

Microsoft. C

Advanced
Programming Techniques

FOR MS. 0S/2 AND MS-DOS
OPERATING SYSTEMS

MICROSOFT CORPORATION

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software described in this docu-
ment is furnished under a license agreement or nondisclosure agreement. The software
may be used or copied only in accordance with the terms of the agreement. It is against
the law to copy the software on any medium except as specifically allowed in the li-
cense or nondisclosure agreement. No part of this manual may be reproduced or trans-
mitted in any form or by any means, electronic or mechanical, including photocopying
and recording, for any purpose without the express written permission of Microsoft.

©Copyright Microsoft Corporation, 1990. All rights reserved.

Printed and bound in the United States of America.

Microsoft, MS, MS-DOS, CodeView, InPort, and XENIX are registered trademarks and
Windows is a trademark of Microsoft Corporation.

Apple and Macintosh are registered trademarks and Finder is a trademark of Apple
Computer, Inc.

AT&T is a registered trademark of American Telephone and Telegraph Company.

Hercules is a registered trademark and InColor is a trademark of Hercules Computer
Technology.

IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.

Olivetti is a registered trademark of Ing. C. Olivetti.

PDP-11 and VAX-11 are registered trademarks of Digital Equipment Corporation.
WANG is a registered trademark of Wang Laboratories.

78000 is a registered trademark of Zilog, Inc.

Document No. LN06514-1189 OEMO711-6Z
10 9 8 7 6 5 4 3 2

Contents

Introduction

. « XV
Scope of ThisBook XV
Document Conventions xvii
PART 1 Improving Program Performance
Chapter 1 Optimizing C Programs 5
1.1 Controlling Optimization
from the Programmer’s WorkBench 5
1.2 Controlling Optimization from the Command Line 6
1.3 Controlling Optimization with Pragmas 7
1.4 Default Optimization 8
1.4.1 Common Subexpression Elimination 8
1.4.2 Dead-Store Elimination9
143 Constant Propagation9
1.5 Customizing Your Optimizations 10
1.5.1 Choosing Speed or Size (/Otand /Os) 10
1.5.2 Generating Intrinsic Functions (/Oi) 10
1.5.3 Assuming No Aliasing (/Oaand /Ow) 13
1.5.4 Performing Loop Optimizations (/Ol) 16
1.5.5 Disabling Unsafe Loop Optimizations (/On) 17
1.5.6 Enabling Aggressive Optimizations (/Oz) 17
1.5.7 Removing Stack Probes (/Gs) 18
1.5.8 Enabling Global Register Allocation (/Oe) 19
1.5.9 Enabling Common Subexpression Optimization
(/Ocand/Og) 20
1.5.10 Achieving Consistent Floating-Point Results (/Op) 21
1.5.11 Using the 80186, 80188, or 80286 Processor
(/GO, /G1,/G2) 21
1.5.12 Optimizing for Maximum Efficiency (/Ox) 22
1.6 Linker (LINK) Options that Control Optimization 23
1.6.1 Enabling Far Call Optimization
(/FARCALLTRANSLATION) 23
1.6.2 Packing Code (/PACKCODE) 25

iii

iv Advanced Programming Techniques
b .- |

1.6.3 Packing Data (/PACKDATA) 25
1.64 Packing the Executable File ((EXEPACK) 26
1.7 Optimizing in Different Environments26
1.7.1 OptimizinginDOS 26
1.7.2 OptimizinginOS/2 26
1.7.3 - Optimizing in Microsoft Windows™26
1.8 Ciloosing Function-Calling Conventions 27
- 1.8.1 The C Calling Convention (/Gd)27
1.8.2 The FORTRAN/Pascal Calling Convention (/G¢) . . .27
1.8.3 The Register Calling Convention (/Gr) 28
1.8.4 The _fastcall Calling Convention28

Chapter 2 Managing Memory31

2.1 Pointer Sizeso oL 31
2.1.1 Pointers and 64K Segments LoL.32
2.1.2 Near Pointers L. .32
2.13 FarPointers 33
2.14 HugePointers0.33
2.15 Based Addressing34
2.2 Selecting a Standard Memory Model34
221 The Six Standard Memory Models 35
222 Limitations on Code Size and Data Size 35
223 The Tiny Memory Model 36
224 The Huge Memory Model 36
225 Null Pointers 37
2.2.6 Specifying a Memory Model 38
23 Mixing Memory Models39
2.3.1 Pointer Problems40
2.3.2 Declaring Near, Far, Huge, and Based Variables . . .42
233 Declaring Near and Far Functions 43
234 Pointer Conversions 44
24 Customizing Memory Models46
2.4.1 Setting a Size for Code Pointers 47
24.2 Setting a Size for Data Pointers 48
243 Setting Up Segments48
24.4 Library Support for Customized Memory Models . . .51

24.5 Setting the Data Threshold51

Contents v

2.5

Chapter 3

3.1
3.2
33
34

3.5
3.6
3.7
3.8
3.9

Chapter 4

4.1

4.2

4.3

44

2.4.6 Naming Modules and Segments

2.4.7 Specifying Code and Data Segments

Using Based Variables
2.5.1 New Keywords G

252 Declaring Based Variables

253 Advantages of Based Pointers

Using the In-Line Assembler

Advantages of In-Line Assembly

The _asm Keyword

Using Assembly Language in _asm Blocks

UsingCin _asm Blocks

34.1
342
343
344

Using Operators
Using C Symbols

AccessingCData
Writing Functions

Using and Preserving Registers

Jumping toLabels

Calling C Functions

Defining _asm Blocks as C Macros

Optimizing e e

Controlling Floating-Point
Math Operations

Declaring Floating-Point Types

4.1.1
4.1.2

Declaring Variables as Floating-Point Types
Declaring Functions that Return Floating-Point Types

C Run-Time Library Support
of Type longdouble

Summary of Math Packages

43.1
432
433

Emulator Package
Math Coprocessor Package
Alternate Math Package

Selecting Floating-Point Options (/FP)

44.1
442
4.4.3

In-Line Emulator Option (/FPi)
In-Line Math Coprocessor Instructions Option (/FPi87)
Calls to Emulator Option (/FPc)

52
53
54
54
55
61

63
64
65
68
68
69
69
70
7
73
74
75
76

79
80
82

82
82
83
84
84
84
86

87

.63

.79

vi Advanced Programming Technigues
[e]

444 Calls to Math Coprocessor Option (/FPc87) 88

4.4.5 Use Alternate Math Option (/FPa) 89
4.5 Library Considerations

for Floating-Point Options 89

45.1 Using One Standard Library for Linking 89

452 In-Line Instructionsor Calls 90
4.6 Compatibility between Floating-Point Options 90
4.7 Using the NO87 Environment Variable 91
4.8 Incompatibility Issues oL L. 92

PART 2 Improving Programmer Productivity

Chapter 5 Compiling and Linking Quickly 97

5.1 Compiling Quickly 97
5.1.1 Quick Compilero L 97
5.1.2 Incremental Compile Option 98
5.2 Linking Quickly with ILINK 98
5.2.1 Preparing for Incremental Linking 99
522 Incremental Violations 100

Chapter 6 Managing Development Projects
withNMAKE103

6.1 Overview of NMAKE 103
6.2 The NMAKE Command 104
6.3 NMAKE Description Files 105
6.3.1 Description Blocks 105
6.3.2 Comments 110
6.3.3 Macros e e e e 110
6.3.4 Inference Rules 117
6.3.5 Directives 120
6.3.6 Pseudotargets L L. 122
6.3.7 PWB’s extmake Syntax 124
6.4 Command-LineOptions 124
6.5 NMAKE Command Files 126
6.6 The TOOLS.INIFile 127

6.7 In-LineFiles 127

Contents vii

6.8
6.9

Chapter 7
7.1

7.2
7.3

7.4

7.5

7.6

Chapter 8

8.1

8.2
8.3

NMAKE Operations Sequence
Differences between NMAKE and MAKE

Creating Help Files with HELPMAKE

Structure and Contents of a Help Database
7.1.1 Contentsof aHelp File
7.1.2 Help File Formats

Invoking HELPMAKE

HELPMAKE Options
7.3.1 Options for Encoding
7.3.2 Options for Decoding

Creating a Help Database

Help Text Conventions

7.5.1 Structure of the Help TextFile

752 Local Contexts
7.53 Context Prefixes

7.54 Hyperlinks
Using Help Database Formats

7.6.1 QuickHelp Format

7.6.2 Minimally Formatted ASCII Format

7.6.3 Rich Text Format (RTF)

Customizing the
Microsoft Programmer’s WorkBench

Setting Switcheso L.
8.1.1 Editing the <assign> Pseudofile
8.1.2 Editing the TOOLS.INI Initialization File

Assigning Keystrokes L.

Writing Macros Lo

8.3.1 Macro Syntax oL oo L .

8.3.2 Macro Responses

833 Macro Arguments

834 Macro Conditionals

8.3.5 Temporary Macros

8.3.6 Macro Recordings

.

. 133
.. 134
. 135
. 136
. 137
.. 138
. 141

142

. 143

143

. 144
. 145

146
148

. 148

154

. 155

. 157
. . 158
.. 158
. 160

161

. 161

163

. 164

164

. 165

. . 133

. . 157

viii Advanced Programming Techniques
. |

8.4 Writing and Building C Extensions 167
8.4.1 Building Real-Mode Extensions 170
8.4.2 Building Protected-Mode Extensions 171
843 Describing Functions and Switches 172
8.44 Initializing Functions 175
84.5 Prototyping Functions 176
8.4.6 Receiving Parameters 176
8.4.7 Calling PWB Functions 178
8.4.8 Calling C Library Functions 182

Chapter 9 Debugging C Programs with CodeView185

9.1 Understanding CodeView Windows 185
9.2 Overview of Debugging Techniques 188
9.3 Viewing and Modifying Program Data 188
9.3.1 Displaying Variables in the Watch Window 188
9.3.2 Displaying Expressions in the Watch Window . . . 189
933 Displaying Arrays and Structures 190
934 Displaying Array Elements Dynamically 192
9.35 Using Quick Watch 193
9.3.6 Displaying Memory 193
9.3.7 Displaying the Processor Registers 194
9.3.8 Modifying the Values of Variables, Registers, and
Memory 195
94 Controlling Execution 196
9.4.1 Continuous Execution 196
942 Single-Stepping L. 199
9.5 Replaying a Debug Session 199
9.6 Advanced CodeView Techniques 200
9.7 Controlling CodeView
with Command-Line Options 204

9.8 Customizing CodeView with the TOOLS.INIFILE 205

Contents ix

PART 3 Special Environments

10.1

10.2

10.3

10.4

10.5

Chapter 10 Communicating with Graphics
VideoModes oL 211
10.1.1 Sample Low-Level Graphics Program 212
10.1.2 Settinga VideoMode 213
10.1.3 Reading the videoconfig Structure 215
10.1.4 Maximizing Resolutionor Color 216
10.1.5 Selecting Your Own Video Modes 216
Mixing Colors and Changing Palettes 217
10.2.1 CGAPalettes 218
10.2.2 Olivetti® Palettes 219
1023 VGAPalettes 219
1024 MCGAPalettes 221
10.25 EGAPalettes 221
10.2.6 Symbolic Constants 222
Specifying Points within Coordinate Systems 222
10.3.1 Physical Coordinates 223
103.2 Viewport Coordinates 225
10.3.3 Window Coordinates 227
10.34 Screen Locations 228
10.3.5 Bounding Rectangles 228
10.3.6 The Pixel Cursor 229
Graphics Functions e e 229
10.4.1 Controlling VideoModes 230
10.4.2 Changing Colors 231
10.4.3 Drawing Points, Lines, and Shapes 232
10.4.4 Defining Patterns 234
10.4.5 Manipulating Images 235
Using GraphicFonts 236
10.5.1 Using the C Font Library 238
10.5.2 Registering the Fonts 239
10.5.3 Setting the CurrentFont 239
10.54 DisplayingText 241
10.5.5 ASample Program 242
10.5.6 Using Fonts Effectively 244

.21

x Advanced Programming Techniques

Chapter 11 Creating Charts and Graphs

11.1
11.2
11.3

11.4

11.5

Chapter 12 Programming with Mixed Languages . .

12.1
12.2

12.3

12.4
12.5
12.6

12.7

Overview of Presentation Graphics
Parts of a Graph

Writing a Presentation Graphics Program
1131 PieChart oo
11.3.2 Bar, Column, and Line Charts
11.3.3 Scatter Diagram
Manipulating Colors and Patterns
114.1 ColorPool
1142 StylePool
1143 PatternPool L.
1144 CharacterPool
Customizing the Chart Environment
11.5.1 titletype Structures
11.5.2 axistype Structures
11.53 windowtype Structures
11.5.4 legendtype Structures
11.5.5 chartenv Structures

Making Mixed-Language Calls
Language Convention Requirements

12.2.1
12.2.2
12.23

Naming Convention Requirement
Calling Convention Requirement

Parameter-Passing Requirement

Compiling and Linking

12.3.1
12.3.2

Compiling with Correct Memory Models
Linking with Language Libraries

C Calls to High-Level Languages
CCallstoBASIC
CCallsto FORTRAN

12.6.1
12.6.2

Calling a FORTRAN Subroutine fromC
Calling a FORTRAN Function fromC

CCallstoPascal

12.7.1
12.7.2

Calling a Pascal Procedure fromC
Calling a Pascal Function fromC

Contents xi

12.8

12.9

C Calls to Assembly Language

12.8.1
12.8.2
12.8.3
12.8.4
12.8.5
12.8.6
12.8.7
12.8.8

Writing the Assembly-Language Procedure
Setting Up the Procedure

Entering the Procedure

Allocating Local Data

Preserving Register Values

Accessing Parameters

Returning a Value

Exiting the Procedure

Handling Data
in Mixed-Language Programming

12.9.1
12.9.2
129.3
1294
1295
12.9.6
12.9.7
12.9.8
12.9.9
12.9.10

Default Naming and Calling Conventions
Numeric Data Representation

Strings

Arrays

Array Declaration and Indexing

Structures, Records, and User-Defined Types
External Data Coe

Pointers and Address Variables

Common Blocks e

Using a Varying Number of Parameters

Chapter 13 Writing Portable Programs . . .

13.1

13.2

Assumptions about Hardware

13.1.1
13.1.2
13.1.3
13.1.4
13.1.5
13.1.6
13.1.7
13.1.8
13.1.9

Size of Basic Types

Storage Order and Alignment
Byte Order in a Word

Reading and Writing Structures
Bit Fields in Structures
Processor Arithmetic Mode
Pointers

Address Space

Character Set

Assumptions about the Compiler

13.2.1
13.2.2
13.2.3
13.24

Sign Extension
Length and Case of Identifiers
Register Variables . .

Functions with a Variable Number of Arguments

. 296
. 297
. 297
. 298
. 299
. 299
. 300
. 303
. 304

. 305
. 305
. 306
. 307
. 310
. 311
. 312
. 313
. 314
. 314
. 316

. 317
. 317
. 321
. 324
. 326
. 326
. 328
. 329
. 331
. 332
. 333
. . 334
. 336
. 337
. 337

.. 317

xii Advanced Programming Technigues
. |

1325 EvaluationOrder 338
13.2.6 Function and Macro Arguments with Side Effects . . 339
13.2.7 Environment Differences 340
13.3 Portability of DataFiles 340
13.4 Portability Concerns Specific to Microsoft C 341
13.5 Microsoft C Byte Ordering 341

PART 4 0S/2 Support

Chapter 14 Building OS/2 Applications347

14.1 The OS/2 Applications Program Interface 348

14.1.1 Callingthe OS2APL 348

14.1.2 Including the OS/2 Header Files 349

14.1.3 Creating Dual-Mode Programs as Family Apphcanns 350

14.2 Compile Options for the CLCommand 353

14.2.1 The Link Mode Options (/Lp, /Lt,and /Lc) 353

14.2.2 Creating Bound Programs Option (/Fb) 354

14.2.3 Library Selection Options (/MT, /ML, MD, /Z1) . . 355

1424 Memory-Model Options (/Ax) 356

14.3 Module-Definition Files and Import Libraries 357
14.3.1 Adding a Module-Definition File to the LINK

Command 359

14.3.2 Creating Dynamic-Link Libraries (DLLs) 359

143.3 Creating Programs with I/O Privileges 360

14.3.4 Creating Presentation Manager Applications 361

14.3.5 Creating Import Libraries with the IMPLIB Utility . 361

144 Link Command-Line Options 362

145 TheBIND Utility 364

Chapter 15 Creating Multithread OS/2 Applications367

15.1 Multithread Programs 367
15.1.1 Library Support 368
1512 IncludeFiles 370
15.1.3 C Run-Time Library Functions for Thread Control . 371
15.2 Sample Multithread C Program 373

15.3 Writing a Multithread Program 377

Contents xiii

154 Compiling and Linking
15.5 Avoiding Problem Areas
15.6 Using the Protected-Mode CodeView Debugger

15.6.1 Compiling with the /Zi Option 384
15.6.2 Prompt for Thread Number 384
15.6.3 Thread Commands 384
15.6.4 Screen Groups Used by CodeView 387
Chapter 16 Dynamic Linking with OS/2 389
16.1 Overview of Dynamic Linking 389
16.1.1 Load-Time and Run-Time Linking 390
16.1.2 Application Programsand DLLs 390
16.1.3 DLLs and Microsoft C Run-Time Libraries . 391
16.2 Designing and WritingDLLs 393
16.2.1 Floating-Point Math Requirements 394
16.2.2 Initialization and Termination Requirements . 395
16.2.3 Making the DLL Re-Entrant 397
1624 Signal Handling 400
16.2.5 Using Microsoft C Keywords 400
16.2.6 Compile Options for Dynamic-Link Libraries . 401
16.3 Building DLLs with MicrosoftC 402
16.3.1 DLLs with Static C Run-Time Library Functions 403
16.3.2 DLLs without C Run-Time Library Functions . 407
16.3.3 Programs and DLLs with a C Run-Time DLL . 408
16.3.4 Using CodeView to Debug Dynamic-Link Libraries 413
Appendixes
A Using ExitCodes o417
A.1 TheexitFunction 417
A.2 Testing Exit Codes from Command and Batch Files . 418
A3 Accessing Exit Codes from Other Programs 419
B Differences between C Versions S.1and 6.0 421
B.1 Modifications for ANSI Compatibility 421
B.2 New Keywords and Functions 425

xiv Advanced Programming Techniques
[e

B3 NewPFeatures 431
B.4 Differences in Code Generation 436
B.5 Changes and Deletions 438

C Implementation-Defined Behavior41

C.1 Translation 441
C.2 Environment 442
C.3 Identifiers 443
C4 Characterso ..o 444
CS5 Imtegers Lo 448
C.6 Floating-PointMath 450
C.7 Arraysand Pointers 451
C8 Registers oo 452
C.9 Structures, Unions, Enumerations, and Bit Fields 452
C.10 Qualifierso 454
C.11 Declarators oo 454
C.12 Statements 454
C.13 Preprocessing Directives 454
C.14 Library Functions 456

Index 467

Introduction

Advanced Programming Techniques describes how to get the most out of the
Microsofte C Professional Development System with its new integrated develop-
ment environment—the Microsoft Programmer’s WorkBench—and source-level
debugging tool—the CodeView® debugger.

In this manual, you will see how all the components of the Microsoft C Pro-
fessional Development System work together to provide you with the most
powerful development environment available. A key element in the power of the
Professional Development System is your ability to customize it to suit your in-
dividual needs as a programmer.

Because this book is arranged by topic, it answers questions about using
Microsoft C version 6.0, rather than providing lists of options. If you have
specific questions about menu items in the CodeView debugger, the Program-
mer’s WorkBench, or any of the command-line utilities included in the Pro-
fessional Development System, you can use the Microsoft C Advisor (on-line
help) or the C Reference manual.

Advanced Programming Technigues shows you how tools and utilities all fit
together.

Scope of This Book

Advanced Programming Techniques is divided into four parts. Part 1, “Improv-
ing Program Performance,” helps you write more efficient programs. It provides
specific information about optimizing—when and why to use various optimizing
options. It also explains new memory management options and when to use
them. For example, Chapter 3 describes the in-line assembler, a new feature that
lets you mix assembly language with your C source code.

Part 2, “Improving Programmer Productivity,” will help you perform program-
ming tasks more quickly and efficiently. Chapter 8 explains the different ways
you can customize the new Programmer’s WorkBench (PWB)—an editor and in-
tegrated development environment that allows you to

m Create new programs

= Modify existing programs

m Browse source files

Xxv

xvi Advanced Programming Techniques

m Obtain help about PWB, the C language, and the C run-time libraries
m Set program build lists
m Build programs

m Debug programs with the CodeView debugger

Chapter 8 also describes how to change PWB behavior to suit your programming
style by making keyboard assignments, recording or writing macros, and writing
C extensions.

Also in Part 2 is a chapter about the Microsoft Program Maintenance Utility,
NMAKE. NMAKE is a new program maintenance facility that allows you to use
program lists as input, which provides extra flexibility in your program build
process. It is a superset of the Microsoft XENIX® MAKE utility and is substan-
tially more powerful than previous versions of MAKE.

Chapter 9 in Part 2 describes the CodeView debugger, which is even more power-
ful than in previous releases. With CodeView version 3.0, you get many new fea-
tures, including the ability to record a debugging session, then play it back
(history and dynamic replay).

Part 3, “Special Environments,” describes new graphics capabilities. It also
shows how to program in mixed languages and offers tips to make your pro-
grams more portable. Microsoft C helps you create graphics applications easily.
The Microsoft C run-time libraries contain graphics functions for low-level
graphics operations, such as drawing lines, rectangles, and circles. The libraries
also contain functions for creating presentation graphics, such as pie charts and
bar charts.

Part 4, “OS/2 Support,” describes how the Professional Development System
helps you build OS/2 applications. The three chapters in Part 4 provide informa-
tion about dual-mode applications, creating multithread applications, and creat-
ing dynamic-link libraries.

A postage-paid documentation feedback card is at the end of this manual. After
you have had a chance to become familiar with Microsoft C 6.0 and its documen-
tation, please give us your opinion. Your ideas will help us as we develop future
documentation. Also at the end of this book is a Product Assistance Request
form. If you need to call Microsoft for assistance, use this form first to compile
and organize pertinent information.

Introduction xvii

Document Conventions

NOTE The pages that follow use the term “0S/2” to refer to the 05/2 systems—Microsoft
Operating System/2 (MSe 05/2) and IBMe 0S/2. Similarly, the term “DOS” refers to both
the MS-DOS® and IBM Personal Computer DOS operating systems. The name of a specific
operating system is used when it is necessary to note features that are unique to the system.

Example

STDIO.H

_cdecl

expression

[[option]l

#pragma pack {112}

CLA.CB.CC.OBJ

CL options [files...]|

Description

Uppercase letters indicate file names,
segment names, registers, and terms
used at the DOS- or OS/2-command
level.

Boldface letters indicate C keywords,
operators, language-specific charac-
ters, and library functions, as well as
0OS/2 functions. Within discussions

of syntax, bold type indicates that the
text must be entered exactly as shown.

Words in italics indicate placeholders
for information you must supply,
such as a file name. Italics are also
occasionally used for emphasis in

the text.

Items inside double square brackets
are optional.

Braces and a vertical bar indicate a
choice among two or more items.
You must choose one of these items
unless double square brackets sur-
round the braces.

This font is used for examples, user
input, program output, and error mes-
sages in text.

A horizontal ellipsis following an
item indicates that more items having
the same form may follow.

xviii Advanced Programming Techniques

while()
{

} .

CTRL+ENTER

“argument”

Enhanced Graphics Adapter (EGA)

A vertical ellipsis tells you that part
of the example program has been in-
tentionally omitted.

Small capital letters are used for the
names of keys on the keyboard.
When you see a plus sign (+) between
two key names, you should hold
down the first key while pressing the
second.

The carriage-return key (sometimes
appearing as a bent arrow on the key-
board) is called ENTER.

The cursor-movement keys (some-
times called direction keys) are called
the ARROW keys. Individual keys are
referred to by their direction (LEFT,
UP) or by the name on the key (PGUP).

Quotation marks enclose a new term
the first time it is defined in text.

The first time an acronym is used, it
is often spelled out.

. o
.
.
. .

.

.
.

ﬁ'%l‘f” .
.
. ;"E’”ﬁﬁf

Improving Program
Performance

.
.
-

-
MY,
v

Improving Program
Performance

The Microsoft C Professional Development System helps you
create the fastest, smallest applications using its sophisticated
optimizer and enhanced memory management capabilities.

Chapter 1 tells when to use certain optimizations and describes
how Microsoft C generates code that is efficient in execution
speed and size. Chapter 2 explains the sophisticated tools Micro-
soft C gives you to allocate and manage program memory, in-
cluding the new _based type. For cases where your program
requires localized optimization, you can use the in-line assem-
bler, described in Chapter 3, to introduce the tightest possible
code. If your application requires floating-point math computa-
tions, you will find Chapter 4 helpful in explaining the options in
the Microsoft C math packages; it explains which floating-point
options yield the fastest, smallest, and most flexible code.

CHAPTER e

Optimizing G Programs

The Microsoft C compiler translates C source statements into machine-
executable instructions. In addition, the compiler rewrites or “optimizes”
parts of your program to make it more efficient in ways that are not apparent
at the source level.

The compiler performs three general types of optimization:

1. It modifies or moves sections of code so that fewer instructions are used, or
so that the instructions used make more efficient use of the processor.

2. It moves code and combines operations to maximize use of registers be-
cause operations on data stored in processor registers are far faster than the
same operations on data stored in memory.

3. It eliminates sections of code that are redundant or unused.

This chapter explains the various ways you can control how the Microsoft C com-
piler optimizes your code.

1.1 Controlling Optimization
from the Programmer’s WorkBench

The Programmer’s WorkBench (PWB) is an integrated development environ-
ment for editing, building, and debugging applications written in Microsoft C.
For more information on the PWB, see Installing and Using the Microsoft C
Professional Development System.

6 Advanced Programming Technigues

There are two ways to compile from inside the Programmer’s WorkBench:
1. Debug compile. In a default debug compile, the compiler performs no
optimizations at all.
2. Release compile. In a default release compile, the compiler performs most

optimizations.

By modifying the settings in C Global Build Options, C Debug Build Options,
and C Release Build Options (on the Options menu), you can fine-tune optimiza-
tion by individually enabling or disabling any of the optimizations the compiler
performs.

The optimizations in each of the Build Options dialog boxes correspond to a
command-line option to CL. (In fact, the PWB constructs a command line from
your input and passes it to CL.)

NOTE In this chapter, optimization options are discussed in terms of the effect of the op-
timization, the command-line option to invoke the optimization, and pragmas that control
the optimization. All of these optimizations can be controlled at the compilation-unit (file)
level using the Build Options dialog boxes.

1.2 Controlling Optimization from the Command Line

Controlling optimization from the command line requires that you determine
which optimizations you need for your application. You then specify those
optimizations using command-line options that begin with /O (and in some
cases /G).

If there is any conflict between options, the compiler uses the last option
specified on the command line. The command line

CL /0a /01 /0t TEST.C
compiles the program TEST.C. It specifies that the compiler can
m Optimize on the assumption that you are doing no aliasing (/Oa)

m Perform loop optimization (/Ol)

m Perform other general speed-enhancing optimizations (/Ot)

The preceding command line can also be written

CL /0alt TEST.C

Optimizing C Programs 7

1.3 Controlling Optimization with Pragmas

The optimize pragma
is new to version 6.0.

Occasionally you will need to exercise a fine level of control over compiler
optimizations. Command-line options allow you to control optimization over an
entire compilation unit (file). In addition, Microsoft C supports several pragmas
that allow you to exercise such control on a per-function basis.

The pragmas that control optimization are described in this chapter under the
type of optimization they affect.

In version 6.0, you can control each of the following optimization parameters on
a function-by-function basis using the optimize pragma:

m Behavior of code with respect to aliasing (a and w)

m Reduction of local common subexpressions (c)

= Reduction of global common subexpressions (g)

m Global register allocation (e)

m Loop optimization (I)

m Aggressiveness of optimizations (z)

m Disabling of unsafe optimizations (n)

m Achieving consistent floating-point results (p)

= Optimizing for smaller code size or for faster execution speed (t)

Any optimization or combination of options can be enabled or disabled using the
optimize pragma. For example, if you have one function that uses aliases heav-
ily, you need to inhibit optimizations that could cause problems with aliases. You

do not, however, want to inhibit these optimizations for code that does not do ali-
asing. To do this, use the optimize pragma as follows:

/* Function(s) that do not do aliasing. */

ffpragma optimize("a", off)
/* Function(s) that do aliasing. */

#fpragma optimize("a", on)
/* More function(s) that do not do aliasing. */

8 Advanced Programming Technigues

The parameters to the optimize pragma can be combined in a string to enable or
disable multiple options at once. For example,

f#fpragma optimize("lge", off)

disables loop optimization, global common subexpression optimization, and
global register allocation.

1.4 Default Optimization

Many optimizations are not explicitly disabled by any command-line option
except /Od (disable optimizations). These optimizations are small in scope and
are almost always helpful. They include

= Short range common subexpression elimination

m Dead-store elimination

m Constant propagation

~ 1.4.1 Common Subexpression Elimination

In common subexpression elimination, the compiler finds code containing re-
peated subexpressions and produces modified code in which the subexpressions
are evaluated only once. Subexpression elimination is usually done with tem-
porary variables as shown in the following example:

a

b +c¢ *d;
c*d/ y;
The preceding two lines contain the common subexpression ¢ * d. This code

can be modified to evaluate ¢ * d only once; the result is placed in a temporary
variable (usually a register):

tmp = ¢ * d;
a=b+ tmp;
X = tmp / y;

Optimizing C Programs 9

1.4.2 Dead-Store Elimination

Dead-store elimination is an extension of common subexpression elimination.
Variables that contain the same value in a short piece of code can be combined
into a single temporary variable.

In the following code fragment, the compiler detects that the expression
func(x) isequivalentto func(a+ b):

X =a t b;
x = func(x);

Thus, the compiler can rewrite the code as follows:

x = func(a + b);

1.4.3 Constant Propagation

When doing constant propagation, the compiler analyzes variable assignments
and determines if they can be changed to constant assignments. In the following
example, the variable i must have a value of 7 when it is assignedto j:

i=17;
=1

Instead of assigning i to j, the constant 7 can be assigned to j:

i=17;
j=17;

While you could make any of these changes in the source file, doing so might
reduce the readability of the program. In many cases, optimizations not only in-
crease the efficiency of the program but allow you to write more readable code
without any actual efficiency loss.

Remaove optimization before In some cases, you might want to disable even the default optimizations. Because

using a symbolic debugger. optimizations may rearrange code in the object file, it can become difficult to rec-
ognize parts of your code during debugging. It is usually best to remove all op-
timization before using a symbolic debugger. You can remove all optimization
with the /Od (disable optimizations) option.

You can disable all optimizations for a function by including the statement
ffpragma optimize("", off). To restore optimization to its former
state, use the statement ffpragma optimize("", on).

10 Advanced Programming Techniques

1.5 Customizing Your Optimizations

The default optimizations are sufficient for many applications, but you may want
to tune your programs according to criteria not known to the compiler. The op-
timization options offer you a way of providing the compiler specific goals for
optimizing your code.

1.5.1 Choosing Speed or Size (/0Ot and /0s)

In addition to the default optimizations, the Microsoft C compiler also automat-
ically uses the /Ot option, which optimizes for speed. The /Ot option enables op-
timizations that increase speed but may also increase size. If you would rather
optimize for program size, use the /Os option. The /Os option enables optimiza-
tions that decrease program size but may also decrease program speed.

To optimize for speed or size on a per-function basis, use the optimize pragma
with the t option. The on setting instructs the compiler to optimize for speed;
the off setting instructs the compiler to optimize for compactness of code. For
example,

ffpragma optimize("t", off) /* Optimize for smallest

code. */
#pragma optimize("t", on) /* Optimize for fastest
code. */

1.5.2 Generating Intrinsic Functions (/0i)

In place of some normal function calls, the C compiler can insert “intrinsic
functions,” which operate more quickly. Every time a function is called, a set of
instructions must be executed to store parameters and to create space for local
variables. When the function returns, more code must be executed to release
space used by local variables and parameters and to return values to the calling
routine. These instructions take time to execute. In the context of an average-
sized function, the additional code is minimal, but if the function is only a line
or two, the additional code can comprise almost half of the function’s com-
piled code.

One way to avoid this type of code expansion is to avoid such short functions,
especially in often-used sections of code where speed is critical. But many li-
brary functions contain only a line or two of code. The compiler provides two
forms of certain library functions. One form is a standard C function, which re-
quires the overhead of a function call. The other form is a set of instructions that

Optimizing C Programs 11

performs the same action as the function without issuing a function call. This sec-
ond form is called an intrinsic function. Intrinsic functions are always faster than
their function-call equivalents and can provide significant optimizations at the
object-code level.

For example, the function strcpy might be written as follows:

int strcpy(char * dest, char * source)
{

while(*dest++ = *source++);
}

The compiler contains an intrinsic form of strepy. If you instruct the compiler to
generate intrinsic functions, any call to strepy will be replaced with this intrin-
sic form.

NOTE While the example above is written in C for clarity, most of the library functions use
assembly language to take full advantage of the 80x86 instruction set. Intrinsic functions are
not simply library functions defined as macros.

Compiling with the /Oi option causes the compiler to use the intrinsic forms of
the following functions:

abs labs outp strepy
_disable Irotl outpw strlen

_enable Irotr rotl strset

fabs memcmp rotr

inp memcpy strcat

inpw memset stremp

While the following floating-point functions do not have true intrinsic forms,
they do have versions that pass arguments directly to the floating-point chip
instead of pushing them on the normal argument stack:

acos fmod acosl fmodl
asin log asinl logl
atan log10 atanl log101
atan2 pow atan2l powl
ceil sin ceill sinl
cos sinh cosl sinhl
cosh sqrt coshl sqrtl
exp tan expl tanl

floor tanh floorl tanhl

12 Advanced Programming Techniques

WARNING The compiler performs optimizations assuming math intrinsics have no side
effects. This assumption is true except if you have written your own matherr function and
that function alters global variables. If you have written a matherr function to handle floating-
point errors, and your function has side effects, use the function pragma to instruct the
compiler not to generate intrinsic code for math functions.

If you want the compiler to generate intrinsic functions for only a subset of the
functions listed above, use the intrinsic pragma rather than the /Oi option. The
intrinsic pragma has the following format:

#pragma intrinsic(functionl, ...)

If you want to have intrinsic functions generated for most of the functions above
and function calls for only a few, compile with the /Oi option and force function
use with the function pragma. The function pragma has the following format:

#pragma function(functionl, ...)

The following code illustrates the use of the intrinsic pragma:
#fpragma intrinsic(abs)

void main(void)
{
int i, J;

i = big_routine_1();

Jj = abs(i);

big_routine_2(j);
}

Generating intrinsic functions for this program causes the call to abs to be re-
placed with assembly-language code that takes the absolute value of a number.
The program will execute more quickly because the function-calling overhead is
no longer required when abs is called.

In the previous example, the overall speed increase is small because there is only
a single call to abs. In the following example, where the call to abs is in a loop
and there are many calls, you can save a significant amount of execution time by
generating intrinsic functions.

#fpragma intrinsic(abs)
void main(void)
{

int i, j, Xx;

Optimizing C Programs 13

for(j =0; j < 1000; j++)
{
for(i =0; i < 1000; i++)
{
X +=absC i - J);
!
}
printf("The value of x is %Zd\n", x);
!

The following is a list of restrictions on using the intrinsic forms of function calls:

m Do not use the intrinsic forms of the floating-point math functions with the al-
ternate math libraries (mLIBCAy.LIB).

m Do not use the intrinsic forms of the floating-point math functions in OS/2
dynamic-link libraries (DLLs) because you must use the alternate math li-
brary with LLIBCDLL.LIB.

m If you use the /Ox (maximum optimization) option, you are enabling the /Oi
(generate intrinsic functions) option. Be careful that your use of /Ox does not
conflict with the points listed previously.

NOTE Intrinsic versions of _enable, _disable, inp, outp, inpw, and outpw do not work
under 0S/2. You must use the library versions. You can use the function pragma to force
these functions to become library calls.

1.5.3 Assuming No Aliasing (/0a and /Ow)

An “alias” is a name used to refer to a memory location already referred to by a
different name. Because a memory access takes more time than it takes to access
the CPU’s registers, the compiler tries to store frequently used variables in regis-
ters. However, the aliasing reduces the extent to which a compiler can keep varia-
bles in registers.

A pointer is a reference to a memory location. Because the value of a pointer is
not determined until the program is run, the compiler has no way of knowing
which memory location will be modified when the program executes; it could be
a reference to a variable. Therefore, the compiler must assume that any time the
value pointed to by any pointer changes, the value of any variable might also
change. This limits the extent to which the compiler can move values from
memory to registers.

14 Advanced Programming Techniques

The /0a and /Ow options tell
the compiler that you have not
used aliases in your code.

The /Oa option tells the compiler to ignore the possibility of multiple aliases for a
memory location. In the list that follows, the term “reference” means read or
write; that is, whether a variable is on the left-hand side of an assignment state-
ment or the right-hand side, you are still referring to it. In addition, any function
calls that use a variable as a parameter are references to that variable. When you
tell the compiler to assume that you are not doing aliasing, it expects that the fol-
lowing rules are being followed for any variable not declared as volatile:

m If a variable is used directly, no pointers are used to reference that variable.

= If a pointer is used to refer to a variable, that variable is not referred to
directly.

m Ifa pointer is used to modify a memory location, no other pointers are used to
access the same memory location.

To clarify how these rules affect your code, consider the following example:

char p;
char *ptr_p;

ptr_p = &p; /* Take the address of p. */

You can now refer eitherto *ptr_p orto p, but not to both within the same
function. If you must refer to the variable by both names, you are using aliases.

Code referring to the same location with two pointers uses aliases. For example,

char *p_buf;
char *p_alias;

if((p_alias = p_buf = malloc(5000)) == NULL)
return;

else

{

}

The code in the example above is common. It demonstrates dynamically allo-
cating a block of memory from the heap, and preserving the original address

in p_buf. The program then performs all pointer arithmetic on the alias
p_alias. When the function finishes with the block of memory, p_buf isa
valid argument for the free function because it still contains the original address.

The difference between the /Oa and the /Ow option is that when you use /Oa you
specify that you will not be doing aliasing (which allows the compiler to perform
significant optimizations that might not otherwise have been possible), and that
function calls are safe. The /Ow option is similar to the /Oa option, except that
after a function call, pointer variables must be reloaded from memory.

Optimizing C Programs 15

Bugs involving aliasing
are difficult to spot.

Here is an example of a program that would be a poor candidate for the /Oa or
/Ow optimization option:

int g;

void main(void)
{

add_em(&g);
}

int add_em(int *p)

{
p o= 2; / Assign a value to an alias for g. */
g = 3; /* Assign a value directly to g. */
return(*p + g);

}

In the function add_em, both g and *p refer to the same memory location.
This location is first assigned 2, then 3. The value pointed to by *p (the alias
for g)is then added to g, and the result is returned to the main program. If you
do not use the /Oa command-line option, the compiler assumes that the reference
to *p could refer to the same memory location as does g and makes no at-
tempt to use a register to store the value of either. If, however, you do specify the
/Oa option, the compiler assumes that g and *p refer to different memory loca-
tions and stores each in a different register. At the return statement, g will have
a different value than *p, even though both aliases should actually contain the
same value.

Note that the compiler keeps values in registers for only a limited time. If differ-
ent aliases to a memory location occur in different functions, for example, they
will not cause unexpected results. When in doubt, avoid aliasing.

Aliasing bugs most frequently show up as corruption of data. If you find that
global or local variables are being assigned seemingly random values, take the
following steps to determine if you have a problem with optimization and
aliasing:

m Compile the program with /Od (disable optimizations).

m If the program works when compiled with the /Od option, check your normal
compile options for the /Oa option (assume no aliasing).

= If you were using the /Oa option, fix your compile options so that /Oa is not
specified.

NOTE You can instruct the compiler to disable optimizations that are unsafe with code
that does aliasing by using the optimize pragma with the a or w option.

16 Advanced Programming Techniques

1.5.4 Performing Loop Optimizations (/0I)

The /01 option removes
invariant code.

The /Ol option enables a set of optimizations involving loops. Because loops in-
volve sections of code that are executed repeatedly, they are targets for optimiza-
tion. These optimizations all involve moving code or rewriting code so that it
executes faster.

Loop optimization can be turned on with the /Ol option or with the loop_opt
pragma. The following line enables loop optimization for all subsequent
functions:

ffpragma Toop_opt(on)
The following line turns it off:
#pragma loop_opt(off)

An optimal loop contains only expressions whose values change through each
execution of the loop. Any subexpression whose value is constant should be eval-
uated before the body of the loop is executed. Unfortunately, these subexpres-
sions are not always readily apparent. The optimizer can remove many of these
expressions from the body of a loop at compile time. This example illustrates in-
variant code in a loop:

i= -100;
while(1 < @)
{

iH=x+y;

}

In the preceding example, the expression x +y does not change in the loop
body. Loop optimization removes this subexpression from the body of the loop
so that it is only executed once, not every time the loop body is executed. The op-
timizer will change the code to the following fragment:

i -100;
t=x+y;
while(1 < @)
{

i+=1;

}

Optimizing C Programs 17

Loop optimization is much more effective when the compiler can assume no
aliasing. While you can use loop optimization without the /Oa or /Ow option,
use /Oa to ensure that the most options possible are used.

Here is a code fragment that could have an aliasing problem:

i=-100;
while(i < @)
{
P Xty
=i

}

If you do not specify the /Oa option, the compiler must assume that either x or

y could be modified by the assignment to *p. Therefore, the compiler cannot as-
sume the subexpression x +y is constant for each loop iteration. If you specify
that you are not doing any aliasing (with the /Oa option), the compiler assumes
that modifying *p cannot affect either x or y, and that the subexpression is
indeed constant and can be removed from the loop, as in the previous example.

NOTE All loop optimizations specified by the /0l option or the loop_opt pragma are safe
optimizations. To enable aggressive loop optimizations, you must use the enable aggressive
optimizations (/0z) option. While the optimizations enabled by the combination of /0l and
/0z are not safe for all cases, they will work properly for most programs.

1.5.5 Disabling Unsafe Loop Optimizations (/On)

The disable unsafe loop optimizations (/On) option is an obsolescent option and
is only retained for compatibility with existing makefiles. Loop optimizations
are, by default, safe optimizations. The /On option is the default and has the op-
posite effect of the /Oz (enable aggressive optimizations) option.

1.5.6 Enabling Aggressive Optimizations (/0z)

The compiler can perform extremely aggressive optimizations. These optimiza-
tions produce high code quality both in terms of speed and size. Certain pro-
grams, however, cannot be optimized with the technologies enabled by the /Oz
option. For these programs, you should not specify this option; you can still use
all other optimization options.

Because the optimization strategies enabled by the /Oz option are so aggressive,
they are not part of the maximum optimization (/Ox) option.

18 Advanced Programming Techniques

Examples of the effects of the /Oz option are

m Loop optimization (/Ol). Loop optimization enables a technology that antici-
pates program flow and tries to remove invariant expressions from loops.
When you specify the enable aggressive optimizations option (/Oz), the com-
piler removes invariant expressions even when it might cause an error. Errors
with the enable aggressive optimizations option occur most often when an in-
variant expression that can cause an exception is protected by an if statement.
The invariant expression is hoisted out of the loop body, causing it to be eval-
uated prior to the evaluation of the if statement that was designed to protect it.
Here are two examples that illustrate this problem:

for(i =0; i 100; ++i)
if(float_val != @.0F)
/* Protect against divide-by-zero. */
float_result = pi / float_val;

while(condition)
if(ptr_val != NULL)
/* Protect pointer dereference. */
char_var = *ptr_val;

m Global register allocation (/Oe). The enable aggressive optimizations option
enables some register allocation strategies that can cause invalid segment
selectors to be placed in registers. Although this problem is benign in DOS, it
causes protection faults in OS/2.

NOTE You can instruct the compiler to enable aggressive optimizations on a function-by-
function basis by using the optimize pragma with the z option.

1.5.7 Removing Stack Probes (/Gs)

Every time a function is called, the stack provides space for all parameters and
local variables declared in that function. A short assembly function that checks
for a stack overflow condition is then called. Stack overflows are usually caused
either by infinite loops or by runaway recursive routines. Such errors can also be
caused by extremely large parameters or local variables.

Stack probes can be important during program development. Stack-overflow
errors alert you to problems in your code. When the program has been tested,
however, stack checking often becomes unnecessary. The compiler allows you
to remove stack-checking code with either the /Gs option or the check_stack
pragma. Eliminating stack probes produces programs that are smaller and that
run more quickly.

Optimizing C Programs 19

1.5.8 Enabling Global Register Allocation (/Oe)

The global register allocation option (/Oe) instructs the compiler to analyze your
program and allocate CPU registers as efficiently as possible. Without the global
register allocation option, the compiler uses the CPU’s registers for several
purposes:

m Holding temporary copies of variables
m Holding variables declared with the register keyword

m Passing parameters to functions declared with the _fastcall keyword (or
functions in programs compiled with the /Gr command-line option)

When you enable global register allocation, the compiler ignores the register
keyword and allocates register storage to variables (and possibly to common sub-
expressions). The compiler allocates register storage to variables or subexpres-
sions according to frequency of use. Because of the limited number of physical
registers, variables held in registers are sometimes placed back in memory to free
the register for another use. Here is a C program example that demonstrates how
the compiler might rewrite your code to accomplish this:

/* Original program */

func()

{
int 1, Jj;
char *pc;

for(i =0; 1 < 1000; ++i)
{

j=1 7/ 3;

*pct++ = (char)i;
}

for(j =@, --pc; J < 1000;
++j, --pc)
*pe--;

20 Advanced Programming Techniques

/* Example of how the compiler might optimize the
* code to move i and j in and out of registers */

func()

{
int i, Jj;
char *pc;

{
register int i; /* i is in a register for this block. */
for(i =0; i < 1000; ++i)
{
j=117 3;
*pc++ = (char)i;

}

{
register int j; /* j is in a register for this block. */
for(j =0, --pc; j < 1000;
++j, --pc)
*pe--;

}

In the preceding example, there are blocks (enclosed in curly braces) whose only
purpose is to delimit the span of code across which variables should remain in
registers.

NOTE You can enable or disable global register allocation on a function-by-function basis
using the optimize pragma with the e option.

1.5.9 Enabling Common Subexpression Optimization (/Oc and /0g)

When you use option /Og (enable global common subexpression optimizations),
the compiler searches entire functions for common subexpressions. Option /Oc
(default common subexpression optimization) examines only short sections of
code for common subexpressions. You can disable default common subexpres-
sion optimization with the /Od option. For more information about common sub-
expression optimization, see Section 1.4, “Default Optimization.”

NOTE You can enable or disable block-scope common subexpression optimization on a
function-by-function basis using the optimize pragma with the ¢ option. You can enable or
disable global common subexpression optimization on a function-by-function basis using
the optimize pragma with the g option.

Optimizing C Programs 21

1.5.10 Achieving Consistent Floating-Point Results (/0Op)

Floating-point numbers stored in memory use either 32, 64, or 80 bits, depending
on whether they are of type float, type double, or type long double. The 80x87
family of coprocessors uses 80-bit registers for all operations. If a value of type
float or type double is kept in these registers through a number of operations, it
will be more accurate than if that value is moved to and from memory between
operations.

Because of the difference in precision between memory and register repre-
sentation of a floating-point number, a value stored in memory is not always
equal to the same value in the 80x87 register.

The difference in precision primarily affects strict equality or strict inequality
tests (== and !=); however, relational tests of magnitude (>, >=, <=, and <) can
behave erroneously if the coprocessor is able to maintain significant digits that
memory variables cannot.

You can avoid the difference in precision by using the /Op option. This option
forces floating-point values to be written to memory between floating-point
operations. While storing these values to memory reduces the precision of
floating-point expressions, it also ensures that these expressions will produce
consistent results regardless of the rest of the code.

You can change the handling of floating-point results on a function-by-function
basis using the optimize pragma with the p option.

NOTE Using the /Op option suppresses other optimizations because the floating-point reg-
isters are not available for storage of intermediate results. Because you suppress these op-
timizations, code compiled with the /0p option executes more slowly than code compiled
without this option. Careful coding practices, especially in tests of strict equality and inequal-
ity, can alleviate the need for this option.

1.5.11 Using the 80186, 80188, or 80286 Processor (/G0, /G1, /G2)

The compiler generates 8086 object code (/GO) unless you take special steps.
Because the newer processors (the 80186, 80188, and 80286) are backward-
compatible with the 8086 instruction set, using this instruction set ensures com-
patibility with all 80x86-based computers. While you gain compatibility across
the entire family of 80x86 processors, you lose the advantage of some of the
more powerful instructions in the newer processors.

22 Advanced Programming Technigues

If you know your program will only be running on an 80186, 80188, or 80286
processor, you can cause the compiler to generate instructions specific to these
processors. These instructions increase the speed of your program, but you lose
compatibility with machines that use older processors in the 80x86 family. Table
1.1 lists the options for processor-specific code generation:

Table 1.1 Processor Compatibility

Command-Line Option Compatible Processors

/GO 8088, 8086, 80188, 80186,
80286, 80388, 80486

/G1 80188, 80186, 80286, 80386,
80486

/G2 80286, 80386, 80486

NOTE When developing only for 0S/2, always use the /G2 option, because 0S/2 does not
run on the 8086, 8088, 80186, or 80188. Do not use /G2 for Family Applications because
they might be run on machines with 8088, 8086, 80188, or 80186 processors.

1.5.12 Optimizing for Maximum Efficiency (/0x)

The /Ox option combines a number of different optimizations:

m Enable global register allocation (/Oe)

m Enable global common subexpression optimization (/Og)

= Enable block-scoped common subexpression optimization (/Oc)
m Generate intrinsic functions (/O1)

m Perform loop optimizations (/Ol)

m Optimize for speed (/Ot)

m Remove stack probes (/Gs)

Optimizing C Programs 23

Use /0zax /Gr to get
the fastest program.

Use the optimize pragma
to reduce code size.

The /Ox option does not include several optimizations that can improve code effi-
ciency: /Oa (assume no aliasing), /Oz (enable aggressive optimizations), and /Gr
(use fastcall calling convention). Before enabling these optimizations, you should
read the sections that describe the /Oa and /Oz options and the fastcall calling
convention to determine if they are appropriate for your application.

If you are more concerned with executable file size than execution time, use the
/Ox and /Gs options, then issue the optimize pragma as follows:

ffpragma optimize("t", off)

This set of options produces the smallest possible code, while also performing
some speed optimizations.

1.6 Linker (LINK) Options that Control Optimization

Most code optimization is performed before the object file is produced. There are
four optimizations that the linker can perform to speed program execution and re-
duce the disk space used by an executable file.

1.6.1 Enabling Far Call Optimization (/FARCALLTRANSLATION)

Use /FARCALLTRANSLATION
with medium, large, and
huge model programs.

You can call a function two ways. In a far call, the function is called using both
the segment and the offset of the function. This allows a program to call a routine
outside a 64K segment. In a near call, both the calling statement and the function
must be located in the same segment. Only the offset is used to access the func-
tion; the segment address is implicit. You can only use near calls to routines lo-
cated in the same segment.

Because of the architecture of the processor, near function calls execute faster
than far calls. The decision to declare functions as near or far is often made when
selecting a memory model. As it is difficult to determine where the linker will
place a given function in memory, it is impractical for the programmer to choose
the way a function is called.

The /JEFARCALLTRANSLATION option enables far call optimization. When
you use this option, any function calls within the same segment as the function
being called are converted to near calls. This optimization has no effect if you
have selected the tiny, small, or compact model, because all calls are already
near calls.

The abbreviation for the /[FARCALLTRANSLATION option is /F.

24 Advanced Programming Technigues

Use /FARCALLTRANSLATION
with /PACKCODE.

How /FARCALLTRANSLATION Affects Your Code

The linker can perform a form of post-optimization (an optimization that occurs
after most of the actual code generation is complete) that translates far calls into
near calls when possible. This optimization allows a given function to be called
with both near and far calls in the same program. To perform this translation, the
linker takes a section of object code such as

CALL FAR _func

where func is defined in the current segment, and replaces it with the follow-
ing code:

PUSH CS
CALL NEAR _func
NOP

This substitution works because the linker has inserted PUSH CS to place a far
return address on the stack.

The /[FARCALLTRANSLATION option is most effective when used in con-
junction with the /PACKCODE option discussed in Section 1.6.2. Using the
/PACKCODE option causes far calls that were intersegment to become intraseg-
ment calls. The [FARCALLTRANSLATION feature can then take advantage of
the new grouping to translate all intrasegment far calls into near calls.

Benefits of [FARCALLTRANSLATION

The /JFARCALLTRANSLATION option is of significant benefit to protected-
mode programs. Table 1.2 illustrates why.

Table 1.2 Processor Clock Cycles for Calling Sequence

Cycles (Real Mode) Cycles (Protected Mode)
Instructions 286 386 286 386
Far Function Call
CALL FARPTR _func 13 17 26 34
Total 13 17 26 34
Near Function Call
PUSH CS
CALL NEAR PTR _func
NOP
Total 13 12 13 12

Savings 0 5 13 22

Optimizing C Programs 25

1.6.2 Packing Code (/PACKCODE)

The /PACKCODE linker option groups neighboring code segments together.
When used with the /F option, the /PACKCODE option greatly increases the
number of near calls that can be made to a function. This option can be followed
with a limit (expressed in bytes) at which to stop packing and to begin a new
group. Here is the syntax for the /PACKCODE option:

[PACKCODE:number

where number is an optional hexadecimal, octal, or decimal number that speci-
fies the limit for packing. The radix (octal, decimal, or hexadecimal) is specified
just as you would specitfy it to a C program.

Radix Rules for Specification

Octal Specify the octal number with a leading 0. You can
only use the digits O through 7 in an octal number.
For example, 07777.

Decimal Specify the decimal number without a leading 0. For
example, 65530.

Hexadecimal Specify the hexadecimal number with a leading Ox.
For example, Ox3FFF.

If you omit the packing limit, the linker supplies a default value of 65, 530.
The abbreviation for the /PACKCODE option is /PACKC.

1.6.3 Packing Data (/PACKDATA)

The /PACKDATA option is analogous to the /PACKCODE option, except that it
groups together neighboring data segments instead of code segments. This option
is most useful when you have a large-model program that exceeds the OS/2 limi-
tation of 255 segments. By using /PACKDATA, you can group segments, there-
by reducing the total number OS/2 has to manage. Here is the syntax for the
/PACKDATA option:

/PACKDATA :number

where number is an optional hexadecimal, octal, or decimal number that speci-
fies the limit for packing. The radix (hexadecimal, octal, or decimal) is specified
just as you would specify it to a C program. For more information on specifying
hexadecimal, octal, or decimal numbers, see Section 1.6.2 above.

If the packing limit is omitted, the linker supplies a default value of 65,535
(OxFFFF).

The abbreviation for the /PACKDATA option is /PACKD.

26 Advanced Programming Techniques

1.6.4 Packing the Executable File (/EXEPACK)

The executable file created by the compiler often contains sequences of re-
peated bytes. You can remove these repeated sequences with the /EXEPACK op-
tion. This decreases the size of the resulting executable file as well as program
load time.

WARNING Because the /EXEPACK option removes debug information from the execu-
table file, you should not use it with the /CODEVIEW option.

1.7 Optimizing in Different Environments

The environment in which you plan to use a program can have a bearing on the
types of optimizations that you should use.

1.7.1 Optimizing in DOS

You need not take special precautions for programs written under DOS unless
you are writing a terminate-and-stay-resident (TSR) program. If an interrupt-
driven routine could modify a memory location in a program, you should declare
that variable volatile.

1.7.2 Optimizing in 0S/2

Many of the rules for interrupt routines apply to OS/2. If one thread can modify
variables in another thread, declare these variables as volatile.

1.7.3 Optimizing in Microsoft Windows -.

Microsoft Windowsm can move segments dynamically. As a result of dynamic
heap compaction, pointers maintained in registers can be invalidated. The /Ow
option instructs the compiler that you will not be using aliases, but that Windows
might cause certain optimizations to be unsafe across function calls.

If you are not using any aliases you must still use the /Ow option with Windows
programs. See Section 1.5.3, “Assuming No Aliasing (/Oa and /Ow),” for more
information.

Optimizing C Programs 27

1.8 Choosing Function-Calling Conventions

In Microsoft C, version 6.0, functions can call other functions using three differ-
ent conventions. Note that, while no calling convention has been defined as
“standard,” most C compilers use conventions similar to those described here.
The C calling convention requires the most object code to set up, but it is the
only calling convention that supports functions with variable-length argument
lists. The FORTRAN/Pascal calling convention is more compact, but does not
allow for variable-length argument lists. The _fastcall, or register calling con-
vention is the fastest of the three calling conventions, but it does not support
variable-length argument lists or mixed-language program interfaces.

1.8.1 The C Calling Convention (/Gd)

Because C allows functions to have a variable number of parameters, parameters
must be pushed onto the stack from right to left. (If parameters were pushed from
left to right, it would be difficult for the compiler to determine which parameter
was first.) If you do not specify command-line options that modify the function-
calling convention, the C calling convention is used; otherwise, the _cdecl key-
word must be used before any function using the C calling convention.

If, for example, you use the /Gr (register calling convention) option when you
compile, and the function add_two must have the C calling convention, de-
clare add_two as follows:

int _cdecl add_two(int x, int y);

1.8.2 The FORTRAN/Pascal Calling Convention (/Gc)

Use the FORTRAN/Pascal calling convention for any functions declared with
either the fortran or _pascal keywords. (The two keywords currently produce
identical results.) Parameters to these functions are always pushed on the stack
from left to right. While any function can be declared with the FORTRAN/
Pascal convention, it is used primarily for prototypes to Pascal or FORTRAN
routines called from within C programs. This calling convention can also pro-
duce smaller, faster programs.

The /Gc option (generate Pascal-style function calls) can be used to make all
functions in a file observe the FORTRAN/Pascal calling convention.

Note that C run-time library routines must still be called using C calling conven-
tions. Because these routines are declared using the _cdecl keyword header files,
you must include the appropriate header files in any program using run-time li-
brary routines.

28 Advanced Programming Techniques

Functions with variable-length parameter lists (such as printf) cannot use the
FORTRAN/Pascal calling convention.

NOTE The /ML, /MD, and /MT options cause all floating-point functions to be declared as
FORTRAN/Pascal. See Chapter 16, “Dynamic Linking with 0S/2,” for more information.

1.8.3 The Register Calling Convention (/Gr)

You can decrease execution time if parameters to functions are passed in regis-
ters rather than on the stack. Compiling with the /Gr command-line option en-
ables the register calling convention for an entire file. The _fastcall keyword
enables the register calling convention on a function-by-function basis.

Because the 80x86 processor has a limited number of registers, only the first
three parameters are allocated to registers; the rest are passed using the FOR-
TRAN/Pascal calling convention. The register calling convention can increase
the speed of a program.

NOTE The compiler allocates different registers for variables declared as register and for
passing arguments using the register calling convention. This calling convention will not
conflict with any register variables that you may have declared.

Exercise caution when using the register calling convention for any function writ-
ten in in-line assembly language. Your use of registers in assembly-language
could conflict with the compiler’s use of registers for storing parameters.

1.8.4 The _fastcall Calling Convention

This section describes the details of the _fastcall calling convention. The infor-
mation is for the use of assembly-language programmers who are interested in
using either the in-line assembler or the Microsoft Macro Assembler (MASM)
to write functions declared as _fastcall. Functions declared as _fastcall accept
arguments in registers rather than on the stack; functions declared as _cdecl or
_pascal accept parameters only on the stack.

WARNING The register usage documented here applies only to Microsoft C, version 6.0.
It may change in future releases of the compiler.

Optimizing C Programs 29

Argument-Passing Convention

The _fastcall calling convention is a “strongly typed” register calling conven-
tion. This typing allows the compiler to generate better code by passing argu-
ments in registers that correspond to the data type you are passing. Because the
compiler chooses registers depending on the type of the argument and not in a
strict linear order, the calling program and called function must agree on the
types of the arguments in order to communicate data correctly.

For each type of argument there is a list of register candidates. The arguments are
allocated to registers or, if no suitable register remains unused, are pushed onto
the stack left-to-right. Each argument is put in the first register candidate that
does not already contain an argument. Table 1.3 shows the basic types and the
register candidate list for each.

Table 1.3 Register Candidates

Type Register Candidates
character AL, DL, BL
unsigned character AL, DL, BL

integer AX, DX, BX
unsigned integer AX, DX, BX

long integer DX:AX

unsigned long integer DX:AX

near pointer BX, AX, DX

far or huge pointer passed on the stack

All far and huge pointers are pushed on the stack, as are all structures, unions,
and floating-point types.

Return Value Gonvention

The fastcall return value convention is based on the size of the return value, ex-
cept with floating-point types. All floating point types are returned on the top of
the NDP stack. For more information about the NDP stack and returning floating-
point values, see Chapter 4, “Controlling Floating-Point Math Operations.” The
following list shows how values 4 bytes or smaller, including unions and struc-
tures, are returned from a _fastcall function.

30 Advanced Programming Techniques

Size Return Convention

1 Byte AL Register

2 Bytes AX Register ’

4 Bytes DX, AX Registers (for pointers, the segment is re-

turned in DX, the offset in AX; for long integers,
the most-significant byte is returned in DX, least-
significant byte in AX)

Note that the protocol for returning values 4 bytes or smaller is the same as for
functions declared as _cdecl. To return structures and unions larger than 4 bytes,
the calling program passes a hidden parameter as the last item pushed. This para-
meter is a near pointer, implicitly SS-relative, to a buffer in which the value is to
be returned. A far pointer to SS:hidden-param must be returned in DX:AX. This
is the same convention for returning structures as _pascal.

Stack Adjustment Convention

Unlike functions declared as _cdecl, functions declared as _fastcall must pop the
arguments off the stack. The calling program does not adjust the stack after func-
tion return.

Register Preservation Requirement

All functions must preserve the DS, BP, SI, and DI registers. Your _fastcall func-
tion can modify the values in AX, BX, CX, DX, and ES.

Function-Naming Convention

The public name put into the object file for a function declared as _fastcall is the
name given by the user with a leading “at sign” (@). No case translation is per-
formed on the function name. The function declaration

int _fastcall FCFunc(void);

causes the compiler to place the public symbol @FCFunc in your object file at
every location FCFunc is referenced in your program.

If you do not declare the function as _fastcall in your C program, the compiler
assumes the default calling convention. The default is usually the C calling con-
vention but can be changed by the /Gc (Pascal Calling Convention), /Gr (Regis-
ter Calling Convention), or /Gd (C Calling Convention) options. If the linker
gives you an unresolved external reference, you may have failed to declare an
external _fastcall function properly. For more information about calling conven-
tions, see Chapter 12, “Programming with Mixed Languages.”

CHAPTER |

Managing Memory

When you develop advanced applications in Microsoft C, you must pay attention
to memory management—that is, how data and code are stored and accessed in
memory. A well-thought-out memory strategy will make your programs run
faster and occupy less memory.

You can follow one or more of these memory management strategies:

m Choose a standard memory model.

m Create a mixed-model program with the _near, far, huge, and based
keywords.

m Create your own customized memory model.
= Allocate memory as you need it with the malloc family of functions.

This chapter explains pointers, memory models (including the new tiny model),
variations such as custom memory models and mixed models, and based pointers.

2.1 Pointer Sizes

One of the strengths of the C language is that it allows you to use pointers to
directly access memory locations.

Every Microsoft C program has at least two parts: the code (function definitions)
and the data (variables and constants). As a program runs, it refers to elements of
the code or the data by their addresses. These addresses can be stored in pointer
variables.

Pointer variables can fit into 16 bits or 32 bits, depending on the distance of the
object to which they refer.

31

32 Advanced Programming Techniques

2.1.1 Pointers and 64K Segments

A 16-bit pointer can address
up to 65,536 locations.

IBM personal computers and compatibles use the Intele 8086, 80186, 80286, or
80386 processors (collectively called the 80x86 family). These processors have a
“segmented” architecture, which means they all have a mode that treats memory
as a series of segments, each of which occupies up to 64K of memory. An offset
from the base of the segment allows you to access information within a given seg-
ment. Moving to a new segment requires additional machine code.

The 64K limit is necessary because the 80x86 registers are 16 bits (2 bytes) wide.
A single register can address only 65,536 (64K) unique memory locations.

A pointer variable that fully specifies a memory address needs 16 bits for the seg-
ment location and another 16 bits for the offset within the segment, a total of 32
bits. However, if you have several variables in the same general area, your pro-
gram can set the segment register once and treat the pointers as smaller 16-bit
quantities.

The 80x86 register CS holds the base for the code segment; the register DS holds
the base for the data segment. Two other segment registers are available: the
stack segment register (SS) and the extra segment register (ES). (The 80386 has
additional segment registers: FS and GS.)

2.1.2 Near Pointers

If you don’t explicitly specify a memory model, Microsoft C defaults to the small
model, which allots up to 64K for the code and another 64K for the data (see
Figure 2.1).

Available memory
T I 1
64K 64K unused
L il] -
I |
Code Data

segment segment

Figure 2.1 Anatomy of a Small-Model Program

When a small-model program runs, the CS and DS segment registers never
change. All code pointers and all data pointers contain 16 bits because they
remain within the 64K range.

Managing Memory 33

These 16-bit pointers to objects within a single 64K segment are called “near
pointers.” Accessing a near object is called “near addressing.”

2.1.3 Far Pointers

Far pointers can address
any location, but they
are bigger and slower.

If your program needs more than 64K for code or data, at least some of the point-
ers must specify the memory segment, which means these pointers occupy 32
bits instead of 16 bits.

These larger 32-bit pointers that can point anywhere in memory are called “far
pointers.” Accessing a far object is called “far addressing.”

Far addressing has the advantage that your program can address any available
memory location—up to 640K in DOS or several megabytes in OS/2. The dis-
advantages of the larger far pointers is that they take up more memory (four
bytes instead of two) and that any use of the pointers (assigning, modifying, or
otherwise accessing values) takes more time.

Allowing either code or data to expand beyond 64K makes your programs larger
and slower.

2.1.4 Huge Pointers

A third type of pointer in Microsoft C is the “huge” pointer, which applies only
to data pointers. Code pointers cannot be declared as huge.

A huge address is similar to a far address in that both contain 32 bits, made up of
a segment value and an offset value. They differ only in the way pointer arith-
metic is performed.

For far pointers, Microsoft C assumes that code and data objects lie completely
within the segment in which they start, so pointer arithmetic operates only on the
offset portion of the address. Limiting the size of any single item to 64K makes
pointer arithmetic faster.

Huge pointers overcome this size limitation; pointer arithmetic is performed on
all 32 bits of the data item’s address, thus allowing data items referenced by huge
pointers to span more than one segment. In this code fragment,

int _huge *hp;
int _far *fp;

hp++;
fpt++;

both hp and fp are incremented. The huge pointer is incremented as a 32-bit
value that represents the combined segment and offset. Only the offset part of the
far pointer (a 16-bit value) is incremented.

34 Advanced Programming Techniques

Extending the size of pointer arithmetic from 16 to 32 bits causes such arithmetic
to execute more slowly. You gain the use of larger arrays by paying a price in ex-
ecution speed.

2.1.5 Based Addressing

When you declare near, far, and huge variables, the Microsoft C compiler and
linker automatically manage details such as allocating memory and keeping track
of segments.

A “based pointer” is a fourth kind of pointer that operates as a 16-bit offset from
a base that you specify. In this respect, based addressing differs from near, far, or
huge addressing; you’re responsible for naming the base, instead of letting the
compiler decide.

Based pointers are new to version 6.0 of Microsoft C. They are explained in
more detail in Section 2.5, “Using Based Variables.”

2.2 Selecting a Standard Memory Model

A standard memory
model assumes all pointers
are the same size.

If you want to choose one size for all pointers, there’s no need to declare each
variable as near or far. Instead, you select a standard memory model and your
choice applies to all variables in the program.

One advantage of using standard memory models is simplicity. You specify the
way the compiler allocates storage for code and data only once.

Another advantage is that the standard memory models do not require the use of
Microsoft-specific keywords such as _near and _far, so they are best for writing
code that is portable to other (non-DOS) systems.

The disadvantage of standard memory models is that, because they make glo-
bal assumptions about the environment, they do not always produce the most
efficient code.

Managing Memory 35

2.2.1 The Six Standard Memory Models

The six Microsoft C memory models are shown in Table 2.1.

Table 2.1 Memory Models

Maximum Total Memory

Model Code Data Data Arrays
Tiny <64K <64K <64K

Small 64K 64K 64K

Medium No limit 64K 64K
Compact 64K No limit 64K

Large No limit No limit 64K

Huge No limit No limit No limit

The SETUP program creates the libraries that support the six standard memory
models.

When you choose one of the standard memory models, the compiler inserts the
name of the corresponding C run-time library in the object file so the linker
chooses it automatically. Each memory model has its own library, except for the
huge memory model (which uses the large-model library) and the tiny model
(which uses the small-model library).

2.2.2 Limitations on Gode Size and Data Size

When writing a program in Microsoft C, keep in mind two limitations that apply
to all six memory models:

m No single source module can generate 64K or more of code. You must break
large programs into modules and link their individual .OBJ files to create the
.EXE file.

m No single data item can exceed 64K unless it appears in a huge-model pro-
gram or it has been declared with the _huge keyword.

36 Advanced Programming Techniques

2.2.3 The Tiny Memory Model

The tiny memory model is new to Microsoft C. It resembles the small model
with three exceptions:

m The tiny model cannot exceed 64K per program (including both code and
data). A small-model program, on the other hand, can occupy up to 128K:
64K for code and 64K for data.

m The tiny model produces .COM, rather than .EXE, files. To produce .COM
files, compile with the /AT option. Then link with the / TINY option and link
in CRTCOM.OBJ.

= The tiny model applies to DOS onlys; it is not available in OS/2.
Although the tiny model imposes the most severe limits on code and data size, it

produces the smallest programs. The tiny memory model only offers a load-time
speed advantage over the small model; they both produce the fastest programs.

2.2.4 The Huge Memory Model

The huge model lifts
the limits on arrays.

The huge memory model is nearly identical to the large model. The only differ-
ence is that the huge model permits individual arrays to exceed 64K in size. For
example, an int uses two bytes, so an array of 40,000 integers, occupying 80,000
bytes of memory, would be permitted in the huge model. All other models limit
each array, structure, or other data object to no more than 64K.

NOTE Automatic arrays cannot be declared huge. Only static arrays and arrays occupying
memory allocated by the halloc function can be huge.

Although the huge model lifts the limits on arrays, some size restrictions do
apply. To maintain efficient addressing, no individual array element is allowed to
cross a segment boundary. This has the following implications:

= No single element of an array can be larger than 64K. An array can be larger
than 64K, but its individual elements cannot.

m For any array larger than 128K, all elements must have a size in bytes equal
to a power of 2: 2 bytes, 4 bytes, 8 bytes, 16 bytes, and so on. If the array is
128K or smaller, its elements can be any size, up to and including 64K.

Pointer arithmetic changes within the huge model, as well. In particular, the
sizeof operator may return an incorrect value. The ANSI draft standard for C de-
fines the value returned by sizeof to be of type size_t (which, in Microsoft C, is

Managing Memory 37

an unsigned int). The size in bytes of a huge array is an unsigned long value,
however. To find the correct value, you must use a type cast:

(unsigned long)sizeof(monster_array)

Similarly, the C language defines the result of subtracting two pointers as
ptrdiff t (a signed int in Microsoft C). Subtracting two huge pointers will yield
a long value. Microsoft C gives the correct result with the following type cast:

(Tong) (ptrl_huge - ptr2_huge)

When you select huge model, all extern arrays are treated as _huge. Operations
on data declared as _huge can be less efficient than the same operations on data
declared as _far.

2.2.5 Null Pointers

There can be problems in
models with different sizes
of code and data pointers.

Within the medium and compact models, code pointers and data pointers differ
in size: one is 16 bits wide and the other is 32 bits wide. When using these
memory models, you should be careful in your use of the manifest constant
NULL.

NULL represents a null data pointer. The C include files define it as
j#define NULL ((void *) @)

In memory models where data pointers have the same size as code pointers, the
actual size of a null pointer doesn’t matter. In memory models where code and
data pointers are different sizes, problems can occur. Consider this example:

void main()
{
funcl(NULL);
func2(NULL);
}

funcl(char *dp)
{

}

func2(char (*fp)(void))
{

38 Advanced Programming Techniques

In the absence of function prototypes for funcl and func?, the compiler al-
ways assumes that NULL refers to data and not code.

The example above works correctly in tiny, small, large, and huge models be-
cause, in those models, a data pointer is the same size as a code pointer. Under
medium or compact model, however, main passes NULLto func?2 asanull
data pointer rather than as a null code pointer (a pointer to a function), which
means the pointer is the wrong size.

To ensure that your code works properly in all models, declare each function
with a prototype. For example, before main, include these two lines:

int funcl(char *dp);
int func2(char (*fp)(void));

If you add these prototypes to the example, the code works properly in all mem-
ory models. Prototypes force the compiler to coerce code pointers to the correct
size. Prototypes also enable strong type-checking of parameters.

2.2.6 Specifying a Memory Model

If you do not specify a memory model, Microsoft C defaults to the small model,
which is adequate for many small to mid-sized programs.

You can select a memory model from the Programmer’s WorkBench or from the
command line.

Selecting from within PWB

If you’re compiling from the Programmer’s WorkBench, open the Options menu
and choose C Global Build Options. The available memory models appear in the
upper left corner. Choose one of the six standard models or choose Customized
and type in the options for a customized model.

Selecting from the Command Line

You can choose a memory model by including an option on the command line.
For example, to compile CLICK.C as a compact-model program, type this:

CL /AC CLICK.C

The /AC option selects the compact memory model. The six options and four
libraries are listed below:

Option Memory Model: Library
/AT Tiny Model: SLIBCxx.LIB (plus CRTCOM.OBJ)
[AS Small Model: SLIBCxx.LIB

Managing Memory 39

/AM Medium Model: MLIBCxx.LIB
JAC Compact Model: CLIBCxx.LIB
/AL Large Model: LLIBCxx.LIB
/AH Huge Model: LLIBCxx.LIB

2.3 Mixing Memory Models

A mixed memory model lets
you mix near and far pointers.

In standard memory models, explained above, all data pointers are the same size
and all code pointers are the same size.

A mixed memory model selectively combines different types of pointers within
the same program. A mixed model extends the limits of a given memory model
while retaining its benefits.

For example, imagine a programming situation where you add an array to a
small-model program, pushing the data segment past the 64K limit.

You could solve the problem by moving up from the small to the compact
memory model. Doing so would bump all data pointers from two to four bytes.
The .EXE file would grow accordingly. Execution time would slow.

A second and perhaps better solution is to stay within the standard small memory
model, which uses near pointers, but to declare the new array as far. You mix
near pointers and far pointers, creating a mixed model.

Microsoft C lets you override the standard addressing convention for a given
memory model by specifying that certain items are _near, far, huge, or
_based. These keywords are not a standard part of the C language; they are
Microsoft extensions, meaningful only on systems that use 80x86 microproces-
sors. Using these keywords may affect the portability of your code.

NOTE Previous versions of the Microsoft C Compiler accepted the keywords near, far,
and huge without an initial underscore. Since the ANS! draft standard for C permits com-
piler implementors to reserve identifiers that begin with underscores, an underscore was
added to these keywords to mark them as Microsoft-specific. To maintain compatibility
with existing source code, the compiler still recognizes the obsolescent versions of these
keywords.

You can compile a program in the small model, for example, but declare a cer-
tain array to be _far. At run time, the address of that array occupies four bytes.
The program may slow slightly when accessing items in that particular far array,
but throughout the rest of the program, all addressing would be near. Note that all
pointers to elements of an array declared as _far must also be declared as _far.

40 Advanced Programming Techniques

Table 2.2 lists the effects of these keywords on data pointers, code pointers, and

pointer arithmetic.
Table 2.2 Addressing Declared with Microsoft Keywords
Keyword Data Code Arithmetic
_near Data reside in default Functions reside in 16 bits
data segment; 16-bit current code segment;
addresses 16-bit addresses
_far Data can be anywhere Functions can be 16 bits
in memory, not neces- called from anywhere
sarily in the default in memory; 32-bit
data segment; 32-bit addresses
addresses
_huge Data can be anywhere Not applicable; 32 bits
in memory, not neces- code cannot be (data only)
sarily in the default declared _huge
data segment. In-
dividual data items
(arrays) can exceed
64K in size; 32-bit
addresses
_based Data can be anywhere Not applicable; 16 bits
in memory, not neces- code cannot be (data only)

sarily in the default
data segment; 16-bit
addresses plus a
known base provide
the range of 32-bit
addresses

declared _based

2.3.1 Pointer Problems

When you declare items to be _near, far, _huge, or _based, you can link with a
standard run-time library. Be aware, however, that in some cases, the modified
pointers will be incompatible with standard library functions. Watch for these
problems that affect pointers:

Managing Memory 41

m A library function that expects a 16-bit pointer as an argument will not func-
tion properly with modified variables that occupy 32 bits. In other words, you
can cast a near pointer to a far pointer, because it adds the segment value and
maintains the integrity of the address. If you cast a far pointer to near, how-
ever, the compiler generates a warning message because the offset may not
lie within the default data segment, in which case the original far address is
irretrievably lost.

m A library function that returns a pointer will return a pointer of the default
size for the memory model. This is only a problem if you are assigning the re-
turn value to a pointer of a smaller size. For example, there may be difficul-
ties if you compile with a model that selects far data pointers, but you have
explicitly declared the variable to receive the return value _near.

This warning does not apply to all functions. See Section B.2.8 in Appendix
B for a list of model-independent string and memory functions such as
_fstrcat, the far version of strcat.

m Based pointers pose a special problem. Based pointers are passed to other
functions as is (without normalization). Certain functions expect to receive
based pointers, but most do not. Therefore, in most cases, you must either ex-
plicitly cast a based pointer to a far pointer or make sure that all functions that
receive based pointers are prototyped.

Some run-time library functions support near, far, huge, and based variables. For
example, halloc allocates memory for a huge data array.

You can always pass the value (but not the address) of a far item to a small-
model library routine. For example,

/* Compile in small model */
#include <stdio.h>
long _far time_val;

void main()

{
time(&time_val); /* I1legal far address */
printf("%1d\n", time_val); /* Legal value */

}

When you use a mixed memory model, you should include function prototypes
with argument-type lists to ensure that all pointer arguments are passed to func-
tions correctly.

42 Advanced Programming Techniques

2.3.2 Declaring Near, Far, Huge, and Based Variables

The _near, _far, huge, and _based keywords modify either objects or pointers
to objects. When using them to declare variables, keep these rules in mind:

m The keyword always modifies the object or pointer immediately to its right.
In complex declarations, think of the _far keyword and the item to its right as
being a single unit. For example, in the case of the declaration

char _far * _near *p;

p is a near pointer to a far pointer to char, which resides in the default data
segment for the memory model being used.

By contrast, the declaration
char _far * _near p;

is a far pointer to char that will always be stored in DGROUP, regardless of
the memory model being used.

m If the item immediately to the right of the keyword is an identifier, the key-
word determines whether the item will be allocated in the default data seg-
ment (_near) or a separate data segment (_far, huge, or _based). For
example,

char _far a;

allocates a as an item of type char with a _far address.

m If the item immediately to the right of the keyword is a pointer, the keyword
determines whether the pointer will hold a near address (16 bits), a based
address (16 bits), a far address (32 bits), or a huge address (also 32 bits). For
example,

char _huge *p;

allocates p as a huge pointer (32 bits) to an item of type char. Any arith-
metic performed on the huge pointer p will affect all 32 bits. That is, the in-
struction p++ increments the pointer as a 32-bit entity.

Managing Memory 43

2.3.3 Declaring Near and Far Functions

You cannot declare functions as _huge or _based. The rules for using the _near
and _far keywords for functions are similar to those for using them with data:

m The keyword always modifies the function or pointer immediately to its right.

m If the item immediately to the right of the keyword is a function, the keyword
determines whether the function will be allocated as near or far. For example,

char _far fun();

defines fun as a function with a 32-bit address that returns a char. The
function may be located in near memory or far memory, but it is called with
the full 32-bit address. The _far keyword applies to the function, not to the
return type.

m If the item immediately to the right of the keyword is a pointer to a function,
the keyword determines whether the function will be called using a near
(16-bit) or far (32-bit) address. For example,

char (_far *pfun)();

defines pfun as a far pointer (32 bits) to a function returning type char.
= Function declarations must match function definitions.

m The huge and _based keywords do not apply to functions. That is, a func-
tion cannot be huge (larger than 64K) or based. A function can return a huge
data pointer to the calling function. A function can return a based pointer
unless it is a pointer based on _self (see Section 2.5.2, “Declaring Based
Variables™).

The example below declares funl as a far function returning type char:

char _far funl(void); /* small model */
char _far fun(void)
{

44 Advanced Programming Techniques

Here, the fun2 function is a near function that returns a far pointer to
type char:

char _far * _near fun2(); /* Targe model */
char _far * _near fun()
{

}

The example below declares pfun as a far pointer to a function that has an int
return type, assigns the address of printfto pfun, and prints “Hello world.”
twice.

/* Compile in medium, large, or huge model */

fHinclude <stdio.h>
int (_far *pfun)(char *, ...);

void main()

{
pfun = printf;
pfun("Hello world.\n");
(*pfun)("Hello world.\n");

2.3.4 Pointer Gonversions

Passing near or far pointers as arguments to functions can cause automatic con-
versions in the size of the pointer argument. Passing a pointer to an unprototyped
function forces the pointer size to the larger of the following two sizes:

m The default pointer size for that type, as defined by the memory model
selected during compilation.

For example, in medium-model programs, data pointer arguments are near by
default, and code pointer arguments are far by default.

m The size of the type of the argument.
Note that if you supply a based pointer as an argument to a function and do not

specifically cast it to a far pointer type, a 16-bit offset from the base segment is
passed.

Managing Memory 45

Function prototypes prevent
problems that may occur in
mixed memory models.

If you provide a function prototype with complete argument types, the compiler
performs type-checking and enforces the conversion of actual arguments to the
declared type of the corresponding formal argument. However, if no declaration
is present or the argument-type list is empty, the compiler will convert nonbased
pointer arguments automatically to the default type or the type of the argument,
whichever is larger. To avoid mismatched arguments, always use a prototype
with the argument types.

For example, the following program produces unexpected results in compact-
model, large-model, or huge-model programs.

void main()

{
int _near *x;
char _far *y;
int z = 1;

test_fun(x, y, z); /* x is coerced to far
pointer in compact,
large, or huge model */
}

int test_fun(int _near *ptrl, char _far *ptr2, int a)
{

printf("Value of a = %d\n", a);
}

If the preceding example is compiled as a tiny, small, or medium program, the
size of x is 16 bits, the size of y is 32 bits, and the value printed for a is 1.

However, if the example is compiled in compact, large, or huge model, both x
and y are automatically converted to far pointers when they are passed to
test_fun. Since ptrl, the first parameter of test_fun, is defined as a
near pointer argument, it takes only 16 bits of the 32 bits passed to it. The next
parameter, ptr2,takes the remaining 16 bits passed to ptrl, plus 16 bits of
the 32 bits passed to it. Finally, the third parameter, a, takes the leftover 16 bits
from ptr2,instead of the value of z in the main function.

This shifting process does not generate an error message, because both the func-
tion call and the function definition are legal. In this case the program does

not work as intended, however, since the value assigned to a is not the value
intended.

46 Advanced Programming Techniques

Topass ptrl asanear pointer, you should include a function prototype that
specifically declares this argument for test_fun as a near pointer, as shown
below:

/* First, prototype test_fun so the compiler

* knows in advance about the near pointer argument:
*/

int test_fun (int _near*, char _far *, int);

main ()

{
int _near *x;
char _far *y;
int z = 1;

test_fun (x, y, z); /* now, x is not coerced
* to a far pointer; it is
* passed as a near pointer,
* no matter which memory
* model 1is used
*/

int test_fun (int _near *ptrl, char _far *ptr2, int a)

printf ("Value of a = %d\n", a);

2.4 Customizing Memory Models

In a customized model,
you select the size of code
pointers and data pointers.

A third way to manage memory is to combine different features from standard
memory models to create your own customized memory model. You should have
a thorough understanding of C memory models and the architecture of 80x86 pro-
cessors before creating your own nonstandard memory models.

The /Astring option lets you change the attributes of the standard memory mod-
els to create your own memory models. The three letters in string correspond to
the code pointer size, the data pointer size, and the stack and data segment setup,
respectively. Because the letter allowed in each field is unique to that field, you
can give the letters in any order after /A. All three letters must be present.

The standard memory-model options (/AT, /AS, /AM, /AC, /AL, and /AH) can
be specified in the /Astring form. As an example of how to construct memory
models, the standard memory-model options are listed below with their /Astring
equivalents:

Managing Memory 47

Standard Custom Equivalent
/AT /Asnd
/AS /Asnd
/AM /Alnd
J/AC /Asfd
/AL /Alfd
/AH /Alhd

For example, you might want to create a huge-compact model. This model would
allow huge data items but only one code segment. The option for specifying this
model would be /Ashd.

NOTE Tiny model is identical to small model except that it causes the linker to search for
CRTCOM.LIB. The executable file generated when you specify tiny model is a .COM file
rather than a .EXE.

2.4.1 Setting a Size for Code Pointers

Within a custom memory model, you choose whether code pointers are short or

long:

Option Size

[Asxx Short (near) code pointers
[Alxx Long (far) code pointers

The /As (short) option tells the compiler to generate near 16-bit pointers and
addresses for all functions. This is the default for tiny-, small-, and compact-
model programs.

The /Al (long) option means that far 32-bit pointers and addresses are used to
address all functions. Far pointers are the default for medium-, large-, and huge-
model programs.

48 Advanced Programming Techniques

2.4.2 Setting a Size for Data Pointers

Data pointers can be near, far, or huge:

[Axnx Near data pointers
[Axtx Far data pointers
[Axhx Huge data pointers

The /An (near) option tells the compiler to use 16-bit pointers and addresses for
all data. This is the default for tiny-, small-, and medium-model programs.

The /Af (far) option specifies that all data pointers and addresses are 32 bits. This
is the default for compact- and large-model programs.

The /Ah (huge) option specifies that all data pointers and addresses are far (32-
bit) and that arrays are permitted to extend beyond a 64K segment. This is the
default for huge-model programs.

With far data pointers, no single data item can be larger than a segment (64K) be-
cause address arithmetic is performed only on 16 bits (the offset portion) of the
address. When huge data pointers are used, individual data items can be larger
than a segment (64K) because address arithmetic is performed on both the seg-
ment and the offset.

2.4.3 Setting Up Segments

Within a customized model, you can choose to make the stack segment (SS)
equal the data segment (DS), in which case they overlap:

Option Effect

/Axxd SS ==DS

[A[xx]u SS 1=DS; DS reloaded on function entry
JALxx]Iw SS 1= DS; DS not reloaded on function entry

Segment Setup Option /Ad

The option /Ad tells the compiler that the segment addresses stored in the SS and
DS registers are equal. The stack segment and the default data segment are com-
bined into a single segment. This is the default for all standard-model programs.
In small- and medium-model programs, the stack plus all data must occupy less
than 64K; thus, any data item is accessed with only a 16-bit offset from the seg-
ment address in the SS and DS registers.

Managing Memory 49

In compact-, large-, and huge-model programs, initialized global and static data
are placed in the default data segment up to a certain threshold. The address of
this segment is stored in the DS and SS registers. All pointers to data, including
pointers to local data (the stack), are full 32-bit addresses. This is important to re-
member when passing pointers as arguments in multiple-segment programs. Al-
though you may have more than 64K of total data in these models, no more than
64K of data can occupy the default segment. The /Gt and /ND options control al-
location of items in the default data segment if a program exceeds this limit.

Segment Setup Option /Au

The option /Au tells the compiler that the stack segment does not necessarily
coincide with the data segment. In addition, it adds the _loadds attribute to all
functions within a module, forcing the compiler to generate code to load the DS
register with the correct value prior to entering the function body. Combine the
/ND option with /Au to name data segments other than the default. When /Au is
combined with /ND, the address in the DS register is saved upon entry to each
function, and the new DS value for the module in which the function was defined
is loaded into the register. The previous DS value is restored on exit from the
function. Therefore, only one data segment is accessible at any given time. The
/ND option lets you combine these segments into a single segment.

If a standard memory-model option precedes it on the command line, the /Au op-
tion can be specified without any letters indicating data pointer or code pointer
sizes. The program uses a standard memory model, but different segments are set
up for the stack and data segments.

The /Au option is useful for OS/2 or Microsoft Windows dynamic-link libraries
(DLLs), since it forces DS to be loaded on entry to each function. It is also useful
for writing extensions to the Programmer’s WorkBench. This is a costly opera-
tion, however, so consider using the /Aw option.

Segment Setup Option /Aw

The option /Aw, like /Au, causes the compiler to assume that the stack segment
is separate from the data segment. The compiler does not automatically load the
DS register at each function entry point. The /Aw option is useful in creating ap-
plications that interface with an operating system or with a program running at
the operating-system level. The operating system or the program running under
the operating system actually receives the data intended for the application pro-
gram and places that data in a segment; then the operating system or program
must load the DS register with the segment address for the application program.

As with the /Au option, the /Aw option can be specified without data pointer and
code pointer letters if a standard memory-model option precedes it on the com-
mand line. In such a case, the program uses the specified memory model just as
with /Au, but the DS register is not reloaded at each function entry point.

50 Advanced Programming Techniques

Even though /Au and /Aw indicate that the stack may be in a separate segment,
the stack’s size is still fixed at the default size unless this is overridden with the
/F compiler option or the /STACK linker option.

The /Aw option is useful for writing OS/2 and Microsoft Windows dynamic-link
libraries (DLLs), but care must be taken when it is used. Declare all entry points
to the dynamic-link library as _loadds to force DS to be loaded on entry to the
function (exactly like the /Au option). The other functions will then be more effi-
cient, though, because they will not have to perform redundant loads of the DS
register. For example,

_export _Toadds _far pascal LibFunc(void)
{

HelperFunc(); }

HelperFunc(void)
{

}

The library entry point, LibFunc, is declared as _loadds to force the DS regis-
ter to be loaded on entry. The function HelperFunc, which is private to the
dynamic-link library, is declared as a normal C function. Since it cannot be
called from outside of the module, HelperFunc does not need to reload DS.

If you choose one of the options that specifies that the stack segment is not equal
to the data segment (SS != DS), you cannot pass the address of frame variables
as arguments to functions that take near pointers. That is, in tiny, small, and
medium models, you cannot pass the address of a local variable (which is allo-
cated on the stack) as an argument, because the receiving function will assume
the pointer is relative to the data segment. However, the receiving function could
solve this problem by declaring the pointer to be the following:

based(_segname("_STACK"))

Another solution would be to cast the pointer to a far pointer in both locations as
follows:

/* Call func with an explicit cast to far */
func((char far *)frame_var);

void func(char far *formal_var)

Managing Memory 51

2.4.4 Library Support for Customized Memory Models

Most C programs make function calls to the routines in the C run-time library.
When you write mixed-model programs, you are responsible for determining
which library (if any) is suitable for your program and for ensuring that the appro-
priate library is linked. Table 2.3 shows the libraries from which to extract the
start-up routine for each customized memory model.

Table 2.3 Start-Up Routines for Customized Memory Models

Memory-Model Option From Library
/Asnux; /AS plus /Ax SLIBCf.LIB
/Asfx; /Ashx; /AC plus /Ax CLIBCf.LIB
/Alnx; /AM plus /Ax MLIBCf.LIB

/Alfx; /Alhx; /AL plus /Ax; /AH plus /Ax LLIBCf.LIB

The /Ax option represents either /Au or /Aw. In the library names, f'is either E
(emulator library), 7 (8087/80287 library), or A (alternate math library).

2.4.5 Setting the Data Threshold

Option Effect
[Gt[[number]] Sets the threshold

The /Gt option causes all data items whose size is greater than to number bytes to
be allocated to a new data segment. When number is specified, it must follow the
/Gt option immediately, with no intervening spaces. When number is omitted, the
default threshold value is 256. When the /Gt option is omitted, the default thresh-
old value is 32,767.

The /Gt option applies only to compact-, large-, and huge-model programs, since
small- and medium-model programs have only one data segment. The option is
particularly useful with programs that have more than 64K of initialized static
and global data in small data items, because otherwise you run out of memory in
the default data segment and can’t link the program. The /Gt option has no effect
on uninitialized global data.

52 Advanced Programming Techniques

2.4.6 Naming Modules and Segments

Option Effect

/NM modulename Names the module

/NT textsegment Names the code segment
/ND datasegment Names the data segment

“Module” is another name for an object file created by the C compiler from a
single source file. Every module has a name. The compiler uses this name in
error messages if problems are encountered during processing. The module name
is usually the same as the source-file name. You can change this name using the
/NM (name module) option. The new modulename can include any combination
of letters and digits. The space between /NM and modulename is optional.

Every module has at least two segments: a code segment (sometimes called the
text segment) containing the program instructions, and a data segment containing
the program data.

The compiler normally creates the code and data segment names. The default
names depend on the memory model chosen for the program. For example, in
small-model programs the code segment is named TEXT and the data segment
isnamed DATA.

Table 2.4 summarizes the naming conventions for code and data segments.

Table 24 Segment-Naming Conventions

Model Code Data Module
Tiny _TEXT _DATA -

Small _TEXT _DATA -

Medium module_TEXT _DATA filename
Compact _TEXT _DATA filename
Large module_TEXT _DATA filename
Huge module_TEXT _DATA filename

In memory models that contain multiple data segments (compact, large, and
huge), DATA is the name of the default data segment. Other data segments have
unique private names. You can override the default names with the options /NT
(name text) and /ND (name data).

Managing Memory 53

The /ND option is commonly used to create and compile modules that contain
data only. Such modules can be accessed from other parts of the program by de-
claring their variables as external.

If you change the name of the default data segment with /ND, your program
must load the DS register with the segment selector of your named data segment
before it accesses it. You must therefore compile your program either with the
[Astring form of the memory-model option and the /Au option for the segment
setup, or with the /A option for a standard memory model followed by /Au. For
example,

CL /AS /Au /ND DATA1l PROG1.C

The /Au option forces the compiler to generate code to load DS with the correct
data-segment value on entry to the code.

All modules whose data segments have the same name have these segments com-
bined into a single segment named DATA1L at link time.

The functions in the small data model run-time libraries that rely on the default
data segment being named "_DATA" will fail if you use the /ND option to re-
name the default data segment. This restriction affects tiny-, small-, and medium-
model programs.

2.4.7 Specifying Code and Data Segments

The following pragmas give you more control over the distribution of functions
and data:

m #pragma alloc_text (textsegment, functionl [, function2]...)

m #pragma same_seg (variablel[[, variable2]]...)

The alloc_text pragma lets you name the segment in which particular functions
are allocated. The same_seg pragma provides information the compiler can use
to generate better code by assuming that the specified variables are in the same
segment.

If you use overlays or swapping techniques to handle large programs, alloc_text
allows you to tune the contents of their code (text) segments for maximum effi-
ciency. The alloc_text pragma must appear before the definitions of any of the
specified functions and after the declarations of these functions. Functions refer-
enced in an alloc_text pragma should be defined in the same module as the
pragma. If this is not done, and an undefined function is later compiled into a
different code segment, the error may not be caught.

54 Advanced Programming Techniques

The same_seg pragma tells the compiler to assume that the specified external
variables are allocated in the same data segment. You are responsible for making
sure that these variables are put in the same data segment; one way to do this is
to specify the /ND option when you compile the program.

The same_seg pragma must appear before a specified variable appears in the
executable code but after the variable is declared. Variables specified in a
same_seg pragma must be explicitly declared with extern storage class, and
they must either be explicitly declared with the _far keyword or assumed to be
far because the memory model is compact, large, or huge.

2.5 Using Based Variables

Whenever you declare a near, far, or huge data variable, the compiler handles the
details of where the pointer is stored and how memory is allocated.

With based variables, however, you name a base that specifies where in memory
the data resides. This section explains how and why to include based variables in
your programs.

2.5.1 New Keywords

The following keywords are new to version 6.0 of Microsoft C:

Keyword Use

_based(base-expression) Qualifies a declaration to indicate
that a variable is based. In the same
class as _near, far, and _huge. It is
always followed by a base expression
in parentheses.

_segment New data type that holds a memory
segment address. In the same class as
char, int, and float.

_segname("'segmentname") The name of the segment.

_self A base expression that names itself as
a base.

> The base operator that combines a

segment and an offset to produce an
effective address.

Managing Memory 55

2.5.2 Declaring Based Variables

The _based keyword is similar in most respects to the related keywords _near
and _far. You can use it anywhere that _near or _far might appear.

The _based keyword is always followed by a base in parentheses. For example,

char _based(segl) *bp

means that bp is a based pointer to char. In this example, the base is the
variable segl.

There are several types of base expressions, which are explained below.

Variables and Pointers Based on a Segment Constant

One way to declare a based variable is to give it a segment constant as a base.
Four segments are predefined in Microsoft C:

Segment Definition

_CODE The default code segment

_CONST The constant segment for strings such as
“This is a constant string.”

_DATA The default data segment

_STACK The stack segment

The _segname keyword marks the name of a segment. It is always followed by
parentheses and a string, as in the example below:

/* Compile in Small Model */
#include <stdio.h>
#include <malloc.h>

char _based(_segname("_CODE")) mystring[] = "A code-based string.\n";
int _based(_segname("_CODE")) ib = 12345;
void main()
{
printf("%Fs %d", (char _far *)mystring, ib);

The variable mystring is declared as an array of characters based in the code
segment. The variable ib is an integer (not a pointer) that is also based in the
code segment.

Note that the small-model version of printf would treat mystring asanear
pointer. The F in the format specifier %F's forces the function to treat it as a far
pointer and the cast to char _far#* coerces the address to four bytes.

56 Advanced Programming Techniques

You can also name your own segments. The declaration of mystring might
look like this:

char _based(_segname("MYSEGMENT")) mystring[] = "Another based string.\n";

In the example above, the compiler creates a new segment called MYSEGMENT
and places the string there.

Pointers Based on a Segment Variable

The _segment keyword is a new primitive type that can contain the base value of
a segment. You can declare variables as type _segment, or you can coerce varia-
bles of other types to type _segment using standard C cast syntax. The key fea-
ture of variables of type _segment is that you can use them in the declaration of
other _based variables. The following examples illustrate how _segment works:

/* a_segment can contain a segment value */
_segment a_segment;

/* The pointer based_on_segvar will always be dereferenced relative
* to a segment base of a_segment.

*/

char _based(a_segment) *based_on_segvar;

char near *near_ptr;

/* The pointer based on_segvar will be dereferenced relative to the
* segment base of near_ptr (which is the current value of DS).

*/

char _based((_segment)near_ptr) *based_on_segvar;

char far *far_ptr;

/* A pointer based on_segvar will be dereferenced relative to the
* segment base of far_ptr.

*/

char _based((_segment)far_ptr) *based_on_segvar;

Declaring variables as based on a segment variable allows you to group based
data in the same segment.

In the example below, segvar is a variable of type _segment. The program re-
quests memory from the heap and bases a variable there.

/* Compile in Small Model */
J#include <malloc.h>
#include <stdio.h>
#include <string.h>

Managing Memory 57

_segment segvar;
char _based(segvar) *b_string;

void main()
{
if((segvar = _bheapseg(100@)) != _NULLSEG)

{
if((b_string = _bmalloc(segvar, 2@)) != _NULLOFF)

{
_fstrcpy((char _far *)b_string, (char _far *)"This is a test.\n");
printf("%Fs", (char _far *)b_string);
printf("Size = %d\n", sizeof b_string); /* Always 2 */
_bfree(segvar, b_string);
}
else
puts("bmalloc failed");
_bfreeseg(segvar);
}
else
puts("_bheapseg failed.");

First, the program asks for 1,000 bytes in a new based heap segment:
if((segvar = _bheapseg(1008)) != _NULLSEG)

On failure, the _bheapseg function returns NULLSEG (null segment). Other-
wise, segvar holds the valid address of a segment.

Next, the _bmalloc function allocates 20 bytes of memory within the segment
base and assigns the offsetto b_string:

if((b_string = bmalloc(segvar, 20)) != _NULLOFF)

In this case, NULLOFF means “null offset” and indicates the failure of
_bmalloc. If all is well, the program continues with this code:

_fstrcpy((char _far *)b_string, (char _far *)"This is a test.\n");
printf("%Fs", (char _far *)b_string);
printf("Size = %d\n", sizeof b_string); /* always 2 */

The standard strcpy function won’t work because this is a small-model program
that expects all pointers to be near. The _fstrepy function allows you to copy to a
far string. Then the string and its size are printed.

Finally, the offset memory and the segment memory are freed:

_bfree(segvar, b_string);
_bfreeseg(segvar);

58 Advanced Programming Techniques

Pointers Based on a Pointer

A based pointer can use another pointer as its base. In the example below,
the variable ip is a pointer to an integer. It serves as the base for both bp
(a pointer to an integer) and cp (a pointer to a character).

NOTE Only pointer variables can be based on a pointer. Nonpointer variables (objects)
cannot be based on a pointer.

To find the actual address to which bp points, you take the address in its base
(ip) and add the value in bp. For example, if ip points to location 0x2345 and
bp holds a 3, then it points to 0x2348. Changing the value in the base immedi-
ately changes the addresses to which the based pointers point.

The following example illustrates pointers based on a pointer:

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <string.h>

int *ip; /* int pointer */
int _based(ip) *bp; /* based on ip */
char _based(ip) *cp;

void main()
{
int *meml, *mem?2;

bp = (void *)@; /* bp equals *(ip+t@) */
cp (void *)2; /* cp equals *(ip+2) */

if((meml = (int *)malloc(10@)) != NULL)
if((mem2 = (int *)malloc(100)) != NULL)
{
ip = meml; /* ip points to meml */
*bp = 5;
strcpy((char *)cp, "String stored in meml.");

Managing Memory 59

ip = mem2; /* ip now points to memZ */
*hbp = 12345;
strcpy((char *)cp, "String stored in mem2.");

ip = meml; /* point to meml */
/* which still holds previous values */
printf("%s *bp= %i\n", (char *)cp, *bp);

ip = mem2; /* point to mem2 */
/* display the values there */
printf("%s *bp= %i\n", (char *)cp, *bp);

free(mem2);
free(meml);
}
else puts("Second malloc failed.");
else puts("First malloc failed.");
}

Two calls to malloc provide two sections of memory, whose addresses are stored
in the variables meml and memZ2. When 1ip is assigned one of these addresses
(mem1), the pointers based on ip point somewhere within that piece of mem-
ory. When 1ip is assigned the address in mem?2, the effective addresses of bp
and cp also change.

Pointers Based on Void

A third way to declare a based pointer is to give it no base at all—to base it on
void. This creates a generic pointer that acts as an offset into a segment. Such a
based pointer can then be combined with a segment name to specify any address.

NOTE Only pointer variables can be based on void. Nonpointer variables (objects) cannot
be based on void.

To combine a segment and an offset, use the “base operator.” It consists of a
colon and a greater-than symbol (:>). Place it between a segment value and an
offset as show in the syntax below:

segment: >offset

The address can be dereferenced with the indirection operator ().

60 Advanced Programming Technigues

The program below reads the first 40 words of video memory and prints the char-
acter values. Within a text mode, the high byte contains the colors and other at-
tributes. The low byte contains the characters.

#include <malloc.h>
fFinclude <stdio.h>
##include <conio.h>

_segment segvar = @xB8@O; /* Substitute @OxB@OO@ for Mono */
int _based(void) *vp = @;

void main()
{
int 1, screen(40];
for(i =@; i < 4@; i++, vpt++)
{
screen[i] = *(segvar:>vp);
}
for(i =0; i < 40; i++)
printf("%c", (char)screen[i]);
}

The video segment for color text starts at 0xB800. If you’re using a monochrome
monitor, substitute 0xB00O. The variable vp acts as a generic based pointer. To
read through video memory, combine the segment and offset and dereference the
pointer:

screen[i] = *(segvar:>vp);

In the example above, the value is stored in an array of integers. The character
values are then printed out:

for(i =0; 1 < 40; i++)
printf("%c", (char)screen[i]);

Pointers Based on a Self Segment

Another way to declare a based pointer is to use the _self keyword cast to a seg-
ment value, as in the example below:

Managing Memory 61

typedef struct tree TREE;

struct tree
{
int name;
TREE _based((_segment)_self) *left;
TREE _based((_segment)_self) *right;
bs

void main()
{

TREE _based(_segname("MYSEGMENT")) t1;
}

Any based declarations that are based on _self must apply to pointers only. Ordi-
nary data objects cannot be self-based.

The example above declares a structure called tree and then declares t1 to
be such a structure. The pointers within the structure are self-based, meaning
they will point within the segment in which the tree structure is located. This is
useful when the entire tree would fit into a single based segment. Note that func-
tions cannot return pointers based on _self.

2.5.3 Advantages of Based Pointers

Based pointers are
small and flexible.

The advantage of near pointers is that they occupy only two bytes in memory.
The disadvantage is that they can only address the 65,536 locations in the default
data segment.

The advantage of far pointers is that they remove the addressing limit; they can
point to any address. The disadvantage is that they need twice as much memory
for each pointer: four bytes instead of two.

Based pointers are as small as near pointers but as flexible as far pointers, they
enjoy both of the benefits and neither of the drawbacks of the other pointers.
Like a near pointer, a based pointer occupies only two bytes. Like a far pointer, a
based pointer can point anywhere in memory. You must, however, provide some
extra information about where the base is.

Based pointers don’t need the two extra bytes used by far pointers to name the
segment. When necessary, the Microsoft C compiler generates the code to switch
segments to the new base.

62 Advanced Programming Techniques

If you write programs that use many far pointers, you may be able to save
memory by converting the four-byte far pointers to two-byte based pointers.

Near pointers always give you the fastest code. Far and huge pointers always
give you the slowest.

Based pointers can be Based pointers lie somewhere in between. When a function accesses a group of
faster than far pointers. based pointers that have the same base, the extra segment register (ES) may be
loaded only once. If you enable full optimization and use the same base for your
based pointers, in many cases they will be faster than far pointers and nearly as
fast as near pointers.

Based pointers can give you access to the code, data, stack, or constant segments.
For example, if you want to use the small memory model, but the data requires
more than 64K, you can store some of the constant strings in the code segment
(instead of the constant segment).

Another benefit of based pointers is that you can swap data from disk to memory
or from one area of memory to another. If a series of variables has the same base,
you can easily move the block of memory around without having to reinitialize
the variables’ address.

Based pointers give If you want to read from or write to areas such as video memory, ROM, or

you assembler-level the I/O areas, you can declare based pointers that access these sections of
access to memory. memory.

Using the
In-Line Assembler

This chapter explains how to use the Microsoft C in-line assembler. Assembly
language serves many purposes, such as improving program speed, reducing
memory needs, and controlling hardware. The in-line assembler lets you embed
assembly-language instructions directly in your C source programs without extra
assembly and link steps. The in-line assembler is built into the compiler—you
don’t need a separate assembler such as the Microsoft Macro Assembler
(MASM).

3.1 Advantages of In-Line Assembly

Because the in-line assembler doesn’t require separate assembly and link steps, it
is more convenient than a separate assembler. In-line assembly code can use any
C variable or function name that is in scope, so it is easy to integrate it with your
program’s C code. And because the assembly code can be mixed in-line with C
statements, it can do tasks that are cuambersome or impossible in C alone.

The uses of in-line assembly include

m Writing functions in assembly language

m Spot-optimizing speed-critical sections of code

m Calling DOS and BIOS routines with the INT instruction

m Creating TSR (terminate-and-stay-resident) code or handler routines that

require knowledge of processor states

In-line assembly is a special-purpose tool. If you plan to transport an application,
you’ll probably want to place machine-specific code in a separate module. And
because the in-line assembler doesn’t support all of MASM’s macro and data
directives, you may find it more convenient to use MASM for such modules.

63

64 Advanced Programming Techniques

3.2 The _asm Keyword

Braces can prevent ambiguity
and needless repetition.

The _asm keyword invokes the in-line assembler and can appear wherever a C
statement is legal. It cannot appear by itself. It must be followed by an assembly
instruction, a group of instructions enclosed in braces, or, at the very least, an
empty pair of braces. The term “_asm block” here refers to any instruction or
group of instructions, whether or not in braces.

Below is a simple _asm block enclosed in braces. (The code prints the “beep”
character, ASCIL 7.)

asm
{
mov ah, 2
mov dl, 7
int 21h

}

Alternatively, you can put _asm in front of each assembly instruction:

_asm mov ah, 2
_asm mov dl, 7
_asm int 21h

Since the _asm keyword is a statement separator, you can also put assembly
instructions on the same line:

_asm mov ah, 2 _asm mov dl, 7 _asm int 21h

All three examples generate the same code, but the first style—enclosing the
_asm block in braces—has some advantages. The braces clearly separate as-
sembly code from C code and avoid needless repetition of the _asm keyword.
Braces can also prevent ambiguities. If you want to put a C statement on the
same line as an _asm block, you must enclose the block in braces. Without the
braces, the compiler cannot tell where assembly code stops and C statements
begin. Finally, since the text in braces has the same format as ordinary MASM
text, you can easily cut and paste text from existing MASM source files.

The braces enclosing an _asm block don’t affect variable scope, as do braces in
C. You can also nest _asm blocks, but the nesting doesn’t affect variable scope.

Using the In-Line Assembler 65

3.3 Using Assembly Language in _asm Blocks

The in-line assembler has much in common with other assemblers. For example,
it accepts any expression that is legal in MASM, and it supports all 80286 and
80287 instructions. This section describes the use of assembly-language features
in _asm blocks.

Instruction Set

The in-line assembler supports the full instruction set of the Intel 80286 and
80287 processors. It does not recognize 80386- and 80387-specific instructions.
To use 80286 or 80287 instructions, compile with the /G2 option.

Expressions

In-line assembly code can use any MASM expression, that is, any combination
of operands and operators that evaluates to a single value or address.

Data Directives and Operators

Although an _asm block can reference C data types and objects, it cannot define
data objects with MASM directives or operators. Specifically, you cannot use
the definition directives DB, DW, DD, DQ, DT, and DF, or the operators DUP or
THIS. Nor are MASM structures and records available. The in-line assembler
doesn’t accept the directives STRUC, RECORD, WIDTH, or MASK.

EVEN and ALIGN Directives

While the in-line assembler doesn’t support most MASM directives, it does sup-
port EVEN and ALIGN. These directives put NOP (no operation) instructions in
the assembly code as needed to align labels to specific boundaries. This makes
instruction-fetch operations more efficient for some processors (not including
eight-bit processors such as the Intel 8088).

Macros

The in-line assembler is not a macro assembler. You cannot use MASM macro
directives (MACRO, REPT, IRC, IRP, and ENDM) or macro operators (<>, !, &,
%, and .TYPE). An _asm block can use C preprocessor directives, however. See
Section 3.4, “Using C in _asm Blocks” for more information.

66 Advanced Programming Technigues

Segment References

You must refer to segments by register rather than by name (the segment name
_TEXT is invalid, for instance). Segment overrides must use the register ex-
plicitly, as in ES:[BX].

Type and Variable Sizes

The LENGTH, SIZE, and TYPE operators have a limited meaning in in-line
assembly. They cannot be used at all with the DUP operator (because you can-
not define data with MASM directives or operators). But you can use them to
find the size of C variables or types:

m The LENGTH operator can return the number of elements in an array. It
returns the value 1 for nonarray variables.

m The SIZE operator can return the size of a C variable. A variable’s size is the
product of its LENGTH and TYPE.

m The TYPE operator can return the size of a C type or variable. If the variable
is an array, TYPE returns the size of a single element of the array.

For instance, if your program has an eight-element int array,
int arr(81;

the following C and assembly expressions yield the size of arr and its

elements:

_asm C Size
LENGTH arr sizeof(ar)/sizeof(arr[0]) 8
SIZE arr sizeof (arr) 16

TYPE arr sizel4(arr[0]) 2

Using the In-Line Assembler 67

Comments

Instructions in an _asm block can use assembly-language comments:

_asm mov ax, offset buff ; Load address of buff

Because C macros expand into a single logical line, avoid using assembly-
language comments in macros (see Section 3.8, “Defining _asm Blocks as C
Macros”). An _asm block can also contain C-style comments, as noted below.

The _emit Pseudoinstruction

The _emit pseudoinstruction is similar to the DB directive of MASM. It allows
you to define a single immediate byte at the current location in the current text
segment. However, _emit can define only one byte at a time, and it can only de-
fine bytes in the text segment. It uses the same syntax as the INT instruction.

One use for _emit is to define 80386-specific instructions, which the in-line
assembler does not support. The following fragment, for instance, defines the
80386 CWDE instruction:

/* Assumes 16-bit mode */
ffdefine cwde _asm _emit @x66 _asm _emit 0x98

_asm {
cwde
}

Debugging and Listings

In-line assembly code can he Programs containing in-line assembly code can be debugged with the CodeView
debugged with CodeView. debugger, assuming you compile with the /Zi option.

Within CodeView, you can set breakpoints on both C and assembly-language
lines. If you enable mixed assembly and C mode, you can display both the source
and disassembled form of the assembly code.

Note that putting multiple assembly instructions or C statements on one line can
hamper debugging with CodeView. In source mode, the CodeView debugger lets
you set breakpoints on a single line but not on individual statements on the same
line. The same principle applies to an _asm block defined as a C macro, which
expands to a single logical line.

If you create a mixed source and assembly listing with the /Fc compiler op-

tion, the listing contains both the source and assembly forms of each assembly-
language line. Macros are not expanded in listings, but they are expanded during
compilation.

See Chapter 9, “Debugging C Programs with CodeView,” for more information.

68 Advanced Programming Techniques

3.4 Using C in_asm Blocks

Because in-line assembly instructions can be mixed with C statements, they can
refer to C variables by name and use many other elements of C. An _asm block
can use the following C language elements:

m Symbols, including labels and variable and function names

m Constants, including symbolic constants and enum members

m Macros and preprocessor directives

m Comments (both /* */ and //)

m Type names (wherever a MASM type would be legal)

m typedef names, generally used with operators such as PTR and TYPE or to

specify structure or union members

Within an _asm block, you can specify integer constants with either C notation
or assembler radix notation (0x100 and 100h are equivalent, for instance). This
allows you to define (using #define) a constant in C, and use it in both C and as-
sembly portions of the program. You can also specify constants in octal by pre-
ceding them with a 0. For example, 0777 specifies an octal constant.

3.4.1 Using Operators

An _asm block cannot use C-specific operators, such as the << operator. How-
ever, operators shared by C and MASM, such as the * operator, are interpreted as
assembly-language operators. For instance, outside an _asm block, square brack-
ets ([1) are interpreted as enclosing array subscripts, which C automatically
scales to the size of an element in the array. Inside an _asm block, they are seen
as the MASM index operator, which yields an unscaled byte offset from any data
object or label (not just an array). The following code illustrates the difference:

int array[10];
_asm mov array[6], bx ; Store BX at array+6 (not scaled)

array[6] = 0; /* Store @ at array+12 (scaled) */

Using the In-Line Assembler 69

The first reference to array is not scaled, but the second is. Note that you can
use the TYPE operator to achieve scaling based on a constant. For instance, the
following statements are equivalent:

_asm mov array[6 * TYPE int], @ ; Store @ at array + 12

arrayl(6] = @; /* Store @ at array + 12 */

3.4.2 Using C Symbols

An _asm block can refer to any C symbol in scope where the block appears.
(C symbols are variable names, function names, and labels—in other words,
names that aren’t symbolic constants or enum members.)

A few restrictions apply to the use of C symbols:
m Each assembly-language statement can contain only one C symbol. Multiple

symbols can appear in the same assembly instruction only with LENGTH,
TYPE, and SIZE expressions.

m Functions referenced in an _asm block must be declared (prototyped) earlier
in the program. Otherwise, the compiler cannot distinguish between function
names and labels in the _asm block.

m An_asm block cannot use any C symbols with the same spelling as MASM
reserved words (regardless of case). MASM reserved words include instruc-
tion names such as PUSH and register names such as SI.

m Structure and union tags are not recognized in _asm blocks.

3.4.3 Accessing C Data

A great convenience of in-line assembly is the ability to refer to C variables by
name. An _asm block can refer to any symbols—including variable names—that
are in scope where the block appears. For instance, if the C variable var isin
scope, the instruction

_asm mov ax, var

stores the value of var in AX.

70 Advanced Programming Technigues

If a structure or union member has a unique name, an _asm block can refer to it
using only the member name, without specifying the C variable or typedef name
before the period (.) operator. If the member name is not unique, however, you
must place a variable or typedef name immediately before the period (.) opera-
tor. For instance, the following structure types share same_name as their mem-
ber name:

struct first_type
{
char *weasel;
int same_name;
}s

struct second_type
{
int wonton;
long same_name;
1

If you declare variables with the types

struct first_type hal;
struct second_type oat;

all references to the member same_name must use the variable name, because
same_name is not unique. But the member weasel has a unique name, so
you can refer to it using only its member name:

_asm
{

mov bx, OFFSET hal

mov cx, [bxJhal.same _name ; Must use 'hal'’

mov si, [bx].weasel ; Can omit 'hal'
}

Note that omitting the variable name is merely a coding convenience. The same
assembly instructions are generated whether or not it is present.

3.4.4 Writing Functions

If you write a function with in-line assembly code, it’s a simple matter to pass ar-
guments to the function and return a value from it. The following examples com-
pare a function first written for a separate assembler and then rewritten for the
in-line assembler. The function, called power?2, receives two parameters, multi-
plying the first parameter by 2 to the power of the second parameter. Written for
a separate assembler, the function might look like this:

Using the In-Line Assembler 71

Function arguments are
usually passed on the stack.

; POWER.ASM

; Compute the power of an integer
PUBLIC _power?

_TEXT SEGMENT WORD PUBLIC 'CODE"’

_power?2 PROC

push bp ; Save BP

mov bp, sp ; Move SP into BP so we can refer
; to arguments on the stack

mov ax, [bpt+4] ; Get first argument

mov cx, [bp+6] ; Get second argument

shl ax, cl ; AX = AX * (2 ~CL)

pop bp ; Restore BP

ret ; Return with sum in AX

_power2 ENDP
_TEXT ENDS
END

Since it’s written for a separate assembler, the function requires a separate source
file and assembly and link steps. C function arguments usually are passed on the
stack, so this version of the power?2 function accesses its arguments by their
positions on the stack. (Note that the MODEL directive, available in MASM and
some other assemblers, also allows you to access stack arguments and local stack
variables by name.)

The POWER2.C program below writes the power? function with in-line
assembly code:

/* POWER2.C */
#include <stdio.h>

int power2(int num, int power);

void main(void)
{
printf("3 times 2 to the power of 5 is %Zd\n", \
power2(3, 5));
}

int power2(int num, int power)
{

_asm
{
mov ax, num ; Get first argument
mov cx, power ; Get second argument
shl ax, cl ; AX = AX * (2 to the power of CL)

}
/* Return with result in AX */

72 Advanced Programming Technigues

The in-line version of the power? function refers to its arguments by name and
appears in the same source file as the rest of the program. This version also re-
quires fewer assembly instructions. Since C automatically preserves BP, the
_asm block doesn’t need to do so. It can also dispense with the RET instruction,
since the C part of the function performs the return.

Because the in-line version of power? doesn’t execute a C return statement, it
causes a harmless warning if you compile at warning levels 2 or higher:

warning C4035: 'power2' : no return value

The function does return a value, but the compiler cannot tell that in the absence
of a return statement. Simply ignore the warning in this context.

3.5 Using and Preserving Registers

Don’t use the _fastcall calling
convention for functions
with _asm blocks.

Functions return values in
the AX and DX registers.

In general, you should not assume that a register will have a given value when an
_asm block begins. An _asm block inherits whatever register values happen to
result from the normal flow of control.

If you use the _fastcall calling convention, the compiler passes function argu-
ments in registers instead of the stack. This can create problems in functions
with _asm blocks, since a function has no way to tell which parameter is in
which register. If the function happens to receive a parameter in AX and imme-
diately stores something else in AX, the parameter is lost. In addition, you must
preserve the CX and ES registers in any function declared with _fastcall.

To avoid such register conflicts, don’t use the _fastcall convention for functions
that contain an _asm block. If you specify the _fastcall convention globally with
the /Gr compiler option, declare every function containing an _asm block with
_cdecl. (The _edecl attribute tells the compiler to use the normal C calling con-
vention for that function.) If you are not compiling with /Gr, avoid declaring the
function with the _fastcall attribute.

As you may have noticed in the POWER2.C example in Section 3.4.4, the
power? function doesn’t preserve the value in the AX register. When you write
a function in assembly language, you don’t need to preserve the AX, BX, CX,
DX, ES, and flags registers. However, you should preserve any other registers
you use (DI, SI, DS, SS, SP, and BP).

WARNING If your in-line assembly code changes the direction flag using the STD or CLD
instructions, you must restore the flag to its original value.

The POWER2.C example in Section 3.4.4 also shows that functions return values
in registers. This is true whether the function is written in assembly language or
in C.

Using the In-Line Assembler 73

If the return value is short (a char, int, or near pointer), it is stored in AX. The
POWER2.C example returned a value by terminating with the desired value
in AX.

If the return value is long, store the high word in DX and the low word in AX. To
return a longer value (such as a floating-point value), store the value in memory
and return a pointer to the value (in AX if near or in DX:AX if far).

Assembly instructions that appear in-line with C statements are free to alter the
AX, BX, CX, and DX registers. C doesn’t expect these registers to be maintained
between statements, so you don’t need to preserve them. The same is true of the
ST and DI registers, with some exceptions (see Section 3.9, “Optimizing”). You
should preserve the SP and BP registers unless you have some reason to change
them—to switch stacks, for instance.

3.6 Jumping to Labels

Labels in _asm blocks
have function scope and
are not case sensitive.

Like an ordinary C label, a label in an _asm block has scope throughout the func-
tion in which it is defined (not only in the block). Both assembly instructions and
C goto statements can jump to labels inside or outside the _asm block.

Unlike C labels, labels defined in _asm blocks are not case sensitive, even when
used in C statements. C labels are not case sensitive in an _asm block, either.
(Outside an _asm block, a C label is case sensitive as usual.) The following do-
nothing code shows all the permutations:

void func(void)

{
goto C_Dest; /* legal */
goto c_dest; /* error */

goto A_Dest; /* legal */
goto a_dest; /* legal */

_asm
{
jmp C_Dest ; Tlegal
jmp c_dest ; Tlegal

jmp A_Dest ; legal
jmp a_dest ; legal

a_dest: ; _asm label
}

C_Dest: /* C label */
return;

74 Advanced Programming Techniques

Don’t use C library function names as labels in _asm blocks. For instance, you
might be tempted to use exit as alabel,

jne exit

exit:
; More _asm code follows

forgetting that exit is the name of a C library function. The code doesn’t cause
a compiler error, but it might cause a jump to the exit function instead of the
desired location.

As in MASM programs, the dollar symbol ($) serves as the current location
counter—a label for the instruction currently being assembled. In _asm blocks,
its main use is to make long conditional jumps:

jne $+5 ; next instruction is 5 bytes Tong

jmp farlabel
; $+5

farlabel:

3.7 Calling C Functions

An _asm block can call C functions, including C library routines. The following
example calls the printf library routine:

finclude <stdio.h>

char format[] = "%s %s\n";
char hello[] = "Hello";
char world[] = "world";

void main(void)
{
_asm

{
mov ax, offset world

push ax
mov ax, offset hello
push ax
mov ax, offset format
push ax

call printf

Using the In-Line Assembler 75

Since function arguments are passed on the stack, you simply push the needed
arguments—string pointers, in the example above—before calling the function.
The arguments are pushed in reverse order, so they come off the stack in the
desired order. To emulate the C statement

printf(format, hello, world);

the example pushes pointersto world, hello,and format, in that order,
then calls printf.

3.8 Defining _asm Blocks as C Macros

C macros offer a convenient way to insert assembly code into C code, but they
demand extra care because a macro expands into a single logical line. To create
trouble-free macros, follow these rules:

m Enclose the _asm block in braces.
m Putthe _asm keyword in front of each assembly instruction.

m Use old-style C comments (/* comment */) instead of assembly-style
comments (; comment) or single-line C comments (// comment).

To illustrate, the following example defines a simple macro:

J#define BEEP _asm \

/* Beep sound */

{
_asm mov ah, 2
_asm mov dl, 7
_asm int 21h

}

e e

At first glance, the last three _asm keywords seem superfluous. They are needed,
however, because the macro expands into a single line:

_asm /* Beep sound */ { _asm mov ah, 2 _asm mov dl, 7 _asm int 21h }

The third and fourth _asm keywords are needed as statement separators. The
only statement separators recognized in _asm blocks are the newline character
and _asm keyword. And since a block defined as a macro is one logical line, you
must separate each instruction with _asm.

The braces are essential as well. If you omit them, the compiler can be confused
by C statements on the same line to the right of the macro invocation. Without
the closing brace, the compiler cannot tell where assembly code stops, and it sees
C statements after the _asm block as assembly instructions.

76 Advanced Programming Techniques

Use C comments in _asm
blocks written as macros.

An _asm block written as a C
macro can take arguments but
cannot return a value.

You can convert MASM
macros to C macros.

Assembly-style comments that start with a semicolon (;) continue to the end of
the line. This causes problems in macros because the compiler ignores everything
after the comment, all the way to the end of the logical line. The same is true of
single-line C comments (// comment). To prevent errors, use old-style C com-
ments (/* comment */) in _asm blocks defined as macros.

An _asm block written as a C macro can take arguments. Unlike an ordinary C
macro, however, an _asm macro cannot return a value. So you cannot use such
macros in C expressions.

Be careful not to invoke macros of this type indiscriminately. For instance, invok-
ing an assembly-language macro in a function declared with the _fastcall con-
vention may cause unexpected results. (See Section 3.5, “Using and Preserving
Registers.”)

Note that some MASM-style macros can be written as C macros. Below is a
MASM macro that sets the video page to the value specified in the page
argument:

setpage MACRO page

mov ah, 5
mov al, page
int 16h

ENDM

The following code defines setpage asa C macro:

ffdefine setpage(page) _asm \
{
_asm mov ah, 5
_asm mov al, page
_asm int 1@h

— -

}

Both macros do the same job.

3.9 Optimizing

The presence of an _asm block in a function affects optimization in a few differ-
ent ways. First, as you might expect, the compiler doesn’t try to optimize the
_asm block itself. What you write in assembly language is exactly what you get.

Second, the presence of an _asm block affects register variable storage. Under
normal circumstances (unless you suppress optimization with the /Od option) the
compiler automatically stores variables in registers. This is not done, however, in
any function that contains an _asm block. To get register variable storage in such
a function, you must request it with the register keyword.

Using the In-Line Assembler 77

Since the compiler stores register variables in the SI and DI registers, these regis-
ters represent variables in functions that request register storage. The first eligible
variable is stored in SI and the second in DI. Preserve SI and DI in such functions
unless you want to change the register variables.

Keep in mind that the name of a variable declared with register translates
directly into a register reference (assuming a register is available for such use).
For instance, if you declare

register int sample;

and the variable sample happens to be stored in SI, then the _asm instruction
_asm mov ax, sample

is equivalent to

_asm mov ax, Si

If you declare a variable with register and the compiler cannot store the variable
in a register, the compiler issues a warning to that effect at compile time. The so-
lution is to remove the register declaration from that variable.

Register variables form a slight exception to the general rule that an assembly-
language statement can contain no more than one C symbol. If one of the sym-
bols is a register variable, for example,

register int vil;
int v2;

then an instruction can use two C symbols, as in
mov vl, v2

Finally, the presence of in-line assembly code inhibits the following optimiza-
tions for the entire function in which the code appears:

m Loop (/Ol)
mn Global register allocation (/Oe)

m Global optimizations and common subexpressions (/Og)

These optimizations are suppressed no matter which compiler options you use.

CHAPTER |

Controlling
Floating-Point
Math Operations

This chapter describes how to control the way your Microsoft C programs per-
form floating-point math operations. It describes the math packages that you
can include in C libraries when you run the SETUP program, then discusses
the options you can specify in the Programmer’s WorkBench (PWB) or on the
CL command line to choose the appropriate library for linking and controlling
floating-point instructions.

This chapter also explains how to override floating-point options by changing li-
braries at link time, and how to control use of the Intel math coprocessor (80x87)

using the NO87 environment variable.

4.1 Declaring Floating-Point Types

Microsoft C supports three floating-point types that conform to the Institute of
Electrical and Electronics Engineers (IEEE) standard 754 format:

1. Type float, a 32-bit floating-point quantity
2. Type double, a 64-bit floating-point quantity
3. Type long double, an 80-bit floating-point quantity

You can declare variables as any of these types. You can also declare functions
that return any of these types.

79

80 Advanced Programming Techniques

4.1.1 Declaring Variables as Floating-Point Types

You can declare variables as float, double, or long double, depending on the
needs of your application. The principal differences between the three types are
the significance they can represent, the storage they require, and their range.
Table 4.1 shows the relationship between significance and storage requirements.

Table 4.1 Floating-Point Types

Type Significant Digits Number of Bytes
float 6-7 4

double 15-16 8

long double 19 10

Floating-point variables are represented by a mantissa, which contains the value
of the number, and an exponent, which contains the order of magnitude of the
number.

Table 4.2 shows the number of bits allocated to the mantissa and the exponent
for each floating-point type. The most-significant bit of any float, double, or
long double is always the sign bit. If it is 1, the number is considered negative;
otherwise, it is considered a positive number.

Table 4.2 Lengths of Exponents and Mantissas

Type Exponent Length Mantissa Length
float 8 bits 23 bits
double 11 bits 52 bits
long double 15 bits 64 bits

Because exponents are stored in an unsigned form, the exponent is biased by half
its possible value. For type float, the bias is 127; for type double, it is 1,023; for
type long double, it is 16,383. You can compute the actual exponent value by
subtracting the bias value from the exponent value.

The mantissa is stored as a binary fraction greater than or equal to 1 and less than
2. For types float and double, there is an implied leading 1 in the mantissa in the
most-significant bit position, so the mantissas are actually 24 and 53 bits long,
respectively, even though the most-significant bit is never stored in memory.

Instead of the storage method just described, the floating-point package can store
binary floating-point numbers as denormalized numbers. Denormalized numbers

Controlling Floating-Point Math Operations 81

are nonzero floating-point numbers with reserved exponent values in which the
most-significant bit of the mantissa is zero. By using denormalized format, the
range of a floating-point number can be extended at the cost of precision. You
cannot control whether a floating-point number is represented in normalized or
denormalized form; the floating-point package determines the representation.
The floating-point packages never use denormalized form unless the exponent
becomes less than the minimum that can be represented in a normalized form.

Table 4.3 shows the minimum and maximum value you can store in variables of
each floating-point type. The values listed in this table apply only to normalized
floating-point numbers; denormalized floating-point numbers have a smaller min-
imum value. Note that numbers retained in 80x87 registers are always repre-
sented in 80-bit normal form; numbers can only be represented in denormal form
when stored in 32- or 64-bit floating-point variables (type float and type long).

Table 4.3 Range of Floating-Point Types

Type Minimum Value Maximum Value

float 1.175494351 E - 38 3.402823466 E + 38

double 2.2250738585072014 E - 308 1.7976931348623158 E + 308

long double 3.362103143112093503 E — 4932 1.189731495357231765 E + 4932
If precision is less of a concern than storage, consider using type float for
floating-point variables. Conversely, if precision is the most important criterion,
use type long double.

Microsoft € observes Floating-point variables can be promoted to a type of greater significance (for

type-widening rules.

example, from type float to type double). Promotion often occurs when you per-
form arithmetic on floating-point variables. This arithmetic is always done in as
high a degree of precision as the variable with the highest degree of precision.
For example, consider the following type declarations:

float f_short;
double f_long;
long double f_longer;

f_short = f_short * f_long;

In the preceding example, the variable f_short is promoted to type double
and multiplied by f_1o0ng; then the result is rounded to type float before being
assigned to f_short.

In the example below (which uses the declarations from the preceding example),
the arithmetic is done in float (32-bit) precision on the variables; the result is
then promoted to type long double.

f_longer = f_short * f_short;

82 Advanced Programming Techniques

4.1.2 Declaring Functions that Return Floating-Point Types

You can write re-entrant
functions that return
floating-point types.

You can declare functions that return the floating-point types float, double, and
long double. Functions that return types float or double do not place their return
values in registers; they place their return values in a global location called the
floating-point accumulator (_ _fac).

When declaring a function as a floating-point type in a multithreaded program
for OS/2, you should use the _pascal keyword to specify the FORTRAN/Pascal
calling convention. Declaring the function as _pascal causes the return value to
be placed on the stack, rather than in the floating-point accumulator, _ _fac.

Using the current thread’s private stack to return values allows you to write
re-entrant functions by eliminating possible contention between threads for the
floating-point accumulator.

NOTE Functions that return type long double always place their return values on the
stack. You need not use the _pascal keyword with functions declared as long double.

4.2 C Run-Time Library Support
of Type long double

All of the Microsoft C run-time libraries support type long double. Each of the
normal floating-point math functions has a special version that supports type
long double. These functions have the same name as the functions that support
type float and type double, except that they end with 1. For example, the function
that returns the absolute value of a variable of type float or type double is fabs.
The long double equivalent function is fabsl. The two exceptions to this rule are
the _atold and _strtodl functions.

4.3 Summary of Math Packages

The Microsoft C compiler offers a choice of the following three math packages
for handling floating-point operations:
1. Emulator (default)

2. Math coprocessor (a library that supports the Intel 80x87 family of math
COProcessors)

3. Alternate math

Controlling Floating-Point Math Operations 83

When you install Microsoft C, the SETUP program allows you to build com-
bined libraries. These libraries include the floating-point math library that you
choose. Any programs linked with that library use the math package included
in the library; you must use the appropriate PWB or CL option to make sure
that the library you want is used at link time.

The following descriptions of these math packages are designed to help you
choose the appropriate math option for your needs when you build a library using
SETUP. For more information about SETUP and about building combined librar-
ies, see Installing and Using the Microsoft C Professional Development System.

Note that this chapter does not describe mode-specific libraries. For simplicity,
the base names of libraries are noted in their default form; that is mLIBCf.LIB,
where m is the model designator and fis the floating-point math package desig-
nator. For information about mode-specific libraries, see Chapter 14, “Building
OS/2 Applications,” or Installing and Using the Microsoft C Professional
Development System.

4.3.1 Emulator Package

When you use the emulator
package, some floating-point
exceptions are masked.

Programs created using the emulator math package automatically detect and use
an 80x87 numeric coprocessor if one is installed. If no coprocessor is installed,
these 80x87 instructions are carried out in software. The emulator package is the
default math package; SETUP uses it it you do not explicitly choose another
package. Also, the emulator math option is the option selected by default by the
compiler if no other floating-point math option is specified.

Use the emulator math package to maximize accuracy on systems without math
coprocessors or if your program will be run on some systems with coprocessors
and some systems without coprocessors.

The emulator package performs basic operations to the same degree of accuracy
as a math coprocessor. However, the emulator routines used for transcendental
math functions (such as sin, cos, tan) differ slightly from the corresponding func-
tions performed on a coprocessor. This difference can cause a slight discrepancy
(usually within two bits) between the results of these operations when performed
with the software emulation instead of with a math coprocessor.

When you use a math coprocessor or the emulator floating-point math package,
interrupt-enable, precision, underflow, and denormalized-operand exceptions are
masked by default. The remaining floating-point exceptions are unmasked. See
the discussion of the _control87 function in on-line help for more information
about 80x87 floating-point exceptions.

84 Advanced Programming Techniques

4.3.2 Math Coprocessor Package

The math coprocessor package utilizes the 80x87 math coprocessor exclusively
for floating-point calculations. If you use the math coprocessor package, the ma-
chine on which your application is to run must have an 80x87 coprocessor to per-
form floating-point operations. This package gives you the fastest, smallest
programs possible for handling floating-point math.

4.3.3 Alternate Math Package

The alternate math package gives you the smallest and fastest programs possible
without a coprocessor. However, the program results are not as accurate as re-
sults given by the emulator package.

The alternate math package uses the same format as the IEEE standard-format
numbers with less precision and weaker error checking. The alternate math pack-
age does not support infinities, NANs (“not a number”), and denormal numbers.

You must always use the alternate math package when developing routines that
are to be placed in an OS/2 dynamic-link library (DLL) using LLIBCDLL.LIB.
Do not, however, use the alternate math package for building the C run-time
DLL using CDLLOBIJS.LIB; instead, use the emulator math package. For more
information about creating dynamic-link libraries for OS/2, see Chapter 16.

4.4 Selecting Floating-Point Options (/FP)

You can select a floating-point library and the method of accessing floating-
point routines by setting options in PWB or by specifying command-line options
to CL. You can choose between the emulator, alternate, or math coprocessor li-
brary. You can also access the floating-point routines by issuing a function call
(or calls) or by generating in-line 80x87 instructions to execute the floating-point
operation. The smallest and the fastest floating-point math option is the in-line
math coprocessor package because the compiler generates true 80x87 coproces-
sor instructions. If, however, you cannot depend on the target computer having a
coprocessor, you must use either the emulator or alternate math options.

To specify floating-point options on the CL. command line, you must specify an
option from the list in Table 4.4. You specify these options to CL starting with
the floating-point option string /FP.

Based on the floating-point option and the memory-model option you choose,
the compiler embeds a library name in the object file that it creates. This library
is then considered the default library; that is, the linker searches in the standard
places for a library with that name. If it finds a library with that name, the linker
uses the library to resolve external references in the object file being linked.
Otherwise, it displays a message indicating that it could not find the library.

Controlling Floating-Point Math Operations 85

This mechanism allows the linker to automatically link object files with the ap-
propriate library. However, you can link with a different library in some cases.

See Table 4.4 and Section 4.5, “Library Considerations for Floating-Point Op-

tions,” for more information about linking with different libraries.

Table 4.4 summarizes the floating-point options and their effects. These options
are described in detail in the following sections.

Table 4.4 Summary of Floating-Point Options
Option for CL Combined Use Libraries
for PWB of Method Effect Coprocessor Selected
/FPi In-line Default; larger Uses coprocessor mLIBCE.LIB?
In-Line than /FPi87, but if present
Emulation can work without
a COprocessor;
most efficient
way to get maxi-
mum precision
without a
coprocessor
/FPi87 In-line Smallest and Requires mLIBC7.LIB
In-Line Math fastest option coprocessor
Coprocessor available with a
COprocessor
[FPc Calls Slower than /FPi, Uses coprocessor mLIBCE.LIB*?
Calls to but allows use of if present
Emulator alternate math li-
brary at link time
[FPc87 Calls Slower than Requires co- mLIBC7.LIB>*
Calls to Math /FPi87, but al- processor unless
Coprocessor lows use of library changed
alternate math li- at link time53
brary at link time
/FPa Calls Fastest and Ignores mLIBCA.LIB**
Alternate Math smallest option coprocessor

available without
a COprocessor,
but sacrifices
some accuracy
for speed

1 Use of the coprocessor can be suppressed by setting NO87.
2 Can be linked explicitly with mLIBC7.LIB at link time.
3 Can be linked explicitly with mLIBCA.LIB at link time.
4 Can be linked explicitly with mLIBCE.LIB at link time.
5 Use of the coprocessor can be suppressed by setting NO87 if you change to the emulator library at link time.

86 Advanced Programming Techniques

You can specify floating-
point options in the
Programmer’s WorkBench.

Optimizations such as constant propagation and constant subexpression elimina-
tion can cause some expressions to be evaluated at compile time. Such evalua-
tions always use IEEE format and are unaffected by the floating-point option you
choose. For more information about optimizing, see Chapter 1, “Optimizing C
Programs.”

To specify floating-point options when using the Programmer’s WorkBench, you
must modify the C Global Build Options (available on the Options menu). In the
C Global Build Options dialog box, select one of the following floating-point
math options:

Option Effect

Emulation Calls Generates calls; makes emulator math library the
default (/FPc)

80x87 Calls Generates calls; makes math coprocessor library the
default (/FPc87)

Fast Alternate Math Generates calls; makes alternate math library the
default (/FPa)

Inline Emulation Generates in-line instructions; makes emulator math

library the default (/FPi); this is the default option

Inline 80x87 Generates in-line instructions; selects math coproces-
Instructions sor library (/FPi87)

4.4.1 In-Line Emulator Option (/FPi)

The in-line emulator option (/FPi) generates in-line instructions for an 80x87
coprocessor and places the name of the emulator library (mLIBCE.LIB) in
the object file. At link time, you can specify the math coprocessor library
(mLIBC7.LIB) instead. If you do not choose a floating-point option, the com-
piler uses the in-line emulator option by default.

The in-line emulator option is useful if you cannot be sure that an 80x87 co-
processor will be available on the target computer. Programs compiled using the
in-line emulator option work as described below:

m If a coprocessor is present at run time, the program uses the coprocessor.

= If no coprocessor is present, the program uses the emulator. In this case, the
in-line emulator option offers the most efficient way to get maximum preci-
sion in floating-point results.

Controlling Floating-Point Math Operations 87

When you use the in-line emulator option, the compiler does not generate in-line
80x87 instructions. For real-mode code, the compiler generates software inter-
rupts to library code, which then fixes up the interrupts to use either the emulator
or the coprocessor, depending on whether a coprocessor is present. For protected-
mode code, the compiler generates no such interrupts; it generates 80x87 instruc-
tions. If the target computer does not have a coprocessor, an “unsupported
extension” exception occurs, which is vectored to library code. If you want true
in-line 80x87 instructions, use the in-line math coprocessor option (/FPi87).

NOTE In an 0S/2 dynamic-link library built with LLIBCDLL.LIB, you cannot use code that
requires the emulator library. You must use the alternate math library instead.

4.4.2 In-Line Math Coprocessor Instructions Option (/FPi87)

The in-line math coprocessor instructions option (/FPi87) instructs the compiler
to place 80x87 coprocessor instructions in your code for many math operations.
It also causes the name of a math coprocessor library (mLIBC7.LIB) to be em-
bedded in the object file.

If you use the in-line math coprocessor instructions option and link with the
library mLLIBC7.LIB, an 80x87 coprocessor must be present at run time, or the
program fails and the following error message is displayed:

run-time error R60@2
- floating point not Toaded

Compiling with the in-line math coprocessor instructions option results in the
smallest, fastest programs possible for handling floating-point results.

4.4.3 Calls to Emulator Option (/FPc)

The calls to emulator option (/FPc) generates floating-point calls to the emulator
library and places the names of an emulator library (mLIBCE.LIB) in the object
file. At link time, you can specify a math coprocessor library (mLIBC7.LIB) or
an alternate math library (mLIBCA.LIB) instead. Thus, the calls to emulator
option gives you more flexibility in the libraries you can use for linking than the
in-line emulator option.

Using the calls to emulator option is also recommended in the following cases:

m If you compile modules that perform floating-point operations and plan to
include these modules in a library

m If you compile modules that you want to link with libraries other than the
libraries provided with Microsoft C

88 Advanced Programming Techniques

E—— —

You cannot link with an alternate math library if your program uses the intrinsic
forms of floating-point library routines (that is, if you have compiled the program
with the /Oi or /Ox option, selected the Generate Intrinsic Functions option from
the Debug Build Options or Release Build Options dialog box in the Program-
mer’s WorkBench, or specified math functions in an intrinsic pragma).

4.4.4 Calls to Math Coprocessor Option (/FPc87)

The calls to math coprocessor option (/FPc87) generates function calls to
routines in the math coprocessor library (mLIBC7.LIB) that issue the corre-
sponding 80x87 instructions. As with the in-line math coprocessor instructions
option (/FPi87), at link time you can choose to link with an emulator library
(mLIBCE.LIB). However, /FPc offers more flexibility in choosing libraries, since
you can change your mind and link with the appropriate alternate math library as
well (mLIBCA.LIB).

The disadvantages of using the calls to math coprocessor option as opposed to
the in-line coprocessor option are the following:

m Your executable size is larger because a call requires more instructions than a
true coprocessor instruction.

m Your program does not execute as fast because you must issue a function call
for each floating-point operation.

You cannot link with an alternate math library if your program uses the intrinsic
forms of floating-point library routines (that is, if you have compiled the program
with the /Oi or /Ox option, selected the Generate Intrinsic Functions option from
the Debug Build Options or Release Build Options dialog box in the Program-
mer’s WorkBench, or specified math functions in an intrinsic pragma).

You must have a math coprocessor installed to run programs compiled with the
/FPc option and linked with a math coprocessor library. Otherwise, the program
fails and the following error message is displayed:

run-time error R6002
- floating point not Toaded

NOTE Certain optimizations are not performed when you use the calls to math coproces-
sor option. This can reduce the efficiency of your code; also, since arithmetic of different pre-
cision can result, there may be slight differences in your results.

Controlling Floating-Point Math Operations 89

4.4.5 Use Alternate Math Option (/FPa)

The use alternate math option (/FPa) generates floating-point calls and selects the
alternate math library for the appropriate memory model (mLIBCA.LIB). Calls
to this library provide the fastest and smallest option for code intended to run on
a machine without an 80x87 coprocessor. With this option, you can choose an
emulator library (mLIBCE.LIB) or a math coprocessor library (mLIBC7.LIB) at
link time.

You cannot link with an alternate math library if your program uses the intrinsic
forms of floating-point library routines (that is, if you have compiled the program
with the /O1 or /Ox option, selected the Generate Intrinsic Functions from the
Debug Build Options or Release Build Options dialog box in the Programmer’s
WorkBench, or specified math functions in an intrinsic pragma).

4.5 Library Considerations
for Floating-Point Options

You may want to use libraries in addition to the default library for the floating-
point option you have chosen in your compile options. For example, you may
want to create your own libraries (or other collections of subprograms in object-
file form), then link these libraries at a later time with object files that you have
compiled using different options.

The following sections describe these cases and ways to handle them. Although
the discussion assumes that you are putting your object files into libraries, the
same considerations apply if you are simply using individual object files.

4.5.1 Using One Standard Library for Linking

You must use only one standard C run-time library when you link. You can con-
trol which library is used in one of two ways:

1. In the Programmer’s WorkBench, add the name of the C run-time library file
you want to the program list using the Edit Program List option from the
Make menu. You must also modify the Linker Options (from the Make
menu) by specifying No Default Library Search.

2. From the LINK command line, give the /NODEFAULTLIBRARYSEARCH
(/NOD) option and then specify the name of the combined library file you
want to use in the link-libinfo field of the CL command line. This overrides
the library names embedded in the object files.

90 Advanced Programming Techniques

4.5.2 In-Line Instructions or Calls

When deciding on a floating-point option, you should decide whether you want
to use in-line instructions. If you do, compile with the in-line math coprocessor
instructions (/FPi87) or in-line emulator (/FPi) option. Otherwise, compile for
floating-point function calls using the calls to math coprocessor (/FPc87), calls to
emulator (/FPc), or alternate math (/FPa) option.

If you choose to use in-line instructions for your precompiled object files, you
cannot link with an alternate math library (mLIBCA.LIB). However, in-line
instructions achieve the best performance from your programs on machines that
have an 80x87 coprocessor installed.

If you choose to use calls, your programs are slower, but at link time you can
switch to any standard C run-time library (that is, any library created by the
SETUP program) that supports the memory model you have chosen.

4.6 Compatibility between Floating-Point Options

Each time you compile a source file, you can specify a floating-point option.
When you link two or more source files to produce an executable program file,
you must ensure that floating-point operations are handled consistently and that
the environment is set up properly to allow the linker to find the required library.

If you are building libraries of C routines that contain floating-point operations,
the calls to emulator option (/FPc) provides the most flexibility.

The examples that follow illustrate how you can link your program with a library
other than the default. The floating-point option and the substitute library are
compatible.

The example below compiles the program CALC.C with the medium-model
option (/AM). Because no floating-point option is specified, the default in-line
emulator option (/FPi) is used. The in-line emulator option generates 80x87
instructions and specifies the emulator library MLIBCE.LIB in the object file.
The /LINK field specifies the /NODEFAULTLIBRARYSEARCH (/NOD) op-
tion and the names of the medium-model math coprocessor library. Specifying
the math coprocessor library forces the program to use an 80x87 coprocessor; the
program fails if a coprocessor is not present.

CL /AM CALC.C /Tink MLIBC7 /NOD

Controlling Floating-Point Math Operations 91

The example below compiles CALC.C using the small (default) memory model
and the alternate math option (/FPa). The /LINK field specifies the /NOD option
and the library SLIBCE.LIB. Specifying the emulator library causes all floating-
point calls to refer to the emulator library instead of the alternate math library.

CL /FPa CALC.C /link SLIBCE /NOD

The example below compiles CALC.C with the calls to math coprocessor
option (/FPc87), which places the library name SLIBC7.LIB in the object file.
The /LINK field overrides this default-library specification by giving the /NOD
option and the name of the small-model alternate math library (SLIBCA.LIB).

CL /FPc87 CALC.C /1ink SLIBCA.LIB/NOD

4.7 Using the NO87 Environment Variable

Use the NO87 environment
variable to suppress

use of the 80x87 coprocessor
at run time.

Programs compiled using either the calls to emulator (/FPc) or the in-line emula-
tor (/FPi) option automatically use an 80x87 coprocessor at run time if one is in-
stalled. You can override this and force the use of the software emulator by
setting an environment variable named NOS&7.

If NO87 is set to any value when the program is executed, use of the coprocessor
is suppressed. The value of the NO87 setting is printed on the standard output

as a message. The message is printed only if a coprocessor is present and sup-
pressed; if no coprocessor is present, no message appears. If you don’t want a
message to be printed, set NO87 equal to one or more spaces. A blank string for
NO87 causes a blank line to be printed.

Note that only the presence or absence of the NO87 definition is important in
suppressing use of the coprocessor. The actual value of the NO87 setting is used
only for printing the message.

The NOS87 variable takes effect with any program linked with an emulator
library (mLIBCE.LIB). It has no effect on programs linked with math copro-
cessor libraries (mLIBC7.LIB) or programs linked with alternate math libraries
(mLIBCA.LIB).

When a program that uses an emulator library is executed and an 80x87 coproces-
sor is present, the example below causes the message Use of coprocessor
suppressed to appear.

SET N087=Use of coprocessor suppressed

The syntax below sets the NO87 variable to the space character. Use of the co-
processor is still suppressed, but no message is displayed.

SET NO87=space

92 Advanced Programming Technigues

4.8 Incompatibility Issues

The exception handler in the libraries for 80x87 floating-point calculations
(mLIBCE.LIB and mLIBC7.LIB) is designed to work without modification on
the IBM PC family of computers and on closely compatible computers, including
the WANGe PC, the AT&Te 6300, and the Olivetti® personal computers. Also,
the libraries need not be modified for the Texas Instruments® Professional Com-
puter, even though it is not compatible. Any machine that uses nonmaskable in-
terrupts (NMI) for 80x87 exceptions will run with the unmodified libraries. If
your computer is not one of these, and if you are not sure whether it is com-
pletely compatible, you may need to modify the math coprocessor libraries.

All Microsoft languages that support 80x87 coprocessors intercept 80x87 excep-
tions in order to produce accurate results and properly detect error conditions. To
make the libraries work correctly on incompatible machines, you can modify the
libraries. To make this easier, an assembly-language source file, EMOEM.ASM,
is included on the C 6.0 distribution disk. Any machine that sends the 80x87 ex-
ception to an 8259 Priority Interrupt Controller (master or master/slave) can be
supported by a simple table change to the EMOEM.ASM module. The source
file contains further instructions about how to modify EMOEM.ASM, patch li-
braries, and executable files.

ing
vity

ti

WWUJUMUMWNP
-

A
D
S
=
=
S
f
Q

Produc

S
S

| A«, 1 %ﬁ
W
LA

AW
LT
ﬁ%&@

A
W
R
i
B
i
[

Improving Programmer
Productivity

The Microsoft C Professional Development System helps you
write and debug software rapidly.

Chapter 5 describes the quick compile and incremental compile
options, both of which can save you time when compiling pro-
grams. Chapter 5 also describes the incremental linker, ILINK,
which can save you time when you link your application. Chap-
ter 6 describes NMAKE, a powerful new program maintenance
utility that automates your program build process. Chapter 7 de-
scribes how to build help files with HELPMAKE, the help-file
maintenance utility. When you need to share documentation in a
readily accessible form, you can add it to the Microsoft Advisor
on-line help system using the information in Chapter 7. Chapter
8 explains how to customize the Programmer’s WorkBench to
make it a personalized development platform. Chapter 9 offers
procedures (and some tips) for using the CodeView debugger to
find errors in your programs.

CHAPTER |

Compiling and
Linking Quickly

The fundamental processes of compiling and linking take time to perform. The
larger your application grows, the longer it takes to compile and link.

This chapter describes how you can speed up compiling by using the quick com-
piler and incremental compile option, and how you can speed up linking by using
ILINK, the Incremental Linker.

5.1 Compiling Quickly

This section describes two ways to speed up the compiling process: using the
quick compiler and using the incremental compile option.

5.1.1 Quick Gompiler

The Microsoft C Professional Development System includes two separate C com-
pilers: the full compiler and the quick compiler. If you don’t specify otherwise,
your program is compiled by the full compiler.

You access the quick compiler by specifying the /qc command-line option for CL
or by selecting the Quick Compile option from the C Release Build or C Debug
Build Options dialogs in the PWB Options menu.

The quick compiler cannot perform as many optimizations as the full compiler,
but it is much faster. You can use it to save time during development, whenever
optimizations are not critical. When your application is finished, you can compile
with the full compiler, using all the desired optimizations.

On-line help for the /qc option describes which optimizations the quick compiler
can perform.

97

98 Advanced Programming Techniques

5.1.2 Incremental Compile Option

You can speed up compiling even more by compiling incrementally. Incremental
compilation means that the compiler compiles only those functions that have
changed since you last compiled.

The incremental compile option is available only with the quick compiler (see
the previous section). You can access it from within PWB or from the DOS com-
mand line. Within PWB, select the Incremental Compile option in the C Release
Build dialog box or in the C Debug Build Options dialog box. From the DOS
command line, specify the /Gi option for CL.

The incremental compile option automatically triggers another time-saving fea-
ture: the Incremental Linker, which is described in the next section.

8.2 Linking Quickly with ILINK

ILINK links only those
modules that have changed
since the last link.

You must link once with LINK
to prepare for incremental
linking.

The Incremental Linker (ILINK) offers the same advantage in linking that the in-
cremental compile option offers in compiling. Rather than link every module in
an application, as LINK does, ILINK links only those modules that have changed
since the last link. The more modules your application contains, the more time
ILINK can potentially save.

In a normal development scenario, you use LINK at the beginning and end of the
process, and use ILINK in the middle. In the early stages of development, when
your application contains only a few modules, ILINK offers no speed advantage
over LINK. Once your application contains several modules, you can save time
by using ILINK.

To prepare for incremental linking, you must run LINK using INCREMENTAL,
as described in Section 5.2.1. At the same time, you have the option of adding
padding bytes to code or data segments by specifying the /PADCODE and
/PADDATA options. Padding allows ILINK to expand a segment without relink-
ing the entire module in which it is contained.

Now you can link with ILINK during the rest of development. If changes in your
code require a full link, ILINK invokes LINK automatically. When the applica-
tion is finished, you link a last time with LINK to produce the final executable
file.

You can use ILINK with programs compiled for any memory model except tiny
model. (Memory models are described in Chapter 2, “Managing Memory.”) Typi-
cally, ILINK is not efficient for small- or compact-model programs unless they
were compiled with the incremental compile option, which is described in
Section 5.1.2.

Compiling and Linking Quickly 99

5.2.1 Preparing for Incremental Linking

There are three LINK options that relate to the use of ILINK. One of them
(/INCREMENTAL) is mandatory; the other two (/PADCODE and /PADDATA)
are optional. This section explains the LINK options that prepare for ILINK. See
on-line help for a complete list of LINK options.

The /INCREMENTAL Option

The /INCREMENTAL (/INC) option prepares an object file for incremental link-
ing. You must always run LINK using this option before using ILINK. When you
specify /INC, the linker produces two extra files: a symbol file (SYM) and an
ILINK support file (.ILK). The .SYM and .ILK files tell ILINK which parts of
the executable file need to be updated.

You must use /INCREMENTAL whenever you use the /PADCODE and
/PADDATA options, which are described below.

The /PADCODE Option

The /PADCODE option causes LINK to add padding bytes at the end of a mod-
ule’s code segment. The padding bytes leave room for the code segment to grow
in subsequent links, allowing ILINK to update only that module. You can use the
/PADCODE option only when /INC is also specified.

Code padding is usually necessary for programs using the small memory model.
It is also recommended for compact- or mixed-model programs. You do not need
to specify /PADCODE for other memory models (medium, large, or huge).

If you don’t specify /PADCODE, LINK doesn’t pad the code segment at all. To
add padding, specify the desired number of bytes. The optimum amount of pad-
ding depends on how much your code changes from one link to the next. If you
expect to add only a little code, choose a relatively small amount of padding, say
32 to 64 bytes. If ILINK issues the message

padding exceeded

and performs a full link more often than desired, increase the padding by a small
amount, say 32 bytes. In any case, remember that the total size of a code seg-
ment, including padding bytes, cannot exceed 64K (65,535) bytes.

The /PADDATA Option

Like /PADCODE, the /PADDATA option causes LINK to add padding bytes
that leave room for the segment to grow in subsequent links. However, the
/PADDATA option pads the end of the data segment rather than the code seg-
ment. You can use /PADDATA only when /INC is also specified.

100 Advanced Programming Techniques

If you don’t specify /PADDATA, LINK adds 16 bytes of padding by default.
The default padding amount should suffice in many cases, since public variables
are added less frequently than code. If you need more padding, specify the de-
sired number of bytes. Remember that the total size of a data segment, including
padding bytes, cannot exceed 64K (65,535) bytes.

5.2.2 Incremental Violations

ILINK can generate two kinds of errors: real errors and incremental violations.
Real errors are errors such as undefined symbols that cannot be resolved by a full
link. If ILINK detects a real error, it displays an error message (real errors are
documented in on-line help).

Incremental violations are caused by code changes you have made that go be-
yond the scope of incremental linking. When an incremental violation occurs,
ILINK invokes LINK automatically. The following sections describe the in-
cremental violations.

Changing Libraries

An incremental violation occurs when a library changes. Furthermore, if an al-
tered module shares a code segment with a library, ILINK needs access to the li-
brary as well as to the altered module.

If you add a function, procedure, or subroutine call to a library that has never
been called before, ILINK invokes LINK automatically.

Exceeding Code/Data Padding

An incremental violation occurs if two or more modules contribute to the same
physical segment and either module exceeds its padding. The padding allows
the module to increase the specified number of bytes before another full link is
required.

Moving or Deleting Data Symbols

An incremental violation occurs if a data symbol is moved or deleted. To add
new data symbols without requiring a full link, add the new symbols at the end of
all other data symbols in the module.

Deleting Code Symbols

You can move or add code symbols, but an incremental violation occurs if you
delete any code symbols from a module. Code symbols can be moved within a
module but cannot be moved between modules.

Compiling and Linking Quickly 101

Changing Segment Definitions

An incremental violation results if you add, delete, or change the order of seg-
ment definitions.

Adding CodeView- Debugger Information

If you include CodeView debugger information for a module when you fully link
(by compiling and linking with CodeView debugger support), ILINK supports
CodeView debugger information for the module. ILINK maintains symbolic in-
formation for current symbols, and it adds information for any new symbols.
However, if you try to add CodeView debugger information for a module that
did not previously have CodeView debugger support, an incremental violation
occurs. See Chapter 9, “Debugging C Programs with CodeView,” for more infor-
mation about CodeView.

CHAPTER

Managing Development
Projects with NMIAKE

The Microsoft Program-Maintenance Utility (NMAKE) is a sophisticated com-
mand processor that can save time and simplify project management. By deter-
mining which project files depend on others, NMAKE can automatically execute
the commands needed to update your project when any project file has changed.

The advantage of using NMAKE over simple batch files is that NMAKE does
only what is needed. You don’t waste time rebuilding files that are already
up-to-date. NMAKE also has advanced features, such as macros, that help you
manage complex projects.

This chapter provides complete documentation for NMAKE. Information about
NMAKE is also available in on-line help. If you are familiar with MAKE, the
predecessor of NMAKE, be sure to read Section 6.9, “Differences Between
NMAKE and MAKE.” There are some important differences between the two
utilities.

6.1 Overview of NMAKE

NMAKE works by comparing the times and dates of two sets of files, which are
called “targets” and “dependents.” A target is normally a file that you want to cre-
ate, such as an executable file. A dependent is a file used to create a target, such
as a C source file.

When you run NMAKE, it reads a “description file” that you supply. The descrip-
tion file consists of one or more blocks. Each block typically lists a target, the
target’s dependents, and the command that builds the target. NMAKE compares
the date and time of the target to those of its dependents. If any dependent has
changed more recently than the target, NMAKE updates the target by executing
the command listed in the block.

103

104 Advanced Programming Techniques

NMAKE'’s main purpose is to help you update applications quickly and simply.
However, it can execute any command, so it is not limited to compiling and link-
ing. NMAKE can also make backups, move files, and do many other project man-
agement tasks.

6.2 The NMAKE Command

When you run NMAKE, you can supply the description-file name and other argu-
ments using the following syntax:

NMAKCE [[options] [macros] [targets]] [descriptfile]]

All of the command-line fields are optional. If you don’t supply any arguments,
NMAKE looks for a default description file named MAKEFILE and follows
various other defaults that are described in this chapter.

The options field lists NMAKE options, which are described in Section 6.4,
“Command-Line Options.”

The macros field lists macro definitions, which allow you to replace text in the
description file. Macros are described in Section 6.3.3.

The targets field lists targets to build. If you do not list any targets, NMAKE
builds only the first target in the description file. (This is a significant departure
from the behavior of MAKE, NMAKE’s predecessor. See Section 6.9, “Differ-
ences between NMAKE and MAKE.”)

The descriptfile field specifies a description file. If this field is absent, NMAKE
automatically looks for a file named MAKEFILE in the current directory. You
can also specify the description file with the /F option (for information, see
Section 6.4, “Command-Line Options”).

Below is a typical NMAKE command:

NMAKE /S "program = sample" sort.exe search.exe

Managing Development Projects with NMAKE 105

The command supplies four arguments: an option (/S), a macro definition
("program = sample"), and two target specifications (sort.exe
search.exe).

Because the command does not specify a description file, NMAKE looks for the
default description file, MAKEFILE. The /S option tells NMAKE to suppress
the display of commands as they are executed. The macro definition performs a
text substitution throughout the description file, replacing every instance of
program with sample. The target specifications tell NMAKE to update the
targets SORT.EXE and SEARCH.EXE.

6.3 NMAKE Description Files

You must always supply NMAKE with a description file. In addition to descrip-
tion blocks, which tell NMAKE how to build your project’s target files, the de-
scription file can contain comments, macros, inference rules, and directives. This
section describes all the elements of description files.

6.3.1 Description Blocks

A target is a file that
you want to build.

Description blocks form the heart of the description file. Figure 6.1 illustrates a
typical NMAKE description block, including the three parts: targets, dependents,
and commands.

Target Dependents
| l
myapp.exe : myapp.obj another.obj myapp.def
link myapp another, /align:16, NUL, o0s2, myapp

Command

Figure 6.1 Typical Description Block

The targets part of the description block lists one or more files to build. The line
that lists targets and dependents is called the “dependency line.”

106 Advanced Programming Techniques

A dependent is a file
used to build a target.

The example in Figure 6.1 tells NMAKE to build a single target, MYAPP.EXE.
Although single targets are common, you can also list multiple targets; separate
each target name with a space. If the rightmost target name is one character long,
put a space between the name and the colon.

The target is normally a file, but it can also be a “pseudotarget,” a name that al-
lows you to build groups of files or execute a group of commands. See Section
6.3.6, “Pseudotargets.”

The dependents part of the description block lists one or more files from which
the target is built. It is separated from the targets part by a colon. The example in
Figure 6.1 lists three dependents:

myapp.exe : myapp.obj another.obj myapp.def

The example tells NMAKE to build the target MY APP.EXE whenever
MYAPP.OBJ, ANOTHER.OBJ, or MYAPP.DEF has changed more recently
than MYAPP.EXE.

If any dependents of a target are listed as targets in other description blocks,

then NMAKE builds those files before it builds the original target. Essentially
NMAKE evaluates a “dependency tree” for the entire description file. It builds
files in the order needed to update the original target, never building a target until
all files that depend on it are up-to-date.

The dependent list can also include a list of directories in which NMAKE should
search for dependents. The directory list is enclosed in curly braces ({}) and
precedes the dependent list. NMAKE searches the current directory first, then the
directories you list:

forward.exe : {\src\alpha;d:\proj}pass.obj

In the line above, the target, FORWARD.EXE, has one dependent: PASS.OBJ.
The directory list specifies two directories:

{\src\alpha;d:\proj}

NMAKE begins searching for PASS.OBJ in the current directory. If it is not
found, NMAKE searches the \ SRC\ ALPHA directory, then the D\ PROJ
directory. If NMAKE cannot find a dependent in the current directory or a listed
directory, it looks for an inference rule that describes how to create the dependent
(see Section 6.3.4, “Inference Rules”).

Managing Development Projects with NMAKE 107

The commands part of a
description block can contain
one or more commands.

The commands part of the description block lists the command(s) NMAKE
should use to build the target. This can be any command that you can execute
from the command line. The example tells NMAKE to build MYAPP.EXE using
the following LINK command:

LINK myapp another.obj, /align:16, NUL, o0s2, myapp

Notice that the line above is indented. NMAKE uses indentation to distinguish
between the dependency line and command line. If the command appears on a
separate line, as here, it must be indented at least one space or tab. The depen-
dency line must not be indented (it cannot start with a space or tab).

Many targets are built with a single command, but you can place more than one
command after the dependency line. A long command can span several lines if
each line ends with a backslash (\).

You can also place the command at the end of the dependency line. Separate the
command from the rightmost dependent with a semicolon.

In OS/2 description files, NMAKE imposes a slight restriction on the use of the
CD, CHDIR, and SET commands. Do not place any of these commands on a
command line that uses the ampersand (&) to execute multiple commands. For
instance, the following command line is legal in an OS/2 description file,

DIR & COPY sample.c backup.c

but this line is not legal because it places a CD command after the ampersand:

DIR & CD \mydir

To use CD, CHDIR, or SET in a description block, place the command on a
separate line:

DIR
CD \mydir

Your OS/2 user’s documentation contains more information about using the
ampersand in command lines.

Wild Cards

You can use DOS wild-card characters (* and ?) to specify target and dependent
file names. NMAKE expands wild cards in target names when it reads the de-
scription file. It expands wild cards in the dependent names when it builds the tar-
get. For example, the following description block compiles all source files with
the .C extension:

bondo.exe : *.c
CL *.c

108 Advanced Programming Techniques

Command Modifiers

Command modifiers provide extra control over the command listed in a descrip-
tion block. They are special characters that appear in front of a command. You
can use more than one modifier for a single command. Table 6.1 describes the
three NMAKE command modifiers.

Table 6.1 Command Modifiers

Character Action

At sign (@) Prevents NMAKE from displaying the command as it
executes. In the example below, NMAKE does not dis-
play the ECHO command line:

sort.exe : sort.obj
@ECHO sorting

The output of the ECHO command appears as usual.

Dash (-) Turns off error checking for the command. If the dash is
followed by a number, NMAKE stops only if the error
level returned by the command is greater than the num-
ber. In the following example, if the program sample
returned an error code NMAKE does not stop but con-
tinues to execute commands:

light.1st : Tight.txt
-sample light.txt

Exclamation point (!) Executes the command for each dependent file if the
command uses the predefined macros $? or $**. The $?
macro refers to all dependent files that are out-of-date
with respect to the target. The $** macro refers to all de-
pendent files in the description block (see Section 6.3.3,
“Macros”). For example,

print:hop.asm skip.bas jump.c
Iprint $** 1ptl:

generates the following commands:

print hop.asm Iptl:

print skip.bas 1Iptl:
print jump.c Tptl:

Using Control Characters as Literals

Occasionally, you may need to list a file name that contains a character that
NMAKE uses as a control character. These characters are

#OSMN{ @~

Managing Development Projects with NMIAKE 109

To use an NMAKE control character as a literal character, place a caret () in
front of it. For example, say that you define a macro that ends with a backslash:

exepath=c:\bin\

The line above is intended to define a macro named exepath with the value
c:\bin\. But the second backslash causes unexpected results. Since the back-
slash is the NMAKE line-continuation character, the line actually defines the
macro exepath as c:\bin followed by whatever appears on the next line
of the description file. You can solve the problem by placing a caret in front of
the second backslash:

exepath=c:\bin"\

You can also use a caret to place a literal newline character in a description file.
This feature can be useful in macro definitions:

XYZ=abc”
def

NMAKE interprets the example as if you assigned the C-style string abc\ndef
to the XYZ macro. This effect differs from using the backslash (\s) to continue
a line. A newline character that follows a backslash is replaced with a space.

Carets that precede noncontrol characters are ignored. The line
ign“ore : these ca”rets

is interpreted as

ignore : these carets

A caret that appears in quotation marks is treated as a literal caret character.

Listing a Target in Multiple Description Blocks

You can specify more than one description block for the same target by placing
two colons (::) after the target. This feature can be useful for building a complex
target, such as a library, that contains components created with different com-
mands. For example,

target.lib :: a.asm b.asm c.asm

CL a.asm b.asm c.asm

LIB target -+a.obj -+b.obj -+c.obj;
target.1ib :: d.c e.c

CL /c d.c e.c

LIB target -+d.obj -+e.obj;

Both description blocks update the library named TARGET.LIB. If any of the
assembly-language files have changed more recently than the library, NMAKE
executes the commands in the first block to assemble the source files and update

110 Advanced Programming Techniques

6.3.2 Comments

6.3.3 Macros

Macros allow you to do
text replacements throughout
the description file.

the library. Similarly, if any of the C-language files have changed, NMAKE
executes the second group of commands, which compile the C files and update
the library.

If you use a single colon in the example above, NMAKE issues an error message.
It is legal, however, to use single colons if commands are listed in only one
block. In this case, dependency lines are cumulative. For example,

target: jump.bas
target: up.c
echo Building target...

is equivalent to

target: jump.bas up.c
echo Building target...

You can place comments in a description file by preceding them with a number
sign (#):

This comment appears on its own line
huey.exe : huey.obj dewey.obj # Comment on the same line
link huey.obj dewey.obj;

A comment extends to the end of the line in which it appears. Command lines
cannot contain comments.

Macros offer a convenient way to replace a string in the description file with
another string. The text is automatically replaced each time you run NMAKE.
Macros are useful in a variety of tasks, including the following:

m To create a standard description file for several projects. The macro repre-
sents the file names used in commands. These file names are then defined
when you run NMAKE. When you switch to a different project, you can
change file names throughout the description file by changing a single macro.

= To control the options that NMAKE passes to the compiler or linker. When
you specify options in a macro, you can change options throughout the de-
scription file in one easy step.

You can define your own macros or use predefined macros. This section begins
by describing user-defined macros.

Managing Development Projects with NMAKE 111

User-Defined Macros

You can define a macro with

macroname = string

The macroname can be any combination of letters, digits, and the underscore
(_) character. Macro names are case sensitive. NMAKE interprets MyMacro
and MYMACRO as different macro names.

The string can be any string, including a null string. For example,

command = LINK

defines a macro named command and assigns it the string LINK.

You can define macros in the description file or on the command line. In the de-
scription file, you must define each macro on a separate line; the line cannot start
with a space or tab. The string can contain embedded spaces, and NMAKE ig-
nores spaces on either side of the equal sign. You do not need to enclose string in
quotation marks (if you do, they become part of the string).

Slightly different rules apply when you define a macro on the command line, be-
cause of the way that the command line handles spaces. You must enclose string
in quotation marks if it contains embedded spaces. No spaces can surround the
equal sign. You can also enclose the entire macro definition, macroname and
string, in quotation marks. For example,

NMAKE "program=sample"
defines the macro program, assigning it the value sample.

Once you have defined a macro, you can “undefine” it with the 'lUNDEF direc-
tive (see Section 6.3.5, “Directives”).

Invoking Macros

You invoke a macro by enclosing its name in parentheses preceded by a dollar
sign ($). (The parentheses are optional if macroname is one character long.) For
example, you can invoke the command macro defined above as

$(command)

When NMAKE runs, it replaces every occurrence of $(command) with
LINK. The following description file defines and uses three macros:

program = sample
¢ = LINK
options =

$(program).exe : $(program).obj
$c $(options) $(program).obj;

112 Advanced Programming Technigues

NMAKE interprets the description block as

sample.exe : sample.obj
LINK sample.obj;

NMAKE replaces every occurrence of $(program) with sample, every
instance of $c¢ with LINK, and every instance of $(options) withanull
string. Because c is only one character long, you do not need to enclose it in
parentheses.

If you invoke a macro that is not defined, NMAKE treats the macro as a null
string.

Occasionally, you may need to use the dollar sign ($) as a literal character. Use
two signs ($$), or precede it with a caret (*$).

Predefined Macros

NMAKE provides several predefined macros, which represent various file names
and commands. Predefined macros are useful in their own right, and they are also
employed in predefined inference rules, which are described later in this chapter.
Table 6.2 lists NMAKE predefined macros.

Table 6.2 Predefined Macros

Macro Meaning

S@ The current target’s full name.

$* The current target’s base name (full name minus the file
extension).

$ax The dependents of the current target.

$? The dependents that are out-of-date with respect to the cur-
rent target.

$$@ The target that NMAKE is currently evaluating. You can
only use this macro to specify a dependent.

$< The dependent file that is out-of-date with respect to the
current target (evaluated only for inference rules).

$(CO) The command to invoke the C compiler. By default, $(CC)
is predefined as CC = c1, which invokes the optimizing
compiler.

$(AS) The command that invokes the Microsoft Macro Assem-

bler. NMAKE predefines this macro as AS = masm.

Managing Development Projects with NMAKE 113

Table 6.2 (continued)

Macro

Meaning

$(MAKE)

$(MAKEFLAGS)

$(MAKEDIR)

The name with which the NMAKE utility is invoked. This
macro is used to invoke NMAKE recursively. It causes the
line on which it appears to be executed even if the /N op-
tion is on. You can redefine this macro if you want to
execute another program.

The $(MAKE) macro is useful for building different ver-
sions of a program. The following description file invokes
NMAKE recursively to build targets in the VERS1 and
VERS?2 directories.

all :versl vers?

vers|
cdvers]
$ (MAKE)
cd ..

vers? :

cdvers?
$ (MAKE)
cd . .

The example changes to the VERS]1 directory, then in-
vokes NMAKE recursively, causing NMAKE to process
the file MAKEFILE in that directory. Then it changes to
the VERS2 directory and invokes NMAKE again, pro-
cessing the file MAKEFILE in that directory.

Deeply recursive build procedures can exhaust NMAKE’s
run-time stack, causing a run-time error. To eliminate the
error, use the EXEHDR utility to increase NMAKE'’s run-
time stack. The following command, for example, gives
NMAKE.EXE a stack size of 16,384 (0x4000) bytes:

exehdr /stack:@x400@0 nmake.exe

The NMAKE options currently in effect. If you invoke
NMAKE recursively, you should use the command:
$(MAKE) $(MAKEFLAGS). You cannot redefine this
macro.

The directory from which NMAKE is invoked.

Like user-defined macro names, predefined macro names are case sensitive.
NMAKE interprets CC and cc as different macro names.

114 Advanced Programming Techniques

Macro modifiers allow
you to specify parts

of predefined macros
representing file names.

You can append characters to any of the first six macros in Table 6.2 to modify
its meaning. Appending a D specifies the directory part of the file name only, an
F specifies the file name, a B specifies just the base name, and an R specifies the
complete file name without the extension. If you add one of these characters, you
must enclose the macro name in parentheses. (The predefined macros $$@ and
$** are the only exceptions to the rule that macro names more than one character
long must be enclosed in parentheses.)

For example, assume that $@ has the value C:\ SOURCE\ PROG \ SORT.OBJ.
The list below shows the effect of combining the special characters with $@:

Macro Value

$(@D) CA\SOURCE\PROG

$(@F) SORT.OBJ

$(@B) SORT

$(@R) CASOURCENPROG\ SORT

For example, in the code below, the macro $? represents the names of all depen-
dents that are more recent than the target. The exclamation point causes NMAKE
to execute the LIB command once for each dependent in the list. As a result, the
LIB command is executed up to three times, each time replacing a module with a
newer version.

trig.1ib : sin.obj cos.obj arctan.obj
ILIB trig.lib -+§7;

In the following example, NMAKE updates a group of include files:

Include files depend on versions in current directory
DIR=c:\include
$(DIR)\globals.h : globals.h
COPY globals.h $@
$(DIR)\types.h : types.h
COPY types.h $@
$(DIR)\macros.h : macros.h
COPY macros.h $@

Each of the files GLOBALS.H, TYPES.H, and MACROS.H in the directory
CA\INCLUDE depends on its counterpart in the current directory. If one of the
include files is out-of-date, NMAKE replaces it with the file of the same name
from the current directory.

Managing Development Projects with NMAKE 115

You can replace text in a
macro, as well as in the
description file.

Substitution within Macros

Just as macros allow you to substitute text in a description file, you can also sub-
stitute text within a macro itself. Use the following form:

$(macroname:stringl = string2)

Every occurrence of stringl is replaced by string2 in the macro macroname. Do
not put any spaces or tabs between macroname and the colon. Spaces between
the colon and stringl are made part of stringl. If string2 is a null string, all occur-
rences of stringl are deleted from the macroname macro.

The following description file illustrates macro substitution:

SRCS = prog.c subl.c sub2.c
prog.exe : $(SRCS:.c=.0bj)
LINK $**;

DUP : $(SRCS)
ICOPY $** c:\backup

The predefined macro $** stands for the names of all the dependent files (see the
previous section). If you invoke the example file with a command line that speci-
fies both targets, NMAKE executes the following commands:

LINK prog.obj subl.obj sub2.obj;

COPY prog.c c:\backup
COPY subl.c c:\backup
COPY sub2.c c:\backup

The macro substitution does not alter the definition of the SRCS macro, rather,
it simply replaces the listed characters. When NMAKE builds the target
PROG.EXE, it gets the definition for the predefined macro $** (the dependent
list) from the dependency line, which specifies the macro substitution in SRCS.
The same is true for the second target, DUP. In this case, however, no macro sub-
stitution is requested, so SRCS retains its original value, and $** represents the
names of the C source files. (In the example above, the target DUP is a pseudo-
target; Section 6.3.6 describes pseudotargets.)

You can also perform substitution in the following predefined macros: $@, $*,
$#* $?, and $<. The principle is the same as for other macros. The command in
the following description block substitutes within a predefined macro:

target.abc : depend.xyz
echo $(@:targ=blank)

116 Advanced Programming Techniques

Inherited macros take
their definitions from
environment variables.

If dependent depend.xyz is out-of-date relative to target target.abc,
then NMAKE executes the command

echo blanket.abc

The example uses the predefined macro $@, which equals the full name of the
current target (target.abc). It substitutes blank for targ in the target,
resulting in blanket.abc. Note that you do not put the usual dollar sign in
front of the predefined macro. The example uses

$(@:targ=blank)

instead of
$($@:targ=blank)

to substitute within the predefined macro $@.

Inherited Macros

When NMAKE executes, it creates macros equivalent to every current environ-
ment variable. These are called “inherited” macros because they have the same
names and values as the corresponding environment variables. (The inherited
macro is all uppercase, however, even if the corresponding environment variable
is not.)

Inherited macros can be used like other macros. You can also redefine them. The
following example redefines the inherited macro PATH:

PATH = c:\tools\bin

sample.obj : sample.c
CL /c sample.c

No matter what value PATH had in the DOS environment, it has the value
c:\tools\bin when NMAKE executes the CL command in this description
block. Redefining the inherited macro does not affect the original environment
variable; when NMAKE terminates, PATH has its original value.

The /E option defeats macro inheritance. If you supply this option, NMAKE ig-
nores any attempt to redefine a macro that derives from an environment variable.

Managing Development Projects with NMAKE 117

Precedence among Macro Definitions

If you define the same macro in more than one place, NMAKE uses the macro
with the highest precedence. The precedence from highest to lowest is as follows:

1. Macros defined on the command line

2. Macros defined in a description file or include file

3. Inherited macros

4. Macros defined in the TOOLS.INI file

5. Predefined macros such as CC and AS

The /E option defeats any attempt to redefine inherited macros. If you run

NMAKE with this option, macros inherited from environment variables over-
ride any same-named macros in the description file.

6.3.4 Inference Rules

Inference rules tell
NMAKE how to create files
with a certain extension.

Inference rules are templates that NMAKE uses to create files with a given exten-
sion. For instance, when NMAKE encounters a description block with no com-
mands, it tries to apply an inference rule that tells how to create the target from
the dependent files, given the two extensions. Similarly, if a dependent file does
not exist, NMAKE tries to apply an inference rule that tells how to create the
missing dependent from another file with the same base name.

Inference rules provide a convenient shorthand for common operations. For in-
stance, you can use an inference rule to avoid repeating the same command in
several description blocks.

You can define your own inference rules or use predefined inference rules. This
section begins by describing user-defined inference rules.

User-Defined Inference Rules

You can define inference rules in the description file or in the TOOLS.INI file.
An inference-rule definition lists two file extensions and one or more commands.
For instance, the following inference rule tells NMAKE how to build a .OBJ file
using a .C file:

.C.0BJ:
CL /c $<;

The first line lists two extensions. The second extension (.OBJ) specifies the type
of the desired file and the first (.C) specifies the type of the desired file’s depen-
dent. The second line lists the command used to build the desired file. Here, the
predefined macro $< represents the name of a dependent that is out-of-date rela-
tive to the target.

118 Advanced Programming Techniques

NMAKE could apply the above inference rule to the following description block:
sample.obj :

The description block lists only a target, SAMPLE.OBJ. Both the dependent and
the command are missing. However, given the target’s base name and extension,
plus the above inference rule, NMAKE has enough information to build the tar-
get. NMAKE first looks for a .C file with the same base name as the target. If
SAMPLE.C exists, NMAKE compares its date to that of SAMPLE.OBJ (the
comparison is triggered by the predefined macro $<). If SAMPLE.C has changed
more recently, NMAKE compiles it using the CL command listed in the infer-
ence rule:

CL/c sample.c

NOTE NMAKE applies an inference rule only if the base name of the file it is trying to cre-
ate matches the base name of a file that already exists. Thus, inference rules are useful only
when there is a one-to-one correspondence between the desired file and its dependent. You
cannot define an inference rule that replaces several modules in a library, for example.

Extension Search Paths

If an inference rule does not specify a search path, as in the example above,
NMAKE looks for files in the current directory. You can specify a single path
for each of the extensions, using the following form:

{ frompath }. fromext { topath }. toext :
commands

NMAKE searches in the frompath directory for files with the fromext extension.
It uses commands to create files with the toext extension in the topath directory.

Predefined Inference Rules

NMAKE provides predefined inference rules to perform these common develop-
ment tasks:

m Creating an .OBJ file by compiling a .C file
m Creating an .OBJ file by assembling an .ASM file
m Creating an .EXE file by compiling a .C file and linking the resulting .OB]J file

Managing Development Projects with NVIAKE 119

Table 6.3 describes the predefined inference rules.

Table 6.3 Predefined Inference Rules

Inference Rule Command Default Action
.c.obj $(CC) $(CFLAGS) /c cl/c $*.c

$*.c
.asm.obj $(AS) $(AFLAGS) $*; masm $*;
.c.exe $(CC) $(CFLAGS) $*.c cl $*.c

For example, say that you have the following description file:

sample.exe :

Like the previous example, this description block lists a target without any de-
pendents or commands. NMAKE looks at the target’s extension (.EXE) and
checks for an inference rule that describes how to create a .EXE file. The last
rule in Table 6.3 provides this information:

.Cc.exe:
$(CC) $(CFLAGS) $*.c

To apply this rule, NMAKE first looks for a file with the same base name as
the target (SAMPLE) and the .C extension. If SAMPLE.C exists in the current
directory, NMAKE executes the CL command given in the rule. The com-
mand compiles SAMPLE.C and links the resulting file SAMPLE.OBJ to create
SAMPLE.EXE.

Precedence among Inference Rules

If the same inference rule is defined in more than one place, NMAKE uses the
rule with the highest precedence. The precedence from highest to lowest is

1. Inference rules defined in the description file
2. Inference rules defined in the TOOLS.INI file

3. Predefined inference rules

NMAKE uses a predefined inference rule only if no user-defined inference rule
exists for the desired operation.

120 Advanced Programming Techniques

6.3.5 Directives

Directives allow you to write description files that are similar to batch files.
Directives can execute commands conditionally, display error messages, include
other files, and turn on or off certain options.

NMAKE directives are similar ~ A directive begins with an exclamation point (!), which must appear at the begin-
to C preprocessor directives. ning of the line. You can place spaces between the exclamation point and the
directive keyword. (See Table 6.4.)

Table 6.4 Directives

Directive Description
ICMDSWITCHES Turns on or off one of four NMAKE options: /D, /I,
{+ —}opt... /N, and /S. If no options are specified, the options are

reset to the way they were when NMAKE started. Turn
an option on by preceding it with a plus sign (+), or turn
it off by preceding it with a minus sign (). Using this
keyword updates the MAKEFLAGS macro.

'ELSE Executes the statements between the !ELSE and !ENDIF
keywords if the statements preceding the !ELSE key-
word were not executed.

!ENDIF Marks the end of the !IF, {IFDEF, or !IFNDEF block of
statements.

!ERROR ftext Causes fext to be printed and then stops execution.

!IF constantexpression Executes the statements between the !IF keyword

and the next !ELSE or !ENDIF keyword if constant
expression evaluates to a nonzero value.

IFDEF macroname Executes the statements between the !IFDEF keyword
and the next !ELSE or !ENDIF keyword if macroname is
defined. NMAKE considers a macro with a null value to

be defined.

IIFNDEF macroname Executes the statements between the !IFNDEF keyword
and the next !ELSE or !ENDIF keyword if macroname is
not defined.

IINCLUDE filename Reads and evaluates the file filename before continuing

with the current description file. If filename is enclosed
by angle brackets (< >), NMAKE searches for the file in
the directories specified by the INCLUDE macro. Other-
wise, it looks only in the current directory. The
INCLUDE macro is initially set to the value of the
INCLUDE environment variable.

'UNDEF macroname Marks macroname as being undefined in NMAKE’s
symbol table.

Managing Development Projects with NVIAKE 121

The constantexpression used with the !IF directive can consist of integer con-
stants, string constants, or program invocations. Integer constants can use the C
unary operators for numerical negation (—), one’s complement (~), and logical ne-
gation (!). They can also use any of the C binary operators listed in Table 6.5.

Table 6.5 Directive Operators

Operator Description
+ Addition
- Subtraction
® Multiplication
/ Division
% Modulus
& Bitwise AND
| Bitwise OR
AR Bitwise XOR
&& Logical AND
I Logical OR
<< Left shift
>> Right shift
== Equality
= Inequality
Less than
Greater than
<= Less than or equal to
>= Greater than or equal to

You can group expressions using parentheses. NMAKE treats numbers as deci-
mal unless they start with O (octal) or Ox (hexadecimal). Use the equality (==
operator to compare two strings for equality or the inequality (!=) operator to
compare for inequality. Enclose strings with quotes. Program invocations must
be in square brackets ([]).

122 Advanced Programming Techniques

The following example illustrates directives:

IINCLUDE <infrules.txt>

ICMDSWITCHES +D

winner.exe:winner.obj

'TFDEF debug

I IF "$(debug)"=="y"
LINK /CO winner.obj;

! ELSE
LINK winner.obj;
I ENDIF
TELSE
I ERROR Macro named debug is not defined.
TENDIF

The 'INCLUDE directive causes NMAKE to insert the file INFRULES.TXT into
the description file. The \CMDSWITCHES directive turns on the /D option,
which displays the dates of the files as they are checked. If WINNER.EXE is
out-of-date with respect to WINNER.OBJ, the !IFDEF directive checks to see if
the macro debug is defined. If it is defined, the !IF directive checks to see if it
is set to y. If it is, the linker is invoked with the /CO option; otherwise it is in-
voked without. If the debug macro is not defined, the !ERROR directive prints
the message and NMAKE stops.

6.3.6 Pseudotargets

Pseudotargets are useful for building a group of files or executing a group of
commands.

A “pseudotarget” is similar to a target, but it is not a file. It is a name that serves
as a “handle” for building a group of files or executing a group of commands. In
the following example, UPDATE is a pseudotarget.

UPDATE: *.*
1COPY $** a:\product

When NMAKE evaluates a pseudotarget, it always considers the dependents to
be out-of-date. In the example, NMAKE copies each of the dependent files to the
specified drive and directory.

Like macro names, pseudotarget names are case sensitive. Predefined pseudo-
target names are all uppercase.

Managing Development Projects with NVIAKE 123

The pseudotargets in Table 6.6 are predefined to provide special rules in a de-
scription file. You can use their names on the command line, in a description file,
or in the TOOLS.INI file. You need not specify them as targets; NMAKE uses
the rules they define no matter where they appear.

Table 6.6 Pseudotargets

Pseudotarget Action

IGNORE: Ignores exit codes returned by programs called from the
description file. Same effect as invoking NMAKE with
the /I option.

PRECIOUS: target(s) Tells NMAKE not to delete rarget(s) if the commands

that build it are quit or interrupted. Using this pseudo-
target overrides the NMAKE default. By default,
NMAKE deletes the target if it cannot be sure the target
is built successfully.

The .PRECIOUS pseudotarget is rarely needed. Like
most professional tools, Microsoft language tools clean
up by themselves when errors occur.

SILENT: Does not display lines as they are executed. Same effect
as invoking NMAKE with the /S option.
SUFFIXES:/ist Lists file suffixes for NMAKE to try when building a tar-

get file for which no dependents are specified. This list
is used together with inference rules. See Section 6.3.4,
“Inference Rules.”

When NMAKE finds a target without any dependents, it
searches the current directory for a file with the same
base name as the target and a suffix from the list. If
NMAKE finds such a file, and if an inference rule ap-
plies to the file, then NMAKE treats the file as a depen-
dent of the target. The order of the suffixes in the list de-
fines the order in which NMAKE searches for the file.
The list is predefined as follows:

.SUFFIXES: .obj .exe .c .asm

To add suffixes to the list, specify .SUFFIXES :
followed by the new suffixes. To clear the list, specify
.SUFFIXES:

124 Advanced Programming Techniques

6.3.7 PWB’s extmake Syntax

NMAKE description files can use the same syntax as the extmake switch of
PWB (see Chapter 8, “Customizing the Microsoft Programmer’s WorkBench”).
This syntax allows you to determine the drive, path, base name, and extension of
the first dependent, information that is not otherwise available. The file name,
and parts of its name, are represented using the syntax

% | partsF

where parts is one or more of the following:

Letter Description

d Drive

e File extension

f File base name
P Path

S Complete name

The following example uses extmake syntax:

sample.obj : sample.c
CL /Fod:%|pfF %|dfeF

In this example, the sequence % |pfF represents the path and base name of the
first dependent file, while the sequence %|dfeF represents the drive, base
name, and extension of the same file. The example, then, compiles the file and
writes the output to a file on the same path but with the default .OBJ extension.

The percent symbol (%) is a replacement character in DOS and OS/2 command
lines in the description file. To use extmake syntax in command-line arguments,
specify each percent symbol as a double percent symbol (%%).

6.4 Command-Line Options

NMAKE accepts a number of options, which are listed in Table 6.7. You can
specify options in uppercase or lowercase and use either a slash or dash. For
example, —A, /A, —a, and /a all represent the same option.

Managing Development Projects with NMAKE 125

Table 6.7 NMAKE Options

Option Action

/A Builds all of the requested targets even if they are not
out-of-date.

/C Suppresses nonfatal error or warning messages and the
NMAKE logo display.

/D Displays the modification date of each file.

/E Causes environment variables to override macro defini-
tions in description files. See Section 6.3.3, “Macros.”

[F filename Specifies filename as the name of the description fiie. If
you supply a dash (-) instead of a file name, NMAKE
gets input from the standard input device instead of the
description file.

/HELP Calls the QuickHelp utility. If the QuickHelp program is
not available, NMAKE displays the most commonly
used NMAKE options.

/1 Ignores return codes from commands listed in the de-
scription file. NMAKE processes the whole description
file even if errors occur.

/N Displays but does not execute the description file’s com-
mands. This option is useful for debugging description
files and checking which targets are out-of-date.

/NOLOGO Suppresses the NMAKE logo display.

/P Displays all macro definitions and target descriptions on
the standard output device.

/Q Returns zero if the target is up-to-date and nonzero if it
is not. This option is useful when running NMAKE from
a batch file.

/R Ignores inference rules and macros that are predefined
or defined in the TOOLS.INI file.

/S Suppresses the display of commands listed in the de-
scription file.

/T Changes the modification dates for out-of-date target
files to the current date.

/X filename Sends all error output to filename, which can be a file or
a device. If you supply a dash (-) instead of a file name,
the error output is sent to the standard output device.

/Z Used for internal communication between NMAKE and
PWB.

/? Displays a brief summary of NMAKE syntax and exits

to the operating system.

126 Advanced Programming Techniques

The following command specifies two NMAKE options:

NMAKE /f sample.mak /c targl targ?2

The /f option tells NMAKE to read the description file SAMPLE.MAK. The /c
option tells NMAKE not to display nonfatal error messages and warnings. The
command lists two targets (targl and targ?) to update.

NMAKE /D /N targl targl.mak

In the example above, NMAKE updates the target targl. If the current
directory does not contain a file named MAKEFILE, NMAKE reads the file
TARG1.MAK as the description file. The /D option displays the modification
date of each file; the /N option displays the commands without executing them.

6.5 NMAKE Command Files

Occasionally, you may need to give NMAKE a long list of command-line argu-
ments that exceeds the maximum length of a command line (128 characters in
DOS, 256 in OS/2). To do this, place the command arguments in a file, then give
the name of the file when you run NMAKE.

For instance, say that you create a file named UPDATE, which consists of
this line:

/S "program = sample" sort.exe search.exe
If you start NMAKE with the command

NMAKE @update

NMAKE reads its command-line arguments from UPDATE. The at sign (@)
tells NMAKE to read arguments from the file. The effect is the same as if you
typed the arguments directly on the command line:

NMAKE /S "program = sample" sort.exe search.exe

Within the file, line breaks between arguments are treated as spaces. Macro defi-
nitions that contain spaces must be enclosed in quotation marks, just as if you
typed them on the command line. You can continue a macro definition across
multiple lines by ending each line except the last with a backslash (\):

/S "program \
= sample" sort.exe search.exe

This file is equivalent to the first example. The backslash in the example allows
the macro definition ("program = sample") to span two lines.

Managing Development Projects with NMAKE 127

6.6 The TOOLS.INI File

You can customize NMAKE by placing commonly used macros and inference
rules in the TOOLS.INI initialization file. Settings for NMAKE must follow a
line that begins with [NMAKE]. This part of the initialization file can contain
macro definitions, .SUFFIXES lists, and inference rules. For example,

[NMAKE]
CC=cl
CFLAGS=-Gc -Gs -W3 -0at
.c.obj:
$(CC) -c $(CFLAGS) $*.c

If TOOLS.INI contains the code above, NMAKE reads and applies the lines fol-
lowing [NMAKE]. The example defines the macros CC and CFLAGS and rede-
fines the inference rule for making .OBJ files from .C sources.

NMAKE looks for TOOLS.INI in the current directory. If it is not found there,
NMAKE searches the directory specified by the INIT environment variable.

6.7 In-Line Files

NMAKE can write “in-line files,” which can contain any text you specify. One
use for in-line files is to write a response file for another utility such as LIB.
(Response files are useful when you need to supply a program with a long list of
arguments that exceeds the maximum length of the command line.)

Use this syntax to create an in-line file:

target : dependents
command << [filenamel]|

inlinetext

<<[KEEP | NOKEEP]|

All of the text between the two sets of double angle brackets (<<) is placed in the
in-line file. The filename is optional. If you don’t supply filename, NMAKE
gives the in-line file a unique name. NMAKE places the in-line file in the current
directory or, if the TMP environment variable is defined, in the directory speci-
fied by TMP.

The in-line file can be temporary or permanent. If you don’t specify otherwise, or
if you specify NOKEEP, it is temporary. Specify KEEP to retain the file.

128 Advanced Programming Techniques

The following example creates a LIB response file named LIB.LRF:

math.1ib : add.obj sub.obj mul.obj div.obj
LIB @<<1ib.1rf

math.1ib

-+add.obj-+sub.obj-+mul.obj-+div.obj

listing

<<KEEP

The resulting response file tells LIB which library to use, the commands to
execute, and the listing file to produce:

math.1ib
-+add.obj-+sub.obj-+mul.obj-+div.obj
Tisting

The in-line file specification can create more than one in-line file. For instance,

target.abc : depend.xyz

cat <<filel <<file2
I am the contents of filel.
<<KKEEP
I am the contents of fileZ2.
<<KEEP

The example creates two in-line files named FILE1 and FILE2; then NMAKE
executes the command:

CAT filel file2

The KEEP keywords tell NMAKE not to delete FILE1 and FILE2 when done.

6.8 NMAKE Operations Sequence

If you are writing a complex description file, you may need to know the exact
order of steps that NMAKE follows. This section describes those steps in order.

When you run NMAKE from the command line, its first task is to find the de-
scription file, following these steps:

1. If NMAKE is invoked with the /F option, it uses the file name specified in the
option.

2. If /F is not specified, NMAKE looks for a file named MAKEFILE in the cur-
rent directory. If such a file exists, it is used as a description file.

Managing Development Projects with NMAKE 129

If you do not specify targets,
NMAKE updates only the first
target in the description file.

3. If MAKEFILE is not in the current directory, NMAKE parses the command
line for the first string that is not an option or a macro definition and treats
this string as a file name. If the file-name extension does not appear in the
.SUFFIXES list, NMAKE uses the file as the description file. If the extension
appears in the .SUFFIXES list, NMAKE tries additional strings until it finds a
suitable file. (See Section 6.3.6, “Pseudotargets,” for a description of the
.SUFFIXES list.)

4. If NMAKE still has not found a description file, it returns an error.

NMAKE stops searching for a description file as soon as it finds one, even if
other potential description files exist. If you specify /F, NMAKE uses the file
specified by that option even if MAKEFILE exists in the current directory. Simi-
larly, if NMAKE uses MAKEFILE, any description file listed in the command
line is treated as a target.

Next, NMAKE updates every target listed on the command line. If none is listed,
NMAKE updates only the first target in the description file. (This behavior
differs from the older MAKE program’s default; see Section 6.9, “Differences
between NMAKE and MAKE.”)

NMAKE then applies macro definitions and inference rules in the following
order, from highest to lowest priority:

1. Macros defined on the command line

2. Macros defined in a description file or include file
3. Inherited macros

4. Macros defined in the TOOLS.INI file

5. Predefined macros such as CC and AS

Definitions in later steps take precedence over definitions in earlier steps. The /E
option, however, causes inherited macros to override macros defined on the com-
mand line. The /R option causes NMAKE to ignore macros and inference rules
that are predefined or defined in TOOLS.INI.

Now NMAKE updates each target in the order in which it appears in the descrip-
tion file. It compares the date and time of each dependent with that of the target
and performs the commands needed to update the target. If you specify the /A
option or if the target is a pseudotarget, NMAKE updates the target even if its de-
pendents are not out-of-date.

If the target has no explicit dependents, NMAKE looks in the current directory
for one or more files whose extensions are in the .SUFFIXES list. If it finds such
files, NMAKE treats them as dependents and updates the target according to the
commands.

130 Advanced Programming Technigues

If no commands are given to update the target or if the dependents cannot be
found, NMAKE applies inference rules to build the target. By default, it tries to
build .EXE files from .OBJ files; and it tries to build .OBJ files from .C and
.ASM sources. In practice, this means you should specify .OB/J files as depen-
dents, because NMAKE compiles your source files when it can’t find the .OBJ
files.

NMAKE normally quits processing the description file when a command
returns an error. In addition, if it cannot tell that the target was built success-
fully, NMAKE deletes the partially created target. If you use the /I command-
line option, NMAKE ignores exit codes and attempts to continue processing.
The IGNORE pseudotarget has the same effect. To prevent NMAKE from
deleting the partially created target, specify the target name in the .PRECIOUS
pseudotarget.

Alternatively, you can use the dash (-) command modifier to ignore the error
code for an individual command. An optional number after the dash tells
NMAKE to continue if the command returns an error code that is less than or
equal to the number, and to stop if the error code is greater than the number.

You can help document errors by using the !ERROR directive to print descrip-
tive text. The directive causes NMAKE to print some text, then stop, even if you
use /I, JIGNORE, or the dash (—) modifier.

6.9 Di