The following code fragment demonstrates how this works: 

if( condition! == true) 
if( condition2 == true) 

cout « "condition! true; condition2 true\n"; 
else 

cout « "conditionl true; condition2 false\n"; 
else 

cout « "condition 1 false\n"; 

Many programmers use curly braces ({ }) to explicitly clarify the pairing of com­
plicated if and else clauses. The following example uses curly braces for this 
purpose: 



if( conditionl == true) 
{ 

if( conditionl == true 
cout « "conditionl true; condition2 true\n"; 

else 
cout « "conditionl true; condition2 false\n"; 

else 
cout « "condition 1 false\n"; 

Statements 139 

While the braces are not strictly necessary, they clarify the pairing between if and 
else statements. 

The switch Statement 

Syntax 

The C++ switch statement allows selection among multiple sections of code, de­
pending on the value of an expression. The expression enclosed in parentheses, the 
"controlling expression," must be of an integral type or of a class type for which 
there is an unambiguous conversion to integral type. Integral promotion is per­
formed as described in "Integral Promotions" in Chapter 3, on page 66. 

The switch statement causes an unconditional jump to, into, or past the statement 
that is the "switch body," depending on the value ofthe controlling expression, the 
values of the case labels, and the presence or absence of a default label. The 
switch body is normally a compound statement (although this is not a syntactic re­
quirement). Usually, some of the statements in the switch body are labeled with 
case labels or with the default label. Labeled statements are not syntactic require­
ments, but the switch statement is meaningless without them. The default label 
can appear only once. 

case constant-expression: statement 

default : statement 

The constant-expression in the case label is converted to the type of the control­
ling expression and is then compared for equality. In a given switch statement, no 
two constant-expressions in case statements can evaluate to the same value. The 
behavior is shown in Table 5.1. 
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Table 5.1 Switch Statement Behavior 

Condition Action 

Converted value matches that of the 
promoted controlling expression. 

None of the constants match the constants 
in the case labels; default label is present. 

None of the constants match the constants 
in the case labels; default label is not 
present. 

Control is transferred to the statement 
following that label. 

Control is transferred to the default label. 

Control is transferred to the statement 
after the switch statement. 

The switch statement can contain declarations as long as they are reachable-that 
is, not bypassed by all possible execution paths. Names introduced using these dec 
larations have local scope. The following code fragment shows how the switch 
statement works: 

switch( tolower( *argv[l] ) ) 
{ 

II Error. Unreachable declaration. 
char szChEntered[] = "Character entered was: "; 

case 'a' 

II Declaration of szChEntered OK. Local scope. 
char szChEntered[] = "Character entered was: "; 
cout « szChEntered « "a\n"; 
} 

break; 

case 'b' : 
II Value of szChEntered undefined. 
cout « szChEntered « "b\n"; 
break; 

default: 
II Value of szChEntered undefined. 
cout « szChEntered « "neither a nor b\n"; 
break; 

} 
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A switch statement can be nested. In such cases, case or default labels associate 
with the most deeply nested switch statements that enclose them. For example: 

switch( msg ) 
{ 
case WM_COMMANO: 

switch( wParam 
{ 

case 10M F NEW: 
delete wfile; 

II Windows command. Find out more. 

II File New menu command. 

wfile = new WinAppFile; 
break; 

case 10M_F_OPEN: II File Open menu command. 
wfile->FileOpenOlg(); 
break; 

case WM CREATE: II Create window. 

break; 

II Window needs repainting. 

b rea k; 

default: 
return OefWindowProc( hWnd, Message, wParam, lParam ); 

The above code fragment from a Microsoft Windows'M message loop shows how 
switch statements can be nested. The switch statement that selects on the value of 
wParam is executed only if msg is WM_COMMAND. The case labels for menu 
selections, I OMJ _ NEW and I OMJ _ OPEN, associate with the inner switch statement. 

Control is not impeded by case or default labels. To stop execution at the end of a 
part of the compound statement, insert a break statement. This transfers control to 
the statement after the switch statement. This example demonstrates how control 
"drops through" unless a break statement is used: 
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Baal fClosing FALSE; 

switch( wParam ) 
{ 

case IDM F CLOSE: 
fClosing = TRUE; 

II File close command. 

case IDM_F_SAVE: II File save command. 
if( document->IsDirty() ) 

i f( document->Name() == "UNTITLED" 
FileSaveAs( document ); 

else 
FileSave( document ); 

if( fClosing ) 
document->Close(); 

break; 

The preceding code shows how to take advantage of the fact that case labels do 
not impede the flow of control. If the swi tch statement transfers control to 
I DMJ _ SAV E, fC los in 9 is FAlS E. Therefore, after the file is saved, the document is 
not closed. However, if the switch statement transfers control to I DM_ F _ C LOS E, 
fC los i n 9 is set to TRU E, and the code to save a file is executed. 

5.6 Iteration Statements 
Iteration statements cause statements (or compound statements) to be executed 
zero or more times, subject to some loop-termination criteria. When these state­
ments are compound statements, they are executed in order, except when either 
the break statement or the continue statement is encountered. (For a description 
of these statements, see "The break Statement" and "The continue Statement" on 
page 147.) 

c++ provides three iteration statements-while, do, and for. Each of these iterates 
until its termination expression evaluates to zero (false), or until loop termination 
is forced with a break statement. Table 5.2 summarizes these statements and their 
actions; each is discussed in detail in the sections that follow. 
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Table 5.2 C++ Iteration Statements 

Statement Evaluated At Initialization Increment 

while Top of loop No No 

do Bottom of loop No No 

for Top of loop Yes Yes 

iteration-statement: 
while ( expression ) statement 
do statement while ( expression ) ; 
for ( Jor-init-statement expressionopt expressionopt) statement 

Jor-init-statement: 
expression-statement 
declaration-statement 

The statement part of an iteration statement cannot be a declaration. However, it 
can be a compound statement containing a declaration. 
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The while Statement 
The while statement executes a statement repeatedly until the termination condi­
tion (the expression) specified evaluates to zero. The test ofthe termination condi­
tion takes place before each execution of the loop; therefore, a while loop executes 
zero or more times, depending on the value of the termination expression. The 
code below uses a while loop to trim trailing spaces from a string: 

char *trim( char *szSource 
{ 

char *pszEOS; 

II Set pointer to end of string to point to the character just 
II before the 0 at the end of the string. 
pszEOS = szSource + strlen( szSource ) - 1; 

while( pszEOS >= szSource && *pszEOS 
*pszEOS-- = '\0'; 

return szSource; 

The termination condition is evaluated at the top of the loop. If there are no trail­
ing spaces, the loop never executes. 

The expression must be of an integral type, a pointer type, or a class type with an 
unambiguous conversion to an integral type. 
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The do Statement 
The do statement executes a statement repeatedly until the specified termination 
condition (the expression) evaluates to zero. The test of the termination condition 
is made after each execution of the loop; therefore, a do loop executes one or more 
times, depending on the value of the termination expression. The following func­
tion uses the do statement to wait for the user to press a specific key: 

void WaitKey( char ASCIICode ) 
{ 

char chTemp; 

do 
{ 

} 
chTemp = getch(); 

while( chTemp != ASCIICode ); 

A do loop rather than a while loop is used in the above code-with the do loop, 
the getch function is called to get a keystroke before the termination condition is 
evaluated. This function can be written using a while loop, but not as concisely: 

void WaitKey( char ASCIICode ) 
{ 

} 

char chTemp; 

chTemp = getch(); 

while( chTemp != ASCIICode 
{ 

chTemp = getch(); 

The expression must be of an integral type, a pointer type, or a class type with an 
unambiguous conversion to an integral type. 
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The for Statement 
The for statement can be divided into three separate parts, as shown in Table 5.3. 

Table 5.3 for Loop Elements 

Syntax Name 

for- init -statement 

expression] 

expression2 

When Execnted 

Before any other element of 
the for statement or the 
substatement. 

Before execution of a given 
iteration of the loop, including 
the first iteration. 

At the end of each iteration of 
the loop; expression] is tested 
after expression2 is evaluated. 

Contents 

Often used to initialize loop 
indices. It can contain 
expressions or declarations. 

An expression that evaluates 
to an integral type or a class 
type that has an unambiguous 
conversion to an integral type. 

Normally used to increment 
loop indices. 

Thefor-init-statementis commonly used to declare and initialize loop-index vari­
ables. The expression1 is often used to test for loop-termination criteria. The 
expression2 is commonly used to increment loop indices. 

The for statement executes the statement repeatedly until expression1 evaluates to 
zero. Thefor-init-statement, expression1, and expression2 fields are all optional. 

The following for loop: 

fort for-init-statement; expressionl; expression2 ) 
{ 

II Statements 

is equivalent to the following while loop: 

for-init-statement; 
while( expressionl ) 
{ 

} 

II Statements 
expression2 

A convenient way to specify an infinite loop using the for statement is: 

fort ; ; ) 
{ 

II Statements to be executed. 
} 
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This is equivalent to: 

while( 1 ) 
{ 

II Statements to be executed. 

The initialization part of the for loop can be a declaration statement, or any other 
type of statement, including the null statement. The initializations can include any 
sequence of expressions and declarations, separated by commas. Any object de­
clared inside afor-init-statement has local scope, as if it had been declared immedi­
ately prior to the for statement. While the name of the object can be used in more 
than one for loop in the same scope, the declaration can appear only once. For 
example: 

int main() 
{ 

fort int i = 0; i < 100; ++i ) 
cout « i « "\n"; 

II The loop index, i, cannot be declared in the 
II for-init-statement here because it is still in scope. 
fort i = 100; i >= 0; --i ) 

cout « i « "\n"; 

return 0; 

Although the three fields of the for statement are normally used for initialization, 
testing for termination, and incrementing, they are not restricted to these uses. For 
example, the following code prints the numbers 1 to 100. The sub statement is the 
null statement: 

#include <iostream.h> 

int main() 
{ 

fort int 

return 0; 
} 

0' , < 100; cout « ++i « "\n" ) 
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5.7 Jump Statements 

Syntax 

The c++ jump statements perform an immediate local transfer of control. 

jump-statement: 
break , 
continue , 
return expressionopt 
goto identifier 

The break Statement 
The break statement is used to exit an iteration or switch statement. It transfers 
control to the statement immediately following the iteration sub statement or 
switch statement. 

The break statement terminates only the most tightly enclosing loop or switch 
statement. In loops, break is used to terminate before the termination criteria eval­
uate to O. In the switch statement, break is used to terminate sections of code­
normally before a case label. The following example illustrates the use of the 
break statement in a for loop: 

fort ; ; ) 
{ 

II No termination condition. 

if( List->AtEnd() 
break; 

L i st->Next(); 

cout « "Control transfers to here.\n"; 

Note There are other ways to escape a loop as simply as the one above. In more 
complex loops, where it can be difficult to tell if the loop should be terminated 
before several statements have been executed, using the break statement makes 
more sense. 

For an example of using the break statement within the body of a switch state­
ment, see "The switch Statement" on page 139. 

The continue Statement 
The continue statement forces immediate transfer of control to the loop­
continuation statement of the smallest enclosing loop. (The "loop-continuation" is 
the statement that contains the controlling expression for the loop.) Therefore, the 
continue statement can appear only in the dependent statement of an iteration 
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statement (although it may be the sole statement in that statement). In a for loop, 
execution of a continue statement causes expression2 to be evaluated, then 
expressionl. 

The following example shows how the continue statement can be used to bypass 
sections of code and skip to the next iteration of a loop: 

II Get a character that is a member of the zero-terminated 
II string, szLegalString. Return the index of the character 
II entered. 
int GetLegalChar( char *szLegalString 
{ 

} 

char *pch; 

do 
{ 

char ch = getch(); 

II Use strchr library function to determine if the 
II character read is in the string. If not, use the 
II continue statement to bypass the rest of the 
II statements in the loop. 
if( (pch = strchr( szLegalString, ch )) == NULL) 

continue; 

II A character that was in the string szLegalString 
II was entered. Return its index. 
return (pch - szLegalString); 

II The continue statement transfers control to here. 
} wh i 1 e ( 1 ); 

return 0; 

The return Statement 
The return statement allows a function to immediately transfer control back to the 
calling function (or, in the case of the main function, transfer control back to the 
operating system). The return statement accepts an expression, which is the value 
passed back to the calling function. Functions of type void, constructors, and de­
structors cannot specify expressions in the return statement; functions of all other 
types must specify an expression in the return statement. 

The expression, if specified, is converted to the type specified in the function dec­
laration, as if an initialization were being performed. Conversion from the type of 
the expression to the return type of the function can cause temporary objects to be 
created. See "Temporary Objects" in Chapter 11, on page 311 for more informa­
tion about how and when temporaries are created. 
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When the flow of control exits the block enclosing the function definition, the re­
sult is the same as if a return statement with no expression had been executed. 
This is illegal for functions that are declared as returning a value. 

A function can have any number of return statements. 

The goto Statement 
The goto statement performs an unconditional transfer of control to the named 
label. The label must be in the current function. 

For more information about labels and the goto statement, see "Labeled State­
ments" and "Using Labels with the goto Statement" on page 134. 

5.8 Declaration Statements 

Syntax 

Declaration statements introduce new names into the current scope. These names 
can be: 

• Type names (class, struct, union, enum, typedef, and pointer-to-member) 

• Object names 

• Function names 

declaration-statement: 
declaration 

If a declaration within a block introduces a name that is already declared outside 
the block, the previous declaration is hidden for the duration of the block. After ter­
mination of the block, the previous declaration is again visible. 

Multiple declarations of the same name in the same block are illegal. 

For more information about declarations and name hiding, see "Declarations and 
Definitions" and "Scope" in Chapter 2, on pages 27 and 28, respectively. 

Declaration of Automatic Objects 
In C++, objects can be declared with automatic storage class using the auto or 
register keyword. If no storage-class keyword is used for a local object (an object 
declared inside a function), auto is assumed. C++ handles initializations and decla­
rations of these objects differently than objects declared with static storage classes. 
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Initialization 
Each time declaration statements for objects of storage class auto or register are 
executed, initialization takes place. The following example, from "The continue 
Statement" on page 147 shows initialization of the automatic object c h inside the 
do loop. 

II Get a character that is a member of the zero-terminated 
II string, szLegalString. Return the index of the character 
II entered. 
int GetLegalChar( char *szLegalString 
{ 

} 

char *pch; 

do 
{ 

II This declaration statement is executed once for each 
II execution of the loop. 
char ch = getch(); 

if( (pch = strchr( szLegalString, ch » 
continue; 

NULL ) 

II A character that was in the string szLegalString 
/ / was entered. Return its index. 
return (pch - szLegalString); 

while( 1 ); 

For each iteration of the loop (each time the declaration is encountered), the 
macro getch is evaluated and ch is initialized with the results. When control is 
transferred outside the block using the return statement, ch is destroyed (in this 
case, the storage is deallocated). 

See "Storage Classes" in Chapter 2, on page 46 for another example of 
initialization. 

Destruction 
Objects declared in a loop are destroyed once per iteration of the loop, on exit 
from the block, or when control transfers to a point prior to the declaration. Ob­
jects declared in a block that is not a loop are destroyed on exit from the block, 
or when control transfers to a point prior to the declaration. 

Note Destruction can mean simply deallocating the object, or, for class-type 
objects, invoking the object'S destructor. 
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When ajump statement transfers control out of a loop or block, objects declared 
in the block transferred from are destroyed; objects in the block transferred to are 
not destroyed. 

When control is transferred to a point prior to a declaration, the object is destroyed. 

Transfers of Control 
Using the goto statement or a case label in a switch statement, it is possible to 
specify a program that branches past an automatic object initializer. Such code is 
illegal unless the declaration that contains the initializer is in a block enclosed by 
the block in which the jump statement occurs. 

The following example shows a loop that declares and initializes the objects 
tota 1, ch, and i. There is also an erroneous goto statement that transfers control 
past an initializer. 

II Read input until a nonnumeric character is entered. 
while( 1 ) 
{ 

int total = 0; 

char ch = getch(); 

if( ch >= '0' II ch <= 'g' ) 
{ 

goto Labell; 

i nt i = ch - '0'; 

II Error: transfers past initialization 
I I of i. 

Labell: 
total += i; 

} II i would be destroyed here if the 
II goto error were not present. 

else 
II Break statement transfers control out of loop, 
II destroying total and ch. 
b rea k; 

In the above example, the goto statement tries to transfer control past the initiali­
zation of i. However, if i were declared but not initialized, the transfer would be 
legal. 

The objects tot a 1 and ch, declared in the block that serves as the statement of 
the whi 1 e statement, are destroyed when that block is exited using the brea k 
statement. 
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Declaration of Static Objects 
An object can be declared with static storage class using the static or extern key­
word. Local objects must be explicitly declared as static or extern to have static 
storage class. Global objects (objects declared outside all functions) that are de­
clared with no storage-class specifier are assumed to be extern. 

Initialization 
Global objects of static storage class are initialized at program startup. (For more 
information about construction and destruction of global objects, see "Additional 
Startup Considerations" and "Additional Termination Considerations" in Chapter 
2, on pages 43 and 44, respectively.) 

Local objects declared as static are initialized the first time their declarations are 
encountered in the program flow. The following class, introduced in Chapter 2, 
shows how this works: 

#include <iostream.h> 
#include <string.h> 

II Define a class that logs initializations and destructions. 
class InitDemo 
{ 
public: 

InitDemo( char *szWhat ); 
~InitDemo() ; 

private: 
char *szObjName; 

} ; 

II Constructor for class InitDemo. 
InitDemo::InitDemo( char *szWhat ) 
{ 

} 

if( szWhat != 0 && strlen( szWhat ) > 0 ) 
{ 

else 

szObjName new char[ strlen( szWhat ) + 1 J; 
strcpy( szObjName, szWhat ); 

szObjName = 0; 

clog« "Initializing: "« szObjName« "\n"; 



II Destructor for InitDemo. 
InitDemo::-InitDemo() 
{ 

if( szObjName != 0 
{ 

clog « "Destroying: " « szObjName « "\n"; 
delete szObjName; 

II Main function. 
int maine int argc, char *argv[] ) 
{ 

if( argc < 2 ) 
{ 

cerr « "Supply a one-letter argument. \n"; 
return -1; 

ife *argv[1] == 'a' ) 
{ 

} 

else 

cout « "*argv[l] was an 'a'\n"; 

II Declare static local object. 
static InitDemo II( "static II" ); 

cout « "*argv[l] was not an 'a'\n"; 

return 0; 
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If the command-line argument supplied to this program starts with the lowercase 
letter "a," the declaration of I 1 is executed, the initialization takes place, and the 
result is: 

*argv[1] was an 'a' 
Initializing: static II 
Destroying: static II 

Otherwise, the flow of control bypasses the declaration of II, and the result is: 

*argv[1] was not an 'a' 

When a static local object is declared with an initializer that does not evaluate to a 
constant expression, the object is given the value 0 (converted to the appropriate 
type) at the point before execution enters the block for the first time. However, the 
object is not visible and no constructors are called until the actual point of 
declaration. 
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At the point of declaration, the object's constructor (if the object is of a class type) 
is called as expected. (Static local objects are only initialized the first time they are 
seen.) 

Destruction 
Local static objects are destroyed during processing of the termination functions 
specified by atexit. 

If a static object was not constructed because the program's flow of control 
bypassed its declaration, no attempt is made to destroy that object. 



Declarations 

Syntax 

Declarations introduce new names into a program. They can be used to: 

• Specify storage class, type, and linkage for an object 

• Specify storage class, type, and linkage for a function 

• Provide the definition of a function 

• Provide an initial value for an object 

• Associate a name with a constant (enumerated type declaration) 

• Declare a new type (class, struct, or union declaration) 

• Specify a synonym for a type (typedef declaration) 

In addition to introducing a new name, a declaration specifies how an identifier is 
to be interpreted by the compiler. Declarations do not automatically reserve 
storage associated with the identifier-reserving storage is done by definitions. 

Note Most declarations are also definitions. 

declaration: 
decl-specijiersopt declarator-listopt ; 
junction-definition 
linkage-specification 

The declarators in declarator-list contain the names being declared. Although the 
declarator-list is shown as optional, it can be omitted only in declarations or defi­
nitions of a function. 

Note The declaration of a function is often called a "prototype." This declaration 
provides type information about arguments and the function's return type that al­
lows the compiler to perform correct conversions and to ensure type safety. 

The decl-specifiers part of a declaration is also shown as optional; however, it can 
be omitted only in declarations of class types or enumerations. 



156 C++ Language Reference 

Declarations occur in a scope. This controls the visibility of the name declared and 
the duration of the object defined (if any). For more information about how scope 
rules interact with declarations, see "Scope" in Chapter 2, on page 28. 

An object declaration is also a definition unless it contains the extern storage-class 
specifier described in "Storage-Class Specifiers" on page 157. A function declara­
tion is also a definition unless it is a prototype-a function header with no defining 
function body. An object's definition causes the storage for that object to be allo­
cated and appropriate initializations to take place. 

6.1 Specifiers 

Syntax 

This section explains the decl-specifiers portion of declarations. (The syntax for 
declarations is given at the beginning of this chapter.) 

decl-specifier: 
storage-class-specifier 
type-specifier 
fct-specifier 
friend 
typedef 

decl-specifiers: 
decl-specifiersopt decl-specifier 

The decl-specifiers portion of a declaration is the longest sequence of 
decl-specifiers that can be construed to be a type name. The remainder of the decla­
ration is the name or names introduced. The examples in the following list il­
lustrate this concept: 

Declaration decl-specifiers name 

char __ far *lpszAppName; char far * lpszAppName 
typedef char __ far * LPSTR; char far * LPSTR 
LPSTR _fstrcpy( LPSTR, LPSTR ) ; LPSTR _ fstrcpy 
volatile void *pvvObj; volatile void * pvvObj 

Because signed, unsigned, long, and short all imply int, a typedef name follow­
ing one of these keywords is taken to be a member of declarator-list, not of 
decl-specifiers. 

Note Because a name can be redeclared, its interpretation is subject to the most 
recent declaration in the current scope. Redeclaration can affect how names are in­
terpreted by the compiler, particularly typedefnames. 
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Storage-Class Specifiers 

Syntax 

The C++ storage-class specifiers tell the compiler about the duration and visibility 
of the object or function they declare, as well as where an object should be stored. 

storage-class-specifier: 
auto 
register 
static 
extern 

Automatic Storage-Class Specifiers 
The auto and register storage-class specifiers can be used only to declare names 
used in blocks or to declare formal arguments to functions. The term "auto" comes 
from the fact that storage for these objects is automatically allocated at run time 
(normally on the program's stack). 

The auto Keyword 
Few programmers use the auto keyword in declarations because all block-scoped 
objects not explicitly declared with another storage class are implicitly automatic. 
Therefore, the following two declarations are equivalent: 

{ 

auto int i; 
int j; 
} 

II Explicitly declared as auto. 
II Implicitly auto. 

The register Keyword 
The register keyword is similar to the auto keyword except that it tells the com­
piler to keep the object in a machine register if one is available. If no register is 
available, the compiler treats the object as any other automatic object. 

The benefits of the register storage class are increased speed and reduced 
demands on the application stack. The latter benefit is particularly useful in recur­
sive algorithms. 

Microsoft SpecifiC The global register-allocation optimization (fOe option) instructs the compiler to 
ignore the register keyword and perform register allocation based on code analy­
sis. For algorithms that depend on register allocation, either compile without this 
option or use the optimize pragma to shut off global register allocation .• 
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ANSI C does not allow for taking the address of a register object; this restriction 
does not apply to C++. However, if the address-of operator (&) is used on an ob­
ject, the compiler must put the object in a location for which an address can be 
represented-in practice, this means in memory instead of in a register. 

Static Storage-Class Specifiers 
The static storage-class specifiers, static and extern, can be applied to objects and 
functions. Table 6.1 shows where the keywords static and extern can and cannot 
be used. 

Table 6.1 Use of static and extern 

Construct Can static Be Used? Can extern Be Used? 

Function declarations within a No No 
block 

Formal arguments to a function No No 

Objects in a block Yes No 

Objects outside a block Yes Yes 

Functions Yes Yes 

Class member functions Yes No 

Class member data Yes No 

typedef names No No 

A name specified using the static keyword has internal linkage. That is, it is not 
visible outside the current translation unit. A name specified using the extern key­
word has external linkage unless previously defined as having internal linkage. 
For more information about the visibility of names, see "Scope" on page 28 and 
"Program and Linkage" on page 33 in Chapter 2. 

Note Functions that are declared as inline and that are not class member func­
tions are given the same linkage characteristics as functions declared as static. 

A class name whose declaration has not yet been encountered by the compiler can 
be used in an extern declaration. The name introduced with such a declaration can­
not be used until the class declaration has been encountered. 

Names Without Storage-Class Specifiers 
File-scope names with no explicit storage-class specifiers have external linkage un­
less they are: 

• Declared using the const keyword 

• Previously declared with internal linkage 
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Function Specifiers 

Microsoft Specific 

Microsoft Specific 

The inline and virtual keywords can be used as specifiers in function declarations. 
This use of the virtual keyword differs from its use in the base-class specifier of a 
class definition. 

inline Specifier 
The inline specifier instructs the compiler to replace function calls with the code 
ofthe function body. This substitution is "inline expansion" (sometimes called "in­
lining"). Inline expansion alleviates the function-call overhead at the potential cost 
of larger code size. 

The inline keyword tells the compiler that inline expansion is preferred. However, 
the compiler can create a separate instance of the function (instantiate) and create 
standard calling linkages instead of inserting the code inline. Several cases where 
this can happen are: 

• Recursive functions 

• Functions that are referred to through a pointer elsewhere in the translation unit 

Functions that are declared as inline and that are not class member functions have 
intemallinkage unless otherwise specified. 

The __ inline keyword is equivalent to inline .• 

As with normal functions, the order of evaluation of the arguments to an inline 
function is not defined. In fact, it could be different than the order in which the ar­
guments are evaluated when passed using normal function call protocol. 

Recursive functions can be substituted inline to a depth specified by the in­
linLdepth pragma. After that depth, recursive function calls are treated as calls to 
an instance of the function. The inline_ recursion pragma controls the inline ex­
pansion of a function currently under expansion. See Chapter 13, "Preprocessing," 
for more information about these pragmas. See the Environment and Tools manual 
for information about the lOb command-line option that controls inline recursion .• 

Inline Class Member Functions 
A function defined in the body of a class declaration is an inline function. Con­
sider the following class declaration: 
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class Account 
{ 

public: 
Account(double initial_balance) { balance 
double GetBalance(); 
double Deposit( double Amount ); 
double Withdraw( double Amount ); 

private: 
double balance; 

} ; 

initial_balance; } 

The Account constructor is an inline function. The member functions 
GetBal ance, Deposit, and Withdraw are not specified as inline but can be imple­
mented as inline functions using code such as the following: 

inline double Account::GetBalance() 
{ 

return balance; 
} 

inline double Account::Deposit( double Amount) 
{ 

return ( balance += Amount ); 

inline double Account::Withdraw( double Amount) 
{ 

return ( balance -= Amount ); 
} 

Note In the class declaration, the functions were declared without the inline key­
word. The inline keyword can be specified in the class declaration; the result is the 
same. 

A given inline member function must be defined exactly the same way in every 
compilation unit. This constraint causes inline functions to behave exactly as if 
they were instantiated functions. Additionally, there must be exactly one definition 
of an inline function. 

A class member function defaults to external linkage unless a definition for that 
function contains the inline specifier. The example above shows that these func­
tions need not be explicitly declared with the inline specifier; using inline in the 
function definition causes it to be an inline function. However, it is illegal to rede­
clare a function as inline after a call to that function. 
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Because inline implies static, it is an error to define an inline class member func­
tion with the static storage-class specifier. 

Inline Functions versus Macros 
Although inline functions are similar to macros (because the function code is ex­
panded at the point of the call at compile time), inline functions are parsed by the 
compiler whereas macros are expanded by the preprocessor. As a result, there are 
several important differences: 

• Inline functions follow all the protocols of type safety enforced on normal 
functions. 

• Inline functions are specified using the same syntax as any other function ex­
cept that they include the inline keyword in the function declaration. 

• Expressions passed as arguments to inline functions are evaluated exactly once. 
In some cases, expressions passed as arguments to macros can be evaluated 
more than once. The following example shows a macro that converts lowercase 
letters to uppercase: 

#include <stdio.h> 
#include <conio.h> 

#define toupper(a) ((a) >= 'a' && ((a) <= 'z') ? ((a)-('a'-'A')):(a)) 

int main() 
{ 

} 

char ch = toupper( getch() ); 
pri ntf( "%c", ch ); 

return 0; 

The intent of the expression toupper ( getch () ) is that a character should be 
read from the console device (stdin) and if necessary, converted to uppercase. 

Because of the implementation, getch is executed once to determine if the char­
acter is greater than or equal to "a" and once to determine if it is less than or 
equal to "z." If it is in that range, getch is executed yet again to convert the 
character to uppercase. This means the program waits for two or three charac­
ters when the programmer intended it to wait for only one. 
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Inline functions remedy this problem: 

#include <stdio.h> 
#include <conio.h> 

inline char toupper( char a ) 
{ 

return ((a >= 'a' && a <= 'z')? a-('a'-'A') a); 
} 

in t rna in () 
{ 

char ch = toupper( getch() ); 
printf( "%c", ch ); 

return 0; 

When to Use Inline Functions 
Inline functions are best used for small functions such as those used to access pri­
vate data members. The main purpose of these one- or two-line "accessor" func­
tions is to return state information about objects; short functions are sensitive to 
the overhead of function calls. Longer functions spend proportionately less time in 
the calling/returning sequence and benefit less from inlining. 

The Poi nt class, introduced in "Function Call Results" in Chapter 4, on page 87 
can be optimized as follows: 

class Point 
{ 

public: 
II Define "accessor" functions as 
II reference types. 
unsigned& x(); 
unsigned& y(); 

private: 
unsigned _x; 
unsigned _y; 

} ; 

inl ine unsigned& Point: :x() 
{ 

return _x; 
} 

inl ine unsigned& Point: :y() 
{ 

return _y; 
} 
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Assuming coordinate manipulation is a relatively common operation in a client of 
such a class, specifying the two accessor functions (x and y in the preceding ex­
ample) as inline typically saves the overhead of these procedures: 

• Function calls (including parameter passing and placing the object's address on 
the stack) 

• Preservation of caller's stack frame 

• New stack-frame setup 

• Return-value communication 

• Old stack-frame restore 

• Return 

virtual Specifier 
The virtual keyword can be applied only to nonstatic class member functions. It 
signifies that binding of calls to the function is deferred until run-time. Virtual 
functions are covered in their own section, "Virtual Functions" in Chapter 9, on 
page 275. 

typedef Specifier 

Syntax 

The typedef specifier is used to define a name that can be used as a synonym for 
a type or derived type. You cannot use the typedef specifier inside a function 
definition. 

typedef-name: 
identifier 

A typedef declaration introduces a name that, within its scope, becomes a syn­
onym for the type given by the decl-specifiers portion of the declaration. In con­
trast to the class, struct, union, and enum declarations, typedef declarations do 
not introduce new types-they introduce new names for existing types. 

One use of typedef declarations is to make declarations more uniform and com­
pact. For example: 

typedef char CHAR; 
typedef CHAR * PSTR; 
typedef CHAR far * LPSTR 
typedef CHAR near * NPSTR 

II Character type. 
II Pointer to a string (char *). 
II Far pointer to a string. 
II Near pointer to a string. 

LPSTR _fstrchr( LPSTR source, CHAR target ); 
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The names introduced by the above declarations are synonyms for the following 
types: 

Name Synonymous Type 

CHAR 

PSTR 

LPSTR 

NPSTR 

char 

char * 
char __ Car * 
char __ near * 

The preceding example code declares a type name, CHAR. The CHAR type name is 
then used to define these derived type names: PSTR (a pointer to a string), LPSTR 
(a far pointer to a string), and NPSTR (a near pointer to a string). Finally, the 
names are used in declaring the function _Cstrchr. To see how the typedeCs can 
clarify declarations, contrast the above declaration of _Cstrchr with the following 
declaration: 

char __ far * _fstrchr( char __ far * source, char target ); 

To use typedeCto specify fundamental and derived types in the same declaration, 
you can separate declarators with commas. For example: 

typedef char CHAR, *PSTR, 
__ far *LPSTR, __ near *NPSTR; 

A particularly complicated use of typedeC is to define a synonym for a "pointer to 
a function that returns type T." For example, a typedeC declaration that means 
"pointer to a function that takes no arguments and returns type void," uses this 
code: 

typedef void (*PVFN)(); 

The synonym can be handy in declaring arrays of functions that are to be invoked 
through a pointer: 

#include <iostream.h> 
#include <stdlib.h> 

extern void funcI(); 
extern void func2(); 
extern void func3(); 
extern void func4(); 

typedef void (*PVFN)(); 

II Declare 4 functions. 
II These functions are assumed to be 
II defined elsewhere. 

II Declare synonym for pointer to 
II function that takes no arguments 
II and returns type void. 



int maine int argc, char * argv[] ) 
{ 

II Declare an array of pointers to functions. 
PVFN pvfnI[] = { funcI, func2, func3, func4 }; 
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II Invoke the function specified on the command line. 
if( argc > 0 && *argv[I] > '0' && *argv[I] <= '4' ) 
(*pvfnI[atoi( argv[I] ) - I])(); 

return 0; 

Where void is used in the preceding typedef declaration, any set of type names 
can be substituted. This facilitates type checking. For example, a synonym for 
"pointer to a function that returns type int and takes two arguments, both of type 
const char *" can be written as follows: 

typedef int (*PIFN)( const char *, canst char * ); 

II Declare a pointer to a function to point to a string 
II comparison function. At run time this can be changed 
II to point to the stricmp function if a case-insensitive 
II comparison is required. 
PIFN pifnCompare = strcmp; 

(*pifnCompare)( stringI, string2 ); 

Redeclaration of typedef Names 
The typedef declaration can be used to redeclare the same name to refer to the 
same type. For example: 

I I FI LEI. H 
typedef char CHAR; 

II FILE2.H 
typedef char CHAR; 

II PROG.CPP 
'include "fileI.h" 
'include "file2.h" 

The program PROG.CPP includes two header files, both of which contain typedef 
declarations for the name CHAR. As long as both declarations refer to the same 
type, such redeclaration is acceptable. 
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A typedef cannot redefine a name that was previously declared as a different type. 
Therefore, if FILE2.H contains 

/I FILE2.H 
typedef int CHAR; 

the compiler issues an error because of the attempt to redeclare the name C HA R to 
refer to a different type. This extends to constructs such as: 

typedef char CHAR; 
typedef CHAR CHAR; 

typedef union REGS 
{ 

struct word regs X; 
struct byte regs h; 

} REGS; 

II OK: redeclared as same type 

II OK: name REGS redeclared 
II by typedef name with the 
II same meaning. 

Use of typedef with Class Types 
Use of the typedef specifier with class types is supported largely because of the 
ANSI C practice of declaring unnamed structures in typedef declarations. For 
example, many C programmers use the following coding practice: 

typedef struct 
{ 

unsigned X; 
unsigned y; 

} POINT; 

II Declare an unnamed structure and give it the 
II typedef name POINT. 

The advantage of such a declaration to the C programmer is that it enables declara­
tions like: 

POINT ptOrigin; 

instead of: 

struct point_t ptOrigin; 

In C++, the difference between typedefnames and real types (declared with the 
class, struct, union, and enum keywords) is more distinct. While the C practice 
of declaring a nameless structure in a typedef statement still works, it provides no 
notational benefits as it does in C. 

The following code is illegal in C++ because the POINT function is not a type con­
structor; hence it must return a value. 
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typedef struct 
{ 
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POINT(); 
unsigned x; 
unsigned y; 

II Error: does not return a value. 

POINT; 

The above example declares a class named PO I NT using the unnamed class type­
def syntax. PO I NT is treated as a class name; however, the following restrictions 
apply to names introduced this way: 

• The name (the synonym) cannot appear after a class, struct, or union prefix. 

• The name cannot appear in the constructor names within a class declaration. 

• The name cannot appear in the destructor names within a class declaration. 

In summary, this syntax does not provide any mechanism for inheritance, construc­
tion, or destruction. 

Name Space of typedef Names 
Names declared using typedef occupy the same name space as other identifiers 
(except statement labels). Therefore, they cannot use the same identifier as a pre­
viously declared name, except in the case of a class-type declaration. Consider the 
following example: 

typedef unsigned long UL; 
i nt U L; 

II Oeclare a typedef name, UL. 
II Error: redefined. 

The name-hiding rules that pertain to other identifiers also govern the visibility of 
names declared using typedef. Therefore, the following example is legal in C++: 

typedef unsigned long UL; 

long Beep 
{ 

unsigned int UL; 

} 

II Oeclare a typedef name, UL. 

II Redeclaration hides typedef name. 

II typedef name "unhidden" here. 

The friend specifier is used to designate functions or classes that have the same 
access privileges as class member functions. Friend functions and classes are 
covered in detail in "Friends" in Chapter 10, on page 290. 
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Type Specifiers 

Syntax 

Syntax 

Type specifiers determine the type of the name being declared. 

type-specifier: 
simple-type-name 
class-specifier 
enum-specifier 
elaborated-type-specifier 
:: class-name 
const 
volatile 

This section discusses simple type names, elaborated type specifiers, and nested 
type names. 

Simple Type Names 
A simple type name is the name of a complete type. 

simple-type-name: 
complete-class-name 
qualified-type-name 
char 
short 
int 
long 
signed 
unsigned 
float 
double 
void 

Table 6.2 shows how the simple type names can be used together. 

A name specified using the const keyword has internal linkage unless it is specifi­
cally given external linkage. 
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Table 6.2 Type Name Combinations 

Type 

int 

long 

short 

signed 

unsigned 

Can Appear With 

long or short, but not both 

int or double 

int 
char, short, int, or long 

char, short, int, or long 

Elaborated Type Specifiers 
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Comments 

Type int can be used alone, in which case 
it means short int in 16-bit compilations 
and long int in 32-bit compilations. 

Type long implies type long int. 

Type short implies type short int. 
Type signed implies signed int. The most­
significant bit of objects of type signed 
char and bit fields of signed integral 
types is taken to be the sign bit. 

Type unsigned implies unsigned int. The 
most-significant bit of objects of type 
unsigned char and bit fields of unsigned 
integral types is not treated as the sign bit. 

Elaborated type specifiers are used to declare user-defined types. These can be 
either class- or enumerated-types. 

elaborated-type-specifier: 
class-key class-name 
class-key identifier 
enum enum-name 

class-key: 
class 
struct 
union 

If identifier is specified, it is taken to be a class name. For example: 

class Window; 

The above statement declares the Wi ndow identifier as a class name. This syntax is 
used for forward declaration of classes. For more information about class names, 
see "Class Names" in Chapter 8, on page 232. 
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If a name is declared using the union keyword, it must be defined using the union 
keyword as well. Names that are defined using the class keyword can be declared 
using the struct keyword (and vice versa). Therefore, the following code samples 
are legal: 

II Legal example 1 
struct A; II Forward declaration of A. 

class A 
{ 

public: 
i nt i; 

} ; 

II Define A. 

II Legal example 2 
class A; II Forward declaration of A. 

struct A 
{ 

private: 
int i; 

} ; 

II Define A. 

II Legal example 3 
union A; II Forward declaration of A. 

union A 
{ 

int 

II Define A. 

i . , 
char ch[2]; 

} ; 

The next set of examples, however, are illegal: 

II Illegal example 1 
union A; II Forward declaration ,of A. 

struct A 
{ 

i nt i; 
} ; 

II Define A. 
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II Illegal example 2 
union A; II Forward declaration of A. 

class A 
{ 

public: 
i nt i; 

} ; 

II Define A. 

1/ Illegal example 3 
struct A; II Forward declaration of A. 

union A II Define A. 
{ 

i nt i; 
char ch[2]; 

} ; 

Nested Type Names 
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Microsoft c++ supports declaration of nested types-both named and anonymous. 

qualified-type-name: 
typedef-name 
class-name :: qualified-type-name 

complete-class-name: 
qualified-class-name 
:: qualified-class-name 

qualified-class-name: 
class-name 
class-name :: qualified-class-name 

In some programming situations, it makes sense to define nested types. These 
types are visible only to member functions of the class type in which they are de­
fined. They can also be made visible by constructing a qualified type name using 
the scope-resolution operator (::). 

Note One commonly used class hierarchy that employs nested types is iostream. 
In the iostream header files, the definition of class ios includes a series of 
enumerated types, which are packaged for use only with the iostream library. 
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The following is an example of how to define nested classes: 

class WinSystem 
{ 

public: 

} ; 

class Window 
{ 

public: 
Wi ndow() ; 
-Window(); 
i nt NumberOf(); 
i nt Count(); 

private: 
static int _Count; 

} ; 
class CommPort 
{ 

public: 
CommPort(); 
-CommPort(); 
i nt NumberOf(); 
i nt Count(); 

private: 
static int _Count; 

} ; 

II Default constructor. 
II Destructor. 
II Number of objects of class. 
II Count number of objects of class. 

II Default constructor. 
II Destructor. 
II Number of objects of class. 
II Count number of objects of class. 

II Initialize WinSystem static members. 
int WinSystem::Window::_Count = 0; 
int WinSystem::CommPort::_Count = 0; 

To access a name defined in a nested class, use the scope-resolution operator (::) 
to construct a complete class name. Use of this operator is shown in the initializa­
tions of the static members in the example above. To use a nested class in your 
program, use code such as the following: 

WinSystem: :Window Desktop; 
WinSystem::Window AppWindow; 

cout « "Number of active windows: " « Desktop.Count() « "\n"; 

Nested anonymous classes or structures can be defined as follows: 



class Ledger 
{ 

} ; 

class 
{ 

publ i c: 
double PayableAmt; 
unsigned PayableDays; 

Payables; 

class 
{ 

public: 
double RecvableAmt; 
unsigned RecvableDays; 

Receivables; 
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An anonymous class must be an aggregate, which has no member functions and 
no static members. 

Note While an enumerated type can be defined inside a class declaration, the 
reverse is not true; class types cannot be defined inside enumeration declarations. 

6.2 Enumeration Declarations 

Syntax 

An enumeration is a distinct integral type that defines named constants. Enumera­
tions are declared using the enum keyword. 

enum-name: 
identifier 

enum-specifier: 
enum identifieropt { enum-listopt } 

enum-list: 
enumerator 
enum-list , enumerator 

enumerator: 
identifier 
identifier = constant-expression 



174 C++ language Reference 

Enumerated types are valuable when an object can assume a known and rea­
sonably limited set of values. Consider the example of the suits from a deck of 
cards: 

cl ass Card 
{ 
public: 

enum Suit 
{ 

} ; 

Diamonds, 
Hearts, 
Clubs, 
Spades 

II Declare two constructors: a default constructor, 
II and a constructor that sets the cardinal and 
II suit value of the new card. 
Card(); 
Card( int Cardlnit, Suit Suitlnit ); 

II Get and Set functions. 
int GetCardinal (); II Get cardinal value of card. 
int SetCardi nal (); II Set cardinal value of card. 
Suit GetSuit() ; II Get suit of card. 
Suit SetSuit() ; II Set suit of card. 
char *NameOf( ) ; II Get string representation of card. 

private: 

} ; 

Suit 
int 

suit ; 
cardinalValue; 

II Define a postfix increment operator for Suit. 
inline Card::Suit operator++( Card::Suit &rs, int 
{ 

return (Card: :Suit)(rs + 1); 

The preceding example defines a class, Ca rd, that contains a nested enumerated 
type, Su it. To create a pack of cards in a program, use code such as the following: 

Card *Deck[52]; 
int j = 0; 

for( Card::Suit curSuit = Card::Diamonds; curSuit <= Card::Spades; 
curSuit++ ) 

for( int i = 1; i <= 13; ++i 
Deck[j++] = new Card( i, curSuit ); 
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In the preceding example, the type Sui t is nested; therefore, the class name 
(Ca rd) must be used explicitly in public references. However, in member func­
tions, the class name can be omitted. 

In the first segment of code, the postfix increment operator for Su it is defined. 
Without a user-defined increment operator, curSui t could not be incremented. 
For more information about user-defined operators, see "Overloaded Operators" in 
Chapter 12, on page 351. 

Consider the code for the NameOf member function (a better implementation is 
presented later): 

char* Card::NameOf() II Get the name of a card. 
{ 

static char szName[20]; 
static char *Numbers[] = 
{ "1", "2", "3", "4", "5", "6", "7", "8", 119", 

} 

"10", "Jack", "Queen", "King" 
} ; 
static char *Suits[] = 
{ "Diamonds", "Hearts", "Clubs", "Spades" }; 

if( GetCardinal() < 13) 
strcpy( szName, Numbers[GetCardinal()] ); 

strcat( szName, " of " ); 

switch( GetSuit() 
{ 

II Diamonds, Hearts, Clubs, and Spades do not need explicit 
II class qualifier. 
case Diamonds: strcat( 
case Hearts: 
case Clubs: 
case Spades: 
} 

return szName; 

strcat( 
strcat( 
strcat( 

szName, 
szName, 
szName, 
szName, 

"Diamonds" ) ; break; 
"Hearts" ) ; break; 
"Clubs" ); b rea k; 
"Spades" ) ; break; 

An enumerated type is an integral type. The identifiers introduced with the enum 
declaration can be used wherever constants appear. Normally, the first identifier's 
value is 0 (Di amonds, in the example above), and the values increase by one for 
each succeeding identifier. Therefore, the value of Spades is 3. 
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Any enumerator in the list, including the first one, can be initialized to a value 
other than its default value. Suppose the declaration of Sui t had been the 
following: 

enum Suit 
{ 

} ; 

Diamonds 5, 
Hearts, 
Clubs = 4, 
Spades 

Then the values of Di amonds, Hea rts, Cl ubs, and Spades would have been 5,6, 
4, and 5, respectively. Note that 5 is used more than once. 

The default values for these enumerators make implementation of the NameOf 
function simpler: 

char* Card: :NameOf() II Get the name of a card. 
{ 

} 

static char szName[20]; 
static char *Numbers[] = 
{ "1", "2", "3", "4", "5", "6", "7", "8", "9", 

"10", "Jack", "Queen", "Ki ng" 
} ; 
static char *Suits[] = 
{ "Diamonds", "Hearts", "Clubs", "Spades" }; 

if( GetCardi nal () < 13) 
strcpy( szName, Numbers[GetCardinal()] ); 

strcat( szName, " of " ); 

strcat( szName, Suits[GetSuit()] ); 

return szName; 

The accessor function GetSui t returns type Sui t, an enumerated type. Because 
enumerated types are integral types, they can be used as arguments to the array 
subscript operator. (For more information, see "Subscript Operator" in Chapter 4, 
on page 81.) 

Enumerator Names 
The names of enumerators must be different from any other enumerator or varia­
ble in the same scope. However, the values (as shown above) can be duplicated. 
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Definition of Enumerator Constants 
Enumerators are considered defined immediately after their initializers; therefore, 
they can be used to initialize succeeding enumerators. The following example de­
fines an enumerated type that ensures that any two enumerators can be combined 
with the OR operator: 

enum FileOpenFlags 
f 

} ; 

OpenReadOnly 
OpenReadWrite 
OpenBinary 
OpenText 
OpenShareable 

1, 
OpenReadOnly «1, 
OpenReadWrite « 1, 
OpenBinary «1, 
OpenText « 1 

In the preceding example, the preceding enumerator is used to initialize each 
succeeding enumerator. 

Conversions and Enumerated Types 
Because enumerated types are integral types, any enumerator can be converted to 
another integral type by integral promotion. Consider this example: 

enum Days 
{ 

} ; 

int 

Sunday, 
Monday, 
Tuesday, 
Wednesday, 
Thursday, 
Friday, 
Saturday 

i . , 
Days d Thursday; 

i = d; II Converted by integral promotion. 
cout « "i = " « i « "\n"; 

However, there is no implicit conversion from any integral type to an enumerated 
type. Therefore, (continuing with the preceding example) the following statement 
is in error: 

d = 6; II Erroneous attempt to set d to Saturday. 
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Assignments such as the one above, where no implicit conversion exists, must use 
a cast to perform the conversion: 

d (Days)6; II Explicit cast-style conversion to type Days. 
d = Days( 4 ); II Explicit function-style conversion to type Days. 

The example above shows conversions of values that coincide with the enumera­
tors. There is no mechanism that protects you from converting a value that does 
not coincide with one of the enumerators. For example: 

d = Days( 967 ); 

Some such conversions may work. However, there is no guarantee the resultant 
value will be one of the enumerators. Additionally, if the size of the enumerator is 
too small to hold the value being converted, the value stored may not be what you 
expect. 

6.3 Linkage Specifications 

Microsoft Specific 

The term "linkage specification" refers to the protocol for linking functions (or 
procedures) written in different languages. The following calling conventions are 
affected: 

• Case sensitivity of names. 

• Decoration of names. In C, the compiler prefixes names with an underscore. 
This is often called "decoration." In C++, name decoration is used to retain type 
information through the linkage phase. (For more information, see Appendix A, 
"Phases of Translation.") 

• Order in which arguments are expected on the stack. 

• Responsibility for adjusting the stack on function return. Either the called func­
tion or the calling function is responsible. 

• Passing of hidden arguments (whether any hidden arguments are passed). 

The calling conventions for Microsoft C and C++ are shown in Table 6.3. 



Syntax 

Microsoft Specific 

Microsoft Specific 

Table 6.3 C and C++ Calling Conventions 

Calling Convention C++ 

Case sensitivity Case sensitive 

Order of arguments Left argument pushed first; 
this passed last (class-
member functions only) 

Stack responsibility Called function 

Hidden arguments For member functions, the 
this pointer is passed as a 
hidden argument 

Naming C++ type-safe naming 

linkage-specification: 
extern string-literal { declaration-listopt } 

extern string-literal declaration 

declaration-list: 
declaration 
declaration-list 
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C 

Case sensitive 

Right argument pushed first 

Calling function 

Used only for structure and 
floating return types 

C naming; all names prefixed 
with an underscore C)+ 

Linkage specification facilitates gradually porting C code to C++ by allowing the 
use of existing code. 

The only linkage specifications currently supported by Microsoft C++ are "C" 
and "C++". • 

The following example declares the functions atoi and atol with C linkage: 

extern "e" 
{ 

} 

int atoi( char *string ); 
long atol( char *string ); 

Calls to these functions are made using C linkage. The same result could be 
achieved with these two declarations: 

extern "e" int atoi( char *string ); 
extern "e" 1 ong atol ( char *stri ng ); 

All Microsoft C standard include files use conditional compilation directives to de­
tect C++ compilation. When a C++ compilation is detected, the prototypes are en­
closed in an extern "C" directive as follows: 
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II Sample.h 
#if definedC __ cplusplus) 
extern "c" 
{ 

#endif 

II Function declarations 

#if definedC __ cplusplus) 
} 

!fendi f+ 

There is no need for you to declare the functions in the standard include files as 
extern "C". 

If a function is overloaded, no more than one of the functions of the same name 
can have a linkage specifier. (For more information, see "Function Overloading" 
in Chapter 7, on page 205.) 

Table 6.4 shows how various linkage specifications work. 

Table 6.4 Effects of Linkage Specifications 

Specification 

On an object 

On a function 

On a class 

Effect 

Affects linkage of that object only 

Affects linkage of that function and all functions or objects 
declared within it 

Affects linkage of all nonmember functions and objects declared 
within the class 

If a function has more than one linkage specification, they must agree; it is an 
error to declare functions as having both C and C++ linkage. Furthermore, if two 
declarations for a function occur in a program-one with a linkage specification 
and one without-the declaration with the linkage specification must be first. Any 
redundant declarations of functions that already have linkage specification are 
given the linkage specified in the first declaration. For example: 

extern "c" int CFunclC); 

int CFunclC); 

int CFunc2C); 

II Redeclaration is benign; C linkage is 
II ret a i ned. 

extern .. c .. int CFunc2C); II Error: not the first declaration of 
II CFunc2; cannot contain linkage 
II specifier. 
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Functions and objects explicitly declared as static within the body of a compound 
linkage specifier ({ }) are treated as static functions or objects; the linkage speci­
fier is ignored. Other functions and objects behave as if declared using the extern 
keyword. (See "Storage-Class Specifiers" on page 157 for details about the extern 
keyword.) 





Declarators 

Syntax 

A "declarator" is the part of a declaration that names an object, type, or function. 
Declarators appear in a declaration as one or more names separated by commas; 
each name can have an associated initializer. 

declarator-list: 
init-declarator 
declarator-list in it-declarator 

init-declarator: 
declarator initializer opt 

7.1 Overview 

Microsoft Specific 

Declarators are the components of a declaration that specify names. Declarators 
can also modify basic type information to cause names to be functions or pointers 
to objects or functions. (Specifiers, discussed in Chapter 6, convey properties such 
as type and storage class. Modifiers, discussed in this chapter and in Appendix B, 
modify declarators.) Figure 7.1 shows a complete declaration of two names, 
szBuf and strcpy, and calls out the components ofthe declaration. 

static char far * szBuf, strcpy( char *dest, char *source ); 

LII~~~ 
specifiers [ __ far, *, and () modifiers 

I 

Figure 7.1 Specifiers, Modifiers, and Declarators 

Most Microsoft extended keywords can be used as modifiers to form derived 
types; they are not specifiers or declarators. (See Appendix B, "Microsoft-Specific 
Modifiers."). 
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Syntax declarator: 
dname 
ptr-operator declarator 
declarator ( argument-declaration-list ) cv-mod-list 
declarator [ constant-expressionopt ] 
( declarator) 

ptr-operator: 
* cv-qualifier-listopt 
& cv-qualifier-listopt 
complete-class-name :: * cv-qualifier-listopt 

cv-qualifier-list: 
cv-qualifier cv-qualifier-listopt 

cv-qualifier: 
const 
volatile 

cv-mod-list: 
cv-qualifier cv-mod-listopt 
pmodel cv-mod-listopt 

pmodel: one of 
__ near 
__ far 
__ huge 

dname: 
name 
class-name 
- class-name 
typedef-name 
qualified-type-name 

Declarators appear in the declaration syntax after an optional list of specifiers 
(decl-specifiers). These specifiers are discussed in Chapter 6, "Declarations." A 
declaration can contain more than one declarator, but each declarator declares only 
one name. The following sample declaration shows how specifiers and declarators 
are combined to form a complete declaration: 

canst char *pch, ch; 
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In the above declaration, the keywords const and char make up the list of specifi­
ers. Two declarators are listed: *pch, and ch. The simplified syntax of a declara­
tion, then, is the following, where con s t c h a r is the type, and * p chand c hare 
the identifiers: 

type identifien IT, identifier2IT ••• ,identifier n]]]] ; 

When the binding of elements in a complicated declarator does not yield the 
desired result, you can use parentheses for clarification. A better technique, how­
ever, is to use a typedef or a combination of parentheses and typedefs. Consider 
declaring an array of pointers to functions. Each function must obey the same pro­
tocol so that the arguments and return values are known: 

II Function returning type int that takes one 
II argument of type char *. 
typedef int (*PIFN)( char *); 

II Declare an array of 7 pointers to functions 
II returning int and taking one argument of type 
II char *. 
PIFN pifnDispatchArray[7]; 

The equivalent declaration can be written without typedefs, but it is so compli­
cated that the potential for error exceeds any benefits: 

int ( *pifnDispatchArray[7] )( char * ); 

7.2 Type Names 
Type names are used in some declarators in the following ways: 

• In explicit conversions 

• As arguments to the sizeof operator 

• As arguments to the new operator 

• In function prototypes 

• In typedef statements 

A type name consists of type specifiers, covered in Chapter 6, and abstract declara­
tors, discussed in "Abstract Declarators" on page 187. 

In the following example, the arguments to the function strcpy are supplied using 
their type names. In the case of the source argument, const is the specifier and 
c h a r * is the abstract declarator: 

static char far *szBuf, *strcpy( char *dest, const char *source ); 
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Syntax type-name: 
type-specifie r-list abstract-declarator opt 

type-specijier-list: 
type-specifier type-specijier-list opt 

abstract-declarator: 
ptr-operator abstract-declaratoropt 
abstract-declaratoropt ( argument-declaration-list ) cv-qualijier-listopt 
abstract-declaratoropt [ constant-expressionopt] 
( abstract-declarator ) 

An abstract declarator is a declarator that does not declare a name-the identifier 
is left out. For example: 

char * 

declares the type "pointer to type char." This abstract declarator can be used in a 
function prototype as follows: 

char *strcmp( char *, char * ); 

In the above prototype (declaration), the function's arguments are specified as 
abstract declarators. The following is a more complicated abstract declarator that 
declares the type "pointer to a function that takes two arguments, both of type 
char *," and returns type char *: 

char * (*)( char *, char * ) 

Since abstract declarators completely declare a type, it is legal to form expressions 
of the form: 

II Get the size of array of 10 pointers to type char. 
size_ t nSi ze = si zeof( char *[10J ); 

II Allocate a pointer to a function that has no 
II return value and takes no arguments. 
typedef void (PVFN *)(); 
PVFN *pvfn = new PVFN; 

II Allocate an array of pointers to functions that 
II return type WinStatus, and take one argument of 
II type WinHandle. 
typedef WinStatus (PWSWHFN *)( WinHandle ); 
PWSWHFN pwswhfnArray[J = new PWSWHFN[10J; 
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Ambiguity Resolution 
To perform explicit conversions from one type to another, you must use casts, 
specifying the desired type name. Some type casts result in syntactic ambiguity. 
The following function-style type cast is ambiguous: 

char *aName( String( 5 l ); 

It is unclear whether it is a function declaration or an object declaration with a 
function-style cast as the initializer: Does the above statement declare a function 
returning type char * that takes one argument of type Stri ng, or does it declare 
the object aName and initialize it with the value of 5 casttotype String? 

The rule in this case is that if a syntactic construct can be considered a valid func­
tion declaration, it is treated as such. Only if it cannot possibly be a function decla­
ration-that is, if it would be syntactically incorrect-is a statement examined to 
see if it is a function-style type cast. Therefore, the compiler considers the state­
ment to be a declaration of a function and treats the parentheses around the identi­
fier 5 as gratuitous. On the other hand, the statements: 

char *aName( (Stringls l; 

and 

char *aName = String( 5 l; 

are clearly declarations of objects, and a user-defined conversion from type 
Stri ng to type char * is invoked to perform the initialization of aName. 

7.3 Abstract Declarators 
An abstract declarator is a declarator in which the identifier is omitted. (For related 
information, see "Type Names" on page 185.) 

The following abstract declarators are discussed in this section: 

• Pointers 

• References 

• Pointers to members 

• Arrays 

• Functions 

• Default arguments 
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Pointers 
Pointers are declared using the declarator syntax: 

* cv-qualifier-listopt dname 

A pointer is a 16- or 32-bit quantity that holds the address of an object. The full 
declaration, then is: 

decl-specifiers * cv-qualifier-listopt dname ; 

A simple example of such a declaration is: 

char *pch; 

The preceding declaration specifies that pch points to an object of type char. 

const and volatile Pointers 
The const and volatile keywords change how pointers are treated. The const key­
word specifies that the value associated with the name that follows can be set only 
at program startup; the data is protected from modification thereafter. 

The volatile keyword specifies that the value associated with the name that fol­
lows can be modified by actions other than those in the user application. There­
fore, the volatile keyword is useful for declaring objects in shared memory that 
can be accessed by multiple processes or glubal uala areas useu for communica­
tion with interrupt service routines. 

When a name is declared as volatile, the compiler reloads the value from memory 
each time it is accessed by the program. This dramatically reduces the possible op­
timizations. However, when the state of an object can change unexpectedly, it is 
the only way to ensure predictable program performance. 

To declare the object pointed to by the pointer as const or volatile, use a declara­
tion of the form: 

const char *cpch; 
volatile char *vpch; 

To declare the value of the pointer-that is, the actual address stored in the 
pointer-as const or volatile, use a declaration of the form: 

char * const pchc; 
char * volatile pchv; 
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By extension, both the pointer and the object can be declared as const or volatile 
using the declaration: 

canst char ch ~ 'A'; 

II Object and pointer canst. 
canst char * canst cpchc ~ &ch; 
canst char * volatile cpchv; II Pointer volatile; object canst. 
volatile char * canst vpchc; II Pointer canst; object volatile. 
volatile char * volatile cpchc; II Object and pointer volatile. 

The C++ language prevents assignments that would allow an object or pointer de­
clared as const to be modified. Such assignments would remove the information 
that the object or pointer was declared with, thereby violating the intent of the orig­
inal declaration. Consider the following declarations: 

canst char cch 'A'; 
char ch ~ 'B'; 

Given the above declarations oftwo objects (cch, of type const char, and ch of 
type char), the following declarationlinitializations are valid: 

canst char *pchl &cch; 
canst char *const pch4 &cch; 
canst cha r *pch5 &ch; 
cha r *pch6 &ch; 
char *const pch7 &ch; 
canst char *const pchS &ch; 

The following declarationlinitializations are erroneous. 

char *pch2 ~ &cch; 
char *const pch3 ~ &cch; 

The declaration of pch2 declares a pointer through which a constant object might 
be modified and is therefore disallowed. The declaration of pch3 specifies that the 
pointer is constant, not the object; the declaration is disallowed for the same rea­
son the pch2 declaration is disallowed. 

The following eight assignments show assigning through pointer and changing of 
pointer value for the above declarations; for the purposes of this discussion, as­
sume that the initialization had been correct for pchl through pchS. 

*pchl ~ 'A'; 
pchl ~ &ch; 
*pch2 ~ 'A'; 
pch2 ~ &ch; 
*pch3 ~ 'A'; 
pch3 ~ &ch; 
*pch4 ~ 'A'; 
pch4 ~ &ch; 

II Error: object declared canst 
II OK: painter r,ot decl ared canst 
II OK: normal pointer 
II OK: normal pointer 
II OK: object not declared canst 
II Error: pointer declared canst 
II Error: object declared canst 
II Error: pointer declared canst 
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References 

Syntax 

Syntax 

Pointers declared as volatile or as a mixture of const and volatile obey the same 
rules. 

Pointers declared as const are often used in function declarations as follows: 

char *strcpy( char *szTarget, const char *szSource l; 

The above statement declares a function, strcpy, that takes two arguments of type 
"pointer to char" and returns a pointer to type char. Because the arguments are 
passed by reference and not by value, the function would be free to modify both 
szTarget and szSource if szSource were not declared as const. The declaration 
of szSource as const assures the caller that szSource cannot be changed by the 
called function. 

Note Because there is a standard conversion from typename * to const typename 
*, it is legal to pass an argument of type char * to strcpy. However, the reverse is 
not true; no implicit conversion exists to remove the const attribute from an object 
or pointer. 

References are declared using the declarator syntax: 

& cv-qualifier-listopt dname 

A referellce is a 16- or 32-bii quantity that holds the address of an object but be­
haves syntactically like an object. A reference declaration consists of an (optional) 
list of specifiers followed by a reference declarator. 

decl-specifiers & cv-qualijler-listopt dname ; 

Consider the user-defined type Da te: 

struct Date 
{ 

} ; 

short DayOfWeek; 
short Month; 
short Day; 
short Year; 

The following statements declare an object of type Date and a reference to that 
object: 

Date Today; 
Date& TodayRef 

II Declare the object. 
Today; II Declare the reference. 
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Both the name of the object, Today, and the reference to the object, TodayRef, can 
be used identically in programs: 

Today.DayOfWeek 3; 
TodayRef.Month = 7; 

II Tuesday 
I I July 

Reference-Type Function Arguments 
Often, when passing large objects to functions, it is more efficient to pass refer­
ences to these objects instead. This allows the compiler to pass the address of the 
object while maintaining the syntax that would have been used to access the ob­
ject. Consider the following example that uses the Date structure: 

II Create a Julian date of the form DDDYYYY 
II from a Gregorian date. 
long JulianFromGregorian( Date& GDate 
{ 

static int cDayslnMonth[] = { 
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 
} ; 
long JDate; 

II Add in days for months already elapsed. 
fore int i = 0; i < GDate.Month - 1; ++i ) 

JDate += cDayslnMonth[i]; 

II Add in days for this month. 
JDate += GDate.Day; 

II Check for leap year. 
if( GDate.Year % 100 != 0 && GDate.Year % 4 != 0 ) 

JDate++; 

II Add in year. 
JDate *= 10000; 
JDate += GDate.Year; 

return JDate; 

The above code illustrates the fact that members of a structure passed by reference 
are accessed using the member-selection operator C.) instead of the pointer 
member-selection operator C -». 

Although arguments passed as reference types observe the syntax of non pointer 
types, they retain one important characteristic of pointer types: they are modifiable 
unless declared as const. Because the intent of the above code is not to modify the 
object GDate, a more appropriate function prototype is: 

long JulianFromGregorian( const Date& GDate ); 
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This prototype guarantees that the function J ul ian FromGregori an will not change 
its argument. 

Note that any function prototyped as taking a reference type can accept an object 
of the same type in its place because there is a standard conversion from typename 
to typename&. 

Reference-Type Function Returns 
Functions can be declared to return a reference type. There are two reasons to 
make such a declaration: 

• The information being returned is a large enough object that returning a refer­
ence is more efficient than returning a copy. 

• The type of the function must be an I-value. 

Just as it can be more efficient to pass large objects to functions by reference, it 
also can be more efficient to return large objectsJrom functions by reference. Ref­
erence return protocol eliminates the necessity of copying the object to a tem­
porary location prior to returning. 

Another case in which reference return types can be useful is when the function 
must evaluate to an I-value. Most overloaded operators fall into this category, par­
ticularly the assignment operator. Overloaded operators are covered in "Over­
loaded Operators" in Chapter 12, on page 351. Consider the Poi nt example from 
r'h <'l-nt.a:r A . 
'---'J.J.upu,.,-,- ""T. 

class Point 
{ 

public: 
II Define "accessor" functions as 
II reference types. 
unsigned& x(); 
unsi gned& y(); 

private: 

} ; 

unsigned obLx; 
uns i gned obLy; 

unsigned& Point :: x() 
{ 

} 



unsigned& Point .. y ( ) 
{ 

void 
{ 

return obj_y; 

maine) 

Point ThePoint; 

II Use x ( ) and y ( ) as l-values. 
ThePoint.x() 7 . , 
ThePoint.y() = 9 ; 

II Use xC) and y() as r-values. 
cout «"x "« ThePoint.x() « "\n" 

«"y "« ThePoint.y() « "\n"; 
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Notice that the functions x and y are declared as returning reference types. These 
functions can be used on either side of an assignment statement. 

Declarations of reference types must contain initializers except in the following 
cases: 

• Explicit extern declaration 

• Declaration of a class member 

• Declaration within a class 

• Declaration of an argument to a function or the return type for a function 

References to Pointers 
References to pointers can be declared in much the same way as references to ob­
jects. Declaring a reference to a pointer yields a modifiable value that is used like 
a normal pointer. The following code samples illustrate the difference between 
using a pointer to a pointer and a reference to a pointer: 

#include <iostream.h> 
#include <string.h> 

II Define a binary tree structure. 
struct BTree 
{ 

} ; 

char *szText; 
BTree * Left; 
BTree *Right; 
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II Define a pointer to the root of the tree. 
BTree *btRoot = 0; 

int Addl( BTree **Root, char *szToAdd ); 
int Add2( BTree*& Root, char *szToAdd ); 
void PrintTree( BTree* btRoot ); 

maine int argc, char *argv[] ) 
{ 

if( a rgc < 2 ) 
{ 

cerr « "Usage: Refptr [1 I 2]" « "\n"; 
cerr « "\n\twhere:\n"; 
cerr « "\tl uses double indirection\n"; 
cerr « "\t2 uses a reference to a pOinter.\n"; 
cerr « "\n\tInput is from stdin. \n"; 
return 1; 

char *szBuf = new char[132]; 

II Read a text file from the standard input device and 
II build a binary tree. 
while( !cin.eof() ) 
{ 

cin.get( szBuf, 132, '\n' ); 
cin.get(); 
if( strlen( szBuf ) ) 

switch( *argv[l] ) 
{ 
II Method 1: Use double indirection. 
case '1': 

Add1( &btRoot, szBuf ); 
break; 

II Method 2: Use reference to a pointer. 
case '2': 

Add2( btRoot, szBuf ); 
break; 

default: 
cerr « "Ill egal val ue '" « *argv[l] 

« '" supplied for add method.\n" 
« "Choose I or 2.\n"; 

return -1; 



} 

II Display the sorted list. 
PrintTree( btRoot ); 

return 0; 

II PrintTree: Display the binary tree in order. 
void PrintTree( BTree* btRoot ) 
{ 

II Traverse the left branch of the tree recursively. 
if( btRoot-)Left ) 

PrintTree( btRoot-)Left ); 

II Print the current node. 
cout « btRoot-)szText « "\n"; 
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II Traverse the right branch of the tree recursively. 
if( btRoot-)Right ) 

PrintTree( btRoot-)Right ); 

II Addl: Add a node to the binary tree. 
II Uses double indirection. 
int Addl( BTree **Root, char *szToAdd ) 
{ 

} 

if( (*Root) == 0 ) 
{ 

(*Root) = new BTree; 
(*Root)-)Left = 0; 
(*Root)-)Right = 0; 
(*Root)-)szText = new char[strlen( szToAdd ) + 1]; 
strcpy( (*Root)-)szText, szToAdd ); 
return 1; 

else if( strcmp( (*Root)-)szText, szToAdd ) ) 0 ) 
return Addl( &«*Root)-)Left), szToAdd ); 

else 
return Addl( &«*Root)-)Right), szToAdd ); 

II Add2: Add a node to the binary tree. 
II Uses reference to pointer 
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int Add2( BTree*& Root, char *szToAdd ) 
{ 

} 

if( Root == 0 
{ 

} 

Root = new BTree; 
Root->Left = 0; 
Root->Right = 0; 
Root->szText = new char[strlen( szToAdd ) + 1]; 
strcpy( Root->szText, szToAdd ); 
return 1; 

else if( strcmp( Root->szText, szToAdd ) > 0 ) 
return Add2( Root->left, szToAdd ); 

else 
return Add2( Root->Right, szToAdd ); 

In the preceding program, functions Addl and Add2 are functionally equivalent 
(although they are not called the same way). The difference is that Add1 uses 
double indirection whereas Add2 uses the convenience of a reference to a pointer. 

Pointers to Members 

Syntax 

Declarations of pointers to members are special cases of pointer declarations. 

decl-specijiers class-name :: * cv-qualijier-listopt dname ; 

A pointer to a member of a class differs from a normal pointer because it has type 
information for not only the type of the member, but also for the class to which the 
member belongs. The following example declares a class, Wi ndow, then some 
pointers to member data. 

class Window 
{ 

public: 

} ; 

Wi ndow(); 
Window( int xl, int yl, 

int x2, int y2 ); 
BOOl SetCaption( const char *szTitle ); 
const char *GetCaption(); 
char *szWinCaption; 

II Default constructor. 
II Constructor specifying 
II window size. 
II Set window caption. 
II Get window caption. 
II Window caption. 

II Declare a pointer to the data member szWinCaption. 
char * Window::* pwCaption = &Window::szWinCaption; 
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In the preceding example, pwC apt ion is a pointer of type char * that is a member 
of class Wi ndow. The next code fragment declares pointers to the SetCapt i on and 
GetCa pt i on member functions. 

canst char * (Window: :*pfnwGC)() = &Window: :GetCaption; 
BOOl (Window::*pfnwSC)( canst char * ) = &Window::SetCaption; 

The pointers pfnwGC and pfnwSC point to GetCa pt i on and SetCa pt ion 
of the Wi ndow class, respectively. To copy information to the window caption 
directly using the pointer to member pWCapti on, use code such as this: 

Window wMainWindow; 
Window *pwChildWindow new Window; 
char *szUntitl ed "Untitl ed - " . , 
int cUntitledLen strlen( szUntitled ) ; 

strcpy( wMainWindow.*pwCaption, szUntitled ); 
(wMainWindow.*pwCaption)[cUntitledLen - 1] = 'I'; 

strcpy( pwChildWindow->*pwCaption, szUntitled ); 
(pwChildWindow->*pwCaption)[szUntitledLen - 1] = '2'; 

The difference between the. * and ->* operators (the pointer-to-member opera­
tors) is that the. * operator is used to select members of an object, while the ->* 
operator is used to select members through a pointer. (For more about these opera­
tors, see "Expressions with Pointer-to-Member Operators" in Chapter 4, on page 
124.) 

Note that the result of the pointer-to-member operators is the type of the member­
in this case, char *. 

The following code fragment invokes the member functions GetCapt i on and 
SetCapt i on using pointers to members: 

II Allocate a buffer. 
char szCaptionBase[100]; 

II Copy the main window caption into the buffer 
II and append" [View 1]". 
strcpy( szCaptionBase, (wMainWindow.*pfnwGC)() ); 
strcat( szCaptionBase, " [View 1]" ); 

II Set the child window's caption. 
(pwChildWindow->*pfnwSC)( szCaptionBase ); 

Restrictions on Pointers to Members 
It is illegal to declare pointers to static class members. Because only one instance 
of a static member exists for all objects of a given class, the ordinary address-of 
(&) and dereference (*) operators can be used. 
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Pointers to Members and Virtual Functions 
Invoking a virtual function through a pointer-to-member function works exactly as 
if the function had been called directly: the correct function is looked up in the 
v-table and invoked. The following code shows how this is done: 

class Base 
{ 

public: 
virtual void Print(); 

} ; 
void (Base ::* bfnPrint)() &Base .. Print; 

void Base:: Print() 
{ 

cout « "Print function for class 'Base'\n"; 
} 

class Derived public Base 
{ 

public: 
void Print(); II Print is still a virtual function. 

} ; 

void Derived :: Print() 
{ 

cout « "Print function for class 'Derived'\n"; 
} 

rna i n ( ) 
{ 

} 

Base *bPtr; 
Base bObject; 
Derived dObject; 

bPtr = &bObject; II Set pointer to address of bObject. 
(bPtr->*bfnPrint)(); 

bPtr = &dObject; II Set pointer to address of dObject. 
(bPtr->*bfnPrint)(); 

return 0; 

The output from this program is: 

Print function for class 'Base' 
Print function for class 'Derived' 

The key to virtual functions working, as always, is invoking them through a 
pointer to a base class. (For more information about virtual functions, see "Virtual 
Functions" in Chapter 9, on page 275.) 
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Arrays are collections of like objects. The simplest case of an array is a vector. 
C++ provides a convenient syntax for declaration of fixed-size arrays: 

decl-specifiers dname [ constant-expressionopt ] ; 

The number of elements in the array is given by the constant-expression. The first 
element in thc array is the Oth element, and the last element is the (n-l th) element, 
where n is the size of the array. The constant-expression must be of an integral 
type and must be greater than O. 

Arrays are derived types and can therefore be constructed from the following: 

• Any user-defined or built-in type except void 

• Pointers to data or functions 

• Pointers to members 

• Enumerated types 

• Other arrays, except for arrays of references 

Arrays constructed from other arrays are multidimensional arrays. These multidi­
mensional arrays are specified by placing multiple [constant-expression] specifi­
cations in sequence. For example, consider this declaration: 

int i2[5][7]; 

It specifies an array of type int, conceptually arranged in a two-dimensional 
matrix of five rows and seven columns, as shown in Figure 7.2. 

0, 0 0, 1 0, 2 0, 3 0, 4 0, 5 0, 6 

1, 0 1, 1 I, 2 I, 3 I, 4 I, 5 I, 6 

2, 0 2, 1 2, 2 2, 3 2, 4 2, 5 2, 6 

3, 0 3, 1 3, 2 3, 3 3, 4 3, 5 3, 6 

4, 0 4, 1 4, 2 4, 3 4, 4 4, 5 4, 6 

Figure 7.2 Conceptual Layout of Multidimensional Array 
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In declarations of multidimensioned arrays that have an initializer-list (as de­
scribed in "Initializers" on page 217), the constant-expression that specifies the 
bounds for the first dimension may be omitted. For example: 

const int cMarkets = 4; 

II Declare a float that represents the transporation costs. 
double TransportCosts[][cMarkets] 
{ { 32.19, 47.29, 31.99, 19.11 }, 

{ 11.29, 22.49, 33.47, 17.29 }, 
{ 41.97, 22.09, 9.76, 22.55} }; 

The above declaration defines an array that is three rows by four columns. The 
rows represent factories and the columns represent markets to which the factories 
ship. The values are the transportation costs from the factories to the markets. The 
first dimension of the array is left out, but the compiler fills it in by examining the 
initializer. 

The technique of omitting the bounds specification for the first dimension of a 
multidimensioned array can also be used in function declarations as follows: 

#include <float.h> 
#include <iostream.h> 

II Includes DBL_MAX. 

const int cMkts = 4; 

II Declare a float that represents the transportation costs. 
double TransportCosts[][cMkts] 
{ { j~.19, 4/.29, 31.YY, lY.ll }, 

{ 11.29, 22.49, 33.47, 17.29 }, 
{ 41.97, 22.09, 9.76, 22.55} }; 

II Calculate size of unspecified dimension. 
const int cFactories = sizeof TransportCosts I 

sizeof( double[cMkts] ); 

double FindMinToMkt( int Mkt, double TransportCosts[][cMkts], 
int cFacts ); 

main(int argc, char *argv[] ) 
{ 

} 

double MinCost; 

MinCost = FindMinToMkt( *argv[l] - '0', TransportCosts, 
cFacts ); 

cout « "The mlnlmum cost to Market" « argv[l] « " is: 
« Mi nCost « "\n"; 

return 0; 
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double FindMinToMkt( int Mkt, double TransportCosts[][cMkts], 
int cFacts ) 

double MinCost = DBL_MAX; 

fore int i = 0; i < cFacts; ++i ) 
MinCost = (MinCost < TransportCosts[i][Mkt]) ? 

MinCost : TransportCosts[i][Mkt]; 

return MinCost; 

The function Fi ndMi nToMkt is written such that adding new factories does not re­
quire any code changes, just a recompilation. 

Using Arrays 
Individual elements of arrays are accessed using the array subscript operator ([ D. 
If a singly dimensioned array is used in an expression with no subscript, the array 
name evaluates to a pointer to the first element in the array. For example: 

char chArray[10]; 

char *pch 
cha r ch 

ch 

chArray; 
chArray[0]; 
chArray[3]; 

II Pointer to first element. 
II Value of first element. 
II Value of fourth element. 

When using multidimensioned arrays, various combinations are acceptable in ex­
pressions. The following example illustrates this: 

double multi[4][4][3]; II Declare the array. 

double (*p2multi )[3]; II Pointer to two-dimensional array. 
double (*plmulti) ; II Pointer to four-dimensional array. 

cout « multi[3][2][3] « "\n"; II Use three subscripts. 
p2multi multi[3] ; II Make p2multi point to 

II fourth "plane" of multi. 
plmulti multi[3] [2]; II Make plmulti point to 

II fourth plane, second row 
II of multi. 

In the preceding code, mu 1 t i is a three-dimensional array of type double. The 
p2mul ti pointer points to an array of type double of size three, and plmul ti is a 
pointer to an array of type double. The array is used with one, two, and three sub­
scripts in this example. Although it is more common to specify all the subscripts, 
as in the cout statement, it is sometimes useful to select a specific subset of array 
elements as shown in the succeeding statements. 
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Arrays in Expressions 
When an identifier of an array type appears in an expression other than sizeof, 
address-of (&), or initialization of a reference, it is converted to a pointer to the 
first array element. For example: 

char szErrorl[] = "Error: Disk drive not ready."; 
char *psz = szErrorl; 

The pointer psz points to the first element of the array szErrorl. Note that ar­
rays, unlike pointers, are not modifiable I-values. Therefore, the following assign­
ment is illegal: 

szErrorl = psz; 

Interpretation of Subscript Operator 
Like other operators, the subscript operator ([ ]) can be redefined by the user. The 
default behavior of the subscript operator, if not overloaded, is to combine the 
array name and the subscript using the following method: 

*«array-name) + (subscript» 

As in all addition that involves pointer types, scaling is performed automatically to 
adjust for the size of the type. Therefore, the resultant value is not subscript bytes 
from the origin of array-name; rather, it is the subscriptth element of the array. 
(For more information about this conversion; see "Additive Operators" in Chapter 
4, on page 104.) 

Similarly, for multidimensional arrays, the address is derived using the following 
method: 

*«array-name) + (subscript! * subscript2 ... * subscriptn» 

Indirection on Array Types 
Use of the indirection operator (*) on an n-dimensional array type yields an n-l di­
mensional array. If n is 1, a scalar (or array element) is yielded. 

Ordering of C++ Arrays 
c++ arrays are stored in row-major order. Row-major order means the last sub­
script varies the fastest. 
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This section explains function declarations. It includes discussions on: 

• Function declaration (prototyping) syntax. 

• Declaration of functions that take a varying number of arguments. 

• Declaration of functions that require no arguments. 

• Overloading of functions (an introduction). 

• Restrictions on function declarations. 

• Specification of argument lists. 

• Default arguments to functions. 

Function definition is covered in "Function Definitions" on page 2l3. 

decl-specifiers dname ( argument-declaration-list ) cv-mod-listopt 

argument-declaration-list: 
arg-declaration-list , ... 

arg-declaration-list: 
argument-declaration 
arg-declaration-list , argument-declaration 

argument-declaration: 
decl-specifiers declarator 
decl-specifiers declarator = expression 
decl-specifiers abstract-declaratoropt 
decl-specifiers abstract-declaratoropt = expression 

The identifier given by dname has the type "cv-mod-list function, taking argument­
declaration-list, and returning type decl-specifiers." 

Note that the keywords const, volatile, and many of the Microsoft-specific key­
words can appear in cv-mod-list and in the declaration of the name. The following 
example shows several simple function declarations: 

char *strchr( char *dest, char *src ); 
static int atoi( canst char *ascnum ) canst; 

The following syntax explains the details of a function declaration: 
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Syntax argument-declaration-list: 

Microsoft Specific 

arg-declaration-listopt ···opt 

arg-declaration-list , 

arg-declaration-list: 
argument-declaration 
arg-declaration-list , argument-declaration 

argument-declaration: 
decl-specifiers declarator 
decl-specifiers declarator = expression 
decl-specifiers abstract-declarator opt 

decl-specifiers abstract-declaratoropt = expression 

Variable Argument lists 
Function declarations in which the last member of argument-declaration-listis the 
ellipsis C ... ) can take a variable number of arguments. In these cases, C++ provides 
type checking only for the explicitly declared arguments. Variable argument lists 
can be used when it is desirable to make a function so general that even the num­
ber of arguments can vary. The printf family of functions is an example of func­
tions that use variable argument lists. 

To access arguments after those declared, use the macros contained in the standard 
include file STDARG.H as described in "Functions with Variable Argument 
Lists" on page 214. 

Microsoft C++ does not allow the ellipsis to be specified as an argument other 
than the first if there is no comma preceding the ellipsis. Therefore, the declara­
tion i nt Func ( i nt i, ... ); is legal, but the declaration i nt Func( i nt i 
. .. ); is not.. 

Declaration of a function that takes a variable number of arguments requires that 
at least one "placeholder" argument be supplied, even if it is not used. If this 
placeholder argument is not supplied, there is no way to access the remaining 
arguments. 

When arguments of type char are passed as variable arguments, they are con­
verted to type into Similarly, when arguments oftype float are passed as variable 
arguments, they are converted to type double. 

Declaring Functions that Take No Arguments 
A function declared with the single keyword void in argument-declaration-list 
takes no arguments, as long as the keyword void is the first and only member of 
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argument-declaration list. Arguments of type void elsewhere in argument­
declaration-list produce errors. For example: 

long GetTickCount( void ); II OK 
long GetTickCount( int Reset, void ); II Error 
long GetTi ckCountC voi d, i nt Reset); I I Error 

In C++, explicitly specifying that a function requires no arguments is the same as 
declaring a function with no argument-declaration-list. Therefore, the following 
two statements are identical: 

long GetTickCount(); 
long GetTickCountC void ); 

Note that, while it is illegal to specify a void argument except as outlined above, 
types derived from type void (such as pointers to void and arrays of void) can ap­
pear anywhere in argument-declaration-list. 

Function Overloading 
C++ allows specification of more than one function of the same name in the same 
scope. These are called "overloaded functions" and are described in detail in Chap­
ter 12, "Overloading." The purpose of overloaded functions is to allow program­
mers to supply different semantics for a function depending on the types and 
number of arguments. 

For example, a print function that takes a string (or char *) argument performs 
very different tasks than one that takes an argument of type double. Overloading 
permits uniform naming and prevents programmers from having to invent names 
suchas prinLsl or print_d. Table 7.1 shows what parts ofa function declara­
tion C++ uses to differentiate between groups of functions with the same name in 
the same scope. 

Table 7.1 Overloading Considerations 

Function Declaration Element 

Function return type 

Number of arguments 

Type of arguments 

Presence or absence of ellipsis 

Use of typedef names 

Unspecified array bounds 

const or volatile (in cv-mod-list) 

__ near, __ far, or __ huge (in cv-mod-list) 

Used for Overloading? 

No 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 
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Note Although functions can be distinguished on the basis of return type, they can­
not be overloaded on this basis. 

The following example illustrates how overloading can be used. Another way to 
solve the same problem is presented in "Default Arguments" on page 210. 

#include <iostream.h> 
#include <math.h> 
#include <stdlib.h> 

II Prototype three print functions. 
int print( char *s ); 
int print( double dvalue ); 
int print( double dvalue, int prec ); 

maine int argc, char *argv[] ) 
{ 

const double d 893094.2987; 

if( argc < 2 
{ 

II Print a string. 
II Print a double. 
II Print a double with a 
II given precision. 

II These calls to print invoke print( char *s ). 
print( "This program requires one argument." ); 
print( "The argument specifies the number of" ); 
print( "digits precision for the second number" ); 
print( "printed." ); 

} 

II Invoke print( double dvalue ). 
print( d ); 

II Invoke print( double dvalue, int prec ). 
print( d, atoi( argv[l] ) ); 

return 0; 

II Print a string. 
int print( char *s 
{ 

cout « s « endl; 

return cout.good(); 



II Print a double in default precision. 
int print( double dvalue ) 
{ 

cout « dval ue « endl; 

return cout.good(); 

II Print a double in specified preclslon. 
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II Positive numbers for precision indicate how many digits 
II precision after the decimal point to show. Negative 
II numbers for precision indicate where to round the number 
II to the left of the decimal point. 
int print( double dvalue, int prec ) 
{ 

} 

II Use table-lookup for rounding/truncation. 
static const double rgPow10[] = { 

} ; 

10E-7, 10E-6, 10E-5, 10E-4, 10E-3, 10E-2, 10E-1, 10E0, 
10E1, 10E2, 10E3, 10E4, 10E5, 10E6 

const int iPowZero = 6; 

II If precision out of range, just print the number. 
if( prec < -6 I I prec > 7 ) 

return print( dvalue ); 

II Scale, truncate, then rescale. 
dvalue = floor( dvalue I rgPow10[iPowZero - prec] ) * 

rgPow10[iPowZero - prec]; 

cout « dvalue « endl; 

return cout.good(); 

The preceding code shows overloading of the pri nt function in file scope. 

For restrictions on overloading and information on how overloading affects other 
elements of C++, see Chapter 12, "Overloading." 

Restrictions on Functions 
Functions cannot return arrays or functions. They can, however, return references 
or pointers to arrays or functions. Another way to return an array is to declare a 
structure with only that array as a member: 
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struct Address 
{ char szAddress[31]; }; 

Address GetAddress(); 

It is illegal to define a type in either the return-type portion of a function declara­
tion or in the declaration of any argument to a function. The following legal C 
code is illegal in C++: 

enum Weather { Cloudy, Rainy, Sunny} GetWeather( Date Today) 

The reason the preceding code is disallowed is because the type Weather has func­
tion scope local to GetWeather, and the return value cannot be properly used. Be­
cause arguments to functions have function scope, declarations made within the 
argument list would have the same problem if not allowed. 

C++ does not support arrays of functions. However, arrays of pointers to functions 
can be useful. In parsing a Pascal-like language, the code is often separated into a 
lexical analyzer that parses tokens and a parser that attaches semantics to the 
tokens. If the analyzer returns a particular ordinal value for each token, code can 
be written to perform appropriate processing: 

int ProcessFORToken( char *szText ); 
int ProcessWHILEToken( char *szText ); 
int ProcessBEGINToken( char *szText ); 
int ProcessENDToken( char *szText ); 
int ProcessIFToken( char *szText ); 
int ProcessTHENToken( char *s7Tpxt ); 
int ProcessELSEToken( char *szText ); 

int (*ProcessToken[])( char * ) = { 

ProcessFORToken, ProcessWHILEToken, ProcessBEGINToken, 
ProcessENDToken, ProcessIFToken, ProcessTHENToken, 
ProcessELSEToken }; 

canst int MaxTokenID = sizeof ProcessToken / sizeof( int (*)() ); 

int DoProcessToken( int TokenID, char *szText ) 
{ 

} 

if( TokenID < MaxTokenID ) 
return (*ProcessToken[TokenID])( szText ); 

else 
return Error( szText ); 
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The Argument Declaration List 
The argument-declaration-listportion of a function declaration: 

• Allows the compiler to check type consistency between the arguments the func­
tion requires and the arguments supplied in the call. 

• Enables conversions, either implicit or user-defined, to be performed from the 
argument type supplied to the required argument type. 

• Checks initializations of or assignments to pointers to functions. 

• Checks initializations of or assignments to references to functions. 

Argument Lists in Function Prototypes (Nondefining Declaration) 
The form of argument-declaration-list is a list of the type names of the arguments. 
Consider an argument-declaration-listfor a function, func, that takes these three 
arguments: 

• Pointer to type char 

• char 

• int 

The code for such an argument-declaration-listcan be written: 

char *, char, int 

The function declaration (the prototype), might therefore be written: 

void func( char *, char, int ); 

While the preceding declaration contains enough information for the compiler to 
perform type checking and conversions, it does not provide much information 
about what the arguments are. A good way to document function declarations is to 
include identifiers as they would appear in the function definition, as in the 
following: 

void func( char *szTarget, char chSearchChar, int nStartAt ); 

These identifiers in prototypes are useful only for default arguments, as they go 
out of scope immediately. They do, however, provide meaningful program 
documentation. 
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Argument Lists in Function Definitions 
The argument list in a function definition differs from that of a prototype only in 
that the identifiers, if present, represent formal arguments to the function. The iden­
tifier names need not match those in the prototype (if there are any). 

Note It is possible to define functions with unnamed arguments. However, these 
arguments are inaccessible to the function for which they are defined. 

Default Arguments 
In many cases, functions have a number of arguments that are used so infrequently 
that a default value would suffice. To address this, the default-argument facility al­
lows for specifying only those arguments to a function that are meaningful in a 
given call. To illustrate this concept, consider the example presented in "Function 
Overloading" on page 205. 

II Prototype three print functions. 
int print( char *s ); 
int print( double dvalue ); 
int print( double dvalue, int prec ); 

II Print a string. 
II Print a double. 
II Print a double with a 
II given precision. 

In many applications, a reasonable default can be supplied for prec, eliminating 
the need for two functions: 

II Prototype two print functions. 
int print( char *s ); 
int print( double dvalue, int prec=2 ); 

II Print a string. 
II Print a double with a 
II given precision. 

The implementation of the pri nt function is changed slightly to reflect the fact 
that only one such function exists for type double: 

II Print a double in specified precision. 
II Positive numbers for precision indicate how many digits 
II precision after the decimal point to show. Negative 
II numbers for precision indicate where to round the number 
II to the left of the decimal point. 
int print( double dvalue, int prec ) 
{ 

II Use table-lookup for rounding/truncation. 
static canst double rgPow10[] = { 

} ; 

10E-7, 10E-6, 10E-5, 10E-4, 10E-3, 10E-2, 10E-1, 10E0, 
10E1, 10E2, 10E3, 10E4, 10E5, 10E6 

canst int iPowZero = 6; 



II If preclslon out of range, just print the number. 
if( prec >= -6 I I prec <= 7 ) 

II Scale, truncate, then rescale. 
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dvalue = floor( dvalue I rgPow10[iPowZero - prec] ) * 
rgPow10[iPowZero - prec]; 

cout « dvalue « endl; 

return cout.good(); 

To invoke the new pri nt function, use code such as the following: 

print( d); II Precision of 2 supplied by default argument. 
print( d, 0 ); II Override default argument to achieve other 

II results. 

There are several points to note when using default arguments: 

• Default arguments are used only in function calls where trailing arguments are 
omitted-they must be the last argument(s). Therefore, the following code is 
illegal: 

int print( double dvalue = 0.0, int prec ); 

• A default argument cannot be redefined in later declarations even if the redefini­
tion is identical to the original. Therefore, the following code produces an error: 

II Prototype for print function. 
int print( double dvalue, int prec = 2 ); 

II Definition for print function. 
int print( double dvalue, int prec 2) 
{ 

The problem with the preceding code is that the function declaration in the defi­
nition redefines the default argument for prec. 

• Additional default arguments can be added by later declarations. 

• Default arguments can be provided for pointers to functions. For example: 

int (*pShowIntVal)( int i = 0 ); 
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Default Argument Expressions 
The expressions used for default arguments are often constant expressions, but this 
is not a requirement. The expression can combine functions that are visible in the 
current scope, constant expressions, and global variables. The expression cannot 
contain local variables or nonstatic class-member variables. The following code il­
lustrates this: 

BOOl CreateVScrollBar( HWND hWnd, short nWidth = 
GetSystemMetrics( SM_CXVSCROll ) ); 

The preceding declaration specifies a function that creates a vertical scroll bar of a 
given width for a window. If no width argument is supplied, the Windows API 
function, GetSystemMetri cs, is called to find the default width for a scroll bar. 

The default expression is not evaluated until the function call, but the evaluation is 
completed before the function call actually takes place. 

Because formal arguments to a function are in function scope, and because the 
evaluation of default arguments takes place prior to entry to this scope, formal ar­
guments cannot be used in default argument expressions. Use oflocal variables in 
default argument expressions is also disallowed. 

Note that any formal argument declared prior to a default argument expression can 
potentially hide a global name in the function scope, which can cause errors. The 
following code is illegal: 

canst int Categories 9· , 

void EnumCategories( char *Categories[], int n = Categories ); 

In the preceding code, the global name Categori es is hidden at function scope, 
making the default argument expression invalid. 

Other Considerations 
The default argument is not considered part of the function type. Therefore, it is 
not used in selecting overloaded functions. Two functions that differ only in their 
default arguments are considered multiple definitions rather than overloaded 
functions. 

Default arguments cannot be supplied for overloaded operators. 
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7.4 Function Definitions 

Syntax 

Function definitions differ from function declarations in that they supply function 
bodies-the code that makes up the function. 

function-definition: 
decl-specijiersopt declarator ctor-initializeropt fct-body 

fct-body: 
compound-statement 

As discussed in "Functions" on page 203, the form of the declarator in the syntax 
is: 

dname ( argument-declaration-list ) cv-mod-listopt 

The formal arguments declared in argument-declaration-list are in the scope of the 
function body. 

Figure 7.3 shows the parts of a function definition. The shaded area is the function 
body. 

dec/-specifiers declarator 

I 

Figure 7.3 Parts of a Function Definition 

The cv-mod-list element of the declarator syntax specifies how the this pointer is 
to be treated; it is only for use with class member functions. (For more information 
about the cv-mod-list, see "const and volatile Pointers" on page 188 and "Memory­
Model Modifiers and Member Functions" in Appendix B, on page 400.) 
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The ctor-initializer element of the syntax is used only in constructors. Its purpose 
is to allow initialization of base classes and contained objects. (For more informa­
tion about use of ctor-initializer, see "Initializing Bases and Members" in Chapter 
11, on page 329.) 

Functions with Variable Argument Lists 
Functions that require variable lists are declared using the ellipsis ( ... ) in the argu­
ment list, as described in "Variable Argument Lists" on page 204. To access argu­
ments passed to functions using this method, use the types and macros described 
in the STDARG.H standard include file. 

The following example shows how the v~start, va_arg, and va_end macros, 
along with the va_list type (declared in STDARG.H), work together: 

#include <stdio.h> 
#include <stdarg.h> 

II Declaration, but not definition, of ShowVar. 
int ShowVar( char *szTypes, ... l; 

rna in () 
{ 

ShowVar( "fdcsi", 32.4f, 298.34E3, 'a', "Test string", 4 l; 

return 0; 



II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

ShowVar takes a format string of the form 
"ifdcs", where each character speci fi es the 
type of the argument in that position. 

i int 
f fl oat 
d double 
c char 
s string (char *) 

II Following the format specification is a list 
II of n arguments, where n == strlen( szTypes ). 
int ShowVar( char *szTypes, ... ) 
{ 

va_listvl; 
i nt i; 

II szTypes is the last argument specified; all 
II others must be accessed using the variable-
II argument macros. 
va_start( vl, szTypes ); 

II Step through the list. 
fore i = 0; szTypes[iJ != '\0'; ++i 
{ 

union Printable_t 
{ 

int i ; 
fl oat f; 
double d; 
char c· , 
char *5; 

} Printable; 
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switch( szTypes[iJ 
{ 

case 'i': 

II Type to expect. 

Printable. i = (int)va_arg( vl, int ); 
printf( "%i\n", Printable.i ); 
break; 

case 'f': 
Printable.f = (float)va_arg( vl, float ); 
printf( "%f\n", Printable.f ); 
break; 

case'd': 
Printable.d = (double)va_arg( vl, double ); 
printf( "%f\n", Printable.d ); 
break; 

case 'c': 
Printable.c = (char)va_arg( vl, char ); 
printf( "%c\n", Printable.c ); 
break; 

case's' : 
Printable.s = (char *)va_arg( vl, char * ); 
printf( "%s\n", Printable.s ); 
break; 

default: 
break; 

return 0; 

The preceding example illustrates these important concepts: 

• A list marker must be established as a variable of type vLlist before any varia­
ble arguments are accessed. In the preceding example, the marker is called v 1 • 

• The individual arguments are accessed using the vLarg macro. The va_arg 
macro needs to be told the type of argument to retrieve so it can transfer the cor­
rect number of bytes from the stack. If an incorrect type of a size different than 
that supplied by the calling program is specified to va_ arg, the results are 
unpredictable. 

• The result obtained using the va_ arg macro should be explicitly cast to the 
desired type. 

• The vLend macro must be called to terminate variable-argument processing. 
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7.5 Initializers 

Syntax 

Declarators can specify the initial value for objects. The only way to specify a 
value for objects of const type is in the declarator. The part of the declarator that 
specifies this initial value is called the "initializer." 

initializer: 
= assignment-expression 
= { initializer-list ,opt} 

( expression-list ) 

initializer-list: 
expression 
initializer-list , expression 
{ initializer-list ,opt } 

There are two fundamental types of initializers: 

• The initializer invoked using the equal-sign syntax 

• The initializer invoked using function-style syntax 

Which type of initializer works best in programs is largely a matter of style. Note 
that using the equal-sign syntax is semantically the same as using the function­
style syntax; however, it is not the same as making an assignment. 

Consider the following code, which illustrates some declarators with initializers: 

int i = 7; II Uses equal-sign syntax. 
Customer Cust( "Taxpayer, Joe", II Uses function-style 

"14 Cherry Lane", II syntax. 
"Manteca", 
"CAD ); 

The preceding code could also be written as follows, but the meaning of the initial­
izations is not as clear: 

i nt i( 7 ); 
Customer Cust "Taxpayer, Joe", 

"14 Cherry Lane", 
"Manteca", 
"CAD }; 
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The function-style initializer is more commonly used for objects like Cust that do 
not represent arithmetic types. 

Declarations of automatic, register, static, and external variables can contain initial­
izers. However, declarations of external variables can contain initializers only if 
the variables are not declared as extern. 

These initializers can contain expressions involving constants and variables in the 
current scope. The initializer expression is evaluated at the point the declaration is 
encountered in program flow, or, for global static objects and variables, at pro­
gram startup. (For more information about initialization of global static objects, 
see "Additional Startup Considerations" in Chapter 2, on page 43.) 

Initializing Pointers to const Objects 
A pointer to a const object can be initialized with a pointer to an object that is not 
const, but not vice versa. For example, the following initialization is legal: 

'" Window StandardWindow; 
const Window* pStandardWindow( &StandardWindow ); 

In the preceding code, the pointer pStanda rdWi ndow is declared as a pointer to a 
const object. Although Sta nda rdWi ndow is not declared as const, the declaration 
is acceptable because it does not allow nonconst access to a const object. The 
reverse of this is as follows: 

const window StandardWindow; 
Window* pStandardWindow( &StandardWindow ); 

The above code explicitly declares Stand a rdWi ndow as a const object. Initializing 
the nonconst pointer pSta nda rdWi ndow with the address of Standa rdWi ndow 
generates an error because it allows nonconst access to the object through the 
pointer. That is, it allows removal of the const attribute from the object. 

Uninitialized Objects 
Objects and simple variables of storage class static that are declared with no in­
itializer are guaranteed to be initialized to a bit pattern of zeros. No such special 
processing takes place for uninitialized objects of automatic or register storage 
classes. They have undefined values. 
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Initializing Static Members 
Static members are considered to have class scope. Therefore, they can access 
other member data or functions. For example: 

class DialogWindow 
{ 

public: 
static short GetTextHeight(); 

private: 
static short nTextHeight; 

} ; 

short DialogWindow :: nTextHeight = GetTextHeight(); 

Note that in the above definition of the static member nTextHei ght, 

GetTextHei ght is implicitly known to be Di a 1 ogWi ndow :: GetTextHei ght. 

Initializing Aggregates' 
An aggregate type is a type that: 

• Is an array or class type 

• Has no constructors (for class types) 

• Has no nonpublic members (for class types) 

• Has no base classes (for class types) 

• Has no virtual functions (for class types) 

Initializers for aggregates can be specified as a comma-separated list of values en­
closed in curly braces. For example, this code declares an int array of 10 and ini­
tializes it: 

int rgiArray[10] = { 9,8,4,6,5,6,3,5,6,11 }; 

The initializers are stored in the array elements in increasing subscript order. 
Therefore, rgiArray[0] is 9, rgiArray[1] is 8, and so on, until rgiArray[9], 

which is 11. To initialize a structure, use code such as the following: 

struct RCPrompt 
{ 

} ; 

short nRow; 
short nCol; 
char *szPrompt; 

RCPrompt rcContinueYN {24, 0, "Continue (YIN?)" }; 
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length of Aggregate-Initializer lists 
If an aggregate initializer list is shorter than the array or class type that is being ini­
tialized, zeros are stored in the elements for which no initializer is specified. There­
fore, the following two declarations are equivalent: 

II Explicitly initialize all elements. 
int rgiArray[5] = { 3, 2, 0, 0, 0 }; 

II Allow remaining elements to be zero-initialized. 
int rgiArray[5] = { 3, 2 }; 

While initializer lists can be truncated, as shown above, supplying too many initial­
izers generates an error. 

Initializing Aggregates That Contain Aggregates 
Some aggregates contain other aggregates-for example, arrays of arrays, arrays 
of structures, or structures that are composed of other structures. Initializers can be 
supplied for such constructs by initializing each one in the order it occurs with a 
brace-enclosed list. For example: 

II Declare an array of type RCPrompt. 
RCPrompt rgRCPrompt[4] = 
{ {4, 7, "Options Are:" }, 

{6, 7, "1. Main Menu" }, 
{8, 7, "2. Print Menu" }, 
{ 10,7, "3. File Menu" }}; 

Note that rgRCP rompt is initialized with a brace-enclosed list of brace-enclosed 
lists. The enclosed braces are not syntactically required, but they lend clarity to the 
declaration. The following example program shows how a two-dimensional array 
is filled by such an initializer: 

#include <iostrearn.h> 

rna i n ( ) 
{ 

} 

int rgI[2][4] = { I, 2, 3, 4, 5, 6, 7, 8 }; 

fore int i = 0; i < 2; ++i 
fore int j = 0; j < 4; ++j ) 

cout « "rgI[" « i « "][" « j « "] 
« rgI[i][j] « endl; 

return 0; 
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The output from this program is: 

rgI[0J [0J 1 
rgI [0J [1] 2 
rgI[0][2J 3 
rgI[0J[3J 4 
rgI [1J [0J 5 
rgI[lJ [1J 6 
rgI[lJ[2J 7 
rgI[1][3J 8 

Short initialization lists can be used only with explicit subaggregate initializers 
and enclosed in braces. If rgI had been declared as 

int rgI[2J[4J = { { 1, 2 }, { 3, 4 } }; 

the program output would have been 

rgI[0J[0J 
rgI[0][lJ 2 
rgI[0][2J 0 
rgI[0][3J 0 
rgI[1][0J 3 
rgI[l][lJ 4 
rgI[1][2J 0 
rgI [1][3J 0 

Initializing Incomplete Types 
Incomplete types, such as unbounded array types, can be initialized as follows: 

char HomeRow[J = { 'a', 's', 'd', 'f', 'g', 'h', 'j', 'k', '1' }; 

The compiler computes the size of the array from the number of initializers 
provided. 

Incomplete types, such as pointers to class types that are declared but not defined, 
are declared as follows: 

class DefinedElsewhere; 
class DefinedHere 
{ 

II Class definition elsewhere. 

friend class DefinedElsewhere; 
} ; 
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Initializing Using Constructors 
Objects of class type are initialized by calling the appropriate constructor for the 
class. For complete information about initializing class types, see "Explicit Initiali­
zation" in Chapter 11, on page 326. 

Initializers and Unions 
Objects of union type are initialized with a single value (if the union does not 
have a constructor). This is done in one oftwo ways: 

• Initialize the union with another object of the same union type. For example: 

struct Point 
{ 

} ; 

unsigned x; 
unsigned y; 

union PtLong 
{ 

} ; 

long 1; 
Point pt; 

PtLong ptOrigin; 
PtLong ptCurrent = ptOrigin; 

In the preceding code, ptCurrent is initialized with the value of ptOri gi n-an 
object of the same type. 

• Initialize the union with a brace-enclosed initializer for the first member. For 
example: 

PtLong ptCurrent {0x0a000aL}; 

Initializing Character Arrays 
Character arrays can be initialized in one of two ways: 

• Individually, as follows: 

char chABCD[4] = { 'a', 'b', 'c', 'd' };, 

• With a string, as follows: 

char chABCD[5] = "abcd"; 
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In the second case, where the character array is initialized with a string, the com­
piler appends a trailing . \0' (end-of-string character). Therefore, the array must 
be at least one larger than the number of characters in the string. 

Because most string handling uses the standard library functions or relies on the 
presence of the trailing end-of-string character, it is common to see unbounded 
array declarations initialized with strings: 

char chABCD[] = "ABCD"; 

Initializing References 
Variables of reference type must be initialized with an object of the type from 
which the reference type is derived, or with an object of a type that can be con­
verted to the type from which the reference type is derived. For example: 

int iVar; 
long lVar; 

long& LongRefl 
long& LongRef2 

LongRefl 23L; 
Long Ref2 Ill; 

1 Va r; II 
iVar; II 

II 
II 

No conversion required. 
Converted to type long. 

Change lVar through a reference. 
Change iVa r through a reference. 

Once initialized, a reference-type variable always points to the same object; it can­
not be modified to point to another object. 

Although the syntax can be the same, initialization of reference-type variables and 
assignment to reference-type variables are semantically different. In the preceding 
example, the assignments that change i Va rand 1 Va r look similar to the initializa­
tions but have completely different effects. The initialization specifies the object to 
which the reference-type variable points; the assignment assigns to the referred-to 
object through the reference. 

Because both passing an argument of reference type to a function and returning a 
value of reference type from a function are initializations, the formal arguments to 
a function are initialized correctly, as are the references returned. 
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The only time reference-type variables can be declared without initializers is in the 
following: 

• Function declarations (prototypes). For example: 

int func( int& l; 

• Function-return type declarations. For example: 

int& func( int& l; 

• Declaration of a reference-type class member. For example: 

class c 
{ 
public: 

int& i; 
} ; 

• Declaration of a variable explictly specified as extern. For example: 

extern int& iVal; 

When initializing a reference-type variable, the compiler uses the decision graph 
shown in Figure 7.4 (on the following page) to select between creating a reference 
to an object or creating a temporary object to which the reference points. 

References to volatile types (declared as volatile typename& identifier) can be ini­
tialized with volatile or nonvolatile objects of the same type. They canuul, how­
ever, be initialized with const objects of that type. Similarly, references to const 
types (declared as const typename& identifier) can be initialized with const or 
nonconst objects of the same type (or anything that has a conversion to that type). 
They cannot, however, be initialized with volatile objects of that type. 

References that are not qualified with either the const or volatile keyword can be 
initialized only with objects declared as neither const nor volatile. 
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Figure 7.4 Decision Graph for Initialization of Reference Types 





Classes 

This chapter introduces C++ classes. Classes, which can contain data and func­
tions, introduce user-defined types into a program. User-defined types in tradi­
tional programming languages are collections of data which, taken together, 
describe an object's attributes and state. Class types in C++ allow description of 
attributes and state, but they also allow definition of behavior. 

8.1 Overview 

Microsoft Specific 

Syntax 

Class types are defined using the class, struct, and union keywords. For simplic­
ity, types defined with these keywords are called class declarations, except in dis­
cussions of language elements that behave differently depending on which 
keyword is used. 

"Local class" declarations---class declarations made in block scope-are exported 
to file scope in Microsoft C/C++. Classes not declared within another class always 
have file scope .• 

Names of classes defined within another class ("nested") have class scope of the 
enclosing class. 

class-name: 
identifier 

The variables and functions of a class are called members. When defining a class, 
it is common practice to supply the following members (although all are optional): 

• Class data members, which define the state and attributes of an object of the 
class type. 

• One or more "constructor" functions that initialize an object of the class type. 
Constructors are described in "Constructors" in Chapter 11, on page 300. 
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• One or more "destructor" functions that perform cleanup functions such as deal­
locating dynamically allocated memory or closing files. Destructors are de­
scribed in "Destructors" in Chapter 11, on page 305. 

• One or more member functions that define the object's behavior. These func­
tions perform operations particular to objects of a specific class only. 

Defining Class Types 

Syntax 

Class types are defined using class-specifiers. Class types can be declared using 
elaborated-type-specifiers as shown in "Type Specifiers" in Chapter 6, on 
page 168. 

class-specifier: 
class-head { member-listopt } 

class-head: 
class-key imodelopt identifieropt base-specopt 
class-key imodelopt class-nameopt base-specopt 

class-key: 
class 
struct 
union 

imodel: 
__ near 
__ far 
__ export 

Class names are introduced as identifiers immediately after the compiler processes 
them (before entry into the class body); they can be used to declare class members. 
This allows declaration of self-referential data structures, such as the following: 

class Tree 
{ 

public: 

} ; 

void *Data; 
Tree *Left; 
Tree *Right; 

Structures, Classes, and Unions 
The three class types are structure, class, and union. They are declared using the 
struct, class, and union keywords (see class-key syntax above). Table 8.1 shows 
differences among the three class types. 
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Table 8.1 Access Control and Constraints of Structures, Classes, and Unions 

Structures 

class-key is struct 

Default access is public 

No usage constraints 

Classes Unions 

class-key is class class-key is union 

Default access is private Default access is public 

No usage constraints Use only one member at a time 

Anonymous Class Types 
Classes can be anonymous-that is, they can be declared without an identifier. 
This is useful in cases when you replace a class name with a typedef name, as in 
the following example: 

typedef struct 
{ 

unsigned x; 
unsigned y; 

} POINT; 

Note The use of anonymous classes shown in the previous example is useful for 
preserving compatibility with existing C code. In some C code, the use of typedef 
in conjunction with anonymous structures is prevalent. 

Anonymous classes are also useful when you want a reference to a class member 
to appear as though it were not contained in a separate class, as in the following 
example: 

struct PTValue 
{ 

} ; 

POINT ptLoc; 
union 
{ 

} ; 

int iValue; 
long lValue; 

PTValue ptv; 

In the preceding code, iVa 1 ue can be accessed using the object member-selection 
operator C.) as follows: 

int i = ptv.iValue; 
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Anonymous classes are subject to certain restrictions. (For more information about 
anonymous unions, see "Unions" on page 249.) Anonymous classes: 

• Cannot have a constructor or destructor. 

• Cannot be passed as arguments to functions (unless type checking is defeated 
using ellipses). 

• Cannot be returned as return values from functions. 

Point of Class Definition 
A class is defined at tbe end of its class-specifier. Member functions need not be 
defined in order for the class to be considered defined. Consider tbe following 
example: 

class Point 1/ Point class 
{ II considered defined. 
public: 

Poi nt () 
{ cx = cy = 0; } II Constructor defined. 

Point( int x, int y ) 

{ cx = X, cy = Y; } II Constructor defined. 
unsigned &x( unsigned ) ; II Accessor declared. 
unsigned &y( unsigned ); 1/ Accessor declared. 

private: 
unsigned cx, cy; 

} ; 

Even tbough tbe two accessor functions (x and y) are not yet defined, the class 
Poi nt is considered defined. (Accessor functions are functions provided to give 
safe access to member data.) 

Class-Type Objects 
An object is a typed region of storage in tbe execution environment; in addition to 
retaining state information, it also defines behavior. Class-type objects are defined 
using class-name. Consider tbe following code fragment: 
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class Account 
{ 

II Class name is Account. 

public: 

} : 

Account(); II Default constructor. 
Account( double ); II Construct from double. 

double& Deposit( double ); 
double& Withdraw( double, int ); 

Account CheckingAccount; II Define object of class type. 

The preceding code declares a class (a new type) called Account. It then uses this 
new type to define an object called Checki ngAccount. 

The following operations are defined by C++ for objects of class type: 

• Assignment. One object can be assigned to another. The default behavior for 
this operation is a memberwise copy. This behavior can be modified by supply­
ing a user-defined assignment operator. 

• Explicit initialization of an object. For example: 

Point myPoint = thatPoint; 

declares myPoi nt as an object oftype Poi nt and initializes it to the value of 
thatpoi nt. 

• Initialization caused by passing as an argument. Objects can be passed to func­
tions either by value or by reference. If they are passed by value, a copy of each 
object is passed to the function. The default method for creating the copy is 
memberwise copy; this can be modified by supplying a user-defined copy con­
structor (a constructor that takes a single argument of the type "reference to 
class"). 

• Initialization caused by returning as the result of a function. Objects can be re­
turned from functions either by value or by reference. The default method for 
returning an object by value is a memberwise copy; this can be modified by sup­
plying a user-defined copy constructor. An object returned by reference (using 
pointer or reference types) should not be both automatic and local to the called 
function. If it is, the object referred to by the return value will have gone out of 
scope before it can be used. 

"Overloaded Operators" in Chapter 12, on page 351 explains how to redefine 
other operators on a class-by-class basis. 
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Empty Classes 
You can declare empty classes, but objects of such types still have nonzero size. 
The following example illustrates this: 

#include <iostream.h> 

class NoMembers 
{ 

} ; 

int main() 
{ 

} 

NoMembers n; II Object of type NoMembers. 

cout « "The size of an object of empty class is: 
«sizeof n« endl; 

return 0; 

The output of the preceding program is: 

The size of an object of empty class is: 1. 

The memory allocated for such objects is of nonzero size so that the objects have 
different addresses. Having different addresses is important because it must be 
possible to compare pointers to objects for identity. Without distinct addresses, 
such a comparison is impossible. Also, in arrays, each member array must have a 
distinct address. 

Important An empty class is a class with no data members. Empty classes can 
have functions, including constructors, destructors, and so on, which define their 
behavior. 

Microsoft Specific An empty base class typically contributes zero bytes to the size of a derived 
class .• 

8.2 Class Names 
Class declarations introduce new types, called class names, into programs. These 
class declarations also act as definitions of the class for a given translation unit. 
There may be only one definition for a given class type per translation unit. Using 
these new class types, you can declare objects, and the compiler can perform type 
checking to verify that no operations incompatible with the types are performed on 
the objects. 

An example of such type checking is: 



class Point 
{ 

public: 
unsigned x, y; 

} ; 

cl ass Rect 
{ 

public: 
unsigned xl, yl, x2, y2; 

} ; 
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II Prototype a function that takes two arguments, one of type 
II Point and the other of type pointer to Rect. 
int PtlnRect( Point, Rect & ); 

Point pt; 
Rect rect; 

rect = pt; II Error. Types are incompatible. 
pt = rect; II Error. Types are incompatible. 

II Error. Arguments to PtlnRect are reversed. 
cout « "Point is " « PtlnRect( rect, pt ) ? "not" 

« " in rectangle." « endl; 

As the preceding code illustrates, operations (such as assignment and argument 
passing) on class-type objects are subject to the same type checking as objects of 
built-in types. 

Because the compiler distinguishes between class types, functions can be over­
loaded on the basis of class-type arguments as well as built-in type arguments. For 
more information about overloaded functions, see "Function Overloading" in 
Chapter 7, on page 205 and Chapter 12, "Overloading." 

Declaring and Accessing Class Names 
Class names can be declared in global or class scope. If they are declared in class 
scope, they are referred to as "nested" classes. 

Microsoft Specific Block-scoped class declarations, or "local" class declarations, are not permitted in 
Microsoft C/C++. However, use of simple aggregates such as C structures is al­
lowed in block scope .• 
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Any class name introduced in class scope hides other elements of the same name 
in an enclosing scope. Names hidden by such a declaration can then be referred to 
only by using an elaborated-type-speciJier. The following example shows an ex­
ample of using an elaborated-type-speciJier to refer to a hidden name: 

struct A 
{ 

int a; 
} ; 

void mainCl 
{ 

II Global scope definition of A. 

char A = 'a'; II Redefine the name A as an object. 

struct A AObject; 

} 

Because the name A that refers to the structure is hidden by the A that refers to 
the char object, struct (a class-key) must be used to declare AObject as type A. 

You can use the class-key to declare a class without providing a definition. This 
nondefining declaration of a class introduces a class name for forward reference. 
This technique is useful when designing classes that refer to one another in friend 
declarations. It is also useful when class names must be present in header files but 
the definition is not required. For example: 

I I RECT. H 
class Point; II Nondefining declaration of class Point. 
class Line 
{ 

public: 
int Draw( Point &ptFrom, Point &ptTo l; 

} ; 

In the preceding sample, the name Poi nt must be present, but it need not be a de­
fining declaration that introduces the name. 

typedef Statements and Classes 
Using the typedefstatement to name a class type causes the typedefname to be­
come a class-name. For more information about using typedef, see "typedef 
Specifier" in Chapter 6, on page 163. 
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8.3 Class Members 

Syntax 

Classes can have these kinds of members: 

• Member functions. (See "Member Functions" on page 240.) 

• Data members. 

• Classes, which include classes, structures, and unions. (See "Nested Class Dec-
larations" on page 254 and "Unions" on page 249. 

• Enumerations. (See "Enumeration Declarations" in Chapter 6, on page 173.) 

• Bit fields. (See "Bit Fields" on page 252.) 

• Friends. (See "Friends" in Chapter 10, on page 290.) 

• Type names. (See "Type Names in Class Scope" on page 257.) 

Note Friends are included in the preceding list because they are contained in the 
class declaration. However, they are not true class members, because they are not 
in the scope of the class. 

member-list: 
member-declaration member-listopt 
access-specifier : member-listopt 

member-declaration: 
decl-specifiersopt member-declarator-listopt ; 
junction-dejinitionopt ; 
qualified-name ; 

member-declarator-list: 
member-declarator 
member-declarator-list , member-declarator 

member-declarator: 
declarator pure-specifier opt 

identifieropt : constant-expression 

pure-specifier: 
= 0 

The purpose of the member-list is to: 

• Declare the complete set of members for a given class. 

• Specify the access (public, private, or protected) associated with various class 
members. 

In the declaration of a member list, you can declare members only once; redeclara­
tion of members produces an error message. Because a member list is a complete 
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set of the members, you cannot add members to a given class with subsequent 
declarations. 

Class members can be divided into two general categories: member data and mem­
ber functions. While it is acceptable to overload (reuse) function names within a 
member list, the same is not true for data member names. Data member names can 
be declared only once within a class. 

Member declarators cannot contain initializers. Supplying an initializer produces 
an error message. The following code illustrates this error: 

cl ass CantInit 
{ 

public: 
long = 7; 

static int i 

} ; 

II Error: attempt to initialize 
II class member. 

9; II Error: must be defined and initialized 
outside of class declaration. 

Because a separate instance of non static member data is created for each object of 
a given class type, the correct way to initialize member data is to use the class's 
constructor. (Constructors are covered in "Constructors," in Chapter 11, on page 
300.) Only one shared copy of static data members exists for all objects of a given 
class type. Static data members must be defined and can be initialized at file 
scope. (For more information about static data members, see "Static Data Mem­
bers" on page 247.) The following example shows how to perform these 
initializations: 

class CanInit 
{ 

public: 

} ; 

CanInit() { 1 

long 1 ; 
static int i; 
static int j; 

int CanInit::i 

int CanInit::j 

15 ; 

i; 

7; } II Initializes 1 when new objects of type 
II CanInit are created. 

II 1 1S defined at file scope and 
II initialized to 15. The initializer 
II 
II 
II 
II 

is evaluated in the scope of CanInit. 
The right side of the initializer 

is in the scope of the object being 
initialized. 

Note The class name, Can I nit, must precede to specify that the being de­
fined is a member of class Can I nit. 
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Class-Member Declaration Syntax 
Member data cannot be declared as auto, extern, or register storage class. They 
can, however, be declared as having static storage class. 

The decl-specifiers specifiers can be omitted in member-function declarations. For 
information on decl-specijiers, see "Specifiers" on page 156 and "Member Func­
tions" on page 240; see also "Functions" in Chapter 7, on page 203. The following 
code is therefore legal and declares a function that returns type int: 

class NoOeclSpec 
{ 

public: 
NoSpecifiers(); 

} ; 

When you declare a friend class in a member list, you can omit the member-decla­
rator-list. For more information on friends, see "friend Specifier" in Chapter 6, on 
page 167 and "Friends" in Chapter 10, on page 290. Even if a class name has not 
been introduced, it can be used in a friend declaration. This friend declaration 
introduces the name. However, in member declarations for such classes, the 
elaborated-type-specijier syntax must be used, as shown in the following example: 

class HasFriends 
{ 

public: 
friend class NotOeclaredYet; 

} ; 

In the preceding example, there is no member-declarator-list after the class decla­
ration. Because the declaration for NotOecl aredYet has not yet been processed, 
the elaborated-type-specijierform is used: cl ass NotOecl aredYet. A type that 
has been declared can be used in a friend member declaration using a normal type 
specifier: 

class AlreadyOeclared 
{ 

} ; 

class HasFriends 
{ 

public: 
friend AlreadyOeclared; 

} ; 
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The pure-specifier (shown in the following example) indicates that no imple­
mentation is supplied for the virtual function being declared. Therefore, the 
pure-specifier can be specified only on virtual functions. Consider this example: 

class StrBase II Base class for strings. 
{ 

public: 

} ; 

virtual int IsLessThan( StrBase& ) = 0; 
virtual int IsEqualTo( StrBase&) 0; 
virtual StrBase& CopyOf( StrBase& ) = 0; 

The preceding code declares an abstract base class-that is, a class designed to be 
used only as the base class for more specific classes. Such base classes can enforce 
a particular protocol, or set of functionality, by declaring one or more virtual func­
tions as "pure" virtual functions, using the pure-specifier. 

Classes that inherit from the StrBase class must provide implementations for the 
pure virtual functions or they, too, are considered abstract base classes. 

Abstract base classes cannot be used to declare objects. For example, before an ob­
ject of a type inherited from StrBase can be declared, the functions Is LessThan, 
Is Equa 1 To, and CopyOf must be implemented. (For more information about ab­
stract base classes, see "Abstract Classes" in Chapter 9, on page 280.) 

Using Type Names Wiihin Ciass Deciaraiions 
The type name being declared can be used within a class declaration as long as the 
size of the class is not used. Exceptions are inline functions and default arguments. 

Inline functions behave as if they were defined immediately after the class is de­
clared. (For more information, see "Inline Member Functions" on page 246.) De­
fault arguments are not evaluated until the point of the function call. Therefore, the 
size of the class is known before the inline function definition or default argument 
evaluation is processed. 
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Declaring Unsized Arrays in Member Lists (Microsoft Specific) 
Unsized arrays can be declared in class member lists as the last data member if the 
program is not compiled with the ANSI-compatibility option (IZa). Because this is 
a Microsoft extension, using un sized arrays in this way can make your code less 
portable. To declare an un sized array, simply omit the first dimension. For 
example: 

class Symbol 
{ 

public: 

} ; 

int SymbolType; 
char SymbolText[]; 

Restrictions 
If a class contains an un sized array, it cannot be used as the base class for another 
class. In addition, a class containing an unsized array cannot be used to declare 
any member except the last member of another class. 

The sizeof operator, when applied to a class containing an un sized array, returns 
the amount of storage required for all members except the un sized array. Imple­
mentors of classes that contain un sized arrays should provide alternate methods 
for obtaining the correct size of the class. 

You cannot declare arrays of objects that have unsized array components. Also, 
performing pointer arithmetic on pointers to such objects generates an error 
message. 

Storage of Class-Member Data 

Microsoft Specific 

Nonstatic class-member data is stored such that items falling between access speci­
fiers are stored at successively higher memory addresses. No ordering across 
access specifiers is guaranteed. 

Depending on the /Zp compilation option, or the pack pragma, intervening space 
can be allocated to align member data on word or double-word boundaries. (For 
more information about the /Zp compilation option or the pack pragma, see Chap­
ter 13, "Preprocessing.") 

In Microsoft C++, class-member data is stored at successively higher memory 
addresses, even though the C++ language does not require it. Basing assumptions 
on this ordering can lead to nonportable code .• 
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Member Naming Restrictions 
A function with the same name as the class in which it is declared is a constructor. 
A constructor is implicitly called when an object of this class type is created. (For 
more information about constructors, see "Constructors" in Chapter 11, on page 
300.) 

The following items cannot have the same name as the classes in whose scope 
they are declared: data members (both static and non static), enclosed enumerators, 
members of anonymous unions, and nested class types. 

8.4 Member Functions 
Classes can contain data and functions. These functions are referred to as "mem­
ber functions." Any nonstatic function declared inside a class declaration is con­
sidered a member function and is called using the member-selection operators 
(. and -». When calling member functions from other member functions of the 
same class, the object and member-selection operator can be omitted. For example: 

class Point 
{ 

public: 
short x() { return _x; 
short y() { return _y; 
void Show() { cout « "(" « x() «" "« y() « "\n"; } 

private: 
short _x, _y; 

} ; 

void main() 
{ 

Point pt; 

pt.Show(); 
} 

Note that in the member function, Show, calls to the other member functions, x 
and y, are made without member-selection operators. These calls implicitly mean 
thi s->x() and thi s->y(). However, in main, the member function, Show, must 
be selected using the object pt and the member-selection operator (.). 

Static functions declared inside a class can be called using the member-selection 
operators or by specifying the fully qualified function name (including the class 
name). 

Note A function declared using the friend keyword is not considered a member of 
the class in which it is declared a friend (although it can be a member of another 
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class). A friend declaration controls the access a nonmember function has to class 
data. 

The following class declaration shows how member functions are declared: 

class Point 
{ 

publ i c: 
unsigned GetX(); 
unsigned GetY(); 
unsigned SetX( unsigned x ); 
unsigned SetY( unsigned y ); 

private: 
unsigned ptX, ptY; 

} ; 

In the preceding class declaration, four functions are declared: GetX, GetY, SetX, 
and SetY. The next example shows how such functions are called in a program: 

int main() 
{ 

II Declare a new object of type Point. 
Point ptOrigin; 

II Member function calls use the. member-selection operator. 
ptOrigin.SetX( 0 ); 
ptOrigin.SetY( 0 ); 

II Declare a pointer to an object of type Point. 
Point *pptCurrent = new Point; 

II Member function calls use the -> member-selection operator. 
pptCurrent->SetX( ptOrigin.GetX() + 10 ); 
pptCurrent->SetY( ptOrigin.GetY() + 10 ); 

return 0; 

In the preceding code, the member functions of the object ptO rig in are called 
using the member-selection operator (.). However, the member functions ofthe ob­
ject pointed to by pptCurrent are called using the -> member-selection operator. 

Overview of Member Functions 
Member functions are either static or nonstatic. The behavior of static member 
functions differs from that of other member functions because static member func­
tions have no implicit this argument. Member functions, whether static or non­
static, can be defined either in the class declaration or outside the class declaration. 
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If a member function is defined inside a class declaration, it is treated as an inline 
function, and there is no need to qualify the function name with its class name. 
Although functions defined inside class declarations are already treated as inline 
functions, you can use the inline keyword to document code. (For more informa­
tion, see "Inline Member Functions" on page 246.) 

An example of declaring a function within a class declaration follows: 

class Account 
{ 

public: 
II Declare the member function Deposit within the declaration 
II of class Account. 
double Deposit( double HowMuch 
{ 

balance += HowMuch; 
return balance; 

} 

private: 
double balance; 

} ; 

If a member function's definition is outside the class declaration, it is treated as an 
inline function only if it is explicitly declared as inline. In addition, the function 
name in the definition must be qualified with its class name using the scope­
resolution operator (::). 

The following example is identical to the previous declaration of class Account, 
except the Depos it function is defined outside the class declaration: 

class Account 
{ 

public: 
II Declare the member function Deposit but do not define it. 
double Deposit( double HowMuch ); 

private: 
double balance; 

} ; 

inline double Account::Deposit( double HowMuch ) 
{ 

balance += HowMuch; 
return balance; 

Note While member functions can be defined either inside a class declaration or 
separately, no member functions can be added to a class after the class is defined. 

Classes containing member functions can have many declarations, but the member 
functions themselves must have only one definition in a program. Multiple 
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definitions cause an error message at link time. If a class contains inline function 
definitions, the function definitions must be identical to observe this "one defini­
tion" rule. 

Nonstatic Member Functions 
Nonstatic member functions have an implied argument, this, that points to the ob­
ject through which the function is invoked. The type of this is type * const. These 
functions are considered to have class scope and can use class data and other mem­
ber functions in the same class scope directly. In the preceding example, the ex­
pression bal ance += HowMuch adds the value of HowMuch to the class member 
ba 1 ance. Consider the following statements: 

Account Checking; 

Checking.Deposit( 57.00 ); 

The preceding code declares an object of type Account, then invokes the member 
function Depos it to add $57.00 to it. In the function Account: : Depos it, balance 
is taken to mean Checki ng. ba 1 ance (the balance member for this object). 

Nonstatic member functions are intended to operate on objects of their class type. 
Calling such a function on objects of different types (using explicit type conver­
sions) causes undefined behavior. 

Static Member Functions 
Static member functions are considered to have class scope. In contrast to non­
static member functions, these functions have no implicit this argument; therefore, 
they can use only static data members, enumerators, or nested types directly. Static 
member functions can be accessed without using an object of the corresponding 
class type. Consider this example: 

class WindowManager 
{ 

public: 
static int CountOf(); II Return count of open windows. 

void Minimize(); II Minimize current window. 
WindowManager SideEffects(); II Function with side effects. 

private: 
static int wmWindowCount; 

} ; 
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The this Pointer 

int WindowManager::wmWindowCount 0· . 

II Minimize (show iconic) all windows 
for( int i = 0; i < WindowManager::CountOf(); ++i ) 

rgwmWin[i].Minimize(); 

In the preceding code, the class Wi ndowManager contains the static member func­
tion CountOf. This function returns the number of windows open but is not neces­
sarily associated with a given object of type Wi ndowManager. This concept is 
demonstrated in the loop where the CountOf function is used in the controlling ex­
pression; because CountOf is a static member function, it can be called without 
reference to an object. 

Static member functions have external linkage. These functions do not have this 
pointers (covered in the next section). As a result, the following restrictions apply 
to such functions: 

• They cannot access nonstatic class member data using the member-selection 
operators (. or -». 

• They cannot be declared as virtual. 

• They cannot have the same name as a nonstatic function that has the same argu-
menttypes. 

Note The left side of a member-selection operator (. or -» that selects a static 
member function is not evaluated. This can be important if the function is used for 
its side effects. For example, the expression Si de Effects ( ) . CountOf() does not 
call the function Si deEffects. 

All nonstatic member functions can use the this keyword, which is a const (non­
modifiable) pointer to the object for which the function was called. Member data 
is addressed by evaluating the expression this->member-name (although this tech­
nique is seldom used). In member functions, using a member name in an expres­
sion implicitly uses this->member-name to select the correct function or data 
member. 

Note Because the this pointer is nonmodifiable, assignments to this are not al­
lowed. Earlier implementations of C++ allowed assignments to this. 

Occasionally, the this pointer is used directly-for example, in manipulation of 
self-referential data structures, where the address of the current object is required. 
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Type of this Pointer 
The this pointer's type can be modified in the function declaration by the const, 
volatile, __ near, __ far, and __ huge keywords. To declare a function as having 
the attributes of one or more of these keywords, use the cv-mod-list grammar 
which follows. (For more information, see "Memory-Model Modifiers and Mem­
ber Functions" in Appendix B, on page 400.) 

cv-mod-list: 
cv-qualifier cv-mod-listopt 
pmodel cv-mod-listopt 

cv-qualifier: 
const 
volatile 

pmodel: 
__ near 
__ far 
__ huge. 

Consider this example: 

class Paint 
{ 

unsigned X(l canst; 
} ; 

The preceding code declares a member function, x, in which the this pointer is 
treated as a const pointer to a const object. Combinations of cv-mod-list options 
can be used, but they always modify the object pointed to by this, not the this 
pointer itself. Therefore, the following declaration declares function x; the this 
pointer is a const pointer to a const object that is addressed far (using interseg­
ment addressing): 

class Paint 
{ 

unsigned X(l 
} ; 

far canst; 

The type of this is described by the following syntax, where cv-qualifier-list can 
be const or volatile, class-type is the name of the class, and imodel is a memory­
model option: 

cv-qualifier-listopt class-type imodelopt * const this 
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Table 8.2 explains more about how these modifiers work. 

Table 8.2 Semantics of this Modifiers 

Modifier 

const 

volatile 

Meaning 

Cannot change member data; cannot invoke nonconst member 
functions. 

Member data is loaded from memory each time it is accessed; 
disables certain optimizations. 

Addressing is intrasegment (16-bit)(Microsoft specific). 

Addressing is intersegment; pointer arithmetic is 16-bit. Individual 
objects must be smaller than 64K (Microsoft specific). 

Addressing is intersegment; pointer arithmetic is 32-bit (use __ huge 
for large arrays of large objects) (Microsoft specific). 

For objects explicitly declared as const, it is an error to call nonconst member 
functions. Similarly, for objects explicitly declared as volatile, it is an error to call 
nonvolatile member functions. This model is followed for __ near, __ far, and 
__ huge. 

Member functions declared as const cannot change member data-in such func­
tions, this is a pointer to a const object. 

Note Constructors and destructors cannot be declared as const or volatile. They 
can, however, be invoked on const or volatile objects. Constructors and destruc­
tors can be declared as __ near, __ far, or __ huge; which constructor or destruc­
tor is called depends on the addressing of the object being created or destroyed. 

Inline Member Functions 
Member functions defined within a class declaration are considered inline func­
tions. Calls to these functions are usually replaced with the actual code defined in 
the function body. 
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A member or nonmember function defined outside the class declaration can be 
specified as inline by using the inline keyword. For example: 

class Rect 
{ 

public: 
inline void Set( unsigned xl, unsigned y1, 

unsigned x2, unsigned y2 l; 
private: 

unsigned private_xl, private_y1, private_x2, private_y2; 
} ; 

void Rect::Set( unsigned xl, unsigned y1, 
unsigned x2, unsigned y2 l; 

pri vate_x1 xl; 
pri vate_y1 y1; 
pri vate_x2 x2; 
pri vate_y2 y2; 

Notice that the definition of Rect:: Set is outside the class declaration, but it is 
still an inline function. 

Inline functions declared inside class declarations behave as if they were defined 
just after the class declaration. Therefore, because the class is considered com­
pletely defined, inline functions can access the class name and all class members. 

8.5 Static Data Members 
Classes can contain static member data and member functions. When a data mem­
ber is declared as static, only one copy of the data is maintained for all objects of 
the class. (For more information, see "Static Member Functions" on page 243.) 

Static data members are not part of objects of a given class type; they are separate 
objects. As a result, the declaration of a static data member is not considered a defi­
nition. The data member is declared in class scope, but definition is performed at 
file scope. These static members have external linkage. The following example il­
lustrates this: 
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class BufferedOutput 
{ 

public: 

} ; 

II Return number of bytes written by any object of this class. 
short BytesWritten() { return bytecount; } 

II Reset the counter. 
static void ResetCount() {bytecount 0;} 

II Static member declaration. 
static long bytecount; 

II Define bytecount in file scope. 
long BufferedOutput::bytecount; 

In the preceding code, the member bytecount is declared in class 
BufferedOutput, but it must be defined outside the class declaration. 

Static data members can be referred to without referring to an object of class type. 
The number of bytes written using BufferedOutput objects can be obtained as 
follows: 

long nBytes = BufferedOutput::bytecount; 

For the static member to exist, it is not necessary that any objects of the class type 
exist. Static members can also be accessed using the member-selection (. and -» 
operators. For example: 

BufferedOutput Console; 

long nBytes = Console.bytecaunt; 

In the preceding case, the reference to the object (Cansal e) is not evaluated; the 
value returned is that of the static object byte count. 

Static data members are subject to class-member access rules, so private access to 
static data members is allowed only for class-member functions and friends. These 
rules are described in Chapter 10, "Member-Access Control." The exception is 
that static data members must be defined in file scope regardless of their access re­
strictions. If the data member is to be explicitly initialized, an initializer must be 
provided with the definition. 

The type of a static member is not qualified by its class name. Therefore, the type 
of BufferedOutput::bytecount is long. 
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Unions are class types that can contain only one data element at a time (although 
the data element can be an array or a class type). The members of a union repre­
sent the kinds of data the union can contain. An object of union type requires 
enough storage to hold the largest member in its member-list. Consider the follow­
ing example: 

#include <stdlib.h> 
#include <string.h> 
#include <limits.h> 

union NumericType 
{ 

II Declare a union that can hold the following: 

} ; 

int 
long 
double 

iValue; 
lValue; 
dValue; 

II int value 
II long value 
II double value 

int maine int argc, char *argv[] ) 
{ 

} 

NumericType *Values = new NumericType[argc - 1]; 

fore int i = 1; i < argc; ++i ) 
if( strchr( argv[i], '.' ) != 0 ) 

II Floating type. Use dValue member for assignment. 
Values[i].dValue = atof( argv[i] ); 

else 
II Not a floating type. 

II If data is bigger than largest int, store it in 
II lValue member. 

if( atol ( argv[i] ) > INT_MAX) 
Values[i].lValue = atol( argv[i] ); 

else 

return 0; 

II Otherwise, store it in iValue member. 
Values[i].iValue = atoi( argv[i] ); 
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The Numeri cType union is arranged in memory (conceptually) as shown in 
Figure 8.1. 

iValue I Value dValue 

o 2 4 8 

Figure 8.1 Storage or Data in NumericType Union 

Member Functions in Unions 
In addition to member data, unions can have member functions, as described in 
"Member Functions" on page 240. While unions can have special functions such 
as constructors and destructors, unions cannot contain virtual functions. (For more 
information about constructors, see page 300; for more information on destructors, 
see page 305 in Chapter 11.) 

Unions as Class Types 
Unions cannot have base classes; that is, they cannot inherit the attributes of other 
UP ions, structures, or classes. Unions also cannot be used as base classes for 
further inheritance. 

Inheritance is covered in detail in Chapter 9, "Derived Classes." 

Union Member Data 
Unions can contain most types in their member lists, except for the following: 

• Class types that have constructors or destructors 

• Class types that have user-defined assignment operators 

• Static data members 

Anonymous Unions 

Syntax 

Anonymous unions are unions that are declared without a class-name or 
declarator-list. 

union { member-list } 
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Such union declarations do not declare types-they declare objects. The names 
declared in an anonymous union cannot conflict with other names declared in the 
same scope. 

Names declared in an anonymous union are used directly, like nonmember vari­
ables. The following example illustrates this: 

#include <iostream.h> 

struct DataForm 
{ 

enum DataType CharData 
DataType type; 

1, IntData, StringData }; 

II Declare an anonymous union. 
union 

} ; 

{ 

} ; 

char chCharMem; 
char *szStrMem; 
int ilntMem; 

voi d pri nt(); 

void DataForm: :print() 
{ 

II Based on the type of the data, print the 
II appropriate data type. 
switch( type) 
{ 

case CharData: 
cout « chCharMem; 
break; 

case IntData: 
cout « szStrMem; 
break; 

case StringData: 
cout « ilntMem; 
brea k; 

In the function Da ta Fo rm: : pri nt, the three members (c h C h a r Mem, S z S t rM em, 
and i I n t M em) are accessed as though they were declared as members (without the 
union declaration). However, the three union members share the same memory. 
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In addition to the restrictions listed in "Union Member Data" on page 250, anony­
mous unions are subject to additional restrictions: 

• They must also be declared as static if declared in file scope. 

• They can have only public members; private and protected members in anony­
mous unions generate errors. 

• They cannot have function members. 

Note Simply omitting the class-name portion of the syntax does not make a union 
an anonymous union. For a union to qualify as an anonymous union, the declara­
tion must not declare an object. 

8.7 Bit Fields 

Syntax 

Classes and structures can contain members that occupy less storage than an inte­
gral type. These members are specified as bit fields. The syntax for bit-field 
member-declarator specification follows: 

declaratoropt : constant-expression 

The declarator is the name by which the member is accessed in the program. It 
must be an integral type (including enumerated types). The constant-expression 
specifies the number of bits the member occupies in the structure. Anonymous bit 
fields-that is. bit-field memhers with no ic1entifier-r.:m he ll~ec1 for mlc1c1ino-, - -,-,-,,-,--- --------~-------r----~~~o· 

Note An unnamed bit field of width 0 forces alignment of the next bit field to the 
next type boundary, where type is the type ofthe member. 

The following example declares a structure that contains bit fields: 

struct Date 
{ 

unsigned nWeekDay 3; II 0 .. 7 (3 bits) 
unsigned nMonthDay 6; II 0 .. 31 (6 bits) 
unsigned nMonth 5 ; II 0 .. 12 (5 bi ts) 
unsigned nYear 8; II 0 .. 100 (8 bits) 

} ; 
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The conceptual memory layout of an object of type Date is shown in Figure 8.2. 

15 0 15 o 
il;~iii:liiliil I I I I I I I I I I I I I I 

~n:;---rl ... l nnAnn nWeekDay 
nMonthDay 

Figure 8.2 Memory Layout of Date Object 

Note that n Yea r is 8 bits long and would overflow the word boundary of the de­
clared type, unsigned int. Therefore, it is begun at the beginning of a new 
unsigned int. It is not necessary that all bit fields fit in one object of the 
underlying type; new units of storage are allocated, according to the number of 
bits requested in the declaration. 

The ordering of data declared as bit fields is from low to high bit, as shown in 
Figure 8.2.+ 

If the declaration of a structure includes an unnamed field of length 0, as shown in 
the following example, the memory layout is as shown in Figure 8.3. 

struct Date 
{ 

unsigned 
unsigned 
unsigned 
unsigned 
unsigned 

} ; 

15 

nWeekDay 3' , 
nMonthDay 6 . , 

0; 
nMonth 5 ; 
nYear 8' , 

II 0 .. 7 (3 bits) 
II 0 .. 31 (6 bits) 
II Force alignment to next boundary. 
110 .. 12 (5 bits) 
II 0 .. 100 (8 bits) 

o 0 0 

-'------'--'------'---.----.--r-r-l ~1!11!~lllli!1 I I I I I I I I I I I I I 

Zero-length l:Y ~~nth 
unnamed bit field l nl. l nV"",r 
forces alignment nWeekDay nYear 
to next boundary nMonthDay 

Figure 8.3 Layout of Date Object with Zero-Length Bit Field 

The underlying type of a bit field must be an integral type, as described in "Fun­
damental Types" in Chapter 2, on page 50. 
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Restrictions on Use of Bit Fields 
The following list details erroneous operations on bit fields: 

• Taking the address of a bit field 

• Declaring a pointer to a bit field 

• Declaring a reference to a bit field 

8.8 Nested Class Declarations 
A class can be declared within the scope of another class. Such a class is called a 
"nested class." Nested classes are considered to be within the scope of the enclos­
ing class and are available for use within that scope. To refer to a nested class 
from a scope other than its immediate enclosing scope, you must use a fully 
qualified name. 

The following example shows how to declare nested classes: 

class BufferedIO 
{ 

public: 

} ; 

enum IOError { None, Access, General }; 

II Declare nested class Bufferedlnput. 
class Bufferedlnput 
{ 

public: 
int read(); 
int goode) { return _inputerror 

private: 
IOError _inputerror; 

} ; 

II Declare nested class BufferedOutput. 
class BufferedOutput 
{ 

1/ Member list 
} ; 

None; } 

Buff ere d I 0: : Buff ere dIn put and Buff ere d I 0 : : Buff ere d 0 u t put are de­
clared within B u f fer e d I O. These class names are not visible outside the scope of 
class B u f fer e d I O. However, an object of type B u f fer e d I 0 does not contain 
any objects of types Bufferedlnput or BufferedOutput. 
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Nested classes can directly use names, type names, names of static members, and 
enumerators only from the enclosing class. To use names of other class members, 
you must use pointers, references, or object names. 

In the preceding BufferedIO example, the enumeration IOError can be accessed 
directly by member functions in the nested classes, BufferedIO:: Buffered Input 
or BufferedIO:: BufferedOutput, as shown in function good. 

Note Nested classes declare only types within class scope. They do not cause con­
tained objects of the nested class to be created. The preceding example declares 
two nested classes, but does not declare any objects of these class types. 

Access Privileges and Nested Classes 
Nesting a class within another class does not give member functions of the nested 
class special access privileges. Similarly, member functions ofthe enclosing class 
have no special access to members of the nested class. 

For more information about access privileges, see Chapter lO, "Member-Access 
Control." 

Member Functions in Nested Classes 
Member functions declared in nested classes can be defined in file scope. The pre­
ceding example could have been written: 

class BufferedIO 
{ 

public: 

} ; 

enum IOError { None, Access, General }; 
class BufferedInput 
{ 

public: 
int read(); II Declare but do not define member 
int goode); II functions read and good. 

private: 
IOError _ inputerror; 

} ; 

class BufferedOutput 
{ 

II Member list. 
} ; 
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II Define member functions read and good in 
II fil e scope. . 
int BufferedIO::Buffere~Input::read() 
{ 

} 

int BufferedIO::Bufferedlnput::good() 
{ 

return ~inputerror == None; 
} 

In the preceding example, the qualified-type-name syntax is used to declare the 
function name. The declaration: 

BufferedIO::Bufferedlnput::read() 

means "the read function that is a member of the Bufferedlnput class that is in 
the scope of the BufferedIO class." Because this declaration uses the qualified­
type-name syntax, constructs of the following form are possible: 

typedef BufferedIO::Bufferedlnput BIO~INPUT; 

int BIO~INPUT::read() 

The preceding declaration is equivalent to the previous one, but it uses a typedef 
name in place of the class names. 

Friend Functions and Nested Classes 
Friend functions declared in a nested class are considered to be in the scope of the 
nested class, not the enclosing class. Therefore, the friend functions gain no 
special access privileges to members or member functions of the enclosing class. 
If you want to use a name that is declared in a nested class in a friend function, 
and the friend function is defined in file scope, use qualified type names as 
follows: 

extern char *rgszMessage[]; 

class BufferedIO 
{ 

publ ic: 



} ; 

class Bufferedlnput 
{ 

public: 
friend int GetExtendedErrorStatus(); 

static char *message; 
int iMsgNo; 

} ; 

char *BufferedIO::Bufferedlnput: :message; 

int GetExtendedErrorStatus() 
{ 

strcpy( BufferedIO: :Bufferedlnput: :message. 
rgszMessage[iMsgNo] ); 

return iMsgNo; 
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The preceding code shows the function GetExtendedErrorStatus declared as a 
friend function. In the function, which is defined in file scope, a message is copied 
from a static array into a class member. Note that a better implementation of 
GetExtendedErrorStatus is to declare it as: 

int GetExtendedErrorStatus( char *message ) 

U sing the preceding interface, several classes can use the services of this function 
by passing a memory location where they want the error message copied. 

8.9 Type Names in Class Scope 
Type names defined within class scope are considered local to their class. They 
cannot be used outside that class. The following example demonstrates this 
concept: 

class Tree 
{ 

public: 

} ; 

typedef Tree * PTREE; 
PTREE Left; 
PTREE Right; 
void *vData; 

PTREE pTree; II Error: not in class scope. 
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This chapter explains how to use derived classes to produce extensible programs. 

9.1 Overview 

Syntax 

New classes can be derived from existing classes using a mechanism called "in­
heritance" (see the discussion beginning on this page). Classes that are used for 
derivation are called "base classes" of a particular derived class. A derived class is 
declared using the following syntax: 

base-spec: 
: base-list 

base-list: 
base-specifier 
base-list , base-specifier 

base-specifier: 
complete-class-name 
virtual access-specifieropt complete-cLass-name 
access-specifier virtualopt complete-class-name 

access-specifier: 
private 
protected 
public 

Single Inheritance 
In "single inheritance" a common form of inheritance, classes have only one base 
class. Consider the relationship illustrated in Figure 9.1. 
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Document 

t 
Book 

Figure 9.1 Simple Single Inheritance Graph 

Note the progression from general to specific in Figure 9.1. Another common at­
tribute found in the design of most class hierarchies is that the derived class has a 
"kind of' relationship with the base class. In Figure 9.1, a Book is a kind of a 
Document, and a PaperbackBook is a kind of a book. 

One other item of note in Figure 9.1: Book is both a derived class (from 
Document) and a base class (PaperbackBook is derived from Book). A skeletal dec­
laration of such a class hierarchy is shown in the following example: 

class Document 
{ 

II Member list. 
} ; 

II Book is derived from Document. 
class Book: public Document 
{ 

II Member list. 
} ; 

II PaperbackBook is derived from Book. 
class PaperbackBook : public Book 
{ 

II Member list. 
} ; 

Document is considered a "direct base" class to Book; it is an "indirect base" class 
to PaperbackBook. The difference is that a direct base class appears in the base list 
of a class declaration; an indirect base does not. 

Note that the base class from which each class is derived is completely declared 
before the declaration of the derived class. It is not sufficient to provide a forward­
referencing declaration for a base class; it must be a complete declaration. 
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In the preceding example, the access specifier public is used. The meaning of pub­
lic, protected, and private inheritance is described in Chapter 10, "Member-Access 
Control." 

A class can serve as the base class for many more specific classes, as illustrated in 
Figure 9.2. 

Document 

Figure 9.2 Sample of Directed Acyclic Graph 

In the diagram in Figure 9.2, called a "directed acyclic graph" (or "DAG"), some 
of the classes are base classes for more than one derived class. However, the 
reverse is not true: There is only one direct base class for any given derived class. 
The graph in Figure 9.2 depicts a "single inheritance" structure. 

Note Directed acyclic graphs are not unique to single inheritance. They are also 
used to depict multiple inheritance graphs. This topic is covered in "Multiple In­
heritance" on page 264. 

In inheritance, the derived class contains the members of the base class plus any 
new members you add. As a result, a derived class can refer to members of the 
base class (unless those members are redefined in the derived class). The scope­
resolution operator (::) can be used to refer to members of direct or indirect base 
classes when those members have been redefined in the derived class. Consider 
this example: 
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class Document 
{ 

public: 
char *Name; II Document name. 
void PrintNameOf(); II Print name. 

} ; 

II Implementation of PrintNameOf function from class Document. 
void Document::PrintNameOf() 
{ 

cout « Name « endl; 
} 

class Book: public Document 
{ 

public: 
Book( char *name, long pagecount ); 

private: 
long PageCount; 

} ; 

II Constructor from class Book. 
Book::Book( char *name, long pagecount 
{ 

} ; 

Name = new char[ strlen( name) + 1 ]; 
strcpy( Name, name ); 
PageCount = pagecount; 

Note that the constructor for Book (Book:: Book), has access to the data member, 
Name. In a program, an object oftype Book can be created and used as follows: 

II Create a new object of type Book. This invokes the 
II constructor Book::Book. 
Book LibraryBook( "Programming Windows, 2nd Ed", 944 ); 

II Use PrintNameOf function inherited from class Document. 
LibraryBook.PrintNameOf(); 

As the preceding example demonstrates, class-member and inherited data and 
functions are used identically. If the implementation for class Book calls for a re­
implementation of the P r i ntNameOf function, the function that belongs to the 
Document class can be called only by using the scope-resolution (::) operator: 

class Book: public Document 
{ 

} ; 

Book( char *name, long pagecount ); 
void PrintNameOf(); 
long PageCount; 



void Book: :PrintNameDf() 
{ 

cout « "Name of book: "; 
Document::PrintNameOf(); 
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Pointers and references to derived classes can be implicitly converted to pointers 
and references to their base classes if there is an accessible, unambiguous base 
class. The following code demonstrates this concept using pointers (the same prin­
ciple applies to references): 

#include <iostream.h> 

main() 
{ 

Document *DocLib[10]; II Library of ten documents. 

for( int i = 0; i < 10; ++i ) 
{ 

} 

cout « "Type of document: " 
« "P)aperback, M)agazine, H)elp File, C)BT" 
« endl; 

char cDocType; 
cin » cDocType; 

switch( tolower( cDocType ) ) 
{ 

case 'p': 
DocLib[i] 
brea k; 

case 'm': 
DocLib[i] 
break; 

case 'h': 
DocLib[i] 
brea k; 

new PaperbackBook; 

new Magazine; 

new HelpFile; 

case 'c': 
DocLib[i] 
brea1; 

default: i 
- - i ; I 

break; 
} 

new ComputerBasedTraining; 
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} 

fore i = 0; i < 10; ++i ) 
DocLib->PrintNameOf(); 

return 0; 

In the swi tch statement in the preceding example, objects of different types are 
created, depending on what the user specified for cDocType. However, because 
these types are all derived from the Document class, there is an implicit conver­
sion to Document *. As a result, DocL ibis a "heterogeneous list" (a list in which 
not all objects are of the same type) containing different kinds of objects. 

Because the Document class has a Pri ntNameOf function, it can print the name of 
each book in the library, although it may omit some of the information specific to 
the type of document (page count for Book, number of bytes for Hel pFi 1 e, and so 
on). 

Note Forcing the base class to implement a function such as Pri ntNameOf is often 
not the best design. Virtual functions, described in "Virtual Functions" on page 
275, offer other design alternatives. 

Multiple Inheritance 
Later versions of C++ introduced a "multiple inheritance" model for inheritance. 
In a multiple inheritance graph, the relationships can be many-to-many between 
the base and derived classes, instead of one-to-many in single inheritance. Con­
sider the graph in Figure 9.3. 

Colle c t i b 1 e I LI __ S_t_r.,..i_n_9_--, 

Figure 9.3 Simple Multiple-Inheritance Graph 

The diagram in Figure 9.3 shows a class, Collect i b 1 eStri ng. It is like a 
Co 11 ect i b 1 e (something that can be contained in a collection), and it is like a 
Stri ng. Multiple inheritance is a good solution to this kind of problem (where a 
derived class has attributes of more than one base class) because it is easy to form 
a Call ecti bl eCustomer, Call ecti bl eWi ndow, and so on. 
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If the properties of either class are not required for a particular application, either 
class can be used alone or in combination with other classes. Therefore, given the 
hierarchy depicted in Figure 9.3 as a basis, you can form noncollectible strings and 
collectibles that are not strings. This flexibility is not possible using single 
inheritance. 

Virtual Functions 

Abstract Classes 

Some class hierarchies are broad but have many things in common. The common 
code is implemented in a base class, while the specific code is in the derived 
classes. 

It is important for the base classes to establish a protocol through which the 
derived classes can attain maximum functionality. These protocols are commonly 
implemented using virtual functions. Sometimes the base class provides a default 
implementation for such functions. In a class hierarchy such as the Document hier­
archy in Figure 9.2, two useful functions are Identi fy and WhereIs. 

When called, the Identify function returns a correct identification, appropriate to 
the kind of document: For a Book, a function call such as doc->Identify() must 
return the ISBN number; however, for a Hel pFi 1 e, a product name and revision 
number is probably more appropriate. Similarly, WhereIs should return a row and 
shelf for a Book, but for a Hel pFi 1 e it should return a disk location-perhaps a 
directory and filename. 

It is important that all implementations of the Identify and WhereIs functions re­
turn the same kind of information. In this case, a character string is appropriate. 

These functions are implemented as virtual functions, then invoked using a pointer 
to a base class. The binding to the actual code occurs at run time, selecting the cor­
rect Identify or WhereIs function. 

Classes can be implemented to enforce a protocol. These classes are called "ab­
stract classes" because no object of the class type can be created. They exist solely 
for derivation. 

Classes are abstract classes if they contain pure virtual functions or if they inherit 
pure virtual functions and do not provide an implementation for them. Pure virtual 
functions are virtual functions declared with the pure-specifier (= 0) as follows: 

virtual char *Identify() = 0; 
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Base Classes 

The base class, Document, might impose the following protocol on all derived 
classes: 

• An appropriate I dent i fy function must be implemented. 

• An appropriate Wherels function must be implemented. 

By specifying such a protocol when designing the Document class, the class de­
signer can be assured that no nonabstract class can be implemented without 
Identi fy and Wherels functions. The Document class, therefore, contains these 
declarations: 

class Document 
{ 

public: 

} ; 

II Requirements for derived classes: They must implement 
II these functions. 
virtual char *Identify() = 0; 
vi rtual char *Wherels() = 0; 

As discussed previously, the inheritance process causes a new derived class to be 
created that is made up of the members of the base class( es) plus any new mem­
bers the derived class adds. In a lllultlple-lIlheritance situatiun, it is pussible to con­
struct an inheritance graph where the same base class is part of more than one of 
the derived classes. Figure 9.4 shows such a graph. 

In Figure 9.4, pictorial representations of the components of Co 11 ect i bleSt ri ng 
and Coll ecti bl eSortabl e are shown. However, the base class, Coll ecti bl e, is 
in CollectibleSortableString through the CollectibleString path and the 
Coll ecti bl eSortabl e path. To eliminate this kind ofredundancy, such classes 
can be declared as virtual base classes when they are inherited. 

For information about declaring virtual base classes and how objects with virtual 
base classes are composed, see "Virtual Base Classes" on page 268. 
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CollectibleString 

Collectible 

String 

new members 

CollectibleSortable 

Collectible 

Sortable 
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Figure 9.4 Multiple Instances of a Single Base Class 

9.2 Multiple Base Classes 
As described in "Multiple Inheritance" on page 264, a class can be derived from 
more than one base class. In a multiple-inheritance model (where classes are 
derived from more than one base class), the base classes are specified using the 
base-list grammar element (see "Syntax" in "Overview" on page 259). For ex­
ample, the class declaration for Coll ecti on Of Book, derived from Coll ecti on and 
Book, can be specified: 

class CollectionofBook public Book, public Collection 
{ 

II New members 
} ; 
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The order in which base classes are specified is not significant except in certain 
cases where constructors and destructors are invoked. In these cases, the order in 
which base classes are specified affects the following: 

• The order in which initialization by constructor takes place. If your code relies 
on the Book portion of Coll ecti onOfBook to be initialized before the 
Co 11 ect i on part, the order of specification is significant. Initialization takes 
place in the order the classes are specified in the base-list. 

• The order in which destructors are invoked to clean up. Again, if a particular 
"part" of the class must be present when the other part is being destroyed, the 
order is significant. Destructors are called in the reverse order of the classes 
specified in the base-list. 

Note The order of specification of base classes can affect the memory layout of 
the class, but it often does not. Do not make any programming decisions based on 
the order of base members in memory. 

When specifying the base-list, you cannot specify the same class name more than 
once. However, it is possible for a class to be an indirect base to a derived class 
more than once. 

Virtual Base Classes 
Because a class can be an indirect base class to a derived class more than once, 
c++ provides a way to optimize the 'Nay such base classes \:vork. Consider the 
class hierarchy in Figure 9.5, which illustrates a simulated lunch line. 

Queue 

Figure 9.5 Simulated Lunch-Line Graph 



Derived Classes 269 

In Figure 9.5, Queue is the base class for both Cashi erQueue and LunchQueue. 
However, when both classes are combined to form LunchCashi erQueue, the fol­
lowing problem arises: the new class contains two subobjects of type Queue; one 
from Cashi erQueue and the other from LunchQueue. Figure 9.6 shows the concep­
tual memory layout (the actual memory layout might be optimized). 

Queue 
,-------------

CashierQueue 

Queue 
f--------------

LunchQueue 

LunchCashierQueue 

Figure 9.6 Simulated Lunch-Line Object 

Note that there are two Queue subobjects in the LunchCashi erQueue object. The 
following code declares Queue to be a virtual base class: 

class Queue 
{ 

II Member 1 i st 
} ; 

class CashierQueue 
{ 

virtual public Queue 

II Member list 
} ; 

class LunchQueue : virtual public Queue 
{ 

II Member list 
} ; 

class LunchCashierQueue 
{ 

II Member list 
} ; 

public LunchQueue, public CashierQueue 
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The vi rtua 1 keyword ensures that only one copy of the subobject Queue is in­
cluded (see Figure 9.7). 

Queue 
~------------~-------------

CashierQueue I LunchQueue 

LunchCashierQueue 

Figure 9.7 Simulated Lunch-Line Object with Virtual Base Classes 

A class can have both a virtual and a nonvirtual component of a given type. This 
happens in the conditions illustrated in Figure 9.8. 

Queue 

Jr + 
virtuat viripal 

"," 

Cashi e;Queue I I LunchQueue 

~~'Queue / 

Figure 9.8 Virtual and Nonvirtual Components of the Same Class 

In Figure 9.8, Cashi erQueue and LunchQueue use Queue as a virtual base class. 
However, TakeoutQueue specifies Queue as a base class, not a virtual base class. 
Therefore, LunchTakeoutCashi erQueue has two subobjects of type Queue: one 
from the inheritance path that includes LunchCashi erQueue, and one from the path 
that includes Ta keoutQueue. This is illustrated in Figure 9.9. 
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Queue Queue 
~------------~-------------

CashierQueue I LunchQueue f----------------

LunchCashierQueue 
TakeoutQueue 

LunchTakeoutCashierQueue 

Figure 9.9 Object Layout with Virtual and Nonvirtual Inheritance 

Note Virtual inheritance provides significant size benefits when compared with 
nonvirtual inheritance. However, it can introduce extra processing overhead. 

Name Ambiguities 
Multiple inheritance introduces the possibility for names to be inherited along 
more than one path. The class-member names along these paths are not necessarily 
unique. These name conflicts are called "ambiguities." 

Any expression that refers to a class member must make an unambiguous refer­
ence. The following example shows how ambiguities develop: 

II Declare two base classes, A and B. 
class A 
{ 

public: 

} ; 

unsigned a; 
unsigned be); 

class B 
{ 

publ i c: 
unsigned a(); II Note that class A also has a member "a" 
int be); II and a member Db". 
char c; 

} ; 

II Define class C as derived from A and B. 
class C : public A, public B 
{ 

} ; 
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Given the preceding class declarations, code such as the following is ambiguous: 

C *pc = new C; 

pc->b(); 

Consider the preceding example. Because the name a is a member of both class 
A and class B, the compiler cannot discern which a designates the function to be 
called. Access to a member is ambiguous if it can refer to more than one function, 
object, type, or enumerator. 

The compiler detects ambiguities by performing tests in this order: 

1. If access to the name is ambiguous (as just described), an error message is 
generated. 

2. If overloaded functions are unambiguous, they are resolved. (For more informa­
tion about function overloading ambiguity, see "Argument Matching" in Chap­
ter 12, on page 344.) 

3. If access to the name violates member-access permission, an error message is 
generated. (For more information, see Chapter 10, "Member-Access Control".) 

When an expression produces an ambiguity through inheritance, you can manually 
resolve it by qualifying the name in question with its class name. To make the pre­
ceding example compile properly with no ambiguities, use code such as: 

C *pc = new C; 

pc->B::a(); 

Note The potential ambiguity introduced by the class declarations of classes A 
and B in the example shown on the previous page does not cause an error; the am­
biguous accessing of a member causes the error. 

Ambiguities and Virtual Base Classes 
If virtual base classes are used, functions, objects, types, and enumerators can be 
reached through multiple-inheritance paths. Because there is only one instance of 
the base class, there is no ambiguity when accessing these names. 
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Figure 9.10 shows how objects are composed using virtual and nonvirtual 
inheritance. 

LU /0, m 
~ [I] IT] 0 

o g rn 
o 

Vit1ual Nonvit1ual 

Figure 9.10 Virtual vs. Nonvirtual Derivation 

In Figure 9.10, accessing any member of class A through nonvirtual base classes 
causes an ambiguity; the compiler has no information that explains whether to use 
the subobject associated with B or the subobject associated with c. However, 
when A is specified as a virtual base class, there is no question which subobject is 
being accessed. 

Dominance 
It is possible for more than one name (function, object, or enumerator) to be 
reached through an inheritance graph. Such cases are considered ambiguous with 
nonvirtual base classes. They are also ambiguous with virtual base classes, unless 
one of the names "dominates" the others. 

A name dominates another name if it is defined in both classes, and one class is 
derived from the other. The dominant name is the name in the derived class; this 
name is used when an ambiguity would otherwise have arisen, as shown in the fol­
lowing example: 
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class A 
{ 

public: 
int a; 

} ; 

class B : public virtual A 
{ 

public: 
inta(); 

} ; 

class C public virtual A 
{ 

} ; 

class 0 public B, public C 
{ 

public: 
o ( ) { at); } II Not ambiguous. B::a() dominates A::a. 

} ; 

Ambiguous Conversions 
Explicit and implicit conversions from pointers or references to class types can 
cause ambiguities. Figure 9.11 shows the following: 

ii The declaraiion of an object of type D. 

• The effect of applying the address-of operator (&) to that object. Note that the 
address-of operator always supplies the base address of the object. 

• The effect of explicitly converting the pointer obtained using the address-of 
operator to the base-class type A. Note that coercing the address of the object to 
type M does not always provide the compiler with enough information as to 
which subobject of type A to select; in this case, two subobjects exist. 

The conversion to type M (pointer to A) is ambiguous because there is no way to 
discern which subobject of type A is the correct one. Note that you can avoid the 
ambiguity by explicitly specifying which subobject you mean to use, as follows: 

(A *)(8 *)&d 
(A *)(C *)&d 

II Use B subobject. 
II Use C subobject. 
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D d; 

.. &d 

o 

Figure 9.11 Ambiguous Conversion of Pointers to Base Classes 

9.3 Virtual Functions 
"Virtual functions" are functions that ensure the correct function is called for an 
object, regardless of the expression used to make the function call. 

Suppose a base class contains a function declared as virtual and a derived class de­
fines the same function. The function from the derived class is invoked for objects 
of the derived class, even if it is called using a pointer or reference to the base 
class. The following example shows a base class that provides an implementation 
ofthe PrintBalance function: 

class Account 
{ 

publ ic: 
AccountC double d ); 

virtual double GetBalanceC); 
virtual void PrintBalanceC); 

private: 
double _balance; 

} ; 

II Constructor. 
II Obtain balance. 
II Default implementation. 

II Implementation of constructor for Account. 
double Account::AccountC double d ) 
{ 

balance = d; 
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II Implementation of GetBalance for Account. 
double Account::GetBalance() 
{ 

return _balance; 
} 

II Default implementation of PrintBalance. 
void Account::PrintBalance() 
{ 

cerr « "Error. Balance not available for base type." 
« endl; 

} 

Two derived classes, Checki ngAccount and Savi ngsAccount, can be created as 
follows: 

class CheckingAccount 
{ 

publ ic: 
void PrintBalance(); 

} ; 

public Account 

II Implementation of PrintBalance for CheckingAccount. 
void CheckingAccount::PrintBalance() 
{ 

cout « "Checking account balance: " « GetBalance(); 
} 

class SavingsAccount 
{ 

public Account 

public: 
void PrintBalance(); 

} ; 

II Implementation of PrintBalance for SavingsAccount. 
void SavingsAccount::PrintBalance() 
{ 

cout « "Savings account balance: " « GetBalance(); 
} 
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The Pri ntBa 1 ance function in the derived classes is virtual because it is declared 
as virtual in the base class, Account. To call virtual functions such as 
Pri ntBa 1 ance, code such as the following can be used: 

II Create objects of type CheckingAccount and SavingsAccount. 
CheckingAccount *pChecking new CheckingAccount( 100.00 ); 
SavingsAccount *pSavings new SavingsAccount( 1000.00 ); 

II Call PrintBalance using a pointer to Account. 
Account *pAccount = pChecking; 
pAccount-)PrintBalance(); 

II Call PrintBalance using a pointer to Account. 
pAccount = pSavings; 
pAccount-)PrintBalance(); 

In the preceding code, the calls to Pri ntBa 1 ance are identical, except for the ob­
ject pAccount points to. Because Pri ntBa 1 ance is virtual, the version of the func­
tion defined for each object is called. The Pri ntBa 1 ance function in the derived 
classes Checki ngAccount and Savi ngsAccount "override" the function in the 
base class Account. 

If a class is declared that does not provide an overriding implementation of the 
Pri ntBal ance function, the default implementation from the base class Account 
is used. 

Functions in derived classes override virtual functions in base classes only if their 
type is the same. A function in a derived class cannot differ from a virtual function 
in a base class in its return type only; the argument list must differ as well. 

When calling a function using pointers or references, the following rules apply: 

• A call to a virtual function is resolved according to the underlying type of ob­
ject for which it is called. 

• A call to a nonvirtual function is resolved according to the type of the pointer or 
reference. 
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The following example shows how virtual and nonvirtual functions behave when 
called through pointers: 

#include <iostream.h> 

II Declare a base class. 
class Base 
{ 
public: 

virtual void NameOf(); 
void InvokingClass(); 

} ; 

II Implement the two functions. 
void Base: :NameOf() 
{ 

cout « "Base::NameOf\n"; 
} 

void Base::InvokingClass() 
{ 

cout « "Invoked by Base\n"; 
} 

II Declare a derived class. 
class Derived: public Base 
{ 

public: 

I I Vi rtual functi on. 
II Nonvirtual function. 

void NameOf(); II Virtual function. 
void InvokingClass(); II Nonvirtual function. 

} ; 

II Implement the two functions. 
void Derived: :NameOf() 
{ 

cout « "Derived::NameOf\n"; 
} 

voi d Deri ved: : Invoki ngCl ass () 
{ 

cout « "Invoked by Derived\n"; 
} 

void main() 
{ 

II Declare an object of type Derived. 
Derived aDerived; 
II Declare two pointers, one of type Derived * and the other 
II of type Base *, and initialize them to point to aDerived. 
Derived *pDerived &aDerived; 
Base *pBase &aDerived; 
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II Call the functions. 
pBase->NameOf(); II Call virtual function. 
pBase->InvokingClass(); II Call nonvirtual function. 
pDerived->NameOf(); II Call virtual function. 
pDerived->InvokingClass(); II Call nonvirtual function. 

The output from this program is: 

Deri ved: : NameOf 
Invoked by Base 
Deri ved: : NameOf 
Invoked by Derived 

Note that regardless of whether the NameOf function is invoked through a pointer 
to Base or a pointer to Deri ved, it calls the function for Deri ved. It calls the func­
tion for Deri ved because NameOf is a virtual function, and both pBase and 
pDeri ved pointto an object of type Deri ved. 

Because virtual functions are called only for objects of class types, you cannot de­
clare global or static functions as virtual. However, a virtual function can be de­
clared as a friend in another class. 

The virtual keyword can be used when declaring overriding functions in a derived 
class, but it is optional; these functions are always virtual. 

Virtual functions in a base class must be defined unless they are declared using the 
pure-specifier. (For more information about pure virtual functions, see "Abstract 
Classes" on page 265.) 

The virtual function-call mechanism can be suppressed by explicitly qualifying the 
function name using the scope-resolution operator (::). Consider the preceding 
example. To call Pri ntBa 1 ance in the base class, use code such as the following: 

CheckingAccount *pChecking = new CheckingAccount( 100.00 ); 

pChecking->Account::PrintBalance(); II Explicit qualification. 

Account *pAccount = pChecking; 

pAccount->Account::PrintBalance(); II Explicit qualification. 

Both calls to P r i n t B a 1 an c e in the preceding example suppress the virtual 
function-call mechanism. 
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9.4 Abstract Classes 
Abstract classes act as expressions of general concepts from which more specific 
classes can be derived. You cannot create an object of an abstract class type; how­
ever, you can use pointers and references to abstract class types. 

A class that contains at least one pure virtual function is considered an abstract 
class. Classes derived from the abstract class must implement the pure virtual func­
tion or they, too, are abstract classes. 

A virtual function is declared as "pure" by using the pure-specifier syntax (de­
scribed in "Abstract Classes" on page 265). Consider the example presented in 
"Virtual Functions" on page 265. The intent of class Account is to provide 
general functionality, but objects of type Account have insufficient specificity to 
be meaningful. Therefore, Account is a good candidate for an abstract class: 

class Account 
{ 

public: 
Account( double d ); 

virtual double GetBalance(); 
virtual void PrintBalance() = 0; 

private: 
double _balance; 

} ; 

II Constructor. 
II Obtain balance. 
II Pure virtual function. 

The only difference between this declaration and the previous one is that 
PrintBal ance is declared with the pure specifier (= 0). 

Restrictions on Using Abstract Classes 
Abstract classes cannot be used for: 

• Variables or member data 

• Argument types 

• Function return types 

• Types of explicit conversions 

Another restriction is that if the constructor for an abstract class calls a pure virtual 
function, either directly or indirectly, the result is undefined. However, construc­
tors for abstract classes can call other member functions. 
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Pure virtual functions can be defined for abstract classes, but they can be called 
directly only by using the syntax: 

abstract-class-name: :function-name( ) 

An implementation can be provided for pure virtual functions. This helps when de­
signing class hierarchies whose base class(es) include pure virtual destructors, be­
cause base class destructors are always called in the process of destroying an 
object. Consider the following example: 

#include <iostream.h> 

II Declare an abstract base class with a pure virtual destructor. 
class base 
{ 

public: 
base() {} 
virtual -base()=0; 

} ; 

II Provide a definition for destructor. 
base: :-base() 
{ 
} 

class derived:public base 
{ 

public: 

} ; 

deri ved() {} 
-deri ved ( ) {} 

void main() 
{ 

derived *pDerived new derived; 

delete pDerived; 
} 

When the object pointed to by pDeri ved is deleted, the destructor for class 
deri ved is called, then the destructor for class base is called. The empty im­
plementation for the pure virtual function ensures that at least some implementa­
tion exists for the function. 

Note In the example above, the pure virtual function base: :-base is called impli­
citly from deri ved: :-deri ved. It is also possible to call pure virtual functions ex­
plicitly using a fully qualified member-function name. 
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9.5 Summary of Scope Rules 

Ambiguity 

Global Names 

This section supplements "Scope" in Chapter 2, on page 28 by adding the con­
cepts pertaining to classes. 

The use of a name must be unambiguous within its scope (up to the point where 
overloading is determined). If the name denotes a function, the function must be 
unambiguous with respect to number and type of arguments. If the name remains 
unambiguous, member-access rules are applied. (Member-access control is de­
scribed in Chapter 10.) 

A name of an object, function, or enumerator is global if it is introduced outside 
any function or class or prefixed by the global unary scope operator (::), and it is 
not used in conjunction with any of these binary operators: 

• Scope-resolution C::) 

• Member-selection for objects and references (.) 

• Member-selection for pointers (-» 

Names and Qualified Names 
Names used with the binary scope-resolution operator C::) are called "qualified 
names." The name specified after the binary scope-resolution operator must be a 
member of the class specified on the left of the operator or a member of its base 
classCes). 

Names specified after the member-selection operator C. or -» must be members of 
the class type of the object specified on the left of the operator or members of its 
base class(es). Names specified on the right of the member-selection operator (-» 
can also be objects of another class type, provided that class defines an overloaded 
member-selection operator (-» that evaluates to a pointer to the original class 
type. (This provision is discussed in more detail in "Class Member Access" in 
Chapter 12, on page 363.) 
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The compiler searches for names in the following order: 

1. Current block scope if name is used inside a function; otherwise global scope. 

2. If the name is not found in the current block scope, the compiler searches out­
ward through each enclosing block scope, including the outermost function 
scope (which includes function arguments). 

3. If the name is still not found, and the name is used inside a member function, 
class's scope is searched for the name. 

4. If the name is still not found, the class's base classes are searched for the name. 

5. If the name is still not found, the enclosing nested class scope (if any) and its 
bases are searched. The search continues until the outermost enclosing class 
scope is searched. 

6. If the name is still not found, global scope is searched. 

However, you can make modifications to this search order as follows: 

1. Names preceded by:: force the search to begin at global scope. 

2. Names preceded by the class, struct, and union keywords force the compiler to 
search only for class, struct, or union names. 

3. Names on the left side ofthe scope-resolution operator (::) can be only class, 
struct, or union names. 

If the name refers to a non static member but is used in a static member function, 
an error message is generated. If the name refers to any nonstatic member in an en­
closing class, an error message is generated because enclosed classes do not have 
enclosing-class this pointers. 

Function Argument Names 
Function argument names in function definitions are considered to be in the scope 
of the outermost block of thc function. Therefore, they are local names and go out 
of scope when the function is exited. 

Function argument names in function declarations (prototypes) are in local scope 
of the declaration and go out of scope at the end of the declaration. 

Default arguments are in the scope of the argument for which they are the default, 
as described in the preceding two paragraphs. However, they cannot access local 
variables or nonstatic class members. Default arguments are evaluated at the point 
of the function call, but they are evaluated in the function declaration's original 
scope. Therefore, the default arguments for member functions are always eval­
uated in class scope. 
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Constructor Initializers 
Constructor initializers (described in "Initializing Bases and Members" in Chapter 
11, on page 329) are evaluated in the scope of the outermost block of the construc­
tor for which they are specified. Therefore, they can use the constructor's argu­
mentnames. 



Member-Access Control 

c++ allows programmers to specify the level of access to member data and func­
tions. There are three levels of access: public, protected, and private. This chap­
ter explains how access control applies to objects of class type and to derived 
classes. 

10.1 Controlling Access to Class Members 
As a programmer, you can increase the integrity of software built with C++ by 
controlling access to class member data and functions. Class members can be de­
clared as having private, protected, or public access, as shown in Table 10.1. 

Table 10.1 Member-Access Control 

Type of Access 

private 

protected 

public 

Meaning 

Class members declared as private can be used only by member 
functions and friends (classes or functions) of the class. 

Class members declared as protected can be used by member 
functions and friends (classes or functions) of the class. 
Additionally, they can be used by classes derived from the class. 

Class members declared as public can be used by any function. 

Access control prevents you from using objects in ways they were not intended 
to be used. This protection is lost when explicit type conversions (casts) are 
performed. 

Note Access control is equally applicable to all names: member functions, mem­
ber data, nested classes, and enumerators. 
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The default access to class members (members of a class type declared using the 
class keyword) is private; to change the access in a class declaration, you must use 
the public or protected keyword. The default access to struct and union mem­
bers is public; to change the access in a struct or union declaration, you must use 
the private or protected keyword. 

10.2 Access Specifiers 

Syntax 

In class declarations, members can have access specifiers. 

access-specifier : member-listopt 

The access-specifier determines the access to the names that follow it, up to the 
next access-specifier or the end of the class declaration. Figure 10.1 illustrates this 
concept. 

Point 

p ri 

} ; 

This public access specifier affects all 
members until the next access specifier. 

This private access specifier affects all members 
IInfil fnl"l ,../..,,..,.. /"Inri Ilf ""'" .................... " ...... ....... " ... :.t::", ...... 
UIIlII 1I11.i vlav':) viIU. (II IIIVIC; allvv"':' <::JpvCAIIG/;:> 

followed, private would affect all the members until 
the next access specifier.) 

Figure 10.1 Access Control in Classes 

Although only two access specifiers are shown in Figure 10.1, there is no limit to 
the number of access specifiers in a given class declaration. For example, the Point 
class in Figure 10.1 could just as easily be declared using multiple access specifi­
ers as follows: 



class Point 
{ 

public: 
Pointe int, int ); 

private: 
int _x; 

public: 
Point(); 

public: 
int &x( int ); 

private: 
i nt _y; 

public: 
i n t &y ( i n t ); 

} ; 

II 

II 

II 

II 

II 

II 
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Declare public constructor. 

Declare private state variable. 

Declare public constructor. 

Declare public accessor. 

Declare private state variable. 

Declare public accessor. 

Note that there is no specific order required for member access, as shown in the ex­
ample above. The allocation of storage for objects of class types is implementation 
dependent, but members are guaranteed to be assigned successively higher 
memory addresses between access specifiers. 

10.3 Access Specifiers for Base Classes 
Two factors control which members of a base class are accessible in a derived 
class; these same factors control access to the inherited members in the derived 
class: 

• Whether the derived class declares the base class using the public access speci­
fier in the class-head (class-head is described in "Syntax" in Chapter 8, on page 
228). 

• What the access to the member is in the base class. 
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Table 10.2 shows the interaction between these factors. 

Table 10.2 Determining Base-Class Member Access 

Member Access in Base Class 

private 

Inaccessible in derived 
class if you use private 
derivation 

Inaccessible in derived 
class if you use protected 
derivation 

Inaccessible in derived 
class if you use public 
derivation 

protected 

Private in derived class if 
you use private derivation 

Protected in derived class 
if you use protected 
derivation 

Protected in derived class 
if you use public 
derivation 

The following example illustrates this: 

class BaseClass 
{ 

public: 

public 
Private in derived class if 
you use private derivation 

Protected in derived class 
if you use protected 
derivation 

Public in derived class if 
you use public derivation 

int PublicFunc(); II Declare a public member. 
protected: 

int ProtectedFunc(); II Declare a protected member. 
private: 

int PrivateFunc(); II Declare a private member. 
} ; 

II Declare two classes derived from BaseClass. 
class DerivedClassl : public BaseClass 
{ }; 

class DerivedClass2 
{ }; 

private BaseClass 

In DerivedClassl,thememberfunction PublicFunc is a public member and 
ProtectedFunc is a protected member because BaseCl ass is a public base class. 
Pri vateFunc is private to BaseCl ass, and it is inaccessible to any derived classes. 

In Deri vedC 1 ass2, the functions Pub 1 i c Func and Protected Func are considered 
private members because BaseCl ass is a private base class. Again, Pri vateFunc 
is private to BaseCl ass, and it is inaccessible to any derived classes. 

You can declare a derived class without a base-class access specifier. In such a 
case, the derivation is considered private if the derived class declaration uses the 
class keyword. The derivation is considered public if the derived class declaration 
uses the struct keyword. For example, the following code: 
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class Derived Base 

is equivalent to: 

= class Derived private Base 

Similarly, the following code: 

struct Derived: Base 

is equivalent to: 

struct Derived public Base 

Note that members declared as having private access are not accessible to func­
tions or derived classes unless those functions or classes are declared using the 
friend declaration in the base class. 

A union type cannot have a base class. 

Note When specifying a private base class, it is advisable to explicitly use the 
private keyword so users of the derived class understand the member access. 

Access Control and Static Members 
When you specify a base class as private, it affects only nonstatic members. Pub­
lic static members are still accessible in the derived classes. However, accessing 
members of the base class using pointers, references, or objects can require a con­
version, at which time access control is again applied. Consider the following 
example: 

class Base 
{ 

public: 
int Print(); 
static int CountOf(); 

} ; 

II Nonstatic member. 
II Static member. 

II Derived! declares Base as a private base class. 
class Derived! : private Base 
{ 
}; 
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II Derived2 declares Derivedl as a public base class. 
class Derived2 : public Derivedl 
{ 

int ShowCount(); II Nonstatic member. 
} ; 

II Define ShowCount function for Derived2. 
int Derived2: :ShowCount() 
{ 

} 

II Call static member function CountOf explicitly. 
int cCount = Base::CountOf(); II OK. 

II Call static member function 
cCount = this->CountOf(); II 

II 
II 

return cCount; 

CountOf using pointer. 
Error. Conversion of 
Derived2 * to Base * not 
permitted. 

In the preceding code, access control prohibits conversion from a pointer to 
Deri ved2 to a pointer to Base. The this pointer is implicitly oftype Deri ved2 *. 
To select the CountOf function, this must be converted to type Base *. Such a 
conversion is not permitted because Base is a private indirect base class to 
Deri ved2. Conversion to a private base class type is acceptable only for pointers to 
immediate derived classes. Therefore, pointers of type Deri vedl * can be con­
verted to type Base *. 

Note that calling the CountOf function explicitly, without using a pointer, refer­
ence, or object to select it, implies no conversion. Therefore, the call is allowed. 

Members and friends of a derived class, T, can convert a pointer to T to a pointer 
to a private direct base class of T. 

10.4 Friends 
In some circumstances, it is more convenient to grant member-level access to func­
tions that are not members of a class or to all functions in a separate class. The 
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friend keyword allows programmers to designate either the specific functions 
or the classes whose functions can access not only public members, but also 
protected and private members. 

Friend functions are not considered class members; they are normal external func­
tions that are given special access privileges. Friends are not in the class's scope, 
and they are not called using the member-selection operators (. and -» unless 
they are members of another class. The following example shows a Poi nt class 
and an overloaded operator, operator+. (This example primarily illustrates 
friends, not overloaded operators. For more information about overloaded opera­
tors, see "Overloaded Operators" in Chapter 12, on page 351.) 

#include <iostream.h> 

II Declare class Point. 
class Point 
{ 
public: 

II Constructors 
Point() {_x = _y = 0; } 
Point( unsigned x, unsigned y ) { x x; _y y;} 

II Accessors 
unsigned x() { return _x; } 
unsigned y() { return _y; } 
void Print() { cout « "Point("« x«" "« _y « ")" 

« end 1; } 

II Friend function declarations 
friend Point operator+( Point& pt, int nOffset ); 
friend Point operator+( int nOffset, Point& pt ); 

private: 

} ; 

unsi gned _x; 
unsigned _y; 
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II Friend-function definitions 
II 
II Handle Point + int expression. 
Point operator+( Point& pt, int nOffset 
{ 

} 

Point ptTemp = pt; 

II Change private members x and _y directly. 
ptTemp._x += nOffset; 
ptTemp._y += nOffset; 

return ptTemp; 

II Handle int + Point expression. 
Point operator+( int nOffset, Point& pt ) 
{ 

Point ptTemp = pt; 

II Change private members x and _y directly. 
ptTemp._x += nOffset; 
ptTemp._y += nOffset; 

return ptTemp; 

II Test overloaded operator. 
main() 
{ 

} 

Point pt( 10, 20 ); 
pt. Pri nt(); 

pt = pt + 3; 
pt. Print(); 

pt = 3 + pt; 
pt. Print(); 

return 0; 

II Poi nt + i nt 

II int + Point 

When the expression pt + 3 is encountered in the ma in function, the compiler 
determines if an appropriate user-defined operator+ exists. In this case, the func­
tion operator+( Poi nt pt, i nt nOffset ) matches the operands, and a call to 
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the function is issued. In the second case (the expression 3 + pt), the function 
operator+( Poi nt pt, i nt nOffset ) matches the supplied operands. Therefore, 
supplying these two forms of operator+ preserves the commutative properties of 
the + operator. 

A user-defined operator+ can be written as a member function, but it takes only 
one argument: the value to be added to the object. As a result, the commutative 
properties of addition cannot be correctly implemented with member functions; 
they must use friend functions instead. 

Notice that both versions ofthe overloaded operator+ function are declared as 
friends in class Poi nt. Both declarations are necessary-when friend declarations 
name overloaded functions or operators, only the particular functions specified by 
the argument types become friends. Suppose a third operator+ function were de­
clared as follows: 

Point &operator+( Point &pt, Point &pt ); 

The operator+ function in the preceding example is not a friend of class Poi nt 
simply because it has the same name as two other functions that are declared as 
friends. 

Because friend declarations are unaffected by access specifiers, they can be de­
clared in any section of the class declaration. 

Class Member Functions and Classes as Friends 
Class member functions can be declared as friends in other classes. Consider the 
following example: 

class A 
{ 

private: 
i nt _a; 
friend int B::Funcl( A); II Grant friend access to one 

II function in class B. 
} ; 

class B 
{ 

public: 

} ; 

i nt Funcl( A a 
int Func2( A a 

{ return a._a; } II OK: this is a friend. 
{ return a._a; } II Error: a is a private 

II member. 
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In the preceding example, only the function B:: Funcl ( A ) is granted friend 
access to class A. Therefore, access to the private member _ a is correct in func­
tion b of class B, but not in function c. 

Suppose the friend declaration in class A had been: 

friend class B; 

In that case, all member functions in class B would have been granted friend 
access to class A. Note that "friendship" cannot be inherited, nor is there any 
"friend of a friend" access. Figure 10.2 shows four class declarations: Base, 
Deri ved, a Fri end, and anothe rFri end. Only class a Fri end has direct access to 
the private members of Base (and to any members Base might have inherited). 

No friend of 
friend relationship 

class anotherFriend 
{ 
} ; 

class Base 
{ 

class aFriend 
{ 

friend class aFriend; friend class anotherFriend; 
} ; } ; 

~1_~_as_s __ D_e_r_iv_e_d ____ pu_b_l_i_c __ Ba_s_e ____ ~1 
Inheritance does not 
imply the same friends 

Figure 10.2 Implications of friend Relationship 

Friend Declarations 
If you declare a friend function that was not previously declared, that function is 
exported to the enclosing nonclass scope. 

Functions declared in a friend declaration are treated as if they had been declared 
using the extern keyword. (For more information about extern, see "Static 
Storage-Class Specifiers" in Chapter 6, on page 158.) 
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While functions with global scope can be declared as friends prior to their proto­
types, member functions cannot be declared as friends before the appearance of 
their complete class declaration. The following code shows why this fails: 

class ForwardDeclared; II Class name is known. 

class HasFriends 
{ 

friend int ForwardDeclared::lsAFriend(); II Error. 
} ; 

The preceding example enters the class name ForwardDecl ared into scope, but 
the complete declaration-specifically, the portion that declares the function 
IsAFri end-is not known. Therefore, the friend declaration in class Has Fri ends 
generates an error. 

To declare two classes that are friends of one another, the entire second class must 
be specified as a friend of the first class. The reason for this restriction is that the 
compiler has enough information to declare individual friend functions only at the 
point where the second class is declared. 

Note Although the entire second class must be a friend to the first class, you can 
select which functions in the first class will be friends of the second class. 

Defining Friend Functions In Class Declarations 
Friend functions can be defined inside class declarations. These functions are in­
line functions, and like member inline functions they behave as though they were 
defined immediately after all class members have been seen but before the class 
scope is closed (the end of the class declaration). 

Friend functions defined inside class declarations are not considered in the scope 
of the enclosing class; they are in file scope. 

10.5 Protected Member Access 
Class members declared as protected can be used only by the following: 

• Member functions of the class that originally declared these members. 

• Friends of the class that originally declared these members. 

• Classes publicly derived from the class that originally declared these members. 
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Protected members are not as private as private members, which are accessible 
only to members of the class in which they are declared, but they are not as public 
as public members, which are accessible in any function. 

Protected members that are also declared as static are accessible to any friend or 
member function of a derived class. Protected members that are not declared as 
static are accessible to friends and member functions in a derived class only 
through a pointer to, reference to, or object of the derived class. 

10.6 Access to Virtual Functions 
The access control applied to virtual functions is determined by the type used to 
make the function call. Overriding declarations of the function do not affect the 
access control for a given type. For example: 

class VFuncBase 
{ 

public: 
virtual int GetState() { return _state; } 

protected: 
int _state; 

} ; 

class VFuncDerived public VFuncBase 
{ 

private: 
int GetState() { return _state; } 

} ; 

VFuncDerived vfd; 
VFuncBase *pvfb = &vfd; 
VFuncDerived *pvfd = &vfd; 
int State; 

State pvfb->GetState(); 
State pvfd->GetState(); 

II Object of derived type. 
II Pointer to base type. 
II Pointer to derived type. 

II GetState is public. 
II GetState is private; error. 
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In the preceding example, calling the virtual function GetState using a pointer to 
type V FuncBase calls v FuncDeri ved: : GetState, and GetState is treated as pub­
lic. However, calling GetState using a pointer to type V FuncDeri ved is an access­
control violation because GetState is declared private in class V FuncDeri ved. 

Warning The virtual function GetState can be called using a pointer to the base 
class VFuncBase. This does not mean that the function called is the base-class ver­
sion of that function. 

10.7 Multiple Access 
In multiple-inheritance lattices involving virtual base classes, a given name can be 
reached through more than one path. Because different access control can be ap­
plied along these different paths, the compiler chooses the path that gives the most 
access. See Figure 10.3. 

cl ass VBase 

class LeftPath : 
virtual private VBase 

cl ass Deri ved : 

... ... ... ... ... ... 

class RightPath : 
vi rtual publ i c VBase 

public LeftPath, public RightPath 

Figure 10.3 Access Along Paths of an Inheritance Graph 

In Figure 10.3, a name declared in class VBase is always reached through class 
Ri ghtPath. The right path is more accessible because Ri ghtpath declares VBase 
as a public base class, whereas LeftPath declares VBase as private. 
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c++ defines several kinds of functions that can be declared only as class mem­
bers-these are called "special member functions." These functions affect the way 
objects of a given class are created, destroyed, copied, and converted into objects 
of other types. Another important property of many of these functions is that they 
can be called implicitly (by the compiler). 

The special member functions are described briefly in the following list: 

• Constructors. These functions enable automatic initialization of objects. See 
"Constructors" on page 300. 

• Destructors. These functions perform cleanup after objects are explicitly or im­
plicitly destroyed. See "Destructors" on page 305. 

• Conversion functions. These are used to convert between class types and other 
types. See "Conversion Functions" on page 315. 

• The new operator. This is used to dynamically allocate storage. See "The opera­
tor new Function" on page 318. 

• The delete operator. This is used to release storage allocated using the new 
operator. See "The operator delete Function" on page 323. 

• The assignment operator (operator=). This operator is used when an assign­
ment takes place. See "Compiler-Generated Copying" on page 334. 

All of the items in the preceding list can be user-defined for each class. 

Special member functions obey the same access rules as other member functions. 
The access rules are described in Chapter 10, "Member-Access Control." Table 
11.1 is a summary of how member and friend functions behave. 
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Table 11.1 Summary of Function Behavior 

Is Function Can Is Function 
Inherited Can Function Is Function Generated 

Function from Base Function Be Returua a Member by the 
Type Class? Virtual? Value? or Friend? Compiler? 

Constructor No No No Member Yes 

Destructor No Yes No Member Yes 

Conversion Yes Yes No Member No 

Assignment No Yes Yes Member Yes 
(operator= ) 

Function call Yes Yes Yes Member No 
(operator( » 
Subscript Yes Yes Yes Member No 
(operator[ ]) 

Member Yes Yes Yes Member No 
selection (-» 

Compound Yes Yes Yes Either No 
Assignment 
(+=, -=, and 
so on) 

new Yes No void* Static No 
member 

delete Yes No void Static No 
member 

Operators Yes Yes Yes Either No 
not listed 
above 

Other Yes Yes Yes Member No 
member 
functions 

Friend No No Yes Friend No 
functions 

11.1 Constructors 
A member function with the same name as its class is a constructor function. Con­
structors cannot return values, even if they have return statements. Specifying a 
constructor with a return type is an error, as is taking the address of a constructor. 

If a class has a constructor, each object ofthat type is initialized with the construc­
tor prior to use in a program. (For more information about initialization, see "In­
itialization Using Special Member Functions" on page 325.) 



Special Member Functions 301 

Constructors are called at the point an object is created. Objects are created as: 

• Global (file-scoped or externally linked) objects. 

• Local objects, within a function or smaller enclosing block. 

• Dynamic objects, using the new operator. The new operator allocates an object 
on the program heap or "free store." 

• Temporary objects created by explicitly calling a constructor. (For more infor­
mation, see "Temporary Objects" on page 311.) 

• Temporary objects created implicitly by the compiler. (For more information, 
see "Temporary Objects" on page 311.) 

• Data members of another class. Creating objects of class type, where the class 
type is composed of other class-type variables, causes each object in the class to 
be created. 

• Base class subobject of a class. Creating objects of derived class type causes the 
base class components to be created. 

What a Constructor Does 
A constructor performs various tasks that are not visible to you as the program­
mer, even if you write no code for the constructor. These tasks are all associated 
with building a complete and correct instance of class type. 

In Microsoft C++ (and some other implementations of C++), a constructor: 

• Initializes the object's virtual base pointer(s) (vbptr). This step is performed if 
the class has virtual base classes in the inheritance graph. 

• Calls base class and member constructors in the order of declaration. 

• Initializes the object's virtual function pointers (vfptr). This step is performed if 
the class has or inherits virtual functions. Virtual function pointers point to the 
class's virtual function table(s) (v-table) and allow correct binding of virtual 
function calls to code. 

• Executes optional code in the body of the constructor function. 

When the constructor is finished, the allocated memory is an object of a given 
class type. Because of the steps the constructor performs, "late binding" in the 
form of virtual functions can be resolved at the point of a virtual function call. The 
constructor has also constructed base classes and has constructed composed ob­
jects (objects included as data members). Late binding is the mechanism by which 
C++ implements polymorphic behavior for objects. (For a discussion of polymor­
phism, see Chapter 7 of the C++ Tutorial manual.) 
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Rules for Declaring Constructors 

Syntax 

A constructor has the same name as its class. Any number of constructors can be 
declared, subject to the rules of overloaded functions. (For more information, see 
Chapter 12, "Overloading.") 

class-name ( argument-declaration-listopt ) cv-mod-listopt 

C++ defines two special kinds of constructors, default and copy constructors, de­
scribed in Table 11.2. 

Table 11.2 Default and Copy Constructors 

Kind of Construction 

Default constructor 

Copy constructor 

Arguments 

Can be called with no 
arguments 

Can accept a single 
argument of reference to 
same class type 

Purpose 

Construct a default object 
of the class type 

Copy objects of the class 
type 

Default constructors can be called with no arguments. However, you can declare a 
default constructor with an argument list, provided all arguments have defaults. 
Similarly, copy constructors must be declared such that they can accept a single ar­
gument of reference to the same class type. More arguments can be supplied, pro­
vided all subsequent arguments have defaults. 

If you do not supply any constructors, the compiler attempts to generate a default 
constructor. If you do not supply a copy constructor, the compiler attempts to 
generate one. These compiler-generated constructors are considered public mem­
ber functions. Specifying a copy constructor with a first argument that is an object, 
and not a reference, generates an error. 

A compiler-generated default constructor sets up the object (initializes vftables, 
and vbtables, as described previously), and it calls the default constructors for 
base classes and members, but it takes no other action. Base class and member 
constructors are called only if they exist, if they are accessible, and if they are 
unambiguous. 

A compiler-generated copy constructor sets up a new object and performs a mem­
berwise copy of the contents of the object to be copied. If base class or member 
constructors exist, they are called; otherwise, bitwise copying is performed. 

If all base and member classes of a class type have copy constructors that accept a 
const argument, the compiler-generated copy constructor accepts a single argu­
ment of type const type&. Otherwise, the compiler-generated copy constructor ac­
cepts a single argument of type type&. 
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You can use a constructor to initialize a const or volatile object, but the construc­
tor itself cannot be declared as either const or volatile. In addition, constructors 
cannot be declared as virtual or static. 

Constructors of base classes are not inherited by derived classes. When an object 
of derived class type is created, it is constructed starting with the base class com­
ponents; then it moves to the derived class components. The compiler uses each 
base class's constructor as that part of the complete object is initialized (except in 
cases of virtual derivation, as described in "Initializing Base Classes" on page 
332). 

Explicitly Called Constructors 
Constructors can be explicitly called in a program to create objects of a given type. 
For example, to create two Poi nt objects that describe the ends of a line, the fol­
lowing code can be written: 

Drawline( Point( 13, 22 ), Point( 87, 91 ) ); 

Two objects oftype Poi nt are created, passed to the function Drawl i ne, and de­
stroyed at the end of the expression (the function call). 

Another context in which a constructor is explicitly called is in an initialization: 

Point pt = Point( 7, 11 ); 

An object of type Poi ntis created and initialized using the constructor that ac­
cepts two arguments of type int. 

Objects that are created by calling constructors explicitly, as in the preceding two 
examples, are unnamed and have a lifetime of the expression in which they are 
created. This is discussed in greater detail in "Temporary Objects" on page 311. 

Calling Member Functions and 
Virtual Functions from Within Constructors 
Because the object has been completely set up (virtual tables have been initialized 
and so on) prior to the execution of the first line of user code, it is usually safe to 
call any member function from within a constructor. A potentially unsafe member 
function call has to do with calling a virtual member function for an abstract base 
class during construction or destruction. 

Constructors can call virtual functions. When virtual functions are called, the func­
tion invoked is the function defined for the constructor's own class (or inherited 
from its bases). The following example shows what happens when a virtual func­
tion is called from within a constructor: 
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#include <iostream.h> 

class Base 
{ 

Base(); 
virtual void f(); 

} ; 

Base::Base() 
{ 

II Default constructor. 
II Virtual member function. 

cout « "Constructing Base sub-object\n"; 
f(); II Call virtual member function 

II from inside constructor. 

void Base::f() 
{ 

cout « "Called Base::f()\n"; 

class Derived: public Base 
{ 

} ; 

Deri ved () ; 
voidf(); 

Derived: :Derived() 
{ 

II Default constructor. 
II Implementation of virtual 
II function f for this class. 

cout « "Constructing Derived object\n"; 
} 

void Derived::f() 
{ 

cout « "Called Derived::f()\n"; 

void main() 
{ 

Derived d; 

When the preceding program is run, the declaration Deri ved d causes the follow­
ing sequence of events to occur: 

1. The constructor for class Deri ved (Deri ved: : Deri ved) is called. 

2. Priorto entering the body of the Deri ved class's constructor, the constructor 
forclass Base (Base::Base)iscalled. 

3. Base:: Base calls the function f, which is a virtual function. Ordinarily, 
Deri ved: : f would be called because the object d is of type Deri ved. Because 
the Bas e: : Ba se function is a constructor, the object is not yet of the Deri ved 
type, and Base:: f is called. 
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Constructors and Arrays 
Arrays are constructed only using the default constructor. Constructors that either 
accept no arguments or constructors for which all arguments have a default are 
considered "default constructors." Arrays are always constructed in ascending 
order. This means that the initialization for each member of the array is done using 
the same constructor. 

Order of Construction 
For derived classes and classes that have class-type member data, the order in 
which construction occurs helps you understand what portions of the object you 
can use in any given constructor. 

Construction and Inheritance 
An object of derived type is constructed from the base class to the derived class by 
calling the constructors for each class in order. Each class's constructor can rely 
on its base class being completely constructed. 

For a complete description of initialization, including the order of initialization, 
see "Initializing Bases and Members" on page 329. 

Construction and Composed Classes 
Classes that contain class-type data members are called "composed classes." 
When an object of a composed class type is created, the constructors for the con­
tained classes are called before the class's own constructor. 

For a more information about this kind of initialization, see "Initializing Bases and 
Members" on page 329. 

11 .2 Destructors 
"Destructor" functions are the inverse of constructor functions. They are called 
when objects are destroyed (deallocated). Designate a function as a class's destruc­
tor by preceding the class name with a tilde (-). For example, the destructor for 
class String is declared: ~String(). 
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The destructor is commonly used to "clean up" when an object is no longer neces­
sary. Consider the following declaration of a Stri ng class: 

#include <string.h> 

class String 
{ 

public: 
String( char *ch); II Declare constructor 
~String(); II and destructor. 

private: 
char *_text; 

} ; 

II Define the constructor. 
String::String( char *ch ) 
{ 

} 

II Dynamically allocate the correct amount of memory. 
text = new char[strlen( ch ) + 1J; 

II If the allocation succeeds, copy the initialization string. 
if( _ text) 

strcpy( _text, ch ); 

II Define the destructor. 
Stri ng: :~Stri ng() 
{ 

II Deallocate the memory that was previously reserved 
II fur LnlS s~rlng. 

del ete[J _ text; 

In the preceding example, the destructor Stri ng: :~Stri ng uses the delete opera­
tor to deallocate the space dynamically allocated for text storage. 

Declaring Destructors 

Syntax 

Destructors are functions with the same name as the class but preceded by a 
tilde (-). 

-class-nameO 

or 

class-name :: -class-nameO 

The first form of the syntax is used for destructors declared or defined inside a 
class declaration; the second form is used for destructors defined outside a class 
declaration. 
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Several rules govern the declaration of destructors. Destructors: 

• Do not accept arguments. 

• Cannot specify any return type (including void). 

• Cannot return a value using the return statement. 

• Cannot be declared as const or volatile, nor can they be declared as static. 
However, they can be invoked for the destruction of objects declared as const, 
volatile, or static. 

• Can be declared as virtual. Using virtual destructors, you can destroy objects 
without knowing their type-the correct destructor for the object is invoked 
using the virtual function mechanism. Note that destructors can also be declared 
as pure virtual functions for abstract classes. 

Using Destructors 
Destructors are called when one of the following events occurs: 

• An object allocated using the new operator is explicitly deallocated using the 
delete operator. When objects are deallocated using the delete operator, 
memory is freed for the "most derived object," or the object that is a complete 
object and not a subobject representing a base class. This "most-derived object" 
deallocation is guaranteed to work only with virtual destructors. Deallocation 
may fail in multiple inheritance situations where the type information does not 
correspond to the underlying type of the actual object. 

• A local (automatic) object with block scope goes out of scope. 

• The lifetime of a temporary object ends. 

• A program ends and global or static objects exist. 

• The destructor is explicitly called using the destructor function's fully qualified 
name. (For more information, see "Explicit Destructor Calls" on page 310.) 

The cases described in the preceding list ensure that all objects can be destroyed 
with user-defined methods. 

If a base class or data member has an accessible destructor, and a derived class 
does not declare a destructor, the compiler generates one. This compiler-generated 
destructor calls the base class destructor and the destructors for members of the 
derived type. Default destructors are public. (For more information about accessi­
bility, see "Access Specifiers for Base Classes" in Chapter 10, on page 287.) 

Destructors can freely call class member functions and access class member data. 
When a virtual function is called from a destructor, the function called is the func­
tion for the class currently being destroyed. (For more information, see "Order of 
Destruction" on page 308.) 
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There are two restrictions on the use of destructors. The first restriction is that you 
cannot take the address of a destructor. The second is that derived classes do not 
inherit their base class's destructors. 

Order of Destruction 
When an object goes out of scope or is deleted, the sequence of events in its 
complete destruction is as follows: 

1. The class's destructor is called, and the body of the destructor function is 
executed. 

2. Destructors for nonstatic member objects are called in the reverse order in 
which they appear in the class declaration. The optional member initialization 
list used in construction of these members does not affect the order of construc­
tion or destruction. (For more information about initializing members, see "In­
itializing Bases and Members" on page 329.) 

3. Destructors for nonvirtual base classes are called in the reverse order of 
declaration. 

4. Destructors for virtual base classes are called in the reverse order of declaration. 

Nonvirtual Base Classes 
When calling destructors for nonvirtual base classes, the destructors are called in 
the reverse order in which the base class names are declared. ConsIder the fullow-
ing class declaration: 

class Multlnherit : public Basel, public BaseZ 

In the preceding example, the destructor for BaseZ is called before the destructor 
for Basel. 

Virtual Base Classes 
Destructors for virtual base classes are called in the reverse order of their appear­
ance in a directed acyclic graph (depth-first, left-to-right, postorder traversal). Fig­
ure 11.1 depicts an inheritance graph. 
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Figure 11.1 Inheritance Graph Showing Virtual Base Classes 

The following lists the class heads for the classes shown in Figure 11.1. 

class A 
class B 
class C virtual public A, virtual public B 
class D virtual public A, virtual public B 
class E public C, publicD, virtual public B 

To determine the order of destruction of the virtual base classes of an object of 
type E, the compiler builds a list by applying the following algorithm: 

1. Traverse the graph left, starting at the deepest point in the graph (in this 
case, E). 

2. Perform leftward traversals until all nodes have been visited. Note the name of 
the current node. 

3. Revisit the previous node (down and to the right) to find out if the node being 
remembered is a virtual base class. 

4. If the remembered node is a virtual base class, scan the list to see if it has al-
ready been entered. If it is not a virtual base class, ignore it. 

S. If the remembered node is not yet in the list, add it to the bottom of the list. 

6. Traverse the graph up and along the next path to the right. 

7. Go to step 2. 

8. When the last upward path is exhausted, note the name of the current node. 

9. Go to step 3. 

10. Continue this process until the bottom node is again the current node. 
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So, for class E, the order of destruction is: 

1. The nonvirtual base class E. 

2. The nonvirtual base class D. 

3. The nonvirtual base class C. 

4. The virtual base class B. 

5. The virtual base class A. 

This process produces an ordered list of unique entries. No class name appears 
twice. Once the list is constructed, it is walked in reverse order, and the destructor 
for each of the classes in the list from the last to the first are called. 

The order of construction or destruction is primarily important when constructors 
or destructors in one class rely on the other component being created first or per­
sisting longer-for example, if the destructor for A (in the graph in Figure 11.1) 
relied on B still being present when its code executed, or vice versa. 

Such interdependencies between classes in an inheritance graph are inherently 
dangerous because classes derived later can alter which is the leftmost path, 
thereby changing the order of construction and destruction. 

Explicit Destructor Calls 
Calling a destructor explicitly is seldom necessary. However, it can be useful to 
perform cleanup of Objects placed at absolute addresses. These objects are com­
monly allocated using a user-defined new operator that takes a placement argu­
ment. The delete operator cannot deallocate this memory because it is not 
allocated from the free store (for more information, see "The new and delete Oper­
ators" on page 318). A call to the destructor, however, can perform appropriate 
cleanup. To explicitly call the destructor for an object, s, of class Stri ng, use one 
of the following statements: 

s .String: :~String(); 

or 

ps->String: :~String(); 

The notation for explicit calls to destructors, shown above, can be used regardless 
of whether the type defines a destructor. This allows the programmer to make such 
explicit calls without knowing if a destructor is defined for the type. An explicit 
call to a destructor where none is defined has no effect. 
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Note Explicit calls to destructors call only the destructor for the class specified. 
When destructors are declared as virtual, the virtual function calling mechanism is 
disabled for these explicit calls. 

11.3 Temporary Objects 
In some cases, it is necessary for the compiler to create temporary objects. These 
temporary objects can be created for the following reasons: 

• To initialize a const reference with an initializer of a type different from that of 
the underlying type of the reference being initialized. 

• To store the return value of a function that returns a user-defined type. These 
temporaries are created only if your program does not copy the return value to 
an object. For example: 

UDT Funcl ( ) ; 

Funcl(); 

II Declare a function that returns a user-defined 
II type. 

II Call Funcl, but discard return value. 
II A temporary object is created to store the return 
II value. 

Because the return value is not copied to another object, a temporary object is 
created. A more common case where temporaries are created is during the eval­
uation of an expression where overloaded operator functions must be called. 
These overloaded operator functions return a user-defined type which often is 
not copied to another object. 

Consider the expression Camp 1 exRes ult = Camp 1 exl + Camp 1 ex2 + Camp 1 ex3. 
The expression Camp 1 exl + Camp 1 ex2 is evaluated, and the result is stored in a 
temporary object. Next, the expression temporary + Campl ex3 is evaluated, 
and the result is copied to Campl exResul t (assuming the assignment operator is 
not overloaded). 

• To store the result of a cast to a user-defined type. When an object of a given 
type is explicitly converted to a user-defined type, that new object is con­
structed as a temporary object. 

Temporary objects have a lifetime that is defined by their point of creation and the 
point at which they are destroyed. Any expression that creates more than one tem­
porary object eventually destroys them in the reverse order in which they were 
created. The points at which destruction occurs are shown in Table 11.3. 
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Table 11.3 Destruction Points for Temporary Objects 

Reason Temporary Created 

Result of expression evaluation 

Result of expressions using the built-in 
(not overloaded) logical operators (II and 
&&) 

Initializing const references 

11.4 Conversions 

Destruction Point 

All temporaries created as a result of 
expression evaluation are destroyed at the 
end of the expression statement (that is, at 
the semicolon), or at the end of the 
controlling expressions for for, if, while, 
do, and switch statements. 

Immediately after the right operand. At 
this destruction point, all temporary 
objects created by evaluation of the right 
operand are destroyed. 

If an initializer is not an I-value of same 
type as reference being initialized, a 
temporary of the underlying object type is 
created and initialized with the 
initialization expression. This temporary 
object is destroyed immediately after the 
reference object to which it is bound is 
destroyed. 

Objects of a given class type can be converted to objects of another type. This is 
done by constructing an object of the target class type from the source class type 
and copying the result to the target object. This process is called conversion by 
constructor. Objects can also be converted by user-supplied conversion functions. 

When standard conversions (described in Chapter 3) cannot completely convert 
from a given type to a class type, the compiler can select user-defined conversions 
to help complete the job. In addition to explicit type conversions, conversions take 
place when: 

• An initializer expression is not the same type as the object being initialized. 

• The type of argument used in a function call does not match the type of argu­
ment specified in the function declaration. 

• The type of the object being returned from a function does not match the return 
type specified in the function declaration. 

• Two expression operands must be of the same type. 

• An expression controlling an iteration or selection statement requires a different 
type from the one supplied. 
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A user-defined conversion is applied only if it is unambiguous; otherwise, an error 
message is generated. Ambiguity is checked at the point of usage. Hence, if the 
features that cause ambiguity are not used, a class can be designated with potential 
ambiguities and not generate any errors. Although there are many situations in 
which ambiguities arise, these are two leading causes of ambiguities: 

• A class type is derived using multiple inheritance, and it is unclear from 
which base class to select the conversion (see "Ambiguity" in Chapter 9, on 
page 282). 

• An explicit type-conversion operator and a constructor for the same conversion 
exist (see "Conversion Functions" on page 315). 

Both conversion by constructor and conversion by conversion functions obey 
access control rules, as described in Chapter 10. Access control is tested only after 
the conversion is found to be unambiguous. 

Conversion Constructors 
A constructor that can be called with a single argument is used for conversions 
from the type of the argument to the class type. Such a constructor is called a con­
version constructor. Consider the following example: 

class Point 
{ 

public: 

} ; 

Pointe); 
Pointe int ); 

The preceding example declares two constructors: a default constructor that takes 
no arguments, and a constructor that converts from type int. In code that follows, 
any conversion from type int can use the Poi n t ( i n t ) constructor to convert 
from type int to type Poi nt. 

Sometimes a conversion is required but no conversion constructor exists in the 
class. These conversions cannot be performed by constructors. The compiler does 
not look for intermediate types through which to perform the conversion. For ex­
ample, suppose a conversion exists from type Poi nt to type Rect, and a conver­
sion exists from type int to type Poi nt. The compiler does not supply a 
conversion from type int to type Rect by constructing an intermediate object of 
type Poi nt. 
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Conversions and Constants 
While constants for built-in types such as int, long, and double can appear in ex­
pressions, no constants of class types are allowed (this is partly because classes 
usually describe an object complicated enough to make notation inconvenient). 
However, if conversion constructors from built-in types are supplied, constants of 
these built-in types can be used in expressions, and the conversions cause correct 
behavior. For example, a Money class can have conversions from types long and 
double: 

class Money 
{ 

public: 

} ; 

Money( long ); 
Money( double ); 

Money operator+( const Money&); II Overloaded addition operator. 

Therefore, expressions such as the following can specify constant values: 

Money AccountBalance = 37.89; 
Money NewBalance = AccountBalance + 14L; 

The second example involves the use of an overloaded addition operator, which is 
covered in the next chapter. Both examples cause the compiler to convert the con­
stants to type Money before using them in the expressions. 

Drawbacks of Conversion Constructors 
Because the compiler can select a conversion constructor implicitly, you relin­
quish control over what functions are called when. If it is essential to retain full 
control, do not declare any constructors that take a single argument; instead, define 
"helper" functions to perform conversions, as in the following example: 

#include <stdio.h> 
#include <stdlib.h> 

II Declare Money class. 
class Money 
{ 

public: 
Money(); 
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II Define conversion functions that can only be called explicitly. 
static Money Convert( char * ch ) { return Money( ch ); } 
static Money Convert( double d) {return Money( d ); }; 
void Print() { printf( "\n%f", _amount ); } 

private: 

1 ; 

Money( char *ch 
Money ( double d 
double _amount; 

amount atof( ch ); } 
amount d;} 

ma in ( ) 
{ 

II Perform a conversion from type char * to type Money. 
Money Acct = Money::Convert( "57.29" ); 
Acct.Print(); 
II Perform a conversion from type double to type Money. 
Acct = Money::Convert( 33.29 ); 
Acct. Print(); 

return 0; 

In the preceding code, the conversion constructors are private and cannot be used 
in type conversions. However, they can be invoked explicitly by calling the 
Convert functions. Because the Convert functions are static, they are accessible 
without referencing a particular object. 

Conversion Functions 

Syntax 

In conversion by constructors, described in the previous section, objects of one 
type can be implicitly converted to a particular class type. This section describes a 
means by which you can provide explicit conversions from a given class type to 
another type. Conversion from a class type is often accomplished using conversion 
functions. Conversion functions use the following syntax: 

conversion-Junction-name: 
operator conversion-type-name 0 

conversion-type-name: 
type-spec(fier-list ptr-operator opt 
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The following example specifies a conversion function that converts type Money 
totype double: 

class Money 
{ 
public: 

Money(); 
operator double() { return _amount; } 

private: 
doubl e _amount; 

} ; 

Given the preceding class declaration, the following code can be written: 

Money Account; 

double CashOnHand = Account; 

The initialization of CashOnHand with Account causes a conversion from type 
Account to type doubl e. 

Conversion functions are often called "cast operators" because they (along with 
constructors) are the functions called when a cast is used. The following example 
uses a cast, or explicit conversion, to print the current value of an object of type 
Money: 

cout « (double)Account « endl; 

Conversion functions are inherited in derived classes. Conversion operators hide 
only base-class conversion operators that convert to exactly the same type. There­
fore, a user-defined operator int function does not hide a user-defined operator 
short function in a base class. 

Only one user-defined conversion function is applied when performing implicit 
conversions. If there is no explicitly defined conversion function, the compiler 
does not look for intermediate types into which an object can be converted. 

If a conversion is required that causes an ambiguity, an error is generated. Am­
biguities arise when more than one user-defined conversion is available or when a 
user-defined conversion and a built-in conversion exist. 

The following example illustrates a class declaration with a potential ambiguity: 



#include (string.h) 

class String 
{ 

public: 
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II Define constructor that converts from type char *. 
String( char *s ) { strcpy( _ text, s ); } 
II Define conversion to type char *. 
operator char *() { return _text; } 
int operator==( const String &s ) 
{ return !strcmp( _text, s._text ); 

private: 
char _ text[80]; 

} ; 

ma in ( ) 
{ 

String s( "abcd" ); 
char *ch = "efgh"; 

II Cause the compiler to select a conversion. 
return s == ch; 

In the expression s == ch, the compiler has two choices, and no way of detennin­
ing which is correct. It can convert c h to an object of type S t r i n g using the con­
structor, then perform the comparison using the user-defined operator==. Or, it 
can convert s to a pointer of type c h a r * using the conversion function, then per­
form a comparison of the pointers. 

Because neither choice is "more correct" than the other, the compiler cannot deter­
mine the meaning of the comparison expression, and it generates an error. 

Rules for Declaring Conversion Functions 
The following four rules are used when declaring conversion functions (see page 
315 for syntax): 

• Classes, enumerations, and typedef names cannot be specified in the type­
specifier-list. Therefore, the following code generates an error: 

operator struct String{ char string_storage; }(); 

Instead, declare the S t r i n g structure prior to the conversion function. 

• Conversion functions take no arguments. Specifying arguments generates an 
error. 
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• Conversion functions have the return type specified by the conversion-type­
name; specifying any return type for a conversion function generates an error. 

• Conversion functions can be declared as virtual. 

11.5 The new and delete Operators 
C++ supports dynamic allocation and deallocation of objects using the new and 
delete operators. These operators allocate memory for objects from a pool called 
the "free store." The new operator calls the special function operator new, and the 
delete operator calls the special function operator delete. 

The operator new Function 
When a statement such as the following is encountered in a program, it translates 
into a call to the function operator new: 

char *pch = new char[BUFFER_SIZE]; 

If there is insufficient memory for the allocation request, operator new returns 
NULL. However, if the request is for zero bytes of storage, operator new returns 
a pointer to a distinct object (that is, repeated calls to operator new return differ­
ent pointers). 

There are two scopes for operator new [unctiuns. They are described in Table 
11.4. 

Table 11.4 Scope for operator new Functions 

Operator 

::operator new 
class-name: :operator new 

Scope 

Global 

Class 

The first argument to operator new must be of type size_ t (a type defined in 
STDDEF.H), and the return type is always void *. 
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The global operator new function is called when the new operator is used to allo­
cate objects of built-in types, objects of class type that do not contain user-defined 
operator new functions, and arrays of any type. When the new operator is used to 
allocate objects of a class type where an operator new is defined, that class's 
operator new is called. 

An operator new function defined for a class is a static member function (which 
cannot, therefore, be virtual) that hides the global operator new function for ob­
jects of that class type. Consider the case where new is used to allocate and set 
memory to a given value: 

#include <malloc.h> 
#include <memory.h> 

class Blanks 
{ 

public: 
Blanks(){} 
void *operator new( size t stAllocateBlock~ char chInit ); 

} ; 

void *Blanks::operator new( size_t stAllocateBlock,char chInit ) 
{ 

void *pvTemp = malloc( stAllocateBlock ); 
if( pvTemp != 0 ) 

memset( pvTemp, chInit, stAllocateBlock ); 
return pvTemp; 

For discrete objects of type Bl anks, the global operator new function is hidden. 
Therefore, the following code allocates an object of type B 1 an ks and initializes it 
to 0xa5: 

ma i n ( ) 
{ 

Blanks *a5 = new( 0xa5 ) Blanks; 

return a5 != 0; 
} 
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Microsoft Specific 

The argument supplied in parentheses to new is passed to Bl anks:: operator new 
as the chI nit argument. However, the global operator new function is hidden, 
causing code such as the following to generate an error: 

Blanks *SomeBlanks = new Blanks; 

Nonclass types and all arrays (regardless of whether they are of class type) allo­
cated using the new operator always use the global operator new function. 

The operator new function can be overloaded on its return type to allow specifica­
tion of different new operators for different memory models. Table 11.5 shows the 
various function declarations for operator new. (For more information about over­
loading, see Chapter 12, "Overloading."). 

Table 11.5 Declarations for new Operator 

Heap 

Default 

Near 

Far 

Huge 

Based 

Declaration 

void *operator newt size_t ); 
The argument is the amount of storage (in bytes) to allocate. 

void __ near *operator newt size_t ); 
The argument is the amount of storage (in bytes) to allocate. 

void __ far *operator newt size_t ); 
The argument is the amount of storage (in bytes) to allocate. 

void __ huge *operator newt unsigned long, size_t ); 
The first argument is the number of elements to allocate, and the second 
argument is the size of a given element (in bytes). 

void __ based( void) *operator newt __ segment, size_t ); 
The first argument is the segment specified in the new expression, and 
the second argument is the amount of storage (in bytes) to allocate. For 
example, the expression: 
new __ based( __ segname( "_TEXT" ) ) int 
calls operator new with the segment value corresponding to TEXT 
and a size equal to sizeof( int ). 

Note The operator new function is the only function that can be overloaded 
solely on the basis of return type. It can be overloaded only in the forms shown in 
Table 11.5. 
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Handling Insufficient Memory Conditions 
Testing for failed memory allocation can be done with code such as the following: 

int *pi = new int[BIG_NUMBER]; 

if( pi == 0 
{ 

cerr « "Insufficient memory" « endl; 
return -1; 

In some circumstances, corrective action can be taken during memory allocation 
and the request can be fulfilled. To gain control when the global operator new 
function fails, use the_seLnew_handler function (defined in NEW. H) as 
follows: 

#include <stdio.h> 
ltinclude <new.h> 

II Define a function to be called if new fails to allocate memory. 
int MyNewHandler( size_t size) 
{ 

} 

clog « "Allocation failed. Coalescing heap. « endl; 

II Call a fictitious function to recover some heap space. 
return CoalesceHeap(); 

maine) 
{ 

II Set the failure handler for new to be MyNewHandler. 

int *pi = new int[BIG_NUMBER]; 

return 0; 
} 

In the preceding example, the first statement in main sets the new handler to 
My N ewH and 1 e r. The second statement tries to allocate a large block of memory 
using the new operator. When the allocation fails, control is transferred to 
MyNewHandl er. The argument passed to MyNewHandl er is the number of bytes 
requested. The value returned from MyNewHandl er is a flag indicating whether 
allocation should be retried: a nonzero value indicates that allocation should be 
retried, and a zero value indicates that allocation has failed. 
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My N ewH and 1 e r prints a warning message and takes corrective action. If 
MyNewHandl er returns a nonzero value, the new operator retries the allocation. 
Only when MyNewHandl er returns a 0 does the new operator stop trying and return 
a zero value to the program. 

The _seLnew_handler function returns the address of the previous new handler. 
Therefore, if a new handler needs to be installed for a short time, the previous new 
handler can be reinstalled using code such as the following: 

1tinclude <new.h> 

PNH old_handler = _set_new_handlerC MyNewHandler ); 

II Code that requires MyNewHandler. 

II Reinstall previous new handler. 
_set_new_handlerC old_handler ); 

A call to _seLnew_handlerwith an argument of 0 causes the default new han­
dler to be reinstalled. 

The new handler you specify can have any name, but it must be a function return­
ing type int (nonzero indicates the new handler succeeded, and zero indicates that 
it failed). The argument list is described in Tables 11.6 and 11.7. 

If a user-defined operator new is provided, the new handler functions are not auto­
matically called on failure. 

In Microsoft C++, objects can be allocated on the default heap, the near heap, the 
far heap, the huge heap, or a based heap. New handlers for these heaps can be set 
using the functions declared in NEW.H, which are listed in Table 11.6. 

Table 11.6 Functions Used to Set New Handlers 

Function Name 

_seL new_handler 

seLnne.w_handler 

New Handler That Is Set 

Default new handler 

New handler for objects allocated 
on the near heap 

Prototype 

_PNH 
_seLnew_handler 

(_PNH ); 

_PNH 
_seLnnew_handler 

(_PNH); 
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Table 11.6 (continued) 

Function Name New Handler That Is Set Prototype 

New handler for objects allocated 
on the far heap 

New handler for objects allocated 
on the huge heap 

New handler for objects allocated 
on the based heap 

_PNH 
_seLfnew_handler 

(_PNH ); 

_PNHH 
_seLhnew _ handler 

(_PNHH ); 

_PNHB 
_seL bnew _ handler 

(_PNHB ); 

To facilitate easy declaration of the new handlers, three types are defined. See 
Table 11.7. 

Table 11.7 List of New-Handler Types 

Type Meaning 

Pointer to a function that returns type int and takes a single argument of 
type size_ t. 

Pointer to a function that returns type int and takes arguments of type 
unsigned long (the number of elements) and type sizL t (the size of a 
given element). 

Pointer to a function that returns type int and takes arguments of type 
__ segment (the segment base) and of type sizL t. 

By using the appropriate "set new handler" function, you can trap memory­
allocation failures for default, near, far, huge, and based objects .• 

The operator delete Function 
Memory that is dynamically allocated using the new operator can be freed using 
the delete operator. The delete operator causes the operator delete function to be 
called, which frees memory back to the available pool. Using the delete operator 
also causes the class destructor (if there is one) to be called. 

There are global and class-scoped operator delete functions. Only one operator 
delete function can be defined for a given class; if defined, it hides the global 
operator delete function. The global operator delete function is always called for 
arrays of any type. 
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The global operator delete function, if declared, takes a single argument of type 
void *, which contains a pointer to the object to deallocate. The return type is void 
(operator delete cannot return a value). Two forms exist for class-member 
operator delete functions: 

void operator delete( void * ); 

void operator delete( void *, size_t ); 

Only one of the preceding two variants can be present for a given class. The first 
form works as described for global operator delete. The second form takes two ar­
guments, the first of which is a pointer to the memory block to deallocate, and the 
second of which is the number of bytes to deallocate. The second form is particu­
larly useful when an operator delete function from a base class is used to delete 
an object of a derived class. 

The operator delete function is static; therefore, it cannot be virtual. The 
operator delete function obeys access control, as described in Chapter 10. 

The following example shows user-defined operator new and operator delete 
functions designed to log allocations and deallocations of memory: 

#include <iostream.h> 
#include <stdlib.h> 

int _fLogMemory = 0; II Perform logging (0=no; nonzero=yes)? 
int cBlocksAllocated = 0; II Count of blocks allocated. 

II User-defined operator new. 
void *operator new( size_t stAllocateBlock 
{ 

static flnOpNew = 0 II Guard flag. 

if( _fLogMemory && !flnOpNew ) 
{ 

} 

fI nOpNew = 1; 
clog « "Memory block" «++cBlocksAllocated 

« " allocated for" « stAllocateBlock 
« " bytes\n"; 

flnOpNew = 0; 

return malloc( stAllocateBlock ); 

II User-defined operator delete. 
void operator deleteC void *pvMem 
{ 

static flnOpDelete = 0 II Guard flag. 



if( _fLogMemory && !flnOpOelete 
{ 

fInOpOel ete = 1; 
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clog « "Memory block" « --cBl ocksA 11 ocated 
« " deallocated\n"; 

fInOpOelete = 0; 

freer pvMem ); 

maine int argc, char *argv[] ) 
{ 

_fLogMemory = 1; II Turn logging on. 
if( argc > 1 
fore int i = 0; i < atoi ( argv[1] ); ++i 
{ 

} 

char *pMem = new char[10]; 
delete pMem; 

return cBlocksAllocated; 

The preceding code can be used to detect "memory leakage"-that is, memory 
that is allocated on the free store, out never freed. To perform this detection, the 
global new and delete operators are redefined to count allocation and de allocation 
of memory. 

U sing delete on a null pointer has no effect. (For more information about the 
delete operator, see "delete Operator" in Chapter 4, on page 101.) 

11.6 Initialization Using Special Member Functions 
This section describes initialization using special member functions. It expands on 
the following discussions of initialization: 

• "Initializing Aggregates" in Chapter 7, on page 219, which describes how to ini­
tialize arrays of nonclass types and objects of simple class types. These simple 
class types cannot have private or protected members, and they cannot have 
base classes. 

• "Constructors" on page 300, which explains how to initialize class-type objects 
using special constructor functions. 
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The default method of initialization is to perform a bit-for-bit copy from the initial­
izer into the object to be initialized. This technique is applicable only to: 

• Objects of built-in types. For example: 

int i = 100; 

• Pointers. For example: 

i nt i; 
int*pi=&i; 

• References. For example: 

String sFileName( "FILE.OAT" l; 
String &rs = &sFileName; 

• Objects of class type, where the class has no private or protected members, no 
virtual functions, and no base classes. For example: 

struct Point 
{ 

int x, y; 
} ; 

Point pt = { 10, 20 }; 

Classes can specify more refined initialization by defining constructor functions. 
(For more information about declaring such functions, see "Constructors" on page 
300.) If an object is of a class type that has a constructor, the object must be initial­
ized, or there must be a default constructor. Objects that are not specifically initial­
ized invoke the class's default constructor. 

Explicit Initialization 
Two forms of explicit initialization are supported in C++: 

• Supplying an initializer list in parentheses: 

String sFileName( "FILE.OAT" l; 

The items in the parenthesized list are considered arguments to the class con­
structor. This form of initialization enables initialization of an object with more 
than one value and can also be used in conjunction with the new operator. For 
example: 

Rect *pRect = new Rect( 10, 15, 24, 97 l; 
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• Supplying a single initializer using the equal-sign initialization syntax. For 
example: 

String sFileName = "FILE. OAT"; 

While the preceding example works the same way as the example shown for 
Stri ng in the first list item, the syntax is not adaptable to use with objects allo­
cated on the free store. 

The single expression on the right of the equal sign is taken as the argument to 
the class's copy constructor; therefore, it must be a type that can be converted 
to the class type. 

Note that because the equal sign (=) in the context of initialization is different 
from an assignment operator, overloading operator= has no effect on 
initialization. 

The equal-sign initialization syntax is different from the function-style syntax, 
even though the generated code is identical in most cases. The difference is that 
when the eqUal-sign syntax is used, the compiler has to behave as if the following 
sequence of events were taking place: 

• Create a temporary object of the same type as the object being initialized. 

• Copy the temporary object to the object. 

The compiler must perform accessibility checking on the copy constructor before 
performing these steps. Even though the compiler can eliminate the temporary 
creation and copy steps in most cases, an inaccessible copy constructor causes 
equal-sign initialization to fail. Consider the following example: 

class anInt 
{ 

anInt( canst anInt& ); 
public: 

anlnt( int ); 
} ; 

anlnt mylnt = 7; 

anlnt mylnt( 7 ); 

II Private copy constructor. 

II Public int constructor. 

II Access-control violation. Attempt to 
II reference private copy constructor. 
II Correct; no copy constructor called. 
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When a function is called, class-type arguments passed by value and objects re­
turned by value are conceptually initialized using the form: 

type-name name = value 

For example: 

String s = "C++"; 

Therefore, it follows that the argument type must be a type that can be converted 
to the class type being passed as an argument. The class's copy constructor, as 
well as user-defined conversion operators or constructors that accept the type of 
the actual argument, must be public. 

In expressions that use the new operator, the objects allocated on the free store are 
conceptually initialized using the form: 

type-name name( initializer 1, initializer 2, ... initializer n ) 

For example: 

String *ps = new String( "C++" ); 

Initializers for base-class components, and member objects of a class are also con­
ceptually initialized this way. (For more information, see "Initializing Bases and 
Members" on page 329.) 

Initializing Arrays 
If a class has a constructor, arrays of that class are initialized by a constructor. If 
there are fewer items in the initializer list than elements in the array, the default 
constructor is used for the remaining elements. If no default constructor is defined 
for the class, the initializer list must be complete-that is, there must be one initial­
izer for each element in the array. 

Consider the Poi nt class that defines two constructors: 

class Point 
{ 

public: 
Pointe); II Default constructor. 
Pointe int, int ); II Construct from two ints. 

} ; 
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An array of Poi nt objects can be declared as follows: 

Point aPoint[3] 
Point( 3, 3 ) 

} ; 
II Use int, int constructor. 

The first element of a Poi ntis constructed using the constructor Poi n t ( i nt, 
i n t ); the remaining two elements are constructed using the default constructor. 

Static member arrays (whether const or not) can be initialized in their definitions 
(outside the class declaration). For example: 

class WindowColors 
{ 

public: 
static const char *rgszWindowPartList[7]; 

} ; 
const char *WindowColors::rgszWindowPartList[7] = { 

"Active Title Bar", "Inactive Title Bar", "Title Bar Text", 
"Menu Bar", "Menu Bar Text", "Window Background", "Frame" }; 

Initializing Static Objects 
Global static objects are initialized in the order they occur in the source. They are 
destroyed in the reverse order. However, across translation units, the order of in­
itialization is dependent on how the object files are arranged by the linker; destruc­
tion still takes place in the reverse order that objects were constructed. 

Local static objects are initialized when they are first encountered in the program 
flow, and they are destroyed in the reverse order at program termination. Destruc­
tion of local static objects occurs only if the object was encountered in the pro­
gram flow and initialized. 

Initializing Bases and Members 
An object of a derived class is made up of a component that represents each base 
class and a component that is unique to the particular class. Objects of classes that 
have member objects also contain components of other class types. This section 
describes how these component objects are initialized when an object of the class 
type is created. 

To perform the initialization, the constructor-initializer, or ctor-initializer, syntax 
is used. 
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Syntax ctor-initializer: 
mem-initializer-list 

mem-initializer-list: 
mem-initializer 
mem-initializer , mem-initializer-list 

mem-initializer: 
complete-cLass-name ( expression-listopt ) 

identifier ( expression-listopt ) 

This syntax, used in constructors, is described more fully in the next section, "In­
itializing Member Objects" and "Initializing Base Classes" on page 332. 

Initializing Member Objects 
Classes can contain member objects of class type, but to ensure that initialization 
requirements for the member objects are met, one of the following conditions must 
be met: -

• The contained object's class requires no constructor. 

• The contained object's class has an accessible default constructor. 

• The containing class's constructors all explicitly initialize the contained object. 

The following example shows how to perform such an initialization: 

II Declare a class Point. 
class Point 
{ 

public: 
Pointe int x, int y ) { x x; _y y;} 

private: 
int _x, _y; 

} ; 
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II Declare a rectangle class that contains objects of type Point. 
class Rect 
{ 

public: 
Rect( int xl, int yl, int x2, int y2 ); 

private: 
Point _topleft, _bottomright; 

} ; 

II Define the constructor for class Rect. This constructor 
II explicitly initializes the objects of type Point. 
Rect::Rect( int xl, int yl, int x2, int y2 ) : 
_topleft( xl, yl ), _bottomright( x2, y2 ) 
{ 
} 

The Rect class, shown in the preceding example, contains two member objects of 
class Poi nt. Its constructor explicitly initializes the objects _ topl eft and 
_bottomri ght. Note that a colon follows the closing parenthesis of the constructor 
(in the definition). The colon is followed by the member names and arguments 
with which to initialize the objects of type Poi nt. 

Warning The order in which the member initializers are specified in the construc­
tor does not affect the order in which the members are constructed; the members 
are constructed in the order they are declared in the class. 

Reference and const member objects must be initialized using the member initiali­
zation syntax shown in "Syntax" in "Initializing Bases and Members" on page 
329. There is no other way to initialize these objects. 
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Initializing Base Classes 
Direct base classes are initialized in much the same way as member objects. Con­
sider the following example: 

II Declare class Window. 
class Window 
{ 

public: 
Window( Rect rSize ); 

} ; 

II Declare class DialogBox, derived from class Window. 
class DialogBox public Window 
{ 

public: 
DialogBox( Rect rSize ); 

} ; 

II Define the constructor for DialogBox. This constructor 
II explicitly initializes the Window subobject. 
DialogBox::DialogBox( Rect rSize ) : Window( rSize ) 
{ 
} 

Note that in the constructor for Di a 1 ogBox, the Wi ndow base class is initialized 
using the argument rSi ze. This initialization consists of the name of the base class 
to initialize, followed by a parenthesized list of arguments to the class's construc­
tor. 

In initialization of base classes, the object that is not the subobject representing a 
base class's component is considered a "complete object." The complete object's 
class is considered the "most derived" class for the object. 

The subobjects representing virtual base classes are initialized by the constructor 
for the most derived class. That means that where virtual derivation is specified, 
the most derived class must explicitly initialize the virtual base class, or the virtual 
base class must have a default constructor. Initializations for virtual base classes 
that appear in constructors for classes other than the most derived class are ignored. 

Although initialization of base classes is usually restricted to direct base classes, in 
Microsoft C++, a class constructor can initialize an indirect virtual base class .• 
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Initialization Order of Bases and Members 
Base classes and member objects are initialized in the following order: 

1. Virtual base classes are initialized in the order in which they appear in the 
directed acyclic graph. For information about using the directed acyclic graph 
to construct a list of unique subobjects, see "Virtual Base Classes" on page 308 
in Chapter 9. (Note that these subobjects are destroyed by walking the same list 
in reverse.) For more information about how the directed acyclic graph is 
traversed, see "Order of Destruction" on page 308. 

2. Nonvirtual base classes are initialized in the order in which they are declared in 
the class declaration. 

3. Member objects are initialized in the order in which the objects are declared in 
the class. 

The order in which base classes and member objects are initialized is not affected 
by the order in which the member initializers or base-class initializers appear in 
the member-initializer-list of the constructor. 

Scope of Initializers 
Initializers for base classes and member objects are evaluated in the scope of the 
constructor with which they are declared. Therefore, they can refer implicitly to 
class-member data. 

11.7 Copying Class Objects 
Two operations cause objects to be copied: 

• Assignment. When one object's value is assigned to another object, the first ob­
ject is copied to the second object. Therefore: 

Point a, b; 

a = b; 

causes the value of b to be copied to a. 

• Initialization. Initialization occurs at the point of declaration of a new object, 
when arguments are passed to functions by value, and when values are returned 
from functions by value. 
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The programmer can define the semantics of "copy" for objects of class type. For 
example, consider the following code: 

TextFile a, b; 
a.Open( "FILEl.DAT" ); 
b.Open( "FILE2.DAT" ); 
b = a; 

The preceding code could mean "copy the contents ofFILE1.DAT to 
FILE2.DAT," or it could mean "ignore FILE2.DAT and make b a second handle 
to FILE1.DAT." The programmer is responsible for attaching appropriate copying 
semantics to each class. 

Copying is done in one of two ways: 

• Assignment (using the assignment operator, operator=). 

• Initialization (using the copy constructor). (For more information about the 
copy constructor, see "Rules for Declaring Constructors" on page 302.) 

Any given class can implement one or both copy methods. If neither method is im­
plemented, assignment is handled as a member-by-member ("memberwise") as­
signment, and initialization is handled as a member-by-member initialization. 
Memberwise assignment is covered in more detail in "Memberwise Assignment 
and Initialization" on page 335. 

The copy constructor takes a single argument of type class-name&, where class­
name is the name of the class for which the constructor is defined. For example: 

class Window 
{ 

public: 
Window( const Window& ); II Declare copy constructor. 

} ; 

Note The type of the copy constructor's argument should be const class-name & 
whenever possible. This prevents the copy constructor from accidentally changing 
the object from which it is copying. It also allows copying from const objects. 

Compiler-Generated Copying 
Compiler-generated copy constructors, like user-defined copy constructors, have a 
single argument of type "reference to class-name." An exception is when all base 
classes and member classes have copy constructors declared as taking a single ar­
gument of type const class-name&. In such a case, the compiler-generated copy 
constructor's argument is also const. 
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When the argument type to the copy constructor is not const, initialization by 
copying a const object generates an error. The reverse is not true: If the argument 
is const, initialization by copying a nonconst object is allowed. 

Compiler-generated assignment operators follow the same pattern with regard to 
const. They take a single argument of type class-name& unless the assignment 
operators in all base and member classes take arguments of type const class­
name&. In this case, the class's generated assignment operator takes a const 
argument. 

Note When virtual base classes are initialized by copy constructors, compiler­
generated or user-defined, they are initialized only once: at the point when they are 
constructed. 

The implications are similar to those of the copy constructor. When the argument 
type is not const, assignment from a const object generates an error. The reverse 
is not true: If a const value is assigned to a nonconst value, the assignment 
succeeds. 

For more information about overloaded assignment operators, see "Assignment" 
in Chapter 12, on page 360. 

Memberwise Assignment and Initialization 
The methods for default assignment and initialization are "memberwise assign­
ment," and "memberwise initialization," respectively. Memberwise assignment 
consists of copying one object to the other, a member at a time, as if assigning 
each member individually. Memberwise initialization consists of copying one ob­
ject to the other, a member at a time, as if initializing each member individually. 
The primary difference between the two is that memberwise assignment invokes 
each member's assignment operator (operator=), whereas memberwise initializa­
tion invokes the copy constructor. 

Memberwise assignment is performed only by the assignment operator declared in 
the form: 

type& type::operator=( [const I volatile] type& ) 

Default assignment operators for memberwise assignment cannot be generated if 
any of the following conditions exist: 

• A member class has const members. 

• A member class has reference members. 

• A member class or its base class has a private assignment operator (operator=). 

• A base class or member class has no assignment operator (operator=). 
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Default copy constructors for memberwise initialization cannot be generated if the 
class or one of its base classes has a private copy constructor, or if any of the fol­
lowing conditions exist: 

• A member class has const members. 

• A member class has reference members. 

• A member class or its base class has a private assignment operator (operator). 

• A base class or member class has no assignment operator (operator). 

The default assignment operators and copy constructors for a given class are al­
ways declared, but they are not defined unless both of the following conditions are 
met: 

• The class does not provide a user-defined function for this copy. 

• The program requires that the function be present. This requirement exists if an 
assignment or initialization is encountered that requires memberwise copying, 
or if the address of the class's operator= function is taken. 

If both of the conditions in the preceding list are not met, the compiler is not re­
quired to generate code for the default assignment operator and copy constructor 
functions (elimination of such code is an optimization performed by the Microsoft 
C++ compiler). Specifically, if the class declares a user-defined operator= that 
takes an argument of type "reference to class-name," no default assignment opera­
tor is generated. If the class declares a copy constructor, no default copy construc­
tor is generated. 

Therefore, for a given class A, the following declarations are always present: 

II Implicit declarations of copy constructor 
II and assignment operator. 
A: :A( canst A& ); 
A& A::operator=( canst A& ); 

The definitions are supplied only if required (according to the preceding criteria). 
The copy constructor functions shown in the preceding example are considered 
public member functions of the class. 
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Default assignment operators allow objects of a given class to be assigned to ob­
jects of a public base-class type. Consider the following code: 

class Account 
{ 

public: 
II Public member functions 

private: 
double _balance; 

} ; 

class Checking 
{ 

private: 

public Account 

int _fOverdraftProtect; 
} ; 

Account account; 
Checking checking; 

account = checking; 

In the preceding example, the assignment operator chosen is Account: : operator=. 
Because the default operator= function takes an argument of type Account& (ref­
erence to Account), the Account subobject of checki ng is copied to account; 
fOverdraftProtect is not copied. 





Overloading 

This chapter explains how to use C++ overloaded functions and overloaded 
operators. 

12.1 Overview 
The C++ language allows you to overload functions and operators. Overloading is 
the practice of supplying more than one definition for a given function name in the 
same scope. The compiler is left to pick the appropriate version of the function or 
operator based on the arguments with which it is called. For example: 

double max( double d1, double d2 l 
{ 

return ( d1 > d2 l ? d1 : d2; 

int max( int il, int i2 l 
{ 

return ( il > i2 l ? i 1 i 2; 
} 

The function max is considered an overloaded function. It can be used in code 
such as the following: 

ma in () 
{ 

int max( 12,8 l; 
double d max( 32.9, 17.4 l; 

return + (intld; 
} 

In the first case, where the maximum value of two variables of type i ntis being 
requested, the function max( i nt, i nt l is called. However, in the second case, 
the arguments are of type double,sothefunction max( double, double lis 
called. 
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Argument Type Differences 
Overloaded functions differentiate.between argument types that take different in­
itializers. Therefore, arguments of a given type, and a reference to that type are 
considered the same for the purposes of overloading. They are considered the 
same because they take the same initializers. For example, rnax( doubl e, 
double) is considered the same as rnax( double &, double & ).Itisanerrorfor 
overloaded functions to differ only in this manner. 

For the same reason, function arguments of a type modified by const or volatile 
are not treated differently than the base type for the purposes of overloading. 

However, the function overloading mechanism can distinguish between references 
that are qualified by const and volatile, and references to the base type. This 
makes code such as the following possible: 

#include <iostrearn.h> 

class Over 
{ 

publ i c: 
Overt) { cout « "Over default constructor\n"; } 
Overt Over &0 ) { cout « "Over&\n"; } 
Overt const Over &co ) { cout « "const Over&\n"; } 
Overt volatile Over &vo ) { cout « "volatile Over&\n"; } 

} ; 

rnai n ( ) 
{ 

} 

Over 01; 
Over 02( 01 ); 

const Over 03; 
Over 04( 03 ); 

volatile Over 05; 
Over 06( 05 ); 

return 0; 

II 
II 
II 
II 
II 
II 

Calls default constructor. 
Calls Overt Over& ). 
Ca 11 s default constructor. 
Ca 11 s Overt const Over& ). 
Ca 11 s default constructor. 
Ca 11 s Overt volatile Over& ) . 

Pointers to const and volatile objects are also considered different from pointers 
to the base type for the purposes of overloading. 
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Restrictions on Overloaded Functions 

Microsoft Specific 

There are a number of restrictions that govern what makes up an acceptable set of 
overloaded functions: 

• Any two functions in a set of overloaded functions must have different argu­
ment lists. 

• Overloading functions with argument lists of the same types, based on return 
type alone, is an error. 

You can overload operator new solely on the basis of return type-specifi­
cally, on the basis of the memory-model modifier specified .• 

• Member functions cannot be overloaded solely on the basis of one being static 
and the other nonstatic. 

• typedef declarations do not define new types; they introduce synonyms for ex­
isting types. They do not affect the overloading mechanism. Consider the fol­
lowing code: 

typedef char * PSTR; 

void Print( char *szToPrint ); 
void Print( PSTR szToPrint ); 

The preceding two functions have identical argument lists. PSTR is a synonym 
for type char *. Compiling this code generates an error message. 

• Enumerated types are distinct types and can be used to distinguish between 
overloaded functions. 

• The types "array of' and "pointer to" are considered identical for the purposes 
of distinguishing between overloaded functions. This is true only for singly di­
mensioned arrays. Therefore, the following overloaded functions conflict and 
generate an error message: 

void Print( char *szToPrint ); 
void Print( char szToPrint[] ); 

For multiply dimensioned arrays, the second and all succeeding dimensions are 
considered part of the type. Therefore, they are used in distinguishing between 
overloaded functions: 

void Print( char szToPrint[] ); 
void Print( char szToPrint[][7] ); 
void Print( char szToPrint[][9][42] ); 
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12.2 Declaration Matching 
Any two function declarations of the same name in the same scope can refer to 
two discrete functions that are overloaded or to the same function. If the argument 
lists ofthe declarations contain arguments of equivalent types (as described in the 
previous section), the function declarations refer to the same function. Otherwise, 
they refer to two different functions that are selected using overloading. 

Class scope is strictly observed; therefore, a function declared in a base class is not 
in the same scope as a function declared in a derived class. If a function in a 
derived class is declared with the same name and type as a function in the base 
class, the derived-class function hides the base-class function instead of causing 
overloading. 

Block scope is strictly observed; therefore, a function declared in file scope is not 
in the same scope as a function declared locally. If a locally declared function has 
the same name and type as a function declared in file scope, the locally declared 
function hides the file-scoped function instead of causing overloading. For 
example: 

#include <iostream.h> 

void func( int i ) 
{ 

cout « "Called file-scoped func "« «endl; 
} 

void func( char *sz 
{ 

cout « "Called locally-declared func "« sz « endl; 
} 

rna i n( ) 
{ 

II Declare func local to main. 
extern void func( char *sz ); 

func( 3 ); 
func( Us" ); 

return 0; 

II Error. func( int ) is hidden. 

The preceding code shows two definitions from the function func. The definition 
thattakesanargumentoftype char * is local to main because of the extern 
statement. Therefore, the definition that takes an argument of type i ntis hidden, 
and the first call to fun c is in error. 



Overloading 343 

For overloaded member functions, different versions of the function can be given 
different access privileges. They are still considered to be in the scope of the en­
closing class, and thus are overloaded functions. Consider the following code in 
which the member function Depos it is overloaded; one version is public, the 
other, private: 

class Account 
{ 

public: 
Account(l; 
double Deposit( double dArnount, char *szPassword l; 

private: 
double Deposit( double dArnount l; 
int Validate( char *szPassword l; 

} ; 

The intent of the preceding code is to provide an Account class in which a correct 
password is required to perform deposits. This is accomplished using overloading. 
The following code shows how this class can be used and also shows an erroneous 
call to the private member, Depos it: 

rna in ( 1 
{ 

} 

II Allocate a new object of type Account. 
Account *pAcct = new Account; 

II Deposit $57.22. Error: calls a private function. 
pAcct->Deposit( 57.22 l; 

II Deposit $57.22 and supply a password. OK: calls a 
II public function. 
pAcct->Deposit( 52.77, "pswd" l; 

return 0; 

double Account::Deposit( double dArnount, char *szPassword 1 
{ 

} 

if( Validate( sZPassword 1 1 
return Deposit( dArnount l; 

else 
return 0.0; 

Note that the call to Depos i t in Account:: Depos it calls the private member func­
tion. This call is correct because Account:: Deposi t is a member function and 
therefore has access to the private members of the class. 
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12.3 Argument Matching 
Overloaded functions are selected on a best-match basis. That is, the set of over­
loaded functions is scanned to see which function declaration in the current scope 
best matches the arguments supplied in the function call. If a suitable function is 
found, that function is called. "Suitable" in this context means one of the 
following: 

• A standard conversion to the desired argument type exists. 

• A user-defined conversion (either conversion operator or constructor) to the 
desired argument type exists. 

The compiler creates a list of candidate functions for each argument. Candidate 
functions are functions in which the argument in that position exactly matches the 
type of the supplied argument, or for which a suitable conversion can be found. 

A list of "best matching functions" is built for each argument, and the selected 
function is the intersection of all the lists. If the intersection contains more than 
one function, the overloading is ambiguous and generates an error. The function 
that is eventually selected is always a better match than every other function in the 
group for at least one argument. If this is not the case (ifthere is no clear winner), 
the function call generates an error. 

Consider the following declarations (the functions are marked Va ri ant 1, 
Va ri ant 2, and Va ri ant 3, for identification in the following discussion): 

Fraction &Add( Fraction &f, long 1 ); 
Fraction &Add( long 1, Fraction &f ); 
Fraction &Add( Fraction &f, Fraction &f ); 

II Variant 1 
II Variant 2 
II Variant 3 

Fraction Fl, F2; 

Consider the following statement: 

FI = Add( F2, 23); 

The preceding statement builds two lists: 

List 1: Candidate Functions That Have 
First Argument of Type Fraction 

Variant 1 

Variant 3 

List 2: Candidate Functions That Have 
Second Argument of Type int 

Variant 1 (int can be converted to long 
using a standard conversion) 

The intersection of these two lists is Variant 1. An example of an ambiguous func­
tion call is: 

FI = Add( 3, 6 ); 
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The preceding function call builds the following lists: 

List 1: Candidate Functions That Have 
First Argument of Type int 

Variant 2 (int can be converted to long 
using a standard conversion) 

List 2: Candidate Functions That Have 
Second Argument of Type int 

Variant 1 (int can be converted to long 
using a standard conversion) 

Note that the intersection between these two lists is empty. Therefore, the compiler 
generates an error message. 

For argument matching, a function with n default arguments is treated as n+ 1 sepa­
rate functions, each with a different number of arguments. 

The ellipsis ( ... ) acts as a wildcard; it matches any actual argument. This can lead 
to many ambiguous lists, if you do not design your overloaded function lists with 
extreme care. 

Note Ambiguity of overloaded functions cannot be determined until a function 
call is encountered. At that point, the lists are built for each argument in the func­
tion call, and it can be determined whether an unambiguous overload exists. This 
means that ambiguities can remain in your code until they are evoked by a particu­
lar function call. 

Argument Matching and the this Pointer 
Class member functions are treated differently, depending on whether they are de­
clared as static. Because nonstatic functions have an implicit argument that sup­
plies the this pointer, nonstatic functions are considered to have one more 
argument than static functions; otherwise, they are declared identically. 

These nonstatic member functions require that the implied this pointer match the 
object type through which the function is being called, or, for overloaded opera­
tors, they require that the first argument match the object on which the operator is 
being applied. (For more information about overloaded operators, see "Overloaded 
Operators" on page 351.) 

Unlike other arguments in overloaded functions, no temporary objects are intro­
duced and no conversions are attempted when trying to match the this pointer 
argument. 

When the -> member-selection operator is used to access a member function, the 
this pointer argument has a type of class-name * const. If the members are de­
clared as const or volatile, the types are const class-name * const and volatile 
class-name * const, respectively. 
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The. member-selection operator works exactly the same way, except that an impli­
cit & (address-of) operator is prefixed to the object name. The following example 
shows how this works: 

II Expression encountered in code 
obj.name 

II How the compiler treats it 
(&obj)->name 

The left operand of the ->* and. * (pointer to member) operators are treated the 
same way as the. and -> (member-selection) operators with respect to argument 
matching. 

Argument Matching and Conversions 
When the compiler tries to match actual arguments against the arguments in func­
tion declarations, it can supply standard or user-defined conversions to obtain the 
correct type if no exact match can be found. The application of conversions is sub­
ject to these rules: 

• Sequences of conversions that contain more than one user-defined conversion 
are not considered. 

• Sequences of conversions that can be shortened by removing intermediate con­
versions are not considered. 

The resultant sequence of conversions, if any, is called the best matching 
sequence. There are several ways to convert an object of type int to type unsigned 
long using standard conversions (described in Chapter 3, "Standard Conversions"): 

• Convert from int to long, then from long to unsigned long. 

• Convert from int to unsigned long. 

The first sequence, while it achieves the desired goal, is not the best matching 
sequence-a shorter sequence exists. 

Table 12.1 shows a group of conversions, called trivial conversions, that have a 
limited effect on the determination of which sequence is the best matching. The in­
stances in which trivial conversions affect choice of sequence are discussed in the 
list following the table. 



Table 12.1 Trivial Conversions 

Convert from Type 

type-name 

type-name& 

type-name[] 

type-name( argument-list) 

type-name 

type-name 

type-name* 

type-name* 

Convert to Type 

type-name& 

type-name 

type-name* 
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(*type-name)( argument-list) 

const type-name 

volatile type-name 

canst type-name* 

volatile type-name* 

The sequence in which conversions are attempted is as follows: 

1. Exact match. An exact match between the types with which the function is 
called and the types declared in the function prototype is always the best match. 
Sequences of trivial conversions are classified as exact matches. However, 
sequences that do not make any of these conversions are considered better than 
sequences that convert: 

• From pointer, to pointer to const (type * to const type *). 

• From pointer, to pointer to volatile (type * to volatile type *). 

• From reference, to reference to const (type & to const type &). 

• From reference, to reference to volatile (type & to volatile type &). 

2. Match using promotions. Any sequence not classified as an exact match that 
contains only integral promotions, conversions from float to double, and trivial 
conversions is classified as a match using promotions. While not as good a 
match as any exact match, a match using promotions is better than a match 
using standard conversions. 

3. Match using standard conversions. Any sequence not classified as an exact 
match or a match using promotions that contains only standard conversions and 
trivial conversions is classified as a match using standard conversions. Within 
this category, the following rules are applied: 

• Conversion from a pointer to a derived class, to a pointer to a direct or in­
direct base class is preferable to converting to void * or const void *. 

• Conversion from a pointer to a derived class, to a pointer to a base class pro­
duces a better match the closer the base class is to a direct base class. Sup­
pose the class hierarchy is as shown in Figure 12.1. 
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Figure 12.1 Graph Illustrating Preferred Conversions 

Conversion from type D* to type C* is preferable to conversion from type 
D* to type B*. Similarly, conversion from type D* to type B* is preferable 
to conversion from type D* to type A*. 

This same rule applies to reference conversions. Conversion from type D& 
to type C& is preferable to conversion from type D& to type B&, and so on. 

This same rule applies to pointer-to-member conversions. Conversion from 
type T D:: * to type T C:: * is preferable to conversion from type T D:: * 
to type T B:: *, and so on (where T is the type of the member). 

The preceding rJle applies on]y along a given path of derivation. Consider 
the graph shown in Figure 12.2. 

Figure 12.2 Multiple Inheritance Graph Illustrating Preferred 
Conversions 

Conversion from type C* to type B* is preferable to conversion from type 
C* to type A*. The reason is that they are on the same path, and B* is closer. 
However, conversion from type C* to type D* is not preferable to conver­
sion to type A*; there is no preference because the conversions follow differ­
ent paths. 
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4. Match with user-defined conversions. This sequence cannot be classified as an 
exact match, a match using promotions, or a match using standard conversions. 
The sequence must contain only user-defined conversions, standard conver­
sions, or trivial conversions to be classified as a match with user-defined con­
versions. A match with user-defined conversions is considered a better match 
than a match with an ellipsis, but not as good a match as a match with standard 
conversions. 

5. Match with an ellipsis. Any sequence that matches an ellipsis in the declaration 
is classified as a match with an ellipsis. This is considered the weakest match. 

User-defined conversions are applied if no built-in promotion or conversion exists. 
These conversions are selected on the basis of the type of the argument being 
matched. Consider the following code: 

class UDC 
{ 

publ ic: 

} ; 

operator int(); 
operator 1 ong(); 

void Print( int ); 

UDC udc; 
Print( udc ); 

The available user-defined conversions for class UDC are from type int and type 
long. Therefore, the compiler considers conversions for the type of the object 
being matched: UDC. A conversion to int exists, and it is selected. 

During the process of matching arguments, standard conversions can be applied to 
both the argument and the result of a user-defined conversion. Therefore, the fol­
lowing code works: 

void LogToFile( long 1 ); 

UDC udc; 
LogToFile( udc ); 

In the preceding example, the user-defined conversion, operator long, is invoked 
to convert udc to type long. If no user-defined conversion to type long had been 
defined, the conversion would have proceeded as follows: Type UDC would have 
been converted to type int using the user-defined conversion. Then the standard 
conversion from type int to long would have been applied to match the argument 
in the declaration. 
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If any user-defined conversions are required to match an argument, the standard 
conversions are not used when evaluating the best match. This is true even if more 
than one candidate function requires a user-defined conversion; in such a case, the 
functions are considered equal. For example: 

class UDCl 
{ 

public: 
UDCl( int); II User-defined conversion from into 

} ; 

class UDC2 
{ 

public: 
UDC2( long ); II User-defined conversion from long. 

} ; 

void Func( UDCl ); 
void Func( UDC2 ); 

Func ( 1 ); 

Both versions of Func require a user-defined conversion to convert type int to the 
class type argument. The possible conversions are: 

• Convert from type int to type UDCl (a user-defined conversion). 

• Convert from type int to type long, then convert to type UDC2 (a two-step 
conversion). 

Even though the second of these requires a standard conversion, as well as the 
user-defined conversion, the two conversions are still considered equal. 

Note User-defined conversions are considered conversion by construction or con­
version by initialization (conversion function). Both methods are considered equal 
when considering the best match. 
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12.4 Address of Overloaded Functions 
Use of a function name without arguments returns the address of that function. For 
example: 

int Func( int i, int j ); 
int Func( long 1 ); 

int (*pFunc) ( int, int ) = Func; 

In the preceding example, the first version of Func is selected, and its address is 
copied into pFunc. 

The compiler determines which version of the function to select by finding a func­
tion with an argument list that exactly matches that of the target. The arguments in 
the overloaded function declarations are matched against one of the following: 

• An object being initialized (as shown in the preceding example) 

• The left side of an assignment statement 

• A formal argument to a function 

• A formal argument to a user -defined operator 

• A function return type 

If no exact match is found, the expression that takes the address of the function is 
ambiguous and an error is generated. 

Note that although a nonmember function, Func, was used in the preceding ex­
ample, the same rules are applied when taking the address of overloaded member 
functions. 

12.5 Overloaded Operators 
c++ allows the function of most built-in operators to be redefined. These opera­
tors can be redefined, or "overloaded," globally or on a class-by-class basis. Over­
loaded operators are implemented as functions, and can be class-member or global 
functions. 

The name of an overloaded operator is operatorx, where x is the operator as it ap­
pears in Table 12.2. For example, to overload the addition operator, you define a 
function called operator+. Similarly, to overload the addition/assignment opera­
tor, +=, define a function called operator+=. 
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While these operators are usually called implicitly by the compiler when they are 
encountered in code, they can be invoked explicitly the same way as any member 
or nonmember function is called: 

Point pt; 

pt.operator+( 3); II Call addition operator to add 3 to pt. 

Table 12.2 shows a list of operators that can be overloaded. 

Table 12.2 Redefinable Operators 

Operator Name Type 

Comma Binary 

Logical negation Unary 

!= Inequality Binary 

% Modulus Binary 

%= Moduluslassignment Binary 

& Bitwise AND Binary 

& Address-of Unary 

&& Logical AND Binary 

&= Bitwise AND/assignment Binary 

0 Function call 

* Multiplication Binary 

* Pointer dereference Unary 

*= Multiplication/assignment Binary 

+ Addition Binary 

+ Unary Plus Unary 

++ Increment! Unary 

+= Addition/assignment Binary 

Subtraction Binary 

Unary negation Unary 

Decrement! Unary 

-= Subtraction/assignment Binary 

-> Member selection Binary 

->* Pointer-to-member selection Binary 

I Division Binary 

1= Division/assignment Binary 

< Less than Binary 

« Left shift Binary 

«= Left shift/assignment Binary 
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Table 12.2 ( continued) 

Operator Name Type 

<= Less than or equal to Binary 

= Assignment Binary 

-- Equality Binary 

> Greater than Binary 

>= Greater than or equal to Binary 

» Right shift Binary 

»= Right shift/assignment Binary 

[] Array subscript 
A Exclusive OR Binary 
A= Exclusive OR/assignment Binary 

Bitwise inclusive OR Binary 

1= Bitwise inclusive OR/assignment Binary 

II Logical OR Binary 

One's complement Unary 

delete delete 

new new 

ITwo versions of the unary increment and decrement operators exist: preincrement and postincrement. 

The constraints on the various categories of overloaded operators are described in 
"Unary Operators" on page 355, "Binary Operators" on page 358, "Assignment" 
on page 360, "Function Call" on page 361, "Subscripting" on page 362, "Class 
Member Access" on page 363, and "Increment and Decrement" on page 356. 

The operators shown in Table 12.3 cannot be overloaded. 

Table 12.3 Nonredefinable Operators 

Operator 

.* 

:> 
? : 

# 

## 

Name 

Member selection 

Pointer-to-member selection 

Scope resolution 

Base operator 

Conditional 

Preprocessor symbol 

Preprocessor symbol 

I 
I 
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General Rules for Operator Overloading 
The following rules constrain how overloaded operators are implemented. How­
ever, they do not apply to the new and delete operators, which are covered sepa­
rately on pages 97 and 101 in Chapter 4, respectively. 

• Operators must either be class member functions, or they must take an argu­
ment that is of class or enumerated type or arguments that are references to 
class or enumerated types. For example: 

class Point 
{ 
public: 

} ; 

Point operator« Point &); II Declare a member operator 
II overload. 

II Declare addition operators. 
friend Point operator+( Point&, int ); 
friend Point operator+( int, Point& ); 

The preceding code sample declares the less-than operator as a member func­
tion; however, the addition operators are declared as global functions that have 
friend access. Note that more than one implementation can be provided for a 
given operator. In the case of the preceding addition operator, the two im­
plementations are provided to facilitate commutativity. It is just as likely that 
operators that add a Poi nt to a Poi nt, and i nt to a Poi nt, and so on, might 
be implemented. 

• Operators obey the precedence, grouping, and number of operands dictated by 
their typical use with built-in types. Therefore, there is no way to express the 
concept "add 2 and 3 to an object oftype Poi nt," expecting 2 to be added to 
the x coordinate and 3 to be added to the y coordinate. 

I 

• Unary operators, if declared as member functions take no arguments; if de­
clared as global functions, they take one argument. 

• Binary operators, if declared as member functions take one argument; if de­
clared as global functions, they take two arguments. 

• Overloaded operators cannot have default arguments. 

• All overloaded operators except assignment (operator=) are inherited by 
derived classes. 

• The fust argument for member-function overloaded operators is always of the 
class type ofthe object for which the operator is invoked (the class in which the 
operator is declared, or a class derived from that class). No conversions are sup­
plied for the first argument. 
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Note that the meaning of any of the operators can be changed completely. That in­
cludes the meaning of the address-of (&), assignment (=), and function-call opera­
tors. Also, identities that can be relied upon for built-in types can be changed using 
operator overloading. For example, the following four statements are usually 
equivalent when completely evaluated: 

var = var + 1; 
var += 1; 
var++; 
++var; 

This identity cannot be relied upon for class types that overload operators. 
Moreover, some of the requirements implicit in the use of these operators for basic 
types are relaxed for overloaded operators. For example, the addition/assignment 
operator, +=, requires the left operand to be an I-value when applied to basic 
types; there is no such requirement when the operator is overloaded. 

Note For consistency, it is often best to follow the model of the built-in types 
when defining overloaded operators. If the semantics of an overloaded operator 
differ wildly from its meaning in other contexts, it can be more confusing than 
useful. 

The unary operators are shown in Table 12.4. 

Table 12.4 Redefinable Unary Operators 

Operator 

& 

* 
+ 
++ 

Name 

Logical negation 

Address-of 

Pointer dereference 

Unary Plus 

Increment 

Unary negation 

Decrement 

Of the operators shown in Figure 12.4, the postfix increment and decrement opera­
tors (++ and - -) are treated separately in "Increment and Decrement" on page 356. 

To declare a unary operator function as a nonstatic member, it must be declared in 
the form: 

ret-type operatoropO 
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where ret-type is the return type, and op is one of the operators listed in Table 12.4. 

To declare a unary operator function as a global function, it must be declared in 
the form: 

ret-type operatorop( arg ) 

where ret-type and op are as described for member operator functions, and the arg 
is an argument of class type on which to operate. 

Note There is no restriction on the return types ofthe unary operators. For ex­
ample, it makes sense for logical negation (!) to return an integral value, but this is 
not enforced. 

Increment and Decrement 
The increment and decrement operators fall into a special category because there 
are two variants of each: 

• Preincrement and postincrement 

• Predecrement and postdecrement 

When you write overloaded operator functions, it can be useful to implement sepa­
rate versions for the prefix and postfix versions of these operators. To distinguish 
between the two, the following rule is observed: the prefix form of the operator is 
declared exactly the same way as any other unary operator; the postfix form ac-
cepts an additional argument of type int. --

Important When specifying an overloaded operator for the postfix form of the in­
crement or decrement operator, the additional argument must be of type int; speci­
fying any other type generates an error. 

The following example shows how to define prefix and postfix increment and 
decrement operators for the Poi nt class: 

class Point 
{ 

public: 
II Declare prefix and postfix increment operators. 
Point& operator++(); II Prefix increment operator. 
Point& operator++(int); II Postfix increment operator. 

II Declare prefix and postfix decrement operators. 
Point& operator-(); II Prefix decrement operator. 
Point& operator-(int); II Postfix decrement operator. 

II Define default constructor. 
Point() { _x = _y = 0; } 



II Define accessor functions. 
int x() { return _x; } 
int y() { return _y; } 

private: 
int _x, _y; 

} ; 

II Define prefix increment operator. 
Point& Point: :operator++() 
{ 

_x++; 
-y++; 
return *this; 

II Define postfix increment operator. 
Point& Point: :operator++(int) 
{ 

} 

_x++; 
-y++; 
return *this; 

II Define prefix decrement operator. 
Point& Point: :operator-() 
{ 

} 

_x-; 
-y-; 
return *this; 

II Define postfix decrement operator. 
Point& Point::operator-(int) 
{ 

} 

_x-; 
-y-; 
return *this; 
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The same operators can be defined in file scope (globally) using the following 
function heads: 

friend Point& operator++( Point& ) II Prefix increment 
friend Point& operator++( Point&, int ) II Postfix increment 
friend Point& operator-( Point& ) II Prefix decrement 
friend Point& operator-( Point&, int ) II Postfix decrement 
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Binary Operators 

The argument of type int that denotes the postfix form of the increment or decre­
ment operator is not commonly used to pass arguments. It usually contains the 
value O. However, it can be used as follows: 

class Int 
{ 
public: 

Int &operator++( int n ); 
private: 

i nt _ i ; 
} ; 

Int& Int::operator++( int n ) 
{ 

if( n != 0 ) II Handle case where an argument is passed. 
i += n; 

else 
_i++; II Handle case where no argument is passed. 

return *this; 
} 

I nt i; 
i.operator++( 25 ); II Increment by 25. 

No syntax exists for using the increment or decrement operators to pass these 
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straightforward way to implement this functionality is to overload the 
addition/assignment operator (+=). 

Table 12.5 shows a list of operators that can be overloaded. 

Table 12.5 Redefinable Binary Operators 

Operator 

!= 

% 

%= 

& 
&& 
&= 

* 

Name 

Comma 

Inequality 

Modulus 

Modulus/assignment 

Bitwise AND 

Logical AND 

Bitwise AND/assignment 

Multiplication 



Table 12.5 (continued) 

Operator 

*= 
+ 
+= 

-> 

->* 
1 
1= 
< 
« 
«= 
<= 
= 

> 
>= 
» 
»= 
A 

1= 

II 

Name 

Multiplication/assignment 

Addition 

Addition/assignment 

Subtraction 

Subtraction/assignment 

Member selection 

Pointer-to-member selection 

Division 

Division/assignment 

Less than 

Left shift 

Left shift/assignment 

Less than or equal to 

Assignment 

Equality 

Greater than 

Greater than or equal to 

Right shift 

Right shift/assignment 

Exclusive OR 

Exclusive OR/assignment 

Bitwise inclusive OR 

Bitwise inclusive OR/assignment 

Logical OR 
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To declare a binary operator function as a nonstatic member, it must be declared in 
the form: 

ret-type operatorop( arg ) 

where ret-type is the return type, and op is one of the operators listed in Table 
12.5, and arg is an argument of any type. 
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Assignment 

To declare a binary operator function as a global function, it must be declared in 
the form: 

ret-type operatorop( arg 1, arg2 ) 

where ret-type and op are as described for member operator functions, and arg 1 
and arg2 are arguments. At least one of the arguments must be of class type. 

Note There is no restriction on the return types of the binary operators; however, 
most user-defined binary operators return either a class type or a reference to a 
class type. 

The assignment operator (=) is, strictly speaking, a binary operator. Its declaration 
is identical to any other binary operator with the following exceptions: 

• It must be a nonstatic member function. No operator= can be declared as a non­
member function. 

• It is not inherited by derived classes. 

• A default operator= function can be generated by the compiler for class types 
if none exists. (For more information about default operator= functions, see 
"Memberwise Assignment and Initialization" in Chapter 11, on page 335.) 

The following example illustrates how to declare an assignment operator: 

class Point 
{ 

publ ic: 
Point &operator=( Point &); II Right side is the argument. 

} ; 

II Define assignment operator. 
Point &Point::operator=( Point &ptRHS ) 
{ 

} 

_x = ptRHS._x; 
_y = ptRHS._y; 

return *this; II Assignment operator returns left side. 

Note that the supplied argument is the right side of the expression. The operator re­
turns the object to preserve the behavior of the assignment operator, which returns 
the value of the left side after the assignment is complete. This allows writing state­
ments such as: 

ptl = pt2 = pt3; 
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Syntax 
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The function-call operator, invoked using parentheses, is a binary operator. The 
syntax for a function call is: 

primary-expression ( expression-!istopt ) 

In this context, primary-expression is the first operand and expression-list, a 
possibly empty list of arguments, is the second operand. The function-call operator 
is used for operations that require a number of parameters. This works because 
expression-list is a list instead of a single operand. The function-call operator must 
be a nonstatic member function. 

The function-call operator, when overloaded, does not modify how functions are 
called; rather, it modifies how the operator is to be interpreted when applied to ob­
jects of a given class type. For example, the following code would usually be 
meaningless: 

Point pt; 
pt ( 3, 2 ); 

Given an appropriate overloaded function-call operator, however, this syntax can 
be used to offset the x coordinate 3 units and the y coordinate 2 units. The follow­
ing code shows such a definition: 

class Point 
{ 
public: 

Point() { _x = _y = 0; } 
Point &operator()( int dx, int dy ) 

{ _x += dx; _y += dy; return *this; } 
private: 

int _x, _y; 
} ; 

Point pt; 
pte 3, 2 ); 

Note that the function-call operator is applied to the name of an object, not the 
name of a function. 
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Subscripting 
The subscript operator ([ ]), like the function-call operator, is considered a binary 
operator. The subscript operator must be a nonstatic member function that takes a 
single argument. This argument can be of any type and designates the desired 
array subscript. 

The following example demonstrates how to create a vector of type int that imple­
ments bounds checking: 

#include <iostream.h> 

class IntVector 
{ 
public: 

IntVector( int cElements ); 
-IntVector() { delete _iElements; } 
int& operator[]( int nSubscript ); 

private: 

} ; 

int *_iElements; 
int _iUpperBound; 

II Construct an IntVector. 
IntVector::lntVector( int cElements 
{ 

} 

iElements = new int[cElements]; 
_iUpperBound = cElements; 

II Subscript operator for IntVector. 
int& IntVector::operator[]( int nSubscript 
{ 

} 

static int iErr = -1; 

if( nSubscript >= 0 && nSubscript < _iUpperBound ) 
return _iElements[nSubscript]; 

else 
{ 

} 

clog « "Array bounds violation." « endl; 
return i Err; 



II Test the IntVector class. 
mai n ( ) 
{ 

IntVector v( 10 ); 

fore int 
v[i] i' . 

v[3] v[9]; 

0; i <= 10; ++i ) 

fore i 0; i <= 10; ++i 
cout « "Element: ["« «"] 

« endl; 

return v[0]; 
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" « v[i] 

When i reaches 10 in the preceding program, operator[] detects that an out-of­
bounds subscript is being used and issues an error message. 

Note that the function operator[] returns a reference type. This causes it to be an 
I-value, allowing you to use subscripted expressions on either side of assignment 
operators. 

Class-Member Access 
Class-member access can be controlled by overloading the member-selection oper­
ator (-». This operator is considered a unary operator, and the overloaded opera­
tor function must be a class member function. Therefore, the declaration for such a 
function is: 

class-type *operator->O 

where class-type is the name of the class to which this operator belongs. The 
member-selection operator function must be a non static member function. 

This operator is used (often in conjunction with the pointer-defererence operator) 
to implement "smart pointers" that validate pointers prior to dereference or count 
usage. 

The. member-selector operator cannot be overloaded. 





Preprocessing 

A "preprocessor directive" is an instruction to the C++ preprocessor. Prepro­
cessing takes place during the first phase of compilation. This chapter describes 
the preprocessing translation phase. 

This chapter also discusses macros, the #define directive, the #undef directive, 
and the four preprocessor operators. A "preprocessor operator" is an operator that 
is only recognized as an operator within the context of preprocessor directives. 

Include files (text files inserted into a program at the location of a #include direc­
tive), conditional compilation, the #error and #line directives, and pragmas are 
the topics of sections at the end of this chapter. A "pragma" is a "pragmatic," or 
practical, instruction to the C++ compiler. Pragmas in C++ source files are typi­
cally used to control the actions of the compiler in a particular portion of a pro­
gram without affecting the program as a whole. 

13.1 The Preprocessor 

Microsoft Specific 

The C++ preprocessor is a text processor that manipulates the text of a source file 
as part of the first phase of translation. (For more information, see Appendix A, 
"Phases of Translation.") The preprocessor does not parse the source text, but it 
does break it up into tokens for the purpose of locating macro calls. Although the 
compiler ordinarily invokes the preprocessor in its first pass, the preprocessor can 
also be invoked separately to process text without compiling. 

You can obtain a listing of your source code after preprocessing by using the IE or 
fEP compilation options. Both options cause the preprocessor to be invoked and 
the resulting text to be output to the standard output device which, in most cases, 
is the console. The difference between the two options is that IE includes #line 
directives, and fEP strips these directives out.. 

Preprocessor directives are typically used to make source programs easy to change 
and easy to compile in different execution environments. Directives in the 
source file tell the preprocessor to perform specific actions. For example, the 
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preprocessor can replace tokens in the text, insert the contents of other files into 
the source file, or suppress compilation of part of the file by removing sections of 
text. Preprocessor lines are recognized and carried out before macro expansion. 
Therefore, if a macro expands into something that looks like a preprocessor com­
mand, that command is not recognized by the preprocessor. 

Preprocessor statements use the same character set as source file statements with 
the exception that escape sequences are not supported. The character set used in 
preprocessor statements is the same as the execution character set. (For informa­
tion on the execution character set, see "Character Constants" in Chapter 1, on 
page 16.) The preprocessor also recognizes negative character values. 

The C++ preprocessor recognizes the following directives: 

#define 

#elif 

#else 

#endif 

#error 

#if 

#ifdef 

#ifndef 

#inclnde 

#line 

#pragma 

#nndef 

The number sign (#) must be the first nonwhite-space character on the line contain­
ing the directive; White-space characters can appear between the number sign and 
the first letter of the directive. Some directives include arguments or values. Any 
text that follows a directive (except an argument or value that is part of the direc­
tive) must be preceded by the single-line comment delimiter (II) or enclosed in 
comment delimiters (/* */). Lines containing preprocessor directives can be con­
tinued by immediately preceding the end-of-line marker with a backslash (\). 

Preprocessor directives can appear anywhere in a source file, but they apply only 
to the remainder of the source file. 

13.2 Macros 
Preprocessing expands macros in all lines that are not preprocessor directives 
(lines that do not have a # as the first nonwhite-space character) and in parts of 
some directives that are not skipped as part of a conditional compilation. (For 
more information, see "Conditional Compilation" on page 379.) The #define direc­
tive is typically used to associate meaningful identifiers with constants, keywords, 
and commonly used statements or expressions. Identifiers that represent constants 
are called "symbolic constants." Identifiers that represent statements or expres­
sions are called "macros." Macros have their own name space. For information, 
see "Name Spaces" in Chapter 2, on page 61. 
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When the name ofthe macro is recognized in the program source text or in the ar­
guments of certain other preprocessor commands, it is treated as a call to that 
macro. The macro name is replaced by a copy of the macro body. If the macro ac­
cepts arguments, the actual arguments following the macro name are substituted 
for formal parameters in the macro body. The process of replacing a macro call 
with the processed copy of the body is called "expansion" of the macro call. 

In practical terms, there are two types of macros. "Object-like" macros take no ar­
guments, while "function-like" macros can be defined to accept arguments so that 
they look and act like function calls. Because macros do not generate actual func­
tion calls, you can make programs run faster by replacing function calls with mac­
ros (although C++ inline functions are often a preferred method). However, 
macros can create problems if you do not define and use them with care. You may 
have to use parentheses in macro definitions with arguments to preserve the proper 
precedence in an expression. Also, macros may not correctly handle expressions 
with side effects. See the get random example in "The #define Directive" on page 
368 for more information. 

Once you have defined an identifier, you cannot redefine it to a different value 
without first removing the original definition. However, you can redefine the iden­
tifier with exactly the same definition. Thus, the same definition can appear more 
than once in a program. 

The #Undef directive removes the definition of an identifier. Once you have re­
moved the definition, you can redefine the identifier to a different value. "The 
#define Directive" on page 368 and "The #undef Directive" on page 373 discuss 
the #define and #undef directives, respectively. 

The Role of Preprocessing in C++ 
C++ offers new capabilities, some of which supplant those offered by the ANSI C 
preprocessor. These new capabilities enhance the type safety and predictability of 
the language: 

• In C++, objects declared as const can be used in constant expressions. This al­
lows programs to declare constants that have type and value information. Using 
the preprocessor #define directive to define constants is not as precise. No 
storage is allocated for a const object unless an expression that takes its address 
is found in the program. 
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• The C++ inline function capability supplants function-type macros. The advan­
tages of using inline functions over macros are: 

• Type-safety. Inline functions are subject to the same type checking as nor­
mal functions. Macros are not type safe. 

• Correct handling of arguments that have side effects. Inline functions eval­
uate the expressions supplied as arguments prior to entering the function 
body. Therefore, there is no chance that an expression with side effects will 
be unsafe. 

For backward compatibility, all preprocessor facilities that existed in ANSI C and 
in earlier C++ specifications are preserved for Microsoft C++. 

The #define Directive 

Syntax 

You can use the #define directive to give a meaningful name to a constant in your 
program. The two forms of the syntax are 

#define identifier token-stringopt 

#define identifier ( identifier , ... , identifier ) token-stringopt 

The #define directive substitutes token-string for all subsequent occurrences of an 
identifier in the source file. The identifier is replaced only when it forms a token. 
(For information on tokens, see "Tokens" in Chapter 1, on page 2.) For instance, 
identifier is not replaced if it appears in a comment, within a string, or as part of ~ 
longer identifier. 

A #define without a token-string removes occurrences of identifier from the 
source file. The identifier remains defined and can be tested using the #if defined 
and #ifdef directives. 

The token-string argument consists of a series of tokens, such as keywords, con­
stants, or complete statements. One or more white-space characters must separate 
token-string from identifier. This white space is not considered part of the substi­
tuted text, nor is any white space following the last token of the text. 

Formal parameter names appear in token-string to mark the places where actual 
values are substituted. Each parameter name can appear more than once in token­
string, and the names can appear in any order. The number of arguments in the 
call must match the number of parameters in the macro definition. Liberal use of 
parentheses ensures that complicated actual arguments are not interpreted 
correctly. 

With the second syntax form, an optional list of parameters for a macro appears in 
parentheses. References to the identifier after the original definition replace each 
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occurrence of identifier( identifieropt. ... , identifieropt) with a version of the token­
string argument that has actual arguments substituted for formal parameters. 

The formal parameters in the list are separated by commas. Each name in the list 
must be unique, and the list must be enclosed in parentheses. No spaces can sepa­
rate identifier and the opening parenthesis. Use line concatenation-place a 
backslash (\) before the newline character-for long directives on multiple source 
lines. The scope of a formal parameter name extends to the new line that ends 
token-string. 

When a macro has been defined in the second syntax form, subsequent textual in­
stances followed by an argument list constitute a macro call. The actual arguments 
following an instance of identifier in the source file are matched to the correspond­
ing formal parameters in the macro definition. Each formal parameter in token­
string that is not preceded by a stringizing (#), charizing (#@), or token-pasting 
(##) operator, or followed by a ## operator, is replaced by the corresponding ac­
tual argument. Any macros in the actual argument are expanded before it replaces 
the formal parameter. (The operators are described in "Preprocessor Operators" on 
page 370.) 

The following examples of macros with arguments illustrate the second form of 
the #define syntax: 

II Macro to define cursor lines 
#define CURSOR(top, bottom) ((top) « 8) I bottom)) 

II Macro to get a random integer with a specified range 
#define getrandom(min, max) \ 

((rand()%(int)(((max) + l)-(min)))+ (min)) 

Arguments with side effects sometimes cause macros to produce unexpected re­
sults. A given formal parameter may appear more than once in token-string. If that 
formal parameter is replaced by an expression with side effects, the expression, 
with its side effects, may be evaluated more than once (see examples in "Token­
Pasting Operator (##)" on page 373). 

Note As mentioned above, unexpected results such as those caused by calling the 
getrandom macro with an expression such as getrandom(i++, j) canbeelimi­
nated using inline functions instead of macros. 

The #undef directive causes an identifier's preprocessor definition to be forgotten. 
See "The #Undef Directive" on page 373. 

If the name of the macro being defined occurs in token-string (even as a result of 
another macro expansion), it is not expanded. 

A second #define for the same identifier generates an error unless the second 
token sequence is identical to the first. 
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Microsoft Specific 

Microsoft Specific 

Microsoft C version 6.0 allows a macro to be redefined provided it is lexically 
identical to the previous definition. ANSI C considers macro redefinition an error. 
The Microsoft C/C++ compiler allows this behavior but generate warnings. For ex­
ample, these macros are equivalent for CIC++ but generate warnings: 

#define teste f1, f2 f1 * f2 
#define teste aI, a2 ) ( a1 * a2 )+ 

This example illustrates the #define directive: 

ffdefine WIDTH 
ffdefi ne LENGTH 

80 
( WIDTH + 10 ) 

The first statement defines the identifier WIDTH as the integer constant 80 and de­
fines LENGTH in terms of WIDTH and the integer constant 10. Each occurrence of 
LENGTH is replaced by ( WIDTH + 10 ).Inturn,eachoccurrenceof WIDTH + 10 is 
replaced by the expression ( 80 + 10 ). The parentheses around WIDTH + 10 are 
important because they control the interpretation in statements such as the 
following: 

var = LENGTH * 20; 

After the preprocessing stage the statement becomes 

var = ( 80 + 10 ) * 20; 

which evaluates to 1800. Without parentheses, the result is 

var = 80 + 10 * 20; 

which evaluates to 280. 

Defining macros and constants with the ID command-line option has the same ef­
fect as using a #define preprocessing directive at the beginning of your file. Up to 
30 macros can be defined with the ID option .• 

Preprocessor Operators 
Four preprocessor-specific operators are used in the context of the #define direc­
tive. (See "The #if, #elif, #else, and #endif Directives" on page 379 for informa­
tion on the defined operator.) This list gives a short summary of each of the 
preprocessor directives described in the following sections: 



Operator 

Stringizing operator (#) 

Charizing operator (#@) 

Token-pasting operator (##) 

defined operator 

Stringizing Operator (#) 
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Action 

Causes the corresponding actual argument to be 
enclosed in double quotation marks 

Causes the corresponding argument to be 
enclosed in single quotation marks and to be 
treated as a character 

Allows tokens used as actual arguments to be 
concatenated to form other tokens 

Simplifies the writing of compound expressions 
in certain macro directives 

The number-sign or "stringizing" operator (#) converts macro parameters (after ex­
pansion) to string constants. It is used only with macros that take arguments. If it 
precedes a formal parameter in the macro definition, the actual argument passed 
by the macro invocation is enclosed in quotation marks and treated as a string lit­
eral. The string literal then replaces each occurrence of a combination of the string­
izing operator and formal parameter within the macro definition. 

White space preceding the first token of the actual argument and following the last 
token of the actual argument is ignored. Any white space between the tokens in 
the actual argument is reduced to a single white space in the resulting string literal. 
Thus, if a comment occurs between two tokens in the actual argument, it is re­
duced to a single white space. The resulting string literal is automatically con­
catenated with any adjacent string literals from which it is separated only by white 
space. 

Further, if a character contained in the argument usually requires an escape 
sequence when used in a string literal (for example, the quotation mark (") or 
backslash (\) character), the necessary escape backslash is automatically inserted 
before the character. The following example shows a macro definition that in­
cludes the stringizing operator and a main function that invokes the macro: 

#define stringer( x ) printf( #x "\n" ) 

rna in ( ) 
{ 

stringer( In quotes in the printf function call\n ); 
stringer( "In quotes when printed to the screen"\n ); 
stringer( "This: \" prints an escaped double quote" ); 
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Microsoft Specific 

Such invocations would be expanded during preprocessing, producing the follow­
ing code: 

ma in () 
{ 

} 

printf( "In quotes in the printf function call \n" "\n" ); 
printf( "\"In quotes when printed to the screen\"\n" "\n" ); 
p r i n t f( " \ "T his: \ \ \" p r i n t san esc ape d do ubi e quo t e \ '''' "\ n .. ); 

When the program is run, screen output for each line is as follows: 

In quotes in the printf function call 

"In quotes when printed to the screen" 

"This: \" prints an escaped double quotation mark" 

The Microsoft C (versions 6.0 and earlier) extension to the ANSI C standard that 
previously expanded macro formal arguments appearing inside string literals and 
character constants is no longer supported. Code that relied on this extension 
should be rewritten using the stringizing (#) operator .• 

Charizing Operator (#@) 
The charizing operator can be used only with arguments of macros. If #@ 
precedes a formal parameter in the definition of the macro, the actual argument is 
enclosed in single quotation marks and treated as a character when the macro is ex­
panded. For example: 

#define makechar(x) #@x 

causes the statement 

a = makechar(b); 

to be expanded into 

a = 'b I ; 

The single-quotation character cannot be used with the charizing operator. 
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Token-Pasting Operator (##) 
The double-number-sign or "token-pasting" operator (##), which is sometimes 
called the "merging" operator, is used in both object-like and function-like mac­
ros. It permits separate tokens to be joined into a single token, and therefore can­
not be the first or last token in the macro definition. 

If a formal parameter in a macro definition is preceded or followed by the token­
pasting operator, the formal parameter is immediately replaced by the unexpanded 
actual argument. Macro expansion is not performed on the argument prior to 
replacement. 

Then each occurrence of the token-pasting operator in token-string is removed, 
and the tokens preceding and following it are concatenated. The resulting token 
must be a valid token. If it is, the token is scanned for possible replacement if it 
represents a macro name. The identifier represents the name by which the con­
catenated tokens will be known in the program before replacement. Each token 
represents a token defined elsewhere, either within the program or on the compiler 
command line. White space preceding or following the operator is optional. 

This example illustrates use of both the "stringizing" and "token-pasting" opera­
tors in specifying program output: 

#define paster( n ) printf( "token" #n " = %d", token##n ) 

If token9 is declared and the macro is called with a numeric argument like 

paster( 9 ); 

the macro yields 

pri ntf( "token" "9"" %d", token9 ); 

which becomes 

printf( "token9 %d", token9 ); 

The #undef Directive 

Syntax 

As its name implies, the #undef directive removes (undefines) a name previously 
created with #define. 

#Undef identifier 

The #undef directive removes the current definition of identifier. Consequently, 
subsequent occurrences of identifier are ignored by the preprocessor. To remove a 
macro definition using #undef, give only the macro identifier, do not give a para­
meter list. 
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Microsoft Specific 

You can also apply the #Undef directive to an identifier that has no previous defini­
tion. This ensures that the identifier is undefined. Macro replacement is not per­
formed within #undef statements. 

The #undef directive is typically paired with a #define directive to create a region 
in a source program in which an identifier has a special meaning. For example, a 
specific function of the source program can use manifest constants to define en­
vironment-specific values that do not affect the rest of the program. The #undef 
directive also works with the #if directive (see "The #Undef Directive" on page 
373) to control conditional compilation of the source program. 

In the following example, the #undef directive removes definitions of a symbolic 
constant and a macro. Note that only the identifier of the macro is given. 

#define WIDTH 
#define ADD( X, Y ) 

#undef WIDTH 
#undef ADD 

80 
(X) + (Y) 

Macros can be undefined from the command line using the /U option, followed by 
the macro names to be undefined. The effect of issuing this command is equiv­
alent to a sequence of #undef macro-name statements at the beginning of the 
file .• 

Predefined Macros 
The C++ compiler recognizes five predefined ANSI C macros, and the Microsoft 
C++ implementation provides several more. The names of the ANSI predefined 
macros begin and end with two underscores. These macros take no arguments and 
cannot be redefined. Their value must be constant throughout compilation. 

Table 13.1 Predefined Macros 

Identifier Compatibility Value 

_ CHAR_ UNSIGNED Microsoft Defined only when the /J compiler option 
is given to make char unsigned by default. 

__ cplusplus ANSI C++ The value ofthis macro is not significant. 
If it is defined, the program is compiled 
as C++. This macro is not defined for 
translation units compiled as C. 

__ DATE__ ANSI C, C++ The translation date of the current source 
file. The date is a character string of the 
form "Mmm dd yyyy". The quotes are 
included to form a proper C++ string. 
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Table 13.1 ( continued) 

Identifier Compatibility Value 

_DLL Microsoft Defined for run-time library as a DLL 
(lMD compiler option). 

_FAST Microsoft Defined if If option (fast compile) is used. 
__ FILE __ ANSIC, C++ The name of the current source file. 

_FILE_ expands to a string surrounded 
by double quotes. 

__ LINE __ ANSIC, C++ The line number in the current source file. 
The line number is a decimal number. 

_M_I286 Microsoft Defined for 80286 processor (lG2 
compiler option). 

_~I386 Microsoft Defined for 80386 processor (flat-model 
compilation). 

_M_I8086 Microsoft Defined for 8086 and 8088 processors 
(default or IGO compiler option). 

_~I86 Microsoft Always defined. Identifies target machine 
as a member of the 8086 family. 

_M_I86mM Microsoft Always defined. Identifies memory 
model, where m is either S (small or tiny 
model), C (compact model), M (medium 
model), L (large model), or H (huge 
model). If huge model is used, both 
M_I86LM and M_I86HM are defined. 

Small model is the default. For more 
information about memory models, see 
Appendix E, "Microsoft-Specific 
Modifiers." 

_MSC_VER Microsoft Defines the compiler version as a string 
literal in the form: ddd. For Microsoft 
CIC++ version 7.0, the string is "700". 

MSDOS Microsoft Always defined. Identifies target 
operating system as MS-DOS. 

_MT Microsoft Defined for multithread library (IMT, 
IML, or IMD compiler option). 

NO_EXLKEYS Microsoft No longer emitted by the compiler. This 
macro was defined in previous versions of 
Microsoft C for compilations that used 
the IZa (ANSI-conformance) option. In C 
7.0, the _STDC_ macro is used instead. 

__ PCODE Microsoft Defined for sections of code that are 
compiled as p-code. 
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Table 13.1 (continued) 

Identifier 

__ TIME __ 

__ TIMESTAMP __ 

Compatibility Value 

Microsoft Defined if If option (fast compile) is used. 

ANSI C 1 if IZa (ANSI-conformance) option is 
used; otherwise undefined. 

ANSI C, C++ The translation time of the current source 
file. The time is a character string of the 
form "hh :mm: 55". The quotes are 
included to form a proper C++ string. 

Microsoft The date and time of translation of the 
current translation unit. The timestamp is 
a character string of the form "Odd Mmm 
d d h h : mm : 5 5 ". The quotes are induded 
to form a proper C++ string. 

13.3 Include Files 

Syntax 

The #include directive tells the preprocessor to treat the contents of the named file 
as if it appeared in the source program at the point where the directive appears. 
You can organize constant and macro definitions into include files and then use 
#include directives to add these definitions to any source file. Include files are 
also useful for incorporating declarations of external variables and complex data 
types. You only need to define and name the types once in an include file created 
for that purpose. 

#include " q-char-sequence " 

#include < h-char-sequence > 

q-char-sequence: 
any sequence of characters except" and 
the end-of-line character specifying a filename 

h-char-sequence: 
any sequence of characters except < > and 
the end-of-line character specifying a filename 

Both forms cause replacement of that directive by the entire contents of the source 
file given. The difference between the two forms is how they search for header 
files when the path is incompletely specified: 



Syntax Form 

Quoted fonn 

Angle-bracket fonn 
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Action 

This fonn, specified as #include "filename.h", instructs 
the preprocessor to look in the parent directory and paths 
specified using the INCLUDE environment variable or 
the II compile option for include files. 

This form, specified as #include <filename.h>, causes 
the preprocessor to search along the path specified with 
the INCLUDE environment variable and the II compile 
option for header files. 

The q-char-sequence and h-char-sequence are filenames optionally preceded by a 
directory specification. The filename must name an existing file. The syntax of the 
file specification depends on the operating system on which the program is 
compiled. 

The preprocessor stops searching as soon as it finds a file with the given name. If 
you specify a complete, unambiguous path specification for the include file be­
tween two sets of double quotation marks (" "), the preprocessor searches only 
that path specification and ignores the standard directories. 

If the filename enclosed in double quotation marks is an incomplete path specifica­
tion, the preprocessor first searches the "parent" file's directory. A parent file is 
the file containing the #include directive. For example, if you include a file 
named fi 1 e2 within a file named fi 1 el, fi 1 el is the parent file. 

Include files can be "nested"; that is, an #include directive can appear in a file 
named by another #include directive. For example, fi 1 e2, above, could include 
fi 1 e3. In this case, fi 1 el would still be the parent of fi 1 e2, but would be the 
"grandparent" of fi 1 e3. 

When include files are nested, directory searching begins with the directories of 
the parent file, then proceeds through the directories of any grandparent files. 
Thus, searching begins relative to the directory containing the source currently 
being processed. If the file is not found, the search moves to directories specified 
on the compiler command line. Finally, the standard directories are searched. For 
example: 

#include <stdio.h> 

This statement adds the contents of the file named STDIO.H to the source pro­
gram. The angle brackets cause the preprocessor to search the standard directories 
for STDIO.H, after searching directories specified on the command line. 

For file specifications enclosed in angle brackets, the preprocessor does not search 
the current working directory. It begins by searching for the file in the directories 
specified on the compiler command line, then in the standard directories specified 
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Microsoft Specific 

Microsoft Specific 

in the INCLUDE environment variable. The following example shows file 
inclusion using the quoted form: 

flinclude "defs.h" 

This example adds the contents of the file specified by DEFS.H to the source pro­
gram. The double quotation marks mean that the preprocessor searches the 
directory containing the "parent" source file first. 

Nesting of include files can continue up to 10 levels. Once the nested #include is 
processed, the preprocessor continues to insert the enclosing include file into the 
original source file. 

To locate includable source files, the preprocessor first searches the directories 
specified by the CL option II. If the II option is not present or fails, the preproces­
sor uses the INCLUDE environment variable to find any include files within angle 
brackets. If more than one directory appears as part of the II option or within the 
INCLUDE environment variable, the preprocessor searches them in the order in 
which they appear. 

For example, the command 

CL IID:\C700\INCLUDE MVPROG.C 

causes the preprocessor to search the directory D:\C700\INCLUDE for include 
files such as STDIO.H. The commands 

SET INCLUDE = D:\C700\INCLUDE 
CL MVPROG.C 

have the same effect. If both sets of searches fail, a fatal error is generated .• 

If the filename is fully specified for an include file with a path that includes a 
colon (for example, F:\C700\SPECIAL\INCL\TEST.H), the preprocessor follows 
the path. 

If the filename is not fully specified, the preprocessor searches the directory of the 
file that included it. If the file is not found there, the preprocessor searches the 
parent directory, the parent's parent, and so on, terminating with the root directory. 
If the include file is not found in any of these directories, the rules specified in the 
previous Microsoft Specific note apply .• 
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13.4 Conditional Compilation 
This section describes the syntax and use of directives that control "conditional 
compilation." These directives allow you to suppress compilation of parts of a 
source file by testing a constant expression or identifier to determine which text 
blocks are passed on to the compiler and which text blocks are removed from the 
source file during preprocessing. 

The #if, #elif, #else, and #endif Directives 

Syntax 

The #if directive, with the #elif, #else, and #eDdif directives, control compilation 
of portions of a source file. If the expression you write (after the #if) has a nonzero 
value, the line group immediately following the #if directive is retained in the 
translation unit. 

conditional: 
if-part elif-partsopt else-partopt endif-line 

if-part: 
if-line text 

if-line: 
#if constant-expression 
#ifdef identifier 
#ifDdef identifier 

elif-parts: 
elif-line text 
elif-parts elif-line text 

elif-line: 
#elif constant-expression 

else-part: 
else-line text 

else-line: 
#else 

endif-line: 
#eDdif 

Each #if directive in a source file must be matched by a closing #eDdif directive. 
Any number of #elif directives can appear between the #if and #eDdif directives, 
but at most one #else directive is allowed. The #else directive, if present, must be 
the last directive before #eDdif. 
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The #if, #elif, #else, and #endif directives can nest in the text portions of other #if 
directives. Each nested #else, #elif, or #endif directive belongs to the closest pre­
ceding #if directive. 

All conditional-compilation directives such as #if and #ifdefmust be matched 
with closing #endif directives prior to the end of file, or an error message is 
generated. When conditional compilation directives are contained in include files, 
they must satisfy the same conditions: there must be no unmatched conditional­
compilation directives at the end of the include file. 

Macro replacement is performed within the part of the command line that follows 
an #elif command, so a macro call can be used in the constant-expression. 

The preprocessor selects one of the given occurrences of text for further pro­
cessing. A block specified in text can be any sequence of text. It can occupy more 
than one line. Usually text is program text that has meaning to the compiler or the 
preprocessor. 

The preprocessor processes the selected text and passes it to the compiler. If text 
contains preprocessor directives, the preprocessor carries out those directives. Any 
text blocks not selected by the preprocessor are not compiled. 

The preprocessor selects a single text item by evaluating the constant expression 
following each #if or #elif directive until it finds a true (nonzero) constant expres­
sion. It selects all text (including other preprocessor directives beginning with #) 
up to its associated #elif, #else, or #endif. 

If all occurrences of constant-expression are false, or if no #elif directives appear, 
the preprocessor selects the text block after the #else clause. If the #else clause is 
omitted and all instances of constant-expression in the #if block are false, no text 
block is selected. 

The constant-expression is an integer constant expression with these additional 
restrictions: 

• Expressions must have integral type and can only include integer constants, 
character constants, and the defined operator. 

• The expression cannot use sizeof or a type-cast operator. 

• The target environment may not be able to represent all ranges of integers. 

• The translation represents type int the same as type long and unsigned int the 
same as unsigned long. 

• The translator can translate character constants to a set of code values different 
from the set for the target environment. To determine the properties of the tar­
get environment, check values of macros from LIMITS.H in an application 
built for the target environment. 
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• The expression must not perform any environmental inquiries and must remain 
insulated from implementation details on the target computer. 

The preprocessor operator defined can be used in special constant expressions, as 
shown by the following syntax: 

defined ( identifier ) 

defined identifier 

This constant expression is considered true (nonzero) if the identifier is currently 
defined; otherwise, the condition is false (0). An identifier defined as empty text is 
considered defined. The defined directive can be used in a #if and a #elif direc-
ti ve, but nowhere else. 

In the following example, the #if and #endif directives control compilation of one 
of three function calls: 

#if defined(CREDIT) 
credit(); 

#elif defined(DEBIT) 
debit(); 

#else 
printerror() ; 

fIend if 

The function call to credit is compiled if the identifier CREDIT is defined. If the 
identifier DEB IT is defined, the function call to debi t is compiled. If neither iden­
tifier is defined, the call to pri nterror is compiled. Note that CREDIT and 
c red it are distinct identifiers in C++ because their case is different. 

These next conditional compilation statements assume a previously defined sym­
bolic constant named DLEVEL. 

#i f DLEVEL > 5 
#define SIGNAL 1 
#if STACKUSE == 1 

#define STACK 200 
#else 

#define STACK 100 
#endif 

#else 
#define SIGNAL 0 
#if STACKUSE == 1 

#define STACK 100 
#else 

#define STACK 50 
#endif 

#endif 
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/fif DLEVEL == 0 
Itdefine STACK 0 

/felif DLEVEL == 1 
/fdefine STACK 100 

Itel if DLEVEL > 5 
display( debugptr ); 

/felse 
/fdefine STACK 200 

/fendif 

The first #if block shows two sets of nested #if, #else, and #endif directives. The 
first set of directives is processed only if DLEVEL > 5 is true. Otherwise, the state­
ments after #else are processed. 

The #elif and #else directives in the second example are used to make one of four 
choices, based on the value of DLEVEL. The constant STACK is set to 0, 100, or 200, 
depending on the definition of DLEVEL. If DLEVEL is greater than 5, then the 
statement 

/felif DLEVEL > 5 
display(debugptr); 

is compiled and STACK is not defined. 

A common use for conditional compilation is to prevent mUltiple inclusions of the 
same header file. In C++, where classes are often defined in header files, con­
structs like the following can be used to prevent multiple definitions: 

/1 EXAMPLE.H - Example header file 

/fif !defined( EXAMPLE_H 
/fdefine EXAMPLE_H 

class Example 
{ 

} ; 

/fendif II !defined( EXAMPLE_H) 

The preceding code checks to see if the symbolic constant EXAMPLE_H is defined. 
If so, the file has already been included and need not be reprocessed. If not, the 
constant EXAMPLE_ H is defined to mark EXAMPLE.H as already processed. 
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Conditional compilation expressions are treated as signed long values, and these 
expressions are evaluated using the same rules as expressions in C++. For ex­
ample, this expression: 

#if 0xFFFFFFFFL > lUL 

is true .• 

The #ifdef and #ifndef Directives 

Syntax 

The #ifdef and #ifndef directives perform the same task as the #if directive when 
it is used with defined(identifier). 

#ifdef identifier 

#ifndef identifier 

is equivalent to 

#if defined identifier 

#if !defined identifier 

You can use the #ifdef and #ifndef directives anywhere #if can be used. The 
#ifdef identifier statement is equivalent to #i f 1 when identifier has been de­
fined, and is equivalent to #i f 0 when identifier has not been defined or has been 
undefined with the #Undef directive. These directives check only for the presence 
or absence of identifiers defined with #define, not for identifiers declared in the 
C++ source code. 

These directives are provided only for compatibility with previous versions of the 
language. The defined(identifier) constant expression used with the #if directive is 
preferred. 

The #ifndef directive checks for the opposite of the condition checked by #ifdef. 
If the identifier has not been defined (or its definition has been removed with 
#Unde!), the condition is true (nonzero). Otherwise, the condition is false (0). 

Microsoft Specific The identifier can be passed from the command line using the!D option. Up to 30 
macros can be specified with !D. 

This is useful for checking if a definition exists since a definition can be passed 
from the command line. For example: 
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II PROG.CPP 
ifi fndef test 
#define final 
#endif 

II These three statements go in your source code. 

CL IDtest prog.cpp II This is the command for compilation .• 

The Null Directive (#) 

Syntax 

The null preprocessor directive is a single number sign (#) alone on a line. It has 
no effect. 

# 

13.5 line Control 

~ •• _&_~ 
~ylllaA 

The #line directive tells the preprocessor to change the compiler's internally 
stored line number and filename to a given line number and filename. The com­
piler uses the line number and filename to refer to errors that it finds during compi­
lation. The line number usually refers to the current input line, and the filename 
refers to the current input file. The line number is incremented after each line is 
processed. 

#ii:ne cunstant . 'filename!! opt 

The constant is interpreted as a decimal integer. Macro replacement can be per­
formed on the preprocessing tokens, but the result must evaluate to the correct 
syntax. 

_ You can alter the source line number and filename by writing a #line directive. 
The translator uses the line number and filename to determine the values of the 
predefined macros __ FILE __ and __ LINE __ . For information on these prede­
fined macros, see "Predefined Macros" on page 374. 

If you change the line number and filename, the compiler ignores the previous 
values and continues processing with the new values. The #line directive is typi­
cally used by program generators to cause error messages to refer to the original 
source file instead of to the generated program. 

The constant value in the #line directive can be any integer constant. The filename 
can be any combination of characters and must be enclosed in double quotation 
marks (" "). Iffilename is omitted, the previous filename remains unchanged. 

The current line number and filename are always available through the predefined 
macros __ LINE __ and __ FILE __ . You can use the __ LINE __ and 
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__ FILE __ identifiers to insert self-descriptive error messages into the program 
text. See "Predefined Macros" on page 374. 

The __ FILE __ macro expands to a string whose contents are the filename, sur­
rounded by double quotation marks (It It). 

'line 151 "copy.cpp" 

In this statement, the internally stored line number is set to 151 and the filename is 
changed to copy. cpp. 

'define ASSERT(cond) \ 
((cond) ? (void)0 : \ 

((void)(cerr « "assertion failure \"" « 'cond « \ 
"\" line"« LINE «\ 
" file (" « __ FILE __ « ")\n"») 

In this example, the macro ASSERT uses the predefined identifiers __ LINE __ 
and __ FILE __ to print an error message about the source file if a given "asser­
tion" is not true. 

13.6 Error Directives 

Syntax 

Error directives produce compiler-time error messages. 

#error token-string 

The error messages include the argument token-string and are subject to macro ex­
pansion. These directives are most useful for detecting programmer inconsisten­
cies and violation of constraints during preprocessing. The following example 
demonstrates error processing during preprocessing: 

'if ldefined( __ cplusplus) 
'error C++ compiler required. 
1tendif 

When #error directives are encountered, compilation terminates. 

13.7 Pragma Directives 
Each implementation of C++ supports some features unique to its host machine. 
Some programs, for instance, need to exercise precise control over the memory 
areas where data is placed or to control the way certain functions receive parame­
ters. The #pragma directives offer a way for each C++ compiler to offer machine­
specific features while retaining overall compatibility with the C++ language. 
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Syntax 

Since pragmas are machine-specific by definition, they usually are different for 
every C++ compiler. 

Important The pragmas discussed in this section apply to Microsoft C/C++ 
version 7.0. 

#pragma token-string 

The token-string is a series of characters that gives a specific compiler instruction 
and arguments, if any. The number sign (#) must be the first nonwhite-space char­
acter on the line containing the pragma; white-space characters can separate the 
number sign and the word pragma. Following #pragma, write any text that the 
translator can parse as preprocessing tokens. The argument to #pragma is subject 
to macro expansion. 

If the compiler finds a pragma that it does not recognize, it issues a warning, but 
compilation continues. 

Pragmas can be used in conditional statements, to provide new preprocessor 
functionality, or to provide implementation-defined information to the compiler. 

The #pragma directives instruct the compiler to implement the features specified 
by the argument. The Microsoft C++ compiler recognizes the following pragmas: 

alloctext function loop_opt pagesize 

auto_inline inlinL depth message same_seg 

check_ pointer inlinLrecursion optimize skip 

check_stack intrinsic pack subtitle 

comment line size page title 

These pragma directives are summarized in the following list. 

#pragma alloc text( textsegment,junctioni, ... ) 
Names the segment where the specified routine definitions are to reside. This 
pragma takes effect at the first function defined after the pragma is seen. 

#pragma auto_inline( [on I off] ) 
Inhibits the inline expansion of a function. The auto_inline pragma inhibits the 
preprocessor from expanding a function when the /Ob2 command-line option is 
in effect. To use it, place one pragma before and immediately after a function 
definition. This pragma takes effect at the first function definition after the 
pragma is seen. 



Preprocessing 387 

#pragma checlL pointer ([ { on I off } ]) 
Instructs the compiler to tum off pointer checking if off is specified, or to tum 
on pointer checking if on is specified. If you do not specify either on or off, the 
effect of checlL pointer is to reverse the current state of pointer checking. If 
pointer checking is on, it is turned off and vice versa. 

This pragma takes effect at the first function defined after the pragma is seen. 

#pragma checlLstack ([{ on I off}]) 
Instructs the compiler to tum off stack probes if off is specified, or to tum on 
stack probes if on is specified. If no argument is given, stack probes are treated 
according to the default (on, unless /Gs was used). You can reduce the size of a 
program and speed up execution slightly by removing stack probes with either 
the /Gs option or the checlLstack pragma. 

This pragma takes effect at the first function defined after the pragma is seen. 

#pragma code_seg ( [ "segment-name" [, "segment-class"] ) 
The codLseg pragma specifies the default segment for functions. This is equiv­
alent to using the /NT (name of TEXT segment) compilation option. It is also 
equivalent to specifying functions as based. You can, optionally, specify the 
class as well as the segment name. For example: 

#pragma code_seg( "MY_CODE", "CODE" ) 

Specifying the code_seg pragma with no arguments causes the compiler to allo­
cate all following functions in the default code segment. 

The preceding example causes functions following to be allocated in a segment 
called MY_CODE. The segment is given a CODE class. 

Note There is no way to specify the segment class using based function alloca­
tion or the /NT compilation option. 

C++ functions allocated using the /NT option or code_seg pragma do not retain 
any information about their location. However, C++ functions allocated using 
the based function-allocation syntax retain that information in their external 
name. 

#pragma comment( comment-type [, commentstring]) 
Allows you to place a comment record in an object file or executable file. The 
comment-type specifies the type of comment record. The optional comment­
string is a string literal that provides additional information for some comment 
types. Because comment-type is a string literal, it obeys all the rules for string 
literals with respect to escape characters, embedded quotation marks ("), and 
concatenation. 
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#pragma daULseg ( [ "segment-name"[, "segment-class"] ) 
The daULseg pragma specifies the default segment for data. This is equivalent 
to using the IND (name of DATA segment) compilation option. It is also equiv­
alent to specifying objects or pointers as based. You can, optionally, specify the 
class as well as the segment name. For example: 

'pragma data_seg( "MY_DATA", "DATA" ) 

Specifying the daUL seg pragma with no arguments causes the compiler to allo­
cate all following data in the default data segment. 

The preceding example causes functions following to be allocated in a segment 
called MY_DATA. The segment is given a DATA class. 

Note There is no way to specify the segment class using based function alloca­
tion or the IND compilation option. 

c++ data allocated using the IND option or datLseg pragma do not retain any 
information about their location. However, C++ data allocated using the based 
syntax retain that information in their external name. 

#pragma function(junctioni [,jUnction2, ... ]) 
Specifies that calls to the specified functions will be normal. The intrinsic 
pragma affects a specified function beginning where the pragma appears. The 
effect continues to the end of the source file or to the appearance of a function 
pragma specifying that function. 

This pragma takes effect at the first function defined after the pragma is seen. 

#pragma hdrstop [( ''filename'' )] 
The hdrstop pragma controls the way precompiled headers work. The filename 
is the name of the precompiled header file to use or create (depending on compi­
lation options). Iffilename does not contain a path specification, the precom­
piled header file is assumed to be in the same directory as the source file. See 
Chapter 2 in the Programming Techniques manual for more information about 
precompiled header files. 

#pragma iniLseg ( { compiler I lib I user I "seg-name" } ) 
The iniL seg pragma specifies a keyword or segment that affects the order in 
which startup code is executed. Because initialization of global static objects 
can involve executing code, you must specify a keyword that defines when the 
objects are to be constructed. It is particularly important to use the iniLseg 
pragma in DLLs or libraries requiring initialization. 
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The options to the iniLseg pragma are: 

Option 

compiler 

lib 

nser 

seg-name 

Meaning 

Reserved for Microsoft C run-time library initialization. 
Objects in this group are constructed first. 

Available for third-party class-library vendors' initializations. 
Objects in this group are constructed after those marked as 
compiler but before any others. 

Available to any user. Objects in this group are constructed 
last. 

Allows explicit specification of the initialization segment. 
Objects in a user-specified seg-name are not implicitly 
constructed; however, their addresses are placed in the 
segment named by seg-name. 

If you need to defer initialization (for example, in a DLL), you may choose to 
specify the segment name explicitly. You must then call the constructors for 
each static object. For an example of how these initializations are done, see the 
file CRTODAT.ASM in the STARTUP\DOS directory. 

#pragma inline_depth( [0 ... 255] ) 
Controls the number of times inline expansion can occur by controlling the 
number of times that a series of function calls can be expanded (from 0 to 255 
times). Use this pragma to control functions marked as inline and __ inline, or 
functions that the compiler automatically expands under the IOb2 option. Re­
quires an lOb command-line option setting of either 1 or 2. 

This pragma takes effect at the first function defined after the pragma is seen. 
Its default setting is 8. Once the depth set by this pragma is exceeded, calls are 
made. 

#pragma inline_recursion( [on I off] ) 
Controls the inline expansion of direct or mutually recursive function calls. Use 
this pragma to control functions marked as inline and __ inline, or functions 
that the compiler automatically expands under the IOb2 option. Requires an 
lOb command-line option setting of either 1 or 2. The default state for 
inlinL recursion is off. 

This pragma takes effect at the first function defined after the pragma is seen. 

#pragma intrinsic(jUnctionl [,junction2, ... ] ) 
Specifies that calls to the specified functions are intrinsic. Alternatively, you 
can use the IOi option to make intrinsic the default for functions that have intrin­
sic forms. In this case, you can use the function pragma to override IOi for 
specified functions. 

This pragma takes effect at the first function defined after the pragma is seen. 
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The following functions have intrinsic fonus: 

abs _inpw memcpy 

_alloca labs memset 

_disable _lrotl _outp 

_enable _lrotr _outpw 

_inp memcmp _rotl 

#pragma linesize( [characters]) 

_rotr 

setjmp 

strcat 

strcmp 

strcpy 

strlen 

_strset 

Specifies the number of characters per line in the source listing. The optional 
parameter characters is an integer constant in the range 79-132. If characters 
is absent, the compiler uses the value specified in the lSI option or, if that op­
tion is absent, the default value of 79 characters per line. 

#pragma loop_ opt( [{ off I on}] ) 
The loop_ opt pragma is obsolete. Use the I option of the optimize pragma in its 
place. 

#pragma message( message string ) 
Sends a string literal to the standard output without terminating the compilation. 
The messagestring parameter can be a macro that expands to a string literal. 
You can concatenate such macros with string literals in any combination. 

#pragma native_caller ([ { on I off} ] ) 
The native_ caller pragma controls the removal of native-code entry points 
from within source code. If you have p-code functions that are called only by 
other p-code functions, you can omit those entry points and save those bytes by 
using the IGn compilation option or, on a function-by-function basis, using this 
pragma. See Chapter 3 in the Programming Techniques manual for more infor­
mation about p-code. 

#pragma optimize( "[optimization-option-list]", {off I on} ) 
Specifies optimizations to be perfonued. Must appear outside a function. The 
optimization option list may be zero or more of the following: a, c, e, g, 1, n, p, 
q, t, and w. These letters correspond to the 10 compilation options. 

This pragma takes effect at the first function defined after the pragma is seen. 

#pragma pack( [{ 11214 }]) 
Specifies packing alignment for structure types. You can use the IZp option to 
specify the same packing for all structures in a module. 

This pragma takes effect at the first function defined after the pragma is seen. 
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#pragma page( [pages] ) 
Skips the specified number of pages in the source listing. The page pragma 
generates a formfeed (page eject) in the source listing (created with IFs) at the 
place where the pragma appears. 

#pragma pagesize( [lines]) 
Sets the number of lines per page in the source listing. The optional lines para­
meter is an integer constant in the range 15-255 that specifies the number of 
lines that you want each page of the source listing to have. If lines is absent, the 
pragma sets the page size to the number of lines specified in the /Sp option or, 
if that option is absent, to a default value of 63 lines. 

#pragma same_seg( variablel, ... ) 
Tells the compiler to assume that the specified external variables are allocated 
in the same data segment. You are responsible for making sure that these vari­
ables are put in the same data segment. One way to do this is to specify the IND 
option when you compile the program. Variables specified in a same_ seg 
pragma must be explicitly declared with extern storage class, and they must 
either be explicitly declared with the __ far keyword or assumed to be far be­
cause of the memory model used (compact, large, or huge). 

This pragma takes effect at the first function defined after the pragma is seen. 

#pragma skip( [lines]) 
Skips the specified number of lines in the source listing. The skip pragma gener­
ates a newline character (carriage return-linefeed) in the source listing at the 
point where the pragma appears. The optional lines parameter is an integer con­
stant in the range 1-127 that specifies the number of lines to skip. If this para­
meter is absent, the skip pragma defaults to one line. 

#pragma subtitle( "subtitlename" ) 
Specifies a subtitle for the source listing. The titlename parameter can be a 
macro that expands to a string literal. You can concatenate such macros with 
string literals in any combination. 

#pragma title( "titlename" ) 
Specifies a title for the source listing. The title appears in the upper-left corner 
of each page of the listing. The titlename parameter can be a macro that ex­
pands to a string literal. You can concatenate such macros with string literals in 
any combination. 

#pragma warning( warning-specifier: warning-number-list [,warning-specifier: 
warning-number-list ... ] ) 

The warning pragma allows selective modification of the behavior of compiler 
warning messages. 
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The warning-specifier can be: once, default, 1, 2, 3, 4, disable, or error. These 
work as follows: 

warning-specifier 

once 

default 

1,2,3,4 

disable 

error 

Meaning 

Cause the message(s) to be displayed only once. 

Cause the compiler's default behavior to apply to the 
message(s). 

Force the warning message(s) to have the specified 
warning level. 

Cause the compiler not to issue the warning 
message(s). 

Cause the compiler to report the warnings as error. 

The warning-number-list can contain any warning numbers in the ranges 1 
through 699, and 4001 through 4699. Multiple options can be specified in the 
same pragma directive as follows: 

#pragma warning( disable: 4507 34; once: 4385; error: 164 ) 

This is functionally equivalent to: 

l/pragma warning( disable: 4138 34 ) II Disable warning messages 
II 4507 and 34. 

l/pragma warning( once : 4306 II Issue warning 4385 
1/ only once. 

l/pragma warning( error : 164 II Report warning 164 
II as an error. 





Phases of Translation 

A c++ program consists of one or more "source files," each of which contains 
some of the text of the program. A source file, together with its "include files" 
(files that are included using the #include preprocessor directive) but not includ­
ing sections of code removed by conditional-compilation directives such as #if, is 
called a "translation unit." 

Source files can be translated at different times-in fact, it is common to translate 
only out-of-date files. The translated translation units can be kept either in separate 
object files or in object-code libraries. These separate translation units are then 
linked to form an executable program (for example, a .EXE or .COM file). 

Translation units can communicate using: 

• Calls to functions that have external linkage. 

• Calls to class member functions that have external linkage. 

• Direct modification of objects that have external linkage. 

• Direct modification of files. 

• Interprocess communication (for Microsoft Windows applications only). 

The following translation phases are not strictly required, but every implementa­
tion of C++, including Microsoft C++, must behave "as if' these rules were fol­
lowed. (The actual order of translation is not important.) 

1. Character mapping. Characters in the source file are mapped to the internal 
source representation. Trigraph sequences are converted to single-character in­
ternal representation in this phase. 

2. Line splicing. All lines ending in a backslash (\) and immediately followed by a 
newline character are joined with the next line in the source file, forming logi­
cal lines from the physical lines. Unless it is empty, a source file must end in a 
newline character that is not preceded by a backslash. 

3. Tokenization. The source file is broken into preprocessing tokens and white­
space characters. Comments in the source file are replaced with one space char­
acter each. Newline characters are retained. 
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4. Preprocessing. Preprocessing directives are executed and macros are expanded 
into the source file. Use #include statements to invoke translation steps 1 
through 4 on included text. 

S. Character-set mapping. All source-character-set members and escape sequences 
are converted to their equivalents in the execution-character set. For Microsoft 
C++, both the source and the execution character sets are ASCII. 

6. String concatenation. All adjacent string and wide-string literals are con­
catenated. For example. "Stri ng " "concatenati on" becomes 
"String concatenation". 

7. Translation. All tokens are analyzed syntactically and semantically; these 
tokens are converted into object code. 

8. Linkage. All external references are resolved to create an executable program. 

The compiler issues warnings or errors during phases of translation in which it en­
counters syntax errors. 



Microsoft-Specific Modifiers 

Many of the Microsoft-specific keywords can be used to modify declarators to 
form derived types. These keywords are shown in Table B.I. (For more informa­
tion about declarators, see Chapter 7.) 

Table B.1 Microsoft-Specific Keywords 

Used to Form 
Keyword Meaning Derived Types? 

__ asm Insert the following assembly-language code. No 
__ based The name that follows declares a 16-bit offset to Yes 

the base contained in the declaration.! 
__ cdecl The name that follows uses the C naming and Yes 

calling conventions. 
__ emit Emit the following byte exactly (only legal No 

inside __ asm blocks).2 

__ export The name that follows is marked with the Yes 
EXPORT attribute. 

__ far The name that follows declares an object or Yes 
function that uses segmented addressing.2 

__ fastcall The name that follows declares a function that Yes 
uses registers, when available, instead ofthe 
stack for argument passing. 

__ fortran The name that follows uses the Yes 
FORTRAN/Pascal naming and 
calling conventions.2 

__ huge The name that follows declares an object or Yes 
function that uses segmented addressing.2 

__ interrupt The name that follows declares a function that is Yes 
an interrupt service routine. 
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Table B.1 (continued) 

Keyword 

__ loadds 

__ pascal 

__ saveregs 

__ segment 

__ segname 

__ stdcall 

Meaning 

The name that follows declares a function that 
must load the DS register as part of the entry 
sequence.2 

The name that follows declares a name that 
represents a 16-bit offset into DGROUP.4 

The name that follows uses the 
FORTRANlPascal naming and 
calling conventions.2 

The name that follows declares a function. The 
function entry sequence saves the values in all 
registers.2 

The name that follows specifies a segment 
value-for use with based pointers and objects. 

Built-in conversion function that takes the name 
of a segment and returns a value of type 
_segment-for use with based pointers and 
objects. 

Specifies the name of the segment in which a 
based pointer is stored-for use with based 
pointers and objects. 

The name that follows specifies a function that 
observes the standard calling convention.3 

Used to Form 
Derived Types? 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

1 Only based-on-pointer form allowed in 32-bit target compilations. In such compilations, they represent a 

32-bit offset to a 32-bit base. 

2TIlegal in 32-bit compilations. 

3Legal only in 32-bit target compilations. 

4The __ near keyword is allowed in 32-bit target compilations, but it is ignored. 

The following sections discuss the syntactic usage and semantic meaning of the 
keywords in Table B.l. 

B.1 Memory-Model Modifiers 
Microsoft c++ supports explicit modification of addressing of an object or func­
tion. This permits more flexibility in writing code for Intel 80x86 and 80x87 based 
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computers. You can specify a memory model at compile time; this explicit specifi­
cation overrides the compile-time memory model. Classes can also have an "am­
bient" memory model-the memory model used if none is explicitly specified. 
Explicit specification overrides the ambient memory model as well. 

Memory-Model Modifiers and Objects 
Memory-model modifiers can be used when declaring objects to explicitly specify 
addressing. A memory-model modifier affects the token immediately to its right. 
The declaration of pointers provides a good example of how this works. Consider 
the following declarations: 

char __ far *lpchObject; 
char * __ far pchlFarPointer; 
char __ far * __ far lpchlFarObject; 

II Decl arati on 1 
II Declaration 2 
II Declaration 3 

In the first declaration, the keyword __ fa r modifies the token *, making 
1 pchObj ect a pointer in the default data segment to a "far" object-an object 
accessed with a 32-bit segment:offset address. 

In the second declaration, the keyword __ fa r modifies the pchl Fa rPoi nter 
token. This modification makes pchl Fa rPoi nter a pointer that is not necessarily 
in the default data segment that refers to an object of type char in the default data 
segment. It declares a far-allocated pointer to a near object. 

In the third declaration, the keyword __ far is used twice: once to modify the 
pointer and once to modify the object. Therefore, it declares a far-allocated pointer 
to a far object. 

Memory-Model Modifiers and Nonmember Functions 
The memory-model modifiers can also be used to declare functions. In that con­
text, they specify whether the function call is a far (intersegment) or near (intraseg­
ment) call. Consider the following declaration: 

char __ far * __ far _fstrcpy( char __ far *dst, char __ far *src ); 

The preceding code declares a far function ( _ fstrcpy ) that takes two arguments 
of type "far pointer to cha r" and returns type "far pointer to cha r." The declara­
tion can be broken down as follows: 

• Function returning. 

• Accepting two arguments of type far pointer to c h a r. 

• Making a far (intersegment) call to the function named _ fstrcpy. 

• Returning a far pointer to type c h a r. 
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Memory-Model Modifiers and Member Functions 
Memory-model modifiers can be used with nonstatic class-member functions to 
specify: 

• Calling of the function (intersegment or intrasegment). 

• Addressing for the this pointer, 

The following example declares a class that illustrates how these options work: 

class String 
{ 

public: 

} ; 

char * far GetStringPointerl(); 
char * GetStringPointer2() __ far; 

In the preceding class declaration, GetStri ngPoi nterl is always called with an in­
tersegment (far) call. The this pointer passed to GetStri ngPoi nterl is dependent 
on the ambient memory model (if any) and the compilation options. The function 
GetStri ngPoi nter2 is invoked with the call implied by the compilation options. 
The this pointer passed to GetStri ngPoi nter2 is always far. 

The declaration syntax shown for GetStri ngPoi nter2 uses the cv-mod-list part of 
the syntax (see "Overview" in Chapter 7, on page 183) and is illegal for nonmem­
ber functions or static member functions. Using this syntax, only the memory-
model specifiers, __ near, __ far, and __ huge can be used. ' 

By using different modifiers for the this pointer, you can create functions that be­
have properly with respect to the address space in which their objects are located. 
This is particularly useful for any class that does memory management. 

Memory-Model Modifiers and Classes 

Syntax 

Memory-model modifiers can also be used in declaration of an ambient memory 
model for classes. This "ambient memory model" overrides the addressing 
specified in compilation options for a given class. 

class-head: 
class-key rmodelopt identijieropt base-specopt 
class-key rmodelopt class-nameopt base-specopt 
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Consider this example: 

class far CollectionOfCustomers 
{ 

public: 
CollectionOfCustomers(); 

int CCAdd( Customer *CNewCustomer ); 
Customer& CCFindName( char *Name ); 

} ; 

The preceding example declares a class called Coll ect i onOfCustomers. No 
matter what memory model is specified in the compilation options, objects of type 
Coll ect i onOfCustomers, along with this pointers for member functions, are far un­
less specifically declared as near. Consider the following example: 

CollectionOfCustomers *pBestCustomers; 

The preceding example declares a pointer to an object whose data is addressed far 
(not necessarily in the default data segment). The this pointer, which is used for 
the member functions Co 11 ect i onOfCus tome rs (the constructor), CCAdd, and 
CCFi ndName, is a far pointer. 

The ambient memory model can be overridden in explicit declarations as follows: 

Co11ectionOfCustomers __ near *npBestCustomers; 

In the preceding declaration, npBestCustomers stores its member data in the de­
fault data segment (near) even though the ambient memory model calls for far ad­
dressing. The this pointer, however, is still far, as specified by the ambient 
memory model. 

Warning If a class has an ambient memory model that is specifically overridden in 
an object declaration, only methods with appropriate addressing are guaranteed to 
work. 

Memory-Model Specifiers and Overloading 
The Microsoft memory-model specifiers for function arguments and for the this 
pointer are used for disambiguation between overloaded functions. The following 
two functions are considered different because the arguments use different 
addressing: 

char *strchr( char *szString, char chTarget ); 
char *strchr( char __ far *szString, char chTarget ); 

This functionality enables different implementations, depending on the addressing 
specified. Similarly, the member functions in the following class fragment are 
different because the this pointer is overloaded: 
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near 

class 
{ 

public: 

far List 

List() __ far; 
List() __ huge; 
List() __ near; 

protected: 

II This class is intended to be far. 
II The near and huge constructors simply 
II issue run-time error messages. 

void AddressingError( char *szModel ); 
} ; 

List::List() 
{ 

far II Correct instantiation. 

II Set up the list. 

List::List() 
{ 

near II Incorrect addressing. 

AddressingError(" near"); 

List::List() __ huge II Incorrect addressing. 
{ 

AddressingError( " __ huge" ); 

II Issue error message. 
inline void AddressingError( char *szModel 
{ 

} 

cerr « "Cannot create a « szModel 
« " instance of a List.\n" 

In the preceding example, the functions List::List() __ far, List::List() 
__ nea r, and Lis t: : Li s t () __ huge, are considered different because ofthe over­
loaded this pointer. 

The __ near keyword specifies that a name is to have 16-bit addressing. For func­
tions, this 16-bit offset is assumed to be from the default code segment, _ TEXT; 
for objects, it is assumed to be from the default data segment, _DATA. Functions 
declared as __ near can be allocated in other segments by declaring them as 
__ based or using the INT compilation option. 
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far 

32-Bit Specific 
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Class-type objects declared as near have: 

• Near addressing for member data. 

• Near this pointer. 

• Function calling determined by the compilation options. 

For information about converting near addresses to far and huge, see "Pointer Con­
versions" in Chapter 3, on page 71. 

The __ near keyword is ignored in 32-bit compilations; however, no error or warn­
ing message is generated .• 

The __ far keyword specifies that a name is to have 32-bit addressing. For func­
tions, this 32-bit address contains the segment and offset of the called function; for 
objects, it contains the segment and offset of the object. 

Functions in the same compilation unit reside in the same segment unless the 
alloL text, code_ seg, or same_ seg pragmas are used, or unless the function is 
declared as based. The default naming convention for functions specified as __ far 
is source-filename TEXT. The default naming convention for objects specified as 
__ far is source-filename_DATA. 

Class-type objects declared as far have: 

• Far addressing for member data. 

• Far this pointer. 

• Function calling determined by the compilation options. 

• Limit on object or array size; the practical limit on the size of a single far object 
is 64K- data-threshold-size. The data-threshold-size defaults to 32,767, but it 
can be set using the /Gt compilation option. 

Objects declared as __ far must reside within the segment in which they start. 
Therefore, they must be smaller than 64K. This restriction allows pointer arith­
metic to be done on 16-bit values while still retaining the ability to address data in 
multiple segments. 

The alloL text pragma affects where segment functions declared as __ far reside; 
the same_ seg pragma affects assumptions the compiler makes regarding where 
segment functions and objects declared as __ far reside. For more information 
about the alloc_ text and samLseg pragmas, see "Pragma Directives" in Chapter 
13, on page 385. 

The __ far keyword is not supported in 32-bit compilations .• 
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__ huge 
The __ huge keyword specifies that a name is to have 32-bit addressing. For ob­
jects, this 32-bit address contains the segment and offset of the object; for func­
tions, it is illegal. 

The default naming convention for objects specified as __ huge is source­
filename DATA. (This is identical to the naming convention described for objects 
declared as __ far.) 

Class-type objects declared as __ huge have: 

• Far addressing for member data. 

• Far this pointer. 

• Function calling determined by the compilation options. 

• Relaxed limit on object and array size. Objects and arrays can be greater than 
64K in size; however, if an array exceeds 128K bytes in size, the individual ele­
ments must be of a length that is a power of two. 

Objects declared as __ huge trade efficiency in pointer arithmetic for relaxed 
limits on array and object size. 

Declaring an object of automatic storage class as __ huge generates an error. Only 
static arrays and memory allocated using the new operator can be declared as 
huge, as in the following example: 

struct Customer 
{ 

cha r szName[40]; II An object of type Customer 
char szAddr1[30] ; II requires 149 bytes of 
cha r szAddr2[30]; II memory. 
char szCity[30] ; 
cha r szZip[9]; 
char szPhone[10] ; 

} ; 

int main() 
{ 

} 

II Allocate a static array that occupies 447,000 bytes. 
static Customer __ huge GiantArray[3000]; 

II Allocate a dynamic array that occupies 447,000 bytes. 
Customer __ huge *pCustList = new Customer[3000]; 

Customer __ huge GiantAutoArray[3000]; II Error. Automatic. 
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based 

32-Bit Specific 

Syntax 
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Note Some, but not all, of the run-time library functions support huge types. 
Check the Run-Time Library Reference manual to see if a particular function will 
work with objects declared as __ huge. 

The __ huge keyword is not supported in 32-bit compilations .• 

Based addressing is useful when you need to: 

• Exercise precise control over the segment in which objects are allocated (static 
and dynamic based data). 

• Reference far objects using a 16- rather than a 32-bit address. This can decrease 
the size of an executable file while increasing its speed. 

• Store pointers to memory not allocated by your program-for example, ROM 
data. 

The only form of based addressing acceptable in 32-bit compilations is "based on 
a pointer" which defines a type that contains a 32-bit displacement to a 32-bit base. 

based-range-modifier: 
__ based ( base-expression) 

base-expression: 
base-constant 
based-variable 
based-abstract-declarator 
__ self 

base-constant: 
segment-name 
segment-cast 

based-variable: 
identifier 

based-abstract-declarator: 
abstract-declarator 

base-type: 
type-name 
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32-Bit Specific 

segment-name: 
__ segment ( string-literal) 

segment-cast: 
( __ segment) pointer-id 
( __ segment) & identifier 

The keywords and operators in the following list have been added to the language 
to support based addressing: 

Keyword or Operator 

__ segment 

__ segname 

:> 

Based Pointers 

Use 

A type that contains a segment value. 

A built-in function that returns type _segment. The 
__ segname function can be used in declarations to 
initialize variables of type __ segment, or it can be used 
in declarations of based objects or pointers. 

The result of the __ self keyword is a far pointer to the 
segment where a pointer is stored. Basing a pointer on 
__ self avoids the segment-register reloads implicit in 
storing the pointer and object in different segments. 

Base operator. The base operator combines a segment 
and an address that can be dereferenced using the * 
operator. 

Based pointers are short (l6-bit) offsets from a segment base. The effective 
address is calculated using the formula: 

effective address = base + pointer value 

In 32-bit target compilations, based pointers are 32-bit offsets from a 32-bit base .• 

When dereferencing a based pointer, the base must either be explicitly specified or 
implicitly known through the declaration. The following code shows some ex­
ample declarations of based pointers: 



II Binary tree 
struct BTree 
{ 

} ; 

char *szSymbolName; 
BTree *btLeft; 
BTree *btRight; 
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II Declare a pointer to data that resides in segment SYM_DATA. 
BTree __ based( __ segname( "SYM_DATA" ) ) *btSymTabl el; 

II Declare a pointer to data that resides in segment 0x7000. 
__ segment SegVar = 0x7000; 
BTree __ based( SegVar ) *btSymTable2; 

II Declare a pointer to data that resides in the same segment 
II as the pointer btSymTable3. 
BTree __ based( ( __ segment) __ self ) *btSymTable3; 

A based pointer can be based on the following: 

• A constant. A pointer can be based on an expression that evaluates to a con­
stant. These constants can be supplied as segment names using the __ segname 
operator. 

• A variable segment. A pointer based on a variable segment is specified using an 
expression that evaluates type to __ segment but that does not evaluate to a 
constant. 

• Self. A pointer based on self is specified using the __ self function. It causes the 
pointer to refer only to objects in its own segment. 

• Void. A pointer based on void has no implicit base; the base must be supplied 
at the point of dereference. 

• A pointer. A pointer based on a pointer allows the base to be manipulated at run 
time. 

Pointers Based on a Constant 
Pointers based on a constant are specified in several ways: 

In the following example, sgConst is explicitly declared as a constant. The 
pointer bpI, therefore, is based on a constant. 

const __ segment sgConst = 0x3000; 
char __ based( sgConst ) *bpl; 

In the following example, the __ segname function returns a constant value of 
type __ segment. The pointer bp3, therefore, is based on a constant. 

char __ based( __ segname("INFO_STRINGS") ) *bp3; 
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Pointers Based on a Segment Variable 
Pointers based on a segment variable require that a variable of type __ segment be 
declared. This variable determines what segment the based pointer refers to and 
can be changed at run time. The following uses a pointer, p b v, based on a segment 
variable, s 9 V a r: 

#include <iostream.h> 

__ segment sgVar; 

void __ based( sgVar ) *pbv; 

int main() 
{ 

static __ segment sgList[] 
{ 

} ; 

__ segname( "_CODE" ), 
__ segname( "_DATA" ), 
__ segname( "_STACK" ) 

static char *aszSegNames[] 
{ 

} ; 

"_CODE" , 
"_DATA" , 
"_STACK" 

II Initialize a static array 
II with the CODE, DATA, and 
II STACK segment values. 

II Initialize an array of 
II strings with the names 
II of the above segments. 

II Calculate the Si7P of the array. 
int cSegments = sizeof( sgList ) I sizeof ( __ segment ); 

II Dump the first 256 bytes of each segment. 
fore int i = 0; i < cSegments; ++i ) 
{ 

cout « "Segment: " « aszSegNames[i] « "\n\n"; 

II Set the variable on which pbv is based to point to 
II the ith segment in the list. 
sgVar = sgList[i]; 



II Initialize pbv to point to the 
II initial byte of the current 
II segment (sgList[iJ:0000). 
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fort int row = 0, pbv = 0; row < 16; ++row 
{ 

} 

fort int col = 0; col < 16; ++col, pbv++ 
cout « hex « *(unsigned*)pbv « " "; 

fort col = 0, pbv -= 16; col < 16; ++col, pbv++ 
cout « isprint(*(char*)pbv) ? *(char*)pbv : ' '. 

cout « "\n"; 

return 0; 

Pointers Based on Self 
Pointers based on self can access data anywhere in the segment in which the 
pointer resides. They are declared using the __ self function cast to the 
__ segment type as the base-expression. You can base a pointer only on 
( __ segment) __ self. You cannot base a pointer on __ self alone. Basing a pointer 
on self can improve program performance by requiring that the segment register 
be the same for addressing both the pointer and the data it addresses. 

Note While both the pointer and the data are in the same segment, some segment­
register reloads can be forced by such operations as conversions, references to 
other data, and function calls. 

Pointers based on self commonly refer to objects allocated using the new operator. 
For example: 

II Declare the pointer; the actual segment is unimportant. 
char __ based( ( __ segment) __ self ) *pbch; 

II Allocate storage for objects. 
pbch = new char __ based( ( __ segment) __ self )[1024J; 

Pointers based on self are particularly useful for optimizing access in self­
referential data structures such as linked lists and trees. 

Functions cannot return pointers based on self. Also, register variables cannot be 
based on self. Only addressable I-values can be converted to pointers based on self. 

Since only I-values can be converted to pointer types based on self, you cannot as­
sign a constant to a pointer based on self. Consider the following code: 

int __ based« __ segment) __ self) *piself; 
piself = 1; 
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Before performing the assignment, the compiler attempts to convert 1, which is of 
type const int, to type int __ based(void) *, which is an illegal conversion. To put 
the value 1 in the pointer pis elf, you first must cast 1 to a pointer based on void, 
as follows: 

piself = (int __ based(void)*)l; 

Pointers based on self are not supported in 32-bit target compilations .• 

Pointers Based on void 
Pointers based on void defer address calculation until the pointer is dereferenced. 
Unlike most other forms of based pointers, a pointer that is based on void has no 
implied segment as its base. 

The segment specified at the point of dereference can be a constant or a segment 
variable. It is combined with the offset using the base operator (:» to form an 
address that can be dereferenced using the indirection (*) operator. 

The following example shows how to declare and dereference a pointer based on 
void. 

struct BiosEquipList II Structure for the BIOS Equipment List 
{ II that starts at 0000:0410 (hex). 

} ; 

II Declare ROM data as const and supply the offset, hex 410. 
const BiosEquipList __ based( void) *bpelROM = 0x410; 

int main() 
{ 

BiosEquipList elLocal; II Local copy of equipment list. 

II Make a local "shadow" copy of the BIOS equipment list. 
elLocal *« __ segment)0x0000:> bpelROM); 

return 0; 

Pointers Based on Pointers 
The "based on pointer" variant of based addressing enables specification of a 
pointer as a base-expression. The based pointer, then, is an offset into the segment 
starting at the beginning of the pointer on which it is based. 
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One use for pointers based on pointers is for persistent objects that contain point­
ers. A linked list that consists of pointers based on pointers can be saved to disk 
and reloaded to another place in memory, and the pointers are still valid. The fol­
lowing example declares such a linked list: 

void *vpBuffer; 

struct llist_t 
{ 

void based( vpBuffer ) *vpData; 
llist t based( vpBuffer ) *llNext; 

} ; 

The pointer, v p Buff e r, is assigned the address of memory allocated at some later 
point in the program; the linked list is then relocated relative to the value of 
vpBuffer. 

Pointers based on pointers are the only form of __ based valid in 32-bit compila­
tions. In such compilations, they are 32-bit displacements from a 32-bit base .• 

Based Objects 
Static and external objects can be declared using the __ based keyword. In this 
context, the __ based specification causes the object to be allocated in the 
specified segment. The following example shows how to declare a based object: 

Cl ass Symbol 
{ 

} ; 

Symbol __ based( __ segname( "SYM_DATA" ) ) Symbol; 

The preceding declaration allocates one object of type Symbo 1 in segment 
SYM_ DATA. Similarly, arrays of objects can be declared as based: 

Symbol __ based( __ segname( "SYM_DATA" ) ) Symbol [3131313]; 

Based Functions 
If a function is to be allocated in a given segment, it can be declared as based on a 
segment constant. No other forms of based declarations are accepted for functions. 
Consider the following example: 

char __ based( __ segname("STRING_TEXT"» 
__ near *StringCompare( char __ near *Stringl, char __ near *String2 ); 

char __ based( __ segname("STRING_TEXT"» 
far *FStringCompare( char far *Stringl, char far *String2 ); 



412 C++ Language Reference 

In the preceding declaration, both St ri ngCompa re and FSt ri ngCompa re are allo­
cated in the segment STRI NG_ TEXT. However, the segment in which the functions 
are allocated does not affect the calling protocol specified by the __ n ea rand 
__ far keywords. In the preceding example, StringCompare can be called only by 
other functions in the same segment, and it is accessed using a near (intrasegment) 
call. The FStri ngCompare function, however, is declared as __ far, and can be 
accessed from any function in the program using a far call. 

Note Declaring functions as __ based replaces the alloL text pragma. However, 
the alloc_ text pragma is retained for backward compatibility. 

This application of __ based is not used for disambiguation of overloaded func­
tions. Therefore, the following two function declarations conflict: 

char __ basedC_segname("FAR_TEXT")) Print( int iValue ); 
char __ basedC_segname("NEAR_TEXT")) Print( int iValue ); 

The compiler recognizes the suffix _ T EXT as a code segment designation. There­
fore, any function based on a segment that has the _ TEXT suffix is placed in a code 
segment. If you choose a segment name that does not have the _ TEXT suffix, how­
ever, the segment chosen is a data segment. 

__ segment Keyword 
The __ segment type is used either at the point of declaration of a based type or at 
the point of a based dereference to specify the segment in which the based object 
resides. If specified at the point of declaration, the segment value is implicit and 
need not be respecified at the point of dereference (based pointers). Otherwise, the 
segment must be explicitly specified. 

The following example shows specification of a segment in a declaration and at 
the point of dereference: 

II Dump the first 256 bytes of the data segment (DS) 
II using based pointers. 

#include <iostream.h> 



int maine) 
{ 
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II Segment specified at point of declaration. 
unsigned char __ based( __ segname( "_DATA" ) ) *puc = 0; 

II Segment specification deferred until point of dereference. 
II pv is a generic pointer to type unsigned char. 
unsigned char __ based( void) *pv = 0; 

int i, j; 

fore = 0; i < 16; ++i ) 
{ 

} 

II Specify the segment at point of dereference. 
fore j = 0; j < 16; ++j ) 

cout « hex « setw( 2 ) 
« (unsigned)*L_segname("_DATA") :>pv++) « " "; 

II Because the segment for puc was specified at the point 
II of declaration, it can be used like a normal pointer. 
fore j = 0, pv -= 16; j < 16; ++j ) 

cout « *puc++; 

cout « "'n"; 

return 0; 

Type __ segment behaves like any other C++ type-derivative types can be 
formed using the pointer-to, array-of, and function-returning operators (*, [], and 
0, respectively). 

An object of type __ segment can be initialized with the following four items: 

• An expression that evaluates to an integral constant value. 

• The result of the built-in function __ segname. This allows specification of a 
segment by name, causing the linker to insert segment fixups in the executable 
file, to be resolved at load time. 

• Another expression of type __ segment. For example: 

__ segment sgCustomerData = 0x7000; 
__ segment sgCurrent = sgCustomerData; 
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• Another expression explicitly cast to type __ segment. The following list 
shows how various expressions are converted in explicit casts to type 
__ segment: 

Expression Base 

Cast from pointer not explicitly declared Segment value for that pointer 
with a memory-model modifier 

Cast from near pointer Segment value of the default data 
segment 

Cast from far pointer Segment portion of the far pointer 

Cast from based pointer Base segment of based pointer 

Cast from address value obtained using Segment in which the object is located 
the address-of operator (&) on an object 

The __ segment type is not supported in 32-bit compilations .• 

__ segname Function 
The built-in function __ segname accepts a quoted string and returns a value of 
type __ segment. A __ segname declaration is not an I-value and its address can­
not be taken. 

The primary use for the __ segname function is in initializing objects of type 
__ segment or in declarations of pointers or objects of based type. It enables speci-
flr-~tlnn nf ~ c;,'!p011'1pnt n<;lnlP 1nQtp~rl nf <;I ~p.ornpnt '1.l';,lllP uT'hpn r1p.r--l·;11~1nlT <;I ho:lcpA ........................................ '-' ................. 0 ........................... ....... ~ ... .I. ..... ... .I. .... u .................. ...., ........ u ..... O .l..I. ................... 'U.l.U_ ",&,,,,,""'..1..1. .................. '"'""'- ...... ..1.6 "" vu.,,:,_u. 

type. Consider the following example: 

II Keep all message strings for the File.Open dialog box 
II in the same segment. 
char __ basedC_segname("ERR_STRINGS"» *szErrStr[] = 
{ 

} ; 

"Cannot find file: %s", 
"Cannot open file: %s", 
"Invalid path: %s", 
"Drive %c: does not exist or is not ready", 

Collecting like data into the same segment is beneficial in Windows programming 
because users are commonly performing a task-such as opening a file-that re­
quires only a certain subset of the application's data. Microsoft Windows manages 
segment swapping; however, the way data is organized in those segments can 
greatly affect how often these disk-intensive swaps occur. 

The following list shows the predefined segment-name constants you can use as ar­
guments to the __ segname function: 
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Name Refers To 

_CODE 

_DATA 

_CONST 

_STACK 

The default code segment 

The default data segment 

The default CONST segment 

The stack segment 

self Function 
Pointers can be declared as based on __ self. This form of declaration defers calcu­
lation of the pointer value until the point of dereference. It also ensures that the ob­
ject the pointer references is in the same segment as the pointer itself. For example: 

char based( ( __ segment) __ self ) *pszMessage; 

pszMessage = new char __ based( __ self )[1024]; 
if( pszMessage == NULL) 

cerr « "Cannot allocate 1K buffer.\n"; 
else 

II 1K buffer allocated in same segment as pointer. 

In the preceding example, the pointer is initialized using the new operator. 

B.2 Calling and Naming Convention Modifiers 
The modifiers described in this section affect the function "calling conventions" 
and "naming conventions." Calling conventions determine how functions are 
called; naming conventions determine how external names are treated. Calling and 
naming conventions are composed of the following elements: 

Element 

Argument-passing order 

Argument-passing convention 

Stack-maintenance responsibility 

Description 

Some conventions pass arguments to 
functions from right to left; others from 
left to right. 

In some calling conventions, the default 
argument-passing convention is by value; 
in others, it is by reference. 

Because arguments are pushed on the 
stack for communication with the 
function, either the called function or the 
caller must adjust the stack. 
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cdecl 

Name-decoration convention 

Case-translation convention 

Return-value convention 

Some calling conventions add characters 
to the name as it is declared in the 
program. This is called "name 
decoration." 

Some calling conventions require case 
translation to uppercase. 

Some calling conventions return values in 
registers; others return values on the 
stack. Most return values both ways, 
depending on the size of the value to be 
returned. 

The __ cdecl convention is the convention used by the compiler. The following 
list shows the implementation of this calling convention: 

Element 

Argument-passing order 

Argument -passing convention 

Stack-maintenance responsibility 

N arne-decoration convention 

Case-translation convention 

Implementation 

Right to left 

By value, unless a pointer or reference type is 
passed 

Calling function adjusts the stack 

Underscore character (_) is prefixed to narnes 

No case translation performed 

To declare a function as __ cdecl, use a declaration of the form: 

char * __ cdecl stricmp( char *szStringl, 
char *szString2 ); 

Note that, in the preceding declaration, the modifier __ cdecl modifies the name 
immediately to its right, stri cmp. 

The following list shows how values are returned from functions specified as 
__ cdecl: 

Type 

char, unsigned char 

int, unsigned, short, unsigned 
short, "pointer to near" 

long, unsigned long 
float, double 

Return Location 

Returned in AL register. 

Returned in AX register. 

Returned in DX:AX registers. 

Copied to the global variable _fac; returns a 
pointer to __ Cae in AX or DX:AX, depending on 
addressing model. 
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long double 

Structures 
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Placed on the NDP (numeric data processor) stack 
using the FLD instruction. 

Depends on the size of the structure: 

I byte: returned in AL register 
2 bytes: returned in AX register 
4 bytes: returned in DX:AX registers 

For structures larger than 4 bytes, the caller passes 
a pointer to a hidden variable that will receive the 
return value as the last item pushed. The structure 
being returned is copied into the location pointed 
to by the hidden variable. The pointer to the hidden 
variable is then returned in AX or DX:AX (for near 
or far addressing models, respectively). 

In 16-bit compilations, the variable-argument facility of ANSI C can be used only 
with functions of type __ cdecl. In 32-bit compilations, variable-argument lists can 
also be used with the __ stdcall calling convention, discussed on page 419. 

The __ fastcall convention specifies that arguments to functions are to be passed 
in registers, when possible. The following list shows the implementation of this 
calling convention: 

Element 

Argument-passing order 

Argument-passing convention 

Stack-maintenance responsibility 

N arne-decoration convention 

Case-translation convention 

Return-value conventions 

Implementation 

Left to right 

By value, unless a pointer or reference 
type is passed 

Called function adjusts the stack 

At sign (@) is prefixed to narnes 

No case translation performed 

Identical to __ cdecl 

To declare a function as __ fastca 11, use a declaration ofthe form: 

char * __ fastca11 parsechar( char *szString, char chTarget ); 

Note that, in the preceding declaration, the modifier __ fastca11 modifies the 
name immediately to its right, parsechar. 
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The compiler allocates registers for the arguments according to the type of the ar­
gument and availability of an appropriate register. If no appropriate register is 
available, the argument is pushed on the stack, much as in the __ pascal calling 
convention. The following list shows the register candidates for various types: 

Type 

char, unsigned char 

int, unsigned int 

long, unsigned long 

"pointer to near" 

"pointer to far," "pointer to huge" 

Register Candidate 

AL,DL,BL 

AX,DX,BX 

DX:AX 

BX,AX,DX 

Passed on the stack 

All far and huge pointers, structures, unions, and floating types are passed on the 
stack. 

__ fortranL_ pascal 

32-Bit Specific 

The __ fortran and __ pascal conventions specify argument passing that is com­
patible with Microsoft FORTRAN and Microsoft Pascal. The following list shows 
the implementation of this calling convention: 

Element 

Argument-passing order 

Stack-maintenance responsibility 

Name-decoration convention 

Case-translation convention 

Implementation 

Left to right 

By value, unless a pointer or reference 
type is passed 

Called function adjusts the stack 

None 

Names translated to uppercase 

To declare a function as __ fortran or __ pascal, use a declaration ofthe form: 

void __ fortran regress( double series[], 
double *slope, 
double *intercept ); 

Note that, in the preceding declaration, the modifier __ fortran modifies the name 
immediately to its right, regress. Functions declared using the __ fortran or 
__ pascal modifiers return values the same way as those declared using __ cdecl. 

Note The __ fortran and __ pascal modifiers are identical; the two keywords are 
supported for internal code documentation. 

The __ fortran and __ pascal keywords are not supported in 32-bit 
compilations .• 



stdcall 

Microsoft-Specific Modifiers 419 

The __ stdcall calling convention is a faster, more type-safe version of __ cdecl. 
The following list shows the implementation of this calling convention: 

Element 

Argument-passing order 

Argument-passing convention 

Stack-maintenance responsibility 

Name-decoration convention 

Case-translation convention 

Implementation 

Right to left 

By value, unless a pointer or reference type is 
passed 

Called function adjusts the stack 

An underscore C) is prefixed to the name. The 
name is followed by the at-sign (@) character, 
followed by the number of bytes in the 
argument list. Therefore, the function declared 
as int func( int a, double b ) is 
decorated as follows: _ func@12 

None 

Functions declared using the __ stdcall modifier return values the same way as 
functions declared using __ cdecl. 

Note Functions with variable argument lists must be prototyped, or a linker error 
occurs. 

B.3 Special Modifiers 

__ export 

The Microsoft-specific keywords, __ export, __ interrupt, and __ loadds, do not 
necessarily modify the calling or naming convention of a function or object. They 
can, however, modify other behavior. 

The __ export keyword specifies that the named function or object is to be 
marked for export from a DLL or to Windows. Applying the __ export attribute to 
a function or object is the same as specifying the name in the EXPORTS section 
of a module-definition file. 
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__ interrupt 

It is not possible to use the __ export keyword to specify any of the following ad­
ditional information that can be provided in a module-definition file for exported 
functions or objects: 

• Name aliasing (internal versus external) 

• Tagging functions with ordinal values 

• Keeping names resident in memory 

• Tagging exported real-mode Windows functions as having no data 

In most cases, the defaults provided by the __ export keyword are sufficient, espe­
cially for call-back functions exported to Windows. 

The __ export keyword can be used with any of the calling-convention modifiers 
discussed in the previous section, but should be used only with functions declared 
as __ far. 

The __ interrupt keyword indicates that the function is an interrupt handler. The 
compiler generates appropriate entry and exit sequences for the interrupt-handling 
function, including saving and restoring all registers and executing an IRET in­
struction to return. 

When an interrupt function is entered, the DS register is initialized to the default 
(near) daia segment This aHows access io giobai variabies from wiihin an inier­
rupt function. 

In addition, all registers (except SS) are saved on the stack. These registers can be 
accessed within the function by declaring a function-parameter list containing a 
formal parameter for each saved register. The following example illustrates such a 
declaration: 

void __ interrupt __ far int_handler( 
unsigned _es, unsigned _ds, 
unsigned _di, unsigned _si, 
unsigned _bp, unsigned _sp, 
unsigned _bx, unsigned _dx, 
unsigned _cx, unsigned _ax, 
unsigned _ip, unsigned _cs, 
unsigned flags) 

Restrictions on Interrupt Functions 
An interrupt function must be far. Programs compiled with the small or compact 
memory model must explicitly declare interrupt functions with the __ far 
keyword. 
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Interrupt functions must observe the __ cdecl calling convention. Therefore, 
the only calling convention keyword that can be used in combination with 
__ interrupt is __ cdecl. 

Functions declared with the __ interrupt keyword cannot also be declared with 
the __ saveregs keyword. 

Considerations When Using __ interrupt 
When an interrupt function is called by an INT instruction, the interrupt enable 
flag is cleared. This means that no further interrupts (including keyboard, time-of­
day, and other crucial interrupts) are processed until the interrupt function returns. 

If an interrupt function needs to do significant processing, it should call the 
_enable function to reset the interrupt-enable flag. 

Interrupt functions must obey special rules because they are potentially reentrant 
(that is, the function can be entered more than once before the first return is ex­
ecuted). When designing an interrupt-handling function, consider the following 
guidelines: 

• If the function does not use the _enable function to set the interrupt flag, impor­
tant interrupts may be ignored. This can result in such undesirable effects as 
lost keystrokes and inaccurate real-time clocks. 

• If the function uses the _enable function to set the interrupt flag, another inter­
rupt of the same sort may take place. To make sure that the interrupt handler 
takes this into account, serialize access to all objects that are not automatic or 
accessed on the free store using an automatic pointer. 

The __ loadds keyword causes the compiler to generate a function-entry sequence 
to load the data-segment (DS) register with the segment value of the most recently 
specified data segment. The compiler also generates code to restore the previous 
DS value when the function terminates. 

Loading the DS register is essential for Windows call-back functions and Win­
dows DLL entry points. Because there is no requirement for Windows or clients of 
a DLL to "know" about the entry function's use of memory, these functions can­
not depend on DS pointing to their data segment at entry unless they are declared 
as __ loadds or compiled with the IAu compilation option. 

Note The __ loadds keyword does not imply any change in calling convention; it 
can be specified with any calling-convention modifier that is compatible with 16-
bit compilations. 
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32-Bit Specific 

__ saveregs 

32-Bit Specific 

When loading the DS register, the compiler uses the segment specified by the /ND 
(name-data-segment) option, or, if no segment has been specified, the default 
group DGROUP. Note that this function modifier has the same effect as the fAu 
option, but on a function-by-function basis. 

The __ loadds keyword is not supported in 32-bit compilations .• 

The __ saveregs keyword causes the compiler to generate a function entry 
sequence that saves all CPU registers and an exit sequence that restores the regis­
ters. Note that __ saveregs does not restore registers used for a return value (the 
AX register, or AX and DX). 

The __ saveregs keyword is useful when the register conventions ofthe caller are 
not known. For instance, __ saveregs can be used for a general-purpose function 
in a dynamic-link library. Because such a function can be called from any lan­
guage, it is unsafe to assume any particular calling convention. Functions that are 
intended to be interfaced with assembly-language code can protect the caller 
against undesirable side effects by using the __ saveregs attribute. 

It is illegal to declare a function with both the __ saveregs and the __ interrupt 
attributes. 

The __ saveregs keyword is not supported in 32-bit compilations .• 



Grammar Summary 

This appendix describes the formal grammar of the C++ language, as implemented 
in the Microsoft C/C++ version 7.0 compiler. It is loosely organized around the 
chapter organization of this book as follows: 

• The "Keywords" section describes keywords covered in Chapter 1, "Lexical 
Conventions." 

• The "Expressions" section describes the syntax of expressions described in 
Chapter 4, "Expressions." 

• The "Declarations" section describes the syntax of declarations described in 
Chapter 6, "Declarations." 

• The "Declarators" section describes the syntax of declarators covered in Chap­
ter 7, "Declarators." 

• The "Classes" section covers the syntax used in declaring classes as covered in 
Chapter 8, "Classes." 

• The "Statements" section covers the syntax used in writing statements, as 
covered in Chapter 5, "Statements." 

• The "Preprocessor" section covers the syntax of preprocessing directives and 
operators, covered in Chapter 13, "Preprocessing." 

• The "Microsoft Extensions" section covers the syntax of features unique to 
Microsoft C++. Many of these features are covered in Appendix B, "Micro­
soft-Specific Modifiers." 
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C.1 Keywords 
class-name: 

identifier 

enum-name: 
identifier 

typedef-name: 
identifier 

C.2 Expressions 
expression: 

assignment-expression 
expression , assignment-expression 

assignment-expression: 
conditional-expression 
unary-expression assignment-operator assignment-expression 

assignment-operator. one of 
= *= 1= % = += -= >= <= &= 1\= 1= 

conditional-expression: 
logical-or-expression 
logical-or-expression ? expression conditional-expression 

logical-or-expression: 
logical-and-expression 
logical-or-expression 1 I logical-and-expression 

logical-and-expression: 
inclusive-or-expression 
logical-and-expression & & inclusive-or-expression 

inclusive-or-expression: 
exclusive-or-expression 
inclusive-or-expression 1 exclusive-or-expression 

exclusive-or-expression: 
and-expression 
exclusive-or-expression 1\ and-expression 



and-expression: 
equality-expression 
and-expression & equality-expression 

equality-expression: 
relational-expression 
equality-expression == relational-expression 
equality-expression != relational-expression 

relational-expression: 
shift-expression 
relational-expression < shift-expression 
relational-expression > shift-expression 
relational-expression <= shift-expression 
relational-expression => shift-expression 

shift-expression: 
additive-expression 
shift-expression « additive-expression 
shift-expression »additive-expression 

additive-expression: 
multiplicative-expression 
additive-expression + multiplicative-expression 
additive-expression - multiplicative-expression 

multiplicative-expression: 
segment-expression 
multiplicative-expression * segment-expression 
multiplicative-expression I segment-expression 
multiplicative-expression % segment-expression 

segment-expression: 
pm-expression 
segment-expression :> pm-expression 

pm-expression: 
cast-expression 
pm-expression • * cast-expression 
pm-expression ->* cast-expression 

cast-expression: 
unary-expression 
( type-name ) cast-expression 

425 
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unary-expression: 
postfix-expression 
++ unary-expression 
-- unary-expression 
unary-operator cast-expression 
sizeof unary-expression 
sizeof ( type-name ) 
allocation-expression 
deal location-expression 

unary-operator. one of 
*&+-!-

allocation-expression: 
:opt new nmodeloptplacementopt new-type-name new-initializeropt 

: :opt new nmodeloptplacement opt ( type-name) new-initializeropt 

placement: 
( expression-list ) 

new-type-name: 
type-specifier-list new declaratoropt 

new-declarator. 
ms-modifier-list opt * cv-qualifier-list opt new-declaratoropt 
ms-modifier-list opt complete-class-name : : *cv-qualifier-listopt 

new-uecluruiuropt 
new-declaratoropt [ expression] 

new-initializer. 
( initializer-list ) 

deallocation-expression: 
:opt delete cast-expression 

: :opt delete [] cast-expression 

postfix-expression: 
primary-expression 
postfix-expression [ expression ] 
postfix-expression ( expression-list ) 
simple-type-name ( expression-list ) 
postfix-expression • name 
postfix-expression -> name 
postfix-expression ++ 
postflX-expression --



expression-list 
assignment-expression 
expression-list , assignment-expression 

primary-expression: 
literal 
this 

identifier 
: : operator-Junction-name 
: : qualified-name ( expression ) 
name 

name: 
identifier 
operator-Junction-name 
conversion-Junction-name 

- class-name 
qualified-name 

qualified-name: 
ms-modifier-listopt qualified-class-name 

literal: 
integer-constant 
character-constant 
floating-constant 
string-literal 

C.3 Declarations 
declaration: 

decl-specifiersopt declarator-listopt 
asm-declaration 
Junction-definition 
template-declaration 
linkage-specification 

decl-specifier. 
storage-class-specifier 
type-specifier 
Jct-specifier 
friend 
typedef 

decl-specifiers: 
decl-specifiersopt decl-spec(fier 
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storage-class-specifier. 
auto 
register 
static 
extern 

fct-specifier. 
inUne 
virtual 

type-specifier. 
simple-type-name 
class-specifier 
enum-specifier 
elaborated-type-specifier 
const 
volatile 

simple-type-name: 
complete-class-name 
qualified-type-name 
char 
short 
int 
long 
signed 
nn!l!ionpcl 
---~-e----

float 
double 
void 
__ segment 

elaborated-type-specifier. 
class-key rmodelopt identifier 
class-key rmodelopt class-name 
enum-name 

class-key: 
class 
struct 
union 

qualified-type-name: 
typedef-name 
class-name .. qualified-type-name 



complete-class-name: 
qualified-class-name 
.• qualified-class-name 

qualified-class-name: 
class-name 
class-name 

enum-specifier. 

qualified-class-name 

enum identifieropt { enum-listopt } 

enum-list: 
enumerator 
enum-list , enumerator 

enumerator: 
identifier 
identifier = constant-expression 

constant-expression: 
conditional-expression 

linkage-specification: 
extern string-literal { declaration-listopt } 
extern string-literal declaration 

declaration-list. 
declaration 
declaration-list declaration 

C.4 Declarators 
declarator-list: 

init-declarator 
declarator-list, in it-declarator 

init-declarator. 
ms-modifier-listopt declarator initializeropt 

declarator. 
dname 
ptr-operator declarator 
declarator ( argument-declaration-list ) cv-mod-listopt 
declarator [ constant-expressionopt ] 
( declarator ) 
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cv-mod-list: 
cv-qualifier cv-mod-listopt 
rmodel cv-mod-listopt 

ptr-operator: 
ms-modijier-listopt * cv-qualijier-listopt 
ms-modifier-listopt & cv-qualifier-listoDt 
ms-modifier-listo~t complete-ciass-nam'e 

cv-qualijier-list. 
cv-qualifier cv-qualifier-listopt 

cv-qualijier: 
const 
volatile 

dname: 
name 
class-name 
- class-name 
typedef-name 
qualified-type-name 

type-name: 

* cv-qualijier-listopt 

type-specifier-list ms-modifier-listopt abstract-declaratoropt 

type-specifier-list. 
type-specijier type-specijier-listopt 

abstract-declarator: 
ptr-operator ms-modifier-listopt abstract-declarator opt 

abstract-declaratoropt ( argument-declaration-list ) cv-qualijier-listopt 
abstract-declaratoropt [ constant-expressionopt ] 
( ms-modifier-listopt abstract-declarator ) 

argument-decLaration-List. 
arg-declaration-listopt .. ·opt 

arg-declaration-list , 

arg-declaration-list. 
argument-declaration 
arg-declaration-List , argument-declaration 



C.5 Classes 

argument-declaration: 
decl-specifiers ms-modifier-listopt declarator 
decl-specifiers ms-modifier-listopt declarator = expression 
decl-specifiers ms-modifier-listopt abstract-declarator opt 

decl-specifiers ms-modifier-listopt abstract-declaratoropt = expression 

Junction-definition: 
decl-specifiersopt ms-modifier-listopt declarator ctor-initializeropt Jct-body 

Jct-body: 
compound-statement 

initializer. 
= expression 
= { initializer-list ,opt } 
( expression-list ) 

initializer-list. 
expression 
initializer-list , expression 
{ initializer-list ,opt } 

class-specifier. 
class-head { member-listopt } 

class-head: 
class-key ambient-modelopt identifieropt base-specopt 
class-key ambient-modelopt class-name base-specopt 

member-list. 
member-declaration member-listopt 
access-specifier : member-listopt 

member-declaration: 
decl-specifiersopt member-declaration-listopt 
Junction-definition ;opt 

qualified-name ; 

member-declarator-list. 
member-declarator 
member-declarator-list , member-declarator 
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member-declarator. 
ms-modifier-listopt declarator pure-specifieropt 
identifieropt : constant-expression 

pure-specifier: 
= 0 

base-spec: 
: base-list 

base-list: 
base-specifier 
base-list, base-specifier 

base-specifier: 
complete-class-name 
virtual access-specifieropt complete-class-name 
access-specifier virtualopt complete-class-name 

access-specifier. 
private 
protected 
public 

conversion-Junction-name: 
operator conversion-type-name 

conversion-type-name: 
type-specifier-list ptr-operatoropt 

ctor- initializer. 
: mem-initializer-list 

mem-initializer-list. 
mem-initializer 
mem-initializer , mem-initializer-list 

mem-initializer. 
complete-class-name (expression-listopt ) 
identifier (expression-listopt ) 

operator-Junction-name: 
operator operator 



operator. one of 
new delete 
+ * 1 

< > 
% 

+= 
A & 1 

-= *= 1= 
A= &= 1= « » »= «= --
<= >= && II ++ 
0 [] 

C.6 Statements 
statement: 

labeled-statement 
expression-statement 
compound-statement 
selection-statement 
iteration-statement 
jump-statement 
declaration-statement 
asm-statement 

labeled-statement. 
identifier : statement 
case constant-expression statement 
default : statement 

expression-statement. 
expressionopt ; 

compound-statement: 
{ statement-listopt } 

statement-list: 
statement 
statement-list statement 

selection-statement. 
if ( expression ) statement 
if ( expression ) statement else statement 
switch ( expression ) statement 

iteration-statement. 
while ( expression ) statement 
do statement while ( expression ) ; 

->* 

%= 
!= 

-> 

for (Jor-init-statement expressionopt expressionopt) statement 
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for-init-statement. 
expression-statement 
declaration-statement 

jump-statement: 
break; 
continue; 
return expressionopt 
goto identifier ; 

declaration-statement. 
declaration 

C.7 Preprocessor 
#define identifier token-string 
#define identifier ( identifier , ... , identifier ) token-string 

#include "filename" 
#include <filename> 

#line constant ''filename'' opt 

#undef identifier 

conditional: 
if-part ei!f-partsopt else-partopt endif-line 

if-part: 
if-line text 

if-line: 
# if constant-expression 
# ifdef identifier 
# ifndef identifier 

elif-parts: 
elif-line text 
elif-parts elif-line text 

elif-line: 
# elif constant-expression 



else-part: 
else-line text 

else-line: 
# else 

endif-line: 
# endif 

C.B Microsoft Extensions 
asm-statement: 

__ asm assembly-instruction ;opt 

__ asm { assembly-instruction-list} ;opt 

assembly-instruction-list. 
assembly-instruction ;opt 

assembly-instruction; assembly-instruction-list ;opt 

435 

Note The definition of assembly-instruction and more information about inline as­
sembly can be found in the Programming Techniques manual. 

amodel: 
__ near 
__ far 

rmodel: 
amodel 
__ huge 

nmodel: 
rmodel 
__ based ( expression 

ambient-model: 
amb-export 
amb-model 

amb-model: 
amodel amb-modelopt 
__ novtordisp amb-modelopt (reserved for future implementations) 
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amb-export: 
__ export amb-exportopt 
__ novtordisp amb-exportopt (reserved for future implementations) 

ms-modifier-list. 
ms-modifier ms-modifier-listopt 

Note Many combinations of these modifiers, while syntactically legal, are invalid 
because of the context in which they appear. For example, __ fastcall is not per­
mitted when declaring data. 

ms-modifier. 
__ cdecl 
__ fortran 
__ pascal 
__ fastcall 
__ interrupt 
__ export 
__ saveregs 
__ loadds 
__ stdcall (reserved for future implementations) 
__ syscall (reserved for future implementations) 
__ oldcall (reserved for future implementations) 
__ novtordisp (reserved for future implementations) 
rmodel 
based-modifier 

based-modifier. 
__ based (based-type) 

based-type: 
void 
__ self 
__ segname (string-literal ) 
( __ segment) expression 
__ segment (expression) 
name 



Index 

__ (double underscore), 7 

A 
abort function 

described, 43 
immediate termination, effects, 45 

Abstract classes, 265-266, 280-281 
Abstract declarators 

arrays, 199-202 
default arguments, 210-212 
described, 187 
function, 203-210 
pointers, 188-190 
pointers to members, 196-198 
references, 190-196 

Access control 
friends, 290-295 
member-selection operator overloading, 363 
multiple-inheritance paths, 297 
overview, 285-286 
protected members, 295-296 
specifiers 

base classes, 287-290 
described, 286-287 

virtual functions, 296-297 
Actual arguments, xxi 
Addition operator 

binary-operator expressions, 104-106 
overloading, 359 

Addresses, overloaded function, returned when, 351 
Address-of operator 

overloading, 355 
unary-operator expressions, 92-93 

Aggregate types, initializing, 219-222 
Allocation of memory 

failed, testing for, 321-323 
new operator, 318-320 

alloc_text pragma directive, 386 
Ambiguity 

argument matching, 344-345 
gray expressions, 130 
multiple inheritance class names, 271-274 
scope rules, 282 

Ambiguity (continued) 
this pointer, memory-model specifiers, 401-402 
type conversions, 117 
user-defined conversions, 313, 316 

AND operator, bitwise. See Bitwise AND operator 
AND operator, logical. See Logical AND operator 
Anonymous class types, 229-230 
Anonymous unions, 250 
argc argument, main function syntax, 38 
Argument types, differentiation in overloaded 

functions, 340 
Arguments 

actual, defined, xxi 
command-line, parsing, 40-42 
default 

declarators,210-212 
scope, 212, 283 

defined, xxi 
formal 

defined, xxi 
scope, 33 

function, names, 283 
handling, _setargv function, 39-41 
matching, overloaded functions, 344-350 

argv argument, main function syntax, 38 
Arithmetic conversions, 69-71 
Arrays 

constructors, 305 
conversion to pointer, 73-74 
declarators, 199-202 
initializing, 222-223, 328 
initializing using special member functions, 329 
types, 52 
unsized, declaring in member lists, 239 

assert macro, 43 
Assignment operators 

binary-operator expressions, 112-116 
overloading, 359-360 

Assignment, copying objects, 333-337 
Associativity, 11-14,91 
atexit function, 45 
auto keyword 

declaration statements, 149-151 
declarations, use in, 157 
described,46 
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auto_inline pragma directive, 386 
Automatic storage class 

declaration statements, 149-151 
specifiers, 157-158 

Automatic variables 

B 

described, 46 
initialization, 47-49 

Base classes 
access specifiers, 287-290 
described, 266 
initializing using special member functions, 

329-333 
multiple 

described, 267-271 
name ambiguities, 271-274 

pointers to, conversion 
from pointers to classes, 72-73 
to pointers to derived classes, 76 

references to, conversion from references to 
classes, 75 

virtual, 268-271 
virtual functions, 275-279 

Base operator, 406 
Based addressing, 405-406 
Based functions, 411-412 
__ based keyword 

described,405-412 
Based objects, 411-414 
Based pointers, 74, 406-411 
Binary operators 

additive, 104--106 
assignment, 112-116 
bitwise AND, 110-111 
bitwise exclusive OR, 110-111 
bitwise inclusive OR, 110-111 
bitwise shift, 106-107 
comma, 116-117 
equality, 107-110 
(list), 102-103 
logical AND, 111-112 
logical OR, 112 
multiplicative, 103-104 
overloading, 358-363 
relational, 107-110 

Bit fields, 252-254 
Bitwise AND operator 

binary-operator expressions, 110-111 
overloading, 358 

Bitwise complement operator, 94 
Bitwise exclusive OR operator 

binary-operator expressions, 11 0-111 
overloading, 359 

Bitwise inclusive OR operator 
binary-operator expressions, 11 0-111 
overloading, 359 

Bitwise shift operators 
binary-operator expressions, 106--107 
overloading, 359 

Block scope, linkage rules, 34 
Bold type, document conventions, xvix 
Braces ({ }), document conventions, xx 
Brackets ([[ ]]), document conventions, xx 
break statements 

c 

jump statements, 147 
selection statements, 141-142 

C functions, linkage, 36--37 
C++ 

fundamental elements, 1 
overview, 17 

Calling conventions 
__ cdecl keyword, 416-418 
_jastcall keyword, 417-418 
_jortran keyword, 418 
linkage specification effects, 178-179 
modifiers, 415-416 
__ pascal keyword, 418 
__ stdcall keyword, 419 

Calling destructors, 310-311 
Capital letters, document conventions 

normal, xvix 
small, xx 

case statements, labels, 135-136, 139-142 
Cast operators. See Conversion functions 
__ cdecl keyword 

calling convention, 416-417 
described, 7 

char type 
described, 50-51 
size, 51-52 

Character arrays, initializing, 222-223 
Character constants, 16--19 
CHAR_BIT constant, 62 
Charizing operator, 372 
CHAR_MAX constant, 62 
CHAR_MIN constant, 62 
_CHAR_UNSIGNED macro, 374 



check_pointer pragma directive, 387 
check_stack pragma directive, 387 
Class declarations, friends, defining in, 295 
class keyword, class type declaration, 228 
Class scope 

described, 29, 282-284 
linkage rules, 34 
type names in, 257 

class type names, introduction by declaration 
statements, 149 

Class-type objects, 230-231 
Classes 

abstract, 265-266, 280-281 
anonymous, 229-230 
base 

access specifiers, 287-290 
described, 266 
multiple, 267-271 
name ambiguities, 271-274 
virtual, 268-271 

composed, construction, 305 
declaring, 228, 238 
defining, 228-230 
derivative types, 58 
derived 

described, 259 
multiple inheritance, 264-265, 267-274, 297 
single inheritance, 259-264 
virtual functions, 265 

described, 227-228 
empty, declaring, 232 
friends, declaring as, 293-294 
grammar summary, 431-433 
members. See Members 
names, 31-32, 232-234 
nested, 254"':'257 
pointers to, conversion to pointers to base classes, 

72-73 
references to, conversion to references to base 

classes, 75 
scope. See Class scope 
storage. See Storage classes 

_CODE constant, 415 
code_seg pragma directive, 387 
Comma operator 

binary-operator expressions, 116-117 
overloading, 358 

Command line 
arguments, parsing, 40-42 
wildcards, 39 

comment pragma directive, 387 

Comments, 3-4 
Compatibility, operands, 130-131 
Compilation, conditional 

control, preprocessor directives, 379 
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#if, #elif, #else and #endif directives, 379-383 
#ifdef and #ifndef directives, 383-384 

Complement operator, 94 
Composed classes, construction, 305 
Compound statements, 137 
Concatenation, string literals, 22 
Conditional compilation 

control, preprocessor directives, 379 
#if, #elif, #else and #endif directives, 379-383 
#ifdef and #ifndef directives, 383-384 

Conditional operator expressions, 117-118 
_CaNST constant, 415 
const keyword 

pointers, effect on, 188-190 
this pointer modification, 246 

Constant expressions 
described, 118-119 
integral, conversion to null pointer, 75 

Constants 
character, described, 16-19 
described, 14 
enumerators. See Enumerators 
floating limits, 63-64 
floating-point, described, 19-20 
integer, described, 14-16 
integral limits, 62 
string literals 

concatenation, 22 
defined, 20-23 

types, 54 
Construction order, 305 
Constructors 

array, described, 305 
conversion, described, 313-315 
declaring, 302-304 
described, 300-301 
initializers, 284 

continue statements, jump statements, 147-148 
Conventions, document, xvix-xxi 
Conversion constructors, 313-315 
Conversion functions 

declaring, 317-318 
described, 315-317 

Conversions 
ambiguities, 274 
argument matching, overloaded functions, 346-350 
arithmetic, described, 69-71 
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Conversions (continued) 
described, 65, 312-313 
enumerators, 177-178 
explicit type conversions 

described, 119-124 
operator, 119-121 

floating, 68-69 
floating to integral, 69 
integral conversions 

signed to unsigned, 67 
standard, 68 
unsigned to signed, 67-68 

integral promotions, 66-67 
integral to floating, 69 
pointer, described, 71-76 
references, 75 

Copying objects, 333-337 
__ cplusplus macro, 374 

D 
_DATA constant, 415 
Data members, static, 247-248 
Data storage, class-member, 239 
data_seg pragma directive, 388 
__ DATE __ macro, 374 
DBL_DIG constant, 63-64 
DBL_EPSILON constant, 63-64 
DBL_MANT_DIG constant, 63-64 
DBL_MAX constant, 63-64 
DBL_MAX_lO_EXP constant, 63-64 
DBL_MAX_EXP constant, 63-64 
DBL_MIN constant, 63-64 
DBL_MIN_lO_EXP constant, 63-64 
DBL_MIN_EXP constant, 63-64 
DBL_RADIX constant, 63-64 
Deallocating memory, delete operator, 323-325 
Declaration statements 

automatic object declaration, 149-151 
described, 134, 149-154 
static object declaration, 152-154 

Declarations 
See also Declarators; Definitions 
arrays, unsized, in member lists, 239 
class members, 237-238 
class types, 228 
classes 

friends, defining in, 295 
type names, using in, 238 

constructors, 302-304 
conversion functions, 317-318 

Declarations (continued) 
defined, 25-26 
derived classes, 259 
described, 27,155-156 
destructors, 306-307 
empty classes, 232 
enumeration 

conversion by integral promotion, 177-178 
definition, 177 
described, 173-176 
names, 176 

friends, 294-295 
grammar summary, 427-429 
linkage specifications 

calling conventions, effect on, 178-179 
described, 178-181 

matching, overloaded functions, 342-343 
multiple declarations 

described, 28 
limitations, 28 

point of declaration, 29-30 
prototypes, 155 
specifiers 

described, 156 
friend, 167 
function, 159-163 
storage-class, 157-158 
type, 168-173 
typedef, 163-167 

uses (list), 155 
Declarators 

abstract 
arrays, 199-202 
default arguments, 210-212 
described, 187 
function, 203-210 
pointers, 188-190 
pointers to members, 196-198 
references, 190-196 

defined, 183 
described, 183-185 
function definitions, 213-216 
grammar summary, 429-431 
initializers,217-218 
modification. See Modifiers 
type name use, 185-187 

Decrement operator 
overloading, 355-358 
postfix expressions, 90-91 
unary-operator expressions, 94-95 



Default arguments 
declarators,210-212 
scope, 212, 283 

default statements, labels, 135-136, 139-142 
#define preprocessor directive, 368-370 
defined preprocessor operator, 381 
Defining 

class types, 228-230 
classes, 230 
friends in class declarations, 295 
type names, 59-60 

Definitions 
See also Declarations 
defined, 25-26 
described, 28 
function, described, 213-216 

Definitions of terms, 25-26 
delete operator 

memory deallocation, 323-325 
unary-operator expressions, 10 1-102 

Dereferencing,25-26 
Derived classes 

abstract, 265-266, 280-281 
described, 259 
multiple inheritance 

access control, 297 
base classes, 267-271 
described, 264-265 
name ambiguities, 271-274 

pointers to members, conversion from pointers to 
base classes, 76 

scope, 282-284 
single inheritance, 259-264 
virtual functions, 265, 275-279 

Derived types 
composed, 58-59 
described, 52 
directly derived, 52-57 

Destruction 
automatic objects, 150-151 
order, 308-310 
static objects, 154 

Destructors 
calling, 310-311 
declaring, 306-307 
described, 305-306 
using, 307-308 

Directives 
error. See Error directives 
pragma. See Pragma directives 
preprocessor. See Preprocessor directives 
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Division operator 
binary-operator expressions, 103-104 
overloading, 359 

_DLL macro, 375 
do statements 

described, 144 
iteration statements, 142-143 

Document conventions, xvix-xxi 
Dominance, 273-274 
double type 

described, 50-51 
size, 51-52 

Dynamic allocation 

E 

failed, testing for, 321-323 
freeing memory, delete operator, 323-325 
new operator, 318-320 

#elif preprocessor directive, 379-383 
Ellipsis C ... ), document conventions, xx 
#else preprocessor directive, 379-383 
else statements, selection statements, 138-139 
Empty classes, declaring, 232 
#endif preprocessor directive, 379-383 
enum keyword, declarations, 173-176 
enum type names, introduction by declaration 

statements, 149 
Enumerators 

conversion by integral promotion, 177-178 
definition, 177 
described, 173-176 
linkage, 35-36 
names, 176 

Environment-processing, _setenv function, 41-42 
envp argument, main function syntax, 38 
Equality operators 

binary-operator expressions, 107-110 
overloading, 358 

Error directives, 385 
#error preprocessor directive, 385 
Evaluation order 

expressions, 127-129 
operators, 11-14 

Exclusive OR operator, bitwise. See Bitwise 
exclusive OR operator 

exit function 
described, 42 
initialization considerations, 44-45 

Exit processing, atexit function, 45 
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Explicit type conversions 
described, 121-124 
expressions with, 119 
operator, 119-121 

Exponents, floating-point constants, 20 
__ export keyword, 419-420 
Expression statements, 136-137 
Expressions 

binary -operator 
additive operators, 104-106 
assignment operators, 112-116 
bitwise, 110-111 
bitwise shift operators, 106-107 
comma, 116-117 
described, 102-103 
equality operators, 107-11 0 
logical operators, 111-112 
multiplicative operators, 103-104 
relational operators, 107-110 

categories (list), 77-78 
conditional-operator, 117-118 
constant 

described, 118-119 
integral, conversion to null pointer, 75 

defined, 77 
evaluation order, 127-129 
explicit-type-conversion,119-124 
grammar summary, 424-427 
gray expressions, 130 
notation, 130-131 
pointer conversions, 73-74 
pointer-to-member-operator, 124-126 
postfix, 81 
primary, 78-80 
sequence points, 129-130 
unary-operator 

address-of operator, 92-93 
decrement operator, 94-95 
delete operator, 10 1-102 
described, 91 
increment operator, 94-95 
indirection operator, 92 
logical NOT operator, 94 
new operator, 97-101 
one's complement operator, 94 
sizeof operator, 95-96 
unary negation operator, 93-94 
unary plus operator, 93 

extern "C", 37, 40-41, 179-181 
extern "C++", 37, 179 

extern keyword 
declaration statements, 152-154 
declarations, use in, 158 
described, 47 
linkage specification, 181 

External linkage 
defined, 25-26 
described, 33 

External variables, 47 

F 
_jar keyword 

described, 7, 403 
this pointer modification, 246 

Far pointers, 74 
_FAST macro, 375 
__ fastcall keyword, calling convention, 417-418 
__ FILE __ macro, 375, 384 
File scope 

described, 29 
linkage rules, 34 

Files, translation order, 1-2 
float type 

described, 50-51 
size, 51-52 

Floating types 
conversion 

from integral, 69 
to integral, 69 
to other floating, 68-69 

described, 50-51 
limits, 63-64 

Floating-point constants, 19-20 
FLT_DIG constant, 63-64 
FLT_EPSILON constant, 63-64 
FLT_MANT_DIG constant, 63-64 
FLT_MAX constant, 63-64 
FLT_MAX_I0_EXP constant, 63-64 
FLT_MAX_EXP constant, 63-64 
FLT_MIN constant, 63-64 
FLT_MIN_lO_EXP constant, 63-64 
FLT_MIN_EXP constant, 63-64 
FLT_RADIX constant, 63-64 
FLT_ROUNDS constant, 63-64 
for statements 

described, 145-146 
iteration statements, 142-143 

Formal arguments 
defined, xxi 
scope, 33 



_jortran keyword 
calling convention, 418 
described,7 

Friend functions, nested classes, 256-257 
friend keyword, 290-293 
friend specifier, 167 
Friends 

access rules, 290-293 
declaring, 293-295 
defining in class declarations, 295 

Function arguments, names, 283 
Function definitions, 213-216 
Function names, introduction by declaration 

statements, 149 
Function parameters, linkage, 35-36 
function pragma directive, 388 
Function scope, 29 
Function specifiers 

in line, 159 
virtual, 163 

Function-call operator 
overloading, 361 
postfix expressions, 83-88 

Functions 
See also Member functions 
accessor, defined, 230 
based,411-412 
conversion, 315-317 
declarators, 203-210 
inline, described, 159-163 
overloading. See Overloading 
prototypes, 155 
types, 52 
virtual 

abstract classes, 265-266 
accessing, 296-297 
described, 265, 275-279 

Fundamental types 

G 

conversions. See Conversions 
described, 50-52 

goto statements 
jump statements, 149 
labels, using with, 134-135 

Grammar summary, 423-436 
Gray expressions, 130 
Greater-than operator 

binary-operator expressions, 107-109 
overloading, 359 

Greater-than-or-equal-to operator 
binary-operator expressions, 107-109 
overloading, 359 

H 
Handlers 

interrupt, 420-421 
new, 321-323 

hdrstop pragma directive, 388 
Hiding names, 30-32 
__ huge keyword 

described,7,404-405 
this pointer modification, 246 

Huge pointers, 74 

Identifiers 
described, 5 
predefined macros, 7-9 
restrictions, 6 

#if preprocessor directive, 379-383 
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if statements, selection statements, 138-139 
#ifdef preprocessor directive, 383-384 
#ifndef preprocessor directive, 383-384 
Include (.H) files 

defined, 365 
described, 376-378 

#include preprocessor directive, 376-378 
Inclusive OR operator, bitwise. See Bitwise 

inclusive OR operator 
Increment operator 

overloading, 355-358 
postfix expressions, 90-91 
unary-operator expressions, 94-95 

Indirection operator, 92 
Inheritance 

construction order, 305 
multiple 

access control, 297 
base classes, 267-271 
described, 264-265 
name ambiguities, 271-274 

single, 259-264 
unions, 250 

Initialization 
aggregate types, 219-222 
automatic objects, 150 
character arrays, 222-223 
constructors, 284 
copying objects, 333-337 
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Initialization (continued) 
local variable handling, 47--49 
new operator, objects allocated with, 98 
order of execution, 43--44 
pointers to const objects, 218 
references, 223-224 
special member functions, using 

arrays, 328-329 
bases and members, 329-333 
described, 325-328 
static objects, 329 

static members, 219 
static objects, 152-154,329 
uninitialized objects, 218 

Initializers,217-218 
inicseg pragma directive, 388 
Inline functions, 159-163,246-247 
inline specifier, 159 
inline_depth pragma directive, 389 
inline_recursion pragma directive, 389 
Insufficient memory, testing for, 321-323 
int type 

described, 50-51 
size, 51-52 

Integer constants, 14-16 
Integral constant expressions, conversion to null 

pointers, 75 
Integral conversions 

tloating to integral, 69 
integral to floating, 69 
signed to unsigned, 67 
standard, 68 
unsigned to signed, 67-68 

Integral promotion 
described, 66-67 
enumerators, 177-178 

Integral types 
conversion 

signed to unsigned, 67 
standard (to shorter types), 68 
to floating, 69 
unsigned to signed, 67-68 

described, 50-51 
limits, 62 

Intemallinkage 
defined, 25-26 
described, 33 

Interrupt handlers, 420--421 
__ interrupt keyword, 7, 420--421 
INT_MAX constant, 62 
INT _MIN constant, 62 

intrinsic pragma directive, 389-390 
Italics, document conventions, xvix 
Iteration statements, 142 

J 
Jump statements, 147-149 

K 
Keywords 

L 

described, 6-7 
grammar summary, 424 
(list), 6-7 
Microsoft -specific 

See also Modifiers 
grammar summary, 435--436 
(list), 7 
modified pointers, conversion, 74 

Labeled statements, 134--136 
Labels 

case statements, using with, 134-136 
switch statements, restrictions, 135-136 

LDBL DIG constant, 63-64 
LDBL -EPSILON constant, 63-64 
LDBL - MANT DIG comtant, 63-64 
LDBL -MAX c;;nstant, 63-64 
LDBL -MAX 10 EXP constant, 63-64 
LDBL -MAX - E)ep constant, 63-64 
LDBL -MIN Zonstant, 63-64 
LDBL=MIN_10_EXP constant, 63-64 
LDBL MIN EXP constant, 63-64 
LDBL=RADIX constant, 63-64 
Left-shift operator 

binary-operator expressions, 106-107 
overloading, 359 

Less-than operator 
binary-operator expressions, 107-109 
overloading, 359 

Less-than-or-equal-to operator 
binary-operator expressions, 107-109 
overloading, 359 

Lifetime 
defined, 25-26 
new operator, object allocated with, 98 
scope. See Scope 

Limits, numerical, 62-64 
Line control, preprocessor, 384-385 
__ LINE __ macro, 375, 384 



#line preprocessor directive, 384-385 
linesize pragma directive, 390 
Linkage 

C functions, 36-37 
defined,25-26 
described, 33 
extern "C", 37, 40--41, 179-181 
extern "C++", 37,179 
external 

defined,25-26 
described, 33 

internal 
defined, 25-26 
described, 33 

rules, 34-36 
specifications, 178-181 
types, 33 

Literals. See Constants 
__ loadds keyword, 421--422 
Local scope, 28 
Local variables, initialization, 47--49 
Logical AND operator 

binary-operator expressions, 111-112 
overloading, 358 

Logical NOT operator, 94 
Logical OR operator 

binary-operator expressions, 112 
overloading, 359 

long double type, 50-52 
long int type, 51-52 
long type, 50-52 
LONG_MAX constant, 62 
LONG_MIN constant, 62 
loop_opt pragma directive, 390 
L-values, 60-61 

M 
Macros 

assert, 43 
#define directive, 368-370 
#include directive, 376-378 
predefined 

line control, 384 
(table),374-376 

predefined identifiers, 7-9 
preprocessing, 366-368 
#Undef directive, 373-374 

main function 
described, 38--42 
initialization considerations, 43--44 

Mantissas, floating-point constants, 20 
Matching. See Overloading 
MB_LEN_MAX constant, 62 
Member functions 

constructors. See Constructors 
described,240-243 
destructors. See Destructors 
friends, declaring as, 293-294 
inline, described, 246-247 
nonstatic, described, 243 
overloading. See Overloading 
special 

described,299-300 
initialization using, 325-333 

static, described, 243-244 
this pointer, 244-246 
unions, in, 250 

Members 
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See also Bit fields; Data members; Member 
functions 

access. See Access 
arrays, unsized, declaring in member lists, 239 
categories (list), 235 
data storage, 239 
declaration, 237-238 
described, 235-236 
initializing using special member functions, 

329-333 
naming restrictions, 240 
pointers to 

declarators, 196-198 
types defined, 55 

pointers to, conversion 
base to derived, 76 
to base, 72-73 

protected, accessing, 295-296 
Member-selection operator 

overloading, 363 
postfix expressions, 89 

Memberwise assignment. See Ass,ignment 
Memory allocation 

failed, testing for, 321-323 
new operator, 318-320 

Memory deallocation, delete operator, 323-325 
Memory handlers, setting, 321-323 
Memory-model modifiers, 398--402 
message pragma directive, 390 
_M_I286 macro, 375 
_M_I386 macro, 375 
_M_I8086 macro, 375 
_M_I86 macro, 375 
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_M_I86mM macro, 375 
Microsoft Specific margin notation described, xxi 
Modifiers 

__ based keyword, 405-412 
calling and naming convention, 415-416 
__ export keyword, 419-420 
__ far keyword, 403 
grammar summary, 435-436 
__ huge keyword, 404-405 
__ interrupt keyword, 420-421 
(list), 397-398 
__ loadds keyword, 421-422 
memory-model, 398-402 
__ near keyword, 402-403 
__ saveregs keyword, 422 
__ segname function, 415 

Modulus operator 
binary-operator expressions, 103-104 
overloading, 358 

_MSC_ VER macro, 375 
MSDOS macro, 375 
_MT macro, 375 
Multiple inheritance 

access control, 297 
base classes, 267-271 
described, 264-265 
names, 271-274 

Multiplication operator 

N 

binary-operator expressions, i 03- i 04 
overloading, 358 

Name spaces, 61 
Names 

ambiguity, 271-274, 282 
classes, 232-234 
defined, 25-26 
dotninance,273-274 
enumerators, 176 
function arguments, 283 
global when, 282 
hiding, 30-32 
linkage rules 

no linkage, 35-36 
with block scope, 34 
with class scope, 34 
with file scope, 34 

members, restrictions, 240 
multiple inheritance ambiguities, 271-274 
primary expressions, 79-80 

Names (continued) 
qualified names 

described, 282-283 
primary expressions, 80 

scope, 25-26 
types. See Types 

Naming conventions, modifiers, 415-416 
native_caller pragma directive, 390 
__ near keyword 

described, 7,402-403 
this pointer modification, 246 

Near pointers, 74 
Negation operator, unary 

overloading, 355 
unary-operator expressions, 93-94 

Nesting 
classes, 254-257 
include files, 378 

New handlers, 321-323 
new operator 

dynamic allocation, 318-320 
unary-operator expressions, 97-101 

NO_EXT_KEYS macro, 375 
Nonstatic member functions, 243 
NOT operator, logical. See Logical NOT operator 
Notation in expressions, 130-131 
Null pointer, conversion 

from integral constant expressions, 75 
from nuil values, 71 

Null preprocessor directive, 384 
Null statements, 136-137 
Numericallitnits 

o 

floating, 63-64 
integral, 62 

Object names, introduction by declaration 
statements, 149 

Objects 
based, 411-414 
class-type, 230-231 
copying, 333-337 
declaring 

as automatic, 149-151 
as static, 152-154 

defined, xxi, 25-26 
initializing, 218 
lifetime defined, 25-26 
passing by reference, return types, 53-54 



Objects (continued) 
static, initializing using special member functions, 

329 
storage class, 25-26 
temporary, 311-312 
type conversions, 312-313 
variables, compared to, 25-26 

One's complement operator, 94 
Operands 

See also Operators 
compatibility with operators, 130-131 
conversions, 69-71 

Operators 
associativity, 11-14 
base, 406 
binary 

additive, 104--106 
assignment, 112-116 
bitwise AND, 110-111 
bitwise exclusive OR, 110-111 
bitwise inclusive OR, 110-111 
bitwise shift, 106-107 
comma, 116-117 
equality,107-110 
(list), 102-103 
logical AND, 111-112 
logical OR, 112 
multiplicative, 103-104 
overloading, 358-363 
relational, 107-11 0 

cast. See Conversion functions 
conditional, 117-118 
delete, 323-325 
described, 10 
evaluation order, 11-14 
explicit type conversion, 119-121 
function-call, overloading, 361 
member-selection, overloading, 363 
new, dynamic allocation, 318-320 
operand compatibility, 130-131 
overloading 

assignment, 360 
binary, 358-360 
described,351-353 
function-call, 361 
member-selection, 363 
overview, 77 
rules, 354-355 
subscript, 362-363 
unary,355-358 

pointer-to-member, 124-126 

Operators (continued) 
postfix 

decrement, 90-91 
described, 81 
function-call, 83-88 
increment, 90-91 
member-selection, 89 
subscript, 81-83 

precedence, 11-14 
preprocessor 

charizing, 372 
defined, 365, 381 
described,370 
stringizing, 371-372 
token-pasting, 373 

syntax, 11-14 
unary 

address-of, 92-93 
associativity, 91 
decrement, 94--95 
delete, 101-102 
increment, 94--95 
indirection, 92 
(list),91 
logical NOT, 94 
new, 97-101 
one's complement, 94 
overloading, 355-358 
sizeof, 95-96 
unary negation, 93-94 
unary plus, 93 

OR operators 

Index 447 

bitwise exclusive. See Bitwise exclusive OR 
operator 

bitwise inclusive. See Bitwise inclusive OR 
operator 

logical. See Logical OR operator 
Order of construction, 305 
Order of destruction, 308-310 
Order of evaluation 

expressions, 127-129 
operators, 11-14 

Overloading 
described, 339 
functions 

address return, 351 
argument matching, 344--350 
argument type differentiation, 340 
declaration matching, 342-343 
memory-model specifiers, 401 
restrictions, 341 
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Overloading (continued) 

p 

operators 
binary, 358-360 
described, 351-353 
function-call,361 
member-selection, 363 
overview, 77 
rules, 354--355 
subscript, 362-363 
unary, 355-358 

pack pragma directive, 390 
page pragma directive, 391 
pagesize pragma directive, 391 
Parameters. See Arguments 
Parsing 

command-line arguments, startup code, 40-42 
tokens, 2-3 

__ pascal keyword 
calling convention, 418 
described, 7 

Passing objects, return types, 53-54 
__ PCODE macro, 375 
Phases of translation, 395-396 
Plus operator, unary, 93 
Point of declaration, 29-30 
Pointer conversions 

from arrays, 73-74 
integral constant expressions to null pointer, 75 
keyword-modified pointers, 74 
pointers of type void to other types, 71 
pointers to base classes to pointers to derived 

classes, 76 
pointers to classes to pointers to base classes, 72-73 
pointers to functions to type void, 71 
pointers to objects to type void, 71 
zero values to null pointer, 71, 75 

Pointers 
based, 406--411 
const keyword, effect, 188-190 
declarators, 188-190 
smart, defined, 363 
this, 244-246, 345-346 
volatile keyword, effect, 188-190 

Pointers to const objects, initializing, 218 
Pointers to functions, types, 52 
Pointers to members 

declarators, 196-198 
types defined, 55 

Pointer-to-member operators, expressions with, 
125-127 

Postfix expressions, 81 
Postfix operators 

decrement, 90-91 
function-call, 83-88 
increment, 90-91 
member-selection, 89 
subscript, 81-83 
(table), 81 

Pragma directives, 386-392 
#pragma preprocessor directive, 385-392 
Pragmas defined, 365 
Precedence, operators, 11-14 
Predefined macros 

described,7-9 
line control, 384 
(table), 374--376 

Preprocessing 
line control, 384-385 
macros, 366-368 

Preprocessor described, 365 
Preprocessor directives 

conditional compilation control, 379 
#define, 368-370 
defined,365 
described, 366 
#elif,379-383 
#else, 379-383 
#endif, 379-383 
#error, 385 
grammar summary, 434-435 
#if, 379-383 
#ifdef,383-384 
#ifndef, 383-384 
#include, 376-378 
#line,384--385 
(list),366 
null, 384 
#pragma, 386-392 
#Undef, 373-374 

Preprocessor operators 
charizing, 372 
defined,365,381 
described,370 
stringizing, 371-372 
token-pasting, 373 

Primary expressions, 78-80 
Programs 

defined, 33 
elements (list), 1 



Programs (continued) 
file translation order, 1-2 
startup code 

initialization considerations, 43-44 
main function, 38-42 

termination 
initialization considerations, 44-45 
methods, 42-43 

Promotions, integral, 66--67 
Protected members, accessing, 295-296 
Prototypes, 155 
Punctuators, 9-10 

Q 
_QC macro, 376 
Qualified names 

described,282-283 
primary expressions, 80 

Quotation marks (" "), document conventions, xx 

R 
References 

declarators, 190-196 
initializing, 223-224 
to classes, conversion to references to base classes 

75 ' 
to objects, types, 53-54 

register keyword 
declaration statements, 149-151 
declarations, use in, 157-158 
described, 46-47 

Register variables, 46-47 
Relational operators 

binary-operator expressions, 107-110 
overloading, 359 

return statements 
jump statements, 148-149 
terminating programs 

described, 43 
initialization considerations 44-45 

Right-shift operator ' 
binary-operator expressions, 106-107 
overloading, 359 

R-values, 60-61 

s 
same_seg pragma directive, 391 
__ saveregs keyword, 422 
SCHAR_MAX constant, 62 

SCHAR_MIN constant, 62 
Scope 

block, linkage rules, 34 
class 

described, 29 
linkage rules, 34 
type names in, 257 

classes, 282-284 
default arguments, 212, 283 
defined,25-26 
described, 28-29 
file 

described, 29 
linkage rules, 34 

formal arguments, 33 
function, described, 29 
hiding names, 30-32 
local, described, 28 
overloading, 342-343 

__ segment keyword, 406, 412-414 
__ segment type, 50 
__ segname function, 414-415 
__ segname keyword, 406 
Selection statements, 138-142 
__ self keyword, 406 
Sequence points, expressions, 129-130 
_setargv function, 39-41 
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_setenv function, suppressing library routine use 
41-42 ' 

_seCnew _handler function, 321-323 
Shift operators, bitwise 

binary-operator expressions, 106-107 
overloading, 358 

short int type, 51-52 
short type, 50-52 
SHRT_MAX constant, 62 
SHRT_MIN constant, 62 
signed char type, 51-52 
signed int type, 51-52 
signed long type, 51-52 
signed short type, 51-52 
signed type, conversion 

from unsigned, 67-68 
to unsigned, 67 

Single inheritance, 259-264 
sizeof operator, 95-96 
Sizes, types, 51-52 
skip pragma directive, 391 
Small capital letters, document conventions xx 
Smart pointers, 363 ' 
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Special member functions. See Member functions, 
special 

Specifications, linkage, 178-181 
Specifiers 

access 
base classes, 287-290 
described,286-287 

described, 156 
friend,167 
function, 159-163 
memory-mode1,401 
storage-class, 157-158 
type, 168-173 
typedef,163-167 

Square brackets ([[ ]]), document conventions, xx 
_STACK constant, 415 
Standard integral conversion, 68 
Startup code 

command-line arguments, parsing, 40-42 
initialization considerations, 43-44 
main function, 38-42 

Statements 
categories, 133 
compound,described,137 
declaration, described, 134, 149-154 
described, 134 
expression, described, 136-137 
grammar summary, 433-434 
iteration, described, 142 
jump, described, 147-149 
labeled, described, 134-136 
null, described, 136-137 
selection, described, 138-142 
syntax, 134 

Static data members, 247-248 
static keyword 

declaration statements, 152-154 
declarations, use in, 158 
described, 46 
linkage specification, 181 

Static members 
described,243-244 
initializing, 219 

Static objects, initializing, 152-154,329 
Static storage class 

declaration statements, 152-154 
specifiers, 158 

Static variables 
described, 46 
initialization, 47-49 

__ STDC macro, 376 

__ stdcall keyword, calling convention, 419 
Storage classes, 25-26, 46-47 
Storage-class specifiers, 157-158 
String literals, 20-23 
Stringizing operator, 371-372 
struct keyword, class type declaration, 228 
struct type names, introduction by declaration 

statements, 149 
Structures 

declaring, 228 
derivative types, 58 

Subscript operator 
overloading, 362-363 
postfix expressions, 81-83 

subtitle pragma directive, 391 
Subtraction operator 

binary-operator expressions, 104-106 
overloading, 359 

switch statements 
labels, use restrictions, 135-136 
selection statements, 139-142 

Symbols, name spaces, 61 
Syntax summary, 423-436 

T 
Temporary objects, 311-312 
Termination 

abort function 
described, 43 
immediate termination, 45 

assert macro, 43 
atexit function, 45 
exit function 

described, 42 
initialization considerations, 44-45 

initialization considerations, 44-45 
methods, 42-43 
return statement 

described, 43 
initialization considerations, 44-45 

Termsdefined,25-26 
Ternary operator. See Conditional operator 
32-Bit Specific margin notation described, xxi 
this keyword, pointer 

argument matching, overloaded functions, 345-346 
described,244-246 
disambiguation, 401-402 

__ TIME __ macro, 376 
__ TIMESTAMP __ macro, 376 
title pragma directive, 391 



Token-pasting operator, 373 
Tokens, 2-3 
Translation phases, 1-2,395-396 
Translation units 

defined, 2-3, 395-396 
linkage. See Linkage 

Type conversions 
See also Conversions 
described, 312-313 

Type names 
class declarations, using in, 238 
class scope, effect, 257 
declarators, use in, 185-187 
defining, 59-60 

Type specifiers, 168-173 
typedef keyword, 59-60 
typedef names 

introduction by declaration statements, 149 
linkage, 35-36 

typedef specifier, 163-167 
typedef statements, class naming, 234 
Types 

aggregate, initializing, 219-222 
class. See Class types 
conversions. See Conversions 
defined, 25-26 
derived 

composed,58-59 
described,52 
directly derived, 52-57 

described, 49 
floating, 50-51 
fundamental 

conversions. See Conversions 
described, 50-52 

integral,50-51 
__ segment, 50 
void,50 

Typographic conventions, xvix-xxi 

u 
UCHAR_MAX constant, 62 
UINT _MAX constant, 62 
ULONG_MAX constant, 62 
Unary negation operator 

overloading, 355 
unary-operator expressions, 93-94 

Unary operators 
address-of, 92-93 
associativity, 91 

Unary operators (continued) 
decrement, 94-95 
delete, 101-102 
increment, 94-95 
indirection, 92 
(list), 91 
logical NOT, 94 
new, 97-101 
one's complement, 94 
overloading, 355-358 
sizeof,95-96 
unary negation, 93-94 
unary plus, 93 

Unary plus operator 
overloading, 355 
unary-operator expressions, 93 

#undef preprocessor directive, 373-374 
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union keyword, class type declaration, 228 
union type names, introduction by declaration 

statements, 149 
Unions 

declaring, 228 
derivative types, 58-59 
described, 249-252 

unsigned char type, 51-52 
unsigned int type, 51-52 
unsigned long type, 51-52 
unsigned short type, 51-52 
unsigned type, conversion 

from signed, 67 
to signed, 67-68 

Uppercase letters, document conventions 
normal, xvix 
small, xx 

USHRT_MAX constant, 62 

v 
Variables 

automatic 
described, 46 
initialization, 47--49 

defined, xxi, 25-26 
external, described, 47 
local, initialization, 47--49 
numerical limits 

floating, 63-64 
integral, 62 

objects, compared to, 25-26 
reference-type, initializing, 223-224 
register, described, 46--47 
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Variables (continued) 
static 

described, 46 
initialization, 47-49 

Virtual base classes, 268-271 
Virtual functions 

abstract classes, 265-266 
accessing, 296-297 
described, 265, 275-279 

virtual specifier, 163 
void type 

described, 50 
pointer conversions, 71 

volatile keyword 

w 

pointers, effect on, 188-190 
this pointer modification, 246 

warning pragma directive, 391-392 
while statements, 142-143 
White space, 2-4 
Wildcards, usage described, 39 

z 
Zero values, conversion to null pointer, 71, 75 



Microsoft Corporation 
One Microsoft Way 
Redmond, WA 98052-6399 

1191 Part No. 24772 


