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Introduction 

1.1 Overview of the C Language 

The C language is a general-purpose programming language known for its 
efficiency, economy, and portability. While these characteristics make it a 
good choice for almost any kind of programming, C has proven especially 
useful in systems programming because it facilitates writing fast, compact 
programs that are readily adaptable to other systems. Well-written C pro­
grams are often as fast as assembly-language programs, and they are typi­
cally easier to read and maintain. 

C was designed to combine efficiency and power in a relatively small 
language. C does not include built-in functions to perform tasks such as 
input and output, storage allocation, screen manipulation, and process 
control. C programmers rely on run-time libraries to perform such tasks. 

This design makes C both flexible and compact. Because the language is 
relatively sparse, it neither assumes nor imposes a particular programming 
model. You can use the run-time routines supplied, or tailor your own 
variations for special purposes. The design also helps to isolate language 
features from processor-specific features in a particular C implementation, 
which makes it easier to write portable code. While the strict definition of 
the language makes it independent of any particular operating system or 
machine, you can easily add system-specific routines to take advantage of 
the most efficient features of a particular machine. 

Note 

Microsoft is committed to conformance with the developing standard 
for the C language as set forth in the Draft Proposed American 
National Standard-Programming Language C (herinafter referred to 
as the ANSI C standard). Microsoft extensions to the ANSI C standard 
are noted in the remaining text. Because the extensions are not a part 
of the ANSI C standard, their use may restrict portability of programs 
between systems. See your User's Guide for information on enabling 
and disabling Microsoft extensions. 

The C language includes the following significant features: 
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• C provides a full set of loop, conditional, and transfer statements 
to control program flow logically and efficiently and to encourage 
structured programming. 

• Coffers an unusually large set of operators. Many of these opera­
tors correspond to common machine instructions, allowing a direct 
translation into machine code. The variety of operators allows you 
to specify different kinds of operations clearly and with a minimum 
of code. 

• C data types include several sizes of integers, as well as single- and 
double-precision floating-point types. You can also design more 
complex data types, such as arrays and data structures, to suit 
specific program needs. 

• Callows you to declare "pointers" to variables and functions. A 
pointer to an item corresponds to the item's machine address. You 
can use pointers to make programs more efficient, since pointers let 
you refer to items in the same way the machine does. C also sup­
ports pointer arithmetic, which allows you to access and manipu­
late memory addresses directly. 

• The C preprocessor acts on the text of files before they are com­
piled. You can use the C preprocessor to define program constants, 
substitute fast macro definitions for function calls, and compile 
parts of programs based on specified conditions. The preprocessor 
is not limited to processing C files; you can use it with any text file. 

• C is a flexible language, which leaves many programming decisions 
up to you. In keeping with this attitude, C imposes few restrictions 
in matters such as type conversion. Although this characteristic of 
the language can make your programming job easier, you must 
know the language well to understand how programs will behave. 

1.2 About This Manual 

The Microsoft C Optimizing Compiler Language Reference defines the C 
language as implemented by Microsoft Corporation. It is intended as a 
reference for programmers experienced in C or in another programming 
language. Thorough knowledge of programming fundamentals is assumed. 

Note 
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Introduction 

Appendix A of this manual provides a quick comparison between 
Microsoft C and the definition of C found in Appendix A of The C Pro­
gramming Language, by Brian W. Kernighan and Dennis M. Ritchie. 
Appendix B of this manual summarizes the syntax of the C language as 
defined by Microsoft. 

The run-time library functions available for use in Microsoft C programs 
are discussed in a separate manual, the Microsoft C Optimz'zing Compiler 
Run-Time Library Reference . 

Consult your Microsoft C Optimizing Compiler User's Guide for an expla­
nation of how to compile and link C programs on your system. The User's 
Guide also contains information specific to the implementation of Con 
your system. 

This manual is organized as follows: 

Chapter 2, "Elements of C," describes the letters, numbers, and symbols 
that can be used in C programs and the combinations of characters that 
have special meanings to the C compiler. 

Chapter 3, "Program Structure," discusses the components and structure 
of C programs and explains how C source files are organized. 

Chapter 4, "Declarations," describes how to specify the attributes of C 
variables, functions, and user-defined types. C provides a number of 
predefined data types and allows the programmer to declare "aggregate" 
types and pointers. 

Chapter 5, "Expressions and Assignments," describes the operands and 
operators that form C expressions and assignments. The chapter also 
discusses the type conversions and side effects that may occur when 
expressions are evaluated. 

Chapter 6, "Statements," describes C statements, which control the flow 
of program execution. 

Chapter 7, "Functions," discusses C functions. In particular, this chapter 
explains how to define, declare, and call functions and describes function 
parameters and return values. 
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Chapter 8, "Preprocessor Directives and Pragmas," describes the instruc­
tions recognized by the C preprocessor, a text processor that is automati­
cally invoked before compilation. This chapter also introduces "pragmas," 
(special instructions to the compiler that you may place source files). 

Appendix A, "Differences," lists the differences between Microsoft C and 
the description of the C language found in Appendix A of The C Program­
ming Language by Brian W. Kernighan and Dennis M. Ritchie. 

Appendix B, "Syntax Summary," summarizes the syntax of the C language 
as implemented by Microsoft. 

The remainder of this chapter describes the notational conventions used 
throughout the manual. 

1.3 Notational Conventions 

This manual uses the following notational conventions: 

Convention 

Bold 

Italics 

Examples 

6 

Meaning 

Bold type indicates text that must be typed 
exactly as shown. Text that is shown in bold 
type includes C keywords, such as goto and 
char, and operators, such as the addition opera­
tor ( +) and the multiplication operator ( * ). 
Terms in italics mark the places in syntax 
descriptions and in the text where specific terms 
appear in an actual C program. For 
example, in 

goto name; 

name appears in italics to show that this is a 
general form for the goto statement. In an 
actual program statement, you must supply a 
particular identifier for the placeholder name. 

Occasionally, italics are used to emphasize par­
ticular words in the text. 

Examples of C programs and program elements 
appear in a special typeface to look similar to 



Ellipsis dots 

Introduction 

listings on the screen or the output of commonly 
used computer printers: 

int X, y; 

swap (&x, &y); 

Ellipsis dots may be vertical or horizontal. In 
the following example, the vertical ellipsis dots 
indicate that zero or more declarations, followed 
by one or more statements, may appear between 
the braces: 

{ 
[declaration] 

statement 
[ statementil 

} 

Vertical ellipsis dots are also used in program 
examples to indicate that a portion of the pro­
gram has been omitted. For instance, in the fol­
lowing excerpt, two program lines are shown. 
The ellipsis dots between the lines indicate that 
additional program lines appear between these 
two lines but are not shown: 

int x, y; 

swap (&x, &y); 

Horizontal ellipsis dots following an item indi­
cate that more items of the same form may 
appear. Forinstance, 

= {expression [, expression] ... } 

indicates that one or more expressions separated 
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8 

[Double brackets] 

"Quotation 
marks" 

SMALL CAPITALS 

b,Y commas may appear between the braces 
( t } ). 

Double brackets enclose optional items in syntax 
descriptions. For example, 

return [ expre88ion]; 

is a syntax description showing that expression 
is an optional item in the return statement. 

Quotation marks set off terms defined in the 
text. For example, the term "token" appears in 
quotation marks when it is defined. 

Some C constructs, such as strings, require quo­
tation marks. Quotation marks required by the 
language have the form 1111 rather than " ". 
For example, 

"abc" 

is a C string. 

Names of special key combinations, such as 
CONTROL-Z, appear in small capital letters. 
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2.1 Introduction 

This chapter describes the elements of the C programming language, 
including the names, numbers, and characters used to construct a C pro­
gram. The following topics are discussed in the remainder of this chapter. 

• Character sets 

• Constants 

• Identifiers 

• Keywords 

• Comments 

• Tokens 

2.2 Character Sets 

Two character sets are defined for use in C programs: the "C character 
set" and the "representable character set." 

The C character set consists of the letters, digits, and punctuation marks 
having specific meanings in the C language. You construct a C program 
by combining the characters of the C character set into meaningful state­
ments. 

The C character set is a subset of the representable character set. The 
representable character set includes each letter, digit, and symbol that can 
be represented graphically with a single character. The extent of the 
representable character set depends on the type of terminal, console, or 
character device being used. 

In general, all characters in a C program must be part of the C character 
set. However, string literals, character constants and comments can 
include any character from the representable character set. 

Since each character in the C character set has an explicit meaning in the 
language, the compiler generates error messages when it finds inappropri­
ate or inappropriately used characters in a program. 
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Sections 2.2.1 - 2.2.5 describe the characters and symbols of the C charac­
ter set and explain how and when to use them. 

2.2.1 Letters, Digits, and Underscore 

The C character set includes the uppercase and lowercase letters of the 
English alphabet, the 10 decimal digits of the Arabic number system, and 
the "underscore" character: 

• Uppercase English letters 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 

• Lowercase English letters 

abcdefghijklmnopqrstuvwxyz 

• Decimal digits 

0123456789 

• Underscore character(-) 

These letters and digits are used to form the constants, identifiers, and 
keywords described later in this chapter. 

The C compiler treats uppercase and lowercase letters as distinct charac­
ters. For example, if a lowercase a is specified, you cannot substitute an 
uppercase A; you must use the lowercase letter. 

2.2.2 White-Space Characters 

Space, tab, line-feed, carriage-return, form-feed, vertical-tab, and new-line 
characters are called "white-space characters" because they serve the same 
purpose as the spaces between words and lines on a printed page. These 
characters separate the items you define, such as constants and identifiers, 
from other items in a program. 

The C compiler treats a CONTROL-Z character as an end-of-file indicator. It 
ignores any text after the CONTROL-Z mark. 

The C compiler ignores white-space characters unless you use them as 
separators or as components of character constants or string literals. 
Therefore, you can use extra white-space characters to make a program 
more readable. The compiler also treats comments as white space. (Com­
ments are described in Section 2.6.) 
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2.2.3 Punctuation and Special Characters 

The punctuation and special characters in the C character set have vari­
ous uses, from organizing program text to defining the tasks that the com­
piler or compiled program will carry out. Table 2.1 lists the punctuation 
and special characters in the C character set. 

Table 2.1 

Punctuation and Special Characters 

Character Name 

Comma 

Period 

Semicolon 
Colon 

? Question mark 
Single quotation mark 

" Double quotation mark 

( Left parenthesis 

) Right parenthesis 

[ Left bracket 

l Right bracket 

{ Left brace 
} Right brace 

< Left angle bracket 

Character Name 

I 
\ 

+ 
# 
% 
& 

* 

> 

Exclamation mark 

Vertical bar 

Forward slash 
Backslash 
Tilde 

Plus Sign 
Number sign 
Percent sign 

Ampersand 
Caret 

Asterisk 

l\1inus sign 

Equal sign 
Right angle bracket 

These characters have special meanings in C. Their uses are described 
throughout this manual. If a punctuation character from the represent­
able character set does not appear in Table 2.1, you can use that character 
only in string literals, character constants, and comments. 
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2.2.4 Escape Sequences 

Strings and character constants can contain "escape sequences." Escape 
sequences are character combinations representing white-space and non­
graphic characters, An escape sequence consists of a backslash (\)followed 
by a letter or combination of digits. 

Escape sequences are typically used to specify actions such as carriage 
returns and tab movements on terminals and printers and to provide 
literal representations of nonprinting characters and characters that nor­
mally have special meanings, such as the double quote(") character. 
Table 2.2 lists the C escape sequences. 

Table 2.2 

Escape Sequences 

Escape Sequence 

\n 
\t 
\v 
\b 
\r 
\f 
\a 
\' 
\II 
\\ 
\ ddd 

\xddd 

Name 

New line 
Horizontal tab 
Vertical tab 
Backspace 
Carriage return 
Form feed 

Bell (alert) 
Single quote 

Double quote 
Backslash 
ASCII character 
in octal notation 

ASCII character 
in hexadecimal notation 

If a backslash precedes a character that does not appear in Table 2.2, the 
backslash is ignored and the character is represented literally. For exam­
ple, the pattern \c represents the character c in a string literal or charac­
ter constant. However, the use of lower-case letters in escape sequences is 
reserved by ANSI for future standardization. Therefore, occurrences of 
undefined escape sequences, though currently innocuous, could pose future 
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portability problems. 

The sequence \ ddd allows you to specify any character in the ASCII 
(American Standard Code for Information Interchange) character set as a 
three-digit octal character code. Similarly, the sequence \xddd allows you 
to specify any ASCII character as a three-digit hexadecimal character 
code. For example, you can give the ASCII backspace character as \010 
(octal) or \x008 (hexadecimal) 

You can use only the digits 0 through 7 in an octal escape sequence. You 
must use at least one digit, but you can use fewer than three digits. For 
example, you can specify the ASCII backspace character in octal notation 
as \10. You must use at least one digit for a hexadecimal escape 
sequence, but you can omit the second and/or third digits. Therefore you 
could specify the hexadecimal escape sequence for the backspace character 
either as \x08 or as \x8. 

Note 

When you use octal and hexadecimal escape sequences in strings, it is 
safest to give all three digits of the escape sequence. If you don't 
specify all digits of the escape sequence, and the character immediately 
following the escape sequence happens to be an octal or hexadecimal 
digit, the compiler interprets that character as part of the sequence. 
For example, if you printed the string "\x07Bel 1 11 , the result would 
be {ell because \x07B is interpreted as the ASCII .left-brace charac­
ter ( {). The string \x007Bell (note the two leading zeros) is the 
correct way to represent the bell character followed by the word Bel 1. 
The string \x7Bel 1 would generate a compiler diagnostic message 
because 7beH is too big a number to fit in one byte. 

Escape sequences allow you to send nongraphic control characters to a 
display device. For example, the escape character, \033, is often used as 
the first character of a control command for a terminal or printer. Some 
escape sequences are device specific. For instance, the vertical tab and 
form feed(\ v and \f) do not affect screen output, but perform appropri­
ate operations for a printer. 

Note 

15 
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You should always represent nongraphic characters by escape 
sequences in C programs, since using the characters directly may gen­
erate compiler diagnostic messages. 

You can also use the backslash character(\) as a continuation character. 
When a new-line character follows the backslash, the compiler ignores the 
backslash and the new line and treats the next line as part of the previous 
line. This is useful primarily for preprocessor definitions longer than a sin­
gle line. In the past this feature was also used to create strings longer than 
one line. However the string concatenation feature (see Section 2.3.4) is 
preferred for creating long string literals. 

2.2.5 Operators 

Operators are symbols (both single characters and character combina­
tions) that specify how values are to be manipulated. Each symbol is inter­
preted as a single unit, called a "token." (Tokens are defined in Section 
2.7.) 

Table 2.3 lists the symbols comprising the C unary operators and names 
each operator. Table 2.4 lists the C binary and ternary operators and 
names them. You must specify operators exactly as they appear in the 
tables, with no white space between the characters of multicharacter 
operators. Note that three operator symbols {asterisk, minus sign, and 
ampersand) appear in both tables. Their interpretation as unary or binary 
depends on the context in which they appear. The sizeof operator is not 
included in these tables. It consists of a keyword (sizeof) rather than a 
symbol, and is listed in Section 2.5. 
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Table 2.3 

Unary Operators 

Operator 

* 

N81Ile 

Logical NOT 
Bitwise complement 
Arithmetic negation 
Indirection 
Address of 



Table 2.4 

Binary and Ternary Operators 

Operator 

+ 

* 
I 
% 
<< 
>> 
< 
<= 
> 
>= 

!= 
& 

&& 
II 
II 

?: 
++ 

+= 

*= 
/= 

>>= 
<<= 
&= 

Name 

Addition 

Subtraction 

Multiplication 
Division 
Remainder 

Left shift 

Right shift 

Less than 

Less than or equal 
Greater than 
Greater than or equal 
Equality 
Inequality 
Bitwise AND 
Bitwise inclusive OR 
Bitwise exclusive OR 

Logical AND 
Logical OR 
Sequential evaluation 
Conditional a 

Increment 
Decrement 
Simple assignment 

Addition assignment 

Subtraction assignment 

Multiplication assignment 
Division assignment 
Remainder assignment 
Right-shift assignment 

Left-shift assignment 

Bitwise AND assignment 

Elements of 0 
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Bitwise inclusive OR assignment 

Bitwise exclusive OR assignment 

a The conditional operator is a ternary operator, not a 
multicharacter operator. A conditional expression has the following 
form: expression ? expression : expression 

For a complete description of each operator, see Chapter 5, "Expressions 
and Assignments." 

2.3 Constants 

A constant is a number, character, or character string that can be used as 
a value in a program. A constant's value may not be modified by the pro­
gram in which it occurs. 

The C language has four kinds of constants: integer constants, floating­
point constants, character constants, and string literals. Sections 2.3.1 -
2.3.4 describe the format and use of each kind of constant. 

2.3.1 Integer Constants 

Syntax 

Oodigits 

Oxhdigits 
OXhdigits 

An integer constant is a decimal, octal, or hexadecimal number that 
represents an integer value. 

• 

• 

18 

A decimal constant has the form dif!.its, where digits represents one 
or more decimal digits (0 through 9 ). 

An octal constant has the form Oodigi'ts, where odigits represents 
one or more octal digits (0 through 7). The leading zero is required .• 
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• A hexadecimal constant has the form Oxhdigits or OXhdigits, where 
hdigits represents one or more hexadecimal di~its (0 through 9 and 
either uppercase or lowercase "a" through "f" ). The leading zero is 
required and must be followed by x or X. 

No white-space characters can separate the digits of an integer constant. 

Table 2.5 gives examples of the three forms of integer constants. 

Table 2.5 

Examples of Integer Constants 

Decimal Constants 

10 
132 
32179 

Octal Constants 

012 
0204 
076663 

Hexadecimal Constants 

Oxa or OxA 
Ox84 
Ox7dB3 or Ox7DB3 

Integer constants always specify positive values. If you need to use a nega­
tive value, place a minus sign(-) in front of a constant to form a constant 
expression with a negative vaiue. (In this case, the minus sign is inter­
preted as the unary arithmetic negation operator.) 

Every integer constant is given a type based on its value. A constant's 
type determines which conversions must be performed when the constant 
is used in an expression or when the minus sign(-) is applied: 

• Decimal constants are considered signed quantities and are given 
int type, or long type if the size of the value requires it. 

• Octal and hexadecimal constants are given int, unsigned int, 
long, or unsigned long type, depending on the size of the con­
stant. If the constant can be represented as an int, it is given int 
type. If it is larger than the maximum positive value that can be 
represented by an int, but small enough to be represented in the 
same number of bits as an int, it is given unsigned int type. 
Similarly, a constant that is too large to be represented as an 
unsigned int is given long or unsigned long type, if necessary. 

Table 2.6 shows the ranges of values and the corresponding types for octal 
and hexadecimal constants on a machine where the int type is 16 bits 
long. 
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Table 2.6 

Types Assigned to Octal and Hexadecimal Constants 

Hexadecimal Range 

Ox0-0x7FFF 
Ox8000 - OxFFFF 
OxlOOOO - Ox7FFFFFFF 
Ox80000000 - OxFFFFFFFF 

Octal Range 

0-077777 
0100000 - 0177777 
0200000 - 017777777777 
020000000000 - 030000000000 

Type 

int 
unsigned int 
long 
unsigned long 

The consequence of the typing rules shown in Table 2.6 is that hexade­
cimal and octal constants are always zero-extended when converted to 
longer types. (For a discussion of type conversions, see Chapter 5, 
"Expressions and Assign men ts.") 

You can force any integer constant to be given long type by appending 
the letter "l" or "L" to the end of the constant. Table 2.7 illustrates some 
forms of long integer constants. 

Table 2.7 

Examples of Long Integer Constants 

Decimal Constants Octal Constants Hexadecimal Constants 

lOL 012L OxaL or OxAL 
791 01151 Ox4fl or Ox4Fl 

Types are described in Chapter 4, "Declarations," and conversions are 
described in Chapter 5, "Expressions and Assignments." 

2.3.2 Floating-Point Constants 
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Syntax 

[digits] [.digits] [Eie[-] digits] 

A floating-point constant is a decimal number that represents a signed real 
number. The value of a signed real number includes an integer portion, a 
fractional portion, and an exponent. The digits are zero or more decimal 
digits (0 through 9), and E (ore) is the exponent symbol. You can omit 
either the digits before the decimal point l the integer portion of the value) 
or the digits after the decimal point (the fractional portion), but not both. 
You can leave out the decimal point only if you include an exponent. 

The exponent consists of the exponent symbol (E ore) followed by a con­
stant integer value. The integer value may be negative. No white-space 
characters can separate the digits or characters of the constant. 

Floating-point constants always specify positive values. However, you can 
place a minus sign(-) in front of the constant to form a constant floating­
point expression with a negative value. In this case, the minus sign is 
treated as an arithmetic operator. 

All floating-point constants have type double. 

Examples 

The following examples illustrate some forms of floating-point constants 
and expressions: 

15.75 
1.575El 
1575e-2 
-0.0025 
-2.5e-3 
25E-4 

You can omit the integer portion of the floating-point constant, as shown 
in the following examples: 

.75 

.0075e2 
-.125 
-.175E-2 
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2.3.3 Character Constants 

A character constant is formed by enclosing a single character from the 
representable character set within single quotation marks (' '). An escape 
sequence is regarded as a single character and is therefore a valid charac­
ter constant. Note that escape characters must be represented by escape 
sequences or diagnostic messages will be generated. The value of a charac­
ter constant is the numerical representation of the character. 

A character constant has the form 

'char' 

where char can be any character from the representable character set 
(including any escape sequence) except a single quotation mark('), 
backslash(\), or new-line character. To use a single quotation mark or 
backslash character as a character constant, precede it with a backslash, 
as shown in Table 2.8. To represent a new-line character, use the escape 
sequence \ n. 

Table 2.8 

Examples of Character Constants 

Constant 

' ' 
'a' 
'?' 
'\ b' 
'\xIB' 
'\II 
'\ \' 

Value 

Single blank space 
Lowercase a 
Question mark 
Backspace 
ASCII escape character 
Single quotation mark 
Backslash 

Character constants have type int, and are therefore sign-extended in type 
conversions. (See Section 5.7, "Type Conversions," for more information 
about type conversions.) 
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2.3.4 String Literals 

Syntax 

"characters" ["characters" ... ~ 

A string literal is a sequence of characters from the representable charac­
ter set enclosed in double quotation marks (" "). In a string literal, char­
acters is a placeholder for zero or more characters from the representable 
character set, including any escape sequence, except a double quotation 
mark("), backslash(\), or new-line character. Escape characters must be 
represented by escape sequences, and each escape sequence is considered a 
single character. 

"This is a string literal." 

To force a new line within a string literal, enter the new-line {\n) escape 
sequence at the point in the string where you want the line broken, as fol­
lows: 

"Enter a number between 1 and 100\nOr press Return" 

The traditional way to form string literals that take up more than one line 
is to type a backslash, then press the RETURN key. The backslash causes 
the compiler to ignore the new-line character. For example, the string 
literal 

"Long strings can be bro\ 
ken into two or more pieces." 

is identical to the string 

"Long strings can be broken into two or more pieces." 

Two or more string literals separated only by white space will be con­
catenated into a single string. For example, long strings passed as literals 
to the printf function may now be continued in any column of a succeed­
ing line without affecting their appearance when output, if entered as fol­
lows: 

printf ("This is the first half of the string," 
" this is the second half") ; 
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As long as each part of the string is enclosed in double quotation marks, 
they will be concatenated, and output as a single string: 

This is the first half of the string, this is the second half 

String concatenation can be used anywhere you might previously have 
used a backslash followed by a new-line character to enter strings longer 
than one line. Because ensuing strings can start in any column of the 
source code without affecting their on-screen representation, strings can be 
positioned to enhance source-code readability. For example, the following 
pointer, initialized as two separate string literals separated only by white 
space, is stored as a single string. When properly referenced, as in the fol­
lowing example, it produces a result identical to the example immediately 
above: 

char *String= "This is the first half of the string," 
" this is the second half" 

printf ("%s" , string) ; 

To use a double quotation mark or backslash within a string literal, pre­
cede it with a backslash, as shown in the following examples: 

"First\\Second" 

"\"Yes, I do,\" she said." 

Note that an escape sequence (such as \ \ or \ ") within a string literal 
counts as a single character. 

The characters of a string are stored in order at contiguous memory loca­
tions. A null character (represented by the \0 escape sequence) is 
automatically appended to, and marks the end of, each string literal. 
Each string in a program is generally considered to be distinct; however, 
two identical strings are not guaranteed to receive separate storage. 
Therefore, programs should not attempt to modify string literals during 
execution. 

String literals have type array of char (char [ ]). This means that a string 
is an array with elements of type char. The number of elements in the 
array is equal to the number of characters in the string, plus one for the 
terminating null character. The array contains one element in addition to 
the number of characters in the string literal, since the null character, 
stored after the last string character, counts as an array element. 
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2.4 Identifiers 

Syntax 

letteri- [letteri digiti- ... ] 

Identifiers are the names you supply for variables, functions, and labels in 
your program. You create an identifier by specifying it in the declaration 
of a variable or function. You can then use the identifier in later program 
statements to refer to the associated item. Although statement labels are a 
special kind of identifier and have their own naming class, their creation is 
similar to that of variables and functions. (Declarations are described in 
Chapter 4, "Declarations." Statement labels are described in Chapter 6, 
"Statements.") 

An identifier is a sequence of one or more letters, digits, or underscores (_) 
that begins with a letter or underscore. Identifiers can contain any 
number of characters, but only the first 31 characters are significant to the 
compiler. (Other programs that read the compiler output, such as the 
linker, may recognize even fewer characters.) 

The C compiler considers uppercase and lowercase letters to be distinct 
characters. Therefore, you can create distinct identifiers that have the 
same spelling but different cases for one or more of the letters. 

An identifier cannot have the same spelling and case as a keyword of the 
language. Keywords are described in Section 2.5. 

You should not use leading underscores in identifiers you create: identifiers 
beginning with an underscore can cause conflicts with the names of system 
routines or variables, and produce errors. Programs containing names 
beginning with leading underscores are not guaranteed to be portable. 

Note 

Some linkers may further restrict the number and type of characters 
for globally visible symbols. (Visibility is defined in Section 3.5, "Life­
time and Visibility.") Also the linker, unlike the compiler, may not dis­
tinguish between uppercase and lowercase letters. Consult your linker 
documentation for information about naming restrictions imposed by 
the linker. 
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Examples 

The following are examples of identifiers: 

j 
cnt 
tern pl 
top_o Lpage 
skip12 

Since uppercase and lowercase letters are considered distinct characters, 
each of the following identifiers is unique: 

add 
ADD 
Add 
aDD 

2.5 Keywords 

"Keywords" are predefined identifiers that have special meanings to the C 
compiler. They can be used only as defined. The names of program items 
cannot have the same spelling and case as a C keyword. 

The C language has the following keywords: 

auto 
break 
case 
char 
const 
continue 
default 
do 

double 
else 
en um 
extern 
float 
for 
goto 
if 

int 
long 
register 
return 
short 
signed 
sizeof 
static 

struct 
switch 
typedef 
union 
unsigned 
void 
volatile 
while 

You cannot redefine keywords. However, you can specify text to be substi­
tuted for keywords before compilation by using C preprocessor directives 
(see Chapter 8, "Preprocessor Directives and Pragmas"). 

The volatile keyword is implemented syntactically, but currently has no 
semantics associated with it. You should not use volatile as a variable 
name m your programs. 
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The following identifiers may be keywords in some implementations. See 
your User's Guide for more information. 

cdecl 
far 
fortran 
huge 
near 
pascal 

2.6 Comments 

Syntax 

/* characters•/ 

A comment is a sequence of characters that is treated as a single white-.. ~ 
space character by the compiler, but is otherwise ignored. In a comment,/ 
characters can include any combination of characters from the represent.:.., 
able character set, including new:".'line characters, but excluding the "en<j 
comment" delimiter(•/). Comments can occupy more than one line, but 
they cannot be nested. 

Comments can appear anywhere a white-space character is allowed.,. Since 
the compiler treats a comment as a single white-space character, you can­
not include comments within tokens (see Section 2. 7 for a definition of 
"token"). However, since the compiler ignores the characters of the com­
ment, you can include keywords in comments without producing errors. 

To suppress compilation of a large portion of a program or a program seg­
ment that contains comments, use the #if preprocessor directive, rather 
than the practice of "commenting out" the code{see Section 8.4 of 
Chapter 8, "Preprocessor Directives and Pragmas" ). 

Examples 

The following examples illustrate some comments: 

/* Comments can separate and document 
lines of a program. */ 
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/* Comments can contain keywords such as for 
and while. */ 

/***************************************** 
Comments can occupy several lines. 

*****************************************/ 

Since comments cannot contain nested comments, the following example 
causes an error: 

/* You cannot /* nest */ comments */ 

The error occurs because compiler recognizes the first * /, after the word 
nest, as the end of the comment. It tries process the remaining text and 
produces an error when it cannot do so. 

2.7 Tokens 

In a C source program, the basic element recognized by the compiler is the 
character group known as a "token." A token is source-program text the 
compiler will not attempt to further analyze into component. For example, 
the following program fragment uses the word "elsewhere" as the name of 
a function. Although else is a keyword in C, there is no confusion between 
the function name token and the C keyword token it contains. 

main() 
{ 

int i = O; 

} 

if (i) 
elsewhere() 

However, if you were to type elsewhere as else where with a space 
between "else" and "where," the preceding example would elicit a compiler 
error message noting the lack of a semicolon before the else keyword. 

The operators, constants, identifiers, and keywords described in this 
chapter are examples of tokens. Punctuation characters such as brackets 
(f ]), braces ( { } ), angle brackets ( < > ), parentheses, and commas are 
also tokens. 
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Tokens are delimited by white-space characters and by other tokens, such 
as operators and punctuation characters. To prevent the compiler from 
breaking an item down into two or more tokens, white-space characters 
are not permitted within an identifier, multicharacter operator, or key­
word. 

When the compiler interprets tokens, it includes as many characters as 
possible in a single token before moving on to the next token. Because of 
this behavior, the compiler may not interpret tokens as you intended if 
they are not properly separated by white space. 

Example 

Consider the following expression: 

i+++j 

In this example, the compiler first makes the longest possible operator 
( ++) from the three plus signs, then processes the remaining plus sign as 
an addition operator(+). Thus, the expression is interpreted as (i++) + 
( j) , not ( i) + ( + + j) . In this and similar cases, use white space and 
parentheses to avoid ambiguity and insure proper expression evaluation. 
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Program Structure 

3.1 Introduction 

This chapter defines terms used later in this manual to describe the C 
language, and discusses the structure of C source programs. It gives an 
overview off eatures of C that are described in detail in other chapters. 
The syntax and meaning of declarations and definitions are discussed in 
Chapter 4, "Declarations," and Chapter 7, "Functions." The C preproces­
sor and pragmas are described in Chapter 8, "Preprocessor Directives and 
Pragmas." 

3.2 Source Program 

AC source program is a collection of any number of directives, pragmas, 
declarations, definitions, and statements. These constructs are discussed 
briefly in the following paragraphs. To be compiled by the Microsoft C 
Optimizing Compiler, each must have the syntax described in this manual, 
and each can appear in any order in the program (subject to the rules out­
lined throughout this manual). However, order of appearance does affect 
how variables and functions can be used in a program. (See Section 3.5 for 
more information.) 

Directives 

A "directive" instructs the C preprocessor to perform a specific action on 
the text of the program before compilation. Directives are described in 
Chapter 8 of this manual, "Preprocessor Directives and Pragmas." 

Pragmas 

A "pragma" instructs the compiler to perform a particular action at com­
pile time. Pragmas are described in Chapter 8 of this manual, "Preproces­
sor Directives and Pragmas." 
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Declarations 

A "declaration" establishes an association between the name and the attri­
butes of a variable, function, or type. A "defining declaration" of a vari­
able establishes the same associations, but also gives the variable an initial 
value. Because nondefining variable declarations are used to declare a 
reference to a variable defined elsewhere, they are sometimes ref erred to as 
"referencing declarations." A variable declared in such a way that it has 
global lifetime is initialized to zero if no explicit definition appears in in 
any source file of the program. (Global lifetime is described in Section 3.5). 

Function declarations include the name of the function, its return type, 
and optionally, it's formal parameters. A function definition includes the 
same elements plus the function body. Both function and variable declara­
tions may appear inside or outside a function definition. Any declaration 
within a function definition is said to appear at the "internal level." A 
declaration outside all function definitions is said to appear at the "exter­
nal level." (Function definitions are discussed further under "Definitions" 
below.) 

Definitions 

A definition creates an instance of a variable or specifies the components 
of a function. 

A variable definition tells the compiler to allocate storage for the declared 
variable and assigns the variable an initial value. 

Variable definitions, like declarations, can appear at the internal level 
·(within a function definition) or at the external level (outside all function 
definitions). Function definitions always occur at the external level. 

A function definition includes the "function body," which is a compound 
statement containing the declarations and statements comprising the 
function. (Compound statements are described in Chapter 6, "State­
ments.") The function definition also gives the name, formal parameters, 
and return type of the function. A nontrivial program always contains at 
least one function definition, which defines the action that the program 
will take. 

Function declarations may appear at the internal or external level. How­
ever, function definitions may only appear at the external level, that is, 
outside of all other functions. 
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Example 

The following example illustrates a simple C source program: 

int x = 1; 
int y = 2; 

/* Variable definitions */ 

extern int printf(char *, ... );/*Function declaration*/ 

main () 

{ 

} 

int z; 
int w; 

/* Function definition 
for main function */ 

/* Variable declarations */ 

z = y + x; /* Executable statements */ 
w = y - x; 
printf("z= %d \nw= %d \n", z, w); 

This source program defines the function named main and declares the 
function named printf. The program uses variable definitions to define 
the variables x and y; it simply declares the variables z and w. 

3.3 Source Files 

A source program can be divided into one or more "source files." AC 
source file is a text file containing all or part of a C source program. (For 
example, a source file may contain just a few of the functions that the pro­
gram needs.) When you compile a program, you must separately compile, 
and then link, the individual source files comprising the total program. 
You can also use the #include directive to combine separate source files 
into larger source files before you compile. (See Chapter 8, "Preprocessor 
Directives and Pragmas," Section 8.3 for information on "include" files.) 

A source file can contain any combination of complete directives, pragmas, 
declarations, and definitions. You cannot split items such as function 
definitions or large data structures between source files. The last charac­
ter in a source file must be a new-line character. 

A source file need not contain executable statements. For example, you 
may find it useful to place definitions of variables in one source file and 
then declare references to these variables in other source files that use 
them. This technique makes the definitions easy to find and change. For 
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the same reason, manifest constants and macros are often organized into 
separate include files that may be referenced in source files as required. 

Directives in a source file apply only to that source file and its include files. 
Moreover, each directive applies only to the part of the file that follows 
the directive. To apply a commmon set of directives to a whole source pro­
gram, you must include the directives in all source files comprising the 
program. 

Pragmas usually affect a specific region of a source file. The implementa­
tion determines the specific compiler action that a pragma defines. (Your 
User's Guide describes the effects of particular pragmas.) 

Example 

The following example illustrates a C source program contained in two 
source files. Once you have compiled these source files, you can link and 
then execute them as a single program. 

The main and max functions are assumed to be in separate files, and exe­
cution of the program is assumed to begin with the main function. 

/************************************************************ 
Source file 1 - main function 

************************************************************/ 

#define ONE 1 
#define TWO 2 
#define THREE 3 

extern int max(int a, int b); /*Function declaration*/ 

main () /* Function definition */ 
{ 

} 

int w = ONE, x = TWO, y = THREE; 
int z = 0; 
z = max(x,y); 
w = max(z,w); 

In source file 1 (above), the max function is declared without being defined. 
This kind of declaration is known as a "forward declaration." The 
definition for the main function includes calls to max. 
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The lines beginning with a number sign (#) are preprocessor directives. 
These directives tell the preprocessor to replace the identifiers ONE, TWO, 
and THREE with the corresponding number, everywhere in source file 1. 
However, the directives do not apply to source file 2 (below), which will be 
separately compiled and then linked with source file 1. 

/************************************************************ 
Source file 2 - definition of max function 

************************************************************/ 

int max (int a, int b} 
{ 

if ( a > b ) 
return (a) ; 

else 
return (b} ; 

} 

Source file 2 contains the function definition for max. This definition 
satisfies the calls to max in source file 1. Note that the definition for max 
follows the form specified in the Draft Proposed American National 
Standard-Programming Language C (the ANSI C standard).For more 
information on this new form and function prototyping, see Chapter 7, 
"Functions." 

3.4 Functions and Program Execution 

Every C program has a primary (main) program function, which must be 
named main. The main function serves as the starting point for program 
execution. It usually controls program execution by directing the calls to 
other functions in the program. A program usually stops executing at the 
end of the main function, although it can terminate at other points in the 
program for a variety of reasons depending on the execution environment. 

The source program usually has more than one function, with each func­
tion designed to perform one or more specific tasks. The main function 
can call these functions to perform their respective tasks. When main 
calls another function, it passes execution control to the function, so that 
execution begins at the first statement in the function. The function 
returns control when a return statement is executed or when the end of 
the function is reached. 
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You can declare any function, including main, to have parameters. When 
one function calls another, the called function receives values for its 
parameters from the calling function. These values are called "argu­
ments." You can declare parameters to the main function so that main 
receives values from outside the program. (Most commonly, these argu­
ments are passed from the command line when the program is executed.) 

When the main function takes parameters, they are traditionally named 
argc and argv. The argc parameter is declared to hold the total number 
of arguments passed to main. The argv parameter is declared as an array 
of pointers; each element of the array points to a string representation of 
an argument passed to the main function. 

Traditionally, if a third parameter is passed to the main function, that 
parameter is named envp. C does not require this name, however. It is an 
extension to the ANSI C standard provided by Microsoft C for compatabil­
ity with the XENIX® Operating System. The envp parameter is a pointer 
to a table of string values that set up the environment in which the pro­
gram executes. 

The operating system supplies values for the argc, argv, and envp 
parameters, and the user supplies the actual arguments to the main func­
tion. The operating system, not the C language, determines the 
argument-passing convention used on a particular system. For more infor­
mation, see your User's Guide. 

If you declare formal parameters to a function, you must declare them 
when you define the function. Function definitions are described in more 
detail in Section 7 .2. Function declarations are discussed in Section 4.5. 

3.5 Lifetime and Visibility 

To understand how a C program works, you must understand the rules 
that determine how variables and functions can be used in the program. 
Three concepts are crucial to understanding these rules: the "block" (or 
compound statement), "lifetime" (sometimes called "extent"), and "visibil­
ity" (sometimes called "scope"). 
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Blocks 

A block is a sequence of declarations, definitions and statements enclosed 
within curly braces. There are two types of blocks in C. The compound 
statement ldiscussed more fully in Chapter 6, "Statements") is one type of 
block. The other, the function definition, consists of a compound state­
ment comprising the function body plus the function's associated "header" 
(the function name, return type, and optional formal parameters). A block 
may encompass other blocks, with the exception that no block may not 
contain a function definition. A block within other blocks is said to be 
"nested" within the encompassing blocks. 

Note that, while all compound statements are enclosed within curly 
braces, not everything enclosed within curly braces constitutes a com­
pound statement. For example, the specification of array, structure or 
enumeration elements may appear within curly braces, but these are not 
considered compound statements. 

Lifetime 

Lifetime is the period, during execution of a program, in which a variable 
or function exists. All functions in a program exist at all times during its 
execution. 

Lifetime of a variable may be "global" or "local." If its lifetime is global (a 
"global item"), it has storage and a defined value for the entire duration of 
a program. An item with a "local" lifetime (a "local item") has storage 
and a defined value only within the block where the item is defined or 
declared. A local item is allocated new storage each time the program 
enters that block, and it loses its storage (and hence its value) when the 
program exits the block. Global items are frequently referred to as 
"static," while local items are often called "automatic." 

The following rules specify whether a variable has global or local lifetime: 

• Variables declared at the external level (that is, outside all blocks 
in the program) always have global lifetimes. 

• Variables declared at the internal level (that is, within a block) 
usually have local lifetimes. However, you can insure global lifetime 
for a variable within a block by including the static storage class 
specifier in its declaration. Once declared static, the variable will 
retain its value from one entry of the block to the next. However, it 
will still be "visible" only within its own block and blocks nested 
within its own block. (Visibility of objects is discussed below. See 
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Section 4. 6 for a discussion of storage-class specifiers.) 

Visibility 

An item's "visibility" determines the portions of the program in which it 
can be referenced by name. An item is "visible" only in portions of a pro­
gram encompassed by it's "scope," which may be limited (in order of 
increasing restrictiveness) to the file, function, block or function prototype 
in which it appears. 

In C, only a label name is always confined to function scope. (See Chapter 
6, "Statements," for more information on labels and label names). The 
scope of any other item is determined by the level at which its declaration 
occurs. An item declared at the external level has file scope and is visible 
everywhere within the file. If its declaration occurs within a block (includ­
ing the list of parameter identifiers in a function definition), the item's 
scope is limited to that block and blocks nested within that block. Formal 
parameter names declared in the parameter list of a function prototype 
have scope only from the completion of the parameter declaration to the 
end of the function declarator. 

Note 

Note that, although an item with a global lifetime exi"sts exists 
throughout the execution of the source program (for example, an exter­
nally declared variable or a local variable declared with the static key­
word), it may not be visible in all parts of the program. 

An item is said to be "globally visible" if it is visible, or if you can use 
appropriate declarations to make it visible, in all the source files compris­
ing the program. (Visibility between source files, also known as "linkage," 
is discussed in greater detail in Section 4.6, "Storage Classes.") 

The following rules govern the visibility of variables and functions within 
a program: 
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• Variables declared or defined at the external level (that is, outside 
all blocks in the program) are visible from their pomt of definition 
or declaration to the end of the source file. You can use appropri­
ate declarations to make such variables visible in other source files, 
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as described in Section 4.6, "Storage Classes." However, variables 
declared at the external level with the static storage-class specifier 
are visible only within the source file in which they are defined. 

• In general, variables declared or defined at the internal level (that 
is, within a block) are visible only from their point of declaration 
or definition to the end of the block actually containing the 
definition or declaration. Such variables are known as a "local" 
variables. 

• Variables from outer blocks (including those declared at the exter­
nal level) are visible in all inner blocks. However, the visibility of 
variables is said to "nest" within blocks. For instance, a block 
within another block can contain declarations for variables whose 
identifiers (names) are the same as variables in enclosing blocks. 
Such redefinitions prevail only within the inner block, however. 
Outer-block definitions are restored as the inner blocks are exited. 

• Functions with static storage class are visible only in the source 
file in which they are defined. All other functions are globally visi­
ble. (For more information on function declarations, see Section 
4.5.) 

Summary 

Table 3.1 summarizes the main factors determining lifetime and visibility 
of variables and functions. However, the table does not cover all possible 
cases. Refer to the previous discussion and to Section 4.6, "Storage 
Classes," for more information. 

Note 

A Microsoft extension to the ANSI C standard provides that functions 
declared at an internal level may have global visibility. This feature 
should not be relied upon where portability of source code is a con­
sideration. See your User's Guide for more information. 
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Table 3.1 

Summary of Lifetime and VISibility 

Storage 
Class 

Level Item Specifier Lifetime Visibility 

External Variable static Global Restricted 
declaration 

Variable 
declaration 

Function 
declaration 
or definition 

Function 
declaration 
or definition 

Internal Variable 

Example 

definition or 
declaration 
Variable 
definition or 
declaration 

extern 

static 

extern 

extern or 
static 

auto or 
register 

Global 

Global 

Global 

Global 

Local 

to single 
source file 
Remainder 
of source file 
Restricted 
to single 
source file 
Remainder 
of source file 

Block 

Block 

The following program example illustrates blocks, nesting, and visibility of 
variables: 

#include <stdio.h> 

/* i defined at external level: */ 
int i = 1; 

/* main function defined at external level: */ 
main () 
{ 
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/*prints 1 (value of external level i): */ 
printf("%d\n", i); 

/* begin first nested block: */ 
{ 
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} 

/* i and j defined at internal level: */ 
int i = 2, j = 3; 

/* prints 2, 3: */ 
printf("%d\n%d\n", i, j); 

/* begin second nested block: */ 
{ 

/* i is redefined: */ 
int i = O; 

/* prints 0, 3: */ 
printf("%d\n%d\n", i, j); 

/* end of second nested block: */ 
} 

/*prints 2 (outer definition restored}: */ 
printf("%d\n", i); 

/* end of first nested block: */ 
} 

/*prints 1 (external level definition restored}: */ 
printf("%d\n", i); 

In this example, there are four levels of visibility: the external level and 
three block levels. Assuming that the function pr int f is defined else­
where in the program, the values will be printed to the screen as noted in 
the comments preceding each statement. 

3.6 Naming Classes 

In any C program, identifiers are used to refer to many different kinds of 
items. When you write a C program, you provide identifiers for the func­
tions, variables, formal parameters, union members, and other items the 
program uses. C allows you to use the same identifier for more than one 
program item, as long as you follow the rules outlined in this section. 

The compiler sets up "naming classes" to distinguish between the 
identifiers used for different kinds of items. The names within each class 
must be unique to avoid conflict, but an identical name can appear in 
more than one naming class. This means that you can use the same 
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identifier for 
two or more different items, provided that the items are in different nam­
ing classes. The compiler can resolve references based on the context of 
the identifier in the program. 

The following list describes the kinds of items you can name in C pro­
grams and the rules for naming them: 

Items 

Variables and functions 

Formal parameters 

Enumeration constants 
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Naming Class 

The names of variables and functions are 
in a naming class with formal parame­
ters, typedef names and enumeration 
constants. Therefore, variable and func­
tion names must be distinct from other 
names in this class that have the same 
visibility. 

However, you can redefine variable and 
function names within program blocks, 
as described in Section 3.5, "Lifetime 
and Visibility." 

The names of formal parameters to a 
function are grouped with the names of 
the function's variables, so the formal 
parameter names should be distinct from 
the variable names. You cannot rede­
clare the formal parameters at the top 
level of the function. However, the names 
of the formal parameters may be 
redefined (that is used to refer to 
different items) within subsequent blocks 
nested within the function body. 

Enumeration constants are in the same 
naming class as variable and function 
names. This means that the names of 
enumeration constants must be distinct 
from all variable and function names 
with the same visibility, and distinct 
from the names of other enumeration 
constants with the same visibility. How­
ever, like variable names, the names of 
enumeration constants have nested visi­
bility, so you can redefine them within 
blocks. (Nested visibility is discussed in 



typedef names 

Tags 

Members 

Statement labels 

Example 

struct student { 
char student[20]; 
int class; 
int id; 
} student; 

Program Structure 

Section 3.5, "Lifetime and Visibility.") 

The names of types defined with the 
typedef keyword are in a naming class 
with variable and function names. 
Therefore, typedef names must be dis­
tinct from all variable and function 
names with the same visibility, and also 
from the names of formal parameters 
and enumeration constants. Like vari­
able names, names used for typedef 
types can be redefined within program 
blocks. See Section 3.5, "Lifetime and 
Visibility." 

Enumeration, structure, and union tags 
are grouped in a single naming class. 
Each enumeration, structure, or union 
tag must be distinct from other tags 
with the same visibility. Tags do not 
conflict with any other names. 

The members of each structure and 
union form a naming class. The name of 
a member must, therefore, be unique 
within the structure or union, but it does 
not have to be distinct from other names 
in the program, including the names of 
members of different structures and 
umons. 

Statement labels form a separate naming 
class. Each statement label must be dis­
tinct from all other statement labels in 
the same function. Statement labels do 
not have to be distinct from other names 
or from label names in other functions. 
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Since structure tags, structure members, and variable names are in three 
different naming classes, the three items named student in this example 
do not conflict. The context of each item allows the compiler to correctly 
interpret each occurrence of student in the program. 

For example, when student appears after the struct keyword, the com­
piler recognizes it as a structure tag. When student appears after a 
member-selection operator (-> or . ), the name refers to the structure 
member. In other contexts, student refers to the structure variable. 
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Declarations 

4.1 Introduction 

This chapter describes the form and constituents of C declarations for 
variables, functions, and types. C declarations have the form 

[ sc-specifier] [type-specifier] declarator[::::: initializer] [,declarator[::::: initializer] ... ] 

where sc-specifier is a storage-class specifier; type-specifier is the name of a 
defined type; declarator is an identifier; and initializer gives the value or 
sequence of values to be assigned to the variable being declared. 

You must explicitly declare all C variables before using them. You can 
declare a C function explicitly by declaring it, or implicitly by calling the 
function before you define or declare it. 

The C language includes a standard set of data types. You can add your 
own data types by declaring new ones based on types already defined. You 
can declare arrays, data structures, and pointers to both variables and 
functions. 

C declarations require one or more declarators. A declarator is an 
identifier that can be modified with brackets ([ ]), asterisks ( * ), or 
parentheses (())to declare an array, pointer, or function type, respec­
tively. When you declare simple variables (such as character, integer, and 
floating-point items), or structures and unions of simple variables, the 
declarator is just an identifier. 

Four storage-class specifiers are defined in C: auto, extern, register, and 
static. The storage-class specifier of a declaration affects how the 
declared item is stored and initialized and which parts of a program can 
reference the item. Location of the declaration within the source program 
and the presence or absence of other declarations of the variable are also 
important factors in determining the visibility of variables. 

Function declarations are presented in Section 4.5. For information on 
function definitions, see Section 7.2. 
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4.2 Type Specifiers 

The C language provides definitions for a set of basic data types, called 
"fundamental" types. Their names are listed in Table 4.1. 

Table 4.1 

Fundamental Types 

Integral Typesa 

char 

int 

short 

long 
signed 

unsigned 

en um 

Floating-Point 
Types 

float 

double 

long doubleb 

Other 

voidc 

const 
volatiled 

a The optional keyword signed may precede any of the integral 
types, except enum. The keyword unsigned may also precede any 
integral type except enum, but may also be used alone as a type 
specifier, in which case it is understood as unsigned int. When used 
alone, the keyword int is assumed to be signed. When used alone, 
the keywords long and short are understood as long int and short 
int. 

b The long double type is semantically equivalent to double, but 
is syntactically distinct. 

c The keyword void has three uses: to declare function return types, 
to specify that a function will take no arguments, and to modify a 
pointer. 

d The volatile keyword is implemented syntactically, but not 
semantically. 

Enumeration types are considered fundamental types. Type specifiers for 
enumeration types are discussed in Section 4.8.1. 

Note 

50 



Declarations 

The long float type is no longer supported, and occurrences of it in 
old code should be changed to double. 

The signed char, signed int, signed short int, and signed long int 
types, together with their unsigned counterparts, are called "integral" 
types. The float, double, and long double type specifiers refer to 
"floating-point" types. You can use any integral or floating-point type 
specifier in a variable or function declaration. 

You can use the void type only to declare functions that return no value 
or to declare a pointer to an unspecified type. When the keyword void 
occurs alone within the parentheses following a function name, it is not 
interpreted as a type specifier. In that context void indicates only that the 
function accepts no arguments. Function types are discussed in Section 
4.5. 

The const type specifier is used to declare an object as being 
nonmodifiable. The const keyword can be used as a modifier for any fun­
damental or aggregate type, or to modify a pointer to an object of any 
type. The only type specifier that cannot be modified by const is void. A 
typedef may be modified by a const type specifier. A declaration that 
includes the keyword const as a modifier of an aggregate type declarator 
indicates that each element of the aggregate type is unmodifiable. If an 
item is declared with only the const type specifier, it's type is taken to be 
const int. A const object may be placed in a read-only region of storage. 

The volatile type specifier declares an item whose value may legitimately 
be changed by something beyond the control of the program in which it 
appears. The volatile keyword can modify any type except void, includ­
ing a typedef. An item may be both const and volatile, in which case 
the item could not be legitimately modified by its own program, but could 
be modified by some asyncronous process. The volatile keyword is imple­
mented syntactically, but not semantically. 

You can create additional type specifiers with typedef declarations, as 
described in Section 4.8.2. Such specifiers may only be modified by the 
const and volatile modifiers. 

Type specifiers are commonly abbreviated, as shown in Table 4.2. Integral 
types are signed by default. Thus, if you omit the unsigned keyword from 
the type specifier, the integral type is signed, even if you do not specify the 
signed keyword. 
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In some implementations, you can specify a compiler option that changes 
the default char type from signed to unsigned. When this option is in 
effect, the abbreviation char means the same as unsigned char, and you 
must use the signed keyword to declare a signed character value. 
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Table 4.2 

Type Specifiers and Abbreviations 

Type Specifier Abbreviations 

signed chara char 
signed int signed, int 
signed short int short, signed short 

signed long int long, signed long 
unsigned charb 
unsigned int unsigned 
unsigned short int unsigned short 
unsigned long int unsigned long 
fl.oat 
const int const 
volatile int volatile 
const volatile int const volatile 

a When you make the char type unsigned by default (by 
specifying the appropriate compiler option), you cannot 
abbreviate signed char. 

b When you make the char type unsigned by default (by 
specifying the appropriate compiler option), you can 
abbreviate unsigned char as char. 
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Note 

This manual generally uses the abbreviated forms of the type specifiers 
listed in Table 4.2 rather than the long forms, and it assumes that the 
char type is signed by default. Therefore, throughout this manual, 
char stands for signed char. 

Table 4.3 summarizes the storage associated with each fundamental type 
and gives the range of values that can be stored in a variable of each type. 
Since the void type specifier is only used to denote a function with no 
return value or a pointer to an unspecified type, it is not included in table. 
Similarly, the table does not include const because a variable type 
modified by const retains its storage size and can contain any value 
within range for its fundamental type. 

Table 4.3 

Storage and Range of Values for Fundamental Types 

Type Storage Range of Values (Internal) 

char 1 byte -128 to 127 
int implementation-

defined 
short 2 bytes - 32,768 to 32,767 
long 4 bytes - 2,147,483,648 to 2,147,483,647 
unsigned char 1 byte 0 to 255 
unsigned implementation-

defined 
unsigned short 2 bytes 0 to 65,535 
unsigned long 4 bytes 0 to 4,294,967,295 
float 4 bytes IEEE-standard notation; 

discussed below 
double 8 bytes IEEE-standard notation; 

discussed below 
long double 8 bytes IEEE-standard notation; 

discussed below 
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The char type is used to store the integer value of a member of the 
representable character set. That integer value is the ASCII code 
corresponding to the specified character. Since the char type is inter­
preted as a signed, 1-byte integer, a char variable can store values in the 
range -128 to 127, although only the values from 0 to 127 have character 
equivalents. Similarly, an unsigned char variable can store values in the 
range 0 to 255. 

Note that the C language does not define the storage and range associated 
with the int and unsigned int types. Instead, the size of a signed or 
unsigned int item is the standard size of an integer on a particular 
machine. For example, on a 16-bit machine the int type is usually 16 bits, 
or 2 bytes. On a 32-bit machine the int type is usually 32 bits, or 4 bytes. 
Thus, the int type is equivalent to either the short int or the long int 
type, and the unsigned int type is equivalent to either the unsigned 
short or the unsigned long type, depending on the implementation. 

The type specifiers int and unsi~. ned .int (or si.mply unsigned) define cer­
tain features of the C language lfor instance, the enum type discussed 
later in Section 4.8.1 ). In these cases, the definitions of int and unsigned 
int for a particular implementation determine the actual storage. 

Note 

The int and unsigned int type specifiers are widely used in C pro­
grams because they allow a particular machine to handle integer 
values in the most efficient way for that machine. However, since the 
sizes of the int and unsigned int types vary, programs that depend on 
a specific int size may not be portable to other machines. You can use 
expressions with the sizeof operator (discussed in Section 5.3.4) 
instead of hard-coded data sizes to make programs more portable. The 
actual sizes of int and unsigned int are discussed in your User's 
Guide. 

Floating-point numbers use the IEEE (Institute of Electrical and Electron­
ics Engineers, Inc.) format. Values with float type have 4 bytes, consist­
ing of a sign bit, an 8-bit excess-127 binary exponent, and a 23-bit 
mantissa. The mantissa represents a number between 1.0 and 2.0. Since 
the high-order bit of the mantissa is always l, it is not stored in the 
number. This representation gives a range of approximately 3.4E-38 to 
3.4E+38 for type float. 
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Values with double type have 8 bytes. The format is similar to the float 
format except that it has an 11-bit excess-1023 exponent and a 52-bit 
mantissa, plus the implied high-order 1 bit. This format gives a range of 
approximately 1.7E-308 to 1.7E+308 for type double. 

Range of Values 

The range of values for a variable is bounded by the minimum and max­
imum values that can be represented z'nternally in a given number of bits. 
However, because of C's conversion rules (discussed in detail in Chapter 5, 
"Expressions and Assignments"), you cannot always use the maximum or 
minimum value for a constant of a particular type in an expression. 

For example, the constant expression -32768 consists of the arithmetic 
negation operator(-) applied to the constant value 32,768. Since 32,768 is 
too large to represent as a short int, it is given the long type. Conse­
quently, the constant expression -32768 has long type. You can only 
represent -32,768 as a short int by type-casting it to the short type. No 
information is lost in the type cast, since -32,768 can be represented inter­
nally in 2 bytes. 

Similarly, a value such as 65,000 can only be represented as an unsigned 
short by type-casting the value to unsigned short type or by giving the 
value in octal or hexadecimal notation. The value 65,000 in decimal nota­
tion is considered a signed constant, and it is given the long type because 
65,000 does not fit into a short. You can cast this long value to the 
unsigned short type without loss of information, since 65,000 can fit in 2 
bytes when it is stored as an unsigned number. 

Octal and hexadecimal constants may have either signed or unsigned 
type, depending on their size (see Section 2.3.1, "Integer Constants," for 
more information). However, the method used to assign types to octal and 
hexadecimal constants ensures that they always behave like unsigned 
integers in type conversions. 

Data Type Categories 

The C data types fall into two general categories, called scalar and aggre­
gate. Scalars include pointers and arithmetic types. Arithmetic types 
include all floating and integral types. The floating types are float, dou­
ble, and long double. The integral types are char, all the variations of 
int, and the enumerated types, which include enum and void. 
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Aggregate types include arrays and structures. 

Table 4.4 illustrates the categorization of C data types. 

Table 4.4 

C Data-Type Categories 

Data Types Categories 

char 

int 

short 

long 

signed 
unsigned 
en um 
void 

Integral 

Types 

double Floating 
float J 
long double Types 

Pointers 

Arrays } 
Structures 

4.3 Declarators 

Syntax 

identifier 
declarator[ ] 
declarator[ constant-expression] 
*declarator 
(declarator) 

56 

Arithmetic 

Types 

Aggregate 

Types 



Declarations 

The C language lets you declare arrays of values, pointers to values, and 
functions returning values of specified types. You must use a declarator to 
declare these items. 

A declarator is an identifier that may be modified by brackets ([ ]), aster­
isks ( * ), or parentheses (())to declare an array, pointer, or function type, 
respectively. Declarators appear in the pointer, array, and function 
declarations described later in this chapter (Sections 4.4.6, 4.4.5, and 4.5, 
respectively). The following section discusses the rules for forming and 
interpreting declarators. 

4.3.1 Pointer, Array, and Function Declarators 

When a declarator consists of an unmodified identifier, the item being 
declared has a base type. If asterisks ( *) appear to the left of an identifier, 
the ty.)?e is modified to a poi"nter type. It the identifier is followed by brack­
ets (l J), the type is modified to an array type. If the identifier is followed 
by parentheses, the type is modified to a function returning type. 

A declarator must include a type specifier to be a complete declaration. 
The type specifier gives the type of the elements of an array type, the type 
of object addressed by a pointer type, or the return type of a function. 

The sections on pointer, array, and function declarations later in this 
chapter discuss each type of declaration in detail (see Sections 4.4.6, 4.4.5, 
and 4.5, respectively). 

Examples 

The following examples illustrate the simplest forms of declarators: 

/******************** Example 1 ********************/ 
int list [20]; 

Example 1 declares an array of int values named list. 

/******************** Example 2 ********************/ 
char *cp; 
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Example 2 declares a pointer named cp to a char value. 

/******************** Example 3 ********************/ 
double func(void); 

Example 3 declares a function named func with no arguments that 
returns a double value. 

4.3.2 Complex Declarators 

You can enclose any declarator in parentheses to specify a particular 
interpretation of a complex declarator. 

A "complex" declarator is an identifier qualified by more than one array, 
pointer, or function modifier. You can apply various combinations of 
array, pointer, and function modifiers to a single identifier. However, a 
declarator may not have the following illegal combinations: 

• An array cannot have functions as its elements. 

• A function cannot return an array or a function. 

In interpreting complex declarators, brackets and parentheses (that is, 
modifiers to the right of the identifier) take precedence over asterisks (that 
is, modifiers to the left of the identifier). Brackets and parentheses have 
the same precedence and associate from left to right. After the declarator 
has been fully interpreted, the type specifier is applied as the last step. 
You can use parentheses to override the default association order in a way 
that forces a particular interpretation. 

A simple way to interpret complex declarators is to read them "from the 
inside out," using the following four steps: 
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1. Start with the identifier and look to the right for brackets or 
parentheses (if any). 

2. Interpret these brackets or parentheses, then look to the left for 
asterisks. 

3. If you encounter a right parenthesis at any stage, go back and 
apply rules 1 and 2 to everything within the parentheses before 
proceeding. 



Declarations 

4. Apply the type specifier. 

Examples 

/******************** Example 1 ********************/ 
char :(:(:v~r)j))flO]; 

7 6 4 2 1 3 5 

In Example 1, the steps are labeled in order and can be interpreted as fol­
lows: 

1. The identifier var is declared as 

2. a pointer to 

3. a function returning 

4. a pointer to 

5. an array of 10 elements, which are 

6. pointers to 

7. char values. 

Examples 2 through 9 illustrate complex declarations further and show 
how parentheses can affect the meaning of a declaration. 

/******************** Example 2 ********************/ 

/* array of pointers to int values */ 
int *var[S]; 

In Example 2, the array modifier has higher priority than the pointer 
modifier, so var is declared to be an array. The pointer modifier applies to 
the type of the array elements; therefore, the array elements are pointers 
to int values. 

/******************** Example 3 ********************/ 

/* pointer to array of int values */ 
int (*Var) [5] : 
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In Example 3, parentheses give the pointer modifier higher priority than 
the array modifier, and var is declared to be a pointer to an array of five 
int values. 

/******************** Example 4 ********************/ 

/* function returning pointer to long */ 
long *Var(long,long); 

Function modifiers also have higher priority than pointer modifiers, so 
Example 4 declares var to be a function returning a pointer to a long 
value. The function is declared to take two long values as arguments. 

/******************** Example 5 ********************/ 

/* pointer to function returning long */ 
long (*var) (long, long); 

Example 5 is similar to Example 3. Parentheses give the pointer modifier 
higher priority than the function modifier, and var is declared to be a 
pointer to a function that returns a long value. Again, the function takes 
two long arguments. 

/******************** Example 6 ********************/ 

/* array of pointers to functions 
returning structures */ 

struct both { 
int a; 
char b; 
} ( *Var[S] ) ( struct both, struct both); 

The elements of an array cannot be functions, but Example 6 demon­
strates how to declare an array of pointers to functions instead. In this 
example, var is declared to be an array of five pointers to functions that 
return structures with two members. The arguments to the functions are 
declared to be two structures with the same structure type, both. Note 
that the parentheses surrounding *Var [5] are required. Without them, 
the declaration is an illegal attempt to declare an array of functions, as 
shown below: 

/* ILLEGAL */ 
struct both *Var[S] ( struct both, struct both); 
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/******************** Example 7 ********************/ 

/* function returning pointer 
to an array of 3 double values */ 

double ( *Var ( double (*) [3J ) ) [3J; 

Example 7 shows how to declare a function returning a pointer to an 
array, since functions returning arrays are illegal. Here var is declared to 
be a function returning a pointer to an array of three double values. The 
function var takes one argument. The argument, like the return value, is 
a pointer to an array of three double values. The argument type is given 
by a complex abstract declarator. The parentheses around the asterisk in 
the argument type are required; without them, the argument type would 
be an array of three pointers to double values. For a discussion and ex­
amples of abstract declarators, see Section 4.9, "Type Names." 

/******************** Example 8 ********************/ 

/* array of arrays of pointers 
to pointers to unions */ 

union sign { 
int x; 
unsigned y; 
} **Var [SJ [SJ ; 

A pointer can point to another pointer, and an array can contain arrays as 
elements, as the Example 8 shows. Here var is an array of five elements. 
Each element is a five-element array of pointers to pointers to unions with 
two members. 

/******************** Example 9 ********************/ 

/* array of pointers to arrays 
of pointers to unions */ 

union sign * (*Var [SJ) [SJ ; 

Example 9 shows how the placement of parentheses changes the meaning 
of the declaration. In this example, var is a five-element array of pointers 
to five-element arrays of pointers to unions. 
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4.3.3 Declarators with Special Keywords 

Your implementation of Microsoft C may include the following special 
keywords: 

cdecl 
far 
fort ran 
huge 
near 
pascal 

These keywords modify the meaning of variable and function declarations. 
See your User's Guide for a full discussion of the effects of these special 
keywords. 

When a special keyword appears in a declarator, it modifies the item 
immediately to the right of the keyword. You can apply more than one 
special keyword to the same item. For example, you might modify a func­
tion identifier with both the far keyword and the pascal keyword. In this 
case, the order of the keywords does not matter {that is, far pascal and 
pascal far have the same effect). Thus the "binding" characteristics of the 
special keywords are the same as those of the type specifiers const and 
volatile. (Section 4.2 contains descriptions of the const and volatile key­
words.) 

You can also use two or more special keywords in different parts of a 
declaration to modify the meaning of the declaration. For example, the 
following declaration contains two occurrences of the far keyword: 

int far* pascal far func(void); 

In this example, the pascal and far keywords modify the function 
identifier func. The return value of func is declared to be a far pointer 
to an int value. 

As in any C declaration, you can use parentheses to override the default 
interpretation of the declaration. The rules governing complex declarators 
(discussed in the Section 4.3.2) also apply to declarations that use the spe­
cial keywords. 

62 



Declarations 

Examples 

The following examples show the use of special keywords in declarations: 

/******************** Example 1 ********************/ 

int huge database[65000]; 

Example 1 declares a huge array named database with 65,000 int ele­
ments. The huge keyword modifies the array declarator. 

/******************** Example 2 ********************/ 

char * far * x; 

In Example 2, the far keyword modifies the asterisk to its right, making x 
a far pointer to a pointer to char. This declaration is equivalent to the 
following declaration: 

char* (far *X); 

/******************** Example 3 ********************/ 

double near cdecl calc(double,double); 

double cdecl near calc(double,double); 

Example 3 shows two equivalent declarations. Both declare calc as a 
function with the near and cdecl attributes. 

/******************** Example 4 ********************/ 

char far fortran initlist[INITSIZE]; 

char far *nextchar, far *prevchar, far *currentchar; 

Example 4 also shows two declarations. The first declares a far f ortran 
array of characters named ini tlist, and the second declares three far 
pointers named nextchar, prevchar, and currentchar. These 
pointers might be used to store the addresses of characters in the 
ini tlist array. Note that the far keyword must be repeated before 
each declarator. 
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/******************** Example 5 ********************/ 

char far *(f~r *getint) (int far*); 

6 5 2 1 3 4 

Example 5 shows a more complex declaration with several occurrences of 
the far keyword. The following procedure would be used to interpret this 
declaration: 

1. The identifier getint is declared as a 

2. far pointer to 

3. a function taking 

4. a single argument that is a far pointer to an int value 

5. and returning a far pointer to a 

6. char value 

Note that the far keyword always modifies the item immediately to its 
right. 

4.4 Variable Declarations 

Syntax 

[sc-specifier] type-specifier declarator[, declarator ... ] 

This section describes the form and meaning of variable declarations. In 
particular, it explains how to declare the following: 
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Type of Variable 

Simple variables 

Enumeration variables 

Structures 

Description 

Single-value variables with integral or 
floating-point type 

Simple variables with integral type that 
hold one value from a set of named integer 
constants 

Variables composed of a collection of 
values that may have different types 



Unions 

Arrays 

Pointers 

Declarations 

Variables composed of several values of 
different types, which occupy the same 
storage space 

Variables composed of a collection of ele­
ments with the same type 

Variables that point to other variables and 
contain variable locations (in the form of 
addresses) instead of values 

In the general form of a variable declaration, type-specifier gives the data 
type of the variable and declarator gives the name of the variable, possibly 
modified to declare an array or a pointer type. The type-specifier can be a 
compound, as when the type is modified by const, volatile, or one of the 
special keywords described in Section 4.3.3. You can define more than one 
variable in a declaration by using multiple declarators, separated by com-
mas. 

The sc-specifier gives the storage class of the variable. In some contexts, 
you can initialize variables at the time you declare them. For information 
about storage classes and initialization, see Sections 4.6 and 4. 7, respec­
tively. 

4.4.1 Simple Variable Declarations 

Syntax 

[sc-specifier] type-specifier identifier [, identi]'ier ... ]; 

The declaration of a simple variable specifies the variable's name and type. 
It can also specify the variable's storage class, as described in Section 4.6. 
The identifier in the declaration is the variable's name. The type-specifier 
is the name of a defined data type. 

You can use a list of identifiers separated by commas(,) to specify several 
variables in the same declaration. Each identifier in the list names a vari­
able. All variables defined in the declaration have the same type. 
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Examples 

/******************** Example 1 ********************/ 
int x; 
int const y=l; 

Example 1 declares a simple variable named x. This variable can hold any 
value in the set defined by the int type for a particular implementation. 
The simple object y is declared as a constant value of type int. It is ini­
tialized to the value 1, and is not modifiable. If the declaration of y was 
not a defining declaration, it would receive an initial value of zero, and 
that value would be unmodifiable. The order of placement of the int and 
const type specifiers, relative to each other, is not significant. 

/******************** Example 2 ********************/ 
unsigned long reply, flag; 

Example 2 declares two variables named reply and flag. Both variables 
have unsigned long type and hold unsigned integral values. 

/******************** Example 3 ********************/ 
double order; 

Example 3 declares a variable named order that has double type, and 
can hold floating-point values. 

4.4.2 Enumeration Declarations 

Syntax 

enum [tag] { enum-list} identifier [, identifier ... ]; 

enum tag identifz"er [, identifier ... ]; 

An enumeration declaration gives the name of an enumeration variable 
and defines a set of named integer constants (the "enumeration set"). A 
variable with enumeration type stores one of the values of the enumera­
tion set defined by that type. The integer constants of the enumeration 
set have int type; thus, the storage associated with an enumeration vari­
able is the storage required for a single int value. 
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Variables of enum type are treated as if they are of type int in all cases. 
They may be used in indexing expressions and as operands of all arith­
metic and relational operators. 

Enumeration declarations begin with the enum keyword and have the two 
forms shown at the beginning of this section. 

• In the first form, the enum-list specifies the values and names of the 
enumeration set. (The enum-list is described in detail later in this 
section.) The optional tag is an identifier that names the enumera­
tion type defined by the enum-l£st. The identifier names the 
enumeration variable. You can define more than one enumeration 
variable in a single enumeration declaration. 

• The second form of enumeration declaration uses a previously 
defined enumeration tag to refer to an enumeration type defined 
elsewhere. The tag must refer to a defined enumeration type, and 
that enumeration type must be currently visible. Since the 
enumeration type is defined elsewhere, an enum-list does not 
appear in this type of declaration. 

Enumeration List 

An enum-1£st has the following form: 

identifier [ = constant-expression] 
[, identifier [ = constant-expression] ... ] 

Each identifier in an enumeration list names a value of the enumeration 
set. By default, the first identifier is associated with the value 0, the next 
identifier is associated with the value 1, and so on through the last 
identifier in the declaration. The name of an enumeration constant is 
equivalent to its value. 

The optional phrase "= constant-expression" overrides the default 
sequence of values. Thus, if identifier= constant-expression appears in an 
enum-list, the identifier is associated with the value given by constant­
expression. The constant-expression must have int type and can be nega­
tive. The next identifier in the list is associated with the value of 
"constant-expression+ 1", unless you explicitly associate it with another 
value. 
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The following rules apply to the members of an enumeration set: 

• An enumeration set can contain duplicate constant values. For 
example, you could associate the value 0 with two different 
identifiers named nul 1 and zero in the same set. 

• The identifiers in the enumeration list must also be distinct from 
other identifiers with the same visibility, including ordinary vari­
able names and identifiers in other enumeration lists. 

• Enumeration tags must be distinct from other enumeration, struc­
ture, and union tags with the same visibility. 

Examples 

/******************** Example 1 ********************/ 

enum day { 
saturday, 
sunday = 0, 
monday, 
tuesday, 
wednesday, 
thursday, 
friday 
} workday; 

Example 1 defines an enumeration type named day and declares a variable 
named workday with that enumeration type. The value 0 is associated 
with saturday by default. The identifier sunday is explicitly set to 0. 
The remaining identifiers are given the values 1 through 5 by default. 

/******************** Example 2 ********************/ 

enum day today = wednesday; 

In Example 2, a value from the set defined in Example 1 is assigned to the 
variable today. Note that the name of the enumeration constant is used 
to assign the value. Since the day enumeration type was previously 
declared, only the enumeration tag is necessary in this declaration. 
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4.4.3 Structure Declarations 

Syntax 

struct [tag] { member-declaration-liBt} declarator[, declarator ... ]; 

struct tag declarator [, declarator ... ]; 

A structure declaration names a structure variable and specifies a sequence 
of variable values (called "members" of the structure) that can have 
different types. A variable of that structure type holds the entire sequence 
defined by that type. 

Structure declarations begin with the struct keyword and have two forms: 

• In the first form, a member-declaration-list (described in detail below) 
specifies the types and names of the structure members. The optional 
tag is an identifier that names the structure type defined by the 
member-declaration-list. 

• The second form uses a previously defined structure tag to refer to a 
structure type defined elsewhere. Thus, a member-declaration-list is not 
needed as long as the definition is visible. Declarations of pointers to 
structures and typedefs for structure types can use the structure tag 
before the structure type is defined. However, the structure definition 
must be encountered prior to any actual use of the typedef or pointer. 

In both forms, each declarator specifies a structure variable. A declarator 
may also modify the type of the variable to a pointer to the structure type, 
an array of structures, or a function returning a structure. 

Structure tags must be distinct from other structure, union, and enumera­
tion tags with the same visibility. 

Member-Declaration List 

A member-declaration-list contains one or more variable or bit-field 
declarations. 

Each variable declared in the member-declaration-list is defined as a 
member of the structure type. Variable declarations within the member­
declaration-list have the same form as other variable declarations discussed 
in this chapter, except that the declarations cannot contain storage-class 
specifiers or initializers. The structure members can have any variable 
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type: fundamental, array, pointer, union, or structure. 

A member cannot be declared to have the type of the structure in which it 
appears. However, a member can be declared as a pointer to the structure 
type in which it appears as long as the structure type has a tag. This 
allows you to create linked lists of structures. 

A bit-field declaration has the following form: 

type-speci"f'z"er [ identifi"er] : constant-expression; 

The constant-expression specifies the number of bits in the bit field. The 
type-specifier of type int lsigned or unsigned), and the constant­
expression must be a non-negative integer value. Arrays of bit fields, 
pointers to bit fields, and functions returning bit fields are not allowed. 
The optional identifier names the bit field. Unnamed bit fields can be used 
as "dummy" fields, for alignment purposes. An unnamed bit field whose 
width is specified as 0 guarantees that storage for the member following it 
in the member-declaration-list begins on an int boundary. 

Each identifier in a member-declaration-list must be unique within the list. 
However, they do not have to be distinct from ordinary variable names or 
from identifiers in other member-declaration-lists. 

Note 

A Microsoft extension to a allows char and long types (both signed 
and unsigned) for bit fields. Unnamed bit fields with base type long 
or char (signed or unsigned) force alignment to the the base type 
(signed or unsigned, char or long). 

Microsoft C does not implement signed bit fields. The syntax is 
allowed, but a bitfield specified as signed is treated as unsigned in all 
conversions. 

Storage 

Structure members are stored sequentially in the order in which they are 
declared: the first member has the lowest memory address and the last 
member the highest. Storage for each member begins on a memory boun­
dary appropriate to its type. Therefore, unnamed blanks can appear 
between structure members in memory. 
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Bit fields are not stored across boundaries of their declared type. For 
example, a bit field declared with unsigned int type is packed into the 
space remaining (if any), if the previous bit field was of type unsigned int 
Otherwise, it begms a new object on an int boundry. 

Examples 

/******************** Example 1 ********************/ 

struct { 
float x, y; 

} complex; 

Example 1 defines a structure variable named complex. This structure 
has two members with float type, x and y. The structure type has no tag, 
and is therefore unnamed. 

/******************** Example 2 ********************/ 

struct employee { 

} temp; 

char name[20); 
int id; 
long class; 

Example 2 defines a structure variable named temp. The structure has 
three members: name, id, and class. The name member is a 20-element 
array, and id and class are simple members with int and long type, 
respectively. The identifier employee is the structure tag. 

/******************** Example 3 ********************/ 

struct employee student, faculty, staff; 

Example 3 defines three structure variables: student, faculty, and 
staff. Each structure has the same list of three members. The members 
are declared to have the structure type employee, defined in Example 2. 

/******************** Example 4 ********************/ 

struct sample { 
char c; 
float *pf; 
struct sample *next; 
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} x; 

Example 4 defines a structure variable named x. The first two members of 
the structure are a char variable and a pointer to a float value. The third 
member, next, is declared as a pointer to the structure type being defined 
(sample). 

/******************** Example 5 ********************/ 

struct { 
unsigned icon : 8; 
unsigned color : 4; 
unsigned underline : 1; 
unsigned blink : 1; 

} screen[25] [80]; 

Example 5 defines a two-dimensional array of structures named screen. 
The array contains 2000 elements, and each element is an individual struc­
ture containing four bit-field members: icon, color, underline, and 
blink. 

4.4.4 Union Declarations 

Syntax 

union [tag] {member-declaration-list} declarator[, declarator ... ]; 

union tag declarator[, declarator ... ]; 

A union declaration names a union variable and specifies a set of variable 
values, called "members" of the union, that can have different types. A 
variable with union type stores one of the values defined by that type. 

Union declarations have the same form as structure declarations, except 
that they begin with the union keyword instead of the struct keyword. 
The same rules govern structure and union declarations, except that bit­
field members are not allowed in unions. 
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Storage 

The storage associated with a union variable is the storage required for the 
largest member of the union. When a smaller member is stored, the union 
variable may contain unused memory space. All members are stored in 
the same memory space and start at the same address. The stored value is 
overwritten each time a value is assigned to a different member. 

Examples 

/******************** Example 1 ********************/ 

union sign { 
int svar; 
unsigned uvar; 

} number; 

Example 1 defines a union with sign type and declares a variable named 
number that has two members: svar, a signed integer, and uvar, an 
unsigned integer. This declaration allows the current value of number to 
be stored as either a signed or an unsigned value. The tag associated with 
this union type is sign. 

/******************** Example 2 ********************/ 

union { 
char *a, b; 
float f [20] ; 

} jack; 

Example 2 defines a union variable named jack. The members of the 
union are, in order of their declaration, a pointer to a char value, a char 
value, and an array of fl.oat values. The storage allocated for jack is the 
storage required for the 20-element array f, since f is the longest member 
of the union. Because there is no tag associated withe the union, its type is 
unnamed. 

/******************** Example 3 ********************/ 

union { 
struct { 

unsigned int icon : 8; 
unsigned color : 4; 

} windowl; 
int screenval; 
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} screen [25] [80] ; 

Example 3 defines a two-dimensional array of unions named screen. The 
array contains 2000 elements. Each element is an individual union with 
two members: windowl,and screenval. The window! member is a 
structure with two bit-field members, icon, and color. The screenval 
member is an int. At any given time, each union element holds either the 
int represented by screenval or the structure represented by windowl. 

4.4.5 Array Declarations 

Syntax 

type-Bpecifier declarator [ conBtant-expreBBion]; 
type-Bpeczfier declarator [ ] ; 

An array declaration names the array and specifies the type of its ele­
ments. It may also define the number of elements in the array. A variable 
with array type is considered a pointer to the type of the array elements, 
as described in Section 5.2.2, "Identifiers." 

Array declarations have the two forms shown at the beginning of this sec­
tion. Their syntax differs as follows: 

• In the first form, the constant-expression within the brackets defines 
the number of elements in the array. Each element has the type given 
by the type-specifier, which can be any type except void. An array ele­
ment cannot be a function type. 

• The second form omits the constant-expression in brackets. You can 
use this form only if you have initialized the array, declared it as a for­
mal parameter, or declared it as a reference to an array explicitly 
defined elsewhere in the program. 

In both forms, the declarator names the variable and may modify the 
variable's type. The brackets ([])following the declarator modify the 
declarator to array type. 

You can define an array of arrays (a "multidimensional" array), by follow­
ing the array declarator with a list of bracketed constant-expressions, as 
shown below: 

type-Bpecifier declarator[ conBtant-expreBBion] ( conBtant-expreBBion] ... 

Each constant-expression in brackets defines the number of elements in a 
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given dimension: two-dimensional arrays have two bracketed expressions, 
three-dimensional arrays have three, and so on. When you declare a mul­
tidimensional array within a function, you can omit the first constant­
expression if you have initialized the array, declared it as a formal parame­
ter, or declared it as a reference to an array explicitly defined elsewhere in 
the program. 

You can define arrays of pointers to various types of objects by using com­
plex declarators, as described in Section 4.3.2. 

Storage 

The storage associated with an array type is the storage required for all of 
its elements. The elements of an array are stored in contiguous and 
increasing memory locations, from the first element to the last. No blanks 
separate the array elements in storage. 

Arrays are stored by row. For example, the following array consists of two 
rows with three columns each: 

char A[2] [3]; 

The three columns of the first row are stored first, followed by the three 
columns of the second row. This means that the last subscript varies most 
quickly. 

To refer to an individual element of an array, use a subscript expression, 
discussed in Section 5.2.5. 

Examples 

/******************** Example 1 ********************/ 

int scores[lO], game; 

Example 1 defines an array variable named scores with 10 elements, 
each of which has int type. The variable named game is declared as a 
simple variable with int type. 

/******************** Example 2 ********************/ 

float matrix[lO] (15]; 
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Example 2 defines a two-dimensional array named matrix. The array has 
150 elements, each having float type. 

/******************** Example 3 ********************/ 

struct { 
float x, y; 
} complex[lOO]; 

Example 3 defines an array of structures. This array has 100 elements; 
each element is a structure containing two members. 

/******************** Example 4 ********************/ 

extern char *name[]; 

Example 4 declares the type and name of an array of pointers to char. 
The actual definition of name occurs elsewhere. 

4.4.6 Pointer Declarations 

Syntax 

type-speci'fier • [modification-spec] declarator; 

A pointer declaration names a pointer variable and specifies the type of 
the object to which the variable points. A variable declared as a pointer 
holds a memory address. 

The type-specifier gives the type of the object, which can be any funda­
mental, structure, or union type. Pointer variables can also point to func­
tions, arrays, and other pointers. (For information on declaring more com­
plex pointer types, refer to Section 4.3.2, "Complex Declarators.") 

The type-specifier can also be void, so that specification of the type to 
which the pointer points can be delayed. This is referred to as a "pointer 
to void" (void * ), and is used to delay specification of the type to which 
the pointer will refer. A variable declared as a pointer to void can be used 
to point to an object of any type. However, in order to perform operations 
on the pointer or on the object to which it points, the type to which it 
points must be explicitly specified for each operation. Such conversion can 
be accomplished with a type cast. 
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The modification-spec can be either const or volatile, or both. These 
specify, respectively, that the pointer will not be modified by the program 
itself ( const ), or that the pointer may legitimately be modified by some 
process beyond the control of the program (volatile). (See Section 4.2 for 
more information on const and volatile. 

The declarator names the variable and can include a type modifier. For 
example, if the declarator represents an array, the type of the pointer is 
modified to pointer to array. 

You can declare a pointer to a structure or union type before you define 
the structure or union type. However the structure must be defined before 
the pointer can be dereferenced. You declare the pointer by using the 
structure or union tag (see Example 7 below). Such declarations are 
allowed because the compiler does not need to know the size of the struc­
ture or union to allocate space for the pointer variable. 

Storage 

The amount of storage required for an address and the meaning of the 
address depend on the implementation of the compiler. Pointers to 
different types are not guaranteed to have the same length. 

In some implementations, you can use the special keywords near, far, and 
huge to modify the size of a pointer. Declarations using special keywords 
are described in Section 4.3.3. See your User's Guide for more information 
on the meaning and use of these keywords. 

Examples 

/******************** Example 1 ********************/ 
char *message;/ 

Example 1 defines a pointer variable named message. It points to a vari­
able with char type. 

/******************** Example 2 ********************/ 
int *pointers[lO] 

77 



Microsoft C Optimizing Compiler Language Reference 

Example 2 defines an array of pointers named pointers. The array has 
10 elements; each element is a pointer to a variable with int type. 

/******************** Example 3 ********************/ 
int (*pointer) [10]: 

Example 3 defines a pointer variable named pointer; it points to an 
array with 10 elements. Each element in this array has int type. 

/******************* Example 4 *********************/ 
const int *X: 

Example 4 declares a pointer variable x, to a constant value. The pointer 
may be modified to point to a different integer, but the value to which it 
points may not be modified. 

/****************** Example 5 *********************/ 
const int some_object = 5 ; 
int other_object = 37; 
int *Const y = &fixed_object; 
canst volatile *Const z = &some_object; 
canst *Const volatile w = &some_object; 

The variable yin Example 5 is declared as a constant pointer to an integer 
value. The value it points to may be modified, but the pointer itself must 
always point to the same location, the address of fixed_object. Simi~ 
larly z is a constant pointer, but it is also declared to point to an int 
whose value will notbemodified by the program. The additional specifier 
volatile indicates that although the value of the const int pointed to 
by z cannot be modified by the program, it could legitimately be modified 
by a process outside the program. The declaration of w specifies that the 
value pointed to will not be changed, and that the program itself will not 
modifiy the pointer. However, some outside process could legitimately 
modify the pointer. 

/******************* Example 6 ********************/ 
struct list *next, *previous; 

Example 6 defines two pointer variables that point to the structure type 
list. This declaration can af,pear before the definition of the list 
structure type (see Example 7 , as long as the list type definition has the 
same visibility as the declaration. 
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/******************** Example 7 ********************/ 
struct list { 

} line; 

char *token; 
int count; 
struct list *next; 

Example 7 declares the variable 1 ine to have the structure type named 
list. The list structure type is defined to have three members: the first 
member is a pointer to a char value, the second is an int value, and the 
third is a pointer to another 1 ist structure. 

/******************** Example 8 ********************/ 
struct id { 

unsigned int id_no; 
struct name *pname; 

} record; 

Example 8 declares the variable record to have the structure type id. 
Note that pname is declared as a pointer to another structure type named 
name. This declaration can appear before the name type is defined. 

/*********************** Example 9 ********************/ 
int i; 
void *p; 

p = &i; 

(int *)p++; 

/* p declared as pointer to an object 
whose type is not specified 

/* address of integer i assigned to p 
but type of p itself is still not 
specified. An operation like p++ 
would not be permitted yet */ 

/* incrementing p permitted when the 
cast converts it to pointer to int */ 

The pointer variable pis declared in Example 9, but the void * preceding 
the identifier p in the declaration, means that p can be used later to point 
to any type object. The address of an int is assigned to it, but no opera­
tions on the pointer itself are permitted unless it is explicitly converted to 
the type to which it points. Similarly, indirect operations on the object 
dereferenced by p are not permitted unless p is converted to a specific 
type. Finally, p is converted to a pointer to int with a cast, and incre­
mented. 
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4.5 Function Declarations (Prototypes) 

Syntax 

[ sc-spec] [type-spec] declarator([! ormal-parameter-Hst]) [, declarator-list ... ]; 

A function declaration, also called a "function prototype," establishes the 
name and return type of a function and may specify the types, formal 
parameter names, and number of arguments to the function. A function 
declaration does not define the function body. It simply makes those attri­
butes of the function it does include known to the compiler. This informa­
tion enables the compiler to check the types of the actual arguments in 
ensuing calls to the function. 

If you do not provide a function prototype, the compiler constructs one 
from the first reference to the function it encounters, whether a call or a 
function definition. This prototype is then used to check the formal 
parameters in a subsequent definition of the function or the actual argu­
ments in a subsequent call to the function. However, such checking can 
only be done if the definition occurs in the same source file. If the 
definition occurs in a different module, argument mismatch errors are not 
detected. Function definitions are described in detail in Section 7.2. 

The sc-spec represents a storage-class specifier, and can be either extern 
or static. Storage-class specifiers are discussed in Section 4.6. 

The type-spec gives the function's return type, and the declarator names 
the function. If you omit the type-spec from a function declaration, the 
function is assumed to return a value of type int. 

The formal-parameter-list is described below. 

The final declarator-list indicated in the syntax represents further declara­
tions on the same line. These may be other functions returning values of 
the same type as the first function, or declarations of any variables whose 
type is the same as the first function's return type. Each such declaration 
must be separated from its predecessors and successors by a comma. 
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Formal Parameters 

Formal parameters describe the actual arguments that can be passed to a 
function. In the function declaration, the parameter declarations establish 
the number and types of the actual arguments. They may also include 
identifiers of the formal parameters. Though the parameters may be omit­
ted from the function declaration, their inclusion is recommended. The 
extent of the information in the declaration influences the argument 
checking done on function calls appearing before the compiler has pro­
cessed the function definition. 

Note that identifiers used to name the parameters in the prototype 
declaration are descriptive only. They go out of scope at the end of the 
declaration. Therefore, they need not be identical to the identifiers used in 
the declaration portion of the function definition. Using the same names 
may enhance readability, but has no other significance. 

Return Type 

Functions can return values of any type except arrays and functions. 
Therefore, the type-specifier of a function declaration can specify any fun­
damental, structure, or union type. You can modify the function identifier 
with one or more asterisks ( *) to declare a pointer return type. 

Although functions cannot return arrays and functions, they can return 
pointers to arrays and functions. You declare a function that returns a 
pointer to an array or function type by modifying the function identifier 
with asterisks ( * ), brackets ([ ]), and parentheses (( )). Such a function 
identifier is known as a a "complex declarator." Rules for forming and 
interpreting complex declarators are discussed in Section 4.3.2. 

The List of Formal Parameters 

All elements of the formal-parameter-list appearing within the parentheses 
following the function declarator are optional, as shown in the following 
syntax: 

[[void]i[register] [type-spec] [declarator[[, ... ] [, ••• ]]]] 

If formal parameters are omitted from the function declaration, the 
parentheses can contain the keyword void to specify that no arguments 
will ever be passed to the function. If the parentheses are left entirely 
empty, no information is coveyed about whether arguments will be passed 
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to the function and no checking of argument types is performed. 

Note 

Empty parentheses in a function declaration or definition represent an 
obsolescent form not recommended for new code. Functions accepting 
no arguments should be declared with the void keyword replacing the 
list of formal parameters. This use of void is interpreted by context, 
and should not be confused with uses of void as a type specifier. 

A declaration in the list of formal parameters can contain the register 
storage-class specifier, either alone or combined with a type specifier and 
an identifier. If register is not specified, the storage class is auto. The 
only explicit storage class specifier permitted is register. If the 
parentheses contain only the register keyword, the formal parameter is 
considered to represent an unnamed int for which register storage is 
being requested. 

If type-spec is included, it can specify the type name for any fundamental, 
structure, or union type (such as int for integer type). A declarator for a 
fundamental, structure, or union type is simply an identifier of a variable 
having that type. 

The declarator for a pointer, array, or function can be formed by combin­
ing a type specifier, plus the appropriate modifier, with an identifier. 
Alternatively, an "abstract declarator" (that is, a declarator without a 
specified identifier) can be used. Section 4.9, "Type Names," explains how 
to form and interpret abstract declarators. 

A full, partial, or empty list of formal parameters can be declared. If the 
list contains at least one declarator, a variable number of parameters can 
be specified by ending the list with a comma followed by three periods 
(, ... ),referredtoasthe "ellipsis A function is expected to have at least as 
many arguments as there are declarators or type specifiers preceding the 
last comma. 

Note 
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indicate a variable number of arguments. However, this is a Microsoft 
extension to the ANSI C standard. New code should use the comma 
followed by three periods. For information on enabling and disabling 
extensions, see your User's Guide. 

One other special construction is permitted as a formal parameter: void * 
represents a pointer to an object of unspecified type. Thus, in a call, the 
pointer can be used to reference any type of object by converting the 
pointer (for example, with a cast) to a pointer to the desired type. Note 
that before operations can be performed on the pointer or its object, the 
pointer must be explicitly converted. Section 4.4.6 provides further infor­
mation on void *. 

Summary 

Function prototypes are optional. If included, the only elements absolutely 
required are the name of the function, the opening and closing parentheses 
following the name, and the final semicolon. If no return type is included, 
as in the following example, the function is assumed to return an int. 

/***** Obsolescent form of function definition *****/ 
minimal_declaration(); /*may or may not 

accept arguments */ 

Any appropriate combination of elements is permitted among the parame­
ters declarations, from no information (as in the obsolescent form in the 
example above) to a full prototype of the function. If no prototype at all is 
given, a /flde facto prototype is constructed from information in the first 
reference to the function encountered in the source file. 

Example 

double func(void); 

fun (void*); 

char *fu(long, long); 

foo(register a, char*); 

/* returns a double, but 
* accepts no arguments 

*/ 
/* passes an unnamed pointer 

* to an unspecified 
* type; returns an int 

*/ 
/* passes two unnamed longs; 

* returns pointer to char 
*/ 
/* passes a named int with request 
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* for register storage, and an 
* unnamed pointer to char; 
* returns an int 

*/ 
void go(int *[], char *b); /*passes pointer to an unnamed 

* array of int using an abstract 
* declarator, and a pointer to char 
* named b; there is no return 

*/ 
void *tu(double v, ... ); /*passes at least one double named 

* v; other parameters may also be 
* passed; returns a pointer 
* to an unspecified type 

*/ 
The compiler uses any information included in the parameter list to check 
any actual arguments appearing before the compiler has processed the 
function definition. 

Examples 

/******************** Example 1 ********************/ 
int add(int numl, int num2); 

Example 1 declares a function named add that takes two int arguments, 
represented by the identifiers numl and num2, and returns an int value. 

/******************** Example 2 ********************/ 
double calc () ; 

Example 2 declares a function named calc that returns a double value. 
The obsolescent empty parentheses leave the issue of possible arguments 
to the function undefined. 

/******************** Example 3 ********************/ 
char *Strfind(char *ptr, ... ); 

Example 3 declares a function named str find, that returns a pointer to 
char. The function accepts at least one argument, declared by the formal 
parameter char *ptr, to be a pointer to a char value. The list of argu­
ment types has one entry, and ends with a comma followed by three 
periods, indicating that the function may take more arguments. 

/******************** Example 4 ********************/ 
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void draw(void); 

Example 4 declares a function with void return type (returning no value). 
The voi"d keyword also replaces the list of formal parameters, so no argu­
ments are expected for this function. 

/******************** Example 5 ********************/ 
double (*sum(double, double)) [3]; 

In Example 5, sum is declared as a function returning a pointer to an 
array of three double values. The sum function takes two unnamed dou­
ble values as arguments. 

/******************** Example 6 ********************/ 
int (*select(void)) (int number); 

In Example 6, the function named select is declared to take no argu­
ments and to return a pointer to a function. The pointer return value 
points to a function taking one int argument, represented by the identifier 
number, and returning an int value. 

/******************** Example 7 ********************/ 
int prt(void *); 

In Example 7, the function prt is declared to take a pointer argument of 
any type and return an int. A pointer to any type could be passed as an 
argument to prt without producing a type-mismatch warning. 

/******************** Example 8 ***********************/ 
long (*Const rainbow[]) (int, ... ) ; 

Example 8 shows the declaration of an array named rainbow, of an 
unspecified number of constant pointers to functions, each of which passes 
at least one parameter of type int, as well as an unspecified number of 
other parameters. Each of the functions pointed to returns a long value. 
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4.6 Storage Classes 

The storage class of a variable determines whether the item has a "global" 
or "local" lifetime. An item with a global lifetime exists and has a value 
throughout the duration of the program. All functions have global life­
times. 

Variables with local lifetimes are allocated new storage each time execu­
tion control passes to the block in which they are defined. When execution 
control passes out of the block, the variables no longer have meaningful 
values. 

Although C defines only two types of storage classes, it provides the fol­
lowing four storage-class specifiers: 

auto 
register 
static 
extern 

Items declared with the auto or register specifier have local lifetimes. 
Items declared with the static or extern specifier have global lifetimes. 

The four storage-class specifiers have distinct meanings because storage­
class specifiers affect the visibility of functions and variables, as well as 
their storage class. The term "visibility" refers to the portion of the 
source program in which the variable or function can be referenced by 
name. An item with a global lifetime exists throughout the execution of 
the source program, but it may not be "visible" in all parts of the pro­
gram. (Visibility and the related concept of lifetime are discussed in 
Chapter 3, "Program Structure.") 

The placement of variable and function declarations within source files 
also affects storage class and visibility. Declarations outside all function 
definitions are said to appear at the "external level"; declarations within 
function definitions appear at the "internal level." 

The exact meaning of each storage-class specifier depends on two factors: 

• Whether the declaration appears at the external or internal level 

• Whether the item being declared is a variable or a function 
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Sections 4.6.1 - 4.6.3 describe the meanings of storage-class specifiers in 
each kind of declaration and explain the default behavior when the 
storage-class specifier is omitted from a variable or function declaration. 

4.6.1 Variable Declarations at the External Level 

In variable declarations at the external level (that is, outside all func­
tions), you can use the static or extern storage-class specifier or omit the 
storage-class specifier entirely. You cannot use the auto and register 
storage-class specifiers at the external level. 

Variable declarations at the external level are either definitions of vari­
ables ("defining declarations"), or references to variables defined elsewhere 
("referencing declarations"). 

An external variable declaration that also initializes the variable (impli­
citly or explicitly) is a defining definition of the variable. Definitions at the 
external level can take several forms: 

• A variable that you declare with the static storage-class specifier. 
You can explicitly initialize the static variable with a constant expres­
sion, as described in Section 4. 7. If you omit the initializer, the vari­
able is initialized to 0 by default. For example, static int k = 
16; and static int k; are both considered definitions of the vari­
able k. 

• A variable that you explicitly initialize at the external level. For 
example, int j = 3; is a definition of the variable j. 

Once a variable is defined at the external level, it is visible throughout the 
rest of the source file in which it appears. The variable is not visible prior 
to its definition in the same source file. Also, it is not visible in other 
source files of the program, unless a referencing declaration makes it visi­
ble, as described below. 

You can define a variable at the external level only once within a source 
file. If you give the static storage-class specifier, you can define another 
variable with the same name and the static storage-class specifier in a 
different source file. Since each static definition is visible only within its 
own source file, no conflict occurs. 

The extern storage-class specifier declares a reference to a variable defined 
elsewhere. You can use an extern declaration to make a definition in 
another source file visible, or to make a variable visible above its definition 
in the same source file. Once you have declared a reference to the variable 
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at the external level, the variable is visible throughout the remainder of 
the source file in which the declared reference occurs. 

Declarations that use the extern storage-class specifier cannot contain ini­
tializers, since these declarations ref er to variables whose values are 
defined elsewhere. 

For an extern reference to be valid, the variable it refers to must be 
defined once, and only once, at the external level. The definition can be in 
any of the source files that form the program. 

One special case is not covered by the rules outlined above. You can omit 
both the storage-class specifier and the initializer from a variable declara­
tion at the external level; for example, the declaration int n; is a valid 
external declaration. This declaration can have one of two different mean­
ings, depending on the context: 

1. If there is an external defining declaration of a variable with the same 
name elsewhere in the program, the current declaration is assumed to 
be a reference to the variable in the defining declaration, exactly as if 
the extern storage-class specifier had been used in the declaration. 

2. If there is no external defining declaration of a variable with the same 
name elsewhere in the program, the declared variable is allocated 
storage at link time and initialized to 0. This kind of variable is known 
as a "communal" variable. If more than one such declaration appears 
in the program, storage is allocated for the largest size declared for the 
variable. For example, if a program contains two uninitialized declara­
tions of i at the external level, int i; and char i; , storage space 
for an int is allocated for i at link time. 

Uninitialized variable declarations at the external level are not recom­
mended for any file that might be placed in a library. 

Example 

/********************************************************** 
SOURCE FILE ONE 

**********************************************************/ 

extern int i; 

main() 
{ 
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printf("%d\n", i) ; /* i equals 4 */ 
next(); 

} 

int i = 3; /* definition of i */ 

next() 
{ 

i++; 
pr int f ( "%d\n", i) ; /* i equals 5 */ 
other(); 

} 

/********************************************************** 
SOURCE FILE TWO 

**********************************************************/ 

extern int i; 

other() 
{ 

} 

i++; 
printf("%d\n", i); 

/* reference to i in 
first source file */ 

/* i equals 6 */ 

The two source files in this example contain a total of three external 
declarations of i. Only one declaration contains an initialization; that 
declaration, int i = 3; , defines the global variable i with initial value 
3. The extern declaration of i at the top of the second source file makes 
the global variable visible above its definition in the file. Without the 
extern declaration, the main function could not reference the global vari­
able i. The extern declaration of i in the second source file also makes 
the global variable visible in that source file. 

Assuming that the pr int f function is defined elsewhere in the program, 
all three functions perform the same task: they increase i and print it. 
The values 4, 5, and 6 are printed. 

If the variable i had not been initialized, it would have been set to 0 
automatically at link time. In this case, the values 1, 2, and 3 would have 
been printed. 
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4.6.2 Variable Declarations at the Internal Level 

You can use any of the four storage-class specifiers for variable declara­
tions at the internal level. When you omit the storage-class specifier from 
such a declaration, the default storage class is auto. 

The auto storage-class specifier declares a variable with a local lifetime. 
An auto variable is visible only in the block in which it is declared. 
Declarations of auto variables can include initializers, as discussed in Sec­
tion 4. 7. Since variables with auto storage class are not initialized 
automatically, you should either explicitly initialize them when you 
declare them or assign them initial values in statements within the block. 
The values of uninitialized auto variables are undefined. 

A static auto variable can be initialized with the address of any external 
or static item, but not with the address of another auto item, because the 
address of an auto item is not a constant. 

The register storage-class specifier tells the compiler to give the variable 
storage in a register, if possible. Register storage usually speeds access 
time and reduces code size. Variables declared with register storage class 
have the same visibility as auto variables. The number of registers that 
can be used for variable storage is machine-dependent. If no registers are 
available when the compiler encounters a register declaration, the vari­
able is given auto storage class and stored in memory. The compiler 
assigns register storage to variables in the order in which the declarations 
appear in the source file. Register storage, if available, is only guaranteed 
for int and pointer types that are the same size as an int. 

A variable declared at the internal level with the static storage-class 
specifier has a global lifetime but is visible only within the block in which 
it is declared. Unlike auto variables, static variables keep their values 
when the block is exited. You can initialize a static variable with a con­
stant expression. A static variable is initialized only once, when program 
execution begins; it is not reinitialized each time the block is entered. If 
you do not explicitly initialize a static variable, it is initialized to 0 by 
default. 

A variable declared with the extern storage-class specifier is a reference to 
a variable with the same name defined at the external level in any of the 
source files of the program. The internal extern declaration is used to 
make the external-level variable definition visible within the block. Unless 
otherwise declared at the external level, a variable declared with the 
extern keyword is visible only in the block in which it is declared. 
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Example 

int i = 1; 

main() 
{ 

} 

other() 
{ 

} 

/* reference to i, defined above: */ 
extern int i; 

/* initial value is zero; a is 
visible only within main: */ 

static int a; 

/* b is stored in a register, if possible: */ 
register int b = 0; 

/* default storage class is auto: */ 
int c = O; 

/* values printed are 1, 0, 0, 0: */ 
printf("%d\n%d\n%d\n%d\n", i, a, b, c); 
other(); 

/* address of global i assigned to pointer variable */ 
static int *external_i = &i; 

/* i is redefined; global i no longer visible: */ 
int i = 16; 

/* this a is visible only within other: */ 
static int a = 2; 

a += 2; 
/* values printed are 16, 4, and 1: */ 
printf("%d\n%d\n%d\n", i, a, *external_i); 

In this example, the variable i is defined at the external level with initial 
value 1. An extern declaration in the main function is used to declare a 
reference to the external-level i. The static variable a is initialized to 0 
by default, since the in.itializer is omitted. The call to printf (assuming 
the printf function is defined elsewhere in the source program) prints 
the values 1, 0, 0, and 0. 

In the other function, the address of the global variable i is used to ini­
tialize the static pointer variable external_i. This works because the 
global variable has static lifetime, meaning its address will always be the 
same. Next, the variable i is redefined as a local variable with initial value 
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16. This redefinition does not affect the value of the external-level i, 
which is hidden by the use of its name for the local variable. The value of 
the global i is now accessible only indirectly within this block, through 
the pointer external_i. Attempting to assign the address of the auto 
variable i to a pointer would not work, since it may be different each time 
the block is entered. The variable a is declared as a static variable and 
initialized to 2. This a does not conflict with the a in main, since static 
variables at the internal level are visible only within the block in which 
they are declared. 

The variable a is increased by 2, giving 4 as the result. If the other func­
tion were called again in the same program, the initial value of a would be 
4, since internal static variables keep their values when the program exits 
and then re-enters the block in which they are declared. 

4.6.3 Function Declarations 
at the External and Internal Levels 

You can use either the static or the extern storage-class specifier in func­
tion declarations. Functions always have global lifetimes. 

The visibility rules for functions vary slightly from the rules for variables, 
as follows: 

• A function declared to be static is visible only within the source file in 
which it is defined. Functions in the same source file can call the 
static function, but functions in other source files cannot. You can 
declare another static function with the same name in a different 
source file without conflict. 

• Functions declared as extern are visible throughout all the source files 
that make up the program (unless you later redeclare such a function 
as static). Any function can call an extern function. 

• Function declarations that omit the storage-class specifier default to 
extern. 
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4. 7 Initialization 

Note 

A Microsoft extension to the ANSI C standard provides that function 
declarations at the internal level have the same meaning as function 
declarations at the external level. This means that a function is visible 
from its point of declaration through the rest of the source file. 

Syntax 

= initializer 

You can set a variable to an initial value by applying an initializer to the 
declarator in the variable declaration. The value or values of the initial­
i~er are assigned to the variable. The initializer is preceded by an equal 
sign. 

You can initialize variables of any type, provided that you obey the follow­
ing rules: 

• You cannot use initializers in declarations that use the extern 
storage-class specifier. 

• You can initialize variables declared at the external level. If you do not 
explicitly initialize a variable at the external level, it is initialized to 0 
by default. 

• You can use a constant expression to initialize any variable declared 
with the static storage-class specifier. Variables declared to be static 
are initialized, when program execution begins. If you do not explicitly 
initialize a static variable, it is initialized to 0 by default. 

• Variables declared with the auto and register storage-class specifiers 
are initialized each time execution control passes to the block in which 
they are declared. If you omit an initializer from the declaration of an 
auto or register variable, the initial value of the variable is 
undefined. 

• You cannot initialize auto aggregate types (arrays, structures, and 
unions). Only static aggregates and aggregates declared at the exter­
nal level can be initialized. 
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• The initial values for external variable declarations and for all static 
variables, whether external or internal, must be constant expressions. 
(Constant expressions are described in Section 5.2.lO.) You can use 
either constant or variable values to initialize auto and register vari­
ables. 

Sections 4.7.1 and 4.7.2 describe how to initialize variables of fundamen­
tal, pointer, and aggregate types. 

4. 7 .1 Fundamental and Pointer Types 

Syntax 

= expression 

The value of expression is assigned to the variable. The conversion rules 
for assignment apply. 

An internally-declared static variable can only be initialized with a con­
stant value. Since the address of any externally declared or static variable 
is constant, it may be used to initialize an internally-declared static 
pointer variable. However, the address of an auto variable cannot be used 
as an initializer because it may be different for each execution of the block. 

Examples 

/******************** Example 1 ********************/ 
int x = 10; 

In Example 1, xis initialized to the constant expression 10. 

/******************** Example 2 ********************/ 
register int *PX = 0; 

In Example 2, the pointer px is initialized to 0, producing a "null" pointer. 

/******************** Example 3 ********************/ 
const int c = (3 * 1024); 
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Example 3 uses a constant expression to initialize c to a constant value 
that cannot be modified. 

/******************** Example 4 ********************/ 
int *b = &x; 
int *Const a = &z; 

Example 4 initializes the pointer b with the address of another variable, 
x. The pointer a is initialized with the address of a variable named z; 
However, since it is specified to be a const pointer, the variable a can only 
be initialized, never modified. It always points to the same location.i 

/******************** Example 5 ********************/ 

int GLOBAL ; 

int function(void) 
{ 

} 

int LOCAL ; 
static int *lP = &LOCAL /* Illegal declaration */ 
static int *9P = &GLOBAL /* Legal declaration */ 

The global variable GLOBAL is declared in Example 5 at the external level, 
so it has global lifetime. The local variable LOCAL has auto storage class 
and only has an address during the execution of the function in which is is 
declared. Therefore, attempting to initialize the static pointer variable lp 
with the address of LOCAL is not permitted. The static pointer variable 
gp can be initialized to the address of GLOBAL because that address is 
always the same. 

4.7.2 Aggregate Types 

Syntax 

= {initializer-list} 

An initializer-list is a list of initializers separated by commas. Each initial­
izer in the list is either a constant expression or an initializer-list. There­
fore, an in£tializer-list enclosed in braces can appear within another 
initializer-list. This form is useful for initializing aggregate members of an 
aggregate types as shown in the examples below. 
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For each initializer-list, the values of the constant expressions are assigned, 
in order, to the corresponding members of the aggregate variable. When a 
union is initialized, the initializer-list must be a single constant expression. 
Th_e value of the constant expression is assigned to the first member of the 
UillOn. 

If an initializer-list has fewer values than an aggregate type, the remaining 
members or elements of the aggregate type are initialized to 0. If an 
initializer-list has more values than an aggregate type, an error results. 
These rules apply to each embedded initializer-li"st, as well as to the aggre­
gate as a whole. 

For example, 

int p [4] [3] = { 
{ 1, 1, 1 }, 
{ 2, 2, 2 }, 
{ 3, 3, 3,}, 
{ 4, 4, 4,}, 

}; 

declares P as a 4-by-3 array and initializes the elements of its first row to 
1, the elements of its second row to 2, and so on through the fourth row. 
Note that the initializer-list for the third and fourth rows contains commas 
after the last constant expression. The last initializer-list ( { 4, 4, 4, } ) 
is also followed by a comma. These extra commas are permitted but are 
not required; only commas that separate constant expressions from one 
another, and those that separate one initializer-list from another, are 
required. 

If there is no embedded initializer list for an aggregate member, values are 
simply assigned, in order, to each member of the subaggregate. Therefore, 
the initialization in the previous example is equivalent to the following: 

int P[4] [3] = { 
1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4 

}; 

Braces can also appear around individual initializers in the list. 

When you initialize an aggregate variable, you must be careful to use 
braces and initializer lists properly. The following example illustrates the 
compiler's interpretation of braces in more detail: 
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typedef struct { 
int nl, n2, n3; 

} triplet; 

triplet nlist[2] [3] = { 

}; 

{ { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }, 
{ { 10,11,12 }, { 13,14,15 }, { 15,16,17 } } 

Declarations 

/* Line 1 */ 
/* Line 2 */ 

In this example, nlist is declared as a 2-by-3 array of structures, each 
structure having three members. Line 1 of the initialization assigns values 
to the first row of nlist, as follows: 

l. The first left brace on Line 1 signals the compiler that initialization of 
t~e first aggregate member of nlist (that is, nlist [OJ) is begin­
mng. 

2. The second left brace indicates that initialization of the first aggregate 
member of nlist [OJ (that is, the structure at nlist [OJ [OJ) is 
beginning. 

3. The first right brace ends initialization of the structure 
nl ist [OJ [OJ ; the next left brace starts initialization of 
nlist [OJ [1]. 

4. The process continues until the end of the line, where the closing right 
brace ends initialization of nl ist [OJ . 

Line 2 assigns values to the second row of nlist in a similar way. 

Note that the outer sets of braces enclosing the initializers on lines 1 and 2 
are required. The following construction, which omits the outer braces, 
would cause an error: 

/* THIS CAUSES AN ERROR */ 

triplet nlist [2] [3] = { 
{ 1, 2, 3 },{ 4, 5, 6 },{ 7, 8, 9 }, /* Line 1 */ 
{ 10,11,12 },{ 13,14,15 },{ 16,17,18 } /* Line 2 */ 

}; 

In this construction, the first left brace on line 1 starts the initialization of 
nlist [OJ, which is an array of three structures. The values 1, 2, and 3 
are assigned to the three members of the first structure. When the next 
right brace is encountered (after the value 3), initialization of nlist [OJ 
is complete, and the two remaining structures in the three-structure array 
are automatically initialized to 0. Similarly, { 4, 5, 6 } initializes the 
first structure in the second row of nl ist. The remaining two structures 
of nlist [1] are set to 0. When the compiler encounters the next initial­
izer list ( { 7, 8, 9 } ), it tries to initialize nl ist [2J . Since nl ist has 
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only two rows, this attempt causes an error. 

Examples 

/******************** Example 1 ********************/ 

struct list { 
int i, j, k; 
float m[2] [3]; 
} x = { 

}; 

1, 
2, 
3, 
{4.0, 4.0, 4.0} 

In Example 1, the three int members of x are initialized to 1, 2, and 3, 
respectively. The three elements in the first row of m are initialized to 4.0; 
the elements of the remaining row of mare initialized to 0.0 by default. 

/******************** Example 2 ********************/ 

union 
{ 

char x [2] [3] ; 
int i, j, k; 
} y = { { 

}; 

{'l'}, 
{'4'} } 

In Example 2, the union variable y is initialized. The first element of the 
union is an array, so the initializer is an aggregate initializer. The initial­
izer list { '1 '} assigns values to the first row of the array. Since only one 
value appears in the list, the element in the first column is initialized to 
the character 1, and the remaining two elements in the row are initialized 
to zero by default. Similarly, the first element of the second row of x is 
initialized to the character 4, and the remaining two elements in the row 
are initialized to zero. 
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4. 7 .3 String Initializers 

Syntax 

= 11 characters 11 

You can initialize an array of characters with a string literal. For exam­
ple, 

char code [ ] = "abc": 

initializes code as a four-element array of characters. The fourth element 
is the null character that terminates all string literals. 

If you specify the array size and the string is longer than the specified 
array size, the extra characters are simply ignored. For example, the fol­
lowing declaration initializes code as a three-element character array: 

char code[3] = "abed"; 

Only the first three characters of the initializer are assigned to code. The 
character d and the string-terminating null character are discarded. 
Beware that this creates an unterminated string(that is, one without a 
zero value to mark its end), and generates a diagnostic message indicating 
the condition. 

If the string is shorter than the specified array size, the remaining elements 
of the array are initialized to zero values. 

4.8 Type Declarations 

A type declaration defines the name and members of a structure or union 
type, or the name and enumeration set of an enumeration type. You can 
use the name of a declared type in variable or function declarations to 
refer to that type. This is useful if many variables and functions have the 
same type. 

A typedef declaration defines a type specifier for a type. You can use 
typedef declarations to construct shorter or more meaningful names for 
types already defined by C or for types that you have declared. 
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4.8.1 Structure, Union, and Enumeration Types 

Declarations of structure, union, and enumeration types have the same 
general form as variable declarations of those types. However, type 
declarations and variable declarations differ in the following ways: 

• In type declarations the variable identifier is omitted, since no variable 
is declared. 

• In type declarations the tag is required; it names the structure, union, 
or enumeration type. 

• The member-declaration-list or enum-list defining the type must appear 
in the type declaration; the abbreviated form of variable declarations, 
in which a tag refers to a type defined elsewhere, is not legal for type 
declarations. 

Examples 

/******************** Example 1 ********************/ 

enum status { 
loss = -1, 
bye, 
tie = 0, 
win 
}; 

Example 1 declares an enumeration type named status. The name of the 
type can be used in declarations of enumeration variables. The identifier 
.loss is explicitly set to -1. Both bye and tie are associated with the 
value 0, and win is given the value 1. 

/******************** Example 2 ********************/ 

struct student { 
char name[20]; 
int id, class; 
}; 

Example 2 declares a structure type named student. A declaration such 
as struct student employee; can be used to declare a structure 
variable with student type. 
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4.8.2 Typedef Declarations 

Syntax 

typedef type-specifi"er declarator[, declarator ... ]; 

A typedef declaration is analogous to a variable declaration except that 
the typedef keyword replaces a storage-class specifier. A typedef 
declaration is interpreted in the same way as a variable or function 
declaration, but the identifier, instead of assuming the type specified by 
the declaration, becomes a synonym for the type. 

Note that a typedef declaration does not create types. It creates 
synonyms for existing types, or names for types that could be specified in 
other ways. When a typedef name is used as a type specifier, it can be 
combined with certain type specifiers, but not others. Acceptable modifiers 
include const,volatile. In some implementations there are additional spe­
cial keywords that can be used to modify a typedef. (The special key­
words are described in Section 4.3.3.) 

You can declare any type with typedef, including pointer, function, and 
array types. You can declare a typedef name for a pointer to a structure 
or union type before you define the structure or union type, as long as the 
definition has the same visibility as the declaration. 

Examples 

/******************** Example 1 ********************/ 

typedef int WHOLE; 

Example 1 declares WHOLE to be a synonym for int. Note that the key­
word const could be used to modify WHOLE, but the type specifier long 
could not. 

/******************** Example 2 ********************/ 

typedef struct club { 
char name[30]; 
int size, year; 
} GROUP : 
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Example 2 declares GROUP as a structure type with three members. Since 
a structure tag, club, is also specified, either the typedef name (GROUP) 
or the structure tag can be used in declarations. 

/******************** Example 3 ********************/ 

typedef GROUP *PG; 

Example 3 uses the previous typedef name to declare a pointer type. The 
type PG is declared as a pointer to the GROUP type, which in turn is 
defined as a structure type. 

/******************** Example 4 ********************/ 

typedef void DRAWF(int, int); 

Example 4 provides the type DRAWF for a function returning no value and 
taking two int arguments. This means, for example, that the declaration 
DRAWF box; is equivalent to the declaration void box {int, int) ; . 

4.9 Type Names 

A "type name" specifies a particular data type. In addition to ordinary 
variable declarations and defined-type declarations, type names are used 
in three other contexts: in the argument-type lists of function declara­
tions, in type casts, and in sizeof operations. Argument-type lists are dis­
cussed in Section 4.5, "Function Declarations." Type casts and sizeof 
operations are discussed in sections 5. 7.2 and 5.3.4, respectively. 

The type names for fundamental, enumeration, structure, and union types 
are simply the type specifiers for those types. 

A type name for a pointer, array, or function type has the following form: 

type-specifier abstract-declarator 

An abstract-declarator is a declarator without an identifier, consisting of 
one or more pointer, array, or function modifiers. The pointer modifier ( *) 
always precedes the identifier in a declarator; array ([]) and function (( )) 
modifiers follow the identifier. Knowing this, you can determine where the 
identifier would appear in an abstract declarator and interpret the 
declarator accordingly. See Section 4.3.2 for information and examples of 
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complex declarators. 

Abstract declarators can be complex. Parentheses in a complex abstract 
declarator specify a particular interpretation, just as they do for the com­
plex declarators in declarations. 

Note 

The abstract declarator consisting of a set of empty parentheses, ( ), is 
not allowed because it is ambiguous. It is impossible to determine 
whether the implied identifier belongs inside the parentheses (in which 
case it is an unmodified type) or before the parentheses (in which case 
it is a function type). 

The type specifiers established by typedef declarations also qualify as 
type names. 

Examples 

/******************** Example 1 ********************/ 
long * 

Example 1 gives the type name for "pointer to long" type. 

/******************** Example 2 ********************/ 
int (*)[SJ 

/******************** Example 3 ********************/ 
int ( *) (void) 

Examples 2 and 3 show how parentheses modify complex abstract declara­
tors. Example 2 gives the type name for a pointer to an array of five int 
values. Example 3 names a pointer to a function taking no arguments and 
returning an int. 
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5.1 Introduction 

This chapter describes how to form expressions and make assignments in 
the C language. An "expression" is a combination of operands and opera­
tors that yields ("expresses") a single value. 

An "operand" is a constant or variable value that is manipulated in the 
expression. Each operand of an expression is also an expression, since it 
represents a single value. Section 5.2 describes the formats and evaluation 
rules for C operands. 

"Operators" specify how the operand or operands of the expression are 
manipulated. C operators are described in Section 5.3. 

In C, assignments are considered expressions because an assignment yields 
a value. Its value is the value being assigned. In addition to the simple­
assignment operator(=), Coffers complex-assignment operators that both 
transform and assign their operands. Assignment operators are described 
in Section 5.4. 

When an expression is evaluated, the resulting value depends on the rela­
tive precedence of operators in the expression and on side effects, if any. 
The precedence of operators determines how operands are grouped for 
evaluation. Side effects are changes caused by the evaluation of an expres­
sion. In an expression with side effects, the evaluation of one operand can 
affect the value of another. With some operators, the order in which 
operands are evaluated also affects the result of the expression. 

The value represented by each operand in an expression has a type, which 
may be converted to a different type in certain contexts. Type conversions 
occur in assignments, type casts, function calls, and operations. (Section 
5.5 gives the precedence rules for C operators; side effects are discussed in 
Section 5.6 and type conversions in Section 5.7.) 

5 .2 Operands 

Operands in C include constants, identifiers, strings, function calls, sub­
script expressions, member-selection expressions, or more complex expres­
sions formed by combining operands with operators or enclosing operands 
in parentheses. Any operand that yields a constant value is called a "con­
stant expression." 
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Every operand has a type. The following sections discuss the type of value 
each kind of operand represents. An operand can be cast from its original 
type to another type by means of a "type-cast" operation. A type-cast 
expression can also form an operand of an expression. 

5.2.1 Constants 

A constant operand has the value and type of the constant value it 
represents. A character constant has int type. An integer constant has 
int, long, unsigned int, or unsigned long type, depending on the 
integer's size and how the value is specified. Floating-point constants 
always have double type. String literals are considered arrays of charac­
ters and are discussed in Section 5.2.3. 

5.2.2 Identifiers 

An identifier names a variable or function. Every identifier has a type, 
which is established when the identifier is declared. The value of an 
identifier depends on its type, as follows: 
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• Identifiers of integral and floating types represent values of the 
corresponding type. 

• An identifier of enum type represents one constant value among a 
set of constant values. The value of the identifier is the constant 
value. Its type is int, by definition of the enum type. 

• An identifier of struct or union type represents a value of the 
specified struct or union type. 

• An identifier declared as a pointer represents a pointer to a value 
of the type specified in the pointer's declaration. 

• An identifier declared as an array represents a pointer whose value 
is the address of the first array element. The pointer addresses the 
type of the array elements. For example, if series is declared to 
be a IO-element integer array, the identifier series represents the 
address of the array, and the subscript expression series [5] 
refers to an integer value which is the sixth element of series. 
Subscript expressions are discussed in Section 5.2.5. The address 
of an array does not change during program execution, although 
the values of the individual elements can change. The pointer 
value represented by an array identifier is not a variable, so an 
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array identifier cannot form the left-hand operand of an assign­
ment operation. 

• An identifier declared as a function represents a pointer whose 
value is the address of the function. The pointer addresses a func­
tion returning a value of a specified type. The address of a func­
tion does not change during program execution; only the return 
value varies. Thus, function identifiers cannot be left-hand 
operands in assignment operations. 

5.2.3 Strings 

Syntax 

"string" ["string"] 

A string literal is a character or sequence of adjacent characters enclosed 
in double quotation marks. Two or more adjacent string literals separated 
only by white space are concatenated into a single string literal. A string 
literal is stored as an array of elements with char type, and initialized 
with the quoted sequence of characters. The string literal is represented 
by a pointer whose value is the address of the first array element. The 
address of the string's first element is a constant, so the value represented 
by a string expression is a constant. 

Since string literals are effectively pointers, they can be used in contexts 
that allow pointer values, and they are subject to the same restrictions as 
pointers. However, since it is not a variable, neither the string literal nor 
any of its elements can be the be the left-hand operand in an assignment 
operation. 

The last character of a string is always the null character. The null char­
acter is not visible in the string expression, but it is added as the last ele­
ment when the string is stored. For example, the string "abc" actually 
has four characters rather than three. 

5.2.4 Function Calls 
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Syntax 

expression ([expression-list]) 

A function call consists of an expression followed by an optional 
expression-list in parentheses, where 

• The expression must evaluate to a function address (for example, a 
function identifier), and 

• The expression-list is a list of expressions (separated by commas) 
whose values (the "actual arguments") are passed to the function. 
The expression-list can be empty. 

A function-call expression has the value and type of the function's return 
value. If the function's return t~pe is void (that is, the function has been 
declared never to return a value J, the function-call expression also has 
void type. If the called function returns control without executing a 
return statement, the value of the function call expression is undefined. 
(See Chapter 7, "Functions," for more information about function calls.) 

5.2.5 Subscript Expressions 

Syntax 

expression1 [ expression2] 

A subscript expression represents the value at the address that is expres­
sion2 positions beyond expression1. Usually, the value represented by 
expression1 is a pointer value, such as an array identifier, and expression2 
is an integral value. However, all that is required syntactically is that one 
of the expressions be of pointer type and the other be of integral type. 
Thus the integral value could be in the expression1 position and the 
pointer value in the brackets in the expression2 or "subscript" position. 
Whatever the order of values, expression2 must be enclosed in brackets 
( [ ]). 

Subscript expressions are generally used to refer to array elements, but 
you can apply a subscript to any pointer. 

The subscript expression is evaluated by adding the integral value to the 
pointer value then applying the indirection operator ( *) to the result. (See 
Section 5.3.3 for a discussion of the indirection operator.) In effect, for a 
one-dimensional array, the following four expressions are equivalent, 
assuming that a is a pointer and b is an integer: 
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a [b] 
*(a + b) 
* (b + a) 
b [a] 
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Accordinfi to the conversion rules for the addition operator (given in Sec­
tion 5.3.6 ), the integral value is converted to an address offset by multiply­
ing it by the length of the type addressed by the pointer. 

For example, suppose the identifier line refers to an array of int values. 
The following procedure is used to evaluate the subscript expression 
line[i]: 

1. The integer value i is multiplied by the length of an int. The con­
verted value of i represents i int positions. 

2. This converted value is added to the original pointer value (1 ine) 
to yield an address that is offset i int positions from 1 ine. 

3. The indirection operator is applied to the new address. The result 
is the value of the array element at that position (intuitively, 
line[i]). 

Note 

The subscript expression 

line[O] 

represents the value of the first element of 1 ine, since the offset from 
the address represented by line is 0. Similarly, an expression such as 

line [5] 

refers to the element offset five positions from 1 ine, or the sixth ele­
ment of the array. 
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Multidimensional-Array References 

A subscript expression can be subscripted, as follows: 

expression1 [ expression2] [ expression3] ... 

Subscript expressions associate from left to right. The left-most subscript 
expression, expression1[expression2l, is evaluated first. The address that 
results from adding expressi'on1 and expression2 forms a pointer expres­
sion; then expression3 is added to this pointer expression to form a new 
pointer expression, and so on until the last subscript expression has been 
added. The indirection operator ( *) is applied after the last subscripted 
expression is evaluated, unless the final pointer value addresses an array 
type (see example 3 below). 

Expressions with multiple subscripts refer to elements of "multidimen­
sional arrays." A multidimensional array is an array whose elements are 
arrays. For example, the first element of a three-dimensional array is an 
array with two dimensions. 

Examples 

For the following examples, an array named prop is declared with three 
elements, each of which is a 4-by-6 array of int values. 

int prop [3] [4] [6]; 
int i, *ip, (*ipp) [6J; 

/**,****************** Example 1 ********************/ 
i =' prop [OJ [OJ [lJ ; 

Example 1 shows how to refer to the second individual int element of 
prop. Arrays are stored by row, so the last subscript varies the most 
quickly; the expression prop [OJ [OJ [2J refers to the next (third) element 
of the array, and so on. 

/******************** Example 2 ********************/ 
i = prop [2J [lJ [3J; 

Example 2 shows a more complex reference to an individual element of 
prop. The expression is evaluated as follows: 
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1. The first subscript, 2, is multiplied by the size of a 4-by-6 int array 
and added to the pointer value prop. The result points to the 
third 4-by-6 array of prop. 

2. The second subscript, 1, is multiplied by the size of the 6-element 
int array and added to the address represented by prop [2] . 

3. Each element of the 6-element array is an int value, so the final 
subscript, 3, is multiplied by the size of an int before it is added to 
prop [2] [1]. The resulting pointer addresses the fourth element 
of the 6-element array. 

4. The indirection operator is applied to the pointer value. The result 
is the int element at that address. 

/******************** Example 3 ********************/ 
ip = prop[2] [1]; 

/******************** Example 4 ********************/ 
ipp = prop[2]; 

Examples 3 and 4 show cases where the indirection operator is not applied. 

In Example 3, the expression prop [2] [1] is a valid reference to the 
three-dimensional array prop; it refers to a 6-element array. Since the 
pointer value addresses an array, the indirection operator is not applied. 

Similarly, the result of the expression prop [2] in Example 4 is a pointer 
value addressing a two-dimensional array. 

5.2.6 Member-Selection Expressions 

Syntax 

expression. identifier 
expression-> identifier 

Member-selection expressions ref er to members of structures and unions. 
A member-selection expression has the value and type of the selected 
member. As shown above, a member-selection expression can have one of 
two forms: 
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1. In the first form, expression.identifier, expression represents a value 
of struct or union type, and identifier names a member of the 
specified structure or union. 

2. In the second form, expression- >identifier, expression represents 
a pointer to a structure or union, and identifier names a member of 
the specified structure or union. 

The two forms of member-selection expressions have similar effects. In 
fact, an expression involving the pointer selection operator (- >) is a 
shorthand version of an expression using the period (.) if the expression 
before the period consists of the indirection operator ( *) applied to a 
pointer value. (Section 5.3.3 discusses the indirection operator.) There­
fore, 

expression-> identifier 

is equivalent to 

(*expression). identifier 

when expression is a pointer value. 

Examples 

Examples 1 through 3 ref er to the following structure declaration: 

struct pair { 
int a; 
int b; 
struct pair *Sp; 
} item, list[lO]; 

/******************** Example 1 ********************/ 
item.sp = &item; 

In Example 1, the address of the i tern structure is assigned to the sp 
member of the structure. This means that i tern contains a pointer to 
itself. 

/******************** Example 2 ********************/ 
(item.sp)->a = 24; 
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In Example 2, the pointer expression i tern. sp is used with the pointer 
selection operator (- >) to assign a value to the member a. 

/******************** Example 3 ********************/ 
list[8] .b = 12; 

Example 3 shows how to select an individual structure member from an 
array of structures. 

5.2. 7 Expressions with Operators 

Expressions with operators can be" unary," "binary", or "ternary" expres­
sions. A unary expression consists of either an a unary operator ( "unop") 
prepended to an operand, or the sizeof keyword followed by an expression. 
The expression can be either the name of a variable or a cast expression. If 
expression is a cast expression it must be enclosed in parentheses. 

unop operand 
sizeof expression 

A binary expression consists of two operands joined by a binary operator 
("binop"): 

operand binop operand 

A ternary expression consists of three operands joined by the ternary(? :) 
operator: 

operand? operand : operand 

Sections 5.3.1 - 5.3.12 describe the operators used in unary, binary, and 
ternary expressions. 

Expressions with operators also include assignment expressions, which use 
unary or binary assignment operators. The unary assignment operators 
are the increment ( ++) and decrement (-) operators; the binary assign­
ment operators are the simple-assignment operator ( =) and the 
compound-assignment operators (referred to as "compound-assign-ops"). 
Each compound-assignment operator is a combination of another binary 
operator with the simple-assignment operator. Assignment expressions 
have the following forms: 

operand++ 
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operand-­
++operand 
-- operand 
operand = operand 
operand compound-assz"gnment-op operand 

Sections 5.4.1 - 5.4.4 describe the assignment operators in detail. 

5.2.8 Expressions in Parentheses 

You can enclose any operand in parentheses without changing the type or 
value of the enclosed expression. For example, in the expression 

(10 + s) / s 

the parentheses around 10 + 5 mean that the value of 10 + 5 is the left 
operand of the division(/) operator. The result of (10 + 5) / 5 is 3. 
Without the parentheses, 10 + 5 / 5 would evaluate to 11. 

Although parentheses affect the way operands are grouped in an expres­
sion, they cannot guarantee a particular order of evaluation in all cases. 
Exceptions resulting from "side effects" are discussed in Section 5.6. 

5.2.9 Type-Cast Expressions 

A type cast provides a method for explicit conversion of the type of an 
object in a specific situation. Type-cast expressions have the following 
form: 

(type-name) operand 

Casts can be used to convert objects of any scalar type to or from any 
other scalar type. Explicit type casts are constrained by the same rules 
that determine the effects of implicit conversions, discussed in Section 
5.7.1. Additional restraints on casts may result from the actual sizes or 
representation of specific types on specific implementations. Representa­
tion is discussed in Chapter 4, "Declarations." For information on actual 
sizes of integral types and pointers, see your User's Guide. 

Any object may be cast to the void type. However, if the type-name in a 
type-cast expression is void, then operand cannot be a void expression. If 
an object is cast to void type, the resulting expression cannot be assigned 
to any item. Similarly, a type-cast object is not an acceptable lvalue, so 
no assignment can be made to a type-cast object. 
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Section 5.7.2 discusses type-cast conversions. Section 4.9 discusses type 
names. 

5.2.10 Constant Expressions 

A constant expression is any expression that evaluates to a constant. The 
operands of a constant expression can be integer constants, character con­
stants, floating type constants, enumeration constants, type casts, sizeof 
expressions, and other constant expressions. You can use operators to 
combine and modify operands as described in Section 5.2.7, with the fol­
lowing restrictions. 

• 

• 

You cannot use assignment operators (see Section 5.4) or the 
binary sequential-evaluation operator{,) in constant expressions. 

You can use the unary address-of operator ( & ) only in certain ini­
tializations (as described in the last paragraph of Section 5.2.10). 

Constant expressions used in preprocessor directives are subject to addi­
tional restrictions. Consequently, they are known as restricted-constant­
expressions. A restri'cted-constant-expression cannot contain sizeof expres­
sions, enumeration constants, type casts to any type, or floating type con­
stants. It can, however, contain the special constant expression 
defi.ned(z'dentifier). (See Section 8.2.1, "The #define Directive," for more 
information about this expression.) 

Constant expressions involving floating constants, casts to nonarithmetic 
types, and address-of expressions can only appear in initializers. The 
unary address-of operator(&) can only be applied variables with funda­
mental, structure, or union types that are declared at the external level, or 
to subscripted array references. In these expressions, a constant expression 
that does not include the address-of operator can be added to or sub­
tracted from the address expression. 

5.2.11 Sequence Points 

Expressions involving assignment, unary "increment," unary "decrement," 
or calling a function may have consequences incidental to their evaluation 
called "side effects." When a "sequence point" is reached, everything 
preceding the sequence point, including any side effects, is guaranteed to 
have been evaluated before evaluation begins on anything following the 
sequence point. 
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Certain operators act as sequence points, including the following: 

• The logical-AND operator(&&) 

• The logical-OR operator (ll) 
• The ternary opertor (?:) 
• The sequential-evaluation operator (,) 

• The function call operator (that is, the parenthese following a func­
tion name) 

• The unary plus operator ( + ), though not yet implemented, is 
defined as a sequence point 

Other sequence points include the end of a full expression (that is, an 
expression that is not part of another expression); any initializer; an 
expression in an expression statement; the control expressions in selection 
statements (if or switch) and iteration statements (do, while, or for); the 
expression in a return statement. 

Section 5.6 discusses side effects in more detail. 

5.3 Operators 

C operators take one operand (unary operators), two operands (binary 
operators), or three operands (the ternary operator). Assignment operators 
include both unary or binary operators; Section 5.4 describes the assign­
ment operators. 

Unary operators appear before their operand and associate from right to 
left. C includes the following unary operators: 

Symbol 

- ! 

* & 
sizeof 
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Name 

Negation and complement operators 

Indirection and address-of operators 

Size operator 
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Binary operators associate from left to right. C provides the following 
binary operators: 

Symbol 

*I% 
+-
<< 
< > 
& I .. 

I 

&& II 
II 

>> 
<= >= != 

Name 

Multiplicative operators 

Additive operators 

Shift operators 

Relational operators 

Bitwise operators 

Logical operators 

Sequential-evaluation operator 

Chas one ternary operator, the conditional operator(? :). It associates 
from right to left. 

5.3.1 Usual Arithmetic Conversions 

Most C operators perform type conversions to bring the operands of an 
expression to a common type or to extend short values to the integer size 
used in machine operations. The conversions performed by C operators 
depend on the specific operator and the type of the operand or operands. 
However, many operators perform similar conversions on operands of 
integral and floating types. These conversions are known as "arithmetic" 
conversions because they apply to the types of values ordinarily used in 
arithmetic. 

The arithmetic conversions summarized below are called the "usual arith­
metic conversions." The discussion of each operator in the following sec­
tions specifies whether or not the operator performs the usual arithmetic 
conversions. It also specifies the additional conversions, if any, the opera­
tor performs. This is not a precedence order. It is an outline of an algo­
rithm that is applied to each binary operator in the expression. 

Section 5. 7 outlines the specific path of each type of conversion. In deter­
mining the "usual arithmetic conversions" the following algorithm is 
applied to each binary operation in the expression: 
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1. Any operands of float type are converted to double type. 

2. If one operand has long double type, the other operand is converted 
to long double type. 

3. If one operand has double type, the other operand is converted to 
double type. 

4. Any operands of char or short type are converted to int type. 

5. Any operands of unsigned char or unsigned short type are con­
verted to unsigned int type. 

6. If one operand is of unsigned long type, the other operand is con­
verted to unsigned long type. 

7. If one operand is of long type, the other operand is converted to long 
type. 

8. If one operand is of unsigned int type, the other operand is converted 
to unsigned int type. 

The following example illustrates the application of the preceding algo­
rithm: 

long l; 
unsigned char uc; 
int i; 
f ( 1 + UC * i) ; 

The preceding example would be converted as follows: 

1. uc is converted to an unsigned int (step 4). 

2. i is converted to an unsigned int (step 7) The multiplication is per­
formed and the result is an unsigned int. 

3. uc * i is converted to a long(step6). 

The addition is performed and the result is type long. 

5.3.2 Complement Operators 
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Arithmetic Negation(-) 

The arithmetic-negation operator(-) produces the negative (two's comple­
ment) of its operand. The operand must be an integral or floating value. 
This operator performs the usual arithmetic conversions. 

Bitwise Complement C-) 
The bitwise-complement operator C) produces the bitwise complement of 
its operand. The operand must be of integral type. This operator per­
forms usual arithmetic conversions; the result has the type of the operand 
after conversion. 

Logical-NOT (!) 

The logical-NOT operator(!) produces the value 0 if its operand is true 
(nonzero) and the value 1 it its operand is false (0). The result has int 
type. The operand must be an integral, floating, or pointer value. 

Examples 

/******************** Example 1 ********************/ 
short x = 987; 

x = -x; 

In Example 1, the new value of xis the negative of 987, or -987. 

/******************** Example 2 ********************/ 
unsigned short y = Oxaaaa; 

y = Ny; 

In Example 2, the new value assigned toy is the one's complement of the 
unsigned value Oxaaaa, or Ox5555. 

/******************** Example 3 ********************/ 
if ( ! (x < y)) ; 

In Example 3, if x is greater than or equal toy, the result of the expres­
sion is 1 (true). If xis less than y, the result is 0 (false). 
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5.3.3 Indirection and Address-of Operators 

Indirection ( *) 

The indirection operator ( *) accesses a value indirectly, through a pointer. 
The operand must be a pointer value. The result of the operation is the 
value that the operand points to; that is, the value at the address specified 
by the operand. The result type is the type that the operand addresses. If 
the pointer value is invalid, the result is unpredictable. The specific condi­
tions that invalidate a pointer value are implementation-defined, and the 
following list includes some of the most common: 

• A pointer that is a null pointer 

• A pointer that specifies the address of a local item that is not active at 
the time of the reference 

• A pointer to an address that is inappropriately aligned for the type of 
the object pointed to 

• A pointer to an address not used by the executing program 

Address-of ( & ) 

The address-of operator(&) gives the address of its operand. The operand 
can be any value that can appear as the left-hand value of an assignment 
operation. A function designator or array name can also be the operand of 
the address-of operator, although in these cases the operator is superfluous 
since function designators and array names are addresses. (Assignment 
operations are discussed in Section 5.4.) The result of the address opera­
tion is a pointer to the operand. The type addressed by the pointer is the 
type of the operand. 

You cannot apply the address-of operator to a bit-field member of a struc­
ture (described in Section 4.4.3 ) or to an identifier declared with the 
register storage-class specifier (described in Section 4.6). 

Examples 

Examples 1 through 4 use the following declarations: 

int *pa, x; 
int a[20]; 
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double d; 

/******************** Example 1 ********************/ 
pa= &a[S]; 

In Example 1, the address-of operator{&) takes the address of the sixth 
element of the array a. The result is stored in the pointer variable pa. 

/******************** Example 2 ********************/ 
x = *pa; 

The indirection operator ( *) is used in Example 2 to access the int value 
at the address stored in pa. The value is assigned to the integer variable 
x. 

/******************** Example 3 ********************/ 
if (x == *OcX) 

printf("True\n"); 

In Example 3, the word True would be printed. This example demon­
strates that the result of applying the indirection operator to the address 
of x is the same as x. 

/******************** Example 4 ********************/ 
d =*(double*) (&x); 

Example 4 shows a useful application of the rule shown in Example 3. 
First the address of xis converted by a type cast to a pointer to a double 
type; then the indirection operator is applied to give a result of type dou­
ble. 

/******************** Example 5 ********************/ 
int foo () ; 

int *pfoo = foo; 
int *pfo = &foo; 

In Example 5, the function foo is declared, and then two pointers to foo 
are declared and initialized. The first pointer p foo is initialized using only 
the name of the function, while the second, pfo uses the address-of opera­
tor in the initialization. The initializations are equivalent. 
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5.3.4 The sizeof Operator 

The sizeof operator gives the amount of storage, in bytes, associated with 
an identifier or a type. This operator allows you to avoid specifying 
machine-dependent data sizes in your programs. 

A sizeof expression has the form 

sizeof expression 

where expression is either an identifier or a type-cast expression (that is, a 
type specifier enclosed in parentheses). If expression is a type-cast expres­
sion, it cannot be void. If it is an identifier, it cannot represent a bit-field 
object of a function designator. 

When you apply the sizeof operator to an array identifier, the result is the 
size of the entire array rather than the size of the pointer represented by 
the array identifier. 

When you apply the sizeof operator to a structure or union type name, or 
to an identifier of structure or union type, the result is the actual size of 
the structure or union. This size may include internal and trailing pad­
ding used to align the members of the structure or union on memory boun­
daries. Thus, the result may not correspond to the size calculated by 
adding up the storage requirements of the individual members. 

Examples 

/******************** Example 1 ********************/ 
buffer= calloc(lOO, sizeof (int) ); 

Example 1 uses the sizeof operator to pass the size of an int, which varies 
among machines, as an argument to a function named callee. The value 
returned by the function is stored in buffer. 

/******************** Example 2 ********************/ 
static char *Strings[] ={ 

"this is string one", 
"this is string two", 
"this is string three", 

}; 
canst int string_no = (sizeof strings)/(sizeof strings[O]); 

In Example 2 strings is an array of pointers to char. The number of 
pointers is the number of elements in the array, but is not specified. It is 
easy to determine the number of pointers by using the sizeof operator to 
calculate the number of elements in the array. The const integer value 
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string_no is initialized to this number. Because it is a const, 
str ing_no cannot be modified. 

5.3.5 Multiplicative Operators 

The multiplicative operators perform multiplication ( * ), division (/), and 
remainder (%) operations. The operands of the remainder operator (%) 
must be integral. The multiplication { *) and division (/) operators can 
take integral or floating type operands; the types of the operands can be 
different. 

The multiplicative operators perform the usual arithmetic conversions on 
the ope~ands. The type of the result is the type of the operands after 
conversion. 

Note 

Since the conversions performed by the multiplicative operators do not 
provide for overflow or underflow conditions, information may be lost 
if the result of a multiplicative operation cannot be represented in the 
type of the operands after conversion. 

Multiplication ( *) 

The multiplication operator ( *) causes its two operands to be multiplied. 

Division (/) 

The division operator (/) causes the first operand to be divided by the 
second. If two integer operands are divided and the result is not an 
integer, it is truncated according to the following rules: 

• If both operands are positive or unsigned, the result is truncated 
toward 0. 

• If either operand is negative, the direction of truncation of the result 
(either toward 0 or away from 0), is defined by the implementation. 
For more information, see your User's Guide. 

125 



Microsoft C Optimizing Compiler Language Reference 

The result of division by 0 is undefined. 

Remainder (%) 

The result of the remainder operator (%) is the remainder when the first 
operand is divided by the second. If either or both operands are positive or 
unsigned, the result is positive. If either operand is negative the sign of 
the result is defined by the implementation. (See your User's Guide for 
more information.) If the right operand is zero, the result is undefined. 

Examples 

The following declarations are used for all of the following examples: 

int i = 10, j = 3, n; 
double x = 2.0, y; 

/******************** Example 1 ********************/ 
y = x * i; 

In Example 1, xis multiplied by i to give the value 20.0. The result has 
double type. 

/******************** Example 2 ********************/ 
n = i I j: 

In Example 2, 10 is divided by 3. The result is truncated toward 0, yield­
ing the integer value 3. 

/******************** Example 3 ********************/ 
n = i % j; 

In Example 3, n is assigned the integer remainder, 1, when 10 is divided by 
3. 
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5.3.6 Additive Operators 

The additive operators perform addition(+) and subtraction(-). The 
operands can be integral or floating values. Some additive operations can 
also be performed on pointer values, as outlined under the discussion of 
each operator. 

The additive operators perform the usual arithmetic conversions on 
integral and floating operands. The type of the result is the type of the 
operands after conversion. Since the conversions performed by the additive 
operators do not provide for overflow or underflow conditions, information 
may be lost if the result of an additive operation cannot be represented in 

· the type of the operands after conversion. 

Addition ( +) 

The addition operator ( +) causes its two operands to be added. Both 
operands can have integral or floating types, or one operand can be a 
pointer and the other an integer. 

When an integer is added to a pointer, the integer value (z) is converted by 
multiplying it by the size of the value that the pointer addresses. After 
conversion, the integer value represents i memory positions, where each 
position has the length specified by the pointer type. When the converted 
integer value is added to the pointer value, the result is a new pointer 
value representing the address i positions from the original address. The 
new pointer value addresses a value of the same type as the original 
pointer value. 

Subtraction(-) 

The subtraction operator(-) subtracts the second operand from the first. 
The following combinations of operands can be used with this operator: 

• Both operands integral or floating type values 

• Both operands pointer values to the same type 

• The first operand a pointer value and the second operand an integer 

When two pointers are subtracted, the difference is converted to a signed 
integral value by dividing the difference by the size of a value of the type 
that the pointers address. The size of the integral value is defined by the 
implementation. (See your User's Guide for more information.) The result 
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represents the number of memory positions of that type between the two 
addresses. The result is only guaranteed to be meaningful for two ele­
ments of the same array, as discussed under "Pointer Arithmetic" later in 
this section. 

When an integer value is subtracted from a pointer value, the subtraction 
operator converts the integer value ( z) by multiplying it by the size of the 
value that the pointer addresses. After conversion, the integer value 
represents i memory positions, where each position has the length specified 
by the pointer type. When the converted integer value is subtracted from 
the pointer value, the result is the memory address i positions before the 
original address. The new pointer points to a value of the type addressed 
by the original pointer value. 

Pointer Arithmetic 

Additive operations involving a pointer and an integer give meaningful 
results only if the pointer operand addresses an array member and the 
integer value produces an offset within the bounds of the same array. 
When the integer value is converted to an address offset, the compiler 
assumes that only memory positions of the same size lie between the origi­
nal address and the address plus the offset. 

This assumption is valid for array members. By definition, an array is a 
series of values of the same type; its elements reside in contiguous memory 
locations. However, storage for any types except array elements is not 
guaranteed to be completely filled. That is, blanks may appear between 
memory positions, even positions of the same type. Therefore, the results 
of adding to or subtracting from the addresses of any values but array ele­
ments are undefined. 

Similarly, when two pointer values are subtracted, the conversion assumes 
that only values of the same type, with no blanks, lie between the 
addresses given by the operands. 

On machines with segmented architecture (such as the 8086/8088), addi­
tive operations between pointer and integer values may not be vafid in 
some cases. For example, an operation may result in an address that is 
outside the bounds of an array. See your User's Guide discussion of 
memory models for more information. 
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Examples 

The following declarations are used for both examples: 

int i = 4, j; 
float x [10] ; 
float *px; 

/******************** Example 1 ********************/ 
px = &x[4] + i; /*equivalent to px = &x[4=i]; */ 

In Example 1, the value of i is multiplied by the length of a float and 
added to &x [ 4]. The resulting pointer value is the address of x [8] . 

/******************** Example 2 ********************/ 
j = &x [i] - &x [i - 2] ; 

In Example 2, the address of the third element of x (given by x [i- 2J) is 
subtracted from the address of the fifth element of x (given by x [i] ). 
The difference is divided by the length of a float; the result is the integer 
value 2. 
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5.3. 7 Shift Operators 

The shift operators shift their first operand left (<<)or right (>>)by 
the number of positions the second operand specifies. Both operands must 
be integral values. These operators perform the usual arithmetic conver­
sions; the type of the result is the type of the left operand after conversion. 

For leftward shifts, the vacated right bits are set to 0. For rightward 
shifts, the vacated left bits are filled based on the type of the first operand 
after conversion. If the type is unsigned, they are set to 0. Otherwise, 
they are filled with copies of the sign bit. 

The result of a shift operation is undefined if the second operand is nega­
tive. 

Since the conversions performed by the shift operators do not provide for 
overflow or underflow conditions, information may be lost if the result of a 
shift operation cannot be represented in the type of the first operand after 
conversion. 

Example 

unsigned int x, y, z; 

x = OxOOaa; 
y = Ox5500; 

z = (x << 8) + (y >> 8); 

In this example, x is shifted left eight positions and y is shifted right eight 
positions. The shifted values are added, giving Oxaa55, and assigned to 
z. 

5.3.8 Relational Operators 

The binary relational operators compare their first operand to their second 
operand to test the validity of the specified relationship. The result of a 
relational expression is 1 if the tested relationship is true and 0 if it is 
false. The type of the result is int. 

The relational operators test the following relationships: 

Operator Relationship Tested 
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< 
> 
<= 

>= 

First operand less than second operand 

First operand greater than second operand 

First operand less than or equal to second operand 

First operand greater than or equal to second operand 

First operand equal to second operand 

!= First operand not equal to second operand 
The operands can have integral, floating, or pointer type. The types of the 
operands can be different. Relational operators perform the usual arith­
metic conversions on integral and floating type operands. In addition, you 
can use the following combinations of operand types with relational opera­
tors: 

• Both operands of any relational operator can be pointers to the same 
type. For the equality ( = =) and inequality (!=)operators, the result 
of the comparison indicates whether or not the two pointers address 
the same memory location. For the other relational operators ( <, >, 
<=, and >= ), the result of the comparison indicates the relative 
position of two memory addresses. 

Since the address of a given value is arbitrary, comparisons between 
the addresses of two unrelated values are generally meaningless. How­
ever, comparisons between the addresses of different elements of the 
same array can be useful, since array elements are guaranteed to be 
stored in order from the first element to the last. The address of the 
first array element is "less than" the address of the last element. 

• A pointer value can be compared to the constant value 0 for equality 
( = =) or inequality (!= ). A pointer with a value of 0, called a "null" 
pointer, does not point to a memory location. 

Examples 

/******************** Example 1 ********************/ 
int x = 0, y = 0; 

x < y 

Because x and y are equal, the expression in Example 1 yields the value 0. 

/******************** Example 2 ********************/ 
char array[lO] ; 
char *P ; 

for (p=array; p<&array[lO]; p++) 
*P = '\O' ; 
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The fragment in Example 2 initializes each element of array to a null 
character constant. 

/******************** Example 3 *********************/ 
enum color {red, white, green} col; 

if (col red) 

Example 3 declares an enumeration variable named col with the tag 
color. At any time, the variable may contain an integer value of 0, 1, or 
2, representing one of the elements of the enumeration set color: the 
colors red, white and green respectively. If col contains 0 when the if 
statement is executed, any statements depending on the if will be exe­
cuted. 

5.3.9 Bitwise Operators 

The bitwise operators perform bitwise-AND(&), inclusive-OR() and 
exclusive-OR (A) operations. The operands of bitwise operators must have 
integral types, but their types can be different. These operators perform 
the usual arithmetic conversions; the type of the result is the type of the 
operands after conversion. 

Bitwise AND ( & ) 

The bitwise-AND(&) operator compares each bit of its first operand to 
the corresponding bit of its second operand. If both bits are 1, the 
corresponding result bit is set to 1; otherwise, the corresponding result bit 
is set to 0. 

Bitwise Inclusive OR CD 

The bitwise-inclusive-OR (I) operator compares each bit of its first operand 
to the corresponding bit or its second operand. If either bits is 1, the 
corresponding result bit is set to 1. Otherwise the corresponding result bit 
is set to 0. 
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Bitwise Exclusive OR("') 

The bitwise-exclusive-OR("') operator compares each bit of its first 
operand to the correspondmg bit of its second operand. If one bit is 0 and 
the other bit is 1, the corresponding result bit is set to 1; otherwise, the 
corresponding result bit is set to 0. 

Examples 

short i = OxabOO; 
short j = Oxabcd; 
short n; 

/******************** Example 1 ********************/ 
n = i & j; 

/******************** Example 2 ********************/ 
n = i I j; 

/******************** Example 3 ********************/ 
n = i ~ j; 

The result assigned ton in the first example is the same as i (ABOO hexa­
decimal). The bitwise inclusive OR in Example 2 results in the value 
ABCD (hexadecimal), while the bitwise exclusive OR in example 3 pro­
duces OD (hexadecimal). 
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5.3.10 Logical Operators 

The logical operators perform logical-AND ( && ) and logical-OR (ID 
operations. The operands of the logical operators must have integral, 
floating, or pointer type. The types of the operands can be different. 

The operands of logical-AND and logical-OR expressions are evaluated 
from left to right. If the value of the first operand is sufficient to deter­
mine the result of the operation, the second operand is not evaluated. 
There is a sequence point after the first operand. 

Logical operators do not perform the standard arithmetic conversions. 
Instead, they evaluate each operand in terms of its equivalence to 0. 

The result of a logical operation is either 0 or 1. The type of the result is 
int. 

Logical AND ( && ) 

The logical-AND operator(&&) produces the value 1 if both operands 
have nonzero values. If either operand is equal to 0, the result is 0. If the 
first operand of a logical-AND operation is equal to 0, the second operand 
is not evaluated. 

Logical OR (ID 

The logical-OR operator (ii) performs an inclusive-OR operation on its 
operands. The result is 0 it both operands have 0 values. If either 
operand has a nonzero value, the result is 1. If the first operand of a 
logical-OR operation has a nonzero value, the second operand is not 
evaluated. 

Examples 

int w, x, y, z; 

/******************** Example 1 ********************/ 
if (x < y && y < z) 

printf ("xis less than z\n"); 
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In Example 1, the printf function is called to print a message if xis less 
than y and y is less than z. If xis greater than y, the second operand (y 
< z) is not evaluated and nothing is printed. Note that this could cause 
problems in cases where the second operand contains side effects. 

/******************** Example 2 ********************/ 
printf ("%d" , (x==w I I x==y I I x==z)) ; 

In Example 2, if xis equal to either w, y, or z, the second argument to the 
printf function evaluates to true and the value 1 is printed. Otherwise it 
evaluates to false and the value 0 is printed. As soon as one of the condi­
tions evaluates to true, evaluation ceases. 

5.3.11 Sequential-Evaluation Operator 

The sequential-evaluation operator (,) evaluates its two operands sequen­
tially from left to right. There is a seqence point after the first operand. 
The result of the operation has the same value and type as the right 
operand. The operands can be of any types. The sequential-evaluation 
operator does not perform type conversions. 

The sequential-evaluation operator, also called the "comma" operator, is 
typically used to evaluate two or more expressions in contexts where only 
one expression is allowed. 

Note that commas may be used as a separators in some contexts. You 
must be careful not to confuse the use of the comma as a separator with 
its use as an operator; the two uses are completely different. 

Examples 

/******************** Example 1 ********************/ 

for ( i = j = 1; i + j < 20; i += i, j--); 

In Example 1, each operand of the for statement's third expression is 
evaluated independently. The left operand, i += i, is evaluated first; 
then the right operand, j- - , is evaluated. 

/******************** Example 2 ********************/ 

func_one(x, y + 2, z); 
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func_two((x--, y + 2), z); 

In the function call to func_one, three arguments, separated by commas, 
are passed: x, y + 2, and z. 

In the function call to func_two, parentheses force the compiler to inter­
pret the first comma as the sequential-evaluation operator. This function 
call passes two arguments to func_two. The first argument is the result 
of the sequential-evaluation operation (x--, y + 2), which has the 
value and type of the expression y + 2; the second argument is z. 

5.3.12 Conditional Operator 

Chas one ternary operator: the conditional operator(? :). It has the fol­
lowing form: 

operand1 ? operand2 : operands 

The expression operandi must have integral, floating, or pointer type. It is 
evaluated in terms of its equivalence to 0: There is a sequence point follow­
ing operandi. 

• If operandi does not evaluate to 0, operand2 is evaluated, and the 
result of the expression is the value of operand2. 

• If operandi evaluates to 0, operand3 is evaluated, and the result of the 
expression is the value of operand3. 

Note that either operand2 or operand3 is evaluated, but not both. 

The type of the result of a conditional operation depends on the type of 
operand2 or operand3, as follows: 

• If operand2 or operand3 has integral or floating type (their types can 
be different), the operator performs the usual arithmetic conversions. 
The type o( the result is the type of the operands after conversion. 

• If both operand2 and operand3 have the same structure, union, or 
pointer type, the type of the result is the same structure, union, or 
pointer type. 

• If both operands have type void, the result has type void. 
• If either operand is a pointer to an object of any type, and the other 

operand is a pointer to void, the pointer to the object is converted to 
a pointer to void and the result is a pointer to void. 
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• If either operand2 or operand3 is a pointer and the other operand is a 
constant expression with the value 0, the type of the result is the 
pointer type. 

Examples 

/******************** Example 1 ********************/ 
j= (i<O)? (-i): (i): 

Example 1 assigns the absolute value of i to j. If i is less than 0, - i is 
assigned to j. If i is greater than or equal to 0, i is assigned to j. 

/******************** Example 2 ********************/ 
void fl (void) 
void f2 (void) 
int x 
int y 

(x==y) ? (fl()) : (f2 ()) : 

In Example 2 two functions fl and f2 and two variables x and y are 
declared. Later in the program, if the two variables have the same value, 
the function fl is called. Otherwise f2 is called. 

5.4 Assignment Operators 

The assignment operators in C can both transform and assign values in a 
single operation. Using a compound-assignment operator to replace two 
separate operations can make your programs smaller and more efficient. 

C provides the following assignment operators: 

Operator 

++ 

Operation Performed 

Unary increment 

Unary decrement 

Simple assignment 

Multiplication assignment 
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/= 
%= 
+= 

<<= 
>>= 
&= 

Division assignment 

Remainder assignment 

Addition assignment 

Subtraction assignment 

Left-shift assignment 

Right-shift assignment 

Bitwise-AND assignment 

Bitwise-inclusive-OR assignment 

= Bitwise-exclusive-OR assignment 
In assignment, the type of the right-hand value is converted to the type of 
the left-hand value. The specific conversion path, which depends on the 
two types, is outlined in detail in Section 5.7. 

5.4.1 Lvalue Expressions 

An assignment operation assigns the value of the right-hand operand to 
the storage location named by the left-hand operand. Therefore, the left­
hand operand of an assignment operation (or the single operand of a unary 
assignment expression) must be an express10n that refers to a modifiable 
memory location. 

Expressions that refer to memory locations are called "lvalue" expressions. 
Expressions referring to modifiable locations are modifiable lvalues. One 
example of a modifiable lvalue expression is a variable name declared 
without the const specifier. The name of the variable denotes a storage 
location, while the value of the variable is the value stored at that loca­
tion. 

The following C expressions may be lvalue expressions: 

• An identifier of integral, floating, pointer, structure, or union type 

• A subscript ([])expression that does not evaluate to an array or a 
function 

• A member-selection expression (- > and . ), if the selected member is 
one of the aforementioned expressions 

• A unary-indirection ( *) expression that does not refer to an array or 
function 
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• An lvalue expression in parentheses. 

• A const object is a nonmodifiable lvalue. 

Note 

When extensions to the ANSI C standard are enabled, a type cast to a 
pointer type is an lvalue expression, as long as the size of the object 
does not change. See your User's Guide for information on enabling 
and disabling the Microsoft extensions. 

5.4.2 Unary Increment and Decrement 

The unary assignment operators(++ and--) increment and decrement 
their operand, respectively. The operand must have integral, floating, or 
pointer type and must be a modifiable (non-const) lvalue expression. 

An operand of integral or floating type is incremented or decremented by 
the integer value l. The result type is the same as the operand type. An 
operand of pointer type is incremented or decremented by the size of the 
object it addresses. An incremented pointer points to the next object; a 
decremented pointer points to the previous object. 

An increment (++)or decrement (- - ) operator can appear either be­
fore or after its operand, with the fallowing results: 

• When the operator appears before its operand, the operand is incre­
n_iented or decremented and its new value is the result of the expres­
sion. 

• When the operator appears after its operand, the immediate result of 
the expression is the value of the operand before it is incremented or 
decremented. After that result is applied in context, the operand is 
incremented or decremented. 

Examples 

/******************** Example 1 ********************/ 

if (pos++ > 0) 
*p++ = *q++; 
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In Example 1, the variable pos is compared to 0, then incremented. If pos 
was positive before being incremented, the next statement is executed. 
First the value of q is assigned top. Then, q and p are incremented. 

/******************** Example 2 ********************/ 

if (line[--i] != '\n') 
return; 

In Example 2, the variable i is decremented before it is used as a subscript 
to line. 

5.4.3 Simple Assignment 

The simple-assignment operator ( =) assigns its right operand its left 
operand. The conversion rules for assignment apply (see Section 5.7.1). 

Example 

double x; 
int y; 

x = y; 

In this example, the value of y is converted to double type and assigned 
to x. 

5.4.4 Compound Assignment 

The compound-assignment operators combine the simple-assignment 
operator with another binary operator. Compound-assignment operators 
perform the operation specified by the additional operator, then assign the 
result to the left operand. For example, a compound-assignment expres­
sion such as 

expression1 += expression2 

can be understood as 

expression1 = expression1 + expression2 

However, the compound-assignment expression is not equivalent to the 
expanded version because the compound-assignment expression evaluates 
expressi"oni only once, while the expanded version evaluates expressi"oni 
twice: in the addition operation and in the assignment operation. 
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The operands of a compound-assignment operator must be of integral or 
floating type. Each compound-assignment operator performs the conver­
sions that the corresponding binary operator performs and restricts the 
types of its operands accordingly. The addition-assignment ( +=) and 
subtraction-assignment(-=) operators may also have a left operand of 
pointer type, in which case the right-hand operand must be of integral 
type. The result of a compound-assignment operation has the value and 
type of the left operand. 

Example 

#define MASK OxffOO 

n &= MASK; 

In this example a bitwise-inclusive-AND operation is performed on n and 
MASK, and the result is assigned ton. The manifest constant MASK is 
defined with a #define preprocessor directive; this directive is discussed 
in Section 8.2.1. 
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5.5 Precedence and Order of Evaluation 

The precedence and associativity of C operators affect the grouping and 
evaluation of operands in expressions. An operator's precedence is mean­
ingful only if other operators with higher or lower precedence are present. 
Expressions with higher-precedence operators are evaluated first. 

Table 5.1 summarizes the precedence and associativity of C operators, list­
ing them in order of precedence from highest to lowest. Where several 
operators appear together in a line or large brace, they have equal pre­
cedence and are evaluated according to their associativity. 

Table 5.1 

Precedence and Associativity of C Operators 

Symbol a Type of Operation Associativity 

() [ l .-> ) Expression Left to right - ! * & t - Unaryb Right to left ++ -- sizeof casts 

*I% ) Multiplicative Left to right 

+- Additive Left to right 
<< >> Shift Left to right 
< > <= >= Relational (inequality) Left to right 
- - != Relational (equality) Left to right 
& Bitwise-AND Left to right 

Bitwise-exclusive-OR Left to right 
I Bitwise-inclusive-OR Left to right I 

&& Logical AND Left to right 
II Logical OR Left to right II 

? : Conditional Right to left 

= *= /= %= } Simple and Right to left 
+= -= <<= >>= compound 
&= 1-

,.. 
= assignment0 1-

Sequential evaluation Left to right 

a Operators are listed in descending order of precedence. If several operators appear in the 
same line or in a large brace, they have equal precedence. 

b All unary operators have equal precedence. 
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c All simple and compound-assignment operators have equal precedence. 

As Table 5.1 shows, operands consisting of a constant, an identifier, a 
string, a function call, a subscript expression, a member-selection expres­
sion, or a parenthetical expression have the highest precedence and associ­
ate from left to right. Type-cast conversions have the same precedence 
and associativity as the unary operators. 

An expression can contain several operators with equal precedence. When 
several such operators appear at the same level in an expression, evalua­
tion proceeds according to the associativity of the operator, either from 
right to left or from left to right. The direction of evaluation does not 
affect the results of expressions that include more than one multiplicaion 
(*),addition(+), or binary-bitwise (&:A) operator at the same level. 
The compiler is free to evaluate such expressions in any order, even when 
parentheses in the expression appear to specify a particular order. 

Important 

Only the sequential-evaluation(,), logical-AND(&&), logical-OR ( ), 
ternary (?:) and function-call operators constitute sequence points, and 
therefore guarantee a particular order of evaluation for their operands. 
The function-call operator is the parentheses following the function 
identifier. The sequential-evaluation operator(,) is guaranteed to 
evaluate its operands from left to right. (Note that the comma separat­
ing arguments in a function call is not the same as the sequential­
evaluation operator and does not provide any such guarantee.) The 
unary plus operator ( + ), is not yet implemented, but is defined by the 
ANSI C standard as a sequence point. Sequence points are discussed in 
Section 5.2.11. 

Logical operators also guarantee evaluation of their operands from left to 
right. However, they evaluate the smallest number of operands needed to 
determine the result of the expression. Thus, some operands of the expres­
sion may not be evaluated. For example, in the expression x && y++, the 
second operand, y++, is evaluated only if xis true (nonzero). Thus, y is 
not incremented if x is false (0). 
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Examples 

~he following list shows the default groupings for several sample expres­
s10ns: 

Expression 

a & b 11 c 

a= b 11 c 

q && r I I s--

Default Grouping 

(a & b) I I c 

a = (b I I c) 

( q && r) I I s - -

In the first expression, the bitwise-AND operator(&) has higher pre­
cedence than the logical-OR operator (I I), so a & b forms the first 
operand of the logical-OR operation. 

In the second expression, the logical-OR operator ( )precedence than the 
simple-assignment operator ( = ), sob I I c is grouped as the right-hand 
operand in the assignment. Note that the value assigned to a is either 0 
or 1. 

The third expression shows a correctly formed expression that may pro­
duce an unexpected result. The logical-AND operator(&&) has higher 
precedence than the logical-OR operator (ii), so q && r is grouped as an 
operand. Since the logical operators guarantee evaluation of operands 
from left to right, q && r is evaluated before s- - . However, if q && r 
evaluates to a nonzero value, s- - is not evaluated, and s is not decre­
mented. To correct this problem, s-- should appear as the first operand 
of the expression, or s should be decremented in a separate operation. 

The following expression is illegal and produces a program error: 

Illegal Expression Default Grouping 

p == 0 ? p += 1: p += 2 (p == 0 ? p += 1 : p) += 2 

In this expression, the equality operator ( = =) has the highest precedence, 
sop == 0 is grouped as an operand. The ternary operator (r :) has the 
next-highest precedence. Its first operand is p == 0, and its second 
operand is p += 1. However, the last operand of the ternary operator is 
considered to be p rather than p += 2, since this occurrence of p binds 
more closely to the ternary operator than it does to the compound­
assignment operator. A syntax error occurs because += 2 does not have a 
left-hand operand. You should use parentheses to prevent errors of this 
kind and produce more readable code. For example, you could use 
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parentheses as shown below to correct and clarify the preceding example: 

(p == 0) ? (p += 1) : (p += 2) 

5.6 Side Effects 

"Side effects" occur whenever the value of a variable is changed by expres­
sion evaluation. All assignment operations have side effects. Function 
calls may also have side effects if they change the value of an externally 
visible item, either by direct assignment or by indirect assignment through 
a pointer. 

The order of evaluation of expressions is defined by the specific implemen­
tation, except when the languageguarantees a particular order of evalua­
tion (as outlined in Section 5.5). 

For example, side effects occur in the fallowing function call: 

add (i + l, i = j + 2) 

The arguments of a function call can be evaluated in any order. The 
expression i + 1 may be evaluated before i = j + 2, or i = j + 2, 
may be evaluated before i + 1. The result is different in each case. 

Since unary increment and decrement operations involve assignments, 
such operations can cause side effects, as shown in the following example: 

d = O; 
a = b++ = c++ = d++; 

In this example, the value of a is unpredictable. The value of d (initially 
0) could be assigned to c, then to b, and then to a before any of the vari­
ables are incremented. In this case, a would be equal to 0. 

A second way to evaluate this expression begins by evaluating the operand 
c++ = d++. The value of d (initially 0) is assigned to c, and then both d 
and c are incremented. Next, the value of c, now 1, is assigned to b and b 
is incremented. Finally, the incremented value of b is assigned to a; in this 
case, the final value of a is 2. 

Since C does not define the order of evaluation of side effects, both of these 
evaluation methods are correct and either may be implemented. To make 
sure that your code is portable and clear, avoid statements that depend on 
a particular order of evaluation for side effects. 
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5. 7 Type Conversions 

Type conversions are performed in the following cases: 

• When a value of one type is assigned to a variable of a different type 

• When a value of one type is explicitly cast to a different type 

• When an operator converts the type of its operand or operands before 
performing an operation 

• When a value is passed as an argument to a function. 

S.ections 5.7.1.1 through 5.7.1.5 outline the rules for each kind of conver­
sion. 

5. 7 .1 Assignment Conversions 

In assignment operations, the type of the value being assigned is converted 
to the type of the variable that receives the assignment. Callows conver­
sions by assignment between integral and floating types, even if informa­
tion is lost in the conversion. The conversion methods depend on the 
types involved in the assignment, as described in Section 5.3.1, and Sec­
tions 5.7.1.1 - 5.7.1.5. 

5.7.1.1 Conversions from Signed Integral Types 

A signed integer is converted to a shorter signed integer by truncating the 
high-order bits, and to a longer signed integer by sign extension. 

When a signed integer is converted to an unsigned integer, the signed 
integer is converted to the size of the unsigned integer, and the result is 
interpreted as an unsigned value. 

No information is lost when a signed integer is converted to a floating 
value, except that some precision may be lost when a long int or 
unsigned long int value is converted to a float value. 

Table 5.2 summarizes conversions from signed integral types. This table 
assumes that the char type is signed by default. If you use a compile-time 
option to change the default for the char type to unsigned, the conver­
sions given in Table 5.3 for the unsigned char type apply instead of the 
conversions in Table 5.2. 
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Table 5.2 

Conversions from Signed Integral Types 

From To Method 

char a short Sign extend 
char long Sign extend 
char unsigned char Preserve pattern; high-order bit loses function as 

sign bit 
char unsigned short Sign extend to short; convert short to unsigned 

short 
char unsigned long Sign extend to long; convert long to unsigned 

long 
char float Sign extend to long; convert long to float 
char double Sign extend to long; convert long to double 
short char Preserve low-order byte 
short long Sign extend 
short unsigned char Preserve low-order byte 
short unsigned short Preserve bit pattern; high-order bit loses function 

as sign bit 
short unsigned long Sign extend to long; convert long to unsigned 

long 
short float Sign extend to long; convert long to float 
short double Sign extend to long; convert long to double 
long char Preserve low-order byte 
long short Preserve low-order word 
long unsigned char Preserve low-order byte 
long unsigned short Preserve low-order word 
long unsigned long Preserve bit pattern; high-order bit loses function 

as sign bit 
long float Represent as float; if long cannot be represented 

exactly, some precision is lost precision occurs 
long double Represent as double; if long cannot be 

represented exactly as a double, some precision is 
lost 

a All char entries assume that the char type is signed by default. 
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Note 

The int type is equivalent to either the short type or the long type, 
depending on the implementation. Conversion of an int value 
proceeds the same as for a short or a long, whichever is appropriate. 

5.7.1.2 Conversions from 
Unsigned Integral Types 

An unsigned integer is converted to a shorter unsigned or signed integer by 
truncating the high-order bits, or to a longer unsigned or signed integer by 
zero-extending. 

When an unsigned integer is converted to a signed integer of the same size, 
the bit pattern does not change. However, the value it represents changes 
if the sign bit is set. 

Unsigned integer values are converted to floating values by first converting 
to a signed integer of the same size, then converting that signed value to a 
floating value. 

in Table 5.3 summarizes conversions from unsigned integral types. 

Table 5.3 

Conversions from Unsigned Integral Types 

From To Method 

unsigned char char Preserve bit pattern; high-order bit 
becomes sign bit 

unsigned char short Zero-extend 
unsigned char long Zero-extend 
unsigned char unsigned short Zero-extend 
unsigned char unsigned long Zero-extend 
unsigned char float Convert to long; convert long to 

float 
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Table 5.3 (continued} 

From To Method 

unsigned char double Convert to long; convert long to 
double 

unsigned short char Preserve low-order byte 

unsigned short short Preserve bit pattern; high-order bit 
becomes sign bit 

unsigned short long Zero-extend 

unsigned short unsigned char Preserve low-order byte 

unsigned short unsigned long Zero-extend 

unsigned short fl.oat Convert to long; convert long to 
fl.oat 

unsigned short double Convert to long; convert long to 
double 

unsigned long char Preserve low-order byte 
unsigned long short Preserve low-order word 
unsigned long long Preserve bit pattern; high-order bit 

becomes sign bit 
unsigned long unsigned char Preserve low-order byte 
unsigned long unsigned short Preserve low-order word 
unsigned long float Convert to long; convert long to 

fl.oat 
unsigned long double Convert to long; convert long to 

double 

Note 

The unsigned int type is equivalent either to the unsigned short 
type or to the unsigned long type, depending on the implementation. 
Conversion of an unsigned int value proceeds the same as for an 
unsigned short or an unsigned long, whichever is appropriate. 
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5.7 .1.3 Conversions from Floating-Point Types 

A float value converted to a double value undergoes no change in value. 
A double value converted to a float value is represented exactly, if possi­
ble. Precision is lost if the value is too large to fit into a float, precision is 
lost. 

A floating value is converted to an integer value by converting to a long. 
Conversions to other integer types occur the same as for a long. The 
decimal portion of the floating value is discarded in the conversion to a 
long; if the result is still too large to fit into a long, the result of the 
conversion is undefined. 

Table 5.4 summarizes conversions from floating types. 

Table 5.4 

Conversions from Floating-Point Types 

From 

float 
float 
float 

float 
short 
float 
long 
float 

double 
double 
double 

double 
short 

double 
long 

double 

150 

To 

char 
short 
long 

unsigned short 

unsigned long 

double 
char 
short 
long 

unsigned short 

unsigned long 

float 

Method 

Convert to long; convert long to char 
Convert to long; convert long to short 
Truncate at decimal point; if result is too large to 
be represented as long, result is undefined 

Convert to long; convert long to unsigned 

Convert to long; convert long to unsigned 

Change internal representation 

Convert to float; convert float to char 
Convert to float; convert float to short 
Truncate at decimal point; if result is too large to 
be represented as long, result is undefined 
Convert to long; convert long to unsigned 

Convert to long; convert long to unsigned 

Represent as a float. If double value cannot 
be represented exactly as float, loss of precision 
occurs; if value is too large to be represented 
as float, the result is undefined 
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5.7.1.4 Conversions to and from Pointer Types 

A pointer to one type of value can be converted to a pointer to a different 
type. However, the result may be undefined because of the alignment 
requirements and sizes of different types in storage. 

A pointer to void may be converted to or from a pointer to any type, 
without restriction. 

In some implementations, you can use the special keywords near, far, and 
huge to change the size of pointers within a program. The conversion 
path depends on your implementation. For example, on an 8086 processor, 
the compiler might use a segment-register value to convert a 16-bit pointer 
to a 32-_bit pointer. See your User's Guide for information about pointer 
conversions. 

A pointer value can also be converted to an integral value. The conversion 
path depends on size of the pointer and the size of the integral type, 
according to the following rules: 

• If the size of the pointer is the greater than or equal to the size of the 
integral type, the pointer behaves like an unsigned value in the conver­
sion, except that it cannot be converted to a floating value. 

• If the pointer is smaller than the integral type, the pointer is first con­
verted to a pointer with the same size as the integral type, then con­
verted to the integral type. The implementation determines how a 
pointer is converted to a longer pointer; see your User's Guide for 
information about pointer conversions. 

Conversely, an integral type can be converted to a pointer type according 
to the following rules: 

• If the integral type is the same size as the pointer type, the conversion 
simply causes the integral value to be treated as a pointer (an unsigned 
integer). 

If the size of the integral type is different from the size of the pointer type, 
the integral type is first converted to the size of the pointer, using the 
conversion paths given in Tables 5.2 and 5.3. It is then treated as a 
pointer value. 

If the special keywords near, far, and huge are implemented, implicit 
conversions may be made on pointer values. In particular, the compiler 
may make assumptions about the default size of pointers and convert 
passed pointer values accordingly, unless a forward declaration is present 
to override the implicit conversion. See your User's Guide for information 
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about pointer conversions. 

5.7.1.5 Conversions from Other Types 

Since an enum value is an int value by definition, conversions to and from 
an enum value are the same as those for the int type. An int is 
equivalent to either a short or a long, depending on the implementation. 

No conversions between structure or union types are allowed. 

The void type has no value, by definition. Therefore, it cannot be con­
verted to any other type, and other types cannot be converted to void by 
assignment. However, you can explicitly cast a value to void type, as dis­
cussed in Section 5. 7 .2. 

5. 7 .2 Type-Cast Conversions 

You can use type casts to explicitly convert types. A type cast has the 
form 

(type-name) operand 

where type-name is a type and operand is a value to be converted to that 
type. (Type names are discussed in Section 4.9.) 

The operand is converted as though it had been assigned to a variable of 
the type-name type. The conversion rules for assignments (outlined in Sec­
tion 5. 7 .1) apply to type casts as well. 

You can use the type name void in a cast operation, but you cannot 
assign the resulting expression to any item. 

5. 7 .3 Operator Conversions 

The conversions performed by C operators depend on the operator and on 
the type of the operand or operands. Many operators perform the usual 
arithmetic conversions, outlined in Section 5.3.1. 

C permits some arithmetic with pointers. In pointer arithmetic, integer 
values are converted to express memory positions. (See the discussions of 
additive operators, Section 5.3.6, and subscript expressions, Section 5.2.5, 
for more information.) 
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5. 7.4 Function-Call Conversions 

The type of conversion performed on the arguments in a function call 
depends on the presence of a function prototype (forward declaration) 
with declared argument types for the called function. 

If a function prototype is present, and it includes declared argument types, 
the compiler performs type checking. The type-checking process is out­
lined in detail in Chapter 7, "Functions." 

If no function prototype is present, or if an old-style forward declaration 
omits the argument-type list, only the usual arithmetic conversions are 
performed on the arguments in the function call. These conversions are 
performed independently on each argument in the call. This means that a 
float value is converted to a double; a char or short value is converted 
to an int; and an unsigned char or unsigned short is converted to an 
unsigned int. 

If the special keywords near, far, and huge are implemented, implicit 
conversions may also be made on pointer values passed to functions. You 
can override these implicit conversions by providing function prototypes 
to allow the compiler to perform type checking. See your User's Guide for 
information about pointer conversions. 
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6.1 Introduction 

The statements of a C program control the flow of program execution. In 
C, as in other programming languages, several kinds of statements are 
available to perform loops, to select other statements to be executed, and 
to transfer control. This chapter describes C statements in alphabetical 
order, as follows: 

break statement 

compound statement 

continue statement 

do statement 

expression statement 

for statement 

goto statement 

if statement 

null statement 

return statement 

switch statement 

while statement 

C statements consist of keywords, expressions, and other statements. The 
following keywords appear in C statements: 

break 
case 
continue 

default 
do 
else 

for 
goto 
if 

return 
switch 
while 

The expressions in C statements are the expressions discussed in Chapter 5 
of this manual. Statements appearing within C statements may be any of 
the statements discussed in this chapter. A statement that forms a com­
ponent of another statement is called the "body" of the enclosing state­
ment. Frequently the statement body is a "compound" statement: a single 
statement composed of one or more statements. 
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The compound statement is delimited by braces ( { } ); all other C state­
ments end with a semicolon. 

Any C statement may begin with an identifying label consisting of a name 
and a colon. Since only the goto statement recognizes statement labels, 
statement labels are described along with the goto statement in Section 
6.8. 

When a C program is executed, its statements are executed in the order in 
which they appear in the program, except where a statement explicitly 
transfers control to another location. 
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6.2 The break Statement 

Syntax 

break; 

Execution 

The break statement terminates the execution of the smallest enclosing 
do, for, switch, or while statement in which it appears. Control passes 
to the statement that follows the terminated statement. A break state­
ment can appear only within a do, for, switch, or while statement. 

Within nested statements, the break statement terminates only the do, 
for, switch, or while statement that immediately encloses it. You can use 
a return or goto statement to transfer control out of the nested struc­
ture. 

Example 

for (i = O; i < LENGTH; i++) { 

} 

for (j = 0; j < WIDTH; j++) { 
if (lines [i] [j] == '\O') { 

lengths[i] = j; 
break; 

} 
} 

This example processes an array of variable-length strings stored in 
lines. The break statement causes an exit from the interior for loop 
after the terminating null character ( \ 0) of each string is found and its 
position is stored in lengths [i]. Control then returns to the outer for 
loop. The variable i is incremented and the process is repeated until i is 
greater than or equal to LENGTH. 

159 



Microsoft C Optimizing Compiler Language Reference 

6.3 The Compound Statement 

Syntax 

{ 
[declaration] 

statement 
[statement] 

} 

Execution 

A compound statement typically appears as the body of another state­
ment, such as the if statement. When a compound statement is executed, 
its statements are executed in the order in which they appear, except 
where a statement explicitly transfers control to another location. 
Chapter 4 of this manual describes the form and meaning of the declara­
tions that can appear at the head of a compound statement. 

Labeled Statements 

Like other C statements, any of the statements in a compound statement 
can carry a label. Thus, you can use a goto statement to transfer into a 
compound statement. However, transferring into a compound statement 
is dangerous when the compound statement includes declarations that ini­
tialize variables. Since declarations appear before the executable state­
ments in a compound statement, transferring directly to an executable 
statement within the compound statement bypasses the initializations. 
The results of such a transfer of control are undefined. 
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Example 

if (i > 0) { 
line [i] = x: 
x++; 
i--; 

} 

In this example, if i is greater than 0, all of the statements in the com­
pound statement are executed in order. 

161 



Microsoft 0 Optimizing Compiler Language Reference 

6.4 The continue Statement 

Syntax 

continue; 

Execution 

The continue statement passes control to the next iteration of the do, 
for, or while statement in which it appears, bypassing any remaining 
statements in the do, for, or while statement body. The next iteration of 
a do, for, or while statement is determined as follows: 

• Within a do or a while statement, the next iteration starts by 
reevaluating the expression of the do or while statement. 

• Within a for statement, the next iteration starts by evaluating the 
loop expression of the for statement. Then it evaluates the condi­
tional expression and, based on the result, either terminates or 
iterates the statement body. (The for statement is discussed in 
Section 6.7.) 

Example 

while (i-- > 0) { 

} 

x = f (i) ; 
if (x == 1) 

continue; 
y += x * x; 

In this example, the statement body is executed if i is greater than 0. 
First f (i) is assigned to x; then, if xis equal to 1, the continue state­
ment is executed. The rest of the statements in the body are ignored, and 
execution resumes at the top of the loop with the evaluation of i- -
> 0. 
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6.5 The do Statement 

Syntax 

do 
Btatement 

while ( expreB8ion ); 

Execution 

The body of a do statement is executed one or more times until expression 
becomes false (0). Execution proceeds as follows: 

1. The statement body is executed. 

2. The expression is evaluated. If expression is false, the do statement 
terminates and control passes to the next statement in the pro­
gram. If expression is true (non-zero), the process is repeated, 
beginning with step I. 

The do statement may also terminate when a break, goto, or return 
statement is executed within the statement body. 

Example 

do { 
y = f (x); 
x--; 

} while (x > 0) ; 

In this do statement, the two statements y = f (x) ; and x- - ; are exe­
cuted, regardless of the initial value of x. Then x > 0 is evaluated. If x 
is greater than 0, the statement body is executed again and x > 0 is 
reevaluated. The statement body is executed repeatedly as long as x 
remains greater than 0. Execution of the do statement terminates when x 
becomes 0 or negative. The body of the loop is executed at least once. 
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6.6 The Expression Statement 

Syntax 

expression; 

Execution 

When an expression statement is executed, the expression is evaluated 
according to the rules outlined in Chapter 5 of this manual. 

In C, assignments are expressions. The value of the expression is the value 
being assigned (sometimes called the "right-hand value"). 

Function calls are also considered expressions. The value of the expression 
is the value, if any, returned by the function. If a function returns a value, 
the expression statement usually includes an assignment to store the 
returned value when the function is called. The value returned by the 
function is usually used as an operand in another expression. If the value is 
to be used more than once, it can be assigned to another variable. If the 
value is neither used as an operand nor assigned, the function is called but 
the return value, if any, is not used. 

Examples 

/******************** Example 1 ********************/ 
x = (y + 3); 

In example 1, x is assigned the value of y + 3. 

/******************** Example 2 ********************/ 
x++; 

In example 2, xis incremented. 

/******************** Example 3 ********************/ 
z = f (x) + 3; 
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Example 3 shows a function-call expression. The value of the expression, 
which includes any value returned by the function, is assigned to the vari­
able z. 

6.7 The for Statement 

Syntax 

for ( [in it-expression]; [ cond-expression ]; [loop-expression] ) 
statement 

Execution 

The body of a for statement is executed zero or more times until the 
optional cond-expression becomes false. You can use the optional init­
expression and loop-expression to initialize and change values during the 
for statement's execution. 

Execution of a for statement proceeds as follows: 

1. The init-expression, if any, is evaluated. 

2. The cond-expression, if any, is evaluated. Three results are possi­
ble: 

a. If the cond-expression is true (nonzero), the statement is exe­
cuted; then the loop-expression, if any, is evaluated. The pro­
cess then begins again with the evaluation of cond-expression. 

b. If the cond-expression is omitted, the cond-expression is con­
sidered true, and execution proceeds exactly as described for 
case a. A for statement without a cond-expression terminates 
only when a break or return statement within the statement 
body is executed, or when a goto to a labeled statement out­
side the for statement body is executed. 

c. If the cond-expression is false, execution of the for statement 
terminates and control passes to the next statement in the pro­
gram. 

A for statement also terminates when a break, goto, or return state­
ment within the statement body is executed. 
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Example 

for (i = space = tab = 0; i < MAX; i++) { 
if (line [i] == ' ') 

} 

space++: 
if (line[i] == '\t') { 

tab++; 
line[i] = ' '· 

} 

This example counts space ( '\x20') and tab ( '\ t ') characters in the 
array of characters named 1 ine and replaces each tab character with a 
space. First i, space, and tab are initialized to 0. Then i is compared 
to the constant MAX; if i is less than MAX, the statement body is executed. 
Depending <?n the value of lirn:=:[iJ, the body of one or neithe~ of the if 
statements IS executed. Then i is mcremented and tested agamst MAX; the 
statement body is executed repeatedly as long as i is less than MAX. 
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6.8 The goto and Labeled Statements 

Syntax 

goto name; 

name: statement 

Execution 

The goto statement transfers control directly to the statement that has 
name as its label. The labeled statement is executed immediately after the 
goto statement is executed. A statement with the given label must reside 
in the same function, and the given label can appear before only one state­
ment in the same function. 

A statement label is meaningful only to a goto statement; in any other 
context, a labeled statement is executed without regard to the label. 

Forming Labels 

A label name is simply an identifier. (Section 2.4 describes the rules that 
govern the construction of identi.fiers.) Each statement label must be dis­
tinct from other statement labels in the same function. 

Labeled Statements 

Like other C statements, any of the statements in a compound statement 
can carry a label. Thus, you can use a goto statement to transfer into a 
compound statement. However, transferring into a compound statement 
is dangerous when the compound statement includes declarations that ini­
tialize variables. Since declarations appear before the executable state­
ments in a compound statement, transferring directly to an executable 
statement within the compound statement bypasses the initializations. 
The results are unpredictable. 

167 



Microsoft C Optimizing Compiler Language Reference 

Example 

if (errorcode > 0) 
goto exit; 

exit: 
return (errorcode); 

In this example, a goto statement transfers control to the point labeled 
exit if an error occurs. 

6. 9 The if Statement 

Syntax 

if (expression) 
statementl 

[else 
statement2] 

Execution 

The body of an if statement is executed selectively, depending on the value 
of expression: 

168 

1. The expression is evaluated. 

a. If expression is true (nonzero), statement1 is executed. 

b. If expression is false, statement2 is executed. 

c. If expression is false and the else clause is omitted, statement1 
is ignored. 

2. Control passes from the if statement to the next statement in the 
program. 



Statements 

Example 

if (i > 0) 
y = x/i; 

else { 
x - i; 
y = f (x); 

} 

In this example, the statement y = x/i; is executed if i is greater than 
0. If i is less than or equal to 0, i is assigned to x and f (x) is assigned to 
y. Note that the statement forming the if clause ends with a semicolon. 

Nesting 

C does not offer an "else if' statement, but you can achieve the same effect 
by nesting if statements. An if statement may be nested within either the 
if clause or the else clause of another if statement. 

When nesting if statements and else clauses, use braces to group the 
statements and clauses into compound statements that clarify your intent. 
If no braces are present, the compiler resolves ambiguities by pairing each 
else with the most recent if lacking an else. 

Examples 

/******************** Example 1 ********************/ 

if (i > 0) 
if (j > i) 

x = j; 
else 

x = i; 

/* Without braces */ 

In example 1, the else clause is associated with the inner if statement. If i 
is less than or equal to 0, no value is assigned to x. 

/******************** Example 2 ********************/ 

if (i > 0) { 

} 

if (j > i) 
x = j; 

/* With braces */ 
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else 
x = i; 

In example 2, the braces surrounding the inner if statement make the else 
clause part of the outer if statement. If i is less than or equal to 0, i is 
assigned to x. 
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6.10 The Null Statement 

Syntax 

Execution 

A null statement is a statement containing only a semicolon; it may 
appear wherever a statement is expected. Nothing happens when a null 
statement is executed. 

Statements such as do, for, if, and while require that an executable 
statement appear as the statement body. The null statement satisfies the 
syntax requirement in cases that do not need a substantive statement 
body. 

Example 

for (i = 0; i < 10; line[i++] = 0) 

In this example, the loop expression of the for statement 
(line [i ++] =O) initializes the first 10 elements of line to 0. The state­
ment body is a null statement, since no further statements are necessary. 

Labeling a Null Statement 

As with any other C statement, you can include a label before a null state­
ment. To label an item that is not a statement, such as the closing brace 
of a compound statement, you can label a null statement and insert it 
immediately before the item to get the same effect. 
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6.11 The return Statement 

Syntax 

return [expression]; 

Execution 

The return statement terminates the execution of the function in which it 
appears and returns control to the calling function. Execution resumes in 
the calling function at the point immediately following the call. The value 
of express£on, if present, is returned to the calling function. If expression is 
omitted, the return value of the function is undefined. 

By convention, parentheses enclose the expression of the return state­
ment. However, C does not require the parentheses. 

Example 

main() 
{ 

void draw(int,int); 
long sq(int); 

} 

y = sq(x); 
draw(x, y); 

long sq (x) 
int x; 
{ 

return (x * x) ; 
} 

void draw(x,y) 
int x, y; 
{ 
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return; 
} 

In this example, the main function calls two functions: sq and draw. 
The sq function returns the value of x * x to main, where the return 
value is assigned toy. The draw function is declared as a void function 
and does not return a value. An attempt to assign the return value of 
draw would cause a diagnostic message to be issued. 

Omitting the Return Statement 

If no return statement appears in a function definition, control auto­
matically returns to the calling function after the last statement of the 
called function is executed. The return value of the called function is 
undefined. If a return value is not required, declare the function to have 
void return type. 
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6.12 The switch Statement 

Syntax 

switch (expression) { 
[declaration] 

} 

[case constant-expression :] 

[statement] 

[default: 
statement] 

Execution 

The switch statement transfers control to a statement within its body. 
Control passes to the statement whose case constant-expression matches 
the value of the switch expression. Execution of the statement body 
begins at the selected statement and proceeds until the end of the body or 
until a statement transfers control out of the body. 

The default statement is executed if no case constant-expression is equal 
to the value of the switch expression. If the default statement is omitted, 
and no case match is found, none of the statements in the switch body is 
executed. The default statement need not come at the end, it can appear 
anywhere in the body of the switch statement. 

The type of the switch expression must be integral, but the resulting 
value is converted to an int. Each case constant-expressfon is then con­
verted using the usual arithmetic conversions. The value of each case 
constant-express£on must be unique within the statement body. If the type 
of the switch expressfon is larger than int, a diagnostic message is issued. 
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The case and default labels of the switch statement body are significant 
only in the initial test that determines where execution starts in the state­
ment body. All statements between the statement where execution starts 
and the end of the body are executed regardless of their labels, unless a 
statement transfers control out of the body entirely. 

Note 

Declarations may appear at the head of the compound statement form­
ing the switch body, but initializations included in the declarations 
are not performed. The switch statement transfers control directly to 
an executable statement within the body, bypassing the lines that con­
tain initializations. 

Examples 

/******************** Example 1 ********************/ 

switch (c) { 
case 'A': 

} 

capa++; 
case 'a': 

lettera++; 
default : 

total++; 

In example 1, all three statements of the switch body are executed if c is 
equal to 'A'. Execution control is transferred to the first statement 
(capa++;) and continues in order through the rest of the body. If c is 
equal to 'a', lettera and total are incremented. Only total is incre­
mented if c is not equal to 'A' or 'a'. 

/******************** Example 2 ********************/ 

switch (i) { 
case -1: 

n++; 
break; 

case 0 : 
z++; 
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} 

break; 
case 1 : 

p++; 
break; 

In example 2, a break statement follows each statement of the switch 
body. The break statement forces an exit from the statement body after 
one statement is executed. If i is equal to -1, only n is incremented. The 
break following the statement n++; causes execution control to pass out 
of the statement body, bypassing the remaining statements. Similarly, if 
i is equal to 0, only z is incremented; if i is equal to 1, only p is incre­
mented. The final break statement is not strictly necessary, since control 
passes out of the body at the end of the compound statement, but it is 
included for consistency. 

Multiple Labels 

A statement may carry multiple case labels, as the following example 
shows: 

case 'a' 
case 'b' 
case 'c' 
case 'd' 
case 'e' 
case If' hexcvt(c); 

Although you can label any statement within the body of the switch 
statement, no statement is required to carry a label. You can freely inter­
mingle statements with and without labels. Keep in mind, however, that 
once the switch statement passes control to a statement within the body, 
all following statements in the block are executed, regardless of their 
labels. 
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6.13 The while Statement 

Syntax 

while ( expressi'on) 
statement 

Execution 

The body of a while statement is executed zero or more times until expres­
sion becomes false (0). Execution proceeds as follows: 

1. The expression is evaluated. 

2. If the 
expression is initially false, the body of the while statement is 
never 
executed, and control passes from the while statement to the next 
statement in the program. 

If expression is true (nonzero), the body of the statement is exe­
cuted and the process is repeated beginning at step 1. 

The while statement may also terminate when a break, goto, or return 
within the statement body is executed. 

Example 

while (i >= 0) { 

} 

stringl[i] = string2[i]; 
i--; 

This example copies characters from str ing2 to str ingl. If i is 
greater than or equal to 0, string2 [i] is assigned to stringl [i] and 
i is decremented. When i reaches or falls below 0, execution of the while 
statement terminates. 
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Functions 

7 .1 Introduction 

A function is an independent collection of declarations and statements, 
usually designed to perform a specific task. C programs have at least one 
function, the main function, and they may have other functions. This 
chapter describes how to define, declare, and call C functions. 

A function defin£t£on specifies the name of the function, the types and 
number of its formal parameters, and the declarations and statements 
that determine what it does. These declarations and statements are called 
the "function body." The function definition also gives the function's 
return type and its storage class. If the return type and storage class are 
not stated explicitly, they default to int and extern, respectively. 

A function prototype (or declaration) establishes the name, return type, 
and storage class of a function fully defined elsewhere in the program. It 
can also include declarations giving the types and number of the function's 
formal parameters, and can even name the formal parameters, although 
such names go out of scope at the end of the declaration. The storage class 
register can also specified for a formal parameter. 

The function prototype has the same form as a function definition, except 
that the prototype ends with a semicolon instead of a function body. The 
following example contrasts the current prototype formats with the old 
forms of function declaration and definition: 

Example 

double *function(int a, double *X) 

double *Unction (int, double *) 

double *function (int a, double *real) 
{ 

return (*real + a) ; 
} 

double *Unction (x , y) 
double *Y 
int x ; 

/* Function 
* Prototype 

*/ 
/* Old Form of 

* Declaration 
*/ 

/* Prototype-style 
* Function 
* Definition 

*/ 

/* Old Form of a 
* Function 
* Definition 
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{ 

} 
return (*Y + a) : 

*/ 

The example illustrates why the concise and clear prototype formats are 
preferred to the old forms. Note also the close resemblance between the 
prototype and prototype-style definition. 

The compiler uses the prototype or declaration to compare the types of 
actual arguments in subsequent calls to the function with the function's 
formal parameters, even in the absence of an explicit definition of the 
function. Explicit prototypes and declarations are optional for functions 
whose return type is int. However, to ensure correct behavior, you must 
declare or define functions with other return types before calling them. 
(Function prototype declarations are discussed further in Section 7.3 and 
in Chapter 4, "Declarations.") 

If no prototype or declaration is provided, a default prototype is created 
from information provided in the first occurrence of the function name, 
whether that is a call or definition. However, such a default prototype may 
not adequately represent a subsequent definition of, or call to, the func­
tion. 

A function call passes execution control from the calling function to the 
called function. The actual arguments, if any, are passed by value to the 
called function. Execution of a return statement in the called function 
returns control and possibly a value to the calling function. 

7 .2 Function Definitions 

Syntax 

[ sc-speci/ier] [type-specifier] declarator ([formal-parameter-list]) 
function-body 

A function definition specifies the name, formal parameters, and body of a 
function. It can also stipulate the function's return type and storage class. 

The optional sc-specifier gives the function's storage class, which must be 
either static or extern. 
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The optional type-specifier and mandatory declarator together specify the 
function's return type and name. The declarator is a combination of the 
identifier that names the function and the parentheses following the func­
tion name. 

Formal parameter declarations are included in the optional formal­
parameter-list in the parentheses following the function name. The follow­
ing syntax illustrates the form of each parameter in the formal-parameter­
list. 

[[register] type-8pecifier [declarator[[, ... ] [, ... m 
A formal-parameter-list contains declarations for the function's parame­
ters. If no arguments will be passed to the function, the list contains the 
keyword void. Otherwise, it may contain a full or partial list of formal 
parameters. If the list is partial, it is terminated by the "ellipsis notation," 
a comma followed by three periods (, .•. ).The ellipsis notation indicates 
there may be more arguments passed to the function. Without the ellipsis 
notation, the behavior of a function is undefined if it receives parameters 
in addition to those declared in the formal-parameter-list. When a proto­
type is available, argument checking and conversion are automatically per­
formed. If no information is given concerning the formal parameters, any 
undeclared arguments simply undergo the usual arithmetic conversions. 

The type-specifier can be omitted only if register storage class is specified 
for a value of int type. 

The function-body is a compound statement containing local variable 
declarations, references to externally declared items, and statements. 

Note 

The old form for function declaration and definition is still supported, 
but is considered obsolescent. Use of the prototype form is recom­
mended in new code. The old function-definition form is represented in 
the following syntax: 

[ 8C-8pecifier] [ type-Bpecifier] declarator ( [ identifier-liBt] ) 
[parameter-declaration8] 
function-body 

The identifier-list is an optional list of identifiers that the function will 
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use as the names of formal parameters. The parameter-declarations 
establish the types of the formal parameters. 

Sections 7 .2.1-7 .2.4 describe the parts of a function definition in detail. 

7 .2.1 Storage Class 

The storage-class specifier in a function definition gives the function either 
extern or static storage class. If a function definition does not include a 
storage-class specifier, the storage class defaults to extern. You can 
explictly give the extern storage-class specifier in a function definition, 
but it is not required. 

A function with static storage class is visible only in the source file in 
which it is defined. All other functions, whether they are given extern 
storage class explicitly or implicitly, are visible throughout all the source 
files that make up the program. 

The storage-class specifier is required in a function definition in only one 
case: if the function is declared elsewhere in the same source file with the 
static storage-class specifier. 

If static storage class is desired, it must be declared on first occurrence of 
a declaration or definition of the function. 

Note 
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A Microsoft extension to the ANSI C standard offers some }attitude on 
functions declared without a storage-class specifier. When the exten­
sions are enabled, a function originally declared without a storage class 
will be given static storage class if the function definition is in the 
same source file, and explicitly specifies static storage class. For infor­
mation on enabling and disabling extensions, see your User's Guide. 
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7 .2.2 Return Type and Function Name 

The return type of a function defines the size and type of the value 
returned by the function. The type declaration has the form 

[ type-specifier] declarator 

where the type-specifier, together with the declarator, defines the 
function's return type and name. 

The type-specifier can specify any fundamental, structure, or union type. 
If you do not include a type-specifier, the return type int is assumed. 

The declarator is the function identifier, which may be modified to a 
pointer type. The parentheses following the identifier establish the item as 
a function. Functions cannot return arrays or functions, but they can 
return pointers to any type, including arrays and functions. 

The return type given in the function definition must match the return 
type in declarations of the function elsewhere in the program. You need 
not declare functions with int return type before you call them. However, 
functions with other return types must be defined or declared before they 
are called. 

A function's return type is used only when the function returns a value, 
which occurs when a return statement containing an expression is exe­
cuted. The expression is evaluated, converted to the return value type if 
necessary, and returned to the point at which the function was called. If 
no return statement is executed, or if the return statement does not con­
tain an expression, the return value is undefined. If the calling function 
expects a return value, the behavior of the program is also undefined. 

Examples 

/******************** Example 1 ********************/ 

/* prototype-style definition: */ 
static add (register x, int y) 

{ 
return (x+y); 

} 
/* old-style definition: */ 

subtract (x , y) 
{ 

185 



Microsoft C Optimizing Compiler Language Reference 

return (x-y); 
} 

In Example 1, the return type of add is int by default. The function has 
static storage class, which means that only functions in the same source 
file can call it. The formal parameters declared in the header include one 
int, x, for which register storage is requested, and a second int, y. The 
second function, subtract is defined in the old form. Its return type is 
int by default, and because it has no formal parameter declarations, the 
identifiers x and y are assumed to have int type by default. 

/********************* Example 2 *********************/ 

typedef struct { 
char name[20]; 
int id; 
long class; 

} STUDENT; 

/• return type is STUDENT: •/ 
STUDENT sortstu (STUDENT a, STUDENT b) 
{ 

return ( (a.id< b.id) ? a: b ); 
} 

The second example defines the STUDENT type with a typedef declaration 
and defines the function sortstu to have STUDENT return type. The 
function selects and returns one of its two structure arguments. This 
prototype-style definition has the formal parameters declared in the 
header. In subsequent calls to the function the compiler will check to make 
sure the argument types are STUDENT. Efficiency could be enhanced by 
passing pointers to the structure elements, rather than the values them­
selves. 

/********************* Example 3 *********************/ 
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/* return type is char pointer: */ 
char •smallstr(sl, s2) 
char sl [] , s2 [] : 
{ 

int i; 

i=O; 
while ( sl[i] != '\O' && s2[i] != '\O') 



} 

i++; 
if ( sl[i] = '\O' ) 

return (sl); 
else 

return (s2); 

Functions 

Example 3 uses the old form to define a function returning a pointer to an 
array of characters. The function takes two character arrays (strings) as 
arguments and returns a pointer to the shorter of the two strings. A 
pointer to an array points to the type of the array elements; thus, the 
return type of the function is pointer to char. 

7 .2.3 Formal Parameters 

Formal parameters are variables that receive values passed to a function 
by a function call. In a function prototype-style definition, the parentheses 
following the function name contain complete declarations of the 
function's formal parameters. 

Note 

In the old form of a function definition, the formal parameters were 
declared following the closing parenthesis, immediately before the 
beginning of the compound statement constituting the function body. 
In that form, an identifier-list within the parentheses specifies the 
name of each of the formal parameters and the order in which they 
take on values in the function call. The identifier-list consists of zero 
or more identifiers, separated by commas. The list must be enclosed in 
parentheses, even if it is empty. This form is obsolescent and should 
not be used in new code. 

If at least one formal parameter occurs in the f ormal~arameter-list, the 
list can end with a comma followed by three periods , •.. ). This construc­
tion, called the "ellipsis notation," indicates a variab e number of argu­
ments to the function. However, a call to the function is expected to have 
at least as many arguments as there are formal parameters before the last 
comma. In the obsolescent definition form, the ellipsis notation can follow 
the last identifier in the £dentifier-list. 
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If no arguments will be passed to the function, the list of formal parame­
ters is replaced by the keyword void. This use of void is distinct from its 
use as a type specifier. 

Note 

To maintain compatibility with previous versions, a Microsoft exten­
sion to the ANSI C standard allows a comma without trailing periods 
(,) at the end of the list of formal parameters to indicate a variable 
number of arguments. See your User's Guide for information on ena­
bling and disabling extensions. 

Formal parameter declarations specify the types, sizes, and identifiers of 
values stored in the formal parameters. In the obsolescent function 
definition form, these declarations have the same form as other variable 
declarations (see Section Chapter 4, "Declarations"). However, in a func­
tion prototype-style definintion, each identifier in the formal-parameter-list 
must be preceded by its appropriate type specifier. For example, in the 
following (obsolescent form) definition of the function old, double x, 
y, z ; can be declared simply by separating identifiers with commas: 

void old(x, y, z) 
double x, y, z 

{ 

} 
void new(double x, double y, double z) 

{ 

} 

The function called new is defined in prototype format, with a list of for­
mal parameters in the parentheses. In this form, the type specifier double 
has to be repeated for each identifier. 

The order and type of formal parameters, including any use of the ellipsis 
notation, must be the same in the all function declarations (if any) as in 
the function definition. The order and type must also be the same in argu­
ments specified in calls to the function, up the the point of the ellipsis 
notation. Arguments following the ellipsis are not checked. A formal 
parameter can have any fundamental, structure, union, pointer, or array 
type. 
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The only storage class you can specify for a formal parameter is register. 
Undeclared identifiers in the parentheses following the function name are 
assumed to have int type. In the old function-definition form, formal 
parameter declarations can be in any order. 

The identifiers of the formal parameters are used in the function body to 
ref er to the values passed to the function. These identifiers cannot be 
redefined in the outermost block of the function body, but they may be 
redefined in inner, nested blocks. 

In the obsolescent form, only identifiers appearing in the identifier list can 
be declared as formal parameters. Functions having variable length argu­
ment lists should use the new prototype form. You are responsible for 
determining the number of arguments passed and for retrieving additional 
arguments from the stack within the body of the function. (See your User's 
Guide for information about macros that allow you to do this in a port­
able way.) 

The compiler performs the usual arithmetic conversions independently on 
each formal parameter and on each actual argument, if necessary. After 
conversion, no formal parameter is shorter than an int, and no formal 
parameter has float type. This means, for example, that declaring a for­
mal parameter as a char has the same effect as declaring it as an int. 

If the near, far, and huge keywords are implemented, the compiler may 
also convert pointer arguments to the function. The conversions per­
formed depend on the default size of pointers in the program and the pres­
ence or absence of a list of argument types for the function. See your 
User's Guide for specific information about pointer conversions. 

The converted type of each formal parameter determines the interpreta­
tion of the arguments that the function call places on the stack. A type 
mismatch between an actual argument and a formal parameter may cause 
the arguments on the stack to be misinterpreted. For example, if a 16-bit 
pointer is passed as an actual argument, then declared as a long formal 
parameter, the first 32 bits on the stack are interpreted as a long formal 
parameter. This error creates problems not only with the long formal 
parameter, but with any formal parameters that follow it. You can detect 
errors of this kind by declaring function prototypes for all functions. 
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Example 

struct student { 
char name[20]; 
int id; 
long class; 
struct student *nextstu; 

} student; 

main() 
{ 

} 

/* declaration of function prototype: */ 
int match ( struct student *r, char *n ); 

if (match (student.nextstu, student.name) > 0) { 

} 

/* prototype style function definition */ 
match struct student *r, char *n ) 
{ 

} 

int i = 0; 

while r->name[i] == n[i] ) 
if ( r->name[i++] == '\O' 

return (r->id); 
return (O); 

The example contains a structure-type declaration, a forward declaration 
of the function match, a call to match, and the definition of match. 
Note that the same name, student, can be used without conflict both for 
the structure tag and for the structure variable name. 

The match function is declared to have two arguments: the first, 
represented by r, is a pointer to the struct student type; the second, 
represented by n, is a pointer to .a value of type char. 

The two formal parameters of the match function are declared in the for­
mal parameter list in the parentheses following the function name, with 
the identifiers r and n. The parameter r is declared as a pointer to the 
struct student type; the parameter n is declared as a pointer to a 
char type. 
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The function is called with two arguments, both members of the student 
structure. Because there is a forward declaration of match, the compiler 
performs type checking between the actual arguments and the the types 
specified in the prototype declaration and between the actual arguments 
a.nd the formal parameters. Since the types match, no warnings or conver­
sions are necessary. 

Note that the array name given as the second argument in the call evalu­
ates to a char pointer. The corresponding formal parameter is also 
declared as a char pointer and is used in subscripted expressions as 
though it were an array identifier. Since an array identifier evaluates to a 
pointer expression, the effect of declaring the formal parameter as char 
*n is the same as declaring it char n [] . 

Within the function, the local variable i is defined and used to monitor 
the current position in the array. The function returns the id structure 
member if the name member matches the array n; otherwise, it returns 0. 

7 .2.4 Function Body 

A function body is a compound statement containing the statements that 
define what the function does. It may also contain declarations of variables 
used by these statements. (See Section 6.3 for a discussion of compound 
statements.) 

All variables declared in a function body have auto storage class unless 
otherwise specified. When the function is called, storage is created for the 
local variables and local initializations are performed. Execution control 
passes to the first statement in the compound statement and continues 
sequentially until a return statement is executed or the end of the func­
tion body is encountered. Control then returns to the point at which the 
function was called. 

A return statement containing an expression must be executed if the 
function is to return a value. The return value of a function is undefined if 
no return statement is executed or if the return statement does not 
include an expression. 
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7 .3 Function Prototypes (Declarations) 

A function prototype declaration specifies the name, return type, and 
storage class of a function. It may also establish types and identifiers of 
some or all of the function's arguments. The prototype has the same for­
mat as the function definition, except that it is terminated by a semicolon 
immediately following the closing parenthesis and therefore has no body. 
(See Chapter 4, "Declarations," for a detailed description of the syntax of 
function declarations.) 

You can declare a function implicitly, or you can use a "function proto­
type" (forward declaration) to declare it explicitly. A prototype is a 
declaration that precedes the function definition. In either case, the 
return type must agree with the return type specified in the function 
definition. 

You implicitly declare a function if a call to the function precedes its 
declaration or definition in the source file. In this case the C compiler con­
structs a default prototype of the function, giving it int return type, and 
using the types and number of the actual arguments as the basis for 
declaring the formal parameters. 

A prototype declaration establishes the attributes of a function so that 
calls to it that precede its definition or occur in other source files can be 
checked for argument and return type mismatches. If you specify the 
static storage-class specifier in a forward declaration, you must also 
specify the static storage class in the function definition. 

If you specify the extern storage-class specifier or omit the storage-class 
specifier entirely, the function has extern class. (See the Note in Section 
7.2.1 for an explanation of the Microsoft extension that offers some !atti­
tude in function storage-class specification.) 

Function prototypes have the following important uses: 
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• They establish the return type for functions that return any type 
other than int. If you call such a function before you declare or 
define it, the results are undefined. Functions that return int 
values can also have prototype declarations, but do not require 
them. 

• If the prototype contain a full list of parameter types, the types of 
the arguments occurring in a function call can be established. The 
prototype can include both the type of, and an identifier for, each 
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expression that will be passed as an actual argument. However, 
such identifiers have scope only until the end of the declaration. 
The prototype can also reflect the fact that the number of argu­
ments will be variable. 

The parameter list in a prototype is a list of type names, separated 
by commas, corresponding to the actual arguments in the function 
call. The list is used for checking the correspondence of actual 
arguments in the function call with the formal parameters in the 
function definition. Without such a list, mismatches may not be 
revealed, so the compiler cannot generate diagnostic messages con­
cerning them. (Type checking is discussed further in Section 7.4.1, 
"Actual Arguments.") 

• Forward declarations are used to initialize pointers to functions 
before those functions are defined. 

Example 

main() 
{ 

int a = 0, b = 1; 
float vall= 2.0, val2 = 3.0; 

/* function prototype: */ 
double realadd(double x, double y); 

a= intadd (a, b); /*first call to intadd */ 
vall = realadd(vall, val2); 
a= intadd(vall,b); /*second call to intadd */ 

} 

/* function defined with formal parameters in header: /* 
intadd(int a, int b) 
{ 

return (a+ b); 
} 

double realadd(double x, double y) 
{ 

return (x + y); 
} 

In this example, the function intadd is implicitly declared to return an 
int value, since it is called before it is defined. The compiler creates a pro­
totype using the information in the first call. Therefore, when the second 
call to intadd is encountered, the compiler sees the mismatch between 
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vall, which is a float, and the int type of the first argument in its self­
created prototype. The float is converted to an int and passed. Note that 
if the calls to intadd were reversed, the prototype created would expect a 
float as the first argument to intadd. When the second call is made, the 
variable a would be converted at the call, but when the value is actually 
passed to intadd, a diagnostic would be issued because the int type 
specified in the definition does not match the float type in the compiler­
created prototype. 

The function real add returns a double value instead of an int. There­
fore, the prototype of real add in the main function is necessary, because 
the real add function is called before it is defined. Note that the 
definition of real add matches the forward declaration by specifying the 
double return type. 

The forward declaration of realadd also establishes the types of its two 
arguments. The actual argument types match the types given in the 
declaration and also match the types of the formal parameters. 

7.4 Function Calls 

Syntax 

expression([ expression-list]) 

A function call is an expression that passes control and actual arguments 
(if any) to a function. In a function call, expression evaluates to a function 
address and expression-list is a list of expressions (separated by commas). 
The values of these latter expressions are the actual arguments passed to 
the function. If the function takes no arguments, the expression-l£st can be 
empty. 

When the function call is executed: 
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1. The expressions in expression-list are evaluated and converted 
using the usual arithmetic conversions. If a function prototype is 
available, the results of these conversions may be further converted 
consistent with the formal parameter declarations. 

2. The expressions in expression-list are passed to the formal parame­
ters of the called function. The first expression in the list always 
corresponds to the first formal parameter of the function, the 
second expression corresponds to the second formal parameter, and 



Functions 

so on through the list .. Since thecalled function uses copies of the 
actual arguments, any changes it makes to the arguments do not 
affect the values of variables from which the copies may have been 
made. 

3. Execution control passes to the first statement in the function. 

4. The execution of a return statement in the body of the function 
returns control and possibly a value to the calling function. If no 
return statement is executed, control returns to the caller after 
the last statement of the called function is executed, and the return 
value is undefined. 

Important 

The expressions in the function argument list can be evaluated in any 
order, so arguments whose values may be affected by side effects from 
another argument have undefined values. The sequence point defined 
by the function-call operator guarantees only that all side effects in the 
argllment list are evaluated before control passes to the called func­
tion. See Chapter 5, "Expressions and Assignments," for more infor­
mation on sequence points. 

The only requirement in a function call is that the expression before the 
parentheses must evaluate to a function address. This means that a func­
tion can be called through any function-pointer expression. 

A function is called in much the same way it is declared. For instance, 
when you declare a function, you specify the name of the function, fol­
lowed by a list of formal parameters in parentheses. Similarly, when a 
function is called, you need only specify the name of the function, followed 
by an argument list in parentheses. The indirection operator ( *) is not 
required to call the function because the name of the function evaluates to 
the function address. 

The same principle applies when you call a function using a pointer. For 
example, suppose a function pointer is declared as follows: 

int (*fpointer){int numl, int num2); 

The identifier fpointer is declared to point to a function taking two int 
arguments, represented by numl and num2, respectively, and returning 
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an int value. A function call using fpointer might look like this: 

(*fpointer) (3,4) 

The indirection operator ( *) is used to obtain the address of the function 
to which fpointer points. The function address is then used to call the 
function. If a forward declaration of the pointer to the function precedes 
the call, the same checking will be performed as with any other function 
declaration. 

Examples 

/********************* Example 1 *********************/ 

double *realcomp(double valuel, double value2); 
double a, b, *rp; 

rp = realcomp(a, b); 

In Example 1, the realcomp function is called in the statement rp = 
realcomp (a, b);. Two double arguments are passed to the function. 
The return value, a pointer to a double value, is assigned to rp. 

/********************* Example 2 *********************/ 
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main () 
{ 

/* non-prototype function declarations: */ 
long lift(int), step(int), drop(int); 

/* prototype form of function declaration: */ 
void work (int number, long (*function) (inti)): 
int select, count; 
int i; 

select = l; 
switch ( select ) { 

case 1: work(count, lift); 
break; 

case 2: work(count, step); 



} 
} 

break; 

case 3: work(count, drop); 

default: 
break; 

Functions 

/* function definition with formal parameters in header: */ 
void work ( int number, long (*function) (int i) ) 
{ 

} 

int i; 
long j; 

for (i j O; i < number; i++) 
j += (*function) (i) ; 

In Example 2, the function call 

work (count, lift); 

in main passes an integer variable and the address of the function lift 
to the function work. Note that the function address is passed simply by 
giving the function identifier, since a function identifier evaluates to a 
pointer expression. To use a function identifier in this way, the function 
must be declared or defined before the identifier is used; otherwise, the 
identifier is not recognized. In this case, a prototype declaration for work 
is given at the beginning of the main function. 

The formal parameter function in work is declared to be a pointer to a 
function taking one int argument and returning a long value. The 
parentheses around the parameter name are required; without them, the 
declaration would specify a function returning a pointer to a long value. 

The function work calls the selected function by using the following func­
tion call: 

(*function) (i) ; 

One argument, i, is passed to the called function. 
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7 .4.1 Actual Arguments 

An actual argument can be any value with fundamental, structure, union, 
or pointer type. Although you cannot pass arrays or functions as parame­
ters, you can pass pointers to these items. 

All actual arguments are passed by value. A copy of the actual argument 
is assigned to the corresponding formal parameter. The function uses this 
copy without affecting the variable from which it was originally derived. 

Pointers provide a way for a function to access a value by reference. Since 
a pointer to a variable holds the address of the variable, the function can 
use this address to access the value of the variable. Pointer arguments 
allow a function to access arrays and functions, even though arrays and 
functions cannot be passed as arguments. 

The expressions in a function call are evaluated and converted as follows: 

• For each actual argument in the function call, the usual arithmetic 
conversions are performed on the argument. If a prototype is avail­
able, the resulting argument type is compared to the corresponding 
formal parameter. If they do not match, there is either a conver­
sion performed, or a diagnostic message is issued. The formal 
parameters also undergo the usual arithmetic conversions. 

• If no prototype is available, the results of the usual arithmetic 
conversions on the actual arguments are passed, and a prototype is 
created with formal parameter types corresponding to the results 
of the conversion. 

If the near, far, and huge keywords are implemented, iinplementa,.tion­
dependent conversions on pointer arguments may also be performed. See 
your User's Guide for information about pointer conversions. 

The number of expressions in the expression list must match the number 
of formal parameters, unless the function's prototype declaration or 
definition explicitly specifies a variable number of arguments. In this case, 
the compiler checks as many arguments as there are type names in the list 
of formal parameters and converts them, if necessary, as described above. 

If the declaration's formal parameter Iist or list of argument types con­
tains only the keyword void, the compiler expects zero actual arguments 
in the function call and zero formal parameters. It produces a diagnostic 
message if it finds otherwise. 
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The type of each formal parameter also undergoes the usual arithmetic 
conversions. The converted type of each formal parameter determines how 
the arguments on the stack are interpreted; if the type of the formal 
parameter does not match the type of the actual argument, the data on 
the stack may be misinterpreted. 

Note 

Type mismatches between actual arguments and formal parameters 
can produce serious errors, particularly when the sizes are different. 
The compiler may not be able to detect these errors unless you declare 
complete prototypes of functions prior to calling them. In the absence 
of explicit prototypes, the compiler constructs prototypes from what­
ever information is available in the first reference to the function. 

As an example of a serious error, consider a call to a function with an 
int argument. If the function is defined to take a long, and the 
definition occurs in a different module, the compiler-generated proto­
type will not match the definition, but there will be no detection of the 
error, because the separate modules will compile without diagnostic 
messages. 

Example 

main () 
{ 

} 

/* function prototype: */ 
void swap (int *numl, int *num2); 
int x, y; 

swap(&x, &y); 

/* function definition: */ 
void swap (int *numl, int *num2) 
{ 

int t; 

t = *numl; 
*DUml = *DUm2; 
*num2 = t; 
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} 

In this example, the swap function is declared in main to have two argu­
ments, represented respectively by identifiers numl and num2, both of 
which are pointers to integers. The formal parameters numl and num2 in 
the prototype definition are also declared as pointers to integer variables. 
In the function call 

swap (&x, &y) 

the address of xis stored in numl and the address of y is stored in num2. 
Now two names, or "aliases," exist for the same location. References to 
*numl and *num2 in swap are effectively references to x and yin main. 
The assignments within swap actually exchange the contents of x and y. 
Therefore, no return statement is necessary. 

The compiler performs type checking on the arguments to swap because 
the prototype declaration of swap includes argument types for each for­
mal parameter. The identifiers within the parentheses of the declaration 
and definition can be the same or different. What is important is that the 
types of the actual arguments match those of the formal parameter lists in 
both the prototype declaration and the eventual definition. 

7 .4.2 Calls with a Variable Number of Arguments 

To call a function with a variable number of arguments, simply specify 
any number of arguments in the function call. If there is a prototype 
declaration of the function, a variable number of arguments can be 
specified by placing a comma followed by three periods ( , •.. ) at the end of 
the formal parameter list or list of argument types (see Section 4.5, "Func­
tion Declarations"). The function call must include one argument for each 
type name declared in the formal parameter list or the list of argument 
type. 

Similarly, the formal parameter list (or identifier list, in the obsolescent 
form) in the function definition can end with a comma followed by three 
periods(, •.. ) to indicate a variable number of arguments. See Section 7.2, 
"Function Definitions," for more information about the form of the formal 
parameter list. 

Note 

To maintain compatibility with previous versions, a Microsoft 
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extension to the ANSI C standard allows a comma without trailing 
periods (,) at the end of the list of formal parameters to indicate a 
variable number of arguments. See your User's Guide for information 
on enabling and disabling extensions. 

All the arguments specified in the function call are placed on the stack. 
The number of formal parameters declared for the function determines 
how many of the arguments are taken from the stack and assigned to the 
formal parameters. You are responsible for retrieving any additional argu­
ments from the stack and for determining how many arguments are 
present. See your User's Guide for information about macros that you can 
use to handle a variable number of arguments in a portable way. 

7 .4.3 Recursive Calls 

Any function in a C program can be called recursively; that is, it can call 
itself. The C compiler allows any number of recursive calls to a function. 
Each time the function is called, new storage is allocated for the formal 
parameters and for the auto and register variables so that their values in 
previous, unfinished calls are not overwritten. Parameters are only directly 
accessible to the instance of the function in which they are created. Previ­
ous parameters are not directly accessible to ensuing instances of the func­
tion. 

Note that variables declared with static storage do not require new 
storage with each recursive call. Their storage exists for the lifetime of the 
program. Each reference to such a variable accesses the same storage 
area. 

Although the C compiler does not limit the number of times a function can 
be called recursively, the operating environment may impose a practical 
limit. Since each recursive call requires additional stack memory, too 
many recursive calls can cause a stack overflow. 
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Preprocessor Directives and Pragmas 

8.1 Introduction 

A "preprocessor directive" is an instruction to the C preprocessor. The C 
preprocessor is a text processor that manipulates the text of a source file 
as the first phase of compilation. The compiler ordinarily invokes the 
preprocessor in its first pass, but the preprocessor can also be invoked 
separately to process text without compiling. 

Preprocessor directives are typically used to make source programs easy to 
change and easy to compile in different execution environments. Direc­
tives in the source file tell the preprocessor to perform specific actions. 
For example, the preprocessor can replace tokens in the text, insert the 
contents of other files into the source file, or suppress compilation of part 
of the file by removing sections of text. 

The C preprocessor recognizes the following directives: 

#define 
#elif 
#else 
#endif 

#if 
#ifdef 
#ifndef 
#include 

#line 
#undef 

The number sign ( #) must be the first non-white-space character on the 
line containing the directive; white-space characters can appear between 
the number sign and the first letter of the directive. Some directives 
include arguments or values. Any text that follows a directive (except an 
argument or value that is part of the directive) must be enclosed in com­
ment delimiters (/ * * /). 
Preprocessor directives can appear anywhere in a source file, but they 
apply only to the remainder of the source file in which they appear. 

A "preprocessor operator" is an operator that is only recognized as an 
operator within the context of preprocessor directives. There are only 
three preprocessor-specific operators: the "stringizing" operator ( # ), the 
"token-pasting" (##)operator, and the defined operator. The first two 
are discussed in in the context of the #define directive in Sections 8.2.2.1 
and 8.2.2.2. The defined operator is discussed in Section 8.4.1. 

A "pragma" is a "pragmatic," or practical, instruction to the C compiler. 
Pragmas in C source files are typically used to control the actions of the 
compiler in a particular portion of a program without affecting the pro­
gram as a whole. Section 8.6 describes the syntax for pragmas. However, 
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the compiler implementation defines the particular pragmas that are avail­
able and their meanings. See your User's Guide for information about the 
use and effects of pragmas. 

8.2 Manifest Constants and Macros 

The #define directive is typically used to associate meaningful identifiers 
with constants, keywords, and commonly used statements or expressions. 
Identifiers that represent constants are called "manifest constants." 
Identifiers that represent statements or expressions are called "macros." 

Once you have defined an identifier, you cannot redefine it to a different 
value without first removing the original definition. However, you can 
redefine the identifier with exactly the same definition. Thus, the same 
definition can appear more than once in a program. 

The #undef directive removes the definition of an identifier. Once you 
have removed the definition, you can redefine the identifier to a different 
value. Sections 8.2.2 and 8.2.3 discuss the #define and # undef direc­
tives, respectively. 

In practical terms there are two types of macros. "Object-like" macros 
take no arguments, while "function-like" macros can be defined to accept 
arguments, so they look and act like function calls. Because macros do 
not generate actual function calls, you can make programs faster by 
replacing function calls with macros. However, macros can create prob­
lems if you do not define and use them with care. You may have to use 
parentheses in macro definitions with arguments to preserve the proper 
precedence in an expression. Also, macros may not handle expressions with 
side effects correctly. See the examples in Section 8.2.2 for more informa­
tion. 

8.2.1 Preprocessor Operators 

There are three preprocessor-specific operators, one of which is represented 
by the number sign ( # ), one by a double number sign ( # # ), and the 
third by the word defined. The # preceding an identifier in the body of a 
preprocessor macro allows strings to be formed when the macro is 
expanded. It is referred to as the "stringizing" operator. The # # opera­
tor, called the "token pasting" operator, allows tokens used as actual 
arguments to be concatenated to form other tokens. These two operators 
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are used in the context of the #define directive and are described in Sec­
tions 2.2.2.1 and 2.2.2.2. 

Finally, the defined operator simplifies the writing of compound expres­
sions in certain macro directives. It is used in conditional compilation, and 
is therefore discussed in Section 8.4.1. 

8.2.2 The #define Directive 

Syntax 

#define identifier substitution-text 
# define identifier(parameter-list) substitution-text 

Object-like macro 
Function-like macro 

The #define directive substitutes the substitution-text for all subsequent 
occurrences of the identifier in the source file. The identifier is replaced 
only when it forms a token. (Tokens are described in Chapter 2, "Ele­
ments of C" and Appendix B, "Syntax Summary.") For instance, the 
identifier is not replaced if it appears within a string or as part of a longer 
identifier. 

If a parameter-list appears after the identifier, the #define directive 
replaces each occurrence of identifier(parameter-list) with a version of 
substitution-text that has actual arguments substituted for formal parame­
ters. 

The substitution-text consists of a series of tokens, such as keywords, con­
stants, or complete statements. One or more white-space characters must 
separate the substitution-text from the identifier (or from the closing 
parenthesis of the parameter-list). This white space is not considered part 
of the substituted text, nor is any white space following the last token of 
the text. Text longer than one line can be continued onto the next line by 
placing a backslash(\) before the new-line character. 

The substitution-text can also be empty. This option removes instances of 
the identifier from the source file. The identifier is still considered defined, 
however, and yields the value 1 when tested with the #if directive (dis­
cussed in Section 8.4.1). 

The optional parameter-list consists of one or more formal parameter 
names separated by commas. Each name in the list must be unique, and 
the list must be enclosed in parentheses. No spaces can separate the 
identifier and the opening parenthesis. The scope of the formal parameter 
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names extends to the new line that ends the substitution-text. 

Formal parameter names appear in substitution-text to mark the places 
where actual values will be substituted. Each parameter name can appear 
more than once in the substitution-text, and the names can appear in any 
order. 

The actual arguments following an instance of the identifier in the source 
file are matched to the formal parameters of the parameter-list, Each for­
mal parameter in the substitution-text that is not preceded by a # or # # 
operator (or followed by a## operator) is replaced by the corresponding 
actual argument. (These operators are described below in Sections 2.2.2.1 
and 2.2.2.2.) The actual-argument list and the formal parameter-list must 
have the same number of arguments. 

Any macros in the actual argument are expanded, and the expanded string 
is substituted for the formal parameter. However, if the name of the macro 
being defined occurs in the substitution-text, it is not expanded. 

Arguments with side effects sometimes cause macros to produce unex­
pected results. A given formal parameter may appear more than once in a 
macro definition. If that formal parameter is replaced by an expression 
with side effects, the expression, with its side effects, is evaluated more 
than once (see example 4 below). 

8.2.2.1 Stringizing Operator(#) 

The # operator is used only with function-like macros. If the # precedes 
a formal parameter in the macro definition, the expanded actual argument 
passed by the macro invocation is treated as a string literal. The string 
literal then replaces each occurrence of the #-formal-parameter combina­
tion within the macro definition. Any white space between the tokens in 
the expanded actual argument is reduced to a single white space in the 
resulting string literal. Thus if a comment occurs between two tokens in 
the actual argument, it is reduced to a single white space. The parameter 
is automatically concatenated with any adjacent string literals from which 
it is sepatated only by white space. Furthermore, if a character passed as 
an argument to the macro would normally require an escape sequence 
when used in a string literal (for example the ' character), the backslash is 
automatically inserted before the character. Example 6 illustrates some 
applications of the # operator. 
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Note 

The Microsoft extension to the ANSI C standard that previously 
enabled expansion of macro formal arguments appearing in string 
literals and character constants is no longer supported. Macros that 
relied on this extension should be rewritten using the stringizing ( #) 
operator. 

8.2.2.2 Token-Pasting Operator ( # #) 

The # # operator, ref erred to as the "token-pasting" or "concatenation" 
operator is used in both object-like and function-like macros. It permits 
joining together of separate tokens into a single token, and therefore can­
not be the first or last token in the macro definition. Its use has the follow­
ing form: 

# define identifier token# # token # # token ... 

The identifier represents the name by which the concatenated tokens will 
be known in the program before replacement. Each token represents a 
token defined elsewhere, either within the program or on the compiler 
command line. White space preceeding or following the operator is 
optional. 

If a formal parameter in the macro definition is preceded or followed by 
the # # operator, the fomal parameter is immediately replaced by the 
unexpanded actual argument. The # # operator is then removed, and the 
tokens preceding and following it are concatenated. The resulting token 
must be a valid token, and it is then rescanned for possible replacement if 
it represents a macro name. Example 7 shows how tokens can be pasted 
together using the # # operator. 

Examples 

/******************** Example 1 ********************/ 

#define WIDTH 
#define LENGTH 

80 
(WIDTH + 10) 
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The Example 1 defines the identifier WIDTH as the integer constant 80, 
and defines LENGTH in terms of WIDTH and the inte~er constant 10. Each 
occurrence of LENGTH is replaced by (WIDTH + 10). In turn, each 
occurrence of WIDTH + 10 is replaced by the expression (80 + 10). 
The parentheses around WIDTH + 10 are important because they control 
the interpretation in a statement such as the following: 

var = LENGTH * 20; 

After the preprocessing stage the statement becomes 

var = (80 + 10) * 20; 

which evaluates to 1800. Without parentheses, the result is 

var = 80 + 10 * 20; 

which evaluates to 280 because the multiplication operator ( *) has higher 
precedence than the addition operator ( + ). 

/******************** Example 2 ********************/ 

#define FILEMESSAGE "Attempt to create file \ 
failed because of insufficient space" 

Example 2 defines the identifier FILEMESSAGE. The definition is 
extended to a second line by using the backslash escape character (\). 

/******************** Example 3 ********************/ 

#define REGl 
#de fine REG2 
#de fine REG3 

register 
register 

Example 3 defines three identifiers, REGl, REG2, and REG3. REG! and 
REG2 are defined as the keyword register. The definition of REG3 is 
empty, so each occurrence of REG3 is removed from the source file. These 
directives can be used to ensure that the program's most important vari­
ables (declared with REG! and REG2) are given register storage. (See the 
discussion of the #if directive in Section 8.4.1 for an expanded version of 
this example.) 

/******************** Example 4 ********************/ 
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#define MAX (x, y) ( (x) > (y) ) ? (x) : (y) 

Example 4 defines a macro named MAX. Each occurrence of the identifier 
MAX after the definition in the source file is replaced by the expression 
( (x) > (y)) ? (x) : (y), where actual values replace the parame­
ters x and y. For example, the occurrence 

MAX (1, 2) 

is replaced by 

( {1) > (2)) ? (1) (2) 

and the occurrence 

MAX (i, s [i]) 

is replaced by 

( (i) > (s [i])) ? (i) : (s [i]) 

This macro is easier to read than the corresponding expression, which 
makes the source program easier to understand. 

Note that arguments with side effects may cause this macro to produce 
unexpected results. For example, the occurrence MAX (i, s [i ++]) is 
replaced by ((i) > (s [i++])) ? (i) : (s [i++]). The expression 
(s [i++]) may be evaluated twice, so by the time the ternary expression 
has been fully evaluated, i has increased by 2. The result of the ternary 
expression is unpredictable, since its operands can be evaluated in any 
order, and the value of i varies depending on the evaluation order. 

/******************** Example 5 ********************/ 

#define MULT(a,b) ((a) * (b)) 

Example 5 defines the macro MULT. Once the macro is defined, an 
occurrence such as MULT ( 3, 5) is replaced by ( 3) * ( 5) . The 
parentheses around the parameters are important because they control the 
interpretation when complex expressions form the arguments to the 
macro. For instance, the occurrence MULT (3 + 4, 5 + 6) is replaced 
by (3 + 4) * (5 + 6), which evaluates to 77. Without the 
parentheses, the result would be 3 + 4 * 5 + 6, which evaluates to 29 

. because the multiplication operator ( *) has higher precedence than the 
addition operator ( + ). 
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/******************** Example 6 ********************/ 

#define GREETING Hello, World! 
#define show(x) printf(#x) 

main() 
{ 

} 

show ( x + z ) ; 
printf("\n"); 
show(n /*some comment*/+ p); 
printf("\n"); 
show(GREETING); 
printf("\n"); 
show("This \"is a double quote mark"); 
printf("\n"); 
show ( '\x ' ) ; 

Example 6 defines two macros, one an object-like macro that expands to 
the string literal Hello, world!, and the other a function-like macro 
called show, that takes one argument. However, the definition of the 
second macro includes the stringizing operator ( #) immediately preceding 
the formal parameter x. When an argument is passed to the show macro, 
the formal parameter is replaced by the expanded actual argument 
enclosed in double quotation marks, thus "stringizing" it. 

As the preprocessor progresses through the source file, the references to 
show are expanded as follows: 

show ( x + z ) ; produces printf ("x + z"); 

show (n /* comment */ + p); produces printf ("n + p"); 

show (GREETING); produces printf ("Hello, world"); 

show("This \"is a double quote mark"); 

produces 

printf("\"This \\\"is a double quote mark\""); 

and finally, show ( '\x'); produces printf (" '\ \x' "); 

When the program is run, the screen output would be: 

x + z 
n + p 
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Hello, world 
This " is a double quote mark 
\x 

/******************* Example 7 *********************/ 
#define father_ printf("functions look like this: foo()\n"); 
#define like_ printf("\n\nMicrosoft "); 
#define son_ printf ("macros can look like this: me_ too() \n"); 
#define cat_tokens(x,y,z) x##y##z 
#define father like_son_ printf("C has them now!\n"); 
#define son_like_father_ printf("C has always had them\n"); 

main() 
{ 

} 

like ; 
father 
like ; 
son ; 
cat_tokens(father_,like_,son_) 
cat_tokens(son_,like_,father_) 
like ; 
cat_tokens(son_,like_,father_) 
like ; 
cat_tokens(father_,llke_,son_) 

The tokens passed to the cat_tokens macro are pasted together to 
create other tokens defined elsewhere in the program. When this code is 
executed, the output will appear as follows: 

Microsoft functions look like this: foo() 
Microsoft macros can look like this: me_too() 
C has them now! 
C has always had them 
Microsoft C has always had them 
Microsoft C has them now! 

8.2.3 The #undef Directive 

Syntax 

# undef identifier 

The #undef directive removes the current definition of identifier. The 
preprocessor ignores subsequent occurrences of identifier. To remove a 
macro definition using # undef, give only the macro identifier; do not give 
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a parameter list. 

You can also apply the #undef directive to an identifier that has no pre­
vious definition. This ensures that the identifier is undefined. 

The # undef directive is typically paired with a #define directive to 
create a region in a source program in which an identifier has a special 
meaning. For example, a specific function of the source program can use 
manifest constants to define environment-specific values that do not affect 
the rest of the program. The # undef directive also works with the #if 
directive (see Section 8.4.1) to control conditional compilation of the 
source program. 

Example 

#define WIDTH 
#de fine ADD (X, Y) 

#undef WIDTH 
#undef ADD 

80 
(X) + (Y) 

In this example, the #undef directive removes definitions of a manifest 
constant and a macro. Note that only the identifier of the macro is given. 

8.3 Include Files 

Syntax 

#include "pathname" 
#include <pathname> 

The #include directive adds the contents of a given "include file" to 
another file. You can organize constant and macro definitions into include 
files and then use #include directives to add these definitions to any 
source file. Include files are also useful for incorporating declarations of 
external variables and complex data types. You only need to define and 
name the types once in an include file created for that purpose. 
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The #include directive tells the preprocessor to treat the contents of the 
named file as if they appeared in the source program at the point where 
the directive appears. The new text can also contain preprocessor direc­
tives. The preprocessor carries out directives in the new text, then contin­
ues processing the original text of the source file. 

The pathname is a file name optionally preceded by a directory 
specification. It must name an existing file. The syntax of the file 
specification depends on the operating system on which the program is 
compiled. 

The preprocessor uses the concept of a "standard" directory or directories 
to search for include files. The location of the standard directories for 
include files depends on the implementation and the operating system. See 
your User's Guide for a definition of the standard directories. 

The preprocessor stops searching as soon as it finds a file with the given 
name. If you specify a complete, unambiguous path name for the include 
file, in double quotation marks(" "), the preprocessor searches only that 
path name and ignores the standard directories. 

If you give an incomplete pathname enclosed in double quotation marks for 
the include file, the preprocessor first searches for the file in the same 
directory as the current source file (the "current working directory"); then 
in the directories specified on the compiler command line; and finally in 
the standard directories. 

If the file specification is enclosed in angle brackets, the preprocessor does 
not search the current working directory. It begins by searching for the 
file in the directories specified on the compiler command line, then in the 
standard directories. 

An #include directive can be nested; in other words, the directive can 
appear in a file named by another #include directive. When the prepro­
cessor encounters the nested #include directive, it processes the named 
file and inserts it into the current file. The preprocessor uses the search 
procedures outlined above to search for nested include files. 

The new file can also contain #include directives. Nesting can continue 
up to 10 levels. Once the nested #include is processed, the preprocessor 
continues to insert the enclosing include file into the original source file. 
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Examples 

/******************** Example 1 ********************/ 
#include <stdio.h> /* Example 1 */ 

Example 1 adds the contents of the file named stdio. h to the source pro­
gram. The angle brackets cause the preprocessor to search the standard 
directories for stdio. h, after searching directories specified on the com­
mand line. 

/******************** Example 2 ********************/ 
#include "clefs .h" 

Example 2 adds the contents of the file specified by defs .h to the source 
program. The double quotation marks mean that the preprocessor 
searches the directory containing the current source file first. 

8.4 Conditional Compilation 

This section describes the syntax and use of directives that control "condi­
tional compilation." These directives allow you to suppress compilation of 
parts of a source file by testing a constant expression or identifier to deter­
mine which text blocks will be passed on to the compiler and which text 
blocks will be removed from the source file during preprocessing. 

8.4.1 The #if, #elif, #else, and #endif Directives 

Syntax 

# if restrz"cted-constant-expression 
[ substituti"on-text] 

[ # elif restricted-constant-expression 
substitution-text ] 

[ # elif restricted-constant-expression 
substitution-text] 
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[#else 
subsWution-text] 

#endif 

Preprocessor Directives and Pragmas 

The #if directive, together with the # elif, #else, and # endif directives, 
controls compilation of portions of a source file. Each #if directive in a 
source file must be matched by a closing #endif directive. Any number of 
f/=elif directives can appear between the# if and #endif directives, but 
at most one #else directive is allowed. The #else directive, if present, 
must be the last directive before #endif. 

The preprocessor selects one of the given blocks of substitution-text for 
further processing. A substitution-text block can be any sequence of text. 
It can occupy more than one line. Usually the substitution-text block is pro­
gram text that has meaning to the compiler or the preprocessor. However, 
this is not a requirement; you can use the preprocessor to process any kind 
of text. 

The preprocessor processes the selected substitution-text and passes it to 
the compiler. If the substitution-text contains preprocessor directives, the 
preprocessor carries out those directives. 

Any substitution-text blocks not selected by the preprocessor are removed 
from the file during preprocessing. Thus, these text blocks are not com­
piled. 

The preprocessor selects a single substitution-text block by evaluating the 
restricted-constant-expressions following each #if or #elif directive until 
it finds a true (nonzero) restricted-constant-expression. It selects all 
substitution-text between the first true restr£cted-constant-expression and 
the next number sign ( #) which is not an # elif or #else. 

If all occurrences of restricted-constant-expression are false, or if no #elif 
directives appear, the preprocessor selects the substitution-text after the 
#else clause. If the #else clause is omitted, and all restricted-constant­
expressions in the #if block are false, no substitution text is selected. 

Each restricted-constant-expression follows the rules for restricted constant 
expressions discussed in Section 5.2.10. Such expressions cannot contain 
sizeof expressions, type casts, or enumeration constants. However, they 
can contain the preprocessor operator defined in special constant expres­
sions, as shown by the following syntax: 

defined( identifier) 
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This constant expression is considered true (nonzero) if the identifier is 
currently defined; otherwise, the condition is false (0). An identifier 
defined as empty text is considered defined. 

The #if, #elif, #else, and #endif directives can nest in the text por­
tions of other #if directives. Each nested #else, #elif, or #endif direc­
tive belongs to the closest preceding #if directive. 

Examples 

/******************** Example 1 ********************/ 

#if defined(CREDIT) 
credit(): 

#elif defined(DEBIT) 
debit(): 

#else 
pr in terror () : 

#endif 

In example 1, the #if and #endif directives control compilation of one of 
three function calls. The function call to credit is compiled if the 
identifier CREDIT is defined. If the identifier DEBIT is defined, the func­
tion call to debit is compiled. If neither identifier is defined, the call to 
pr interror is compiled. Note that CREDIT and credit are distinct 
identifiers in C because their cases are different. 

/******************** Example 2 ********************/ 

#if DLEVEL > 5 
#define SIGNAL 1 
#if STACKUSE = 1 

#else 

#endif 
#else 

#define STACK 200 

#define STACK 100 

#define SIGNAL 0 
#if STACKUSE = 1 

#else 

#endif 
#endif 
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/******************** Example 3 ********************/ 

#if DLEVEL == 0 
#de fine STACK 0 

#elif DLEVEL = 1 
#define STACK 100 

#elif DLEVEL > S 
display( debugptr ); 

#else 
#define STACK 200 

#endif 

Examples 2 and 3 assume a previously defined manifest constant named 
DLEVEL. 

Example 2 shows two sets of nested #if, #else, and #endif directives. 
The first set of directives is processed only if DLEVEL > 5 is true. Other­
wise, the second set is processed. 

In Example 3, #elif and #else directives are used to make one of four 
choices, based on the value of DLEVEL. The manifest constant STACK is 
set to 0, 100, or 200, depending on the definition of DLEVEL. If DLEVEL 
is greater than 5, display (debugptr); is compiled and STACK is not 
defined. 

/******************** Example 4 ********************/ 

#de fine REGl 
#define REG2 

register 
register 

#if defined(M._86) 
#de fine REG3 
#de fine REG4 
#define REGS 

#else 
#define REG3 register 
#if defined(M._68000) 

#define REG4 
#define REGS 

#else 
#define REG4 
#define REGS 

#endif 
#endif 

register 
register 

register 
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Example 4 uses preprocessor directives to control the meaning of register 
declarations in a portable source file. The compiler assigns register 
storage to variables in the order in which the register declarations appear 
in the source file. If a program contains more register declarations than 
the machine allows, the compiler honors earlier declarations over later 
ones. The program may be less efficient if the variables declared later are 
more heavily used. 

The definitions listed in example 4 can be used to give priority to the most 
important register declarations. REGl and REG2 are defined as the regis­
ter keyword to declare register storage for the two most important vari­
ables in the program. For example, in the following fragment, b and c 
have higher priority than a or d: 

func (a) 

REG3 int a; 

{ 

} 

REGl int b; 
REG2 int c; 
REG4 int d; 

When M_86 is defined, the preprocessor removes the REG3 identifier from 
the file by replacing it with empty text. This prevents a from receiving 
register storage at the expense of b and c. When M_68000 is defined, all 
four variables are declared to have register storage. When neither M_86 
nor M_68000 is defined, a, b, and c are declared with register storage. 

8.4.2 The #ifdefand #ifndefDirectives 

Syntax 

# ifdef identifier 
# ifndef identifier 

The #if def and # ifndef directives perform the same task as the #if 
directive used with defined{ identifier). You can use the #if def and 
# ifndef directives anywhere #if can be used. These directives are pro­
vided only for compatibility with previous versions of the language. The 
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defined( identifier) constant expression used with the #if directive is pre­
ferred. 

When the preprocessor encounters an #ifdef directive, it checks to see 
whether the identifier is currently defined. If so, the condition is true 
(nonzero); otherwise, the condition is false (0). 

The # ifndef directive checks for the opposite of the condition checked by 
#if def. If the identifier has not been defined (or its definition has been 
removed with #undef), the condition is true (nonzero). Otherwise, the 
condition is false (0). 

8.5 Line Control 

Syntax 

#line constant [ "filename" ] 

The #line directive tells the preprocessor to change the compiler's inter­
nally stored line number and file name to a given line number and file 
name. The compiler uses the line number and file name to ref er to errors 
that it finds during compilation. The line number normally refers to the 
current input line, and the file name refers to the current input file. The 
line number is incremented after each line is processed. 

If you change the line number and file name, the compiler ignores the pre­
vious values and to continues processing with the new values. The #line 
directive is typically used by program generators to cause error messages 
to rref er to the original source file instead of the generated program. 

The constant value in the #line directive can be any integer constant. 
The filename can be any combination of characters and must be enclosed 
in double quotation marks (" "). If filename is omitted, the previous file 
name remains unchanged. 

The current line number and file name are always available through the 
predefined identifiers _ _LINE __ and _ _FILE __ . You can use the 
_ _LINE __ and _ _FILE __ identifiers to insert self-descriptive error mes­
sages into the program text. 
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The _ _FILE __ identifier contains a string representing the file name, sur­
rounded by double quotation marks(" "). Thus, you do not need to 
enclose the _ _FILE __ identifier in quotation marks when you use it as a 
string. 

Examples 

/******************** Example 1 ********************/ 

#line 151 "copy.c" 

In example 1, the internally stored line number is set to 151 and the file 
name is changed to copy. c. 

/******************** Example 2 ********************/ 

#define ASSERT(cond} if(!cond}\ 
{printf ("assertion error line %d, file (%s) \n", \ 
_LINE_, _EILE_ ) ; } else 

In example 2, the macro ASSERT uses the predefined identifiers 
_ _LINE __ and _ _FILE __ to print an error message about the source file 
if a given "assertion" is not true. Note that no quotation marks are needed 
around _ _FILE __ . 

8.6 Pragmas 

Syntax 

# pragma character-sequence 

A #pragma is an implementation-defined instruction to the compiler. 
The character-sequence is a series of characters that gives a specific com­
piler instruction and arguments, if any. The number sign ( #) must be the 
first non-white-space character on the line containing the pragma; white­
space characters can separate the number sign and the word pragma. 
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See your User's Guide for information abcrntthe pragmas available in your 
compiler implementation. · 
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Differences 

This appendix summarizes differences between Microsoft C and the 
description of the C language found in Appendix A of The C Programmi"ng 
Language by Brian W. Kernighan and Dennis M. Ritchie, published in 
1978 by Prentice-Hall, Inc. The following is a list of the differences, with 
cross-references to the corresponding section numbers in The C Program­
mi"ng Language: 

Section Number in 
Kernighan and Ritchie 

2.2 

2.3 

2.4.1 

Microsoft C 

Identifiers (including those used in 
preprocessor directives) are 
significant to 31 characters. External 
identifiers are also significant to 31 
characters. 

The identifiers asm and entry are 
no longer keywords. New keywords 
are const, volatile, enum, signed, 
and void. (The volatile keyword is 
implemented syntactically, but not 
semantically.) The identifiers cdecl, 
far, fortran, huge, near, and pas­
cal may be keywords, depending on 
whether or not the corresponding 
options are enabled when a program 
is compiled (see your system docu­
mentation). 

As a result of the method used to 
assign types to hexadecimal and 
octal constants, these constants 
always act like unsigned integers in 
type conversions. 
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2.4.3 

2.6 

4 

224 

Hex. adecimal bitlatterns consisting 
of a backslash(\ , the letter x, and 
up to three hexa ecimal digits are 
permitted as character constants (for 
example, \x012). 

Microsoft C defines three additional 
esc~pe sequences:.\ v represents a 
verti<;al tab (VT), \" represents the 
double-quote character, and \a 
represents the helL(also called alert). 

Character constants always have 
type int, with the result that they 
a_re sign-extended in type conver­
sions. 

Adjacent quoted string literals are 
concatenated and treated as a single 
null-terminated string. 

The short type is always 16 bits 
long, and the long type is 32 bits 
long. The size of an int is machine­
dependent. On 8086/8088, 80186, 
and 80286 processors an int is 16 
bits long, and on 80386 and 68000 
processors it is 32 bits long. 

The char type is signed by default, 
with the result that a char value is 
sign-extended in type conversions. 
(In some implementations, the 
default for the char type can be 
c~an~ed to unsigned at compile 
t1me.J 

Two additional unsigned types 
are supported: unsigned char and 
unsigned long. 

The keyword unsigned or signed 
can be applied as an adjective to an 
integer type. When unsigned 
appears alone, it means unsigned 
int. Similarly, when signed appears 
alone, it means int. The additional 



6.4 

6.6 
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floating type long double is sup­
ported, but the long float type is no 
longer recognized. References to long 
float should be recoded to double. 
type 

The type specifiers constandvolatile 
can be used as modifiers for any fun­
damental, aggregate, or pointer type 
to indicate that the object or pointer 
value will not be modified. Both syn­
tax and semantics of const are 
implemented, but only the syntax of 
volatile is implemented. 

Microsoft C offers an additional fun­
damental type: the en um ( enumera­
tion) type. Variables of enum type 
are treated as integers in all cases. 
The keyword void has three different 
usages: as a function return-type 
specifier, it indicates that the func­
tion will not return a value. In an 
otherwise empty formal-parameter 
list, void means that no arguments 
will be passed. In the construction 
void *, it indicates a pointer to an 
object of unspecified type. 

If the near, far, and huge keywords 
are enabled, pointers of different 
sizes may be used in a program. 
Operations with pointers of different 
sizes may cause conversion of 
pointers; the path of the conversion 
is implementation-defined. 

The arithmetic conversions carried 
out by the Microsoft C Optimizing 
Compiler are outlined in Sections 
5.3.1 and 5.7 of Chapter 5, "Expres­
sions and Assignments." Although 
compatible with the Kernighan and 
Ritchie conversions, the Microsoft C 
conversions are described in greater 
detail, including the specific path for 
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7.2 

7.14 

8.2 

226 

each type of conversion. 

In addition to the usual arithmetic 
conversions, conversions between 
pointers of different sizes may be rou­
tinely carried out when the near, 
far, and huge keywords are enabled. 
The path of the pointer conversions 
is implementation-dependent. 

In connection with the sizeof opera­
tor, a byte is defined as an 8-bit 
quantity. 

A structure can be assigned to 
another structure of the same type. 

The keywords enum, const, vola­
tile, and void are additional type 
specifiers. The volatile keyword is 
implemented syntactically, but not 
semantically. The keyword signed or 
unsigned can serve either as a type 
specifier or as an adjective modifying 
an integer type. 

Therefore, the following additional 
combinations are acceptable: 

signed char 
signed short 
signed short int 
signed long 
signed long int 
unsigned char 
unsigned short 
unsigned short int 
unsigned long 
unsigned long int 

The long float type is not recog­
nized. The long double type is 
recognized and treated in all 
instances the same as double. 



8.4 

8.5 

8.6 

9.7 

10.1 
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The const and volatile keywords 
can be used to modify any fundamen­
tal, aggregate, or pointer object. The 
order of the type specifiers is not 
significant. 

Optional formal-parameter lists or 
argument-type lists can be included 
in function declarations to notify the 
compiler of the number and types of 
arguments expected in a function 
call. 

Bit fields can be declared to be any 
signed or unsigned integral type, 
except enum. However, in expres­
sions bit fields are always treated as 
unsigned. 

The names of structure and union 
members are not required to be dis­
tinct from structure and union tags 
or from the names of other variables. 

No relationship exists between the 
members of two different structure 
types. 

Unions can be initialized by giving 
a value for the first member of the 
umon. 

The expression of a switch can be 
any integral expression, but the 
value of the expression is always con­
verted to an int type. An expression 
with enum type is permitted. Each 
of the case constant expressions is 
cast to the type of the expression. 

New styles for function declarations 
and definition, as specified in the 
Draft Proposed American National 
Standard-Programming Language 
C , are completely supported. This 
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12 

12.3 

228 

includes the function prototype 
declaration, the prototype-style 
definition with formal parameters 
declared in the header, and the 
default creation of prototypes from 
the first reference to a function (if no 
explicit prototype is provided). The 
old function declaration and 
definition forms are also supported. 

The formal parameter list in a func­
tion definition or declaration can end 
with a comma followed by three 
periods(, ... ) or just a comma(,) to 
indicate that the number of parame­
ters is variable. The latter is sup­
ported only for compatibility with 
older versions of the compiler and 
should not be used in new code. 

The number sign(#) introduc-
ing the preprocessor directive can be 
preceded by any combination of 
white-space characters. White space 
can also separate the number sign 
and the preprocessor keyword. 

In addition to preprocessor direc­
tives, the source file can contain 
pragmas. Pragmas, like directives, 
are introduced by a number sign as 
the first non-white-space character in 
a line. The action defined by a par­
ticular pragma is implementation­
dependent. 

Three preprocessor-only operators 
are supported: the "stringizing" ( #) 
operator, the concatenation or 
"token-pasting" ( # #) operator, and 
the defined operator. 

The new combination #if 
defined( identifier) is intended to 
supplant the #ifdef and #ifndef 
directives. Use of the latter directives 
is discouraged. 



14.l 

17 
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The new directive #elif (else-if) is 
designed for use in #if and #if 
defined blocks. 

A structure or union can be assigned 
to another structure or union of the 
same type. Structures and unions 
can be passed by value to functions 
and returned by functions. 

In expressions involving - >, the 
expression preceding the arrow must 
have the same type (or must be cast 
to the same type) as the structure to 
which the member on the right-hand 
side of the arrow belongs. 

The listed anachronisms are not 
recognized. 
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B.1 Tokens 

keyword 
identifier 
constant 
string 
operator 
separator 

B.1.1 Keywords 

auto 
break 
case 
char 
const 
continue 
default 
do 

double 
else 
en um 
extern 
float 
for 
goto 
if 

* Semantics not yet implemented 

int 
long 
register 
return 
short 
signed 
sizeof 
static 

Syntax Summary 

struet 
switch 
typedef 
union 
unsigned 
void 
volatile* 
while 

The following identifiers may be keywords in some implementations. See 
your User's Guide for information. 

cdeel 
far 
fortran 
huge 
near 
pascal 

B.1.2 Identifiers 

identifier. 
letter 
underscore 
identifier letter 
identifier underscore 
identifier digit 
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letter-one of the following: 
abcdefghijklm 
nopqrstuvwxyz 
ABCDEFGHIJKLM 
NOPQRSTUVWXYZ 

underscore: 

digit-one of the following: 
0123456789 

B.1.3 Constants 

constant: 
integer-constant 
long-constant 
floatz"ng-point-constant 
char-constant 
enum-constant 

integer-constant: 
0 
decimal-constant 
octal-constant 
hexadecimal-constant 

decimal-constant: 
nonzero-digit 
decimal-constant digit 

nonzero-digit-one of the following: 
123456789 

octal-constant: 
Ooctal-digit 
octal-constant octal-digit 

octal-digit-one of the following: 
01234567 

hexadecimal-constant: 

234 

Oxhexadecimal-digit 
OXhexadecimal-digi"t 



hexadecimal-constant hexadecimal-digit 

hexadecimal-digit-one of the following: 
0123456789 
abcdef 
ABC DEF 

long-constant: 
integer-constant 1 
integer-constant L 

floating-point-constant: 
fractional-constant exponent 
fractional-constant 
digit-seq exponent 

fractional-constant: 
digit-seq . digit-seq 
. digit-seq 
digit-seq. 

digit-aeq: 
digit 
digit-seq digit 

exponent: 
e sign digit-seq 
E sign digit-seq 
e digit-seq 
E digit-seq 

sign: 
+ 

char-constant: 
'char' 

char: 
rep-char 
escape-sequence 

Syntax Summary 
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rep-char: 
Any single representable character except the single quote ('), 
backslash (\), or new-line character 

escape-sequence-one of the following: 
\' \" \ \ \ d \ dd \ ddd 
\xd \xdd \xddd \a \b \f 
\n \r \t \v 

enum-constant: 
identif£er 

B.1.4 Strings 

strina-literal: .. ~, 
"char-seq" 

char-seq: 
char 
char-seq char 

B.1.5 Operators 

operator-one of the following: 
! - ++ 

* I % 
>> < <= > ,_ I & -- .- I 
&& II - += 
*= [= %= >>= 
&= 

,_ r: - 1-
{] () -> 
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<< 
>= 
A 

-= 
<<= 



B.1.6 Separators 

separator-one of the following: 
[ ] ( ) { } 
* . - . # ' . - ' 

B. 2 Expressions 

expression: 
identifier 
constant 
string 
expression~expression-list) 
expression void) 
expression expression] 
expression. identij£er 
expression-> identifi"er 
unary-expression 
binary-expression 
ternary-expression 
assignm~nt-expression 
(expression) 
(type-name) expression 
constant-expression 

expression-~ist: 
expression 
expression-list , expression 

unary-expression; 
unop expression 
sizeof( expression) 

unop-one of the following: 
- ! * & 

!value: 
identifier 
express~on[ express~on] 
expression. expression 
expression-> expression 

Syntax Summary 
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*expression 
(type-name) expression 
(!value) 

type-name: 
See Section B.3, "Declarations." 

binary-expression: 
expression binop expression 

binop-one of the following: 

* << 
>= 

I % + 
>> < > 
-- != & 

II 
II && 

<= 
I 
I 

ternary-expression: 
expression ? expression : expression 

assignment-expression: 
/value++ 
lvalue-­
++lvalue 
--/value 
/value assignment-op expression 

assignment-op-one of the following: 
= *= /= %= 
<<= >>= &= I= 

constant-expression: 
identifier 
constant 
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unary-expression 
binary-expression 
ternary-expression 
(constant-expression) 

+= --
= 



B.3 Declarations 

declaration: 
Sc-specifier type-specifier-list declarator-list; 
type-specifier-list declarator-list; 
sc-specifier declarator-list; 
typedef type-specifier-l£st declarator-l£st; 

sc-sp ecifier: 
auto 
extern 
register 
static 

type-spec£fier: 
char 
double 
longdouble 
enum-specif£er 
float 
int 
long 
short 
struct-specifier 
typedef-name 
union-specifier 
unsigned 
signed 
signed char 
const 
volatile 

type-spec£fier-list: 
type-specifier 
type-spec£fier-listtype-specif£er 

enum-specifier: 
en um tag { enum-l£st} 
enum { enum-list} 
enum tag 

tag: 
ident£f£er 

Syntax Summary 
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enum-list: 
enumerator 
enum-list , enumerator 

enumerator: 
identifier 
identifier = constant-expressz"on 

struct-specifier: 
struct tag {member-declaration-list} 
struct {member-declaration-list} 
struct tag 

member-declaration-list: 
member-declaration 
member-declaration-list member-declaration 

member-declaration: 
type-specifier declarator-list; 
type-specifier identifier : constant-expression; 
type-specifier : constant-expression; 

declarator-list: 
declarator 
declarator = initializer 
declarator-list , declarator 

declarator: 
identifier 
modifier-list identifier 
declarator[ ] 
declarator[ constant-expression] 
*declarator 
declarator!void) 
declarator formal-parameter-list) 
declarator arg-type-list) 
(declarator) 

modifier-list 
modifier 
modifier-list modifier 

formal-parameter-list 
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formal-parameter 
formal-parameter-list, formal-parameter 



arg-type-list: 
type-name 
arg-type-list, type-name 
arg-type-list, ••• 
arg-type-list, 
void 
void* 

type-name: 
type-specifier 
type-specifier abstract-declarator 

abstract-declarator: 

* modifier* 

i lrg-type-list) 
*abstract-declarator 
abstract-declarator* 
abstract-declarator[ ] 
abstract-dee[ arator[ constant-expression] 
[]abstract-declarator 
[constant-expression] abstract-declarator 
abstract-declarato~void) 
ab.stract-declarato formal-parameter-list) 
abstract-declarator arg-type-lz"st) 
(abstract-declarator) 

initializer: 
expression 
{initializer-list} 

initializer-list: 
initial£zer 
initializer-list, initializer 

typedef-name: 
identifier 

union-specifier: 
union tag {member-declaration-list} 
union {member-declaration-list} 
union tag 

modifier: 

Syntax Summary 
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cdecl 
far 
fortran 
huge 
near 
pascal 

modifier-list 
modifier 
modifier-list modifier 

B.4 Statements 

statement: 
break; 
case constant-expression : statement 
compound-statement 
continue; 
default : statement 
do stat~ment while( expression); 
expression; 
for ([expression]; [expression]; [expression]) statement; 
goto identifier; 
identifier : statement 
if (expression) statement [else statement] 

' return [expression]; 
switch (expression) statement 
while (expression) statement 

compound-statement: 
{ [declaration-list] [statement-list]} 

declaration-list: 
declaration 
declaration-list declaration 

statement-list: 
statement 
statement-list statement 
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B.5 Definitions 

definition: 
function-definition 
data-def£nition 

function-def£nition: 
[ sc-specifier] [type-specifier] declarator ([formal­

parameter-list]) compound-statement 
[ sc-specifier] [type-specifier] declarator ([parameter­

list]) [parameter-decs] compound-statement 

formal-parameter-list: 
fixed-parameter-list 
variable-parameter-list 

parameter-list: 
fixed-parameter-list 
variable-parameter-list 

fixed-parameter-list: 
identifier 
parameter-list , identifier 

variable-parameter-list: 
ffred-parameter-list, ..• 
fixed-parameter-list, 

parameter-decs: 
declaration 
declaration-list declaration 

data-definition: 
declaration 

Syntax Summary 
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B.6 Preprocessor Directives 

directive: 
# 
#define identifier [ ([parameter-list])] [token-seq] 
# elif restricted-constant-expression 
#else 
#endif 
#if restricted-constant-expressz"on 
#if def identifier 
# ifndef identifier 
#include "string" 
#include <string> 
#line digit-seq 
#line digit-seq string 
# undef identifier 

token-seq. 
token 
token-seq token 

restricted-constant-expression: 
defined (identifier) 
Any constant-expression except sizeof expressions, 
casts, and enumeration constants 

B.7 Pragmas 

pragma: 
# pragma char-seq 
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>>(right-shift) operator, 130 
< > (angle brackets), 214 
- > (arrow) in member-selection 

expressions, 113 
> (greater-than) operator, 131 
>= (greater-than-or-equal-to) 

operator, 131 
- >~member-selection) operator, 113 
- > member-selection) operator, 229 
{ } braces) 

compound statement, used in, 158, 
160 

[] (brackets) 
array declarators, used in, 57, 74 
subscript expressions, used in, 110, 

112 
? : (conditional) operator, 136 
%I]% (double brackets), 8 
+ addition) operator, 127 
& address-of) operator, 122 
- (arithmetic neiation) operator, 121 
& (bitwise-AND operator, 132 
- ~itwise-comp ement) operator, 121 
A bitwise-exclusive-OR) operator, 133 
: ( itwise-inclusive-OR) operator, 132 
{} {braces) 

initialization, used in, 95 
, (comma) 

argument-type list, used in, 82 
declarations, used in, 65, 80 
function calls, used in, 110, 194 
initialization, used in, 95 
sequential-evaluation operator, 135 

-- (decrement) operator, 139 
/(division) operator, 125 
= = (equality J operator, 131 
++ (increment) operator, 139 
* (indirection) operator, 122 
!= (inequality) operator, 131 
< < (left-shift) operator, 130 
< (less-than) operator, 131 
< = {less-than-or-equal-to) operator, 

131 
&& (logical-AND) operator, 134 
! (logical-NOT) operator, 121 

:: (logical-OR) operator, 134 
. (inember-sefection) operator, 113 
*(multiplication) operator, 125 
# (number sign), 205 
() (parentheses) 

complex declarators, used in, 58 
expressions, used in, 116 
function calls, used in, 110 
function declarators, used in, 57, 80 
macros, used in, 211 

*(pointer modifier), 57, 76 
",,.-(quotation marks) 

# include directives, used in, 214 
notational conventions, 8 
representation, 14 224 

"" (quotation marks). See also Double­
quote escape seci..uence 

"" (quotation marks). See also Single-
quote escape sequence 

% (remainder) operator, 126 
= (simple-ass1~ment) operator, 140 
- (subtraction)_ operator, 127 
... (three periods), 82 
_ (underscore), 25 
Abstract declarators, 102 
Actual arguments 

conversion, 198 
macro, 208, 211 
order of evaluation, 195 
passing, 198 
pointer, 195, 198 
side effects, 195 
type checking, 198 
variable number, 200 

Addition operator(+), 127 
Address-of operator(&), 122 
Aggregate 

data type category, 55 
Aggregate types 

array, 74 
initialization, 93, 95 
structure, 69 
union, 72 

Anachronisms, 229 
AND operator 
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AND operator (continued) 
bitwise(&), 132 
logical(&&), 134 

Angle brackets ( < > ), 214 
ANSI standard C 

enabling ANSI, 3 
extensions, 3 

ANSI standard C (DPANS), 3 
Apostrophe. See Smgle-quote escape 

sequence 
argc parameter, 38 
Argument type checking 

formal parameters, 189 
function calls, 198, 83, 192, 198 

Arguments 
actual 

conversion, 198 
macro, 208, 211 
order of evaluation, 195 
passing, 198 
pointer, 195, 198 
side effects, 195 
type checking, 198 
variable number, 200 

command line, 38 
formal. See Formal parameters 
main function, 38 
variable number, 82, 200 

Arguments. See also Parameters 
Argument-type lists 

abstract declarator, used with, 103 
pointer arguments, used with, 83 
void *, used with, 83 
void keyword, used with, 83, 81, 82, 

192 
argv parameter, 38 
Arithmetic 

data type category, 55 
Arithmetic conversions, 119, 225 
Arithmetic negation operator(-), 121 
Array modifier([]), 57, 74 
Arrays 

declaration, 57, 74 
elements, 110 
identifiers, 108 
initialization, 93, 95, 99 
multidimensional, 7 4, 112 
references to, 108, 110 
storage, 75, 112 
subscripts, 110 

asm keyword, 223 
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Assignment 
conversions, 146 
described, 107 
expressions, 115 
operators, 137 

Assignment. See also Initialization 
Associativity 

modifiers, 58 
operators, 142 

auto storage class, 86, 90, 93 

Backslash character(\), 14 
Backspace escape sequence, 14 
Bell character, 14, 224 
Binary 

expressions, 115 
operators, 118 

Binary operators 
table, 17 

Bit fields, 70, 71, 227 
Bitwise-AND operator(&), 132 
Bitwise-complement operator C) 121 
Bitwise-exclusive-OR operator ('J, 133 
Bitwise-inclusive-OR operator (1), 132 
Block, 38 
Braces ({ } ) 

compound statement, used in, 158, 
160 

Braces({}) 
initialization, used in, 95 

Brackets 
array declarators, used in, 57, 74 
double (%[ ]%), 8 
subscript expressions, used in, 110, 

112 
Branch statements, 168, 174 
break statement, 159 
Byte, size of, 226 

C character set, 11 
Call by reference. See Passing by 

reference 
Call by value. See Passing by value 
Calls. See Function calls 
Carriage-return escape sequence, 14 
case keyword, 174 
Case sensitivity, 12, 25 
Casts. See Type casts 
cdecl (keyword), 27 



cdecl keyword, 62, 223 
char type 

conversion, 147 
described, 50 
differences from Kernighan & 

Ritchie, 224 
range of values, 53 
storage, 53 

Character constants 
differences from Kernighan & 

Ritchie, 224 
form, 22 
sign-extension, 22 
type, 22 

Character constants. See also Escape 
sequences 

Character sets, 11 
Characters 

backslash(\), 14, 16 
backspace escape sequence, 14 
bell, 14, 224 
carriage-return escape sequence, 14 
case, 12, 25 
continuation(\), 16 
CONTROL-Z, 12 
differences from Kernighan & 

Ritchie, 224 
digits, 12 
double-quote escape sequence, 14 
end-of-file, 12 
escape sequences, 14 
form-feed escape sequence, 14 
hexadecimal escape sequence, 14 
horizontal tab escape sequence, 14 
letters, 12 
new-line escape sequence, 14 
octal escape sequence, 14 
punctuation, 13 
single-quote escape sequence, 14 
special, 13 
underscore (- ), 12 
vertical-tab escape sequence, 14 
white space, 12, 14 

Comma(,) 
argument-type list, used in, 82 
declarations, used in, 65, 80 
function calls, used in, 110, 194 
initialization, used in, 95 
operator, 135 

Command-line arguments, 38 
Comments, 27 
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Comparison operators. See Relational 
operators 

Compilation, conditional, 216, 220 
Complement operators, 120 
Complex declarators, 58, 62 
Compound statements, 160 
Compound-assignment operators, 140 
Concatenation 

of string literals, 23 
Concatenation operator 

differences from Kernighan & 
Ritchie, 228 

Conditional compilation, 216, 220 
Conditional operator(?:), 136 
Conditional statements, 168, 174 
const 

as a pointer modifier, 76 
const keyword, 223 
const type specifier 

described, 51 
Constant expressions 

case, 174 
conversion, 55 
defined(identifier), 217 
described, 107 
directives, used in, 117, 217 
form, 117 
initializers, 117 
restricted, 117, 217 
switch statement, used in, 174 

Constants 
character 

differences from Kernighan & 
Ritchie, 224 

form, 22 
sign-extension, 22 
type, 22 

character. See also Escape sequences 
conversion, 55 
decimal integer, 18, 19 
described, 18 
enumeration, 67 
floating-point, 20, 21, 54 
hexadecimal integer 

conversion, 20, 55 
form, 18 
type, 19 

integer 
differences from Kernighan & 

Ritchie, 223 
form, 18 

247 



Language Reference Index 

integer (continued} 
negative, 19 
type, 19 

long integer, 20 
manifest, 206, 207, 213 
octal integer 

conversion, 20, 55 
form, 18 
type, 19 

string. See String literals 
summarized, 234 
type, 108 

Continuation character(\), 16 
continue statement, 162 
CONTROL-Z character, 12 
Conventions, notational, 6 
Conversions 

actual arguments, 198 
assignment, 146 
constant expressions, 55 
constants, 55 
enumeration types, 152 
floating types, 150 
for function prototypes, 153 
formal parameters, 189, 198 
function call, 153, 198 
hexadecimal constants, 55 
implicit, 151 
octal constants, 55 
operator, 152 
pointer types, 151 
range of values, effects on, 55 
signed integral types, 146, 151 
structure types, 152 
type cast, 152 
union types, 152 
unsigned integral types, 148, 151 
usual arithmetic, 119, 225 
void type, 152 

Data type categories 
aggregate, 55 
arithmetic, 55 
floating, 55 
integral, 55 
pointer, 55 
scalar, 55 

Data types. See Types 
Decimal integer constants, 18, 19 
Declarations 
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Declarations {continued} 
form, 49 
formal parameter names, 80 
formal parameters, 187, 188 
forward. See Declarations, function 
function 

default return type, 80 
default storage class, 92 
described, 33, 80, 181, 192 
differences from Kernighan & 

Ritchie, 227 
form, 80 
implicit, 192 
no arguments, 83 
pointer arguments, 83 
return type, 80, 192 
return value, 191 
storage class, 92, 192 
variable number of arguments, 82 
visibility, 92, 192 

function prototype form, 80 
pointer, 57, 76, 193 
summarized, 239 
type, 99, 100 
typedef, 99, 101 
variable 

array, 74 
default storage class, 88 
described, 33 
enumeration, 66 
external, 86, 87 
form, 64 
internal, 86, 90 
multidimensional arrays, 74 
pointer, 76 
simple, 65 
structure, 69 
union, 72 

Declarators 
abstract, 102 
array, 57 
complex, 58, 62 
described, 57 
function, 57 
parentheses, enclosed in, 58 
pointer, 57 
special keywords, used with, 62 

Decrement operator(-), 139 
Default 

return type, 80 
storage class 



storage class {continued} 
external variable declarations, 88 
function declarations, 92 
internal variable declarations, 90 

default keyword, 174 
# define directive, 207 
defined operator 

differences from Kernighan & 
Ritchie, 228 

defined ,Preprocessor operator, 205 
definedl identifier) constant expression, 

217 
Defining declarations, 87 
Definition 

functions 
obsolescent form, 183 

Definitions 
function 

described, 34, 181, 182 
full prototype form, 183 
storage class, 184 
summarized, 243 
visibility' 184 

variable 
described, 34, 87 
storage class, 87 
summarized, 243 
visibility, 87, 90 

Differences from Kernighan & Ritchie, 
223 

Digits, 12 
Dimensions. See Multidimensional 

arrays 
Directives 

constant expressions, used in, 117, 
217 

# define, 207 
described, 33, 205 
differences from Kernighan & 

Ritchie, 228 
# elif 

described, 217 
differences from Kernighan & 

Ritchie, 229 
nesting, 218 

#else, 217, 218 
# endif, 217, 218 
#if, 217, 218, 228 
#if def, 220, 228 
# ifndef, 220, 228 
#include, 214 
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Directives {continued} 
lifetime, 36 
#line, 221 
restricted constant expressions, 117 
summarized, 244 
#undef, 213 

Division operator(/), 125 
do statement 

described, 163 
execution, continuation of, 162 
execution, termination of, 159 

Double brackets (%[ ]%), 8 
Double quote. See Quotation marks 
double type 

conversion, 150 
described, 50 
internal representation, 54 
range of values, 53 
storage, 53 

Double-<\11;ote escape sequence, 14 
DPANS tANSI standard C, 3 
Dummy-name list, 83 
\ (backslash), 14, 16 
\'escape sequence, 14 
\a escape sequence, 14 
\ b escape sequence, 14 
\ \ escape sequence, 14 
\ f escape sequence, 14 
\ 

Elements 
referring to, 110, 112 

# elif directive 
described, 217 
differences from Kernighan & 

Ritchie, 229 
nesting, 218 

Ellipsis dots, 7 
#else directive, 217, 218 
else keyword, 168 
\ n escape sequence, 14 
# endif directive, 217, 218 
End-of-file character, 12 
entry keyword, 223 
enum type specifier, 66, 223 
Enumeration 

types 
tags 

naming class, 45 
Enumeration constants, 44, 67 
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Enumeration expressions, 108 
Enumeration set, 66 
Enumeration types 

conversion, 152 
declaration, 66, 100 
described, 50 
differences from Kernighan & 

Ritchie, 225 
identifiers, 108 
range of values, 53 
storage, 53, 66 
tags 

type declarations, 100 
variable declarations, 67 

envp, 38 
Equality operator ( = = ), 131 
\ r escape sequence, 14 
Escape sequences 

described, 14 
differences from Kernighan & 

Ritchie, 224 
\ t escape sequence, 14 
\ v escape sequence, 14 
Evaluation order, 134, 143 
Execution. See Program execution 
Exit from functions, 172 
Exponents, 20 
Expression list, 110 
Expressions 

assignment, 115 
binary, 115 
case constant, 17 4 
constant. See Constant expressions 
described, 107 
enumeration, 108 
floating type, 108 
function-call, 110 
grouping, 142 
integral, 108 
!value, 138 
member selection, 113, 229 
operators, used in, 115 
order of evaluation, 143 
parentheses, enclosed in, 116 
pointer, 108 
side effects, 145 
statements, 164 
string literal, 109 
structure, 108 
subscript, 110, 112 
summarized, 237 
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Expressions {continued) 
switch, 174, 227 
ternary, 115 
type cast, 116 
unary, 115 
union, 108 

Extensions to ANSI standard 0, 3 
extern storage class 

described, 86 
external variables, 87 
function declarations, 92, 192 
function definitions, 184 
internal variables, 90 

External declarations 
described, 86 
function, 92 
variable, 87 

far keyword 
conversions, 198 
described, 62 
differences from Kernighan & 

Ritchie, 223 
far (keyword), 27 
Fields. See Bit fields 
__ FILE__ identifier, 221 
Files 

changing name, 221 
inclusion, 214 
nesting, 215 

float type 
conversion, 150 
described, 50 
internal representation, 54 
range of values, 53 
storage, 53 

Floating 
data type category, 55 
expressions, 108 
identifiers, 108 
types 

conversion, 150 
Floating-point 

constants 
form, 20 
internal representation, 54 
negative, 21 

types 
internal representation, 54 

types described, 50 



for statement 
continuation of execution, 162 
described, 165 
termination of execution, 159 

Formal parameter list 
in function header, 183 

Formal parameter names 
in function declarations, 80 

Formal parameters 
conversion, 189, 198 
declaration, 188 
described, 187 
following function header, 183 
identifiers, 189 
macro, 207 
naming class, 44 
obsolescent form, 187 
storage class, 189 
type checking, 189, 198, 81 

Form-feed escape sequence, 14 
fortran (keyword), 27 
fortran keyword, 62, 223 
Forward declarations. See Function 

declarations 
Function 

body, 183, 191 
calls 

argument type checking, 198 
conversions, 153, 198 
described, 182 
form, 110, 194 
indirect, 195 
pointers, use of, 195 
recursive, 201 
variable number of arguments, 200 

declarations 
default return type, 80 
default storage class, 92 
described,33,80, 181, 192 
differences from Kernighan & 

Ritchie, 227 
dummy-name list, 83 
implicit, 192 
no arguments, 83 
pointer arguments, 83 
return type, 81, 192 
return value, 191 
storage class, 92, 192 
variable number of arguments, 82 
visibility, 92, 192 

definitions 
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definitions (continued} 
described, 34, 181, 182 
return type, 185 
storage class, 184 
summarized, 243 
visibility, 184 

modifier ( ), 57 
names. See Identifiers 
pointers, 193, 195 
prototype, 83 
prototypes 

described, 181 
return type. See Return type 

Function definition 
full prototype form, 183 
obsolescent form, 183 

Function prototype 
declaration, 80 

Function prototypes. See Argument­
type lists 

Function prototn>es (forward 
declarations J 

and conversions, 153 
Function tyJ>e. See Return type 
Function-call conversions, 153, 198 
Function-call expressions, 110 
Function-call operator 

as sequence point, 118 
Function-like macros, 206 
Functions 

described, 181 
exit from, 172 
identifiers, 109 
main, 38 
naming class, 44 
return value, 172 

Global 
lifetime, 38, 86 
variables 

described, 40 
initialization, 93 
references to, 90 

visibility, 40 
goto statement, 167 
Greater-than operator ( > ), 131 
Greater-than-or-equal-to operator 

(>= ), 131 
Grouping, 142 
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Hexadecimal 
constants 

conversion, 20, 55 
differences from Kernighan & 

Ritchie, 223 
form, 18 
sign-extension, 20 
type, 19 

escape sequences, 14, 224 
Horizontal-tab escape sequence, 14 
huge keyword 

conversions, 198 
described, 62 
differences from Kernighan & 

Ritchie, 223 
huge (keyword), 27 

Identifier lists 
in function definition, 187 

Identifiers 
array, 108 
characters allowed, 25 
differences from Kernighan & 

Ritchie, 223 
enumeration, 108 
__ FILE__, 221 
floating type, 108 
formal parameters, 189 
function, 109 
integral, 108 
length, 25 
__ LINE..._, 221 
modified, 57 
naming classes, 43 
pointer, 108 
structure, 108 
summarized, 233 
union, 108 

#if directive, 217, 218, 228 
if statement, 168 
# ifdef directive, 220, 228 
# ifndef directive, 220, 228 
#include directive, 214 
Include files, 214, 215 
Increment operator ( ++ ), 139 
Indirection operator ( * ), 122 
Inequality operator (~=-), 131 
Initialization 

arrays, 93, 95, 99 
auto storage class, 93 
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Initialization (continued) 
constant expressions, 117 
differences from Kernighan & 

Ritchie, 227 
fundamental types, 94 
global variables, 93 
link time, 88 
pointers, 94 
register storage class, 93 
restrictions, 93 
static variables, 93 
string literals, 99 
structure variables, 93, 95 
union variables, 93, 95 

Insertion of files, 214 
int type 

conversion, 148 
described, 50 
differences from Kernighan & 

Ritchie, 224 
portability, 54 
range of values, 53, 54 
storage, 53 

Integer constants 
decimal, 18, 19 
differences from Kernighan & 

Ritchie, 223 
hexadecimal, 18, 19, 20 
long, 20 
negative, 19 
octal, 18, 19, 20 

Integral 
data type category, 55 
expressions, 108 
identifiers, 108 
types 

conversion, 146, 148, 151 
described, 50 

Internal declarations, 86, 90 
Internal representation, 54, 55 
Italics, 6 
Iterative statements 

do, 163 
for, 165 
while, 177 

Keywords 
differences from Kernighan & 

Ritchie, 223, 226 
listed, 26, 233 



Keywords (continued) 
notational conventions, 6 
special, 62, 77 
statements, used in, 157 

Labeled statements, 167 
Labels 

case, 174 
default, 174 
described, 158 
form, 167 
naming class, 45 

Labels. See also Identifiers 
Left-shift operator(<<), 130 
Less-than operator { <), 131 
Less-than-or-equal-to operator ( <= ), 

131 
Letters, 12 
Lifetime 

described, 38 
directives, 36 
global, 38, 86 
local, 38, 86 

Line control, 221 
#line directive, 221 
__ LINE__ identifier, 221 
Lines, continuation, 16 
Linked lists, 70 
Local lifetime, 38, 86 
Local variables, 41, 191 
Logical-AND operator\&&), 134 
Logical-NOT operator !), 121 
Logical-OR operator (ii , 134 
long float type, 50 
long type 

conversion, 147 
described, 50 
differences from Kernighan & 

Ritchie, 224 
range of values, 53 
storage, 53 

Loops 
do statement, 163 
for statement, 165 
while statement, 177 

Lvalue expressions, 138 

Macros 
function-like, 206 
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Macros (continued} 
object-like, 206, 207, 208, 211, 213 

Main function, 37, 38 
Manifest constants, 206, 207, 213 
Members 

bit fields, 70 
naming class, 45 
referring to, 113 
structure, 69 
union, 72 

Member-selection expressions, 113, 229 
Member-selection operators (- > and .), 

113 
Member-selection operators (- > and .), 

229 
Modifiers 

array, 57, 74 
associativity, 58 
function, 57 
pointer, 57, 76 
precedence, 58 

Multidimensional arrays( 74, 112 
Multiplication operator *), 125 

Names. See Identifiers 
Naming classes, 43, 227 
near keyword 

conversions, 198 
described, 62 
differences from Kernighan & 

Ritchie, 223 
near (keyword), 27 
Negation, 121 
Nested visibility, 41 
New-line escape sequence, 14 
Nongraphic escape sequences, 14, 224 
NOT operator (!J, 121 
Notational conventions, 6 
Null statement, 171 
Number sign(#), 205 

Object-like macros, 206 
Octal 

constants 
conversion, 20, 55 
differences from Kernighan & 

Ritchie, 223 
form, 18 
sign-extension, 20 
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constants (cont£nued} 
type, 19 

escape sequences, 14 
One's complement operator C), 121 
Operands, 107 
Operators 

addition ( + ), 127 
address-of(&), 122 
arithmetic negation(-), 121 
as sequence points, 117 
assignment 

compound, 140 
listed, 137 
simple(=), 140 

associativity, 142 
binary, 118 
binary,table, 17 
bitwise-AND(&), 132 
bitwise-complement n 121 
bitwise-exclusive-OR('), 133 
bitwise-inclusive-OR (1), 132 
complement, 120 
compound assignment, 140 
conditional(?:), 136 
conversions 152 
decrement f--), 139 
differences from Kernighan & 

Ritchie, 229 
division()), 125 
equality(==), 131 
expressions; used in, 115 
increment l++), 139 
indirection ( * ), 122 
inequality (!=) 131 
left-shift ( < <), 130 
listed, 16, 236 
logical 

described, 134 
order of evaluation, 134 

logical-AND\&&), 134 
logical-NOT !), 121 
logical-OR (:l , 134 
multiplication ( * ), 125 
one's complement C), 121 
precedence, 142 
preprocessor 

differences from Kernighan & 
Ritchie, 228 

stringizing, 228 
token pasting, 228 

preprocessor specific 
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preprocessor specific {conti'nued) 
listed, 206 

relational(~<,<=,>=), 130, 131 
remainder (/o), 126 
right-shift ( > > ), 130 
sequential-evaluation (,), 135 
shift ( < < and>>), 130 
simple assignment(=), 140 
sizeof, 124 
subtraction (-), 127 
ternary(? :), 136 
ternary, 119 
unary, 118 
unary,table, 16 

OR operators 
bitwise-exclusive m, 133 
bitwise-inclusive (1}, 132 
logical (Ii), 134 

Order of evaluation, 134, 143 
Overview, 3 

Parameters 
actual. See Actual arguments 
argc, 38 
argv, 38 
envp,38 
formal 

conversion, 189, 198 
declaration, 188 
described, 187 
identifiers, 189 
naming class, 44 
storage class, 189 
type checking, 189, 198 

macro, 207 
main function, 38 

Parentheses in 
complex declarators, 58 
expressions, 116 
function calls, 110 
function declarators, 57, 80 
macros, 211 

pascal (keyword), 27 
pascal keyword, 62, 223 
Passing by 

reference, 198 
value, 194, 198 

Pointer 
data type category, 55 

Pointer modifier(*), 57, 76 



Pointer to void (void *), 76 
Pointers 

adding, 128 
arithmetic, 128 
comparisons, 131 
conversion, 151 
declaration, 57, 76, 193 
differences from Kernighan & 

Ritchie, 225 
expressions, 108 
function, 193, 195 
function calls through, 195 
identifiers, 108 
implicit conversion, 151 
initialization, 94 
modified by const, 76 
modified by volatile, 76 
storage, 77 
structure, 76 
subtraction, 128 
union, 77 

Portability, 54 
Pound sign(#). See Number sign 
Pragmas 

described, 33, 205 
differences from Kernighan & 

Ritchie, 228 
form, 222 

Precedence 
modifiers, 58 
operators, 142 

Predefined identifiers, 221 
Preprocessor directives. See Directives 
Preprocessor operators 

described, 205 
listed, 206 

Program execution, 37 
Program structure, 33 
Prototype 

function, 83 
Prototypes 

function 
described, 181 

Prototypes. See Argument-type lists 
Punctuation characters, 13 

Quotation marks 
#include directives, used in, 214 
notational conventions, 8 
representation, 14, 224 
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Quotation marks. See also Double­
quote escape sequence 

Quotation marks. See also Single-quote 
escape sequence 

Range of values, 53, 54, 55 
Recursion, 201 
Reference, passing by, 198 
References to global variables, 87, 90 
Referencing declarations, 87 
register storage class 

described, 90 
initialization, 93 
internal variables, 90 
lifetime, 86 

Relational operators(>,<,<=,>=), 
130, 131 

Remainder operator(%), 126 
Removing definitions, 213 
Representable character set, 11 
Representation, internal, 54, 55 
Reserved words. See Keywords 
Restricted constant expressions, 117, 

217 
return statement, 172 
Return type 

declaration, 192 
default, 80 
described, 81, 185 
implicit, 192 

Return value, 172, 191 
Returning control, 172 
Right-shift operator ( > > ), 130 

Scalar 
data type category, 55 

Search path for include files, 214 
Selection statements, 168, 174 
Sensitivity 

case, 12 
Separators, 237 
Sequence points 

listed, 117 
other than operators, 118, 117 

Sequential-evaluation operator(,), 135 
Shift operators ( < < and>>), 130 
short type 

conversion, 147 
described, 50 
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short type (continued) 
differences from Kernighan & 

Ritchie, 224 
range of values, 53 
storage, 53 

Side effects 
and sequence points, 117, 145, 208, 

211 
signed char type, 50, 226 
signed char type. See also char type 
signed int type, 50 
signed int type. See also int type 
signed keyword, 51, 224 
signed long int type, 226 
signed long int type. See also long type 
signed long type, 50, 226 
signed long type. See also long type 
signed short int type, 50, 226 
signed short int type. See also short 

type 
signed short type, 50, 226 
signed short type. See also short type 
signed type, 50, 224 
signed type. See also int type 
Sign-extension 

of constants, 20, 22 
Simple variable declarations, 65 
Simple-assignment operator ( == ), 140 
Single-quote escape sequence, 14 
sizeof operator, 124 
Source files, 35 
Special characters, 13 
Special keywords 

conversions, 198 
declarators, used with, 77 
differences from Kernighan & 

Ritchie, 223 
Standard directories, 215 
Statement labels 

described, 158 
form, 167 
naming class, 45 

Statements 
body, 157 
break, 159 
compound, 160 
continue, 162 
do, 163 
expression, 164 
for, 165 
form, 158 
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Statements (continued) 
goto, 167 
if, 168 
keywords, 157 
labeled, 158, 167 
listed, 157 
null, 171 
return, 172 
summarized, 242 
switch, 174 
while, 177 

static storage class 
described, 86 
external variables, 87 
function declarations, 92, 192 
function definitions, 184 
initialization, 93 
internal variables, 90 

Storage 
array types, 75, 112 
bit fields, 71 
char type, 53 
double type, 53 
enumeration types, 53, 66 
float type, 53 
global, 86 
int type, 53, 54 
local, 86 
long type, 53 
pointer types, 77 
short type, 53 
structure types, 70 
union types, 72 
unsigned char type, 53 
unsigned int type, 53, 54 
unsigned long type, 53 
unsigned short type, 53 
void type, 53 

Storage classes 
described, 86 
external variable declarations, 88 
formal parameters, 189 
function declarations, 92, 192 
function definitions, 184 
internal variable declarations, 90 

Storage-class specifiers 
auto, 86, 90 
extern 

described, 86 
external variables, 87 
function declarations, 92, 192 



extern (continued} 
function definitions, 184 
internal variables, 90 

listed, 86 
register, 86, 90 
static 

described, 86 
external variables, 87 
function declarations, 92, 192 
function definitions, 184 
internal variables, 90 

String concatenation, 23 
String literals 

concatenation, 23 
form, 23, 109 
initializers, 99 
length, 24, 109 
storage, 24 
type, 24 

Stringize operator 
differences from Kernighan & 

Ritchie, 228 
Stringizing operator(#), 205 
Stringizing preprocessor operator(#), 

206, 208 
Strings. See String literals 
struct type specifier, 69 
Structures 

conversion, 152 
declaration, 69, 100 
differences from Kernighan & 

Ritchie, 226, 227, 229 
expressions, 108 
identifiers, 108 
initialization, 93, 95 
members 

bit field, 70 
described, 69 
naming class, 45 
referring to, 113 

pointers to, 77 
storage, 70 
tags 

naming class, 45 
type declarations, 100 
variable declarations, 69 

Subscript expressions, 110, 112 
Subtraction operator(-), 127 
switch statement 

constant expressions, used in, 17 4 
described, 174 
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switch statement (continued) 
differences from Kernighan & 

Ritchie, 227 
termination ofexecution, 159 

Symbolic constants. See Manifest 
constants 

Syntax conventions. See Notational 
conventions 

Syntax summary, 233 
System-dependent keywords, 27 

Tab escape sequence, 14 
Tags 

enumeration, 67, 100 
naming class, 45 
structure, 69, 100 
union, 100 

Ternary expressions, 115 
Ternary operator(?:), 119, 136 
The defined preprocessor operator, 206 
Token-pasting operator 

differences from Kernighan & 
Ritchie, 228 

Token-pasting operator(##), 205 
Token-pasting preprocessor operator 

(# # ), 206 
Token-pasting preprocessor operator, 

209 
Tokens 

operators as, 16, 28, 233 
Transfer statements 

break, 159 
continue, 162 
goto, 167 
labeled statements, 167 

Two's complement operator, 121 
Type 

casts, 152 
checking. See Argument type 

checking 
declarations, 99 
names 

argument-type lists, used in, 83 
described, 102 
sizeof, used with, 124 
void, 198 

specifiers 
abbreviations, 51 
differences from Kernighan & 

Ritchie, 224, 225, 226 
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specifiers (continued) 
enum, 50, 66 
fundamental types, 50 
struct,, 69 
union, 72 

Type casts 
constraints, 116 
constraints on assignment, 116 
to and from void, 116 

Type specifiers 
const, 51 
volatile, 51 

Type-cast expressions, 116 
typedef declarations, 99, 101 
typedeftypes,45, 101 
Types 

array 
declaration, 57, 74 
initialization, 93, 95, 99 
multidimensional, 7 4 
storage, 75, 112 

char 
described, 50 
storage, 53 

const 
used with pointers, 76, 51 

conversions. See Conversions 
differences from Kernighan & 

Ritchie, 224, 225, 226 
double 

internal representation, 54, 50, 53, 
54 

enumeration 
conversion, 152 
declaration, 66, 100 
described, 50 
differences from Kernighan & 

Ritchie, 225 
identifiers, 108 
range of values, 53 
storage, 53, 66 
tags, 45, 67, 100 

float 
conversion, 150 
described, 50 
internal representation, 54 
range of values, 53 
storage, 53, 54 

floating 
conversion, 150 

floating-point 
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floating-point (continued) 
described, 50 
internal representation, 54 

function. See Return type 
fundamental 

declaration, 65 
described, 50 
differences from Kernighan & 

Ritchie, 225 
initialization, 94 
listed, 50 
range of values, 53 
storage, 53 

int 
conversion, 148 
described, 50 
differences from Kernighan & 

Ritchie, 224 
portability, 54 
range of values, 53, 54 
storage, 53 

integral 
conversion, 146, 148, 151 
described, 50 

long 
conversion, 147 
described, 50 
differences from Kernighan & 

Ritchie, 224 
range of values, 53 
storage, 53 

long double 
differences from Kernighan & 

Ritchie, 225 
long float 

no longer supported, 225 
pointer 

conversion, 151 
declaration, 57, 76 
implicit conversion, 151 
initialization, 94 
storage, 77 

short 
conversion, 147 
described, 50 
differences from Kernighan & 

Ritchie, 224 
range of values, 53 

signed char, 50, 226 
signed int, 50 
signed long, 50 



Types {continued} 
signed short, 50 
structure 

conversion, 152 
declaration, 69, 100 
initialization, 93, 95 
pointers to, 77 
storage, 70 

type names, 102 
tyl?edef, 45, 101 
UnlOn 

conversion, 152 
declaration, 72, 100 
initialization, 93, 95 
pointers to, 77 
storage, 72 

unsigned char 
conversion, 148 
described, 50 
differences from Kernighan & 

Ritchie, 224, 226 
range of values, 53 
storage, 53 

unsigned int 
conversion, 149 
described, 50 
portability, 54 
range of values, 53, 54 
storage, 53 

unsigned long 
conversion, 149 
described, 50 
differences from Kernighan & 

Ritchie, 224, 226 
range of values, 53 
storage, 53 

unsigned short 
conversion, 149 
described, 50 
differences from Kernighan & 

Ritchie, 226 
range of values, 53 
storage, 53 

user defined, 99, 100, 101 
void, 51, 53 
volatile 

used with pointers, 76, 51 

Unary expressions, 115 
Unary operators 
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Unary operators {continued} 
table, 16, 118 

# undef directive, 213 
Underscore character (-) 

leading, 25, 12, 25 
Union declarations 

types, 100 
variables, 72 

union type specifier, 72 
Unions 

conversion, 152 
declaration, 72, 100 
differences from Kernighan & 

Ritchie, 227, 229 
expressions, 108 
identifiers, 108 
initialization, 93, 95 
members 

described, 72 
naming class, 45 
referring to, 113 

pointers to, 77 
storage, 72 
tags, 45, 100 

unsigned char type 
conversion, 148 
described, 50 
differences from Kernighan & 

Ritchie, 224, 226 
range of values, 53 
storage, 53 

unsigned int type 
conversion, 149 
described, 50 
portability, 54 
range of values, 53, 54 
storage, 53 

unsigned keyword, 51, 224 
unsigned long int type, 50, 226 
unsigned long int type. See also 

unsigned long type 
unsigned long type 

conversion, 149 
described, 50 
differences from Kernighan & 

Ritchie, 224, 226 
range of values, 53 
storage, 53 

unsigned short int type, 50, 226 
unsigned short int type. See also 

unsigned short type 
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unsig, ed short type 
con ersion, 149 
des ribed, 50 
cliff. rences from Kernighan & 

Ritchie, 226 
ran e of values, 53 
sto age, 53 

unsig ed type, 50, 224 
Unspecified type 

pointer to tvoid *), 76 
User-defined types, 99, 100, 101 
Usual arithmetic conversions, 119, 225 

Value, passing by, 194, 198 
Variable 

declarations 
array, 57, 74 
described, 33 
enumeration, 66 
external, 86, 87, 88 
form, 64 
fundamental types, 65 
internal, 86, 90 
multidimensional arrays, 7 4 
pointer, 76 
simple, 65 
structure, 69 
summarized, 239 
union, 72 
visibility, 87 

definitions 
described, 34, 87 
summarized, 243 
visibility, 87, 90 

Variable names. See Identifiers 
Variables 

array 
declaration, 7 4 
initialization, 95, 99 
storage, 75 

auto, 86, 90, 93 
communal, 88 
enumeration, 66 
extern, 87, 90 
fundamental types, 65, 94 
gloqal, 40, 87, 90, 93 
local, 41, 191 
multidimensional arrays, 7 4, 112 
naming class, 44, 227 
pointer, 76, 77, 94 

I 
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Variables {conti"nued} 
register, 90, 93 
simple, 65 
static, 87, 90, 93 
structure, 69, 70, 95 
union, 72, 95 
visibility, 87 

Vertical-tab escape sequence, 14, 224 
Visibility 

described, 38 
function declarations, 92, 192 
function definitions, 184 
global, 40 
nested, 41 
variable declarations, 87 
variable definitions, 87, 90 

void*, 83 
void 

argument-type list, 81, 83 
as a pointer modifier, 225 
function-return type, 81 
in formal parameter list, 225 
keyword, 223 
pointer to 

defined, 76 
type name, 198 

void type 
conversion, 152 
described, 50, 51 
range of values, 53 
storage, 53 
type specifier, 225 

volatile 
as a pointer modifier, 76 

volatile keyword, 223 
volatile type specifier 

described, 51 

while statement 
continuation of execution, 162 
described, 177 
termination of execution, 159, 177 

White-space characters, 12, 14, 224 


	00001
	00002
	00003
	00004
	00005
	00006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	223a
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260

