
I
n

Microsoft® C

Advanced
Programming Techniques

FOR MS@ OS/2 ANO MS-DOS@
OPERATING SYSTEMS

MICROSOFT CORPORATION

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software described in this docu­
ment is furnished under a license agreement or nondisclosure agreement. The software
may be used or copied only in accordance with the terms of the agreement. It is against
the law to copy the software on any medium except as specifically allowed in the li­
cense or nondisclosure agreement. No part of this manual may be reproduced or trans­
mitted in any form or by any means, electronic or mechanical, including photocopying
and recording, for any purpose without the express written permission of Microsoft.

©Copyright Microsoft Corporation, 1990. All rights reserved.

Printed and bound in the United States of America.

Microsoft, MS, MS-DOS, Code View, InPort, and XENIX are registered trademarks and
Windows is a trademark of Microsoft Corporation.

Apple and Macintosh are registered trademarks and Finder is a trademark of Apple
Computer, Inc.

AT&T is a registered trademark of American Telephone and Telegraph Company.

Hercules is a registered trademark and InColor is a trademark of Hercules Computer
Technology.

IBM is a registered trademark of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

Olivetti is a registered trademark of Ing. C. Olivetti.

PDP-11 and V AX-11 are registered trademarks of Digital Equipment Corporation.

WANG is a registered trademark of Wang Laboratories.

Z8000 is a registered trademark of Zilog, Inc.

Document No. LN06514-l 189 OEM071 l-6Z
10 9 8 7 6 5 4 3 2

Contents
Introduction

PART1

Scope of This Book . .

Document Conventions

Improving Program Performance

Chapter 1 Optimizing C Programs
I. I Controlling Optimization

from the Programmer's WorkBench

1.2 Controlling Optimization from the Command Line

1.3 Controlling Optimization with Pragmas

1.4 Default Optimization

1.4.1 Common Subexpression Elimination

1.4.2 Dead-Store Elimination

1.4.3 Constant Propagation

1.5 Customizing Your Optimizations

1.5.1 Choosing Speed or Size (/Ot and /Os)

1.5.2 Generating Intrinsic Functions (/Oi)

1.5.3 Assuming No Aliasing (/Oa and /Ow)

1.5.4 Performing Loop Optimizations (IOI)

1.5.5 Disabling Unsafe Loop Optimizations (/On)

1.5.6 Enabling Aggressive Optimizations (/Oz)

1.5.7 Removing Stack Probes (/Gs)

1.5.8 Enabling Global Register Allocation (/Oe)

. .

1.5.9 Enabling Common Subexpression Optimization
(/Oc and /Og)

.

1.5.10 Achieving Consistent Floating-Point Results (/Op)

1.5.11 Using the 80186, 80188, or 80286 Processor
(/GO, /G 1, /G2)

1.5.12 Optimizing for Maximum Efficiency (/Ox)

1.6 Linker (LINK) Options that Control Optimization

1.6.1 Enabling Far Call Optimization
(/FARCALLTRANSLATION)

1.6.2 Packing Code (/PACKCODE)

.

. xv

. xvii

. 5

.6

.7

. 8

. 8

.9

.9

10

10

10

13
16

17

17

18

19

20

21

21

22

23

23

25

• • • xv

. . . 5

iii

iv Advanced Programming Techniques

1.6.3 Packing Data (/PACKDATA)

1.6.4 Packing the Executable File (/EXEPACK)

1.7 Optimizing in Different Environments

1.7 .1 Optimizing in DOS

1.7 .2 Optimizing in OS/2

1.7.3 Optimizing in Microsoft Windows™

1.8 Choosing Function-Calling Conventions

Chapter 2
2.1

1.8.1 The C Calling Convention (/Gd) . .

1.8.2 The FORTRAN/Pascal Calling Convention (/Ge)

1.8.3 The Register Calling Convention (/Gr)

1.8.4 The _fastcall Calling Convention

Managing Memory
Pointer Sizes

2.1.1 Pointers and 64K Segments

2.1.2 Near Pointers

2.1.3 Far Pointers . .

2.1.4 Huge Pointers

2.1.5 Based Addressing

2.2 Selecting a Standard Memory Model

2.2.1 The Six Standard Memory Models

2.2.2 Limitations on Code Size and Data Size

2.2.3 The Tiny Memory Model

2.2.4 The Huge Memory Model

2.2.5 Null Pointers

2.2.6 Specifying a Memory Model

2.3 Mixing Memory Models

2.3.l Pointer Problems

2.3.2 Declaring Near, Far, Huge, and Based Variables

2.3.3 Declaring Near and Far Functions

2.3.4 Pointer Conversions

2.4 Customizing Memory Models

2.4.1 Setting a Size for Code Pointers

2.4.2 Setting a Size for Data Pointers

2.4.3 Setting Up Segments

2.4.4 Library Support for Customized Memory Models

2.4.5 Setting the Data Threshold

.25

.26

.26

.26

.26

.26

.27

.27

.27

.28

.28

. . 31
.31

.32

.32

.33

.33

.34

.34

.35

.35

.36

.36

.37

.38

.39

.40

.42

.43

.44

.46

.47

.48

.48

.51

.51

2.4.6 Naming Modules and Segments

2.4.7 Specifying Code and Data Segments

2.5 Using Based Variables

2.5.1 New Keywords

2.5.2 Declaring Based Variables

2.5.3 Advantages of Based Pointers

Chapter 3 Using the In-Line Assembler
3.1 Advantages of In-Line Assembly

3.2 The _asm Keyword

3.3 Using Assembly Language in _asm Blocks

3.4 Using C in _asm Blocks

3.5

3.6

3.7

3.8

3.9

Chapter 4

4.1

4.2

4.3

4.4

3.4.1 Using Operators

3.4.2 Using C Symbols

3.4.3 Accessing C Data

3.4.4 Writing Functions

Using and Preserving Registers

Jumping to Labels

Calling C Functions

Defining _asm Blocks as C Macros

Optimizing

Controlling Floating-Point
Math Operations

Declaring Floating-Point Types

4.1.1 Declaring Variables as Floating-Point Types

4.1.2 Declaring Functions that Return Floating-Point Types

C Run-Time Library Support
of Type long double

Summary of Math Packages

4.3.1 Emulator Package

4.3.2 Math Coprocessor Package

4.3.3 Alternate Math Package

Selecting Floating-Point Options (/FP)

4.4.1 In-Line Emulator Option (/FPi)

4.4.2 In-Line Math Coprocessor Instructions Option (/FPi87)

4.4.3 Calls to Emulator Option (/FPc)

Contents v

52

53

54

54

55

61

. . .63
63

64

65

68

68

69

69

70

72

73

74

75

76

. . .79
79

80

82

82

82

83

84

84

84

86

87

87

vi Advanced Programming Techniques

4.4.4 Calls to Math Coprocessor Option (/FPc87)

4.4.5 Use Alternate Math Option (/FPa)

4.5 Library Considerations
for Floating-Point Options

4.5.1 Using One Standard Library for Linking

4.5.2 In-Line Instructions or Calls

4.6 Compatibility between Floating-Point Options

4.7 Using the N087 Environment Variable

4.8 Incompatibility Issues

PART 2 Improving Programmer Productivity

Chapter 5 Compiling and Linking Quickly
5.1 Compiling Quickly

5.1.1 Quick Compiler

5.1.2 Incremental Compile Option

5.2 Linking Quickly with ILINK

5.2.1 Preparing for Incremental Linking

5.2.2 Incremental Violations

Chapter 6 Managing Development Projects
with NMAKE

6.1 Overview ofNMAKE

6.2 The NMAKE Command

6.3 NMAKE Description Files

6.3.l Description Blocks

6.3.2

6.3.3

6.3.4

6.3.5

6.3.6

6.3.7

Comments

Macros

Inference Rules

Directives

Pseudotargets

PWB 's extmake Syntax

6.4 Command-Line Options

6.5 NMAKE Command Files

6.6 The TOOLS.INT File

6.7 In-Line Files

.88

.89

.89

.89

.90

.90

.91

.92

.97

.97

.98

.98

.99
100

103

104

105

105

llO

llO

117

120

122

124

124

126

127

127

.. 97

. . 103

Contents vii

6.8 NMAKE Operations Sequence 128

6.9 Differences between NMAKE and MAKE 130

Chapter 7 Creating Help Files with HELPMAKE . . 133
7. I Structure and Contents of a Help Database 133

7 .1.1 Contents of a Help File 134

7 .1.2 Help File Formats 135

7 .2 Invoking HELPMAKE 136

7.3 HELPMAKE Options .. 137

7.3. l Options for Encoding 138

7.3.2 Options for Decoding 141

7.4 Creating a Help Database 142

7.5 Help Text Conventions 143

7 .5.1 Structure of the Help Text File 143

7.5.2 Local Contexts . 144

7 .5 .3 Context Prefixes 145

7.5.4 Hyperlinks 146

7.6 Using Help Database Formats 148

7.6.l QuickHelp Format 148

7.6.2 Minimally Formatted ASCII Format 154

7.6.3 Rich Text Format (RTF) 155

Chapter 8 Customizing the
Microsoft Programmer's WorkBench . . 157

8.1 Setting Switches 157

8.1.1 Editing the <assign> Pseudofile 158

8.1.2 Editing the TOOLS.IN! Initialization File 158

8.2 Assigning Keystrokes 160

8.3 Writing Macros 161

8.3. l Macro Syntax 161

8.3.2 Macro Responses 163

8.3.3 Macro Arguments 164

8.3.4 Macro Conditionals 164

8.3.5 Temporary Macros 165

8.3.6 Macro Recordings 166

viii Advanced Programming Techniques

8.4 Writing and Building C Extensions 167
8.4.1 Building Real-Mode Extensions 170
8.4.2 Building Protected-Mode Extensions 171
8.4.3 Describing Functions and Switches 172
8.4.4 Initializing Functions 175
8.4.5 Prototyping Functions 176
8.4.6 Receiving Parameters 176
8.4.7 Calling PWB Functions 178
8.4.8 Calling C Library Functions 182

Chapter 9 Debugging C Programs with Code View . .185
9.1 Understanding Code View Windows 185
9.2 Overview of Debugging Techniques 188
9.3 Viewing and Modifying Program Data 188

9.3.l Displaying Variables in the Watch Window 188
9.3.2 Displaying Expressions in the Watch Window 189
9.3.3 Displaying Arrays and Structures 190
9.3.4 Displaying Array Elements Dynamically 192
9.3.5 Using Quick Watch 193
9.3.6 Displaying Memory 193
9.3.7 Displaying the Processor Registers 194
9.3.8 Modifying the Values of Variables, Registers, and

Memory 195
9.4 Controlling Execution 196

9.4.1 Continuous Execution 196
9.4.2 Single-Stepping 199

9.5 Replaying a Debug Session 199
9.6 Advanced Code View Techniques 200
9.7 Controlling Code View

with Command-Line Options 204
9.8 Customizing Code View with the TOOLS.IN! FILE 205

Contents ix

PART3 Special Environments

Chapter 10 Communicating with Graphics . . 211
10.1 Video Modes . 211

10.1.1 Sample Low-Level Graphics Program . 212

10.1.2 Setting a Video Mode . 213

10.1.3 Reading the videoconfig Structure . 215

10.1.4 Maximizing Resolution or Color . 216

10.1.5 Selecting Your Own Video Modes . 216

10.2 Mixing Colors and Changing Palettes . 217

10.2.1 CGA Palettes . 218

10.2.2 Olivetti® Palettes . 219

10.2.3 VGA Palettes . 219

10.2.4 MCGA Palettes . 221

10.2.5 EGA Palettes . 221

10.2.6 Symbolic Constants . 222

10.3 Specifying Points within Coordinate Systems . 222

10.3.l Physical Coordinates . 223

10.3.2 Viewport Coordinates . 225

10.3.3 Window Coordinates . 227

10.3.4 Screen Locations . 228

10.3.5 Bounding Rectangles . 228

10.3.6 The Pixel Cursor . 229

10.4 Graphics Functions . 229

10.4.1 Controlling Video Modes . 230

10.4.2 Changing Colors . 231

10.4.3 Drawing Points, Lines, and Shapes . 232

10.4.4 Defining Patterns . 234

10.4.5 Manipulating Images . 235

10.5 Using Graphic Fonts . 236

10.5.1 Using the C Font Library . 238

10.5.2 Registering the Fonts . 239

10.5.3 Setting the Current Font . 239

10.5.4 Displaying Text . 241

10.5.5 A Sample Program . 242

10.5.6 Using Fonts Effectively . 244

x Advanced Programming Techniques

Chapter 11 Creating Charts and Graphs245
11.1 Overview of Presentation Graphics 245

11.2 Parts of a Graph 246

11.3 Writing a Presentation Graphics Program 249

11.3.1 Pie Chart 250

11.3.2 Bar, Column, and Line Charts 252

11.3.3 Scatter Diagram 256

11.4 Manipulating Colors and Patterns 259

11.4.1 Color Pool 259

11.4.2 Style Pool 260

11.4.3 Pattern Pool 261

11.4.4 Character Pool 263

11.5 Customizing the Chart Environment 263

11.5.1 titletype Structures 265

11.5.2 axistype Structures 266

11.5.3 windowtype Structures 269

11.5.4 legendtype Structures 270

11.5.5 chartenv Structures 271

Chapter 12 Programming with Mixed Languages275
12.1 Making Mixed-Language Calls 275

12.2 Language Convention Requirements 277

12.2.1 Naming Convention Requirement 278

12.2.2 Calling Convention Requirement 281

12.2.3 Parameter-Passing Requirement 283

12.3 Compiling and Linking 284

12.3.1 Compiling with Correct Memory Models 284

12.3.2 Linking with Language Libraries 285

12.4 C Calls to High-Level Languages 285

12.5 C Calls to BASIC 288

12.6 C Calls to FORTRAN 290

12.6.1 Calling a FORTRAN Subroutine from C 291

12.6.2 Calling a FORTRAN Function from C 292

12.7 C Calls to Pascal 293

12.7.1 Calling a Pascal Procedure from C 293

12.7.2 Calling a Pascal Function from C 295

Contents xi

12.8 C Calls to Assembly Language . 296

12.8.1 Writing the Assembly-Language Procedure . 297

12.8.2 Setting Up the Procedure . 297

12.8.3 Entering the Procedure . 298

12.8.4 Allocating Local Data . 299

12.8.5 Preserving Register Values . 299

12.8.6 Accessing Parameters . 300

12.8.7 Returning a Value . 303

12.8.8 Exiting the Procedure . 304

12.9 Handling Data
in Mixed-Language Programming . 305

12.9.1 Default Naming and Calling Conventions . 305

12.9.2 Numeric Data Representation . 306

12.9.3 Strings . 307

12.9.4 Arrays 310

12.9.5 Array Declaration and Indexing . 311

12.9.6 Structures, Records, and User-Defined Types . 312

12.9.7 External Data . 313

12.9.8 Pointers and Address Variables . 314

12.9.9 Common Blocks . 314

12.9.10 Using a Varying Number of Parameters . 316

Chapter 13 Writing Portable Programs 317
13.1 Assumptions about Hardware . 317

13.1.1 Size of Basic Types . 317

13.1.2 Storage Order and Alignment . 321

13.1.3 Byte Order in a Word . 324

13.1.4 Reading and Writing Structures 326

13.1.5 Bit Fields in Structures 326

13.1.6 Processor Arithmetic Mode 328

13.1.7 Pointers 329

13.1.8 Address Space . 331

13.1.9 Character Set . 332

13.2 Assumptions about the Compiler . 333

13.2.1 Sign Extension . 334

13.2.2 Length and Case of Identifiers . 336

13.2.3 Register Variables . 337

13.2.4 Functions with a Variable Number of Arguments . 337

xii Advanced Programming Techniques

13.3

13.4

13.5

13.2.5

13.2.6

Evaluation Order

Function and Macro Arguments with Side Effects

13.2.7 Environment Differences

Portability of Data Files

Portability Concerns Specific to Microsoft C

Microsoft C Byte Ordering

PART4 OS/2 Support

Chapter 14 Building OS/2 Applications
14.1 The OS/2 Applications Program Interface

14.1.1 Calling the OS/2 API

14.1.2 Including the OS/2 Header Files

14.1.3 Creating Dual-Mode Programs as Family Applications

14.2 Compile Options for the CL Command

14.2.1 The Link Mode Options (/Lp, /Lr, and /Le)

14.2.2 Creating Bound Programs Option (/Fb)

14.2.3 Library Selection Options (/MT, /ML, /MD, !Zl)

14.2.4 Memory-Model Options (/Ax)

14.3 Module-Definition Files and Import Libraries

14.3.1 Adding a Module-Definition File to the LINK
Command

14.3.2 Creating Dynamic-Link Libraries (DLLs)

14.3.3 Creating Programs with 1/0 Privileges

14.3.4 Creating Presentation Manager Applications

14.3.5 Creating Import Libraries with the IMPLIB Utility

14.4 Link Command-Line Options

14.5 The BIND Utility

Chapter 15 Creating Multithread OS/2 Applications
15.1 Multithread Programs

15.1.1 Library Support

15.1.2 Include Files

15.1.3 C Run-Time Library Functions for Thread Control

15.2 Sample Multithread C Program

15.3 Writing a Multithread Program

338

339

340

340

341

341

348

348

349

350

353

353

354

355

356

357

359

359

360

361

361

362

364

367

368

370

371

373

377

. . 347

. .367

15 .4 Compiling and Linking

15.5

15.6

Avoiding Problem Areas

Using the Protected-Mode Code View Debugger

15.6.1 Compiling with the /Zi Option

15.6.2 Prompt for Thread Number ...

15.6.3 Thread Commands

15.6.4 Screen Groups Used by Code View

. 381

. 382

. 383

. 384

. 384

. 384

. 387

Chapter 16 Dynamic Linking with OS/2
16.1 Overview of Dynamic Linking 389

16.1.1 Load-Time and Run-Time Linking . 390

16.1.2 Application Programs and DLLs . . 390

16.1.3 DLLs and Microsoft C Run-Time Libraries . 391

16.2 Designing and Writing DLLs 393

16.2.1 Floating-Point Math Requirements 394

16.2.2 Initialization and Termination Requirements . 395

16.2.3 Making the DLL Re-Entrant . 397

16.2.4 Signal Handling . 400

16.2.5 Using Microsoft C Keywords . 400

16.2.6 Compile Options for Dynamic-Link Libraries . 401

16.3 Building DLLs with Microsoft C 402

16.3.1 DLLs with Static C Run-Time Library Functions . 403

16.3.2 DLLs without C Run-Time Library Functions . 407

16.3.3 Programs and DLLs with a C Run-Time DLL . 408

16.3.4 Using Code View to Debug Dynamic-Link Libraries . 413

Appendixes

A Using Exit Codes
A.1 The exit Function

A.2 Testing Exit Codes from Command and Batch Files

A.3 Accessing Exit Codes from Other Programs

B Differences between C Versions 5.1 and 6.0
B. l Modifications for ANSI Compatibility

B.2 New Keywords and Functions

. 417

. 418

. 419

. 421

. 425

Contents xiii

.. 389

.. 417

.. 421

xiv Advanced Programming Techniques

B.3 New Features

B.4 Differences in Code Generation

B.5 Changes and Deletions

C Implementation-Defined Behavior
C. I Translation

C.2 Environment

C.3 Identifiers

C.4 Characters

C.5 Integers

C.6 Floating-Point Math

Index

C.7 Arrays and Pointers

C.8 Registers

C.9 Structures, Unions, Enumerations, and Bit Fields

C.10 Qualifiers .

C.11 Declarators

C.12 Statements

C.13 Preprocessing Directives

C.14 Library Functions

431

436

438

.441
441

442

443

444

448

450

451

452

452

454

454

454

454

456

.467

Introduction
Advanced Programming Techniques describes how to get the most out of the
Microsoft® C Professional Development System with its new integrated develop­
ment environment-the Microsoft Programmer's WorkBench-and source-level
debugging tool-the Code View® debugger.

In this manual, you will see how all the components of the Microsoft C Pro­
fessional Development System work together to provide you with the most
powerful development environment available. A key element in the power of the
Professional Development System is your ability to customize it to suit your in­
dividual needs as a programmer.

Because this book is arranged by topic, it answers questions about using
Microsoft C version 6.0, rather than providing lists of options. If you have
specific questions about menu items in the Code View debugger, the Program­
mer's WorkBench, or any of the command-line utilities included in the Pro­
fessional Development System, you can use the Microsoft C Advisor (on-line
help) or the C Reference manual.

Advanced Programming Techniques shows you how tools and utilities all fit
together.

Scope of This Book
Advanced Programming Techniques is divided into four parts. Part 1, "Improv­
ing Program Performance," helps you write more efficient programs. It provides
specific information about optimizing-when and why to use various optimizing
options. It also explains new memory management options and when to use
them. For example, Chapter 3 describes the in-line assembler, a new feature that
lets you mix assembly language with your C source code.

Part 2, "Improving Programmer Productivity," will help you perform program­
ming tasks more quickly and efficiently. Chapter 8 explains the different ways
you can customize the new Programmer's WorkBench (PWB)-an editor and in­
tegrated development environment that allows you to

• Create new programs

• Modify existing programs

• Browse source files

xv

xvi Advanced Programming Techniques

• Obtain help about PWB, the C language, and the C run-time libraries

• Set program build lists

• Build programs

• Debug programs with the Code View debugger

Chapter 8 also describes how to change PWB behavior to suit your programming
style by making keyboard assignments, recording or writing macros, and writing
C extensions.

Also in Part 2 is a chapter about the Microsoft Program Maintenance Utility,
NMAKE. NMAKE is a new program maintenance facility that allows you to use
program lists as input, which provides extra flexibility in your program build
process. It is a superset of the Microsoft XENIX® MAKE utility and is substan­
tially more powerful than previous versions of MAKE.

Chapter 9 in Part 2 describes the Code View debugger, which is even more power­
ful than in previous releases. With Code View version 3.0, you get many new fea­
tures, including the ability to record a debugging session, then play it back
(history and dynamic replay).

Part 3, "Special Environments," describes new graphics capabilities. It also
shows how to program in mixed languages and offers tips to make your pro­
grams more portable. Microsoft C helps you create graphics applications easily.
The Microsoft C run-time libraries contain graphics functions for low-level
graphics operations, such as drawing lines, rectangles, and circles. The libraries
also contain functions for creating presentation graphics, such as pie charts and
bar charts.

Part 4, "OS/2 Support," describes how the Professional Development System
helps you build OS/2 applications. The three chapters in Part 4 provide informa­
tion about dual-mode applications, creating multithread applications, and creat­
ing dynamic-link libraries.

A postage-paid documentation feedback card is at the end of this manual. After
you have had a chance to become familiar with Microsoft C 6.0 and its documen­
tation, please give us your opinion. Your ideas will help us as we develop future
documentation. Also at the end of this book is a Product Assistance Request
form. If you need to call Microsoft for assistance, use this form first to compile
and organize pertinent information.

Introduction xvii

Document Conventions
NOTE The pages that follow use the term "OS/2" to refer to the OS/2 systems-Microsoft
Operating System/2 (M~ OS/2) and IBM@ OS/2. Similarly, the term "DOS" refers to both
the MS-DO~ and IBM Personal Computer DOS operating systems. The name of a specific
operating system is used when it is necessary to note features that are unique to the system.

Example

STDIO.H

cdecl

expression

[option]

#pragma pack { 112}

CL A.CB.CC.OBJ

CL options [files ...]

Description

Uppercase letters indicate file names,
segment names, registers, and terms
used at the DOS- or OS/2-command
level.

Boldface letters indicate C keywords,
operators, language-specific charac­
ters, and library functions, as well as
OS/2 functions. Within discussions
of syntax, bold type indicates that the
text must be entered exactly as shown.

Words in italics indicate placeholders
for information you must supply,
such as a file name. Italics are also
occasionally used for emphasis in
the text.

Items inside double square brackets
are optional.

Braces and a vertical bar indicate a
choice among two or more items.
You must choose one of these items
unless double square brackets sur­
round the braces.

This font is used for examples, user
input, program output, and error mes­
sages in text.

A horizontal ellipsis following an
item indicates that more items having
the same form may follow.

xviii Advanced Programming Techniques

while(
{

CTRL+ENTER

"argument"

Enhanced Graphics Adapter (EGA)

A vertical ellipsis tells you that part
of the example program has been in­
tentionally omitted.

Small capital letters are used for the
names of keys on the keyboard.
When you see a plus sign (+) between
two key names, you should hold
down the first key while pressing the
second.

The carriage-return key (sometimes
appearing as a bent arrow on the key­
board) is called ENTER.

The cursor-movement keys (some­
times called direction keys) are called
the ARROW keys. Individual keys are
referred to by their direction (LEFf,

UP) or by the name on the key (PGUP).

Quotation marks enclose a new term
the first time it is defined in text.

The first time an acronym is used, it
is often spelled out.

PART1

Improving Program
Performance

CHAPTERS

1 Optimizing C Programs 5

2 Managing Memory 31

3 U$ing the In-Line Assembler . , • . 63

4 Controlling Floating-Point Math Operations . · 79

Improving Program
Performance
The Microsoft C Professional Development System helps you
create the fastest, smallest applications using its sophisticated
optimizer and enhanced memory management capabilities.

Chapter 1 tells when to use certain optimizations and describes
how Microsoft C generates code that is efficient in execution
speed and size. Chapter 2 explains the sophisticated tools Micro­
soft C gives you to allocate and manage program memory, in­
cluding the new_ based type. For cases where your program
requires localized optimization, you can use the in-line assem­
bler, described in Chapter 3, to introduce the tightest possible
code. If your application requires floating-point math computa­
tions, you will find Chapter 4 helpful in explaining the options in
the Microsoft C math packages; it explains which floating-point
options yield the fastest, smallest, and most flexible code.

CHAPTER

Optimizing C Programs

The Microsoft C compiler translates C source statements into machine­
executable instructions. In addition, the compiler rewrites or "optimizes"
parts of your program to make it more efficient in ways that are not apparent
at the source level.

The compiler performs three general types of optimization:

1. It modifies or moves sections of code so that fewer instructions are used, or
so that the instructions used make more efficient use of the processor.

2. It moves code and combines operations to maximize use of registers be­
cause operations on data stored in processor registers are far faster than the
same operations on data stored in memory.

3. It eliminates sections of code that are redundant or unused.

This chapter explains the various ways you can control how the Microsoft C com­
piler optimizes your code.

1.1 Controlling Optimization
from the Programmer's WorkBench

The Programmer's WorkBench (PWB) is an integrated development environ­
ment for editing, building, and debugging applications written in Microsoft C.
For more information on the PWB, see Installing and Using the Microsoft C
Professional Development System.

5

6 Advanced Programming Techniques

There are two ways to compile from inside the Programmer's WorkBench:

1. Debug compile. In a default debug compile, the compiler performs no
optimizations at all.

2. Release compile. In a default release compile, the compiler performs most
optimizations.

By modifying the settings in C Global Build Options, C Debug Build Options,
and C Release Build Options (on the Options menu), you can fine-tune optimiza­
tion by individually enabling or disabling any of the optimizations the compiler
performs.

The optimizations in each of the Build Options dialog boxes correspond to a
command-line option to CL. (In fact, the PWB constructs a command line from
your input and passes it to CL.)

NOTE In this chapter, optimization options are discussed in terms of the effect of the op­
timization, the command-line option to invoke the optimization, and pragmas that control
the optimization. All of these optimizations can be controlled at the compilation-unit (file)
level using the Build Options dialog boxes.

1.2 Controlling Optimization from the Command line
Controlling optimization from the command line requires that you determine
which optimizations you need for your application. You then specify those
optimizations using command-line options that begin with /0 (and in some
cases /G).

If there is any conflict between options, the compiler uses the last option
specified on the command line. The command line

CL /Oa /01 /Ot TEST. C

compiles the program TEST.C. It specifies that the compiler can

• Optimize on the assumption that you are doing no aliasing (/Oa)

• Perform loop optimization (/01)

• Perform other general speed-enhancing optimizations (/Ot)

The preceding command line can also be written

CL /Dalt TEST. C

Optimizing C Programs 7

1.3 Controlling Optimization with Pragmas

The optimize pragma
is new to version 6.0.

Occasionally you will need to exercise a fine level of control over compiler
optimizations. Command-line options allow you to control optimization over an
entire compilation unit (file). In addition, Microsoft C supports several pragmas
that allow you to exercise such control on a per-function basis.

The pragmas that control optimization are described in this chapter under the
type of optimization they affect.

In version 6.0, you can control each of the following optimization parameters on
a function-by-function basis using the optimize pragma:

• Behavior of code with respect to aliasing (a and w)

• Reduction oflocal common subexpressions (c)

• Reduction of global common subexpressions (g)

• Global register allocation (e)

• Loop optimization (I)

• Aggressiveness of optimizations (z)

• Disabling of unsafe optimizations (n)

• Achieving consistent floating-point results (p)

• Optimizing for smaller code size or for faster execution speed (t)

Any optimization or combination of options can be enabled or disabled using the
optimize pragma. For example, if you have one function that uses aliases heav­
ily, you need to inhibit optimizations that could cause problems with aliases. You
do not, however, want to inhibit these optimizations for code that does not do ali­
asing. To do this, use the optimize pragma as follows:

I* Function(s) that do not do aliasing. */

#pragma optimize("a", off)
/* Function(s) that do aliasing. */

#pragma optimize("a", on l
!*More function(s) that do not do aliasing. */

B Advanced Programming Techniques

The parameters to the optimize pragma can be combined in a string to enable or
disable multiple options at once. For example,

ltpragma optimize("lge", off)

disables loop optimization, global common subexpression optimization, and
global register allocation.

1.4 Default Optimization
Many optimizations are not explicitly disabled by any command-line option
except/Od (disable optimizations). These optimizations are small in scope and
are almost always helpful. They include

• Short range common subexpression elimination

• Dead-store elimination

• Constant propagation

1.4. 1 Common Subexpression Elimination
In common subexpression elimination, the compiler finds code containing re­
peated subexpressions and produces modified code in which the subexpressions
are evaluated only once. Subexpression elimination is usually done with tem­
porary variables as shown in the following example:

a b + c * d;
x = c * d I y;

The preceding two lines contain the common subexpression c * d. This code
can be modified to evaluate c * d only once; the result is placed in a temporary
variable (usually a register):

tmp = c * d;
a b + tmp;
x = tmp I y;

Optimizing C Programs 9

1.4.2 Dead-Store Elimination
Dead-store elimination is an extension of common subexpression elimination.
Variables that contain the same value in a short piece of code can be combined
into a single temporary variable.

In the following code fragment, the compiler detects that the expression
fun c (x) is equivalent to fun c (a + b) :

x a + b;
x func(x);

Thus, the compiler can rewrite the code as follows:

x = func(a+ b);

1.4.3 Constant Propagation

Remove optimization before
using a symbolic debugger.

When doing constant propagation, the compiler analyzes variable assignments
and determines if they can be changed to constant assignments. In the following
example, the variable i must have a value of 7 when it is assigned to j:

7;
j i;

Instead of assigning to j, the constant 7 can be assigned to j :

i 7;
j 7;

While you could make any of these changes in the source file, doing so might
reduce the readability of the program. In many cases, optimizations not only in­
crease the efficiency of the program but allow you to write more readable code
without any actual efficiency loss.

In some cases, you might want to disable even the default optimizations. Because
optimizations may rearrange code in the object file, it can become difficult to rec­
ognize parts of your code during debugging. It is usually best to remove all op­
timization before using a symbolic debugger. You can remove all optimization
with the /Od (disable optimizations) option.

You can disable all optimizations for a function by including the statement
#pragma optimize("", off). Torestoreoptimizationtoitsformer
state,usethestatement #pragma optimize("", on).

10 Advanced Programming Techniques

1.5 Customizing Your Optimizations
The default optimizations are sufficient for many applications, but you may want
to tune your programs according to criteria not known to the compiler. The op­
timization options offer you a way of providing the compiler specific goals for
optimizing your code.

1.5.1 Choosing Speed or Size {/Ot and /Os)
In addition to the default optimizations, the Microsoft C compiler also automat­
ically uses the /Ot option, which optimizes for speed. The /Ot option enables op­
timizations that increase speed but may also increase size. If you would rather
optimize for program size, use the /Os option. The /Os option enables optimiza -
tions that decrease program size but may also decrease program speed.

To optimize for speed or size on a per-function basis, use the optimize pragma
with the t option. The on setting instructs the compiler to optimize for speed;
the off setting instructs the compiler to optimize for compactness of code. For
example,

#pragma optimize("t", off l

#pragma optimize("t", on l

/*Optimize for smallest
code. */

/* Optimize for fastest
code. *I

1.5.2 Generating Intrinsic Functions (!Oi)
In place of some normal function calls, the C compiler can insert "intrinsic
functions," which operate more quickly. Every time a function is called, a set of
instructions must be executed to store parameters and to create space for local
variables. When the function returns, more code must be executed to release
space used by local variables and parameters and to return values to the calling
routine. These instructions take time to execute. In the context of an average­
sized function, the additional code is minimal, but if the function is only a line
or two, the additional code can comprise almost half of the function's com­
piled code.

One way to avoid this type of code expansion is to avoid such short functions,
especially in often-used sections of code where speed is critical. But many li­
brary functions contain only a line or two of code. The compiler provides two
forms of certain library functions. One form is a standard C function, which re­
quires the overhead of a function call. The other form is a set of instructions that

Optimizing C Programs 11

performs the same action as the function without issuing a function call. This sec­
ond form is called an intrinsic function. Intrinsic functions are always faster than
their function-call equivalents and can provide significant optimizations at the
object-code level.

For example, the function strcpy might be written as follows:

int strcpy(char * dest, char * source)
I

while(*dest++ ~*source++);

The compiler contains an intrinsic form of strcpy. If you instruct the compiler to
generate intrinsic functions, any call to strcpy will be replaced with this intrin­
sic form.

NOTE While the example above is written in C for clarity, most of the library functions use
assembly language to take full advantage of the 80x86 instruction set. Intrinsic functions are
not simply library functions defined as macros.

Compiling with the /Oi option causes the compiler to use the intrinsic forms of
the following functions:

abs labs outp strcpy
disable lrotl outpw strlen
enable Irotr rotl strset

fabs memcmp rotr
inp memcpy strcat
inpw memset strcmp

While the following floating-point functions do not have true intrinsic forms,
they do have versions that pass arguments directly to the floating-point chip
instead of pushing them on the normal argument stack:

a cos fmod acosl fmodl
a sin log asinl logl
atan loglO atanl log IOI
atan2 pow atan21 pow I
ceil sin ceill sin I
cos sinh cos I sin hi
co sh sqrt coshl sqrtl
exp tan exp I tan I
floor tanh floorl tan hi

12 Advanced Programming Techniques

WARNING The compiler performs optimizations assuming math intrinsics have no side
effects. This assumption is true except if you have written your own matherr function and
that function alters global variables. If you have written a matherr function to handle f/oating­
point errors, and your function has side effects, use the function pragma to instruct the
compiler not to generate intrinsic code for math functions.

If you want the compiler to generate intrinsic functions for only a subset of the
functions listed above, use the intrinsic pragma rather than the /Oi option. The
intrinsic pragma has the following format:

#pragma intrinsic(functionl, ...)

If you want to have intrinsic functions generated for most of the functions above
and function calls for only a few, compile with the /Qi option and force function
use with the function pragma. The function pragma has the following format:

#pragma function(functionl, ...)

The following code illustrates the use of the intrinsic pragma:

#pragma intrinsic(absl

void main(void
{

int i , j;

i ~ big_routine_l();
j~abs(il;

big_routine_2(j);

Generating intrinsic functions for this program causes the call to abs to be re­
placed with assembly-language code that takes the absolute value of a number.
The program will execute more quickly because the function-calling overhead is
no longer required when abs is called.

In the previous example, the overall speed increase is small because there is only
a single call to abs. In the following example, where the call to abs is in a loop
and there are many calls, you can save a significant amount of execution time by
generating intrinsic functions.

#pragma intrinsic(abs)
void main(void)
{

int i , j, x;

Optimizing C Programs 13

for(j ~ 0. j < 1000; j++

I
for(i ~ 0· < 1000; i++)

I
x +~ abs(- j) ;

printf("The value of xis %d\n", x);

The following is a list of restrictions on using the intrinsic forms of function calls:

• Do not use the intrinsic forms of the floating-point math functions with the al­
ternate math libraries (mLIBCAy.LIB).

• Do not use the intrinsic forms of the floating-point math functions in OS/2
dynamic-link libraries (DLLs) because you must use the alternate math li­
brary with LLIBCDLL.LIB.

• If you use the /Ox (maximum optimization) option, you are enabling the /Oi
(generate intrinsic functions) option. Be careful that your use of /Ox does not
conflict with the points listed previously.

NOTE Intrinsic versions of _enable, _disable, inp, outp, inpw, and outpw do not work
under 0512. You must use the library versions. You can use the function pragma to force
these functions to become library calls.

1.5.3 Assuming No Aliasing {/Oa and /Ow)
An "alias" is a name used to refer to a memory location already referred to by a
different name. Because a memory access takes more time than it takes to access
the CPU's registers, the compiler tries to store frequently used variables in regis­
ters. However, the aliasing reduces the extent to which a compiler can keep varia­
bles in registers.

A pointer is a reference to a memory location. Because the value of a pointer is
not determined until the program is run, the compiler has no way of knowing
which memory location will be modified when the program executes; it could be
a reference to a variable. Therefore, the compiler must assume that any time the
value pointed to by any pointer changes, the value of any variable might also
change. This limits the extent to which the compiler can move values from
memory to registers.

14 Advanced Programming Techniques

The /Oa and /Ow options tell
the compiler that you have not

used aliases in your code.

The /Oa option tells the compiler to ignore the possibility of multiple aliases for a
memory location. In the list that follows, the term "reference" means read or
write; that is, whether a variable is on the left-hand side of an assignment state­
ment or the right-hand side, you are still referring to it. In addition, any function
calls that use a variable as a parameter are references to that variable. When you
tell the compiler to assume that you are not doing aliasing, it expects that the fol­
lowing rules are being followed for any variable not declared as volatile:

• If a variable is used directly, no pointers are used to reference that variable.

• If a pointer is used to refer to a variable, that variable is not referred to
directly.

• If a pointer is used to modify a memory location, no other pointers are used to
access the same memory location.

To clarify how these rules affect your code, consider the following example:

char p;
char *ptr_p;

ptr_p &p; /* Take the address of p. */

You can now refer either to *pt r _p or to p, but not to both within the same
function. If you must refer to the variable by both names, you are using aliases.

Code referring to the same location with two pointers uses aliases. For example,

char *p_buf;
char *p_alias;

if((p_alias ~ p_buf malloc(5000)) NU LL)
return;

else
{

The code in the example above is common. It demonstrates dynamically allo­
cating a block of memory from the heap, and preserving the original address
in p_buf. The program then performs all pointer arithmetic on the alias
p_a l i as. When the function finishes with the block of memory, p_buf is a
valid argument for the free function because it still contains the original address.

The difference between the /Oa and the /Ow option is that when you use /Oa you
specify that you will not be doing aliasing (which allows the compiler to perform
significant optimizations that might not otherwise have been possible), and that
function calls are safe. The /Ow option is similar to the /Oa option, except that
after a function call, pointer variables must be reloaded from memory.

Bugs involving aliasing
are difficult to spot.

Optimizing C Programs 15

Here is an example of a program that would be a poor candidate for the /Oa or
/Ow optimization option:

int g;

void main(void)
I

add_em(&g) ;

int add _em(int *p
I

*p ~ 2;
g ~ 3;
return(*p + g

)

/*
/*

) ;

Assign a value to an al i as for g. */
Assign a value directly to g. */

In the function a dd_em, both g and *p refer to the same memory location.
This location is first assigned 2, then 3. The value pointed to by *p (the alias
for g) is then added to g, and the result is returned to the main program. If you
do not use the /Oa command-line option, the compiler assumes that the reference
to * p could refer to the same memory location as does g and makes no at­
tempt to use a register to store the value of either. If, however, you do specify the
/Oa option, the compiler assumes that g and *p refer to different memory loca­
tions and stores each in a different register. At the return statement, g will have
a different value than * p, even though both aliases should actually contain the
same value.

Note that the compiler keeps values in registers for only a limited time. If differ­
ent aliases to a memory location occur in different functions, for example, they
will not cause unexpected results. When in doubt, avoid aliasing.

Aliasing bugs most frequently show up as corruption of data. If you find that
global or local variables are being assigned seemingly random values, take the
following steps to determine if you have a problem with optimization and
aliasing:

• Compile the program with /Od (disable optimizations).

• If the program works when compiled with the /Od option, check your normal
compile options for the /Oa option (assume no aliasing).

• If you were using the /Oa option, fix your compile options so that /Oa is not
specified.

NOTE You can instruct the compiler to disable optimizations that are unsafe with code
that does aliasing by using the optimize pragma with the a or w option.

16 Advanced Programming Techniques

1.5.4 Performing Loop Optimizations (IOI)

The /01 option removes
invariant code.

The /01 option enables a set of optimizations involving loops. Because loops in­
volve sections of code that are executed repeatedly, they are targets for optimiza­
tion. These optimizations all involve moving code or rewriting code so that it
executes faster.

Loop optimization can be turned on with the /01 option or with the loop_ opt
pragma. The following line enables loop optimization for all subsequent
functions:

#pragma loop_opt(on)

The following line turns it off:

#pragma loop_opt(off l

An optimal loop contains only expressions whose values change through each
execution of the loop. Any subexpression whose value is constant should be eval­
uated before the body of the loop is executed. Unfortunately, these subexpres­
sions are not always readily apparent. The optimizer can remove many of these
expressions from the body of a loop at compile time. This example illustrates in­
variant code in a loop:

i = -100;
while (i < 0 l
{

i += x + y;

In the preceding example, the expression x + y does not change in the loop
body. Loop optimization removes this subexpression from the body of the loop
so that it is only executed once, not every time the loop body is executed. The op­
timizer will change the code to the following fragment:

i = -100;
t = x + y;
while(i < 0
{

i += t;

Optimizing C Programs 17

Loop optimization is much more effective when the compiler can assume no
aliasing. While you can use loop optimization without the /Oa or /Ow option,
use /Oa to ensure that the most options possible are used.

Here is a code fragment that could have an aliasing problem:

i = -100;
while(i < 0)
{

i += x + y;
*p = i;

If you do not specify the /Oa option, the compiler must assume that either x or
y could be modified by the assignment to *p. Therefore, the compiler cannot as­
sume the subexpression x + y is constant for each loop iteration. If you specify
that you are not doing any aliasing (with the /Oa option), the compiler assumes
that modifying * p cannot affect either x or y, and that the subexpression is
indeed constant and can be removed from the loop, as in the previous example.

NOTE All loop optimizations specified by the IOI option or the loop_ opt pragma are safe
optimizations. To enable aggressive loop optimizations, you must use the enable aggressive
optimizations (/Oz) option. While the optimizations enabled by the combination of IOI and
/Oz are not safe for all cases, they will work properly for most programs.

1.5.5 Disabling Unsafe Loop Optimizations {/On)
The disable unsafe loop optimizations (/On) option is an obsolescent option and
is only retained for compatibility with existing makefiles. Loop optimizations
are, by default, safe optimizations. The /On option is the default and has the op­
posite effect of the /Oz (enable aggressive optimizations) option.

1.5.6 Enabling Aggressive Optimizations {/Oz)
The compiler can perform extremely aggressive optimizations. These optimiza­
tions produce high code quality both in terms of speed and size. Certain pro­
grams, however, cannot be optimized with the technologies enabled by the /Oz
option. For these programs, you should not specify this option; you can still use
all other optimization options.

Because the optimization strategies enabled by the /Oz option are so aggressive,
they are not part of the maximum optimization (/Ox) option.

18 Advanced Programming Techniques

Examples of the effects of the /Oz option are

• Loop optimization (/01). Loop optimization enables a technology that antici­
pates program flow and tries to remove invariant expressions from loops.
When you specify the enable aggressive optimizations option (/Oz), the com­
piler removes invariant expressions even when it might cause an error. Errors
with the enable aggressive optimizations option occur most often when an in­
variant expression that can cause an exception is protected by an if statement.
The invariant expression is hoisted out of the loop body, causing it to be eval­
uated prior to the evaluation of the if statement that was designed to protect it.
Here are two examples that illustrate this problem:

for(i = 0; i 100; ++i)
if(float_val != 0.0F
I* Protect against divide-by-zero. */

fl oat result = pi I fl oat_val;

while(condition)
if(ptr _val != NULL)

/* Protect pointer dereference. */
char_var = *ptr_val;

• Global register allocation (/Oe). The enable aggressive optimizations option
enables some register allocation strategies that can cause invalid segment
selectors to be placed in registers. Although this problem is benign in DOS, it
causes protection faults in OS/2.

NOTE You can instruct the compiler to enable aggressive optimizations on a function-by­
function basis by using the optimize pragma with the z option.

1.5.7 Removing Stack Probes {/Gs)
Every time a function is called, the stack provides space for all parameters and
local variables declared in that function. A short assembly function that checks
for a stack overflow condition is then called. Stack overflows are usually caused
either by infinite loops or by runaway recursive routines. Such errors can also be
caused by extremely large parameters or local variables.

Stack probes can be important during program development. Stack-overflow
errors alert you to problems in your code. When the program has been tested,
however, stack checking often becomes unnecessary. The compiler allows you
to remove stack-checking code with either the /Gs option or the check stack
pragma. Eliminating stack probes produces programs that are smaller and that
run more quickly.

Optimizing C Programs 19

1.5.8 Enabling Global Register Allocation (/Oe)
The global register allocation option (/Oe) instructs the compiler to analyze your
program and allocate CPU registers as efficiently as possible. Without the global
register allocation option, the compiler uses the CPU's registers for several
purposes:

• Holding temporary copies of variables

• Holding variables declared with the register keyword

• Passing parameters to functions declared with the _fastcall keyword (or
functions in programs compiled with the /Gr command-line option)

When you enable global register allocation, the compiler ignores the register
keyword and allocates register storage to variables (and possibly to common sub­
expressions). The compiler allocates register storage to variables or subexpres­
sions according to frequency of use. Because of the limited number of physical
registers, variables held in registers are sometimes placed back in memory to free
the register for another use. Here is a C program example that demonstrates how
the compiler might rewrite your code to accomplish this:

/*Original program*/

func C)
{

int i , j;
char *pc;

for(i = 0; i < 1000; ++i
I

j = i 3.
*pc++ C char) i ;

for(j = 0, --pc;
++j' --pc)
*pc--;

< 1000;

20 Advanced Programming Techniques

/* Example of how the compiler might optimize the
* code to move i and j in and out of registers */

func ()
{

int i, j;
char *pc;

register int i; /* i is in a register for this block. */
for(i = 0; i < 1000; ++i)
{

j = i I 3;
*pc++= (char)i;

register int j; /* j is in a register for this block.*/
for(j = 0, --pc; j < 1000;

++j, --pc)
*pc--;

In the preceding example, there are blocks (enclosed in curly braces) whose only
purpose is to delimit the span of code across which variables should remain in
registers.

NOTE You can enable or disable global register allocation on a function-by-function basis
using the optimize pragma with thee option.

1.5.9 Enabling Common Subexpression Optimization (/De and /Og)
When you use option /Og (enable global common subexpression optimizations),
the compiler searches entire functions for common subexpressions. Option /Oc
(default common subexpression optimization) examines only short sections of
code for common subexpressions. You can disable default common subexpres­
sion optimization with the /Od option. For more information about common sub­
expression optimization, see Section 1.4, "Default Optimization."

NOTE You can enable or disable block-scope common subexpression optimization on a
function-by-function basis using the optimize pragma with the c option. You can enable or
disable global common subexpression optimization on a function-by-function basis using
the optimize pragma with the g option.

Optimizing C Programs 21

1.5.10 Achieving Consistent Floating-Point Results {/Op)
Floating-point numbers stored in memory use either 32, 64, or 80 bits, depending
on whether they are of type float, type double, or type long double. The 80x87
family of coprocessors uses 80-bit registers for all operations. If a value of type
float or type double is kept in these registers through a number of operations, it
will be more accurate than if that value is moved to and from memory between
operations.

Because of the difference in precision between memory and register repre­
sentation of a floating-point number, a value stored in memory is not always
equal to the same value in the 80x87 register.

The difference in precision primarily affects strict equality or strict inequality
tests(== and!=); however, relational tests of magnitude(>,>=,<=, and<) can
behave erroneously if the coprocessor is able to maintain significant digits that
memory variables cannot.

You can avoid the difference in precision by using the /Op option. This option
forces floating-point values to be written to memory between floating-point
operations. While storing these values to memory reduces the precision of
floating-point expressions, it also ensures that these expressions will produce
consistent results regardless of the rest of the code.

You can change the handling of floating-point results on a function-by-function
basis using the optimize pragma with the p option.

NOTE Using the /Op option suppresses other optimizations because the floating-point reg­
isters are not available for storage of intermediate results. Because you suppress these op­
timizations, code compiled with the /Op option executes more slowly than code compiled
without this option. Careful coding practices, especially in tests of strict equality and inequal­
ity, can alleviate the need for this option.

1.5.11 Using the 80186, 80188, or 80286 Processor (!GO, /G1, /G2)
The compiler generates 8086 object code (/GO) unless you take special steps.
Because the newer processors (the 80186, 80188, and 80286) are backward­
compatible with the 8086 instruction set, using this instruction set ensures com­
patibility with all 80x86-based computers. While you gain compatibility across
the entire family of 80x86 processors, you lose the advantage of some of the
more powerful instructions in the newer processors.

22 Advanced Programming Techniques

If you know your program will only be running on an 80186, 80188, or 80286
processor, you can cause the compiler to generate instructions specific to these
processors. These instructions increase the speed of your program, but you lose
compatibility with machines that use older processors in the 80x86 family. Table
1.1 lists the options for processor-specific code generation:

Table 1.1 Processor Compatibility

Command-Line Option

/GO

/Gl

/G2

Compatible Processors

8088,8086,80188,80186,
80286,80388,80486

80188,80186,80286,80386,
80486

80286,80386,80486

NOTE When developing only tor OS/2, always use the !G2 option, because OS/2 does not
run on the 8086, 8088, 80186, or 80188. Do not use /G2 for Family Applications because
they might be run on machines with 8088, 8086, 80188, or 80186 processors.

1.5.12 Optimizing for Maximum Efficiency (!Ox)
The /Ox option combines a number of different optimizations:

• Enable global register allocation (/Oe)

• Enable global common subexpression optimization (/Og)

• Enable block-scoped common subexpression optimization (/Oc)

• Generate intrinsic functions (/Qi)

• Perform loop optimizations (/01)

• Optimize for speed (/Ot)

• Remove stack probes (/Gs)

Use /Ozax /Gr to get
the fastest program.

Use the optimize pragma
to reduce code size.

Optimizing C Programs 23

The /Ox option does not include several optimizations that can improve code effi­
ciency: /Oa (assume no aliasing), /Oz (enable aggressive optimizations), and /Gr
(use fastcall calling convention). Before enabling these optimizations, you should
read the sections that describe the /Oa and /Oz options and the fastcall calling
convention to determine if they are appropriate for your application.

If you are more concerned with executable file size than execution time, use the
/Ox and /Gs options, then issue the optimize pragma as follows:

!fpragma optimize("t", off)

This set of options produces the smallest possible code, while also performing
some speed optimizations.

1.6 Linker (LINK) Options that Control Optimization
Most code optimization is performed before the object file is produced. There are
four optimizations that the linker can perform to speed program execution and re­
duce the disk space used by an executable file.

1. 6. 1 Enabling Far Call Optimization {/FAR CALL TRANSLATION)

Use /FARCALL TRANSLATION
with medium, large, and

huge model programs.

You can call a function two ways. In a far call, the function is called using both
the segment and the offset of the function. This allows a program to call a routine
outside a 64K segment. In a near call, both the calling statement and the function
must be located in the same segment. Only the offset is used to access the func­
tion; the segment address is implicit. You can only use near calls to routines lo­
cated in the same segment.

Because of the architecture of the processor, near function calls execute faster
than far calls. The decision to declare functions as near or far is often made when
selecting a memory model. As it is difficult to determine where the linker will
place a given function in memory, it is impractical for the programmer to choose
the way a function is called.

The IF AR CALL TRANSLATION option enables far call optimization. When
you use this option, any function calls within the same segment as the function
being called are converted to near calls. This optimization has no effect if you
have selected the tiny, small, or compact model, because all calls are already
near calls.

The abbreviation for the /FARCALLTRANSLATION option is /F.

24 Advanced Programming Techniques

How /FARCALLTRANSLATION Affects Your Code
The linker can perform a form of post-optimization (an optimization that occurs
after most of the actual code generation is complete) that translates far calls into
near calls when possible. This optimization allows a given function to be called
with both near and far calls in the same program. To perform this translation, the
linker takes a section of object code such as

CALL FAR func

where fun c is defined in the current segment, and replaces it with the follow­
ing code:

PUSH
CALL
NOP

cs
NEAR func

This substitution works because the linker has inserted PUSH CS to place a far
return address on the stack.

UseJFARCALLTRANSLATION The /FARCALLTRANSLATION option is most effective when used in con-
with/PACKCODE. junction with the /PACKCODE option discussed in Section 1.6.2. Using the

/PACKCODE option causes far calls that were intersegment to become intraseg­
ment calls. The /FARCALLTRANSLATION feature can then take advantage of
the new grouping to translate all intrasegment far calls into near calls.

Benefits of /FARCALLTRANSLATION
The /FARCALLTRANSLATION option is of significant benefit to protected­
mode programs. Table 1.2 illustrates why.

Table 1.2 Processor Clock Cycles for Calling Sequence

Cycles (Real Mode) Cycles (Protected Mode)

Instructions 286 386 286 386

Far Function Call

CALL FAR PTR func 13 17 26 34 -

Total 13 17 26 34

Near Function Call

PUSH CS 3 2 3 2

CALL NEAR PTR func 7 7 7 7 -

NOP 3 3 3 3

Total 13 12 13 12

Savings 0 5 13 22

Optimizing C Programs 25

1. 6.2 Packing Code {/PACKCOOE)
The IP ACKCODE linker option groups neighboring code segments together.
When used with the /F option, the IP ACKCODE option greatly increases the
number of near calls that can be made to a function. This option can be followed
with a limit (expressed in bytes) at which to stop packing and to begin a new
group. Here is the syntax for the /P ACKCODE option:

IPACKCODE:numher

where number is an optional hexadecimal, octal, or decimal number that speci­
fies the limit for packing. The radix (octal, decimal, or hexadecimal) is specified
just as you would specify it to a C program.

Radix

Octal

Decimal

Hexadecimal

Rules for Specification

Specify the octal number with a leading 0. You can
only use the digits 0 through 7 in an octal number.
For example, 07777.

Specify the decimal number without a leading 0. For
example, 65530.

Specify the hexadecimal number with a leading Ox.
For example, Ox3FFF.

If you omit the packing limit, the linker supplies a default value of 65, 530.

The abbreviation for the IP ACKCODE option is IP ACKC.

1.6.3 Packing Data {/PACKOATA)
The IPACKDATA option is analogous to the /PACKCODE option, except that it
groups together neighboring data segments instead of code segments. This option
is most useful when you have a large-model program that exceeds the OS/2 limi­
tation of 255 segments. By using IP ACKDAT A, you can group segments, there­
by reducing the total number OS/2 has to manage. Here is the syntax for the
IPACKDATA option:

IPACKDATA:number

where number is an optional hexadecimal, octal, or decimal number that speci­
fies the limit for packing. The radix (hexadecimal, octal, or decimal) is specified
just as you would specify it to a C program. For more information on specifying
hexadecimal, octal, or decimal numbers, see Section 1.6.2 above.

If the packing limit is omitted, the linker supplies a default value of 65,535
(OxFFFF).

The abbreviation for the IP ACKDAT A option is IP ACKD.

26 Advanced Programming Techniques

1.6.4 Packing the Executable File {/EXEPACK)
The executable file created by the compiler often contains sequences of re­
peated bytes. You can remove these repeated sequences with the /EXEP ACK op­
tion. This decreases the size of the resulting executable file as well as program
load time.

WARNING Because the /EXEPACK option removes debug information from the execu­
table file, you should not use it with the /CODEVIEW option.

1. 7 Optimizing in Different Environments
The environment in which you plan to use a program can have a bearing on the
types of optimizations that you should use.

1. 7. 1 Optimizing in DOS
You need not take special precautions for programs written under DOS unless
you are writing a terminate-and-stay-resident (TSR) program. If an interrupt­
driven routine could modify a memory location in a program, you should declare
that variable volatile.

1. 7.2 Optimizing in OS/2
Many of the rules for interrupt routines apply to OS/2. If one thread can modify
variables in another thread, declare these variables as volatile.

1.7.3 Optimizing in Microsoft Windows TM

Microsoft WindoWSTM can move segments dynamically. As a result of dynamic
heap compaction, pointers maintained in registers can be invalidated. The /Ow
option instructs the compiler that you will not be using aliases, but that Windows
might cause certain optimizations to be unsafe across function calls.

If you are not using any aliases you must still use the /Ow option with Windows
programs. See Section 1.5.3, "Assuming No Aliasing (/Oa and /Ow)," for more
information.

Optimizing C Programs 27

1.8 Choosing Function-Calling Conventions
In Microsoft C, version 6.0, functions can call other functions using three differ­
ent conventions. Note that, while no calling convention has been defined as
"standard," most C compilers use conventions similar to those described here.
The C calling convention requires the most object code to set up, but it is the
only calling convention that supports functions with variable-length argument
lists. The FORTRAN/Pascal calling convention is more compact, but does not
allow for variable-length argument lists. The _fastcall, or register calling con­
vention is the fastest of the three calling conventions, but it does not support
variable-length argument lists or mixed-language program interfaces.

1.8.1 The C Calling Convention {/Gd)
Because C allows functions to have a variable number of parameters, parameters
must be pushed onto the stack from right to left. (If parameters were pushed from
left to right, it would be difficult for the compiler to determine which parameter
was first.) If you do not specify command-line options that modify the function­
calling convention, the C calling convention is used; otherwise, the_ cdecl key­
word must be used before any function using the C calling convention.

If, for example, you use the /Gr (register calling convention) option when you
compile, and the function a dd_two must have the C calling convention, de­
clare add two as follows:

int _cdecl add_two(int x, int y);

1.8.2 The FORTRAN/Pascal Calling Convention {/Ge)
Use the FORTRAN/Pascal calling convention for any functions declared with
either the _fortran or _pascal keywords. (The two keywords currently produce
identical results.) Parameters to these functions are always pushed on the stack
from left to right. While any function can be declared with the FORTRAN/
Pascal convention, it is used primarily for prototypes to Pascal or FORTRAN
routines called from within C programs. This calling convention can also pro­
duce smaller, faster programs.

The /Ge option (generate Pascal-style function calls) can be used to make all
functions in a file observe the FORTRAN/Pascal calling convention.

Note that C run-time library routines must still be called using C calling conven­
tions. Because these routines are declared using the _ cdecl keyword header files,
you must include the appropriate header files in any program using run-time li­
brary routines.

28 Advanced Programming Techniques

Functions with variable-length parameter lists (such as printf) cannot use the
FORTRAN/Pascal calling convention.

NOTE The /ML, /MD, and !MT options cause all floating-point functions to be declared as
FORTRAN/Pascal. See Chapter 16, "Dynamic Linking with OS/2," tor more information.

1.8.3 The Register Calling Convention (!Gr)
You can decrease execution time if parameters to functions are passed in regis­
ters rather than on the stack. Compiling with the /Gr command-line option en­
ables the register calling convention for an entire file. The _fastcall keyword
enables the register calling convention on a function-by-function basis.

Because the 80x86 processor has a limited number of registers, only the first
three parameters are allocated to registers; the rest are passed using the FOR­
TRAN/Pascal calling convention. The register calling convention can increase
the speed of a program.

NOTE The compiler allocates different registers tor variables declared as register and tor
passing arguments using the register calling convention. This calling convention will not
conflict with any register variables that you may have declared.

Exercise caution when using the register calling convention for any function writ­
ten in in-line assembly language. Your use of registers in assembly-language
could conflict with the compiler's use of registers for storing parameters.

1.8.4 The _fastcall Calling Convention
This section describes the details of the _ fastcall calling convention. The infor­
mation is for the use of assembly-language programmers who are interested in
using either the in-line assembler or the Microsoft Macro Assembler (MASM)
to write functions declared as _fastcall. Functions declared as _fastcall accept
arguments in registers rather than on the stack; functions declared as _ cdecl or
_pascal accept parameters only on the stack.

WARNING The register usage documented here applies only to Microsoft C, version 6.0.
It may change in future releases of the compiler.

Optimizing C Programs 29

Argument-Passing Convention
The _fastcall calling convention is a "strongly typed" register calling conven­
tion. This typing allows the compiler to generate better code by passing argu­
ments in registers that correspond to the data type you are passing. Because the
compiler chooses registers depending on the type of the argument and not in a
strict linear order, the calling program and called function must agree on the
types of the arguments in order to communicate data correctly.

For each type of argument there is a list of register candidates. The arguments are
allocated to registers or, if no suitable register remains unused, are pushed onto
the stack left-to-right. Each argument is put in the first register candidate that
does not already contain an argument. Table 1.3 shows the basic types and the
register candidate list for each.

Table 1.3 Register Candidates

Type

character

unsigned character

integer

unsigned integer

long integer

unsigned long integer

near pointer

far or huge pointer

Register Candidates

AL,DL,BL

AL,DL, BL

AX, DX, BX

AX, DX, BX

DX:AX

DX:AX

BX, AX, DX

passed on the stack

All far and huge pointers are pushed on the stack, as are all structures, unions,
and floating-point types.

Return Value Convention
The _fastcall return value convention is based on the size of the return value, ex­
cept with floating-point types. All floating point types are returned on the top of
the NDP stack. For more information about the NDP stack and returning floating­
point values, see Chapter 4, "Controlling Floating-Point Math Operations." The
following list shows how values 4 bytes or smaller, including unions and struc­
tures, are returned from a _fastcall function.

30 Advanced Programming Techniques

Size

1 Byte

2 Bytes

4 Bytes

Return Convention

AL Register

AX Register

DX, AX Registers (for pointers, the segment is re­
turned in DX, the offset in AX; for long integers,
the most-significant byte is returned in DX, least­
significant byte in AX)

Note that the protocol for returning values 4 bytes or smaller is the same as for
functions declared as _ cdecl. To return structures and unions larger than 4 bytes,
the calling program passes a hidden parameter as the last item pushed. This para­
meter is a near pointer, implicitly SS-relative, to a buffer in which the value is to
be returned. A far pointer to SS:hidden-param must be returned in DX:AX. This
is the same convention for returning structures as _pascal.

Stack Adjustment Convention
Unlike functions declared as_ cdecl, functions declared as _fastcall must pop the
arguments off the stack. The calling program does not adjust the stack after func­
tion return.

Register Preservation Requirement
All functions must preserve the DS, BP, SI, and DI registers. Your_ fastcall func­
tion can modify the values in AX, BX, CX, DX, and ES.

Function-Naming Convention
The public name put into the object file for a function declared as _fastcall is the
name given by the user with a leading "at sign"(@). No case translation is per­
formed on the function name. The function declaration

int _fastcal l FCFunc(void l;

causes the compiler to place the public symbol @F C Fun c in your object file at
every location F C Fun c is referenced in your program.

If you do not declare the function as _fastcall in your C program, the compiler
assumes the default calling convention. The default is usually the C calling con­
vention but can be changed by the /Ge (Pascal Calling Convention), /Gr (Regis­
ter Calling Convention), or /Gd (C Calling Convention) options. If the linker
gives you an unresolved external reference, you may have failed to declare an
external _fastcall function properly. For more information about calling conven­
tions, see Chapter 12, "Programming with Mixed Languages."

CHAPTER

Managing Memory

When you develop advanced applications in Microsoft C, you must pay attention
to memory management-that is, how data and code are stored and accessed in
memory. A well-thought-out memory strategy will make your programs run
faster and occupy less memory.

You can follow one or more of these memory management strategies:

• Choose a standard memory model.

• Create a mixed-model program with the _near, _far, _huge, and _based
keywords.

• Create your own customized memory model.

• Allocate memory as you need it with the malloc family of functions.

This chapter explains pointers, memory models (including the new tiny model),
variations such as custom memory models and mixed models, and based pointers.

2. 1 Pointer Sizes
One of the strengths of the C language is that it allows you to use pointers to
directly access memory locations.

Every Microsoft C program has at least two parts: the code {function definitions)
and the data (variables and constants). As a program runs, it refers to elements of
the code or the data by their addresses. These addresses can be stored in pointer
variables.

Pointer variables can fit into 16 bits or 32 bits, depending on the distance of the
object to which they refer.

31

32 Advanced Programming Techniques

2. 1. 1 Pointers and 64K Segments

A 16-bit pointer can address
up to 65,536 /ocations.

IBM personal computers and compatibles use the Intel® 8086, 80186, 80286, or
80386 processors (collectively called the 80x86 family). These processors have a
"segmented" architecture, which means they all have a mode that treats memory
as a series of segments, each of which occupies up to 64K of memory. An offset
from the base of the segment allows you to access information within a given seg­
ment. Moving to a new segment requires additional machine code.

The 64K limit is necessary because the 80x86 registers are 16 bits (2 bytes) wide.
A single register can address only 65,536 (64K) unique memory locations.

A pointer variable that fully specifies a memory address needs 16 bits for the seg­
ment location and another 16 bits for the offset within the segment, a total of 32
bits. However, if you have several variables in the same general area, your pro­
gram can set the segment register once and treat the pointers as smaller 16-bit
quantities.

The 80x86 register CS holds the base for the code segment; the register DS holds
the base for the data segment. Two other segment registers are available: the
stack segment register (SS) and the extra segment register (ES). (The 80386 has
additional segment registers: FS and GS.)

2. 1.2 Near Pointers
If you don't explicitly specify a memory model, Microsoft C defaults to the small
model, which allots up to 64K for the code and another 64K for the data (see
Figure 2.1).

Available memory

64K 64K unused

Code Data
segment segment

Figure 2.1 Anatomy of a Small-Model Program

When a small-model program runs, the CS and DS segment registers never
change. All code pointers and all data pointers contain 16 bits because they
remain within the 64K range.

Managing Memory 33

These 16-bit pointers to objects within a single 64K segment are called "near
pointers." Accessing a near object is called "near addressing."

2. 1. 3 Far Pointers

Far pointers can address
any location, but they

are bigger and slower.

If your program needs more than 64K for code or data, at least some of the point­
ers must specify the memory segment, which means these pointers occupy 32
bits instead of 16 bits.

These larger 32-bit pointers that can point anywhere in memory are called "far
pointers." Accessing a far object is called "far addressing."

Far addressing has the advantage that your program can address any available
memory location-up to 640K in DOS or several megabytes in OS/2. The dis­
advantages of the larger far pointers is that they take up more memory (four
bytes instead of two) and that any use of the pointers (assigning, modifying, or
otherwise accessing values) takes more time.

Allowing either code or data to expand beyond 64K makes your programs larger
and slower.

2.1.4 Huge Pointers
A third type of pointer in Microsoft C is the "huge" pointer, which applies only
to data pointers. Code pointers cannot be declared as huge.

A huge address is similar to a far address in that both contain 32 bits, made up of
a segment value and an offset value. They differ only in the way pointer arith­
metic is performed.

For far pointers, Microsoft C assumes that code and data objects lie completely
within the segment in which they start, so pointer arithmetic operates only on the
offset portion of the address. Limiting the size of any single item to 64K makes
pointer arithmetic faster.

Huge pointers overcome this size limitation; pointer arithmetic is performed on
all 32 bits of the data item's address, thus allowing data items referenced by huge
pointers to span more than one segment. In this code fragment,

int _huge *hp;
int far *fp;

hp++;
fp++;

both hp and fp are incremented. The huge pointer is incremented as a 32-bit
value that represents the combined segment and offset. Only the offset part of the
far pointer (a 16-bit value) is incremented.

34 Advanced Programming Techniques

Extending the size of pointer arithmetic from 16 to 32 bits causes such arithmetic
to execute more slowly. You gain the use of larger arrays by paying a price in ex­
ecution speed.

2. 1. 5 Based Addressing
When you declare near, far, and huge variables, the Microsoft C compiler and
linker autom~tically manage details such as allocating memory and keeping track
of segments.

A "based pointer" is a fourth kind of pointer that operates as a 16-bit offset from
a base that you specify. In this respect, based addressing differs from near, far, or
huge addressing; you're responsible for naming the base, instead ofletting the
compiler decide.

Based pointers are new to version 6.0 of Microsoft C. They are explained in
more detail in Section 2.5, "Using Based Variables."

2.2 Selecting a Standard Memory Model

A standard memory
model assumes all pointers

are the same size.

If you want to choose one size for all pointers, there's no need to declare each
variable as near or far. Instead, you select a standard memory model and your
choice applies to all variables in the program.

One advantage of using standard memory models is simplicity. You specify the
way the compiler allocates storage for code and data only once.

Another advantage is that the standard memory models do not require the use of
Microsoft-specific keywords such as _near and _far, so they are best for writing
code that is portable to other (non-DOS) systems.

The disadvantage of standard memory models is that, because they make glo­
bal assumptions about the environment, they do not always produce the most
efficient code.

Managing Memory 35

2.2. 1 The Six Standard Memory Models
The six Microsoft C memory models are shown in Table 2.1.

Table 2.1 Memory Models

Maximum Total Memory

Model Code Data Data Arrays

Tiny <64K <64K <64K

Small 64K 64K 64K

Medium No limit 64K 64K

Compact 64K No limit 64K

Large No limit No limit 64K

Huge No limit No limit No limit

The SETUP program creates the libraries that support the six standard memory
models.

When you choose one of the standard memory models, the compiler inserts the
name of the corresponding C run-time library in the object file so the linker
chooses it automatically. Each memory model has its own library, except for the
huge memory model (which uses the large-model library) and the tiny model
(which uses the small-model library).

2.2.2 Limitations on Code Size and Data Size
When writing a program in Microsoft C, keep in mind two limitations that apply
to all six memory models:

• No single source module can generate 64K or more of code. You must break
large programs into modules and link their individual .OBJ files to create the
.EXE file.

• No single data item can exceed 64K unless it appears in a huge-model pro­
gram or it has been declared with the _huge keyword.

36 Advanced Programming Techniques

2.2.3 The Tiny Memory Model
The tiny memory model is new to Microsoft C. It resembles the small model
with three exceptions:

• The tiny model cannot exceed 64K per program (including both code and
data). A small-model program, on the other hand, can occupy up to 128K:
64K for code and 64K for data.

• The tiny model produces .COM, rather than .EXE, files. To produce .COM
files, compile with the /AT option. Then link with the /TINY option and link
in CRTCOM.OBJ.

• The tiny model applies to DOS only; it is not available in OS/2.

Although the tiny model imposes the most severe limits on code and data size, it
produces the smallest programs. The tiny memory model only offers a load-time
speed advantage over the small model; they both produce the fastest programs.

2.2.4 The Huge Memory Model

The huge model lifts
the limits on arrays.

The huge memory model is nearly identical to the large model. The only differ­
ence is that the huge model permits individual arrays to exceed 64K in size. For
example, an int uses two bytes, so an array of 40,000 integers, occupying 80,000
bytes of memory, would be permitted in the huge model. All other models limit
each array, structure, or other data object to no more than 64K.

NOTE Automatic arrays cannot be declared huge. Only static arrays and arrays occupying
memory allocated by the ha/Joe function can be huge.

Although the huge model lifts the limits on arrays, some size restrictions do
apply. To maintain efficient addressing, no individual array element is allowed to
cross a segment boundary. This has the following implications:

• No single element of an array can be larger than 64K. An array can be larger
than 64K, but its individual elements cannot.

• For any array larger than 128K, all elements must have a size in bytes equal
to a power of 2: 2 bytes, 4 bytes, 8 bytes, 16 bytes, and so on. If the array is
128K or smaller, its elements can be any size, up to and including 64K.

Pointer arithmetic changes within the huge model, as well. In particular, the
sizeof operator may return an incorrect value. The ANSI draft standard for C de­
fines the value returned by sizeofto be of type size_t (which, in Microsoft C, is

Managing Memory 37

an unsigned int). The size in bytes of a huge array is an unsigned long value,
however. To find the correct value, you must use a type cast:

(unsigned longlsizeof(monster_array)

Similarly, the C language defines the result of subtracting two pointers as
ptrdiff _t (a signed int in Microsoft C). Subtracting two huge pointers will yield
a long value. Microsoft C gives the correct result with the following type cast:

(long)(ptrl_huge - ptrZ_huge)

When you select huge model, all extern arrays are treated as _huge. Operations
on data declared as _huge can be less efficient than the same operations on data
declared as far.

2.2.5 Null Pointers

There can be problems in
models with different sizes
of code and data pointers.

Within the medium and compact models, code pointers and data pointers differ
in size: one is 16 bits wide and the other is 32 bits wide. When using these
memory models, you should be careful in your use of the manifest constant
NULL.

NULL represents a null data pointer. The C include files define it as

#define NULL ((void*) 0)

In memory models where data pointers have the same size as code pointers, the
actual size of a null pointer doesn't matter. In memory models where code and
data pointers are different sizes, problems can occur. Consider this example:

void main()
{

fun cl (NULL) ;
funcZ(NULL) ;

funcl(char *dp)
I

func2(char (*fp)(void l)
{

38 Advanced Programming Techniques

In the absence of function prototypes for fun c 1 and fun c 2, the compiler al­
ways assumes that NULL refers to data and not code.

The example above works correctly in tiny, small, large, and huge models be­
cause, in those models, a data pointer is the same size as a code pointer. Under
medium or compact model, however, ma i n passes NULL to fun c 2 as a null
data pointer rather than as a null code pointer (a pointer to a function), which
means the pointer is the wrong size.

To ensure that your code works properly in all models, declare each function
with a prototype. For example, before main, include these two lines:

int funcl(char *dp);
int func2(char (*fp)(void));

If you add these prototypes to the example, the code works properly in all mem­
ory models. Prototypes force the compiler to coerce code pointers to the correct
size. Prototypes also enable strong type-checking of parameters.

2.2. 6 Specifying a Memory Model
If you do not specify a memory model, Microsoft C defaults to the small model,
which is adequate for many small to mid-sized programs.

You can select a memory model from the Programmer's W orkBench or from the
command line.

Selecting from within PWB
If you're compiling from the Programmer's WorkBench, open the Options menu
and choose C Global Build Options. The available memory models appear in the
upper left comer. Choose one of the six standard models or choose Customized
and type in the options for a customized model.

Selecting from the Command Line
You can choose a memory model by including an option on the command line.
For example, to compile CLICK.Casa compact-model program, type this:

CL I AC CLICK. C

The /AC option selects the compact memory model. The six options and four
libraries are listed below:

Option

/AT

/AS

Memory Model: Library

Tiny Model: SLIBCxx.LTB (plus CRTCOM.OBJ)

Small Model: SLIBCxx.LIB

/AM

/AC

/AL

/AH

Managing Memory 39

Medium Model: MLIBCxx.LIB

Compact Model: CLIBCxx.LIB

Large Model: LLIBCxx.LIB

Huge Model: LLIBCxx.LIB

2.3 Mixing Memory Models

A mixed memory model lets
you mix near and far pointers.

In standard memory models, explained above, all data pointers are the same size
and all code pointers are the same size.

A mixed memory model selectively combines different types of pointers within
the same program. A mixed model extends the limits of a given memory model
while retaining its benefits.

For example, imagine a programming situation where you add an array to a
small-model program, pushing the data segment past the 64K limit.

You could solve the problem by moving up from the small to the compact
memory model. Doing so would bump all data pointers from two to four bytes.
The .EXE file would grow accordingly. Execution time would slow.

A second and perhaps better solution is to stay within the standard small memory
model, which uses near pointers, but to declare the new array as far. You mix
near pointers and far pointers, creating a mixed model.

Microsoft C lets you override the standard addressing convention for a given
memory model by specifying that certain items are_ near, _far,_ huge, or
_based. These keywords are not a standard part of the C language; they are
Microsoft extensions, meaningful only on systems that use 80x86 microproces­
sors. Using these keywords may affect the portability of your code.

NOTE Previous versions of the Microsoft C Compiler accepted the keywords near, tar,
and huge without an initial underscore. Since the ANSI draft standard for C permits com­
piler implementors to reserve identifiers that begin with underscores, an underscore was
added to these keywords to mark them as Microsoft-specific. To maintain compatibility
with existing source code, the compiler still recognizes the obsolescent versions of these
keywords.

You can compile a program in the small model, for example, but declare acer­
tain array to be _far. At run time, the address of that array occupies four bytes.
The program may slow slightly when accessing items in that particular far array,
but throughout the rest of the program, all addressing would be near. Note that all
pointers to elements of an array declared as _far must also be declared as _far.

40 Advanced Programming Techniques

Table 2.2 lists the effects of these keywords on data pointers, code pointers, and
pointer arithmetic.

Table 2.2

Keyword

near

far

_huge

based

2.3.1 Pointer Problems

Addressing Declared with Microsoft Keywords

Data

Data reside in default
data segment; 16-bit
addresses

Data can be anywhere
in memory, not neces­
sarily in the default
data segment; 32-bit
addresses

Data can be anywhere
in memory, not neces­
sarily in the default
data segment. In­
dividual data items
(arrays) can exceed
64K in size; 32-bit
addresses

Data can be anywhere
in memory, not neces­
sarily in the default
data segment; 16-bit
addresses plus a
known base provide
the range of 32-bit
addresses

Code

Functions reside in
current code segment;
16-bit addresses

Functions can be
called from anywhere
in memory; 32-bit
addresses

Not applicable;
code cannot be
declared_ huge

Not applicable;
code cannot be
declared based

Arithmetic

16 bits

16 bits

32 bits
(data only)

16 bits
(data only)

When you declare items to be _near, _far, _huge, or _based, you can link with a
standard run-time library. Be aware, however, that in some cases, the modified
pointers will be incompatible with standard library functions. Watch for these
problems that affect pointers:

Managing Memory 41

• A library function that expects a 16-bit pointer as an argument will not func­
tion properly with modified variables that occupy 32 bits. In other words, you
can cast a near pointer to a far pointer, because it adds the segment value and
maintains the integrity of the address. If you cast a far pointer to near, how­
ever, the compiler generates a warning message because the offset may not
lie within the default data segment, in which case the original far address is
irretrievably lost.

• A library function that returns a pointer will return a pointer of the default
size for the memory model. This is only a problem if you are assigning the re­
turn value to a pointer of a smaller size. For example, there may be difficul­
ties if you compile with a model that selects far data pointers, but you have
explicitly declared the variable to receive the return value _near.

This warning does not apply to all functions. See Section B.2.8 in Appendix
B for a list of model-independent string and memory functions such as
_ fstrcat, the far version of strcat.

• Based pointers pose a special problem. Based pointers are passed to other
functions as is (without normalization). Certain functions expect to receive
based pointers, but most do not. Therefore, in most cases, you must either ex­
plicitly cast a based pointer to a far pointer or make sure that all functions that
receive based pointers are prototyped.

Some run-time library functions support near, far, huge, and based variables. For
example, halloc allocates memory for a huge data array.

You can always pass the value (but not the address) of a far item to a small­
model library routine. For example,

I* Compile in small model */
#include <stdio.h>
long _far time_val;

void main()
{

time(&time_val);
printf("%ld\n", time val);

I* Illegal far address*/
I* Legal value */

When you use a mixed memory model, you should include function prototypes
with argument-type lists to ensure that all pointer arguments are passed to func­
tions correctly.

42 Advanced Programming Techniques

2.3.2 Declaring Near, Far, Huge, and Based Variables
The_ near, _far,_ huge, and_ based keywords modify either objects or pointers
to objects. When using them to declare variables, keep these rules in mind:

• The keyword always modifies the object or pointer immediately to its right.
In complex declarations, think of the _far keyword and the item to its right as
being a single unit. For example, in the case of the declaration

char _far* _near *p;

p is a near pointer to a far pointer to char, which resides in the default data
segment for the memory model being used.

By contrast, the declaration

char _far* _near p;

is a far pointer to char that will always be stored in DGROUP, regardless of
the memory model being used.

• If the item immediately to the right of the keyword is an identifier, the key­
word determines whether the item will be allocated in the default data seg­
ment (_near) or a separate data segment (_far,_ huge, or _based). For
example,

char_fara;

allocates a as an item of type char with a _far address.

• If the item immediately to the right of the keyword is a pointer, the keyword
determines whether the pointer will hold a near address (16 bits), a based
address (16 bits), a far address (32 bits), or a huge address (also 32 bits). For
example,

char _huge *p;

allocates p as a huge pointer (32 bits) to an item of type char. Any arith­
metic performed on the huge pointer p will affect all 32 bits. That is, the in­
struction p++ increments the pointer as a 32-bit entity.

Managing Memory 43

2.3.3 Declaring Near and Far Functions
You cannot declare functions as _huge or_ based. The rules for using the_ near
and _far keywords for functions are similar to those for using them with data:

• The keyword always modifies the function or pointer immediately to its right.

• If the item immediately to the right of the keyword is a function, the keyword
determines whether the function will be allocated as near or far. For example,

char _far fun();

defines fun as a function with a 32-bit address that returns a char. The
function may be located in near memory or far memory, but it is called with
the full 32-bit address. The _far keyword applies to the function, not to the
return type.

• If the item immediately to the right of the keyword is a pointer to a function,
the keyword determines whether the function will be called using a near
(16-bit) or far (32-bit) address. For example,

char (_far *pfun) () ;

defines pf u n as a far pointer (32 bits) to a function returning type char.

• Function declarations must match function definitions.

• The huge and based keywords do not apply to functions. That is, a func­
tion cannot be huge (larger than 64K) or based. A function can return a huge
data pointer to the calling function. A function can return a based pointer
unless it is a pointer based on _self (see Section 2.5.2, "Declaring Based
Variables").

The example below declares fun 1 as a far function returning type char:

char
ch a r
I

far funl(void);
far fun(void)

I* small model */

44 Advanced Programming Techniques

Here, the fun 2 function is a near function that returns a far pointer to
type char:

char
char
{

far * near fun2() ;
far * near fun()

!* large model */

The example below declares pf u n as a far pointer to a function that has an int
return type, assigns the address of printf to pf u n, and prints "Hello world."
twice.

I* Compile in medium, large, or huge model */

#include <stdio.h>
int (_far *pfun)(char* ...);

void main()
{

pfun ~ printf;
pfun("Hello world.\n") ;
(*pfun)("Hello world.\n");

2.3.4 Pointer Conversions
Passing near or far pointers as arguments to functions can cause automatic con­
versions in the size of the pointer argument. Passing a pointer to an unprototyped
function forces the pointer size to the larger of the following two sizes:

• The default pointer size for that type, as defined by the memory model
selected during compilation.

For example, in medium-model programs, data pointer arguments are near by
default, and code pointer arguments are far by default.

• The size of the type of the argument.

Note that if you supply a based pointer as an argument to a function and do not
specifically cast it to a far pointer type, a 16-bit offset from the base segment is
passed.

Function prototypes prevent
problems that may occur in

mixed memory models.

Managing Memory 45

If you provide a function prototype with complete argument types, the compiler
performs type-checking and enforces the conversion of actual arguments to the
declared type of the corresponding formal argument. However, if no declaration
is present or the argument-type list is empty, the compiler will convert nonbased
pointer arguments automatically to the default type or the type of the argument,
whichever is larger. To avoid mismatched arguments, always use a prototype
with the argument types.

For example, the following program produces unexpected results in compact­
model, large-model, or huge-model programs.

void main()
I

int near *x;
char far *y;
int z ~ l;

test_fun(x, y, z); /* x is coerced to far
pointer in compact,
large, or huge model */

int test_fun(int _near *ptrl, char far *ptr2, int a)
{

printf("Value of a ~ %d\n", al;

If the preceding example is compiled as a tiny, small, or medium program, the
size of x is 16 bits, the size of y is 32 bits, and the value printed for a is 1.

However, if the example is compiled in compact, large, or huge model, both x
and y are automatically converted to far pointers when they are passed to
test_ fun. Since pt r 1, the first parameter of test_ fun, is defined as a
near pointer argument, it takes only 16 bits of the 32 bits passed to it. The next
parameter, pt r 2, takes the remaining 16 bits passed to pt r 1, plus 16 bits of
the 32 bits passed to it. Finally, the third parameter, a, takes the leftover 16 bits
from pt r2, instead of the value of z in the main function.

This shifting process does not generate an error message, because both the func­
tion call and the function definition are legal. In this case the program does
not work as intended, however, since the value assigned to a is not the value
intended.

46 Advanced Programming Techniques

To pass pt r 1 as a near pointer, you should include a function prototype that
specifically declares this argument for test_ fun as a near pointer, as shown
below:

/*First, prototype test_fun so the compiler
* knows in advance about the near pointer argument:
*I

int test_fun (int _near*, char far*, int);

main ()
{

int _near *x;
char _far *y;
int z ~ 1;

test_ fun x' y' z) ; I* now, x is not coerced
* to a far pointer; it is
* passed as a near pointer,
* no matter which memory
* model is used
*I

int test_fun (int near *ptrl, char far *ptr2, int a)
{

printf ("Value of a ~ %d\n", a) ;

2.4 Customizing Memory Models

In a customized model,
you select the size of code

pointers and data pointers.

A third way to manage memory is to combine different features from standard
memory models to create your own customized memory model. You should have
a thorough understanding of C memory models and the architecture of 80x86 pro­
cessors before creating your own nonstandard memory models.

The I Astring option lets you change the attributes of the standard memory mod­
els to create your own memory models. The three letters in string correspond to
the code pointer size, the data pointer size, and the stack and data segment setup,
respectively. Because the letter allowed in each field is unique to that field, you
can give the letters in any order after /A. All three letters must be present.

The standard memory-model options (/AT, /AS, /AM, /AC, /AL, and/AH) can
be specified in the I Astring form. As an example of how to construct memory
models, the standard memory-model options are listed below with their /Astring
equivalents:

Standard

/AT

/AS

/AM

/AC

/AL

/AH

Custom Equivalent

/Asnd

/Asnd

/Alnd

/Asfd

/Alfd

/Alhd

Managing Memory 47

For example, you might want to create a huge-compact model. This model would
allow huge data items but only one code segment. The option for specifying this
model would be /Ashd.

NOTE Tiny model is identical to small model except that it causes the linker to search for
CRTCOM.LIB. The executable file generated when you specify tiny model is a .COM file
rather than a .EXE.

2.4.1 Setting a Size for Code Pointers
Within a custom memory model, you choose whether code pointers are short or
long:

Option

/As.xx

/Al.xx

Size

Short (near) code pointers

Long (far) code pointers

The /As (short) option tells the compiler to generate near 16-bit pointers and
addresses for all functions. This is the default for tiny-, small-, and compact­
model programs.

The /Al (long) option means that far 32-bit pointers and addresses are used to
address all functions. Far pointers are the default for medium-, large-, and huge­
model programs.

48 Advanced Programming Techniques

2.4.2 Setting a Size for Data Pointers
Data pointers can be near, far, or huge:

Option

!Axnx

/Arlx

/A.xhx

Size

Near data pointers

Far data pointers

Huge data pointers

The /An (near) option tells the compiler to use 16-bit pointers and addresses for
all data. This is the default for tiny-, small-, and medium-model programs.

The /Af (far) option specifies that all data pointers and addresses are 32 bits. This
is the default for compact- and large-model programs.

The /Ah (huge) option specifies that all data pointers and addresses are far (32-
bit) and that arrays are permitted to extend beyond a 64K segment. This is the
default for huge-model programs.

With far data pointers, no single data item can be larger than a segment (64K) be­
cause address arithmetic is performed only on 16 bits (the offset portion) of the
address. When huge data pointers are used, individual data items can be larger
than a segment (64K) because address arithmetic is performed on both the seg­
ment and the offset.

2.4.3 Setting Up Segments
Within a customized model, you can choose to make the stack segment (SS)
equal the data segment (DS), in which case they overlap:

Option

/A.xxd

/A[xx]u

/A[xx]w

Effect

SS ==DS

SS != DS; DS reloaded on function entry

SS != DS; DS not reloaded on function entry

Segment Setup Option /Ad
The option /Ad tells the compiler that the segment addresses stored in the SS and
DS registers are equal. The stack segment and the default data segment are com­
bined into a single segment. This is the default for all standard-model programs.
In small- and medium-model programs, the stack plus all data must occupy less
than 64K; thus, any data item is accessed with only a 16-bit offset from the seg­
ment address in the SS and DS registers.

Managing Memory 49

In compact-, large-, and huge-model programs, initialized global and static data
are placed in the default data segment up to a certain threshold. The address of
this segment is stored in the DS and SS registers. All pointers to data, including
pointers to local data (the stack), are full 32-bit addresses. This is important to re­
member when passing pointers as arguments in multiple-segment programs. Al­
though you may have more than 64K of total data in these models, no more than
64K of data can occupy the default segment. The /Gt and /ND options control al­
location of items in the default data segment if a program exceeds this limit.

Segment Setup Option /Au
The option /Au tells the compiler that the stack segment does not necessarily
coincide with the data segment. In addition, it adds the _loadds attribute to all
functions within a module, forcing the compiler to generate code to load the DS
register with the correct value prior to entering the function body. Combine the
/ND option with /Au to name data segments other than the default. When /Au is
combined with /ND, the address in the DS register is saved upon entry to each
function, and the new DS value for the module in which the function was defined
is loaded into the register. The previous DS value is restored on exit from the
function. Therefore, only one data segment is accessible at any given time. The
IND option lets you combine these segments into a single segment.

If a standard memory-model option precedes it on the command line, the /Au op­
tion can be specified without any letters indicating data pointer or code pointer
sizes. The program uses a standard memory model, but different segments are set
up for the stack and data segments.

The /Au option is useful for OS/2 or Microsoft Windows dynamic-link libraries
(DLLs), since it forces DS to be loaded on entry to each function. It is also useful
for writing extensions to the Programmer's WorkBench. This is a costly opera­
tion, however, so consider using the /Aw option.

Segment Setup Option /Aw
The option /Aw, like /Au, causes the compiler to assume that the stack segment
is separate from the data segment. The compiler does not automatically load the
DS register at each function entry point. The /Aw option is useful in creating ap­
plications that interface with an operating system or with a program running at
the operating-system level. The operating system or the program running under
the operating system actually receives the data intended for the application pro­
gram and places that data in a segment; then the operating system or program
must load the DS register with the segment address for the application program.

As with the I Au option, the I Aw option can be specified without data pointer and
code pointer letters if a standard memory-model option precedes it on the com­
mand line. In such a case, the program uses the specified memory model just as
with I Au, but the DS register is not reloaded at each function entry point.

50 Advanced Programming Techniques

Even though I Au and I Aw indicate that the stack may be in a separate segment,
the stack's size is still fixed at the default size unless this is overridden with the
IF compiler option or the /STACK linker option.

The /Aw option is useful for writing OS/2 and Microsoft Windows dynamic-link
libraries (DLLs), but care must be taken when it is used. Declare all entry points
to the dynamic-link library as _loadds to force DS to be loaded on entry to the
function (exactly like the /Au option). The other functions will then be more effi­
cient, though, because they will not have to perform redundant loads of the DS
register. For example,

_export _loadds far pascal LibFunc(void)
{

Hel perFunc ();

HelperFunc(void)
{

The library entry point, Li bFunc, is declared as _loadds to force the DS regis­
ter to be loaded on entry. The function He l per Fun c, which is private to the
dynamic-link library, is declared as a normal C function. Since it cannot be
called from outside of the module, He l p e r Fun c does not need to reload DS.

If you choose one of the options that specifies that the stack segment is not equal
to the data segment (SS != DS), you cannot pass the address of frame variables
as arguments to functions that take near pointers. That is, in tiny, small, and
medium models, you cannot pass the address of a local variable (which is allo­
cated on the stack) as an argument, because the receiving function will assume
the pointer is relative to the data segment. However, the receiving function could
solve this problem by declaring the pointer to be the following:

based(_segname("_STACK"))

Another solution would be to cast the pointer to a far pointer in both locations as
follows:

/* Call func with an explicit cast to far */
func((char far *)frame_var);

void func(char far *formal_var

Managing Memory 51

2.4.4 Library Support for Customized Memory Models
Most C programs make function calls to the routines in the C run-time library.
When you write mixed-model programs, you are responsible for determining
which library (if any) is suitable for your program and for ensuring that the appro­
priate library is linked. Table 2.3 shows the libraries from which to extract the
start-up routine for each customized memory model.

Table 2.3 Start-Up Routines for Customized Memory Models

Memory-Model Option

/Asnx; /AS plus /Ax

/Asfx; /Ashx; /AC plus /Ax

/Alnx; /AM plus /Ax

From Library

/Alfx; /Alhx; /AL plus /Ax; /AH plus /Ax

SLIBCJLIB

CUB Cf LIB

MLIBCfLIB

LLIBCf.LIB

The /Ax option represents either /Au or /Aw. In the library names, f is either E
(emulator library), 7 (8087 /80287 library), or A (alternate math library).

2.4.5 Setting the Data Threshold

Option Effect

/Gt[number] Sets the threshold

The /Gt option causes all data items whose size is greater than to number bytes to
be allocated to a new data segment. When number is specified, it must follow the
/Gt option immediately, with no intervening spaces. When number is omitted, the
default threshold value is 256. When the /Gt option is omitted, the default thresh­
old value is 32,767.

The /Gt option applies only to compact-, large-, and huge-model programs, since
small- and medium-model programs have only one data segment. The option is
particularly useful with programs that have more than 64K of initialized static
and global data in small data items, because otherwise you run out of memory in
the default data segment and can't link the program. The /Gt option has no effect
on uninitialized global data.

52 Advanced Programming Techniques

2.4.6 Naming Modules and Segments

Option

/NM modulename

/NT textsegment

/ND datasegment

Effect

Names the module

Names the code segment

Names the data segment

"Module" is another name for an object file created by the C compiler from a
single source file. Every module has a name. The compiler uses this name in
error messages if problems are encountered during processing. The module name
is usually the same as the source-file name. You can change this name using the
/NM (name module) option. The new modulename can include any combination
of letters and digits. The space between /NM and module name is optional.

Every module has at least two segments: a code segment (sometimes called the
text segment) containing the program instructions, and a data segment containing
the program data.

The compiler normally creates the code and data segment names. The default
names depend on the memory model chosen for the program. For example, in
small-model programs the code segment is named _TEXT and the data segment
is named DATA.

Table 2.4 summarizes the naming conventions for code and data segments.

Table 2.4

Model

Tiny

Small

Medium

Compact

Large

Huge

Segment-Naming Conventions

Code Data

TEXT DATA

TEXT DATA

module TEXT DATA
TEXT DATA

module TEXT DATA

module TEXT DATA

Module

filename

filename

filename

filename

In memory models that contain multiple data segments (compact, large, and
huge),_ DATA is the name of the default data segment. Other data segments have
unique private names. You can override the default names with the options /NT
(name text) and /ND (name data).

Managing Memory 53

The /ND option is commonly used to create and compile modules that contain
data only. Such modules can be accessed from other parts of the program by de­
claring their variables as external.

If you change the name of the default data segment with /ND, your program
must load the DS register with the segment selector of your named data segment
before it accesses it. You must therefore compile your program either with the
/Astring form of the memory-model option and the /Au option for the segment
setup, or with the /A option for a standard memory model followed by /Au. For
example,

CL /AS /Au /ND DATAl PROGl.C

The /Au option forces the compiler to generate code to load DS with the correct
data-segment value on entry to the code.

All modules whose data segments have the same name have these segments com­
bined into a single segment named DAT A 1 at link time.

The functions in the small data model run-time libraries that rely on the default
data segment being named "_DATA" will fail if you use the /ND option to re­
name the default data segment. This restriction affects tiny-, small-, and medium­
model programs.

2.4. 7 Specifying Code and Data Segments
The following pragmas give you more control over the distribution of functions
and data:

• #pragma alloc _text (textsegment, function] [,function2] ...)

• #pragma same_seg (variablel[, variable2] ...)

The alloc _text pragma lets you name the segment in which particular functions
are allocated. The same_ seg pragma provides information the compiler can use
to generate better code by assuming that the specified variables are in the same
segment.

If you use overlays or swapping techniques to handle large programs, alloc _text
allows you to tune the contents of their code (text) segments for maximum effi­
ciency. The alloc _text pragma must appear before the definitions of any of the
specified functions and after the declarations of these functions. Functions refer­
enced in an alloc _text pragma should be defined in the same module as the
pragma. If this is not done, and an undefined function is later compiled into a
different code segment, the error may not be caught.

54 Advanced Programming Techniques

The same_seg pragma tells the compiler to assume that the specified external
variables are allocated in the same data segment. You are responsible for making
sure that these variables are put in the same data segment; one way to do this is
to specify the /ND option when you compile the program.

The same_ seg pragma must appear before a specified variable appears in the
executable code but after the variable is declared. Variables specified in a
same_seg pragma must be explicitly declared with extern storage class, and
they must either be explicitly declared with the _far keyword or assumed to be
far because the memory model is compact, large, or huge.

2.5 Using Based Variables
Whenever you declare a near, far, or huge data variable, the compiler handles the
details of where the pointer is stored and how memory is allocated.

With based variables, however, you name a base that specifies where in memory
the data resides. This section explains how and why to include based variables in
your programs.

2. 5. 1 New Keywords
The following keywords are new to version 6.0 of Microsoft C:

Keyword

_based(base-expression)

_segment

_segname("segmentname")

self

Use

Qualifies a declaration to indicate
that a variable is based. In the same
class as _near, _far, and _huge. It is
always followed by a base expression
in parentheses.

New data type that holds a memory
segment address. In the same class as
char, int, and float.

The name of the segment.

A base expression that names itself as
a base.

The base operator that combines a
segment and an offset to produce an
effective address.

Managing Memory 55

2.5.2 Declaring Based Variables
The based keyword is similar in most respects to the related keywords near
and -far. You can use it anywhere that near or far might appear. -- - -

The_ based keyword is always followed by a base in parentheses. For example,

char _based(segl) *bp

means that bp is a based pointer to char. In this example, the base is the
variable s e g 1.

There are several types of base expressions, which are explained below.

Variables and Pointers Based on a Segment Constant
One way to declare a based variable is to give it a segment constant as a base.
Four segments are predefined in Microsoft C:

Segment

CODE

CONST

DATA

STACK

Definition

The default code segment

The constant segment for strings such as
"This is a constant string."

The default data segment

The stack segment

The segname keyword marks the name of a segment. It is always followed by
parentheses and a string, as in the example below:

I* Compile in Small Model */
#include <stdio.h>
lfinclude <malloc.h>

char _based(_segname("_CODE")) mystring[J
int _based(_segname("_CODE")) ib - 12345;
void main()

"A code-based string.\n";

{

printf("%Fs %d", (char far *)mystring, ib);

The variable mys t r i n g is declared as an array of characters based in the code
segment. The variable i b is an integer (not a pointer) that is also based in the
code segment.

Note that the small-model version of printf would treat mys tr in g as a near
pointer. The F in the format specifier % Fs forces the function to treat it as a far
pointer and the cast to char _far* coerces the address to four bytes.

56 Advanced Programming Techniques

You can also name your own segments. The declaration of mys tr i n g might
look like this:

char _basedC_segname("MYSEGMENT")) mystring[J - "Another based string.\n";

In the example above, the compiler creates a new segment called MYS E GM ENT
and places the string there.

Pointers Based on a Segment Variable
The _segment keyword is a new primitive type that can contain the base value of
a segment. You can declare variables as type _segment, or you can coerce varia­
bles of other types to type _segment using standard C cast syntax. The key fea­
ture of variables of type _segment is that you can use them in the declaration of
other _based variables. The following examples illustrate how _segment works:

I* a_segment can contain a segment value*/
_segment a_segment;

I* The pointer based_on_segvar will always be dereferenced relative
* to a segment base of a_segment.
*I

char _based(a_segment) *based_on_segvar;

char near *near_ptr;
/*The pointer based_on_segvar will be dereferenced relative to the
*segment base of near_ptr (which is the current value of OS).
*I

char _based((_segment)near_ptr) *based_on_segvar;

char far *far_ptr;
I* A pointer based_on_segvar will be dereferenced relative to the
*segment base of far_ptr.
*I

char _based((_segment)far_ptr) *based_on_segvar;

Declaring variables as based on a segment variable allows you to group based
data in the same segment.

In the example below, s e g v a r is a variable of type _segment. The program re­
quests memory from the heap and bases a variable there.

/*Compile in Small Model */
lfinclude <malloc.h>
#include <stdio.h>
#include <string.h>

Managing Memory 57

_segment segvar;
char _based(segvar) *b_string;

void main()
I

if(Csegvar - _bheapseg(1000)) !- NULLSEG)
{

if((b_string -_bmalloc(segvar, 20)) !-_NULLOFF
{

_fstrcpy((char _far *)b_string, (char _far *)"This is a test.\n");
printf("%Fs", (char _far *)b __ string) ;
printf("Size - %d\n", sizeof b_string); /*Always 2 */
bfree(segvar, b_stri ng) ;

else
puts("bmalloc failed");

_bfreeseg(segvar);

else
puts("_bheapseg failed." l;

First, the program asks for 1,000 bytes in a new based heap segment:

if((segvar-_bheapseg(1000)) !-_NULLSEG)

On failure, the_ bheapseg function returns_ NULLSEG (null segment). Other­
wise, s e g var holds the valid address of a segment.

Next, the_ bmalloc function allocates 20 bytes of memory within the segment
base and assigns the offset to b_s tr in g:

if((b_string - bmalloc(segvar, 20)) !- _NULLOFF l

In this case, _ NULLOFF means "null offset" and indicates the failure of
_ bmalloc. If all is well, the program continues with this code:

_fstrcpy((char _far *)b_string, (char _far *)"This is a test.\n");
printf("%Fs", (char _far *)b_string);
printf("Size - %d\n", sizeof b_string); /*always 2 */

The standard strcpy function won't work because this is a small-model program
that expects all pointers to be near. The _fstrcpy function allows you to copy to a
far string. Then the string and its size are printed.

Finally, the offset memory and the segment memory are freed:

_bfree(segvar, b_string J;
_bfreeseg(segvar);

58 Advanced Programming Techniques

Pointers Based on a Pointer
A based pointer can use another pointer as its base. In the example below,
the variable i p is a pointer to an integer. It serves as the base for both b p
(a pointer to an integer) and cp (a pointer to a character).

NOTE Only pointer variables can be based on a pointer. Nonpointer variables (objects)
cannot be based on a pointer.

To find the actual address to which bp points, you take the address in its base
(i p) and add the value in b p. For example, if i p points to location Ox2345 and
bp holds a 3, then it points to Ox2348. Changing the value in the base immedi­
ately changes the addresses to which the based pointers point.

The following example illustrates pointers based on a pointer:

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <string.h>

int *ip;
int _basedCip) *bp;
char _basedCip) *cp;

void main()
{

int *meml, *mem2;

bp
cp

(void *)0;
(void *)2;

/* int pointer */
/* based on ip */

I* bp equals *(ip+0) */
/* cp equals *(ip+2) */

if(Cmeml ~ (int *)malloc(100)) !~NULL

if(Cmem2 ~(int *)malloc(100)) !~NULL

(

ip ~ meml; /* ip points to meml */
*bp ~ 5;
strcpy((char *)cp, "String stored in meml.");

ip = mem2; /* ip now points to mem2 */
*bp = 12345;

Managing Memory 59

strcpy((char *Jcp, "String stored in mem2." J;

ip = meml; /*point to meml */
/*which still holds previous values */
pr i n tf ("% s * b p= % i \ n" , (ch a r *Jc p, * b p J ;

ip = mem2; /* point to mem2 */
I* display the values there*/
printf("%s *bp= %i\n", (char *Jcp, *bp J;

free (mem2 J ;
free(meml) ;

else puts("Second malloc failed.");
else puts("First malloc failed.");

Two calls to malloc provide two sections of memory, whose addresses are stored
in the variables me m 1 and me m 2. When i p is assigned one of these addresses
(meml), the pointers based on i p point somewhere within that piece of mem­
ory. When i p is assigned the address in mem2, the effective addresses of bp
and c p also change.

Pointers Based on Void
A third way to declare a based pointer is to give it no base at all-to base it on
void. This creates a generic pointer that acts as an offset into a segment. Such a
based pointer can then be combined with a segment name to specify any address.

NOTE Only pointer variables can be based on void. Nonpointer variables (objects) cannot
be based on void.

To combine a segment and an offset, use the "base operator." It consists of a
colon and a greater-than symbol(:>). Place it between a segment value and an
offset as show in the syntax below:

segment: >offset

The address can be dereferenced with the indirection operator (*).

60 Advanced Programming Techniques

The program below reads the first 40 words of video memory and prints the char­
acter values. Within a text mode, the high byte contains the colors and other at­
tributes. The low byte contains the characters.

#include <malloc.h>
#include <stdio.h>
#include <conio.h>

_segment segvar = 0xB800; /* Substitute 0xB000 for Mono */
int based(void) *vp = 0;

void main()
{

int i, screen[40J;
for(i = 0; i < 40; i++, vp++
{

screen[i] = *(segvar:>vpl;

for(i = 0; i < 40; i++)
printf("%c", (charlscreen[i]);

The video segment for color text starts at OxB800. If you 're using a monochrome
monitor, substitute OxBOOO. The variable v p acts as a generic based pointer. To
read through video memory, combine the segment and offset and dereference the
pointer:

screen[i] = *(segvar:>vp);

In the example above, the value is stored in an array of integers. The character
values are then printed out:

for(i = 0; i < 40; i++)
printf("%c", (char)screen[i]);

Pointers Based on a Self Segment
Another way to declare a based pointer is to use the _self keyword cast to a seg­
ment value, as in the example below:

typedef struct tree TREE;

struct tree
I

I;

int name;
TREE _based((_segment)_self) *left;
TREE _based((_segment)_self) *right;

void main()
I

TREE based(_segname("MYSEGMENT")) tl;

Managing Memory 61

Any based declarations that are based on _self must apply to pointers only. Ordi­
nary data objects cannot be self-based.

The example above declares a structure called tree and then declares t 1 to
be such a structure. The pointers within the structure are self-based, meaning
they will point within the segment in which the tree structure is located. This is
useful when the entire tree would fit into a single based segment. Note that func­
tions cannot return pointers based on _self.

2.5.3 Advantages of Based Pointers

Based pointers are
small and flexible.

The advantage of near pointers is that they occupy only two bytes in memory.
The disadvantage is that they can only address the 65,536 locations in the default
data segment.

The advantage of far pointers is that they remove the addressing limit; they can
point to any address. The disadvantage is that they need twice as much memory
for each pointer: four bytes instead of two.

Based pointers are as small as near pointers but as flexible as far pointers, they
enjoy both of the benefits and neither of the drawbacks of the other pointers.
Like a near pointer, a based pointer occupies only two bytes. Like a far pointer, a
based pointer can point anywhere in memory. You must, however, provide some
extra information about where the base is.

Based pointers don't need the two extra bytes used by far pointers to name the
segment. When necessary, the Microsoft C compiler generates the code to switch
segments to the new base.

62 Advanced Programming Techniques

Based pointers can be
faster than far pointers.

Based pointers give
you assembler-level

access to memory.

If you write programs that use many far pointers, you may be able to save
memory by converting the four-byte far pointers to two-byte based pointers.

Near pointers always give you the fastest code. Far and huge pointers always
give you the slowest.

Based pointers lie somewhere in between. When a function accesses a group of
based pointers that have the same base, the extra segment register (ES) may be
loaded only once. If you enable full optimization and use the same base for your
based pointers, in many cases they will be faster than far pointers and nearly as
fast as near pointers.

Based pointers can give you access to the code, data, stack, or constant segments.
For example, if you want to use the small memory model, but the data requires
more than 64K, you can store some of the constant strings in the code segment
(instead of the constant segment).

Another benefit of based pointers is that you can swap data from disk to memory
or from one area of memory to another. If a series of variables has the same base,
you can easily move the block of memory around without having to reinitialize
the variables' address.

If you want to read from or write to areas such as video memory, ROM, or
the 1/0 areas, you can declare based pointers that access these sections of
memory.

Using the
In-Line Assembler

CHAPTER

This chapter explains how to use the Microsoft C in-line assembler. Assembly
language serves many purposes, such as improving program speed, reducing
memory needs, and controlling hardware. The in-line assembler lets you embed
assembly-language instructions directly in your C source programs without extra
assembly and link steps. The in-line assembler is built into the compiler-you
don't need a separate assembler such as the Microsoft Macro Assembler
(MASM).

3. 1 Advantages of In-Line Assembly
Because the in-line assembler doesn't require separate assembly and link steps, it
is more convenient than a separate assembler. In-line assembly code can use any
C variable or function name that is in scope, so it is easy to integrate it with your
program's C code. And because the assembly code can be mixed in-line with C
statements, it can do tasks that are cumbersome or impossible in C alone.

The uses of in-line assembly include

• Writing functions in assembly language

• Spot-optimizing speed-critical sections of code

• Calling DOS and BIOS routines with the INT instruction

• Creating TSR (terminate-and-stay-resident) code or handler routines that
require knowledge of processor states

In-line assembly is a special-purpose tool. If you plan to transport an application,
you'll probably want to place machine-specific code in a separate module. And
because the in-line assembler doesn't support all ofMASM's macro and data
directives, you may find it more convenient to use MASM for such modules.

63

64 Advanced Programming Techniques

3.2 The _asm Keyword

Braces can prevent ambiguity
and needless repetition.

The_ asm keyword invokes the in-line assembler and can appear wherever a C
statement is legal. It cannot appear by itself. It must be followed by an assembly
instruction, a group of instructions enclosed in braces, or, at the very least, an
empty pair of braces. The term"_ asm block" here refers to any instruction or
group of instructions, whether or not in braces.

Below is a simple _ asm block enclosed in braces. (The code prints the "beep"
character, ASCII 7.)

asm
{

mov ah, 2
mov dl' 7
int 2lh

Alternatively, you can put _asm in front of each assembly instruction:

asm mov ah, 2
asm mov dl, 7
asm int 2lh

Since the _asm keyword is a statement separator, you can also put assembly
instructions on the same line:

_asm mov ah, 2 _asm mov dl, 7 asm int 2lh

All three examples generate the same code, but the first style---enclosing the
asm block in braces-has some advantages. The braces clearly separate as­

sembly code from c code and avoid needless repetition of the - asm keyword.
Braces can also prevent ambiguities. If you want to put a C statement on the
same line as an asm block, you must enclose the block in braces. Without the
braces, the compiler cannot tell where assembly code stops and C statements
begin. Finally, since the text in braces has the same format as ordinary MASM
text, you can easily cut and paste text from existing MASM source files.

The braces enclosing an _ asm block don't affect variable scope, as do braces in
C. You can also nest_ asm blocks, but the nesting doesn't affect variable scope.

Using the In-Line Assembler 65

3.3 Using Assembly Language in asm Blocks
The in-line assembler has much in common with other assemblers. For example,
it accepts any expression that is legal in MASM, and it supports all 80286 and
80287 instructions. This section describes the use of assembly-language features
in asm blocks.

Instruction Set
The in-line assembler supports the full instruction set of the Intel 80286 and
80287 processors. It does not recognize 80386- and 80387-specific instructions.
To use 80286 or 80287 instructions, compile with the /02 option.

Expressions
In-line assembly code can use any MASM expression, that is, any combination
of operands and operators that evaluates to a single value or address.

Data Directives and Operators
Although an asm block can reference C data types and objects, it cannot define
data objects with MASM directives or operators. Specifically, you cannot use
the definition directives DB, DW, DD, DQ, DT, and DF, or the operators DUP or
THIS. Nor are MASM structures and records available. The in-line assembler
doesn't accept the directives STRUC, RECORD, WIDTH, or MASK.

EVEN and ALIGN Directives
While the in-line assembler doesn't support most MASM directives, it does sup­
port EVEN and ALIGN. These directives put NOP (no operation) instructions in
the assembly code as needed to align labels to specific boundaries. This makes
instruction-fetch operations more efficient for some processors (not including
eight-bit processors such as the Intel 8088).

Macros
The in-line assembler is not a macro assembler. You cannot use MASM macro
directives (MACRO, REPT, IRC, IRP, and ENDM) or macro operators (<>, !, &,
% , and .TYPE). An_ asm block can use C preprocessor directives, however. See
Section 3 .4, "Using C in _ asm Blocks" for more information.

66 Advanced Programming Techniques

Segment References
You must refer to segments by register rather than by name (the segment name
_TEXT is invalid, for instance). Segment overrides must use the register ex­
plicitly, as in ES:[BX].

Type and Variable Sizes
The LENGTH, SIZE, and TYPE operators have a limited meaning in in-line
assembly. They cannot be used at all with the DUP operator (because you can­
not define data with MASM directives or operators). But you can use them to
find the size of C variables or types:

• The LENGTH operator can return the number of elements in an array. It
returns the value 1 for nonarray variables.

• The SIZE operator can return the size of a C variable. A variable's size is the
product of its LENGTH and TYPE.

• The TYPE operator can return the size of a C type or variable. If the variable
is an array, TYPE returns the size of a single element of the array.

For instance, if your program has an eight-element int array,

int arr[8J;

the following C and assembly expressions yield the size of arr and its
elements:

_asm

LENGTH arr

SIZE arr

TYPE arr

c

sizeof(ar)/sizeof(arr[O])

sizeof (arr)

size14(arr[O])

Size

8

16

2

In-line assembly code can be
debugged with Code View.

Using the In-Line Assembler 67

Comments
Instructions in an _asm block can use assembly-language comments:

_asm mov ax, offset buff ; Load address of buff

Because C macros expand into a single logical line, avoid using assembly­
language comments in macros (see Section 3.8, "Defining _asm Blocks as C
Macros"). An _asm block can also contain C-style comments, as noted below.

The emit Pseudoinstruction
The _emit pseudoinstruction is similar to the DB directive of MASM. It allows
you to define a single immediate byte at the current location in the current text
segment. However, _emit can define only one byte at a time, and it can only de­
fine bytes in the text segment. It uses the same syntax as the INT instruction.

One use for_ emit is to define 80386-specific instructions, which the in-line
assembler does not support. The following fragment, for instance, defines the
80386 CWDE instruction:

I* Assumes 16-bit mode */
#define cwde asm emit 0x66 asm emit 0x98

asm
cwde
I

Debugging and Listings
Programs containing in-line assembly code can be debugged with the Code View
debugger, assuming you compile with the /Zi option.

Within Code View, you can set breakpoints on both C and assembly-language
lines. If you enable mixed assembly and C mode, you can display both the source
and disassembled form of the assembly code.

Note that putting multiple assembly instructions or C statements on one line can
hamper debugging with Code View. In source mode, the Code View debugger lets
you set breakpoints on a single line but not on individual statements on the same
line. The same principle applies to an_ asm block defined as a C macro, which
expands to a single logical line.

If you create a mixed source and assembly listing with the /Fe compiler op-
tion, the listing contains both the source and assembly forms of each assembly­
language line. Macros are not expanded in listings, but they are expanded during
compilation.

See Chapter 9, "Debugging C Programs with Code View," for more information.

68 Advanced Programming Techniques

3.4 Using C in _asm Blocks
Because in-line assembly instructions can be mixed with C statements, they can
refer to C variables by name and use many other elements of C. An asm block
can use the following C language elements: -

• Symbols, including labels and variable and function names

• Constants, including symbolic constants and enum members

• Macros and preprocessor directives

• Comments (both I* *I and I I)

• Type names (wherever a MASM type would be legal)

• typedef names, generally used with operators such as PTR and TYPE or to
specify structure or union members

Within an_ asm block, you can specify integer constants with either C notation
or assembler radix notation (OxlOO and lOOh are equivalent, for instance). This
allows you to define (using #define) a constant in C, and use it in both C and as­
sembly portions of the program. You can also specify constants in octal by pre­
ceding them with a 0. For example, 0777 specifies an octal constant.

3.4. 1 Using Operators
An_ asm block cannot use C-specific operators, such as the << operator. How­
ever, operators shared by C and MASM, such as the * operator, are interpreted as
assembly-language operators. For instance, outside an _asm block, square brack­
ets ([]) are interpreted as enclosing array subscripts, which C automatically
scales to the size of an element in the array. Inside an _asm block, they are seen
as the MASM index operator, which yields an unscaled byte offset from any data
object or label (not just an array). The following code illustrates the difference:

int array[l0J;

asm mov array[6J, bx Store BX at array+6 (not scaled)

array[6J ~ 0; /* Store 0 at array+l2 (scaled) */

Using the In-Line Assembler 69

The first reference to array is not scaled, but the second is. Note that you can
use the TYPE operator to achieve scaling based on a constant. For instance, the
following statements are equivalent:

asm mov array[6 *TYPE int], 0 ; Store 0 at array+ 12

array[6] /* Store 0 at array + 12 */

3.4.2 Using C Symbols
An _ asm block can refer to any C symbol in scope where the block appears.
(C symbols are variable names, function names, and labels-in other words,
names that aren't symbolic constants or enum members.)

A few restrictions apply to the use of C symbols:

• Each assembly-language statement can contain only one C symbol. Multiple
symbols can appear in the same assembly instruction only with LENGTH,
TYPE, and SIZE expressions.

• Functions referenced in an_ asm block must be declared (prototyped) earlier
in the program. Otherwise, the compiler cannot distinguish between function
names and labels in the asm block.

• An_ asm block cannot use any C symbols with the same spelling as MASM
reserved words (regardless of case). MASM reserved words include instruc­
tion names such as PUSH and register names such as SI.

• Structure and union tags are not recognized in _ asm blocks.

3.4.3 Accessing C Data
A great convenience of in-line assembly is the ability to refer to C variables by
name. An _asm block can refer to any symbols-including variable names-that
are in scope where the block appears. For instance, if the C variable var is in
scope, the instruction

_asm mov ax, var

stores the value of v a r in AX.

70 Advanced Programming Techniques

If a structure or union member has a unique name, an _ asm block can refer to it
using only the member name, without specifying the C variable or typedef name
before the period(.) operator. If the member name is not unique, however, you
must place a variable or typedef name immediately before the period(.) opera­
tor. For instance, the following structure types share same name as their mem­
ber name:

struct first_type
{

} ;

char *weasel;
int same_name;

struct second_type
{

} ;

int wanton;
long same_name;

If you declare variables with the types

struct fi rst_type hal;
struct second_type oat;

all references to the member same_name must use the variable name, because
s am e_n am e is not unique. But the member weasel has a unique name, so
you can refer to it using only its member name:

asm
{

mov bx, OFFSET hal
mov ex, [bxJhal.same --name Must use 'ha l '
mov s i , [bxJ.weasel Can omit 'ha l '

Note that omitting the variable name is merely a coding convenience. The same
assembly instructions are generated whether or not it is present.

3.4.4 Writing Functions
If you write a function with in-line assembly code, it's a simple matter to pass ar­
guments to the function and return a value from it. The following examples com­
pare a function first written for a separate assembler and then rewritten for the
in-line assembler. The function, called power 2, receives two parameters, multi­
plying the first parameter by 2 to the power of the second parameter. Written for
a separate assembler, the function might look like this:

Function arguments are
usually passed on the stack.

Using the In-Line Assembler 71

POWER.ASM
Compute the power of an integer

PUBLIC _power2
TEXT SEGMENT WORD PUBLIC 'CODE'

_powerZ PROC

push bp
mov bp,

mov ax,
mov ex,
sh l ax,
pop bp
ret

_powerZ ENDP
TEXT ENDS

END

sp

[bp+4]
[bp+6]
cl

Save BP
Move SP into BP so we can refer

to arguments on the stack
Get first argument
Get second argument
AX = AX * (2 A CL)
Restore BP
Return with sum in AX

Since it's written for a separate assembler, the function requires a separate source
file and assembly and link steps. C function arguments usually are passed on the
stack, so this version of the power 2 function accesses its arguments by their
positions on the stack. (Note that the MODEL directive, available in MASM and
some other assemblers, also allows you to access stack arguments and local stack
variables by name.)

The POWER2.C program below writes the power2 function with in-line
assembly code:

/* POWER2.C */
#include <stdio.h>

int power2(int num, int power);

void main(void
{

printf("3 times 2 to the power of 5 is %d\n", \
power2(3, 5));

int power2(int num, int power)
{

asm

mov ax, num
mov ex, power
shl ax, cl

Get first argument
Get second argument
AX = AX * (2 to the power of CL)

/* Return with result in AX */

72 Advanced Programming Techniques

The in-line version of the power 2 function refers to its arguments by name and
appears in the same source file as the rest of the program. This version also re­
quires fewer assembly instructions. Since e automatically preserves BP, the
_asm block doesn't need to do so. It can also dispense with the RET instruction,
since the e part of the function performs the return.

Because the in-line version of power 2 doesn't execute a e return statement, it
causes a harmless warning if you compile at warning levels 2 or higher:

warning C4035: 'power2' : no return value

The function does return a value, but the compiler cannot tell that in the absence
of a return statement. Simply ignore the warning in this context.

3.5 Using and Preserving Registers

Don't use the _fastcall calling
convention for functions

with _asm blocks.

Functions return values in
the AX and OX registers.

In general, you should not assume that a register will have a given value when an
_ asm block begins. An_ asm block inherits whatever register values happen to
result from the normal flow of control.

If you use the _fastcall calling convention, the compiler passes function argu­
ments in registers instead of the stack. This can create problems in functions
with_ asm blocks, since a function has no way to tell which parameter is in
which register. If the function happens to receive a parameter in AX and imme­
diately stores something else in AX, the parameter is lost. In addition, you must
preserve the ex and ES registers in any function declared with _fastcall.

To avoid such register conflicts, don't use the _fastcall convention for functions
that contain an_ asm block. If you specify the _fastcall convention globally with
the /Gr compiler option, declare every function containing an_ asm block with
_ cdecl. (The_ cdecl attribute tells the compiler to use the normal e calling con­
vention for that function.) If you are not compiling with /Gr, avoid declaring the
function with the fastcall attribute.

As you may have noticed in the POWER2.e example in Section 3.4.4, the
powe r2 function doesn't preserve the value in the AX register. When you write
a function in assembly language, you don't need to preserve the AX, BX, ex,
DX, ES, and flags registers. However, you should preserve any other registers
you use (DI, SI, DS, SS, SP, and BP).

WARNING If your in-line assembly code changes the direction flag using the STD or GLD
instructions, you must restore the flag to its original value.

The POWER2.e example in Section 3.4.4 also shows that functions return values
in registers. This is true whether the function is written in assembly language or
ine.

Using the In-Line Assembler 73

If the return value is short (a char, int, or near pointer), it is stored in AX. The
POWER2.C example returned a value by terminating with the desired value
in AX.

If the return value is long, store the high word in DX and the low word in AX. To
return a longer value (such as a floating-point value), store the value in memory
and return a pointer to the value (in AX if near or in DX:AX if far).

Assembly instructions that appear in-line with C statements are free to alter the
AX, BX, CX, and DX registers. C doesn't expect these registers to be maintained
between statements, so you don't need to preserve them. The same is true of the
SI and DI registers, with some exceptions (see Section 3.9, "Optimizing"). You
should preserve the SP and BP registers unless you have some reason to change
them-to switch stacks, for instance.

3.6 Jumping to Labels

labels in _asm blocks
have function scope and

are not case sensitive.

Like an ordinary C label, a label in an _ asm block has scope throughout the func­
tion in which it is defined (not only in the block). Both assembly instructions and
C goto statements can jump to labels inside or outside the _ asm block.

Unlike C labels, labels defined in_ asm blocks are not case sensitive, even when
used in C statements. C labels are not case sensitive in an _ asm block, either.
(Outside an_ asm block, a C label is case sensitive as usual.) The following do­
nothing code shows all the permutations:

void func(void
{

goto C_Dest;
goto c_dest;

goto A_Dest;
goto a_dest;

asm
{

jmp c Dest
jmp c dest

jmp A Dest
jmp a de st

a dest:

C Dest:
return;

/* legal */
I* error *!

I* legal *I
I* legal *I

legal
legal

legal
legal

; - asm label

I* C label */

74 Advanced Programming Techniques

Don't use C library function names as labels in_ asm blocks. For instance, you
might be tempted to use ex i t as a label,

jne exit

exit:
; More _asm code follows

forgetting that exit is the name of a C library function. The code doesn't cause
a compiler error, but it might cause a jump to the exit function instead of the
desired location.

As in MASM programs, the dollar symbol ($) serves as the current location
counter-a label for the instruction currently being assembled. In _asm blocks,
its main use is to make long conditional jumps:

jne $+5 ; next instruction is 5 bytes long
jmp farl abel

$+5

farl abel:

3. 7 Calling C Functions
An _asm block can call C functions, including C library routines. The following
example calls the printflibrary routine:

#include <stdio.h>

char format[] - "%s %s\n";
char hello[] "Hello";
char world[] - "world";

void main(void)

{

asm
{

mov ax, offset world
push ax
mov ax, offset he 11 o
push ax
mov ax, offset format
push ax
ca 11 printf

Using the In-Line Assembler 75

Since function arguments are passed on the stack, you simply push the needed
arguments-string pointers, in the example above-before calling the function.
The arguments are pushed in reverse order, so they come off the stack in the
desired order. To emulate the C statement

printf(format, hello, world);

the example pushes pointers to wo r l d, he l l o, and format, in that order,
then calls printf.

3.8 Defining _asm Blocks as C Macros
C macros offer a convenient way to insert assembly code into C code, but they
demand extra care because a macro expands into a single logical line. To create
trouble-free macros, follow these rules:

• Enclose the asm block in braces.

• Put the_ asm keyword in front of each assembly instruction.

• Use old-style C comments (I* comment *I) instead of assembly-style
comments (; comment) or single-line C comments (I I comment).

To illustrate, the following example defines a simple macro:

#define BEEP asm
I* Beep sound */
{

asm mov ah, 2
asm mov dl , 7
asm int 2lh

At first glance, the last three_ asm keywords seem superfluous. They are needed,
however, because the macro expands into a single line:

asm /*Beep sound*/ { _asm mov ah, 2 _asm mov dl, 7 _asm int 2lh l

The third and fourth_ asm keywords are needed as statement separators. The
only statement separators recognized in_ asm blocks are the newline character
and asm keyword. And since a block defined as a macro is one logical line, you
must separate each instruction with_ asm.

The braces are essential as well. If you omit them, the compiler can be confused
by C statements on the same line to the right of the macro invocation. Without
the closing brace, the compiler cannot tell where assembly code stops, and it sees
C statements after the _ asm block as assembly instructions.

76 Advanced Programming Techniques

Use C comments in _asm
blocks written as macros.

An _asm block written as a C
macro can take arguments but

cannot return a value.

Assembly-style comments that start with a semicolon(;) continue to the end of
the line. This causes problems in macros because the compiler ignores everything
after the comment, all the way to the end of the logical line. The same is true of
single-line C comments (I I comment). To prevent errors, use old-style C com­
ments (/* comment *I) in _asm blocks defined as macros.

An _asm block written as a C macro can take arguments. Unlike an ordinary C
macro, however, an _asm macro cannot return a value. So you cannot use such
macros in C expressions.

Be careful not to invoke macros of this type indiscriminately. For instance, invok­
ing an assembly-language macro in a function declared with the _fastcall con­
vention may cause unexpected results. (See Section 3.5, "Using and Preserving
Registers.")

You can convert MASM Note that some MASM-style macros can be written as C macros. Below is a
macros to C macros. MASM macro that sets the video page to the value specified in the page

argument:

setpage MACRO page
mov ah, 5
mov al, page
int 10h
ENDM

The following code defines set page as a C macro:

Jfodefine setpage(page asm
{

asm mov ah, 5
asm mov al , page
asm int 10h

Both macros do the same job.

3.9 Optimizing
The presence of an _ asm block in a function affects optimization in a few differ­
ent ways. First, as you might expect, the compiler doesn't try to optimize the
_ asm block itself. What you write in assembly language is exactly what you get.

Second, the presence of an_ asm block affects register variable storage. Under
normal circumstances (unless you suppress optimization with the /Od option) the
compiler automatically stores variables in registers. This is not done, however, in
any function that contains an _asm block. To get register variable storage in such
a function, you must request it with the register keyword.

Using the In-Line Assembler 77

Since the compiler stores register variables in the SI and DI registers, these regis­
ters represent variables in functions that request register storage. The first eligible
variable is stored in SI and the second in DI. Preserve SI and DI in such functions
unless you want to change the register variables.

Keep in mind that the name of a variable declared with register translates
directly into a register reference (assuming a register is available for such use).
For instance, if you declare

register int sample;

and the variable s amp l e happens to be stored in SI, then the _ asm instruction

_asm mov ax, sample

is equivalent to

_asm mov ax, si

If you declare a variable with register and the compiler cannot store the variable
in a register, the compiler issues a warning to that effect at compile time. The so­
lution is to remove the register declaration from that variable.

Register variables form a slight exception to the general rule that an assembly­
language statement can contain no more than one C symbol. If one of the sym­
bols is a register variable, for example,

register int vl;
int v2;

then an instruction can use two C symbols, as in

mov vl, v2

Finally, the presence of in-line assembly code inhibits the following optimiza­
tions for the entire function in which the code appears:

• Loop (/OI)

• Global register allocation (/Oe)

• Global optimizations and common subexpressions (/Og)

These optimizations are suppressed no matter which compiler options you use.

Controlling
Floating-Point

Math Operations

CHAPTER

This chapter describes how to control the way your Microsoft C programs per­
form floating-point math operations. It describes the math packages that you
can include in C libraries when you run the SETUP program, then discusses
the options you can specify in the Programmer's WorkBench (PWB) or on the
CL command line to choose the appropriate library for linking and controlling
floating-point instructions.

This chapter also explains how to override floating-point options by changing li­
braries at link time, and how to control use of the Intel math coprocessor (80x87)
using the N087 environment variable.

4. 1 Declaring Floating-Point Types
Microsoft C supports three floating-point types that conform to the Institute of
Electrical and Electronics Engineers (IEEE) standard 754 format:

1. Type float, a 32-bit floating-point quantity

2. Type double, a 64-bit floating-point quantity

3. Type long double, an 80-bit floating-point quantity

You can declare variables as any of these types. You can also declare functions
that return any of these types.

79

BO Advanced Programming Techniques

4. 1. 1 Declaring Variables as Floating-Point Types
You can declare variables as float, double, or long double, depending on the
needs of your application. The principal differences between the three types are
the significance they can represent, the storage they require, and their range.
Table 4.1 shows the relationship between significance and storage requirements.

Table 4.1 Floating-Point Types

Type Significant Digits Number of Bytes

float 6-7 4

double 15-16 8

long double 19 10

Floating-point variables are represented by a mantissa, which contains the value
of the number, and an exponent, which contains the order of magnitude of the
number.

Table 4.2 shows the number of bits allocated to the mantissa and the exponent
for each floating-point type. The most-significant bit of any float, double, or
long double is always the sign bit. If it is 1, the number is considered negative;
otherwise, it is considered a positive number.

Table 4.2 Lengths of Exponents and Mantissas

Type Exponent Length Mantissa Length

float 8 bits 23 bits

double 11 bits 52 bits

long double 15 bits 64 bits

Because exponents are stored in an unsigned form, the exponent is biased by half
its possible value. For type float, the bias is 127; for type double, it is 1,023; for
type long double, it is 16,383. You can compute the actual exponent value by
subtracting the bias value from the exponent value.

The mantissa is stored as a binary fraction greater than or equal to 1 and less than
2. For types float and double, there is an implied leading 1 in the mantissa in the
most-significant bit position, so the mantissas are actually 24 and 53 bits long,
respectively, even though the most-significant bit is never stored in memory.

Instead of the storage method just described, the floating-point package can store
binary floating-point numbers as denormalized numbers. Denormalized numbers

Table 4.3

Type

float

double

long double

Controlling Floating-Point Math Operations 81

are nonzero floating-point numbers with reserved exponent values in which the
most-significant bit of the mantissa is zero. By using denormalized format, the
range of a floating-point number can be extended at the cost of precision. You
cannot control whether a floating-point number is represented in normalized or
denormalized form; the floating-point package determines the representation.
The floating-point packages never use denormalized form unless the exponent
becomes less than the minimum that can be represented in a normalized form.

Table 4.3 shows the minimum and maximum value you can store in variables of
each floating-point type. The values listed in this table apply only to normalized
floating-point numbers; denormalized floating-point numbers have a smaller min­
imum value. Note that numbers retained in 80x87 registers are always repre­
sented in 80-bit normal form; numbers can only be represented in denormal form
when stored in 32- or 64-bit floating-point variables (type float and type long).

Range of Floating-Point Types

Minimum Value

1.175494351 E - 38

2.2250738585072014 E- 308

3.362103143112093503 E- 4932

Maximum Value

3.402823466 E + 38

1.7976931348623158 E + 308

1.189731495357231765 E + 4932

If precision is less of a concern than storage, consider using type float for
floating-point variables. Conversely, if precision is the most important criterion,
use type long double.

Microsoft C observes Floating-point variables can be promoted to a type of greater significance (for
type-widening rules. example, from type float to type double). Promotion often occurs when you per­

form arithmetic on floating-point variables. This arithmetic is always done in as
high a degree of precision as the variable with the highest degree of precision.
For example, consider the following type declarations:

fl oat f _short;
double f_long;
long double f_longer;

f_short ~ f_short * f_long;

In the preceding example, the variable f _short is promoted to type double
and multiplied by f _ l on g; then the result is rounded to type float before being
assigned to f_short.

In the example below (which uses the declarations from the preceding example),
the arithmetic is done in float (32-bit) precision on the variables; the result is
then promoted to type long double.

f_longer ~ f_short * f_short;

82 Advanced Programming Techniques

4. 1.2 Declaring Functions that Return Floating-Point Types

You can write re-entrant
functions that return
floating-point types.

You can declare functions that return the floating-point types float, double, and
long double. Functions that return types float or double do not place their return
values in registers; they place their return values in a global location called the
floating-point accumulator (_ _fac).

When declaring a function as a floating-point type in a multithreaded program
for OS/2, you should use the _pascal keyword to specify the FORTRAN/Pascal
calling convention. Declaring the function as _pascal causes the return value to
be placed on the stack, rather than in the floating-point accumulator, _ _ fac.

Using the current thread's private stack to return values allows you to write
re-entrant functions by eliminating possible contention between threads for the
floating-point accumulator.

NOTE Functions that return type long double always place their return values on the
stack. You need not use the _pascal keyword with functions declared as long double.

4.2 C Run-Time Library Support
of Type long double

All of the Microsoft C run-time libraries support type long double. Each of the
normal floating-point math functions has a special version that supports type
long double. These functions have the same name as the functions that support
type float and type double, except that they end with l. For example, the function
that returns the absolute value of a variable of type float or type double is fabs.
The long double equivalent function is fabsl. The two exceptions to this rule are
the atold and strtodl functions. - -

4.3 Summary of Math Packages
The Microsoft C compiler offers a choice of the following three math packages
for handling floating-point operations:

1. Emulator (default)

2. Math coprocessor (a library that supports the Intel 80x87 family of math
coprocessors)

3. Alternate math

Controlling Floating-Point Math Operations 83

When you install Microsoft C, the SETUP program allows you to build com­
bined libraries. These libraries include the floating-point math library that you
choose. Any programs linked with that library use the math package included
in the library; you must use the appropriate PWB or CL option to make sure
that the library you want is used at link time.

The following descriptions of these math packages are designed to help you
choose the appropriate math option for your needs when you build a library using
SETUP. For more information about SETUP and about building combined librar­
ies, see Installing and Using the Microsoft C Prqf'essional Development System.

Note that this chapter does not describe mode-specific libraries. For simplicity,
the base names of libraries are noted in their default form; that is mLIBCJLIB,
where mis the model designator and f is the floating-point math package desig­
nator. For information about mode-specific libraries, see Chapter 14, "Building
OS/2 Applications," or Installing and Using the Microsoft C Professional
Development System.

4.3.1 Emulator Package

When you use the emulator
package, some floating-point

exceptions are masked.

Programs created using the emulator math package automatically detect and use
an 80x87 numeric coprocessor if one is installed. If no coprocessor is installed,
these 80x87 instructions are carried out in software. The emulator package is the
default math package; SETUP uses it if you do not explicitly choose another
package. Also, the emulator math option is the option selected by default by the
compiler if no other floating-point math option is specified.

Use the emulator math package to maximize accuracy on systems without math
coprocessors or if your program will be run on some systems with coprocessors
and some systems without coprocessors.

The emulator package performs basic operations to the same degree of accuracy
as a math coprocessor. However, the emulator routines used for transcendental
math functions (such as sin, cos, tan) differ slightly from the corresponding func­
tions performed on a coprocessor. This difference can cause a slight discrepancy
(usually within two bits) between the results of these operations when performed
with the software emulation instead of with a math coprocessor.

When you use a math coprocessor or the emulator floating-point math package,
interrupt-enable, precision, underflow, and denormalized-operand exceptions are
masked by default. The remaining floating-point exceptions are unmasked. See
the discussion of the _ control87 function in on-line help for more information
about 80x87 floating-point exceptions.

84 Advanced Programming Techniques

4.3.2 Math Coprocessor Package
The math coprocessor package utilizes the 80x87 math coprocessor exclusively
for floating-point calculations. If you use the math coprocessor package, the ma­
chine on which your application is to run must have an 80x87 coprocessor to per­
form floating-point operations. This package gives you the fastest, smallest
programs possible for handling floating-point math.

4.3.3 Alternate Math Package
The alternate math package gives you the smallest and fastest programs possible
without a coprocessor. However, the program results are not as accurate as re­
sults given by the emulator package.

The alternate math package uses the same format as the IEEE standard-format
numbers with less precision and weaker error checking. The alternate math pack­
age does not support infinities, NANs ("not a number"), and denormal numbers.

You must always use the alternate math package when developing routines that
are to be placed in an OS/2 dynamic-link library (DLL) using LLIBCDLL.LIB.
Do not, however, use the alternate math package for building the C run-time
DLL using CDLLOBJS.LIB; instead, use the emulator math package. For more
information about creating dynamic-link libraries for OS/2, see Chapter 16.

4.4 Selecting Floating-Point Options (!FP)
You can select a floating-point library and the method of accessing floating­
point routines by setting options in PWB or by specifying command-line options
to CL. You can choose between the emulator, alternate, or math coprocessor li­
brary. You can also access the floating-point routines by issuing a function call
(or calls) or by generating in-line 80x87 instructions to execute the floating-point
operation. The smallest and the fastest floating-point math option is the in-line
math coprocessor package because the compiler generates true 80x87 coproces­
sor instructions. If, however, you cannot depend on the target computer having a
coprocessor, you must use either the emulator or alternate math options.

To specify floating-point options on the CL command line, you must specify an
option from the list in Table 4.4. You specify these options to CL starting with
the floating-point option string /FP.

Based on the floating-point option and the memory-model option you choose,
the compiler embeds a library name in the object file that it creates. This library
is then considered the default library; that is, the linker searches in the standard
places for a library with that name. If it finds a library with that name, the linker
uses the library to resolve external references in the object file being linked.
Otherwise, it displays a message indicating that it could not find the library.

Table 4.4

Option for CL
for PWB

/FPi
In-Line
Emulation

/FPi87
In-Line Math
Coprocessor

/FPc
Calls to
Emulator

/FPc87
Calls to Math
Coprocessor

/FPa
Alternate Math

Controlling Floating-Point Math Operations 85

This mechanism allows the linker to automatically link object files with the ap­
propriate library. However, you can link with a different library in some cases.
See Table 4.4 and Section 4.5, "Library Considerations for Floating-Point Op­
tions," for more information about linking with different libraries.

Table 4.4 summarizes the floating-point options and their effects. These options
are described in detail in the following sections.

Summary of Floating-Point Options

Combined Use
of Method Effect

In-line Default; larger
than /FPi87, but
can work without
a coprocessor;
most efficient
way to get maxi-
mum precision
without a
coprocessor

In-line Smallest and
fastest option
available with a
coprocessor

Calls Slower than /FPi,
but allows use of
alternate math Ii-
brary at link time

Calls Slower than
/FPi87, but al-
lows use of
alternate math Ii-
brary at link time

Calls Fastest and
smallest option
available without
a coprocessor,
but sacrifices
some accuracy
for speed

Coprocessor

Uses coprocessor
if present 1

Requires
coprocessor

Uses coprocessor
if present1

Requires co­
processor unless
library changed
at link times

Ignores
coprocessor

Libraries
Selected

mLIBCE.LIB2

mLIBC7.LIB

mLIBCE.LIB2•3

mLIBC7 .LIB3·4

mLIBCA.LIB2'4

I Use of the coprocessor can be suppressed by setting N087.

2 Can be linked explicitly with mLIBC7 .LIB at link time.

3 Can be linked explicitly with mLIBCA.LIB at link time.

4 Can be linked explicitly with mLIBCE.LIB at link time.

5 Use of the coprocessor can be suppressed by setting N087 if you change to the emulator library at link time.

86 Advanced Programming Techniques

You can specify floating­
point options in the

Programmer's WorkBench.

Optimizations such as constant propagation and constant subexpression elimina­
tion can cause some expressions to be evaluated at compile time. Such evalua­
tions always use IEEE format and are unaffected by the floating-point option you
choose. For more information about optimizing, see Chapter 1, "Optimizing C
Programs."

To specify floating-point options when using the Programmer's WorkBench, you
must modify the C Global Build Options (available on the Options menu). In the
C Global Build Options dialog box, select one of the following floating-point
math options:

Option

Emulation Calls

80x87 Calls

Fast Alternate Math

Inline Emulation

Inline 80x87
Instructions

Effect

Generates calls; makes emulator math library the
default (/FPc)

Generates calls; makes math coprocessor library the
default (/FPc87)

Generates calls; makes alternate math library the
default (/FPa)

Generates in-line instructions; makes emulator math
library the default (/FPi); this is the default option

Generates in-line instructions; selects math coproces­
sor library (/FPi87)

4.4.1 In-Line Emulator Option {/FPi)
The in-line emulator option (/FPi) generates in-line instructions for an 80x87
coprocessor and places the name of the emulator library (mLIBCE.LIB) in
the object file. At link time, you can specify the math coprocessor library
(mLIBC7.LIB) instead. If you do not choose a floating-point option, the com­
piler uses the in-line emulator option by default.

The in-line emulator option is useful if you cannot be sure that an 80x87 co­
processor will be available on the target computer. Programs compiled using the
in-line emulator option work as described below:

• If a coprocessor is present at run time, the program uses the coprocessor.

• If no coprocessor is present, the program uses the emulator. In this case, the
in-line emulator option offers the most efficient way to get maximum preci­
sion in floating-point results.

Controlling Floating-Point Math Operations 87

When you use the in-line emulator option, the compiler does not generate in-line
80x87 instructions. For real-mode code, the compiler generates software inter­
rupts to library code, which then fixes up the interrupts to use either the emulator
or the coprocessor, depending on whether a coprocessor is present. For protected­
mode code, the compiler generates no such interrupts; it generates 80x87 instruc­
tions. If the target computer does not have a coprocessor, an "unsupported
extension" exception occurs, which is vectored to library code. If you want true
in-line 80x87 instructions, use the in-line math coprocessor option (/FPi87).

NOTE In an 0512 dynamic-link library built with LLIBCDLL.LIB, you cannot use code that
requires the emulator library. You must use the alternate math library instead.

4.4.2 In-Line Math Coprocessor Instructions Option (!FPiBl)
The in-line math coprocessor instructions option (/FPi87) instructs the compiler
to place 80x87 coprocessor instructions in your code for many math operations.
It also causes the name of a math coprocessor library (mLIBC7.LIB) to be em­
bedded in the object file.

If you use the in-line math coprocessor instructions option and link with the
library mLIBC7.LIB, an 80x87 coprocessor must be present at run time, or the
program fails and the following error message is displayed:

run-time error R6002
- floating point not loaded

Compiling with the in-line math coprocessor instructions option results in the
smallest, fastest programs possible for handling floating-point results.

4.4.3 Calls to Emulator Option {/FPc)
The calls to emulator option (/FPc) generates floating-point calls to the emulator
library and places the names of an emulator library (mLIBCE.LIB) in the object
file. At link time, you can specify a math coprocessor library (mLIBC7.LIB) or
an alternate math library (mLIBCA.LIB) instead. Thus, the calls to emulator
option gives you more flexibility in the libraries you can use for linking than the
in-line emulator option.

Using the calls to emulator option is also recommended in the following cases:

• If you compile modules that perform floating-point operations and plan to
include these modules in a library

• If you compile modules that you want to link with libraries other than the
libraries provided with Microsoft C

88 Advanced Programming Techniques

You cannot link with an alternate math library if your program uses the intrinsic
forms of floating-point library routines (that is, if you have compiled the program
with the /Oi or /Ox option, selected the Generate Intrinsic Functions option from
the Debug Build Options or Release Build Options dialog box in the Program­
mer's WorkBench, or specified math functions in an intrinsic pragma).

4.4.4 Calls to Math Coprocessor Option {/FPc87)
The calls to math coprocessor option (/FPc87) generates function calls to
routines in the math coprocessor library (mLIBC7.LIB) that issue the corre­
sponding 80x87 instructions. As with the in-line math coprocessor instructions
option (/FPi87), at link time you can choose to link with an emulator library
(mLIBCE.LIB). However, /FPc offers more flexibility in choosing libraries, since
you can change your mind and link with the appropriate alternate math library as
well (mLIBCA.LIB).

The disadvantages of using the calls to math coprocessor option as opposed to
the in-line coprocessor option are the following:

• Your executable size is larger because a call requires more instructions than a
true coprocessor instruction.

• Your program does not execute as fast because you must issue a function call
for each floating-point operation.

You cannot link with an alternate math library if your program uses the intrinsic
forms of floating-point library routines (that is, if you have compiled the program
with the /Oi or /Ox option, selected the Generate Intrinsic Functions option from
the Debug Build Options or Release Build Options dialog box in the Program­
mer's WorkBench, or specified math functions in an intrinsic pragma).

You must have a math coprocessor installed to run programs compiled with the
/FPc option and linked with a math coprocessor library. Otherwise, the program
fails and the following error message is displayed:

run-time error R6002
- floating point not loaded

NOTE Certain optimizations are not performed when you use the calls to math coproces­
sor option. This can reduce the efficiency of your code; also, since arithmetic of different pre­
cision can result, there may be slight differences in your results.

Controlling Floating-Point Math Operations 89

4.4.5 Use Alternate Math Option (If Pa)
The use alternate math option (/FPa) generates floating-point calls and selects the
alternate math library for the appropriate memory model (mLIBCA.LIB). Calls
to this library provide the fastest and smallest option for code intended to run on
a machine without an 80x87 coprocessor. With this option, you can choose an
emulator library (mLIBCE.LIB) or a math coprocessor library (mLIBC7.LIB) at
link time.

You cannot link with an alternate math library if your program uses the intrinsic
forms of floating-point library routines (that is, if you have compiled the program
with the /Qi or /Ox option, selected the Generate Intrinsic Functions from the
Debug Build Options or Release Build Options dialog box in the Programmer's
WorkBench, or specified math functions in an intrinsic pragma).

4.5 Library Considerations
for Floating-Point Options

You may want to use libraries in addition to the default library for the floating­
point option you have chosen in your compile options. For example, you may
want to create your own libraries (or other collections of subprograms in object­
file form), then link these libraries at a later time with object files that you have
compiled using different options.

The following sections describe these cases and ways to handle them. Although
the discussion assumes that you are putting your object files into libraries, the
same considerations apply if you are simply using individual object files.

4.5.1 Using One Standard Library for Linking
You must use only one standard C run-time library when you link. You can con­
trol which library is used in one of two ways:

1. In the Programmer's WorkBench, add the name of the C run-time library file
you want to the program list using the Edit Program List option from the
Make menu. You must also modify the Linker Options (from the Make
menu) by specifying No Default Library Search.

2. From the LINK command line, give the /NODEFAULTLIBRARYSEARCH
(/NOD) option and then specify the name of the combined library file you
want to use in the link-libinfo field of the CL command line. This overrides
the library names embedded in the object files.

90 Advanced Programming Techniques

4.5.2 In-Line Instructions or Calls
When deciding on a floating-point option, you should decide whether you want
to use in-line instructions. If you do, compile with the in-line math coprocessor
instructions (/FPi87) or in-line emulator (/FPi) option. Otherwise, compile for
floating-point function calls using the calls to math coprocessor (/FPc87), calls to
emulator (/FPc), or alternate math (/FPa) option.

If you choose to use in-line instructions for your precompiled object files, you
cannot link with an alternate math library (mLIBCA.LIB). However, in-line
instructions achieve the best performance from your programs on machines that
have an 80x87 coprocessor installed.

If you choose to use calls, your programs are slower, but at link time you can
switch to any standard C run-time library (that is, any library created by the
SETUP program) that supports the memory model you have chosen.

4.6 Compatibility between Floating-Point Options
Each time you compile a source file, you can specify a floating-point option.
When you link two or more source files to produce an executable program file,
you must ensure that floating-point operations are handled consistently and that
the environment is set up properly to allow the linker to find the required library.

If you are building libraries of C routines that contain floating-point operations,
the calls to emulator option (/FPc) provides the most flexibility.

The examples that follow illustrate how you can link your program with a library
other than the default. The floating-point option and the substitute library are
compatible.

The example below compiles the program CA LC. C with the medium-model
option (/AM). Because no floating-point option is specified, the default in-line
emulator option (/FPi) is used. The in-line emulator option generates 80x87
instructions and specifies the emulator library MLIBCE.LIB in the object file.
The /LINK field specifies the /NODEFAULTLIBRARYSEARCH (/NOD) op­
tion and the names of the medium-model math coprocessor library. Specifying
the math coprocessor library forces the program to use an 80x87 coprocessor; the
program fails if a coprocessor is not present.

CL /AM CALC.C /link MLIBC7 /NOD

Controlling Floating-Point Math Operations 91

The example below compiles CA LC. C using the small (default) memory model
and the alternate math option (/FPa). The /LINK field specifies the /NOD option
and the library SLIBCE.LIB. Specifying the emulator library causes all floating­
point calls to refer to the emulator library instead of the alternate math library.

CL /FPa CALC.C /link SLIBCE /NOD

The example below compiles CALC. C with the calls to math coprocessor
option (/FPc87), which places the library name SLIBC7.LIB in the object file.
The /LINK field overrides this default-library specification by giving the /NOD
option and the name of the small-model alternate math library (SLIBCA.LIB).

CL /FPc87 CALC.C /link SLIBCA.LIB/NOD

4. 7 Using the NOB7 Environment Variable

Use the NOBl environment
variable to suppress

use of the 80x87 coprocessor
at run time.

Programs compiled using either the calls to emulator (/FPc) or the in-line emula­
tor (/FPi) option automatically use an 80x87 coprocessor at run time if one is in­
stalled. You can override this and force the use of the software emulator by
setting an environment variable named N087.

If N087 is set to any value when the program is executed, use of the coprocessor
is suppressed. The value of the N087 setting is printed on the standard output
as a message. The message is printed only if a coprocessor is present and sup­
pressed; if no coprocessor is present, no message appears. If you don't want a
message to be printed, set N087 equal to one or more spaces. A blank string for
N087 causes a blank line to be printed.

Note that only the presence or absence of the N087 definition is important in
suppressing use of the coprocessor. The actual value of the N087 setting is used
only for printing the message.

The N087 variable takes effect with any program linked with an emulator
library (mLIBCE.LIB). It has no effect on programs linked with math copro­
cessor libraries (mLIBC7.LIB) or programs linked with alternate math libraries
(mLIBCA.LIB).

When a program that uses an emulator library is executed and an 80x87 coproces­
sor is present, the example below causes the message Use of cop r o c es so r
suppressed to appear.

SET N087~Use of coprocessor suppressed

The syntax below sets the N087 variable to the space character. Use of the co­
processor is still suppressed, but no message is displayed.

SET N087=space

92 Advanced Programming Techniques

4.8 Incompatibility Issues
The exception handler in the libraries for 80x87 floating-point calculations
(mLIBCE.LIB and mLIBC7.LIB) is designed to work without modification on
the IBM PC family of computers and on closely compatible computers, including
the WANG® PC, the AT&T@ 6300, and the Olivetti® personal computers. Also,
the libraries need not be modified for the Texas Instruments® Professional Com­
puter, even though it is not compatible. Any machine that uses nonmaskable in­
terrupts (NMI) for 80x87 exceptions will run with the unmodified libraries. If
your computer is not one of these, and if you are not sure whether it is com­
pletely compatible, you may need to modify the math coprocessor libraries.

All Microsoft languages that support 80x87 coprocessors intercept 80x87 excep­
tions in order to produce accurate results and properly detect error conditions. To
make the libraries work correctly on incompatible machines, you can modify the
libraries. To make this easier, an assembly-language source file, EMOEM.ASM,
is included on the C 6.0 distribution disk. Any machine that sends the 80x87 ex­
ception to an 8259 Priority Interrupt Controller (master or master/slave) can be
supported by a simple table change to the EMOEM.ASM module. The source
file contains further instructions about how to modify EMOEM.ASM, patch li­
braries, and executable files.

PART2

Improving
Programmer
Productivity

CHAPTERS
,j

6

7

8
g

Compiling and Linking Quickly . . :-:. 97 ,

Managing Development Projects with NMAKE . . . 103

Creating Help Files with HELPMAKE 133

Customizing the Microsoft Programmer's WorkBench 157

Debugging C Programs with Code View 185

Improving Programmer
Productivity
The Microsoft C Professional Development System helps you
write and debug software rapidly.

Chapter 5 describes the quick compile and incremental compile
options, both of which can save you time when compiling pro­
grams. Chapter 5 also describes the incremental linker, ILINK,
which can save you time when you link your application. Chap­
ter 6 describes NMAKE, a powerful new program maintenance
utility that automates your program build process. Chapter 7 de­
scribes how to build help files with HELPMAKE, the help-file
maintenance utility. When you need to share documentation in a
readily accessible form, you can add it to the Microsoft Advisor
on-line help system using the information in Chapter 7. Chapter
8 explains how to customize the Programmer's WorkBench to
make it a personalized development platform. Chapter 9 offers
procedures (and some tips) for using the Code View debugger to
find errors in your programs.

Compiling and
Linking Quickly

CHAPTER

The fundamental processes of compiling and linking take time to perform. The
larger your application grows, the longer it takes to compile and link.

This chapter describes how you can speed up compiling by using the quick com­
piler and incremental compile option, and how you can speed up linking by using
ILINK, the Incremental Linker.

5. 1 Compiling Quickly
This section describes two ways to speed up the compiling process: using the
quick compiler and using the incremental compile option.

5. 1.1 Quick Compiler
The Microsoft C Professional Development System includes two separate C com­
pilers: the full compiler and the quick compiler. If you don't specify otherwise,
your program is compiled by the full compiler.

You access the quick compiler by specifying the /qc command-line option for CL
or by selecting the Quick Compile option from the C Release Build or C Debug
Build Options dialogs in the PWB Options menu.

The quick compiler cannot perform as many optimizations as the full compiler,
but it is much faster. You can use it to save time during development, whenever
optimizations are not critical. When your application is finished, you can compile
with the full compiler, using all the desired optimizations.

On-line help for the /qc option describes which optimizations the quick compiler
can perform.

97

98 Advanced Programming Techniques

5. 1.2 Incremental Compile Option
You can speed up compiling even more by compiling incrementally. Incremental
compilation means that the compiler compiles only those functions that have
changed since you last compiled.

The incremental compile option is available only with the quick compiler (see
the previous section). You can access it from within PWB or from the DOS com­
mand line. Within PWB, select the Incremental Compile option in the C Release
Build dialog box or in the C Debug Build Options dialog box. From the DOS
command line, specify the /Gi option for CL.

The incremental compile option automatically triggers another time-saving fea­
ture: the Incremental Linker, which is described in the next section.

5.2 Linking Quickly with /LINK
/LINK links only those

modules that have changed
since the last link.

You must link once with LINK
to prepare for incremental

linking.

The Incremental Linker (ILINK) offers the same advantage in linking that the in­
cremental compile option offers in compiling. Rather than link every module in
an application, as LINK does, ILINK links only those modules that have changed
since the last link. The more modules your application contains, the more time
ILINK can potentially save.

In a normal development scenario, you use LINK at the beginning and end of the
process, and use ILINK in the middle. In the early stages of development, when
your application contains only a few modules, ILINK offers no speed advantage
over LINK. Once your application contains several modules, you can save time
by using ILINK.

To prepare for incremental linking, you must run LINK using /INCREMENTAL,
as described in Section 5 .2.1. At the same time, you have the option of adding
padding bytes to code or data segments by specifying the IP ADCODE and
IP ADDATA options. Padding allows ILINK to expand a segment without relink­
ing the entire module in which it is contained.

Now you can link with ILINK during the rest of development. If changes in your
code require a full link, ILINK invokes LINK automatically. When the applica­
tion is finished, you link a last time with LINK to produce the final executable
file.

You can use ILINK with programs compiled for any memory model except tiny
model. (Memory models are described in Chapter 2, "Managing Memory.") Typi­
cally, ILINK is not efficient for small- or compact-model programs unless they
were compiled with the incremental compile option, which is described in
Section 5.1.2.

Compiling and Linking Quickly 99

5.2. 1 Preparing for Incremental linking
There are three LINK options that relate to the use of ILINK. One of them
(/INCREMENTAL) is mandatory; the other two (IPADCODE and IPADDATA)
are optional. This section explains the LINK options that prepare for ILINK. See
on-line help for a complete list of LINK options.

The /INCREMENTAL Option
The /INCREMENTAL (/INC) option prepares an object file for incremental link­
ing. You must always run LINK using this option before using ILINK. When you
specify /INC, the linker produces two extra files: a symbol file (.SYM) and an
ILINK support file (.ILK). The .SYM and .ILK files tell ILINK which parts of
the executable file need to be updated.

You must use /INCREMENT AL whenever you use the IP ADCODE and
IPADDATA options, which are described below.

The /PADCODE Option
The IPADCODE option causes LINK to add padding bytes at the end of a mod­
ule's code segment. The padding bytes leave room for the code segment to grow
in subsequent links, allowing ILINK to update only that module. You can use the
IPADCODE option only when /INC is also specified.

Code padding is usually necessary for programs using the small memory model.
It is also recommended for compact- or mixed-model programs. You do not need
to specify IPADCODE for other memory models (medium, large, or huge).

If you don't specify IPADCODE, LINK doesn't pad the code segment at all. To
add padding, specify the desired number of bytes. The optimum amount of pad­
ding depends on how much your code changes from one link to the next. If you
expect to add only a little code, choose a relatively small amount of padding, say
32 to 64 bytes. If ILINK issues the message

padding exceeded

and performs a full link more often than desired, increase the padding by a small
amount, say 32 bytes. In any case, remember that the total size of a code seg­
ment, including padding bytes, cannot exceed 64K (65,535) bytes.

The /PADDATA Option
Like IPADCODE, the IPADDATA option causes LINK to add padding bytes
that leave room for the segment to grow in subsequent links. However, the
IP ADD AT A option pads the end of the data segment rather than the code seg­
ment. You can use IP ADDAT A only when /INC is also specified.

100 Advanced Programming Techniques

If you don't specify /PADDATA, LINK adds 16 bytes of padding by default.
The default padding amount should suffice in many cases, since public variables
are added less frequently than code. If you need more padding, specify the de­
sired number of bytes. Remember that the total size of a data segment, including
padding bytes, cannot exceed 64K (65,535) bytes.

5.2.2 Incremental Violations
ILINK can generate two kinds of errors: real errors and incremental violations.
Real errors are errors such as undefined symbols that cannot be resolved by a full
link. If ILINK detects a real error, it displays an error message (real errors are
documented in on-line help).

Incremental violations are caused by code changes you have made that go be­
yond the scope of incremental linking. When an incremental violation occurs,
ILINK invokes LINK automatically. The following sections describe the in­
cremental violations.

Changing Libraries
An incremental violation occurs when a library changes. Furthermore, if an al­
tered module shares a code segment with a library, ILINK needs access to the li­
brary as well as to the altered module.

If you add a function, procedure, or subroutine call to a library that has never
been called before, ILINK invokes LINK automatically.

Exceeding Code/Data Padding
An incremental violation occurs if two or more modules contribute to the same
physical segment and either module exceeds its padding. The padding allows
the module to increase the specified number of bytes before another full link is
required.

Moving or Deleting Data Symbols
An incremental violation occurs if a data symbol is moved or deleted. To add
new data symbols without requiring a full link, add the new symbols at the end of
all other data symbols in the module.

Deleting Code Symbols
You can move or add code symbols, but an incremental violation occurs if you
delete any code symbols from a module. Code symbols can be moved within a
module but cannot be moved between modules.

Compiling and Linking Quickly 101

Changing Segment Definitions
An incremental violation results if you add, delete, or change the order of seg­
ment definitions.

Adding CodeView® Debugger Information
If you include Code View debugger information for a module when you fully link
(by compiling and linking with Code View debugger support), ILINK supports
Code View debugger information for the module. ILINK maintains symbolic in­
formation for current symbols, and it adds information for any new symbols.
However, if you try to add Code View debugger information for a module that
did not previously have Code View debugger support, an incremental violation
occurs. See Chapter 9, "Debugging C Programs with Code View," for more infor­
mation about Code View.

Managing Development
Projects with NMAKE

CHAPTER

The Microsoft Program-Maintenance Utility (NMAKE) is a sophisticated com­
mand processor that can save time and simplify project management. By deter­
mining which project files depend on others, NMAKE can automatically execute
the commands needed to update your project when any project file has changed.

The advantage of using NMAKE over simple batch files is that NMAKE does
only what is needed. You don't waste time rebuilding files that are already
up-to-date. NMAKE also has advanced features, such as macros, that help you
manage complex projects.

This chapter provides complete documentation for NMAKE. Information about
NMAKE is also available in on-line help. If you are familiar with MAKE, the
predecessor of NMAKE, be sure to read Section 6.9, "Differences Between
NMAKE and MAKE." There are some important differences between the two
utilities.

6. 1 Overview of NMAKE
NMAKE works by comparing the times and dates of two sets of files, which are
called "targets" and "dependents." A target is normally a file that you want to cre­
ate, such as an executable file. A dependent is a file used to create a target, such
as a C source file.

When you run NMAKE, it reads a "description file" that you supply. The descrip­
tion file consists of one or more blocks. Each block typically lists a target, the
target's dependents, and the command that builds the target. NMAKE compares
the date and time of the target to those of its dependents. If any dependent has
changed more recently than the target, NMAKE updates the target by executing
the command listed in the block.

103

104 Advanced Programming Techniques

NMAKE's main purpose is to help you update applications quickly and simply.
However, it can execute any command, so it is not limited to compiling and link­
ing. NMAKE can also make backups, move files, and do many other project man­
agement tasks.

6.2 The NMAKE Command
When you run NMAKE, you can supply the description-file name and other argu­
ments using the following syntax:

NMAKE [options] [macros] [targets] [descripifile]

All of the command-line fields are optional. If you don't supply any arguments,
NMAKE looks for a default description file named MAKEFILE and follows
various other defaults that are described in this chapter.

The options field lists NMAKE options, which are described in Section 6.4,
"Command-Line Options."

The macros field lists macro definitions, which allow you to replace text in the
description file. Macros are described in Section 6.3.3.

The targets field lists targets to build. If you do not list any targets, NMAKE
builds only the first target in the description file. (This is a significant departure
from the behavior of MAKE, NMAKE's predecessor. See Section 6.9, "Differ­
ences between NMAKE and MAKE.")

The descripifile field specifies a description file. If this field is absent, NMAKE
automatically looks for a file named MAKEFILE in the current directory. You
can also specify the description file with the IF option (for information, see
Section 6.4, "Command-Line Options").

Below is a typical NMAKE command:

NMAKE /S "program - sample" sort.exe search.exe

Managing Development Projects with NMAKE 105

The command supplies four arguments: an option (/S), a macro definition
("program ~ s amp l e "), and two target specifications (sort . ex e
search. exe).

Because the command does not specify a description file, NMAKE looks for the
default description file, MAKEFILE. The /S option tells NMAKE to suppress
the display of commands as they are executed. The macro definition performs a
text substitution throughout the description file, replacing every instance of
program with s amp l e. The target specifications tell NMAKE to update the
targets SORT.EXE and SEARCH.EXE.

6.3 NMAKE Description Files
You must always supply NMAKE with a description file. In addition to descrip­
tion blocks, which tell NMAKE how to build your project's target files, the de­
scription file can contain comments, macros, inference rules, and directives. This
section describes all the elements of description files.

6.3.1 Description Blocks

A target is a file that
you want to build.

Description blocks form the heart of the description file. Figure 6.1 illustrates a
typical NMAKE description block, including the three parts: targets, dependents,
and commands.

Target

,-----~
Dependents

I
~~~~~~~~~~~~~---, 

myapp.exe : myapp.obj another.obj myapp.def 
l i n k my a pp another , I al i g n : 16 , NU L , o s 2 , my a pp 

Command 

Figure 6.1 Typical Description Block 

The targets part of the description block lists one or more files to build. The line 
that lists targets and dependents is called the "dependency line." 



106 Advanced Programming Techniques 

A dependent is a file 
used to build a target. 

The example in Figure 6.1 tells NMAKE to build a single target, MY APP.EXE. 
Although single targets are common, you can also list multiple targets; separate 
each target name with a space. If the rightmost target name is one character long, 
put a space between the name and the colon. 

The target is normally a file, but it can also be a "pseudotarget," a name that al­
lows you to build groups of files or execute a group of commands. See Section 
6.3.6, "Pseudotargets." 

The dependents part of the description block lists one or more files from which 
the target is built. It is separated from the targets part by a colon. The example in 
Figure 6.1 lists three dependents: 

myapp.exe : myapp.obj another.obj myapp.def 

The example tells NMAKE to build the target MY APP.EXE whenever 
MY APP.OBJ, ANOTHER.OBJ, or MY APP.DEF has changed more recently 
than MY APP.EXE. 

If any dependents of a target are listed as targets in other description blocks, 
then NMAKE builds those files before it builds the original target. Essentially 
NMAKE evaluates a "dependency tree" for the entire description file. It builds 
files in the order needed to update the original target, never building a target until 
all files that depend on it are up-to-date. 

The dependent list can also include a list of directories in which NMAKE should 
search for dependents. The directory list is enclosed in curly braces ( { ) ) and 
precedes the dependent list. NMAKE searches the current directory first, then the 
directories you list: 

forward.exe : {\src\alpha;d:\proj}pass.obj 

In the line above, the target, FORWARD.EXE, has one dependent: PASS.OBJ. 
The directory list specifies two directories: 

{\src\alpha;d:\proj} 

NMAKE begins searching for PASS.OBJ in the current directory. If it is not 
found, NMAKE searches the\ SRC \ALPHA directory, then the D:\ PROJ 
directory. If NMAKE cannot find a dependent in the current directory or a listed 
directory, it looks for an inference rule that describes how to create the dependent 
(see Section 6.3.4, "Inference Rules"). 



The commands part of a 
description block can contain 

one or more commands. 

Managing Development Projects with NMAKE 107 

The commands part of the description block lists the command(s) NMAKE 
should use to build the target. This can be any command that you can execute 
from the command line. The example tells NMAKE to build MY APP.EXE using 
the following LINK command: 

LINK myapp another.obj, /align:l6, NUL, os2, myapp 

Notice that the line above is indented. NMAKE uses indentation to distinguish 
between the dependency line and command line. If the command appears on a 
separate line, as here, it must be indented at least one space or tab. The depen­
dency line must not be indented (it cannot start with a space or tab). 

Many targets are built with a single command, but you can place more than one 
command after the dependency line. A long command can span several lines if 
each line ends with a backslash ( \ ). 

You can also place the command at the end of the dependency line. Separate the 
command from the rightmost dependent with a semicolon. 

In OS/2 description files, NMAKE imposes a slight restriction on the use of the 
CD, CHDIR, and SET commands. Do not place any of these commands on a 
command line that uses the ampersand(&) to execute multiple commands. For 
instance, the following command line is legal in an OS/2 description file, 

DIR & COPY sample.c backup.c 

but this line is not legal because it places a CD command after the ampersand: 

DIR & CD \mydi r 

To use CD, CHDIR, or SET in a description block, place the command on a 
separate line: 

DIR 
CD \mydir 

Your OS/2 user's documentation contains more information about using the 
ampersand in command lines. 

Wild Cards 
You can use DOS wild-card characters (* and ?) to specify target and dependent 
file names. NMAKE expands wild cards in target names when it reads the de­
scription file. It expands wild cards in the dependent names when it builds the tar­
get. For example, the following description block compiles all source files with 
the .C extension: 

bondo.exe : *.c 
CL *.c 



108 Advanced Programming Techniques 

Command Modifiers 
Command modifiers provide extra control over the command listed in a descrip­
tion block. They are special characters that appear in front of a command. You 
can use more than one modifier for a single command. Table 6.1 describes the 
three NMAKE command modifiers. 

Table 6.1 Command Modifiers 

Character Action 

At sign(@) Prevents NMAKE from displaying the command as it 
executes. In the example below, NMAKE does not dis­
play the ECHO command line: 

Dash(-) 

Exclamation point(!) 

sort.exe : sort.obj 
@ECHO sorting 

The output of the ECHO command appears as usual. 

Turns off error checking for the command. If the dash is 
followed by a number, NMAKE stops only if the error 
level returned by the command is greater than the num­
ber. In the following example, if the program s a mp l e 
returned an error code NMAKE does not stop but con­
tinues to execute commands: 

light.1st: light.txt 
-sample light. txt 

Executes the command for each dependent file if the 
command uses the predefined macros$? or$**. The$? 
macro refers to all dependent files that are out-of-date 
with respect to the target. The$** macro refers to all de­
pendent files in the description block (see Section 6.3.3, 
"Macros"). For example, 

print:hop.asm skip.bas jump.c 
!print$** lptl: 

generates the following commands: 

print hop.asm lptl: 
print skip.bas lptl: 
print jump.c lptl: 

Using Control Characters as Literals 
Occasionally, you may need to list a file name that contains a character that 
NMAKE uses as a control character. These characters are 

#()$"\{} !@-



Managing Development Projects with NMAKE 109 

To use an NMAKE control character as a literal character, place a caret(") in 
front of it. For example, say that you define a macro that ends with a backslash: 

exepath=c:\bin\ 

The line above is intended to define a macro named exepa th with the value 
c: \bin\. But the second backslash causes unexpected results. Since the back­
slash is the NMAKE line-continuation character, the line actually defines the 
macro ex e path as c : \bi n followed by whatever appears on the next line 
of the description file. You can solve the problem by placing a caret in front of 
the second backslash: 

exepath=c:\binA\ 

You can also use a caret to place a literal newline character in a description file. 
This feature can be useful in macro definitions: 

XYZ=abcA 
def 

NMAKE interprets the example as if you assigned the C-style string ab c \ n def 
to the X Y Z macro. This effect differs from using the backslash ( \s ) to continue 
a line. A newline character that follows a backslash is replaced with a space. 

Carets that precede noncontrol characters are ignored. The line 

is interpreted as 

ignore : these carets 

A caret that appears in quotation marks is treated as a literal caret character. 

Listing a Target in Multiple Description Blocks 
You can specify more than one description block for the same target by placing 
two colons(::) after the target. This feature can be useful for building a complex 
target, such as a library, that contains components created with different com­
mands. For example, 

target.lib:: a.asm b.asm c.asm 
CL a.asm b.asm c.asm 
LIB target -+a.obj -+b.obj -+c.obj; 

target.lib:: d.c e.c 
CL /c d.c e.c 
LIB target -+d.obj -+e.obj; 

Both description blocks update the library named TARGET.LIB. If any of the 
assembly-language files have changed more recently than the library, NMAKE 
executes the commands in the first block to assemble the source files and update 



110 Advanced Programming Techniques 

6.3.2 Comments 

6.3.3 Macros 
Macros allow you to do 

text replacements throughout 
the description file. 

the library. Similarly, if any of the C-language files have changed, NMAKE 
executes the second group of commands, which compile the C files and update 
the library. 

If you use a single colon in the example above, NMAKE issues an error message. 
It is legal, however, to use single colons if commands are listed in only one 
block. In this case, dependency lines are cumulative. For example, 

target: jump.bas 
target: up.c 

echo Building target ... 

is equivalent to 

target: jump.bas up.c 
echo Building target ... 

You can place comments in a description file by preceding them with a number 
sign(#): 

#This comment appears on its own line 
huey.exe : huey.obj dewey.obj #Comment on the same line 

link huey.obj dewey.obj; 

A comment extends to the end of the line in which it appears. Command lines 
cannot contain comments. 

Macros offer a convenient way to replace a string in the description file with 
another string. The text is automatically replaced each time you run NMAKE. 
Macros are useful in a variety of tasks, including the following: 

• To create a standard description file for several projects. The macro repre­
sents the file names used in commands. These file names are then defined 
when you run NMAKE. When you switch to a different project, you can 
change file names throughout the description file by changing a single macro. 

• To control the options that NMAKE passes to the compiler or linker. When 
you specify options in a macro, you can change options throughout the de­
scription file in one easy step. 

You can define your own macros or use predefined macros. This section begins 
by describing user-defined macros. 



Managing Development Projects with NMAKE 111 

User-Defined Macros 
You can define a macro with 

macroname = string 

The macroname can be any combination of letters, digits, and the underscore 
(_)character. Macro names are case sensitive. NMAKE interprets My Macro 
and MY MAC RO as different macro names. 

The string can be any string, including a null string. For example, 

command - LINK 

defines a macro named comm and and assigns it the string LI N K. 

You can define macros in the description file or on the command line. In the de­
scription file, you must define each macro on a separate line; the line cannot start 
with a space or tab. The string can contain embedded spaces, and NMAKE ig­
nores spaces on either side of the equal sign. You do not need to enclose string in 
quotation marks (if you do, they become part of the string). 

Slightly different rules apply when you define a macro on the command line, be­
cause of the way that the command line handles spaces. You must enclose string 
in quotation marks if it contains embedded spaces. No spaces can surround the 
equal sign. You can also enclose the entire macro definition, macro name and 
string, in quotation marks. For example, 

NMAKE "program-sample" 

defines the macro program, assigning it the value s amp l e. 

Once you have defined a macro, you can "undefine" it with the !UNDEF direc­
tive (see Section 6.3.5, "Directives"). 

Invoking Macros 
You invoke a macro by enclosing its name in parentheses preceded by a dollar 
sign($). (The parentheses are optional if macroname is one character long.) For 
example, you can invoke the comm and macro defined above as 

$(command) 

When NMAKE runs, it replaces every occurrence of $ (command) with 
LINK. The following description file defines and uses three macros: 

program - sample 
c - LINK 
options -

$(programl.exe : $(program).obj 
$c $(options) $Cprograml.obj; 



112 Advanced Programming Techniques 

NMAKE interprets the description block as 

sample.exe : sample.obj 
LINK sample.obj; 

NMAKE replaces every occurrence of $ ( program ) with s amp l e, every 
instance of $ c with LI N K, and every instance of $ ( opt i on s ) with a null 
string. Because c is only one character long, you do not need to enclose it in 
parentheses. 

If you invoke a macro that is not defined, NMAKE treats the macro as a null 
string. 

Occasionally, you may need to use the dollar sign($) as a literal character. Use 
two signs ($$), or precede it with a caret ("$). 

Predefined Macros 
NMAKE provides several predefined macros, which represent various file names 
and commands. Predefined macros are useful in their own right, and they are also 
employed in predefined inference rules, which are described later in this chapter. 
Table 6.2 lists NMAKE predefined macros. 

Table 6.2 

Macro 

$@ 

$* 

$** 

$? 

$$@ 

$(CC) 

$(AS) 

Predefined Macros 

Meaning 

The current target's full name. 

The current target's base name (full name minus the file 
extension). 

The dependents of the current target. 

The dependents that are out-of-date with respect to the cur­
rent target. 

The target that NMAKE is currently evaluating. You can 
only use this macro to specify a dependent. 

The dependent file that is out-of-date with respect to the 
current target (evaluated only for inference rules). 

The command to invoke the C compiler. By default, $(CC) 
is predefined as CC = cl , which invokes the optimizing 
compiler. 

The command that invokes the Microsoft Macro Assem­
bler. NMAKE predefines this macro as AS= masm. 



Managing Development Projects with NMAKE 113 

Table 6.2 (continued) 

Macro 

$(MAKE) 

$(MAKEFLAGS) 

$(MAKEDIR) 

Meaning 

The name with which the NMAKE utility is invoked. This 
macro is used to invoke NMAKE recursively. It causes the 
line on which it appears to be executed even if the JN op­
tion is on. You can redefine this macro if you want to 
execute another program. 

The $(MAKE) macro is useful for building different ver­
sions of a program. The following description file invokes 
NMAKE recursively to build targets in the VERS I and 
VERS2 directories. 

all :versl vers2 

v er s l : 
cd versl 
$(MAKE) 
cd .. 

versZ : 

cd vers2 
$(MAKE) 
cd .. 

The example changes to the VERSl directory, then in­
vokes NMAKE recursively, causing NMAKE to process 
the file MAKEFILE in that directory. Then it changes to 
the VERS2 directory and invokes NMAKE again, pro­
cessing the file MAKEFILE in that directory. 

Deeply recursive build procedures can exhaust NMAKE's 
run-time stack, causing a run-time error. To eliminate the 
error, use the EXEHDR utility to increase NMAKE's run­
time stack. The following command, for example, gives 
NMAKE.EXE a stack size of 16,384 (Ox4000) bytes: 

exehdr /stack:0x4000 nmake.exe 

The NMAKE options currently in effect. If you invoke 
NMAKE recursively, you should use the command: 
$ (MAKE) $ (MAKE FLAGS). You cannot redefine this 
macro. 

The directory from which NMAKE is invoked. 

Like user-defined macro names, predefined macro names are case sensitive. 
NMAKE interprets CC and cc as different macro names. 



114 Advanced Programming Techniques 

Macro modifiers allow 
you to specify parts 

of predefined macros 
representing file names. 

You can append characters to any of the first six macros in Table 6.2 to modify 
its meaning. Appending a D specifies the directory part of the file name only, an 
F specifies the file name, a B specifies just the base name, and an R specifies the 
complete file name without the extension. If you add one of these characters, you 
must enclose the macro name in parentheses. (The predefined macros $$@ and 
$** are the only exceptions to the rule that macro names more than one character 
long must be enclosed in parentheses.) 

For example, assume that $@has the value C:\SOURCE \PROG\SORT.OBJ. 
The list below shows the effect of combining the special characters with $@: 

Macro Value 

$(@D) C:\ SOURCE\ PROG 

$(@F) SORT.OBJ 

$(@B) SORT 

$(@R) C:\ SOURCE\ PROG \SORT 

For example, in the code below, the macro$? represents the names of all depen­
dents that are more recent than the target. The exclamation point causes NMAKE 
to execute the LIB command once for each dependent in the list. As a result, the 
LIB command is executed up to three times, each time replacing a module with a 
newer version. 

trig.lib : sin.obj cos.obj arctan.obj 
!LIB trig.lib-+$?; 

In the following example, NMAKE updates a group of include files: 

#Include files depend on versions in current directory 
DIR=c: \include 
$(DIRJ\globals.h : globals.h 

COPY globals.h $@ 
$(DIRJ\types.h : types.h 

COPY types.h $@ 
$(DIR)\macros.h : macros.h 

COPY macros.h $@ 

Each of the files GLOBALS.H, TYPES.H, and MACROS.Hin the directory 
C:\INCLUDE depends on its counterpart in the current directory. If one of the 
include files is out-of-date, NMAKE replaces it with the file of the same name 
from the current directory. 



You can replace text in a 
macro, as well as in the 

description file. 

Managing Development Projects with NMAKE 115 

Substitution within Macros 
Just as macros allow you to substitute text in a description file, you can also sub­
stitute text within a macro itself. Use the following form: 

$(macroname:stringl = string2) 

Every occurrence of string] is replaced by string2 in the macro macroname. Do 
not put any spaces or tabs between macroname and the colon. Spaces between 
the colon and string I are made part of string I. If string2 is a null string, all occur­
rences of string I are deleted from the macro name macro. 

The following description file illustrates macro substitution: 

SRCS = prog.c subl.c sub2.c 
prog.exe : $(SRCS: .c=.obj) 

LINK $**; 

DUP $(SRCSl 
!COPY $** c:\backup 

The predefined macro $** stands for the names of all the dependent files (see the 
previous section). If you invoke the example file with a command line that speci­
fies both targets, NMAKE executes the following commands: 

LINK prog.obj subl.obj sub2.obj; 

COPY prog.c c:\backup 
COPY subl.c c:\backup 
COPY sub2.c c:\backup 

The macro substitution does not alter the definition of the S RCS macro, rather, 
it simply replaces the listed characters. When NMAKE builds the target 
PROO.EXE, it gets the definition for the predefined macro$** (the dependent 
list) from the dependency line, which specifies the macro substitution in S RCS. 
The same is true for the second target, DU P. In this case, however, no macro sub­
stitution is requested, so S RCS retains its original value, and$** represents the 
names of the C source files. (In the example above, the target DU P is a pseudo­
target; Section 6.3.6 describes pseudotargets.) 

You can also perform substitution in the following predefined macros:$@,$*, 
$**, $?, and$<. The principle is the same as for other macros. The command in 
the following description block substitutes within a predefined macro: 

target.abc : depend.xyz 
echo $(@:targ=blankl 



116 Advanced Programming Techniques 

If dependent depend. xy z is out-of-date relative to target target. a be, 
then NMAKE executes the command 

echo blanket.abc 

The example uses the predefined macro $@, which equals the full name of the 
current target ( target. ab c ). It substitutes bl an k for tar g in the target, 
resulting in blanket. a be. Note that you do not put the usual dollar sign in 
front of the predefined macro. The example uses 

$(@:targ~blank) 

instead of 

$($@:targ~blank) 

to substitute within the predefined macro $@. 

Inherited Macros 
When NMAKE executes, it creates macros equivalent to every current environ­
ment variable. These are called "inherited" macros because they have the same 
names and values as the corresponding environment variables. (The inherited 
macro is all uppercase, however, even ifthe corresponding environment variable 
is not.) 

Inherited macros can be used like other macros. You can also redefine them. The 
following example redefines the inherited macro PATH: 

PATH~ c:\tools\bin 

sample.obj : sample.c 
CL /c sample.c 

Inherited macros take No matter what value PATH had in the DOS environment, it has the value 
their definitions from c : \tool s \bi n when NMAKE executes the CL command in this description 

environment variables. block. Redefining the inherited macro does not affect the original environment 
variable; when NMAKE terminates, PATH has its original value. 

The /E option defeats macro inheritance. If you supply this option, NMAKE ig­
nores any attempt to redefine a macro that derives from an environment variable. 



Managing Development Projects with NMAKE 117 

Precedence among Macro Definitions 
If you define the same macro in more than one place, NMAKE uses the macro 
with the highest precedence. The precedence from highest to lowest is as follows: 

1. Macros defined on the command line 

2. Macros defined in a description file or include file 

3. Inherited macros 

4. Macros defined in the TOOLS.INI file 

5. Predefined macros such as CC and AS 

The IE option defeats any attempt to redefine inherited macros. If you run 
NMAKE with this option, macros inherited from environment variables over­
ride any same-named macros in the description file. 

6.3.4 Inference Rules 
Inference rules are templates that NMAKE uses to create files with a given exten­
sion. For instance, when NMAKE encounters a description block with no com­
mands, it tries to apply an inference rule that tells how to create the target from 
the dependent files, given the two extensions. Similarly, if a dependent file does 
not exist, NMAKE tries to apply an inference rule that tells how to create the 
missing dependent from another file with the same base name. 

Inference rules tell Inference rules provide a convenient shorthand for common operations. For in­
NMAKE how to create files stance, you can use an inference rule to avoid repeating the same command in 

with a certain extension. several description blocks. 

You can define your own inference rules or use predefined inference rules. This 
section begins by describing user-defined inference rules. 

User-Defined Inference Rules 
You can define inference rules in the description file or in the TOOLS.INI file. 
An inference-rule definition lists two file extensions and one or more commands. 
For instance, the following inference rule tells NMAKE how to build a .OBJ file 
using a .C file: 

.C.OBJ: 
CL /c $<; 

The first line lists two extensions. The second extension (.OBJ) specifies the type 
of the desired file and the first (.C) specifies the type of the desired file's depen­
dent. The second line lists the command used to build the desired file. Here, the 
predefined macro$< represents the name of a dependent that is out-of-date rela­
tive to the target. 



118 Advanced Programming Techniques 

NMAKE could apply the above inference rule to the following description block: 

sample.obj : 

The description block lists only a target, SAMPLE.OBJ. Both the dependent and 
the command are missing. However, given the target's base name and extension, 
plus the above inference rule, NMAKE has enough information to build the tar­
get. NMAKE first looks for a .C file with the same base name as the target. If 
SAMPLE.C exists, NMAKE compares its date to that of SAMPLE.OBJ (the 
comparison is triggered by the predefined macro$<). If SAMPLE.Chas changed 
more recently, NMAKE compiles it using the CL command listed in the infer­
ence rule: 

CL/c sample.c 

NOTE NMAKE applies an inference rule only if the base name of the file it is trying to cre­
ate matches the base name of a file that already exists. Thus, inference rules are useful only 
when there is a one-to-one correspondence between the desired file and its dependent. You 
cannot define an inference rule that replaces several modules in a library, for example. 

Extension Search Paths 
If an inference rule does not specify a search path, as in the example above, 
NMAKE looks for files in the current directory. You can specify a single path 
for each of the extensions, using the following form: 

{ frompath } • fromext { topath } • toext : 
commands 

NMAKE searches in the frompath directory for files with the fromext extension. 
It uses commands to create files with the toext extension in the topath directory. 

Predefined Inference Rules 
NMAKE provides predefined inference rules to perform these common develop­
ment tasks: 

• Creating an .OBJ file by compiling a .C file 

• Creating an .OBJ file by assembling an .ASM file 

• Creating an .EXE file by compiling a .C file and linking the resulting .OBJ file 



Managing Development Projects with NMAKE 119 

Table 6.3 describes the predefined inference rules. 

Table 6.3 Predefined Inference Rules 

Inference Rule Command Default Action 

.c.obj $(CC) $(CFLAGS) /c cl /c $*.c 
$*.c 

.asm.obj $(AS) $(AFLAGS) $*; masm $*; 

.c.exe $(CC) $(CFLAGS) $*.c cl $*.c 

For example, say that you have the following description file: 

sample.exe : 

Like the previous example, this description block lists a target without any de­
pendents or commands. NMAKE looks at the target's extension (.EXE) and 
checks for an inference rule that describes how to create a .EXE file. The last 
rule in Table 6.3 provides this information: 

.c.exe: 
$(CC) $(CFLAGS) $*.c 

To apply this rule, NMAKE first looks for a file with the same base name as 
the target (SAMPLE) and the .C extension. If SAMPLE.C exists in the current 
directory, NMAKE executes the CL command given in the rule. The com­
mand compiles SAMPLE.C and links the resulting file SAMPLE.OBJ to create 
SAMPLE.EXE. 

Precedence among Inference Rules 
If the same inference rule is defined in more than one place, NMAKE uses the 
rule with the highest precedence. The precedence from highest to lowest is 

1. Inference rules defined in the description file 

2. Inference rules defined in the TOOLS.IN! file 

3. Predefined inference rules 

NMAKE uses a predefined inference rule only if no user-defined inference rule 
exists for the desired operation. 



120 Advanced Programming Techniques 

6.3.5 Directives 

NMAKE directives are similar 
to C preprocessor directives. 

Directives allow you to write description files that are similar to batch files. 
Directives can execute commands conditionally, display error messages, include 
other files, and turn on or off certain options. 

A directive begins with an exclamation point(!), which must appear at the begin­
ning of the line. You can place spaces between the exclamation point and the 
directive keyword. (See Table 6.4.) 

Table 6.4 Directives 

Directive 

!CMDSWITCHES 
{+1-)opt ... 

!ELSE 

!ENDIF 

!ERROR text 

!IF constantexpression 

!IFDEF macroname 

!IFNDEF macroname 

!INCLUDE.filename 

!UNDEF macroname 

Description 

Tums on or off one of four NMAKE options: /D, /I, 
/N, and /S. Ifno options are specified, the options are 

reset to the way they were when NMAKE started. Turn 
an option on by preceding it with a plus sign ( + ), or tum 
it off by preceding it with a minus sign (-). Using this 
keyword updates the MAKEFLAGS macro. 

Executes the statements between the !ELSE and !ENDIF 
keywords if the statements preceding the !ELSE key­
word were not executed. 

Marks the end of the !IF, !IFDEF, or !IFNDEF block of 
statements. 

Causes text to be printed and then stops execution. 

Executes the statements between the !IF keyword 
and the next !ELSE or !ENDIF keyword if constant 
expression evaluates to a nonzero value. 

Executes the statements between the !IFDEF keyword 
and the next !ELSE or !ENDIF keyword if macroname is 
defined. NMAKE considers a macro with a null value to 
be defined. 

Executes the statements between the !IFNDEF keyword 
and the next !ELSE or !ENDIF keyword if macroname is 
not defined. 

Reads and evaluates the file filename before continuing 
with the current description file. If filename is enclosed 
by angle brackets ( < > ), NMAKE searches for the file in 
the directories specified by the INCLUDE macro. Other­
wise, it looks only in the current directory. The 
INCLUDE macro is initially set to the value of the 
INCLUDE environment variable. 

Marks macroname as being undefined in NMAKE's 
symbol table. 



Managing Development Projects with NMAKE 121 

The constantexpression used with the !IF directive can consist of integer con­
stants, string constants, or program invocations. Integer constants can use the C 
unary operators for numerical negation(-), one's complement(-), and logical ne­
gation (!). They can also use any of the C binary operators listed in Table 6.5. 

Table 6.5 Directive Operators 

Operator Description 

+ Addition 

Subtraction 

* Multiplication 

Division 

% Modulus 

& Bitwise AND 

I Bitwise OR 
(\(\ Bitwise XOR 

&& Logical AND 

Logical OR 

<< Left shift 

>> Right shift 

Equality 

!= Inequality 

< Less than 

> Greater than 

<= Less than or equal to 

>= Greater than or equal to 

You can group expressions using parentheses. NMAKE treats numbers as deci­
mal unless they start with 0 (octal) or Ox (hexadecimal). Use the equality(==) 
operator to compare two strings for equality or the inequality(!=) operator to 
compare for inequality. Enclose strings with quotes. Program invocations must 
be in square brackets ([ ]). 



122 Advanced Programming Techniques 

The following example illustrates directives: 

!INCLUDE <infrules.txt> 
! CMDSW ITCH ES +D 
winner.exe:winner.obj 
!IFDEF debug 

IF "$(debug)"=="y" 
LINK /CO winner.obj; 

ELSE 
LINK winner.obj; 

ENDIF 
!ELSE 

ERROR Macro named debug is not defined. 
!ENDIF 

The !INCLUDE directive causes NMAKE to insert the file INFRULES.TXT into 
the description file. The !CMDSWITCHES directive turns on the ID option, 
which displays the dates of the files as they are checked. If WINNER.EXE is 
out-of-date with respect to WINNER.OBJ, the !IFDEF directive checks to see if 
the macro debug is defined. If it is defined, the !IF directive checks to see if it 
is set to y. If it is, the linker is invoked with the /CO option; otherwise it is in­
voked without. If the debug macro is not defined, the !ERROR directive prints 
the message and NMAKE stops. 

6.3.6 Pseudotargets 
Pseudotargets are useful for building a group of files or executing a group of 
commands. 

A "pseudotarget" is similar to a target, but it is not a file. It is a name that serves 
as a "handle" for building a group of files or executing a group of commands. In 
the following example, UPDATE is a pseudotarget. 

UPDATE: * * 
!COPY $** a:\product 

When NMAKE evaluates a pseudotarget, it always considers the dependents to 
be out-of-date. In the example, NMAKE copies each of the dependent files to the 
specified drive and directory. 

Like macro names, pseudotarget names are case sensitive. Predefined pseudo­
target names are all uppercase. 



Managing Development Projects with NMAKE 123 

The pseudotargets in Table 6.6 are predefined to provide special rules in a de­
scription file. You can use their names on the command line, in a description file, 
or in the TOOLS.IN! file. You need not specify them as targets; NMAKE uses 
the rules they define no matter where they appear. 

Table 6.6 Pseudotargets 

Pseudotarget 

.IGNORE: 

.PRECIOUS: target(s) 

.SILENT: 

.SUFFIXES:list 

Action 

Ignores exit codes returned by programs called from the 
description file. Same effect as invoking NMAKE with 
the /I option. 

Tells NMAKE not to delete target(s) ifthe commands 
that build it are quit or interrupted. Using this pseudo­
target overrides the NMAKE default. By default, 
NMAKE deletes the target if it cannot be sure the target 
is built successfully. 

The .PRECIOUS pseudotarget is rarely needed. Like 
most professional tools, Microsoft language tools clean 
up by themselves when errors occur. 

Does not display lines as they are executed. Same effect 
as invoking NMAKE with the /S option. 

Lists file suffixes for NMAKE to try when building a tar­
get file for which no dependents are specified. This list 
is used together with inference rules. See Section 6.3.4, 
"Inference Rules." 

When NMAKE finds a target without any dependents, it 
searches the current directory for a file with the same 
base name as the target and a suffix from the list. If 
NMAKE finds such a file, and if an inference rule ap­
plies to the file, then NMAKE treats the file as a depen­
dent of the target. The order of the suffixes in the list de­
fines the order in which NMAKE searches for the file. 
The list is predefined as follows: 

.SUFFIXES: .obj .exe .c .asm 

To add suffixes to the list, specify . SU FF I X ES 
followed by the new suffixes. To clear the list, specify 
.SUFFIXES: 



124 Advanced Programming Techniques 

6.3. 7 PWB's extmake Syntax 
NMAKE description files can use the same syntax as the extmake switch of 
PWB (see Chapter 8, "Customizing the Microsoft Programmer's WorkBench"). 
This syntax allows you to determine the drive, path, base name, and extension of 
the first dependent, information that is not otherwise available. The file name, 
and parts of its name, are represented using the syntax 

%JpartsF 

where parts is one or more of the following: 

Letter Description 

d Drive 

e File extension 

f File base name 

p Path 

s Complete name 

The following example uses extmake syntax: 

sample.obj : sample.c 
CL /Fod:%lpfF %ldfeF 

In this example, the sequence % I pf F represents the path and base name of the 
first dependent file, while the sequence % I d f e F represents the drive, base 
name, and extension of the same file. The example, then, compiles the file and 
writes the output to a file on the same path but with the default .OBJ extension. 

The percent symbol (%) is a replacement character in DOS and OS/2 command 
lines in the description file. To use extmake syntax in command-line arguments, 
specify each percent symbol as a double percent symbol (%% ). 

6.4 Command-line Options 
NMAKE accepts a number of options, which are listed in Table 6. 7. You can 
specify options in uppercase or lowercase and use either a slash or dash. For 
example, -A, /A, -a, and /a all represent the same option. 



Table 6.7 

Option 

IA 

IC 

ID 

/E 

IF filename 

/HELP 

/I 

JN 

/NO LOGO 

JP 

IQ 

JR 

IS 

IT 

IX filename 

/Z 

/? 

Managing Development Projects with NMAKE 125 

NMAKE Options 

Action 

Builds all of the requested targets even if they are not 
out-of-date. 

Suppresses nonfatal error or warning messages and the 
NMAKE logo display. 

Displays the modification date of each file. 

Causes environment variables to override macro defini­
tions in description files. See Section 6.3.3, "Macros." 

Specifies filename as the name of the description file. If 
you supply a dash(-) instead of a file name, NMAKE 
gets input from the standard input device instead of the 
description file. 

Calls the QuickHelp utility. If the QuickHelp program is 
not available, NMAKE displays the most commonly 
used NMAKE options. 

Ignores return codes from commands listed in the de­
scription file. NMAKE processes the whole description 
file even if errors occur. 

Displays but does not execute the description file's com­
mands. This option is useful for debugging description 
files and checking which targets are out-of-date. 

Suppresses the NMAKE logo display. 

Displays all macro definitions and target descriptions on 
the standard output device. 

Returns zero if the target is up-to-date and nonzero if it 
is not. This option is useful when running NMAKE from 
a batch file. 

Ignores inference rules and macros that are predefined 
or defined in the TOOLS.IN! file. 

Suppresses the display of commands listed in the de­
scription file. 

Changes the modification dates for out-of-date target 
files to the current date. 

Sends all error output to filename, which can be a file or 
a device. If you supply a dash(-) instead of a file name, 
the error output is sent to the standard output device. 

Used for internal communication between NMAKE and 
PWB. 

Displays a brief summary of NMAKE syntax and exits 
to the operating system. 



126 Advanced Programming Techniques 

The following command specifies two NMAKE options: 

NMAKE /f sample.mak Jc targl targ2 

The /f option tells NMAKE to read the description file SAMPLE.MAK. The /c 
option tells NMAKE not to display nonfatal error messages and warnings. The 
command lists two targets (ta r g 1 and ta r g 2) to update. 

NMAKE /D /N targl targl.mak 

In the example above, NMAKE updates the target t a r g 1. If the current 
directory does not contain a file named MAKEFILE, NMAKE reads the file 
T ARG l .MAK as the description file. The ID option displays the modification 
date of each file; the IN option displays the commands without executing them. 

6.5 NMAKE Command Files 
Occasionally, you may need to give NMAKE a long list of command-line argu­
ments that exceeds the maximum length of a command line (128 characters in 
DOS, 256 in OS/2). To do this, place the command arguments in a file, then give 
the name of the file when you run NMAKE. 

For instance, say that you create a file named UPDATE, which consists of 
this line: 

/S "program= sample" sort.exe search.exe 

If you start NMAKE with the command 

NMAKE @update 

NMAKE reads its command-line arguments from UPDATE. The at sign(@) 
tells NMAKE to read arguments from the file. The effect is the same as if you 
typed the ,arguments directly on the command line: 

NMAKE /S "program= sample" sort.exe search.exe 

Within the file, line breaks between arguments are treated as spaces. Macro defi­
nitions that contain spaces must be enclosed in quotation marks, just as if you 
typed them on the command line. You can continue a macro definition across 
multiple lines by ending each line except the last with a backslash(\): 

/S "program \ 
=sample" sort.exe search.exe 

This file is equivalent to the first example. The backslash in the example allows 
the macro definition ("program = s amp 1 e" ) to span two lines. 



Managing Development Projects with NMAKE 127 

6.6 The TOOLS.IN/ File 
You can customize NMAKE by placing commonly used macros and inference 
rules in the TOOLS.INI initialization file. Settings for NMAKE must follow a 
line that begins with [ N MAKE]. This part of the initialization file can contain 
macro definitions, .SUFFIXES lists, and inference rules. For example, 

[NMAKEJ 
cc~cl 

CFLAGS~-Gc -Gs -W3 -Oat 
. c. obj: 

$CCC) -c $CCFLAGS) $*.c 

If TOOLS.IN! contains the code above, NMAKE reads and applies the lines fol­
lowing [ N MAKE J. The example defines the macros CC and CFLAGS and rede­
fines the inference rule for making .OBJ files from .C sources. 

NMAKE looks for TOOLS.INI in the current directory. If it is not found there, 
NMAKE searches the directory specified by the INIT environment variable. 

6. 7 In-Line Files 
NMAKE can write "in-line files," which can contain any text you specify. One 
use for in-line files is to write a response file for another utility such as LIB. 
(Response files are useful when you need to supply a program with a long list of 
arguments that exceeds the maximum length of the command line.) 

Use this syntax to create an in-line file: 

target : dependents 
command<< [[filename] 

inlinetext 
«[KEEP I NOKEEP] 

All of the text between the two sets of double angle brackets ( <<) is placed in the 
in-line file. The filename is optional. If you don't supply filename, NMAKE 
gives the in-line file a unique name. NMAKE places the in-line file in the current 
directory or, if the TMP environment variable is defined, in the directory speci­
fied by TMP. 

The in-line file can be temporary or permanent. If you don't specify otherwise, or 
if you specify NOKEEP, it is temporary. Specify KEEP to retain the file. 



128 Advanced Programming Techniques 

The following example creates a LIB response file named LIB.LRF: 

math.lib: add.obj sub.obj mul.obj div.obj 
LIB @«lib.lrf 

math.lib 
-+add. obj-+sub. obj-+mul . obj-+d iv. obj 
listing 
«KEEP 

The resulting response file tells LIB which library to use, the commands to 
execute, and the listing file to produce: 

math.lib 
-+add. obj-+sub. obj-+mul. obj-+di v. obj 
listing 

The in-line file specification can create more than one in-line file. For instance, 

target.abc : depend.xyz 
cat <<filel <<file2 

I am the contents of filel. 
«KEEP 
I am the contents of file2. 
«KEEP 

The example creates two in-line files named FILE I and FILE2; then NMAKE 
executes the command: 

CAT filel file2 

The KEEP keywords tell NMAKE not to delete FILE I and FILE2 when done. 

6.8 NMAKE Operations Sequence 
If you are writing a complex description file, you may need to know the exact 
order of steps that NMAKE follows. This section describes those steps in order. 

When you run NMAKE from the command line, its first task is to find the de­
scription file, following these steps: 

1. If NMAKE is invoked with the IF option, it uses the file name specified in the 
option. 

2. If IF is not specified, NMAKE looks for a file named MAKEFILE in the cur­
rent directory. If such a file exists, it is used as a description file. 



If you do not specify targets, 
NMAKE updates only the first 
target in the description file. 

Managing Development Projects with NMAKE 129 

3. If MAKEFILE is not in the current directory, NMAKE parses the command 
line for the first string that is not an option or a macro definition and treats 
this string as a file name. If the file-name extension does not appear in the 
.SUFFIXES list, NMAKE uses the file as the description file. If the extension 
appears in the .SUFFIXES list, NMAKE tries additional strings until it finds a 
suitable file. (See Section 6.3.6, "Pseudotargets," for a description of the 
.SUFFIXES list.) 

4. If NMAKE still has not found a description file, it returns an error. 

NMAKE stops searching for a description file as soon as it finds one, even if 
other potential description files exist. If you specify /F, NMAKE uses the file 
specified by that option even if MAKEFILE exists in the current directory. Simi­
larly, ifNMAKE uses MAKEFILE, any description file listed in the command 
line is treated as a target. 

Next, NMAKE updates every target listed on the command line. If none is listed, 
NMAKE updates only the first target in the description file. (This behavior 
differs from the older MAKE program's default; see Section 6.9, "Differences 
between NMAKE and MAKE.") 

NMAKE then applies macro definitions and inference rules in the following 
order, from highest to lowest priority: 

1. Macros defined on the command line 

2. Macros defined in a description file or include file 

3. Inherited macros 

4. Macros defined in the TOOLS.IN! file 

5. Predefined macros such as CC and AS 

Definitions in later steps take precedence over definitions in earlier steps. The IE 
option, however, causes inherited macros to override macros defined on the com­
mand line. The !R option causes NMAKE to ignore macros and inference rules 
that are predefined or defined in TOOLS.INI. 

Now NMAKE updates each target in the order in which it appears in the descrip­
tion file. It compares the date and time of each dependent with that of the target 
and performs the commands needed to update the target. If you specify the I A 
option or if the target is a pseudotarget, NMAKE updates the target even if its de­
pendents are not out-of-date. 

If the target has no explicit dependents, NMAKE looks in the current directory 
for one or more files whose extensions are in the .SUFFIXES list. If it finds such 
files, NMAKE treats them as dependents and updates the target according to the 
commands. 



130 Advanced Programming Techniques 

If no commands are given to update the target or if the dependents cannot be 
found, NMAKE applies inference rules to build the target. By default, it tries to 
build .EXE files from .OBJ files; and it tries to build .OBJ files from .C and 
.ASM sources. In practice, this means you should specify .OBJ files as depen­
dents, because NMAKE compiles your source files when it can't find the .OBJ 
files. 

NMAKE normally quits processing the description file when a command 
returns an error. In addition, if it cannot tell that the target was built success­
fully, NMAKE deletes the partially created target. If you use the /I command­
line option, NMAKE ignores exit codes and attempts to continue processing. 
The .IGNORE pseudotarget has the same effect. To prevent NMAKE from 
deleting the partially created target, specify the target name in the .PRECIOUS 
pseudotarget. 

Alternatively, you can use the dash(-) command modifier to ignore the error 
code for an individual command. An optional number after the dash tells 
NMAKE to continue if the command returns an error code that is less than or 
equal to the number, and to stop if the error code is greater than the number. 

You can help document errors by using the !ERROR directive to print descrip­
tive text. The directive causes NMAKE to print some text, then stop, even if you 
use /I, .IGNORE, or the dash(-) modifier. 

6. 9 Differences between NMAKE and MAKE 
As its name implies, NMAKE is a new utility that replaces the older Microsoft 
MAKE program. NMAKE differs from MAKE in the following ways: 

• NMAKE does not evaluate targets sequentially. Instead, NMAKE updates the 
targets you specify when you invoke it, regardless of their positions in the de­
scription file. If no targets are specified, NMAKE updates only the first target 
in the file. 

• NMAKE accepts command-line arguments from a file. 

• NMAKE provides more command-line options. 

• NMAKE provides more predefined macros. 

• NMAKE permits substitutions within macros. 

• NMAKE supports directives placed in the description file. 

• NMAKE allows you to specify include files in the description file. 



Managing Development Projects with NMAKE 131 

The first item in the list deserves special emphasis. While MAKE normally 
builds every target, working from beginning to end of the description file, 
NMAKE expects you to specify targets on the command line. If you do not, 
NMAKE builds only the first target in the description file. 

The difference is clear if you run NMAKE using a typical MAKE description 
file, which lists a series of subordinate targets followed by a higher-level target 
that depends on the subordinates: 

pmapp.obj : pmapp.c 
CL /c /G2sw /W3 pmapp.c 

pmapp.exe : pmapp.obj pmapp.def 
LINK pmapp, /align:16, NUL, os2, pmapp 

MAKE builds both targets (PMAPP.OBJ and PMAPP.EXE), but NMAKE builds 
only the first target (PMAPP.OBJ). 

Because of these performance differences, you may want to convert MAKE files 
to NMAKE files. MAKE description files are easy to convert. A simple method 
is to create a new description block at the beginning of the file. Give this block a 
pseudotarget named ALL and list the top-level target as a dependent of ALL. 
To build ALL, NMAKE must update every target upon which the target of ALL 
depends: 

ALL : pmapp.exe 

pmapp.obj : pmapp.c 
CL /c /G2sw /W3 pmapp.c 

pmapp.exe : pmapp.obj pmapp.def 
LINK pmapp, /align:16, NUL, os2, pmapp 

If the above file is named MAKEFILE, you can update the target PMAPP.EXE 
with the command 

NMAKE 

or the command 

NMAKE ALL 

Note that it is not necessary to list PMAPP.OBJ as a dependent of ALL. 
NMAKE builds a dependency tree for the entire description file, and builds 
whatever files are needed to update PMAPP.EXE. So if PMAPP.C is out-of­
date with respect to PMAPP.OBJ, NMAKE compiles PMAPP.C to create 
PMAPP.OBJ, then links PMAPP.OBJ to create PMAPP.EXE. 



132 Advanced Programming Techniques 

The same technique is suitable for description files with more than one top-level 
target. List all of the top-level targets as dependents of A L L: 

ALL : pmapp.exe second.exe another.exe 

The example updates the targets PMAPP.EXE, SECOND.EXE, and 
ANOTHER.EXE. 

If the description file lists a single, top-level target, you can use an even simpler 
technique. Move the top-level block to the beginning of the file: 

pmapp.exe : pmapp.obj pmapp.def 
LINK pmapp, /align:l6, NUL, os2, pmapp 

pmapp.obj : pmapp.c 
CL /c /G2sw /W3 pmapp.c 

NMAKE updates the second target (PMAPP.OBJ) whenever needed to keep the 
first target (PMAPP.EXE) current. 



Creating Help Files 
with HELPMAKE 

CHAPTER 

If you have used PWB or other Microsoft language products such as QuickC, 
you are familiar with the many advantages of on-line help. The Microsoft 
Help-File-Creation Utility (HELPMAKE) allows you to create your own help 
files for use with Microsoft products. It also allows you to customize the help 
files supplied with Microsoft language products. 

HELPMAKE translates help text files into a help database accessible from within 
the following: 

• Microsoft C 6.0 Programmer's WorkBench (PWB) 

• QuickHelp Utility 

• Microsoft Editor 1.02 

• Microsoft QuickC 2.0 

• Microsoft QuickPascal 1.0 

• Microsoft QuickBASIC 4.5 

This chapter describes how to create and modify help files using the 
HELPMAKE utility. 

7. 1 Structure and Contents of a Help Database 
HELPMAKE creates a help database from one or more input files that contain in­
formation formatted for the help system. This section defines some of the terms 
involved in formatting and outlines the formats that HELPMAKE can process. 

133 



134 Advanced Programming Techniques 

7. 1. 1 Contents of a Help File 

Cross-references help 
you navigate through 

a help database. 

Implicit cross-references 
are coded with an ordinary 

. context command. 

As you might expect, each help text file starts with a topic and some information 
about the topic, then lists another topic and some information about it, and so on. 
In HELPMAKE terminology, topics are called "contexts"; the information is 
called "topic text." 

The .context command introduces a context. In the source file for C 6.0 help, for 
example, this line introduces help for the open function: 

.context open 

The .context command and other formatting elements are described in Section 
7.5, "Help Text Conventions." 

Whether a context is one or several words depends on the application. Quick­
BASIC, for example, considers spaces to be delimiters, so in QuickBASIC 
help files contexts are limited to a single word. Other applications, such as the 
Microsoft Editor, can handle contexts that span several words. Either way, the 
application simply hands the context to an internal "help engine," which searches 
the database for information. 

Often, especially with library routines, the same information applies to more 
than one subject. For example, the string-to-number functions strtod, strtol, and 
stroul share the same help text. The help file lists all three function names as con­
texts for one block of topic text. The converse, however, is not true. You cannot 
specify different blocks of topic text, in different places in the help file, to de­
scribe a single subject. 

Cross-references make it possible to view information about related topics, in­
cluding header files and code examples. The help for the open function, for ex­
ample, references the access function and the ASCII header file FCNTL.H. 
Cross-references can point to other contexts in the same help database, to con­
texts in other help databases, or to ASCII files outside the database. 

Help files can have two kinds of cross-references: 

• Implicit 

• Explicit, or hyperlinks 

The word "open" is an implicit cross-reference throughout C 6.0 help. If you 
select the word "open" anywhere in C 6.0 help, the help system displays informa­
tion on the open function. As illustrated above, the context for open begins with 
an ordinary .context command. As a result, anywhere that you select "open," the 
help system references this context. 



Creating Help Files with HELPMAKE 135 

Hyper/inks are explicit A "hyperlink" is an explicit cross-reference tied to a word or phrase at a specific 
cross-references marked location in the help file. You create hyperlinks when you write the help text. The 

by invisible text. hyperlink consists of a word or phrase followed by invisible text that gives the 
context to which the hyperlink refers. 

Formatting flags let 
you change the 

appearance of text. 

For example, to cause an instance of the word "formatting" to display help on 
the printf function, you would create an explicit cross-reference from the word 
"formatting" to the context "printf." Elsewhere in the file, "formatting" has no 
special significance but, at that one position, it references the help for printf. 
Section 7.5.4 describes how to create hyperlinks. 

Help text can also include formatting flags to control the appearance of the text 
on the screen. Using these flags, you can make certain words appear in various 
colors, inverse video, and so forth, depending on the application displaying help 
and the graphics capabilities of the host computer. 

7. 1.2 Help File Formats 
You can create help files using any of three formats: 

• QuickHelp format 

• Rich Text Format (RTF) 

• Minimally formatted ASCII 

In addition, you can reference unformatted ASCII files, such as include files, 
from within a help database. 

An entire help system (such as the one supplied with Microsoft C or Quick­
BASIC) can use any combination of files formatted with different format types. 
With C, for example, the README.DOC information file is encoded as mini­
mally formatted ASCII; the help files for the PWB, C language, and run-time li­
brary are encoded in the QuickHelp format. The database also cross-references 
the header (include) files, which are unformatted ASCII files stored outside the 
database. 

QuickHelp 
QuickHelp format is the default and is the format into which HELPMAKE de­
codes help databases. Use any text editor to create a QuickHelp-format help text 
file. QuickHelp format also lends itself to a relatively easy automated translation 
from other document formats. 

QuickHelp files can contain any kind of cross-reference or formatting attribute. 
Typically, you use QuickHelp format for any changes to a database supplied by 
Microsoft. 



136 Advanced Programming Techniques 

RTF 
Rich Text Format (RTF) is a Microsoft word-processing format that many other 
word processors also support. You can create RTF help text with any word pro­
cessor that generates RTF output. You can also use any utility program that takes 
word-processor output and produces an RTF file. 

Use RTF when you want to transfer help files from one application to another 
while retaining formatting information. You can format RTF files directly with 
the word-processing program; you need not edit them to insert any special com­
mands or tags. Like QuickHelp files, RTF files can contain formatting attributes 
and cross-references. 

Minimally Formatted ASCII 
Minimally formatted ASCII files simply define contexts and their topic text. 
These files cannot contain screen-formatting commands or explicit cross­
references (implicit cross-references are allowed). They are often used to display 
text such as README.DOC and small help files that do not require compression. 

Unformatted ASCII 
Unformatted ASCII files are exactly what their name implies: regular ASCII files 
with no special formatting commands, context definitions, or special information. 
An unformatted ASCII file does not become part of the help database. Only its 
name is used as the object of a cross-reference. The standard C header (include) 
files are unformatted ASCII files used for cross-references by the help system for 
the C run-time library. Unformatted ASCII files are also useful for storing pro­
gram examples. 

7.2 Invoking HELPMAKE 
The HELPMAKE program can encode or decode help files, allowing you to cre­
ate new help files or modify existing ones. Encoding converts a text file to a com­
pressed help database. HELPMAKE can encode text files written in QuickHelp, 
RTF, and minimally formatted ASCII format. Decoding converts a help database 
to a text file for editing. HELPMAKE always decodes a help database into a 
QuickHelp format text file. 



Creating Help Files with HELPMAKE 137 

Invoke HELPMAKE with the following syntax: 

HELPMAKE [options] {/En I ID} { sourcefiles} 

The options modify the action ofHELPMAKE; they are described in Section 7.3. 

Use the/E option to encode You must supply either the IE (encode) or the ID (decode) option. When encod­
with HELPMAKE and use ing (/E) to create a help database, you must use the /0 option to specify the file 
the ID option to decode. name of the database. 

The sourcefile field is required. It specifies the input file for HELPMAKE. If you 
use the ID (decode) option, sourcefile can be one or more help database files 
(such as QC.HLP). HELPMAKE decodes the database files into a single text file. 
If you use the IE (encode) option, sourcefile can be one or more help text files 
(such as QC.SRC). Separate file names with a space. Standard wild-card charac­
ters can also be used. 

The example below invokes HELPMAKE with the N, /E, and /0 options (see 
Section 7.3.1, "Options for Encoding"). HELPMAKE reads input from the text 
file my . t x t and writes the compressed help database in the file my • h l p. The 
IE option causes maximum compression. Note that the DOS redirection symbol 
(>) sends a log of HELPMAKE activity to the file my . l o g. You may find it 
helpful to redirect the log file because, in its more verbose modes (given by N), 
HELPMAKE may generate a lengthy log. 

HELPMAKE /V /E /Omy.hlp my.txt >my. log 

The example below invokes HELPMAKE to decode the help database my . h l p 
into the text file my. s re, given with the /0 option. Once again, the N option re­
sults in verbose output, and the output is directed to the log file my.log. Sec­
tion 7.3.2 describes additional options for decoding. 

HELPMAKE /V /D /Omy.src my.hlp >my.log 

7.3 HELPMAKE Options 
HELPMAKE accepts a number of command-line options, which are described 
below. You can specify options in uppercase or lowercase letters, and precede 
them with either a forward slash ( I) or a dash (-). For example, -L, /L, -1, and 
/l all represent the same option. Most options apply only to encoding; others 
apply only to decoding; and a few apply to both. 



138 Advanced Programming Techniques 

7.3.1 Options for Encoding 
When you encode a file-that is, when you build a help database-you must 
specify the IE option. In addition, you can supply various other options that con­
trol the way HELPMAKE works. All the options that apply when encoding are 
listed below: 

Option 

/Ac 

IC 

/E[n] 

/H 

Action 

Specifies c as an application-specific control charac­
ter for the help database file. The character marks a 
line that contains special information for internal use 
by the application. For example, QuickC uses the 
colon(:). 

Indicates that the context strings for this help file are 
case sensitive. At run time, all searches for help top­
ics are case sensitive if the help database was built 
with the IC option in effect. 

Creates (encodes) a help database from a specified 
text file. The optional n indicates the amount of com­
pression to take place. If n is omitted, HELPMAKE 
compresses the file as much as possible, thereby re­
ducing the size of the file by about 50%. The more 
compression requested, the longer HELPMAKE 
takes to create a database file. The value of n is a 
number in the range 0- 15. It is the sum of succes­
sive powers of 2 representing various compression 
techniques, as listed below: 

Value Technique 

0 No compression 

1 Run-length compression 

2 Key word compression 

4 Extended key word 
compression 

8 Huffman compression 

Add values to combine compression techniques. For 
example, use /E3 to get run-length and key word 
compression. This is useful in the testing stages of 
creating a help database when you need to create the 
database quickly and are not too concerned with size. 

Displays a summary of HELPMAKE syntax and 
exits. 



/HELP 

/Kfilename 

IL 

/Odestfile 

Creating Help Files with HELPMAKE 139 

Invokes QH.EXE, the QuickHelp utility, for help 
about HELPMAKE. If QuickHelp is not available, 
displays the same information as the /H option. 

Optimizes key word compression by supplying a 
list of characters that act as word separators. The 
filename is a file containing your list of separator 
characters. 

When you select key word compression, HELP­
MAKE scans the help file to identify "key words." 
A key word is any word that occurs often enough to 
justify replacing it with a shorter character sequence. 
HELPMAKE normally uses the following characters 
as word separators: 

• All characters from 0-32 (including the space) 

• !"#&'()*+'-,/:;<=>?@[\]" _' {I}-

• 127 

When performing key word compression, HELP­
MAKE treats as a word any series of characters not 
appearing in the separator list. 

Depending on the content of your help file, you may 
be able to improve key word compression by using 
the /K option to specify a different list of separator 
characters. For instance, the default separator list 
contains the number sign (#). If your help file con­
tains #include directives, HELPMAKE normally 
treats #include as the word include without a num­
ber sign. To cause HELPMAKE to treat #include as 
a word, you could specify the following separator 
list: 

! " & ' ( ) *+' - 'I : ; < ~ > ?@[ \ J A - • ( I }-

The list above does not include the number sign. 
HELPMAKE always treats characters in the range 
0-32 as separators, so you do not need to include 
them. Your list must include all the other characters 
you want HELPMAKE to use as separators, includ­
ing the space. 

Locks the generated file so that it cannot be decoded 
by HELPMAKE at a later time. 

Specifies destfile as the name of the help database. 



140 Advanced Programming Techniques 

/Sn 

/T 

N[n] 

/Wwidth 

Specifies the type of input file, according to the fol­
lowing n values: 

Option 

/Sl 

/S2 

/S3 

File Type 

Rich Text Format (RTF) 

QuickHelp (default) 

Minimally formatted ASCII 

Translates dot commands into internal format. If 
your help file contains dot commands other than 
.context, you should supply this option when encod­
ing it. Dot commands are described in Section 7.6.1, 
"QuickHelp Format," and in later sections. 

Indicates the verbosity of diagnostic and infor­
mational output, depending on the value of n. In­
creasing the value adds more information to the 
output. If you omit this option or specify only N, 
HELPMAKE gives you its most verbose output. The 
possible values of n are listed below: 

Option Effect 

N Maximum diagnostic output 

NO No diagnostic output and no 
banner 

Nl Prints only HELPMAKE ban-
ner (default) 

N2 Prints pass names 

N3 Prints contexts on first pass 

N4 Prints contexts on each pass 

NS Prints any intermediate steps 
within each pass 

N6 Prints statistics on help file 
and compression 

Indicates the fixed width of the resulting help text in 
number of characters. The values of width can range 
from 11 to 255. If the /W option is omitted, the de­
fault is 76. When encoding RTF source (/Sl), HELP­
MAKE automatically formats the text to width. 
When encoding QuickHelp (/S2) or minimally for­
matted ASCII (/S3) files, HELPMAKE truncates 
lines to this width. 



Creating Help Files with HELPMAKE 141 

7.3.2 Options for Decoding 
To decode a help database into QuickHelp files, you must use the ID option. In 
addition, HELPMAKE accepts other options to control the decoding process. 
The list below shows all the options that are valid when decoding: 

Option 

/D[letterll 

/H 

/HELP 

Action 

Decodes the input file into its original text or com­
ponent parts. If a destination file is not specified 
with the /0 option, the help file is decoded to 
stdout. HELPMAKE decodes the file differently de­
pending on the letter specified: 

Letter 

ID 

IDS 

/DU 

Effect 

"Decode." Fully decodes the 
help database, leaving all 
cross-references and format­
ting information intact. 

"Decode split." Splits the con­
catenated, compressed help 
database into its components 
using their original names. If 
the database was created with­
out concatenation (the de­
fault), HELPMAKE simply 
copies it to a file with its origi­
nal name. No decompression 
occurs. 

"Decode unformatted." De­
compresses the database and 
removes all screen formatting 
and cross-references. The out­
put can still be used later for 
input and recompression, but 
all screen formatting and 
cross-references are lost. 

Displays a summary of HELPMAKE syntax and 
exits without encoding or decoding any files. 

Invokes QH.EXE, the QuickHelp utility, for infor­
mation about HELPMAKE. If QuickHelp is not 
available, displays the same information as the /H 
option. 



142 Advanced Programming Techniques 

/Odestfile 

IT 

/V[n] 

Specifies desiflle for the decoded output from 
HELPMAKE. If destfile is omitted, the help data­
base is decoded to stdout. HELPMAKE always de­
codes help database files into QuickHelp format. 

Translates dot commands from internal format into 
dot-command format. You should always supply 
this option when decoding a help database that con­
tains dot commands other than .context. 

Indicates the verbosity of diagnostic and infor­
mational output depending on the value of n. The 
possible values are listed below. If you omit this op­
tion or specify only /V, HELPMAKE gives you its 
most verbose output. 

JV 
/VO 

/VI 

/V2 

/V3 

Effect 

Maximum diagnostic output 

No diagnostic output and no 
banner 

Prints only the HELPMAKE 
banner 

Prints pass names 

Prints contexts on first pass 

7.4 Creating a Help Database 
You can create a Microsoft-compatible help database by either of two methods. 

The first method is to decompress an existing help database, modify the resulting 
help text file, and recompress the help text file to form a new database. 

The second and simpler method is to append a new help database to an existing 
help database. This method involves the following steps: 

1. Create a help text file in QuickHelp format, RTF, or minimally formatted 
ASCII. 

2. Use HELPMAKE to create a help database file. The example below invokes 
HELPMAKE, using SAMPLE.TXT as the input file and producing a help 
database file named sample. h l p: 

HELPMAKE /V /E /Osample.hlp sample.txt >sample.log 



Creating Help Files with HELPMAKE 143 

3. Make a backup copy of the existing database file (for safety's sake). 

4. Append the new help database file to the existing help database. The example 
below concatenates the new database s amp l e . h l p onto the end of the 
CLANG.HLP database: 

COPY clang.hlp /b + sample.hlp /b 

5. Test the database. The sample. h l p database contains the context 
s amp l e. If you type the word "sample" in the PWB and request help on 
it, the help window displays the text associated with the context s amp l e. 

7.5 Help Text Conventions 
Microsoft help databases have a common structure and follow certain organiza­
tional conventions. You should follow the same conventions to create Microsoft­
compatible help files. 

7.5.1 Structure of the Help Text File 
The help-retrieval capability that is built into Microsoft products is simply a data­
retrieval tool. It imposes no restrictions on the content and format of the help 
text. The HELPMAKE utility and the display routines built into Microsoft lan­
guage environments, however, make certain assumptions about the format of 
help text. This section provides some guidelines for creating help text files com­
patible with those assumptions. 

In all three help text formats, the help text source file is a sequence of topics, 
each preceded by one or more unique context definitions. The following list 
specifies the various formats and the corresponding context definition statements: 

Format 

QuickHelp 

RTF 

Minimally formatted 

ASCII 

Context Definition 

.context context 

\par >>context\ par 

>>context 

(none) 

In QuickHelp format, each topic begins with one or more .context statements 
that define the context strings that map to the topic text. Subsequent lines up to 
the next .context statement constitute the topic text. 

In RTF format, each context definition must be in a paragraph of its own (de­
noted by\ par), beginning with the help delimiter(>>). Subsequent paragraphs 
up to the next context definition constitute the topic text. 



144 Advanced Programming Techniques 

In minimally formatted ASCII, each context definition must be on a separate 
line, and each must begin with the help delimiter(>>). As in RTF and QuickHelp 
files, subsequent lines up to the next context definition constitute the topic text. 

See Section 7.6, "Using Help Database Formats," for detailed information about 
these three formats. 

7.5.2 Local Contexts 
Context strings that begin with an "at" sign(@) are defined as "local" and have 
no implicit cross-references. They are used in cross-references instead of the con­
text string that otherwise is generated. 

When you use a local context, HELPMAKE does not generate a global context 
string (a context string that is known throughout the help file). Instead, it embeds 
an encoded cross-reference that has meaning only within the current context. For 
example, 

.context normal 
This is a normal topic, accessible by the context string "normal." 
[button\v@local\v] is a cross-reference to the following topic . 

. context @local 

This topic can be reached only if the user browses 
sequentially through the file or uses the cross-reference 
in the previous topic. 

Intheexampleabove,thetext [button\v@local\v] defines local asa 
local context. If the user selects the text [button J or scrolls through the file, 
the help system displays the topic text that follows the context definition for 
local. Because local is defined with the "at" sign(@), it can be accessed 
only by a hyperlink within the help file or by sequentially browsing through the 
file. Making a context local saves file space and speeds access. 



Creating Help Files with HELPMAKE 145 

7.5.3 Context Prefixes 

Most context prefixes 
are internal. 

Microsoft help databases use several context prefixes. A "context prefix" is a 
single letter followed by a period. It appears before a context string that has a pre­
defined meaning. If you decode a Microsoft help database, many of these con­
texts may appear in the resulting text file. 

Except for the h. prefix, which is described below, context prefixes are internal. 
You do not need to add them in help files that you write. 

You can use the h. prefix to identify standard help-file contexts. For instance, 
h.default identifies the default help screen: the screen that normally appears when 
you select "top-level" help. Table 7.1 lists the standard h. contexts. 

Table 7.1 

Context 

h.contents 

h.default 

h.index 

h.notfound 

h.pg# 

h.pg$ 

h.pgl 

h.title 

Standard h. Contexts 

Description 

The table of contents for the help file. You should also 
define the string "contents" for direct reference to this 
context. 

The default help screen, typically displayed when the 
user presses SHIFT +Fl at the "top level" in most applica­
tions. The contents are generally devoted to information 
about using help. 

The index for the help file. You can also define the 
string "index" for direct reference to this context. 

The help text that is displayed when the help system can­
not find information about the requested context. The 
text could be an index of contexts, a topical list, or 
general information about using he] p. 

A specific page within the help file. This is used in re­
sponse to a "go to page#" request. 

The help text that is logically last in the file. This is used 
by some applications in response to a "go to the end" re­
quest made within the help window. 

The help text that is logically first in the file. This is 
used by some applications in response to a "go to the 
beginning" request made within the help window. 

The title of the help database. 



146 Advanced Programming Techniques 

7.5.4 Hyper/inks 

The context prefixes in Table 7.2 are internal to Microsoft products. They appear 
in decompressed databases, but you do not need to use them. 

Table 7.2 Microsoft Product Context Prefixes 

Prefix 

d. 

e. 

m. 

n. 

Purpose 

Dialog box. Each dialog box is assigned a number. Its help con­
text string is d. followed by the number (for example, d. 12). 

Error number. If a product supports the error-numbering scheme 
used by Microsoft languages, it displays help for each error 
using this prefix. For example, the context e . c 12 3 4 refers to 
the C compiler error message number C1234. 

Menu item. Contexts that relate to product menu items are de­
fined by their accelerator keys. For example, the Exit selection 
on the FILE menu item is accessed by ALT+F x and is referenced 
in help by m. f. x. 

Message number. Each message box is assigned a number. Its 
help context string is n. plus the number (for example, n. 5 ). 

Explicit cross-references, or hyperlinks, in the help text file are marked with in­
visible text. A hyperlink comprises a word or phrase followed by invisible text 
that gives the context to which the hyperlink refers. 

The keystroke that activates the hyperlink depends on the application. Consult 
the documentation for each product to find the specific keystroke needed. 

When the user activates the hyperlink, the help system displays the topic named 
by the invisible text. The invisible cross-reference text is formatted as one of the 
following: 

Hyperlink Text 

contextstring 

filename! 

Action 

Causes the help topic associated with contextstring 
to be displayed. For example, ex e format results 
in the display of the help topic associated with the 
context exef o rma t. 

Treats filename as a single topic to be displayed. For 
example, $I NC LU DE: stdio. h ! searches the 
INCLUDE environment variable for file STDIO.H 
and displays it as a single help topic. 



Anchored hyper/inks must 
fit on a single line. 

filename!contextstring 

Creating Help Files with HELPMAKE 147 

Works the same way as contextstring above, except 
that only the help file filename is searched for the 
context. If the file is not already open, the help sys­
tem finds it (by searching either the current path or 
an explicit environment variable) and opens it. For 
example, $BIN:readme.doc!patches 
searchesfor readme.doc intheBINenviron­
ment variable and displays the topic associated with 
patches. 

In the following example, the word Exam pl e is a hyperlink: 

\bSee also:\p \uExample\p\vopen.ex\v 

The hyperlink refers to open . ex. If you select any of the letters of Exam pl e, 
the help system displays the topic whose context is open. ex. On the screen, 
this line appears as follows: 

See also: Example 

An application might display See a l so : and Exam pl e in different colors or 
character types, depending on such factors as your default color selection and 
type of monitor. 

When a hyperlink needs to cross-reference more than one word, you must use an 
anchor, as in the following example: 

\bSee also:\p \uExample\p\vprintf.ex\v, fprintf, scanf, sprintf, 
vfprintf, vprintf, vsprintf 

\aformatting table\vprintf.table\v 

This part of the example is an anchored hyperlink: 

\aformatting table\vprintf .table\v 

The\ a flag creates an anchor for the cross-reference. In the example, the phrase 
following the\ a flag ( f o rm a t ti n g ta bl e) is the hyperlink. It refers to the 
context pr i n t f. tab l e. The first \v flag marks both the end of the hyper link 
and the beginning of the invisible text. The name pr i n t f . tab l e is invisible; 
it does not appear on the screen when the help is displayed. The second \v flag 
ends the invisible text. 



148 Advanced Programming Techniques 

7.6 Using Help Database Formats 
The text format of the database can be any of three types. The list below briefly 
describes these types. Sections 7 .6.1-7 .6.3 describe the formatting types in detail. 

An entire help system (such as the one supplied with the Professional Develop­
ment System or QuickC) can use any combination of files formatted with differ­
ent format types. With C, for example, the README.DOC information file is 
encoded as minimally formatted ASCII; and the help files for the C language and 
run-time library are encoded in the QuickHelp format. The database also cross­
references the header (include) files, which are unformatted ASCII files stored 
outside the database. 

Type 

QuickHelp 

Minimally formatted 
ASCII 

RTF 

7. 6. 1 QuickHelp Format 

Characteristics 

Uses dot commands and embedded formatting char­
acters (the default formatting type expected by 
HELPMAKE); supports highlighting, color, and 
cross-references. This format must be compressed 
before using. 

Uses a help delimiter(>>) to define help contexts; 
does not support highlighting, color, or cross­
references. This format can be compressed, but com­
pression is not required. 

Uses a subset of standard RTF; supports highlight­
ing, color, and cross-references; supports dot com­
mands. This format must be compressed before 
using. 

The QuickHelp format uses a dot command and embedded formatting flags to 
convey information to HELPMAKE. 

QuickHelp Dot Commands 
QuickHelp supports a number of dot commands, which identify topics and con­
vey other topic-related information to the help system. If your help file contains 
dot commands other than .context, you must supply the ff option when encoding 
and decoding with HELPMAKE. 



You can define more than one 
context for a single topic. 

Creating Help Files with HELPMAKE 149 

The most important dot command is the .context command. Every topic in a 
QuickHelp file begins with one or more .context commands. Each .context 
command defines a context string for the topic text. You can define more than 
one context for a single topic, as long as you do not place any topic text be­
tween them. 

Typical dot commands are shown below. The first defines a context for the 
#include C preprocessor directive. The second set illustrates multiple contexts 
for one block of topic text. In this case, the same topic text explains all of the 
string-to-number conversion routines in C . 

. context #include 

description of #include goes here 

.context strtod 

. context strtol 

. context strtoul 

description of string-to-number functions goes here 

The QuickHelp format supports several other dot commands. Table 7 .3 lists all 
of the dot commands available in QuickHelp format. 

Table 7.3 QuickHelp Dot Commands 

Command 

.category string 

.command 

.comment string 

. context string 

Action 

Lists the category in which the current topic appears and 
its position in the list of topics. The category name is 
used by the QuickHelp Topic command, which brings 
up the list of topics to which the current topic belongs. 
Some applications, such as the PWB, use this name as a 
pointer to the applicable table of contents. 

Indicates that the topic text is not a displayable help 
topic. Use this command to hide hyperlink topics and 
other internal information. Hyperlink topics are de­
scribed in Section 7.5.5, "Hyperlink Commands." 

The string is a comment that appears only in the help 
source file. Comments are especially useful for docu­
menting the purpose of cross-references. 

Because comments are not inserted in the help database, 
they are not restored when you decompress a help file . 

The string introduces a topic. 



150 Advanced Programming Techniques 

Table 7.3 (continued) 

Command 

. end 

.freeze numlines 

.length topiclength 

.list 

.mark name [column] 

.next context 

. previous context 

.paste pastename 

.popup 

. ref string( s) 

.topic text 

Action 

Ends a paste section. See the .paste command below . 

Indicates that the first numlines lines should be frozen as 
the top line of the help screen. This is normally used to 
freeze a row of cross-reference buttons at the top of a 
help topic that might be scrolled. 

Indicates the default window size, in topiclength lines, 
of the topic about to be displayed. This command is al­
ways the first line in the topic if present. 

Indicates that the current topic contains a list of topics. 
QuickHelp displays a highlighted line; you can choose 
a topic by moving the highlighted line over the desired 
topic and pressing ENTER. Help searches for the first 
word of the line. 

Defines a mark immediately preceding the following 
line of text. This command can be used in help script 
commands to indicate that the display of a particular 
topic begins at the marked line. The name identifies the 
mark. The optional column value is an integer that indi­
cates a column location within the specified line. 

Tells the help system to look up the next topic using 
context instead of the next topic's name. You can use 
this command to skip large blocks of .command or 
.popup topics . 

Tells the help system to look up the previous topic using 
context instead of the previous topic's name. You can 
use this command to skip large blocks of .command or 
.popup topics. 

Begins a paste section. The pastename appears in the 
QuickHelp Paste menu. 

Tells the help system to display the current topic as a 
popup instead of a normal, scrollable topic . 

Tells the help system to display the list of string topics 
in the Reference menu. You can list as many topics as 
needed; separate each additional string with a comma. 

Defines text as the name or title to be displayed in place 
of the context string if the application help displays a 
title. This command is always the first line in the context 
unless you also use the .length command. 



Creating Help Files with HELPMAKE 151 

QuickHelp Formatting Flags 
The QuickHelp format supports a number of formatting flags that are used to 
highlight parts of the help database and to mark hyperlinks in the help text. 

Each formatting flag consists of a backslash ( \) followed by a character. Table 
7.4 lists the formatting flags. 

Table 7.4 Formatting Flags 

Formatting Flag 

\a 

\b,\B 

\i, \I 

\p, \P 

\u, \U 

\v,\V 

\\ 

Action 

Anchors text for cross-references 

Tums boldface on or off 

Tums italics on or off 

Tums off all attributes 

Tums underlining on or off 

Tums invisibility on or off (hides cross-references 
in text) 

Inserts a single backslash in text 

On monochrome monitors, text labeled with the bold, italic, and underlining at­
tributes appears in various ways, depending on the application (for example, high 
intensity and reverse video are commonly displayed). On color monitors, these at­
tributes are translated by the application into suitable colors, depending on the 
user's default color selections. 

The\ b, \ i, \ u, and \v options are toggles, turning on and off their respective at­
tributes. You can use several of these on the same text. Use the\ p attribute to 
turn off all attributes. Use the \v attribute to hide cross-references and hyperlinks 
in the text. 

HELPMAKE truncates the lines in QuickHelp files to the width specified with 
the /W option. (See Section 7.3.1, "Options for Encoding," for more informa­
tion.) Only visible characters count toward the character-width limit. Lines that 
begin with an application-specific control character are truncated to 255 charac­
ters regardless of the width specification. See Section 7 .3 .1 for more information 
about application-specific control characters. 



152 Advanced Programming Techniques 

Insert formatting flags to 
mark explicit cross-references. 

In the example below, the\ b flag initiates boldface text for Re t u r n s : , and the 
\ p flag that follows the word reverts to plain text for the remainder of the line. 

\bReturns:\p a handle if successful, or -1 if not. 
errno: EACCES, EEXIST, EMFILE, ENOENT 

In the example below,\ a anchors text for the hyperlink Exam pl e . The \v flags 
define the cross-reference to be s amp l e_p r o g and cause the text between the 
flags to be invisible. Cross-references are described in the following section. 

\aExample \vsample_prog\v 

Quickffelp Cross-References 
Help databases contain two types of cross-references: implicit cross-references 
and explicit cross-references. They are described in Section 7 .1.1, "Contents of a 
Help File." 

An implicit cross-reference is any word that appears both in the topic text and as 
a context in the help file. For example, any time you request help on the word 
"close," the help window displays help on the close function. You don't need to 
code implicit cross-references in your help text files. 

Explicit cross-references (hyperlinks) are words or phrases on the screen that are 
associated with a context. For example, the word "Example" in the initial help­
screen area for any C function is an explicit cross-reference to the C program ex­
ample for that function. You must insert formatting flags in your help text files to 
mark explicit cross-references. 

If the hyperlink consists of a single word, you can use invisible text to flag it in 
the source file. The \v formatting flag creates invisible text, as follows: 

hyperlink\vcontext\v 

Specify the first \v flag immediately following the word you want to use as 
the hyperlink. Following the flag, insert the context that the hyperlink cross­
references. The second \v flag marks the end of the context; that is, the end of the 
invisible text. HELPMAKE generates a cross-reference whose context is the in­
visible text, and whose hyperlink is the entire word. 

If the hyperlink consists of a phrase, rather than a single word, you must use an­
chored text to create explicit cross-references. Use the\ a and \v flags to create 
anchored text as follows: 

\ ahyperlink-words\vcontext\v 

The\ a flag marks an anchor for the cross-reference. The text that follows the\ a 
flag is the hyperlink. The hyperlink must fit entirely on one line. The first \v flag 
marks both the end of the hyperlink and the beginning of the invisible text that 



Creating Help Files with HELPMAKE 153 

contains the cross-reference context. The second \v flag marks the end of the in­
visible text. 

The following example contains three implicit cross-references to the C routines 
abs, cabs, and fabs. 

See al so: abs, cabs, fabs 

The following example shows the encoding for an explicit cross-reference to an 
example program and a function template from the help database for the C run­
time library: 

See also: Example\vopen.ex\v, Template\vopen.tm\v, close 

Here,thehyperlinksare Example and Ternplate,whichreferencethecon­
texts open. ex and open. trn. The example also contains an implicit cross­
reference to the close function. 

The following example shows the encoding for an explicit cross-reference to an 
entire family of functions: 

See also: \ais ... functions\vis_functions\v, atoi 

The cross-reference uses anchored text to associate a phrase, rather than just 
a word, with a context. In this example, the hyperlink is the anchored phrase 
is ... functions,anditcross-referencesthecontext is_functions.In 
addition, the example contains an implicit cross-reference to the atoi routine. 

The code below is an example in QuickHelp format that contains a single entry: 

.context open 

.length 13 
\blncl ude: \p 

\bPrototype:\p 
flag: 

mode: 

<fcntl.h>, <io.h>, <sys\\types.h>, <sys\\stat.h> 

int open(char *path, int flag[, int mode]); 
O_APPEND O_BINARY 
O __ RDWR O_TEXT 
(can be joined by 
S_IWRITE S_IREAD 

O_CREAT O_EXCL O_RDONLY 
O_TRUNC O_WRONLY 

I J 
S_IREAD I S_IWRITE 

\bReturns:\p a handle if successful, or -1 if not. 
errno: EACCES, EEXIST, EMFILE, ENOENT 

\bSee also:\p \uExample\p\vopen.ex\v, \uTemplate\p\vopen.tp\v, 
access, ch mod, close, creat, dup, dup2, fopen, so pen, umask 

The .length command near the beginning of the example specifies the size of the 
initial window for the help text. Here, the initial window displays 13 lines. 



154 Advanced Programming Techniques 

The manifest constants (such as 0 _WR ONLY and EEXIST), the C keywords 
(such as int and char), and the other functions (such as sopen and access) 
are implicit cross-references. The words Example and Temp l ate are 
explicit cross-references to the example open. ex and to the open template 
open. tp, respectively. Note the use of double backslashes in the include file 
names. 

7.6.2 Minimally Formatted ASCII Format 

Minimally formatted ASCII 
files cannot contain 

highlighting. 

»open 

Include: 

A minimally formatted ASCII text file comprises a sequence of topics, each pre­
ceded by one or more unique context definitions. Each context definition must be 
on a separate line beginning with a help delimiter(>>). Subsequent lines up to 
the next context definition constitute the topic text. 

Minimally formatted ASCII files can be used in two ways. You can compress the 
file with HELPMAKE, creating a help database, or an application can access the 
uncompressed file directly. Uncompressed files are somewhat larger and slower 
to search, however. Minimally formatted ASCII files are of fixed width, and they 
cannot contain highlighting (or other nondefault attributes) or cross-references. 

The following example, coded in minimally formatted ASCII, shows the same 
text as the QuickHelp example in the previous section. The first line of the ex -
ample defines open as a context string. The minimally formatted ASCII help 
file must begin with the help delimiter(>>), so that HELPMAKE or the applica­
tion can verify that the file is indeed an ASCII help file. 

<fcntl.h>, <io.h>, <sys\types.h>, <sys\stat.h> 

Prototype: int open(char *path, int flag[, 
flag: O_APPEND O_BINARY O_CREAT 

int mode]); 
O_EXCL O_RDONLY 
O_WRONLY O_RDWR O_TEXT O_TRUNC 

(can be joined by I) 
mode: S_IWRITE S_IREAD S_IREAD S_IWRITE 

Returns: a handle if successful, or -1 if not. 
errno: EACCES, EEXIST, EMFILE, ENOENT 

See also: access, chmod, close, creat, dup, dup2, fopen, sopen, umask 

When displayed, the help information appears exactly as it is typed into the file. 
Any formatting codes are treated as ASCII text. Note that you do not need to 
escape backslashes in minimally formatted ASCII files. 

If you compress minimally formatted ASCII files, they are smaller and faster to 
search. 



Creating Help Files with HELPMAKE 155 

7.6.3 Rich Text Format (RTF) 
RTF is a Microsoft word-processing format supported by many other word pro­
cessors. It allows documents to be transferred from one application to another 
without losing any formatting information. The HELPMAKE utility recognizes a 
subset of the full RTF syntax. If your file contains any RTF code that is not part 
of the subset, HELPMAKE ignores the code and strips it out of the file. 

Certain word-processing and file-conversion programs generate the RTF code 
automatically as output. You need not worry about inserting RTF codes yourself; 
you can simply format your help files directly with a word-processor that gener­
ates RTF, using the attributes supported by the subset. The only items you need 
to insert are the help delimiter(>>) and context string that start each entry. 

HELPMAKE recognizes the subset of RTF listed below: 

RTF Code 

\b 

\fi <nnn> 

\i 

\li <nnn> 

\line 

\par 

\pard 

\plain 

\tab 

\ul 

\v 

Action 

Boldface. The application decides how to display 
this; often it is intensified text. 

Paragraph first-line indent. 

Italic. The application decides how to display this; 
often it is reverse video. 

Paragraph indent from left margin. 

New line (not new paragraph). 

End of paragraph. 

Default paragraph formatting. 

Default attributes. On most screens this is nonblink­
ing normal intensity. 

Tab character. 

Underline. The application decides how to display 
this; some adapters that do not support underlining 
display it as blue text. 

Hidden text. Hidden text is used for cross-reference 
information and for some application-specific com­
munications; it is not displayed. 

Using the word-processing program, you can break the topic text into para­
graphs. When HELPMAKE compresses the file, it formats the text to the width 
given with the /W option, ignoring the paragraph formats. 



156 Advanced Programming Techniques 

I\ rt fl 

As with the other text formats, each entry in the database source consists of one 
or more context strings, followed by topic text. An RTF file can contain Quick­
Help dot commands. 

The help delimiter(>>) at the beginning of any paragraph denotes the beginning 
of a new help entry. The text that follows on the same line is defined as a context 
for the topic. If the next paragraph also begins with the help delimiter, it also de­
fines a context string for the same topic text. You can define any number of con­
texts for a block of topic text. The topic text comprises all subsequent paragraphs 
up to the next paragraph that begins with the help delimiter. 

The code below is an example of a help database that contains a single entry 
using subset RTF text. Note that RTF uses curly braces ( {})for nesting. Thus, 
the entire file is enclosed in curly braces, as is each specially formatted text item. 

\pard »open\par 
{\b Include:} <fcntl .h>, <io.h>, <sys\\types.h>, <sys\\stat.h>\par 

\par 
{ \b Syntax:} int open ( char * filename, int 

oflag: O_APPEND O_BINARY O_CREAT 
O_RDWR O_TEXT O_TRUNC 
(may be joined by I )\par 

pmode: S_IWRITE S_IREAD S_IREAD 
\par 

oflag[, int pmode J );\par 
O_EXCL O_RDONLY\par 
O_WRONLY\par 

I S_IWRITE\par 

{\b Returns:} 
errno: 

a handle if successful, or -1 if not.\par 
EACCES, EEXIST, EMFILE, ENOENT\par 

\par 
{\b See also:} Examplesl\v open.ex}, access, chmod, close, creat, dup,\par 

dup2, fopen, sopen, umask\par 
»open. ex\par 
To build this help file, use the following command:\par 
\par 
HELPMAKE /Sl /E15 /OOPEN.HLP OPEN.RTF\par 
\par 

<Back >{\v !B} 

Actual RTF output normally contains additional information that is not visible to 
the user; HELPMAKE ignores this extra information. 



Customizing the 
Microsoft Programmer's 

WorkBench 

CHAPTER 

Designed with flexibility in mind, the Microsoft Programmer's WorkBench 
(PWB) provides a highly extensible development platform for the Microsoft C 
Professional Development System. Using PWB it is easy to change basic environ­
ment features such as screen colors and key assignments, and you can add power­
ful new functions of your own using macros and C-language extensions. 

This chapter explains four methods for customizing the Programmer's Work­
Bench: setting switches, assigning keystrokes, writing macros, and writing C 
extensions. While it explains customization methods, the chapter does not docu­
ment every customizable feature of the Programmer's WorkBench. Use on-line 
help as your primary source of information about these and other PWB features. 

This chapter assumes you are familiar with basic PWB operations and termin­
ology. If you are not, read "Using the Programmer's WorkBench" in Installing 
and Using the Microsoft C Professional Development System. 

8. 1 Setting Switches 
The Programmer's WorkBench has a number of "switches," or user-configurable 
options, that control features such as screen colors. Each switch has a name and 
can be assigned a value. 

There are two ways to set PWB switches. The easiest way is by choosing Editor 
Settings in the Options menu. You can also edit the TOOLS.IN! initialization 
file. These methods can also be used for more elaborate customizations, such as 
writing macros. 

157 



158 Advanced Programming Techniques 

8. 1. 1 Editing the <assign> Pseudofile 
If you choose Editor Settings in the Options menu, PWB changes to the 
<assign> pseudofile and displays it in the current window. (A pseudofile is 
constructed dynamically by PWB; it exists only in memory.) The <assign> 
file lists all the current PWB settings. 

To change a switch, edit the line where it appears. For instance, the vscroll 
switch controls how many lines PWB scrolls vertically; its default setting is 1. 
To change it, move to the corresponding line: 

vscrol l: 1 

Change the 1 to 3 and move the cursor to another line. PWB highlights the line 
to indicate the change is legal. (If you make an illegal change, PWB signals an 
error.) The change takes effect immediately: now PWB scrolls text three vertical 
lines at a time. 

If you don't explicitly save a change, it disappears at the end of the current ses­
sion. You can save a change by saving <assign> as you would any other file (by 
pressing ALT+A ALT+A F2). When you exit PWB, you are asked if you want to 
save TOOLS.IN!, the PWB initialization file, which records customizations. An­
swer yes (type Y) to save the change. 

You can also use this method for more elaborate customizations, such as writing 
macros (see Section 8.3, "Writing Macros"). Simply insert a few blank lines in 
<assign> and enter the new information in them. Note that PWB only pays atten­
tion to lines you change or add to <assign>. Deleting a line has no effect. 

8.1.2 Editing the TOOLS.IN/ Initialization File 
Another way to customize PWB is by editing TOOLS.IN!, the initialization file 
used by PWB and other Microsoft language tools. This method is useful if you 
customize PWB extensively. 

While the <assign> file lists every customizable PWB item, the TOOLS.IN! file 
contains lines only for items you have customized. Those items not mentioned in 
TOOLS.IN! are set to a default value. 



Customizing the Microsoft Programmer's WorkBench 159 

Dividing TOOLS. /NI into Sections 
Since several tools can use TOOLS.INI, the file may contain information that 
doesn't relate to PWB. If you customize more than one tool, TOOLS.IN! is 
divided into sections, one for each tool. Each section begins with a tag consisting 
of the tool's base name enclosed in square brackets: [PW 8 J for PWB.EXE, 
[ N MAKE J for NMAKE.EXE, and so on. 

For example, say you set the vscroll switch to 3 and save the change, but you 
have not customized PWB in any other way. Your TOOLS.IN! file will contain 
this section: 

[PWBJ 
vscrol l :3 

Settings following this tag are put in effect by PWB every time it starts. 

You can also create sections of TOOLS.IN! that PWB reads only in certain cir­
cumstances. You can create sections for different video adapters, file-name exten­
sions, and operating system versions. 

If you use more than one video display, TOOLS.IN! can have a different section 
for each display: 

• [ PWB-mono] 

• [ PWB-cga] 

• [ PWB-ega J 

• [ PWB-vga J 

After each tag, you can set different screen colors, dimensions, and other display­
specific switches. 

You can also create a section for files with specific extensions. For instance, your 
TOOLS.IN! file could contain a section beginning with the tag 

[PWB-.CJ 

for C source files, and 

[PWB-.ASMJ 

for assembly-language (.ASM) source files. Each time you load a file with the 
designated extension, PWB reads the appropriate section ofTOOLS.INI. For 
each file type, you could use a different set of macros and other customizations. 



160 Advanced Programming Techniques 

TOOLS.IN! can also contain sections specific to operating system versions. The 
following tag introduces a section specific to DOS version 3.20, for instance: 

[PWB-3.20] 

You can combine tags as needed. For example, the tag 

[PWB-3.20 PWB-10.10RJ 

applies to DOS version 3.20 and OS/2 version 1.1 real mode. 

You can also create a section in TOOLS.IN! containing switches for a user­
written extension. See Section 8.4.3, "Describing Functions and Switches." 
On-line help contains additional information about TOOLS.IN! tags. 

8.2 Assigning Keystrokes 
PWB allows you to assign any editing function to almost any keystroke. Reas­
signing keystrokes doesn't change PWB graphic interface, however. 

Keystrokes, like switches, are listed in the <assign> pseudofile (choose Key As­
signments in the Options menu) and can be changed there. For example, say you 
want to assign the home cursor function to the SHIFT+HOME keystroke. The de­
fault keystroke assignment for home is: 

home:ctrl+home 

If you change the assignment to 

home:shift+home 

SHIFT +HOME moves the cursor to the home (upper left) window position. 

It is legal to assign more than one keystroke to the same function. For example, 
many keystrokes invoke the select function, which selects a text region. Thus, 
the previous example adds a new keystroke (SHIFT+HOME) for the home function; 
it does not remove the previous assignment (CTRL+HOME). 

There are two limitations on keystroke assignments: 

• You can't reassign a keystroke that PWB is using for a menu. For instance, if 
ALT+F pulls down the File menu, PWB ignores any attempt to reassign ALT+F. 

• You can't reassign ALT plus the number keys 1- 9 (ALT+!, ALT+2, and so on). 
These keystrokes are reserved for the file history menu items. 



Customizing the Microsoft Programmer's WorkBench 161 

Each keystroke can only invoke one function. If you mistakenly assign a key­
stroke to more than one function, PWB uses the most recent assignment. For 
example, 

home:ctrl+a 
setfile:ctrl+a 

assigns the CTRL+A keystroke to two different functions, home and setfile. The 
second assignment overrides the first, assigning CTRL+A to setfile. 

Occasionally, you may want to "unassign," or disable, a keystroke. This is done 
by assigning the unassigned function to the keystroke. For example, 

unassigned:ctrl+a 

disables CTRL+A. PWB signals an error when you press any unassigned key. 

8.3 Writing Macros 
The fastest way to create a new editing function for PWB is to write a macro. 
The function can be as simple as inserting a long word or phrase, or it can per­
form complex tasks by invoking PWB functions and other macros. 

8.3.1 Macro Syntax 
A macro can contain any combination of PWB functions, literal text, and macro 
operators. You can define as many as 1,024 macros at one time. 

Literal text is case sensitive. Literal text is anything inside double quotes. Inside literal text, you can represent 
a double quote as \" and a backslash as \ \. Text is case sensitive inside quotes 
and case insensitive outside them. 

The following macro comments out a line of C source code: 

comment:~begline "/*" endline" */" 
comment:alt+c 

The first line names the macro and tells what it does. The begline and endline 
editor functions move the cursor, while the text inside quotes is printed at the cur­
rent cursor position. The second line assigns a keystroke (ALT+C) to the macro. 



162 Advanced Programming Techniques 

A macro definition must fit on one logical line. If necessary, you can use the 
backslash ( \) to continue the definition on the next line. For instance, the 
definition 

comment:-begline "/* " endline " */" 

could be written as 

comment:-begline 
"/*" endline \ 
II *I" 

Notice the extra space before each backslash. If you want a space between the 
end of one line and the beginning of the other, you must precede the backslash 
with two spaces. 

You can use the arg function to pass arguments to functions. For example, the 
following macro passes the argument 15 to the plines function (which scrolls 
text down): 

movedown:-arg "15" plines 

Because arg precedes the literal text, the text doesn't appear on the screen. In­
stead, it is passed as an argument to the next function, plines. The macro scrolls 
the current text down 15 lines. 

Arguments can use regular expression syntax, as well (regular expressions are 
documented in on-line help): 

endword:-arg arg "( !.!$!\\:!;!\\)!\\(!,)" psearch 

The arg arg sequence directs the psearch function to treat the text argument as a 
regular expression search pattern. This search pattern tells PWB to search for the 
next period, end of line ($), colon, semicolon, close parenthesis, open paren­
thesis, or comma. 

A macro can invoke other macros: 

lcomrnent:- "/* " 
rcomment:- " */" 
commentout:-begline lcornment endline rcomment 
commentout:alt+z 



Customizing the Microsoft Programmer's WorkBench 163 

The commentout macro invokes the previously defined macros l comment 
and rcomment. 

In addition to standard PWB functions, macros can invoke user-defined (exten­
sion) functions. See Section 8.4, "Writing and Building C Extensions." 

8.3.2 Macro Responses 
Some PWB functions ask you for confirmation. For example, the meta exit (quit 
without saving) function normally asks if you really want to exit. Such questions 
always take the answer "yes" (y) or "no" (n). 

When you invoke such a function in a macro, the function assumes an answer of 
yes and does not ask for confirmation. For example, the macro definition 

quit:~meta exit 
quit:alt+x 

invokes meta exit when you press ALT+X. Because the meta exit function is in­
voked from a macro, PWB exits without asking for confirmation. 

The following operators allow you to restore normal prompting or change the de­
fault responses: 

Operator 

< 

<y 

<Il 

Description 

Asks for confirmation; if not followed by another < 
operator, prompts for all further questions 

Assumes a response of yes 

Assumes a response of no 

A response operator applies to the function immediately preceding it. For in­
stance, you can add the < operator to the qui t macro definition to restore the 
usual prompt: 

quit:~meta exit < 
quit:alt+x 

Now the macro prompts for a response before it exits. 



164 Advanced Programming Techniques 

8.3.3 Macro Arguments 

You cannot pass more 
than one argument from 

PWB to a macro. 

If you enter an argument in PWB and then invoke a macro, the argument is 
passed to the first function in the macro that takes an argument: 

tripleit:-copy paste paste 

The tr i pl e i t macro invokes the copy and paste editing functions. If you 
highlight a text area and then invoke the macro, your highlighted argument is 
passed to the copy function, which copies the argument to the clipboard. The 
macro then invokes paste twice. The effect is to insert two copies of the high­
lighted text. 

You cannot pass more than one argument from PWB to a macro, even if the 
macro invokes more than one function that can accept an argument. The argu­
ment always goes to the first function in the macro that takes an argument. 

You can also prompt for input inside a macro and pass the input as an argument 
using the prompt function as shown below: 

newfile:-arg "Next file: " prompt setfile < 
newfi le: a lt+n 

The newfi le macro prompts for a file name and then switches to the specified 
file. The sequence a r g " Next f i l e : " passes a text argument to prompt, 
which prints the text on the dialog line and waits for input. The input is passed as 
a text argument to the setfile function, which switches to that file. For more infor­
mation on the prompt function, see on-line help. 

8.3.4 Macro Conditionals 
Macros can take different actions depending on certain conditions. Such macros 
take advantage of the fact that PWB editing functions generally return values-a 
TRUE (nonzero) value if successful or FALSE (zero) if unsuccessful. 

Macros can use four conditional operators: 

Operator 

:>label 

=>label 

+>label 

->label 

Description 

Defines a label that can be targeted by other 
operators 

Jumps to label 

Jumps to label if the previous function returns TRUE 

Jumps to label if the previous function returns 
FALSE 



Customizing the Microsoft Programmer's WorkBench 165 

For example, the l e ft ma r g macro moves the cursor to the left margin of the 
editing window: 

leftmarg:=:>leftmore left +>leftmore 

The macro above invokes the left function repeatedly Gumping to the label 
l eftmo re) until it returns FALSE, indicating the cursor has reached the left 
margin. 

The label must appear immediately after the conditional operator, with no inter­
vening spaces. A conditional operator without a label exits the macro immedi­
ately if the condition is true. If the condition is false, the macro continues 
execution. The following example demonstrates this: 

turnon:=insertmode +> insertmode 

This macro turns on insert mode regardless of whether insert mode is currently 
on or off. If insert mode is off, the first invocation of insertmode toggles the 
mode on and returns TRUE, causing the+> operator to terminate the macro. If in­
sert mode is currently on, the first invocation of insertmode turns insert mode 
off and returns FALSE. The macro then invokes insertmode a second time, turn­
ing insert mode back on. 

8.3.5 Temporary Macros 
Occasionally, you may want to create a macro that lasts only through the current 
session. This can be done with the assign function. For example, the following 
steps create the comment macro described above. 

To create the macro: 

• Press ALT+A 

• Type comment:=begline "/* "endline "*/" 

• Press ALT+= 

To assign the ALT+C keystroke to the macro: 

• Press ALT+A 

• Type comment:alt+c 

• Press ALT+= 

The macro is available immediately and then disappears at the end of the current 
session. 



166 Advanced Programming Techniques 

8.3.6 Macro Recordings 
Another way to create a macro is by recording your own actions. The entire 
sequence of actions is saved and can be replayed later by pressing a key. 

You start the recording by invoking the record function. PWB names the result­
ing macro recordvalue by default, but you can use other names as well. To re­
cord a macro: 

• Choose Record On from the Edit menu to start the recording. 

• Perform the actions you want to record. 

• Choose Record On again to end the recording. 

• If record value is not already assigned, assign it to a keystroke as described 
above. 

After you complete these steps, a macro named recordvalue is available through 
the keystroke you assigned in the last step above. When you press this key, PWB 
replays the actions you recorded. 

If you don't do anything more, the recorded macro is temporary-it disappears 
when you exit PWB. To save the macro permanently: 

• Open the <record> pseudofile (press ALT+A, type <re co rd>, press F2). 

• Copy the macro definition in <record>. 

• Paste the definition into the [ PWB J section of your TOOLS.IN! file. 

Studying recorded macros can teach you a lot about macros and editor functions. 
If you open the <record> pseudofile in a second window before you record, you 
can watch PWB write the macro definition function by function. 

If you save a recorded macro, you'll want to name it something other than 
recordvalue, the default name. To do this, pass the new name as an argument 
when you start the recording: 



You can record a series 
of actions without 

executing them. 

Customizing the Microsoft Programmer's WorkBench 167 

• Press ALT+A ALT+A. 

• Type the new name. 

• Choose Record On from the Edit menu to start recording. 

• Complete the recording as usual. 

You can expand an existing macro using the same process. If you supply the 
name of an existing macro, PWB appends the recorded commands to the macro 
instead of replacing it. 

You can also make a "silent" recording, which records a series of actions 
without executing them. Start the recording with a meta record command 
(press F9 SHIFT +CTRL+R). Then complete the recording process as described 
above. 

8.4 Writing and Building C Extensions 

User-written functions execute 
more quickly than macros. 

An "extension" is a file containing one or more user-written functions. PWB 
loads extensions at run time. Once the extension has been loaded, its functions 
can be assigned their own keystrokes, given arguments, and invoked in macros, 
exactly like other PWB functions. 

The ability to load and call user-written functions makes PWB highly extensible. 
Because they consist of compiled C code, your functions can perform more com­
plex jobs than macros can, and they execute many times faster. 

An extension contains executable code, but it differs from a normal executable 
file in some important ways: 

• It does not contain the usual C start-up code. 

• It contains special data structures that describe its functions to PWB. 

• Its functions are declared in a form that allows PWB to call them and pass 
arguments to them. 

• Its functions can call native PWB functions, and some, but not all, C library 
functions. 



168 Advanced Programming Techniques 

This section explains how to build, load, and invoke a PWB extension. The ex­
ample, CENTER.C, serves as a basis for discussion throughout the rest of this 
chapter. 

The CENTER.C extension contains one extension function, Center Line, 
which centers a line or range of lines in the current file. 

I* CENTER.C: Sample PWB extension */ 

#define LINE_LENGTH 80 /*Assumes 80-column screen*/ 

#include <string.h> 
I* PWB extension header file*/ 
ffi ncl ude "ext. h" 

PWBFUNC Centerline( unsigned argData, 
ARG far *pArg, 
flagType fMeta ); 

I* Switch Table */ 
struct swiDesc swiTable[J 
{ 

{ NULL, NULL, 0 l 
} ; 

/* Command Table */ 
struct cmdDesc cmdTable[J 
{ 

} ; 

"Centerline", Centerline, 0, NOARG \ LINEARG }, 
NULL, NULL, 0, 0 l 

/* Initialization Function */ 
void EXTERNAL Whenloaded( void 
{ 

DoMessage( "Loading Center extension" ); 

/* Extension (user-written) function */ 
PWBFUNC Centerline( unsigned argData, 

ARG far *pArg, 
fl agType fMeta ) 

PFILE pFile; 
LINE yStart, yEnd; 
int len; 
char *pBuf, buf[BUFLENJ; 



Customizing the Microsoft Programmer's WorkBench 169 

/* Get a handle to the current file*/ 
pFi le = Fil eNameToHandl e( '"', "" ) ; 

/* Handle various argument types */ 
switch( pArg->argType ) 
{ 

case NOARG: 
yStart 
break; 

I* No argument. Center current line*/ 
yEnd = pArg->arg.noarg.y; 

case LINEARG: /* Center range of lines*/ 
yStart = pArg->arg.linearg.yStart; 
yEnd = pArg->arg.linearg.yEnd; 
break; 

I* Center current line or range of lines*/ 
for( ; yStart <= yEnd; yStart++) 
{ 

/*Get a line from the current file*/ 
len = Getline( yStart, buf, pFile ); 

if(len>0) 
{ 

I* Center the text in this line*/ 
pBuf = buf + strspn( buf, " \t" ); 
len = strlen( pBuf ); 
memmove( buf+(LINE_LENGTH-len) 
memset( buf, ' ', (LINE LENGTH -

2, pBuf, len+l ); 
l en) I 2 ) ; 

I* Write modified line back to the current file */ 
PutLine( yStart, buf, pFile ); 

return TRUE; 

Building and using a PWB extension involves four basic steps: 

1. Compiling 

2. Linking 

3. Loading the extension into PWB 

4. Assigning a keystroke to each function in the extension 

You can build extensions for both real mode (DOS) and OS/2 protected mode. 



170 Advanced Programming Techniques 

8.4.1 Building Real-Mode Extensions 
This section describes how to build extensions for real mode. 

Compiling 
The source (.C) file for an extension must include EXT.H, the extension header 
file. Since an extension is not a stand-alone executable file, it doesn't have a 
main function; so its source file is compiled with the /c (compile, but don't link) 
option: 

CL /c /Gs /ACw CENTER.C 

The /Gs option turns off stack checking; the /ACw option selects the required cus­
tom memory model. 

PWB extension interface is designed for C programmers. However, you can 
write extensions in assembly language or other languages if you simulate the re­
quired C memory model (in which SS is not assumed to equal DS). 

Linking 
The first object file in the link command must be the stub EXTHDR.OBJ: 

link exthdr center, center.mxt; 

PWB can load a file with any name, but most programmers use the .MXT exten­
sion to distinguish a PWB extension from a normal .EXE file. 

Loading the Extension 
Once the extension is built, you can cause PWB to load it by adding a load com­
mand to your TOOLS.IN! file: 

load:center 

You don't need to supply a file extension; PWB assumes the correct file exten­
sion. To specify a path, supply the path name preceded by a dollar sign ($): 

load:$INIT:center 

The example tells PWB to search the directories specified in the INIT environ­
ment variable. If listed, the environment variable must be in uppercase. 



Customizing the Microsoft Programmer's WorkBench 171 

TOOLS.INT can contain multiple load commands for different extensions. How­
ever, loading each extension involves a certain amount of memory overhead, 
and there is no way to unload an extension from memory. To conserve memory, 
place all frequently used functions in a single extension and load only that 
extension. 

Assigning Keystrokes to Functions 
After an extension has been loaded, you must provide some way to invoke its 
functions from inside PWB. A keystroke is the most common means, although 
extension functions, like native PWB functions, can be invoked in various ways. 

You can assign the ALT +C keystroke to the Center Li n e function with: 

Centerline:alt+c 

Once the Center Li n e function has been assigned to this keystroke, you can 
invoke it by pressing ALT+C. 

8.4.2 Building Protected-Mode Extensions 
The build process for OS/2 protected mode differs only slightly from the real­
mode build process. 

Compiling 
The source (.C) file for an extension must include EXT.H, the extension header 
file. Since an extension is not a stand-alone executable file, it doesn't have a 
main function; so its source file is compiled with the /c (compile, but don't link) 
option: 

CL /c /Gs /ACw CENTER.C 

The /Gs option turns off stack checking; the /ACw option selects the required cus­
tom memory model. 

PWB extension interface is designed for C programmers. However, you can 
write extensions in assembly language or other languages if you simulate the re­
quired C memory model (in which SS is not assumed to equal DS). 

Linking 
Link with EXTHRDP.OBJ instead of EXTHDR.OBJ. Specify the .PXT exten­
sion for the output file. List the EXT.DEF definitions file: 

link exthdrp center, center.pxt,, os2, ext.def 



172 Advanced Programming Techniques 

Loading the Extension 
In protected mode, PWB assumes the .PXT file extension. If your extension is 
not found, PWB assumes the .DLL file extension. 

You cannot create There is no way to create a bound extension (one that runs in both real and pro-
a bound extension. tected mode). However, you can build separate versions of an extension and use 

a single TOOLS.IN! load command to load the correct extension in each mode. 
PWB loads the real-mode file (.MXT) in real mode and the protected-mode file 
(.PXT or .DLL) in protected mode. 

Assigning Keystrokes to Functions 
After an extension has been loaded, you must provide some way to invoke its 
functions from inside PWB. A keystroke is the most common means, although 
extension functions, like native PWB functions, can be invoked in various ways. 

You can assign the ALT +c keystroke to the Center Li n e function with: 

Centerline:alt+c 

Once the Center Li n e function has been assigned to this keystroke, you can 
invoke it by pressing ALT+C. 

8.4.3 Describing Functions and Switches 
To call functions in your extension, PWB must know certain information about 
each function, such as the name and address of the function, what types of argu­
ments it accepts, and what switches (if any) it employs. You provide this informa­
tion in a pair of arrays-cmdTable and swiTable-that must be present in every 
PWB extension. 

The cmdTable Array 
Every extension must contain an array of structures named cmdTable. This array 
provides the information PWB needs to call the extension's functions. 

The cmdTable array is an array of structures of type cmdDesc (which is de­
clared in EXT.H). Each structure in the array describes one function in the exten­
sion. The array is terminated with a structure whose members are all null. 



Customizing the Microsoft Programmer's WorkBench 173 

For instance, the CENTER.C extension has one function, named Center Li n e, 
so its cmdTable array contains two structures (one for Center Li n e and the 
other to terminate the table): 

struct cmdDesc cmdTable[J 
I 

} ; 

"Centerline", Centerline, 0, NOARG I LINEARG I, 
NULL, NULL, 0, 0 I 

Each cmdDesc structure in cmdTable contains these members: 

• The function's name 

• The function's address 

• Reserved item (must be 0) 

• The argument types the function accepts 

The last member in the list is an integer containing bitt1ags representing types of 
arguments that your function accepts. You can combine more than one bitt1ag 
using the OR ( I ) operator. 

For instance, the Center Li n e function can handle an argument of the type 
LINEARG, or no arguments (NOARG). So it lists the types: 

NOARG I LINEARG 

There are many argument types in addition to these. For information about 
specific argument types, see the Extensions topic in on-line help. 

The swiTable Array 
Extension functions, such as native PWB functions, can respond to user­
configurable switches. From the viewpoint of an extension function, a switch 
is usually a variable that the user can change at run time. Your function must 
be ready to respond to these changes, and PWB must have some way Lo convey 
them. The vehicle for this interchange is an array of structures named swiTable. 

The swiTable array is similar to the cmdTable array described above. It is an 
array of structures, terminated by a structure whose members are all null. Each 
structure in swiTable describes one switch used by a function in your extension. 



174 Advanced Programming Techniques 

The CENTER.C extension doesn't take any switches, so its swiTable array only 
contains a terminating null structure: 

struct swiDesc swiTable[J 
I 

{ NULL, NULL, 0 l 
) ; 

Each structure in swiTable is of type swiDesc, whose members are 

• A pointer to the switch name 

• A pointer to the switch or a function 

• A flag that indicates the type of the switch 

A switch can be one of three types: SWI_BOOLEAN for TRUE/FALSE condi­
tions, SWI_NUMERIC for numerics, or SWI_SPECIAL for strings. 

The second member of swiDesc is a pointer. It points to the switch itself if the 
switch is type SWI_BOOLEAN or SWI_NUMERIC, or to a string-handling func­
tion if the switch is type SW! _SPECIAL. 

For instance, the following code creates a numeric switch with the default 
value 27: 

static int n ~ 27; 

struct swiDesc swiTable[J 
{ 

) ; 

"newswitch", &n, SW! NUMERIC I RADIX10 l, 
NULL, NULL, 0 l 

The first structure in the example above contains the name of the switch 
(" n ewswi tc h "), a pointer to the variable that contains the switch's value (&n), 
and the switch's type (SWI_NUMERIC). 

In this example, the third structure member contains another constant, RADIXlO. 
If a switch is type SWI_NUMERIC, you must supply a second constant to tell 
PWB whether to interpret user-assigned values as decimal (RADIXlO) or hex­
adecimal (RADIX16) numbers. 



Customizing the Microsoft Programmer's WorkBench 175 

If the switch is type SW!_ SPECIAL, the second member of swiDesc is a pointer 
to an additional string-handling function that you write. This function must be of 
type int far _pascal. Each time the text switch changes, PWB calls your func­
tion, passing it the address of the updated string as a char far pointer. The follow­
ing code stores the updated string in a buffer named mys tr i n g: 

char mystring[BUFLENJ; 

int far _pascal setstr( char far *ptr ) 
{ 

strcpy( mystring, ptr ); 

If desired, you can list switches for extension functions separately from other 
switches. Whenever PWB loads an extension, it looks in TOOLS.INI for a sec­
tion with this form: 

[PWB-ext] 

where ext is the base name of the extension. If the extension exists, PWB recog­
nizes the settings immediately following the tag. For instance, if your exten­
sion SAMPLE.MXT uses a numeric switch named numb i 11 s, you can set 
numb i 11 s to the value 66 with: 

[PWB-SAMPLE] 
numbills:66 

8.4.4 Initializing Functions 
Every PWB extension must contain a function named WhenLoaded, which 
PWB calls immediately after loading the extension. The WhenLoaded function 
provides a chance to do any initialization that your functions require. (If your 
functions don't need any initialization, they can simply return.) 

The CENTER.C extension uses WhenLoaded to display a loading message: 

void EXTERNAL WhenLoadedC void 
{ 

DoMessage( "Loading Center extension" ); 

DoMessage is a PWB function that displays a message on the dialog line. Sec­
tion 8.4.7, "Calling PWB Functions," lists PWB functions and explains how to 
call them. 



176 Advanced Programming Techniques 

8.4.5 Prototyping Functions 
To be called by PWB, each extension function must be declared as type 
PWBFUNC and accept the parameters argData, pArg, and fMeta. The 
Ce n t e r Li n e function in the section of CENTER.C code below follows 
this model: 

PWBFUNC Centerline( unsigned argData, 
ARG _far *pArg, 
flagType fMeta ) 

The PWBFUNC type is actually a macro that evaluates to flagType _pascal 
_loadds _far. The flagType return type declares that the function returns either 
TRUE (nonzero) or FALSE (zero). Your function should return a value so that it 
can be used in a macro with conditionals. The modifiers _pascal, _loadds, and 
_far specify the calling conventions PWB expects editor functions to have. 

8.4.6 Receiving Parameters 
Like native PWB functions, extension functions can receive parameters from the 
user. The CENTER.C example allows you to select a range of lines to center, 
for example. The selected range is passed as a parameter to the Center Li n e 
function. 

Extension functions receive parameters in much the same way ordinary C pro­
grams receive command-line parameters. In both cases, the parameters are 
passed in a predefined data construct-argc and argv for a normal C program, 
and the following parameters for an extension function: 

Parameter 

argData 

pArg 

fMeta 

Description 

The keystroke used to invoke your function 

A pointer to a structure containing arguments passed 
to your function 

TRUE (nonzero) if meta precedes the argument, 
otherwise FALSE (zero) 



PWB rejects invalid 
arguments. 

Customizing the Microsoft Programmer's WorkBench 177 

The first parameter is rarely used. Most extension functions receive all their para­
meter data in the second parameter, pArg. This parameter is a pointer to a struc­
ture of type ARG, which contains: 

Parameter Description 

argType An integer that indicates the argument type 

A union of structures, one structure for each 
argument type 

arg 

Typically, your function tests pArg->argType to find out what type of parame­
ter PWB has passed. Once the type is known, the function responds accordingly. 
The following code from CENTER.C handles two argument types: 

switch( pArg->argType 
{ 

case NOARG: 
yStart 
break; 

/*No argument. Center current line*/ 
yEnd = pArg->arg.noarg.y; 

case LINEARG: /* Center range of lines*/ 
yStart = pArg->arg.linearg.yStart; 
yEnd = pArg->arg.linearg.yEnd; 
break; 

If your function takes only one argument, it doesn't need to test pArg->argType 
at all. PWB knows beforehand what argument types your function accepts (via 
cmdDesc) and rejects any invalid arguments. 

Once the argument type is known, your function can access the parameters 
through pArg->arg, a structure whose members differ for each argument type. 
In the NOARG (no arguments) case, it contains x and y values identifying the cur­
sor position in the current file: 

struct noargType 
{ /* no argument */ 

LINE y; /*cursor line */ 
COL x; /* cursor column */ 

) ; 

The CENTER.C example uses they value in this structure (noarg.y, the cursor 
line) to center the current line: 

case NOARG: /* No argument. Center current line*/ 
yStart = yEnd = pArg->arg.noarg.y; 
break; 



178 Advanced Programming Techniques 

Similarly, in the LINEARG case, the pArg->arg structure contains three values: 

struct lineargType 
{ /* line argument specified*/ 

I* count of args pressed */ 
/*starting line of range */ 
/* ending line of range 

int cArg; 
LINE yStart; 
LINE yEnd; *I 

} ; 

The CENTER.C example uses the starting and ending values in this structure 
(yStart and yEnd) to center a range of selected lines: 

case LINEARG: /* Center range of lines */ 
yStart ~ pArg->arg.linearg.yStart; 
yEnd ~ pArg->arg.linearg.yEnd; 
break; 

The method is the same for other argument types. The pArg->arg structures for 
all argument types are described in on-line help. 

8.4. 7 Calling PWB Functions 
Many of PWB 's internal functions are public. Your extension function can call 
them for the same purposes that PWB itself does. This section demonstrates the 
most commonly used PWB functions-those that manipulate the current file. 

A list of callable PWB functions appears near the end of this section. For com­
plete information on specific PWB functions, consult on-line help. 

Getting a File Handle 
Extension functions can do many different tasks, but they typically manipulate a 
file in some way. The extension function in the CENTER.C example rewrites a 
line or lines in the current file, for example. The current file is the one that ap­
pears in the editing window. Since it is already open for editing, you can access 
the current file without opening it. Simply assign its file handle to a variable in 
your function. 



Customizing the Microsoft Programmer's WorkBench 179 

PWB file-handling functions use file handles of type PFILE. The CENTER.C 
example declares the following handle variable: 

PFILE pFile; 

The FileNameToHandle function gets a handle to a file that is already open for 
editing: 

pFile = FileNameToHandle( "", "" l; 

The function takes two string arguments. If the first string is null, as here, the 
FileNameToHandle function returns a handle to the current file. You can use 
the AddFile function to get handles to other files (in which case you may need 
to use other PWB functions such as FileRead). 

Reading a Line From the File 
Once your function has a file handle, it can read from the file with the GetLine 
function, which reads one line at a time: 

len = Getline( yStart, buf, pFile l; 

The first argument is a line number, the second a pointer to a buffer, and the third 
a file handle. So the above call reads line number y St a rt from the file whose 
handle is p Fi l e into the buffer bu f. Note that the first line in a file is line 0, 
not line 1. 

Once you have read a line into a local buffer, you can manipulate it as desired. 
CENTER.C uses its buffer buf to center the line's text. 

Writing a Line to the File 
After modifying a line, you can write it back to the file. The PutLine function 
writes one line at a time: 

Putline( yStart, buf, pFile ); 

PutLine takes the same arguments as GetLine--a line number, buffer pointer, 
and file handle. In CENTER.C, the above call writes the line from bu f to line 
y St a rt in the file whose handle is p Fil e. 



180 Advanced Programming Techniques 

Summary of PWB Functions 
If you understand how CENTER.C works, you know the basics of using PWB 
functions in your own functions. The rest is just a matter of learning the details of 
individual functions. Table 8.1 lists the PWB functions, grouping them by cate­
gory. For additional information on specific functions, consult on-line help. 

Table 8.1 Callable PWB Functions 

Category Function Description 

Block Operations Copy Box Insert rectangular area 

Copy Line Insert range of lines 

Copy Stream Insert stream of text 

DeIBox Delete rectangular area 

DelLine Delete range of lines 

DelStream Delete stream of text 

Build fGetMake Get extmake setting 

fSetMake Set extmake setting 

Color Get Color Get color of specified line 

PutColor Set color of specified line 

Cursor Get Cursor Get cursor position 

MoveCur Move cursor 

Dialog DoMessageBox Create message dialog 

PopUpBox Display text in dialog 
window 

Display BadArg Report that argument was 
invalid 

Display Update screen 

Do Message Display message on 
dialog line 

File AddFile Open new file and get file 
handle 

Del File Delete contents of file 
buffer 

fChangeFile Change current file to 
named file 

FileNameToHandle Get handle to open file 

FileRead Copy disk file to file 
buffer 

File Write Copy file buffer to disk 
file 



Customizing the Microsoft Programmer's WorkBench 181 

Table 8.1 (continued) 

Category Function Description 

pFileToTop Make specified file the 
current file 

RemoveFile Remove file from memory 

Keyboard Kb Hook Restore keyboard control 
toPWB 

KbUnHook Remove keyboard control 
fromPWB 

Read Char Get information on next 
keystroke 

Format ReadCmd Get keystroke information 
inCmdDesc 

Line FileLength Get length of file 

GetLine Get line from file 

PutLine Write line to file 

List GetListEntry Get item from list 

Scan List Process list 

Memory Falloc Allocate far memory 

Fdalloc Deallocate far memory 

Miscellaneous tExecute Execute macro 

FindSwitch Get information about 
switch 

GetEditorObject Get internal PWB data 
item 

GetString Get input from dialog line 

mgetenv Get environment string 

NameToFunc Get information about 
function or macro 

NameToKeys Get key(s) assigned to 
specified function 

Replace Replace character 

SetEditorObject Set internal PWB data 
item 

SetKey Assign function to 
keystroke 

Search REsearch Search for regular 
expression 

search Search for string 



182 Advanced Programming Techniques 

Table 8.1 (continued) 

Category Function Description 

Virtual Memory fpbtoVM Copy data to virtual 
memory 

VMalloc Allocate virtual memory 

VMFree Free virtual memory 

VMtofpb Copy data from virtual 
memory 

Window CloseWnd Close window 

Resize Resize window 

SplitWnd Split window 

8.4.8 Calling C Library Functions 
You can write many useful extension functions using only PWB functions listed 
in the previous section. It is also possible to call C library routines, with some 
limitations. An extension written for OS/2 protected mode can call any C library 
routine if it is linked with EXTHDRP.OBJ and the .DLL C run-time library. The 
list of usable routines is shorter for real-mode (DOS) extensions linked with the 
non-.DLL run-time library. 

Before you call a C library routine, ask whether the task can be done with a PWB 
function. If the answer is yes, you should always call a PWB function in prefer­
ence to the C library routine. This practice ensures compatibility between your 
functions and PWB. 

The following categories of C library routines are always safe to use in real mode: 

• Buffer manipulation 

• Character classification and conversion 

• Data conversion 

• String manipulation 

This list includes the library routines you are most likely to need in an extension 
function. If your extension function calls C library functions, you must link with 
the compact-model C library. 



Customizing the Microsoft Programmer's WorkBench 183 

The following routines should not be used in real mode: 

• Routines that need C start-up support (most input/output functions) 

• Memory management routines, such as malloc, and routines that call them 

• Process control routines such as spawn and exec 

If you are in doubt about a particular C library routine, you can always use it and 
see what happens. If the linker displays the following message, 

error L2044: ~acrtused : symbol multiply defined, use /NOE 

the routine requires C start-up support and should not be used. 





Debugging C Programs 
with CodeView 

CHAPTER 

Even experienced programmers occasionally find bugs in their programs. This 
chapter explores techniques that will help you locate these errors quickly, using 
the Microsoft Code View debugger. 

This chapter describes: 

• How to display and modify variables and memory 

• How to control the flow of execution while debugging 

• Advanced Code View debugging techniques 

• How to control Code View's behavior with command-line switches and the 
TOOLS.IN! file 

Code View supports the Microsoft mouse (or any fully compatible pointing de­
vice). All operations are described first using the mouse; the keyboard command 
follows. 

For information about debugging OS/2 programs that use threads or processes, 
see Chapter 15, "Creating OS/2 Multithread Applications." 

9.1 Understanding CodeView Windows 
Code View divides the screen into logically separate sections called windows, so 
that a large amount of information can be displayed in an organized and easy-to­
read fashion. Each window is a discrete section of the display that operates inde­
pendently of the other windows. 

185 



186 Advanced Programming Techniques 

Each window displays a 
different type of data. 

All displays are 
updated automatically. 

Each Code View window has a distinct function. The name of each window de­
scribed below appears in the top of the window's frame: 

• The Source window displays the source code. You can open a second Source 
window to view an include file, another source file, or the same source file at 
a different location. 

• The Command window accepts debugging commands. 

• The Watch window displays the current values of selected variables. 

• The Local window lists the values of all variables local to the current function 
or block. 

• The Memory window shows the contents of memory. You can open a second 
Memory window to view a different section of memory. 

• The Register window displays the contents of the microprocessor's registers, 
as well as the processor flags. 

• The 8087 window displays the registers of the coprocessor or its software 
emulator. 

Code View starts running with three windows displayed. The Local window is at 
the top, the Source window fills the middle of the screen, and the Command win­
dow is at the bottom. 

There are two ways to open windows. You can choose the desired window from 
the View menu. (Note that you can open more than one of certain windows, such 
as Source or Memory.) In addition, some operations (such as selecting a Watch 
variable) open the appropriate window automatically, if it is not already open. 

Code View continually and automatically updates the contents of all windows. 
However, if you want to interact with a particular window (for instance, to enter 
a command, set a breakpoint, or modify a variable), you must select that window 
as the focus of user interaction. 

The selected window is called the "current" window. The current window is 
marked in three ways: 

• The window's name is highlighted in white. 

• The text cursor appears in the window. 

• The vertical and horizontal scroll bars are moved into the window. 



Debugging C Programs with Code View 187 

To select a new current window, click left in the window (position the mouse 
cursor in the window and press the left mouse button) that you want to be cur­
rent. You can also press F6 or SHIFT +F6 to move the focus from one window to 
the next. 

Windows often contain more information than can be displayed in the area al­
lotted to the window. There are two ways to view these additional contents. You 
can drag on the window's horizontal or vertical scroll bars. (Position the mouse 
pointer on the bar and, while holding down the left mouse button, drag the mouse 
in the appropriate direction.) You can also use the direction keys (LEFT, RIGHT, 

UP, DOWN) to move the text cursor. 

Typing commands into the Source window causes Code View to temporarily shift 
its focus to the Command window. Whatever you type is appended to the last 
line in the Command window. If the Command window is closed, CodeView 
beeps in response to your entry and ignores the input. 

Adjusting the Windows 
Although you cannot change the relative positions of the windows, you can 
change their size or remove them. The Maximize, Size, and Close commands 
from the View menu perform these functions, or you can press CTRL+FIO, 

CTRL+F8, and CTRL+F4, respectively. Window manipulations are especially easy 
with a mouse: 

• To maximize a window (enlarge it so it fills the screen), click left on the up 
arrow at the right end of the window's top border. To restore the window to 
its previous size and position, click left on the double arrow at the right end of 
the top border. 

• To change the size of a window, position the mouse pointer anywhere along 
the white line at the top of the window. Press and hold down the left mouse 
button. When two double arrows appear on the line, you can drag the mouse 
to enlarge or reduce the window. The same action on a vertical border widens 
or narrows the window. 

• To close a window, click left on the dot at the left end of the top border. You 
can also close any window in the View menu whose name has a dot next to it 
by selecting that window from the menu or by pressing that window's acclera­
tor key. The adjacent windows automatically expand to recover the empty 
space. 

Code View stores session information in a file called CURRENT.STS, which is 
created in the directory pointed to by the INIT environment variable. The session 
information includes such items as the name of the program being debugged, 
which Code View windows were open, and the breakpoint locations. This infor­
mation becomes the default status the next time you run Code View. 



188 Advanced Programming Techniques 

9.2 Overview of Debugging Techniques 
There is no single best approach to debugging for all programs or users. 
Code View offers a variety of debugging tools that let you pick a method 
appropriate to the program or your work habits. The following section 
may help you decide how to approach a particular program. 

Broadly speaking, two things can go wrong in a program: 

• The program doesn't manipulate the data the way you expected it to. 

• The flow of execution is incorrect. 

These problems occasionally overlap. Incorrect execution can corrupt the data, 
and bad data can cause execution to take an unexpected tum. Because Code View 
allows you to trace program execution and display whatever combination of vari­
ables you want simultaneously, you don't have to know ahead of time whether 
the problem is bad data manipulation, a bad execution path, or some combination 
of these. 

Code View has features that deal specifically with the problems of bad data and 
incorrect execution: 

• You can view and modify any program variable, any section of memory, or 
any processor register. 

• You can monitor the path of execution and precisely control where execution 
pauses. 

The following sections explain how to view and modify data and describe how 
execution is controlled. 

9.3 Viewing and Modifying Program Data 
The Code View debugger offers a variety of ways to display program variables, 
processor registers, and memory. You can also modify the values of all these 
items as the program executes. This section shows how to display and modify 
variables, registers, and memory. 

9.3.1 Displaying Variables in the Watch Window 
To add a variable to the Watch window, position the cursor on the name of the 
variable using either the mouse or the direction keys (LEFT, RIGHT, UP, DOWN). 

Then select the Add Watch command from the Watch menu, or press CTRL+W. 



There is no limit to how many 
variables you can watch. 

Debugging C Programs with CodeView 189 

A dialog box appears with the selected variable's name displayed in the Expres­
sion field. If you don't want to watch the variable shown, type in the name of the 
variable you want to watch. Pressing ENTER or clicking left on the OK button 
adds this variable to the Watch window. 

The Watch window appears at the top of the screen. Adding a Watch variable 
automatically opens the Watch window ifthe window doesn't already exist. 

A newly added variable may be followed by the message: 

<Watch Expression Not in Context> 

This message appears when program execution has not yet reached the block 
where the variable is defined. (A block is a section of code enclosed in curly 
braces.) Global variables (those declared outside C functions) never cause 
Code View to display this message; they can be watched from anywhere in the 
program. 

To remove a variable from the Watch window, use the Delete Watch command 
from the Watch menu, and select the variable to be removed using the list in the 
dialog box. You can also position the cursor on any line in the Watch window 
and press CTRL+ Y to delete the line. 

You can place as many variables as you like in the Watch window; the quantity 
is limited only by available memory. You can scroll through the Watch window 
to position it at those variables you want to view. Code View automatically up­
dates all watched variables as the program runs, including those not currently 
visible. 

Loops (do, for, or while) cause problems when they don't terminate correctly. 
Displaying loop variables in the Watch window is an easy way to determine 
whether a loop variable achieves its proper value. 

9.3.2 Displaying Expressions in the Watch Window 

Expressions can use the 
syntax of other languages. 

You may have noticed that the Add Watch dialog box prompts for an expression, 
not simply a variable name. As this suggests, you can enter an expression (that is, 
any valid combination of variables, constants, and operators) for Code View to 
evaluate and display. 

You are not limited to evaluating C expressions. The Language command of the 
Options menu offers a choice of BASIC or FORTRAN expression evaluation, if 
one of these languages better suits your needs. The ability to select the language 
evaluator is especially useful when debugging mixed-language programs. Re­
member that C-specific features, such as type casting or pointer conversions, are 
not available in other languages. 



190 Advanced Programming Techniques 

You can display more 
information with expressions 

than with individual variables. 

By reducing several variables to a single, easily read value, an expression can be 
easier to interpret than the components that make it up. Imagine a for loop with 
two variables whose ratio is supposed to remain constant. You suspect that one 
of these variables (you aren't sure which) sometimes takes the wrong value. With 
( v a r 1 I v a r 2 ) displayed as an expression in the Watch window, you can 
easily see when this single value changes; you don't have to mentally divide two 
numbers. 

You can also display Boolean expressions. For example, if a variable is never 
supposed to be larger than 100 or less than 25, (var < 2 5 I I var > 100) 
evaluates to 1 (true) when var goes out-of-bounds. 

9.3.3 Displaying Arrays and Structures 

You can view arrays and 
structures in expanded form. 

Most program variables are scalar quantities-a single character or a single in­
teger or floating-point value. These appear in the Watch window with the varia­
ble name to the left, followed by an equal sign ( =) and the current value. 

Arrays and structures contain multiple values, arranged in one or more layers. 
They are often referred to as "aggregate" data items. Code View lets you control 
how much of these variables is shown; that is, whether all, part, or none of their 
internal structure is displayed. 

An array initially appears in the Watch window in this form: 

+wordholder[J - [ ... ] 

The brackets indicate that this variable contains more than one element. The plus 
sign ( +) indicates that the variable has not yet been expanded to display its com­
ponents. 

To expand the array, double-click anywhere on the line. You can also position 
the cursor on the line and press ENTER. For example, if word ho l de r is a six­
character array containing the word "Basic," the Watch window display changes 
to the following : 



Debugging C Programs with Code View 191 

-wordholder[J 
[0] 66 'B' 
[lJ 97 'a' 
[2] 115 's' 
[3] 105 'i' 
[4] 99 'c' 
[5] 0 " 

Note that both the individual character values and their ASCII decimal equiva­
lents are listed. The minus sign(-) indicates no further expansion is possible. To 
contract the array, double-click on its line (or position the cursor on the line and 
press ENTER) again. 

If it is inconvenient to view a character array in this form, cast the variable's 
name to a character pointer by placing ( ch a r *) in front of the name. The 
character array is then displayed as a string delimited by apostrophes. 

You can display arrays with more than one dimension. Imagine a 5 x 5 integer 
array named matrix, whose diagonal elements are the numbers 1 through 5 
and whose other elements are zero. Unexpanded, the array is displayed like this: 

+matrix[] ~ [ ... ] 

Double-clicking on matrix (or pressing ENTER) changes the display: 

-matrix[] 
+[0][] [ ... ] 
+[l][J [ ... ] 
+[2][] [ ... ] 
+[3][] [ ... ] 
+[4][] [ ... ] 

The actual values of the elements are not shown yet. You have to descend one 
more level to see them. To view the elements of the third row of the array, posi­
tion the cursor anywhere on the fourth line and press ENTER: 

-matrix[] 
+[0][] 
+[l ][ J 
-[2][] 

[0] 

[l] 
[2] 
[3] 
[4] 

+[3][] 
+[4][] 

0 
0 
3 
0 
0 

[ ... J 
[ ... J 

[ ... J 
[ ... J 



192 Advanced Programming Techniques 

Expanding the fifth row of the array produces this display: 

-matrix[] 
+[0][] [ ... J 
+[l][] [ ... J 
-[2][] 

[0] 0 
[1] 0 
[2] 3 
[3] 0 
[4] 0 

+[3][] [ ... J 
-[4][] 

[0] 0 
[l J 0 
[2] 0 
[3] 0 
[4] 5 

You can view individual Any element of an array (or structure) can be independently expanded or con­
e/ements instead of tracted. If you only want to view one or two elements of a large array, specify the 

the entire array. particular array or structure elements in the Expression field of the Add Watch 
dialog box; you need not display every element of the variable. 

You can dereference pointers. You can dereference a pointer in the same way as you expand an array or struc­
ture. The pointer address is displayed, followed by all the elements of the varia­
ble to which the pointer currently refers. Multiple levels of indirection (that is, 
pointers referencing other pointers) can be displayed simultaneously. 

9.3.4 Displaying Array Elements Dynamically 
You do not have to display every element of an array. If specific subscripts arc 
given, the corresponding element is displayed. 

You can also specify a dynamic array element, which changes as some other 
variable changes. For example, suppose that the loop variable p is a sub­
script for the array variable cat a l o g pr i c e. The Watch window expression 
cat al o g pr i c e [ p J displays only the array element currently specified by 
p, not the entire array. 

You can mix constant and variable subscripts. For example, the expression 
bi g a r ray [ 3 J [ i J displays only the element in the third row of the array 
to which the index variable i points. 



Debugging C Programs with Code View 193 

9.3.5 Using Quick Watch 

You can add Quick Watch 
variables to the Watch 

window. 

Selecting the Quick Watch command from the Watch menu (or pressing 
SHIFT+F9) displays the Quick Watch dialog box. If the text cursor is in the 
Source, Local, or Watch window, the variable at the current cursor position ap­
pears in the dialog box. If this is not the item you wish to display, type in the 
desired expression or variable, then press ENTER. The selected item is displayed 
immediately. 

The Quick Watch display automatically expands arrays and structures to their 
first level. For example, an array with three dimensions is expanded to the first di­
mension. You can expand or contract an element just as you would in the Watch 
window: position the cursor on the appropriate line and press ENTER. If the array 
needs more lines than the Quick Watch window can display, drag the mouse 
along the scroll bar, or press DOWN or PGDN to view the rest of the array. 

If you decide to add a Quick Watch item to the Watch window, select the Add 
Watch button. Arrays and structures appear in the Watch window expanded as 
they were displayed in the Quick Watch box. 

Quick Watch is a convenient way to take a quick look at a variable or expression. 
Since only one Quick Watch variable can be viewed at a time, you would not use 
Quick Watch for most of the variables you want to view. 

9.3.6 Displaying Memory 

You can display memory 
values in any form. 

Selecting the Memory command from the View menu opens a Memory window. 
Up to two Memory windows can be open at one time. 

By default, memory is displayed as hexadecimal byte values, with 16 bytes per 
line. At the end of each line is a second display of the same memory in ASCII 
form. Values that correspond to printable ASCII characters (decimal 32 through 
127) are displayed in that form. Values outside this range are shown as periods. 

Byte values are not always the most convenient way to view memory. If the area 
of memory you're examining contains character strings or floating-point values, 
you might prefer to view them in a directly readable form. The Memory Window 
command of the Options menu displays a dialog box with a variety of display 
options: 

• ASCII characters 

• Byte, word, or double-word binary values 

• Signed or unsigned integer decimal values 

• Short (32 bit), long (64 bit), or ten-byte (80 bit) floating-point values 



194 Advanced Programming Techniques 

You can also directly cycle through these display formats by pressing F3. 

If a section of memory cannot be displayed as a valid floating-point number, the 
number shown includes the characters NAN (not a number). 

Displaying Variables with a Live Expression 
Section 9.3.4, "Displaying Array Elements Dynamically," explains how to dis­
play a specific array element by adding the appropriate expression to the Watch 
window. It is also possible to watch a particular memory area that your program 
uses to store data in the Memory window. This Code View display feature is 
called a "live expression." 

"Live" means that the area of memory displayed changes to reflect the value of 
a pointer or subscript. For example, if buffer is an array and p bu f is a 
pointer to that array, then *pbu f points to the array element currently refer­
enced. A live expression displays the section of memory beginning with this ele­
ment. If your program changes the value of p bu f, Code View dynamically 
adjusts the Memory window display. 

Live expressions are displayed in a Memory window, not in the Watch window. 
To create a live expression, select the Memory Window command of the Options 
menu, then select the Live Expression check box. Enter the name of the element 
you want to view. For example, if st r g pt r is a pointer to an array of charac­
ters, and you want to see what it currently points at, enter *st r g pt r. Then 
select the OK button or press ENTER to view that memory area. 

A new Memory window opens. The first memory location in the window is the 
first memory location of the live expression. The section of memory displayed 
changes to the section the pointer currently references. 

You can use the Memory Window command of the Options menu to display the 
value of the live expression in a directly readable form. This is especially con­
venient when the live expression represents strings or floating-point values, 
which are difficult to interpret in hexadecimal form. 

It is usually more convenient to view an item in the Watch window than as a live 
expression. However, some items are more easily viewed as live expressions. For 
example, you can examine what is currently on top of the stack. Enter SS:SP as 
the live expression. 

9.3. 7 Displaying the Processor Registers 
Selecting the Register command from the View menu (or pressing F2) opens a 
window on the right side of the screen. The current values of the microproces­
sor's registers appear in this window. 



Debugging C Programs with Code View 195 

At the bottom of the window is a group of mnemonics representing the processor 
flags. When you first open the Register window, all values are shown in normal­
intensity video. Any subsequent changes are marked in high-intensity video. For 
example, suppose the overflow flag is not set when the Register window is first 
opened. The corresponding mnemonic is NV and it appears in light gray. If the 
overflow flag is subsequently set, the mnemonic changes to OV and appears in 
bright white. 

Selecting the 386 Instructions command from the Options menu displays the reg­
isters as 32-bit values, but only if your computer uses an 80386 processor, and 
only when running the real-mode version of Code View. Selecting this command 
a second time toggles back to a 16-bit display. 

You can also display the registers of an 8087 /287 /387 coprocessor in a separate 
window by selecting the 8087 command from the View menu. If your program 
uses the coprocessor emulator, the emulated registers are displayed instead. 

9.3.8 Modifying the Values of Variables, Registers, and Memory 

Byte display form is different 
from other forms. 

Be cautious when modifying 
memory or a register. 

You can easily change the values of variables, memory locations, or registers 
displayed in the Watch, Local, Memory, Register, or 8087 windows. Simply 
position the cursor at the value you want to change and edit it to the appro­
priate value. If you change your mind, press ALT+BKSP to undo the last change 
you made. 

The starting address of each line of memory displayed is shown at the left of the 
Memory window, in CS:IP form. Altering the address automatically shifts the dis­
play to the corresponding section of memory. If that section is not used by your 
program, memory locations are displayed as double question marks (??). 

When you select Byte display from the Memory Window Options dialog box, 
Code View presents both a hexadecimal and an ASCII representation of the 
data in memory. (Byte display is the default.) You can change data in memory 
either by entering new hex values over the hexadecimal representation of your 
data or by entering character values over the character representation. 

To toggle a processor flag, click left on its mnemonic. You can also position the 
cursor on a mnemonic, then press any key (except TAB or SPACE). Repeat to re­
store the flag to its previous setting. 

The effect of changing a register, flag, or memory location may vary from no ef­
fect at all, to crashing the operating system. You should be cautious when alter­
ing "machine-level" values; most of the items you would want to change can be 
altered from the Watch window. 

One instance where direct manipulation of register values can be valuable is 
when you are debugging in-line assembly code. You can change register values 
to test assumptions before making changes in your source code and recompiling. 



196 Advanced Programming Techniques 

9.4 Controlling Execution 
There are two forms of program execution under Code View: 

• Continuous; the program executes until either a previously specified 
"breakpoint" has been reached or the program terminates normally. 

• Single-step; the program pauses after each line of code has been executed. 

Sections 9.4.1 and 9.4.2 explain how each form of execution works and the most 
effective way to use each. 

9.4.1 Continuous Execution 

Breakpoints can be 
tied to lines of code. 

There is no limit to the 
number of breakpoints. 

Continuous execution lets you quickly execute the bug-free sections of code, 
which would otherwise take a long time to execute a single step at a time. 

The simplest form of continuous execution is to click right (position the mouse 
pointer and press the right mouse button) anywhere on the line of code you want 
to debug or examine in more detail. The program executes at full speed up to the 
beginning of this line, then pauses. You can do the same thing by positioning the 
text cursor on this line, then pressing F7. 

You can also pause execution at a specific line of code with a "breakpoint." 
There are several types of breakpoints. Breakpoints are explained in the follow­
ing section. 

Selecting Breakpoint Lines 
You can skip over the parts of the program that you don't want to examine by 
specifying one or more lines as "breakpoints." The program executes at full 
speed up to the first breakpoint, then pauses. Pressing FS continues program ex­
ecution up to the next breakpoint, and so on. (You can halt execution at any time 
by pressing CTRL+BREAK or ALT+SYSRQ.) 

You can set as many breakpoints as you like (limited only by available memory). 
There are several ways to set breakpoints: 

• Double-click anywhere on the desired breakpoint line. The selected line is 
highlighted to show that it is a breakpoint. To remove the breakpoint, double­
click on the line a second time. 

• Position the cursor anywhere on the line at which you want execution to 
pause. Press F9 to select the line as a breakpoint. (Code View highlights lines 
that have been selected as breakpoints.) Press F9 a second time to remove the 
breakpoint. 



Not every line can 
be a breakpoint. 

Debugging C Programs with CodeView 197 

• Display the Set Breakpoint dialog box by selecting Set Breakpoint from 
the Watch menu. Choose one of the breakpoint options that permits a line 
("location") to be specified. The line on which the text cursor currently rests 
is the default breakpoint line in the Location field. If this line is not the 
desired breakpoint, enter the line number desired. (The line number must 
begin with a period.) Use F9 or the Edit Breakpoints screen of the Watch 
menu to remove the breakpoint. 

A breakpoint line must be a program line that represents executable code. You 
cannot select a blank line, a comment line, or a declaration line (such as a varia­
ble declaration or a preprocessor statement) as a breakpoint. 

A breakpoint can also be set at a function or an explicit address. To set a break­
point at a function, simply enter its name in the Set Breakpoint dialog box. To set 
a breakpoint at an address, enter the address in CS:IP form. 

NOTE By default, Microsoft compilers optimize your code. In the process of optimization, 
some lines of code may be repositioned or reorganized for more efficient execution. These 
changes can prevent Code View from recognizing the corresponding lines of source code as 
breakpoints. Therefore, it is a good idea to disable optimization during development (use the 
/Od switch). You can restore optimization once debugging is completed. 

Once execution has paused, you can continue execution by pressing F5 or click­
ing left on the <F5> button in the display. 

Setting Breakpoint Values 
Breakpoints can be Breakpoints are not limited to specific lines of code. Code View can also break 

tied to variables. execution when a variable reaches a particular value, or just changes value. You 
can also combine these value breakpoints with line breakpoints, so that execution 
stops at a specific line only if a variable has simultaneously reached a particular 
value, or changed value. You must use the check boxes in the Set Breakpoint 
dialog box to select these other types of breakpoints. 

To pause execution when an expression reaches a particular value, enter that ex­
pression in the Expression field of the Set Breakpoint dialog box. For example, 
assume you have declared a tree structure as follows: 

struct Tagtree 
{ 

char * s. 
' !* Pointer to a string */ 

struct TAGtree * left; !* Pointer to left branch *I 
struct TAGtree * right; I* Pointer to right branch */ 

} ; 

struct TAGtree t; 



198 Advanced Programming Techniques 

You can specify how 
many times a breakpoint 

line is executed. 

You can then pause execution when your tree traversal reaches a terminal node 
byenteringtheexpression (t.left ==NULL) 11 (t.right ==NULL). 

To pause execution when a variable changes value, you need to enter only the 
name of the variable in the Expression field. For large variables (such as arrays 
or character strings), you can specify the number of bytes you want checked (up 
to 32K) in the Length field. 

NOTE When a breakpoint is tied to a variable, Code View must check the variable's value 
after each machine instruction is executed. This slows execution greatly. For maximum 
speed when debugging, either tie conditional breakpoints to specific lines, or set conditional 
breakpoints only after you have reached the section of code that needs to be debugged. 

Using Breakpoints 
Here are several examples that show how breakpoints can help you find the 
cause of a problem. 

One of the most common bugs is a for loop that executes too many or too few 
times. If you set a breakpoint that encloses the loop statements, the program 
pauses after each iteration. With the loop variable or critical program variables 
in the Watch or Local windows, it should be easy to see what the loop is doing 
wrong. 

You do not have to pause at a breakpoint the first time execution reaches it. 
Code View lets you specify the number of times you want to ignore the break­
point condition before pausing. Enter the decimal number in the Pass Count field 
of the Set Breakpoint dialog box of the Watch menu. 

For example, suppose your program repeatedly calls a function to create a binary 
tree. You suspect that something goes wrong with the process about halfway 
through. You could mark the line that calls the function as the breakpoint, then 
specify how many times this line is to execute before execution pauses. Running 
the program creates a representative (but unfinished) tree structure that can be ex­
amined from the Watch window. You can then continue your analysis using 
single-stepping. 

Another programming error is erroneously assigning a value to a variable. Enter 
the variable in the Expression field of the Set Breakpoint dialog box. Execution 
breaks whenever this variable changes value. 

You can assign new Breakpoints are a convenient way to pause the program so you can assign new 
values to variables while values to variables. For example, if a limit value is set by a variable, you can 

execution is paused. change the value to see whether program execution is affected. Similarly, you 
can pass a variety of values to a switch statement to see if they are correctly 
processed. 

This ability to alter variables is an especially convenient way to test new func­
tions without having to write a stand-alone test program. 



Debugging C Programs with Code View 199 

9.4.2 Single-Stepping 

There are two ways 
to single-step. 

In single-stepping, Code View pauses after each line of code is executed. (If a 
line contains more than one executable statement, Code View executes all the 
statements on the line before pausing.) The next line to be executed is high­
lighted in reverse video. 

You can single-step through a program with the Step and Trace functions. Step 
(executed by pressing FIO) steps over function calls. All the code in the function 
is executed but, to you, the function appears to execute as a single step. Trace 
(executed by pressing F8) traces through every step of all functions for which 
Code View has symbolic information. Each line of the function is executed as a 
separate step. (Code View has no symbolic information about run-time functions; 
therefore, they are executed as a single step.) 

You can alternate between Trace and Step as you like. The method you use de­
pends only on whether you want to see what happens within a particular function. 

You can Trace through the program continuously (without having to press F8), 
using the Animate command of the Run menu. The speed of execution is con­
trolled by the Trace Speed command from the Options menu. You can halt ani­
mated execution at any time by pressing any key. 

9.5 Replaying a Debug Session 

Dynamic replay makes it 
easy to correct a mistake. 

Code View can automatically create a "tape" (a disk file) with all the debug­
ging instructions and input data you entered when testing a program. The tape is 
then "replayed" to repeat the debugging process. This dynamic replay feature is 
unique to the Code View debugger and is activated by selecting the History On 
command from the Run menu. Selecting History On a second time terminates 
recording. 

You can use the recording as a bookmark. You can quit after a long debugging 
session, then pick up the session later in the same place. 

The principal use of dynamic replay is to allow you to back up when you make 
an error or overshoot the section of code with the bug. This feature is important 
because not all bugs are located when executing the program in a linear fashion. 

For example, you may have to manually execute a function many times before its 
bug appears. If you then enter a command that alters the machine's or program's 
status and thereby lose the information you need to find the cause of the bug, you 
would have had to restart the program and manually repeat every debugging step 
to return to that point. Even worse, if you don't remember the exact sequence of 
events that exposed the bug, it could take hours to find your way back. 



200 Advanced Programming Techniques 

Dynamic replay eliminates this problem. Selecting the Undo command from 
the Run menu automatically restarts the program and rapidly executes every 
debug command up to (but not including) the last one you entered. You can re­
peat this process as many times as you like until you return to the desired point in 
execution. 

To add additional steps to an existing tape, select History On, then select Replay. 
When replay has completed, perform whatever new debugging steps you want, 
then select History On a second time to terminate recording. The new tape con­
tains both the original and the added commands. 

NOTE Code View records only those mouse commands that apply to CodeView. Mouse 
commands recognized by the application being debugged are not recorded. 

Replay Limitations under OS/2 
There are some limitations to dynamic replay when debugging under OS/2: 

• The program must not respond to asynchronous events. 

• Breakpoints must be specified at specific source lines or for specific symbols 
(rather than by absolute addresses), or replay may fail. 

• Single-thread programs behave normally during replay. However, one of the 
threads in a multithread program may cause an asynchronous event, violating 
the first restriction. Multithread programs are, therefore, more likely to fail 
during replay. 

• Multiprocess replay will fail. Each new process invokes a new Code View 
session. The existence of multiple sessions makes it impractical to record 
the sequence of events if you execute commands in a session other than the 
original. 

• Replay under Presentation Manager is not currently supported because it vio­
lates the first restriction. 

9.6 Advanced CodeView Techniques 
Once you are comfortable displaying and changing variables, stepping through 
the program, and using dynamic replay, you might want to experiment with the 
advanced techniques explained below. 



Debugging C Programs with Code View 201 

Setting Command-Line Arguments 
If your program retrieves command-line arguments, you can specify them with 
the Set Runtime Arguments command from the Run menu. Enter the arguments 
in the Command Line field before you begin execution. (Arguments entered after 
execution begins cause an automatic restart.) 

Multiple Source Windows 
You can open two Source windows at the same time. The windows can display 
two different sections of the same program, or one can show the high-level list­
ing and the other the assembly-language listing. In the latter case, the contents of 
the windows track, with the next assembly-language instruction to be executed 
matching the next line of source code. 

You can move freely between these windows, executing a single line of source 
code or a single assembly instruction at a time. The assembly-language window 
must be opened in CS:IP mode. 

Calling Functions 
Any C function in your program (whether user-written or from the library) can 
be called from the Command window or the Watch window, using the following 
format: 

?funcname (varlist) 

The function is evaluated and the returned value is displayed in the Command 
window. 

The function does not have to be called by your program to be available for eval­
uation. For example, all the .OBJ code specified in the linker input response file 
is linked. The functions in this code can then be evaluated from the Command 
window. 

This feature allows you to run functions from within Code View that you would 
not normally include in the final version of your program. For example, you 
could include the OS/2 API functions that control semaphores, then execute them 
from the Command window to manipulate the run-time environment at any point 
in the debugging process. 

Checking for Undefined Pointers 
Until a pointer has been explicitly assigned a value, its value is undefined. That 
is, its value may be completely random, or it may be some consistent value 
that does not point to a useful data address (such as -1). 



202 Advanced Programming Techniques 

Accessing data through an uninitialized pointer will cause unpredictable program 
behavior and, under OS/2, will usually result in a protection violation. Because 
many C programs use pointers heavily, tracking down exactly which pointer vari­
able was left uninitialized is tedious. 

Code View can help locate the problem quickly. If you use an uninitialized 
pointer (or "null pointer" under OS/2) the operating system will generate a pro­
tection violation. By examining the Calls menu, you can determine the last line 
of your code that was executed before the protection violation occurred. 

Under DOS, you can take advantage of the fact that global or static variables are 
initialized to 0 to track down uninitialized pointers. Set a conditional breakpoint 
that stops when location 0 changes, then start execution. Execution will pause 
when your program makes an assignment to that location. 

NOTE For near pointers, location 0 is DS:OOOO; for far pointers, location 0 is 0000:0000. 

Using Breakpoints Efficiently 
Breakpoints slow execution when debugging. You can increase Code View's 
speed by using the JR command-line switch if you have an 80386-based com­
puter. This switch enables the 386's four debug registers, which support break­
point checking in hardware rather than in software. 

Printing Selected Items 
You can print all or part of the contents of any window with the Print command 
from the File menu. The check box lets you print the complete contents of the 
window, only the material that is currently viewable in the window, or selected 
text from the window. Text is selected by dragging the mouse across it, or by 
holding down the SHIFT key and pressing the direction keys (LEFT, RIGHT, UP, 

DOWN). 

By default, print output is to the file CODEVIEW.LST in the current directory. 
You can choose whether the new material will be appended to an existing file or 
overwrite it, using the Append/Overwrite check box. If you would like print out­
put to go to a different file, type its name in the To File Name field. If you want 
the output to go to a printer, enter the appropriate device name, such as LPTl 
orCOM2. 

Handling Register Variables 
A register variable is stored in one of the microprocessor's registers, rather than 
in RAM. This speeds access to the variable. 

There are two ways for a conventional variable to become a register variable. 
One way is declaring the variable as a register variable; if a register is free, the 
compiler will store the variable there. The other way occurs during optimization, 



Debugging C Programs with Code View 203 

when the compiler stores an often-used variable (such as a loop variable) in a reg­
ister to speed up execution. 

Register variables can cause problems during debugging. As with local variables, 
they are only visible within the function where they are defined. In addition, a 
register variable may not always be displayed with its current value. 

In general, it is a good idea to turn off all optimization and to avoid declaring reg­
ister variables until the program has been fully debugged. Any side effects pro­
duced by optimization or register variables can then be easily isolated. 

Redirecting Code View Input and Output 
The Command window accepts DOS-like commands that redirect input and out­
put. These commands can also be included on the command line that invokes 
Code View. Whatever follows the /C option in the command line is treated as 
Code View commands that are immediately executed at start-up. 

CV I c " i n f i l e ; t > o u tf i l e" my pro g 

Input is redirected to inf i l e, which can contain start-up commands for 
Code View. When Code View exhausts all commands in the input file, focus 
automatically shifts to the command window. Output is sent to out f i l e and 
echoed to the Command window. The t must precede the > command for out­
put to be sent to the Command window. 

Redirection is a useful way to automate Code View start-up. It also lets you keep 
a viewable record of command-line input and output, a feature not available with 
dynamic replay. (No record is kept of mouse operations.) Some applications (par­
ticularly interactive ones) may need modification to allow for redirection of input 
to the application itself. 

Using Code View with Additional Memory 
If your computer uses expanded or extended memory, you can increase 
Code View's functionality by selecting the IX or IE option. Code View moves 
as much as it can of itself, the debugging table, and the program to higher 
memory (above the first megabyte). 

The /X option uses extended memory and gives the greatest speed increase. 
This option requires the HIMEM.SYS driver, which is included on your distri­
bution disks. Add DEV ICE = HIME M . SYS to your CONFIG.SYS file to load 
HIMEM.SYS at boot time. 

The IE option uses expanded memory. The speed increase is not as great as that 
supplied by the IX option. The expanded memory manager (EMM) must be LIM 
4.0, and no single module's debug information can exceed 48K. If the symbol 
table exceeds this limit, try reducing file-name information by not specifying 
paths at compile time and using /Zi only with those sections of the program that 
need debugging (use /Zd otherwise). 



204 Advanced Programming Techniques 

If you do not specify either /X or IE (or the ID disk-overlay option), Code View 
automatically searches for the HIMEM.SYS driver and extended memory so it 
can implement the IX option. If it fails, Code View searches for expanded mem­
ory to implement the IE option. If that search fails, Code View uses a default disk 
overlay of 64 K. (See the description of the ID option below.) 

9. 7 Controlling Code View 
with Command-Line Options 

The following options can be added to the command line that invokes Code View: 

/2 

/25 

/43 

/50 

!B 

/Ccommands 

ID[ddd]] 

IE 

IF 

/lnumber 

Effect 

Two-monitor debugging. The display adapters must 
be configured for different addresses. One display 
shows the output of the application; the other shows 
Code View. 

Display in 25-line mode. 

Display in 43-line mode (EGA or VGA only). 

Display in 50-line mode (VGA only). 

Display in black and white. This assures that the dis­
play is readable when a color display is not used. 

All items following this switch are treated as 
Code View commands to be executed immediately 
on start-up. Commands must be separated with a 
semicolon (;). 

Use disk overlays, where ddd is the decimal size of 
the overlay buffer, in kilobytes. The acceptable 
range is 16K to 128K. The default size is 64K. DOS 
only. 

Use expanded memory for symbolic information. 
DOS only. 

Flip screen video pages. When your application does 
not use graphics, eight video screen pages are availa­
ble. Switching from Code View to the output screen 
is accomplished more quickly than swapping (/S) by 
directly selecting the appropriate video page. Cannot 
be used with /S. DOS only. 

Turns nonmaskable interrupts and 8259-interrupt 
trapping on (/11) or off (/12). 



IK 

/Ldlls 

IM 

/Nnumber 

IO 

fR 

IS 

IX 

Debugging C Programs with CodeView 205 

Disables installation of keyboard monitors for the 
program being debugged. 

Load DLLs specified. DLLs must be separated by a 
semicolon(;). OSl2 only. 

Disable the mouse. 

/NO tells Code View to trap; /Nl tells it not to. 

Debug child processes ("offspring"). OSl2 only. 

Use 386 hardware debug registers. DOS only. 

Swap screen in buffers. When your program uses 
graphics, all eight screen buffers must be used. 
Switching from Code View to the output screen is 
accomplished by saving the previous screen in a 
buffer. Cannot be used with /F. DOS only. 

Use extended memory for symbolic information. 
DOS only. 

9.8 Customizing Code View with the TOOLS.IN/ FILE 
The TOOLS.INI file customizes the behavior and user interface of several 
Microsoft products. The TOOLS.INI file is a plain ASCII text file. You should 
place it in a directory pointed to the INIT environment variable. (If you do not 
use the INIT environment variable, Code View looks for TOOLS.INI only in its 
source directory.) 

The Code View section of TOOLS.INI is preceded by the following line: 

[CV] 

If you are running the protected-mode version of Code View, use [ c v p J 
instead. If you run both versions, include both: [ c v c v p]. 

Most of the TOOLS.INI customizations control screen colors, but you can 
also specify such things as start-up commands or the name of the file that 
receives Code View output. On-line help contains full information about all 
TOOLS.INI switches for Code View. 





PART3 

Special 
Environments 

CHAPTERS 
® ~~ 

:,; oe' 

10 Communicating with Graphics ....... " . 211 

11 Creatillg Charts and Graphs . . . . . . . . . 245 
I 

12 Programming with Mixed Languages . . . . . . . 275 

13 Writing Portable Programs . . . . . . . . . , . 317 





Special Environments 
The Microsoft C Professional Development System provides a 
platform from which you can build graphics applications and in­
terface with programs written in other languages. 

Chapter 10 discusses using the real-world graphics functions to 
set video modes, draw basic shapes, and use graphic fonts. Chap­
ter 11 describes "presentation graphics," sophisticated charts and 
graphics that show data relationships. Chapter 12 explains how 
to write C programs so that they interface with assembly lan­
guage routines or routines written in other languages. Chapter 13 
describes portability of Microsoft C to other environments. 





Communicating 
with Graphics 

CHAPTER 

A map, a chart, an illustration, a graph, or some other visual aid often can com­
municate more information more quickly and more vividly than would several 
screens of text. 

The extensive Microsoft C graphics library allows you to communicate your 
ideas graphically. The functions range from the simple to the complex; from func­
tions that turn on a pixel to functions that draw graphs and charts complete with 
labels and legends. 

This chapter describes low-level graphics functions that draw basic shapes such 
as lines, circles, and rectangles. It introduces video modes, color palettes, coordi­
nate systems, and synopses of the graphics and font functions. For complete func­
tion prototypes and example programs, use on-line help. 

NOTE The ANSI C standard does not define any standard graphics functions. The func­
tions described in this section are unique to Microsoft C and are not portable to other im­
plementations of C. 

10. 1 Video Modes 
Graphics adapters are boards or cards inside the computer that are responsible for 
displaying text and graphics on the screen. Commonly used adapters include: 

• CGA (Color Graphics Adapter) 

• EGA (Enhanced Graphics Adapter) 

• HGC (Hercules Graphics Card) 

211 



212 Advanced Programming Techniques 

The video modes available at 
run time depend on your 

graphics adapter and monitor. 

• MCGA (Multicolor Graphics Array) 

• MDPA (Monochrome Display Printer Adapter) 

• VGA (Video Graphics Array) 

In addition, there are Olivetti versions of the CGA, EGA, and VGA (called 
OCGA, OEGA, and OVGA in this chapter). 

Adapters can enter one or more "video modes." The video mode controls the res­
olution and number of colors on the video display. Microsoft C supports 17 video 
modes, which fall into two broad categories: 

• "Text modes," where characters are displayed 

• "Graphics modes," where individual pixels can be turned on and off 

The graphics adapter and the type of monitor in use determine which of the 17 
video modes are available at run time. See Section 10.1.2 for a list of video 
modes. 

10. 1. 1 Sample Low-Level Graphics Program 
The program ERESBOX.C below shows, in a few lines, the steps you follow to 
enter and exit a graphics mode. It sets the video mode _ ERESCOLOR, draws a 
box, waits for a keypress, and returns to default mode, which is the video mode 
in effect when the program began running. 

/* ERESBOX.C -- Enters ERESCOLOR mode and draws a box */ 

#include <graph.h> /*graphics functions */ 
#include <stdio.h> /* puts */ 
#include <conio.h> /* getch */ 

main () 
{ 

if( setvideomode( ERESCOLOR ) ) /* EGA 640x350 mode */ 
{ 

_rectangle( _GBORDER, 10, 10, 110, 110 l; /*draw*/ 
getch(); /*wait for a keypress */ 
_setvideomode( _DEFAULTMODE ); /* return to default*/ 

else puts( "Can't enter _ERESCOLOR graphics mode." ) 



Communicating with Graphics 213 

The program above illustrates the steps you follow to display graphics: 

• Include the header file GRAPH.H. It contains function prototypes, 
macros, useful structures, and symbolic constants such as _ERESCOLOR, 
_GBORDER, and _DEFAULTMODE. 

#include <graph.h> 

• Call the _setvideomode function, which sets the desired video mode. The 
function returns 0 if the hardware does not support the requested mode. (Sec 
Section I 0.1.2, "Setting a Video Mode.") 

if( setvideomode( ERESCOLOR ) ) 

• Draw the graphics on the screen. The example program calls the _rectangle 
function. (See Section 10.4.3, "Drawing Points, Lines, and Shapes.") 

_rectangle( _GBORDER, 10, 10, 110, 110) 

• Exit the graphics mode and return to whatever video mode was in effect 
before the program began. Call _setvideomode, passing the constant 
_DEF AUL TMODE. In some cases, you might want to skip this step, exiting 
the program with the graphics screen still in place. 

_setvideomode( _DEFAULTMODE ); 

In addition, you must link with the GRAPHICS.LIB library, which contains the 
function code. If you use window-coordinate functions (which require floating­
point calculations) and if you have not created a standard combined library con­
taining a floating-point component, you must explicitly link with a floating-point 
math library. 

10.1.2 Setting a Video Mode 
The setvideomode function turns on one of the 17 available video modes. Pass 
it a single integer that tells it which mode to display. The constants in Table 10.1 
are defined in the GRAPH.H file. The dimensions are listed in pixels for video 
graphics mode and in columns for video text mode. 

Table 10.1 Constants that Represent Video Modes 

Constant (Name) Description Mode/Hardware 

DEFAULTMODE Restores the original All/All 
mode 

ERESCOLOR - 640 x 350, 4 or 16 color Graphics/EGA 

ERESNOCOLOR - 640 x 350, BW Graphics/EGA 

HRES16COLOR 640 x 200, 16 color Graphics/EGA 



214 Advanced Programming Techniques 

Table 10.1 (continued) 

Constant (Name) 

HERCMONO* 

HRESBW 

MAXCOLORMODE 

MAXRESMODE 

MRES4COLOR 

MRES16COLOR 

MRES256COLOR 

MRESNOCOLOR 

ORESCOLOR 

TEXTBW40 

TEXTBW80 

TEXTC40 

TEXTC80 

TEXTMONO 

VRES2COLOR 

VRES16COLOR 

Description 

720 x348, BW 

640 x 200,BW 

Graphics mode with the 
most colors 

Graphics mode with the 
highest resolution 

320 x 200, 4 color 

320 x 200, 16 color 

320 x 200, 256 color 

320 x 200, 4 gray 

640 x 400, 1 of 16 colors 

40 column text, 16 gray 

80 column text, 16 gray 

40 column text, 16/8 color 

80 column text, 16/8 color 

80 column text, BW 

640 x 480, BW 

640 x 480, 16 color 

Mode/Hardware 

Graphics/HGC 

Graphics/CG A 

Graphics/ All t 

Graphics/ All t 

Graphics/ All 

Graphics/EGA 

Graphics/VGA 

Graphics/CG A 

Graphics/0 Ii vet ti 

Text/CG A 

Text/CG A 

Text/CG A 

Text/CGA 

Text/MD PA 

Graphics/VGA 

Graphics/VGA 

*Before attempting to enter _HERCMONO mode, you must install the terminate-and-stay-resident pro­
gram MSHERC.COM, which comes in the Microsoft C package. If you have both a Hercules 
adapter and an additional graphics adapter in the same computer, use the /H option to put the Her­
cules into HALF mode to avoid unpredictable and undesirable results. 

t _ MAXRESMODE and_ MAXCOLORMODE support all adapters except the MDPA. See Section 
10.1.4, "Maximizing Resolution or Color," for definitions of these two modes. 

If the hardware does not support the selected mode, _setvideomode returns 0. 

Some graphics adapters are able to enter additional video modes: 

• EGA adapters can display all CGA modes. 

• HGC adapters can enter_ TEXTMONO mode. 

• MCGA adapters can display all CGA modes, plus_ VRES2COLOR and 
MRES256COLOR. 

• VGA adapters can display all EGA and CGA modes. 



Communicating with Graphics 215 

10.1.3 Reading the videoconfig Structure 
At any time, you can inquire about the current video configuration by passing the 

getvideoconfig function a structure of type videoconfig. The structure contains 
I I members, all of which are short integers. They are listed in Table 10.2. 

Table 10.2 Members of a videoconfig Structure 

Member Description 

adapter* Active display adapter 

bitsperpixel Number of bi ts per pixel 

memory Adapter video memory in kilobytes 

mode* Current video mode 

monitor* Active display monitor 

numcolors Number of color indexes 

numtextcols Number of text columns available 

numtextrows Number of text rows available 

numvideopages 

numxpixels 

numypixels 

Number of video pages available 

Number of pixels on the x axis 

Number of pixels on they axis 

*Possible values for the mode, adapter, and monitor items are listed in the GRAPH.H file. 

The getvideoconfig function initializes these values. Most of the values are self­
explanatory. For example, if numxpixels holds 640, the current video mode con­
tains 640 horizontal pixels, numbered 0- 639. 

The READVC.C example program below illustrates how to initialize and ex­
amine a videoconfig structure: 

/* READVC.C -- Reads the videoconfig structure */ 

#include <graph.h> 
#include <stdio.h> 

main () 
{ 

struct videoconfig vc; 

_getvideoconfig( &vc ); 
printf( "Text Rows = %i. \n", vc.numtextrows ) ; 



216 Advanced Programming Techniques 

First, the program declares a structure v c of type videoconfig. Next, it calls 
_getvideoconfig to initialize the structure. Finally, it prints a member of the 
structure. 

10.1.4 Maximizing Resolution or Color 
Two symbolic constants are new to Microsoft C 6.0: _MAXRESMODE and 
_ MAXCOLORMODE. The first selects the highest possible resolution for the 
graphics adapter and monitor currently in use. The second selects the graphics 
mode with the greatest number of colors. The constants work with all graphics 
adapters except the MDPA. (See Table 10.3.) 

Table 10.3 Constants for Maximum Resolution and Color 

Adapter/Monitor MAXRESMODE MAXCOLORMODE 

CGA _HRESBW MRES4COLOR 

EGA color _HRES16COLOR HRES16COLOR 

EGAecd64K ERESCOLOR _HRES16COLOR 

EGAecd256K _ERESCOLOR _ERESCOLOR 

EGA mono _ERESNOCOLOR _ERESNOCOLOR 

HGC HERCMONO _HERCMONO 

MCGA VRES2COLOR MRES256COLOR 

MDPA Fails Fails 

OCGA ORESCOLOR MRES4COLOR 

OEGAcolor ORESCOLOR ERESCOLOR 

VGNOVGA _ VRES16COLOR _ MRES256COLOR 

10.1.5 Selecting Your Own Video Modes 
A program that will run only on a single machine with a known graphics adapter 
can enter the appropriate video mode immediately. However, if you attempt to 
run the program on another machine with a different adapter, it may not run cor­
rect! y, if at all. 



Communicating with Graphics 217 

If your program might run on a variety of computers and you prefer to select 
your own video modes, initialize a videoconfig structure by calling the 
_getvideoconfig function. Then check the adapter member and use a switch 
statement to enter the selected video mode. 

For example, suppose you know that a program will run on monochrome systems 
equipped with either an EGA adapter or a Hercules adapter. To enter the appro­
priate mode, use code such as this: 

struct videoconfig vc; 

_getvideoconfig( &vc ); 

switch( vc.adapter ) 
{ 

case EGA: 
setvideomode( ERESNOCOLOR ); 

break; 
case HGC: 

setvideomode( HERCMONO ); 
break; 

10.2 Mixing Colors and Changing Palettes 

All video modes that support 
color offer a color palette. 

Depending on the graphics card installed and the video mode in effect, you can 
display 2, 4, 8, 16, or 256 colors on the screen at the same time. You specify a 
color by selecting a color index (sometimes called a "pixel value" or "color at­
tribute"). The color indexes are numbered from 0 to n-1, where n is the number 
of colors in the palette. 

CGA adapters offer four different palettes containing predefined fixed color sets. 

EGA, MCGA, and VGA adapters have palettes that can be redefined to suit your 
needs. You can change the visible color associated with any color index by re­
mapping to a color index a color value that describes the true color (the amount 
of red, green, and blue) you want to display. 

Olivetti adapters (OCGA, OEGA, and OVGA) support the standard CGA, EGA, 
and VGA modes (and palettes), plus an additional Olivetti mode described in 
Section 10.2.2, "Olivetti Palettes." 

NOTE The distinction between a color index and a color value is important. A color index 
is always a short integer. A color value is always a long integer. The only exception to this 
rule involves _setbkco/or, which uses a color index cast to a long integer in CGA and text 
modes. 



218 Advanced Programming Techniques 

10.2. 1 CGA Palettes 

_MRESNOCOLOR produces 
palettes with shades of gray 

on monochrome monitors. 

The CGA (Color Graphics Adapter) supports two color video modes: 
MRES4COLOR and MRESNOCOLOR, which display four colors selected 

from one of several predefined palettes of colors. They display these foreground 
colors against a background color that can be any one of the 16 available colors. 
With the CGA hardware, the palette of foreground colors is predefined and can­
not be changed. Each palette number is an integer. (See Table 10.4.) 

Table 10.4 CGA Palettes in MRES4COLOR Mode 

Color Index 
Palette 
Number 1 2 3 

0 Green Red Brown 

Cyan Magenta Light Gray 

2 Light Green Light Red Yellow 

3 Light Cyan Light Magenta White 

The _ MRESNOCOLOR video mode produces palettes containing various shades 
of gray on monochrome monitors. However, the _ MRESNOCOLOR mode dis­
plays colors when used with a color display. Only two palettes are available in 
this mode. Table 10.5 shows the colors available in the two palettes. 

Table 10.5 CGA Palettes in _MRESNOCOLOR Mode 

Color Index 
Palette 
Number 1 2 3 

0 Blue Red Light Gray 

Light Blue Light Red White 



Communicating with Graphics 219 

You can use the _selectpalette function only in the _MRES4COLOR, 
_ MRESNOCOLOR, and_ ORESCOLOR graphics modes. To change palettes in 
other video modes, use the _remappalette or _remapallpalette functions. 

10.2.2 Olivetth Palettes 
Olivetti graphics adapters are found in most Olivetti computers (including the 
M24, M28, M240, M280, and M380) and in the AT&T 6300 series computers. 
These adapters function the same as their non-Olivetti equivalents; that is, the 
OCGA, OEGA, and OVGA adapters support CGA, EGA, and VGA modes, 
respectively. In addition, Olivetti adapters can enter the high resolution 

ORESCOLOR mode. 

In_ ORESCOLOR mode, you can choose one of 16 foreground colors by passing 
a value in the range 0 -15 to the _selectpalette function. The background color is 
always black. 

10.2.3 VGA Palettes 
Depending on the video mode currently in effect, a VGA (Video Graphics Array) 
screen has 2, 16, or 256 color indexes chosen from a pool of 262, 144 (256K) 
color values. 

To name a color value, specify a level of intensity ranging from 0 - 63 for each 
of the red, green, and blue components. The long integer that defines a color 
value contains four bytes (32 bits): 

Most-significant byte Least-significant byte 

The most-significant byte should contain zeros. The two high bits in the remain­
ing three bytes should also be zero (these bits are ignored). 



220 Advanced Programming Techniques 

To mix a light red (pink), tum red all the way up, and mix in some green and 
blue: 

Most-significant byte Least-significant byte 

The number Ox0020203FL represents this value in hexadecimal notation. You 
can also use the following macro: 

#define RGB ( r, g, b ) (0x3F3F3FL & ((long)(b) << 16 I (g) << 8 I (r))) 

To create pure yellow (100% red plus 100% green) and assign it to a variable 
ye l , use this line: 

yel = RGB( 63, 63, 0 l; 

For white, tum all the colors on: R GB ( 6 3 , 6 3 , 6 3 ) . For black, set all colors 
toO: RGB( 0, 0, 0 ). 

Once you have the color value, 

• Call _remappalette, passing a color index and a color value. 

• Call setcolor to make that color index the current color. 

• Draw something. 

The program YELLOW.C below shows how to remap a color. It draws a rec­
tangle in color index 3 and then changes index 3 to the color value Ox00003F3FL 
(yellow). 

/* YELLOW.C -- Draws a yellow box on the screen*/ 
I* Requires VGA or EGA*/ 

#include <graph.h> /* graphics functions */ 
#include <conio.h> /* getch */ 

main() 
{ 

short int index3 = 3; 
long int yellow= 0x00003F3FL; 
long int old3; 



Communicating with Graphics 221 

if( setv1deomode( HRES16COLOR ) ) 
I 

/* set current color to index 3*/ 
_setcolor( index3 ); 

I* draw a rectangle in that color */ 
_rectangle( _GBORDER, 10, 10, 110, 110 ); 

I* wait for a keypress */ 
getch(); 

/*change index 3 to yellow*/ 
old3 ~ _remappalette( index3, yellow ); 

I* wait for a keypress */ 
getch(); 

I* restore the old color */ 
_remappalette( index3, old3 ); 
getch(); 

!* back to default mode */ 
setvideomode( DEFAULTMODE l; 

else outtext( "This program requires EGA or VGA." ) ; 

10.2.4 MCGA Palettes 
In terms of color mixing, the MCGA (Multicolor Graphics Array) adapter is the 
same as the VGA. It can display any of 256K colors. It cannot enter all of the 
VGA video modes, however. It is limited to CGA modes and _ VRES2COLOR 
and MRES256COLOR. 

10.2.5 EGA Palettes 
Mixing colors in EGA (Enhanced Graphics Adapter) is similar to the VGA 
mixing described in Section 10.2.3, but there are fewer levels of intensity for the 
red, green, and blue (RGB) components. In the modes that offer 64 colors, the 
RGB values include two bits and can range in value from 0 - 3. The long integer 
that defines a color value looks like this: 

Most-significant byte Least-significant byte 

The bits marked 0 should be zeros; the bits marked ? are ignored. EGA color 
values are defined this way to maintain compatibility with VGA color values. 



222 Advanced Programming Techniques 

To form a pure red color value, use the constant Ox00000030L. For cyan (blue 
plus green), use Ox00303000L. The ROB macro defined above for VGA color 
mixing can be used as is, or you can modify it for EGA monitors: 

#define EGARGBC r, g, b) (0x303030L & ((long)(b) « 20 I (g) « 12 I Cr« 4))) 

In this macro, you would pass values in the range 0 -3 instead of 0 - 63. 

For an example program that remaps a color index to a color value, see 
YELLOW.C in Section 10.2.3, "VGA Palettes." 

10.2. 6 Symbolic Constants 
The GRAPH.H file defines the following constants, which can be used as ready­
made color values for EGA and VGA adapters: 

BLACK GREEN LIGHTYELLOW 

BLUE LIGHTBLUE MAGENTA 

BRIGHTWHITE LIGHT CYAN RED 

BROWN LIGHTGREEN WHITE 

CYAN LIGHTMAGENTA 

GRAY LIGHTRED 

For example, to change color index 1 to red, use the line 

_rernappalette( 1, _RED); 

which causes any object currently drawn with color index 1 to change to red. The 
default color value associated with index 1 is blue. 

10.3 Specifying Points within Coordinate Systems 

Graphics functions 
usually use viewport 

and window coordinates. 

A coordinate system describes points on the screen in terms of their horizontal 
(x) and vertical (y) positions. You specify a certain location by providing two 
values that map to a unique position. 

Coordinates on the physical screen never change. Only five functions, listed in 
Section 10.3.1, use physical coordinates. All other graphics functions use one of 
these two coordinate systems: 



Communicating with Graphics 223 

• Viewport coordinates (short integers) 

• Window coordinates (double-precision floating-point numbers) 

Viewports and windows can occupy all of the physical screen or just part of it. 
The three coordinate systems and conventions for naming points and regions of 
the screen are described below. 

10.3.1 Physical Coordinates 
Within the physical screen, the upper left corner is called the "origin." The x 
and y coordinates for the origin are always (0, 0). The x axis extends in the posi­
tive direction left to right, while they axis extends in the positive direction top to 
bottom. 

For example, the video mode _ VRES16COLOR has a resolution of 640 x 480, 
which means the x axis contains the values 0 - 639 (left to right), and they axis 
contains 0-479 (top to bottom). (See Figure 10.1.) 

Origin 

~ (0, 0) (639, 0) 

(0, 479) 

Figure 10.1 Physical Screen Coordinates 



224 Advanced Programming Techniques 

Only five functions use physical coordinates: _setcliprgn, _ setvieworg, 
_setviewport, _getviewcoord, and _getphyscoord. 

The setcliprgn function establishes a "clipping region." Attempts to draw in­
side the region succeed, while attempts to draw outside the region are clipped 
(ignored). When you first enter a graphics mode, the clipping region defaults to 
the entire screen. 

The _ setvieworg function changes the current location of the origin. When a pro­
gram first enters a graphics mode, the physical origin and the viewport origin are 
in the upper left comer. The following code moves the viewport origin to the 
physical screen location (50, 100): 

_setvi eworg( 50, 100 ) ; 

The effect on the screen is illustrated in Figure 10.2. Note that the number of pix­
els remains constant, but the range of legal x values changes from a range of 0 to 
639 (physical screen) to -50 to 589. The legal y values change as well. 

(-50, -100) (589, -100) 

I x------~ 
- - -·- - - - - - - - - - - - - - - - -

I (0, 0) 

I 
I 

I 

I 
y I 

I 

I 

I 

I 
I 

(-50, 379) 

Figure 10.2 Coordinates Changed by _setvieworg 



Communicating with Graphics 225 

All graphics functions are affected by the new origin, including _arc, _ellipse, 
_lineto, _ moveto, _ outgtext, _pie, and _rectangle. 

The third function that uses physical coordinates is _setviewport, described 
below, which establishes the boundaries of the current viewport. 

10.3.2 Viewport Coordinates 

Graphics output functions 
require viewport or window 

coordinate values. 

The default viewport coordinate system is identical to the physical screen coor­
dinate system. The _setviewport function creates a new viewport within the 
boundaries of the physical screen. A standard viewport has two distinguishing 
features: 

• The origin of a viewport initially lies in the upper left comer of the viewport, 
not the upper left corner of the physical screen. 

• The clipping region matches the outer boundaries of the viewport. 

In other words, the setviewport function does the same thing as would two sep­
arate calls to setvieworg and setcliprgn. All graphics output functions require 
values that are either viewport coordinates or window coordinates. 

For example, 

_setviewport( 50, 50, 200, 100 ); 

creates the viewport illustrated in Figure 10.3. The values passed to the 
_setviewport function are physical screen locations of opposite corners. 
After the viewport is created, the viewport origin lies in the upper left corner. 



226 Advanced Programming Techniques 

Physical Coordinates of a Viewport 

Physical origin 

~ (0, 0) 

(50, 50) 

I 
(200, 50) 

I 
(50, 100) (200, 100) 

Viewport Coordinates 

Viewport origin 

(0, 0) (150, 0) 

I I 
(0, 50) (150, 50) 

Figure 10.3 A Viewport 



Communicating with Graphics 227 

10.3.3 Window Coordinates 
The _setwindow function allows you to use floating-point coordinates instead of 
integers. More importantly, it scales the screen coordinates to almost any size 
within the current viewport. Window functions take double-precision arguments 
and have names that end with the suffixes _ w or_ wxy. The function _lineto _ w 
is the window-coordinate equivalent of the viewport function _lineto. 

To create a window for charting 12 months of average temperatures ranging from 
-40 to 100, use this line: 

_setwindow( TRUE, 1.0, -40.0, 12.0, 100.0 ); 

The first argument is the invert flag, which puts the lowest y value at the bottom 
of the screen instead of the top. The minimum and maximum coordinates follow. 
The new organization of the screen is shown in Figure 10.4. 

(1.0, 100.0) (12.0, 100.0) 

y 

-------- x -------

(1.0, -40.0) (12.0, -40.0) 

Figure 10.4 Window Coordinates 



228 Advanced Programming Techniques 

If you plot a point with _setpixel_ w or draw a line with _lineto _ w, the values are 
automatically scaled to the established window. 

Window-coordinate graphics provide a lot of flexibility. You can fit an axis 
into a small range (such as 151.25 to 151.45) or into a large range (-50,000 to 
80,000), depending on the type of data to be graphed. In addition, by changing 
the window coordinates and redrawing a figure, you can create the effects of 
zooming in or panning across a figure. 

10.3.4 Screen Locations 
A coordinate system needs two values (a horizontal and a vertical position) to de­
scribe the location of a point on the screen. There are times, however, when it is 
more convenient to use one variable instead of two. 

Some graphics functions require you to pass the location of a point on the screen. 
Others return a value that represents a location. The GRAPH.H file defines two 
structures that allow you to refer to a point with a single variable. 

• An xycoord structure contains two short integers called xcoord and ycoord 
for use in viewport graphics. 

• A _ wxycoord structure contains two doubles called wx and wy for use in 
window-coordinate graphics. 

For example, you pass four doubles to the _rectangle_ w function: an x and y 
position for the upper left corner of the window and an x and y position for the 
lower right corner. The _rectangle_ wxy function takes two_ wxycoord 
structures. 

10.3.5 Bounding Rectangles 
Certain figures such as arcs and ellipses are centered within a "bounding rec­
tangle," specified by two points that define the opposite corners of the rectangle. 
The center of the rectangle becomes the center of the figure, and the rectangle's 
borders determine the size of the figure. Figure 10.5 shows start and end vectors 
and a bounding rectangle in which a pie shape has been drawn with the _pie func­
tion. The first two sets of coordinates are xl, yl, x2, and y2. They define the 
boundaries of the rectangle. The pie shape needs two other points, x3, y3, x4, and 
y4, which indicate the starting and ending lines. 



(x3, y3) 

• 

Communicating with Graphics 229 

=--=----::::-_- - -1 
'-......., I 

'- I 
(X~_Y~)_ - ) 

I '- /I 
I ', // I 
I ',__ ---- I - - - - - ::C.~--~-==- - - - - --e 

(x2, y2) 

Figure 10.5 Bounding Rectangle 

10.3.6 The Pixel Cursor 
A "pixel cursor" is a location on the screen. The _ moveto function positions this 
cursor at a given spot. Nothing visible appears. If you call _lineto, a line is drawn 
from the current pixel cursor to another point. The _lineto function also changes 
the location of the pixel cursor. When you call _ outgtext to display fonted text, 
the characters are drawn at the current pixel cursor location. 

To draw a series of connected lines, call _lineto several times. 

The _getcurrentposition function returns the cursor location in an xycoord 
structure. 

10.4 Graphics Functions 
This section lists the functions that work in one or more bit-mapped graphics 
modes. Most of these functions are present in several forms. The function 
names that end with _ w use double values as arguments and the window coordi­
nate system. Functions that end with _ wxy use the window coordinate system 
and a _ wxycoord structure to define the coordinates. Functions with no suffix 
use the viewport coordinate system. 



230 Advanced Programming Techniques 

10.4.1 Controlling Video Modes 
The functions described below affect the current video mode, coordinate sys­
tems, clipping regions, viewports, and windows. For more information, use 
on-line help. 

_clearscreen Erases the text or graphics screen and fills it with the current 
background color (note that setting the video mode automatically clears the 
screen). Pass one of the constants_ GCLEARSCREEN, _ GVIEWPORT, or 

GWINDOW. No return value. 

_getphyscoord Converts viewport coordinates to physical coordinates. 
Pass an x and y coordinate from the viewport. The function returns an xycoord 
structure, which includes an x and a y position from the physical screen. 

_getvideoconfig Obtains the status of the current graphics environment. 
Pass it the address of a structure of type videoconfig. See Section 10.1.3. 
"Reading the videoconfig Structure." -

_getviewcoord Converts physical coordinates to viewport coordinates. 
Pass two integers: an x and y coordinate. The function returns an xycoord struc­
ture containing the equivalent position within the viewport. 

_getviewcoord_w Converts window coordinates to viewport coordinates. 
Pass two doubles that name points within the window. Returns the equivalent 
viewport coordinates as an xycoord structure. 

_getviewcoord_wxy Converts window coordinates to viewport coordinates 
in an xycoord structure. Pass a _ wxycoord structure. 

_getwindowcoord Converts viewport coordinates to window coordinates. 
Pass two integers representing viewport coordinates. Returns a_ wxycoord 
structure. 

_setcliprgn Limits graphic output to part of the screen, called the "clipping 
region." Pass four values: the x and y coordinate of the upper left comer (on the 
physical screen) and the coordinates of the lower right comer. The default clip­
ping region is the entire screen. See Section 10.3.1, "Physical Coordinates." 



Communicating with Graphics 231 

_setvideomode Selects an operating mode for the display screen. Pass a con­
stant, such as _HRES16COLOR. Returns 0 ifthe video mode selected is not sup­
ported by the hardware. See Section 10.1.2, "Setting a Video Mode." 

setvideomoderows Sets the video mode and the number of rows for 
text operations. Pass two values: a video mode and the desired number of 
text rows (25, 30, 43, 50, or 60). Pass the symbolic constant _MAXTEXTROWS 
to get the largest available number of rows. Returns the number of rows or 0 if 
unsuccessful. 

_setvieworg Repositions the viewport origin. Pass an x and y position: the 
physical screen location that will become the new origin. Returns the previous 
origin in an xycoord structure. 

_setviewport Creates a viewport, including a clipping region and a new 
origin in the upper left corner of the viewport. Subsequent calls to graphics 
routines will be limited to the viewport area. Pass four short integers that indicate 
the physical screen locations of the x and y coordinates in the upper left and 
lower right corners of the viewport. No return value. 

_setwindow Defines a window coordinate system. Pass five values: a short 
invert flag (TRUE or FALSE) and four doubles that represent the extreme values 
in the upper left and lower right portions of the current viewport. See Section 
10.3.3, "Window Coordinates." 

10.4.2 Changing Colors 
The functions below control colors and color palettes. For an introduction to this 
topic, see Section 10.2, "Mixing Colors and Changing Palettes." For function pro­
totypes and more information, consult on-line help. 

_getbkcolor Reports the current background color as a long integer. In EGA, 
MCGA, and VGA video modes, this is a color value. In CGA and text modes, it 
is a color index. 

_getco/or Returns the current color index. 

_remapal/palette Assigns new color values to all color indexes. Pass a 
pointer to an array of color values. Returns 0 if unsuccessful. 



232 Advanced Programming Techniques 

_remappalette Assigns a color value to a specific color index. Pass a short 
color index and a long color value (which specifies the amount of red, green, and 
blue). Returns the previous color value for that index or -1 if unsuccessful. See 
Section 10.2.1, "CGA Palettes." 

_se/ectpa/ette Selects a predefined palette. This function applies only to the 
CGA video modes MRES4COLOR and MRESNOCOLOR and the Olivetti - -
graphics mode _ ORESCOLOR. To change palettes in other color video modes, 
use _remappalette instead. Pass a short integer in the range 0 - 4 for CGA, or 
0 -15 for Olivetti mode. Returns the value of the previous palette. 

_setbkcolor Sets the current background color. Always pass a long integer. 
In EGA, MCGA, and VGA modes, this value is a color value. In CGA and text 
modes, this is a color index cast to a long integer. Returns the old background 
color or -1 if unsuccessful. 

_setcolor Sets the color index to be used for graphic output. It affects later 
calls to functions such as _arc, _ellipse, _floodfill, _lineto, _outgtext, _outtext, 
_pie, _rectangle, and _setpixel. Returns the previous color or -1 if unsuccessful. 

10.4.3 Drawing Points, Lines, and Shapes 
The functions described below draw points, lines, and shapes. For a definition of 
bounding rectangle and pixel cursor, see Sections 10.3.5 and 10.3.6. 

_arc Draws an elliptical arc. Pass eight short integers: four pairs of x and 
y coordinates. The first two pairs are the corners of the bounding rectangle. 
The third and fourth are the starting and ending points of the arc. Returns 0 if 
unsuccessful. 

_arc_wxy Draws an arc within the window. Pass four wxycoord structures. 
The first two are the corners of the bounding rectangle. The third and fourth are 
the starting and ending points of the arc. Returns 0 if unsuccessful. 

_ellipse Draws an ellipse or a circle. Pass a short fill flag ( _ GBORDER or 
_ GFILLINTERIOR) and four short integers representing the comers of the bound­
ing rectangle. Returns 0 if unsuccessful. 



Communicating with Graphics 233 

_ellipse_w Draws an ellipse or a circle within a window. Pass a short fill flag 
( _ GBORDER or_ GFILLINTERIOR) and four doubles representing the comers 
of the bounding rectangle. Returns 0 if unsuccessful. 

_ellipse_wxy Draws an ellipse or a circle. Pass a short fill flag ( _GBORDER 
or GFILLINTERIOR) and two wxycoord structures representing the two 
comers of the bounding rectangli: Returns 0 if unsuccessful. 

_getcurrentposition Returns the current pixel cursor position in viewport 
coordinates as an xycoord structure. The current position can be changed by 
_arc, _lineto, and_ moveto. The default position is the center of the viewport. 

_getcurrentposition_ w Returns the current position of the pixel cursor as a 
_ wxycoord structure containing the x and y coordinates. Pass nothing. 

_getpixe/ Returns a pixel's color index. Pass a short x and y coordinate (in 
viewport coordinates). If the point is outside the clipping region, the function 
returns-I. 

_getpixel_w Returns a pixel's color index. Pass two doubles: anx and y 
coordinate. 

_lineto Draws a line from the current pixel cursor position to a specified 
point. Pass a short x and a shorty position. Returns 0 if unsuccessful. 

_lineto_w Draws a line from the current pixel position to a specified window 
coordinate point. Pass a double x and y position. Returns 0 if unsuccessful. 

_moveto Moves the pixel cursor to a specified point (with no graphic output). 
Pass an x and y position. Returns the coordinates of the previous position in an 
xycoord structure. 

_moveto_w Moves the pixel cursor to a specified point in a window. Pass 
two doubles: an x and a y coordinate. Returns the previous position as a_ wxy­
coord structure. 

_ pie Draws a figure shaped like a pie slice. Pass a short fill flag and eight 
short integers. The first four describe the bounding rectangle. The final four 
represent the starting vector and ending vector. Returns 0 if unsuccessful. 



234 Advanced Programming Techniques 

_ pie_wxy Draws a pie-slice figure within a window. Pass a short fill flag 
and four_ wxycoord structures. The first two describe the bounding rectangle. 
The second two represent the starting vector and ending vector. Returns 0 if 
unsuccessful. 

_rectangle Draws a rectangle in the current line style. Pass a short fill flag 
( _ GFILLINTERIOR or_ GBORDER) and four short integers: the x and y coordi­
nates of opposite comers. Returns 0 if unsuccessful. 

_rectangle_w Draws a rectangle in the current line style. Pass a short fill 
flag ( _ GFILLINTERIOR or _ GBORDER) and four doubles: the x and y window 
coordinates of opposite comers. Returns 0 if unsuccessful. 

_rectangle_wxy Draws a rectangle in the current line style. Pass a short fill 
flag ( _ GFILLINTERIOR or_ GBORDER) and two_ wxycoord structures describ­
ing the x and y coordinates of opposite comers. Returns 0 if unsuccessful. 

_selpixel Sets a pixel to the current color (which is selected by _setcolor). 
Pass it integer x and y coordinates. Returns the previous value of the pixel or -1 
if unsuccessful. 

_setpixel_w Sets a pixel to the current color (which is selected by set­
color). Pass it double x and y coordinates describing a position within the win­
dow. Returns the previous value of the pixel or -1 if unsuccessful. 

10.4.4 Defining Patterns 
The following functions control the style in which straight lines are drawn and 
the fill pattern used for solid shapes. For more information, use on-line help. 

_floodfil/ Fills a bounded shape with the fill pattern set by _setfillmask in the 
current color established by _setcolor. Pass an x and y coordinate and a boundary 
color (the color index that marks the edge of the shape to be filled). Returns 0 if 
unsuccessful. 

floodfill_W Fills a bounded shape with the fill pattern set by setfillmask. 
Pass doubles that describe an x and y position within the window and a boundary 
color (the color index that marks the edge of the shape to be filled). Returns 0 if 
unsuccessful. 



Communicating with Graphics 235 

_getfillmask Returns the address of the current fill mask, an eight-character 
array, or 0 if the fill mask is not currently defined. 

_getlinesly/e Returns the line style, a short integer whose bits correspond to 
the screen pixels turned on or off within a line. 

_setfil/mask Sets the current fill mask used by floodfill and functions that 
draw solid shapes (_ellipse, _pie, and _rectangle). Pass the address of an array 
of eight unsigned characters, where each bit represents a pixel. The pixels are 
drawn in the current color. No return value. 

_setlinestyle Sets the current style, which is used to draw the straight lines 
within _lineto, _rectangle, and _pie. Pass an unsigned short integer within 
which the bits correspond to the pixels on screen. For example, OxFFFF repre­
sents a solid line, OxAAAA is a dotted line, and OxFOFO is dashed. 

10.4.5 Manipulating Images 
The functions described below can be used to create animated graphics. The 

getimage and putimage functions act like a rubber stamp; after capturing a 
shape, you can make copies anywhere on the screen. 

_getimage Stores a screen image in memory. Pass four integers (the 
coordinates of the bounding rectangle) and a pointer to a storage buffer. Call 
_imagesize to find out how much memory is required. No return value. 

_getimage_w Stores a screen image in memory. Pass four doubles (the 
coordinates of the bounding rectangle) and a pointer to a storage buffer. Call 
_imagesize _ w to find out how much memory is required. No return value. 

_getimage_ wxy Same as _getimage _ w, but you pass two _ wxycoord struc­
tures and a pointer to memory. 

_imagesize Returns a long integer representing the size of an image in bytes. 
Call this function in preparation for a call to _getimage. Pass four integers: the x 
and y coordinates of opposite corners of the portion of the screen to be saved. 

_imagesize_w Returns the size of an image in bytes in preparation for a call 
to _getimage _wand _putimage _ w. Pass four doubles: the x and y window 
coordinates of opposite corners of the portion of the screen to be saved. 



236 Advanced Programming Techniques 

_imagesize_wxy Same as _imagesize_w, but you pass two _wxycoord 
structures. 

_putimage Retrieves an image from memory and displays it on the active 
screen page. The image should previously have been saved to memory with 
_getimage. Pass two short integers (coordinates where the image is to be placed), 
a pointer to the image, and a short integer indicating what kind of action to take: 
_GAND, _GOR, _GPRESET, _GPSET, or _GXOR. No return value. 

_putimage_w Displays an image from memory within a window. The image 
should previously have been saved to memory with _getimage _ w. Pass two 
doubles (coordinates where the image is to be placed), a pointer to the image, 
and a short integer indicating what kind of action to take: _ GAND, _ GOR, 
_GPRESET, _GPSET, or _GXOR. No return value. 

10.5 Using Graphic Fonts 
A "font" is a collection of stylized text characters. Each font consists of a type­
face with several type sizes. 

A "typeface" is the name of the displayed text--Courier, for example, or Roman. 
The list on the next page shows six of the typefaces available with the Microsoft 
C font library. 

"Type size" measures the screen area occupied by individual characters in units 
of screen pixels. For example, "Courier 12 x 9" denotes text of Courier typeface, 
with each character occupying a screen area of 12 vertical pixels by 9 horizontal 
pixels. 

A font's spacing can be fixed or proportional. "Fixed" means that all characters 
have the same width in pixels. "Proportional" means the width varies. An i, for 
example, is thinner than an M. 

The Microsoft C font functions use two methods to create fonts. The first tech­
nique generates Courier, Helv, and Tms Rmn fonts through a "bit-mapping" (or 
"raster-mapping") technique. Bit-mapping defines character images with binary 
data. Each bit in the map corresponds to a screen pixel. If a bit is 1, its associated 
pixel is set to the current screen color. 



Communicating with Graphics 237 

The second method creates the remaining three type styles-Modern, Script, and 
Roman-as "vector-mapped" fonts. Vector-mapping represents each character in 
terms of lines and arcs. 

Each method has advantages and disadvantages. Bit-mapped characters are more 
completely formed since the pixel mapping is predetermined. However, they can­
not be scaled. Vector-mapped text can be scaled to any size, but the characters 
tend to lack the solid appearance of the bit-mapped characters. 

The following list shows six sample typefaces: 

Typeface 

Courier 

Helv 

TmsRmn 

Modern 

Script 

Roman 

Sample Text 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefghijklmnopqrstuvwxyz 

ABCDEFG H IJ KLM NOPQRSTUVVVXYZ 

abodefghijklmnopqrstuvwxyz 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefghijklnmopqrstuvwxyz 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefghljklmnopqrstuvwxyz 

rl~CJJeYh'Jt.J. fJX.lTr/}f/,fJ.fP&~JJd'IJ/1}1YX9J~ 

~ 

AECDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefghijklmnopqrstuvwxyz 



238 Advanced Programming Techniques 

10.5.1 

Table 10.6 lists available sizes for each font. Note that the bit-mapped fonts 
come in preset sizes as measured in pixels. The vector-mapped fonts can be 
scaled to any size. 

Table 10.6 Typefaces and Type Sizes in the C Library 

Typeface Mapping Size (in pixels) Spacing 

Courier Bit 10x8, 12x9, Fixed 
15 x 12 

Helv Bit 10x5, 12x7, Proportional 
15 x 8, 18 x 9, 
22 x 12, 28 x 16 

TmsRmn Bit 10 x 5, 12 x 6, Proportional 
15 x 8, 16 x 9, 
20x12,26 x 16 

Modem Vector Scaled Proportional 

Script Vector Scaled Proportional 

Roman Vector Scaled Proportional 

Using the C Font Library 
Data for both bit-mapped and vector-mapped fonts reside in .FON files. For ex­
ample, the files MODERN.FON, ROMAN.FON, and SCRIPT.FON hold data for 
the three vector-mapped fonts. 

You can use Microsoft The Microsoft C .FON files are identical to the .FON files used in the Microsoft 
Windows .FON files. Windows operating environment. If you have access to Windows, you can use 

any of its .FON files with Microsoft C font functions. In addition, several ven­
dors offer software that creates or modifies .FON files, allowing you to design 
your own fonts. 



Communicating with Graphics 239 

Your programs should follow these three steps to display fonted text: 

I. Register the fonts. 

2. Set the current font from the register. 

3. Display text using the current font. 

The following sections describe each of the three steps in detail. An example pro­
gram in Section 10.5.5 demonstrates these steps. 

10. 5.2 Registering the Fonts 
The fonts must first be organized into a list in memory, a process called "register­
ing." Register fonts by calling the function _registerfonts. This function reads 
header information from specified .FON files, building a list of file information 
but not reading any mapping data from the files. 

The GRAPH.H file prototypes the _registerfonts function as 

short far _registerfonts( unsigned char far* ); 

The argument points to a string containing a file name. The file name is the name 
of the .FON file for the desired font. The file name can include wild cards, allow­
ing you to register several fonts with one call to _registerfonts. 

If it successfully reads one or more .FON files, _registerfonts returns the num­
ber of fonts. If the function fails, it returns a negative error code. 

10.5.3 Setting the Current Font 
Call the function setfont to select a current font. This function checks to see if 
the requested font is registered, then reads the mapping data from the appropriate 
.FON file. A font must be registered and marked current before your program 
can display text in that font. 



240 Advanced Programming Techniques 

The GRAPH.H file prototypes the_ setfonts function as 

short far _setfont( unsigned char far*); 

The function's argument is a pointer to a character string. The string consists of 
letter codes that describe the desired font, as outlined here: 

Option Code 

b 

f 

hy 

nx 

p 

Meaning 

The best fit from the registered fonts. This option in­
structs _setfont to accept the closest-fitting font if a 
font of the specified size is not registered. 

If at least one font is registered, the b option always 
sets a current font. If you do not specify the b option 
and an exact matching font is not registered, the 
_setfont function will fail. In this case, any existing 
current font remains current. Refer to on-line help 
for a description of error codes returned by_ setfont. 

The _setfont function uses four criteria for selecting 
the best fit. In descending order of precedence, the 
four criteria are pixel height, typeface, pixel width, 
and spacing (fixed or proportional). If you request a 
vector-mapped font, _setfont sizes the font to corre­
spond with the specified pixel height and width. If 
you request a raster-mapped (bit-mapped) font, 

setfont chooses the closest available size. If the re­
quested type size for a raster-mapped font fits ex­
actly between two registered fonts, the smaller size 
takes precedence. 

Fixed-spaced font. 

Character height, where y is the height in pixels. 

Font number x, where x is less than or equal to the 
value returned by _registerfonts. For example, the 
option n3 makes the third registered font current, if 
three or more fonts are registered. 

Proportional-spaced font. 



r 

t'fontname' 

v 

wx 

Communicating with Graphics 241 

Raster-mapped (bit-mapped) font. 

Typeface of the font in single quotes. The fontname 
string is one of the following: 

courier 
helv 
tms rmn 

modern 
script 
roman 

Note the space in tms rmn. Additional font files use 
other names for fontname. Refer to the vendor's 
documentation for these names. 

Vector-mapped font. 

Character width, where xis the width in pixels. 

Option codes are not case sensitive and can be listed in any order. You can sepa­
rate codes with spaces or any other character that is not a valid option code. The 
_setfont function ignores all invalid codes. 

The _setfont function updates a data area with parameters of the current font. 
The data area is in the form of a structure, defined in GRAPH.H as follows: 

struct fontinfo 
{ 

int type; /* set= vector.clear= bit map *I 
int ascent; /* pix dist from top to base */ 
int pixwidth; /* character width in pixels */ 
int pixheight; I* character height in pixels *I 
int avgwidth; /* average character width */ 
char fi l ename[Sl]; /* file name including path *I 
char faceName[32J; I* font name *I 

) ; 

If you want to retrieve the parameters of the current font, call the function 
_getfontinfo. 

10.5.4 Displaying Text 
The last step, displaying text, consists of two parts. First you must select a screen 
position for the text with the graphics function_ moveto. Then display fonted 
text at that position with the function_ outgtext. The_ moveto function takes 
pixel coordinates as arguments. The coordinates locate the top left of the first 
character in the text string. 



242 Advanced Programming Techniques 

10. 5. 5 A Sample Program 
The program SAMPLER.C displays sample text in all the available fonts, then 
exits when a key is pressed. Make sure the .FON files are in the current directory 
before running the program. 

/* SAMPLER.C: Displays sample text in various fonts. */ 

#include <stdio.h> 
#include <conio.h> 
#include <stdlib.h> 
#include <graph.h> 
#include <string.h> 
#define NFONTS 6 

main() 

static unsigned 
{ 

"COURIER", 
"HELV", 
"TMS RMN", 
"MODERN", 
"SCRIPT", 
"ROMAN", 

} ; 
static unsigned 
{ 

char 

char 

"t 'courier'", 
"t' hel v'", 
"t'tms rmn'", 
"t'modern'", 
"t'script'", 
"t'roman' 11 

} ; 

*text[2*NFONTSJ 

"courier", 
"hel v", 
"tms rmn", 
"modern", 
"script", 
"roman" 

*face[NFONTSJ 

static unsigned char list[20J; 
struct videoconfig vc; 
int mode = _VRES16COLOR; 
register i; 



Communicating with Graphics 243 

/* Read header info from all .FON files in 
* current directory 
*I 

if( _registerfonts( "*.FON")< 0) 
{ 

outtext( "Error: can't register fonts" ) ; 
exit( 0 ); 

/* Set highest available video mode */ 

if( setvideomode( _MAXRESMODE ) == 0 
exit ( 0 ); 

/* Copy video configuration into structure vc */ 

_getvideoconfig( &vc ) ; 

I* Display six lines of sample text*/ 

for( i = 0; i < NFONTS; i++ 
{ 

strcpy( list, face[i] ); 
strcat( list, "h30w24b" ); 

if( setfont( list 
{ 

>= 0 ) 

else 
{ 

getch(); 

_setcolor( i + ); 
_moveto( 0, (i * vc.numypixels) I NFONTS ) ; 
_outgtext( text[i * 2] ) ; 
_moveto( vc.numxpixels I 2, 

(i * vc.numypixels) I NFONTS ); 
_outgtext( text[(i * 2) + 1] ); 

setvideomode( DEFAULTMODE ); 
_outtext( "Error: can't set font" ); 
exit( 0 ) ; 

setvideomode( _DEFAULTMODE ); 

/* Return memory when finished with fonts */ 

_unregisterfonts(); 
exit( 0 ); 



244 Advanced Programming Techniques 

10.5.6 Using Fonts Effectively 
Displaying fonts is simply another form of graphics; using fonts effectively re­
quires little programming effort. Still, there are a few things to watch: 

• Remember that the video mode should be set only once. If you generate an 
image with presentation graphics and want to add text to it, do not reset the 
video mode prior to calling the font routines. Doing so will blank the screen, 
destroying the original image. 

• The setfont function reads specified .FON files to obtain mapping data for 
the current font. Each call to setfont causes a disk access and overwrites the 
old font data in memory. If you want to show text of different styles on the 
same screen, display all text of one font before moving on to the others. Min­
imizing the number of calls to _setfont saves time spent in disk 1/0 and 
memory reloads. 

• When your program finishes using the fonts library, you may want to free the 
memory occupied by the register list by calling _ unregisterfonts. This func­
tion frees the memory allocated by _registerfonts. The register information 
for each type size of each font takes up approximately 140 bytes of memory. 

• Aesthetic suggestions for the printed page also apply to screen text. Type­
faces are more effective when they do not compete with each other for atten­
tion. Restricting the number of styles per screen to one or two generally 
results in a more pleasing, less cluttered image. 



Creating Charts 
and Graphs 

CHAPTER 

The low-level graphics functions described in Chapter 10, "Communicating with 
Graphics," draw points, lines, and shapes. Although it is possible to use them to 
generate charts and graphs, an additional set of high-level graphics functions is 
better suited to this task. 

"Presentation graphics" is a set of high-level functions that displays presentation­
quality graphics. These functions transform numeric data into pie charts, bar and 
column charts, line graphs, and scatter diagrams. 

This chapter describes how to use presentation graphics. 

11.1 Overview of Presentation Graphics 
The presentation graphics library PGCHART.LIB contains 22 functions. They 
are listed in Table 11.1 for convenient reference. 

Table 11.1 Presentation Graphics Function 

Primary Functions Secondary Functions 

_pg_ chart _pg_ analyzechart _pg_ hlabelchart 

_pg_ chartms _pg_ analyzechartms _pg_resetpalette 

_pg_ chartpie _pg_ analyzepie _pg_resetstyleset 

_pg_ chartscatter _pg_ analyzescatter _pg_ setchardef 

_pg_ chartscatterms _pg_ analyzescatterms _pg_ set palette 

_pg_ defaultchart _pg__getchardef _pg_setstyleset 

_pg_initchart _pg__getpalette _pg_ vlabelchart 

_pg__getstyleset 

245 



246 Advanced Programming Techniques 

The seven primary functions 
initialize variables and 

display selected chart types. 

In most cases, you will be using only seven "primary functions." These functions 
initialize variables and display selected chart types. The 15 "secondary func­
tions" of presentation graphics do not directly display charts. Most of them re­
trieve or set data in the presentation graphics chart environment. 

Among the secondary functions are the "analysis functions," identified by the 
prefix _pg_ analyze. These five functions calculate default values that pertain to 
a given chart type and data set. Calling an analysis function has the same effect 
as calling a corresponding primary function, except that the chart is not dis­
played. This allows you to pass on to the library the burden of calculating values. 
You can then make modifications to the resulting values and call a primary 
routine to display the chart. 

Use the _pg_ hlabelchart and _pg_ vlabelchart functions to display text that is 
not part of a title or axis label on your chart. These functions enable you to attach 
notes or other messages to your chart. 

11.2 Parts of a Graph 
This section describes the terms used to refer to the different kinds of information 
that can be plotted. The various types of charts and graphs are also defined. 

Data Series 
Data that are related by a common idea or purpose constitute a "series." For ex­
ample, the prices of a futures commodity over the course of a year form a single 
series of data. The volume forms a second data series. 

When you include several series in one chart, characteristics such as color and 
pattern can help distinguish one from another. You can more readily differentiate 
series on a color monitor than you can on a monochrome monitor. The number of 
series that can appear on the same chart depends on the chart type and the num­
ber of available colors. 

Categories 
"Categories" are nonnumeric data. A set of categories forms a frame of reference 
for the comparison of numeric data. For example, the months of the year are cate­
gories against which numeric data such as inches of rainfall can be plotted. 

Regional sales provide another example. A chart can compare a company's sales 
in different parts of the country. Each region forms a category. 

Values 
"Values" are numeric data. Sales, stock prices, air temperatures, and populations 
are all series of values that can be plotted against categories or against other 
values. 



Creating Charts and Graphs 247 

Presentation graphics allows you to overlay different series of value data on 
a single graph. For example, average monthly temperatures or monthly sales 
of heating oil during different years-or a combination of temperatures and 
sales---can be plotted together on the same graph. 

Pie Charts 
"Pie charts" are used to represent data by showing the relationship of each part 
to the whole. A good example is a company's annual budget. A pie chart allows 
you to view each area of revenue or spending by its relative size within the con­
text of the entire company budget. 

Presentation graphics can display either a standard or an "exploded" pie chart. 
The exploded view shows the pie with one or more pieces separated for empha­
sis. You can label each slice of a pie chart with a percentage figure if you wish. 

Bar and Column Charts 
As the name implies, a "bar chart" shows data as horizontal bars. Bar charts 
show comparisons among items rather than absolute value. 

"Column charts" are vertical bar charts. Column charts are frequently used to 
show variations over a period of time, since they suggest time flow better than a 
bar chart. 

line Graphs 
"Line graphs" illustrate trends or changes in data. They show how a series of 
values varies against a particular category-for example, average temperatures 
throughout one year. 

Traditionally, line graphs show a collection of data points connected by lines. 
Presentation graphics can also plot points that are not connected by lines. 

Scatter Diagrams 
A "scatter diagram" is the only type of graph available in presentation graphics 
that directly compares values with values. A scatter diagram simply plots points. 

Scatter diagrams illustrate the relationship between numeric values in different 
groups of data. They graphically show trends and correlations not easily detected 
from rows and columns of raw numbers. 

Scatter diagrams are most useful with large amounts of data. Consider, for ex­
ample, the relationship between personal income and family size. If you poll one 
thousand wage earners for their income and family size, you have a scatter dia­
gram with one thousand points. If you combine your results so that you are left 
with one average income for each family size, you have a line graph. 



248 Advanced Programming Techniques 

The chart type determines the 
axis used for category data 
and the axis for value data. 

Axes 
All presentation graphics charts except pie charts are displayed with two perpen­
dicular reference axes. The vertical, or y, axis runs from top to bottom of the 
chart and is placed against the left side of the screen. The horizontal, or x, axis 
runs from left to right across the bottom of the screen. 

The x axis is the category axis for column and line charts and the value axis for 
bar charts. They axis is the value axis for column and line charts and the cate­
gory axis for bar charts. 

Chart Windows 
The "chart window" defines that part of the screen on which the chart is drawn. 
By default, the window fills the entire screen, but presentation graphics allows 
you to resize the window for smaller graphs. By redefining the chart window to 
different screen locations, you can view separate graphs together on the same 
screen. 

Data Windows 
While the chart window defines the entire graph including axes and labels, the 
"data window" defines only the actual plotting area. This is the portion of the 
graph to the right of they axis and above the x axis. You cannot specify or adjust 
the size of the data window. Presentation graphics automatically determines its 
size based on the dimensions of the chart window. 

Chart Styles 
Each of the five types of presentation graphics charts can appear in two different 
"chart styles," as described in Table 11.2. 

Table 11.2 Presentation Graphics Chart Styles 

Chart Type Chart Style #1 Chart Style #2 

Pie With percentages Without percentages 

Bar Side-by-side Stacked 

Column Side-by-side Stacked 

Line Points with lines Points only 

Scatter Points with lines Points only 



Creating Charts and Graphs 249 

Bar and column charts have only one style when displaying a single series of 
data. The styles "side-by-side" and "stacked" are applicable when more than one 
series appears on the same chart. The first style arranges the bars or columns for 
the different series side by side, showing relative heights or lengths. The stacked 
style, illustrated for a column chart in Figure 11.3, emphasizes relative sizes be­
tween bars or columns. 

Legends 
Legends help identify When displaying more than one data series on a chart, presentation graphics 

individual data series. uses different colors, line styles, or patterns to differentiate them. Presentation 
graphics also can display a "legend" that labels the different series of a chart. For 
a pie chart, the legend labels individual slices of the pie. 

A sample of the color and pattern used to graph the series appears next to the ser­
ies label. This identifies the set of data to which the labels belong. 

You may change the font displayed by calling the _ registerfonts and _ setfont 
functions (see Section 10.5 for more information about using fonts). If you don't 
select a font, presentation graphics defaults to an internal font. 

11.3 Writing a Presentation Graphics Program 
To write a C program that uses presentation graphics, follow these steps: 

1. Include the required header files, GRAPH.Hand PGCHART.H, as well as 
any other header files your program may need. 

2. Set the video mode to a graphics mode. See Chapter IO, "Communicating 
with Graphics," for a description of video modes. 

3. Initialize the presentation graphics chart environment. Presentation graphics 
places charting parameters in data structures. The amount of initialization that 
must be done by your program depends on how extensively it relies on the 
defaults. 

4. Assemble the plot data. Data can be collected in a variety of ways: by calcu­
lating it elsewhere in the program, reading it from files, or entering it from the 
keyboard. All plot data must be assembled in arrays because the presentation 
graphics functions locate them through pointers. 

5. Call presentation graphics functions to display the chart. Pause while the 
chart is on the screen. 

6. Reset the video mode. When your program detects the signal to continue, it 
should reset the video to its original (default) mode. 

After compiling the program, link it to the library modules PGCHART.LIB and 
GRAPHICS.LIB. 



250 Advanced Programming Techniques 

11.3.1 Pie Chart 

The sample programs in Sections 11.3.1-11.3.3 use 5 of the 22 presentation 
graphics functions: _pg_initchart, _pg_ defaultchart, _pg_ chartpie, 
_pg_ chart, and _pg_ chartscatter. Each program is commented so that you can 
recognize the steps given in this section. 

The following program uses presentation graphics to display a pie chart for 
monthly sales of orange juice over a year. The chart, which is shown in Figure 
11.1, remains on the screen until a key is pressed. 

!* PIE.C: Create sample pie chart. */ 

#include <conio.h> 
#include <string.h> 
#include <graph.h> 
#include <pgchart.h> 

#define MONTHS 12 

typedef enum {FALSE, TRUE) boolean; 

float far value[MONTHSJ = 
{ 

) ; 

33.0, 27.0, 42.0, 64.0,106.0,157.0, 
182.0,217.0,128.0, 62.0, 43.0, 36.0 

char far *category[MONTHSJ = 
{ 

) ; 

"Jan", "Feb'1
, ''Mar", "Apr", 

"May", "Jun", "Jly", "Aug", 
"Sep", "Oct", "Nov", "Dec" 

short far explode[MONTHSJ = {0); 

main() 
{ 

chartenv env; 
int mode= _VRES16COLOR; 



Creating Charts and Graphs 251 

I* Set highest video mode available*/ 

if( setvideomode( MAXRESMODE l -- 0 ) 
exit( 0 ); 

I* Initialize chart library and a default pie chart*/ 

_pg_initchart(l; 
_pg_defaultchart( &env, _PG_PIECHART, _PG_PERCENT ) ; 

/* Add titles and some chart options */ 

strcpy( env.maintitle.title, "Good Neighbor Grocery" ); 
env.maintitle.titlecolor - 6; 
env.maintitle.justify - _PG_RIGHT; 
strcpy( env.subtitle.title, "Orange Juice Sales" ); 
env.subtitle.titlecolor - 6; 
env.subtitle.justify - _PG_RIGHT; 
env.chartwindow.border - FALSE; 

I* Parameters for call to _pg_chartpie are: 
* 
* env - Environment variable 
* category - Category labels 
* value - Data to chart 
* explode Separated pieces 
* MONTHS - Number of data values 
*I 

if( _pg_chartpie( &env, category, value, 
explode, MONTHS ) ) 

else 
{ 

setvideomode( _DEFAULTMODE l; 
outtext( "Error: can't draw chart" ); 

getch(); 
setvideomode( DEFAULTMODE ); 

return( 0 ) ; 



252 Advanced Programming Techniques 

16.6X 

Figure 11.1 Example Pie Chart 

11.3.2 Bar, Column, and Line Charts 

Good Ne i ghhor> Gr>ocer>y 
Orange Juice Sal es 

•Jan 
1111111 Feb 
ITT Mar 
g Apr 
!Ii May 
~Jun 
11 Jly 
~Aug 
§Sep 

~Oct 
0'J Nov 
?! Dec 

The code for the PIE.C program needs only minor alterations to produce bar, 
column, and line charts for the same data: 

• Replace the call to pg chartpie with pg chart. This function produces 
bar, column, and line charts depending on ihe value of the second argument 
for _pg_ defaultchart. 

• Give new arguments to _pg_ defaultchart that specify chart type and style. 

• Assign titles for the x axis and y axis in the structure en v. 

• Remove references to array explode, which is applicable only to pie 
charts. 



Creating Charts and Graphs 253 

The following example produces a bar chart for the store owner's data. The result 
is shown in Figure 11.2. 

/* BAR.C: Create sample bar chart. */ 

#include <conio.h> 
#include <string. h> 
#include <graph.h> 
#include <pgchart.h> 

#define MONTHS 12 

typedef enum {FALSE, TRUE) boolean; 

float far value[MONTHSJ = 
{ 

I; 

33.0, 27.0, 42.0, 64.0,106.0,157.0, 
182.0,217 .0,128.0, 62.0, 43.0, 36.0 

char far *category[MONTHSJ = 
{ 

I; 

"Jan", 
"May", 
"Sep", 

"Feb", 
"Jun", 
"Oct", 

11 Mar", "Apr", 
"Jl y", "Aug", 
"Nov", "Dec" 

main () 
{ 

chartenv env; 
int mode = _VRES16COLOR; 

I* Set highest video mode available*/ 

if( setv1deomode( MAXRESMODE ) == 0 ) 
exit( 0 ); 

/*Initialize chart library and a default bar chart*/ 
_pg_initchart(); 
_pg_defaultchart( &env, _PG_BARCHART, _PG_PLAINBARS ) ; 

/*Add titles and some chart options */ 

strcpy( env.maintitle.title, "Good Neighbor Grocery" ); 
env.maintitle.titlecolor = 6; 
env.maintitle.justify = _PG_RIGHT; 
strcpy( env.subtitle.title, "Orange Juice Sales" ); 
env.subtitle.titlecolor = 6; 
env.subtitle.justify = _PG_RIGHT; 
strcpy( env.yaxis.axistitle.title, "Months" ); 
strcpy( env.xaxis.axistitle.title, "Quantity (cases)" ); 
env.chartwindow.border = FALSE; 



254 Advanced Programming Techniques 

I* Parameters for call to _pg_chart are: 
* env - Environment variable 
* category - Category labels 
* value - Data to chart 
* MONTHS - Number of data values 
*! 

if( _pg_chart( &env, category, value, MONTHS ) ) 
{ 

setvideornode( DEFAULTMODE ); 
outtext( "Error: can't draw chart" ); 

else 
{ 

getch(); 
setvideornode( DEFAULTMODE ); 

return( 0 ); 

Jan 

Feb 

Ma>' 

AP>' 

M May 
0 
n Jun 
t 
h 
s Jly 

Aug 

Sep 

Oct 

Nov 

Dec 

0 50 100 150 

Quantity (cases) 

Figure 11.2 Example Bar Chart 

Good Neighbor Grocery 
Orange Juice Sales 

200 250 



Creating Charts and Graphs 255 

The grocer's bar chart becomes a column chart in two easy steps. Simply 
specify the new chart type when calling _pg_ defaultchart and change the 
axis titles. To produce a column chart for the grocer's data, replace the call to 
_pg_ defaultchart with 

_pg_defaultchart( &env, _PG_COLUMNCHART, PG PLAINBARS ); 

Replace the last two calls to strcpy with 

strcpy( env.xaxis.axistitle.title, "Months" ) ; 
strcpy( env.yaxis.axistitle.title, "Quantity (cases)" ); 

Note that now the x axis is labeled "Months" and they axis is labeled "Quantity 
(cases)." Figure 11.3 shows the resulting column chart. 

Q 
u 
a 
n 
t 
i 
t 
y 

( 
c 
a 
s 
e 
s 
) 

250 

200 

150 

100 

50 

Good Neighbor Grocery 
Orange Juice Sales 

Jan Feb Mar Apr Hay Jun Jly Aug Sep Oct Nov Dec 

Months 

Figure 11.3 Example Column Chart 

Creating an equivalent line chart requires only one change. Use the same code as 
for the column chart and replace the call to _pg_ defaultchart with 

_pg_defaultchart( &env, _PG_LINECHART, _PG_POINTANDLINE ); 



256 Advanced Programming Techniques 

Figure 11.4 shows the line chart for the grocer's data. 

250 

200 
Q 
u 
a 
n 
t 
1 150 
t 
y 

I ( 
c 
a 
s 100 
e 
s 
) 

50 

Good Neighbor Grocery 
Orange Juice Sales 

Jan Feb Har Aprio May Jun JI y Aug Sep Oct Nov Dec 

Months 

Figure 11.4 Example Line Chart 

11.3.3 Scatter Diagram 
The program SCATTER.C displays a scatter diagram that illustrates the relation­
ship between the sales of orange juice and hot chocolate throughout a 12-month 
period. Figure 11.5 shows the results of SCATTER.C. Notice that the scatter 
points form a slightly curved line, indicating that a correlation exists between the 
sales of the two products. The demand for orange juice is roughly inverse to the 
demand for hot chocolate. 

!* SCATTER.C: Create sample scatter diagram. */ 

#include <conio.h> 
#include <string.h> 
#include <graph.h> 
#include <pgchart.h> 

#define MONTHS 12 

typedef enum {FALSE, TRUE} boolean: 



Creating Charts and Graphs 257 

/* Orange juice sales */ 

float far xvalue[MONTHSJ 
I 

I; 

33.0, 27.0, 42.0, 64.0,106.0,157.0, 
182.0,217.0,128.0, 62.0, 43.0, 36.0 

/* Hot chocolate sales */ 

float far yvalue[MONTHSJ = 
I 

I; 

7.0, 37.0, 30.0, 19.0, 10.0, 5.0, 
2.0, 1.0, 7.0, 15.0, 28.0, 39.0 

main () 
{ 

chartenv env; 
int mode= _VRES16COLOR; 

I* Set highest video mode available*/ 

if( _setvideomode( _MAXRESMODE ) == 0 ) 
exit( 0 ); 

/*Initialize chart library and default 
* scatter diagram 
*/ 

_pg_initchart(); 
_pg_defaultchart( &env, _PG_SCATTERCHART, 

_PG_POINTONLY ); 

!* Add titles and some chart options */ 

strcpy( env.maintitle.title, "Good Neighbor Grocery" ); 
env.maintitle.titlecolor = 6; 
env.maintitle.justify = _PG_RIGHT; 
strcpy( env.subtitle.title, 

"Orange Juice vs Hot Chocolate" ); 
env.subtitle.titlecolor = 6; 
env.subtitle.justify = _PG_RIGHT; 
env.yaxis.grid =TRUE; 
strcpy( env.xaxis.axistitle.title, 

"Orange Juice Sales" ); 
strcpy( env.yaxis.axistitle.title, 

"Hot Chocolate Sales" ); 
env.chartwindow.border = FALSE; 



258 Advanced Programming Techniques 

I* Parameters 
* env 
* xvalue 
* yvalue 
* MONTHS 
*I 

for call to _pg_chartscatter are: 
- Environment variable 
- X-axis data 
- Y-axis data 
- Number of data values 

if( _pg_chartscatter( &env, xvalue, 
yvalue, MONTHS ) ) 

setvideomode( _DEFAULTMODE ) ; 
outtext( "Error: can't draw chart" ) ; 

else 

getch(); 
setvideomode( DEFAULTMODE ); 

return( 0 ); 

Good Neighhor Grocery 
Orange Juice vs Hot Chocolate 

40 
* 

** 
35 

H 
0 30 t ~ 

c * 
h 

25 0 
c 
0 
I 
a 20 
t * e 

s 15 
a 
I 
e 
s llil 

* 
5 ~ 

* * Iii 
Iii 50 llillil 150 200 250 

Orange Juice Sales 

Figure 11.5 Example Scatter Diagram 



Creating Charts and Graphs 259 

11.4 Manipulating Colors and Patterns 
Presentation graphics displays each data series in a way that makes it discernible 
from other series. It does this by defining a separate "palette" for every data ser­
ies in a chart. Palettes consist of entries that determine color, line style, fill pat­
tern, and point character used to graph the series. 

Presentation graphics maintains its palettes as an array of structures. The header 
file PGCHART.H defines the palette structures as shown below: 

/* Typedef for pattern bitmap */ 
typedef unsigned char fillmap[BJ; 

/*Typedef for palette entry definition */ 
typedef struct 
{ 

unsigned short 
unsigned short 
fill map 
char 

pal etteent ry; 

color; 
style; 
fi 11 ; 
plotchar; 

/*Typedef for palette definition*/ 
typedef paletteentry palettetype[_PG_PALETTELENJ; 

Do not confuse the presentation graphics palettes with the adapter display 
palettes, which are register values kept by the video controller. The function 
_selectpalette described in Chapter 10, "Communicating with Graphics," sets 
the display palette. It does not define the data series palettes used by presentation 
graphics. 

11.4.1 Color Pool 
The color pool determines the 

colors of graphic elements 
(axes, labels, legends, titles). 

Presentation graphics organizes all chart colors into a "color pool." The color 
pool holds the color index values valid for the current graphics mode. (Refer to 
Chapter 10, "Communicating with Graphics," for more information about the 
color index.) Palette structures contain color codes that refer to the color pool. A 
palette's color index determines the colors used to graph the data series associa­
ted with the palette. The colors of labels, titles, legends, and axes are determined 
by the contents of the color pool. 

The first element of the color pool is always 0, which is the color index for the 
screen background color. The second element is always the highest color index 
available for the graphics mode. The remaining elements repeat the sequences of 
available pixel values, beginning with 1. 



260 Advanced Programming Techniques 

As shown in the example in Section 11.4, the first member of a palette data struc­
ture is 

unsigned short color; 

This member defines the color index for the data series associated with the 
palette. 

An example should make this clearer. A graphics mode of _MRES4COLOR (320 
by 200 pixels) provides four colors for display. Color index values from 0 to 3 de­
termine the possible colors-say, black, green, red, and brown, respectively. The 
first eight elements of this color pool are shown below. 

Color Pool Index Color Index Color 

0 0 Black 

1 3 Brown 

2 Green 

3 2 Red 

4 3 Brown 

5 Green 

6 2 Red 

7 3 Brown 

Notice that the sequence of available foreground colors repeats from the third ele­
ment. The first data series in this case would be plotted in brown, the second ser­
ies in green, the third series in red, the fourth series again in brown, and so forth. 

Video adapters such as the EGA or the Hercules® In Color™ Card allow 16 on­
screen colors. This allows presentation graphics to graph more series without du­
plicating colors. 

11.4.2 Style Pool 
Presentation graphics matches the color pool with a collection of different line 
styles called the "style pool." Entries in the style pool define the appearance of 
lines such as axes and grids. Lines can be solid, dotted, dashed, or some combina­
tion of styles. 

The second member of a palette structure defines a style code as 

unsigned short style; 



Use the different line 
styles in the style pool 
to differentiate series. 

Creating Charts and Graphs 261 

Each palette contains a style code that refers to an entry in the style pool in the 
same way that it contains a color code that refers to an entry in the color pool. 
The style code value in a palette is applicable only to line graphs and lined scat­
ter diagrams. The style code determines the appearance of the lines drawn be­
tween points. 

The palette's style code adds further variety to the lines of a multiseries graph. It 
is most useful when the number of lines in a chart exceeds the number of availa­
ble colors. For example, a graph of nine different data series must repeat colors if 
only three foreground colors are available for the display. However, the style 
code for each color repetition will be different, ensuring that none of the lines 
looks the same. 

11.4.3 Pattern Pool 
Presentation graphics also maintains a pool of "fill patterns" that determine the 
fill design for column, bar, and pie charts. The third member of the palette struc­
ture holds the fill pattern. The pattern member is an array: 

fillmap fill; 

where f i l l map is type-defined as 

typedef unsigned char fillmap[8J; 

Each fill pattern array holds an 8-by-8 bit map that defines the fill pattern for the 
data series associated with the palette. Table 11.3 shows how a fill pattern of di­
agonal stripes is created with the f i l l pattern array. 

The bit map in Table 11.3 corresponds to screen pixels. Each of the eight layers 
of the map is a binary number, where a solid circle signifies 1 and an open circle 
signifies 0. Thus the first layer of the map-that is, the first byte-represents the 
binary number 10011001, which is the decimal number 153. 

Table 11.3 Fill Patterns 

Bit Map Value in Fill 

eooeeooe 
••ooeeoo 
oeeooeeo 
ooeeoo•• 
eooeeooe 
eeooeeoo 
oeeooeeo 
ooeeoo•• 

fill[0]=153 

fill[ 1 J = 204 

f i l l[ 2 J = 102 

fill[3]= 51 

fill[4]=153 

fi 11[5] = 204 

fi 11 [ 6 J = 102 

fill[?]= 51 



262 Advanced Programming Techniques 

For example, if you want to create the pattern in Table 11.3 for your chart's first 
data series, you must reset the f i l l array for the first palette structure. You 
can do this in five steps: 

1. Declare a structure of type palettetype to hold the palette parameters. 

2. Call _pg_initchart to initialize the palettes with default values. 

3. Call the presentation graphics function _pg_getpalette to retrieve a copy of 
the current palette data. 

4. Assign the values given in Table 11.3 to the array f i 11 for the first palette. 

5. Call the presentation graphics function _pg_setpalette to load the modified 
palette values. 

The following lines of code demonstrate these five steps: 

/* Declare a structure array for palette data. */ 

palettetype palette_struct; 

I* Initialize chart library*/ 

_pg_initchart( J; 

I* Copy current palette data into palette_struct */ 

_pg_getpalette( palette_struct J; 

/*Reinitialize fill pattern for first palette using 
values in Table 11.3 */ 

palette_struct[l].fill[0J 153; 
palette_struct[l].fill[l] 204; 
palette_struct[l].fill [2] 102; 
pal ette_struct[l]. fi 11 [3] 51; 
palette_struct[l] .fill [4] 153; 
palette_struct[lJ.fill[5J 204; 
palette_struct[lJ.fill [6] 102; 
pal ette_struct[l]. fi 11 [7] 51; 

I* Load new palette data */ 

_pg_setpalette( palette_struct ) ; 



Creating Charts and Graphs 263 

Now when you display your bar or column chart, the first series appears filled 
with the striped pattern shown in Table 11.3. 

Palette structures are used differently with pie charts. Instead of clarifying multi­
ple series, fill patterns, line styles, and colors, palette structures are used to distin­
guish individual slices in a pie chart. Palettes are recycled if the number of slices 
exceeds _PG_PALETTELEN. Thus, the first palette dictates not only the appear­
ance of the first slice, but of slice number _PG_PALETTELEN as well. The sec­
ond palette determines the appearance of both the second slice and of slice 
number _PG_PALETTELEN + 1, and so forth. 

11.4.4 Character Pool 
The last member of a palette structure is an index number in a pool of ASCII 
characters: 

char plotchar; 

The member plotchar represents plot points on line graphs and scatter diagrams. 
Each palette uses a different character to distinguish plot points between data 
senes. 

11.5 Customizing the Chart Environment 

You can reset any 
variable in the environment. 

The presentation graphics functions are designed to be flexible. You can use the 
system of default values to produce professional-looking charts with a minimum 
of programming effort. Or you can fine-tune the appearance of your charts by 
overriding default values and initializing variables explicitly in your program. 

The header file PGCHART.H defines a structure type chartenv, which organizes 
the chart environment variables. The chart environment describes everything 
about a chart except the plots themselves. It is the blank page, in other words, 
ready for plotting data. The environment determines the appearance of text, axes, 
grid lines, and legends. 

Colors and line styles in the chart environment are taken from palettes. In this 
way, the appearance of titles and axis lines matches the colors and line styles of 
plotted data series. 

Calling the _pg_ defaultchart function fills the chart environment with default 
values. Presentation graphics allows you to reset any variable in the environment 
before displaying a chart. Except for adjusting the palette values, all initialization 
of data is done through a chartenv type structure. 



264 Advanced Programming Techniques 

The sample chart programs provided in Section 11.3, "Writing a Presentation 
Graphics Program," illustrate how to adjust variables in the chart environ­
ment. These programs create a structure en v of type chartenv. The structure 
en v contains the chart environment variables, initialized by the call to the 
_pg_ defaultchart function. Environment variables such as the chart title are 
then given specific values, as in 

strcpy( env.maintitle.title, "Good Neighbor Grocery" l; 

Environment variables that determine colors and line styles deserve special men­
tion. The chart environment holds several such variables, which can be recog­
nized by their names. For example, the variable titlecolor specifies the color of 
title text. Similarly, the variable gridstyle specifies the line style used to draw the 
chart grid. 

These variables are index numbers, but do not refer directly to the color pool or 
line pool. They correspond instead to palette numbers. If you set titlecolor to 2, 
presentation graphics uses the color code in the second palette to determine the 
title's color. Thus, the title in this case would be the same color as the chart's sec­
ond data series. If you change the color code in the palette, you'll also change the 
title's color. 

A structure of type chartenv consists of four types of secondary structures. The 
file PGCHART.H type-defines these secondary structures: titletype, axistype, 
windowtype, and legendtype. 

The remainder of this section describes the chart environment of presentation 
graphics. It first examines structures of the four secondary structures that make 
up the chart environment structure. The section concludes with a description of 
the chartenv structure type. Each section begins with a brief explanation of the 
structure's purpose, followed by a listing of the structure type definition as it ap­
pears in the PGCHART.H file. All symbolic constants are defined in the file 
PGCHART.H. 



Creating Charts and Graphs 265 

11. 5. 1 title type Structures 
Structures of type titletype determine text, color, and placement of titles appear­
ing in the graph. The PGCHART.H file defines the structure type as 

typedef struct 
( 

char title[_PG_TITLELEN]; I* Title text*/ 
Palette color short titlecolor; 

short justify; 

titletype; 

I* 

/* 
for title text */ 
_PG_LEFT, _PG_CENTER, 

PG RIGHT */ 

The following list describes titletype members: 

Member Variable 

justify 

title color 

title[_ PG_ TITLELEN] 

Description 

An integer specifying how the title is justified within 
the chart window. The symbolic constants defined 
in PGCHART.H for this variable are PG LEFT, 
_PG_ CENTER, and_PG_RIGHT. - -

An integer between 1 and _PG_ PALETTELEN 
that specifies a title's color. The default value for 
titlecolor is 1. 

A character array containing title text. For example, 
if env is a structure of type chartenv, then 
en v . ma i n ti t l e . ti t l e holds the character 
string used for the main title of the chart. Similarly, 
en v . x ax i s . ax i st i t l e . ti t l e contains the x 
axis title. The number of characters in a title must be 
one less than PG TITLELEN to allow room for a 
null terminator. 



266 Advanced Programming Techniques 

11.5.2 axistype Structures 
Structures of type axistype contain variables for the axes such as color, scale, 
grid style, and tick marks. The PGCHART.H file defines the structure type as the 
following: 

typedef struct 
{ 

short grid; /* TRUE=grid lines drawn; 
FALSE=no lines */ 

short gridstyle; !* Style bytes for grid */ 
titletype axistitle; !* Title definition 

for axis */ 
short axiscolor; I* Color for axis */ 
short labeled; I* TRUE=ticks marks and titles 

drawn */ 
short rangetype; /* _PG_LI N EA RAX IS, 

PG LOGAXIS */ 
fl oat logbase; I* Base used if log axis *I 
short autoscale; /* TRUE=next 7 values 

calculated by system*/ 
fl oat scalemin; !* Minimum value of scale */ 
fl oat scalemax; !* Maximum value of scale */ 
fl oat scalefactor; I* Scale factor for data on 

this axis */ 
titletype scaletitle; I* Title definition for 

scaling factor */ 
fl oat ti ci nterval; I* Distance between tick marks 

(world coord.) *! 
short ti cformat; I* - PG_EXPFORMAT or 

PG DECFORMAT */ 
short ticdecimals; I* Number of decimals for tick 

labels (max=9) */ 
axistype; 



Creating Charts and Graphs 267 

The following list describes axistype member variables: 

Member Variable 

autoscale 

axiscolor 

axistitle 

grid 

gridstyle 

labeled 

log base 

rangetype 

Description 

A Boolean variable. If autoscale is set to TRUE, 
presentation graphics automatically determines 
values for scalefactor, scalemax, scalemin, 
scaletitle, ticdecimals, tilformat, and ticinterval 
(see below). If autoscale equals FALSE, these seven 
variables must be specified in your program. 

An integer between 1 and _PG_PALETTELEN that 
specifies the color used for the axis and parallel grid 
lines. (See description for gridstyle below.) Note 
that this member does not determine the color of 
the axis title. That selection is made through the 
axistitle structure. 

A titletype structure that defines the title of the as­
sociated axis. The title of they axis displays verti­
cally to the left of they axis, and the title of the x 
axis displays horizontally below the x axis. 

A Boolean true/false value that determines whether 
grid lines are drawn for the associated axis. Grid 
lines span the data window perpendicular to the axis. 

An integer between 1 and _PG_ P ALETTELEN that 
specifies the grid's line style. Lines can be solid, 
dashed, dotted, or some combination. The default 
value for gridstyle is 1. 

Note that the color of the parallel axis determines 
the color of the grid lines. Thus, the x axis grid is the 
same color as they axis, and they axis grid is the 
same color as the x axis. 

A Boolean value that determines whether tick marks 
and labels are drawn on the axis. Axis labels should 
not be confused with axis titles. Axis labels are num­
bers or descriptions such as "23.2" or "January" at­
tached to each tick mark. 

If rangetype is logarithmic, the logbase variable de­
termines the log base used to scale the axis. The de­
fault value is 10. 

An integer that determines whether the scale of the 
axis is linear or logarithmic. The variable rangetype 
applies only to value data. 



268 Advanced Programming Techniques 

scale/actor 

scale max 

scale min 

scaletitle 

Specify a linear scale with _PG_ LINEARAXIS. A 
linear scale is best when the difference between axis 
minimum and maximum is relatively small. For 
example, a linear axis range 0 - 10 results in 10 tick 
marks evenly spaced along the axis. 

Use _PG_LOGAXIS to specify a logarithmic 
rangetype. Logarithmic scales are useful when 
the range is very large or when the data varies ex­
ponentially. Line graphs of exponentially varying 
data can be made straight with a logarithmic 
range type. 

All numeric data are scaled by dividing each 
value by scale/actor. For relatively small values, 
scale/actor should be 1, which is the default. But 
data with large values should be scaled by an 
appropriate factor. For example, data in the range 
2 million - 20 million should be plotted with 
scalemin set to 2, scalemax set to 20, and 
scale/actor set to 1 million. 

If autoscale is set to TRUE, presentation graphics 
automatically determines a suitable value for 
scale/actor based on the range of data to be plotted. 
Presentation graphics selects only values that are a 
factor of 1 thousand-that is, values such as 1 thou­
sand, 1 million, or 1 billion. It then labels the 
scaletitle appropriately (see below). If you desire 
some other value for scaling, you must set autoscale 
to FALSE and set scale/ actor to the desired scaling 
value. 

Highest value represented by the axis. 

Lowest value represented by the axis. 

A titletype structure defining a string of text that 
describes the value of scale/actor. If autoscale is 
TRUE, presentation graphics automatically writes a 
scale description to scaletitle. If autoscale equals 
FALSE and scale/actor is 1, scaletitle.title should be 
blank. Otherwise your program should copy an ap­
propriate scale description to scaletitle.title, such as 
"( x 1000)," "(in millions of units)," or "times 10 
thousand dollars." 

For the y axis, the scaletitle text displays vertically 
between the axis title and the y axis. For the x axis, 
the scale title appears below the x axis title. 



tic decimals 

ticformat 

tic interval 

11.5.3 windowtype Structures 

Creating Charts and Graphs 269 

Number of digits to display after the decimal point 
in tick labels. Maximum value is 9. (This variable 
applies only to axes with value data and is ignored 
for the category axis.) 

An integer that determines format of the labels 
assigned to each tick mark. Set ticformat to 
_PG_EXPFORMAT for exponential format or 
to PG DECFORMA T for decimal. The default is 
_PG_DECFORMAT. (This variable applies only to 
axes with value data and is ignored for the category 
axis.) 

Sets interval between tick marks on the axis. The 
tick interval is measured in the same units as the 
numeric data associated with the axis. For example, 
if 2 sequential tick marks correspond to the values 
20 and 25, the tick interval between them is 5. (This 
variable applies only to axes with value data and is 
ignored for the category axis.) 

Structures of type windowtype contain sizes, locations, and color codes for the 
three windows produced by presentation graphics: the chart window, the data 
window, and the legend. Windows are located on the screen relative to the 
screen's logical origin. By changing the logical origin, you can display charts 
that are partly or completely off the screen. 

The PGCHART.H file defines windowtype as the following: 

typedef struct 
{ 

short xl; /* Left edge of window in 
pixels */ 

short yl; /* Top edge of window in 
pixels */ 

short x2; I* Right edge of window in 
pixels */ 

short y2; I* Bottom edge of window in 
pixels */ 

short border; I* TRUE for border, FALSE 
otherwise*/ 

short background; I* Internal palette color for 
window background */ 

short borderstyle; I* Style bytes for window 
border */ 

short bordercolor; /* Internal palette color for 
window border */ 

windowtype; 



270 Advanced Programming Techniques 

The following list describes windowtype member variables: 

Member Variable Description 

background 

border 

bordercolor 

borderstyle 

xl,yl,x2,y2 

An integer between 1 and _PG_PALETTELEN that 
specifies the window's background color. The de­
fault value for background is 1. 

A Boolean variable that determines whether a border 
frame is drawn around a window. 

An integer between 1 and _PG_ P ALETTELEN that 
specifies the color of the window's border frame. 
The default value is 1. 

An integer between 1 and _PG_PALETTELEN that 
specifies the line style of the window's border 
frame. The default value is L 

Window coordinates in pixels. The ordered pair 
(xl, y 1) specifies the coordinate of the upper left 
comer of the window. The ordered pair ( x2, y2 ) 
specifies the coordinate of the lower right comer. 

The reference point for the coordinates depends on 
the type of window. The chart window is located 
relative to the logical origin, usually the upper left 
comer of the screen. The data and legend windows 
are located relative to the upper left comer of the 
chart window. This allows you to change the posi­
tion of the chart window without having to redefine 
coordinates for the other two windows. 

11.5.4 legendtype Structures 
Structures of type legendtype contain size, location, and colors of the chart 
legend. The PGCHAR T .H file defines the structure type as the following: 

typedef struct 
{ 

short 

short 

short 
short 

legend; 

place; 

textcolor; 
autosize; 

windowtype legendwindow; 

legendtype; 

/* TRUE=draw legend; 
FALSE=no legend */ 

/* _PG_RIGHT, _PG_BOTTOM, 
PG OVERLAY */ 

/* Palette color for text*/ 
/* TRUE=system calculates 

legend size*/ 
/*Window definition for 

legend*/ 



Creating Charts and Graphs 271 

The following list describes legendtype member variables: 

Member Variable 

autosize 

legend 

legendwindow 

place 

textcolor 

11.5.5 chartenv Structures 

Description 

A Boolean true/false variable that determines 
whether presentation graphics is to automatically 
calculate the size of the legend. If autosize equals 
FALSE, the legend window must be specified in the 
legendwindow structure (see below). 

A Boolean true/false variable that determines 
whether a legend is to appear on the chart. The 
legend variable is ignored by functions that graph 
single-series charts. 

A windowtype structure that defines coordinates, 
background color, and border frame for the legend. 
Coordinates given in legendwindow are ignored if 
autosize is set to TRUE. 

An integer that specifies the location of the legend 
relative to the data window. Setting place equal 
to the constant _PG_ RIGHT positions the legend 
to the right of the data window. Setting place to 
_PG_BOTTOM positions the legend below the data 
window. Setting place to _PG_OVERLAYpositions 
the legend within the data window. 

These settings influence the size of the data window. 
If place equals _PG_RIGHT or _PG_BOTTOM, pre­
sentation graphics automatically sizes the data win­
dow to accommodate the legend. If place equals 
_PG_OVERLAY, the data window is sized without 
regard to the legend. 

An integer between 1 and _PG_PALETTELEN that 
specifies the color of text within the legend window. 

A structure of type chartenv defines the chart environment. The following listing 
shows that a chartenv type structure consists almost entirely of structures of the 
four types described above. 



272 Advanced Programming Techniques 

Initialize the chart 
environment with the 

_pg_defau/tchart function. 

The PGCHART.H file defines the chartenv structure type as the following: 

typedef struct 
{ 

short charttype; I* Chart type */ 
short chartstyle; /* Chart style */ 
windowtype chartwindow; I* Window definition for 

overall chart */ 
windowtype datawindow; I* Window definition for data 

part of chart */ 
titletype maintitle; !* Main chart title*/ 
titletype subtitle; I* Cha rt subtitle *I 
axistype xaxis; I* Definition for x axis *! 
axistype yaxis; I* Definition for y axis *! 
legendtype legend; /* Definition for legend *I 

chartenv; 

The data in a chartenv type structure is initialized by calling the function 
_pg_ defaultchart. If your program does not call _pg_ defaultchart, it must 
explicitly define every variable in the chart environment-a tedious procedure. 
The recommended method for adjusting the appearance of your chart is to initial­
ize variables for the proper chart type by calling the _pg_ defaultchart function, 
and then to reassign selected environment variables such as titles. 

The following list describes chartenv member variables: 

Member Variable 

chartstyle 

charttype 

chartwindow 

datawindow 

Description 

An integer that determines the style of the chart 
(see Table 11.2). Legal values for chartstyle are 
_PG_PERCENT and _PG_NOPERCENT for pie 
charts; _PG_ PLAINBARS and_ PG_ ST ACKEDBARS 
for bar and column charts; and _PG_POINTONLY 
and _PG_POINTANDLINE for line graphs and scat­
ter diagrams. This variable corresponds to the third 
argument for the _pg_ defaultchart function. 

An integer that determines the type of chart dis­
played. The value of charttype is _PG_BARCHART, 
_PG_COLUMNCHART, _PG_LINECHART, 
_PG_SCATTERCHART, or _PG_PIECHART. This 
variable corresponds to the second argument for the 
_pg_ defaultchart function. 

A windowtype structure that defines the appearance 
of the chart window. 

A windowtype structure that defines the appearance 
of the data window. 



legend 

maintitle 

suhtitle 

xaxis 

yaxis 

Creating Charts and Graphs 273 

A legendtype structure that defines the appearance 
of the legend window. 

A titletype structure that defines the appearance of 
the main title of the chart. 

A titletype structure that defines the appearance of 
the chart's subtitle. 

An axistype structure that defines the appearance of 
the x axis. (This variable is not applicable for pie 
charts.) 

An axistype structure that defines the appearance of 
they axis. (This variable is not applicable for pie 
charts.) 





Programming with 
Mixed languages 

CHAPTER 

There are times when your Microsoft C programs need to call programs written 
in other languages or when programs written in other languages need to call your 
C functions. This is called mixed-language programming. For example, when a 
particular subprogram is available commercially in a language other than C or 
when algorithms are described more naturally in a different language, you need 
to use more than one language. 

This chapter describes the elements of mixed-language programming-how to 
make calls from programs written in one language to routines written in another. 

12.1 Making Mixed-Language Calls 
Mixed-language programming always involves a call to a function, procedure, or 
subroutine. For example, a BASIC main module may need to execute a specific 
task that you would like to program separately. Instead of calling a BASIC sub­
program, however, you decide to call a C function. 

Mixed-language calls involve calling functions in separate modules. Instead 
of compiling all of your source modules with the same compiler, you use differ­
ent compilers. In the instance mentioned above, you would compile the main­
module source file with the BASIC compiler, another source file (written in C) 
with the C compiler, and then link the two object files. 

275 



276 Advanced Programming Techniques 

Affects 
how call 
is made 

Figure 12.1 illustrates how the syntax of a mixed-language call works, using the 
instance mentioned above. 

BASIC Code CCode 

DECLARE SUB Prn CDECL() 

voidprn() 

CALL Prn() 

END 

Figure 12.1 Mixed-Language Call 

In Figure 12.1, the BASIC call to C is CALL Pr n, similar to a call to a BASIC 
subprogram. There are two differences between this mixed-language call and a 
call between two BASIC modules: 

1. The subprogram Pr n is implemented in C, using standard C syntax. 

2. The implementation of the call in BASIC is affected by the DECLARE state­
ment, which uses the CDECL keyword to create compatibility with C. The 
DECLARE statement (which is described in detail in the Microsoft BASIC 
Language Reference and the Microsoft BASIC Programmer's Guide) is an ex­
ample of a mixed-language "interface" statement. These interface statements 
override default naming and calling conventions. Each language provides its 
own form of interface. 



Programming with Mixed Languages 277 

You can make mixed-language calls to routines regardless of whether they have 
return values. (In this chapter, "routine" refers to any function, procedure, or sub­
routine that can be called from another module.) 

Table 12.1 shows the correspondence between calls to routines in different 
languages. 

Table 12.1 Language Equivalents for Routine Calls 

Language Return Value No Return Value 

Assembly Language Procedure Procedure 

BASIC FUNCTION procedure Subprogram 

c function (void) function 

FORTRAN FUNCTION SUBROUTINE 

Pascal Function Procedure 

For example, a C module can make a subprogram call to a FORTRAN sub­
routine. You can prototype a FORTRAN subroutine as a function with a 
void type. 

NOTE BASIC DEF FN functions and GOSUB subroutines cannot be called from another 
language. 

12.2 Language Convention Requirements 
To mix languages, the calling program must observe the same conventions as the 
called program. The conventions described in this section govern the following: 

• How compilers treat identifiers, including function and variable names 
(naming convention) 

• How the subprogram call is implemented (calling convention) 

• How parameters are passed (parameter-passing convention) 



278 Advanced Programming Techniques 

12.2.1 Naming Convention Requirement 

Some languages translate 
names to uppercase. 

Both the calling program and the called subprogram must agree on the names of 
identifiers. Identifiers can refer to subprograms (functions, procedures, and sub­
routines) or to variables that have a public or global scope. Each language alters 
the names of identifiers. 

The term "naming convention" refers to the way a compiler alters the name of 
the routine before placing it in an object file. Languages may alter the identifier 
names differently. You can choose between several naming conventions to 
ensure that the names in the calling program agree with those in the called pro­
gram. If the names of called routines are stored differently in each object file, the 
linker will not be able to find a match. It will instead report unresolved external 
references. 

Microsoft compilers place machine code into object files; they also place the 
names of all publicly accessed routines and variables in object files. The linker 
can then compare the name of a routine called in one module with the name of a 
routine defined in another module, and recognize a match. Names are stored in 
the ASCII (American Standard Code for Information Interchange) character set. 

BASIC, FORTRAN, and Pascal use similar naming conventions. They translate 
each letter to uppercase. BASIC type declaration characters(%,&,!,#,$) are 
dropped. 

Each language recognizes a different number of characters. FORTRAN recog­
nizes the first 31 characters of any name (unless identifier names are truncated), 
Pascal the first 8, and BASIC the first 40. If a name is longer than the language 
will recognize, additional characters are simply not placed in the object file. 

NOTE Versions of Microsoft FORTRAN previous to version 5.0 truncated identifiers to six 
characters. As of version 5.0, FORTRAN retains up to 31 characters of significance unless 
you use the /4Yt option. 



C is a case-sensitive 
language. 

Programming with Mixed Languages 279 

The C compiler does not translate any letters to uppercase. It inserts a leading 
underscore ( _) in front of the name of each routine. C recognizes the first 31 
characters of a name. 

Differences in naming conventions are dealt with automatically by mixed­
language keywords, as long as you follow two rules: 

1. If you use any FORTRAN routines that were compiled with the /4Yt 
command-line option or with the $TRUNCATE metacommand enabled, make 
all names 6 characters or less. Make all names 6 characters or less when using 
FORTRAN routines compiled with versions of the FORTRAN compiler prior 
to 5.0. 

2. Do not use the /NOIGNORECASE linker option (which causes the linker to 
treat identifiers in a case-sensitive manner). With C modules, this means that 
you must be careful not to rely upon differences between uppercase and 
lowercase letters when programming. 

CL automatically uses the /NOIGNORECASE option when linking. To solve 
the problems created by this behavior, either link separately with the LINK 
utility, or use all lowercase letters in your C function names and public varia­
bles (global variables that are not declared as static). 

NOTE If you use the command-line option /Ge (generate Pascal-style function calls) when 
you compile, or if you declare a function or variable with the _pascal keyword, the compiler 
will translate your identifiers to uppercase. 

Figure 12.2 illustrates a complete mixed-language development example, show­
ing how naming conventions enter into the process. 



280 Advanced Programming Techniques 

DECLARE affects 
how BASIC 
makes the call. 

MAINPROG.BAS {source file) 

DECLARE SUB Prn CDECLC) 

CALLPrn~-

END 

MAINPROG.OBJ {object file) 

CALL _prn 

LINK 

PRN.C {source file) 

pm () 
{ 

PAN.OBJ {object file) 

_prn 

Libraries 

(ignores case •• -------" 
unless /NOi) 

CALL _prn xxxx: call yyyy 

/ 
_prn yyyy: 

MAINPROG.EXE 

Figure 12.2 Naming Convention 

Machine-level 
addresses 



Programming with Mixed Languages 281 

In Figure 12.2, note that the BASIC compiler inserts a leading underscore in 
front of Pr n as it places the name into the object file, because the CDECL key­
word directs the BASIC compiler to use the C naming convention. BASIC will 
also convert all letters to lowercase when this keyword is used. (Converting let­
ters to lowercase is not part of the C naming convention; however, it is consistent 
with the programming style of many C programs.) 

12.2.2 Calling Convention Requirement 
The term "calling convention" refers to the way a language implements a call. 
The choice of calling convention affects the machine instructions that a compiler 
generates to execute (and return from) a function, procedure, or subroutine call. 

It is crucial that the two routines concerned (the routine issuing a call and the 
routine being called) use the same protocol. Otherwise, the processor may re­
ceive inconsistent instructions, causing the program to behave incorrectly. 

The use of a calling convention affects programming in three ways: 

1. The calling routine uses a calling convention to determine the order in which 
to pass arguments (parameters) to another routine. This convention can be 
specified in a mixed-language interface statement or declaration. 

2. The called routine uses a calling convention to determine the order in which 
to receive the parameters passed to it. In most languages, this convention can 
be specified in the routine's heading. BASIC, however, always uses its own 
convention to receive parameters. 

3. Both the calling routine and the called routine must agree on which of them is 
responsible for adjusting the stack after all parameters are removed. 

In other words, each call to a routine uses a certain calling convention; each 
routine heading specifies or assumes some calling convention. The two conven­
tions must be compatible. With all languages except BASIC, it is possible to 
change the calling convention at the point of the call or at the declaration of the 
called routine. Usually, however, it is easier to adopt the convention of the called 
routine. For example, a C function would use its own convention to call another 
C function, and would use the Pascal convention to call Pascal. 

BASIC, FORTRAN, and Pascal use the same standard calling convention. C uses 
a different convention. 



282 Advanced Programming Techniques 

Some languages 
pass parameters in a 

different order than C. 

Effects of Calling Conventions 
Calling conventions dictate three things: 

1. The way parameters are communicated from one routine to another (in 
Microsoft mixed-language programming, parameters or pointers to the para­
meters are passed on the stack) 

2. The order in which parameters are passed from one routine to another 

3. The part of the program responsible for adjusting the stack 

The BASIC, FORTRAN and Pascal calling conventions push parameters onto 
the stack in the order in which they appear in the source code. For example, the 
BASIC statement 

CALL Cale( A, B l 

pushes argument A onto the stack before it pushes B. These conventions also 
specify that the stack is adjusted by the called routine just before returning con­
trol to the caller. 

The C calling convention pushes parameters onto the stack in the reverse order 
from their appearance in the source code. For example, the C function call 

calc( a, b ); 

pushes b onto the stack before it pushes a. In contrast with the other high-level 
languages, the C calling convention specifies that a calling routine always adjusts 
the stack immediately after the called routine returns control. 

The BASIC, FORTRAN, and Pascal conventions produce slightly less object 
code. However, the C convention makes calling with a variable number of para­
meters possible. (Because the first parameter is always the last one pushed, it is 
always on the top of the stack; therefore it has the same address relative to the 
frame pointer, regardless of how many parameters were actually passed.) 

NOTE The _fastcall keyword, which specifies that parameters are to be passed in regis­
ters, is incompatible with programs written in other languages. Avoid using _fastcall or 
the /Gr command-fine option for C functions that you intend to make public to BASIC, 
FORTRAN, or Pascal programs. 



Programming with Mixed Languages 283 

12.2.3 Parameter-Passing Requirement 
Your programs must agree on the calling convention and the naming convention; 
they must also agree on the order in which they pass parameters. It is important 
that your routines send parameters in the same way to ensure proper data trans­
mission and correct program results. 

Microsoft compilers support three methods for passing a parameter: 

Method 

Near reference 

Far reference 

Value 

Description 

Passes a variable's near (offset) address. This 
address is expressed as an offset from the default 
data segment. 

This method gives the called routine direct access to 
the variable itself. Any change the routine makes to 
the parameter changes the variable in the calling 
routine. 

Passes a variable's far (segmented) address. 

This method is similar to passing by near reference, 
except that a longer address is passed. This method 
is slower than passing by near reference, but is nec­
essary when you pass data that is outside the default 
data segment. (This is an issue in BASIC or Pascal 
only if you have specifically requested far memory.) 

Passes only the variable's value, not its address. 

With this method, the called routine knows the value 
of the parameter but has no access to the original 
variable. Changes to a value passed by a parameter 
have no affect on the value of the parameter in the 
calling routine. 

These different parameter-passing methods mean that you must consider the fol­
lowing when programming with mixed languages: 

• You need to make sure that the called routine and the calling routine use the 
same method for passing each parameter (argument). In most cases, you will 
need to check the parameter-passing defaults used by each language and 
possibly make adjustments. Each language has keywords or language features 
that allow you to change parameter-passing methods. 

• You may want to choose a specific parameter-passing method rather than 
using the defaults of any language. 



284 Advanced Programming Techniques 

Table 12.2 summarizes the parameter-passing defaults for each language. 

Table 12.2 Parameter-Passing Defaults 

Language Near Reference Far Reference By Value 

BASIC All 

c Near arrays Far arrays All data except 
arrays 

FORTRAN All (medium All (large model) With attributes 1 

model) 

Pascal VAR, CONST VARS, CONSTS Other parameters 

1 When a PASCAL or C attribute is applied to a FORTRAN routine. passing by value becomes the 
default. 

12.3 Compiling and Linking 
After you have written your source files and decided on a naming convention, a 
calling convention, and a parameter-passing convention, you are ready to com­
pile and link individual modules. 

12.3.1 Compiling with Correct Memory Models 

With C, not all memory 
models are compatible 

with other languages. 

With BASIC, FORTRAN, and Pascal, no special options are required to compile 
source files that are part of a mixed-language program. 

BASIC, FORTRAN, and Pascal use only far (segmented) code addresses. There­
fore, you must use one of two techniques with C programs that call one of these 
languages: compile C modules in medium, large, or huge model (using the /AX 
command-line options), because these models also use far code addresses; or 
apply the _far keyword to the definitions of C functions you make public. If you 
use the /AX command-line option to specify medium, large, or huge model, all 
your function calls become far by default. This means you don't have to declare 
your functions explicitly with the _far keyword. 

Choice of memory model affects the default data pointer size in C and 
FORTRAN, although this default can be overridden with the near and far 
keywords. With C and FORTRAN, choice of memory model atso affects 
whether data objects are located in the default data segment; if a data object is 
not located in the default data segment, it cannot be passed by near reference. 

For more information about code and data address sizes in C, refer to Chapter 2, 
"Managing Memory." 



Programming with Mixed Languages 285 

12.3.2 Linking with Language Libraries 
In most cases, you can easily link modules compiled with different languages. 
Do any of the following to ensure that all required libraries link in the correct 
order: 

• Put all language libraries in the same directory as the source files. 

• List directories containing all needed libraries in the LIB environment 
variable. 

• Let the linker prompt you for libraries. 

In each of the cases above, the linker finds libraries in the order that it requires 
them. If you enter the library names on the command line, make sure you enter 
them in an order that allows the linker to resolve your program's external refer­
ences. Here are some points to observe when specifying libraries on the com­
mand line: 

• If you are using FORTRAN to write one of your modules, you need to 
link with the /NOD (no default libraries) option and explicitly specify all 
the libraries you need on the link command line. You can also specify these 
libraries with an automatic-response file (or batch file), but you cannot use 
a default-library search. 

• If your program uses both FORTRAN and C, specify the library for the most 
recent of the two language products first. In addition, make sure that you 
choose a C-compatible library when you install FORTRAN. 

• If you are listing BASIC libraries on the LINK command line, specify those 
libraries first. 

The following example shows how to link two modules, modl and mod2, with 
a user library, GRAFX, the C run-time library, LLIBCE, and the FORTRAN run­
time library, LLIBFORE: 

LINK /NOD modl mod2,,,GRAFX+LLIBCE+LLIBFORE 

12.4 C Calls to High-Level Languages 
Just as you can call Microsoft C routines from other Microsoft languages, you 
can call routines written in Microsoft FORTRAN and Pascal from C. With 
FORTRAN, Pascal, and C, freestanding routines can be written with no restric­
tion. When calling BASIC routines, however, you must write the main program 
in BASIC; any subprograms are free to call one another, whether they are written 
in C or BASIC. 



286 Advanced Programming Techniques 

For information about how to pass particular kinds of data, see Section 12.9, 
"Handling Data in Mixed-Language Programming." 

Executing a Mixed-Language Call 
The C interface to other languages uses standard C prototypes, with the 
_fortran or _pascal keyword. Using either of these keywords causes the rou­
tine to be called with the FORTRAN/Pascal naming and calling convention. 
(The FORTRAN/Pascal convention also works for BASIC.) Here are the recom­
mended steps for executing a mixed-language call from C: 

1. Write a prototype for each mixed-language routine called. The prototype 
should declare the routine extern for the purpose of program documentation. 

Instead of using the _fortran or _pascal keyword, you can simply compile 
with the Pascal calling convention option (/Ge). The /Ge option causes all 
functions in the module to use the FORTRAN/Pascal naming and calling con­
ventions, except where you apply the_ cdecl keyword. 

2. Pass the values of variables or pointers to variables. You can obtain a pointer 
to a variable with the address-of(&) operator. 

In C, array names are always passed as pointers to the first element of the 
array; they are always passed by reference. 

The prototype you declare for your function ensures that you are passing the 
correct length address (that is, near or far). 

3. Issue a function call in your program as though you were calling a C function. 

4. Always compile the C module in either medium, large, or huge model, or use 
the _far keyword in your function prototype. This ensures that a far (interseg­
ment) call is made to the routine. 

Using the _fortran or _pascal Keyword 
There are two rules of syntax that apply when you use the _fortran or _pascal 
keyword: 

1. The _fortran and _pascal keywords modify only the item immediately to 
their right. 

2. The_ near and _far keywords can be used with the _fortran and _pascal 
keywords in prototypes. The sequences _fortran _far and _far _fortran are 
equivalent. 

The keywords _pascal and _fortran have the same effect on the program; using 
one or the other makes no difference except for internal program documentation. 
Use _fortran to declare a FORTRAN routine, _pascal to declare a Pascal rou­
tine, and either keyword to declare a BASIC routine. 



You can make C adopt 
the conventions of 

other languages. 

Programming with Mixed Languages 287 

The following examples demonstrate the syntax rules presented above. 

The example below declares func to be a BASIC, Pascal, or FORTRAN function 
taking two short parameters and returning a short value. 

short _pascal func( short sargl, short sarg2 ); 

The example below declares func to be pointer to a BASIC, Pascal, or 
FORTRAN routine that takes a long parameter and returns no value. The 
keyword void is appropriate when the called routine is a BASIC subprogram, 
Pascal procedure, or FORTRAN subroutine, since it indicates that the function 
returns no value. 

void ( _fortran * func )( long larg ); 

The example below declares func to be a_ near BASIC, Pascal, or FORTRAN 
routine. The routine receives a double parameter by reference (because it expects 
a pointer to a double) and returns a short value. 

short _near _pascal func( _near double* darg ); 

The example below is equivalent to the preceding example (_pascal _near is 
equivalent to _near _pascal). 

short _pascal _near func( _near double* darg ); 

When you call a BASIC subprogram, you must use the FORTRAN/Pascal 
conventions to make the call. When you call FORTRAN or Pascal, however, 
you have a choice. You can make C adopt the conventions described in the pre­
vious section, or you can make the FORTRAN or Pascal routine adopt the C 
conventions. 

To make a FORTRAN or Pascal routine adopt the C conventions, put the C 
attribute in the heading of the routine's definition. The following example shows 
the syntax for the C attribute in a FORTRAN subroutine-definition heading: 

SUBROUTINE FFROMC [CJ (N) 
INTEGER*2 N 

The following example shows the syntax for the C attribute in a Pascal 
procedure-definition heading: 

PROCEDURE Pfromc( n : INTEGER) [CJ; 

To make a C function adopt the FORTRAN/Pascal conventions, declare the func­
tion as _fortran or _pascal. For example, 

void _pascal CfromP( int n ); 



288 Advanced Programming Techniques 

12.5 C Calls to BASIC 
No BASIC routine can be executed unless the main program is in BASIC, be­
cause a BASIC routine requires the environment to be initialized in a way that is 
unique to BASIC. No other language will perform this special initialization. 

However, your program can start up in BASIC, call a C function that does most 
of the work of the program, and then call BASIC subprograms and function pro­
cedures as needed. Figure I 2.3 illustrates how to do this. 

BASIC 
start-up_ 

BASIC 

BASIC Code CCode 

CALL Csub 

i. void csub() 

~{ 
termination _ END 

BTESTC) 
SUB Btest STATIC ~ 

END SUB 

Figure 12.3 C Call to BASIC 

Follow these rules when you call BASIC from C: 

1. Start up in a BASIC main module. You will need to use the DECLARE state­
ment to provide an interface to the C module. 

2. In the C module, write a prototype for the BASIC routine and include type 
information for parameters. Use either the _fortran or _pascal keyword to 
modify the routine itself. 

3. Make sure that all data are passed as near pointers. BASIC can pass data in 
a variety of ways but is unable to receive data in any form other than near 
reference. With near pointers, the program assumes that the data are in the de­
fault data segment. If you want to pass data that are not in the default data seg­
ment, copy the data to a variable in the default data segment. 



Programming with Mixed Languages 289 

4. Compile the C module in medium or large model to ensure far (intersegment) 
calls. 

The example below demonstrates a BASIC program that calls a C function. The 
C function then calls a BASIC function that returns twice the number passed to it 
and a BASIC subprogram that prints two numbers. 

BASIC source 

The main program is in BASIC because of BASIC's start-up 
' requirements. The BASIC main program calls the C function 

irog. 

Cprog calls the BASIC subroutine Dbl. 

DEFINT A-Z 
DECLARE SUB Cprog CDECL() 
CALL Cprog 
END 

FUNCTION Dbl ( N) STATIC 
Dbl ~ N*2 

END FUNCTION 

SUB Printnum(A,Bl STATIC 
PRINT "The first number is ";A 
PRINT "The second number is ";B 

END SUB 

I* C source; compile in medium or large model */ 

int fortran dbl ( int near * N ) ; 
void fortran printnum( int near* A, int near* B ); 

void 
( 

int 
int 

cprog() 

a 5. 
b 6· 

printf( "%d times 2 is %d\n", a, dbl ( &a ) ) ; 
pri ntnum( &a, &b ) ; 

In the previous example, note that the addresses of a and b are passed, since 
BASIC expects to receive addresses for parameters. This is important because C 
passes parameters by value unless you use the address-of(&) operator to obtain 
the address, or are passing an array. Also note that the function prototype for 
print n um declares the parameters as near pointers. The prototype causes the 



290 Advanced Programming Techniques 

BASIC can invoke one of 
your functions as part of 

the termination procedure. 

variables to be passed by near reference. If a or b is declared as _far, the C 
compiler issues a warning that you are converting a far pointer to a near pointer 
and that a segment was lost in the conversion. 

Calling and naming conventions are resolved by the CDECL keyword in the 
BASIC declaration of Cprog, and by the _fortran keyword in the C declaration 
of dbl and pri ntnum. 

Versions of QuickBASIC later than 4.0 provide a "user entry point," B _ OnExit, 
which can be called directly from C. The B OnExit function enables you to 
make sure you have performed an orderly termination. The following code shows 
how to use B OnExit. 

#include <malloc.h> 
#include <stdlib.h> 

I* For declaration of fmalloc */ 
I* For declaration of onexit_t */ 

I* The prototype for B OnExit declares it as a function 
* returning type onexit_t that takes one parameter. The 
*parameter is a far pointer to a function that returns 
*no value. 
*I 

extern onexit_t _pascal far B_OnExit( onexit_t ); 
void TermProc( void ); 

int * p_IntArray; 

void InitProc( void 
{ 

/*Allocate far space for 20-integer array*/ 

p_IntArray - (int *)_fmalloc( 20 * sizeof( int ) ); 

/* Log termination routine (TermProc) with BASIC. */ 

B_OnExit( TermProc ); 

void TermProc( void ) 
{ 

free( p_IntArray ); I* Release far space allocated */ 
I* previously by InitProc. */ 

12.6 C Calls to FORTRAN 
This section shows two examples of C-FORTRAN programs. There are two 
types of subprogram calls to FORTRAN routines: calls to subroutines and calls 
to functions. Functions return a value, while subroutines do not. The examples in 
the next sections illustrate how to handle the difference between function and 
subroutine calls. 



Programming with Mixed Languages 291 

12.6.1 Calling a FORTRAN Subroutine from C 
The example below demonstrates a C main module calling a FORTRAN sub­
routine, MAXPARAM. This subroutine adjusts the lower of two arguments to be 
equal to the higher argument. 

!* C source file - calls FORTRAN subroutine 
*Compile in medium or large model 
*! 

extern void _fortran maxparam( int _near* I, int near* J ); 

!*Declare as void, because there is no return value. 
* FORTRAN keyword causes C to use FORTRAN/Pascal 
*calling and naming conventions. 
*Two integer parameters, passed by near reference. 
*I 

main () 
{ 

int a 5; 
int b 7; 

printf( "a~ %d, b ~ %d", a, b ); 
maxparam( &a, &b ); 
printf( "a~ %d, b ~ %d", a, b ); 

C FORTRAN source file, subroutine MAXPARAM 
c 
$NOTRUNCATE 

c 

SUBROUTINE MAXPARAM (I, J) 
INTEGER*2 I [NEAR] 
INTEGER*2 J [NEAR] 

C I and J received by near reference, 
C because of NEAR attribute 
c 

IF ( I . GT. J) THEN 
J I 

ELSE 
I J 

END IF 
END 



292 Advanced Programming Techniques 

In the previous example, the C program adopts the naming convention and call­
ing convention of the FORTRAN subroutine. The two programs must agree on 
whether parameters are to be passed by reference or by value. The following key­
words affect how the two programs interface: 

• The fortran keyword directs C to call max pa ram with the FORTRAN/ 
Pascal naming convention (as MAXPARAM); fortran also directs C to call 
max pa ram with the FORTRAN/Pascal calling convention. 

• Since the FORTRAN subroutine MAXPARAM may alter the value of either 
parameter, both parameters must be passed by reference. In this case, near 
reference was chosen; this method is specified in C by the use of near point­
ers, and in FORTRAN by applying the NEAR keyword to the parameter 
declarations. 

Far reference could have been specified by using far pointers in C. In that 
case, you would not declare the FORTRAN subroutine MAX PA RAM with the 
NEAR keyword. If you compile the FORTRAN program in medium model, 
declare MAX PA RAM using the FAR keyword. 

12.6.2 Calling a FORTRAN Function from C 
The example below demonstrates a C main module calling the FORTRAN 
function fact. This function returns the factorial of an integer value. 

/* C source file - calls FORTRAN function. 
* Compile in medium or large model. 
*/ 

int fortran fact( int N ) ; 

/* FORTRAN keyword causes C to use FORTRAN/Pascal 
*calling and naming conventions. 
* Integer parameter passed by value. 
*/ 

main() 
{ 

int x = 3· 
' 

int y 4; 

printf( "The factorial of x is 
pri ntf( "The factorial of y is 
printf( "The factorial of x+y is 

%4d"' fact( 
%4d"' fact( 
%4d"' fact( 

x ) ) ; 
y ) ) ; 
x + y ) ) ; 



Programming with Mixed Languages 293 

C FORTRAN source file - factorial function 
c 
$NOTRUNCATE 

c 

INTEGER*2 FUNCTION FACT (N) 
INTEGER*2 N [VALUE] 

C N is received by value, because of VALUE attribute 
c 

INTEGER*Z I 
FACT ~ 1 
DO 100 I 1, N 

FACT FACT * I 
100 CONTINUE 

RETURN 
END 

In the example above, the C program adopts the naming convention and calling 
convention of the FORTRAN subroutine. Both programs must agree on whether 
parameters are passed by reference or by value. Note that the C program passes 
the parameters by value rather than by reference. Passing parameters by value 
is the default for C. To accept parameters passed by value, the keyword VALUE 
is used in the declaration of N in the FORTRAN function. The _fortran key­
word directs C to call fa ct with the FORTRAN/Pascal naming convention (as 
FACT); _fortran also directs C to call fa ct with the FORTRAN/Pascal call­
ing convention. 

When passing a parameter that should not be changed, pass the parameter by 
value. Passing by value is the default method in Candis specified in FORTRAN 
by applying the VALUE attribute to the parameter declaration. 

12. 7 C Calls to Pascal 
This section shows two examples of C-Pascal programs. There are two types of 
subprogram calls to Pascal routines: calls to procedures and calls to functions. 
Functions return a value, while procedures do not. The examples in the next sec­
tions illustrate how to handle the difference between function and procedure 
calls. 

12.7.1 Calling a Pascal Procedure from C 
The following example demonstrates a C main module calling a Pascal proce­
dure, max par am. This procedure adjusts the lower of two arguments to be 
equal to the higher argument. 



294 Advanced Programming Techniques 

I* C source file - calls Pascal procedure. 
*Compile in medium or large model. 
*I 

void _pascal maxparam( int _near* a, int _near* b ) ; 

/*Declare as void, because there is no return value. 
* The _pascal keyword causes C to use FORTRAN/Pascal 
*calling and naming conventions. 
*Two integer params, passed by near reference. 
*I 

main C) 
{ 

int a 5· 
int b 7; 

printf( "a~ %d, b ~ %d", a, b ); 
maxparam( &a, &b ); 
printf( "a~ %d, b ~ %d", a, b ); 

Pascal source code - Maxparam procedure. I 

MODULE Psub; 
PROCEDURE Maxparam( VAR a:INTEGER; VAR b:INTEGER ); 

Two integer parameters are received by near reference. 
Near reference is specified with the VAR keyword. I 

BEGIN 
ifa>bTHEN 

b 

END; 
END. 

ELSE 
a b 

In the example above, the C program adopts the Pascal naming convention and 
calling convention. Both programs must agree on whether parameters are passed 
by reference or by value; the following keywords affect the conventions: 

• The _pascal keyword directs C to call Maxpa ram with the FORTRAN/ 
Pascal naming convention (as MAX PA RAM); _pascal also directs C to call 
Ma xpa ram with the FORTRAN/Pascal calling convention. 



Programming with Mixed Languages 295 

• Since the procedure Max pa ram can alter the value of either parameter, both 
parameters must be passed by reference. In this case, near reference is used; 
this method is specified in C by the use of near pointers, and in Pascal with 
the VAR keyword. 

Far reference could have been specified by using far pointers in C. To specify 
far reference in Pascal, use the VARS keyword instead of VAR. 

12. 7.2 Calling a Pascal Function from C 
The example below demonstrates a C main module calling Pascal function 
fact. This function returns the factorial of an integer value. 

!* C source file - calls Pascal function. 
*Compile in medium or large model. 
*! 

int _pascal fact(int n); 

/* PASCAL keyword causes C to use FORTRAN/Pascal 
*calling and naming conventions. 
* Integer parameter passed by value. 
*! 

main ( l 
{ 

int x 3; 
int y 4; 

pri ntf( "The factorial of x is 
printf( "The factorial of y is 
printf( "The factorial of x+y is 

%4d"' fact( 
%4d"' fact ( 
%4d"' fact( 

Pascal source code - factorial function. I 

MODULE Pfun; 
FUNCTION Fact (n : INTEGER) : INTEGER; 

x ) ) ; 
y ) ) ; 
x + y ) ) ; 

{Integer parameters received by value, the Pascal default. l 

BEGIN 

END; 
END. 

Fact:~ 1; 
WHILE n > 0 DO 

BEGIN 
Fact Fact* n; 
n n - 1; {Parameter n modified.} 

END; 



296 Advanced Programming Techniques 

In the example above, the C program adopts the Pascal naming convention and 
calling convention. Both programs must agree on whether parameters are passed 
by reference or by value. The _pascal keyword directs C to call fact with the 
FORTRAN/Pascal naming convention (as FACT); _pascal also directs C to call 
fact with the FORTRAN/Pascal calling convention. 

The Pascal function fact should receive a parameter by value. Otherwise, the 
Pascal function will corrupt the parameter's value in the calling module. Passing 
by value is the default method for both C and Pascal. 

12.B C Calls to Assembly Language 
In Microsoft C, Version 6.0, you can write assembly-language programs either 
by using the in-line assembler or by creating a stand-alone module using the 
Microsoft Macro Assembler (MASM). If you use the in-line assembler, you do 
not need to take any special precautions other than those outlined in Chapter 3, 
"Using the In-Line Assembler." This section explains the techniques for interfac­
ing your assembly-language routines with your C program. 

When deciding whether to use the in-line assembler or MASM, there are several 
considerations. Here is a list of advantages MASM provides over the in-line 
assembler: 

• MASM supports declaration of data in MASM format; in-line assembly 
does not. 

• MASM has a more powerful macro capability than in-line assembly. 

• Modules written for MASM can be interfaced more easily with modules 
written in more than one Microsoft high-level language. 

• MASM assembles large assembly-language programs more quickly than the 
in-line assembler. 

• MASM supports assembly-language code written prior to the existence of the 
in-line assembler. 

• MASM error messages and warnings are more complete than those of the 
in-line assembler. 

The in-line assembler is far more efficient for some assembly-language program­
ming tasks. Here are some of the benefits of the in-line assembler: 

• You can do spot optimizations by including short sections of assembly­
language code in your C programs with the in-line assembler. 



Programming with Mixed languages 297 

• Code written in in-line assembler does not necessarily incur the overhead of a 
function call; code assembled using MASM always does. 

• You can include in-line assembly code in your C source files; code written 
for MASM must be in a separate file. 

12.8.1 Writing the Assembly-language Procedure 
You must write your assembly-language procedure so that it uses the same call­
ing conventions and naming conventions as your C program. If you follow these 
conventions, you will be able to write recursive procedures (procedures that call 
themselves), and you will be able to use the Code View debugger to locate errors 
in the code. 

NOTE This section discusses only the simplified segment directives provided with the 
Microsoft Macro Assembler, version 5.0. If you are using a version prior to 5.0, you have 
to specify complete SEGMENT directives. 

The standard assembly-language interface method consists of these steps: 

1. Setting up the procedure 

2. Entering the procedure 

3. Allocating local data (optional) 

4. Preserving register values 

5. Accessing parameters 

6. Returning a value (optional) 

7. Exiting the procedure 

The next sections describe each of these steps in detail. 

12.8.2 Setting Up the Procedure 
The linker cannot combine the assembly-language procedure with the C program 
unless you define compatible segments and declare the procedure properly. Per­
form the following steps to set up the procedure: 

1. Use the .MODEL directive at the beginning of the source file; this directive 
automatically causes the appropriate kind of returns to be generated (NEAR 
for tiny, small or compact models, FAR for medium, large, or huge models). 

If you are using a version of MASM prior to 5 .0, declare the procedure NEAR 
for small or compact model, FAR for medium, large, or huge models. 



298 Advanced Programming Techniques 

2. Use the simplified segment directives .CODE and .DATA to declare the code 
and data segments. 

If you are using a version of MASM prior to 5.0, declare the segments using 
the SEGMENT, GROUP, and ASSUME directives. These directives are de­
scribed in the Microsoft Macro Assembler Reference . 

3. Use the PUBLIC directive to declare the procedure label public. This declara­
tion makes the procedure visible to other modules. Also declare any data you 
want to make public as PUBLIC. 

4. Use the EXTRN directive to declare any global data or procedures accessed 
by the routine as external. The safest way to use EXTRN is to place the direc­
tive outside any segment definition; however, place near data inside the data 
segment. 

5. Observe the C naming convention; precede all procedure names and global 
data names with an underscore. 

12.8.3 Entering the Procedure 
When you enter the procedure, in most cases you will want to set up a "stack 
frame." This allows you to access parameters passed on the stack and to allocate 
local data on the stack. You do not need to set up the stack frame if your proce­
dure accepts no arguments and does not use the stack. 

To set up the stack frame, issue the instructions: 

push bp 
mov bp,sp 

This sequence establishes BP as the frame pointer. You cannot use SP for this 
purpose because it is not an index or base register. Also, the value of SP may 
change as more data are pushed onto the stack. However, the value of the base 
register BP remains constant for the life of the procedure unless your program 
changes it, so each parameter can be addressed as an offset from BP. 

The instruction sequence above preserves the value of BP, since it will be needed 
in the calling procedure as soon as your assembly-language procedure returns. It 
then transfers the value in SP to BP to establish a stack frame on entry to the 
procedure. 



Programming with Mixed Languages 299 

12.8.4 Allocating Local Data 
Your assembly-language procedure can use the same technique for allocating 
temporary storage for local data that is used by high-level languages. To set up 
local data space, decrease the contents of SP just after setting up the stack frame. 
(To ensure correct execution, always increase or decrease SP by an even num­
ber.) Decreasing SP reserves space on the stack for local data. You must restore 
the space at the end of the procedure as follows: 

push bp 
mov bp,sp 
sub sp,space 

In the example above, space is the total size in bytes of the local data you 
want to allocate. Local variables are then accessed as fixed negative displace­
ments from BP. 

In the following example, the entry sequence establishes a stack frame and allo­
cates temporary local storage for two words (4 bytes) of data. Later in the ex­
ample, the program accesses the local storage, initializing both to 0. 

push 
mov 
sub 

bp 
bp,sp 
sp,4 

Save old stack frame. 
Set up new stack frame. 
Allocate 4 bytes of local storage. 

mov WORD PTR [bp-2],0 
mov WORD PTR [bp-4],0 

Note that local variables are also called dynamic, stack, or automatic variables. 

12.8.5 Preserving Register Values 
A procedure called from C should preserve the values of SI, DI, SS, and DS (in 
addition to BP, which is already saved). You should push any register value that 
your procedure modifies onto the stack after setting up the stack frame and allo­
cating local storage, but prior to entering the main body of the procedure. Regis­
ters that your procedure does not alter need not be preserved. 

WARNING Routines that your assembly-language procedure calls must not alter the SI, 
DI, SS, DS, or BP registers. If they do, and you have not preserved the registers, they can 
corrupt the calling program's register variables, segment registers, and stack frame, causing 
program failure. If your procedure modifies the direction flag using the STD or CLO instruc­
tions, you must preserve the flags register. 



300 Advanced Programming Techniques 

The example below shows an entry sequence that sets up a stack frame, allocates 
4 bytes of local data space on the stack, then preserves the SI, DI, and flags 
registers. 

push bp Save caller's stack frame. 
mov bp,sp Establish new stack frame. 
sub sp,4 Allocate local data space. 
push s i Save SI and DI registers. 
push di 
pus hf Save the flags register. 

In the example above, you must exit the procedure with the following code: 

po pf Restore the flags register. 
pop di Restore the old value in the DI 

register. 
pop si Restore the old value in the SI 

register. 
mov sp,bp Restore the stack pointer. 
pop bp Restore the frame pointer. 
ret Return to the calling routine. 

If you do not issue the instructions above in the order shown, you will place in­
correct data in registers. Follow the rules below when restoring the calling pro­
gram's registers, stack pointer, and frame pointer: 

• Pop all registers that you preserve in the reverse order from which they were 
pushed onto the stack. So, in the example above, SI and DI are pushed, and 
DI and SI are popped. 

• Restore the stack pointer by transferring the value of BP into SP before restor­
ing the value of the frame pointer. 

• Always restore the frame pointer last. 

12.8.6 Accessing Parameters 
Once you have established the frame pointer, allocated local storage (if required), 
and pushed any registers that need to be preserved, you can write the main body 
of the procedure. Figure 12.4 shows how functions that observe the C calling con­
vention use the stack frame. 



Near Function Call 

High addresses 

Stack grows 
downward with 
each push or call. 

Low addresses 

Far Function Call 

High addresses 

Stack grows 
downward with 
each push or call. 

Low addresses 

Figure 12.4 C Stack Frame 

Programming with Mixed Languages 301 

Parameter n (rightmost) 

Parameter 1 (leftmost) 

Return address (IP) 

Saved frame pointer (BP) 

Local data space 

Saved SI 

Saved DI 

Parameter n (rightmost) 

Parameter 1 (leftmost) 

Return address (CS) 

Return address (IP) 

Saved frame pointer (BP) 

Local data space 

Saved SI 

Saved DI 

- Frame pointer (BP) 
points here. 

- Stack pointer (SP) 
points to last item 
placed on stack. 

- Frame pointer (BP) 
points here. 

- Stack pointer (SP) 
points to last item 
placed on stack. 



302 Advanced Programming Techniques 

The stack frame for the assembly-language procedure shown in Figure 12.4 is es­
tablished by the following: 

1. The calling program pushes each of the parameters onto the stack, after which 
SP points to the last parameter pushed. 

2. The calling program issues a CALL instruction, which causes the return 
address (the place in the calling program to which control will ultimately 
return) to be placed on the stack. This address can be either two bytes long 
(for near calls) or four bytes long (for far calls). SP now points to this address. 

3. The first instruction of the called procedure saves the old value of BP, with 
the instruction push bp. SP now points to the saved copy of BP. 

4. BP is used to hold the current value of SP, with the instruction mov bp,s p. 
BP therefore now points to the old value of BP (saved on the stack). 

5. While BP remains constant throughout the procedure, SP is often decreased 
to provide room on the stack for local data or saved registers. 

In general, the displacement (from BP) for a parameter x is equal to the size of 
return address plus 2 plus the total size of parameters between x and BP. 

To calculate the size of parameters between x and BP, you must start with the 
rightmost parameter because C pushes parameters from right to left. For ex­
ample, consider a FAR procedure that has one argument of type int (two bytes). 
The displacement of the parameter is 

Argument's displacement size of far return address+ 2 
4 + 2 
6 

The argument can thus be loaded into BP with the following instruction: 

mov bx,[bp+6J 

Once you determine the displacement of each parameter, you can use EQU direc­
tives or structures to refer to the parameter with a single identifier name in your 
assembly source code. For example, you can use a more readable name to refer­
ence the parameter at B P+6 if you put the following statement at the beginning 
of the assembly source file: 

Argl EQU [bp+6] 

You can then refer to the first parameter in your source as Ar g 1 in any instruc­
tion. Use of this feature is optional. 



Programming with Mixed Languages 303 

For far (segmented) addresses, Microsoft C pushes the segment address before 
pushing the offset address. When pushing arguments larger than two bytes, high­
order words are always pushed before low-order words, and parameters larger 
than two bytes are stored on the stack in most-significant, least-significant order. 

This standard for pushing segment addresses before pushing offset addresses 
facilitates the use of the assembly-language instructions LDS (load data segment) 
and LES (load extra segment). 

12.8. 7 Returning a Value 

Your procedures can 
return structures. 

Your assembly-language procedure can return a value to a C calling program. All 
return values of four bytes or less are passed in registers. Far pointers to return 
values larger than four bytes are returned in the DX and AX registers. The DX 
register contains the segment address; the AX register contains the offset relative 
to the segment contained in DX. 

Table 12.3 shows the register conventions for returning simple data types to a C 
program. 

Table 12.3 Register Conventions for Simple Return Values 

Data Type Registers 

char AL 

int, short, near * 

long, _far* 

AX 

High-order portion (or segment address) in DX; 
low-order portion (or offset address) in AX 

To return a structure from a procedure that uses the C calling convention, you 
must copy the structure to a global variable, then return a pointer to that variable 
in the AX register (DX:AX, if you compiled in compact, large, or huge model). 

Procedures that use the FORTRAN/Pascal calling convention return structures 
similarly, with the following exceptions: 

• The calling program allocates space for the return value on the stack. 

• The calling program passes a pointer to the location where the return value is 
to be placed in a hidden parameter. 

• Instead of copying your structure into a global data item, you copy it into the 
location pointed to by the hidden parameter. 

• You must still return the pointer to that location in the AX register (or 
DX:AX for far data models). 



304 Advanced Programming Techniques 

You can return floating-point 
values from your procedures. 

Procedures that use the C calling convention and return type float or type double 
must always copy their return values into the global variable _ _fac. To return 
floating-point values from procedures declared with the FORTRAN/Pascal call­
ing convention, you must return the result on the stack, just as you would a 
structure. 

To return a value of type long double, you must place the value on the 
NDP(80x87) stack using the FLD instruction. The C run-time math routines 
guarantee that the only value on the NDP stack is a return value; your routines 
must observe the same rule. 

12.8.8 Exiting the Procedure 
Before you exit your assembly-language procedure, you must perform several 
steps to restore the calling program's environment. Some of these steps are de­
pendent on actions you took in allocating space for local variables and preserving 
registers. 

You must follow these steps (if appropriate to your procedure) in the order 
shown: 

1. If you saved any of the registers SS, DS, SI, or DI, they must be popped off 
the stack in the reverse order from which they were saved. If you pop these 
registers in any other order, your program will behave incorrectly. 

2. If you allocated local data space at the beginning of the procedure, you must 
restore SP with the instruction mov s p , bp. 

3. Restore BP with the instruction pop bp. This step is always necessary. 

4. Return to the calling program by issuing the ret instruction. 

The following example shows the simplest possible entry and exit sequence. In 
the entry sequence, no registers are saved and no local data space is allocated. 

push bp 
mov bp,sp ; Set up the new stack frame. 

pop bp Restore the caller's stack frame. 
ret 

The following example shows an entry and exit sequence for a procedure that 
saves SI and DI and allocates local data space on the stack. 



push 
mov 
sub 
push 
push 

pop 
pop 
mov 
pop 
ret 

bp 
bp,sp 
sp,4 
si 
di 

di 
si 
sp,bp 
bp 

12.9 Handling Data 

Programming with Mixed Languages 305 

Establish local stack frame. 
Allocate space for local data. 
Preserve the SI and DI registers. 

Pop saved registers. 

Free local data space. 
Restore old stack frame. 

in Mixed-Language Programming 
This section contains detailed information about naming and calling conventions 
in a mixed-language program. It also describes how various languages represent 
strings, numerical data, arrays, and logical data. 

12.9.1 Default Naming and Calling Conventions 
Each language has its own default naming and calling conventions (Table 12.4). 

Table 12.4 Default Naming and Calling Conventions 

Language 

BASIC 

c 

FORTRAN 

Pascal 

Calling 
Convention 

FORTRAN/Pascal 

c 

FORTRAN/Pascal 

FORTRAN/Pascal 

BASIC Conventions 

Naming 
Convention 

Case insensitive 

Case sensitive 

Case insensitive 

Case insensitive 

Parameter 
Passing 

Near reference 

Value (scalar vari­
ables), reference 
(arrays and pointers) 

Reference 

Value 

When you call BASIC routines from C, you must pass all arguments by near 
reference (near pointer). You can modify the conventions observed by BASIC 
routines that interface with C functions by using the DECLARE, BYVAL, SEG, 
and CALLS keywords. For more information on these keywords, see the Micro­
soft BASIC Language Reference or the Microsoft BASIC Programmer's Guide. 



306 Advanced Programming Techniques 

FORTRAN Conventions 
You can modify the conventions observed by FORTRAN routines that call C 
functions by using the INTERFACE, VALUE, PASCAL, and C keywords. For 
more information about the use of these keywords, see the Microsoft FORTRAN 
Reference. 

Pascal Conventions 
You can modify the conventions observed by Pascal routines that interface with 
C functions by using the VAR, CONST, ADR, VARS, CONSTS, ADRS, and 
C keywords. For more information about the use of these keywords, see the 
Microsoft Pascal Compiler User's Guide. 

12.9.2 Numeric Data Representation 
Table 12.5 shows how to declare numeric variables of similar type in different 
languages. 

Table 12.5 Equivalent Numeric Data Types 

BASIC c FORTRAN Pascal 

x% short INTEGER*2 INTEGER2 

INTEGER int INTEGER 
(default) 

unsigned short1 WORD 

unsigned 

x& long INTEGER*4 INTEGER4 

LONG INTEGER (default) 

unsigned long1 

x! float REAL*4 REAL4 

x (default) REAL REAL (default) 

SINGLE 

x# double REAL*S REALS 

DOUBLE DOUBLE 
PRECISION 

long double REAL*16 REAL16 

unsigned char CHARACTER*12 CHAR 

I Types unsigned short and unsigned long are not supported by BASIC or FORTRAN. Type 
unsigned long is not supported by Pascal. A signed integral type can be substituted, but the maxi-
mum range will be less. 

2 The FORTRAN type CHARACTER*l is not the same as LOGICAL. 



12.9.3 Strings 

Programming with Mixed Languages 307 

The FORTRAN types COMPLEX*8 and COMPLEX*l6 are not implemented in 
C but can be represented with structures. 

The FORTRAN types LOGICAL*2 and LOGICAL*4 are not implemented in C. 
LOGICAL*2 is stored as a one-byte Boolean indicator followed by an unused 
byte; LOGICAL*4 is stored as a one-byte Boolean indicator followed by three 
unused bytes. 

Each language implements strings differently. This section describes the ways 
that strings are implemented in Microsoft languages. 

C String Format 
C stores strings as arrays of bytes and uses a null character ( ' \ 0 ' ) as an 
end-of-string delimiter. For example, consider the following string: 

char c_string[J ~ "C text string"; 

This string is represented in memory as follows: 

I t I e I x I t I 

Because c_s tr in g is an array like any other, C passes it by reference in 
function calls. 

BASIC String Format 
BASIC stores strings as four-byte descriptors pointing to the actual string data. 
The format of the descriptor is as follows: 

String length (two bytes) Address (relative to OS) 

The first field of the string descriptor contains an integer indicating the length 
(in bytes) of the string. The second field contains the address of the string in the 
default data segment. 



308 Advanced Programming Techniques 

To pass a BASIC string 
to C, append a null character. 

Use a string descriptor to 
pass a C string to BASIC. 

Do not attempt to alter the length of BASIC strings, because they are managed 
by BASIC string-space management routines. You cannot count on a particular 
string remaining at a given offset during the execution of a BASIC program be­
cause the BASIC string-space management routines allocate strings to different 
areas of memory depending on program requirements. 

The format of the string at DS:Address is a simple array of characters. The string 
is exactly the length indicated in the descriptor. 

Because C needs the null character to delimit the end of the string, you should 
append ch r $ ( 0 ) to your BASIC string before passing it to your C function. 
For example, 

AS = "I am a BASIC string" 
AS = A$ + chrS( 0 ) 

CALL CFunc( SADD(AS) 

Note that the BASIC call is made by near reference using the SADD keyword. 

To pass a C string to BASIC, create a structure for the string descriptor. For 
example, 

char c_string[J = "C String Data"; 

struct tagBASICStringDes 
{ 

char * sd_addr; 
int sd_len; 

str_des; 

str_des.sd_addr = c_string; 
str_des.sd_len = strlen( c_string ); 

BASICFunction( &str_des ); 

FORTRAN String Format 
FORTRAN stores strings as a series of bytes at a fixed location in memory. 
There is no delimiter at the end of the string. Consider the string declared as 
follows: 

STR = 'FORTRAN STRING' 



To pass a fixed-length string 
to C, append a null character. 

Programming with Mixed Languages 309 

The string is stored in memory as follows: 

S T R N G 

FORTRAN passes strings by reference, as it does all other data. 

NOTE FORTRAN's variable length strings cannot be used in mixed-language programming 
because the temporary variable used to communicate string length is not accessible to other 
languages. 

To pass a C string to FORTRAN (or Pascal), pass the variable by reference as 
you normally would. In your FORTRAN or Pascal routine, you must specify the 
length of the string; strings that are passed as arguments from one language to 
another must be of fixed length. 

Pascal String Format 
Pascal represents strings as fixed-length arrays of CHAR or as strings with a 
length byte followed by the string data. 

To pass a fixed-length string to a C function, use the concatenation operator(*) 
to append a null character. Then pass the string to the C function by reference 
(by declaring the string as CONST, CONSTS, VAR, or VARS). For example, 

PROGRAM PasStr( input, output l; 
type 

stype15 ~ string(15); { fixed-length 
var 

str : stype15; 

PROCEDURE PasStrToC( VAR sl stype15 ) [CJ; EXTERN; 

BEGIN 

END. 

str :~'Pass this to C' * chr( 0 l; 
PasStrToC( str ); 

A more flexible way to pass Pascal strings to C functions is to declare them as 
type ADRMEM or ADSMEM, then pass the address of the string. For example, 

PROCEDURE PasStrToC( sladr : ADRMEM l [CJ; EXTERN; 



310 Advanced Programming Techniques 

Before passing a string 
from C to Pascal, make sure 

enough space is allocated. 

12.9.4 Arrays 

To pass a BASIC array to a 
C function, use the VARPTR 

and VARSEG keywords. 

Then you can call the C function with this code: 

PasStrToC( ADR str ); 

Using this method, you can pass strings of different lengths to C functions. 

NOTE The Pascal type LSTRING is not compatible with C; you can pass a string declared 
as LSTRING by first assigning it to another variable of type STRING, then passing that variable. 

Whenever you pass a variable of type STRING or type LSTRING by value, 
Pascal pushes the whole string onto the stack and passes the length of the string 
as another parameter. C cannot access strings passed in this manner. 

Passing a string from a C function to a Pascal function or procedure is identical 
to passing a string from a C function to a FORTRAN routine. The only provision 
you must make is to specify the length of the string to your Pascal function. 

When you use an array in a program written in a single language, the method for 
array handling is consistent. When you mix languages, you need to be aware of 
the differences between array-handling techniques in various languages. 

Unlike most Microsoft languages, BASIC keeps an array descriptor, which is 
similar to the BASIC string descriptor discussed in Section 12.9.3, "Strings." 
This array descriptor is necessary because BASIC handles memory allocation 
for arrays dynamically (at run time). Dynamic allocation requires BASIC to shift 
arrays in memory. 

The V ARPTR and V ARSEG keywords obtain the address of the first element of 
the array and its segment, respectively. The example below shows how to call a 
C function with a near reference and a far reference to an array: 

DIM ARRAY%( 20 ) 
DECLARE CNearArray CDECL( BYVAL Addr AS INTEGER ) 
DECLARE CFarArray CDECL( BYVAL Addr AS INTEGER, BYVAL Seg AS 
INTEGER ) 

CALL CNearArray( VARPTR( ARRAY%(0) ) ) 
CALL CFarArray( VARPTR( ARRAY%(0) ) , VARSEG( ARRAY%(0) ) ) 



Programming with Mixed Languages 311 

The C functions receiving ARRAY can be declared as follows: 

cdecl CNearArray( int* array ); 
_cdecl CFarArray( int far* array ); 

The routine that receives the array must not make a call back to BASIC. If it 
does, the location of the array data could change, and the address that was 
passed to the routine would become meaningless. 

If you only need to pass one member of the array from BASIC to your C func­
tion, you can pass it by value as follows: 

CALL CFunc( ARRAY%(8) ) 

12.9.5 Array Declaration and Indexing 
Each language varies in the way that arrays are declared and indexed. Array 
indexing is a source-level consideration and involves no transformation of data. 
There are two differences in the way elements are indexed by each language: 

1. The value of the lower array bound is different among Microsoft languages. 

By default, FORTRAN indexes the first element of an array as 1. BASIC and 
C index it as 0. Pascal lets you begin indexing at any integer value. Recent 
versions of BASIC and FORTRAN also give you the option of specifying 
lower bounds at any integer value. 

2. Some languages vary subscripts in row-major order; others vary subscripts in 
column-major order. 

This issue only affects arrays with more than one dimension. With row-major 
order (used by C and Pascal), the rightmost dimension changes first. With 
column-major order (used by FORTRAN, and BASIC by default), the left­
most dimension changes first. Thus, in C, the first four elements of an array 
declared as X [ 3 J [ 3 J are 

X[0][0] X[0][1] X[0] [2] X[l][0J 

In FORTRAN, the four elements are 

x ( 1'1) x ( 2' 1) X( 3, 1) x ( 1 '2) 

The C and FORTRAN arrays shown above illustrate the difference between 
row-major and column-major order as well as the difference in the assumed 
lower bound between C and FORTRAN. Table 12.6 shows equivalences for 
array declarations in each language. In this table, r is the number of elements 
of the row dimension (which changes most slowly), and c is the number of 
elements of the column dimension (which changes most quickly). 



312 Advanced Programming Techniques 

Table 12.6 Equivalent Array Declarations 

Language Array Declaration Notes 

BASIC DIMx(r-1, c-1) With default lower 
bounds of 0 

c typex[r][c] When passed by reference 
struct { typex[r][c];} x When passed by value 

FORTRAN type x(c, r) With default lower 
bounds of 1 

Pascal x: ARRAY [a .. a+r-1, 
b .. b+c-1] OF type 

The order of indexing extends to any number of dimensions you declare. For 
example, the C declaration 

int arr1[2][10][15][20J; 

is equivalent to the FORTRAN declaration 

INTEGER*2 ARRlC 20, 15, 10, 2 ) 

The constants used in a C array declaration represent dimensions, not upper 
bounds as they do in other languages. Therefore, the last element in the C array 
declared as i n t a r r [ 5 J [ 5 J is a r r [ 4 J [ 4 J , not a r r [ 5 J [ 5 J . 

12. 9. 6 Structures, Records, and User-Defined Types 
The C struct type, the BASIC user-defined type, the FORTRAN record (defined 
with the STRUCTURE keyword), and the Pascal record type are equivalent. 
Therefore, these data types can be passed between C, FORTRAN, Pascal, and 
BASIC. 

These types can be affected by the storage method. By default, C, FORTRAN, 
and Pascal use word alignment for types shorter than one word (type char and 
unsigned char). This storage method specifies that occasional bytes can be in­
serted as padding so that word and double-word objects start on an even bound­
ary. (In addition, all nested structures and records start on a word boundary.) 

If you are passing a structure or record across a mixed-language interface, 
your calling routine and called routine must agree on the storage method and 
parameter-passing convention. Otherwise, data will not be interpreted correctly. 



Programming with Mixed Languages 313 

Because Pascal, FORTRAN, and C use the same storage method for structures 
and records, you can interchange data between routines without taking any 
special precautions unless you modify the storage method. Make sure the storage 
methods agree before interchanging data between C, FORTRAN, and Pascal. 

BASIC packs user-defined types, so your C function must also pack structures 
(using the /Zp command-line option or the pack pragma) to agree. 

You can pass structures as parameters by value or by reference. Both the calling 
program and the called program must agree on the parameter-passing conven­
tion. See Section 12.2.3, "Parameter-Passing Requirement," for more informa­
tion about the language you are using. 

12.9. 7 External Data 
External data refers to data that is both static and public; that is, the data is stored 
in a set place in memory as opposed to being allocated on the stack, and the data 
is visible to other modules. 

External data can be defined in C, Pascal, and assembly language. Note that a 
data definition is distinct from an external declaration. A data definition causes a 
compiler to create a data object; an external declaration informs a compiler that 
the object is to be found in another module. FORTRAN can only define external 
data in COMMON blocks. (See Section 12.9.9, "Common Blocks," for more in­
formation about sharing external data with FORTRAN programs.) 

There are three requirements for programs that share external data between 
languages: 

1. One of the modules must define the data. 

You can define a static data object in a C module by defining a data object 
outside all functions. (If you use the static keyword in C, however, the data 
object will not be made public.) 

2. The other modules that will access the data must declare the data as external. 

In C, you can declare data as external by using an extern declaration, similar 
to the extern declaration for functions. In FORTRAN and Pascal, you can de­
clare data as external by adding the EXTERN attribute to the data declaration. 

3. Resolve naming-convention differences. 

In C, you can adopt the FORTRAN/Pascal naming convention by applying 
_fortran or _pascal to the data declaration. In FORTRAN and Pascal, you 
can adopt the C naming convention by applying the C attribute to the data 
declaration. 



314 Advanced Programming Techniques 

12.9.8 Pointers and Address Variables 
Rather than passing data directly, you may want to pass the address of a piece 
of data. Passing the address amounts to passing the data by reference. In some 
cases, such as in BASIC arrays, there is no other way to pass a data item as a 
parameter. 

C programs always pass array variables by address. All other types are passed by 
value unless you use the address-of(&) operator to obtain the address. 

The Pascal ADR and ADS types are equivalent to near and far pointers, respec­
tively, in C. You can pass ADR and ADS variables as ADRMEM or ADSMEM. 
BASIC and FORTRAN do not have formal address types. However, they do pro­
vide ways for storing and passing addresses. 

BASIC programs can access a variable's segment address with the VARSEG 
function and its offset address with the V ARPTR function. The values returned 
by these intrinsic functions should then be passed or stored as ordinary integer 
variables. If you pass them to another language, pass by value. Otherwise you 
will be attempting to pass the address of the address, rather than the address itself. 

To pass a near address, pass only the offset; if you need to pass a far address, you 
may have to pass the segment and the offset separately. Pass the segment address 
first, unless CDECL is in effect. 

FORTRAN programs can determine near and far addresses with the LOC and 
LOCFAR functions. Store the result of the LOC function as INTEGER*2 and the 
result of the LOCFAR function as INTEGER*4. 

As with BASIC, if you pass the result of LOC or LOCFAR to another language, 
be sure to pass by value. 

12.9.9 Common Blocks 
You can pass individual members of a FORTRAN or BASIC common block in 
an argument list, just as you can any data item. However, you can also give a 
different language module access to the entire common block at once. 



Programming with Mixed Languages 315 

C modules can reference the items of a common block by first declaring a struc­
ture with fields that correspond to the common-block variables. Having defined a 
structure with the appropriate fields, the C module must then connect with the 
common block itself. The next two sections present methods for gaining access 
to common blocks. 

Passing the Address of a Common Block 
To pass the address of a common block, simply pass the address of the first varia­
ble in the block. (In other words, pass the first variable by reference.) The receiv­
ing C module should expect to receive a structure by reference. 

In the example below, the C function i n i t c b receives the address of the varia­
ble N, which it considers to be a pointer to a structure with three fields: 

C FORTRAN SOURCE CODE 
c 

COMMON /CBLOCK/N, X, Y 
INTEGER*2 N 
REAL*S X, Y 

CALL INITCB( N ) 

I* C source code */ 

I* Explicitly set structure packing to word-alignment *I 
#pragma pack( 2 ); 

struct block~type 
{ 

l; 

int n; 
double x; 
double y; 

initcb( struct block_type * block_hed 
{ 

block hed-n 
block_hed-x 
block_hed-y 

1. 
10. 0; 
20.0; 



316 Advanced Programming Techniques 

You cannot access common 
blocks directly using 

BASIC common blocks. 

Accessing Common Blocks Directly 
You can access FORTRAN common blocks directly by defining a structure with 
the appropriate fields and then using the methods described in Section 12.9.7, 
"External Data." Here is an example of accessing common blocks directly: 

struct block_type 
{ 

} ; 

int n; 
double x· 
double y; 

extern struct block_type fortran cblock; 

Note that the technique of accessing common blocks directly works with 
FORTRAN common blocks, but not with BASIC common blocks. If your C 
module must work with both FORTRAN and BASIC common blocks, pass the 
address of the common block as a parameter to the function. 

12.9.10 Using a Varying Number of Parameters 
Some C functions (for example printf) accept a variable number of parameters. 
To call such a function from another language, you need to suppress the type­
checking that normally forces a call to be made with a fixed number of parame­
ters. In BASIC, you can remove this type-checking by omitting a parameter list 
from the DECLARE statement. In FORTRAN or Pascal, you can call routines 
with a variable number of parameters by including the VARYING attribute in 
your interface to the routine, along with the C attribute. You must use the C 
attribute because a variable number of parameters is feasible only with the C 
calling convention. 



Writing Portable 
Programs 

CHAPTER 

Because C compilers exist on a variety of computers, some C applications 
developed for one computer system can be ported to other systems. However, 
some aspects of language behavior depend on how a particular C compiler is 
implemented and how a specific computer operates. Therefore, when designing 
a program to be ported to another system, it is important that you examine pro­
gramming assumptions. 

This chapter describes programming assumptions that can affect writing portable 
programs. 

The American National Standards Institute Standard for the C Language (the 
ANSI Standard) details every instance where language behavior is defined by the 
implementation. Appendix C summarizes implementation-defined behavior for 
Microsoft C. 

13.1 Assumptions about Hardware 
To make C programs portable, you must examine two aspects of your code: hard­
ware assumptions and compiler dependency. This section deals with hardware as­
sumptions. Section 13.2, "Assumptions about the Compiler," deals with compiler 
dependency. 

13.1.1 Size of Basic Types 
In C, the size of basic types (char, signed int, unsigned int, float, double, and 
long double) is implementation-defined, so relying on a particular data type to 
be a given size reduces the portability of a program. 

317 



318 Advanced Programming Techniques 

Don't make assumptions 
about the size of data types. 

Because the size of basic types is left to the implementation, do not make assump­
tions about the size or alignment of data types within aggregate types. Use only 
the sizeof operator to determine the size or amount of storage required for a varia­
ble or a type. 

Following are some rules governing the size of data types. 

Type char 
Type char is the smallest of the basic types, but it must be large enough to hold 
any of the characters in the implementation's basic character set. Normally, varia­
bles of type char are one byte. 

Type int and Type short int 
Type int and type short int often correspond to the register size of the target 
machine. Both int and short are greater than or equal to the size of type char 
but less than or equal to the size of type long. 

If you assume that type int is a certain size, your code may not be portable 
because 

• An int can be defined as a 16-bit (two-byte) or a 32-bit quantity. 

• An int is not always large enough to hold array indexes. For large arrays, you 
must use unsigned int; for extremely large arrays, use long. To be certain 
your code is portable, define your array indexes as type size_t. You may not 
know, before porting your code, the maximum value to expect an array index 
of type int to hold. The file LIMITS.H contains manifest constants, listed 
below, for the maximum and minimum values of each basic integral type. 

Constant 

CHAR BIT 

CHAR MIN 

CHAR MAX 

SCHAR MIN 

SCHAR MAX 

UCHAR MAX 

Value 

Number of bits in a variable of type char 

Minimum value a variable of type char can hold 

Maximum value a variable of type char can hold 

Minimum value a variable of type signed char 
can hold 

Maximum value a variable of type signed char 
can hold 

Maximum value a variable of type unsigned char 
can hold 



SHRT MIN 

SHRT MAX 

USHRT MAX 

INT MIN 

INT MAX 

UINT MAX 

LONG MIN 

LONG MAX 

ULONG MAX 

Writing Portable Programs 319 

Minimum value a variable of type short can hold 

Maximum value a variable of type short can hold 

Maximum value a variable of type unsigned short 
can hold 

Minimum value a variable of type int can hold 

Maximum value a variable of type int can hold 

Maximum value a variable of type unsigned int 
can hold 

Minimum value a variable of type long can hold 

Maximum value a variable of type long can hold 

Maximum value a variable of type unsigned long 
can hold 

Type float, Type double, and Type long double 
Type float is the smallest of the basic floating-point types. Type double is usu­
ally larger than type float, and type long double is usually the largest of the 
floating-point types. You can make only these portability assumptions about 
floating-point types: 

• Any value that can be represented as type float can be represented as type 
double (type float is a subset of type double). 

• Any value that can be represented as type double can be represented as type 
long double (type double is a subset of type long double). 

The file FLOAT.H contains manifest constants, listed below, for the maximum 
and minimum values of each basic floating-point type. 

Constant 

DBL DIG 

DBL MAX 

DBL MAX 10 EXP 

Value 

Number of decimal digits of precision a variable of 
type double can hold 

Maximum value a variable of type double can hold 

Maximum value (base I 0) the exponent of a variable 
of type double can hold 



320 Advanced Programming Techniques 

DBL MAX EXP 

DBL MIN 

DBL MIN 10 EXP 

DBL MIN EXP 

FLT DIG 

FLT MAX 

FLT MAX 10 EXP 

FLT MAX EXP 

FLT MIN 

FLT MIN 10 EXP - - -

FLT MIN EXP 

LDBL DIG 

LDBL MAX 

LDBL MAX 10 EXP 

LDBL MAX EXP 

Maximum value (base 2) the exponent of a variable 
of type double can hold 

Minimum positive value a variable of type double 
can hold 

Minimum value (base 10) the exponent of a variable 
of type double can hold 

Minimum value (base 2) the exponent of a variable 
of type double can hold 

Number of decimal digits of precision a variable of 
type float can hold 

Maximum value a variable of type float can hold 

Maximum value (base 10) the exponent of a variable 
of type float can hold 

Maximum value (base 2) the exponent of a variable 
of type float can hold 

Minimum positive value a variable of type float can 
hold 

Minimum value (base 10) the exponent of a variable 
of type float can hold 

Minimum value (base 2) the exponent of a variable 
of type float can hold 

Number of decimal digits of precision a variable of 
type long double can hold 

Maximum value a variable of type long double can 
hold 

Maximum value (base 10) the exponent of a variable 
of type long double can hold 

Maximum value (base 2) the exponent of a variable 
of type long double can hold 



LDBL MIN 

LDBL MIN 10 EXP 

LDBL MIN EXP 

Writing Portable Programs 321 

Minimum positive value a variable of type long 
double can hold 

Minimum value (base I 0) the exponent of a variable 
of type long double can hold 

Minimum value (base 2) the exponent of a variable 
of type long double can hold 

Microsoft C Type Sizes 
Table 13.1 summarizes the size of the basic types in Microsoft C. 

Table 13.1 Size of Basic Types in Microsoft C 

Number 
Type of Bytes 

char, unsigned char 

int, short, unsigned int, 
unsigned short 

near pointer 

long, unsigned long 

far pointer 

float 

double 

long double 

13.1.2 Storage Order and Alignment 

2 

2 

4 

4 

4 

8 

10 

The C language does not define any specific layout for the storage of data items 
relative to one another. The layout for storage of structure elements, or unions 
within a structure or union, is defined by the implementation. 

Some processors require that data longer than one byte be word-aligned (aligned 
to an even-byte address). Other processors, such as the 80x86 family, do not have 
such a restriction. 



322 Advanced Programming Techniques 

Structure Order and Alignment 
The example below illustrates how alignment can affect your program. In the 
example, a structure is cast to type long because the programmer knew the order 
in which a particular implementation stored data. 

I* Nonportable code */ 
struct time 
{ 

) ; 

char hour; I* 0 < hour < 24 
char minute; I* 0 < minute < 60 
char second; I* 0 < second < 60 

struct time now, alarm_time; 

if ( (long)now >~ (long)alarm_time 
{ 

I* sound an alarm*/ 

fits in 
fits in 
fits in 

The preceding code makes these nonportable assumptions: 

a char *I 
a char */ 
a char *I 

• The data for hour will be stored in a higher order position than mi nut e 
or second. Because C does not guarantee storage order or alignment of 
structures or unions, the code may not be portable to other machines. 

• Three variables of type char will be shorter than or the same length as a varia­
ble of type long. Thus, the code is not portable according to the rules govern­
ing the size of basic types, as described in Section 13.1.1. 



You can write code that 
makes no assumptions 

about storage order. 

Writing Portable Programs 323 

If either of these assumptions proves false, the comparison (if statement) is 
invalid. 

To make the program in the preceding example portable, you can break the com­
parison between the two long integers into a component-by-component compari­
son. This technique is illustrated in the following example: 

I* Portable code */ 
struct time 
( 

} ; 

char hour; I* 0 < hour < 24 fits 
char minute; I* 0 < minute < 60 fits 
char second; /* 0 < second < 60 fits 

struct time now, alarm_time; 

if ( time_cmp( now, alarm_time ) >= 0 ) 
( 

/* sound an alarm*/ 

int time_cmp( struct time tl, struct time t2 ) 
( 

if( tl.hour != t2.hour ) 
return( t2.hour - tl.hour ); 

if( tl.minute != t2.minute ) 
return( t2.minute - tl.minute ); 

return( t2.second - tl.second ); 

in a char *I 
in a char *I 
in a char *I 



324 Advanced Programming Techniques 

Union Order and Alignment 
Programmers use unions most often for two purposes: to store data whose exact 
type is not known until run time or to access the same data in different ways. 

Unions falling into the second category are usually not portable. For example, 
the union below is not portable: 

union tag_u 
{ 

} ; 

char bytes_in_long[4J; 
long a_long; 

The intent of the union above is to access the individual bytes of a variable of 
type long. However, the union may not work as intended when ported to other 
computers because 

• It relies on a constant size for type long. 

• It may assume byte ordering within a variable of type long. (Byte ordering 
is described in detail in Section 13.1.3, "Byte Order in a Word.") 

The first problem can be addressed by coding the union as follows: 

union tag_u 
{ 

} ; 

char bytes_in_long[sizeof( long ) I sizeof( char )J; 
long a_long; 

Note the use of the sizeof operator to determine the size of a data type. 

13.1.3 Byte Order in a Word 
The order of bytes within a word (int or short) or a double word (long) can vary 
among machines. Code that assumes an internal order is not portable, as shown 
by this example: 



I* 
* Nonportable structure to access an 
*int in bytes. 
*I 

struct tag_int_bytes 
{ 

} ; 

char lobyte; 
char hibyte; 

Writing Portable Programs 325 

A more portable way to access the individual bytes in a word is to define two 
macros that rely on the constant CHAR_BIT, defined in LIMITS.H: 

#define LOBYTE(a) (char)((a) & 0xffl 
#define HIBYTE(a) (char)((unsigned)(a) » CHAR_BITl 

The LOBYTE macro is still not completely portable. It assumes that a char is 
eight bits long, and it uses the constant 0 x ff to mask the high-order eight bits. 
Because portable programs cannot rely on a given number of bits in a byte, con­
sider the revision below: 

#define LOBYTE(a) (char)((a) & ((unsignedl-0»CHAR_BITll 
#define HIBYTE(a) Cchar)((unsigned)(a) >> CHAR_BITl 

The new LOBYTE macro performs a bitwise complement on O; that is, all zero 
bits are turned into ones. It then takes that unsigned quantity and shifts it right far 
enough to create a mask of the correct length for the implementation. 

The following code assumes that the order of bytes in a word will be least­
significant first: 

int c; 

tread( &c, sizeof( char ), 1, fp l; 

The code attempts to read one byte as an int, without converting it from a char. 
However, the code will fail in any implementation where the low-order byte is 
not the first byte of an int. The following solution is more portable. In the ex­
ample below, the data is read into an intermediate variable of type char before 
being assigned to the integer variable. 

int c; 
char ch; 

tread( &ch, sizeof( char), 1, fp l; 
c =ch; 



326 Advanced Programming Techniques 

The example below shows how to use the C run-time function fgetc to return the 
value. The fgetc function returns type char, but the value is promoted to type int 
when it is assigned to a variable of type int. 

int c; 

c = fgetc( fp ); 

Microsoft C Specific 
Microsoft C normally aligns data types longer than one byte to an even-byte 
address for improved performance. See the /Zp compiler option and the pack 
pragma in the Microsoft C Reference and in on-line help for information about 
controlling structure packing in Microsoft C. 

13.1.4 Reading and Writing Structures 
Many C programs read data from disk into structures and write data to disk from 
structures. The functions that perform disk 1/0 in C require you to specify the 
number of bytes to be transferred. You should always use the sizeof operator to 
obtain the size of the data to be read or written because differing data type sizes 
or alignment schemes may alter the size of a given structure. For example, 

fread( &my_struct, sizeof(my_struct), 1, fp l; 

Microsoft C Specific 
When performing disk input and output in Microsoft C, structures may be differ­
ent sizes depending on the structure-packing option you have selected (see the 
/Zp compiler option and the pack pragma in the Microsoft C Reference). 

13.1.5 Bit Fields in Structures 
The Microsoft C compiler implements bit fields. However, many C compilers 
do not. 

Bit fields allow you to access the individual bits within a data item. While the 
practice of accessing the bits in a data item is inherently nonportable, you can 



Writing Portable Programs 327 

improve your chances of porting a program that uses bit fields if you make no 
assumptions about order of assignment, or size and alignment of bit fields. 

Order of Assignment 
The order of assignment of bit fields in memory is left to the implementation, so 
you cannot rely on a particular entry in a bit field structure to be in a higher order 
position than another. (This problem is similar to the portability constraint im­
posed by alignment of basic data types in structures. The C language does not de­
fine any specific layout for the storage of data items relative to one another.) See 
Section 13.1.2, "Storage Order and Alignment" for more information. 

Size and Alignment of Bit Fields 
The Microsoft C compiler supports bit fields up to the size of the type long. Each 
individual member of the bit field structure can be up to the size of the declared 
type. Some compilers do not support bit field-structure elements that are longer 
than type int. 

The example below defines a bit field, sh o rt_b i t f i el d, that is shorter than 
type int: 

struct short_bitfield 
{ 

} ; 

unsigned usr_bkup 
unsigned usr sec 

1; /* 0 <= usr_bkup < 1 */ 
4; /* 9 <= usr sec < 16 */ 

The example below defines a bit field, l ong_bi t field, that has elements 
longer than type int: 

struct long_bitfield 
{ 

} ; 

unsigned long disk_pos 
unsigned long rec no 

22; /* 0 <= disk_pos < 4,194,304 */ 
10; /* 0 <= rec no < 1,024 */ 

The bit field sh or t_b i t f i el d is likely to be supported by more implementa­
tions than long_bitfield. 



328 Advanced Programming Techniques 

Microsoft C Specific 
The example below introduces another portability issue: alignment of data de­
fined in bit fields. The Microsoft C compiler does not allow an element in a struc­
ture to extend across two words. The first two elements, day and month, take 
up nine bits. The third, year, would extend across a word boundary, so it must 
begin on the next word boundary. 

struct long_bitfield 
{ 

unsigned int day 5; I* 0 <= day < 32 */ 
unsigned int month 4. 

' I* 0 <= month < 16 */ 
unsigned int year 11; I* 0 <= year < 2048 */ 

} ; 

Figure 13.1 illustrates the example above. 

day month year 

Figure 13.1 Data Alignment in Bit Fields 

Other compilers may not use the same storage techniques. 

13.1.6 Processor Arithmetic Mode 
Two types of arithmetic are common on digital computers: one's-complement 
arithmetic and two's-complement arithmetic. Some programs assume that all tar­
get computers perform two's-complement arithmetic. If you take advantage of 
the fact that a given operation causes a particular bit pattern to be set on either a 
one's-complement or two's-complement computer, your program will not be 
portable. For example, two's-complement machines represent the eight-bit in­
teger value -1 as a binary 11111111. A one's-complement machine represents 
the same decimal value (-1) as 11111110. Some programmers assume that -1 
will fill a byte or a word with ones, and use it to construct a mask template that 
they later shift. This will not work correctly on one's-complement machines, but 
the error will not surface until the least-significant bit is used. 

In two's-complement arithmetic, there is only one value that represents zero. In 
one's-complement arithmetic, there is a value for zero and a value for negative 
zero. Use the C relational operators to handle this anomaly correctly; if you write 
code that deliberately circumvents the C relational operators, tests for zero or 
NULL may not operate correctly. 



13.1.7 Pointers 

Writing Portable Programs 329 

Microsoft C Specific 
Microsoft C produces code only for the Intel 80x86 processors, which all per­
form two's-complement arithmetic. 

One of the most powerful but potentially dangerous features of the C language 
is its use of indirect addressing through pointers. Bugs introduced by misusing 
pointers can be difficult to detect and isolate because the error often corrupts 
memory unpredictably. 

Casting Pointers 
Be sure you do not make nonportable assumptions when casting pointers to 
different types. 

I* Nonportable coercion */ 
char c[4J; 
long *lp; 

lp = (long *)c; 
*lp = 0xl2345678L; 

This code is nonportable because using a cast to change an array of char to a 
pointer of type long assumes a particular byte-ordering scheme. This is discussed 
in greater detail in Section 13.1.3, "Byte Order in a Word." 

Pointer Size 
A pointer can be assigned (or cast) to any integer type large enough to hold it, 
but the size of the integer type depends on the machine and the implementation. 
(In fact, it can even depend on the memory model.) Therefore, you cannot 
assume: 

sizeof( char * ) == sizeof( int ) 

To determine the size of any unmodified data pointer, use 

sizeof( void * ) 

the size of a generic data pointer. 

Pointer Subtraction 
Code that assumes that pointer subtraction yields an int value is nonportable. 
Pointer subtraction yields a result of type ptrdiff _ t (defined in STDDEF.H). 
Portable code must always use variables of type ptrdiff_ t for storing the result 
of pointer subtraction. 



330 Advanced Programming Techniques 

The Null Pointer 
In most implementations, NULL is defined as 0. In Microsoft C, it is defined as 
( ( v o i d * ) 0 ) . Because code pointers and data pointers are often different 
sizes, using 0 for the null pointer for both can lead to nonportability. The differ­
ence in size between code pointers and data pointers will cause problems for 
functions that expect pointer arguments longer than an int. To avoid these prob­
lems, use the null pointer, as defined in the include file STDDEF.H; use proto­
types; or explicitly cast NULL to the correct data type. Here is a portable way to 
use the null pointer: 

/* Portable use of the NULL pointer */ 
main () 
{ 

funcl( (char *)NULL ); 
func2( (void *(*)())NULL); 

void funcl( char * c ) 
{ 

} 

void func2( void*(* func)() ) 
{ 

} 

The invocations of fun cl and fun c 2 explicitly cast NULL to the correct 
size. In the case of funcl, NULL is cast to type char*; in the case of func2, 
it is cast to a pointer to a function that returns type void. 

Microsoft C Specific 
Subtraction of pointers to huge arrays that have more than 32,767 elements may 
yield a long result. The _huge keyword is implementation-defined by Microsoft 
C and is not portable. Here is how to subtract pointers to huge arrays: 

char _huge *a; 
char _huge *b; 
long d; 

d (long)( a - b ); 



Writing Portable Programs 331 

In Microsoft C, the memory model selected and the special keywords_ near, 
far, and huge can change the size of a pointer. The Microsoft memory models 

and extended keywords are nonportable, but you should be aware of their effects. 

Sizes of generic pointers and default pointer sizes are shown in Tables 13.2 
and 13.3, respectively. 

Table 13.2 Size of Generic Pointers 

Declaration Name 

void near* Generic near pointer 

void far* Generic far pointer 

void_huge * Generic huge pointer 

Table 13.3 Default Pointer Sizes 

Memory Model Code Pointer Size 

Tiny 

Small 

Medium 

Compact 

Large 

Huge 

13.1.8 Address Space 

16 bits 

16 bits 

32 bits 

16 bits 

32 bits 

32 bits 

Size 

16 bits 

32 bits 

32 bits 

Data Pointer Size 

16 bits 

16 bits 

16 bits 

32 bits 

32 bits 

32 bits 

The amount of available memory and the address space on systems varies, de­
pending on many factors outside your control. A program designed with portabil­
ity in mind should handle insufficient-memory situations. To ensure that your 
program handles these situations, you should always check the error return from 
any of the dynamic memory allocation routines, such as malloc, calloc, strdup, 
and realloc. 



332 Advanced Programming Techniques 

These situations occur not only because of a lack of installed memory but also 
because too many other applications are using memory. For example, 

• Installed resident software can cause your program to fail. In DOS, these pro­
grams are usually device drivers or terminate-and-stay-resident (TSR) utilities. 

• An event or combination of events in a multitasking operating system such as 
OS/2 or XENIX can cause your program to fail. These failures are complex 
and difficult to predict. Here is an example: the user has installed a daemon to 
"pop up" every so often and check the system status. The user is running your 
application along with enough other large applications to cause a critical 
shortage of memory. When the daemon pops up, your program may fail on a 
memory allocation request. 

• An application running under Windows can use an extraordinary amount of 
the global heap and not return it to the free pool. This type of behavior will 
cause Windows to deny a GlobalAlloc request. 

13.1.9 Character Set 
The C language does not define the character set used in an implementation. 
This means that any programs that assume the character set to be ASCII are 
nonportable. 

The only restrictions on the character set are these: 

• No character in the implementation's character set may be larger than the size 
of type char. 

• Each character in the set must be represented as a positive value by type 
char, whether it is treated as signed or unsigned. So, in the case of the ASCII 
character set and an eight-bit char, the maximum value ii'\ 127 (128 is a nega­
tive number when stored in a char variable). 

Character Classification 
The standard C run-time support contains a complete set of character­
classification macros and functions. These functions are defined in the 
CTYPE.H file and are guaranteed to be portable: 

isalnum 
isalpha 
iscntrl 

is digit 
isgraph 
islower 

isprint 
ispunct 
isspace 

isupper 
isxdigit 



Writing Portable Programs 333 

The following code fragment is not portable to implementations that do not use 
the ASCII character set: 

/* Nonportable */ 
if ( c >= 'A' && c <= 'Z' ) 

/* uppercase alphabetic */ 

Instead, consider using this: 

I* Portable*/ 
if( isalpha(c) && isupper(c) 

/* uppercase alphabetic */ 

The first example above is nonportable, because it assumes that uppercase A is 
represented by a smaller value than uppercase Z, and that no lowercase charac­
ters fall between the values of A and Z. The second example is portable, be­
cause it uses the character classification functions to perform the tests. 

In a portable program, you should not perform any comparison on variables of 
type char except strict equality(==). You cannot assume the character set fol­
lows an increasing sequence-that may not be true on a different machine. 

Case Translation 
Translation of characters from upper- to lowercase or from lower- to uppercase is 
called "case translation." The following example shows a coding technique for 
case translation not portable to implementations using a non-ASCII character set. 

#define make_upper(c) ((c)&0xcf) 
#define make_lower(c) ((cll0x20) 

This code takes advantage of the fact that you can map uppercase to lowercase 
simply by changing the state of bit 6. It is extremely efficient but nonportable. 
To write portable code, use the case-translation macros toupper and tolower 
(defined in CTYPE.H). 

13.2 Assumptions about the Compiler 
Different compilers translate C source code into object code in different ways. 
The ANSI draft standard for the C programming language defines how many of 
these translations must be done; others are implementation-defined. 

This section describes assumptions about how the compiler translates your C 
code, which can make your programs nonportable. For a complete description of 
how Microsoft C handles implementation-defined operations, see Appendix C, 
"Implementation-Defined Behavior." 



334 Advanced Programming Techniques 

13.2.1 Sign Extension 
"Sign extension" is the propagation of the sign bit to fill unoccupied space when 
promoting to a more-significant type or when performing bitwise right-shift 
operations. 

Promotion from Shorter Types 
Integral promotions from shorter types occur when you make an assignment, per­
form arithmetic, perform a comparison, or perform an explicit cast. 

The behavior of integral promotion is well defined, except for type char. The 
implementation defines whether type char is treated as signed or unsigned. The 
code fragment below is an example of promotion as a result of assignment: 

char cl= -3; 
int i 1; 

il =cl; 

In this example, the expected result of the assignment statement is that i 1 will 
be set to -3. If the implementation defines type char as unsigned, however, sign 
extension will not occur, and i 1 will be 253 (on a two's-complement machine). 

Promotion can also occur as a result of a comparison of different types: 

char c; 

if ( c 0x80 ) 

This comparison will never evaluate as true on an implementation that sign­
extends char types but treats hexadecimal constants as unsigned. Use a character 
constant of the form '\x80', or explicitly cast the constant to type char to per­
form the comparison correctly. 

The following comparison, which is an example of promotion as a result of a 
cast, is also nonportable: 

char c; 
unsigned int u; 

if( u == Cunsignedlc 



Writing Portable Programs 335 

There are two problems with this code: 

• The char type may be treated as signed or unsigned, depending on the 
implementation. 

• If the char type is treated as signed, it can be converted to unsigned in two 
different ways: the char value may first be sign-extended to int, then con­
verted to unsigned; or the char may be converted to unsigned char, then 
sign-extended to int length. 

It is always safe to compare a signed int with a char constant because C requires 
all character constants to be positive. 

Variables of type char are promoted to type int when passed as arguments to a 
function. This will cause sign extension on some machines. Consider the follow­
ing code: 

char c = 128; 

printf( "%d\n", c ) ; 

Microsoft C Specific 
Microsoft C allows you to treat type char as signed or unsigned. By default, a 
char is considered signed, but if you change the default char type using the /J 
compiler option, you can treat it as unsigned. 

Bitwise Right-Shift Operations 
Positive or unsigned integral types (char, short, int, and long) yield positive or 
zero values after a right bitwise shift (>>) operation. For example, 

(charll20 » 4 

yields 7, 

(unsigned charl240 >> 8 

yields 0, 

(intl500 » 8 

yields 1, and 

(unsigned intl65535 >> 4 

yields 4,095. 



336 Advanced Programming Techniques 

Negative-signed integral types yield implementation-defined values after a 
bitwise right-shift operation. This means that you must know whether you want 
to do a signed or unsigned shift, then code accordingly. 

If you don't know how the implementation performs, you may get unexpected 
results. For example, ( s i g n e d ch a r ) 0 x 8 0 > > 3 yields OxfO if the imple­
mentation performs sign extension on right bitwise shifts. If the implementation 
does not perform the sign extension, the result is Ox IO. 

You can use right shifts to speed up division when the divisor can be represented 
by powers of 2 and the dividend is positive. To maintain portability, you should 
use the division operator. 

To perform an unsigned shift, explicitly cast the data to an unsigned type. To per­
form a shift that extends the sign bit, use the division operator as follows: divide 
by 2n, where n is the number of bits you want to shift. 

13.2.2 Length and Case of Identifiers 
Some implementations do not support long identifiers. Some allow only 6 charac­
ters, while others allow as many as 32. They may report each identifier that ex­
ceeds the maximum length or truncate identifiers to a given length. Truncation 
causes serious problems, especially if you have a number of similarly named vari­
ables within the scope of a block of code, such as the following: 

double acct_receivable_30_days; 
double acct_receivable_60_days; 
double acct_receivable_90_days; 
double current_interest_rate; 

acct_receivable_30_days *~ current_interest_rate; 

If your target system retains only six significant characters, you will have to 
rename all your acct_recei vabl e variables. 

Case sensitivity also affects portability. C is usually a case-sensitive language. 
That is, Ca l cul ate I n t e rest is not considered the same identifier as 
cal cul ate i n t ere st. Some systems are not case sensitive, however, so to 
write portable code, differentiate your identifiers by something other than case. 

These problems with identifiers can occur in two locations: the compiler and the 
linker or loader. Even if the compiler can handle long and case-differentiated 
identifiers, if the linker or loader cannot, you can get duplicate definitions or 
other unexpected errors. 



Writing Portable Programs 337 

Microsoft C Specific 
The Microsoft C compiler issues the /NOIGNORECASE command to the 
Microsoft Segmented-Executable Linker (LINK), specifically instructing it to 
consider the case of identifiers. 

13.2.3 Register Variables 
The number and type of register variables in a function depend on the implemen­
tation. You can declare more variables as register than the number of physical 
registers the implementation uses. In such a case, the compiler treats the excess 
register variables as automatic. 

Since the types that qualify for register class differ among implementations, 
invalid register declarations are treated as automatic. 

If you declare variables as register to optimize performance, declare them in 
decreasing order of importance to ensure that the compiler allocates a register to 
the most important variables. 

Microsoft C Specific 
The compiler ignores register declarations if you select the global register alloca­
tion optimization. You can select global register allocation as follows: 

Environment 

CL command line 

PWB 

pragma 

Selection 

Specify either the /Oe or /Ox option. 

Select the Global Register Allocation option in the 
Debug Build Options or Release Build Options 
dialog boxes. 

Use the optimize pragma with thee parameter. 

13.2.4 Functions with a Variable Number of Arguments 
Functions that accept a variable number of arguments are not portable. Although 
both the ANSI Standard and The C Programming Language specify how to write 
these functions and how they behave, differences still exist among compiler im­
plementors about how to use variable argument lists. 



338 Advanced Programming Techniques 

Many UNIX® systems support a standard that differs from the ANSI Standard 
for variable arguments. Although this may change, it currently presents a portabil­
ity concern. 

Microsoft C run-time libraries and macros allow you to use whichever version of 
variable argument support you expect to be most portable for your application. 

13.2.5 Evaluation Order 
The C language does not guarantee the evaluation order of most expressions. 
Avoid writing constructs that depend on evaluation within an expression to 
proceed in a particular manner. For example, 

i ~ 0; 
func( i++, i++ l; 

func( int a, int b) 
{ 

A compiler could evaluate this code fragment and pass 0 as a and 1 as b. It 
could also pass 1 as a and 0 as b and conform equally with the standards. 

The C language does guarantee that an expression will be completely evaluated 
at any given "sequence point." A sequence point is a point in the syntax of the 
language at which all side effects of an expression or series of expressions have 
been completed. 

These are the sequence points in the C language: 

1. The semicolon (;) statement separator 

2. The call to a function after the arguments have been evaluated 

3. The end of the first operand of one of the following: 

• Logical AND(&&) 

• Logical OR (II) 

• Conditional (?) 

• Comma separator (,) when used to separate statements or in expressions; 
the comma separator is not a sequence point when it is used between 
variables in declaration statements or between parameters in a function 
invocation 



Writing Portable Programs 339 

4. The end of a full expression, such as 

• An initializer 

• The expression in an expression statement (for example, any expression 
inside parentheses) 

• The controlling expression of a while or do statement 

• Any of the three expressions of a for statement 

• The expression in a return statement 

13.2.6 Function and Macro Arguments with Side Effects 
Run-time support functions can be implemented either as functions or as macros. 
Avoid including expressions with side effects inside function invocations unless 
you are sure the function will not be implemented as a macro. Here is an illustra­
tion of how an argument with side effects can cause problems: 

#define limiLnumber(a) ((a>l000)?1000:(a)) 

a~ limit_number( a++ ) ; 

If a ~ I 000, it is incremented once. If a > 1000, it is incremented twice, which 
is probably not the intended behavior. 

A macro can be used safely with an argument that has side effects if it evaluates 
its parameter only once. You can determine whether a macro is safe only by 
inspecting the code. 

A common example of a run-time support function that is often implemented as 
a macro is toupper. You will find your program's behavior confusing if you use 
the following code: 

char c; 

c ~ toupper( getc() ) ; 

If to upper is implemented as a function, get c will be called only once, and 
its return value will be translated to uppercase. However, if to upper is imple­
mented as a macro, get c will be called once or twice, depending on whether c 
is upper- or lowercase. Consider the following macro example: 

#define toupper(c) ( (islower(c)) ? _toupper(c) : Cc) 



340 Advanced Programming Techniques 

If you include the toupper macro in your code, the preprocessor expands it as 
follows: 

/* What you wrote */ 
c = toupper( getc() ) ; 

/* Macro expansion */ 
ch= (islower( (getc()) ) ? _toupper( getc() ) : (getc()) ); 

The expansion of the macro shows that the argument to to upper will always 
be called twice: once to determine if the character is lowercase and the next time 
to perform case translation (if necessary). In the example, this double evaluation 
calls the getc function twice. Because get c is a function whose side effect is to 
read a character from the standard input device, the example requests two charac­
ters from standard input. 

13.2. 7 Environment Differences 
Many programs perform some file 1/0. When writing these programs for portabil­
ity, consider the following: 

• Do not hard-code file or path names. Use constants you define either in a 
header file or at the beginning of the program. 

• Do not assume the use of any particular file system. For example, the UNIX­
model, hierarchical file system is prevalent on small computers. On larger sys­
tems, the file system often follows a different model. 

• Do not assume a particular display size (number of rows and columns). 

• Do not assume that display attributes exist. Some environments do not sup­
port such attributes as color, underlined text, blinking text, highlighted text, 
inverse text, protected text, or dim text. 

13.3 Portability of Data Files 
Data files are rarely portable across different CPUs. Structures, unions, and 
arrays have varying internal layout and alignment requirements on different 
machines. In addition, byte ordering within words and actual word length 
may vary. 

The best way to achieve data-file portability is to write and read data files as one­
dimensional character arrays. This procedure prevents alignment and padding 
problems if the data are written and read as characters. The only portability prob­
lem you are likely to encounter if you follow this course is a conflict in character 
sets; many computers have character-set conversion utilities. 



Writing Portable Programs 341 

13.4 Portability Concerns Specific to Microsoft C 
Microsoft C offers extensions that let you take advantage of the full capabilities 
of the computer. These extensions are not portable to other compilers or environ­
ments. The following list shows keywords specific to Microsoft C: 

asm far _interrupt _saveregs 
based -fastcall near _segment 

cdecl fortran near _segname 
cdecl fortran loadds 

_export huge pascal 
far _huge pascal 

The Microsoft C Reference contains compatibility information for every function 
in the run-time library. Any function or macro that does not have the ANSI box 
marked may not be portable to other compilers or computer systems. 

13.5 Microsoft C Byte Ordering 
Tables 13.4 and 13.5 summarize Microsoft C byte ordering for short and long 
types, respectively. In these tables, the least-significant byte of the data item is 
bO; the next byte is denoted by bl, and so on. 

Since byte ordering is machine specific, any program that uses this byte ordering 
will not be portable. 

Table 13.4 Byte Ordering for Short Types 

CPU Byte Order 

8086 bO bl 

80286 bO bl 
PDP-11® bO bl 
VAX-11® bO bl 
M68000 bl bO 

Z8000@ bl bO 



342 Advanced Programming Techniques 

Table 13.5 Byte Ordering for Long Types 

CPU Byte Order 

8086 bO bl b2 b3 

80286 bO bl b2 b3 

PDP-11 b2 b3 bO bl 

VAX-11 bO bl b2 b3 

M68000 b3 b2 bl bO 

Z8000 b3 b2 bl bO 



PART4 

OS/2 Support 

CHAPTERS 

14 Build!ng OS/2 Applications . . . . . . . . . . . 347 

15 Creatl~g Multithread OS/2 Applications . . . . . 367 

16 Dynamic Linking with OS/2 . . . . . . . . . • . 389 





OS/2 Support 
The Microsoft C Professional Development System provides 
support for OS/2 development. 

Chapter 14 explains many of the general issues of OS/2 develop­
ment, including accessing the OS/2 system functions, creating 
module-definition files, and using the OS/2-specific features of 
utilities such as the linker and BIND. Chapter 15 focuses on how 
to create a multithread application, including information about 
C run-time library support, potential problem areas, and how to 
use Code View to debug multithread applications. Chapter 16 
concentrates on the creation of dynamic-link libraries, including 
C run-time library support, application program interface with 
DLLs, and debugging DLLs with Code View. 





Building OS/2 
Applications 

CHAPTER 

Using Microsoft C 6.0, you can create applications for OS/2. This chapter 
explains features in the compiler and the utilities that 

• Call the OS/2 operating system directly from C functions 

• Perform multitasking within your program by starting multiple execution 
paths known as "threads" 

• Create dynamic-link libraries that can be used by multiple applications 

• Work in either OS/2 or DOS to create programs for both environments 

• Develop "dual-mode" applications that will run under both OS/2 and DOS 
from a single executable program file 

This chapter contains information about accessing the OS/2 Applications Pro­
gram Interface (API) from your C programs. It also discusses compile options 
that affect applications you develop for OS/2, module-definition files and import 
libraries, linker options specific to developing OS/2 applications, and using the 
BIND utility to create dual-mode applications. 

Chapters 15 and 16, "Creating Multithread OS/2 Applications" and "Dynamic­
Linking with OS/2," contain detailed information about how Microsoft C sup­
ports these advanced OS/2 features. 

347 



348 Advanced Programming Techniques 

14.1 The OS/2 Applications Program Interface 
The entire set of OS/2 system calls is known as the OS/2 APL You need to 
access the OS/2 API for the low-level functions provided by the operating sys­
tem, such as 

• Requests for information about the display 

• Requests to display information 

• Requests for information from the pointing device (mouse) 

• Requests for information from the keyboard 

• Requests for blocks of memory 

• Requests for disk actions, including reading and writing 

You can call all of the OS/2 system services directly from programs written in C. 
Under DOS, the API operates at a lower level, requiring programs to set up hard­
ware registers and generate a software interrupt to access the system services. 
Under OS/2, programs use function calls to access the operating system services. 

Sections 14.1.1-14.1.3 describe the calling conventions and precautions you 
must observe when accessing OS/2 API functions. 

14.1.1 Calling the OS/2 AP/ 
Your program must declare calls to the OS/2 API with both the _far and _pascal 
keywords. Adding the _pascal keyword to the function declaration ensures that 
the FORTRAN/Pascal calling convention is used. The far keyword directs the 
compiler to generate an intersegment call instruction. A sample declaration for 
the OS/2 API function DosExit follows: 

void _far _pascal DosExit( unsigned int, unsigned int ); 

You must be sure that all pointers passed to OS/2 API functions are far pointers, 
even if you are writing a program using the small or medium memory models. 
This process can be simplified if you include the OS2.H header file. 



OS/2 AP/ function calls are far 
and must use the FORTRAN/ 

Pascal calling convention. 

Building OS/2 Applications 349 

OS/2 API functions use the FORTRAN/Pascal language calling convention. 
They expect arguments to be pushed onto the stack in left-to-right order, with 
the last argument in the list pushed onto the stack last. OS/2 API functions re­
move their arguments from the stack before returning to the caller. Standard C 
functions push their arguments from right to left, with the first argument being 
the last one pushed. 

All OS/2 API functions return 0 if the operation is successful. They return an 
error code if the operation fails. 

14.1.2 Including the OS/2 Header Files 

Define a constant 
before including OS2.H. 

You do not have to construct your own API declarations if you use the OS2.H 
header file. It is the first file of a set of header files that supply function proto­
types for every OS/2 API call and definitions of special OS/2 structures, data 
types, and constants. 

The API function prototypes define all functions as far procedures with the 
FORTRAN/Pascal calling convention. They also take care of casting all near 
pointers to far pointers and other similar type coercions. 

When you include OS2.H, the most commonly used data types and macros are 
automatically defined. To minimize compile time for the C preprocessor, other 
definitions are grouped by function. They are included only if your source file 
defines the appropriate constant before including OS2.H. The following list 
shows how these manifest constants affect functions from the OS/2 API: 

Constant 

INCL BASE 

INCL DOS 

INCL DOSERRORS 

INCL KBD 

INCL MOU 

INCL SUB 

INCL VIO 

INCL WIN 

Effect 

All error constants, kernel, keyboard, video, and 
mouse definitions (same as INCL_DOS + INCL_SUB 
+ INCL_DOSERRORS) 

All kernel system definitions 

All error constants 

All keyboard definitions 

All mouse definitions 

All keyboard, video, and mouse definitions (same as 
INCL_KBD +INCL_ VIO + INCL_MOU) 

All video-display definitions 

Basic set of Presentation Manager definitions 



350 Advanced Programming Techniques 

The statement #define 
INCL_DOS affects the 

functions defined. 

The header files have additional constants that let you include smaller subsets or 
functions not defined in the standard sets. 

The program in the example below calls the OS/2 kernel to request a nonsharea­
ble, nondiscardable memory segment for an 8K buffer. The INCL_ DOS constant 
in the #define statement instructs the C preprocessor to include all of the kernel 
function definitions. The function prototype for DosAllocSeg declares the first 
and third arguments as USHORT (unsigned short integers). The second argument 
is a far pointer to the OS/2 data type SEL, which is used for segment selectors. 

#define INCL_DOS 
#include <os2.h> 

VOID GetMemorySegment() 
{ 

SEL selector; 

if ( DosAllocSeg( 8192, &selector, 0 J J 
puts( "Allocation failed\n" J; 

else 
puts( "Successful all ocation\n" ) ; 

The function call in the example works correctly even in a small or medium 
memory model program where the selector variable is a near data type. All three 
arguments are coerced by the function prototype to the proper types, regardless 
of the memory model used. 

14.1.3 Creating Dual-Mode Programs as Family Applications 
The OS/2 API has a subset of system functions that have direct DOS equivalents. 
This subset is known as the "Family Applications Program Interface" (Family 
API). Programs that use only the Family API can be run under DOS and the 
OS/2 compatibility box, as well as under OS/2. 



You can build a single 
executable file for use 

under both OS/2 and DOS. 

Building OS/2 Applications 351 

By creating a Family API application, you can distribute the same executable file 
to both OS/2 and DOS users. The Microsoft C compiler, linker, and object mod­
ule librarian are examples of family applications. The benefit of having a single 
executable file is offset by a few disadvantages: 

• The executable file is larger, because it includes a special loader and OS/2 
API-simulator routines for running in DOS mode. 

• In real mode, the application loads more slowly than a program created 
specifically for either OS/2 or DOS. There is no performance penalty in 
loading or running in OS/2 protected mode. 

• When running in real mode, the program cannot use advanced OS/2 features 
such as multiple threads or system calls that are not part of the Family APL If 
you take special precautions (described in Section 14.5, "The BIND Utility"), 
the program can take advantage of these features when running in OS/2 pro­
tected mode. 

Follow the same steps to build both family and protected-mode applications but 
add an extra step at the end to create the Family API program. This step links 
functions from the dynamic-link libraries directly into a stand-alone executable 
file that can run in both real and protected mode. 

Restrictions on Family Applications 
Programs that use the Family API are subject to certain restrictions: 

• They cannot overcommit memory; they must fit into the DOS 640K 
environment. 

• They cannot use advanced OS/2 features, such as threads and semaphores, 
that do not have DOS counterparts. 

• They must restrict their use of some calls to the defined common subset. For 
example, some of the file-mode options for the DosOpen function are not 
available in real mode. 



352 Advanced Programming Techniques 

Family AP/ Functions 
The system calls that make up Family API are listed below. The calls marked 
with an asterisk(*) have different options or behavior, depending on whether 
they are running in real mode or protected mode. The Microsoft OS/2 Program­
mer's Reference explains the functions and the differences between their real­
and protected-mode implementations. 

DosAllocHuge* 
DosAllocSeg* 
DosBeep 
DosButReset 
DosCaseMap* 
DosChdir 
DosChgFilePtr 
DosCLIAccess 
Dos Close 
DosCreateCSAlias* 
DosDelete 
DosDevConfig 
DosDevIOCtl* 
DosDupHandle 
DosErrClass 
DosError* 
DosExecPgm* 
DosExit* 
DosFileLocks 
DosFindClose 
DosFindFirst 
DosFindN ext* 
DosFreeSeg* 
DosGetCollate* 
DosGetCp 
DosGetCtry Info* 
DosGetDateTime 
DosGetDBSCEv* 
DosGetEnv 
DosGetHugeShift 
DosGetMachineMode 
DosGetMessage* 
DosGetVersion 

DosHoldSignal* 
DoslnsMessage* 
DosMkDir 
DosMove 
DosNewSize 
DosOpen* 
DosPutMessage* 
DosQCurDir 
DosQCurDisk 
DosQ FHandState 
DosQFilelnfo 
DosQFileMode 
DosQFSlnfo 
DosQHandType 
DosQVerify 
DosRead* 
DosReallocHuge* 
DosReallocSeg* 
DosRmDir 
DosSelectDisk 
DosSetCp 
DosSetDateTime 
DosSetFHandState* 
DosSetFilelnfo 
DosSetFileMode 
DosSetFSinfo 
DosSetSigHandler* 
DosSetVec* 
DosSet Verify 
DosSizeSeg 
DosSleep 
DosSubAlloc 
DosSubFree 

DosSubSet 
Dos Write 
KbdCharln* 
KbdFlushBuffer* 
KbdGetStatus* 
KbdPeek* 
KbdSetStatus* 
KbdStringln* 
VioGetBuf 
VioGetConfig 
VioGetCurPos 
VioGetCurType 
VioGetMode 
VioGetPhysBuf 
VioReadCellStr 
VioReadCharStr 
VioScrLock* 
VioScrollDn 
VioScrollLf 
VioScrollRt 
VioScrollUp 
VioScrU nLock 
VioSetCurPos 
VioSetCurType 
VioSetMode 
VioShowBuf 
Vio WrtCellStr 
Vio WrtCharStr 
Vio WrtCharStr Att 
VioWrtNAttr 
VioWrtNCell 
VioWrtNChar 
VioWrtTTy 



Building OS/2 Applications 353 

14.2 Compile Options for the CL Command 
This section describes the compile options you must specify in the Programmer's 
WorkBench or on the CL command line to designate a program's target environ­
ment (OS/2, DOS, or both). It also introduces options you should use with certain 
types of OS/2 applications, such as multithread programs, dynamic-link libraries, 
and programs calling C function dynamic-link libraries. For an in-depth discus­
sion of topics that affect multi thread processes and dynamic-link libraries, 
see Chapter 15, "Creating Multithread OS/2 Applications," and Chapter 16, 
"Dynamic-Linking with OS/2." 

14.2. 1 The Link Mode Options {/Lp, /Lr, and /Le) 

Don't use /Lx options 
unless you have 

mode-specific libraries. 

The /Lx options (/Lp, /Lr, and /Le) provide the flexibility of programming for 
both OS/2 and DOS in either environment. Regardless of the host operating 
system, you can build applications for either target operating system. You do 
not have to switch to the target system to build the program. 

The /Lp option produces an OS/2 protected-mode program; the /Lr option creates 
a DOS real-mode program. /Le is a synonym for /Lr. 

To use these options, the mode-specific combined libraries must be installed. 
Unless you choose a default operating environment, each mode-specific library 
has the letter P or R at the end of its base name. For example, the protected-mode 
small memory model library with the emulator floating-point option is named 
SLIBCEP.LIB. The corresponding real-mode library is named SLIBCER.LIB. 
The default name, however, is SLIBCE.LIB. 

Installing and Using the Microsoft C Professional Development System describes 
how to create mode-specific libraries with the SETUP program. It also explains 
how to establish a default target environment by renaming libraries. A default en­
vironment is useful if you work mainly in one mode (OS/2 or DOS) but some­
times write programs for the other mode. When you set up OS/2 as the default 
mode, SLIBCEP.LIB, for example, becomes SLIBCE.LIB. 

When you use the /Lx options, you instruct the compiler to override the default 
library name in the object module's library search record and to substitute the 
mode-specific combined library name. The compiler also generates a link re­
sponse file with the /NODEFAULTLIBRARYSEARCH (/NOD) linker option to 
override the default library. See Section 14.4, "Link Command-Line Options," 
for more information about the /NOD option. 



354 Advanced Programming Techniques 

Do not use the /Lp option to specify protected mode when OS/2 is the default 
environment. If you do this, the compiler uses the name of the mode-specific li­
brary (e.g., SLIBCEP.LIB). Because SETUP renamed the library to SLIBCE.LIB 
to create a default environment, the library search fails. This caution also applies 
to specifying /Lr when you have installed DOS as the default environment. 

If you invoke the linker in a separate step from the compilation, you must specify 
the /NOD link option. 

NOTE There is a special library, LLIBCMT, for building multithread OS/2 applications. 
Another special library, LLIBCDLL, supports multithread dynamic-link libraries. If you use 
LLIBCMT or LLIBCDLL, you must use one of the library selection options described in 
Section 14.2.3 instead of /Lp. 

14.2.2 Creating Bound Programs Option {/Fb) 

You can specify a 
separate name for a 

bound-executable file. 

The /Fb option allows you to compile, link, and bind an application in one step. 
Binding an executable file creates a Family API program that can run under both 
OS/2 and DOS. 

When you use /Fb, the compiler invokes the BIND utility program immediately 
after the link step. You can also execute BIND directly (as described in Section 
14.5, "The BIND Utility"). You must have the API.LIB and OS2.LIB files in the 
path specified by the LIB environment variable or in your current working 
directory. 

The syntax for the /Fb option is 

/Fb[bound-exe] 

The optional bound-exe parameter specifies the name of the bound program. It 
must directly follow the /Fb option, without intervening spaces. The bound-exe 
name can be a file specification, a drive name, or a directory specification. If you 
specify a file name without an extension, the compiler appends the .EXE exten­
sion to the name. If you give a directory specification for bound-exe, the name 
must end with a backslash ( \) so the compiler can distinguish it from an ordi­
nary file name. If you do not supply a name, BIND uses the name of the unbound 
program and overwrites it. 

When creating both bound and protected-mode versions with different names, 
consider this example: 

CL /Lp /Fbsampleb sample.c 

The protected-mode executable file that this command creates is called 
SAMPLE.EXE; the bound-executable file is called SAMPLEB.EXE. 



You may need to run BIND 
as a separate step instead 

of using the /Fb option. 

Building OS/2 Applications 355 

The /Fb option works only if you are doing a single-step compile and link. If the 
CL command line includes the /c (compile without link) option, the compiler 
ignores the /Fb option. If you use /c, you must run the BIND utility as a separate 
step of the program build. 

If your program includes calls to API functions that are not in the FAPI subset, 
you must use the /n option of the BIND utility, described in Section 14.5, to build 
the dual-mode executable file. If you need to use the /n BIND option, you cannot 
compile with /Fb. You must compile without linking by using the /c option at the 
compile stage; then link the program and run the BIND utility with the /n option. 

14.2.3 Library Selection Options {/MT, /ML, /MD, Ill) 

Special libraries must be 
the only C run-time libraries 

linked with your program. 

Special libraries are provided for building OS/2 multithread applications and 
dynamic-link libraries. You must not use these libraries with any other C run­
time library. 

If you use one of these special libraries, apply one of the library selection options 
(/ML, /MD, or /MT) to tell the compiler to replace the default library name in the 
object file with the name of the special library. This ensures that the linker does 
not bring in code from the default libraries. If you do not specify one of the op­
tions when compiling, you must link with the /NOD option to prevent search of a 
default library, such as SLIBCE.LIB. 

If you fail to include any of these options, the linker searches the default library 
and may select the wrong version of a library function. It might, for example, 
select the single thread version of the printf function for a multithread program 
that has more than one thread calling printf. 

Because the /Lp option (see Section 14.2.1, "The Link Mode Options") instructs 
the compiler to specify the default protected-mode libraries rather than the 
special multithread or DLL-specific libraries, do not use it with /ZI or /Mx. 

Multithread library Option {/MT) 
When you specify the /MT option, the compiler embeds the LLIBCMT.LIB 
library name in the object file. Chapter 15, "Creating Multithread OS/2 Applica­
tions," explains how to build multithread applications using LLIBCMT.LIB. The 
/MT option also has the effect of combining these command-line options: 

/ALw /FPi /G2 ID MT 

C Run-Time library for Building Dlls {/Ml) 
Use the /ML option to specify that you are building a dynamic-link library 
that calls functions in LLIBCDLL.LIB, the C run-time library for dynamic-link 
libraries. The library name is embedded in the object file. The /ML option also 
has the effect of combining these command-line options: 

/ALw /FPa /G2 ID MT 



356 Advanced Programming Techniques 

You can specify libraries 
and additional LINK options 

on the CL command line. 

C Run-Time Library for DLLs (!MD) 
Use the /MD option to create a dynamic-link library of C run-time routines. With 
this option, the object file does not have any library search records. The /MD 
option has the effect of combining these command-line options: 

I ALw /FPi /02 /DDLL ID MT 

Chapter 16, "Dynamic Linking with OS/2," describes the process of building and 
using dynamic-link libraries with LLIBCDLL.LIB. 

Suppress Default Library Option (Ill) 
Use the /Zl option when you want to suppress selection of a default library. It 
tells the compiler not to place the default library name in the object file. 

You can specify link options or the names of libraries on the CL command line 
with the /LINK option. You can also give the library name, with its .LIB exten­
sion, before the /LINK option. Each command below selects the multithread C 
run-time library: 

CL /Zl myprog.c llibcmt.lib 

CL /Zl myprog.c /link llibcmt 

If you compile with the /c (compile without link) option, your link command 
must include the library name: 

LINK myprog, myprog.exe, myprog.map, llibcmt. lib, myprog.def 

14.2.4 Memory-Model Options (!Ax) 

Use the large memory model 
with LLIBCMT (!AL and /MT}. 

You must select the memory model appropriate to your application. For 
protected-mode applications, the large model provides the most convenient 
interface with the special libraries. It provides the additional benefit of placing 
code and data into multiple segments, allowing OS/2 to swap parts of the pro­
gram to disk efficiently. 

The multithread run-time C library, LLIBCMT.LIB, is a large-model library. 
All library function calls must be far calls. In addition, all pointers passed to func­
tions in the library must be far pointers. If you do not compile with the I AL op­
tion, you use must use the keyword _far when declaring pointers. Variables can 
be declared either near or far as long as they are either passed by value or cast to 
a far address. 



Because each thread has 
its own stack, you have to 

compile in an SS I= DS model. 

Building 05/2 Applications 357 

If you want to call fopen for example, you must use code such as the following: 

FILE far * fp; 
fp ~ fopen( ... ); 

NOTE If you are using the compact, large, or huge memory model, data pointers are far 
by default, so you do not need to explicitly specify _far. 

Multithread applications require that each thread have its own stack. As a result, 
you cannot safely assume that the stack segment is in the default data group 
(DGROUP). That means that the stack segment can be different from the data 
segment (SS != DS). 

To specify that you have selected an SS != DS model, you must use the /Au or 
/Aw option. The /MT option is a shorthand way of specifying this combination 
of options to the compiler: 

I ALw /FPi /G2 ID MT 

The /MT option also causes the compiler to place a library search record for 
LLIBCMT in the object file. 

14.3 Module-Definition Files and Import Libraries 
A module-definition file tells the linker about the characteristics of an application 
or dynamic-link library. It describes names, segments, memory requirements, 
and import and export definitions. Export definitions make functions in the OS/2 
dynamic-link libraries (DLLs) available to other programs. Each export defini­
tion specifies a function name. A program using these functions must have im­
port definitions in order to find each dynamic-link function. Each import 
definition specifies a function name and the name of the dynamic-link library 
where the function resides. 

The IMPLIB utility generates a library of import definitions that can be exam­
ined during the link. For imported functions, the import library can be used in 
place of a module-definition file. 

Module-definition files are optional for most OS/2 programs. Two types of pro­
grams must use them: 

• Dynamic-link libraries 

• Programs with 1/0 privileges 



358 Advanced Programming Techniques 

Each module-definition file contains one or more module statements defining at­
tributes of the executable program. The statements and their associated attributes 
are listed below: 

Statement 

CODE 

DATA 

DESCRIPTION 

EXE TYPE 

EXPORTS 

HEAPSIZE 

IMPORTS 

LIBRARY 

NAME 

OLD 

PROTMODE 

REALM ODE 

SEGMENTS 

STACKSIZE 

STUB 

Attribute 

Gives default attributes for code segments 

Gives default attributes for data segments 

Describes the module in one line 

Identifies the operating system 

Defines exported functions 

Specifies local heap size, in bytes 

Defines imported functions 

Names a dynamic-link library 

Names an application 

Preserves import information from a previous ver­
sion of the library 

Specifies that the module runs only in OS/2 pro­
tected mode 

Relaxes some restrictions that the linker imposes for 
protected-mode programs 

Gives attributes for specific segments 

Specifies local stack size, in bytes 

Adds a DOS 3.x executable file to the beginning of 
the module, usually to terminate the program when 
run in real mode 

In addition to the keywords listed above, each statement includes one or more 
fields to complete the attribute description. All keywords must be entered in up­
percase. You can include comments in the module-definition file by beginning 
the line with a semicolon (;). For a complete list of the keywords and their mean­
ing, see on-line help for information about module-definition files. 



Building OS/2 Applications 359 

14.3.1 Adding a Module-Definition File to the LINK Command 
The module-definition file name is the last field of the link command: 

LINK objects [,[exe]] [,[map]][, [lib]] [,[def]][;] 

This example uses the default libraries: 

LINK sample, sample.exe, sample.map,,sample.def 

When you use a module-definition file, you must use the Jc option on the CL 
command line and link in a separate step. If you are linking without a module­
definition file, you can use a semicolon after your last entry to suppress LINK's 
prompt for the module-definition file name and other missing parameters. 

The segmented-executable linker is the only LINK program that recognizes 
module-definition files. Since it is backwards compatible, it should be the only 
linker in your path. The QuickC linker does not process these files. 

The following sections illustrate ways to use module-definition files. On-line 
help describes all of the commands and options available. 

14.3.2 Creating Dynamic-Link Libraries (DLLs) 
You can build your own dynamic-link libraries. A simple module-definition file 
for such a library with one public function is shown below: 

LIBRARY Mylib INITINSTANCE 

DATA MULTIPLE 

EX PORTS 
My P roe 

You can use the same module-definition file you used to create the dynamic-link 
library as input to the IMPLIB utility. IMPLIB generates a library file with a 
.LIB extension for use by applications calling your dynamic-link routines. 
Section 14.3.5 describes the IMPLIB program. Chapter 16, "Dynamic Linking 
with OS/2," explains how to build a dynamic-link library. 

The LIBRARY statement tells the linker that this is a dynamic-link library 
rather than an application. (Applications use the NAME statement instead of 
the LIBRARY statement.) 

The EXPORTS statement gives the name of the public function. 



360 Advanced Programming Techniques 

You can designate 
exported functions 
in a C source file. 

Using generic library 
names is dangerous. 

The C language keyword _export is an alternative to the EXPORTS statement. 
When export appears in a function declaration or definition, the compiler puts 
the function and its parameter size in the object module's export record. Func­
tions with the _export keyword that are not listed in the module-definition file 
cannot have input/output privileges or alias names. 

Since OS/2 systems have many dynamic-link libraries installed, try to pick a 
name that uniquely identifies your library. If you choose a generic name, such as 
CRT.DLL or WINDOWS.DLL, you run the risk of having your library overwrit­
ten by someone else's dynamic-link library with the same name. 

14.3.3 Creating Programs with 110 Privileges 

The EXPORT statement 
for IOPL functions must 
include parameter size. 

OS/2 programs that must access hardware directly can designate a code segment 
with input/output privileges. This segment can then perform a limited set of 1/0 
instructions but cannot make any calls to dynamic-link libraries. 

You cannot use the C run-time library functions inp and outp for input and out­
put. Their use is limited to real-mode programs. You can, however, use in-line 
assembler code in your C source program to access a port. 

The sample module-definition file below shows two segments for a program: 

NAME IOPROG 

EXETYPE OS/2 

SEGMENTS 
IOSEG IOPL 
TEXT NOIOPL 

EXPORTS 
Charin 4 
CharOut 4 

The first code segment contains the 1/0 portion of the program and has the IOPL 
keyword. The second segment is designated NOIOPL (the default). 

The EXPORTS section names two functions in the IOPL segment that can be 
called by procedures outside the segment. It also specifies the size of the func­
tion's parameters. Procedures with 1/0 privileges must specify the number of 
words needed for their parameters. 

NOTE Unless the user has specified IOPL= YES in the CON FIG.SYS file, the program will 
not load. 



Building OS/2 Applications 361 

14.3.4 Creating Presentation Manager Applications 
The Presentation Manager calls window and dialog procedures inside a Presenta­
tion Manager application. The sample module-definition file below exports these 
procedures and gives the linker additional instructions for building the program. 
Module-definition files are optional for Presentation Manager applications. They 
can be used to control the way different segments of the program are loaded. 

NAME 

EXETYPE 
STACKSIZE 

SEGMENTS 
IN IT 
HELP 
TEXT 

PMSAMPLE 

OS/2 
4096 

WINDDWAPI 

PRE LOAD 
LOADONCALL 
LOADONCALL 

In the preceding example, the NAME statement identifies the program as an appli­
cation named PM SAMPLE. The WINDOW API keyword tells the linker to mark 
the executable file as a Presentation Manager application. Only programs marked 
as windows applications or windows-compatible applications can share the Pre­
sentation Manager screen group. 

The EXETYPE statement tells the linker to build a program that runs only in pro­
tected mode and to produce the optimal executable file for OS/2. 

The ST ACKSIZE statement allocates 4096 bytes of local stack space. This is the 
minimum stack size recommended for Presentation Manager programs. 

You can reduce run-time The SEGMENTS statement controls the way code and data segments are handled. 
memory requirements. By default, segments are not brought into physical memory until needed. The 

PRELOAD keyword in the example tells the system loader to load the _I N IT 
segmentwhentheprogramstarts. The _TEXT and _HELP segments are 
loaded on demand. You can use the compiler's /NT option to generate your own 
segment names, such as _IN IT and _HE LP. Separate segments are useful for 
code that is executed infrequently, such as a help subsystem. This reduces the 
amount of run-time memory required for your application, since each segment 
will be loaded when and if there is a request for it. 

14.3.5 Creating Import Libraries with the IMPLIB Utility 
Applications that call dynamic-link library functions must use import definitions 
that specify the location of each dynamic-link function. The definitions consist of 
a function name and the name of the dynamic-link library file where it resides. 

Although the application can use a module-definition file to create the import 
definitions, it is easier to use import libraries built by the IMPLIB utility. 



362 Advanced Programming Techniques 

IMPLIB creates an import library in the form of a file with a .LIB extension, 
which is read by the linker. At link time, the .LIB file is specified in the LINK 
command line, along with other libraries. 

IMPLIB accepts two types of sources: 

• The module-definition file used to create the dynamic-link library 

• The dynamic-link library itself 

The IMPLIB command has the syntax: 

IMPLIB [/c]libfile deffile [deffile ... ] 

or 

IMPLIB [/c]lib.file dynlib [dynlib ... ] 

The /c option directs IMPLIB to be case sensitive. By default, it is case 
insensitive. 

The lib.file field names the new import library file. The deffile or dynlib fields 
name the input files, which are dynamic-link library or module-definition files. 

The following example creates the import library file named MYLIB.LIB from 
the MYLIB.DLL dynamic-link library: 

I MP LI B my l i b . l i b my l i b . d 11 

For more information about import libraries and IMPLIB, consult on-line help. 

14.4 Link Command-Line Options 

If you did not compile with 
/MT, /MD, or /Ml, suppress 

default library searching. 

This section describes command-line options that control various aspects of the 
linker and the circumstances in which you will need to use them. 

/NOOEFAULTLIBRARYSEARCH (/NOD) 
The /NODEFAULTLIBRARYSEARCH option prevents the linker from search­
ing any library specified in an object file. When you specify this option, you 
should also specify the name of the library to be linked. The minimum abbrevia­
tion for this option is /NOD. 

If you are using the multithread library, LLIBCMT, or the dynamic-link library, 
LLIBCDLL, you should use this option. Use it with dynamic-link libraries built 
with LLIBCDLL. This is mandatory if you did not compile with the /Zl, /MT, or 
/ML options. 



Building OS/2 Applications 363 

You can select a specific library by appending the library name to the /NOD op­
tion, as in 

/NOD: LLIBCMT. LIB 

/NOEXTENOEOOICTSEARCH {/NOE) 
The /NOEXTENDEDDICTSEARCH option prevents the linker from searching 
the extended dictionary, which is an internal list of symbol locations maintained 
by the linker. You need to use this option if a library symbol (such as _setargv, 
_ binmode, or_ varstck) is redefined and you receive error L2044 from the 
linker. The minimum abbreviation for this option is /NOE. 

/NOIGNORECASE {/NO/) 
The /NOIGNORECASE option preserves case sensitivity. By default, LINK 
maps all names to uppercase characters. Because many C function names are a 
mix of upper- and lowercase letters, it is important to use this option. The com­
pile option /Zc causes any name declared with the _pascal keyword to be treated 
without regard to case at the source level. The minimum abbreviation is /NOi. 

/PMTYPE 
The /PMTYPE option is an alternative to specifying Presentation Manager com­
patibility with the NAME statement of a module-definition file. Use the follow­
ing syntax: 

/PMTYPE:type 

Type must be one of the following: 

Type 

PM 

VIO 

NOVIO 

Effect 

The application is an OS/2 Presentation Manager ap­
plication using the Presentation Manager API and 
running in the Presentation Manager screen group. 
This type corresponds to specifying WINDOW API 
in the NAME statement of a module-definition file. 

The application is compatible with the OS/2 Presen­
tation Manager and can run in a window or in a 
separate screen group. This type corresponds to spec­
ifying WINDOWCOMPAT in the NAME statement 
of a module-definition file. 

The application is not compatible with the OS/2 
Presentation Manager. It must run in a separate 
screen group. This type corresponds to specifying 
NOTWINDOWCOMPAT in the NAME statement of 
a module-definition file. 



364 Advanced Programming Techniques 

14.5 The BIND Utility 

You can include functions in a 
/Jound apfllication that are not 

members of the Family AP/. 

The BIND utility converts a protected-mode program into a program that runs in 
both OS/2 and DOS environments. It replaces Family API calls to dynamic-link 
library functions with DOS emulator routines from the APl.LIB library. (See Sec­
tion 14.1.3, "Creating Dual-Mode Programs as Family Applications," for a list of 
Family API calls.) BIND produces a stand-alone program file that can run under 

• OS/2 protected mode 

• OS/2 real mode 

• DOS 2.x and DOS 3.x 

BIND is an alternative to the C compiler's /Fb option described in Section 
14.2.2, "Creating Bound Programs Option." You must use BIND instead of the 
/Fb option when you compile with the /c (compile without link) option or when 
your program includes functions that operate only in protected mode. 

To include functions available only in protected mode, you must run the BIND 
utility with the /n option. Your run-time code must call the Family API function 
DosGetMachineMode to determine whether it is running in real or protected 
mode. When your program executes in real mode, it will be aborted if it tries to 
call a function available only in protected mode. 

You might choose to design your application so it executes different sections of 
code, depending on the machine mode. For example, the application may need to 
keep track of the passage of elapsed time or to detect time-outs. In real mode, 
you might use polling or timing loops or perhaps intercept the timer interrupts. In 
protected mode, you should use the OS/2 semaphore and timer services, such as 
DosSetSem and DosTimer Async, instead. 

Invoke BIND with the following syntax: 

BIND infile [implibs] [linklibs] [lo ouifile] [/n@file] [/n names] [/m mapfile] 

The /n option provides a way to include protected-mode functions. It has two 
formats: 

• A list of one or more names, separated by spaces. 

• The name of a file, preceded by the at(@) sign. The file should consist of a 
list of functions, one name per line. 

The /o option specifies a name for the bound-executable file. If it is not present, 
the name of the input file is used. 



Building OS/2 Applications 365 

The /m option causes a link map to be generated for the real-mode version of the 
executable file. 

To bind a program named TIMER that uses DosTimerAsync to manage time­
outs when running in protected mode, invoke BIND as follows: 

BIND TIMER /n DosTimerAsync 

For more information about BIND and other command-line options, consult on­
line help. 





Creating Multithread 
OS/2 Applications 

CHAPTER 

Microsoft C, version 6.0, provides support for creating multithread applications 
under OS/2. You should consider using more than one thread if your application 
needs to manage multiple activities, such as simultaneous keyboard and mouse 
input. One thread can process keyboard input while a second thread filters mouse 
activities. A third thread could update the display screen based on data from the 
mouse and keyboard threads. At the same time, other threads can access disk 
files or get data from a communications port. 

This chapter explains the features in C 6.0 that support the creation of multi­
thread programs. It also describes some important ways in which programming 
for OS/2 is different than programming for DOS. 

15.1 Multithread Programs 
OS/2 performs the scheduling and allocation of real hardware resources to multi­
ple programs, or "processes." It does not actually schedule the processes them­
selves; it schedules threads belonging to the processes. 

A thread is basically a path of execution through a program. It is also the smallest 
unit of execution that OS/2 schedules. A thread consists of a stack, the state of 
the CPU registers, and an entry in the execution list of the system scheduler. 
Each thread shares all of the process's resources. 

A process consists of one or more threads and the code, data, and other resources 
of a program in memory. Typical program resources are open files, semaphores, 
and dynamically allocated memory. A program executes when the system sched­
uler gives one of its threads execution control. The scheduler determines which 
threads should run and when they should run. Threads of lower priority may have 
to wait while higher priority threads complete their tasks. 

367 



368 Advanced Programming Techniques 

Threads operate 
independently and are 

unaware of other threads. 

All threads in a process operate independently of one another. Unless you take 
special steps to make them visible to each other, each thread executes while 
completely unaware of the existence of other threads in a process. Threads shar­
ing common resources, however, must coordinate their work by using flags, 
semaphores or some other method of interprocess communication. See Section 
15.3, "Writing a Multithread Program," for more information about synchroniz­
ing threads. 

15.1.1 Library Support 
All shared functions 

in a multithread 
program must be re-entrant. 

If one thread is suspended by the OS/2 scheduler while executing the printf 
function, one of the program's other threads might start executing. If the second 
thread also calls printf, data might be corrupted. To avoid this, access to static 
data used by the function must be restricted to one thread at a time. This process 
of restricting access to certain data is called serialization. 

You do not need to serialize access to stack-based (automatic) variables because 
each thread has a different stack. Therefore, a function that uses only automatic 
(stack) variables is re-entrant. The standard C run-time libraries, such as 
SLIBCE, have a limited number of re-entrant functions. A multithread program 
needing to use C run-time library functions that are normally not re-entrant 
should be built with the multithread library LLIBCMT.LIB. 

The Multithread C Library LLIBCMT.LIB 
The support library LLIBCMT.LIB is a re-entrant large-model library for cre­
ating multithread programs. 

A multithread program All calls to library functions must use the large-model calling interface (far code 
linked with LLIBCMT.LIB can pointers, far calls, and far data pointers). When your application calls functions 

use any memory model. in this library, 

• All library calls must be far calls. 

• All library calls must use the C calling convention; programs compiled using 
the /Gr (fastcall calling convention) or /Ge (Pascal calling convention) op­
tions must use the standard include files for the run-time library functions 
they call. 

• All data and code pointers must be far pointers. 

• Variables passed to library functions must either be passed by value or cast to 
a far address. 

• Your main function must be declared far if you are compiling with the small 
or compact memory models. 



Programs built with 
ll/BCMT.LIB are entirely 

self-contained. 

Creating Multithread DS/2 Applications 369 

You do not need to explicitly declare far pointers if you are using the compact, 
large, or huge memory models, since these models use far pointers as default. For 
the large and huge memory models, the function calls are also far by default. 

A small-model program calling a library function such as isupper, for example, 
must use declarations like the following: 

int _far _cdecl isupper( int _c ) ; 

Programs built with LLIBCMT.LIB do not share C run-time library code or data 
with any dynamic-link libraries they call. Chapter 16 explains how to build DLLs 
and how to share code and data between processes. 

Alternatives to LLIBCMT. LIB 
If you choose to build a multithread program without using LLIBCMT.LIB, you 
must do the following: 

• Use the standard C libraries and limit library calls to the set of re-entrant 
functions. 

• Use the OS/2 API thread management functions, such as DosCreateThread. 

• Provide your own synchronization for functions that are not re-entrant by 
using OS/2 services such as semaphores and the DosEnterCritSec and 
DosExitCritSec functions. 

The C run-time library functions listed below are re-entrant and can be used in 
multithread programs linked with the standard libraries. 

abs memccpy strcat strnset 
atoi memchr strchr strrchr 
atol memcmp strcmp strrev 
bsearch memcpy strcmpi strset 
chdir memicmp strcpy strstr 
getpid memmove stricmp strupr 
halloc memset strlen swab 
hfree mkdir strlwr tolower 
itoa movedata strncat toupper 
labs putch strncmp 
lfind rmdir strncpy 
lsearch segread strnicmp 

WARNING The multithread library LLIBCMT.LIB includes the _beginthread and 
_endthread functions. The _beginthread function performs initialization without which many 
C run-time functions will fail. You must use _beginthread instead of DosCreateThread in C 
programs built with LLIBCMT.MB if you intend to call C run-time functions. 



370 Advanced Programming Techniques 

The Multithread Library Compile Option {/MT) 
The /MT option for the CL command is the best way to build a multithread pro­
gram with LLIBCMT.LIB. The /MT option embeds the LLIBCMT library name 
in the object file. Using the /MT option automatically specifies the /ALw /FPi 
/G2 ID MT options. The following list describes what these options do. 

Switch 

/ALw 

/FPi 

/G2 

IDMT 

Effect 

Use the large memory model with separate stack seg­
ment; do not reload the DS register as part of the 
entry sequence for every function 

Generate in-line floating-point instructions and 
select the emulator math package 

Use the 80286 processor instruction set 

Use the multithread version of the include files 

These options can be combined with other options to specify different memory 
models and different relationships between the data segment and the stack. You 
can override the /G2 and /FPi options by specifying a different option later on the 
command line. The following example shows how to override the floating-point 
package option: 

CL /MT /FPa /Lp PROG.C 

NOTE You cannot replace the /MT option with /Alw /FPi /G2. You must use /MT to 
generate multithread programs. 

15.1.2 Include Files 
The Microsoft C 6.0 include files contain conditional sections for multithread ap­
plications using LLIBCMT.LIB. To compile your application with the appro­
priate definitions, you can 

• Compile with the /MT option described in Section 15.1.1, "Library Support." 

• Define the symbolic constant MT in your source file or on the command line 
with the ID option. 



Creating Multithread OS/2 Applications 371 

Always use the Standard include files declare C run-time library functions as they are imple-
standard include files. mented in the libraries. If you used the Maximum Optimization (/Ox) or Register 

Calling Convention (/Gr) option, the compiler assumes that all functions should 
be called using the register calling convention. The run-time library functions 
were compiled using either the C or the FORTRAN/Pascal calling convention, 
and the declarations in the standard include files tell the compiler to generate cor­
rect external references to these functions. 

See Section 15.4, "Compiling and Linking," for examples of how to use the MT 
constant. 

15.1.3 C Run-Time Library Functions for Thread Control 
All OS/2 programs have at least one thread. Any thread can create additional 
threads. A thread can complete its work very quickly and then terminate, or it can 
stay active for the life of the program. 

The LLIBCMT and LLIBCDLL C run-time libraries provide two functions for 
thread creation and termination: the _ beginthread and _end thread functions. 
They also declare the global variable _ threadid, which contains the address of 
an application's current thread identifier. 

The _ beginthread function creates a new thread and returns a thread identifier if 
the operation is successful. The thread will terminate automatically if it com­
pletes execution, or it can terminate itself with a call to endthread. 

The global variable _ threadid holds the address of the identifier of the current 
thread. It is defined in the STDDEF.H file as shown below: 

/*define pointer to thread id value*/ 
extern int far * _threadid; 

WARNING /fyou are going to call C run-time routines from a program built with 
LL/BCMT.L/B, you must start your threads with the _beginthread function. Do not use the 
OS/2 functions DosExit and OosCreateThread. Using DosSuspendThread can lead to a 
deadlock condition when more than one thread is blocked waiting for the suspended thread 
to complete its access to a C run-time data structure. 

The _ beginthread and _end thread functions are described in detail below. 
Section 15.2 illustrates their use in a sample multithread program. 



372 Advanced Programming Techniques 

All threads in a process 
can execute concurrently. 

The _beginthread Function 
The _ beginthread function creates a new thread. A thread shares the code and 
data segments of a process with other threads in the process but has its own 
unique register values, stack space, and current instruction address. The system 
gives CPU time to each thread, so that all threads in a process can execute con­
currently. You can find a complete description of_ begin thread and its argu­
ments in on-line help. 

The _ beginthread function is similar to the DosCreateThread function in the 
OS/2 API with these differences: 

• The_ begin thread function lets you pass arguments to the thread. 

• The stack address points to the bottom of the stack. It is the address of the 
start of an array or of the start of a block of dynamically allocated memory. 
When you use the DosCreateThread call, the stack address points to the top 
of the stack. 

• If you specify NULL for the stack address, _begin thread manages allocation 
and deallocation of the thread stack for you. This option is advantageous be­
cause it is difficult for your program to determine when a thread has termi­
nated, so you cannot know when to deallocate the thread stack. However, 
_ beginthread maintains enough information to know when a thread has ter­
minated and deallocates the thread's stack the next time its thread ID is used. 

The _ beginthread function returns the thread ID number of the new thread if 
successful or -1 if there was an error. Errors include specifying an odd-address 
stack or an odd- or zero-length stack (which is different than passing NULL for 
the stack address) or trying to create too many threads. The multi thread library, 
LLIBCMT.LIB, supports the maximum number of threads allowed by OS/2. 

The endthread Function 
The _end thread function terminates a thread created by _ beginthread. Threads 
terminate automatically when they complete. The _end thread function is useful 
for conditional termination from within a thread. A thread dedicated to commu­
nications processing, for example, can quit if it is unable to get control of the 
communications port. You can find a complete description of end thread in 
on-line help. -



Creating Multithread OS/2 Applications 373 

15.2 Sample Multithread C Program 
BOUNCE.C is a sample multithread program that creates a new thread each time 
the letter 'a' or 'A' is entered at the keyboard. Each thread bounces a "happy 
face" of a different color around the screen. Up to 32 threads can be created. The 
program's normal termination occurs when 'q' or 'Q' is entered. It will also ter­
minate if it receives the CTRL+C or CTRL+BREAK signals. See Section 15.4, "Com­
piling and Linking," for details on compiling and linking BOUNCE.C. 

/* 

* 
Bounce - Creates a new thread each time the letter 'a'is typed. 

* 
Each thread bounces a happy face of a different color around the screen. 
All threads are terminated when the letter 'q' is entered or when 

* 
* 

the CTRL+C/CTRL+BREAK signals are received. 

* 
* 
* 

This program requires the multithread library. For example, compile 
with the following command line: 

CL /MT BOUNCE.C 
*I 

#define INCL_NOCOMMON 
#define INCL_NOPM 
#define INCL_DOSPROCESS 
#define INCL_DOSSEMAPHORES 
#define INCL_DOSSIGNALS 
#define INCL_VIO 
#define INCL_KBD 
#include <os2.h> 
#include <stdlib.h> 
#include <string.h> 
#include <stdio.h> 
#include <process.h> 

#define STACK_SIZE 4096 
#define MAX_THREADS 32 

/* Use only what we need */ 
/* Don't need PM */ 
/* DosBeep and DosSleep */ 
/* OS/2 semaphore functions */ 
!* OS/2 signal functions */ 

void main( void ); /*Thread 1: main*/ 
void KbdThread( void l; /*Thread 2: keyboard input*/ 
void BounceProc( char* MyID ); /*Threads 3 ton: display*/ 
void VioClrScr( void l; /*Screen clear*/ 
void ShutDown( void l; /*Program shutdown*/ 
void VioWrtCStr( char *pchString, /* Write string to display */ 

unsigned usRow, unsigned usColumn ); 
void pascal far SigHandler( unsigned SigArg,/* Signal handler*/ 

unsigned SigNum l; 
/* Screen clear macro */ 

#define VioClrScr() VioScrollDn( 0, 0, 50, 80, 50, BlankCell, 0 ) 



374 Advanced Programming Techniques 

struct tagCoords 
{ 

/* Display coordinates */ 

} ; 

int xLoc; 
int yLoc; 
int xlnc; 
int ylnc; 

unsigned long 
unsigned long 

RunFlag = 0; 
ScreenLock = 0; 

I* "Keep Running" semaphore */ 
!* Screen update semaphore */ 

char Bl ankCel l [2] 
VIOMODEINFO vmi = 

{ 0x20, 0x07 l ; 
sizeof( VIOMODEINFO 

PFNSIGHANDLER PrevHandler; 
unsigned int PrevAction; 

void main() 
{ 

} ;/* Mode information */ 

I* for SetSigHandler call */ 
/*for SetSigHandler call */ 

/* Thread One */ 

I* Get display screen's text row and column sizes & clear the screen.*/ 
Vi oGetMode( &vmi, 0 ) ; 
Vi oCl rScr( l; 
VioWrtCStr( "Threads running: 00. Press 'a' to start another thread", 

vmi . row - 1, 0 l ; 

/* Set the "we are running" semaphore. */ 
DosSemSet( &RunFlag l; 

I* Start keyboard thread. Let _beginthread allocate memory 
* for the thread's stack. 
*I 

_beginthread( KbdThread, NULL, STACK_SIZE, NULL ); 

I* Install signal handler for CTRL+BREAK & CRTL+C. */ 
DosSetSigHandler( (PFNSIGHANDLERlSigHandler, &PrevHandler, &PrevAction, 

SIGA_ACCEPT, SIG_CTRLC l; 

!*Wait for "running" semaphore to clear (from signal or 'q' key).*/ 
DosSemWait( &RunFlag, SEM_INDEFINITE_WAIT ); 

_endthread( l; !* Ki 11 all threads */ 



Creating Multithread OS/2 Applications 375 

void pascal far SigHandler( unsigned int SigArg, unsigned int SigNum l 
I 

static char BreakMsg[J - "Signal Termination"; 

ShutDown (); 
VioWrtCStr( BreakMsg, vmi .row - 1, 0 l; 
I* Restore original signal handler for CTRL+BREAK & CRTL+C. */ 
DosSetSigHandler( (PFNSIGHANDLER)PrevHandler, &PrevHandler, &PrevAction, 

PrevAction, SIG_CTRLC ); 

void ShutDown( void l 
I 

/*Clean up display when done*/ 

/* Lock out screen updates from BounceProc & clear "running" semaphore */ 
DosSemWait( &ScreenLock, SEM_INDEFINITE_WAIT l; 
DosSemSet( &Screen Lock ) ; 
VioCl rScr( l; 
DosSemCl ear( &Run Flag ) ; 

void KbdThread( void ) 
{ 

I* Thread Two: keyboard */ 

KBDKEYINFO 
char 
char 

do 
{ 

Key Info; 
fhreadNr - 0; 
NThreadMsg[4J; 

/*for KbdCharln call */ 

I* Block this thread by waiting for keyboard input. */ 

KbdCharln( &Keylnfo, IO_WAIT, 0 ) ; 
if( tolower( Keylnfo.chChar 'a' && ThreadNr <MAX THREADS) 
{ 

ThreadNr++; 
_beginthread( BounceProc, NULL, STACK_SIZE, &ThreadNr ); 
VioWrtCharStr( NThreadMsg, sprintf( NThreadMsg, "%02d", ThreadNr ), 

vmi .row - 1, 17, 0 ); 

while( tolower( Keylnfo.chChar ) !- 'q' J; 

Shut Down (); 

I* getrandom returns a random number between min and max, which must be in 
* integer range. 
*/ 

#define getrandom( min, max ) ((rand() % (int)(((max) + 1) - (min)))+ (min)) 



376 Advanced Programming Techniques 

void BounceProcC char * MyID 
{ 

int xOld, yOld; 
ch a r My Ce l l [ 2 J ; 
char CurrentCell[2J; 
int Cell Len= 2; 
struct tagCoords Coords; 

I* Threads Three to n */ 

I* Generate update increments and initial display coordinates. */ 
srandC (unsigned) *MyID * 3 ); 
Coords. xloc get random( 0, vmi. col ) ; 
Coords .yloc get random( 0, vmi. row ) ; 
Coords.xinc getrandom( -3, 3 ); 
Coords.yinc getrandom( -3, 3 ); 

/*Set up "happy face" & generate color attribute from thread number.*/ 
if( *MyID > 16) 

MyCell[0] 0x01; /*outline face*/ 
else 

MyCel 1[0] 0x02; /*solid face*/ 
MyCell[l] *MyID & 0x0F; I* force black background*/ 

for( ; ; ) 
{ 

I* Wait for display to be available, then lock it. */ 
DosSemWaitC &Screenlock, SEM_INDEFINITE_WAIT ); 
DosSemSet( &Screen Lock ) ; 

I* If we still occupy the old screen position, blank it out. */ 
Vi oReadCel l Str( CurrentCel l, &Cel llen, yOl d, xOl d, 0 ) ; 
i f ( Current Ce l l [0 J == My Ce l l [0 J & & Current Ce l l [l J == My Ce l l [l J 

VioWrtCellStrC BlankCell, Celllen, yOld, xOld, 0 ); 

I* Draw new face, then clear screen lock*/ 
VioWrtCellStrC MyCell, Celllen, Coords.yloc, Coords.xloc, 0 ); 
DosSemClear( &Screenlock ); 

I* Increment the coordinates for next placement of the block. */ 
xOld = Coords.xloc; 
yOld = Coords.yloc; 
Coords.xloc += Coords.xinc; 
Coords.yloc += Coords.yinc; 



Creating Multithread 05/2 Applications 377 

/* If we are about to go off the screen, reverse direction*/ 
if( Coords.xloc < 0 11 Coords.xloc >~ vmi .col ) 
I 

Coords.xlnc -Coords.xlnc; 
DosBeep( 400, 50 ); 

if( Coords .yloc < 0 11 Coords .yloc >~ vmi. row ) 
I 

Coords.ylnc -Coords.ylnc; 
Dos Beep ( 600, 50 l; 

/* Sleep to slow down screen update rate */ 
DosSleep( 75L ); 

void VioWrtCStr( char *pchString, unsigned usRow, unsigned usColumn 
I 

VioWrtCharStr( pchString, strlen( pchString ), usRow, usColumn, 0 ); 

15.3 Writing a Multithread Program 

Your program must provide 
for resource conflicts. 

When you write a program with multiple threads, you must coordinate their 
behavior and use of the program's resources. You must also make sure that each 
thread receives its own stack. 

Sharing Common Resources 
Each thread has its own stack and its own copy of the CPU registers. Other re­
sources, such as files, static data, and heap memory, are shared by all threads in 
the process. Threads using these common resources must coordinate their work. 
OS/2 provides semaphores and the DosEnterCritSec and DosExitCritSec sys­
tem services for synchronizing resources. 

When multiple threads are accessing static data, your program must provide for 
possible resource conflicts. Consider a program where one thread updates a static 
data structure containing x,y coordinates for items to be displayed by another 
thread. If the update thread alters the x coordinate and is preempted before it can 
change they coordinate, the display thread may be scheduled before they coordi­
nate is updated. The item would be displayed at the wrong location. You can 
avoid this type of problem by using semaphores to control access to the structure. 



378 Advanced Programming Techniques 

RAM semaphores are taster 
than system semaphores. 

Using semaphores is a way of communicating among threads or processes that 
are executing asynchronously of one another. This communication is usually 
used to coordinate the activities of multiple threads or processes, typically by con­
trolling access to a shared resource by "locking" and "unlocking" the resource. 
To solve the x,y coordinate update problem described above, the update thread 
would set a semaphore indicating that the data structure is in use before perform­
ing the update. It would then clear the semaphore when both coordinates had 
been processed. The display thread must wait for the semaphore to be clear 
before updating the display. This process of waiting for a semaphore is often 
called "blocking" on a semaphore because the process is blocked and cannot con­
tinue until the semaphore clears. 

OS/2 supports two types of semaphores: system and RAM semaphores. You 
must use a system semaphore if more than one process needs to access the sema­
phore. You can use the much faster RAM semaphores if their use is confined to 
the threads within a process. 

The BOUNCE.C program in Section 15.2 uses a RAM semaphore named 
Screen Lock to coordinate screen updates. Each time one of the display 
threads is ready to write to the screen, it calls DosSemWait with a pointer to 
Sc re en Lo c k and constant SEM INDEFINITE WAIT to indicate that the - -
DosSem Wait call should block on the semaphore and not time out. If the 
Screen Lock semaphore is clear, the wait function returns immediately. Other­
wise, the thread blocks until the semaphore clears. When the thread receives con­
trol again, it calls DosSemSet to set the S c r e e n Lo c k semaphore so other 
threads cannot interfere with the display. When the thread completes the display 
update, it releases the semaphore by calling DosSemClear. 

The ShutDown routine in BOUNCE.C is called from both the keyboard thread 
and the signal handler. The routine uses the Screen Lock semaphore to make 
sure other threads do not write to the screen after the screen has been cleared. 

Screen displays and static data are only two of the resources requiring careful 
management. For example, your program may have multiple threads accessing 
the same file. Since another thread may have moved the file pointer, each thread 
must reset the file pointer before reading or writing. In addition, each thread must 
make sure that it is not preempted between the time it positions the pointer and 
the time it accesses the file. These threads should use a semaphore to coordinate 
access to the file by bracketing each file access with DosSemRequest and 
DosSemClear calls. The following code fragment illustrates this technique: 



Stack checking is 
performed for each thread. 

Creating Multithread OS/2 Applications 379 

HSEM hsemIOSem; 

DosSemRequest( hsemIOSem, SEM_INDEFINITE_WAIT ); 
fseek( fp, desired_position, 0L ); 
fwrite( data, sizeof( data ), 1, fp ); 
DosSemClear( hsemIOSem ); 

Thread Stacks 
Al 1 of an application's default stack space is allocated to the first thread of execu­
tion, which is known as thread 1. As a result, you must allocate memory to pro­
vide a separate stack for each additional thread your program needs. You must do 
this before creating the thread. Stack checking, if enabled, is performed for each 
thread. The keyboard thread in BOUNCE.C calls the malloc function each time 
the user wants to start a new display thread. If the allocation is successful, the 
_begin thread function is called. The first argument in the _begin thread call is a 
pointer to the BounceProc function, which will execute the threads. The last ar­
gument is an ID number that is passed to BounceProc. BounceProc uses the ID 
number to seed the random number generator and to select the thread's color at­
tribute and display character. 

Threads that make calls to the C run-time library or to the OS/2 API must allow 
sufficient stack space for the library and API functions they call. The C printf 
function requires more than 500 bytes of stack space, and you should have 2K of 
stack space available when calling OS/2 API routines. To be safe, allocate at 
least 4K for each thread's stack. 

Use as little static Since each thread has its own stack, you can avoid potential collisions over data 
data as possible. items by using as little static data as possible. Design your program to use auto­

matic stack variables for all data that can be private to a thread. The only global 
variables in the BOUNCE.C program are either RAM semaphores or variables 
that never change once they are initialized. 

Signal Handling 
Signals are events that interrupt the normal flow of your program's execution. 
They are similar to hardware interrupts, but they come from the operating system 
or other programs and occur asynchronously. If you do not provide your own 
routines, OS/2 will take the default action for each signal, such as cancelling 
your program when the user enters CTRL+BREAK. You can install your own signal 
handler with the OS/2 API function DosSetSigHandler. 

WARNING The C run-time function signal is not supported in the multithread library 
LLIBCMT.LIB. 



380 Advanced Programming Techniques 

When a signal occurs, OS/2 always suspends thread 1 and gives control to the sig­
nal handler, if installed. As a result, thread 1 must not be executing C run-time 
library code when the signal handler gets control or a potential deadlock condi­
tion can occur. In addition, the signal handler must not call C run-time library 
functions. Consider the following sequence of events: 

1. Thread 2 is executing printf when the user interrupts it by pressing CTRL+C. 

The program has designated a CTRL+C signal handler, so OS/2 immediately 
transfers control to the signal handler in thread 1. 

2. The signal handler in thread 1 tries to execute the statement: 

printf( "AC: Do you want to quit?" ); 

3. The printf call in thread 2 has already locked output to the console, so thread 
1 's printf must wait for release of that lock. 

4. The thread 2 printf function never regains control because the signal handler 
must complete before other processing can continue. As a result, it is never 
able to release the lock on console output. 

If a situation like this happens, the program will wait indefinitely for resolution 
of the two mutually exclusive conditions. 

A multi thread C program can process signals if it adheres to the following 
restrictions: 

• Thread 1 must be dedicated to signal handling and must not call the C run­
time library once it identifies the signal handler to OS/2 using the API func­
tion DosSetSigHandler. When the signal handler gets control, it should set a 
semaphore or flag so other threads in the program can determine that the sig­
nal has occurred and is being processed. 

• The other threads in the process must check the status of semaphores set by 
thread 1 and respond accordingly. 

The BOUNCE.C sample program waits until thread 2, the keyboard handler, 
starts before installing the signal handler. It then dedicates thread 1 to signal 
handling by having the thread wait for a semaphore. Thread 1 blocks until 
either the keyboard thread or the signal handler clears the semaphore. It then 
calls _endthread to terminate the process, including all the other threads. 



Creating Multithread OS/2 Applications 381 

15.4 Compiling and linking 
The steps for compiling and linking the multithread program BOUNCE.Care 
given below: 

I. Ensure that the files LLIBCMT.LIB and OS2.LIB are in the directory 
specified in your LIB environment variable. 

The file LLIBCMT.LIB takes the place of the regular C run-time library files. 
The file OS2.LIB provides support for OS/2 system calls made in the pro­
gram, such as KbdCharln. 

2. Compile and link the program with the CL command-line option /MT. 

The /Lp option instructs the compiler to create a protected-mode application. 
The /MT option implies the large memory model with a separate stack seg­
ment (/ALw). The multithread library functions have their own data segment 
but use the caller's stack. This option also sets the library search record to 
LLIBCMT.LIB and sets the MT symbolic constant for the multithread ver­
sions of the include files. The /link GRTEXTP option instructs the linker to 
search GRTEXTP.LIB, the character-graphics library for protected mode. 

To compile and link in a single step, use this CL command line: 

CL /Lp /MT BOUNCE.C /link grtextp 

For separate compile and link steps, you invoke the compiler and the linker 
with this code: 

CL /c /Lp /MT BOUNCE.C 
LINK BOUNCE; 

3. If you choose not to use the /MT option, you must take these steps: 

• Ensure that the special multithread include file support is enabled. 

• Use the /Aw option. This is required because the functions in 
LLIBCMT.LIB have their own data segment but use the caller's 
stack. The /Aw option specifies a segment setup of SS not equal 
to DS with DS not reloaded on function entry. 

• Make sure that only far pointers are passed to library functions. 

• Make sure that all variables are either passed by value or cast to a far 
address (the large memory model). 

• Specify the multithread library and suppress default library selection. 



382 Advanced Programming Techniques 

The multithread include files are used when you define the symbolic constant 
MT. You can do this with the CL command line option ID MT or within the 
C source file before any include statements, as shown below: 

#define MT 
#include <stdlib.h> 

To compile and link in a single step with the default libraries suppressed, this 
is the complete CL command line: 

CL /Lp /ALw /Zl /D MT BOUNCE.C /link LLIBCMT+OS2 

To perform a two-step compile and link with the default libraries suppressed 
in the link step, use these commands: 

CL /c /Lp /ALw /D MT BOUNCE.C 
LJNK /NOD BOUNCE,, ,LLIBCMT+OS2; 

4. Run the program under OS/2. 

15.5 Avoiding Problem Areas 
There are several problems you can encounter in creating, linking, or executing a 
multithread C program. Some of the more common ones are described here. 

Problem 

LINK searches for 
mLIBCfLIB. 

You get error 
SYS1943. A program 
caused a protection 
violation. 

Probable Cause 

If you omit the /NOD option from the LINK com­
mand, LINK searches for the default library. The 
default library should not be used with multithread 
programs. The /NOD option tells the computer not 
to search the default libraries. This problem can also 
be avoided by compiling with the /Zl option, which 
suppresses default library search records in the ob­
ject files. 

Many OS/2 programming errors cause protection vi­
olations. A common cause of protection violations is 
the indirect assignment of data to null pointers. This 
results in your program trying to access memory that 
does not "belong" to it, so a protection violation is 
issued. Protection violations also occur if your pro­
gram gets a memory buffer from the operating sys­
tem and then tries to read or write past the end of the 



Your program gener­
ates numerous compile 
and link errors. 

Creating Multithread 05/2 Applications 383 

buffer. Another cause of this error is failing to spec­
ify the condition "SS is not equal to DS" in the CL 
command invocation. Specify the correct conditions 
with the I ALw memory model option. 

An easy way to detect the cause of a protection viola­
tion is to compile your program with Code View in­
formation, then run it in Code View. When the 
protection fault occurs, OS/2 will transfer control to 
Code View, and the cursor will be positioned on the 
line that caused the problem. See Chapter 9, "Debug­
ging C Programs with Code View," for more infor­
mation about the Code View debugger. 

If you attempt to compile and link a multi thread 
program without defining the symbolic constant MT, 
many of the definitions required for the multi thread 
library will be missing. Define MT on the CL com­
mand line with /MT or /D MT, or use lfadefine MT 
in your program. 

You can eliminate many potential problems by setting the compiler's warning 
level to one of its highest values and heeding the warning messages. By using the 
/W3 or /W4 warning level options, you can detect unintentional data conver­
sions, missing function prototypes, and use of non-ANSI features. 

15.6 Using the Protected-Mode Code View Debugger 
The protected-mode version of Code View (CVP) has special commands for 
debugging multiple processes and threads. It adds Thread and Process items to 
the standard Run Menu. Your CONFIG.SYS file must specify IOPL=YES for 
protected-mode Code View to run. 

To enable multiple process debugging, invoke Code View with the /0 (offspring) 
option. Selecting the Process item from the Run Menu brings up a list box of 
child processes associated with the parent process. You choose the process to 
be debugged by selecting it with the list box. The Process item will be grey 
(unselectable) if you did not specify the /0 option. The /0 option applies only to 
debugging multiple processes. You do not need to use it to debug multiple 
threads. 

Selecting the Thread item from the Run Menu produces a list box showing the 
status of each thread associated with the current process. You can use the list box 
to designate a different current thread or to change a thread's status. There are 
equivalent keyboard commands for each option. 



384 Advanced Programming Techniques 

15.6.1 Compiling with the /li Option 
The compiler option /Zi causes the compiler to include symbolic information and 
line numbers in the object file for debugging with Code View. If you run LINK in 
a separate step, you must invoke it with the /CODEVIEW option, which can be 
abbreviated as /CO. To compile and link the sample program BOUNCE.Cina 
single step, enter this code: 

CL /MT /Zi BOUNCE. C 

The following commands are for a two-step compile and link: 

CL le /MT /Zi BOUNCE.C 

link /CO BOUNCE; 

15.6.2 Prompt for Thread Number 
When you debug a protected-mode program with Code View, the command 
prompt is preceded by a three-digit number indicating the current thread. Thread 
1 is always the current thread when you start a program. The prompt appears as 

001> 

15.6.3 Thread Commands 
Protected-mode Code View (CVP) has special commands to control the execution 
of threads. The Code View Thread commands are accessed using the Thread com­
mand from the Run menu. Dialog commands for thread control start with the 
tilde character(-). Thread commands specify which thread(s) the command ap­
plies to, followed by the command. The syntax of the dialog version of the 
Thread command is 

-[specifier[ command]] 

Entering the tilde character by itself displays the status of all threads. Enter the 
tilde and a specifier to see the status of particular threads. Legal values for the 
specifier field are listed below: 

Specifier 

(blank) 

# 

Function 

Displays the status of all threads 

Specifies the last thread that executed 

Specifies the current thread 



Creating Multithread OS/2 Applications 385 

* Specifies all threads 

n Specifies the number of an existing thread 

The optional command field controls the way specified threads are executed. If 
it is omitted, status is displayed, but thread activity is not affected. Thread com­
mands are summarized below, followed by examples. For more information 
about command execution and about how other threads in the process may be 
affected, consult on-line help. 

Command 

(blank) 

BP 

E 

F 

G 

p 

s 
T 

u 

Function 

Display status 

Set a breakpoint (used with the normal Breakpoint 
Set command syntax) 

Execute in slow motion 

Freeze the thread(s) 

Pass control to a thread 

Execute a program step 

Select specified thread as the current thread 

Trace a thread 

Unfreeze thread(s) 

Controlling a Thread Being Debugged 
If your program has multiple threads using the same functions, you may want to 
monitor the behavior of one particular thread. The standard Breakpoint Set com­
mand will affect every thread. The thread Breakpoint Set command lets you limit 
the breakpoint to one or more threads. The sample program BOUNCE.Chas mul­
tiple threads executing the function BounceProc. This function erases the sym­
bol at the thread's current screen position, writes it to a new location, computes 
the display coordinates to be used the next time the thread receives control, and 
then sleeps to slow down the rate at which the display is updated. 

Since thread-specific breakpoints can only be set for threads that are already run­
ning, you can set a breakpoint that will be executed after the target thread starts. 
In BOUNCE.C, the source line in thread 2 that tests each character received from 
the keyboard is a good location for such a breakpoint (line 113). Since thread 2 is 
not active when the program begins, you must first set a breakpoint in thread 1 
after it has started thread 2 (line 73). The first breakpoint can be set by conven­
tional methods or by using the thread breakpoint command: 

001>-lBP . 73 



386 Advanced Programming Techniques 

Once you have reached the first breakpoint, you can set the keyboard test break­
point for thread 2: 

001>-2BP .113 

The BOUNCE.C program starts a new thread each time the letter 'a' is typed. 
('A' is also accepted.) Once you have started the desired number of threads, you 
can trigger the thread 2 breakpoint without starting a new thread by pressing 
another key, such as the space bar. When you reach the breakpoint in thread 2, 
you can set breakpoints for the other threads. To set a breakpoint in thread 3 's 
BounceProc function immediately after it has updated the screen (source line 
168), enter this code: 

001>-3BP .168 

When this breakpoint is reached, the Code View prompt will reflect the current 
thread number: 

003> 

You can then set other breakpoints for the thread, execute it in slow motion 
without any other threads running in the background, or enter other Code View 
commands, such as Breakpoint Clear. 

Freezing and Unfreezing Threads 
Frozen threads do not execute. It can be useful to freeze one or more threads so they don't interfere with execu­

tion of a thread you are debugging. In the BOUNCE.C program, for example, 
you can monitor the path of a single bouncing ball by freezing all but one of the 
bounce threads. Frozen threads will not be scheduled for execution. 

If you have a large number of threads running, you can freeze all of them in a 
single command and then unfreeze the threads you want to monitor. Unfrozen 
threads continue to operate normally and will execute any breakpoints they en­
counter. The following example freezes all threads, enables threads 1 and 4, and 
then checks the status of all threads: 

001>-*F 
001>-l u 
001>-4U 
001>-

If thread 1 is waiting for a semaphore when the status command is invoked, the 
report shows the following: 

001 Blocked 
002 Frozen 
003 Frozen 
004 Runnable 



Creating Multithread OS/2 Applications 387 

Switching to a Particular Thread 
The S (select) and E (execute) variations of the Thread command can be used to 
switch the current thread. However, when another thread causes the program to 
stop by hitting a breakpoint, the debugger will select the thread that encountered 
the breakpoint as the current thread. 

If you include -.Sin the breakpoint command, Code View stops the thread that 
encounters the breakpoint, then immediately switches back to the current thread. 
The following example selects thread 4, sets a breakpoint at line 168 in thread 3, 
and switches to thread 4 when the breakpoint is hit: 

001>-4S 
001>-3BP .168 "-.S" 
00l>G 

15.6.4 Screen Groups Used by CodeView 
Only one Code View session at a time is supported in protected mode. You can­
not run multiple copies in concurrent screen groups. 

The View Output Screen command ( \) works differently in protected mode and 
in real mode. In protected mode, your application's output will be displayed for 
three seconds. The display will then revert to the Code View display. To view the 
output window for a longer period, specify a different delay interval, measured in 
seconds, as follows: 

\10 

I 
/ 





Dynamic Linking 
with OS/2 

CHAPTER 

An OS/2 dynamic-link library (DLL) is an executable file containing functions 
that are available to other programs. In a statically linked program, you link the 
program with all its component functions when you build the executable file. In a 
dynamically linked program, the program-build step does not link all of the code. 
Instead, OS/2 links calls to functions in dynamic-link libraries at program load 
time or while the program is running. The DLL code and data become part of the 
address space of each program, even when the DLL is being accessed by several 
application programs. 

This chapter describes how to build your own dynamic-link libraries and how to 
build programs that use them. 

16.1 Overview of Dynamic Linking 
Dynamic linking is the process of resolving external calls when a program runs, 
instead of at link time. It offers several benefits: 

• Multiple programs can use the same dynamic-link library simultaneously. 
Since only one copy of the DLL is in memory, there are fewer demands for 
physical memory and swap space. 

• Updates to dynamic-link libraries do not affect the programs that use them, 
since the only connection between DLLs and application programs is the 
function-calling sequence. 

• Application programs require less disk space and memory, since their execu­
table program files contain the names of DLL functions but not the code for 
the functions. 

389 



390 Advanced Programming Techniques 

• Dynamic-link libraries can call other dynamic-link libraries. 

• DLLs can extend the OS/2 operating system to provide new or improved 
system services. This is possible because most of OS/2 consists of a set of 
dynamic-link libraries. 

16. 1. 1 Load-Time and Run-Time Linking 

For load-time dynamic 
linking, build a program that 
calls DLL functions by name. 

Dynamic linking can take place both at program load time and while the program 
is running. A program can call functions in more than one DLL and combine 
both load-time and run-time linking. 

The linker creates special records containing the name of each DLL subroutine 
and the name of its DLL file. It does not put any DLL code into the program's 
executable file. At load time, OS/2 dynamically links the program and its DLLs. 
It brings the program and the DLLs into memory and updates the program's DLL 
calls with the address of each DLL routine. If a DLL is already in memory, it is 
not reloaded. 

With run-time dynamic linking, the program creates the DLL file name and sub­
routine names during execution. The program then passes these names to OS/2 
so the operating system can load the dynamic-link library. 

An example of a run-time dynamic link is an extension to the Programmer's 
WorkBench (PWB). PWB has no information about which extensions it needs 
until it reads the initialization file, TOOLS.IN!. PWB then sends requests to OS/2 
to demand-load the DLLs that it needs. 

16. 1.2 Application Programs and DLLs 

Updates to parts of a 
program are easier to 

deliver using Dlls. 

With static linking, all library code is bound into the executable program when 
you link the program. If the library changes, all programs using the library must 
be relinked. With the exception of some Microsoft Windows programs, all DOS 
programs use static linking. 

You can create loosely coupled applications and DLLs and modify the DLLs 
without relinking the program. For example, if your product has an underlying 
database access mechanism, you can package the database access routines into a 
DLL. You can then ship improvements or changes to the database code in a new 
dynamic-link library. The executable files for the program do not have to be re­
linked or redistributed. 

The programs calling a DLL are known as the DLL's "clients." 



Dynamic linking with 05/2 391 

16.1.3 Dlls and Microsoft C Run-Time Libraries 
You can construct three types of dynamic-link libraries with the Microsoft C 
Professional Development System. All of them can be multithreaded; they can 
support more than one client at a time. There are three types: 

• A stand-alone dynamic-link library that includes both your routines and code 
for the Microsoft C run-time library functions used by your DLL. This type of 
DLL is self-contained and completely independent of the programs that call it. 

• A dynamic-link library that does not use any functions from the Microsoft C 
run-time library. This type ofDLL is also self-contained. 

• A private dynamic-link library that consists only of selected functions from 
the Microsoft C run-time library. This DLL is usually specific to one program 
or a closely tied group of programs. Application programs and dynamic-link 
libraries using this DLL do not contain any code for the C run-time library 
functions. 

The following sections provide more information about the differences between 
the various types of DLLs. 

Stand-Alone Dynamic-link libraries 
Stand-a/one Dlls include If you want to call C run-time library functions in your DLL, you can include the 

C run-time functions. functions you need. These run-time functions are statically linked in the DLL and 
the DLL does not rely on the client or any other DLL for run-time support. 

Figure 16.1 illustrates the relationships between this type of DLL, an application 
program, and C run-time library functions. Both the application program and the 
dynamic-link library have their own copies of functions from the C run-time li­
brary. This ensures that 

• The DLL always has access to the C run-time library routines it needs. 

• The DLL is not dependent on the calling application for any support code. 

• The programs using the DLL do not depend on the DLL for C run-time 
library functions. 

Section 16.3.1, "DLLs with Static C Run-Time Library Functions," describes 
the steps involved in creating this type of dynamic-link library using the special 
library LLIBCDLL.LIB. 



392 Advanced Programming Techniques 

PROGRAM.EXE 

C run-time library 
routines 

(statically linked) 

- Dynamic link 

PSAMPLE.DLL 

C run-time library 
routines 

(statically linked) 

Figure 16.1 DLL and Program with Statically 
Linked C Run-Time Functions 

DLLs without C Run-Time Library Functions 
You can write a dynamic-link library in C without calling any functions from the 
C run-time library. Section 16.3.2, "DLLs without C Run-Time Library Func­
tions," shows how to set up this type of DLL. These DLLs contain only your 
code and require no run-time library support; they make no calls to run-time 
library functions. 

Private C Run-Time DLLs 
You can create a custom A C run-time DLL can be shared by multiple programs and their DLLs. You 

C run-time Oll. generate the C run-time DLL in two steps. The first builds a module-definition 
file with a list of the C run-time library functions needed by your application and 
its DLLs; the second step links the module-definition file with the special library 
CDLLOBJS.LIB to create a C run-time DLL. 

A private C run-time Oll must 
be closely tied to its programs 

and associated Olls. 

The executable files for programs and DLLs linked with a customized C run-time 
DLL do not contain any code for the C run-time library functions. Figure 16.2 
shows the relationships of the components. 

Processes and DLLs that share a private run-time DLL share environment strings 
and global C run-time data (for example, file pointers for buffered 1/0 and mem­
ory allocated with the malloc function). Therefore, the program and the DLLs 
must cooperate on the use of this data. 



l 
1 

PROGRAM.EXE 

PSAMPLE.DLL r----

J 
CSAMPLE.DLL 

C run-time 
library routines 

Dynamic linking with OS/2 393 

Figure 16.2 Program and DLL Calling C Run-Time DLL 

A closely tied structure is suitable for a complex application consisting of a set 
of application programs that act as front-end processors to several DLLs. A word 
processor, for example, might support one user interface for beginners, another 
for intermediate users, and a third for expert users. The different user interfaces 
could be implemented in three separate executable program files. All three pro­
grams would share the DLLs that do most of the real work. 

Section 16.3.3, "Programs and DLLs with a C Run-Time DLL," describes the 
procedures for building a C run-time library DLL and its associated programs 
and dynamic-link libraries. 

16.2 Designing and Writing Olls 
Before you write a DLL, you must determine some of the DLL's requirements. 
You need to know 

• Floating-point math requirements 

• Special initialization requirements such as allocation of buffers or registration 
of special termination routines 

• Termination requirements such as clearing semaphores or releasing allocated 
memory 

• Re-entrancy requirements; if the DLL is to be called by more than one 
process, it must be re-entrant 

This section explains how to design a DLL to take these requirements into 
account. 



394 Advanced Programming Techniques 

16.2.1 Floating-Point Math Requirements 

The only way to use a math 
coprocessor within a Oll is 

with a private C run-time Dll. 

Stand-alone DLLs built with the LLIBCDLL library are independent of the pro­
grams calling them. They are "black boxes" that must operate without knowing 
anything about their client programs and without interfering with their clients. 

One area of potential conflict for stand-alone DLLs is control of the 80x87 math 
coprocessor. For a DLL to use the 80x87 coprocessor or the emulator floating­
point library, the DLL and all of its client programs must agree on which process 
is going to handle floating-point exceptions and on which process is going to 
handle emulation if the machine does not have a coprocessor. 

Floating-point emulation is not possible with a genuinely independent DLL. A 
stand-alone DLL must use the alternate math library, which ignores the math co­
processor chip. The alternate math library provides the fastest processing availa­
ble without a coprocessor, but results are not as accurate as those produced by 
the emulator floating-point library. Because the constraint applies only to the 
DLL and not to applications, clients of a stand-alone DLL can use any floating­
point model. Since the DLL uses the alternate math library, it does not conflict 
with clients over control of the math coprocessor. 

In contrast, DLLs and programs using a private C run-time DLL are tightly 
coupled. This means that the floating-point math option is known when the 
program is built. Because these programs and DLLs all use the same C run­
time functions (unlike the stand-alone DLL and its clients, which may incorp­
orate different C run-time libraries), no contention can arise over control of the 
math coprocessor. The same floating-point math library is used for the entire 
application. 

A private C run-time DLL uses the CDLLOBJS library and the emulator floating­
point package. The emulator uses the 80x87 math coprocessor if one is installed; 
otherwise, it emulates the coprocessor. Floating-point emulation produces the 
most accurate results. There is no conflict over use of the coprocessor, since the 
C run-time DLL performs all floating-point math. The programs and DLLs call­
ing the C run-time DLL do not have any C run-time library code of their own. 



Dynamic linking with OS/2 395 

16.2.2 Initialization and Termination Requirements 

If your DLL has special 
requirements, you must 

provide additional 
start-up processing. 

Designate your 
initialization function as 
the DLL 's starting point. 

When you design a DLL, you must decide if it has special initialization or termi­
nation requirements. If the DLL needs to initialize variables or allocate memory 
buffers when it starts, it needs custom start-up procedures. If the DLL acquires 
system resources for a client program, the resources must be released when the 
program completes its processing. 

Initialization 
All DLLs built with the Microsoft C run-time libraries must use per-process in­
itialization to set up the C run-time data. Per-process initialization (also known as 
instance initialization) means that OS/2 calls the DLL's initialization code each 
time it loads a program linked with the DLL. For most DLLs, the default initiali­
zation routine is sufficient, and you do not need to take any other measures. 

The C run-time library initialization function is called each time a new client is 
attached to the DLL. To override the default initialization, you must link your 
DLL with one of the following object modules, which are provided with the 
Microsoft C Professional Development System: 

File Name 

DLLINIT.OBJ 

CRTDLL_l.OBJ 

Description 

Initialization module for DLLs built with 
LLIBCDLL.LIB and using C run-time library code 

Initialization module for DLLs using a C run-time 
DLL built with CDLLOBJS.LIB (replaces 
CRTDLL.OBJ) 

In addition, you must declare an entry point for your own DLL initialization func­
tion. Your function, or the application program calling your DLL, must initialize 
the C run-time data by calling the library function C_INIT before any other C run­
time library functions are called. 

The prototype for C _ INIT is 

void _far _pascal CINITC void l; 

To have your custom function recognized as the DLL's default initialization 
routine, it must be the starting point for the DLL. This requires an assembly 
language file with an END statement naming your function. The sample file, 
SETENTRY.ASM, in the following example shows the minimum assembler 
code required for specifying a C language function named Samplelnit as the 
DLL's entry point. 

; SETENTRY .ASM 
extrn _Samplelnit:FAR 
end _Samplelnit 

;name of C start-up routine 



396 Advanced Programming Techniques 

You may have to clean 
up before terminating. 

The following example, SAMPLE.C, shows a simple custom initialization 
routine that maintains a count of how many clients it is currently serving. Since 
this example overrides the default dynamic-link library initialization, it must re­
turn a nonzero status code to OS/2 to show a successful start-up. If a DLL initiali­
zation function returns a status of 0, OS/2 will not load the program using the 
DLL. 

/* SAMPLE.C 
void _far _pascal C INIT( void l; 
int UserCount = 0; 

int _export _ loadds Sampl einit( l 
{ 

*I 

UserCount++; /* increment number of users 
c _INIT( l; I* initialize C run-time data 
return( 1 ) ; /* indicate successful start 

/* code for other DLL functions belongs here */ 

*! 
*I 
*I 

All DLLs must be linked with a module-definition file that contains a LIBRARY 
statement, such as the following: 

LIBRARY SAMPLE INITINSTANCE 

The following commands will create object files from the sample files and 
link them with DLLINIT.OBJ to make a stand-alone dynamic-link library 
named SAMPLE.DLL. The /ML compile option, explained in Section 16.2.6, 
"Compile Options for Dynamic-Link Libraries," sets the library search record to 
LLIBCDLL.LIB. 

MASM /Mx SETENTRY; 
CL /c /Gs /ML SAMPLE.C 
LINK /NOE DLLINIT+SETENTRY+SAMPLE,SAMPLE.DLL, ,,SAMPLE.DEF; 

WARNING For DLLs linked with Microsoft C run-time libraries, the LIBRARY statement in 
the DLL 's module-definition file must specify INITINSTANCE in the initialization field. If you 
omit this, the initialization routine is called only when the DLL is loaded into memory for 
the first client program, and the DLL will not function properly if it is called by additional 
programs. 

Termination 
You may need to know when an application using your DLL is finished. If your 
DLL has created buffers, semaphores, or other resources for a particular applica­
tion, they must be released when the application terminates. 



Dynamic Linking with OS/2 397 

You can have an initialization routine in your DLL that calls the OS/2 API func­
tion DosExitList to register one or more exit subroutines for your DLL. OS/2 
will call the exit routines when the client program finishes. The exit functions 
should free any resources your DLL acquired for the client program. 

Dlls built with The start-up routine for dynamic-link libraries built with the LLIBCDLL library 
Ll/BCDLL.l/B have a calls DosExitList with a pointer to a default termination function. To replace the 

default termination routine. default processing with your own function, link the module DLLTERM.OBJ into 
the DLL. This suppresses the call to DosExitList. During initialization, your 
DLL must register its own routine by calling DosExitList unless you are sure the 
termination routine will be called explicitly. The termination processing must in­
clude a call to the library function C _TERM. 

The prototype for C _TERM is 

void _far _pascal C_TERM( void ); 

There is no equivalent to DLLTERM.OBJ and C_TERM for DLLs using a pri­
vate C run-time DLL built with the CDLLOBJS library. If special cleanup pro­
cessing is required, these DLLs must provide their own termination function. The 
function is registered during initialization by calling either the C run-time library 
function atexit or the OS/2 API function DosExitList. 

Any DLL that calls DLLs that set exit lists must provide termination functions that can be called by 
DosExitList should also clients when they no longer need the DLL. If a program attaches itself to the 

have a termination function. DLL at run-time (using DosLoadModule), it cannot disconnect from the DLL as 
long as the exit list points to a function in the dynamic-link library. The DLL's 
termination function can perform any necessary cleanup and call DosExitList to 
remove itself from the exit list. 

NOTE There is no special termination procedure for DLLs build with CDLLOBJS.LIB be­
cause the C run-time termination code is called by the exit or _exit functions. If the process 
is terminated by a critical error or DosExit, C run-time termination does not occur. 

16.2.3 Making the DLL Re-Entrant 
Re-entrant code is code that can be shared by multiple programs in a multitask­
ing environment. DLLs that may be used by more than one program must be 
re-entrant. To do this, they must isolate each client program's data and resources. 
File handles belonging to one client, for example, must not be used for other 
clients. Re-entrancy also means that the DLL cannot allow itself to be switched 
to a different thread while it is performing certain operations. 



398 Advanced Programming Techniques 

A dynamic-link library can 
have separate data segments 
for each program that calls it. 

You can use SEGMENTS 
to specify attributes on a 

segment-by-segment basis. 

Global Versus Instance Data 
Separate data segments are known as "instance" data. With instance data seg­
ments, the DLL does not have to keep track of which resources belong to each 
client. OS/2 assigns a different data segment to each process calling the DLL, 
even though the selectors are the same. 

A dynamic-link library can also have a global data segment used for internal pur­
poses or to support all of the programs using its services. 

A DLL providing time and date conversions might, for example, keep the current 
date in a global storage area. The same DLL might provide functions to compute 
elapsed time, such as the number of minutes between two clock readings. If static 
variables are used by the elapsed time functions, they should be in instance data 
segments, since the OS/2 scheduler might preempt the function and schedule 
another thread that calls the same function with different arguments before it has 
completed the first caller's task. 

Data sharing is controlled by DATA and SEGMENTS statements in a dynamic­
link library's module-definition file. By default, a DLL's automatic data segment 
(the local stack and heap) is shared by all processes calling the DLL. You can 
specify a unique automatic data segment for each client process by specifying 
DATA MULTIPLE. 

WARNING DLLs built with the LLIBCDLL or CDLLOBJS C run-time libraries must use 
DATA MULTIPLE in the module-definition file. 

Using the SEGMENTS statement allows you to have both global and per-process 
(instance) data in the same DLL. The C run-time data segment must be per­
process. The following is an example of a C program fragment and module­
definition file that implement both instance and global data: 

/* Define static data in the shared segment SHR_SEG */ 
int _based(_segname( "SHR_SEG")) i ntvar; 
char _based(_segname("SHR_SEG")) charvar; 

In the module-definition file, define all data segments as nonshareable, then over­
ride that default for SH R SE G as follows: 

DATA MULTIPLE NONSHARED 
SEGMENTS 

SHR_SEG CLASS 'FAR_DATA' SHARED 

Global data segments are created when OS/2 brings the dynamic-link library into 
memory for its first client process. All of the processes calling the DLL share the 
same global variables. 



Dynamic Linking with OS/2 399 

Serializing Nonatomic References 
An atomic operation is an operation that can be completed in one machine lan­
guage instruction. When writing a re-entrant procedure (in a multithread program 
or in a DLL), you must ensure that changes to static or global data are not pre­
empted by the OS/2 scheduler before the update is complete. To prevent this, you 
must explicitly serialize nonatomic references to static or global data. The follow­
ing code example is safe from preemption, because incrementing an integer re­
quires only one machine instruction: 

int int_var; 
_export _loadds void far _pascal dynlink_proc( void ) 
{ 

int_var++; 

The following variation on the same function is not safe because incrementing 
a long variable is not atomic; it requires two machine instructions. Between in­
crementing the least-significant word and the most-significant word, another 
thread could gain control of the processor. If that thread executes code in your 
DLL that uses l on g_ var, that data would be in an indeterminate state. 

long long_var; 
_export _loadds void far _pascal dynlink_proc( void ) 
{ 

long_var++; 

Critical Code Sections 
A critical code section is a section of code that manipulates a resource (such as 
the long variable in the previous example) while blocking all other threads. 
When your program enters a critical section, it cannot be preempted until it per­
forms a DosExitCritSec or until a signal is received. You don't usually just alter 
the value of a variable; you alter it and then use it later. In this case, you must iso­
late the smallest group of operations that must occur without interruption. You 
define these sections with the DosEnterCritSec and DosExitCritSec OS/2 API 
functions, as in the following example: 

_export _loadds void far _pascal dynlink_proc( void ) 
{ static int_var; 

DosEnterCritSec(); 
int_var += 7; 
SetleftCorner( int_var, int_var ); 
DosExitCritSec(); 

/* Code that does not reference int_var */ 



400 Advanced Programming Techniques 

Keep your critical sections 
as short as possible. 

While in a critical section, all other threads in the process are blocked from ex­
ecution. Writing extremely long critical sections can make your program ineffi­
cient and can degrade system performance. 

Although other threads are blocked from execution by DosEnterCritSec and 
DosExitCritSec, these functions do not block signal handling. 

Note that static variables in DLLs are protected from interference from other 
processes if they are in an instance data segment designated as MULTIPLE in 
the DAT A statement of the DLL' s module-definition file. Memory is "owned" by 
a process and, unless specifically allocated as shareable, cannot be altered by any 
other process. 

16.2.4 Signal Handling 
The C library function signal is not supported for multithread programs or for 
DLLs. If you need to process signals, use the OS/2 API signal functions, such as 
DosSetSigHandler. 

See Chapter 15, "Creating Multithread OS/2 Applications," for more information 
about signal handling in OS/2 programs. 

16.2.5 Using Microsoft C Keywords 

All Dll functions that 
will be called from outside the 

library must be exported. 

The_ export and _loadds keywords simplify writing DLLs. They are used to de­
fine or declare functions or pointers to functions. In the DLL, an exported func­
tion with a single argument might be defined as 

int _export _loadds sample( int l 

The _export Keyword 
The _export keyword gives a function the export attribute. Stack checking must 
be disabled for exported entry points. You can use the /Gs compile option or the 
check_stack pragma to accomplish this. 

Using the _export keyword is an alternative to declaring the name of the func­
tion in the EXPORTS section of a module-definition file. It assigns certain de­
fault attributes: no 1/0 privilege, shared data, load on demand, and no alias name. 
If the defaults are not acceptable, you must specify the proper attributes in the 
module-definition file. 

Not all functions in a DLL are for external use. A DLL can have any number of 
utility subroutines supporting the work of the exported functions. Functions that 
are private to the DLL should not have the _export keyword. 



Dynamic Linking with OS/2 401 

The _loadds Keyword 
At entry to a DLL, the DS (data segment) register points to the calling program's 
data segment. To access the DLL's data, the DS register has to be loaded with 
the DLL's segment selector. The _loadds keyword causes the compiler to add 
prolog and epilog code to the function. The prolog code initializes the DS regis­
ter to point to the function's data group. The epilog code restores the caller's DS 
register when the function terminates. 

Since loading the DS register is a high overhead operation, you should limit the 
use of _loadds to the exported functions in your DLL. 

WARNING Do not use the _loadds keyword in a function definition if the function uses 
only stack variables. If you specify _loadds in a DLL that does not have any static data, the 
linker will issue a segment fix-up error. 

16.2. 6 Compile Options for Dynamic-Link Libraries 
Dynamic-link libraries must be compiled with specific options that control link­
ing, memory models, and library selection. 

Compile without Linking (le) 
You must use the /c option to build your DLL in separate compile and link steps. 
This is necessary because the DLL must be linked with a module-definition file 
specifying that the output file is a dynamic-link library. (The compiler does not 
pass module-definition file names to the linker.) The /c option is automatically 
specified in the makefile generated by the Programmer's WorkBench. 

Large Memory Model with Separate Stack (!ALw) 
The /ALw option instructs the compiler to use the large memory model with a 
separate stack segment. Because all DLLs use the caller's stack, you must use 
/Aw or /Au. The /Aw option sets up separate stack and data segments but does 
not cause the DS register to be reloaded at the entry to each function. This allows 
you to call private functions (functions that you do not export) without incurring 
the overhead of loading the DS register. Functions that you do export must also 
be declared using the _loadds keyword, described above, which sets up the 
proper DS register handling. If you use the /Au option, the DS register will be re­
loaded on entry to every function, which can cause the function calls in your 
DLLs to execute more slowly. 

All DLL functions are reached using far calls. Pointers passed to and from the 
DLL must be far pointers. 



402 Advanced Programming Techniques 

Remove Stack Probes {/Gs) 
Since the DLL uses the caller's stack, you should usually use the /Gs option to 
disable stack checking within the DLL. 

Specify 80286 Code {/G2) 
Use the /G2 option to designate code generation for the 80286 processor instruc­
tion set, since OS/2 runs only on 80286 and higher model processors. 

Link C Run-Time into Stand-Alone DLL {/Ml) 
Use the /ML option to build a stand-alone dynamic-link library that includes 
static code for C run-time library functions. This option has the same effect as 
using the I ALw, /FPa, /G2, and ID MT options. It changes the library search re­
cord to LLIBCDLL.LIB. See Section 16.3.1, "DLLs with Static C Run-Time 
Library Functions" for more information about these options. 

Link Executable or DLL with C Run-Time DLL (IMO) 
Use the /MD option to build an executable file or a dynamic-link library that 
calls a C run-time DLL. This option has the same effect as using the /ALw, /FPi, 
/G2, ID DLL, and ID MT options. It inhibits library search records. See Section 
16.3.3, "Programs and DLLs with a C Run-Time DLL," for more information 
about these options. 

Suppress Default Library Selection (Ill) 
If you do not compile with the /MD or /ML options described above, compile 
with the /Zl option or use the /NOD option when you link in order to inhibit 
searches for default libraries. 

16.3 Building Dlls with Microsoft C 
Building a OLL for 

DS/2 is like building an 
executable program file. 

To build a DLL, compile and link the dynamic-link library like any other execu­
table file, but add a module-definition file. This module-definition file tells the 
linker that the output is a dynamic-link library. 

When you build applications that use a dynamic-link library, you must tell the 
linker where to find the library's dynamically linked fonctions. You use import 
libraries and module-definition files for this purpose. 



Dynamic Linking with 05/2 403 

16.3.1 DLLs with Static C Run-Time Library Functions 
The LLIBCDLL library is used to create stand-alone DLLs. The library functions 
are re-entrant and can be called by multiple threads within a program as well as 
by multiple programs. The code for the stand-alone DLL's C run-time library 
functions is contained within the DLL. Programs that call stand-alone DLLs have 
their own run-time library code. 

Building the DLL 
The files required to build a stand-alone DLL with the LLIBCDLL library are 
listed below: 

File Name 

OS2.LIB 

LLIBCDLL.LIB 

DLLINIT.OBJ 

DLLTERM.OBJ 

userdll.C 

userdll.DEF 

Description 

OS/2 kernel import library 

Large-model multithread C run-time library for 
DLLs 

Optional initialization module for DLLs requiring 
custom initialization 

Optional termination module for DLLs requiring cus­
tom exit processing 

Source code for the DLL you create 

Module-definition file for the DLL you create 

The module JUSTIFY.C, below, is an example of source code for a simple 
dynamic-link library. The RightJustify routine calls the strlen function from the 
C run-time library and right-justifies a caller's buffer. The function definition in­
cludes the _export keyword. The _loadds keyword is omitted, since this func­
tion does not need any static data. If it did, you would need to specify _loadds. 

For simplicity, JUSTIFY.C below shows a DLL with a single function. In actual 
practice, you would usually package a group of similar utilities into one DLL. 

/* JUSTIFY.C -- Sample Dynamic-Link Library*/ 

#include <string.h> 

/* Right justifies the string in TargetBuff to TargetSize 
*and inserts necessary number of FillChars on the left. 
*I 



404 Advanced Programming Techniques 

#pragma stack_check(offl 

int _export RightJustify( char *TargetBuff, int TargetSize, 
char FillCharl 

char *s, *d; 
s = TargetBuff + strlen( TargetBuff l; 
d = TargetBuff + TargetSize; 
while ( s = TargetBuff 

*d-- = *s--; 
while ( d = TargetBuff 

*d-- = FillChar; 

return( 0 l; 

The steps for creating a stand-alone dynamic-link library with JUSTIFY.C are 
given below. The DLL in the example is named JUSTLIB l.DLL. 

1. Compile with the /ML Option. 

Compile the source file without linking. Dynamic-link libraries linked with 
LLIBCDLL must be compiled with specific options. 

Use the /ML option to set the library search record to LLIBCDLL.LIB and to 
indicate that C run-time code is to be included in the DLL. When you use 
/ML, the following options take effect: 

Option 

/ALw 

/G2 

/DMT 

/FPa 

Effect 

Use large memory model with separate stack 
segment 

Use 80286 processor instruction set 

Use the multithread version of the include files 

Generate floating-point calls and select the alternate 
math library 

The /G2 and the /ALw options can be overridden. 

You should also use the /Gs option to suppress stack checking and the /c 
option to compile without linking. The complete command to compile the 
sample file JUSTIFY.C is 

CL /ML /Gs le JUSTIFY.C 



Dynamic Linking with OS/2 405 

2. Create a module-definition file. 

Create a module-definition file, JUSTLIB I .DEF, which includes the follow­
ing lines: 

LIBRARY JUSTLIBl INITINSTANCE 
DATA MULTIPLE 

The LIBRARY statement identifies the executable file, JUSTLIB l .DLL, as a 
dynamic-link library. DLLs linked with the LLIBCDLL library must specify 
INITINSTANCE in the initialization field. You could add an EXPORTS state­
ment for the RightJustify function in JUSTIFY.C, but it is optional since the 
_export keyword was used in the source code. 

See Chapter 14, "Building OS/2 Applications," for more information about 
module-definition files. 

3. Link with LLIBCDLL.LIB. 

Ensure that the file LLIBCDLL.LIB, which takes the place of the regular C 
run-time library, is available. 

Create JUSTLIB 1.DLL with a command such as 

LINK justify,justlibl.dll ,,,justlibl.def/NOI 

WARNING When you link with LLIBCDLL, you cannot have any other C run-time libraries 
in the link. 

4. Create an import library. 

Applications that call DLLs use import libraries to identify DLL functions to 
the linker. The following example uses JUSTLIB l.DLL and the IMPLIB util­
ity to create an import library named JUSTLIB I .LIB. 

IMPLIB justlibl. lib justlibl.dll 

For more information about import libraries, see Chapter 14, "Building OS/2 
Applications." 

Building Programs that Call the DLL 
To link a dynamic-link library with an application, you must have one of the 
following: 

• A module-definition file with an IMPORTS statement for each DLL function 
called by your program 

• An import library created from the DLL itself or from a module-definition file 



406 Advanced Programming Techniques 

All calls to DLLs must be far calls; all pointers passed must be far data pointers. 
If you do not compile with the large memory model option (/AL), you must cast 
the DLL function calls and pointers yourself. 

The sample file below, TESTJUST.C, is compiled and linked into a small-model 
program named SAMPLE I.EXE. TESTJUST.C includes a function prototype 
that declares RightJustify as a far function expecting a far pointer as its first 
argument. Because of the prototype, the compiler will generate a far call to 
RightJustify and coerce the pointer argument to the proper value. 

I* TESTJUST.C. Call sample DLL library*/ 

#include <stdio.h> 
#include <string.h> 

I* DLL function prototype */ 

int _far RightJustify( char far* int, char ); 

void main( void ) 
{ 

char buff[12J; 

strcpy( buff, "ABCD" ) ; 

/* Right justify to 8 characters and zero fill. */ 
RightJustify( buff, 8, '0' ); 
printf( "Result: %s\n", buff); 

You need several files to link an application with a stand-alone DLL: 

File Name 

userdll.LIB 

userapp.DEF 

OS2.LIB 

userapp.OBJ 

mLIBCfP.LIB 

Description 

Import library file for the DLL 

Optional module-definition file for your application 
that contains an IMPORTS statement for each DLL 
function called (required if not using an import 
library) 

Optional import library file for the OS/2 kernel (re­
quired if your application calls the kernel directly or 
via a C run-time library function) 

Object module(s) for your application 

Regular C run-time library for protected mode, 
where m indicates memory model (S, C, M, L) and 
f indicates math package (A, E, 7) 



Dynamic Linking with DS/2 407 

The following command lines illustrate how TESTJUST.C can be compiled 
and linked with the standard libraries, plus the sample dynamic-link library, 
JUSTLIB l .DLL. The example uses the small memory model library and 
the JUSTLIB I .LIB import library created from JUSTLIB 1.DLL to create 
SAMPLE I .EXE. 

CL /AS /G2 le TESTJUST.C 
LINK TEST JUST, SAMPLEl. EXE, ,JUSTL!Bl; 

Make sure that the JUSTLIB I .DLL file is in a directory on your LI BP A TH 
before executing SAMPLE I .EXE. 

16.3.2 OLLs without C Run-Time Library Functions 
Building a DLL that does not call any of the C run-time library functions is simi­
lar to creating a stand-alone DLL. 

To use the JUSTIFY.C sample program shown in Section 16.3.1, "DLLs with 
Static C Run-Time Library Functions," without calling C run-time functions, one 
change must be made. You must remove the call to the C run-time library func­
tion strlen. The strlen function was used in the sample program to calculate a 
pointer to the end of the caller's buffer. Remove the following line in the pro­
gram JUSTIFY.C: 

s ~ TargetBuff + strlen( TargetBuff ); 

Replace the line above with the following code fragment, which does the same 
thing without calling strlen: 

s ~ Ta rgetBuff; 
while ( *s) 

s++· 

After making this change, you can use the following commands to create a DLL 
named JUSTLIB2.DLL and its import library: 

CL /c /Alw /G2s /Zl JUSTIFY.C 
LINK JUSTIFY,JUSTLIB2.DLL,, ,JUSTLIB2.DEF/NOI 
IMPLIB JUSTLIB2.LIB JUSTLIB2.DLL 

Note that object modules compiled with releases of Microsoft C prior to Version 
6.0 refer to the C run-time library variable _acrtused. C 6.0 defines this variable 
if the main function is present. This causes the linker to automatically add the C 
run-time start-up module to the DLL. To suppress the start-up module, your 
source file must include a line defining_ acrtused as follows: 

int _acrtused ~ 0; 

This is required only if you do not use a C run-time library and if the link in­
cludes object modules built with earlier versions of the compiler. 



408 Advanced Programming Techniques 

16.3.3 Programs and Dlls with a C Run-Time DLL 
The CDLLOBJS.LIB and CDLLOBJS.DEF files are the foundation for building 
a DLL that consists only of C run-time library functions. The application pro­
grams and optional dynamic-link libraries linked with this DLL do not contain 
any C run-time library code. 

You create an application to use the C run-time DLL in either two or three 
phases, depending on whether or not the application has additional DLLs: 

• Build a C run-time DLL. 

• Build any optional DLLs that use the C run-time DLL. 

• Compile and link the application. 

The examples in this section use the JUSTIFY.C and TESTJUST.C source files 
shown in Section 16.3.1, "DLLs with Static C Run-Time Library Functions." 

Building a C Run-Time DLL 
The C run-time DLL is derived from the CDLLOBJS.LIB and CDLLOBJS.DEF 
files provided with the Microsoft C Professional Development System. The 
CDLLOBJS.DEF file includes export definitions for all of the C run-time library 
functions. 

The steps for creating a C run-time DLL are given below. The C run-time DLL 
in the example is named CEXAMPLE.DLL. 

1. Create a module-definition file. 

You can use CDLLOBJS.DEF as the basis for your own module-definition 
file by copying and editing it. This allows you to create a customized DLL 
that contains only the functions your application requires. If you use the 
CDLLOBJS.DEF file without modification, every program that links to your 
C run-time DLL will get the entire C run-time library. 



Dynamic Linking with OS/2 409 

The following examples create the sample file CEXAMPLE.DEF to define 
the custom dynamic link library CEXAMPLE.DLL. The CEXAMPLE.DEF 
file, shown below, exports the three C run-time library functions called from 
JUSTIFY.C and TESTJUST.C. It also exports functions required by the C 
run-time library start-up modules. 

LIBRARY CEXAMPLE INITINSTANCE 
DESCRIPTION 'Sample Dynamic-link C Run-Time Library' 
DATA MULTIPLE 
PROTMODE 
EXPORTS 

_pri ntf 
strl en 

_strcpy 
CRT_! NIT 
aFchkstk 

exit 

2. Create the C run-time DLL. 

The files for creating a C run-time DLL are listed below: 

File Name 

OS2.LIB 

CDLLOBJS.LIB 

CRTLIB.OBJ 

yourclib.DEF 

Description 

Import library for the OS/2 kernel 

Dynamic link C run-time library 

Start-up code for C run-time DLL 

Module-definition file specifying C run-time 
library functions for the DLL 

The command to create the sample CEXAMPLE.DLL file is 

LINK /NOD /NOE /NOI crtlib.obj,cexample.dll ,,cdllobjs+os2,cexample.def 



410 Advanced Programming Techniques 

3. Create an import library. 

You need to create a library file of import definitions that can be used by pro­
grams that will be linked with your custom DLL. This is a two-step process. 
The first phase uses the module-definition file and the IMPLIB utility to cre­
ate an interim version of the library, as in this example: 

IMPLIB cexample.lib cexample.def 

Note that the IMPLIB utility accepts either a module-definition file or a DLL 
as input. 

The second step uses the LIB utility to append the file CDLLSUPP.LIB to the 
import library. You must append CDLLSUPP.LIB because it contains some 
routines that cannot be dynamically linked. The LIB utility requires the full 
path name for CDLLSUPP.LIB. If it is in a directory named C:\LIB, the com­
mand to complete the library build for CEXAMPLE.LIB is 

LIB CEXAMPLE.LIB+C:\LIB\CDLLSUPP.LIB; 

When you have finished building the custom DLL, be sure to copy it to a 
directory specified in the LIBPATH statement of the CONFIG.SYS file. 

Building an Application-Specific OLL 
You must compile a DLL that calls a C run-time DLL with specific options 
and link it with the C run-time DLL's import library. The steps for building an 
application-specific DLL named JUSTLIB3.DLL are given below. 

1. Compile with the /MD option. 

The easiest way to be sure you choose the proper options is to use the /MD 
switch, which indicates that the DLL will be used with a C run-time DLL. 
When you use /MD, library search records are suppressed and the following 
options are in effect: 

Option 

/ALw 

/G2 

/DMT 

/DDLL 

/FPi 

Effect 

Use large memory model with separate stack 
segment 

Use 80286 processor instruction set 

Use the multi thread version of the include files 

Use a C run-time dynamic-link library 

Generate in-line floating-point instructions and 
select the emulator math package 



Dynamic Linking with DS/2 411 

The /G2 and /ALw options can be overridden. The FPi option can be replaced 
with /FPi87 or /FPc, but not with /FPa. See Chapter 4, "Controlling Floating­
Point Math Operations," for more information about compatible floating­
point options. 

You should also use the /c option to compile without linking. The command 
line to compile the sample file JUSTIFY.C is 

CL /MD /c JUSTIFY.C 

2. Create a module-definition file. 

Create a module-definition file named JUSTLIB3.DEF that includes the fol­
lowing line: 

LIBRARY JUSTLIB3 INITINSTANCE 

3. Link the DLL with the C run-time and OS/2 import libraries. 

To create a DLL that will call a C run-time DLL, the following files must be 
linked together: 

File Name 

OS2.LIB 

yourclib.LIB 

CRTDLL.OBJ 

CRTDLL_I.OBJ 

yourdll.OBJ 

yourdll.DEF 

Description 

Import library for the OS/2 kernel 

Import library for your C run-time DLL 

Start-up code for DLLs using a C run-time DLL 

Optional initialization module for DLLs requiring 
custom initialization (replaces CRTDLL.OBJ) 

Object file for your DLL 

Module-definition file for your DLL 

The command for linking these files to create JUSTLIB3.DLL is 

LINK justify+crtdll ,justlib3.dll, ,cexample+os2,justlib3.def 

4. Create an import library. 

Use JUSTLIB3.DLL and the IMPLIB utility to create an import library file, 
JUSTLIB3.LIB, for use by applications calling JUSTLIB3.DLL: 

IMPLIB JUSTLIB3.LIB JUSTLIB3.DLL 

Remember to copy JUSTLIB3.DLL to a directory named in the LIBPATH 
statement in the CONFIG.SYS file. 



412 Advanced Programming Techniques 

Using C Run-Time and Application-Specific Dlls 
Application programs using a C run-time DLL, such as the sample program 
CEXAMPLE.DLL (described earilier in this section), must define the symbolic 
constants MT and DLL. These constants cause the compiler to use the multi­
thread and DLL sections of the include files. You can define the constants in 
your source code or with the compiler's ID command-line option. Since the C 
run-time DLL uses the large memory model, your program must either use the 
same model or declare all C run-time functions and pointers passed to them as 
_far. If you use the standard include files for the C run-time functions in your 
program, all these declarations are made for you. 

The following files are required to link an application that calls a C run­
time DLL: 

File Name 

OS2.LIB 

yourclib.LIB 

yourdll.LIB 

CRTEXE.OBJ 

yourapp.OBJ 

yourapp.DEF 

Description 

Import library for the OS/2 kernel 

Import library for your C run-time DLL 

Import library for each optional application DLL 

Start-up code for executable files calling a C run­
time DLL 

Object file(s) for your application 

Optional module-definition file for your application 

The following commands compile and link the TESTJUST.C file from Section 
16.3.1 for use with the dynamic-link libraries CEXAMPLE.DLL and 
JUSTLIB3.DLL. The link command uses the /NOD option to suppress selection 
of the standard large-model library. The result is a program named 
SAMPLE2.EXE. 

CL /AL /D MT /D DLL /G2 le TESTJUST.C 
LINK /NOD TESTJUST+CRTEXE,SAMPLE2.EXE, ,CEXAMPLE+OS2+JUSTLIB3; 



Dynamic Linking with OS/2 413 

16.3.4 Using CodeView to Debug Dynamic-Link Libraries 

Use the Code View Trace 
command (FB) to enter 

and view Dll code. 

The protected-mode version of Code View (CVP) supports debugging of 
dynamic-link libraries. The /L option lets you name one or more DLLs to be 
debugged with your application. 

To enable full symbolic debugging, use the Code View options /Zi when compil­
ing and /CO when linking. Do this for both the DLL to be debugged and for the 
program that calls the DLL. 

The syntax for the /L Code View option is 

/L file 

At least one space must separate /L from the file name(s). You can enter mul­
tiple DLL names. To debug the JUSTLIB3.DLL dynamic-link library and the 
SAMPLE2.EXE program discussed in the previous section, use this command 
line: 

CVP /L JUSTLIB3.DLL SAMPLE2.EXE 

A simple way to use Code View is to place a breakpoint at the instruction that 
calls the DLL function you want to debug. When you reach the breakpoint, press 
F8 to execute the current source line. Code View will then display the DLL func­
tion's source code, allowing you to set additional breakpoints and enter other 
Code View commands. 





<'' ,'>\ > '' « <' ",' >' ,' «»'; < < ,,,"'>> '/< <;<" 
0>'d < ''\,,''-'.''\,,,'O',,: ''o,,_',>";:0\,,,>>'J,'''''''0 no>> «'" ",: ·,, ,',,"'::,o',H'« < < ''; :: 1: , -; > 

t~p···:···· e. ·n .. : .. •.·····.'u; .•. •.'..••.·.•. i~.•.·•.•.•.~'.·.· .. ·.:.••.••···".••·······./ .•.•. • .. •.······.;.; .. •.•.• ·· .: ' ~;: .... <.····.:·· ·.·.··• :x :.2~·.~.: ,;:,11~·.::Jf ·. : 
;.:.;\., ·r:;':;l . .:i.•,,~(41fi~ 

:':<»:'_,,,' 

,,o<;:"',,,, 

,;, '«''''"' c 

,«:'"c",:'.;',:'c0:0d-,:>::', ' o '" :o, ,'';.,8«,: 8' 0,//0, :·,,".'·<,"':,'!', l ''', ,, '', 0''o : '"><;<''' ·· o · tli1111111rt~itJa1I11t1~Q:ettifld: • ···· 
< :' :~ >' •H , < ', l ' ,>H "' ,,> ' , , " <, <> ,, '"" ,,, , ,,;', ;"C' "'::'", 





Appendix A 
Using Exit Codes 

When C programs terminate, they return values to the process that started them. 
These values are called "exit codes." The process that starts a C program can be 
either an operating system, such as DOS or OS/2, or another program. The pro­
cess that starts the C program is referred to as the "parent process"; the program 
started is referred to as the "child process." The parent process can interpret re­
turn values as an error code sent to the operating system or use those return 
values as a form of interprocess communication (communication between two 
separate processes). 

A. 1 The exit Function 
The exit function terminates execution of your C program and returns an exit 
code (an integer value) to the parent process. The parent process can be the 
operating system or another program, depending on how the child process was 
executed. Note that a C program always returns an integer, regardless of how you 
declare the main function. 

Most programs use exit codes to communicate errors to the parent process; these 
are called "error codes." By convention, programs return zero if they complete 
normally and a nonzero value if they are exiting because of an error. This error 
code (the nonzero value) can then be used by the operating system to control the 
execution of other programs (for example, from inside a batch file). 

The Microsoft C compiler is a good example of a program that returns an exit 
code. It returns 0 if no errors occur in your compile and a positive value if an 
error occurs during compilation. 

417 



418 Advanced Programming Techniques 

The following program attempts to open a file for reading. If the file cannot be 
opened, exit returns 1 to the calling program. Therefore, 1 and 0 are both exit 
codes. 

#include <stdio.h> 

int main(void) 
{ 

FILE* fp; 

if( !(fp ~ fopen( filename, "rb" )) ) 
{ 

printf("Error %d: Could not open file\n", errno); 
exit ( 1); 

do_file_access(fp); 

In the preceding example, the exit code is unpredictable because the exit function 
is not used. The value actually returned to the parent process (or to the operating 
system shell) is whatever happens to be in the AX register when the program 
terminates-in this case, whatever do_ f i le access returned. 

A.2 Testing Exit Codes 
from Command and Batch Files 

Using the IF ERRORLEVEL command, you can test to see if a program has ex­
ecuted successfully by checking its exit code. The IF ERRORLEVEL command 
is an OS/2 command file or DOS batch file command that tests the exit code of 
the most recently executed program. 

IF ERRORLEVEL can help you organize program execution. For example, you 
can define program execution to be dependent on the successful exit code testing 
of earlier programs by IF ERRORLEVEL. You can also use the value of the exit 
code to branch to different commands in a batch or command file. 

When placed in a batch or command file, the following commands will execute 
REPORTS.EXE only if FILEMNG .EXE does not return an error: 

echo Running file manager .... 
FILEMNG.EXE 
IF NOT ERRORLEVEL 1 REPORTS.EXE 

Despite the name ERRO RLEV EL, the exit code does not always denote an error. 
You can define error codes to communicate any information useful to you. 



Using Exit Codes 419 

Refer to the Micros()ft Operating System/2 User's Guide or the Micros()ft 
MS-DOS User's Guide and User's Reference for more information about the 
IF ERRORLEVEL command. 

A.3 Accessing Exit Codes from Other Programs 
When you use any of the spawn family of functions to run a program as the child 
of another program, the return value of spawn is the exit code of the function. 
The following code performs the same function as the batch file in Section A.2: 

void main( void ) 

I 
if( !spawnl( P_WAIT, "filemng.exe'', "filemng.exe", 

NULL ) J 
spawnl ( P _WAIT, "reports. exe", "reports. exe", 

NULL); 

Theprogram reports.exe isexecutedonlyiftheprogram filemng.exe 
terminates with an exit code of 0. 

The following code uses the exit code as part of a simple menu system: 

void main(void) 

I 
int option; 
int menu num 0; /*Initialize for first execution*/ 

while( (option spawnl( P_WAIT, "menu.exe", 
"menu.exe", menu_num, NULL JJ ) 

switch( option 
{ 

case 1 : 
menu num 

break; 
case 2 : 

menu num 

break; 
case 3 : 

menu num 

break; 
default: 

break; 

spawnl( P_WAIT, "programl.exe", 
"programl.exe", NULL l; 

spawnl ( P_WAIT, "program2.exe", 
"program2.exe", NULL ) ; 

spawnl( P_WAIT, "program3.exe", 
"program3.exe", NULL ); 

/* Guard against a bad option */ 



420 Advanced Programming Techniques 

The preceding example demonstrates how you could have a program, 
menu. exe, that solicits input from a menu of choices. This input is inter­
preted and passed back to the main program in the form of an exit code. (The 
spawnl function returns the value of the child process's exit code.) This exit 
code value is stored in option, which is used as a selector variable in a switch 
statement. 

Based on the value returned from menu. exe, the main program executes 
programl. exe, program2. exe, or program3. exe. Finally, 
men u_n um, the exit code of the program selected, is used as a parameter 
to the next execution of menu . ex e. 



Appendix B 
Differences between C Versions 5.1and6.0 

This appendix describes the differences between versions 5.1 and 6.0 of 
Microsoft C, including additions, deletions, and changes. Some of the changes 
are required by the American National Standards Institute (ANSI) draft standard 
for the C programming language. Other changes improve or augment the existing 
capabilities of the compiler. 

Many of the changes will have no effect on code that was written and compiled 
with previous versions of Microsoft C. In some cases, however, you may have to 
modify or correct existing code before compiling with version 6.0. 

B. 1 Modifications for ANSI Compatibility 
A number of changes have been made to the compiler to support the ANSI draft 
standard. These include new features (Section B.1.1) and changes (Sections 
B.1.2 - B.1.8). 

B. 1. 1 ANSI-Mandated New Features 
The following ANSI-mandated features are new to version 6.0: 

• The semantics for volatile have been implemented. 

• Both long and unsigned long values are allowed in switch expressions and 
case constants. 

• The compiler supports unsigned long decimal constants. It is now possible to 
initialize unsigned long variables with values larger than MAX_LONG using 
decimal (rather than hexadecimal or octal) constants. 

• Bit fields are permitted in unions. 

• The address-of operator(&) works correctly on arrays and functions. 

421 



422 Advanced Programming Techniques 

• Storage classes or types (or both) are now required on variable declarations. 
The compiler previously assumed that untyped variables (such as a ; ) were 
integers. This declaration now generates a warning. 

• The LOCALE.H header file is new to version 6.0. It declares functions and 
structures for describing conventions that vary from one country to the next, 
such as the currency symbol and the way calendar dates are printed. 

B. 1.2 Integer Promotion Rules 
The ANSI draft standard requires a change in the evaluation of some expressions 
that mix signed and unsigned integers. Earlier versions of the compiler attempted 
to preserve an expression's unsigned nature as much as possible. Version 6.0 
attempts to preserve the expression's value. 

In version 5.1, an unsigned char promotes to an unsigned int; an unsigned int 
promotes to an unsigned long. 

In version 6.0, an unsigned char promotes to a signed int; an unsigned int pro­
motes to a signed long. 

For example, 

main () 
{ 

long int li 
test( li ); 

test( long li) 
{ 

-2 56 L; 

if(li<0xffff 
puts( ·c 6.0 does a signed compare" ); 

else puts( ·c 5.1 does an unsigned compare" ); 

B.1.3 Defining NULL as a Pointer 
The constant NULL is now defined as ( ( v o i d * ) 0 ) . Previous versions of 
Microsoft C defined NULL as OxOOOO in small and medium models and 
OxOOOOOOOOL in compact and large models. 



Differences between C Versions 5.1and6.0 423 

8.1.4 Shift Operators 
Shift operators now give a result that is of the same type as the left side. For 
example, 

short si; 
long l i ; 
si 0x0001; 
li ~ si « 16L; 

The compiler previously yielded a result that was the size of the largest of the 
two values. In the example above, the short value would be automatically cast to 
a long because l 6L is long. The value assigned to l i would be OxOOOlOOOOL in 
Microsoft C 5.1. 

To adhere to the ANSI draft standard, Microsoft C 6.0 maintains the size of the 
left operand. The variable s i has 16 bits. Shifting left 16 times produces a 
value of 0, which is then assigned to l i. 

8.1.5 Pointers to Typedefs 
The rules for handling pointers to typedefs have changed subtly. For example, 
C 5.1 interprets 

typedef int far f_int; 
f_int *fp_i; 

as being equivalent to 

int *far fp_ i ; 

which means fp_ i is a distant pointer to an integer. The address of fp_ i con­
tains 32 bits. The size of the integer's address is indeterminate. 

C 6.0 interprets it as 

int far *fp_i; 

This means fp_ i is a far pointer to an integer. The address of the integer con­
tains 32 bits. The size of the address of fp_ i is indeterminate. 

This affects typedefs containing _near, _far, _based, and other modifiers. Al­
though these are Microsoft-specific keywords, their new behavior is consistent 
with what the ANSI draft standard requires for the const and volatile keywords. 



424 Advanced Programming Techniques 

8. 1. 6 Identifying Nonstandard Keywords 

8.1. 7 Trigraphs 

The following modifiers are specific to Microsoft C; they are not described in the 
ANSI draft standard. To identify these implementation-defined keywords as non­
ANSI, an initial underscore has been added. 

C 5.1 Keyword C 6.0 Keyword 

far far 

huge _huge 

near near 

cdecl cdecl 

fortran fortran 

interrupt _interrupt 

pascal _pascal 

The compiler still accepts the obsolescent versions of these keywords, unless the 
/Za option is used. 

To maintain compatibility with and portability to other systems, Microsoft C 6.0 
supports the following trigraphs: 

Trigraph 

??= 

??( 

??! 

??) 

??' 

??< 

??! 

??> 

??-

Character 

# 

/\ 

{ 

I 
} 



Differences between C Versions 5. 1 and 6. O 425 

B. 1.8 ANSI Nonconformance 
This section lists the areas where Microsoft C 6.0 does not conform to the ANSI 
draft standard. 

• Microsoft C does not support multibyte characters, wide-character and string 
constants, and the related library functions and types. 

• Microsoft C contains some name-space violations in the language (extended 
keywords, such as near and far) and in the library (non-ANSI macros and 
types in header files and extended library function names, such as read and 
write). 

8.2 New Keywords and Functions 
This section describes keywords and functions that did not exist in previous ver­
sions of Microsoft C. Details about how to use these features can be found else­
where in the documentation. 

8.2. 1 Jn-line Assembler 
The new _ asm keyword allows you to mix assembly instructions with C source 
code. This feature includes the _emit function, which lets you enter arbitrary 
values into the code stream. 

See Chapter 3, "Using the In-Line Assembler." 

8.2.2 Based Pointers and Objects 
A based pointer is a special, compact form of pointer. It is always represented as 
a short offset. The address represented by such a pointer is calculated by adding 
the based pointer to its base. The base must be supplied each time the pointer is 
dereferenced, either explicitly using a special operator or implicitly by associat­
ing the base value with the pointer when it is declared. The base can be a far 
pointer, a near pointer, or a new type that represents a segment. 

Based pointers and objects are declared using the new keyword, _based. 

Segment Types 
The new type specifier, _segment, specifies a segment. 

Any pointer or address can be cast to_ segment. If the operand is a near pointer, 
the result is the current value of the data segment register (DS). If the operand is 
a far pointer, the result is the segment part of the far pointer. 



426 Advanced Programming Techniques 

Segment Names 
Segment names are declared using the built-in function _segname. The compiler 
recognizes four predefined segment names: _CODE, _CONST, _DATA, and 

STACK. 

Each segment name represents a constant of type _segment. 

Base Operator 
The base operator (:>)associates a base expression (usually a segment) with a 
based pointer, to form a far pointer value. For example, 

0x0F01: >0x0015 

combines the segment OxOFOl with the offset Ox0015 to form the effective 
address OxOF025. The base operator's precedence falls between ()and [ ]. 

Casting Based Pointers 
A based pointer can be cast to a pointer, a long integer, a short integer, or another 
based pointer. When a based pointer is converted to a far pointer, a long integer, 
a near pointer, or another based pointer having a different base expression, it is 
first normalized to a far pointer (including adding the offset in the base, if pre­
sent, to the based pointer); then any additional conversions are applied. 

Operations on Based Pointers 
Based pointers, for the purpose of arithmetic and dereferencing, are treated as 
semantically equivalent to far pointers. When a based pointer mixes with another 
integral type (int, long, near pointer, far pointer, or based pointer), implicit cast­
ing is done. In some cases, the compiler can optimize these references and treat 
the pointer as an offset. 

The value of 0 is treated specially, as it is for near and far pointers. No conver­
sions are applied to the constant 0 because it is assumed to be a null pointer. 

See Chapter 2, "Managing Memory." 



Differences between C Versions 5. 1and6.0 427 

B.2.3 Based Heap Allocation Support 
The functions listed below provide support for allocating, expanding, and freeing 
memory for based heaps, which dynamically allocate memory for based items. 
The functions are prototyped in the MALLOC.H include file. 

bcalloc _bheapchk 

_bexpand _bheapmin 

bfree _bheapseg 

_bfreeseg _bheapset 

_bheapadd _bheapwalk 

See Chapter 2, "Managing Memory." 

B.2.4 Releasing Unused Heap Memory 

bmalloc 

bmsize 

brealloc 

The following routines release unused heap memory by shortening data seg­
ments. MALLOC.H contains the function prototypes. 

_fheapmin 

_heapmin 

_nheapmin 

8.2.5 Making Static Data Available to the Heap 
The _ heapadd function is new. It allows the user to make unused static data 
available to the heap. 

B.2.6 Long Doubles 
Microsoft C version 5.1 treated double and long double as syntactically different 
types that were semantically equal. Both types were stored in memory as 64-bit 
quantities. For purposes of type-checking, long double and double have always 
been different types. 

Because the 80x87 family of math coprocessors supports an 80-bit floating-point 
type, Microsoft C version 6.0 stores long double variables in the 80x87 I 0-byte 
(80-bit) form. 

Certain functions have been modified to handle the long double type. The printf 
and scanf family of functions supports long double values with the trailing l. 
The library contains new versions of the transcendental functions as well as in­
trinsic forms that accept long double arguments. 



428 Advanced Programming Techniques 

8.2. 7 Long Double Functions 
All the functions below are defined in the standard include file MATH.H. They 
return long double values and results and error codes analogous to the double 
versions. 

acosl exp I matherrl 

asinl fabsl modfl 

atanl floorl powl 

atan21 fmodl sinl 

a told frexpl sinhl 

cabsl hypo ti sqrtl 

ceill ldexpl tanl 

cos I logl tanhl 

coshl loglOI 

8.2. 8 Model-Independent String and Memory Functions 
The following functions make it easier to write mixed-model programs by provid­
ing model-independent (large model) forms for most of the standard string and 
memory functions. These functions can be called from any point in any program, 
no matter which memory model has been selected. These functions take only far 
pointers as arguments. Thus, any data item, near or far, in any combination, can 
be handled. 

The names of these functions are the same as the model-dependent forms, except 
they include an _f prefix. For example, _fstrlen is the model-independent ver­
sion of the strlen function. 

The functions listed below are defined in the standard include file STRING.H. 



Differences between C Versions 5.1 and 6.0 429 

Memory Functions 

_fmemccpy _fmemcpy 

fmemchr fmemmove 

_fmemcmp fmemset 

_fmemicmp 

String Functions 

fstrcat fstrlwr 

fstrchr fstrncat 

_fstrcmp _fstrncmp 

_fstricmp _fstrnicmp 

_fstrcpy _fstrncpy 

_fstrcspn fstrnset 

fstrlen _fstrpbrk 

String Duplication Functions 

_fstrdup 

_nstrdup 

8.2.9 Mixed-Model Memory Allocation Support 

fstrrchr 

fstrrev 

fstrset 

_fstrspn 

fstrstr 

fstrtok 

_fstrupr 

The following functions are based on realloc, calloc, and expand, but they affect 
only near memory or far memory. MALLOC.H contains the function prototypes. 

fcalloc 

_fexpand 

frealloc 

ncalloc 

_nexpand 

nrealloc 



430 Advanced Programming Techniques 

B.2.10 The _fastcall Attribute {/Gr Option) 
Individual function prototypes can be declared with the new attribute _fastcall. 

The /Gr option enables the fastcall function-calling convention for all functions 
that are not explicitly prototyped with the _ cdecl, _pascal, or _fortran attributes. 
Using /Gr on the command line causes each function in the module to compile as 
_fastcall unless the function is declared with a conflicting attribute, or the name 
of the function is main. 

When you use the /Gr option, all functions are assumed to use the _fastcall 
convention. As a result, to use any run-time library functions, you must either 
include the standard include files or explicitly prototype the function you want 
to call. 

A fastcall function receives up to three 16-bit arguments, passed in registers 
rather than on the stack. Arguments are passed in the AX, BX, and DX registers. 
This may change in future versions of the compiler. 

The argument types and their potential register assignments are 

Argument Registers 

character (3) AL,DL,BL 

short integer (3) AX, DX, BX 

near pointer (3) BX, AX, DX 

long integer (1) DX:AX 

far pointer (1) ES:BX 

If the registers for a particular class have already been used, or if an argument is 
not one of the five types listed above, it is pushed on the stack as usual. An argu­
ment list of types long, float, short would pass the long in DX:AX, push the 
float, and pass the short in BX. 

The treatment of character arguments depends further on prototypes. If there is 
no prototype, the argument is promoted to short and the rules for short integers 
apply. Only if the argument is prototyped as a char do the character rules apply. 

The fastcall convention is not compatible with any of the following attributes: 
_interrupt, _saveregs, _export, _cdecl, _fortran, or _pascal. 

See Chapter 1, "Optimizing C Programs." 



Differences between C Versions 5.1and6.0 431 

8.2. 11 Drive and Directory Functions 
Several new functions make it easier to get and set the current drive and the cur­
rent directory. The prototypes for the following routines are in DIRECT.H: 

ch drive 

_full path 

_getdrive 

_getdcwd 

8.2. 12 Text Output Functions for OS/2 
Several text-mode screen functions have been added to Microsoft C 6.0 for OS/2. 
With the exception of the new _scrolltextwindow function, they are identical to 
what is defined in real mode, except for any references to behavior in graphics 
modes. The following routines are located in GRTEXT.LIB, and the prototypes 
are in GRAPH.H: 

clear screen 

_ displaycursor 

getbkcolor 

_gettextcolor 

_gettextcursor 

_gettextposition 

_getvideoconfig 

outtext 

setbkcolor 

settextcolor 

settextcursor 

_ settextposition 

See Part 4 of this manual, "OS/2 Support." 

8.3 New Features 

settextrows 

settextwindow 

setvideomode 

setvideomoderows 

scrolltextwindow 

_wrapon 

The features described in Sections B.3.l-B.3.10 are new to version 6.0. 

8.3.1 Strings and Macros 
The compiler now allows longer string literals (up to 4K) and longer macro 
expansions (up to 6K). 



432 Advanced Programming Techniques 

B.3.2 Cl Options 
The following options are new to Microsoft C 6.0: 

Option 

/AT 

/Fr[ filename] 

/FR[filename] 

/Gd 

/Gr 

/MAmasmoption 

/MD 

/ML 

/MT 

/Oe 

/Og 

/Ox 

Action 

Compiles in tiny model (.COM files). 

Outputs source browser information file. 

Outputs extended source browser information file. 

Forces _ cdecl calling conventions. 

Enables register (_fastcall) function-calling 
conventions. 

Supports invocation of the assembler using the CL 
driver. All MASM-supported options are accepted. 
In addition, the compiler recognizes file names with 
.ASM suffixes and passes them directly to MASM. 

Uses C run-time as DLL option. Defaults to 
/ALw /FPi /G2 /DDLL /DMT and inhibits library 
search records. 

Links C run-time as part of a dynamic-link library 
(DLL). Defaults to /ALw /FPa /G2 /DMT and 
changes library search record to LLIBCDLL.LIB. 

Enables multithread option. Defaults to 
/ALw /FPi /G2 /DMT and changes library 
search record to LLIBCMT.LIB. 

Enables global register allocation. 

Enables global optimizations and global common 
subexpressions (CSEs). 

Is now equivalent to /Ocegilt /Gs. Note that this im­
plies that maximum optimization includes the 
_fastcall function-calling convention. 



/Oz 

/Ta name 

/W4 

/WX 

Differences between C Versions 5.1and6.0 433 

Enables aggressive optimizations. 

Specifies that name is to be treated as an assembler 
input file. 

Turns on extra warning level which supports more 
detailed (LINT-like) warnings and recognition of 
ANSI violations. 

Causes warnings to be treated as errors. If a warning 
occurs, the .OBJ file is not created. 

8.3.3 Tiny Memory Model (.COM Files) 
Microsoft C 6.0 now supports the tiny memory model, which produces .COM 
rather than .EXE files (for DOS only). 

The I AT option selects the tiny model. This forces the linker to use options /NOE 
and /TINY. Within the linker, /TINY turns on /FAR CALL TRANSLATION to 
help eliminate far segment relocations. If you link your own .OBJ files, link with 
CRTCOM.OBJ. 

8.3.4 The Optimize Pragma 
The optimize pragma turns optimizing options on or off: 

#pragma optimize(" <optimization switch list>",{ off I on}) 

where <optimization switch list> can be an empty list or one or more of the 
following: a, c, e, g, I, w, n, p, t, and z. For example, 

lfpragma optimize("lp",on) /*equivalent to /Olp*/ 
lfpragma optimize("",off) /*turns off all optimization*/ 
lfpragma optimize("",on) /* restores default settings*/ 

See Chapter 1, "Optimizing C Programs." 



434 Advanced Programming Techniques 

B.3.5 Nameless Structures and Unions 
Both struct and union declarations can now be specified without a declarator 
when they are members of another structure or union. 

A nameless union would look like this: 

struct str 
{ 

int a, b; 
union 
{ 

} ; 

char c[4J; 
long l ; 
float f; 

!* unnamed union */ 

char c_array[10J; 
my_str; 

my_str. l ~~ 0L; 

A nameless structure would look like this: 

struct sl 
{ 

int a,b,c; 
} ; 

struct s2 
{ 

floaty; 
struct sl; 
char str[10J; 

*p_s2; 

p_s2->b 100; 



Differences between C Versions 5. 1 and 6. 0 435 

8.3.6 Unsized Arrays as the Last Member of a Structure 
The compiler now allows an unsized or zero-sized array as the last member of a 
structure. The declaration of such a structure would look like this: 

struct var_length 
{ 

I; 

<set of declarations>; 
<type> array[]; 

Unsized arrays can appear only as the last member of a structure. Structures con­
taining unsized array declarations can be nested within other structures as long as 
no further members are declared in any enclosing structures. Arrays of such struc­
tures are not allowed. 

The sizeof operator, when applied to a variable of this type or to the type itself, 
assumes 0 for the size of the array. 

8.3. 7 Improved Warnings 

8.3.8 Macros 

A new warning level four (CL option /W4) has been added for the following 
warnings: 

• Detection of unused global variables 

• Expressions without side effects 

• Nonportable (non-ANSI) constructs 

• Local variable referenced before being initialized 

• Undefined or implementation-defined constructs 

The number of macros definable with ID options has increased from 20 to 30. 

8.3.9 Improved Multithread Support in OS/2 
The number of OS/2 threads supported at run time has increased from 32 to the 
operating system limit. Three new options aid development of multithread appli­
cations and dynamic-link libraries: 

1. /MT for building multithread programs. It implies /ALw /FPi /G2 ID MT, and 
changes the library search record emitted in the object file to reference 
LLIBCMT. 



436 Advanced Programming Techniques 

2. /ML for building a DLL that uses the C run-time library. It implies 
/ALw /FPa /G2 ID MT, and changes the library search record emitted 
in the object file to reference LLIBCDLL. 

3. /MD for building .EXE files and DLLs that share a C run-time DLL. It im­
plies /ALw /FPi /G2 IDDLL ID MT, and no library search records are emitted 
in the object file. 

8.3.10 Pipe Support in OS/2 
Microsoft C 6.0 supports pipes as part of the file 1/0 system. The functions listed 
below are defined in the standard include file IO.H: 

_pipe 

_po pen 

_pclose 

8.4 Differences in Code Generation 
This section lists ways in which the executable files produced by Microsoft C 
6.0 may differ from the files produced by previous versions of the compiler. 

8.4.1 Speed and Space Improvements 
Executable files are smaller and faster. 

8.4.2 Code Quality 
Microsoft C 6.0 generates improved local code in default optimization cases and, 
under full optimization, supports global (function level) register allocation and 
common subexpressions (CSEs), loop optimizations, parameter passing through 
registers, and generation of in-line code for certain intrinsic functions. 

8.4.3 Floating-Point Code Generation 
In Microsoft C 6.0, the /FPi87 option suppresses the fixups previously used for 
emulation. Pure coprocessor instructions are now emitted. This makes object 
files smaller and speeds up linking, in addition to making in-line assembly easier 
to use. 



Differences between C Versions 5.1and6.0 437 

In version 5.1, /FPi and /FPi87 generated the same code; the only difference was 
the library. In C 6.0, the two options generate different code. It is no longer 
possible to force /FPi87 to act like /FPi. If you use /FPi87, the math coprocessor 
must be in the computer on which the program is running. 

Note that if you use /FPi87 you must link with mLIB7, not mLIBCE. 

8.4.4 Intrinsic Functions 
The intrinsic function optimization option (/Oi) causes the compiler to generate 
in-line code for the following functions: 

abs lrotl rotl 

disable lrotr rotr 

enable memcmp strcat 

fabs memcpy strcmp 

inp memset strcpy 

inpw outp strlen 

labs outpw strset 

The compiler does not generate in-line code for the following functions, 
although it will modify the calling convention to pass the arguments on the 
floating-point chip: 

a cos pow coshl 

asin sin ex pl 

atan sinh floorl 

atan2 sqrt fmodl 

ceil tan logl 

cos tanh loglOI 

co sh acosl powl 

exp asinl sinl 

floor atanl sinhl 

fmod atan21 sqrtl 

log ceill tanl 

loglO cosl tanhl 



438 Advanced Programming Techniques 

8.5 Changes and Deletions 
The changes and deletions listed in this section have a high probability of affect­
ing existing programs. 

8.5.1 Deleted Features 
The data_ seg pragma has been deleted. 

The memory management routine sbrk has been deleted. 

The compiler and tools do not run under DOS 2.1. The run-time files produced 
by the compiler and linker will continue to run under DOS 2.1. 

8.5.2 Evaluation of Real Expressions 
Real expressions inside parentheses are now evaluated according to the seman­
tics of the parentheses. For example, in the expression 

((rl I r2) * r3) 

the division is performed before the multiplication. Previous versions of the com­
piler might have reordered the operations. 

8.5.3 Default Optimizations 
Version 6.0 performs more extensive optimizations than version 5.1. This implies 
that code that had aliasing but worked with the /Oa option in 5.1 might not work 
with version 6.0 and /Oa. Also, because of the improved optimizations, the /Od 
option should be used to tum off all optimizing before you begin debugging with 
Code View. 

8.5.4 Sign Extension of char Arguments 
Previous versions of Microsoft C would sign-extend char arguments to int size 
before passing them to a second function. Version 6.0 does not extend the sign if 
the function is prototyped and the prototype includes a char argument. The most­
significant byte is considered undefined. 



Differences between C Versions 5.1and6.0 439 

8.5.5 Conditional Compilation and Signed Values 
Version 5.1 of Microsoft C treated conditional compilation expressions as signed 
long values. Version 6.0 evaluates these expressions using the same rules as ex­
pressions in C. For example, 

#if 0xFFFFFFFFL > lUL 

#end if 

The expression evaluates to be true. It was evaluated as false in version 5.1. 

8.5.6 The canst and volatile Qualifiers 
The const and volatile qualifiers must be placed after the type they qualify. The 
declaration 

int (const *pl; 

is now treated as a syntax error. Previous versions of the compiler would accept 
such a construction. 

The following declarations are legal: 

int const *p_ci; I* pointer to constant int */ 
int const (*p_ci); /*pointer to constant int*/ 
int *const cp_i; I* constant pointer to int */ 
int (*const cp_i); /*constant pointer to int*/ 

8.5. 7 Memory Allocation 
The _fmalloc function attempts to allocate far memory. It previously called 
_ nmalloc if far memory was not available. Now it returns a null pointer if far 
memory isn't available, even if near memory is available. 

8.5.B Memory Used by Command-Line Arguments 
Previous versions of the compiler placed the command-line argument strings and 
environment strings in the near heap. Now they are allocated though malloc, 
which means that they will be in far memory in compact and large models. 



440 Advanced Programming Techniques 

8. 5. 9 Format Specifiers in printf 
The printf format specifier modifiers N, F, h, and I have changed. 

The specifier %Np is a synonym for %hp, but the latter is preferred. Likewise, 
%Fp is a synonym for %Ip. 

For scanf, N and F refer to the distance to the object being read in; that is, 
whether the pointer itself is allocated near or far. The modifiers h and I refer to 
the size of the object (16-bit near pointer or 32-bit far pointer). In these examples, 

scanf( "%Nl p", n_fp); 
scanf( "%Fhp", f_np); 

the first line reads in an address that resides in near memory (N) but holds a 32-
bit far pointer variable (l p ). The second line reads in a near pointer value (hp) 
into a pointer variable that resides in far memory (F). 

8.5.10 Functions that Return Float Values 
In Microsoft C 5 .1, a prototype or definition such as 

fl oat funcname(); 

was interpreted as 

double funcname() 

Version 6.0 interprets it as 

float 



AppendixC 
Implementation-Defined Behavior 

The American National Standards Institute (ANSI) Standard for the C program­
ming language contains an appendix called "Portability Issues." The ANSI ap­
pendix lists areas of the C language that ANSI leaves open to each particular 
implementation. This appendix describes how Microsoft C handles these 
implementation-defined areas of the C language. 

This appendix follows the same order as the ANSI Standard appendix. Each item 
covered includes references to the ANSI chapter and section that explains the 
implementation-defined behavior. 

NOTE This appendix describes the U.S. English-language version of the C compiler only. 
Foreign-language implementations of Microsoft C may differ slightly. 

C. 1 Translation 

C. 1. 1 Diagnostics 
How a diagnostic is identified (§2.1.1.3) 

Microsoft C produces error messages in the form: 

jilename(line-numher) : diagnostic Cnumher message 

where filename is the name of the source file in which the error was encoun­
tered; line-numher is the line number at which the compiler detected the error; 
diagnostic is either "error" or "warning"; numher is a unique four-digit number 
(preceded by a C) that identifies the error or warning; message is an explanatory 
message. 

441 



442 Advanced Programming Techniques 

C.2 Environment 

C.2.1 Arguments to main 
The semantics of the arguments to main (§2.1.2.2) 

In Microsoft C, the function called at program start-up is called main. There is 
no prototype declared for main, and it can be defined with zero, two, or three 
parameters: 

int main( void ) 
int main( int argc, char *argv[J ) 
int main( int argc, char *argv[J, char *envp[J ) 

The third line above, where main accepts three parameters, is a Microsoft exten­
sion to the ANSI Standard. The third parameter, envp, is an array of pointers to 
environment variables. The envp array is terminated by a null pointer. See on­
line help for more information about main and envp. 

The variable argc never holds a negative value. 

The array of strings ends with argv[argc], which contains a null pointer. 

All elements of the argv array are pointers to strings. 

A program invoked with no command-line arguments will receive a value of 
one for argc, as the name of the executable file is placed in argv[O]. (In DOS ver­
sions prior to 3.0, the executable file name is not available. The letter "C" is 
placed in argv[O].) Strings pointed to by argv[l] through argv[argc - 1] repre­
sent program parameters. 

The parameters argc and argv are modifiable and retain their last-stored values 
between program start-up and program termination. 

C.2.2 Interactive Devices 
What constitutes an interactive device ( §2.1.2.3) 

Microsoft C defines the keyboard and the display as interactive devices. 



Implementation-Defined Behavior 443 

C.3 Identifiers 

C.3.1 Significant Characters without External Linkage 
The number of significant characters without external linkage ( §3.1.2) 

Identifiers are significant to 31 characters. The compiler does not restrict the 
number of characters you can use in an identifier; it simply ignores any charac­
ters beyond the limit. 

C.3.2 Significant Characters with External Linkage 
The number of significant characters with external linkage ( §3.1.2) 

Identifiers declared extern in programs compiled with Microsoft Care signifi­
cant to 31 characters. You can modify this default to a smaller number using the 
/H (restrict length of external names) option. See on-line help for more informa­
tion on the syntax of the /H option. 

C.3.3 Upper- and Lowercase 
Whether case distinctions are significant ( §3.1.2) 

Microsoft C treats identifiers within a compilation unit as case sensitive. Exter­
nally linked identifiers may or may not be case sensitive, depending on whether 
you use /NOIGNORECASE option when you invoke the linker. The default for 
the linker is to ignore case, making externally linked identifiers case insensitive. 

Thus, symbols in source files are sensitive to case. By default, symbols in object 
files are not. 

Two CL command-line options affect case sensitivity: 

1. The /Ge (generate Pascal-style function calls) command-line option converts 
all external identifiers (including function names) to uppercase. 

The _pascal declarator performs the same operation on a function-by­
function basis. 

2. The /Zc (compile case insensitive) converts all identifiers (excluding function 
names) to uppercase. 



444 Advanced Programming Techniques 

C.4 Characters 

C.4.1 The ASCII Character Set 
Members of source and execution character sets ( §2.2.1) 

The source character set is the set of legal characters that can appear in source 
files. For Microsoft C, the source character set is the standard ASCII character 
set. Figure C.1 contains an ASCII table. 

WARNING Because keyboard and console drivers can remap the character set, programs 
intended tor international distribution should check the country code. 

C.4.2 Multibyte Characters 
Shift states for multibyte characters (§2.2.1) 

Multibyte characters are used by some implementations to represent foreign­
language characters not represented in the base character set. Microsoft C 6.0 
does not support multibyte characters. 

C.4.3 Bits per Character 
Number of bits in a character ( §2.2.4.2) 

The number of bits in a character is represented by the manifest constant 
CHAR BIT. The LIMITS.H file defines CHAR BIT as 8. - -

C.4.4 Character Sets 
Mapping members of the source character set ( §3.1.3.4) 

The source character set and execution character set include the ANSI ASCII 
characters listed in Table C. l. Escape sequences are also shown in Table C. l. 



Implementation-Defined Behavior 445 

Table C.1 

Escape Sequence Character ASCII Value 

\a Alert/bell 7 

\b Backspace 8 

\f Fonn feed 12 

\n Newline 10 

\r Carriage return 13 

\t Horizontal tab 9 

\v Vertical tab II 

\" Double quotation 34 

\' Single quotation 39 

\\ Backslash 92 

C.4.5 Unrepresented Character Constants 
The value of an integer character constant that contains a character or escape 
sequence not represented in the basic execution character set or the extended 
character set for a wide character constant (§3.1.3.4) 

Microsoft C does not support wide characters. 

C. 4. 6 Wide Characters 
The value of an integer character constant that contains more than one 
character or a wide character constant that contains more than one multibyte 
character (§3.1.3.4) 

Microsoft C does not support wide characters or multibyte characters. 

C.4. 7 Converting Multibyte Characters 
The current locale used to convert multibyte characters into corresponding 
wide characters (codes) for a wide character constant (3.1.3.4) 

Microsoft C does not support multibyte characters. 



446 Advanced Programming Techniques 

Ctr! Dec Hex Char Code Dec HexChar Dec HexChar Dec Hex Char . 
@ 0 00 NUL 32 20 64 40 @ 96 60 I 

. 
A @J I 01 SOH 33 21 t 65 41 A 97 61 a . 

" B 2 02 STX 34 22 II 66 42 B 98 62 b . 
c 3 03 ' ETX 3S 23 I 67 43 c 99 63 c . • EOT D 4 04 36 24 $ 68 44 D 100 64 d . 

f ENQ E s OS 37 2S i': 69 45 E 101 65 e . 
F 6 06 t ACK 38 26 a 70 46 F 102 66 f . 
G 7 07 BEL • 39 27 ' 71 47 c 103 67 g . 
H 8 08 c BS 40 28 ( 72 48 H 104 68 h . 

0 I 9 09 HT 41 29 ) 73 49 I 105 69 i . 
10 OA [!] J LF 42 2A * 74 4A J 106 6A j . 

K 11 OB d VT 43 2B + 75 4B )( 107 6B k . 
L 12 oc 2 FF 44 2C ' 76 4C L 108 6C I . 
M 13 OD r CR 4S 20 - 77 40 H 109 60 M . 
N 14 OE n so 46 2E . 78 4E N 110 6E n . 
0 IS OF ~ SI 47 2F I 79 4F 0 111 6F 0 . 
p 16 10 ~ OLE 48 30 9 80 50 p 112 70 p . 
Q ~ DCl 17 11 . 
R 

* 
DC2 18 12 

49 31 1 
50 32 2 

81 51 Q 
82 S2 R 

113 71 q 
114 72 l' . 

s 19 II DC3 13 SI 33 3 83 53 s 115 73 s . 
Ill T 20 14 DC4 S2 34 4 84 S4 T 116 74 t . 
§ NAK u 21 IS 53 3S 5 8S 5S u 117 7S u . 

v 22 SYN 16 • S4 36 6 86 S6 u 118 76 IJ . 
23 ! ETB w 17 . 

x 24 t CAN 18 
SS 37 7 
56 38 8 

87 57 w 
88 58 x 

119 77 w 
120 78 x . 

~ y 2S 19 EM 57 39 9 89 S9 y 121 79 y . z 26 i SUB IA S8 3A 
. . 90 SA z 122 7A z . 

27 f ESC [ IB S9 3B 
. 
' 91 5B [ 123 7B { . 

\ 28 IC L FS 60 3C ( 92 SC \ 124 7C I 
I . 

29 .. GS J. ID 
30 IE • RS 

61 30 --
62 3E ) 

93 5D ] 
94 SE A 

125 70 } 
126 7E N 

. 
31 - IF ' us 63 3F ? 9S SF - 127 7F t:} 

t ASCII code 127 has the code DEL. Under DOS, this code has the same effect as ASCII 8 (BS). 
The DEL code can be generated by the CTRL + BKSP key combination. 

Figure C.1 ASCII Character Set 



Implementation-Defined Behavior 447 

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char 

128 80 g 160 AO a 192 co L 224 EO a: 
129 81 u 161 Al l 193 Cl J. 225 El , 
130 82 e 162 A2 0 194 C2 T 226 E2 r 
131 83 1 163 A3 u 19S C3 ~ 227 E3 n 
132 84 a 164 A4 n 196 C4 - 228 E4 E 
LB 85 a 165 AS ii 197 cs + 229 ES r 
1.14 86 1 166 A6 I 198 C6 ~ 230 E6 jJ 
135 87 s 
136 88 'i 

167 A7 ! 
168 A8 (, 

199 C7 n 
200 C8 I! 

231 E7 T 
232 E8 ~ 

137 89 e 169 A9 I"' 201 C9 Ii 2.B E9 e 
138 8A e 170 AA , 202 CA JI 234 EA n 
139 8B l 171 AB ~ 203 CB 11 235 EB & 
140 8C l 172 AC ~ 204 cc 1: 236 EC • 
141 8D l 173 Al~ I 

I 205 CD = 237 ED ;, 
142 8E ~ 174 AE « 206 CE JI 

11 238 EE E 
143 8F 

I 

A 175 AF )) 207 CF :!: 239 EF n 
144 90 I 176 BO i ~ ~ ~ 208 DO .11 240 FO -
145 91 ~ 177 Bl I 209 DI ;: 241 Fl + 
146 92 ff 178 B2 I 210 02 1T 242 F2 ) 

147 93 " 0 179 B3 I 211 D3 11 243 F3 ( 

148 94 0 180 B4 ~ 212 D4 I: 244 F4 r 
149 95 0 181 BS ~ 213 D5 F 24S F5 J 
150 96 " u 182 B6 ~I 214 D6 n 246 F6 I 

I 

151 97 u 183 B7 11 215 D7 * 247 F7 ., ., 
152 98 ~ 
153 99 ·o 

184 B8 ~ 
185 B9 ~I 

216 D8 f 
217 D9 J 

248 F8 0 

249 F9 I 

154 9A ii 
155 9B ¢ 

186 BA II 
187 BB 11 

218 DA r 
219 DB I 

250 FA 
251 FB .[ 

156 9C £ 188 BC !I 220 DC • 252 FC n 
157 9D ¥ 189 BO JI 221 DD I 253 FD l 
158 9E f\ 190 BE :I 222 DE I 254 FE I 

159 9F ! 191 BF , 223 DF • 255 FF 



448 Advanced Programming Techniques 

C.4.8 Range of char Values 

C.5 Integers 

Whether a "plain" char has the same range of values as a signed char or an 
unsigned char (§3.2.1.1) 

All character values range from OxOO to OxFF, signed or unsigned. If a char is 
not explicitly marked as signed or unsigned, it defaults to the signed type. 

The CL option /J changes the default from signed to unsigned. 

C.5.1 Range of Integer Values 
The representations and sets of values of the various types of integers (§3.1.2.5) 

Short integers contain 16 bits (two bytes). Long integers contain 32 bits (four 
bytes). Signed integers are represented in two's-complement form. The most­
significant bit holds the sign: 1 for negative, 0 for positive and zero. The values 
are listed below: 

Type 

unsigned short 

signed short 

unsigned long 

signed long 

C.5.2 Demotion of Integers 

Minimum and Maximum 

0 to 65535 

-32768 to 32767 

0 to 4294967295 

-2147483648 to 2147483647 

The result of converting an integer to a shorter signed integer, or the result of 
converting an unsigned integer to a signed integer of equal length, if the value 
cannot be represented (§3.2.1.2) 

When a long integer is cast to a short, or a short is cast to a char, the least­
significant bytes are retained. 

For example, this line 

short x ~ (shortl0xl2345678L; 

assigns the value Ox5678 to x, and this line 

char y ~ (char)0xl234; 

assigns the value Ox34 to y. 



Implementation-Defined Behavior 449 

When signed variables are converted to unsigned and vice versa, the bit patterns 
remain the same. For example, casting -2 (OxFE) to an unsigned value yields 254 
(also OxFE). 

C.5.3 Signed Bitwise Operations 
The results of bitwise operations on signed integers ( §3.3) 

Bitwise operations on signed integers work the same as bitwise operations on 
unsigned integers. For example, -16 & 99 can be expressed in binary as 

11111111 11110000 
& 00000000 01100011 

00000000 01100000 

The result of the bitwise AND is 96. 

C.5.4 Remainders 
The sign of the remainder on integer division (§3.3.5) 

The sign of the remainder is the same as the sign of the dividend. For example, 

50 -6 -8 
50 % -6 2 

-50 6 -8 
-50 % 6 -2 

C.5.5 Right Shifts 
The result of a right shift of a negative-value signed integral type (§3.3.7) 

Shifting a negative value to the right yields half the absolute value, rounded 
down. For example, -253 (binary 11111111 00000011) shifted right one bit 
produces -127 (binary 11111111 1000000 l ). A positive 253 shifts right to 
produce+ 126. 

Right shifts preserve the sign bit. When a signed integer shifts right, the most­
significant bit remains set. When an unsigned integer shifts right, the most­
significant bit is cleared. Thus, if OxFOOO is signed, a right shift produces 
OxF800. If OxFOOO is unsigned, the result is Ox7800. 

Shifting a positive number right sixteen times produces OxOOOO. Shifting a 
negative number right sixteen times produces OxFFFF. 



450 Advanced Programming Techniques 

C.6 Floating-Point Math 

C. 6. 1 Values 
The representations and sets of values of the various types of floating-point 
numbers (§3.1.2.5) 

The float type contains 32 bits: 1 for the sign, 8 for the exponent, and 23 for the 
mantissa. Its range is+/- 3.4E38 with at least 7 digits of precision. 

The double type contains 64 bits: 1 for the sign, 11 for the exponent, and 52 for 
the mantissa. Its range is +/- 1. 7E308 with at least 15 digits of precision. 

The long double type is new to Version 6.0 of Microsoft C. It contains 80 
bits: 1 for the sign, 15 for the exponent, and 64 for the mantissa. Its range 
is +/- l .2E4932 with at least 17 digits of precision. 

C. 6.2 Casting Integers to Floating-Point Values 
The direction of truncation when an integral number is converted to afloating­
point number that cannot exactly represent the original value (§3.2.1.3) 

When an integral number is cast to a floating-point value that cannot exactly rep­
resent the value, the value is rounded (up or down) to the nearest suitable value. 

For example, casting an unsigned long (with 32 bits of precision) to a float 
(whose mantissa has 23 bits of precision) rounds the number to the nearest multi­
ple of 256. The long values 4294966913 - 4294967167 are all rounded to the 
float value 4294967040. 

C.6.3 Truncation of Floating-Point Values 
The direction of truncation or rounding when a floating-point number is 
converted to a narrower floating-point number (§3.2.1.4) 

When an underflow occurs, the value of a floating-point variable is rounded 
down to zero. An overflow causes a run-time math error. 



Implementation-Defined Behavior 451 

C. 7 Arrays and Pointers 

C. 7. 1 largest Array Size 
The type of integer required to hold the maximum size of an array-that is, 
the size of size _t ( §3.3.3.4, 4.1.1) 

The size _t typedef is an unsigned short, with the range OxOOOO to OxFFFF. 
Huge arrays can exceed this limit if they contain more than 65,535 elements. 
Arithmetic operations on huge arrays should therefore cast size _t and the results 
of an arithmetic operations on pointers to unsigned long. 

C. 7.2 Casting Pointers 
The result of casting a pointer to an integer or vice versa (§3.3.4) 

Near pointers are the same size as short integers; casting near to short (or short 
to near) has no immediate effect on the value. 

Far pointers and huge pointers are the same size as long integers. Casting 
far/huge to long (or long to far/huge) has no immediate effect on the value. 

When a near pointer is cast to a long, the 16-bit value is "normalized," which 
means the segment (usually DS) and offset arc combined to produce a 32-bit 
memory location. 

When a far or huge pointer is cast to a short, the long value is truncated to a short. 

The compiler normalizes based pointers when necessary, unless the based pointer 
is a constant zero, in which case it is assumed to be a null pointer. See Chapter 
13, "Writing Portable Programs," for more information about based pointers. 



452 Advanced Programming Techniques 

C. 7.3 Pointer Subtraction 
The type of integer required to hold the difference between two pointers to 
elements of the same array, ptrdiff _t ( §3 .3 .6, 4.1.1) 

A ptrdiff_t is a signed integer in the range -32768 to 32767, with one exception. 
Because huge pointers can address more than 64K of memory, subtracting one 
huge pointer from another can yield a result that is a Jong integer. The result of 
subtracting two huge pointers should be cast to a long. 

The compiler normalizes based pointers when necessary. In most cases, based 
pointers are treated as far pointers. 

C.8 Registers 

C.8.1 Availability of Registers 
The extent to which objects can actually be placed in registers by use of the 
register storage-class specifier ( §3 .5.1) 

Two registers, SI and DI, are available in Microsoft C. Register variables with a 
type that has 16 bits may be allocated in these registers. 

C.9 Structures, Unions, Enumerations, and Bit Fields 

C. 9. 1 Improper Access to a Union 
A member of a union object is accessed using a member of a different type 
(§3.3.2.3) 

If a union of two types is declared and one value is stored, but the union is 
accessed with the other type, the results are unreliable. 

For example, a union of float and int is declared. A float value is stored, but the 
program later accesses the value as an int. In such a situation, the value would 
depend on the internal storage of float values. The integer value would not be 
reliable. 

C. 9.2 Sign of Bit Fields 
Whether a "plain" int field is treated as a signed int bit field or as an unsigned 
int bit.field (§3.5.2.1) 

Bit fields can be signed or unsigned. Plain bit fields are treated as signed. 



Implementation-Defined Behavior 453 

C.9.3 Storage of Bit Fields 
The order of allocation of bit fields within an int ( §3.5.2.1) 

Bit fields are allocated within a 16-bit integer from least-significant to most­
significant bit. In the following code, 

struct mybitfields 
{ 

unsigned a 4; 
unsigned b 5; 
unsigned c 7; 

test; 

void main( void 
{ 

test.a 2; 
test.b 31; 
test.c 0· 

the bits would be arranged as follows: 

00000001 11110010 
cccccccb bbbbaaaa 

Since the 80x86 processors store the low byte of integer values before the high 
byte, the integer Ox01F2 above would be stored in physical memory as OxF2 fol­
lowed by OxO 1. 

C. 9.4 Alignment of Bit Fields 
Whether a bit field can straddle a storage-unit boundary ( §3.5.2.1) 

Bit fields default to size short, which can cross a byte boundary (see Section 
C.9.3 above) but not a 16-bit boundary. If the size and location of a bit field 
would cause it to overflow the current integer, the field is moved to the begin­
ning of the next available integer. 

If a bit field is declared as a long, it can hold up to 32 bits. 

In either case, an individual field cannot cross a 16- or 32-bit boundary. 

C.9.5 The enum Type 
The integer type chosen to represent the values of an enumeration type 
(§3.5.2.2) 

A variable declared as enum is a signed short integer. 



454 Advanced Programming Techniques 

C.10 Qualifiers 

C. 10. 1 Access to Volatile Objects 
What constitutes an access to an object that has volatile-qualified type (§3.5.3) 

Any reference to a volatile-qualified type is an access. 

C.11 Declarators 

C. 11. 1 Maximum Number 
The maximum number of declarators that can modify an arithmetic, structure, 
or union type (§3.5.4) 

Microsoft C does not limit the number of declarators. The number is limited only 
by available memory. 

C.12 Statements 

C.12.1 Limits on Switch Statements 
The maximum number of case values in a switch statement ( §3 .6.4.2) 

Microsoft C does not limit the number of case values in a switch statement. The 
number is limited only by available memory. 

C. 13 Preprocessing Directives 

C.13.1 Character Constants and Conditional Inclusion 
Whether the value of a single-character character constant in a constant 
expression that controls conditional inclusion matches the value of the same 
character constant in the execution character set. Whether such a character 
constant can have a negative value (§3.8.1) 

The character set used in preprocessor statements is the same as the execution 
character set. The preprocessor recognizes negative character values. 



Implementation-Defined Behavior 455 

C.13.2 Including Bracketed File Names 
The method for locating includable source files (§3.8.2) 

The preprocessor first searches the directories specified by the CL option /I. If 
the /I option is not present or if it fails, the preprocessor uses the INCLUDE en­
vironment variable to find any include files within angle brackets. If more than 
one directory appears as part of the /I option or within the INCLUDE variable, 
the preprocessor searches them in the order they appear. 

For example, the command 

CL /ID:\MSC\INCLUDE MYPROG.C 

causes the preprocessor to search the directory D:\MSC\INCLUDE for include 
files such as STDIO.H. 

The commands 

SET INCLUDE D:\MSC\INCLUDE 
CL MYPROG.C 

have a similar effect. 

If both sets of searches fail, a fatal error is generated. 

C.13.3 Including Quoted File Names 
The support for quoted names for includable source files ( §3.8.2) 

If the file name is fully specified, with a path that includes a colon (for example, 
F:\C6\SPECIAL\INCL\ORANGE.H), the preprocessor follows the path. 

If the file name is not fully specified, the preprocessor searches the directory of 
the file that included it. If the file is not found there, the preprocessor searches 
the parent directory, the parent's parent, and so on, terminating with the root 
directory. 

If the include file is not found in any of those directories, the rules for bracketed 
file names apply. 

C.13.4 Character Sequences 
The mapping of source file character sequences (§3.8.2) 

Preprocessor statements use the same character set as source file statements with 
the exception that escape sequences are not supported. 



456 Advanced Programming Techniques 

C. 13.5 Pragmas 

Thus, to specify a path for an include file, use only one backslash: 

#include "pathl \pathZ\myfi le" 

Within source code, two backslashes are necessary: 

f i l ~ fop en ( " path 1 \ \path 2 \\my f i l e" , " rt" ) ; 

The behavior on each recognized #pragma directive ( §3.8.6) 

The following pragmas are defined in the Microsoft C Reference: 

#pragma alloc _text 
#pragma check _pointer 
#pragma check_stack 
#pragma comment 
#pragma function 
#pragma intrinsic 
#pragma linesize 
#pragmaloop_opt 
#pragma message 

#pragma optimize 
#pragma pack 
#pragma page 
#pragma pagesize 
#pragma same_ seg 
#pragma skip 
#pragma subtitle 
#pragma title 

C.13.6 Default Date and Time 
The definitions for _DATE_ and _TIME_ when, respectively, the date and time 
of translation are not available ( §3.8.8) 

When a hardware clock is not accessible, the default values for _DATE_ and 
_TIME_ are Friday, May 3, 1957 and 5:00 PM. 

C.14 Library Functions 

C.14. 1 NULL Macro 
The null pointer constant to which the macro NULL expands (§4.1.5) 

Several include files define the NULL macro as ( ( v o i d *) 0 ) . 



Implementation-Defined Behavior 457 

C. 14.2 Diagnostic Printed by the assert Function 
The diagnostic printed by and the termination behavior of the assert 
function (§4.2) 

The assert function prints a diagnostic message and calls the abort routine if the 
expression is false (0). The diagnostic message has the form 

Assertion failed: [expression], file [filename], line [linenumber] 

where filename is the name of the source file and linenumber is the line number 
of the assertion that failed in the source file. No action is taken if expression is 
true (nonzero). 

C. 14.3 Character Testing 
The sets of characters tested for by the isalnum, isalpha, iscntrl, islower, 
is print, and is upper functions ( §4.3 .1) 

Function 

isalnum 

isalpha 

iscntrl 

islower 

isprint 

is upper 

C.14.4 Domain Errors 

Tests For 

Characters 0-9, A-Z, a-z 
ASCII48-57,65-90,97-122 

Characters A-Z, a-z 
ASCII 65-90, 97-122 

ASCII 0-31, 127 

Characters a-z 
ASCII 97-122 

Characters A-Z, a-z, 0-9, punctuation, space 
ASCII 32-126 

Characters A-Z 
ASCII 65-90 

The values returned by the mathematics functions on domain errors (§4.5.1) 

The ERRNO.H file defines the domain error constant EDOM as 33. 



458 Advanced Programming Techniques 

C.14.5 Underflow of Floating-Point Values 
Whether the mathematics functions set the integer expression errno to the 
value of the macro ERAN GE on underflow range errors (§4.5.1) 

A floating-point underflow does not set the expression errno to ERANGE. When 
a value approaches zero and eventually underflows, the value is set to zero. 

C.14.6 The fmod Function 
Whether a domain error occurs or zero is returned when the /mod function has 
a second argument of zero ( §4.5.6.4) 

When the fmod function has a second argument of zero, the function returns zero. 

C. 14. 7 The signal Function 
The set of signals for the signal function ( §4. 7.1.1) 

The first argument passed to signal must be one of the symbolic constants listed 
below. The constants are defined in SIGNAL.H. Also listed is the operating 
mode support for each signal. 

Signal Argument 

SI GAB RT 

SIG BREAK 

SIGFPE 

SI GILL 

SIGINT 

Description 

Abnormal termination (real and protected mode). 

CTRL+BREAK signal. Terminates the calling program 
(protected mode only). 

Floating-point error, such as overflow, division by 
zero, or invalid operation. Terminates the calling 
program (real and protected mode). 

Illegal instruction. Terminates the calling program 
(protected mode only). 

CTRL+C interrupt. Issues INT 23H (real and 
protected mode). 



SIGSEGV 

SIGTERM 

SIGUSRI 

SIGUSR2 

SIGUSR3 

C.14.B Default Signals 

Implementation-Defined Behavior 459 

Illegal storage access. Not generated by DOS or 
OS/2, but supported for ANSI compatibility. Termi­
nates the calling program (real and protected mode). 

Termination request sent to the program. Not gen­
erated by DOS or OS/2, but supported for ANSI 
compatibility. Terminates the calling program (real 
and protected mode). 

OS/2 process flag A (protected mode only). 

OS/2 process flag B (protected mode only). 

OS/2 process flag C (protected mode only). 

If the equivalent of signal (sig, SIG_DFL) is not executed prior to the call of a 
signal handler, the blocking of the signal that is performed (§4.7.1.l) 

Signals are set to their default status when a program begins running. 

C.14.9 The SIG/LL Signal 
Whether the default handling is reset if the SIG/LL signal is received by a 
handler specified to the signal function ( §4. 7.1 .I) 

The SIGILL signal applies to OS/2 applications only. When SIGILL is received, 
the signal handling is not reset to the default SIG_DFL. 

C.14.10 Terminating Newline Characters 
Whether the last line of a text stream requires a terminating newline character 
(§4.9.2) 

Stream functions recognize either newline or end-of-file as the terminating char­
acter for a line. 



460 Advanced Programming Techniques 

C.14.11 Blank Lines 
Whether space characters that are written out to a text stream immediately 
before a newline character appear when read in (§4.9.2) 

Space characters are preserved. 

C.14.12 Null Characters 
The number of null characters that can be appended to data written to a binary 
stream (§4.9.2) 

Any number of null characters can be appended to a binary stream. 

C.14. 13 File Position in Append Mode 
Whether the file position indicator of an append mode stream is initially posi­
tioned at the beginning or end of the file (§4.9.3) 

When a file is opened in append mode, the file position indicator initially points 
to the end of the file. 

C.14. 14 Truncation of Text Files 
Whether a write on a text stream causes the associated file to be truncated 
beyond that point ( §4.9.3) 

Writing to a text stream does not truncate the file beyond that point. 

C.14.15 File Buffering 
The characteristics of file buffering (§4.9.3) 

Disk files accessed through standard 1/0 functions are fully buffered. By default, 
the buffer holds 512 bytes. Some of the low-level DOS and BIOS functions (all 
of which are non-ANSI) are unbuffered. 



Implementation-Defined Behavior 461 

C.14.16 Zero-Length Files 
Whether a zero-length file actually exists ( §4.9.3) 

Files with a length of zero are permitted. 

C.14.17 File Names 
The rules for composing valid file names (§4.9.3) 

A file specification can include an optional drive letter (always followed by a 
colon), a series of optional directory names (separated by backslashes), and a 
file name. 

File names and directory names can contain up to eight characters followed by a 
period and a three-character extension. Case is ignored. The wild-card characters 
* and ? are not permitted within the name or extension. 

C.14.18 File Access Limits 
Whether the same file can be open multiple times (§4.9.3) 

Opening a file that is already open is not permitted. 

C.14.19 Deleting Open Files 
The effect of the remove function on an open file (§4.9.4.1) 

The remove function deletes a file, even if the file is open. 

C. 14.20 Renaming with a Name that Exists 
The effect if a file with the new name exists prior to a call to the rename 
function ( §4.9.4.2) 

If you attempt to rename a file using a name that exists, the rename function 
fails and returns an error code. 



462 Advanced Programming Techniques 

C.14.21 Printing Pointer Values 
The output for %p conversion in the fprintf function ( §4.9.6.1) 

Microsoft C supports three types of pointer conversions: %p (a pointer), %Ip 
(a 32-bit far pointer), and %hp (a 16-bit near pointer). 

The fprintffunction produces hexadecimal values of the form XXXX (an offset) 
for near pointers or XXXX:XXXX (a segment plus an offset, separated by a colon) 
for far pointers. The output for %p depends on the memory model in use. 

C.14.22 Reading Pointer Values 
The input for %p conversion in thefscanffunction (§4.9.6.2) 

When the %p format character is specified, the fscanffunction converts pointers 
from hexadecimal ASCII values into the correct address. 

C.14.23 Reading Ranges 
The interpretation of a dash(-) character that is neither the first nor the last 
character in the scanlistfor % [conversion in thefscanffunction (§4.9.6.2) 

The following line 

fscanf( fileptr, "%[A-ZJ", strptrl; 

reads any number of characters in the range A-Z into the string to which 
st rpt r points. 

C.14.24 File Position Errors 
The value to which the macro errno is set by the fgetpos or ftell function on 
failure (§4.9.9.1, 4.9.9.4) 

When fgetpos or ftell fails, errno is set to the manifest constant EINV AL if the 
position is invalid or EBADF if the file number is bad. The constants are defined 
inERRNO.H. 



Implementation-Defined Behavior 463 

C. 14.25 Messages Generated by the perror Function 
The messages generated by the perror function (§4.9.10.4) 

The perror function generates these messages: 

0 Error 0 
1 
2 No such file or directory 
3 
4 
5 
6 
7 Arg list too long 
8 Exec format error 
9 Bad file number 
10 
11 
12 Not enough core 
13 Permission denied 
14 
15 
16 
17 File exists 
18 Cross-device link 
19 
20 
21 
22 Invalid argument 
23 
24 Too many open files 
25 
26 
27 
28 No space left on device 
29 
30 
31 
32 
33 Math argument 
34 Result too large 
35 
36 Resource deadlock would occur 

C.14.26 Allocating Zero Memory 
The behavior of the calloc, malloc, or realloc function if the size requested is 
zero (§4.10.3) 

The calloc, malloc, and realloc functions accept zero as an argument. No actual 
memory is allocated, but the memory size can be modified later by realloc. 



464 Advanced Programming Techniques 

C.14.27 The abort Function 
The behavior of the abort function with regard to open and temporary 
files (§4.10.4.1) 

The abort function does not close files that are open or temporary. It does not 
flush stream buffers. 

C.14.28 The atexit Function 
The status returned by the atexitfunction if the value of the argument is other 
than zero, EXIT _SUCCESS, or EXIT _FAILURE ( §4.10.4.3r) 

The atexit function returns zero if successful, or a nonzero value if unsuccessful. 

C.14.29 Environment Names 
The set of environment names and the method for altering the environment list 
used by the getenv function ( §4.10.4.4) 

The set of environment names is unlimited. 

To change environment variables from within a C program, call the putenv func­
tion. To change environment variables from the DOS command line, use the SET 
command (for example, SET LIB= D:\LIBS). 

Environment variables exist only as long as their host copy of DOS is running. 
For example, the line 

system( "SET LIB= D:\LIBS" ); 

would run a copy of DOS, set the environment variable LIB, and return to the C 
program, exiting the secondary copy of DOS. Exiting that copy of DOS removes 
the temporary environment variable LIB. 

Likewise, changes made by the putenv function last only until the program ends. 

C.14.30 The system Function 
The contents and mode of execution of the string by the system function 
(§4.10.4.5) 

The system function executes an internal DOS or OS/2 command, or an EXE, 
COM, or BAT file from within a C program rather than from the command line. 



Implementation-Defined Behavior 465 

It examines the COMSPEC environment variable to find the command inter­
preter, which is typically COMMAND.COM in DOS or CMD.EXE in OS/2. The 
system function then passes the argument string to the command interpreter. 

C.14.31 The strerror Function 
The contents of the error message strings returned by the strerror function 
(§4.11.6.2) 

The strerror function generates these messages: 

0 Error 0 
1 
2 No such file or directory 
3 
4 
5 
6 
7 Arg list too long 
8 Exec format error 
9 Bad file number 
10 
11 
12 Not enough core 
13 Permission denied 
14 
15 
16 
17 File exists 
18 Cross-device link 
19 
20 
21 
22 Invalid argument 
23 
24 Too many open files 
25 
26 
27 
28 No space left on device 
29 
30 
31 
32 
33 Math argument 
34 Result too large 
35 
36 Resource deadlock would occur 



466 Advanced Programming Techniques 

C.14.32 The Time Zone 
The local time zone and Daylight Saving Time (§4.12.1) 

The local time zone is Pacific Standard Time. Microsoft C supports Daylight 
Saving Time. 

C.14.33 The clock Function 
The era for the clock function (§4.12.2.1) 

The clock function's era begins (with a value of 0) when the C program starts to 
execute. It returns times measured in 1/lOOOth seconds. 



Index 
80x86 processors, 21 
80x87 coprocessor. See Floating-point math 
:> (base operator), 59 
>>(help delimiter), 144 

A 
/AC option, 39 
/Ad option, 48 
Addressing, segmented, 32 
/AH option, 39 
/AL option, 39 
Aliases, assuming nonexistence, 13, 15 
ALIGN directive, 65 
/AM option, 39 
ANSI 

C 6.0 non-conformance with, 425 
compatibility, C6.0 features, 421 

Applications Program Interface, 348 
ASCII character set, 446-44 7 
/AS option, 38 
_asm keyword, 64 
Assembly language. See In-line assembly 
Assembly-code format, 64 
I Astring option, 46 
/AT option, 38 
Atomic operation, 399 
/Au option, 49, 357 
/Aw option, 49, 357, 381 
/Ax option, 356 

8 
_based keyword, 39, 42, 54-55 
Based addressing, 34 
Based pointers 

advantages, 54 
base operator, 59 
declaring, 58-60 
defined,34,54 
problems, 41 
self segment, 60 
void pointers, 59 

Based variables 
advantages, 55 
declaring, 42, 55, 58 
defined,55 
segment variables, 58 

_beginthread function, 372 

BIND utility, 354, 364-365 
Blocking 

defined, 378 
threads, 399-400 

Bound programs, creating, 354 
Breakpoints, 196-198 
Byte ordering, 341 

c 
/c option, 359, 364, 401 
C 6.0 features 

ANSI compatibility, 421 
ANSI nonconformance, 425 
changed from C 5.1, 438-440 
new, 432-437 
new functions, keywords, 425, 427, 429, 431 

C extensions, PWB 
building protected-mode, 171-172 
building real-mode, 170-171 
calling C library functions, 182 
calling C library routines, 183 
calling PWB functions, 178-182 
describing functions and switches, 172-175 
versus executable files, 167 
initializing functions, 175 
prototyping functions, 176 
receiving parameters, 17 6-178 
sample program, 168-169 

C symbols, 69 
_cdecl keyword, 27 
Charts. See Graphics 
Child process, 417 
CL options, new for C 6.0, 432 
Code pointer size, 47 
Code View 

array-variable displays, 190-191 
breakpoints, 196-198 
command-line arguments, 201 
command-line options (list), 204 
CURRENT.STS file, 187 
customizing the environment, 205 
debugging 

C programs with, techniques, 188 
DLLs with, 413 

dereferencing pointers, 192 
dynamic replay, 199-200 
executing C functions, 201 
execution control, 196-198 

467 



468 Advanced Programming Techniques 

Code View (continued) 
expanded/extended memory use, 203 
live expressions, 194 
memory display, 193-194 
modifying memory and registers, 195 
mouse support, 185 
multiple-process debugging, 383 
/0 option, 383 
OS/2 limitations, 200 
pointer checks, 201 
printing from screen, 202 
protected-mode sessions, 387 
Quick Watch display, 193 
redirecting 1/0, 203 
register display, 194 
register variable limitations, 202 
replay, 199-200 
session status file, 187 
single-stepping, 199 
structure-variable displays, 190-191 
thread execution, 384-386 
TOOLS.IN! file, 205 
viewing data, 188-191, 193-194 
Watch window variables, expressions, 188-189 
windows in, 185-187 

CODEVIEW.LST file, 202 
/CODEVIEW option, 384 
Color. See Graphics 
Command line, 6 
Command-line options, 9 
Compact model, 35 
Compilation 

full, 97 
incremental, 98 
mixed-language, 284 
quick, 97 

Compiler warning levels, 383 
CONFIG.SYS file, 204, 383 
_control87 function, 83 
Coordinates 

overview, 222 
physical, 223, 225 
screen location, 228 
viewport, 225-226, 231 
window,227-228,231 

Critical code section, 399 
CURRENT.STS, 187 
Customized memory models. See Memory 

management, memory models 

0 
Data and stack segment equality, 48-49 
Data pointer size, 48 
Data threshold, setting, 51 
Debugging, 9, 15 

See also Code View 
Default optimizations, 8-10 
Denormalized numbers, 80 
Dereferencing pointers, 192 
Directives. See NMAKE 
Directory functions (list), 431 
DLLs 

80286 code required, 402 
application-specific libraries, 410-411 
atomic operation, 399 
building with C, 359-360, 402, 404-411 
C keywords used, 400-401 
without C run-time functions, 392, 407 
calling from application, 405 
clients, defined, 390 
compile options, 401-402 
coprocessor handling, 394 
critical code section, 399 
data segments, 48, 50, 398 
DATA statement, 398 
debugging with Code View, 413 
design requirements, 393 
floating-point requirements, 394 
initialization requirements, 395-396 
LIBRARY statement, 396 
LLIBCDLL library, 403 
load-time linking, 390 
overview, 389-393 
private libraries, 392-393 
programming requirements, 393, 402 
re-entrancy requirements, 397-398, 400 
run-time linking, 390 
SEGMENTS statement, 398 
with selected C run-time functions, 392-393, 

408-409, 411 
signal handling, 400 
specifying location, 362 
stand-alone libraries, 391, 402-403 
static C run-time functions, 402-403 
termination requirements, 396-397 
types, 391 

Document conventions, xvii 
Dot commands, 148-150 



Drive functions (list), 431 
OS register, 48 
Dual-mode programs, creating, 354 
Dynamic-link libraries. See DLLs 

E 
_emit pseudoinstruction, 67 
_endthread function, 372 
Error codes, 417 
EVEN directive, 65 
/EXEPACK option, 26 
Exit codes, 417, 419 
exit function, 417 
Exponent, defined, 80 

F 
Family API 

compiling for appropriate processor, 22 
functions (list), 352 
programs, creating, 354 

Far addressing, 33, 39 
Far functions, 43 
_far keyword, 39, 42, 284, 287, 331 
Far pointers, 33 
Far variables, declaring, 42 
IF ARCALLTRANSLA TION linker option, 23 
_fastcall convention, 72 
_fastcall keyword, 19, 27-28, 282, 430 
/Fb option, 354, 364 
/Fe option, 67 
Files 

CODEVIEW.LST, 202 
CONFIG.SYS, 204, 383 
CURRENT.STS, 187 
.FON, 238-239, 244 
TOOLS.IN!. See TOOLS.IN! file 

Fill patterns, 261-263 
Floating-point accumulator, 82 
Floating-point math 

80x87 coprocessor, 83, 87-91 
80x87 exception handler, 83, 92 
compile-time options, 84-89 
coprocessor suppression, 91 
incompatible machines, 92 
library names, 84 
library usage considerations, 89 
math packages, 82-84 
N087 environment variable, 91 

Index 469 

Floating-point math (continued) 
optimization interactions, 86, 88 
option compatibility, 90 
options, selecting, 84, 86-87, 89 
requirements, DLLs, 394 
support of type long double, 82 

Floating-point results, consistency of, 21 
Floating-point types, 79-82 
Floating-point variables, 80-81 
.FON files, 238-239, 244 
Fonts. See Graphics, fonts 
_fortran keyword, 27 
/FPa option, 85, 89 
/FPc option, 85, 87 
/FPc87 option, 85, 88 
/FPi option, 85-86 
/FPi87 option, 85, 87 
Full (optimized) compilation, 97 
Function calls 

C calling convention, 27 
far call, 23 
_fastcall calling convention, 28-30 
FORTRAN/Pascal calling convention, 27 
near call, 23 
register calling convention, 28 

Functions 

G 

drive and directory (list), 431 
exit, 417 
graphics (listed), 229-236 
initializing, 17 5 
intrinsic, 10 
new for C 6.0, 425, 427, 429, 431 
prototyping, 176 
spawn, 419 
WhenLoaded, 175 
writing, 70 

/GO option, 21 
JG 1 option, 21 
/G2 option, 21, 402 
/Ge option, 27, 30 
/Gd option, 27, 30, 432 
/Gr option, 19, 27-28, 30, 72, 371, 430 
Graphics 

animated, 241 
arc, drawing, 232 
axes, 223, 248 
bar chart, sample program, 247, 252-254 



470 Advanced Programming Techniques 

Graphics (continued) 
bounding rectangles, 228 
character pool, 263 
chart styles (table), 248 
chart windows, 248 
circle, drawing, 232 
clipping region, 224, 230 
color index, 217 
color pool, 259 
colors, changing, 231 
column chart, sample program, 247, 253-255 
constants for max resolution and color (table), 216 
coordinate systems, 222 
cursor, moving, 233 
customizing presentation graphics 

axes,265-268 
chart environment, 271-272 
legends, 270 
overview, 263 
titles, 265 
windows, 269 

data categories, 246 
data series, 246 
data windows, 248 
ellipse, drawing, 232 
fill patterns, 234, 261, 263 
_fontinfo data structure, 241 
fonts 

bit-mapped, 236 
defined,236 
displaying text, 239, 241 
effective use, 244 
.FON files, 238 
option codes, 240 
registering, 239 
selection, 239 
sizes (table), 238 
spacing, 236 
typeface, 236 
type size, 236 
vector-mapped, 237 

functions (listed), 229-236 
graphics adapters, 211 
graphics mode, 212 
images, displaying, 236 
legends, 249 
line chart, sample program, 253-254, 256 
line graphs, 247 
lines, drawing, 233 
origin 

defined, 223 
setting location, 224, 231 

Graphics (continued) 
palettes 

CGA,218 
EGA,221 
MCGA,221 
Olivetti, 219 
selection, 217 
setting, 231 
VGA,219 

physical coordinates, 223 
physical screen, 223 
pie charts, 247, 250 
pie slice, drawing, 233 
pixel cursor, 229 
pixels, setting color, 234 
presentation graphics 

categorized, 246 
functions (table), 245 
palettes, 259-260 
program development, 249 
sample programs, 249-259 

rectangle, drawing, 234 
resolution, maximizing, 216 
sample low-level program, 212, 242 
scatter diagrams, 247, 256-257, 259 
style pool, 260 
symbolic constants used, 222 
text mode, 212 
text, displaying, 241 
video modes 

(list), 211 
characterized, 213-214 
default mode, 212 
graphics mode, defined, 212 
selecting appropriate, 216 
setting, 213, 231 
text mode, defined, 212 

videoconfig structure, 215 
viewport coordinates, 222-223, 225, 231 
window coordinates, 222-223, 227, 231 
_ wxycoord structure, 228 
xycoord structure, 228 

/Gs option, 18, 400, 402 

H 
Help delimiter(>>), 144 
Help files 

appending to existing data base, 142 
context prefixes, 145 
contexts, 144 
conventions, 143 



Help files (continued) 
creating your own, 136 
database 

contents, 133 
creation, 142 
formats, I 50-1 5 I 

default format, 135 
dot commands, I 5 I 
encoding/decoding, 136 
formats, 135 
HELPMAKE utility 

invoking, 136 
options, 137-141 

hyperlinks. See Hyperlinks 
local help context, 144 
Microsoft applications using, 133 
source file formats 

minimally formatted ASCII, 154 
QuickHelp, 135, 151-152 
Rich Text, 155-156 
unformatted ASCII, 136 

structure, 143 
HIMEM.SYS driver, 204 
Huge 

addressing, 33 
memory model, 35-36 
pointers, 33 
variables, 42 

_huge keyword, 35, 39, 42, 330-331, 424 
Hybrid memory models, 46-47, 49-53 
Hyper links 

I 

anchored, 147 
commands, 147-150 
defined, 134-135 
formatting flags, l 52 
invisible text, 146 
topics, 148-150 

IEEE floating-point types, 79 
IF ERRORLEVEL command, 418 
Implementation-defined behavior, 441-466 
IMPLIB utility, 357, 359, 361 
Import libraries, 362 
In-line assembly 

advantages, 63 
ALIGN directive, 65 

In-line assembly (continued) 
_asm keyword, 64 
assembler macros, 65 
andC 

function calls, 74 
macros, 75-76 
mixed with _asm blocks, 68 
operators disallowed, 68 
symbol usage, 69 
variable references, 69 

code blocks, 64 
comment lines, 67 
debugging with Code View, 67 
directives available, 65 
_emit pseudoinstruction, 67 
EVEN directive, 65 
expressions allowed, 65 
_fastcall compatibility, 72 
format of assembly code. 64 
function calls, 70 
immediate values, 67 
instruction set, 65 
invoking, 64 
labeling code, 73 
LENGTH operator, 66 
library function names as labels, 74 
macros 

assembler, 65 
C, 75-76 

MASM, similarities with, 65 
MASM-style macros, 76 
mixed source/assembly listings, 67 
optimization interaction, 76-77 
records and structures, 65 
register usage, 72 
register variables, 77 
scope of variables, 64 
segment references, 66 
SIZE operator, 66 
TYPE operator, 66 

Include files, multithread programs, 370 
Incremental compilation, 98 
Incremental linking, 98-101 
/INCREMENTAL option, 99 
Integer promotion, C 6.0 rules, 422 
Intrinsic functions, 10 
intrinsic pragma, 89 
I/0-privileged programs, 360 

Index 471 



472 Advanced Programming Techniques 

K 
Keywords 

L 

_asm, 64 
_based, 42, 55 
_cdecl, 27 
_far, 39, 42, 284, 287, 331 
_fastcall, 19, 27-28, 430 
_fortran, 27 
_huge,35,39,42,330-331,424 
_loadds, 50 
_near, 42 
new for C 6.0, 427, 429, 431 
nonstandard modifiers, 424 
_pascal, 27 
register, 19, 28 
_segname, 55 
_self, 60 
volatile, 14 

Language conventions 
calling conventions, 281-282 
naming conventions, 278-281 
parameter-passing conventions, 283-284 

Large model, 35 
/Le option, 353 
Libraries, 353 

dynamic-link See DLLs 
import, 361-362 
special, 355-356 

LINK 
/CODEVIEW option, 384 
for .COM files, 36, 433 
compatibility (/Le), 353 
default library search, 353 
/FARCALLTRANSLATION option, 23 
import libraries, 361-362 
/INCREMENTAL option, 99 
module-definition files, 357-361 
/NOD option, 89, 353, 362 
/NOE option, 363 
/NOI option, 363 
JPACKCODE option, 24-25 
JP ACKDA TA option, 25 
JPADCODE option, 99 
JP ADDAT A option, 99-100 
JPMTYPE option, 363 
preparing for CODEVIEW, 384, 413 
preparing for ILINK, 99-100 

LINK (continued) 
protected-mode (Lp), 353-354, 381 
real-mode (/Lr), 353-354 
suppressing default library search record, 362 
/TINY option, 36, 433 
using one standard library, 89 

Linking. See Incremental linking 
Live expressions, 194 
_loadds keyword, 50 
Long double data type, 82, 427 
Long double functions (list), 428 
Loop optimization, 16-17 
/Lp option, 353 
/Lr option, 353 

M 
MAKE, differences from NMAKE, 130-131 
Manifest constants, OS/2, effects, 349 
Mantissa, 80 
/MD option, 28, 356, 402 
Medium model, 35 
Memory management 

addressing (table), 40 
based pointers. See Based pointers 
based variables. See Based variables 
code segment specification, 53 
code size limitations, 35 
data segment specification, 53 
data size limitations, 35 
data threshold, 51 
equality of stack and data, 48-49 
far functions, 43 
heap allocation, 427 
library selection, 35, 51 
memory models 

(table), 35 
customizing, 46-47, 49-53 
default, 38 
hybrid, 46-47, 49-53 
mixed, 39, 429 
selecting standard, 34 
small, 32 
specifying with command-line options, 38 
specifying with PWB options, 38 

module naming, 52 
near functions, 43 
null pointers, 37 
passing arguments, 50 
passing pointers to functions, 44-45 
pointer conversions, 44-45 



Memory management (rnntinued) 
pointer incompatibilities, 41 
pointer sizes, 31-34, 47 
predefined segments, 55 
segment-naming conventions (table), 52 
segmented architecture, 32 
strategies, 31 

Memory models. Sec Memory management 
Memory, displaying, 193-194 
Mixed languages 

array conventions, 310-311 
array declaration equivalents, 312 
array indexing, 31 1 
assembly-language 

conventions, 297 
exiting procedures, 304 
local data allocation, 299 
parameter access, 300-301 
procedure entry, setup, 298 
register conventions, 303 
register preservation, 299-300 
returning values, 303 

C calls 
to assembly language, 295, 297-298, 

300-301,303-305 
to BASIC, 288-290 
to FORTRAN, 290-292 
to high-level languages, 285-295 
to Pascal, 293-295 

calling conventions, 281 
calls to high-level languages, general rules, 285-287 
common blocks, 314 
compilation requirements, 284 
data addresses, 3 14 
data calling, naming conventions, 305-306 
data pointers, 314 
data type equivalence, 306 
defined, 275 
equivalent array declarations, 312 
equivalent data types, 306 
external data, sharing, 313 
in-line assembler advantages over MASM, 296 
language conventions, 276-278, 281-283 
linking requirements, 285 
MASM advantages over in-line assembler, 296 
memory models, 284 
naming conventions, 278 
parameter-passing conventions, 283 
passing data, 314 
stack frame 

defined,298 
use, 302 

Mixed languages (continued) 
string formats, 307-309 
structure and record equivalence, 312 
variable number of parameters, 316 

Mixed memory model, 39 
/ML option, 28, 355, 402 
Module-definition file, 357-359, 402 
Module names, 52 
/MT option, 28, 355, 357, 370, 381 
MT symbolic constant, 382, 412 
Multiple-process debugging, 383 
Multithread libraries, 368-370 
Multithread programs 

N 

building, 370 
combining options, 370 
compiling, 381 
include files, 370 
library support, 368-370 
linking, 381 
/MT option, 370, 381 
MT symbolic constant, 382 
overview, 367 
problems and solutions, 382-383 
programming requirements, 377-380 
protected-mode debugging, 383 
re-entrant C functions (list), 369 
resource sharing, 377 
sample program, 373-377 
semaphores, 378 
signals, 379-380 
stack size, 3 79 
thread functions, 371 
thread numbers, 384 
warning-level options, 383 

/ND option, 52 
Near addressing, 32, 39 
Near functions, 43 
_near keyword, 39, 42, 284, 287, 331 
Near pointers, 32 
Near variables declaring, 42 
/NM option, 52 
NMAKE 

command files, 126 
command-line options (table), 125 
command modifiers (table), 108 
comment lines, 110 
control characters used literally, 108 
description blocks, 105 
description files, I 05 

Index 473 



474 Advanced Programming Techniques 

NMAKE (continued) 
directive operators (table), 121 
directives, 120 
extmake syntax, 124 
in-line files, 127 
inference rules, 117-118 
invocation, 104 
linking commands, 107 
macros 

advantages, 110 
defining, 111 
inherited, 116 
invoking, 111 
precedence among, 117 
predefined (table), 112-113 
text substitution within, 115 

MAKE, differences from, 130-131 
MAKEFILE default, 128 
order of operations, 128-129 
OS/2 command limitations, 107 
overview, 103 
pseudotargets, 122-123 
search paths, 118 
targets in multiple blocks, 109 
TOOLS.IN! file, 127 
wild-card characters in commands, 107 

N087 environment variable, 91 
/NOD option, 89, 353, 362 
/NOE option, 363 
/NOI option, 363 
/NT option, 52 
NULL pointers, 37, 422 

0 
/Oa option, 13-14, 17, 26 
/Oc option, 20 
/Od option, 15, 20, 76 
/Oe option, 19, 77 
/Og option, 20, 77 
/Oi option, 10 
JOI option, 16, 77 
On-line help. See Help files 
/On option, 17 
/Op option, 21 
Optimization 

aliased variables 
defined, 13 
interaction with /Ox option, 23 
rules for ignoring, 14 

aliases, 7, 26 
code size, 7, 10, 23, 25-27 

Optimization (continued) 
command-line control, 6 
common subexpressions, 8, 20 
debugging, 9 
defaults, 8-10 
defined, 5 
disabling, 9 
environment considerations, 26 
execution speed, 7, 9-11, 13, 16, 23-24, 27-28 
floating-point consistency, 21 
floating-point functions, 29 
function calls, 23, 27 
function-call overhead, 10, 12 
global common subexpressions, 7 
global register allocation, 7, 19 
intrinsic functions, 10-13 
invariant code, removal, 16 
link-time options, 23, 25 
local common subexpressions, 7 
loop, 7, 16-17 
math coprocessor, 11 
optimize pragma, 7, 10, 15, 20-21, 23 
OS/2 limitations, 26 
processor choice, 21 
PWB control, 6 
register candidates (table), 29 
register variables, 13, 28 
stack probes, 18 
subexpression elimination, 8 
variable assignments, 9 

optimize pragma, 7, 10, 15, 20-21, 23 
Options 

!AC, 39 
/Ad, 48 
/AH, 39 
/AL, 39 
/AM, 39 
/AS, 38 
/Astring, 46 
/AT, 38 
/Au, 49, 357 
/Aw, 49, 357, 381 
/Ax, 356 
Jc, 359, 364, 401 
/CODEVIEW, 384 
command-line, 6 
JEXEPACK, 26 
fF ARCALLTRANSLA TION, 23 
/Fb, 354, 364 
(Fc,67 
(FPa,85,89 
(FPc,85,87 



Options (continued) 
/FPc87, 85,88 
/FPi, 85-86 
/FPi87, 85, 87 
/GO, 21 
/G 1, 21 
/G2, 21, 402 
/Ge, 27, 30 
/Gd, 27, 30, 432 
/Gr, 19,27-28,30, 72,371,430 
/Gs, 18, 400, 402 
HELPMAKE, 137-139, 141-143 
/lNCREMENT AL, 99 
/Le, 353 
/Lp,353 
/Lr, 353 
/MD, 28, 356, 402 
/ML, 28, 355, 402 
/MT,28,355,357,370,381 
/ND, 52 
/NM, 52 
/NOD, 89, 353, 362 
/NOE, 363 
/NOI, 363 
/NT, 52 
/Oa, 13-14, 17, 26 
/Oc, 20 
/Od, 15, 20, 76 
/Oe, 19, 77 
/Og, 20, 77 
/Oi, 10 
/01, 16, 77 
/On, 17 
/Op, 21 
optimization, 6 
/Os, 10 
/Ot, 10 
/Ow, 13-14, 17, 26 
/Ox, 13,22-23,371 
/Oz, 15 
IPACKCODE, 24-25 
IP ACKDA TA, 25 
IPADCODE, 99 
IP ADDA TA, 99 
IPMTYPE, 363 
/qc, 97 
/TINY, 36, 433 
/Zi, 67 
/Zl, 356, 402 

/Os option, 10 
OS/2 

applications, 348 
BIND utility, 354, 364-365 
bound programs, 350-351, 354 
calling, 348 
case sensitivity option, 363 
compile options, 353 
compiling 

correct processor for, 22 
library-selection options, 355 
memory-model options, 356 

default library override, 353, 356 
DLLs 

creating, 359-360 
specifying location, 362 
usage, 362 

dual-mode programs, 350-351, 354 
export definition, 357 
Family API functions (list), 352 

Index 475 

Family API programs. See dual-mode programs 
header files, 349 
1/0-privileged programs, 360 
IMPLIB utility, 357, 359, 361 
import definition, 357 
import libraries, 362 
library selection, 355 
link options, 353, 362 
manifest constants, effects (list), 349 
module-definition files, 357-359 
multithread considerations, 357 
multithread library, 355 
multithread programs, 362 
Presentation Manager applications, 361 

OS/2 API Family functions (list), 352 
/Ot option, 10 
/Ow option, 13-14, 17, 26 
/Ox option, 13, 22-23, 371 
/Oz option, 15 

p 
IPACKCODE option, 24-25 
IPACKDATA option, 25 
IPADCODE option, 99 
/PADDATA option, 99 
Parent process, 417 
_pascal keyword, 27 
IPMTYPE option, 363 



476 Advanced Programming Techniques 

Pointers 
conversion, 44-45 
NULL, 37, 422 
passing to functions, 44-45 
problems, 40 
sizes, 31-33 
typedef, C 6.0 rules, 423 

Portability 
compiler assumptions 

bitwise shifts, 335 
environment differences, 340 
evaluation order of expressions, 338 
identifier case and length, 335 
1/0 operations, 340 
promotion to longer types, 334-335 
register variables, 337 
side effects of arguments, 339 
sign extension, 334-335 
variable number of arguments, 337 

data-file structures, 340 
hardware assumptions 

address space size, 331-332 
arithmetic mode, 328 
byte order within words, 324-326 
character set, 332-333 
data type size, 317, 319-321 
pointers, 329 
storage order, alignment, 321-323 
structure bit fields, 326 
structure reads, writes, 326 

issues affecting, 441-466 
Microsoft C concerns, 341 

Pragmas 
alloc_text, 53 
check_stack, 18 
function, 12-13 
intrinsic, 89 
loop_opt, 16 
optimize, 7, 10, 15, 20-21, 23 
same_seg, 53 

Predefined segments (list), 55 
Presentation graphics. See Graphics 
Presentation Manager applications, 361 
Process 

child,417 
debugging multiple processes, 383 
defined, 367 

Processors, compiling for optimum code, 21 
Program development tools, 103 
Program optimization, 5 

Program portability. See Portability 
Programmer's WorkBench. See PWB 
Programming in multiple languages. See Mixed 

languages 
Project management tools, 103 
Promotion, C 6.0 rules, 422 
Protected-mode debugging, 383 
Pseudotargets, 122-123 
PWB 

<assign> pseudofile, editing, 158, 160 
compiling from within, 6 
extensions. See C extentions, PWB 
floating-point options, 86 
functions 

(table), 180 
calling, 178 

keystroke assignment, 160 
macros. See PWB macros 
optimization control, 6 
Options menu, 6, 157 
setting switches, 157-158 
TOOLS.INifile, 158-159 

PWBmacros 

a 

appending to exisiting, 167 
calling C functions, 182 
calling PWB functions, 178 
case sensitivity, 161 
conditional operators, 164 
extensions, creating, 167-169 
file handle use, 178 
inherited, 116 
invoking other macros, 162 
literal text, 161 
maximum allowed, 161 
passing arguments, 162, 164, 175-176 
PWB functions (table), 180 
recording, 166 
regular expressions, 162 
silent recording, 167 
switch types, 17 4 
syntax, 161-162 
temporary, 165 
user prompting, 163 
writing, 161-166 

/qc option, 97 
Quick compilation, 97 
QuickHelp. See Help files 



R 
register keyword, 19, 28 
Register variables, 13 
Registers, using and preserving, 72 
Rich Text Format (RTF) 

s 

codes, 155-156 
defined, 136 

Scope of variables, 64 
Segment-naming conventions (table), 52 
Segments, 32 
_segment type, 60 
_segname keyword, 55 
_self keyword, 60 
Self segment, use, 60 
Semaphores, 378 
Serialization, 368 
SETUP program, library creation, 35 
Shift operators, C 6.0 functionality, 423 
Sign extension, 334 
Signal handling, 400 
Small model, 32, 35 
Software portability. See Portability 
spawn function, 419 
Stack and data segment equality, 48--49 
Stack segment register, 49 

T 
Text-output functions, 431 
Thread functions, 371 
Threads 

_beginthread function, 372 
blocking, 400 
breakpoints, 385 
defined,367 
_endthread function, 372 
execution under Code View, 384-386 
freezing, 386 
hardware/software configuration, 367 
independent execution, 368 
numbering, 384 
priority, 36 7 
stack size, 379 

Tiny model, 35-36 
(f!NY option, 36, 433 
TOOLS.IN! file 

with Code View, 205 
editing, l 58 
section tags, l 59 
use in PWB, 157 
use with NMAKE, 127 

Trigraphs (list), 424 
Type promotion, 8 l 
typedef pointers, new rules, 423 
Types. See Floating-point types 

v 
Variable promotion, C 6.0 rules, 422 
Variable types. See Floating-point types 
Variables 

aliased 
bugs caused by, 15 
defined, 13 

register storage, 13 
scope, 64 

Video modes. See Graphics 
Void pointers, 59 
volatile keyword, 14 

w 
Warning-level options, 383 
Wild-card characters, 107 
Windows. See Code View, windows in 

z 
/Zi option, 67 
/Zl option, 356, 402 

Index 477 





MICROSOFT PRODUCT ASSISTANCE REQUEST 
Microsoft Product Support Services - Phone (206) 454-2030 

Instructions 

When you need assistance with a Microsoft pro­
duct, call our Product Support Services group at 
(206) 454-2030. So that we can answer your 
question as quickly as possible, please gather all 
information that applies to your problem. Note or 
print out any on-screen messages you get when the 
problem occurs. Have your manual and product 
disks close at hand and have all the information 
requested on this form available when you call. 

Diagnosing a Problem 
So that we can assist you more effectively, please 
be prepared to answer the following questions 
regarding your problem, your software, and your 
hardware. 

1. Can you reproduce the problem? 
0 yes Ono 

2. Does the problem occur with another copy of 
the original disk of your Microsoft Software? 

0 yes Ono 

3. Does the problem occur with another system 
(if available)? 

0 yes Ono 

4. If you were running other windowing or 
memory-resident software at the same time, 
does the problem also occur when you don't use 
the other software? 

0 yes 0 no 

Product 

Product name 

Version Number Registration Number 

Software 
Operating System 

NameNersion number 

Windowing Environment 
If you were running Microsoft Windows or another 
windowing environment, give name and number of 
windowing software: 

CD ROM Software 

NameNersion number 

Other Software 
NameNersion number of any other software you 
were running when problem occurred, including 
memory-resident software (such as keyboard 
enhancers or print spoolers): 



Hardware 

So that we can assist you more effectively, please 
be prepared to answer the following questions 
regarding your problem, your software, and your 
hardware. 

Computer 

Manufacturer/model 

Floppy-disk drives 
Number: 0 1 0 2 0 Other 
Size: 0 3 1/2" 0 5 1/4" 
Number of Sides: 0 1 0 2 

Total memory 

Density: 0 Single 0 Double 0 Quad 
Capacity: 
5 1/4": 0 160K 0 360K 0 1.2 megabytes 

3 1/2": 0 360K 0 400K 0 720K 0 SOOK 
0 1.4 megabytes 

System Memory 

Manufacturer/model Total memory 

(If using DOS, you can run CHKDSK to determine 
the amount of memory available. If using Apple 
Macintosh Finder, select "About The Finder ... " 
from the Apple menu to determine the amount of 
memory available.) 

Peripherals 
Hard Disk 

Manufacturer/model 

Printer/Plotter 

Manufacturer/model 

0 Serial 0 Parallel 

Capacity( megabyte) 

Printer peripherals, such as font cartridges, 
downloadable fonts, sheet feeders: 

Mouse 
Microsoft Mouse: 0 Bus 0 Serial 0 InPortn­
i'.J Other 

Manufacturer/model 

Boards 
0 Add-on RAM board 

Manufacturer/model 

0 Graphics-adapter board 

Manufacturer/model 

0 Other boards installed 

Manufacturer/model 

Modem 

Manufacturer/model 

CD ROM Player 

Manufacturer/model 

Version of Microsoft MS-DOS® CD ROM 
Extensions: 

Network 
Is your system part of a network? 0 Yes 0 No 

Manufacturer/model 

What hardware and software does your network 
use? 



Documentation Feedback- Microsoft® C 6. O 
Please help us improve our documentation. When you become familiar with this product, complete and 
return this postage-paid mailer. Comments and suggestions become the property of Microsoft Corporati 

Please answer the following questions about your 
programming background and practice. 

Programming experience: 
Total years __ Years using C __ 

Occupation: 

How long have you used this product? __ Months 

What percentage of the time do you compile and 
link in one step using CL? __ Separately? __ 

What percentage of the time do you compile using 
full optimization (/Ox)? __ What other options 
do you use? ______________ _ 

What percentage of your programming is done 
in the Programmer's WorkBench (PWB)? __ 
Outside PWB? __ 

What editor(s) other than PWB do you use? __ _ 

Please answer the following questions about the 
documentation. Then, using a scale of 1-5, rate 
the overall effectiveness of each. 
(1 =poor, 2 =below average, 3 =satisfactory, 
4 =very good, 5 =excellent) 

Microsoft C Advisor (on-line help system) 

1. Do you use the Microsoft C Advisor? Yes __ 
No __ Why or why not? _______ _ 

2. Can you find the information you need quickly 
and easily? Yes __ No __ 

3. List any information you expected to find that 
was not there. ____________ _ 

4. Rate the amount of information on each screen: 
Too much_ Not enough_ About right __ 
Comments: ____________ _ 

5. What improvements would you like in future 
versions of on-line help? ________ _ 

6. Rating (1-5): __ Comments: _____ _ 

Installing and Using the Professional 
Development System 

1. Did you use this book to install C 6.0? 
Yes __ No __ 

2. Did the chapter on using the Programmer's 
WorkBench cover PWB 's features adequat1 
Yes __ No __ Didn't read __ 

3. Did the chapter on using on-line help expla 
the help system clearly? 
Yes __ No __ Didn't read __ 

4. Rating (1-5): __ Comments: ___ _ 

Advanced Programming Techniques 

1. Which statement best summarizes your respo1 
to Advanced Programming Techniques? 
__ It's too simple; I want more in-depth 

information. 
__ It's about right; I can understand and 

use it without difficulty. 
__ It's too technical; I find it hard to read 

and apply. 

2. Which chapters do you find most helpful?_ 

Least helpful? __________ _ 

3. What other topics would you like to see 
covered? _____________ _ 

4. Rating (1-5): __ Comments: ___ _ 

C Reference 

1. Which section(s) do you use the most? __ 

The least? ____________ _ 

2. What other topics or information should be 
covered? ____________ _ 

3. Rating (1-5): __ Comments: ____ _ 

Which parts of the documentation do you refer 1 
most frequently? ___________ _ 

Use the back of this card for additional suggestions and comments. Please note any errors and special 
strengths or weaknesses in areas such as programming examples, indexes, and overall organization. 



Name 

Address 

City /State/Zip 
( 

Phone (home) (work) 

May we contact you for additional information about your comments? Yes __ No __ 

Additional comments: 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT N0.108 BELLEVUE, WA U.S.A. 

POSTAGE WILL BE PAID BY ADDRESSEE 

Micl'asoft® 
Microsoft Corporation 
One Microsoft Way 
Redmond, WA 98052-6399 

Languages-C6.0 

11.1 •• 1 •• 1.11 ••• 1 ••• 1 •• 11.1.1 .. 1.1 •• 11 ..... 1.1 •• 11.1 

NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 



Miaosott® 
Making it all make sense TM 


	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	xBack

