
Microsoft® C
Optimizing
Compiler

for the MS-DOS@ Operating System

Language Reference

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software de­
scribed in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. It is against the law to copy this software on magnetic tape,
disk, or any other medium for any purpose other than the purchaser's personal use.

© Copyright Microsoft Corporation, 1987

If you have comments about the software, complete the Software Problem Report
at the back of this manual and return it to Microsoft Corporation.

If you have comments about the software documentation, complete the Documen­
tation Feedback reply card at the back of this manual and return it to Microsoft
Corporation.

Microsoft®, the Microsoft logo, MS®, and MS-DOS® are registered trademarks of Microsoft
Corporation.

Document No. 510830022-100-000-0587

Contents

1 Introduction 1

1.1 Overview of the C Language 3
1.2 About This Manual 4
1.3 Notational Conventions 6

2 Elements of C 9

2.1 Introduction 11
2.2 Character Sets 11
2.3 Constants 18
2.4 Identifiers 25
2.5 Keywords 26
2.6 Comments 27
2. 7 Tokens 28

3 Program Structure 31

3.1 Introduction 33
3.2 Source Program 33
3.3 Source Files 35
3.4 Functions and Program Execution 37
3.5 Lifetime and Visibility 38
3.6 Naming Classes 43

4 Declarations 4 7

4.1 Introduction 49
4.2 Type Specifiers 50
4.3 Declarators 56
4.4 Variable Declarations 64
4.5 Function Declarations (Prototypes) 80
4.6 Storage Classes 86
4. 7 Initialization 93
4.8 Type Declarations 99
4.9 Type Names 102

iii

Contents

5 Expressions and Assignments 105

5.1 Introduction 107
5.2 Operands 107
5.3 Operators 118
5.4 Assignment Operators 137
5.5 Precedence and Order of Evaluation 142
5.6 Side Effects 145
5.7 Type Conversions 146

6 Statements 155

6.1 Introduction 157
6.2 The break Statement 159
6.3 The Compound Statement 160
6.4 The continue Statement 162
6.5 The do Statement 163
6.6 The Expression Statement 164
6.7 The for Statement 165
6.8 The goto and Labeled Statements 167
6.9 The if Statement 168
6.10 The Null Statement 171
6.11 The return Statement 172
6.12 The switch Statement 174
6.13 The while Statement 177

7 Functions 179

7.1 Introduction 181
7.2 Function Definitions 182
7 .3 Function Prototypes (Declarations) 192
7.4 Function Calls 194

8 Preprocessor Directives
and Pragmas 203

8.1 Introduction 205
8.2 Manifest Constants and Macros 206
8.3 Include Files 214
8.4 Conditional Compilation 216
8.5 Line Control 221
8.6 Pragmas 222

iv

Contents

A Differences from
Kernighan and Ritchie 223

B Syntax Summary 231

B.1 Tokens 233
B.2 Expressions 237
B.3 Declarations 239
B.4 Statements 242
B.5 Definitions 243
B.6 Preprocessor Directives 244
B. 7 Pragmas 244

v

Tables

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 2.5

Table 2.6

Table 2.7

Table 2.8

Table 3.1

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 5.1

Table 5.2

Table 5.3

Table 5.4

vi

Punctuation and Special Characters 13

Escape Sequences 14

Unary Operators 16

Binary and Ternary Operators 17

Examples of Integer Constants 19

Types Assigned to Octal and Hexadecimal Constants

Examples of Long Integer Constants 20

Examples of Character Constants 22

Summary of Lifetime and Visibility 42

Fundamental Types 50

Type Specifiers and Abbreviations 52

Storage and Range of Values for Fundamental Types

C Data-Type Categories 56

Precedence and Associativity of C Operators 142

Conversions from Signed Integral Types 147

Conversions from Unsigned Integral Types 148

Conversions from Floating-Point Types 150

20

53

Chapter 1
Introduction

1.1 Overview of the C Language 3
1.2 About This :Manual 4
1.3 Notational Conventions 6

1

Introduction

1.1 Overview of the C Language

The C language is a general-purpose programming language known for its
efficiency, economy, and portability. While these characteristics make it a
good choice for almost any kind of programming, C has proven especially
useful in systems programming because it facilitates writing fast, compact
programs that are readily adaptable to other systems. Well-written C pro­
grams are often as fast as assembly-language programs, and they are typi­
cally easier to read and maintain.

C was designed to combine efficiency and power in a relatively small
language. C does not include built-in functions to perform tasks such as
input and output, storage allocation, screen manipulation, and process
control. C programmers rely on run-time libraries to perform such tasks.

This design makes C both flexible and compact. Because the language is
relatively sparse, it neither assumes nor imposes a particular programming
model. You can use the run-time routines supplied, or tailor your own
variations for special purposes. The design also helps to isolate language
features from processor-specific features in a particular C implementation,
which makes it easier to write portable code. While the strict definition of
the language makes it independent of any particular operating system or
machine, you can easily add system-specific routines to take advantage of
the most efficient features of a particular machine.

Note

Microsoft is committed to conformance with the developing standard
for the C language as set forth in the Draft Proposed American
National Standard-Programming Language C (herinafter referred to
as the ANSI C standard). Microsoft extensions to the ANSI C standard
are noted in the remaining text. Because the extensions are not a part
of the ANSI C standard, their use may restrict portability of programs
between systems. See your User's Guide for information on enabling
and disabling Microsoft extensions.

The C language includes the following significant features:

3

Microsoft C Optimizing Compiler Language Reference

• C provides a full set of loop, conditional, and transfer statements
to control program flow logically and efficiently and to encourage
structured programming.

• Coffers an unusually large set of operators. Many of these opera­
tors correspond to common machine instructions, allowing a direct
translation into machine code. The variety of operators allows you
to specify different kinds of operations clearly and with a minimum
of code.

• C data types include several sizes of integers, as well as single- and
double-precision floating-point types. You can also design more
complex data types, such as arrays and data structures, to suit
specific program needs.

• Callows you to declare "pointers" to variables and functions. A
pointer to an item corresponds to the item's machine address. You
can use pointers to make programs more efficient, since pointers let
you refer to items in the same way the machine does. C also sup­
ports pointer arithmetic, which allows you to access and manipu­
late memory addresses directly.

• The C preprocessor acts on the text of files before they are com­
piled. You can use the C preprocessor to define program constants,
substitute fast macro definitions for function calls, and compile
parts of programs based on specified conditions. The preprocessor
is not limited to processing C files; you can use it with any text file.

• C is a flexible language, which leaves many programming decisions
up to you. In keeping with this attitude, C imposes few restrictions
in matters such as type conversion. Although this characteristic of
the language can make your programming job easier, you must
know the language well to understand how programs will behave.

1.2 About This Manual

The Microsoft C Optimizing Compiler Language Reference defines the C
language as implemented by Microsoft Corporation. It is intended as a
reference for programmers experienced in C or in another programming
language. Thorough knowledge of programming fundamentals is assumed.

Note

4

Introduction

Appendix A of this manual provides a quick comparison between
Microsoft C and the definition of C found in Appendix A of The C Pro­
gramming Language, by Brian W. Kernighan and Dennis M. Ritchie.
Appendix B of this manual summarizes the syntax of the C language as
defined by Microsoft.

The run-time library functions available for use in Microsoft C programs
are discussed in a separate manual, the Microsoft C Optimz'zing Compiler
Run-Time Library Reference .

Consult your Microsoft C Optimizing Compiler User's Guide for an expla­
nation of how to compile and link C programs on your system. The User's
Guide also contains information specific to the implementation of Con
your system.

This manual is organized as follows:

Chapter 2, "Elements of C," describes the letters, numbers, and symbols
that can be used in C programs and the combinations of characters that
have special meanings to the C compiler.

Chapter 3, "Program Structure," discusses the components and structure
of C programs and explains how C source files are organized.

Chapter 4, "Declarations," describes how to specify the attributes of C
variables, functions, and user-defined types. C provides a number of
predefined data types and allows the programmer to declare "aggregate"
types and pointers.

Chapter 5, "Expressions and Assignments," describes the operands and
operators that form C expressions and assignments. The chapter also
discusses the type conversions and side effects that may occur when
expressions are evaluated.

Chapter 6, "Statements," describes C statements, which control the flow
of program execution.

Chapter 7, "Functions," discusses C functions. In particular, this chapter
explains how to define, declare, and call functions and describes function
parameters and return values.

5

Microsoft C Optimizing Compiler Language Reference

Chapter 8, "Preprocessor Directives and Pragmas," describes the instruc­
tions recognized by the C preprocessor, a text processor that is automati­
cally invoked before compilation. This chapter also introduces "pragmas,"
(special instructions to the compiler that you may place source files).

Appendix A, "Differences," lists the differences between Microsoft C and
the description of the C language found in Appendix A of The C Program­
ming Language by Brian W. Kernighan and Dennis M. Ritchie.

Appendix B, "Syntax Summary," summarizes the syntax of the C language
as implemented by Microsoft.

The remainder of this chapter describes the notational conventions used
throughout the manual.

1.3 Notational Conventions

This manual uses the following notational conventions:

Convention

Bold

Italics

Examples

6

Meaning

Bold type indicates text that must be typed
exactly as shown. Text that is shown in bold
type includes C keywords, such as goto and
char, and operators, such as the addition opera­
tor (+) and the multiplication operator (*).
Terms in italics mark the places in syntax
descriptions and in the text where specific terms
appear in an actual C program. For
example, in

goto name;

name appears in italics to show that this is a
general form for the goto statement. In an
actual program statement, you must supply a
particular identifier for the placeholder name.

Occasionally, italics are used to emphasize par­
ticular words in the text.

Examples of C programs and program elements
appear in a special typeface to look similar to

Ellipsis dots

Introduction

listings on the screen or the output of commonly
used computer printers:

int X, y;

swap (&x, &y);

Ellipsis dots may be vertical or horizontal. In
the following example, the vertical ellipsis dots
indicate that zero or more declarations, followed
by one or more statements, may appear between
the braces:

{
[declaration]

statement
[statementil

}

Vertical ellipsis dots are also used in program
examples to indicate that a portion of the pro­
gram has been omitted. For instance, in the fol­
lowing excerpt, two program lines are shown.
The ellipsis dots between the lines indicate that
additional program lines appear between these
two lines but are not shown:

int x, y;

swap (&x, &y);

Horizontal ellipsis dots following an item indi­
cate that more items of the same form may
appear. Forinstance,

= {expression [, expression] ... }

indicates that one or more expressions separated

7

Microsoft C Optimizing Compiler Language Reference

8

[Double brackets]

"Quotation
marks"

SMALL CAPITALS

b,Y commas may appear between the braces
(t }).

Double brackets enclose optional items in syntax
descriptions. For example,

return [expre88ion];

is a syntax description showing that expression
is an optional item in the return statement.

Quotation marks set off terms defined in the
text. For example, the term "token" appears in
quotation marks when it is defined.

Some C constructs, such as strings, require quo­
tation marks. Quotation marks required by the
language have the form 1111 rather than " ".
For example,

"abc"

is a C string.

Names of special key combinations, such as
CONTROL-Z, appear in small capital letters.

Chapter 2
Elements of C

2.1 Introduction 11
2.2 Character Sets 11
2.2.1 Letters, Digits, and Underscore
2.2.2 White-Space Characters 12

12

2.2.3 Punctuation and Special Characters
2.2.4 Escape Sequences 14
2.2.5 Operators 16
2.3 Constants 18
2.3.1 Integer Constants 18
2.3.2 Floating-Point Constants 20
2.3.3 Character Constants 22
2.3.4 String Literals 23
2.4 Identifiers 25
2.5 Keywords 26
2.6 Comments 27
2.7 Tokens 28

13

9

Elements of 0

2.1 Introduction

This chapter describes the elements of the C programming language,
including the names, numbers, and characters used to construct a C pro­
gram. The following topics are discussed in the remainder of this chapter.

• Character sets

• Constants

• Identifiers

• Keywords

• Comments

• Tokens

2.2 Character Sets

Two character sets are defined for use in C programs: the "C character
set" and the "representable character set."

The C character set consists of the letters, digits, and punctuation marks
having specific meanings in the C language. You construct a C program
by combining the characters of the C character set into meaningful state­
ments.

The C character set is a subset of the representable character set. The
representable character set includes each letter, digit, and symbol that can
be represented graphically with a single character. The extent of the
representable character set depends on the type of terminal, console, or
character device being used.

In general, all characters in a C program must be part of the C character
set. However, string literals, character constants and comments can
include any character from the representable character set.

Since each character in the C character set has an explicit meaning in the
language, the compiler generates error messages when it finds inappropri­
ate or inappropriately used characters in a program.

11

Microsoft C Optimizing Compiler Language Reference

Sections 2.2.1 - 2.2.5 describe the characters and symbols of the C charac­
ter set and explain how and when to use them.

2.2.1 Letters, Digits, and Underscore

The C character set includes the uppercase and lowercase letters of the
English alphabet, the 10 decimal digits of the Arabic number system, and
the "underscore" character:

• Uppercase English letters

ABCDEFGHIJKLMNOPQRSTUVWXYZ

• Lowercase English letters

abcdefghijklmnopqrstuvwxyz

• Decimal digits

0123456789

• Underscore character(-)

These letters and digits are used to form the constants, identifiers, and
keywords described later in this chapter.

The C compiler treats uppercase and lowercase letters as distinct charac­
ters. For example, if a lowercase a is specified, you cannot substitute an
uppercase A; you must use the lowercase letter.

2.2.2 White-Space Characters

Space, tab, line-feed, carriage-return, form-feed, vertical-tab, and new-line
characters are called "white-space characters" because they serve the same
purpose as the spaces between words and lines on a printed page. These
characters separate the items you define, such as constants and identifiers,
from other items in a program.

The C compiler treats a CONTROL-Z character as an end-of-file indicator. It
ignores any text after the CONTROL-Z mark.

The C compiler ignores white-space characters unless you use them as
separators or as components of character constants or string literals.
Therefore, you can use extra white-space characters to make a program
more readable. The compiler also treats comments as white space. (Com­
ments are described in Section 2.6.)

12

Elements of 0

2.2.3 Punctuation and Special Characters

The punctuation and special characters in the C character set have vari­
ous uses, from organizing program text to defining the tasks that the com­
piler or compiled program will carry out. Table 2.1 lists the punctuation
and special characters in the C character set.

Table 2.1

Punctuation and Special Characters

Character Name

Comma

Period

Semicolon
Colon

? Question mark
Single quotation mark

" Double quotation mark

(Left parenthesis

) Right parenthesis

[Left bracket

l Right bracket

{ Left brace
} Right brace

< Left angle bracket

Character Name

I
\

+

%
&

*

>

Exclamation mark

Vertical bar

Forward slash
Backslash
Tilde

Plus Sign
Number sign
Percent sign

Ampersand
Caret

Asterisk

l\1inus sign

Equal sign
Right angle bracket

These characters have special meanings in C. Their uses are described
throughout this manual. If a punctuation character from the represent­
able character set does not appear in Table 2.1, you can use that character
only in string literals, character constants, and comments.

13

Microsoft C Optimizing Compiler Language Reference

2.2.4 Escape Sequences

Strings and character constants can contain "escape sequences." Escape
sequences are character combinations representing white-space and non­
graphic characters, An escape sequence consists of a backslash (\)followed
by a letter or combination of digits.

Escape sequences are typically used to specify actions such as carriage
returns and tab movements on terminals and printers and to provide
literal representations of nonprinting characters and characters that nor­
mally have special meanings, such as the double quote(") character.
Table 2.2 lists the C escape sequences.

Table 2.2

Escape Sequences

Escape Sequence

\n
\t
\v
\b
\r
\f
\a
\'
\II
\\
\ ddd

\xddd

Name

New line
Horizontal tab
Vertical tab
Backspace
Carriage return
Form feed

Bell (alert)
Single quote

Double quote
Backslash
ASCII character
in octal notation

ASCII character
in hexadecimal notation

If a backslash precedes a character that does not appear in Table 2.2, the
backslash is ignored and the character is represented literally. For exam­
ple, the pattern \c represents the character c in a string literal or charac­
ter constant. However, the use of lower-case letters in escape sequences is
reserved by ANSI for future standardization. Therefore, occurrences of
undefined escape sequences, though currently innocuous, could pose future

14

Elements of 0

portability problems.

The sequence \ ddd allows you to specify any character in the ASCII
(American Standard Code for Information Interchange) character set as a
three-digit octal character code. Similarly, the sequence \xddd allows you
to specify any ASCII character as a three-digit hexadecimal character
code. For example, you can give the ASCII backspace character as \010
(octal) or \x008 (hexadecimal)

You can use only the digits 0 through 7 in an octal escape sequence. You
must use at least one digit, but you can use fewer than three digits. For
example, you can specify the ASCII backspace character in octal notation
as \10. You must use at least one digit for a hexadecimal escape
sequence, but you can omit the second and/or third digits. Therefore you
could specify the hexadecimal escape sequence for the backspace character
either as \x08 or as \x8.

Note

When you use octal and hexadecimal escape sequences in strings, it is
safest to give all three digits of the escape sequence. If you don't
specify all digits of the escape sequence, and the character immediately
following the escape sequence happens to be an octal or hexadecimal
digit, the compiler interprets that character as part of the sequence.
For example, if you printed the string "\x07Bel 1 11 , the result would
be {ell because \x07B is interpreted as the ASCII .left-brace charac­
ter ({). The string \x007Bell (note the two leading zeros) is the
correct way to represent the bell character followed by the word Bel 1.
The string \x7Bel 1 would generate a compiler diagnostic message
because 7beH is too big a number to fit in one byte.

Escape sequences allow you to send nongraphic control characters to a
display device. For example, the escape character, \033, is often used as
the first character of a control command for a terminal or printer. Some
escape sequences are device specific. For instance, the vertical tab and
form feed(\ v and \f) do not affect screen output, but perform appropri­
ate operations for a printer.

Note

15

Microsoft 0 Optimizing Compiler Language Reference

You should always represent nongraphic characters by escape
sequences in C programs, since using the characters directly may gen­
erate compiler diagnostic messages.

You can also use the backslash character(\) as a continuation character.
When a new-line character follows the backslash, the compiler ignores the
backslash and the new line and treats the next line as part of the previous
line. This is useful primarily for preprocessor definitions longer than a sin­
gle line. In the past this feature was also used to create strings longer than
one line. However the string concatenation feature (see Section 2.3.4) is
preferred for creating long string literals.

2.2.5 Operators

Operators are symbols (both single characters and character combina­
tions) that specify how values are to be manipulated. Each symbol is inter­
preted as a single unit, called a "token." (Tokens are defined in Section
2.7.)

Table 2.3 lists the symbols comprising the C unary operators and names
each operator. Table 2.4 lists the C binary and ternary operators and
names them. You must specify operators exactly as they appear in the
tables, with no white space between the characters of multicharacter
operators. Note that three operator symbols {asterisk, minus sign, and
ampersand) appear in both tables. Their interpretation as unary or binary
depends on the context in which they appear. The sizeof operator is not
included in these tables. It consists of a keyword (sizeof) rather than a
symbol, and is listed in Section 2.5.

16

Table 2.3

Unary Operators

Operator

*

N81Ile

Logical NOT
Bitwise complement
Arithmetic negation
Indirection
Address of

Table 2.4

Binary and Ternary Operators

Operator

+

*
I
%
<<
>>
<
<=
>
>=

!=
&

&&
II
II

?:
++

+=

*=
/=

>>=
<<=
&=

Name

Addition

Subtraction

Multiplication
Division
Remainder

Left shift

Right shift

Less than

Less than or equal
Greater than
Greater than or equal
Equality
Inequality
Bitwise AND
Bitwise inclusive OR
Bitwise exclusive OR

Logical AND
Logical OR
Sequential evaluation
Conditional a

Increment
Decrement
Simple assignment

Addition assignment

Subtraction assignment

Multiplication assignment
Division assignment
Remainder assignment
Right-shift assignment

Left-shift assignment

Bitwise AND assignment

Elements of 0

17

Microsoft C Optimizing Compiler Language Reference

Bitwise inclusive OR assignment

Bitwise exclusive OR assignment

a The conditional operator is a ternary operator, not a
multicharacter operator. A conditional expression has the following
form: expression ? expression : expression

For a complete description of each operator, see Chapter 5, "Expressions
and Assignments."

2.3 Constants

A constant is a number, character, or character string that can be used as
a value in a program. A constant's value may not be modified by the pro­
gram in which it occurs.

The C language has four kinds of constants: integer constants, floating­
point constants, character constants, and string literals. Sections 2.3.1 -
2.3.4 describe the format and use of each kind of constant.

2.3.1 Integer Constants

Syntax

Oodigits

Oxhdigits
OXhdigits

An integer constant is a decimal, octal, or hexadecimal number that
represents an integer value.

•

•

18

A decimal constant has the form dif!.its, where digits represents one
or more decimal digits (0 through 9).

An octal constant has the form Oodigi'ts, where odigits represents
one or more octal digits (0 through 7). The leading zero is required .•

Elements of C

• A hexadecimal constant has the form Oxhdigits or OXhdigits, where
hdigits represents one or more hexadecimal di~its (0 through 9 and
either uppercase or lowercase "a" through "f"). The leading zero is
required and must be followed by x or X.

No white-space characters can separate the digits of an integer constant.

Table 2.5 gives examples of the three forms of integer constants.

Table 2.5

Examples of Integer Constants

Decimal Constants

10
132
32179

Octal Constants

012
0204
076663

Hexadecimal Constants

Oxa or OxA
Ox84
Ox7dB3 or Ox7DB3

Integer constants always specify positive values. If you need to use a nega­
tive value, place a minus sign(-) in front of a constant to form a constant
expression with a negative vaiue. (In this case, the minus sign is inter­
preted as the unary arithmetic negation operator.)

Every integer constant is given a type based on its value. A constant's
type determines which conversions must be performed when the constant
is used in an expression or when the minus sign(-) is applied:

• Decimal constants are considered signed quantities and are given
int type, or long type if the size of the value requires it.

• Octal and hexadecimal constants are given int, unsigned int,
long, or unsigned long type, depending on the size of the con­
stant. If the constant can be represented as an int, it is given int
type. If it is larger than the maximum positive value that can be
represented by an int, but small enough to be represented in the
same number of bits as an int, it is given unsigned int type.
Similarly, a constant that is too large to be represented as an
unsigned int is given long or unsigned long type, if necessary.

Table 2.6 shows the ranges of values and the corresponding types for octal
and hexadecimal constants on a machine where the int type is 16 bits
long.

19

Microsoft C Optimizing Compiler Language Reference

Table 2.6

Types Assigned to Octal and Hexadecimal Constants

Hexadecimal Range

Ox0-0x7FFF
Ox8000 - OxFFFF
OxlOOOO - Ox7FFFFFFF
Ox80000000 - OxFFFFFFFF

Octal Range

0-077777
0100000 - 0177777
0200000 - 017777777777
020000000000 - 030000000000

Type

int
unsigned int
long
unsigned long

The consequence of the typing rules shown in Table 2.6 is that hexade­
cimal and octal constants are always zero-extended when converted to
longer types. (For a discussion of type conversions, see Chapter 5,
"Expressions and Assign men ts.")

You can force any integer constant to be given long type by appending
the letter "l" or "L" to the end of the constant. Table 2.7 illustrates some
forms of long integer constants.

Table 2.7

Examples of Long Integer Constants

Decimal Constants Octal Constants Hexadecimal Constants

lOL 012L OxaL or OxAL
791 01151 Ox4fl or Ox4Fl

Types are described in Chapter 4, "Declarations," and conversions are
described in Chapter 5, "Expressions and Assignments."

2.3.2 Floating-Point Constants

20

Elements of 0

Syntax

[digits] [.digits] [Eie[-] digits]

A floating-point constant is a decimal number that represents a signed real
number. The value of a signed real number includes an integer portion, a
fractional portion, and an exponent. The digits are zero or more decimal
digits (0 through 9), and E (ore) is the exponent symbol. You can omit
either the digits before the decimal point l the integer portion of the value)
or the digits after the decimal point (the fractional portion), but not both.
You can leave out the decimal point only if you include an exponent.

The exponent consists of the exponent symbol (E ore) followed by a con­
stant integer value. The integer value may be negative. No white-space
characters can separate the digits or characters of the constant.

Floating-point constants always specify positive values. However, you can
place a minus sign(-) in front of the constant to form a constant floating­
point expression with a negative value. In this case, the minus sign is
treated as an arithmetic operator.

All floating-point constants have type double.

Examples

The following examples illustrate some forms of floating-point constants
and expressions:

15.75
1.575El
1575e-2
-0.0025
-2.5e-3
25E-4

You can omit the integer portion of the floating-point constant, as shown
in the following examples:

.75

.0075e2
-.125
-.175E-2

21

Microsoft C Optimizing Compiler Language Reference

2.3.3 Character Constants

A character constant is formed by enclosing a single character from the
representable character set within single quotation marks (' '). An escape
sequence is regarded as a single character and is therefore a valid charac­
ter constant. Note that escape characters must be represented by escape
sequences or diagnostic messages will be generated. The value of a charac­
ter constant is the numerical representation of the character.

A character constant has the form

'char'

where char can be any character from the representable character set
(including any escape sequence) except a single quotation mark('),
backslash(\), or new-line character. To use a single quotation mark or
backslash character as a character constant, precede it with a backslash,
as shown in Table 2.8. To represent a new-line character, use the escape
sequence \ n.

Table 2.8

Examples of Character Constants

Constant

' '
'a'
'?'
'\ b'
'\xIB'
'\II
'\ \'

Value

Single blank space
Lowercase a
Question mark
Backspace
ASCII escape character
Single quotation mark
Backslash

Character constants have type int, and are therefore sign-extended in type
conversions. (See Section 5.7, "Type Conversions," for more information
about type conversions.)

22

Elements of C

2.3.4 String Literals

Syntax

"characters" ["characters" ... ~

A string literal is a sequence of characters from the representable charac­
ter set enclosed in double quotation marks (" "). In a string literal, char­
acters is a placeholder for zero or more characters from the representable
character set, including any escape sequence, except a double quotation
mark("), backslash(\), or new-line character. Escape characters must be
represented by escape sequences, and each escape sequence is considered a
single character.

"This is a string literal."

To force a new line within a string literal, enter the new-line {\n) escape
sequence at the point in the string where you want the line broken, as fol­
lows:

"Enter a number between 1 and 100\nOr press Return"

The traditional way to form string literals that take up more than one line
is to type a backslash, then press the RETURN key. The backslash causes
the compiler to ignore the new-line character. For example, the string
literal

"Long strings can be bro\
ken into two or more pieces."

is identical to the string

"Long strings can be broken into two or more pieces."

Two or more string literals separated only by white space will be con­
catenated into a single string. For example, long strings passed as literals
to the printf function may now be continued in any column of a succeed­
ing line without affecting their appearance when output, if entered as fol­
lows:

printf ("This is the first half of the string,"
" this is the second half") ;

23

Microsoft C Optimizing Compiler Language Reference

As long as each part of the string is enclosed in double quotation marks,
they will be concatenated, and output as a single string:

This is the first half of the string, this is the second half

String concatenation can be used anywhere you might previously have
used a backslash followed by a new-line character to enter strings longer
than one line. Because ensuing strings can start in any column of the
source code without affecting their on-screen representation, strings can be
positioned to enhance source-code readability. For example, the following
pointer, initialized as two separate string literals separated only by white
space, is stored as a single string. When properly referenced, as in the fol­
lowing example, it produces a result identical to the example immediately
above:

char *String= "This is the first half of the string,"
" this is the second half"

printf ("%s" , string) ;

To use a double quotation mark or backslash within a string literal, pre­
cede it with a backslash, as shown in the following examples:

"First\\Second"

"\"Yes, I do,\" she said."

Note that an escape sequence (such as \ \ or \ ") within a string literal
counts as a single character.

The characters of a string are stored in order at contiguous memory loca­
tions. A null character (represented by the \0 escape sequence) is
automatically appended to, and marks the end of, each string literal.
Each string in a program is generally considered to be distinct; however,
two identical strings are not guaranteed to receive separate storage.
Therefore, programs should not attempt to modify string literals during
execution.

String literals have type array of char (char []). This means that a string
is an array with elements of type char. The number of elements in the
array is equal to the number of characters in the string, plus one for the
terminating null character. The array contains one element in addition to
the number of characters in the string literal, since the null character,
stored after the last string character, counts as an array element.

24

Elements of C

2.4 Identifiers

Syntax

letteri- [letteri digiti- ...]

Identifiers are the names you supply for variables, functions, and labels in
your program. You create an identifier by specifying it in the declaration
of a variable or function. You can then use the identifier in later program
statements to refer to the associated item. Although statement labels are a
special kind of identifier and have their own naming class, their creation is
similar to that of variables and functions. (Declarations are described in
Chapter 4, "Declarations." Statement labels are described in Chapter 6,
"Statements.")

An identifier is a sequence of one or more letters, digits, or underscores (_)
that begins with a letter or underscore. Identifiers can contain any
number of characters, but only the first 31 characters are significant to the
compiler. (Other programs that read the compiler output, such as the
linker, may recognize even fewer characters.)

The C compiler considers uppercase and lowercase letters to be distinct
characters. Therefore, you can create distinct identifiers that have the
same spelling but different cases for one or more of the letters.

An identifier cannot have the same spelling and case as a keyword of the
language. Keywords are described in Section 2.5.

You should not use leading underscores in identifiers you create: identifiers
beginning with an underscore can cause conflicts with the names of system
routines or variables, and produce errors. Programs containing names
beginning with leading underscores are not guaranteed to be portable.

Note

Some linkers may further restrict the number and type of characters
for globally visible symbols. (Visibility is defined in Section 3.5, "Life­
time and Visibility.") Also the linker, unlike the compiler, may not dis­
tinguish between uppercase and lowercase letters. Consult your linker
documentation for information about naming restrictions imposed by
the linker.

25

Microsoft C Optimizing Compiler Language Reference

Examples

The following are examples of identifiers:

j
cnt
tern pl
top_o Lpage
skip12

Since uppercase and lowercase letters are considered distinct characters,
each of the following identifiers is unique:

add
ADD
Add
aDD

2.5 Keywords

"Keywords" are predefined identifiers that have special meanings to the C
compiler. They can be used only as defined. The names of program items
cannot have the same spelling and case as a C keyword.

The C language has the following keywords:

auto
break
case
char
const
continue
default
do

double
else
en um
extern
float
for
goto
if

int
long
register
return
short
signed
sizeof
static

struct
switch
typedef
union
unsigned
void
volatile
while

You cannot redefine keywords. However, you can specify text to be substi­
tuted for keywords before compilation by using C preprocessor directives
(see Chapter 8, "Preprocessor Directives and Pragmas").

The volatile keyword is implemented syntactically, but currently has no
semantics associated with it. You should not use volatile as a variable
name m your programs.

26

Elements of C

The following identifiers may be keywords in some implementations. See
your User's Guide for more information.

cdecl
far
fortran
huge
near
pascal

2.6 Comments

Syntax

/* characters•/

A comment is a sequence of characters that is treated as a single white-.. ~
space character by the compiler, but is otherwise ignored. In a comment,/
characters can include any combination of characters from the represent.:..,
able character set, including new:".'line characters, but excluding the "en<j
comment" delimiter(•/). Comments can occupy more than one line, but
they cannot be nested.

Comments can appear anywhere a white-space character is allowed.,. Since
the compiler treats a comment as a single white-space character, you can­
not include comments within tokens (see Section 2. 7 for a definition of
"token"). However, since the compiler ignores the characters of the com­
ment, you can include keywords in comments without producing errors.

To suppress compilation of a large portion of a program or a program seg­
ment that contains comments, use the #if preprocessor directive, rather
than the practice of "commenting out" the code{see Section 8.4 of
Chapter 8, "Preprocessor Directives and Pragmas").

Examples

The following examples illustrate some comments:

/* Comments can separate and document
lines of a program. */

27

Microsoft C Optimizing Compiler Language Reference

/* Comments can contain keywords such as for
and while. */

/***
Comments can occupy several lines.

***/

Since comments cannot contain nested comments, the following example
causes an error:

/* You cannot /* nest */ comments */

The error occurs because compiler recognizes the first * /, after the word
nest, as the end of the comment. It tries process the remaining text and
produces an error when it cannot do so.

2.7 Tokens

In a C source program, the basic element recognized by the compiler is the
character group known as a "token." A token is source-program text the
compiler will not attempt to further analyze into component. For example,
the following program fragment uses the word "elsewhere" as the name of
a function. Although else is a keyword in C, there is no confusion between
the function name token and the C keyword token it contains.

main()
{

int i = O;

}

if (i)
elsewhere()

However, if you were to type elsewhere as else where with a space
between "else" and "where," the preceding example would elicit a compiler
error message noting the lack of a semicolon before the else keyword.

The operators, constants, identifiers, and keywords described in this
chapter are examples of tokens. Punctuation characters such as brackets
(f]), braces ({ }), angle brackets (< >), parentheses, and commas are
also tokens.

28

Elements of C

Tokens are delimited by white-space characters and by other tokens, such
as operators and punctuation characters. To prevent the compiler from
breaking an item down into two or more tokens, white-space characters
are not permitted within an identifier, multicharacter operator, or key­
word.

When the compiler interprets tokens, it includes as many characters as
possible in a single token before moving on to the next token. Because of
this behavior, the compiler may not interpret tokens as you intended if
they are not properly separated by white space.

Example

Consider the following expression:

i+++j

In this example, the compiler first makes the longest possible operator
(++) from the three plus signs, then processes the remaining plus sign as
an addition operator(+). Thus, the expression is interpreted as (i++) +
(j) , not (i) + (+ + j) . In this and similar cases, use white space and
parentheses to avoid ambiguity and insure proper expression evaluation.

29

Chapter 3

Program Structure

3.1 Introduction 33
3.2 Source Program 33
3.3 Source Files 35
3.4 Functions and Program Execution
3.5 Lifetime and Visibility 38
3.6 Naming Classes 43

37

31

Program Structure

3.1 Introduction

This chapter defines terms used later in this manual to describe the C
language, and discusses the structure of C source programs. It gives an
overview off eatures of C that are described in detail in other chapters.
The syntax and meaning of declarations and definitions are discussed in
Chapter 4, "Declarations," and Chapter 7, "Functions." The C preproces­
sor and pragmas are described in Chapter 8, "Preprocessor Directives and
Pragmas."

3.2 Source Program

AC source program is a collection of any number of directives, pragmas,
declarations, definitions, and statements. These constructs are discussed
briefly in the following paragraphs. To be compiled by the Microsoft C
Optimizing Compiler, each must have the syntax described in this manual,
and each can appear in any order in the program (subject to the rules out­
lined throughout this manual). However, order of appearance does affect
how variables and functions can be used in a program. (See Section 3.5 for
more information.)

Directives

A "directive" instructs the C preprocessor to perform a specific action on
the text of the program before compilation. Directives are described in
Chapter 8 of this manual, "Preprocessor Directives and Pragmas."

Pragmas

A "pragma" instructs the compiler to perform a particular action at com­
pile time. Pragmas are described in Chapter 8 of this manual, "Preproces­
sor Directives and Pragmas."

33

Microsoft C Optimizing Compiler Language Reference

Declarations

A "declaration" establishes an association between the name and the attri­
butes of a variable, function, or type. A "defining declaration" of a vari­
able establishes the same associations, but also gives the variable an initial
value. Because nondefining variable declarations are used to declare a
reference to a variable defined elsewhere, they are sometimes ref erred to as
"referencing declarations." A variable declared in such a way that it has
global lifetime is initialized to zero if no explicit definition appears in in
any source file of the program. (Global lifetime is described in Section 3.5).

Function declarations include the name of the function, its return type,
and optionally, it's formal parameters. A function definition includes the
same elements plus the function body. Both function and variable declara­
tions may appear inside or outside a function definition. Any declaration
within a function definition is said to appear at the "internal level." A
declaration outside all function definitions is said to appear at the "exter­
nal level." (Function definitions are discussed further under "Definitions"
below.)

Definitions

A definition creates an instance of a variable or specifies the components
of a function.

A variable definition tells the compiler to allocate storage for the declared
variable and assigns the variable an initial value.

Variable definitions, like declarations, can appear at the internal level
·(within a function definition) or at the external level (outside all function
definitions). Function definitions always occur at the external level.

A function definition includes the "function body," which is a compound
statement containing the declarations and statements comprising the
function. (Compound statements are described in Chapter 6, "State­
ments.") The function definition also gives the name, formal parameters,
and return type of the function. A nontrivial program always contains at
least one function definition, which defines the action that the program
will take.

Function declarations may appear at the internal or external level. How­
ever, function definitions may only appear at the external level, that is,
outside of all other functions.

34

Program Structure

Example

The following example illustrates a simple C source program:

int x = 1;
int y = 2;

/* Variable definitions */

extern int printf(char *, ...);/*Function declaration*/

main ()

{

}

int z;
int w;

/* Function definition
for main function */

/* Variable declarations */

z = y + x; /* Executable statements */
w = y - x;
printf("z= %d \nw= %d \n", z, w);

This source program defines the function named main and declares the
function named printf. The program uses variable definitions to define
the variables x and y; it simply declares the variables z and w.

3.3 Source Files

A source program can be divided into one or more "source files." AC
source file is a text file containing all or part of a C source program. (For
example, a source file may contain just a few of the functions that the pro­
gram needs.) When you compile a program, you must separately compile,
and then link, the individual source files comprising the total program.
You can also use the #include directive to combine separate source files
into larger source files before you compile. (See Chapter 8, "Preprocessor
Directives and Pragmas," Section 8.3 for information on "include" files.)

A source file can contain any combination of complete directives, pragmas,
declarations, and definitions. You cannot split items such as function
definitions or large data structures between source files. The last charac­
ter in a source file must be a new-line character.

A source file need not contain executable statements. For example, you
may find it useful to place definitions of variables in one source file and
then declare references to these variables in other source files that use
them. This technique makes the definitions easy to find and change. For

35

Microsoft C Optimizing Compiler Language Reference

the same reason, manifest constants and macros are often organized into
separate include files that may be referenced in source files as required.

Directives in a source file apply only to that source file and its include files.
Moreover, each directive applies only to the part of the file that follows
the directive. To apply a commmon set of directives to a whole source pro­
gram, you must include the directives in all source files comprising the
program.

Pragmas usually affect a specific region of a source file. The implementa­
tion determines the specific compiler action that a pragma defines. (Your
User's Guide describes the effects of particular pragmas.)

Example

The following example illustrates a C source program contained in two
source files. Once you have compiled these source files, you can link and
then execute them as a single program.

The main and max functions are assumed to be in separate files, and exe­
cution of the program is assumed to begin with the main function.

/**
Source file 1 - main function

**/

#define ONE 1
#define TWO 2
#define THREE 3

extern int max(int a, int b); /*Function declaration*/

main () /* Function definition */
{

}

int w = ONE, x = TWO, y = THREE;
int z = 0;
z = max(x,y);
w = max(z,w);

In source file 1 (above), the max function is declared without being defined.
This kind of declaration is known as a "forward declaration." The
definition for the main function includes calls to max.

36

Program Structure

The lines beginning with a number sign (#) are preprocessor directives.
These directives tell the preprocessor to replace the identifiers ONE, TWO,
and THREE with the corresponding number, everywhere in source file 1.
However, the directives do not apply to source file 2 (below), which will be
separately compiled and then linked with source file 1.

/**
Source file 2 - definition of max function

**/

int max (int a, int b}
{

if (a > b)
return (a) ;

else
return (b} ;

}

Source file 2 contains the function definition for max. This definition
satisfies the calls to max in source file 1. Note that the definition for max
follows the form specified in the Draft Proposed American National
Standard-Programming Language C (the ANSI C standard).For more
information on this new form and function prototyping, see Chapter 7,
"Functions."

3.4 Functions and Program Execution

Every C program has a primary (main) program function, which must be
named main. The main function serves as the starting point for program
execution. It usually controls program execution by directing the calls to
other functions in the program. A program usually stops executing at the
end of the main function, although it can terminate at other points in the
program for a variety of reasons depending on the execution environment.

The source program usually has more than one function, with each func­
tion designed to perform one or more specific tasks. The main function
can call these functions to perform their respective tasks. When main
calls another function, it passes execution control to the function, so that
execution begins at the first statement in the function. The function
returns control when a return statement is executed or when the end of
the function is reached.

37

Microsoft C Optimizing Compiler Language Reference

You can declare any function, including main, to have parameters. When
one function calls another, the called function receives values for its
parameters from the calling function. These values are called "argu­
ments." You can declare parameters to the main function so that main
receives values from outside the program. (Most commonly, these argu­
ments are passed from the command line when the program is executed.)

When the main function takes parameters, they are traditionally named
argc and argv. The argc parameter is declared to hold the total number
of arguments passed to main. The argv parameter is declared as an array
of pointers; each element of the array points to a string representation of
an argument passed to the main function.

Traditionally, if a third parameter is passed to the main function, that
parameter is named envp. C does not require this name, however. It is an
extension to the ANSI C standard provided by Microsoft C for compatabil­
ity with the XENIX® Operating System. The envp parameter is a pointer
to a table of string values that set up the environment in which the pro­
gram executes.

The operating system supplies values for the argc, argv, and envp
parameters, and the user supplies the actual arguments to the main func­
tion. The operating system, not the C language, determines the
argument-passing convention used on a particular system. For more infor­
mation, see your User's Guide.

If you declare formal parameters to a function, you must declare them
when you define the function. Function definitions are described in more
detail in Section 7 .2. Function declarations are discussed in Section 4.5.

3.5 Lifetime and Visibility

To understand how a C program works, you must understand the rules
that determine how variables and functions can be used in the program.
Three concepts are crucial to understanding these rules: the "block" (or
compound statement), "lifetime" (sometimes called "extent"), and "visibil­
ity" (sometimes called "scope").

38

Program Structure

Blocks

A block is a sequence of declarations, definitions and statements enclosed
within curly braces. There are two types of blocks in C. The compound
statement ldiscussed more fully in Chapter 6, "Statements") is one type of
block. The other, the function definition, consists of a compound state­
ment comprising the function body plus the function's associated "header"
(the function name, return type, and optional formal parameters). A block
may encompass other blocks, with the exception that no block may not
contain a function definition. A block within other blocks is said to be
"nested" within the encompassing blocks.

Note that, while all compound statements are enclosed within curly
braces, not everything enclosed within curly braces constitutes a com­
pound statement. For example, the specification of array, structure or
enumeration elements may appear within curly braces, but these are not
considered compound statements.

Lifetime

Lifetime is the period, during execution of a program, in which a variable
or function exists. All functions in a program exist at all times during its
execution.

Lifetime of a variable may be "global" or "local." If its lifetime is global (a
"global item"), it has storage and a defined value for the entire duration of
a program. An item with a "local" lifetime (a "local item") has storage
and a defined value only within the block where the item is defined or
declared. A local item is allocated new storage each time the program
enters that block, and it loses its storage (and hence its value) when the
program exits the block. Global items are frequently referred to as
"static," while local items are often called "automatic."

The following rules specify whether a variable has global or local lifetime:

• Variables declared at the external level (that is, outside all blocks
in the program) always have global lifetimes.

• Variables declared at the internal level (that is, within a block)
usually have local lifetimes. However, you can insure global lifetime
for a variable within a block by including the static storage class
specifier in its declaration. Once declared static, the variable will
retain its value from one entry of the block to the next. However, it
will still be "visible" only within its own block and blocks nested
within its own block. (Visibility of objects is discussed below. See

39

Microsoft C Optimizing Compiler Language Reference

Section 4. 6 for a discussion of storage-class specifiers.)

Visibility

An item's "visibility" determines the portions of the program in which it
can be referenced by name. An item is "visible" only in portions of a pro­
gram encompassed by it's "scope," which may be limited (in order of
increasing restrictiveness) to the file, function, block or function prototype
in which it appears.

In C, only a label name is always confined to function scope. (See Chapter
6, "Statements," for more information on labels and label names). The
scope of any other item is determined by the level at which its declaration
occurs. An item declared at the external level has file scope and is visible
everywhere within the file. If its declaration occurs within a block (includ­
ing the list of parameter identifiers in a function definition), the item's
scope is limited to that block and blocks nested within that block. Formal
parameter names declared in the parameter list of a function prototype
have scope only from the completion of the parameter declaration to the
end of the function declarator.

Note

Note that, although an item with a global lifetime exi"sts exists
throughout the execution of the source program (for example, an exter­
nally declared variable or a local variable declared with the static key­
word), it may not be visible in all parts of the program.

An item is said to be "globally visible" if it is visible, or if you can use
appropriate declarations to make it visible, in all the source files compris­
ing the program. (Visibility between source files, also known as "linkage,"
is discussed in greater detail in Section 4.6, "Storage Classes.")

The following rules govern the visibility of variables and functions within
a program:

40

• Variables declared or defined at the external level (that is, outside
all blocks in the program) are visible from their pomt of definition
or declaration to the end of the source file. You can use appropri­
ate declarations to make such variables visible in other source files,

Program Structure

as described in Section 4.6, "Storage Classes." However, variables
declared at the external level with the static storage-class specifier
are visible only within the source file in which they are defined.

• In general, variables declared or defined at the internal level (that
is, within a block) are visible only from their point of declaration
or definition to the end of the block actually containing the
definition or declaration. Such variables are known as a "local"
variables.

• Variables from outer blocks (including those declared at the exter­
nal level) are visible in all inner blocks. However, the visibility of
variables is said to "nest" within blocks. For instance, a block
within another block can contain declarations for variables whose
identifiers (names) are the same as variables in enclosing blocks.
Such redefinitions prevail only within the inner block, however.
Outer-block definitions are restored as the inner blocks are exited.

• Functions with static storage class are visible only in the source
file in which they are defined. All other functions are globally visi­
ble. (For more information on function declarations, see Section
4.5.)

Summary

Table 3.1 summarizes the main factors determining lifetime and visibility
of variables and functions. However, the table does not cover all possible
cases. Refer to the previous discussion and to Section 4.6, "Storage
Classes," for more information.

Note

A Microsoft extension to the ANSI C standard provides that functions
declared at an internal level may have global visibility. This feature
should not be relied upon where portability of source code is a con­
sideration. See your User's Guide for more information.

41

Microsoft C Optimizing Compiler La.ngua.ge Reference

Table 3.1

Summary of Lifetime and VISibility

Storage
Class

Level Item Specifier Lifetime Visibility

External Variable static Global Restricted
declaration

Variable
declaration

Function
declaration
or definition

Function
declaration
or definition

Internal Variable

Example

definition or
declaration
Variable
definition or
declaration

extern

static

extern

extern or
static

auto or
register

Global

Global

Global

Global

Local

to single
source file
Remainder
of source file
Restricted
to single
source file
Remainder
of source file

Block

Block

The following program example illustrates blocks, nesting, and visibility of
variables:

#include <stdio.h>

/* i defined at external level: */
int i = 1;

/* main function defined at external level: */
main ()
{

42

/*prints 1 (value of external level i): */
printf("%d\n", i);

/* begin first nested block: */
{

Program Structure

}

/* i and j defined at internal level: */
int i = 2, j = 3;

/* prints 2, 3: */
printf("%d\n%d\n", i, j);

/* begin second nested block: */
{

/* i is redefined: */
int i = O;

/* prints 0, 3: */
printf("%d\n%d\n", i, j);

/* end of second nested block: */
}

/*prints 2 (outer definition restored}: */
printf("%d\n", i);

/* end of first nested block: */
}

/*prints 1 (external level definition restored}: */
printf("%d\n", i);

In this example, there are four levels of visibility: the external level and
three block levels. Assuming that the function pr int f is defined else­
where in the program, the values will be printed to the screen as noted in
the comments preceding each statement.

3.6 Naming Classes

In any C program, identifiers are used to refer to many different kinds of
items. When you write a C program, you provide identifiers for the func­
tions, variables, formal parameters, union members, and other items the
program uses. C allows you to use the same identifier for more than one
program item, as long as you follow the rules outlined in this section.

The compiler sets up "naming classes" to distinguish between the
identifiers used for different kinds of items. The names within each class
must be unique to avoid conflict, but an identical name can appear in
more than one naming class. This means that you can use the same

43

Microsoft C Optimizing Compiler Language Reference

identifier for
two or more different items, provided that the items are in different nam­
ing classes. The compiler can resolve references based on the context of
the identifier in the program.

The following list describes the kinds of items you can name in C pro­
grams and the rules for naming them:

Items

Variables and functions

Formal parameters

Enumeration constants

44

Naming Class

The names of variables and functions are
in a naming class with formal parame­
ters, typedef names and enumeration
constants. Therefore, variable and func­
tion names must be distinct from other
names in this class that have the same
visibility.

However, you can redefine variable and
function names within program blocks,
as described in Section 3.5, "Lifetime
and Visibility."

The names of formal parameters to a
function are grouped with the names of
the function's variables, so the formal
parameter names should be distinct from
the variable names. You cannot rede­
clare the formal parameters at the top
level of the function. However, the names
of the formal parameters may be
redefined (that is used to refer to
different items) within subsequent blocks
nested within the function body.

Enumeration constants are in the same
naming class as variable and function
names. This means that the names of
enumeration constants must be distinct
from all variable and function names
with the same visibility, and distinct
from the names of other enumeration
constants with the same visibility. How­
ever, like variable names, the names of
enumeration constants have nested visi­
bility, so you can redefine them within
blocks. (Nested visibility is discussed in

typedef names

Tags

Members

Statement labels

Example

struct student {
char student[20];
int class;
int id;
} student;

Program Structure

Section 3.5, "Lifetime and Visibility.")

The names of types defined with the
typedef keyword are in a naming class
with variable and function names.
Therefore, typedef names must be dis­
tinct from all variable and function
names with the same visibility, and also
from the names of formal parameters
and enumeration constants. Like vari­
able names, names used for typedef
types can be redefined within program
blocks. See Section 3.5, "Lifetime and
Visibility."

Enumeration, structure, and union tags
are grouped in a single naming class.
Each enumeration, structure, or union
tag must be distinct from other tags
with the same visibility. Tags do not
conflict with any other names.

The members of each structure and
union form a naming class. The name of
a member must, therefore, be unique
within the structure or union, but it does
not have to be distinct from other names
in the program, including the names of
members of different structures and
umons.

Statement labels form a separate naming
class. Each statement label must be dis­
tinct from all other statement labels in
the same function. Statement labels do
not have to be distinct from other names
or from label names in other functions.

45

Microsoft C Optimizing Compiler Language Reference

Since structure tags, structure members, and variable names are in three
different naming classes, the three items named student in this example
do not conflict. The context of each item allows the compiler to correctly
interpret each occurrence of student in the program.

For example, when student appears after the struct keyword, the com­
piler recognizes it as a structure tag. When student appears after a
member-selection operator (-> or .), the name refers to the structure
member. In other contexts, student refers to the structure variable.

46

Chapter 4
Declarations

4.1 Introduction 49
4.2 Type Specifiers 50
4.3 Declarators 56
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.5
4.6
4.6.1
4.6.2
4.6.3

4.7
4.7.1
4.7.2
4.7.3

Pointer, Array, and Function Declarators
Complex Declarators 58
Declarators with Special Keywords 62

Variable Declarations 64
Simple Variable Declarations 65
Enumeration Declarations 66
Structure Declarations 69
Union Declarations 72
Array Declarations 7 4
Pointer Declarations 76

Function Declarations (Prototypes) 80
Storage Classes 86

Variable Declarations at the External Level
Variable Declarations at the Internal Level
Function Declarations
at the External and Internal Levels 92

Initialization 93
Fundamental and Pointer Types 94
Aggregate Types 95
String Initializers gg

57

87
90

47

4.8 Type Declarations 99
4.8.1 Structure, Union, and Enumeration Types 100
4.8.2 Typedef Declarations 101
4.9 Type Names 102

48

Declarations

4.1 Introduction

This chapter describes the form and constituents of C declarations for
variables, functions, and types. C declarations have the form

[sc-specifier] [type-specifier] declarator[::::: initializer] [,declarator[::::: initializer] ...]

where sc-specifier is a storage-class specifier; type-specifier is the name of a
defined type; declarator is an identifier; and initializer gives the value or
sequence of values to be assigned to the variable being declared.

You must explicitly declare all C variables before using them. You can
declare a C function explicitly by declaring it, or implicitly by calling the
function before you define or declare it.

The C language includes a standard set of data types. You can add your
own data types by declaring new ones based on types already defined. You
can declare arrays, data structures, and pointers to both variables and
functions.

C declarations require one or more declarators. A declarator is an
identifier that can be modified with brackets ([]), asterisks (*), or
parentheses (())to declare an array, pointer, or function type, respec­
tively. When you declare simple variables (such as character, integer, and
floating-point items), or structures and unions of simple variables, the
declarator is just an identifier.

Four storage-class specifiers are defined in C: auto, extern, register, and
static. The storage-class specifier of a declaration affects how the
declared item is stored and initialized and which parts of a program can
reference the item. Location of the declaration within the source program
and the presence or absence of other declarations of the variable are also
important factors in determining the visibility of variables.

Function declarations are presented in Section 4.5. For information on
function definitions, see Section 7.2.

49

Microsoft C Optimizing Compiler Language Reference

4.2 Type Specifiers

The C language provides definitions for a set of basic data types, called
"fundamental" types. Their names are listed in Table 4.1.

Table 4.1

Fundamental Types

Integral Typesa

char

int

short

long
signed

unsigned

en um

Floating-Point
Types

float

double

long doubleb

Other

voidc

const
volatiled

a The optional keyword signed may precede any of the integral
types, except enum. The keyword unsigned may also precede any
integral type except enum, but may also be used alone as a type
specifier, in which case it is understood as unsigned int. When used
alone, the keyword int is assumed to be signed. When used alone,
the keywords long and short are understood as long int and short
int.

b The long double type is semantically equivalent to double, but
is syntactically distinct.

c The keyword void has three uses: to declare function return types,
to specify that a function will take no arguments, and to modify a
pointer.

d The volatile keyword is implemented syntactically, but not
semantically.

Enumeration types are considered fundamental types. Type specifiers for
enumeration types are discussed in Section 4.8.1.

Note

50

Declarations

The long float type is no longer supported, and occurrences of it in
old code should be changed to double.

The signed char, signed int, signed short int, and signed long int
types, together with their unsigned counterparts, are called "integral"
types. The float, double, and long double type specifiers refer to
"floating-point" types. You can use any integral or floating-point type
specifier in a variable or function declaration.

You can use the void type only to declare functions that return no value
or to declare a pointer to an unspecified type. When the keyword void
occurs alone within the parentheses following a function name, it is not
interpreted as a type specifier. In that context void indicates only that the
function accepts no arguments. Function types are discussed in Section
4.5.

The const type specifier is used to declare an object as being
nonmodifiable. The const keyword can be used as a modifier for any fun­
damental or aggregate type, or to modify a pointer to an object of any
type. The only type specifier that cannot be modified by const is void. A
typedef may be modified by a const type specifier. A declaration that
includes the keyword const as a modifier of an aggregate type declarator
indicates that each element of the aggregate type is unmodifiable. If an
item is declared with only the const type specifier, it's type is taken to be
const int. A const object may be placed in a read-only region of storage.

The volatile type specifier declares an item whose value may legitimately
be changed by something beyond the control of the program in which it
appears. The volatile keyword can modify any type except void, includ­
ing a typedef. An item may be both const and volatile, in which case
the item could not be legitimately modified by its own program, but could
be modified by some asyncronous process. The volatile keyword is imple­
mented syntactically, but not semantically.

You can create additional type specifiers with typedef declarations, as
described in Section 4.8.2. Such specifiers may only be modified by the
const and volatile modifiers.

Type specifiers are commonly abbreviated, as shown in Table 4.2. Integral
types are signed by default. Thus, if you omit the unsigned keyword from
the type specifier, the integral type is signed, even if you do not specify the
signed keyword.

51

Microsoft C Optimizing Compiler Language Reference

In some implementations, you can specify a compiler option that changes
the default char type from signed to unsigned. When this option is in
effect, the abbreviation char means the same as unsigned char, and you
must use the signed keyword to declare a signed character value.

52

Table 4.2

Type Specifiers and Abbreviations

Type Specifier Abbreviations

signed chara char
signed int signed, int
signed short int short, signed short

signed long int long, signed long
unsigned charb
unsigned int unsigned
unsigned short int unsigned short
unsigned long int unsigned long
fl.oat
const int const
volatile int volatile
const volatile int const volatile

a When you make the char type unsigned by default (by
specifying the appropriate compiler option), you cannot
abbreviate signed char.

b When you make the char type unsigned by default (by
specifying the appropriate compiler option), you can
abbreviate unsigned char as char.

Declarations

Note

This manual generally uses the abbreviated forms of the type specifiers
listed in Table 4.2 rather than the long forms, and it assumes that the
char type is signed by default. Therefore, throughout this manual,
char stands for signed char.

Table 4.3 summarizes the storage associated with each fundamental type
and gives the range of values that can be stored in a variable of each type.
Since the void type specifier is only used to denote a function with no
return value or a pointer to an unspecified type, it is not included in table.
Similarly, the table does not include const because a variable type
modified by const retains its storage size and can contain any value
within range for its fundamental type.

Table 4.3

Storage and Range of Values for Fundamental Types

Type Storage Range of Values (Internal)

char 1 byte -128 to 127
int implementation-

defined
short 2 bytes - 32,768 to 32,767
long 4 bytes - 2,147,483,648 to 2,147,483,647
unsigned char 1 byte 0 to 255
unsigned implementation-

defined
unsigned short 2 bytes 0 to 65,535
unsigned long 4 bytes 0 to 4,294,967,295
float 4 bytes IEEE-standard notation;

discussed below
double 8 bytes IEEE-standard notation;

discussed below
long double 8 bytes IEEE-standard notation;

discussed below

53

Microsoft C Optimizing Compiler Language Reference

The char type is used to store the integer value of a member of the
representable character set. That integer value is the ASCII code
corresponding to the specified character. Since the char type is inter­
preted as a signed, 1-byte integer, a char variable can store values in the
range -128 to 127, although only the values from 0 to 127 have character
equivalents. Similarly, an unsigned char variable can store values in the
range 0 to 255.

Note that the C language does not define the storage and range associated
with the int and unsigned int types. Instead, the size of a signed or
unsigned int item is the standard size of an integer on a particular
machine. For example, on a 16-bit machine the int type is usually 16 bits,
or 2 bytes. On a 32-bit machine the int type is usually 32 bits, or 4 bytes.
Thus, the int type is equivalent to either the short int or the long int
type, and the unsigned int type is equivalent to either the unsigned
short or the unsigned long type, depending on the implementation.

The type specifiers int and unsi~. ned .int (or si.mply unsigned) define cer­
tain features of the C language lfor instance, the enum type discussed
later in Section 4.8.1). In these cases, the definitions of int and unsigned
int for a particular implementation determine the actual storage.

Note

The int and unsigned int type specifiers are widely used in C pro­
grams because they allow a particular machine to handle integer
values in the most efficient way for that machine. However, since the
sizes of the int and unsigned int types vary, programs that depend on
a specific int size may not be portable to other machines. You can use
expressions with the sizeof operator (discussed in Section 5.3.4)
instead of hard-coded data sizes to make programs more portable. The
actual sizes of int and unsigned int are discussed in your User's
Guide.

Floating-point numbers use the IEEE (Institute of Electrical and Electron­
ics Engineers, Inc.) format. Values with float type have 4 bytes, consist­
ing of a sign bit, an 8-bit excess-127 binary exponent, and a 23-bit
mantissa. The mantissa represents a number between 1.0 and 2.0. Since
the high-order bit of the mantissa is always l, it is not stored in the
number. This representation gives a range of approximately 3.4E-38 to
3.4E+38 for type float.

54

Declarations

Values with double type have 8 bytes. The format is similar to the float
format except that it has an 11-bit excess-1023 exponent and a 52-bit
mantissa, plus the implied high-order 1 bit. This format gives a range of
approximately 1.7E-308 to 1.7E+308 for type double.

Range of Values

The range of values for a variable is bounded by the minimum and max­
imum values that can be represented z'nternally in a given number of bits.
However, because of C's conversion rules (discussed in detail in Chapter 5,
"Expressions and Assignments"), you cannot always use the maximum or
minimum value for a constant of a particular type in an expression.

For example, the constant expression -32768 consists of the arithmetic
negation operator(-) applied to the constant value 32,768. Since 32,768 is
too large to represent as a short int, it is given the long type. Conse­
quently, the constant expression -32768 has long type. You can only
represent -32,768 as a short int by type-casting it to the short type. No
information is lost in the type cast, since -32,768 can be represented inter­
nally in 2 bytes.

Similarly, a value such as 65,000 can only be represented as an unsigned
short by type-casting the value to unsigned short type or by giving the
value in octal or hexadecimal notation. The value 65,000 in decimal nota­
tion is considered a signed constant, and it is given the long type because
65,000 does not fit into a short. You can cast this long value to the
unsigned short type without loss of information, since 65,000 can fit in 2
bytes when it is stored as an unsigned number.

Octal and hexadecimal constants may have either signed or unsigned
type, depending on their size (see Section 2.3.1, "Integer Constants," for
more information). However, the method used to assign types to octal and
hexadecimal constants ensures that they always behave like unsigned
integers in type conversions.

Data Type Categories

The C data types fall into two general categories, called scalar and aggre­
gate. Scalars include pointers and arithmetic types. Arithmetic types
include all floating and integral types. The floating types are float, dou­
ble, and long double. The integral types are char, all the variations of
int, and the enumerated types, which include enum and void.

55

Microsoft C Optimizing Compiler Language Reference

Aggregate types include arrays and structures.

Table 4.4 illustrates the categorization of C data types.

Table 4.4

C Data-Type Categories

Data Types Categories

char

int

short

long

signed
unsigned
en um
void

Integral

Types

double Floating
float J
long double Types

Pointers

Arrays }
Structures

4.3 Declarators

Syntax

identifier
declarator[]
declarator[constant-expression]
*declarator
(declarator)

56

Arithmetic

Types

Aggregate

Types

Declarations

The C language lets you declare arrays of values, pointers to values, and
functions returning values of specified types. You must use a declarator to
declare these items.

A declarator is an identifier that may be modified by brackets ([]), aster­
isks (*), or parentheses (())to declare an array, pointer, or function type,
respectively. Declarators appear in the pointer, array, and function
declarations described later in this chapter (Sections 4.4.6, 4.4.5, and 4.5,
respectively). The following section discusses the rules for forming and
interpreting declarators.

4.3.1 Pointer, Array, and Function Declarators

When a declarator consists of an unmodified identifier, the item being
declared has a base type. If asterisks (*) appear to the left of an identifier,
the ty.)?e is modified to a poi"nter type. It the identifier is followed by brack­
ets (l J), the type is modified to an array type. If the identifier is followed
by parentheses, the type is modified to a function returning type.

A declarator must include a type specifier to be a complete declaration.
The type specifier gives the type of the elements of an array type, the type
of object addressed by a pointer type, or the return type of a function.

The sections on pointer, array, and function declarations later in this
chapter discuss each type of declaration in detail (see Sections 4.4.6, 4.4.5,
and 4.5, respectively).

Examples

The following examples illustrate the simplest forms of declarators:

/******************** Example 1 ********************/
int list [20];

Example 1 declares an array of int values named list.

/******************** Example 2 ********************/
char *cp;

57

Microsoft C Optimizing Compiler Language Reference

Example 2 declares a pointer named cp to a char value.

/******************** Example 3 ********************/
double func(void);

Example 3 declares a function named func with no arguments that
returns a double value.

4.3.2 Complex Declarators

You can enclose any declarator in parentheses to specify a particular
interpretation of a complex declarator.

A "complex" declarator is an identifier qualified by more than one array,
pointer, or function modifier. You can apply various combinations of
array, pointer, and function modifiers to a single identifier. However, a
declarator may not have the following illegal combinations:

• An array cannot have functions as its elements.

• A function cannot return an array or a function.

In interpreting complex declarators, brackets and parentheses (that is,
modifiers to the right of the identifier) take precedence over asterisks (that
is, modifiers to the left of the identifier). Brackets and parentheses have
the same precedence and associate from left to right. After the declarator
has been fully interpreted, the type specifier is applied as the last step.
You can use parentheses to override the default association order in a way
that forces a particular interpretation.

A simple way to interpret complex declarators is to read them "from the
inside out," using the following four steps:

58

1. Start with the identifier and look to the right for brackets or
parentheses (if any).

2. Interpret these brackets or parentheses, then look to the left for
asterisks.

3. If you encounter a right parenthesis at any stage, go back and
apply rules 1 and 2 to everything within the parentheses before
proceeding.

Declarations

4. Apply the type specifier.

Examples

/******************** Example 1 ********************/
char :(:(:v~r)j))flO];

7 6 4 2 1 3 5

In Example 1, the steps are labeled in order and can be interpreted as fol­
lows:

1. The identifier var is declared as

2. a pointer to

3. a function returning

4. a pointer to

5. an array of 10 elements, which are

6. pointers to

7. char values.

Examples 2 through 9 illustrate complex declarations further and show
how parentheses can affect the meaning of a declaration.

/******************** Example 2 ********************/

/* array of pointers to int values */
int *var[S];

In Example 2, the array modifier has higher priority than the pointer
modifier, so var is declared to be an array. The pointer modifier applies to
the type of the array elements; therefore, the array elements are pointers
to int values.

/******************** Example 3 ********************/

/* pointer to array of int values */
int (*Var) [5] :

59

Microsoft C Optimizing Compiler Language Reference

In Example 3, parentheses give the pointer modifier higher priority than
the array modifier, and var is declared to be a pointer to an array of five
int values.

/******************** Example 4 ********************/

/* function returning pointer to long */
long *Var(long,long);

Function modifiers also have higher priority than pointer modifiers, so
Example 4 declares var to be a function returning a pointer to a long
value. The function is declared to take two long values as arguments.

/******************** Example 5 ********************/

/* pointer to function returning long */
long (*var) (long, long);

Example 5 is similar to Example 3. Parentheses give the pointer modifier
higher priority than the function modifier, and var is declared to be a
pointer to a function that returns a long value. Again, the function takes
two long arguments.

/******************** Example 6 ********************/

/* array of pointers to functions
returning structures */

struct both {
int a;
char b;
} (*Var[S]) (struct both, struct both);

The elements of an array cannot be functions, but Example 6 demon­
strates how to declare an array of pointers to functions instead. In this
example, var is declared to be an array of five pointers to functions that
return structures with two members. The arguments to the functions are
declared to be two structures with the same structure type, both. Note
that the parentheses surrounding *Var [5] are required. Without them,
the declaration is an illegal attempt to declare an array of functions, as
shown below:

/* ILLEGAL */
struct both *Var[S] (struct both, struct both);

60

Declarations

/******************** Example 7 ********************/

/* function returning pointer
to an array of 3 double values */

double (*Var (double (*) [3J)) [3J;

Example 7 shows how to declare a function returning a pointer to an
array, since functions returning arrays are illegal. Here var is declared to
be a function returning a pointer to an array of three double values. The
function var takes one argument. The argument, like the return value, is
a pointer to an array of three double values. The argument type is given
by a complex abstract declarator. The parentheses around the asterisk in
the argument type are required; without them, the argument type would
be an array of three pointers to double values. For a discussion and ex­
amples of abstract declarators, see Section 4.9, "Type Names."

/******************** Example 8 ********************/

/* array of arrays of pointers
to pointers to unions */

union sign {
int x;
unsigned y;
} **Var [SJ [SJ ;

A pointer can point to another pointer, and an array can contain arrays as
elements, as the Example 8 shows. Here var is an array of five elements.
Each element is a five-element array of pointers to pointers to unions with
two members.

/******************** Example 9 ********************/

/* array of pointers to arrays
of pointers to unions */

union sign * (*Var [SJ) [SJ ;

Example 9 shows how the placement of parentheses changes the meaning
of the declaration. In this example, var is a five-element array of pointers
to five-element arrays of pointers to unions.

61

Microsoft C Optimizing Compiler Language Reference

4.3.3 Declarators with Special Keywords

Your implementation of Microsoft C may include the following special
keywords:

cdecl
far
fort ran
huge
near
pascal

These keywords modify the meaning of variable and function declarations.
See your User's Guide for a full discussion of the effects of these special
keywords.

When a special keyword appears in a declarator, it modifies the item
immediately to the right of the keyword. You can apply more than one
special keyword to the same item. For example, you might modify a func­
tion identifier with both the far keyword and the pascal keyword. In this
case, the order of the keywords does not matter {that is, far pascal and
pascal far have the same effect). Thus the "binding" characteristics of the
special keywords are the same as those of the type specifiers const and
volatile. (Section 4.2 contains descriptions of the const and volatile key­
words.)

You can also use two or more special keywords in different parts of a
declaration to modify the meaning of the declaration. For example, the
following declaration contains two occurrences of the far keyword:

int far* pascal far func(void);

In this example, the pascal and far keywords modify the function
identifier func. The return value of func is declared to be a far pointer
to an int value.

As in any C declaration, you can use parentheses to override the default
interpretation of the declaration. The rules governing complex declarators
(discussed in the Section 4.3.2) also apply to declarations that use the spe­
cial keywords.

62

Declarations

Examples

The following examples show the use of special keywords in declarations:

/******************** Example 1 ********************/

int huge database[65000];

Example 1 declares a huge array named database with 65,000 int ele­
ments. The huge keyword modifies the array declarator.

/******************** Example 2 ********************/

char * far * x;

In Example 2, the far keyword modifies the asterisk to its right, making x
a far pointer to a pointer to char. This declaration is equivalent to the
following declaration:

char* (far *X);

/******************** Example 3 ********************/

double near cdecl calc(double,double);

double cdecl near calc(double,double);

Example 3 shows two equivalent declarations. Both declare calc as a
function with the near and cdecl attributes.

/******************** Example 4 ********************/

char far fortran initlist[INITSIZE];

char far *nextchar, far *prevchar, far *currentchar;

Example 4 also shows two declarations. The first declares a far f ortran
array of characters named ini tlist, and the second declares three far
pointers named nextchar, prevchar, and currentchar. These
pointers might be used to store the addresses of characters in the
ini tlist array. Note that the far keyword must be repeated before
each declarator.

63

Microsoft C Optimizing Compiler Language Reference

/******************** Example 5 ********************/

char far *(f~r *getint) (int far*);

6 5 2 1 3 4

Example 5 shows a more complex declaration with several occurrences of
the far keyword. The following procedure would be used to interpret this
declaration:

1. The identifier getint is declared as a

2. far pointer to

3. a function taking

4. a single argument that is a far pointer to an int value

5. and returning a far pointer to a

6. char value

Note that the far keyword always modifies the item immediately to its
right.

4.4 Variable Declarations

Syntax

[sc-specifier] type-specifier declarator[, declarator ...]

This section describes the form and meaning of variable declarations. In
particular, it explains how to declare the following:

64

Type of Variable

Simple variables

Enumeration variables

Structures

Description

Single-value variables with integral or
floating-point type

Simple variables with integral type that
hold one value from a set of named integer
constants

Variables composed of a collection of
values that may have different types

Unions

Arrays

Pointers

Declarations

Variables composed of several values of
different types, which occupy the same
storage space

Variables composed of a collection of ele­
ments with the same type

Variables that point to other variables and
contain variable locations (in the form of
addresses) instead of values

In the general form of a variable declaration, type-specifier gives the data
type of the variable and declarator gives the name of the variable, possibly
modified to declare an array or a pointer type. The type-specifier can be a
compound, as when the type is modified by const, volatile, or one of the
special keywords described in Section 4.3.3. You can define more than one
variable in a declaration by using multiple declarators, separated by com-
mas.

The sc-specifier gives the storage class of the variable. In some contexts,
you can initialize variables at the time you declare them. For information
about storage classes and initialization, see Sections 4.6 and 4. 7, respec­
tively.

4.4.1 Simple Variable Declarations

Syntax

[sc-specifier] type-specifier identifier [, identi]'ier ...];

The declaration of a simple variable specifies the variable's name and type.
It can also specify the variable's storage class, as described in Section 4.6.
The identifier in the declaration is the variable's name. The type-specifier
is the name of a defined data type.

You can use a list of identifiers separated by commas(,) to specify several
variables in the same declaration. Each identifier in the list names a vari­
able. All variables defined in the declaration have the same type.

65

Microsoft C Optimizing Compiler Language Reference

Examples

/******************** Example 1 ********************/
int x;
int const y=l;

Example 1 declares a simple variable named x. This variable can hold any
value in the set defined by the int type for a particular implementation.
The simple object y is declared as a constant value of type int. It is ini­
tialized to the value 1, and is not modifiable. If the declaration of y was
not a defining declaration, it would receive an initial value of zero, and
that value would be unmodifiable. The order of placement of the int and
const type specifiers, relative to each other, is not significant.

/******************** Example 2 ********************/
unsigned long reply, flag;

Example 2 declares two variables named reply and flag. Both variables
have unsigned long type and hold unsigned integral values.

/******************** Example 3 ********************/
double order;

Example 3 declares a variable named order that has double type, and
can hold floating-point values.

4.4.2 Enumeration Declarations

Syntax

enum [tag] { enum-list} identifier [, identifier ...];

enum tag identifz"er [, identifier ...];

An enumeration declaration gives the name of an enumeration variable
and defines a set of named integer constants (the "enumeration set"). A
variable with enumeration type stores one of the values of the enumera­
tion set defined by that type. The integer constants of the enumeration
set have int type; thus, the storage associated with an enumeration vari­
able is the storage required for a single int value.

66

Declarations

Variables of enum type are treated as if they are of type int in all cases.
They may be used in indexing expressions and as operands of all arith­
metic and relational operators.

Enumeration declarations begin with the enum keyword and have the two
forms shown at the beginning of this section.

• In the first form, the enum-list specifies the values and names of the
enumeration set. (The enum-list is described in detail later in this
section.) The optional tag is an identifier that names the enumera­
tion type defined by the enum-l£st. The identifier names the
enumeration variable. You can define more than one enumeration
variable in a single enumeration declaration.

• The second form of enumeration declaration uses a previously
defined enumeration tag to refer to an enumeration type defined
elsewhere. The tag must refer to a defined enumeration type, and
that enumeration type must be currently visible. Since the
enumeration type is defined elsewhere, an enum-list does not
appear in this type of declaration.

Enumeration List

An enum-1£st has the following form:

identifier [= constant-expression]
[, identifier [= constant-expression] ...]

Each identifier in an enumeration list names a value of the enumeration
set. By default, the first identifier is associated with the value 0, the next
identifier is associated with the value 1, and so on through the last
identifier in the declaration. The name of an enumeration constant is
equivalent to its value.

The optional phrase "= constant-expression" overrides the default
sequence of values. Thus, if identifier= constant-expression appears in an
enum-list, the identifier is associated with the value given by constant­
expression. The constant-expression must have int type and can be nega­
tive. The next identifier in the list is associated with the value of
"constant-expression+ 1", unless you explicitly associate it with another
value.

67

Microsoft C Optimizing Compiler Language Reference

The following rules apply to the members of an enumeration set:

• An enumeration set can contain duplicate constant values. For
example, you could associate the value 0 with two different
identifiers named nul 1 and zero in the same set.

• The identifiers in the enumeration list must also be distinct from
other identifiers with the same visibility, including ordinary vari­
able names and identifiers in other enumeration lists.

• Enumeration tags must be distinct from other enumeration, struc­
ture, and union tags with the same visibility.

Examples

/******************** Example 1 ********************/

enum day {
saturday,
sunday = 0,
monday,
tuesday,
wednesday,
thursday,
friday
} workday;

Example 1 defines an enumeration type named day and declares a variable
named workday with that enumeration type. The value 0 is associated
with saturday by default. The identifier sunday is explicitly set to 0.
The remaining identifiers are given the values 1 through 5 by default.

/******************** Example 2 ********************/

enum day today = wednesday;

In Example 2, a value from the set defined in Example 1 is assigned to the
variable today. Note that the name of the enumeration constant is used
to assign the value. Since the day enumeration type was previously
declared, only the enumeration tag is necessary in this declaration.

68

Declarations

4.4.3 Structure Declarations

Syntax

struct [tag] { member-declaration-liBt} declarator[, declarator ...];

struct tag declarator [, declarator ...];

A structure declaration names a structure variable and specifies a sequence
of variable values (called "members" of the structure) that can have
different types. A variable of that structure type holds the entire sequence
defined by that type.

Structure declarations begin with the struct keyword and have two forms:

• In the first form, a member-declaration-list (described in detail below)
specifies the types and names of the structure members. The optional
tag is an identifier that names the structure type defined by the
member-declaration-list.

• The second form uses a previously defined structure tag to refer to a
structure type defined elsewhere. Thus, a member-declaration-list is not
needed as long as the definition is visible. Declarations of pointers to
structures and typedefs for structure types can use the structure tag
before the structure type is defined. However, the structure definition
must be encountered prior to any actual use of the typedef or pointer.

In both forms, each declarator specifies a structure variable. A declarator
may also modify the type of the variable to a pointer to the structure type,
an array of structures, or a function returning a structure.

Structure tags must be distinct from other structure, union, and enumera­
tion tags with the same visibility.

Member-Declaration List

A member-declaration-list contains one or more variable or bit-field
declarations.

Each variable declared in the member-declaration-list is defined as a
member of the structure type. Variable declarations within the member­
declaration-list have the same form as other variable declarations discussed
in this chapter, except that the declarations cannot contain storage-class
specifiers or initializers. The structure members can have any variable

69

Microsoft C Optimizing Compiler Language Reference

type: fundamental, array, pointer, union, or structure.

A member cannot be declared to have the type of the structure in which it
appears. However, a member can be declared as a pointer to the structure
type in which it appears as long as the structure type has a tag. This
allows you to create linked lists of structures.

A bit-field declaration has the following form:

type-speci"f'z"er [identifi"er] : constant-expression;

The constant-expression specifies the number of bits in the bit field. The
type-specifier of type int lsigned or unsigned), and the constant­
expression must be a non-negative integer value. Arrays of bit fields,
pointers to bit fields, and functions returning bit fields are not allowed.
The optional identifier names the bit field. Unnamed bit fields can be used
as "dummy" fields, for alignment purposes. An unnamed bit field whose
width is specified as 0 guarantees that storage for the member following it
in the member-declaration-list begins on an int boundary.

Each identifier in a member-declaration-list must be unique within the list.
However, they do not have to be distinct from ordinary variable names or
from identifiers in other member-declaration-lists.

Note

A Microsoft extension to a allows char and long types (both signed
and unsigned) for bit fields. Unnamed bit fields with base type long
or char (signed or unsigned) force alignment to the the base type
(signed or unsigned, char or long).

Microsoft C does not implement signed bit fields. The syntax is
allowed, but a bitfield specified as signed is treated as unsigned in all
conversions.

Storage

Structure members are stored sequentially in the order in which they are
declared: the first member has the lowest memory address and the last
member the highest. Storage for each member begins on a memory boun­
dary appropriate to its type. Therefore, unnamed blanks can appear
between structure members in memory.

70

Declarations

Bit fields are not stored across boundaries of their declared type. For
example, a bit field declared with unsigned int type is packed into the
space remaining (if any), if the previous bit field was of type unsigned int
Otherwise, it begms a new object on an int boundry.

Examples

/******************** Example 1 ********************/

struct {
float x, y;

} complex;

Example 1 defines a structure variable named complex. This structure
has two members with float type, x and y. The structure type has no tag,
and is therefore unnamed.

/******************** Example 2 ********************/

struct employee {

} temp;

char name[20);
int id;
long class;

Example 2 defines a structure variable named temp. The structure has
three members: name, id, and class. The name member is a 20-element
array, and id and class are simple members with int and long type,
respectively. The identifier employee is the structure tag.

/******************** Example 3 ********************/

struct employee student, faculty, staff;

Example 3 defines three structure variables: student, faculty, and
staff. Each structure has the same list of three members. The members
are declared to have the structure type employee, defined in Example 2.

/******************** Example 4 ********************/

struct sample {
char c;
float *pf;
struct sample *next;

71

Microsoft C Optimizing Compiler Language Reference

} x;

Example 4 defines a structure variable named x. The first two members of
the structure are a char variable and a pointer to a float value. The third
member, next, is declared as a pointer to the structure type being defined
(sample).

/******************** Example 5 ********************/

struct {
unsigned icon : 8;
unsigned color : 4;
unsigned underline : 1;
unsigned blink : 1;

} screen[25] [80];

Example 5 defines a two-dimensional array of structures named screen.
The array contains 2000 elements, and each element is an individual struc­
ture containing four bit-field members: icon, color, underline, and
blink.

4.4.4 Union Declarations

Syntax

union [tag] {member-declaration-list} declarator[, declarator ...];

union tag declarator[, declarator ...];

A union declaration names a union variable and specifies a set of variable
values, called "members" of the union, that can have different types. A
variable with union type stores one of the values defined by that type.

Union declarations have the same form as structure declarations, except
that they begin with the union keyword instead of the struct keyword.
The same rules govern structure and union declarations, except that bit­
field members are not allowed in unions.

72

Declarations

Storage

The storage associated with a union variable is the storage required for the
largest member of the union. When a smaller member is stored, the union
variable may contain unused memory space. All members are stored in
the same memory space and start at the same address. The stored value is
overwritten each time a value is assigned to a different member.

Examples

/******************** Example 1 ********************/

union sign {
int svar;
unsigned uvar;

} number;

Example 1 defines a union with sign type and declares a variable named
number that has two members: svar, a signed integer, and uvar, an
unsigned integer. This declaration allows the current value of number to
be stored as either a signed or an unsigned value. The tag associated with
this union type is sign.

/******************** Example 2 ********************/

union {
char *a, b;
float f [20] ;

} jack;

Example 2 defines a union variable named jack. The members of the
union are, in order of their declaration, a pointer to a char value, a char
value, and an array of fl.oat values. The storage allocated for jack is the
storage required for the 20-element array f, since f is the longest member
of the union. Because there is no tag associated withe the union, its type is
unnamed.

/******************** Example 3 ********************/

union {
struct {

unsigned int icon : 8;
unsigned color : 4;

} windowl;
int screenval;

73

Microsoft 0 Optimizing Compiler Language Reference

} screen [25] [80] ;

Example 3 defines a two-dimensional array of unions named screen. The
array contains 2000 elements. Each element is an individual union with
two members: windowl,and screenval. The window! member is a
structure with two bit-field members, icon, and color. The screenval
member is an int. At any given time, each union element holds either the
int represented by screenval or the structure represented by windowl.

4.4.5 Array Declarations

Syntax

type-Bpecifier declarator [conBtant-expreBBion];
type-Bpeczfier declarator [] ;

An array declaration names the array and specifies the type of its ele­
ments. It may also define the number of elements in the array. A variable
with array type is considered a pointer to the type of the array elements,
as described in Section 5.2.2, "Identifiers."

Array declarations have the two forms shown at the beginning of this sec­
tion. Their syntax differs as follows:

• In the first form, the constant-expression within the brackets defines
the number of elements in the array. Each element has the type given
by the type-specifier, which can be any type except void. An array ele­
ment cannot be a function type.

• The second form omits the constant-expression in brackets. You can
use this form only if you have initialized the array, declared it as a for­
mal parameter, or declared it as a reference to an array explicitly
defined elsewhere in the program.

In both forms, the declarator names the variable and may modify the
variable's type. The brackets ([])following the declarator modify the
declarator to array type.

You can define an array of arrays (a "multidimensional" array), by follow­
ing the array declarator with a list of bracketed constant-expressions, as
shown below:

type-Bpecifier declarator[conBtant-expreBBion] (conBtant-expreBBion] ...

Each constant-expression in brackets defines the number of elements in a

74

Declarations

given dimension: two-dimensional arrays have two bracketed expressions,
three-dimensional arrays have three, and so on. When you declare a mul­
tidimensional array within a function, you can omit the first constant­
expression if you have initialized the array, declared it as a formal parame­
ter, or declared it as a reference to an array explicitly defined elsewhere in
the program.

You can define arrays of pointers to various types of objects by using com­
plex declarators, as described in Section 4.3.2.

Storage

The storage associated with an array type is the storage required for all of
its elements. The elements of an array are stored in contiguous and
increasing memory locations, from the first element to the last. No blanks
separate the array elements in storage.

Arrays are stored by row. For example, the following array consists of two
rows with three columns each:

char A[2] [3];

The three columns of the first row are stored first, followed by the three
columns of the second row. This means that the last subscript varies most
quickly.

To refer to an individual element of an array, use a subscript expression,
discussed in Section 5.2.5.

Examples

/******************** Example 1 ********************/

int scores[lO], game;

Example 1 defines an array variable named scores with 10 elements,
each of which has int type. The variable named game is declared as a
simple variable with int type.

/******************** Example 2 ********************/

float matrix[lO] (15];

75

Microsoft C Optimizing Compiler Language Reference

Example 2 defines a two-dimensional array named matrix. The array has
150 elements, each having float type.

/******************** Example 3 ********************/

struct {
float x, y;
} complex[lOO];

Example 3 defines an array of structures. This array has 100 elements;
each element is a structure containing two members.

/******************** Example 4 ********************/

extern char *name[];

Example 4 declares the type and name of an array of pointers to char.
The actual definition of name occurs elsewhere.

4.4.6 Pointer Declarations

Syntax

type-speci'fier • [modification-spec] declarator;

A pointer declaration names a pointer variable and specifies the type of
the object to which the variable points. A variable declared as a pointer
holds a memory address.

The type-specifier gives the type of the object, which can be any funda­
mental, structure, or union type. Pointer variables can also point to func­
tions, arrays, and other pointers. (For information on declaring more com­
plex pointer types, refer to Section 4.3.2, "Complex Declarators.")

The type-specifier can also be void, so that specification of the type to
which the pointer points can be delayed. This is referred to as a "pointer
to void" (void *), and is used to delay specification of the type to which
the pointer will refer. A variable declared as a pointer to void can be used
to point to an object of any type. However, in order to perform operations
on the pointer or on the object to which it points, the type to which it
points must be explicitly specified for each operation. Such conversion can
be accomplished with a type cast.

76

Declarations

The modification-spec can be either const or volatile, or both. These
specify, respectively, that the pointer will not be modified by the program
itself (const), or that the pointer may legitimately be modified by some
process beyond the control of the program (volatile). (See Section 4.2 for
more information on const and volatile.

The declarator names the variable and can include a type modifier. For
example, if the declarator represents an array, the type of the pointer is
modified to pointer to array.

You can declare a pointer to a structure or union type before you define
the structure or union type. However the structure must be defined before
the pointer can be dereferenced. You declare the pointer by using the
structure or union tag (see Example 7 below). Such declarations are
allowed because the compiler does not need to know the size of the struc­
ture or union to allocate space for the pointer variable.

Storage

The amount of storage required for an address and the meaning of the
address depend on the implementation of the compiler. Pointers to
different types are not guaranteed to have the same length.

In some implementations, you can use the special keywords near, far, and
huge to modify the size of a pointer. Declarations using special keywords
are described in Section 4.3.3. See your User's Guide for more information
on the meaning and use of these keywords.

Examples

/******************** Example 1 ********************/
char *message;/

Example 1 defines a pointer variable named message. It points to a vari­
able with char type.

/******************** Example 2 ********************/
int *pointers[lO]

77

Microsoft C Optimizing Compiler Language Reference

Example 2 defines an array of pointers named pointers. The array has
10 elements; each element is a pointer to a variable with int type.

/******************** Example 3 ********************/
int (*pointer) [10]:

Example 3 defines a pointer variable named pointer; it points to an
array with 10 elements. Each element in this array has int type.

/******************* Example 4 *********************/
const int *X:

Example 4 declares a pointer variable x, to a constant value. The pointer
may be modified to point to a different integer, but the value to which it
points may not be modified.

/****************** Example 5 *********************/
const int some_object = 5 ;
int other_object = 37;
int *Const y = &fixed_object;
canst volatile *Const z = &some_object;
canst *Const volatile w = &some_object;

The variable yin Example 5 is declared as a constant pointer to an integer
value. The value it points to may be modified, but the pointer itself must
always point to the same location, the address of fixed_object. Simi~
larly z is a constant pointer, but it is also declared to point to an int
whose value will notbemodified by the program. The additional specifier
volatile indicates that although the value of the const int pointed to
by z cannot be modified by the program, it could legitimately be modified
by a process outside the program. The declaration of w specifies that the
value pointed to will not be changed, and that the program itself will not
modifiy the pointer. However, some outside process could legitimately
modify the pointer.

/******************* Example 6 ********************/
struct list *next, *previous;

Example 6 defines two pointer variables that point to the structure type
list. This declaration can af,pear before the definition of the list
structure type (see Example 7 , as long as the list type definition has the
same visibility as the declaration.

'i8

Declarations

/******************** Example 7 ********************/
struct list {

} line;

char *token;
int count;
struct list *next;

Example 7 declares the variable 1 ine to have the structure type named
list. The list structure type is defined to have three members: the first
member is a pointer to a char value, the second is an int value, and the
third is a pointer to another 1 ist structure.

/******************** Example 8 ********************/
struct id {

unsigned int id_no;
struct name *pname;

} record;

Example 8 declares the variable record to have the structure type id.
Note that pname is declared as a pointer to another structure type named
name. This declaration can appear before the name type is defined.

/*********************** Example 9 ********************/
int i;
void *p;

p = &i;

(int *)p++;

/* p declared as pointer to an object
whose type is not specified

/* address of integer i assigned to p
but type of p itself is still not
specified. An operation like p++
would not be permitted yet */

/* incrementing p permitted when the
cast converts it to pointer to int */

The pointer variable pis declared in Example 9, but the void * preceding
the identifier p in the declaration, means that p can be used later to point
to any type object. The address of an int is assigned to it, but no opera­
tions on the pointer itself are permitted unless it is explicitly converted to
the type to which it points. Similarly, indirect operations on the object
dereferenced by p are not permitted unless p is converted to a specific
type. Finally, p is converted to a pointer to int with a cast, and incre­
mented.

79

Microsoft C Optimizing Compiler Language Reference

4.5 Function Declarations (Prototypes)

Syntax

[sc-spec] [type-spec] declarator([! ormal-parameter-Hst]) [, declarator-list ...];

A function declaration, also called a "function prototype," establishes the
name and return type of a function and may specify the types, formal
parameter names, and number of arguments to the function. A function
declaration does not define the function body. It simply makes those attri­
butes of the function it does include known to the compiler. This informa­
tion enables the compiler to check the types of the actual arguments in
ensuing calls to the function.

If you do not provide a function prototype, the compiler constructs one
from the first reference to the function it encounters, whether a call or a
function definition. This prototype is then used to check the formal
parameters in a subsequent definition of the function or the actual argu­
ments in a subsequent call to the function. However, such checking can
only be done if the definition occurs in the same source file. If the
definition occurs in a different module, argument mismatch errors are not
detected. Function definitions are described in detail in Section 7.2.

The sc-spec represents a storage-class specifier, and can be either extern
or static. Storage-class specifiers are discussed in Section 4.6.

The type-spec gives the function's return type, and the declarator names
the function. If you omit the type-spec from a function declaration, the
function is assumed to return a value of type int.

The formal-parameter-list is described below.

The final declarator-list indicated in the syntax represents further declara­
tions on the same line. These may be other functions returning values of
the same type as the first function, or declarations of any variables whose
type is the same as the first function's return type. Each such declaration
must be separated from its predecessors and successors by a comma.

80

Declarations

Formal Parameters

Formal parameters describe the actual arguments that can be passed to a
function. In the function declaration, the parameter declarations establish
the number and types of the actual arguments. They may also include
identifiers of the formal parameters. Though the parameters may be omit­
ted from the function declaration, their inclusion is recommended. The
extent of the information in the declaration influences the argument
checking done on function calls appearing before the compiler has pro­
cessed the function definition.

Note that identifiers used to name the parameters in the prototype
declaration are descriptive only. They go out of scope at the end of the
declaration. Therefore, they need not be identical to the identifiers used in
the declaration portion of the function definition. Using the same names
may enhance readability, but has no other significance.

Return Type

Functions can return values of any type except arrays and functions.
Therefore, the type-specifier of a function declaration can specify any fun­
damental, structure, or union type. You can modify the function identifier
with one or more asterisks (*) to declare a pointer return type.

Although functions cannot return arrays and functions, they can return
pointers to arrays and functions. You declare a function that returns a
pointer to an array or function type by modifying the function identifier
with asterisks (*), brackets ([]), and parentheses (()). Such a function
identifier is known as a a "complex declarator." Rules for forming and
interpreting complex declarators are discussed in Section 4.3.2.

The List of Formal Parameters

All elements of the formal-parameter-list appearing within the parentheses
following the function declarator are optional, as shown in the following
syntax:

[[void]i[register] [type-spec] [declarator[[, ...] [, •••]]]]

If formal parameters are omitted from the function declaration, the
parentheses can contain the keyword void to specify that no arguments
will ever be passed to the function. If the parentheses are left entirely
empty, no information is coveyed about whether arguments will be passed

81

Microsoft C Optimizing Compiler Language Reference

to the function and no checking of argument types is performed.

Note

Empty parentheses in a function declaration or definition represent an
obsolescent form not recommended for new code. Functions accepting
no arguments should be declared with the void keyword replacing the
list of formal parameters. This use of void is interpreted by context,
and should not be confused with uses of void as a type specifier.

A declaration in the list of formal parameters can contain the register
storage-class specifier, either alone or combined with a type specifier and
an identifier. If register is not specified, the storage class is auto. The
only explicit storage class specifier permitted is register. If the
parentheses contain only the register keyword, the formal parameter is
considered to represent an unnamed int for which register storage is
being requested.

If type-spec is included, it can specify the type name for any fundamental,
structure, or union type (such as int for integer type). A declarator for a
fundamental, structure, or union type is simply an identifier of a variable
having that type.

The declarator for a pointer, array, or function can be formed by combin­
ing a type specifier, plus the appropriate modifier, with an identifier.
Alternatively, an "abstract declarator" (that is, a declarator without a
specified identifier) can be used. Section 4.9, "Type Names," explains how
to form and interpret abstract declarators.

A full, partial, or empty list of formal parameters can be declared. If the
list contains at least one declarator, a variable number of parameters can
be specified by ending the list with a comma followed by three periods
(, ...),referredtoasthe "ellipsis A function is expected to have at least as
many arguments as there are declarators or type specifiers preceding the
last comma.

Note

82

To maintain compatibility with previous versions, the compiler accepts
a comma without trailing periods at the end of a declarator list to

Declarations

indicate a variable number of arguments. However, this is a Microsoft
extension to the ANSI C standard. New code should use the comma
followed by three periods. For information on enabling and disabling
extensions, see your User's Guide.

One other special construction is permitted as a formal parameter: void *
represents a pointer to an object of unspecified type. Thus, in a call, the
pointer can be used to reference any type of object by converting the
pointer (for example, with a cast) to a pointer to the desired type. Note
that before operations can be performed on the pointer or its object, the
pointer must be explicitly converted. Section 4.4.6 provides further infor­
mation on void *.

Summary

Function prototypes are optional. If included, the only elements absolutely
required are the name of the function, the opening and closing parentheses
following the name, and the final semicolon. If no return type is included,
as in the following example, the function is assumed to return an int.

/***** Obsolescent form of function definition *****/
minimal_declaration(); /*may or may not

accept arguments */

Any appropriate combination of elements is permitted among the parame­
ters declarations, from no information (as in the obsolescent form in the
example above) to a full prototype of the function. If no prototype at all is
given, a /flde facto prototype is constructed from information in the first
reference to the function encountered in the source file.

Example

double func(void);

fun (void*);

char *fu(long, long);

foo(register a, char*);

/* returns a double, but
* accepts no arguments

*/
/* passes an unnamed pointer

* to an unspecified
* type; returns an int

*/
/* passes two unnamed longs;

* returns pointer to char
*/
/* passes a named int with request

83

Microsoft C Optimizing Compiler Language Reference

* for register storage, and an
* unnamed pointer to char;
* returns an int

*/
void go(int *[], char *b); /*passes pointer to an unnamed

* array of int using an abstract
* declarator, and a pointer to char
* named b; there is no return

*/
void *tu(double v, ...); /*passes at least one double named

* v; other parameters may also be
* passed; returns a pointer
* to an unspecified type

*/
The compiler uses any information included in the parameter list to check
any actual arguments appearing before the compiler has processed the
function definition.

Examples

/******************** Example 1 ********************/
int add(int numl, int num2);

Example 1 declares a function named add that takes two int arguments,
represented by the identifiers numl and num2, and returns an int value.

/******************** Example 2 ********************/
double calc () ;

Example 2 declares a function named calc that returns a double value.
The obsolescent empty parentheses leave the issue of possible arguments
to the function undefined.

/******************** Example 3 ********************/
char *Strfind(char *ptr, ...);

Example 3 declares a function named str find, that returns a pointer to
char. The function accepts at least one argument, declared by the formal
parameter char *ptr, to be a pointer to a char value. The list of argu­
ment types has one entry, and ends with a comma followed by three
periods, indicating that the function may take more arguments.

/******************** Example 4 ********************/

84

Declarations

void draw(void);

Example 4 declares a function with void return type (returning no value).
The voi"d keyword also replaces the list of formal parameters, so no argu­
ments are expected for this function.

/******************** Example 5 ********************/
double (*sum(double, double)) [3];

In Example 5, sum is declared as a function returning a pointer to an
array of three double values. The sum function takes two unnamed dou­
ble values as arguments.

/******************** Example 6 ********************/
int (*select(void)) (int number);

In Example 6, the function named select is declared to take no argu­
ments and to return a pointer to a function. The pointer return value
points to a function taking one int argument, represented by the identifier
number, and returning an int value.

/******************** Example 7 ********************/
int prt(void *);

In Example 7, the function prt is declared to take a pointer argument of
any type and return an int. A pointer to any type could be passed as an
argument to prt without producing a type-mismatch warning.

/******************** Example 8 ***********************/
long (*Const rainbow[]) (int, ...) ;

Example 8 shows the declaration of an array named rainbow, of an
unspecified number of constant pointers to functions, each of which passes
at least one parameter of type int, as well as an unspecified number of
other parameters. Each of the functions pointed to returns a long value.

85

Microsoft C Optimizing Compiler Language Reference

4.6 Storage Classes

The storage class of a variable determines whether the item has a "global"
or "local" lifetime. An item with a global lifetime exists and has a value
throughout the duration of the program. All functions have global life­
times.

Variables with local lifetimes are allocated new storage each time execu­
tion control passes to the block in which they are defined. When execution
control passes out of the block, the variables no longer have meaningful
values.

Although C defines only two types of storage classes, it provides the fol­
lowing four storage-class specifiers:

auto
register
static
extern

Items declared with the auto or register specifier have local lifetimes.
Items declared with the static or extern specifier have global lifetimes.

The four storage-class specifiers have distinct meanings because storage­
class specifiers affect the visibility of functions and variables, as well as
their storage class. The term "visibility" refers to the portion of the
source program in which the variable or function can be referenced by
name. An item with a global lifetime exists throughout the execution of
the source program, but it may not be "visible" in all parts of the pro­
gram. (Visibility and the related concept of lifetime are discussed in
Chapter 3, "Program Structure.")

The placement of variable and function declarations within source files
also affects storage class and visibility. Declarations outside all function
definitions are said to appear at the "external level"; declarations within
function definitions appear at the "internal level."

The exact meaning of each storage-class specifier depends on two factors:

• Whether the declaration appears at the external or internal level

• Whether the item being declared is a variable or a function

86

Declarations

Sections 4.6.1 - 4.6.3 describe the meanings of storage-class specifiers in
each kind of declaration and explain the default behavior when the
storage-class specifier is omitted from a variable or function declaration.

4.6.1 Variable Declarations at the External Level

In variable declarations at the external level (that is, outside all func­
tions), you can use the static or extern storage-class specifier or omit the
storage-class specifier entirely. You cannot use the auto and register
storage-class specifiers at the external level.

Variable declarations at the external level are either definitions of vari­
ables ("defining declarations"), or references to variables defined elsewhere
("referencing declarations").

An external variable declaration that also initializes the variable (impli­
citly or explicitly) is a defining definition of the variable. Definitions at the
external level can take several forms:

• A variable that you declare with the static storage-class specifier.
You can explicitly initialize the static variable with a constant expres­
sion, as described in Section 4. 7. If you omit the initializer, the vari­
able is initialized to 0 by default. For example, static int k =
16; and static int k; are both considered definitions of the vari­
able k.

• A variable that you explicitly initialize at the external level. For
example, int j = 3; is a definition of the variable j.

Once a variable is defined at the external level, it is visible throughout the
rest of the source file in which it appears. The variable is not visible prior
to its definition in the same source file. Also, it is not visible in other
source files of the program, unless a referencing declaration makes it visi­
ble, as described below.

You can define a variable at the external level only once within a source
file. If you give the static storage-class specifier, you can define another
variable with the same name and the static storage-class specifier in a
different source file. Since each static definition is visible only within its
own source file, no conflict occurs.

The extern storage-class specifier declares a reference to a variable defined
elsewhere. You can use an extern declaration to make a definition in
another source file visible, or to make a variable visible above its definition
in the same source file. Once you have declared a reference to the variable

87

Microsoft C Optimizing Compiler Language Reference

at the external level, the variable is visible throughout the remainder of
the source file in which the declared reference occurs.

Declarations that use the extern storage-class specifier cannot contain ini­
tializers, since these declarations ref er to variables whose values are
defined elsewhere.

For an extern reference to be valid, the variable it refers to must be
defined once, and only once, at the external level. The definition can be in
any of the source files that form the program.

One special case is not covered by the rules outlined above. You can omit
both the storage-class specifier and the initializer from a variable declara­
tion at the external level; for example, the declaration int n; is a valid
external declaration. This declaration can have one of two different mean­
ings, depending on the context:

1. If there is an external defining declaration of a variable with the same
name elsewhere in the program, the current declaration is assumed to
be a reference to the variable in the defining declaration, exactly as if
the extern storage-class specifier had been used in the declaration.

2. If there is no external defining declaration of a variable with the same
name elsewhere in the program, the declared variable is allocated
storage at link time and initialized to 0. This kind of variable is known
as a "communal" variable. If more than one such declaration appears
in the program, storage is allocated for the largest size declared for the
variable. For example, if a program contains two uninitialized declara­
tions of i at the external level, int i; and char i; , storage space
for an int is allocated for i at link time.

Uninitialized variable declarations at the external level are not recom­
mended for any file that might be placed in a library.

Example

/**
SOURCE FILE ONE

**/

extern int i;

main()
{

88

i++;

/* reference to i,
defined below */

Declarations

printf("%d\n", i) ; /* i equals 4 */
next();

}

int i = 3; /* definition of i */

next()
{

i++;
pr int f ("%d\n", i) ; /* i equals 5 */
other();

}

/**
SOURCE FILE TWO

**/

extern int i;

other()
{

}

i++;
printf("%d\n", i);

/* reference to i in
first source file */

/* i equals 6 */

The two source files in this example contain a total of three external
declarations of i. Only one declaration contains an initialization; that
declaration, int i = 3; , defines the global variable i with initial value
3. The extern declaration of i at the top of the second source file makes
the global variable visible above its definition in the file. Without the
extern declaration, the main function could not reference the global vari­
able i. The extern declaration of i in the second source file also makes
the global variable visible in that source file.

Assuming that the pr int f function is defined elsewhere in the program,
all three functions perform the same task: they increase i and print it.
The values 4, 5, and 6 are printed.

If the variable i had not been initialized, it would have been set to 0
automatically at link time. In this case, the values 1, 2, and 3 would have
been printed.

89

Microsoft C Optimizing Compiler Language Reference

4.6.2 Variable Declarations at the Internal Level

You can use any of the four storage-class specifiers for variable declara­
tions at the internal level. When you omit the storage-class specifier from
such a declaration, the default storage class is auto.

The auto storage-class specifier declares a variable with a local lifetime.
An auto variable is visible only in the block in which it is declared.
Declarations of auto variables can include initializers, as discussed in Sec­
tion 4. 7. Since variables with auto storage class are not initialized
automatically, you should either explicitly initialize them when you
declare them or assign them initial values in statements within the block.
The values of uninitialized auto variables are undefined.

A static auto variable can be initialized with the address of any external
or static item, but not with the address of another auto item, because the
address of an auto item is not a constant.

The register storage-class specifier tells the compiler to give the variable
storage in a register, if possible. Register storage usually speeds access
time and reduces code size. Variables declared with register storage class
have the same visibility as auto variables. The number of registers that
can be used for variable storage is machine-dependent. If no registers are
available when the compiler encounters a register declaration, the vari­
able is given auto storage class and stored in memory. The compiler
assigns register storage to variables in the order in which the declarations
appear in the source file. Register storage, if available, is only guaranteed
for int and pointer types that are the same size as an int.

A variable declared at the internal level with the static storage-class
specifier has a global lifetime but is visible only within the block in which
it is declared. Unlike auto variables, static variables keep their values
when the block is exited. You can initialize a static variable with a con­
stant expression. A static variable is initialized only once, when program
execution begins; it is not reinitialized each time the block is entered. If
you do not explicitly initialize a static variable, it is initialized to 0 by
default.

A variable declared with the extern storage-class specifier is a reference to
a variable with the same name defined at the external level in any of the
source files of the program. The internal extern declaration is used to
make the external-level variable definition visible within the block. Unless
otherwise declared at the external level, a variable declared with the
extern keyword is visible only in the block in which it is declared.

90

Declarations

Example

int i = 1;

main()
{

}

other()
{

}

/* reference to i, defined above: */
extern int i;

/* initial value is zero; a is
visible only within main: */

static int a;

/* b is stored in a register, if possible: */
register int b = 0;

/* default storage class is auto: */
int c = O;

/* values printed are 1, 0, 0, 0: */
printf("%d\n%d\n%d\n%d\n", i, a, b, c);
other();

/* address of global i assigned to pointer variable */
static int *external_i = &i;

/* i is redefined; global i no longer visible: */
int i = 16;

/* this a is visible only within other: */
static int a = 2;

a += 2;
/* values printed are 16, 4, and 1: */
printf("%d\n%d\n%d\n", i, a, *external_i);

In this example, the variable i is defined at the external level with initial
value 1. An extern declaration in the main function is used to declare a
reference to the external-level i. The static variable a is initialized to 0
by default, since the in.itializer is omitted. The call to printf (assuming
the printf function is defined elsewhere in the source program) prints
the values 1, 0, 0, and 0.

In the other function, the address of the global variable i is used to ini­
tialize the static pointer variable external_i. This works because the
global variable has static lifetime, meaning its address will always be the
same. Next, the variable i is redefined as a local variable with initial value

91

Microsoft C Optimizing Compiler Language Reference

16. This redefinition does not affect the value of the external-level i,
which is hidden by the use of its name for the local variable. The value of
the global i is now accessible only indirectly within this block, through
the pointer external_i. Attempting to assign the address of the auto
variable i to a pointer would not work, since it may be different each time
the block is entered. The variable a is declared as a static variable and
initialized to 2. This a does not conflict with the a in main, since static
variables at the internal level are visible only within the block in which
they are declared.

The variable a is increased by 2, giving 4 as the result. If the other func­
tion were called again in the same program, the initial value of a would be
4, since internal static variables keep their values when the program exits
and then re-enters the block in which they are declared.

4.6.3 Function Declarations
at the External and Internal Levels

You can use either the static or the extern storage-class specifier in func­
tion declarations. Functions always have global lifetimes.

The visibility rules for functions vary slightly from the rules for variables,
as follows:

• A function declared to be static is visible only within the source file in
which it is defined. Functions in the same source file can call the
static function, but functions in other source files cannot. You can
declare another static function with the same name in a different
source file without conflict.

• Functions declared as extern are visible throughout all the source files
that make up the program (unless you later redeclare such a function
as static). Any function can call an extern function.

• Function declarations that omit the storage-class specifier default to
extern.

92

Declarations

4. 7 Initialization

Note

A Microsoft extension to the ANSI C standard provides that function
declarations at the internal level have the same meaning as function
declarations at the external level. This means that a function is visible
from its point of declaration through the rest of the source file.

Syntax

= initializer

You can set a variable to an initial value by applying an initializer to the
declarator in the variable declaration. The value or values of the initial­
i~er are assigned to the variable. The initializer is preceded by an equal
sign.

You can initialize variables of any type, provided that you obey the follow­
ing rules:

• You cannot use initializers in declarations that use the extern
storage-class specifier.

• You can initialize variables declared at the external level. If you do not
explicitly initialize a variable at the external level, it is initialized to 0
by default.

• You can use a constant expression to initialize any variable declared
with the static storage-class specifier. Variables declared to be static
are initialized, when program execution begins. If you do not explicitly
initialize a static variable, it is initialized to 0 by default.

• Variables declared with the auto and register storage-class specifiers
are initialized each time execution control passes to the block in which
they are declared. If you omit an initializer from the declaration of an
auto or register variable, the initial value of the variable is
undefined.

• You cannot initialize auto aggregate types (arrays, structures, and
unions). Only static aggregates and aggregates declared at the exter­
nal level can be initialized.

93

Microsoft C Optimizing Compiler Language Reference

• The initial values for external variable declarations and for all static
variables, whether external or internal, must be constant expressions.
(Constant expressions are described in Section 5.2.lO.) You can use
either constant or variable values to initialize auto and register vari­
ables.

Sections 4.7.1 and 4.7.2 describe how to initialize variables of fundamen­
tal, pointer, and aggregate types.

4. 7 .1 Fundamental and Pointer Types

Syntax

= expression

The value of expression is assigned to the variable. The conversion rules
for assignment apply.

An internally-declared static variable can only be initialized with a con­
stant value. Since the address of any externally declared or static variable
is constant, it may be used to initialize an internally-declared static
pointer variable. However, the address of an auto variable cannot be used
as an initializer because it may be different for each execution of the block.

Examples

/******************** Example 1 ********************/
int x = 10;

In Example 1, xis initialized to the constant expression 10.

/******************** Example 2 ********************/
register int *PX = 0;

In Example 2, the pointer px is initialized to 0, producing a "null" pointer.

/******************** Example 3 ********************/
const int c = (3 * 1024);

94

Declarations

Example 3 uses a constant expression to initialize c to a constant value
that cannot be modified.

/******************** Example 4 ********************/
int *b = &x;
int *Const a = &z;

Example 4 initializes the pointer b with the address of another variable,
x. The pointer a is initialized with the address of a variable named z;
However, since it is specified to be a const pointer, the variable a can only
be initialized, never modified. It always points to the same location.i

/******************** Example 5 ********************/

int GLOBAL ;

int function(void)
{

}

int LOCAL ;
static int *lP = &LOCAL /* Illegal declaration */
static int *9P = &GLOBAL /* Legal declaration */

The global variable GLOBAL is declared in Example 5 at the external level,
so it has global lifetime. The local variable LOCAL has auto storage class
and only has an address during the execution of the function in which is is
declared. Therefore, attempting to initialize the static pointer variable lp
with the address of LOCAL is not permitted. The static pointer variable
gp can be initialized to the address of GLOBAL because that address is
always the same.

4.7.2 Aggregate Types

Syntax

= {initializer-list}

An initializer-list is a list of initializers separated by commas. Each initial­
izer in the list is either a constant expression or an initializer-list. There­
fore, an in£tializer-list enclosed in braces can appear within another
initializer-list. This form is useful for initializing aggregate members of an
aggregate types as shown in the examples below.

95

Microsoft 0 Optimizing Compiler Language Reference

For each initializer-list, the values of the constant expressions are assigned,
in order, to the corresponding members of the aggregate variable. When a
union is initialized, the initializer-list must be a single constant expression.
Th_e value of the constant expression is assigned to the first member of the
UillOn.

If an initializer-list has fewer values than an aggregate type, the remaining
members or elements of the aggregate type are initialized to 0. If an
initializer-list has more values than an aggregate type, an error results.
These rules apply to each embedded initializer-li"st, as well as to the aggre­
gate as a whole.

For example,

int p [4] [3] = {
{ 1, 1, 1 },
{ 2, 2, 2 },
{ 3, 3, 3,},
{ 4, 4, 4,},

};

declares P as a 4-by-3 array and initializes the elements of its first row to
1, the elements of its second row to 2, and so on through the fourth row.
Note that the initializer-list for the third and fourth rows contains commas
after the last constant expression. The last initializer-list ({ 4, 4, 4, })
is also followed by a comma. These extra commas are permitted but are
not required; only commas that separate constant expressions from one
another, and those that separate one initializer-list from another, are
required.

If there is no embedded initializer list for an aggregate member, values are
simply assigned, in order, to each member of the subaggregate. Therefore,
the initialization in the previous example is equivalent to the following:

int P[4] [3] = {
1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4

};

Braces can also appear around individual initializers in the list.

When you initialize an aggregate variable, you must be careful to use
braces and initializer lists properly. The following example illustrates the
compiler's interpretation of braces in more detail:

96

typedef struct {
int nl, n2, n3;

} triplet;

triplet nlist[2] [3] = {

};

{ { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } },
{ { 10,11,12 }, { 13,14,15 }, { 15,16,17 } }

Declarations

/* Line 1 */
/* Line 2 */

In this example, nlist is declared as a 2-by-3 array of structures, each
structure having three members. Line 1 of the initialization assigns values
to the first row of nlist, as follows:

l. The first left brace on Line 1 signals the compiler that initialization of
t~e first aggregate member of nlist (that is, nlist [OJ) is begin­
mng.

2. The second left brace indicates that initialization of the first aggregate
member of nlist [OJ (that is, the structure at nlist [OJ [OJ) is
beginning.

3. The first right brace ends initialization of the structure
nl ist [OJ [OJ ; the next left brace starts initialization of
nlist [OJ [1].

4. The process continues until the end of the line, where the closing right
brace ends initialization of nl ist [OJ .

Line 2 assigns values to the second row of nlist in a similar way.

Note that the outer sets of braces enclosing the initializers on lines 1 and 2
are required. The following construction, which omits the outer braces,
would cause an error:

/* THIS CAUSES AN ERROR */

triplet nlist [2] [3] = {
{ 1, 2, 3 },{ 4, 5, 6 },{ 7, 8, 9 }, /* Line 1 */
{ 10,11,12 },{ 13,14,15 },{ 16,17,18 } /* Line 2 */

};

In this construction, the first left brace on line 1 starts the initialization of
nlist [OJ, which is an array of three structures. The values 1, 2, and 3
are assigned to the three members of the first structure. When the next
right brace is encountered (after the value 3), initialization of nlist [OJ
is complete, and the two remaining structures in the three-structure array
are automatically initialized to 0. Similarly, { 4, 5, 6 } initializes the
first structure in the second row of nl ist. The remaining two structures
of nlist [1] are set to 0. When the compiler encounters the next initial­
izer list ({ 7, 8, 9 }), it tries to initialize nl ist [2J . Since nl ist has

97

Microsoft C Optimizing Compiler Language Reference

only two rows, this attempt causes an error.

Examples

/******************** Example 1 ********************/

struct list {
int i, j, k;
float m[2] [3];
} x = {

};

1,
2,
3,
{4.0, 4.0, 4.0}

In Example 1, the three int members of x are initialized to 1, 2, and 3,
respectively. The three elements in the first row of m are initialized to 4.0;
the elements of the remaining row of mare initialized to 0.0 by default.

/******************** Example 2 ********************/

union
{

char x [2] [3] ;
int i, j, k;
} y = { {

};

{'l'},
{'4'} }

In Example 2, the union variable y is initialized. The first element of the
union is an array, so the initializer is an aggregate initializer. The initial­
izer list { '1 '} assigns values to the first row of the array. Since only one
value appears in the list, the element in the first column is initialized to
the character 1, and the remaining two elements in the row are initialized
to zero by default. Similarly, the first element of the second row of x is
initialized to the character 4, and the remaining two elements in the row
are initialized to zero.

98

Declarations

4. 7 .3 String Initializers

Syntax

= 11 characters 11

You can initialize an array of characters with a string literal. For exam­
ple,

char code [] = "abc":

initializes code as a four-element array of characters. The fourth element
is the null character that terminates all string literals.

If you specify the array size and the string is longer than the specified
array size, the extra characters are simply ignored. For example, the fol­
lowing declaration initializes code as a three-element character array:

char code[3] = "abed";

Only the first three characters of the initializer are assigned to code. The
character d and the string-terminating null character are discarded.
Beware that this creates an unterminated string(that is, one without a
zero value to mark its end), and generates a diagnostic message indicating
the condition.

If the string is shorter than the specified array size, the remaining elements
of the array are initialized to zero values.

4.8 Type Declarations

A type declaration defines the name and members of a structure or union
type, or the name and enumeration set of an enumeration type. You can
use the name of a declared type in variable or function declarations to
refer to that type. This is useful if many variables and functions have the
same type.

A typedef declaration defines a type specifier for a type. You can use
typedef declarations to construct shorter or more meaningful names for
types already defined by C or for types that you have declared.

99

Microsoft C Optimizing Compiler Language Reference

4.8.1 Structure, Union, and Enumeration Types

Declarations of structure, union, and enumeration types have the same
general form as variable declarations of those types. However, type
declarations and variable declarations differ in the following ways:

• In type declarations the variable identifier is omitted, since no variable
is declared.

• In type declarations the tag is required; it names the structure, union,
or enumeration type.

• The member-declaration-list or enum-list defining the type must appear
in the type declaration; the abbreviated form of variable declarations,
in which a tag refers to a type defined elsewhere, is not legal for type
declarations.

Examples

/******************** Example 1 ********************/

enum status {
loss = -1,
bye,
tie = 0,
win
};

Example 1 declares an enumeration type named status. The name of the
type can be used in declarations of enumeration variables. The identifier
.loss is explicitly set to -1. Both bye and tie are associated with the
value 0, and win is given the value 1.

/******************** Example 2 ********************/

struct student {
char name[20];
int id, class;
};

Example 2 declares a structure type named student. A declaration such
as struct student employee; can be used to declare a structure
variable with student type.

100

Declarations

4.8.2 Typedef Declarations

Syntax

typedef type-specifi"er declarator[, declarator ...];

A typedef declaration is analogous to a variable declaration except that
the typedef keyword replaces a storage-class specifier. A typedef
declaration is interpreted in the same way as a variable or function
declaration, but the identifier, instead of assuming the type specified by
the declaration, becomes a synonym for the type.

Note that a typedef declaration does not create types. It creates
synonyms for existing types, or names for types that could be specified in
other ways. When a typedef name is used as a type specifier, it can be
combined with certain type specifiers, but not others. Acceptable modifiers
include const,volatile. In some implementations there are additional spe­
cial keywords that can be used to modify a typedef. (The special key­
words are described in Section 4.3.3.)

You can declare any type with typedef, including pointer, function, and
array types. You can declare a typedef name for a pointer to a structure
or union type before you define the structure or union type, as long as the
definition has the same visibility as the declaration.

Examples

/******************** Example 1 ********************/

typedef int WHOLE;

Example 1 declares WHOLE to be a synonym for int. Note that the key­
word const could be used to modify WHOLE, but the type specifier long
could not.

/******************** Example 2 ********************/

typedef struct club {
char name[30];
int size, year;
} GROUP :

101

Microsoft C Optimizing Compiler Language Reference

Example 2 declares GROUP as a structure type with three members. Since
a structure tag, club, is also specified, either the typedef name (GROUP)
or the structure tag can be used in declarations.

/******************** Example 3 ********************/

typedef GROUP *PG;

Example 3 uses the previous typedef name to declare a pointer type. The
type PG is declared as a pointer to the GROUP type, which in turn is
defined as a structure type.

/******************** Example 4 ********************/

typedef void DRAWF(int, int);

Example 4 provides the type DRAWF for a function returning no value and
taking two int arguments. This means, for example, that the declaration
DRAWF box; is equivalent to the declaration void box {int, int) ; .

4.9 Type Names

A "type name" specifies a particular data type. In addition to ordinary
variable declarations and defined-type declarations, type names are used
in three other contexts: in the argument-type lists of function declara­
tions, in type casts, and in sizeof operations. Argument-type lists are dis­
cussed in Section 4.5, "Function Declarations." Type casts and sizeof
operations are discussed in sections 5. 7.2 and 5.3.4, respectively.

The type names for fundamental, enumeration, structure, and union types
are simply the type specifiers for those types.

A type name for a pointer, array, or function type has the following form:

type-specifier abstract-declarator

An abstract-declarator is a declarator without an identifier, consisting of
one or more pointer, array, or function modifiers. The pointer modifier (*)
always precedes the identifier in a declarator; array ([]) and function (())
modifiers follow the identifier. Knowing this, you can determine where the
identifier would appear in an abstract declarator and interpret the
declarator accordingly. See Section 4.3.2 for information and examples of

102

Declarations

complex declarators.

Abstract declarators can be complex. Parentheses in a complex abstract
declarator specify a particular interpretation, just as they do for the com­
plex declarators in declarations.

Note

The abstract declarator consisting of a set of empty parentheses, (), is
not allowed because it is ambiguous. It is impossible to determine
whether the implied identifier belongs inside the parentheses (in which
case it is an unmodified type) or before the parentheses (in which case
it is a function type).

The type specifiers established by typedef declarations also qualify as
type names.

Examples

/******************** Example 1 ********************/
long *

Example 1 gives the type name for "pointer to long" type.

/******************** Example 2 ********************/
int (*)[SJ

/******************** Example 3 ********************/
int (*) (void)

Examples 2 and 3 show how parentheses modify complex abstract declara­
tors. Example 2 gives the type name for a pointer to an array of five int
values. Example 3 names a pointer to a function taking no arguments and
returning an int.

103

Chapter 5

Expressions and Assignments

5.1 Introduction 107
5.2 Operands 107
5.2.1 Constants 108
5.2.2 Identifiers 108
5.2.3 Strings 109
5.2.4 Function Calls 109
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.2.10
5.2.11
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9

Subscript Expressions 110
Member-Selection Expressions 113
Expressions with Operators 115
Expressions in Parentheses 116
Type-Cast Expressions 116
Constant Expressions 117
Sequence Points 117

Operators 118
Usual Arithmetic Conversions 119
Complement Operators 120
Indirection and Address-of Operators
The sizeof Operator 124
Multiplicative Operators 125
Additive Operators 127
Shift Operators 130
Relational Operators 130
Bitwise Operators 132

122

105

5.3.10 Logical Operators 134
5.3.11 Sequential-Evaluation Operator 135
5.3.12 Conditional Operator 136
5.4 Assignment Operators 137
5.4.1 Lvalue Expressions 138
5.4.2 Unary Increment and Decrement 139
5.4.3 Simple Assignment 140
5.4.4 Compound Assignment 140
5.5 Precedence and Order of Evaluation 142
5.6 Side Effects 145
5. 7 Type Conversions 146
5. 7 .1 Assignment Conversions 146
5.7.1.1 Conversions from Signed Integral Types 146
5.7.1.2 Conversions from

Unsigned Integral Types 148
5.7.1.3 Conversions from Floating-Point Types 150
5.7.1.4 Conversions to and from Pointer Types 151
5.7.1.5 Conversions from Other Types 152
5.7.2 Type-Cast Conversions 152
5.7.3 Operator Conversions 152
5.7.4 Function-Call Conversions 153

106

Expressions and Assignments

5.1 Introduction

This chapter describes how to form expressions and make assignments in
the C language. An "expression" is a combination of operands and opera­
tors that yields ("expresses") a single value.

An "operand" is a constant or variable value that is manipulated in the
expression. Each operand of an expression is also an expression, since it
represents a single value. Section 5.2 describes the formats and evaluation
rules for C operands.

"Operators" specify how the operand or operands of the expression are
manipulated. C operators are described in Section 5.3.

In C, assignments are considered expressions because an assignment yields
a value. Its value is the value being assigned. In addition to the simple­
assignment operator(=), Coffers complex-assignment operators that both
transform and assign their operands. Assignment operators are described
in Section 5.4.

When an expression is evaluated, the resulting value depends on the rela­
tive precedence of operators in the expression and on side effects, if any.
The precedence of operators determines how operands are grouped for
evaluation. Side effects are changes caused by the evaluation of an expres­
sion. In an expression with side effects, the evaluation of one operand can
affect the value of another. With some operators, the order in which
operands are evaluated also affects the result of the expression.

The value represented by each operand in an expression has a type, which
may be converted to a different type in certain contexts. Type conversions
occur in assignments, type casts, function calls, and operations. (Section
5.5 gives the precedence rules for C operators; side effects are discussed in
Section 5.6 and type conversions in Section 5.7.)

5 .2 Operands

Operands in C include constants, identifiers, strings, function calls, sub­
script expressions, member-selection expressions, or more complex expres­
sions formed by combining operands with operators or enclosing operands
in parentheses. Any operand that yields a constant value is called a "con­
stant expression."

107

Microsoft C Optimizing Compiler Language Reference

Every operand has a type. The following sections discuss the type of value
each kind of operand represents. An operand can be cast from its original
type to another type by means of a "type-cast" operation. A type-cast
expression can also form an operand of an expression.

5.2.1 Constants

A constant operand has the value and type of the constant value it
represents. A character constant has int type. An integer constant has
int, long, unsigned int, or unsigned long type, depending on the
integer's size and how the value is specified. Floating-point constants
always have double type. String literals are considered arrays of charac­
ters and are discussed in Section 5.2.3.

5.2.2 Identifiers

An identifier names a variable or function. Every identifier has a type,
which is established when the identifier is declared. The value of an
identifier depends on its type, as follows:

108

• Identifiers of integral and floating types represent values of the
corresponding type.

• An identifier of enum type represents one constant value among a
set of constant values. The value of the identifier is the constant
value. Its type is int, by definition of the enum type.

• An identifier of struct or union type represents a value of the
specified struct or union type.

• An identifier declared as a pointer represents a pointer to a value
of the type specified in the pointer's declaration.

• An identifier declared as an array represents a pointer whose value
is the address of the first array element. The pointer addresses the
type of the array elements. For example, if series is declared to
be a IO-element integer array, the identifier series represents the
address of the array, and the subscript expression series [5]
refers to an integer value which is the sixth element of series.
Subscript expressions are discussed in Section 5.2.5. The address
of an array does not change during program execution, although
the values of the individual elements can change. The pointer
value represented by an array identifier is not a variable, so an

Expressions and Assignments

array identifier cannot form the left-hand operand of an assign­
ment operation.

• An identifier declared as a function represents a pointer whose
value is the address of the function. The pointer addresses a func­
tion returning a value of a specified type. The address of a func­
tion does not change during program execution; only the return
value varies. Thus, function identifiers cannot be left-hand
operands in assignment operations.

5.2.3 Strings

Syntax

"string" ["string"]

A string literal is a character or sequence of adjacent characters enclosed
in double quotation marks. Two or more adjacent string literals separated
only by white space are concatenated into a single string literal. A string
literal is stored as an array of elements with char type, and initialized
with the quoted sequence of characters. The string literal is represented
by a pointer whose value is the address of the first array element. The
address of the string's first element is a constant, so the value represented
by a string expression is a constant.

Since string literals are effectively pointers, they can be used in contexts
that allow pointer values, and they are subject to the same restrictions as
pointers. However, since it is not a variable, neither the string literal nor
any of its elements can be the be the left-hand operand in an assignment
operation.

The last character of a string is always the null character. The null char­
acter is not visible in the string expression, but it is added as the last ele­
ment when the string is stored. For example, the string "abc" actually
has four characters rather than three.

5.2.4 Function Calls

109

Microsoft 0 Optimizing Compiler Language Reference

Syntax

expression ([expression-list])

A function call consists of an expression followed by an optional
expression-list in parentheses, where

• The expression must evaluate to a function address (for example, a
function identifier), and

• The expression-list is a list of expressions (separated by commas)
whose values (the "actual arguments") are passed to the function.
The expression-list can be empty.

A function-call expression has the value and type of the function's return
value. If the function's return t~pe is void (that is, the function has been
declared never to return a value J, the function-call expression also has
void type. If the called function returns control without executing a
return statement, the value of the function call expression is undefined.
(See Chapter 7, "Functions," for more information about function calls.)

5.2.5 Subscript Expressions

Syntax

expression1 [expression2]

A subscript expression represents the value at the address that is expres­
sion2 positions beyond expression1. Usually, the value represented by
expression1 is a pointer value, such as an array identifier, and expression2
is an integral value. However, all that is required syntactically is that one
of the expressions be of pointer type and the other be of integral type.
Thus the integral value could be in the expression1 position and the
pointer value in the brackets in the expression2 or "subscript" position.
Whatever the order of values, expression2 must be enclosed in brackets
([]).

Subscript expressions are generally used to refer to array elements, but
you can apply a subscript to any pointer.

The subscript expression is evaluated by adding the integral value to the
pointer value then applying the indirection operator (*) to the result. (See
Section 5.3.3 for a discussion of the indirection operator.) In effect, for a
one-dimensional array, the following four expressions are equivalent,
assuming that a is a pointer and b is an integer:

110

a [b]
*(a + b)
* (b + a)
b [a]

Expressions and Assignments

Accordinfi to the conversion rules for the addition operator (given in Sec­
tion 5.3.6), the integral value is converted to an address offset by multiply­
ing it by the length of the type addressed by the pointer.

For example, suppose the identifier line refers to an array of int values.
The following procedure is used to evaluate the subscript expression
line[i]:

1. The integer value i is multiplied by the length of an int. The con­
verted value of i represents i int positions.

2. This converted value is added to the original pointer value (1 ine)
to yield an address that is offset i int positions from 1 ine.

3. The indirection operator is applied to the new address. The result
is the value of the array element at that position (intuitively,
line[i]).

Note

The subscript expression

line[O]

represents the value of the first element of 1 ine, since the offset from
the address represented by line is 0. Similarly, an expression such as

line [5]

refers to the element offset five positions from 1 ine, or the sixth ele­
ment of the array.

111

Micrpsoft C Optimizing Compiler Language Reference

Multidimensional-Array References

A subscript expression can be subscripted, as follows:

expression1 [expression2] [expression3] ...

Subscript expressions associate from left to right. The left-most subscript
expression, expression1[expression2l, is evaluated first. The address that
results from adding expressi'on1 and expression2 forms a pointer expres­
sion; then expression3 is added to this pointer expression to form a new
pointer expression, and so on until the last subscript expression has been
added. The indirection operator (*) is applied after the last subscripted
expression is evaluated, unless the final pointer value addresses an array
type (see example 3 below).

Expressions with multiple subscripts refer to elements of "multidimen­
sional arrays." A multidimensional array is an array whose elements are
arrays. For example, the first element of a three-dimensional array is an
array with two dimensions.

Examples

For the following examples, an array named prop is declared with three
elements, each of which is a 4-by-6 array of int values.

int prop [3] [4] [6];
int i, *ip, (*ipp) [6J;

/**,****************** Example 1 ********************/
i =' prop [OJ [OJ [lJ ;

Example 1 shows how to refer to the second individual int element of
prop. Arrays are stored by row, so the last subscript varies the most
quickly; the expression prop [OJ [OJ [2J refers to the next (third) element
of the array, and so on.

/******************** Example 2 ********************/
i = prop [2J [lJ [3J;

Example 2 shows a more complex reference to an individual element of
prop. The expression is evaluated as follows:

112

Expressions and Assignments

1. The first subscript, 2, is multiplied by the size of a 4-by-6 int array
and added to the pointer value prop. The result points to the
third 4-by-6 array of prop.

2. The second subscript, 1, is multiplied by the size of the 6-element
int array and added to the address represented by prop [2] .

3. Each element of the 6-element array is an int value, so the final
subscript, 3, is multiplied by the size of an int before it is added to
prop [2] [1]. The resulting pointer addresses the fourth element
of the 6-element array.

4. The indirection operator is applied to the pointer value. The result
is the int element at that address.

/******************** Example 3 ********************/
ip = prop[2] [1];

/******************** Example 4 ********************/
ipp = prop[2];

Examples 3 and 4 show cases where the indirection operator is not applied.

In Example 3, the expression prop [2] [1] is a valid reference to the
three-dimensional array prop; it refers to a 6-element array. Since the
pointer value addresses an array, the indirection operator is not applied.

Similarly, the result of the expression prop [2] in Example 4 is a pointer
value addressing a two-dimensional array.

5.2.6 Member-Selection Expressions

Syntax

expression. identifier
expression-> identifier

Member-selection expressions ref er to members of structures and unions.
A member-selection expression has the value and type of the selected
member. As shown above, a member-selection expression can have one of
two forms:

113

Microsoft C Optimizing Compiler Language Reference

1. In the first form, expression.identifier, expression represents a value
of struct or union type, and identifier names a member of the
specified structure or union.

2. In the second form, expression- >identifier, expression represents
a pointer to a structure or union, and identifier names a member of
the specified structure or union.

The two forms of member-selection expressions have similar effects. In
fact, an expression involving the pointer selection operator (- >) is a
shorthand version of an expression using the period (.) if the expression
before the period consists of the indirection operator (*) applied to a
pointer value. (Section 5.3.3 discusses the indirection operator.) There­
fore,

expression-> identifier

is equivalent to

(*expression). identifier

when expression is a pointer value.

Examples

Examples 1 through 3 ref er to the following structure declaration:

struct pair {
int a;
int b;
struct pair *Sp;
} item, list[lO];

/******************** Example 1 ********************/
item.sp = &item;

In Example 1, the address of the i tern structure is assigned to the sp
member of the structure. This means that i tern contains a pointer to
itself.

/******************** Example 2 ********************/
(item.sp)->a = 24;

114

Expressions and Assignments

In Example 2, the pointer expression i tern. sp is used with the pointer
selection operator (- >) to assign a value to the member a.

/******************** Example 3 ********************/
list[8] .b = 12;

Example 3 shows how to select an individual structure member from an
array of structures.

5.2. 7 Expressions with Operators

Expressions with operators can be" unary," "binary", or "ternary" expres­
sions. A unary expression consists of either an a unary operator ("unop")
prepended to an operand, or the sizeof keyword followed by an expression.
The expression can be either the name of a variable or a cast expression. If
expression is a cast expression it must be enclosed in parentheses.

unop operand
sizeof expression

A binary expression consists of two operands joined by a binary operator
("binop"):

operand binop operand

A ternary expression consists of three operands joined by the ternary(? :)
operator:

operand? operand : operand

Sections 5.3.1 - 5.3.12 describe the operators used in unary, binary, and
ternary expressions.

Expressions with operators also include assignment expressions, which use
unary or binary assignment operators. The unary assignment operators
are the increment (++) and decrement (-) operators; the binary assign­
ment operators are the simple-assignment operator (=) and the
compound-assignment operators (referred to as "compound-assign-ops").
Each compound-assignment operator is a combination of another binary
operator with the simple-assignment operator. Assignment expressions
have the following forms:

operand++

115

Microsoft C Optimizing Compiler Language Reference

operand-­
++operand
-- operand
operand = operand
operand compound-assz"gnment-op operand

Sections 5.4.1 - 5.4.4 describe the assignment operators in detail.

5.2.8 Expressions in Parentheses

You can enclose any operand in parentheses without changing the type or
value of the enclosed expression. For example, in the expression

(10 + s) / s

the parentheses around 10 + 5 mean that the value of 10 + 5 is the left
operand of the division(/) operator. The result of (10 + 5) / 5 is 3.
Without the parentheses, 10 + 5 / 5 would evaluate to 11.

Although parentheses affect the way operands are grouped in an expres­
sion, they cannot guarantee a particular order of evaluation in all cases.
Exceptions resulting from "side effects" are discussed in Section 5.6.

5.2.9 Type-Cast Expressions

A type cast provides a method for explicit conversion of the type of an
object in a specific situation. Type-cast expressions have the following
form:

(type-name) operand

Casts can be used to convert objects of any scalar type to or from any
other scalar type. Explicit type casts are constrained by the same rules
that determine the effects of implicit conversions, discussed in Section
5.7.1. Additional restraints on casts may result from the actual sizes or
representation of specific types on specific implementations. Representa­
tion is discussed in Chapter 4, "Declarations." For information on actual
sizes of integral types and pointers, see your User's Guide.

Any object may be cast to the void type. However, if the type-name in a
type-cast expression is void, then operand cannot be a void expression. If
an object is cast to void type, the resulting expression cannot be assigned
to any item. Similarly, a type-cast object is not an acceptable lvalue, so
no assignment can be made to a type-cast object.

116

Expressions and Assignments

Section 5.7.2 discusses type-cast conversions. Section 4.9 discusses type
names.

5.2.10 Constant Expressions

A constant expression is any expression that evaluates to a constant. The
operands of a constant expression can be integer constants, character con­
stants, floating type constants, enumeration constants, type casts, sizeof
expressions, and other constant expressions. You can use operators to
combine and modify operands as described in Section 5.2.7, with the fol­
lowing restrictions.

•

•

You cannot use assignment operators (see Section 5.4) or the
binary sequential-evaluation operator{,) in constant expressions.

You can use the unary address-of operator (&) only in certain ini­
tializations (as described in the last paragraph of Section 5.2.10).

Constant expressions used in preprocessor directives are subject to addi­
tional restrictions. Consequently, they are known as restricted-constant­
expressions. A restri'cted-constant-expression cannot contain sizeof expres­
sions, enumeration constants, type casts to any type, or floating type con­
stants. It can, however, contain the special constant expression
defi.ned(z'dentifier). (See Section 8.2.1, "The #define Directive," for more
information about this expression.)

Constant expressions involving floating constants, casts to nonarithmetic
types, and address-of expressions can only appear in initializers. The
unary address-of operator(&) can only be applied variables with funda­
mental, structure, or union types that are declared at the external level, or
to subscripted array references. In these expressions, a constant expression
that does not include the address-of operator can be added to or sub­
tracted from the address expression.

5.2.11 Sequence Points

Expressions involving assignment, unary "increment," unary "decrement,"
or calling a function may have consequences incidental to their evaluation
called "side effects." When a "sequence point" is reached, everything
preceding the sequence point, including any side effects, is guaranteed to
have been evaluated before evaluation begins on anything following the
sequence point.

117

Microsoft C Optimizing Compiler Language Reference

Certain operators act as sequence points, including the following:

• The logical-AND operator(&&)

• The logical-OR operator (ll)
• The ternary opertor (?:)
• The sequential-evaluation operator (,)

• The function call operator (that is, the parenthese following a func­
tion name)

• The unary plus operator (+), though not yet implemented, is
defined as a sequence point

Other sequence points include the end of a full expression (that is, an
expression that is not part of another expression); any initializer; an
expression in an expression statement; the control expressions in selection
statements (if or switch) and iteration statements (do, while, or for); the
expression in a return statement.

Section 5.6 discusses side effects in more detail.

5.3 Operators

C operators take one operand (unary operators), two operands (binary
operators), or three operands (the ternary operator). Assignment operators
include both unary or binary operators; Section 5.4 describes the assign­
ment operators.

Unary operators appear before their operand and associate from right to
left. C includes the following unary operators:

Symbol

- !

* &
sizeof

118

Name

Negation and complement operators

Indirection and address-of operators

Size operator

Expressions and Assignments

Binary operators associate from left to right. C provides the following
binary operators:

Symbol

*I%
+-
<<
< >
& I ..

I

&& II
II

>>
<= >= !=

Name

Multiplicative operators

Additive operators

Shift operators

Relational operators

Bitwise operators

Logical operators

Sequential-evaluation operator

Chas one ternary operator, the conditional operator(? :). It associates
from right to left.

5.3.1 Usual Arithmetic Conversions

Most C operators perform type conversions to bring the operands of an
expression to a common type or to extend short values to the integer size
used in machine operations. The conversions performed by C operators
depend on the specific operator and the type of the operand or operands.
However, many operators perform similar conversions on operands of
integral and floating types. These conversions are known as "arithmetic"
conversions because they apply to the types of values ordinarily used in
arithmetic.

The arithmetic conversions summarized below are called the "usual arith­
metic conversions." The discussion of each operator in the following sec­
tions specifies whether or not the operator performs the usual arithmetic
conversions. It also specifies the additional conversions, if any, the opera­
tor performs. This is not a precedence order. It is an outline of an algo­
rithm that is applied to each binary operator in the expression.

Section 5. 7 outlines the specific path of each type of conversion. In deter­
mining the "usual arithmetic conversions" the following algorithm is
applied to each binary operation in the expression:

119

Microsoft C Optimizing Compiler Language Reference

1. Any operands of float type are converted to double type.

2. If one operand has long double type, the other operand is converted
to long double type.

3. If one operand has double type, the other operand is converted to
double type.

4. Any operands of char or short type are converted to int type.

5. Any operands of unsigned char or unsigned short type are con­
verted to unsigned int type.

6. If one operand is of unsigned long type, the other operand is con­
verted to unsigned long type.

7. If one operand is of long type, the other operand is converted to long
type.

8. If one operand is of unsigned int type, the other operand is converted
to unsigned int type.

The following example illustrates the application of the preceding algo­
rithm:

long l;
unsigned char uc;
int i;
f (1 + UC * i) ;

The preceding example would be converted as follows:

1. uc is converted to an unsigned int (step 4).

2. i is converted to an unsigned int (step 7) The multiplication is per­
formed and the result is an unsigned int.

3. uc * i is converted to a long(step6).

The addition is performed and the result is type long.

5.3.2 Complement Operators

120

Expressions and Assignments

Arithmetic Negation(-)

The arithmetic-negation operator(-) produces the negative (two's comple­
ment) of its operand. The operand must be an integral or floating value.
This operator performs the usual arithmetic conversions.

Bitwise Complement C-)
The bitwise-complement operator C) produces the bitwise complement of
its operand. The operand must be of integral type. This operator per­
forms usual arithmetic conversions; the result has the type of the operand
after conversion.

Logical-NOT (!)

The logical-NOT operator(!) produces the value 0 if its operand is true
(nonzero) and the value 1 it its operand is false (0). The result has int
type. The operand must be an integral, floating, or pointer value.

Examples

/******************** Example 1 ********************/
short x = 987;

x = -x;

In Example 1, the new value of xis the negative of 987, or -987.

/******************** Example 2 ********************/
unsigned short y = Oxaaaa;

y = Ny;

In Example 2, the new value assigned toy is the one's complement of the
unsigned value Oxaaaa, or Ox5555.

/******************** Example 3 ********************/
if (! (x < y)) ;

In Example 3, if x is greater than or equal toy, the result of the expres­
sion is 1 (true). If xis less than y, the result is 0 (false).

121

Microsoft 0 Optimizing Compiler Language Reference

5.3.3 Indirection and Address-of Operators

Indirection (*)

The indirection operator (*) accesses a value indirectly, through a pointer.
The operand must be a pointer value. The result of the operation is the
value that the operand points to; that is, the value at the address specified
by the operand. The result type is the type that the operand addresses. If
the pointer value is invalid, the result is unpredictable. The specific condi­
tions that invalidate a pointer value are implementation-defined, and the
following list includes some of the most common:

• A pointer that is a null pointer

• A pointer that specifies the address of a local item that is not active at
the time of the reference

• A pointer to an address that is inappropriately aligned for the type of
the object pointed to

• A pointer to an address not used by the executing program

Address-of (&)

The address-of operator(&) gives the address of its operand. The operand
can be any value that can appear as the left-hand value of an assignment
operation. A function designator or array name can also be the operand of
the address-of operator, although in these cases the operator is superfluous
since function designators and array names are addresses. (Assignment
operations are discussed in Section 5.4.) The result of the address opera­
tion is a pointer to the operand. The type addressed by the pointer is the
type of the operand.

You cannot apply the address-of operator to a bit-field member of a struc­
ture (described in Section 4.4.3) or to an identifier declared with the
register storage-class specifier (described in Section 4.6).

Examples

Examples 1 through 4 use the following declarations:

int *pa, x;
int a[20];

122

Expressions and Assignments

double d;

/******************** Example 1 ********************/
pa= &a[S];

In Example 1, the address-of operator{&) takes the address of the sixth
element of the array a. The result is stored in the pointer variable pa.

/******************** Example 2 ********************/
x = *pa;

The indirection operator (*) is used in Example 2 to access the int value
at the address stored in pa. The value is assigned to the integer variable
x.

/******************** Example 3 ********************/
if (x == *OcX)

printf("True\n");

In Example 3, the word True would be printed. This example demon­
strates that the result of applying the indirection operator to the address
of x is the same as x.

/******************** Example 4 ********************/
d =*(double*) (&x);

Example 4 shows a useful application of the rule shown in Example 3.
First the address of xis converted by a type cast to a pointer to a double
type; then the indirection operator is applied to give a result of type dou­
ble.

/******************** Example 5 ********************/
int foo () ;

int *pfoo = foo;
int *pfo = &foo;

In Example 5, the function foo is declared, and then two pointers to foo
are declared and initialized. The first pointer p foo is initialized using only
the name of the function, while the second, pfo uses the address-of opera­
tor in the initialization. The initializations are equivalent.

123

Microsoft C Optimizing Compiler Language Reference

5.3.4 The sizeof Operator

The sizeof operator gives the amount of storage, in bytes, associated with
an identifier or a type. This operator allows you to avoid specifying
machine-dependent data sizes in your programs.

A sizeof expression has the form

sizeof expression

where expression is either an identifier or a type-cast expression (that is, a
type specifier enclosed in parentheses). If expression is a type-cast expres­
sion, it cannot be void. If it is an identifier, it cannot represent a bit-field
object of a function designator.

When you apply the sizeof operator to an array identifier, the result is the
size of the entire array rather than the size of the pointer represented by
the array identifier.

When you apply the sizeof operator to a structure or union type name, or
to an identifier of structure or union type, the result is the actual size of
the structure or union. This size may include internal and trailing pad­
ding used to align the members of the structure or union on memory boun­
daries. Thus, the result may not correspond to the size calculated by
adding up the storage requirements of the individual members.

Examples

/******************** Example 1 ********************/
buffer= calloc(lOO, sizeof (int));

Example 1 uses the sizeof operator to pass the size of an int, which varies
among machines, as an argument to a function named callee. The value
returned by the function is stored in buffer.

/******************** Example 2 ********************/
static char *Strings[] ={

"this is string one",
"this is string two",
"this is string three",

};
canst int string_no = (sizeof strings)/(sizeof strings[O]);

In Example 2 strings is an array of pointers to char. The number of
pointers is the number of elements in the array, but is not specified. It is
easy to determine the number of pointers by using the sizeof operator to
calculate the number of elements in the array. The const integer value

124

Expressions and Assignments

string_no is initialized to this number. Because it is a const,
str ing_no cannot be modified.

5.3.5 Multiplicative Operators

The multiplicative operators perform multiplication (*), division (/), and
remainder (%) operations. The operands of the remainder operator (%)
must be integral. The multiplication { *) and division (/) operators can
take integral or floating type operands; the types of the operands can be
different.

The multiplicative operators perform the usual arithmetic conversions on
the ope~ands. The type of the result is the type of the operands after
conversion.

Note

Since the conversions performed by the multiplicative operators do not
provide for overflow or underflow conditions, information may be lost
if the result of a multiplicative operation cannot be represented in the
type of the operands after conversion.

Multiplication (*)

The multiplication operator (*) causes its two operands to be multiplied.

Division (/)

The division operator (/) causes the first operand to be divided by the
second. If two integer operands are divided and the result is not an
integer, it is truncated according to the following rules:

• If both operands are positive or unsigned, the result is truncated
toward 0.

• If either operand is negative, the direction of truncation of the result
(either toward 0 or away from 0), is defined by the implementation.
For more information, see your User's Guide.

125

Microsoft C Optimizing Compiler Language Reference

The result of division by 0 is undefined.

Remainder (%)

The result of the remainder operator (%) is the remainder when the first
operand is divided by the second. If either or both operands are positive or
unsigned, the result is positive. If either operand is negative the sign of
the result is defined by the implementation. (See your User's Guide for
more information.) If the right operand is zero, the result is undefined.

Examples

The following declarations are used for all of the following examples:

int i = 10, j = 3, n;
double x = 2.0, y;

/******************** Example 1 ********************/
y = x * i;

In Example 1, xis multiplied by i to give the value 20.0. The result has
double type.

/******************** Example 2 ********************/
n = i I j:

In Example 2, 10 is divided by 3. The result is truncated toward 0, yield­
ing the integer value 3.

/******************** Example 3 ********************/
n = i % j;

In Example 3, n is assigned the integer remainder, 1, when 10 is divided by
3.

126

Expressions and Assignments

5.3.6 Additive Operators

The additive operators perform addition(+) and subtraction(-). The
operands can be integral or floating values. Some additive operations can
also be performed on pointer values, as outlined under the discussion of
each operator.

The additive operators perform the usual arithmetic conversions on
integral and floating operands. The type of the result is the type of the
operands after conversion. Since the conversions performed by the additive
operators do not provide for overflow or underflow conditions, information
may be lost if the result of an additive operation cannot be represented in

· the type of the operands after conversion.

Addition (+)

The addition operator (+) causes its two operands to be added. Both
operands can have integral or floating types, or one operand can be a
pointer and the other an integer.

When an integer is added to a pointer, the integer value (z) is converted by
multiplying it by the size of the value that the pointer addresses. After
conversion, the integer value represents i memory positions, where each
position has the length specified by the pointer type. When the converted
integer value is added to the pointer value, the result is a new pointer
value representing the address i positions from the original address. The
new pointer value addresses a value of the same type as the original
pointer value.

Subtraction(-)

The subtraction operator(-) subtracts the second operand from the first.
The following combinations of operands can be used with this operator:

• Both operands integral or floating type values

• Both operands pointer values to the same type

• The first operand a pointer value and the second operand an integer

When two pointers are subtracted, the difference is converted to a signed
integral value by dividing the difference by the size of a value of the type
that the pointers address. The size of the integral value is defined by the
implementation. (See your User's Guide for more information.) The result

127

Microsoft C Optimizing Compiler Language Reference

represents the number of memory positions of that type between the two
addresses. The result is only guaranteed to be meaningful for two ele­
ments of the same array, as discussed under "Pointer Arithmetic" later in
this section.

When an integer value is subtracted from a pointer value, the subtraction
operator converts the integer value (z) by multiplying it by the size of the
value that the pointer addresses. After conversion, the integer value
represents i memory positions, where each position has the length specified
by the pointer type. When the converted integer value is subtracted from
the pointer value, the result is the memory address i positions before the
original address. The new pointer points to a value of the type addressed
by the original pointer value.

Pointer Arithmetic

Additive operations involving a pointer and an integer give meaningful
results only if the pointer operand addresses an array member and the
integer value produces an offset within the bounds of the same array.
When the integer value is converted to an address offset, the compiler
assumes that only memory positions of the same size lie between the origi­
nal address and the address plus the offset.

This assumption is valid for array members. By definition, an array is a
series of values of the same type; its elements reside in contiguous memory
locations. However, storage for any types except array elements is not
guaranteed to be completely filled. That is, blanks may appear between
memory positions, even positions of the same type. Therefore, the results
of adding to or subtracting from the addresses of any values but array ele­
ments are undefined.

Similarly, when two pointer values are subtracted, the conversion assumes
that only values of the same type, with no blanks, lie between the
addresses given by the operands.

On machines with segmented architecture (such as the 8086/8088), addi­
tive operations between pointer and integer values may not be vafid in
some cases. For example, an operation may result in an address that is
outside the bounds of an array. See your User's Guide discussion of
memory models for more information.

128

Expressions and Assignments

Examples

The following declarations are used for both examples:

int i = 4, j;
float x [10] ;
float *px;

/******************** Example 1 ********************/
px = &x[4] + i; /*equivalent to px = &x[4=i]; */

In Example 1, the value of i is multiplied by the length of a float and
added to &x [4]. The resulting pointer value is the address of x [8] .

/******************** Example 2 ********************/
j = &x [i] - &x [i - 2] ;

In Example 2, the address of the third element of x (given by x [i- 2J) is
subtracted from the address of the fifth element of x (given by x [i]).
The difference is divided by the length of a float; the result is the integer
value 2.

129

Microsoft C Optimizing Compiler Language Reference

5.3. 7 Shift Operators

The shift operators shift their first operand left (<<)or right (>>)by
the number of positions the second operand specifies. Both operands must
be integral values. These operators perform the usual arithmetic conver­
sions; the type of the result is the type of the left operand after conversion.

For leftward shifts, the vacated right bits are set to 0. For rightward
shifts, the vacated left bits are filled based on the type of the first operand
after conversion. If the type is unsigned, they are set to 0. Otherwise,
they are filled with copies of the sign bit.

The result of a shift operation is undefined if the second operand is nega­
tive.

Since the conversions performed by the shift operators do not provide for
overflow or underflow conditions, information may be lost if the result of a
shift operation cannot be represented in the type of the first operand after
conversion.

Example

unsigned int x, y, z;

x = OxOOaa;
y = Ox5500;

z = (x << 8) + (y >> 8);

In this example, x is shifted left eight positions and y is shifted right eight
positions. The shifted values are added, giving Oxaa55, and assigned to
z.

5.3.8 Relational Operators

The binary relational operators compare their first operand to their second
operand to test the validity of the specified relationship. The result of a
relational expression is 1 if the tested relationship is true and 0 if it is
false. The type of the result is int.

The relational operators test the following relationships:

Operator Relationship Tested

130

Expressions and Assignments

<
>
<=

>=

First operand less than second operand

First operand greater than second operand

First operand less than or equal to second operand

First operand greater than or equal to second operand

First operand equal to second operand

!= First operand not equal to second operand
The operands can have integral, floating, or pointer type. The types of the
operands can be different. Relational operators perform the usual arith­
metic conversions on integral and floating type operands. In addition, you
can use the following combinations of operand types with relational opera­
tors:

• Both operands of any relational operator can be pointers to the same
type. For the equality (= =) and inequality (!=)operators, the result
of the comparison indicates whether or not the two pointers address
the same memory location. For the other relational operators (<, >,
<=, and >=), the result of the comparison indicates the relative
position of two memory addresses.

Since the address of a given value is arbitrary, comparisons between
the addresses of two unrelated values are generally meaningless. How­
ever, comparisons between the addresses of different elements of the
same array can be useful, since array elements are guaranteed to be
stored in order from the first element to the last. The address of the
first array element is "less than" the address of the last element.

• A pointer value can be compared to the constant value 0 for equality
(= =) or inequality (!=). A pointer with a value of 0, called a "null"
pointer, does not point to a memory location.

Examples

/******************** Example 1 ********************/
int x = 0, y = 0;

x < y

Because x and y are equal, the expression in Example 1 yields the value 0.

/******************** Example 2 ********************/
char array[lO] ;
char *P ;

for (p=array; p<&array[lO]; p++)
*P = '\O' ;

131

Microsoft 0 Optimizing Compiler Language Reference

The fragment in Example 2 initializes each element of array to a null
character constant.

/******************** Example 3 *********************/
enum color {red, white, green} col;

if (col red)

Example 3 declares an enumeration variable named col with the tag
color. At any time, the variable may contain an integer value of 0, 1, or
2, representing one of the elements of the enumeration set color: the
colors red, white and green respectively. If col contains 0 when the if
statement is executed, any statements depending on the if will be exe­
cuted.

5.3.9 Bitwise Operators

The bitwise operators perform bitwise-AND(&), inclusive-OR() and
exclusive-OR (A) operations. The operands of bitwise operators must have
integral types, but their types can be different. These operators perform
the usual arithmetic conversions; the type of the result is the type of the
operands after conversion.

Bitwise AND (&)

The bitwise-AND(&) operator compares each bit of its first operand to
the corresponding bit of its second operand. If both bits are 1, the
corresponding result bit is set to 1; otherwise, the corresponding result bit
is set to 0.

Bitwise Inclusive OR CD

The bitwise-inclusive-OR (I) operator compares each bit of its first operand
to the corresponding bit or its second operand. If either bits is 1, the
corresponding result bit is set to 1. Otherwise the corresponding result bit
is set to 0.

132

Expressions and Assignments

Bitwise Exclusive OR("')

The bitwise-exclusive-OR("') operator compares each bit of its first
operand to the correspondmg bit of its second operand. If one bit is 0 and
the other bit is 1, the corresponding result bit is set to 1; otherwise, the
corresponding result bit is set to 0.

Examples

short i = OxabOO;
short j = Oxabcd;
short n;

/******************** Example 1 ********************/
n = i & j;

/******************** Example 2 ********************/
n = i I j;

/******************** Example 3 ********************/
n = i ~ j;

The result assigned ton in the first example is the same as i (ABOO hexa­
decimal). The bitwise inclusive OR in Example 2 results in the value
ABCD (hexadecimal), while the bitwise exclusive OR in example 3 pro­
duces OD (hexadecimal).

133

Microsoft C Optimizing Compiler Language Reference

5.3.10 Logical Operators

The logical operators perform logical-AND (&&) and logical-OR (ID
operations. The operands of the logical operators must have integral,
floating, or pointer type. The types of the operands can be different.

The operands of logical-AND and logical-OR expressions are evaluated
from left to right. If the value of the first operand is sufficient to deter­
mine the result of the operation, the second operand is not evaluated.
There is a sequence point after the first operand.

Logical operators do not perform the standard arithmetic conversions.
Instead, they evaluate each operand in terms of its equivalence to 0.

The result of a logical operation is either 0 or 1. The type of the result is
int.

Logical AND (&&)

The logical-AND operator(&&) produces the value 1 if both operands
have nonzero values. If either operand is equal to 0, the result is 0. If the
first operand of a logical-AND operation is equal to 0, the second operand
is not evaluated.

Logical OR (ID

The logical-OR operator (ii) performs an inclusive-OR operation on its
operands. The result is 0 it both operands have 0 values. If either
operand has a nonzero value, the result is 1. If the first operand of a
logical-OR operation has a nonzero value, the second operand is not
evaluated.

Examples

int w, x, y, z;

/******************** Example 1 ********************/
if (x < y && y < z)

printf ("xis less than z\n");

134

Expressions and Assignments

In Example 1, the printf function is called to print a message if xis less
than y and y is less than z. If xis greater than y, the second operand (y
< z) is not evaluated and nothing is printed. Note that this could cause
problems in cases where the second operand contains side effects.

/******************** Example 2 ********************/
printf ("%d" , (x==w I I x==y I I x==z)) ;

In Example 2, if xis equal to either w, y, or z, the second argument to the
printf function evaluates to true and the value 1 is printed. Otherwise it
evaluates to false and the value 0 is printed. As soon as one of the condi­
tions evaluates to true, evaluation ceases.

5.3.11 Sequential-Evaluation Operator

The sequential-evaluation operator (,) evaluates its two operands sequen­
tially from left to right. There is a seqence point after the first operand.
The result of the operation has the same value and type as the right
operand. The operands can be of any types. The sequential-evaluation
operator does not perform type conversions.

The sequential-evaluation operator, also called the "comma" operator, is
typically used to evaluate two or more expressions in contexts where only
one expression is allowed.

Note that commas may be used as a separators in some contexts. You
must be careful not to confuse the use of the comma as a separator with
its use as an operator; the two uses are completely different.

Examples

/******************** Example 1 ********************/

for (i = j = 1; i + j < 20; i += i, j--);

In Example 1, each operand of the for statement's third expression is
evaluated independently. The left operand, i += i, is evaluated first;
then the right operand, j- - , is evaluated.

/******************** Example 2 ********************/

func_one(x, y + 2, z);

135

Microsoft C Optimizing Compiler Language Reference

func_two((x--, y + 2), z);

In the function call to func_one, three arguments, separated by commas,
are passed: x, y + 2, and z.

In the function call to func_two, parentheses force the compiler to inter­
pret the first comma as the sequential-evaluation operator. This function
call passes two arguments to func_two. The first argument is the result
of the sequential-evaluation operation (x--, y + 2), which has the
value and type of the expression y + 2; the second argument is z.

5.3.12 Conditional Operator

Chas one ternary operator: the conditional operator(? :). It has the fol­
lowing form:

operand1 ? operand2 : operands

The expression operandi must have integral, floating, or pointer type. It is
evaluated in terms of its equivalence to 0: There is a sequence point follow­
ing operandi.

• If operandi does not evaluate to 0, operand2 is evaluated, and the
result of the expression is the value of operand2.

• If operandi evaluates to 0, operand3 is evaluated, and the result of the
expression is the value of operand3.

Note that either operand2 or operand3 is evaluated, but not both.

The type of the result of a conditional operation depends on the type of
operand2 or operand3, as follows:

• If operand2 or operand3 has integral or floating type (their types can
be different), the operator performs the usual arithmetic conversions.
The type o(the result is the type of the operands after conversion.

• If both operand2 and operand3 have the same structure, union, or
pointer type, the type of the result is the same structure, union, or
pointer type.

• If both operands have type void, the result has type void.
• If either operand is a pointer to an object of any type, and the other

operand is a pointer to void, the pointer to the object is converted to
a pointer to void and the result is a pointer to void.

136

Expressions and Assignments

• If either operand2 or operand3 is a pointer and the other operand is a
constant expression with the value 0, the type of the result is the
pointer type.

Examples

/******************** Example 1 ********************/
j= (i<O)? (-i): (i):

Example 1 assigns the absolute value of i to j. If i is less than 0, - i is
assigned to j. If i is greater than or equal to 0, i is assigned to j.

/******************** Example 2 ********************/
void fl (void)
void f2 (void)
int x
int y

(x==y) ? (fl()) : (f2 ()) :

In Example 2 two functions fl and f2 and two variables x and y are
declared. Later in the program, if the two variables have the same value,
the function fl is called. Otherwise f2 is called.

5.4 Assignment Operators

The assignment operators in C can both transform and assign values in a
single operation. Using a compound-assignment operator to replace two
separate operations can make your programs smaller and more efficient.

C provides the following assignment operators:

Operator

++

Operation Performed

Unary increment

Unary decrement

Simple assignment

Multiplication assignment

137

Microsoft C Optimizing Compiler Language Reference

/=
%=
+=

<<=
>>=
&=

Division assignment

Remainder assignment

Addition assignment

Subtraction assignment

Left-shift assignment

Right-shift assignment

Bitwise-AND assignment

Bitwise-inclusive-OR assignment

= Bitwise-exclusive-OR assignment
In assignment, the type of the right-hand value is converted to the type of
the left-hand value. The specific conversion path, which depends on the
two types, is outlined in detail in Section 5.7.

5.4.1 Lvalue Expressions

An assignment operation assigns the value of the right-hand operand to
the storage location named by the left-hand operand. Therefore, the left­
hand operand of an assignment operation (or the single operand of a unary
assignment expression) must be an express10n that refers to a modifiable
memory location.

Expressions that refer to memory locations are called "lvalue" expressions.
Expressions referring to modifiable locations are modifiable lvalues. One
example of a modifiable lvalue expression is a variable name declared
without the const specifier. The name of the variable denotes a storage
location, while the value of the variable is the value stored at that loca­
tion.

The following C expressions may be lvalue expressions:

• An identifier of integral, floating, pointer, structure, or union type

• A subscript ([])expression that does not evaluate to an array or a
function

• A member-selection expression (- > and .), if the selected member is
one of the aforementioned expressions

• A unary-indirection (*) expression that does not refer to an array or
function

138

Expressions and Assignments

• An lvalue expression in parentheses.

• A const object is a nonmodifiable lvalue.

Note

When extensions to the ANSI C standard are enabled, a type cast to a
pointer type is an lvalue expression, as long as the size of the object
does not change. See your User's Guide for information on enabling
and disabling the Microsoft extensions.

5.4.2 Unary Increment and Decrement

The unary assignment operators(++ and--) increment and decrement
their operand, respectively. The operand must have integral, floating, or
pointer type and must be a modifiable (non-const) lvalue expression.

An operand of integral or floating type is incremented or decremented by
the integer value l. The result type is the same as the operand type. An
operand of pointer type is incremented or decremented by the size of the
object it addresses. An incremented pointer points to the next object; a
decremented pointer points to the previous object.

An increment (++)or decrement (- -) operator can appear either be­
fore or after its operand, with the fallowing results:

• When the operator appears before its operand, the operand is incre­
n_iented or decremented and its new value is the result of the expres­
sion.

• When the operator appears after its operand, the immediate result of
the expression is the value of the operand before it is incremented or
decremented. After that result is applied in context, the operand is
incremented or decremented.

Examples

/******************** Example 1 ********************/

if (pos++ > 0)
*p++ = *q++;

139

Microsoft C Optimizing Compiler Language Reference

In Example 1, the variable pos is compared to 0, then incremented. If pos
was positive before being incremented, the next statement is executed.
First the value of q is assigned top. Then, q and p are incremented.

/******************** Example 2 ********************/

if (line[--i] != '\n')
return;

In Example 2, the variable i is decremented before it is used as a subscript
to line.

5.4.3 Simple Assignment

The simple-assignment operator (=) assigns its right operand its left
operand. The conversion rules for assignment apply (see Section 5.7.1).

Example

double x;
int y;

x = y;

In this example, the value of y is converted to double type and assigned
to x.

5.4.4 Compound Assignment

The compound-assignment operators combine the simple-assignment
operator with another binary operator. Compound-assignment operators
perform the operation specified by the additional operator, then assign the
result to the left operand. For example, a compound-assignment expres­
sion such as

expression1 += expression2

can be understood as

expression1 = expression1 + expression2

However, the compound-assignment expression is not equivalent to the
expanded version because the compound-assignment expression evaluates
expressi"oni only once, while the expanded version evaluates expressi"oni
twice: in the addition operation and in the assignment operation.

140

Expressions and Assignments

The operands of a compound-assignment operator must be of integral or
floating type. Each compound-assignment operator performs the conver­
sions that the corresponding binary operator performs and restricts the
types of its operands accordingly. The addition-assignment (+=) and
subtraction-assignment(-=) operators may also have a left operand of
pointer type, in which case the right-hand operand must be of integral
type. The result of a compound-assignment operation has the value and
type of the left operand.

Example

#define MASK OxffOO

n &= MASK;

In this example a bitwise-inclusive-AND operation is performed on n and
MASK, and the result is assigned ton. The manifest constant MASK is
defined with a #define preprocessor directive; this directive is discussed
in Section 8.2.1.

141

Microsoft 0 Optimizing Compiler Language Reference

5.5 Precedence and Order of Evaluation

The precedence and associativity of C operators affect the grouping and
evaluation of operands in expressions. An operator's precedence is mean­
ingful only if other operators with higher or lower precedence are present.
Expressions with higher-precedence operators are evaluated first.

Table 5.1 summarizes the precedence and associativity of C operators, list­
ing them in order of precedence from highest to lowest. Where several
operators appear together in a line or large brace, they have equal pre­
cedence and are evaluated according to their associativity.

Table 5.1

Precedence and Associativity of C Operators

Symbol a Type of Operation Associativity

() [l .->) Expression Left to right - ! * & t - Unaryb Right to left ++ -- sizeof casts

*I%) Multiplicative Left to right

+- Additive Left to right
<< >> Shift Left to right
< > <= >= Relational (inequality) Left to right
- - != Relational (equality) Left to right
& Bitwise-AND Left to right

Bitwise-exclusive-OR Left to right
I Bitwise-inclusive-OR Left to right I

&& Logical AND Left to right
II Logical OR Left to right II

? : Conditional Right to left

= *= /= %= } Simple and Right to left
+= -= <<= >>= compound
&= 1-

,..
= assignment0 1-

Sequential evaluation Left to right

a Operators are listed in descending order of precedence. If several operators appear in the
same line or in a large brace, they have equal precedence.

b All unary operators have equal precedence.

142

Expressions and Assignments

c All simple and compound-assignment operators have equal precedence.

As Table 5.1 shows, operands consisting of a constant, an identifier, a
string, a function call, a subscript expression, a member-selection expres­
sion, or a parenthetical expression have the highest precedence and associ­
ate from left to right. Type-cast conversions have the same precedence
and associativity as the unary operators.

An expression can contain several operators with equal precedence. When
several such operators appear at the same level in an expression, evalua­
tion proceeds according to the associativity of the operator, either from
right to left or from left to right. The direction of evaluation does not
affect the results of expressions that include more than one multiplicaion
(*),addition(+), or binary-bitwise (&:A) operator at the same level.
The compiler is free to evaluate such expressions in any order, even when
parentheses in the expression appear to specify a particular order.

Important

Only the sequential-evaluation(,), logical-AND(&&), logical-OR (),
ternary (?:) and function-call operators constitute sequence points, and
therefore guarantee a particular order of evaluation for their operands.
The function-call operator is the parentheses following the function
identifier. The sequential-evaluation operator(,) is guaranteed to
evaluate its operands from left to right. (Note that the comma separat­
ing arguments in a function call is not the same as the sequential­
evaluation operator and does not provide any such guarantee.) The
unary plus operator (+), is not yet implemented, but is defined by the
ANSI C standard as a sequence point. Sequence points are discussed in
Section 5.2.11.

Logical operators also guarantee evaluation of their operands from left to
right. However, they evaluate the smallest number of operands needed to
determine the result of the expression. Thus, some operands of the expres­
sion may not be evaluated. For example, in the expression x && y++, the
second operand, y++, is evaluated only if xis true (nonzero). Thus, y is
not incremented if x is false (0).

143

Microsoft C Optimizing Compiler Language Reference

Examples

~he following list shows the default groupings for several sample expres­
s10ns:

Expression

a & b 11 c

a= b 11 c

q && r I I s--

Default Grouping

(a & b) I I c

a = (b I I c)

(q && r) I I s - -

In the first expression, the bitwise-AND operator(&) has higher pre­
cedence than the logical-OR operator (I I), so a & b forms the first
operand of the logical-OR operation.

In the second expression, the logical-OR operator ()precedence than the
simple-assignment operator (=), sob I I c is grouped as the right-hand
operand in the assignment. Note that the value assigned to a is either 0
or 1.

The third expression shows a correctly formed expression that may pro­
duce an unexpected result. The logical-AND operator(&&) has higher
precedence than the logical-OR operator (ii), so q && r is grouped as an
operand. Since the logical operators guarantee evaluation of operands
from left to right, q && r is evaluated before s- - . However, if q && r
evaluates to a nonzero value, s- - is not evaluated, and s is not decre­
mented. To correct this problem, s-- should appear as the first operand
of the expression, or s should be decremented in a separate operation.

The following expression is illegal and produces a program error:

Illegal Expression Default Grouping

p == 0 ? p += 1: p += 2 (p == 0 ? p += 1 : p) += 2

In this expression, the equality operator (= =) has the highest precedence,
sop == 0 is grouped as an operand. The ternary operator (r :) has the
next-highest precedence. Its first operand is p == 0, and its second
operand is p += 1. However, the last operand of the ternary operator is
considered to be p rather than p += 2, since this occurrence of p binds
more closely to the ternary operator than it does to the compound­
assignment operator. A syntax error occurs because += 2 does not have a
left-hand operand. You should use parentheses to prevent errors of this
kind and produce more readable code. For example, you could use

144

Expressions and Assignments

parentheses as shown below to correct and clarify the preceding example:

(p == 0) ? (p += 1) : (p += 2)

5.6 Side Effects

"Side effects" occur whenever the value of a variable is changed by expres­
sion evaluation. All assignment operations have side effects. Function
calls may also have side effects if they change the value of an externally
visible item, either by direct assignment or by indirect assignment through
a pointer.

The order of evaluation of expressions is defined by the specific implemen­
tation, except when the languageguarantees a particular order of evalua­
tion (as outlined in Section 5.5).

For example, side effects occur in the fallowing function call:

add (i + l, i = j + 2)

The arguments of a function call can be evaluated in any order. The
expression i + 1 may be evaluated before i = j + 2, or i = j + 2,
may be evaluated before i + 1. The result is different in each case.

Since unary increment and decrement operations involve assignments,
such operations can cause side effects, as shown in the following example:

d = O;
a = b++ = c++ = d++;

In this example, the value of a is unpredictable. The value of d (initially
0) could be assigned to c, then to b, and then to a before any of the vari­
ables are incremented. In this case, a would be equal to 0.

A second way to evaluate this expression begins by evaluating the operand
c++ = d++. The value of d (initially 0) is assigned to c, and then both d
and c are incremented. Next, the value of c, now 1, is assigned to b and b
is incremented. Finally, the incremented value of b is assigned to a; in this
case, the final value of a is 2.

Since C does not define the order of evaluation of side effects, both of these
evaluation methods are correct and either may be implemented. To make
sure that your code is portable and clear, avoid statements that depend on
a particular order of evaluation for side effects.

145

Microsoft C Optimizing Compiler Language Reference

5. 7 Type Conversions

Type conversions are performed in the following cases:

• When a value of one type is assigned to a variable of a different type

• When a value of one type is explicitly cast to a different type

• When an operator converts the type of its operand or operands before
performing an operation

• When a value is passed as an argument to a function.

S.ections 5.7.1.1 through 5.7.1.5 outline the rules for each kind of conver­
sion.

5. 7 .1 Assignment Conversions

In assignment operations, the type of the value being assigned is converted
to the type of the variable that receives the assignment. Callows conver­
sions by assignment between integral and floating types, even if informa­
tion is lost in the conversion. The conversion methods depend on the
types involved in the assignment, as described in Section 5.3.1, and Sec­
tions 5.7.1.1 - 5.7.1.5.

5.7.1.1 Conversions from Signed Integral Types

A signed integer is converted to a shorter signed integer by truncating the
high-order bits, and to a longer signed integer by sign extension.

When a signed integer is converted to an unsigned integer, the signed
integer is converted to the size of the unsigned integer, and the result is
interpreted as an unsigned value.

No information is lost when a signed integer is converted to a floating
value, except that some precision may be lost when a long int or
unsigned long int value is converted to a float value.

Table 5.2 summarizes conversions from signed integral types. This table
assumes that the char type is signed by default. If you use a compile-time
option to change the default for the char type to unsigned, the conver­
sions given in Table 5.3 for the unsigned char type apply instead of the
conversions in Table 5.2.

146

Expressions and Assignments

Table 5.2

Conversions from Signed Integral Types

From To Method

char a short Sign extend
char long Sign extend
char unsigned char Preserve pattern; high-order bit loses function as

sign bit
char unsigned short Sign extend to short; convert short to unsigned

short
char unsigned long Sign extend to long; convert long to unsigned

long
char float Sign extend to long; convert long to float
char double Sign extend to long; convert long to double
short char Preserve low-order byte
short long Sign extend
short unsigned char Preserve low-order byte
short unsigned short Preserve bit pattern; high-order bit loses function

as sign bit
short unsigned long Sign extend to long; convert long to unsigned

long
short float Sign extend to long; convert long to float
short double Sign extend to long; convert long to double
long char Preserve low-order byte
long short Preserve low-order word
long unsigned char Preserve low-order byte
long unsigned short Preserve low-order word
long unsigned long Preserve bit pattern; high-order bit loses function

as sign bit
long float Represent as float; if long cannot be represented

exactly, some precision is lost precision occurs
long double Represent as double; if long cannot be

represented exactly as a double, some precision is
lost

a All char entries assume that the char type is signed by default.

147

Microsoft C Optimizing Compiler Language Reference

Note

The int type is equivalent to either the short type or the long type,
depending on the implementation. Conversion of an int value
proceeds the same as for a short or a long, whichever is appropriate.

5.7.1.2 Conversions from
Unsigned Integral Types

An unsigned integer is converted to a shorter unsigned or signed integer by
truncating the high-order bits, or to a longer unsigned or signed integer by
zero-extending.

When an unsigned integer is converted to a signed integer of the same size,
the bit pattern does not change. However, the value it represents changes
if the sign bit is set.

Unsigned integer values are converted to floating values by first converting
to a signed integer of the same size, then converting that signed value to a
floating value.

in Table 5.3 summarizes conversions from unsigned integral types.

Table 5.3

Conversions from Unsigned Integral Types

From To Method

unsigned char char Preserve bit pattern; high-order bit
becomes sign bit

unsigned char short Zero-extend
unsigned char long Zero-extend
unsigned char unsigned short Zero-extend
unsigned char unsigned long Zero-extend
unsigned char float Convert to long; convert long to

float

148

Expressions and Assignments

Table 5.3 (continued}

From To Method

unsigned char double Convert to long; convert long to
double

unsigned short char Preserve low-order byte

unsigned short short Preserve bit pattern; high-order bit
becomes sign bit

unsigned short long Zero-extend

unsigned short unsigned char Preserve low-order byte

unsigned short unsigned long Zero-extend

unsigned short fl.oat Convert to long; convert long to
fl.oat

unsigned short double Convert to long; convert long to
double

unsigned long char Preserve low-order byte
unsigned long short Preserve low-order word
unsigned long long Preserve bit pattern; high-order bit

becomes sign bit
unsigned long unsigned char Preserve low-order byte
unsigned long unsigned short Preserve low-order word
unsigned long float Convert to long; convert long to

fl.oat
unsigned long double Convert to long; convert long to

double

Note

The unsigned int type is equivalent either to the unsigned short
type or to the unsigned long type, depending on the implementation.
Conversion of an unsigned int value proceeds the same as for an
unsigned short or an unsigned long, whichever is appropriate.

149

Microsoft C Optimizing Compiler Language Reference

5.7 .1.3 Conversions from Floating-Point Types

A float value converted to a double value undergoes no change in value.
A double value converted to a float value is represented exactly, if possi­
ble. Precision is lost if the value is too large to fit into a float, precision is
lost.

A floating value is converted to an integer value by converting to a long.
Conversions to other integer types occur the same as for a long. The
decimal portion of the floating value is discarded in the conversion to a
long; if the result is still too large to fit into a long, the result of the
conversion is undefined.

Table 5.4 summarizes conversions from floating types.

Table 5.4

Conversions from Floating-Point Types

From

float
float
float

float
short
float
long
float

double
double
double

double
short

double
long

double

150

To

char
short
long

unsigned short

unsigned long

double
char
short
long

unsigned short

unsigned long

float

Method

Convert to long; convert long to char
Convert to long; convert long to short
Truncate at decimal point; if result is too large to
be represented as long, result is undefined

Convert to long; convert long to unsigned

Convert to long; convert long to unsigned

Change internal representation

Convert to float; convert float to char
Convert to float; convert float to short
Truncate at decimal point; if result is too large to
be represented as long, result is undefined
Convert to long; convert long to unsigned

Convert to long; convert long to unsigned

Represent as a float. If double value cannot
be represented exactly as float, loss of precision
occurs; if value is too large to be represented
as float, the result is undefined

Expressions and Assignments

5.7.1.4 Conversions to and from Pointer Types

A pointer to one type of value can be converted to a pointer to a different
type. However, the result may be undefined because of the alignment
requirements and sizes of different types in storage.

A pointer to void may be converted to or from a pointer to any type,
without restriction.

In some implementations, you can use the special keywords near, far, and
huge to change the size of pointers within a program. The conversion
path depends on your implementation. For example, on an 8086 processor,
the compiler might use a segment-register value to convert a 16-bit pointer
to a 32-_bit pointer. See your User's Guide for information about pointer
conversions.

A pointer value can also be converted to an integral value. The conversion
path depends on size of the pointer and the size of the integral type,
according to the following rules:

• If the size of the pointer is the greater than or equal to the size of the
integral type, the pointer behaves like an unsigned value in the conver­
sion, except that it cannot be converted to a floating value.

• If the pointer is smaller than the integral type, the pointer is first con­
verted to a pointer with the same size as the integral type, then con­
verted to the integral type. The implementation determines how a
pointer is converted to a longer pointer; see your User's Guide for
information about pointer conversions.

Conversely, an integral type can be converted to a pointer type according
to the following rules:

• If the integral type is the same size as the pointer type, the conversion
simply causes the integral value to be treated as a pointer (an unsigned
integer).

If the size of the integral type is different from the size of the pointer type,
the integral type is first converted to the size of the pointer, using the
conversion paths given in Tables 5.2 and 5.3. It is then treated as a
pointer value.

If the special keywords near, far, and huge are implemented, implicit
conversions may be made on pointer values. In particular, the compiler
may make assumptions about the default size of pointers and convert
passed pointer values accordingly, unless a forward declaration is present
to override the implicit conversion. See your User's Guide for information

151

Microsoft 0 Optimizing Compiler Language Reference

about pointer conversions.

5.7.1.5 Conversions from Other Types

Since an enum value is an int value by definition, conversions to and from
an enum value are the same as those for the int type. An int is
equivalent to either a short or a long, depending on the implementation.

No conversions between structure or union types are allowed.

The void type has no value, by definition. Therefore, it cannot be con­
verted to any other type, and other types cannot be converted to void by
assignment. However, you can explicitly cast a value to void type, as dis­
cussed in Section 5. 7 .2.

5. 7 .2 Type-Cast Conversions

You can use type casts to explicitly convert types. A type cast has the
form

(type-name) operand

where type-name is a type and operand is a value to be converted to that
type. (Type names are discussed in Section 4.9.)

The operand is converted as though it had been assigned to a variable of
the type-name type. The conversion rules for assignments (outlined in Sec­
tion 5. 7 .1) apply to type casts as well.

You can use the type name void in a cast operation, but you cannot
assign the resulting expression to any item.

5. 7 .3 Operator Conversions

The conversions performed by C operators depend on the operator and on
the type of the operand or operands. Many operators perform the usual
arithmetic conversions, outlined in Section 5.3.1.

C permits some arithmetic with pointers. In pointer arithmetic, integer
values are converted to express memory positions. (See the discussions of
additive operators, Section 5.3.6, and subscript expressions, Section 5.2.5,
for more information.)

152

Expressions and Assignments

5. 7.4 Function-Call Conversions

The type of conversion performed on the arguments in a function call
depends on the presence of a function prototype (forward declaration)
with declared argument types for the called function.

If a function prototype is present, and it includes declared argument types,
the compiler performs type checking. The type-checking process is out­
lined in detail in Chapter 7, "Functions."

If no function prototype is present, or if an old-style forward declaration
omits the argument-type list, only the usual arithmetic conversions are
performed on the arguments in the function call. These conversions are
performed independently on each argument in the call. This means that a
float value is converted to a double; a char or short value is converted
to an int; and an unsigned char or unsigned short is converted to an
unsigned int.

If the special keywords near, far, and huge are implemented, implicit
conversions may also be made on pointer values passed to functions. You
can override these implicit conversions by providing function prototypes
to allow the compiler to perform type checking. See your User's Guide for
information about pointer conversions.

153

Chapter 6
Statements

6.1 Introduction 157
6.2 The break Statement 159
6.3 The Compound Statement 160
6.4 The continue Statement 162
6.5 The do Statement 163
6.6 The Expression Statement 164
6.7 The for Statement 165
6.8 The goto and Labeled Statements 167
6.9 The if Statement 168
6.10 The Null Statement 171
6.11 The return Statement 172
6.12 The switch Statement 174
6.13 The while Statement 177

155

Statements

6.1 Introduction

The statements of a C program control the flow of program execution. In
C, as in other programming languages, several kinds of statements are
available to perform loops, to select other statements to be executed, and
to transfer control. This chapter describes C statements in alphabetical
order, as follows:

break statement

compound statement

continue statement

do statement

expression statement

for statement

goto statement

if statement

null statement

return statement

switch statement

while statement

C statements consist of keywords, expressions, and other statements. The
following keywords appear in C statements:

break
case
continue

default
do
else

for
goto
if

return
switch
while

The expressions in C statements are the expressions discussed in Chapter 5
of this manual. Statements appearing within C statements may be any of
the statements discussed in this chapter. A statement that forms a com­
ponent of another statement is called the "body" of the enclosing state­
ment. Frequently the statement body is a "compound" statement: a single
statement composed of one or more statements.

157

Microsoft C Optimizing Compiler Language Reference

The compound statement is delimited by braces ({ }); all other C state­
ments end with a semicolon.

Any C statement may begin with an identifying label consisting of a name
and a colon. Since only the goto statement recognizes statement labels,
statement labels are described along with the goto statement in Section
6.8.

When a C program is executed, its statements are executed in the order in
which they appear in the program, except where a statement explicitly
transfers control to another location.

158

Statements

6.2 The break Statement

Syntax

break;

Execution

The break statement terminates the execution of the smallest enclosing
do, for, switch, or while statement in which it appears. Control passes
to the statement that follows the terminated statement. A break state­
ment can appear only within a do, for, switch, or while statement.

Within nested statements, the break statement terminates only the do,
for, switch, or while statement that immediately encloses it. You can use
a return or goto statement to transfer control out of the nested struc­
ture.

Example

for (i = O; i < LENGTH; i++) {

}

for (j = 0; j < WIDTH; j++) {
if (lines [i] [j] == '\O') {

lengths[i] = j;
break;

}
}

This example processes an array of variable-length strings stored in
lines. The break statement causes an exit from the interior for loop
after the terminating null character (\ 0) of each string is found and its
position is stored in lengths [i]. Control then returns to the outer for
loop. The variable i is incremented and the process is repeated until i is
greater than or equal to LENGTH.

159

Microsoft C Optimizing Compiler Language Reference

6.3 The Compound Statement

Syntax

{
[declaration]

statement
[statement]

}

Execution

A compound statement typically appears as the body of another state­
ment, such as the if statement. When a compound statement is executed,
its statements are executed in the order in which they appear, except
where a statement explicitly transfers control to another location.
Chapter 4 of this manual describes the form and meaning of the declara­
tions that can appear at the head of a compound statement.

Labeled Statements

Like other C statements, any of the statements in a compound statement
can carry a label. Thus, you can use a goto statement to transfer into a
compound statement. However, transferring into a compound statement
is dangerous when the compound statement includes declarations that ini­
tialize variables. Since declarations appear before the executable state­
ments in a compound statement, transferring directly to an executable
statement within the compound statement bypasses the initializations.
The results of such a transfer of control are undefined.

160

Statements

Example

if (i > 0) {
line [i] = x:
x++;
i--;

}

In this example, if i is greater than 0, all of the statements in the com­
pound statement are executed in order.

161

Microsoft 0 Optimizing Compiler Language Reference

6.4 The continue Statement

Syntax

continue;

Execution

The continue statement passes control to the next iteration of the do,
for, or while statement in which it appears, bypassing any remaining
statements in the do, for, or while statement body. The next iteration of
a do, for, or while statement is determined as follows:

• Within a do or a while statement, the next iteration starts by
reevaluating the expression of the do or while statement.

• Within a for statement, the next iteration starts by evaluating the
loop expression of the for statement. Then it evaluates the condi­
tional expression and, based on the result, either terminates or
iterates the statement body. (The for statement is discussed in
Section 6.7.)

Example

while (i-- > 0) {

}

x = f (i) ;
if (x == 1)

continue;
y += x * x;

In this example, the statement body is executed if i is greater than 0.
First f (i) is assigned to x; then, if xis equal to 1, the continue state­
ment is executed. The rest of the statements in the body are ignored, and
execution resumes at the top of the loop with the evaluation of i- -
> 0.

162

Statements

6.5 The do Statement

Syntax

do
Btatement

while (expreB8ion);

Execution

The body of a do statement is executed one or more times until expression
becomes false (0). Execution proceeds as follows:

1. The statement body is executed.

2. The expression is evaluated. If expression is false, the do statement
terminates and control passes to the next statement in the pro­
gram. If expression is true (non-zero), the process is repeated,
beginning with step I.

The do statement may also terminate when a break, goto, or return
statement is executed within the statement body.

Example

do {
y = f (x);
x--;

} while (x > 0) ;

In this do statement, the two statements y = f (x) ; and x- - ; are exe­
cuted, regardless of the initial value of x. Then x > 0 is evaluated. If x
is greater than 0, the statement body is executed again and x > 0 is
reevaluated. The statement body is executed repeatedly as long as x
remains greater than 0. Execution of the do statement terminates when x
becomes 0 or negative. The body of the loop is executed at least once.

163

Microsoft C Optimizing Compiler Language Reference

6.6 The Expression Statement

Syntax

expression;

Execution

When an expression statement is executed, the expression is evaluated
according to the rules outlined in Chapter 5 of this manual.

In C, assignments are expressions. The value of the expression is the value
being assigned (sometimes called the "right-hand value").

Function calls are also considered expressions. The value of the expression
is the value, if any, returned by the function. If a function returns a value,
the expression statement usually includes an assignment to store the
returned value when the function is called. The value returned by the
function is usually used as an operand in another expression. If the value is
to be used more than once, it can be assigned to another variable. If the
value is neither used as an operand nor assigned, the function is called but
the return value, if any, is not used.

Examples

/******************** Example 1 ********************/
x = (y + 3);

In example 1, x is assigned the value of y + 3.

/******************** Example 2 ********************/
x++;

In example 2, xis incremented.

/******************** Example 3 ********************/
z = f (x) + 3;

164

Statement!!

Example 3 shows a function-call expression. The value of the expression,
which includes any value returned by the function, is assigned to the vari­
able z.

6.7 The for Statement

Syntax

for ([in it-expression]; [cond-expression]; [loop-expression])
statement

Execution

The body of a for statement is executed zero or more times until the
optional cond-expression becomes false. You can use the optional init­
expression and loop-expression to initialize and change values during the
for statement's execution.

Execution of a for statement proceeds as follows:

1. The init-expression, if any, is evaluated.

2. The cond-expression, if any, is evaluated. Three results are possi­
ble:

a. If the cond-expression is true (nonzero), the statement is exe­
cuted; then the loop-expression, if any, is evaluated. The pro­
cess then begins again with the evaluation of cond-expression.

b. If the cond-expression is omitted, the cond-expression is con­
sidered true, and execution proceeds exactly as described for
case a. A for statement without a cond-expression terminates
only when a break or return statement within the statement
body is executed, or when a goto to a labeled statement out­
side the for statement body is executed.

c. If the cond-expression is false, execution of the for statement
terminates and control passes to the next statement in the pro­
gram.

A for statement also terminates when a break, goto, or return state­
ment within the statement body is executed.

165

Microsoft C Optimizing Compiler Language Reference

Example

for (i = space = tab = 0; i < MAX; i++) {
if (line [i] == ' ')

}

space++:
if (line[i] == '\t') {

tab++;
line[i] = ' '·

}

This example counts space ('\x20') and tab ('\ t ') characters in the
array of characters named 1 ine and replaces each tab character with a
space. First i, space, and tab are initialized to 0. Then i is compared
to the constant MAX; if i is less than MAX, the statement body is executed.
Depending <?n the value of lirn:=:[iJ, the body of one or neithe~ of the if
statements IS executed. Then i is mcremented and tested agamst MAX; the
statement body is executed repeatedly as long as i is less than MAX.

166

Statements

6.8 The goto and Labeled Statements

Syntax

goto name;

name: statement

Execution

The goto statement transfers control directly to the statement that has
name as its label. The labeled statement is executed immediately after the
goto statement is executed. A statement with the given label must reside
in the same function, and the given label can appear before only one state­
ment in the same function.

A statement label is meaningful only to a goto statement; in any other
context, a labeled statement is executed without regard to the label.

Forming Labels

A label name is simply an identifier. (Section 2.4 describes the rules that
govern the construction of identi.fiers.) Each statement label must be dis­
tinct from other statement labels in the same function.

Labeled Statements

Like other C statements, any of the statements in a compound statement
can carry a label. Thus, you can use a goto statement to transfer into a
compound statement. However, transferring into a compound statement
is dangerous when the compound statement includes declarations that ini­
tialize variables. Since declarations appear before the executable state­
ments in a compound statement, transferring directly to an executable
statement within the compound statement bypasses the initializations.
The results are unpredictable.

167

Microsoft C Optimizing Compiler Language Reference

Example

if (errorcode > 0)
goto exit;

exit:
return (errorcode);

In this example, a goto statement transfers control to the point labeled
exit if an error occurs.

6. 9 The if Statement

Syntax

if (expression)
statementl

[else
statement2]

Execution

The body of an if statement is executed selectively, depending on the value
of expression:

168

1. The expression is evaluated.

a. If expression is true (nonzero), statement1 is executed.

b. If expression is false, statement2 is executed.

c. If expression is false and the else clause is omitted, statement1
is ignored.

2. Control passes from the if statement to the next statement in the
program.

Statements

Example

if (i > 0)
y = x/i;

else {
x - i;
y = f (x);

}

In this example, the statement y = x/i; is executed if i is greater than
0. If i is less than or equal to 0, i is assigned to x and f (x) is assigned to
y. Note that the statement forming the if clause ends with a semicolon.

Nesting

C does not offer an "else if' statement, but you can achieve the same effect
by nesting if statements. An if statement may be nested within either the
if clause or the else clause of another if statement.

When nesting if statements and else clauses, use braces to group the
statements and clauses into compound statements that clarify your intent.
If no braces are present, the compiler resolves ambiguities by pairing each
else with the most recent if lacking an else.

Examples

/******************** Example 1 ********************/

if (i > 0)
if (j > i)

x = j;
else

x = i;

/* Without braces */

In example 1, the else clause is associated with the inner if statement. If i
is less than or equal to 0, no value is assigned to x.

/******************** Example 2 ********************/

if (i > 0) {

}

if (j > i)
x = j;

/* With braces */

169

Microsoft C Optimizing Compiler Language Reference

else
x = i;

In example 2, the braces surrounding the inner if statement make the else
clause part of the outer if statement. If i is less than or equal to 0, i is
assigned to x.

170

Statements

6.10 The Null Statement

Syntax

Execution

A null statement is a statement containing only a semicolon; it may
appear wherever a statement is expected. Nothing happens when a null
statement is executed.

Statements such as do, for, if, and while require that an executable
statement appear as the statement body. The null statement satisfies the
syntax requirement in cases that do not need a substantive statement
body.

Example

for (i = 0; i < 10; line[i++] = 0)

In this example, the loop expression of the for statement
(line [i ++] =O) initializes the first 10 elements of line to 0. The state­
ment body is a null statement, since no further statements are necessary.

Labeling a Null Statement

As with any other C statement, you can include a label before a null state­
ment. To label an item that is not a statement, such as the closing brace
of a compound statement, you can label a null statement and insert it
immediately before the item to get the same effect.

171

Microsoft C Optimizing Compiler Language Reference

6.11 The return Statement

Syntax

return [expression];

Execution

The return statement terminates the execution of the function in which it
appears and returns control to the calling function. Execution resumes in
the calling function at the point immediately following the call. The value
of express£on, if present, is returned to the calling function. If expression is
omitted, the return value of the function is undefined.

By convention, parentheses enclose the expression of the return state­
ment. However, C does not require the parentheses.

Example

main()
{

void draw(int,int);
long sq(int);

}

y = sq(x);
draw(x, y);

long sq (x)
int x;
{

return (x * x) ;
}

void draw(x,y)
int x, y;
{

172

Statements

return;
}

In this example, the main function calls two functions: sq and draw.
The sq function returns the value of x * x to main, where the return
value is assigned toy. The draw function is declared as a void function
and does not return a value. An attempt to assign the return value of
draw would cause a diagnostic message to be issued.

Omitting the Return Statement

If no return statement appears in a function definition, control auto­
matically returns to the calling function after the last statement of the
called function is executed. The return value of the called function is
undefined. If a return value is not required, declare the function to have
void return type.

173

Microsoft C Optimizing Compiler Language Reference

6.12 The switch Statement

Syntax

switch (expression) {
[declaration]

}

[case constant-expression :]

[statement]

[default:
statement]

Execution

The switch statement transfers control to a statement within its body.
Control passes to the statement whose case constant-expression matches
the value of the switch expression. Execution of the statement body
begins at the selected statement and proceeds until the end of the body or
until a statement transfers control out of the body.

The default statement is executed if no case constant-expression is equal
to the value of the switch expression. If the default statement is omitted,
and no case match is found, none of the statements in the switch body is
executed. The default statement need not come at the end, it can appear
anywhere in the body of the switch statement.

The type of the switch expression must be integral, but the resulting
value is converted to an int. Each case constant-expressfon is then con­
verted using the usual arithmetic conversions. The value of each case
constant-express£on must be unique within the statement body. If the type
of the switch expressfon is larger than int, a diagnostic message is issued.

174

Statements

The case and default labels of the switch statement body are significant
only in the initial test that determines where execution starts in the state­
ment body. All statements between the statement where execution starts
and the end of the body are executed regardless of their labels, unless a
statement transfers control out of the body entirely.

Note

Declarations may appear at the head of the compound statement form­
ing the switch body, but initializations included in the declarations
are not performed. The switch statement transfers control directly to
an executable statement within the body, bypassing the lines that con­
tain initializations.

Examples

/******************** Example 1 ********************/

switch (c) {
case 'A':

}

capa++;
case 'a':

lettera++;
default :

total++;

In example 1, all three statements of the switch body are executed if c is
equal to 'A'. Execution control is transferred to the first statement
(capa++;) and continues in order through the rest of the body. If c is
equal to 'a', lettera and total are incremented. Only total is incre­
mented if c is not equal to 'A' or 'a'.

/******************** Example 2 ********************/

switch (i) {
case -1:

n++;
break;

case 0 :
z++;

175

Microsoft 0 Optimizing Compiler Language Reference

}

break;
case 1 :

p++;
break;

In example 2, a break statement follows each statement of the switch
body. The break statement forces an exit from the statement body after
one statement is executed. If i is equal to -1, only n is incremented. The
break following the statement n++; causes execution control to pass out
of the statement body, bypassing the remaining statements. Similarly, if
i is equal to 0, only z is incremented; if i is equal to 1, only p is incre­
mented. The final break statement is not strictly necessary, since control
passes out of the body at the end of the compound statement, but it is
included for consistency.

Multiple Labels

A statement may carry multiple case labels, as the following example
shows:

case 'a'
case 'b'
case 'c'
case 'd'
case 'e'
case If' hexcvt(c);

Although you can label any statement within the body of the switch
statement, no statement is required to carry a label. You can freely inter­
mingle statements with and without labels. Keep in mind, however, that
once the switch statement passes control to a statement within the body,
all following statements in the block are executed, regardless of their
labels.

176

Statements

6.13 The while Statement

Syntax

while (expressi'on)
statement

Execution

The body of a while statement is executed zero or more times until expres­
sion becomes false (0). Execution proceeds as follows:

1. The expression is evaluated.

2. If the
expression is initially false, the body of the while statement is
never
executed, and control passes from the while statement to the next
statement in the program.

If expression is true (nonzero), the body of the statement is exe­
cuted and the process is repeated beginning at step 1.

The while statement may also terminate when a break, goto, or return
within the statement body is executed.

Example

while (i >= 0) {

}

stringl[i] = string2[i];
i--;

This example copies characters from str ing2 to str ingl. If i is
greater than or equal to 0, string2 [i] is assigned to stringl [i] and
i is decremented. When i reaches or falls below 0, execution of the while
statement terminates.

177

Chapter 7
Functions

7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.3
7.4

Introduction 181
Function Definitions 182

Storage Class 184
Return Type and Function Name
Formal Parameters 187
Function Body 191

Function Prototypes (Declarations)
Function Calls 194

Actual Arguments 198

185

192

7.4.1
7.4.2
7.4.3

Calls with a Variable Number of Arguments
Recursive Calls 201

200

179

Functions

7 .1 Introduction

A function is an independent collection of declarations and statements,
usually designed to perform a specific task. C programs have at least one
function, the main function, and they may have other functions. This
chapter describes how to define, declare, and call C functions.

A function defin£t£on specifies the name of the function, the types and
number of its formal parameters, and the declarations and statements
that determine what it does. These declarations and statements are called
the "function body." The function definition also gives the function's
return type and its storage class. If the return type and storage class are
not stated explicitly, they default to int and extern, respectively.

A function prototype (or declaration) establishes the name, return type,
and storage class of a function fully defined elsewhere in the program. It
can also include declarations giving the types and number of the function's
formal parameters, and can even name the formal parameters, although
such names go out of scope at the end of the declaration. The storage class
register can also specified for a formal parameter.

The function prototype has the same form as a function definition, except
that the prototype ends with a semicolon instead of a function body. The
following example contrasts the current prototype formats with the old
forms of function declaration and definition:

Example

double *function(int a, double *X)

double *Unction (int, double *)

double *function (int a, double *real)
{

return (*real + a) ;
}

double *Unction (x , y)
double *Y
int x ;

/* Function
* Prototype

*/
/* Old Form of

* Declaration
*/

/* Prototype-style
* Function
* Definition

*/

/* Old Form of a
* Function
* Definition

181

Microsoft C Optimizing Compiler Language Reference

{

}
return (*Y + a) :

*/

The example illustrates why the concise and clear prototype formats are
preferred to the old forms. Note also the close resemblance between the
prototype and prototype-style definition.

The compiler uses the prototype or declaration to compare the types of
actual arguments in subsequent calls to the function with the function's
formal parameters, even in the absence of an explicit definition of the
function. Explicit prototypes and declarations are optional for functions
whose return type is int. However, to ensure correct behavior, you must
declare or define functions with other return types before calling them.
(Function prototype declarations are discussed further in Section 7.3 and
in Chapter 4, "Declarations.")

If no prototype or declaration is provided, a default prototype is created
from information provided in the first occurrence of the function name,
whether that is a call or definition. However, such a default prototype may
not adequately represent a subsequent definition of, or call to, the func­
tion.

A function call passes execution control from the calling function to the
called function. The actual arguments, if any, are passed by value to the
called function. Execution of a return statement in the called function
returns control and possibly a value to the calling function.

7 .2 Function Definitions

Syntax

[sc-speci/ier] [type-specifier] declarator ([formal-parameter-list])
function-body

A function definition specifies the name, formal parameters, and body of a
function. It can also stipulate the function's return type and storage class.

The optional sc-specifier gives the function's storage class, which must be
either static or extern.

182

Functions

The optional type-specifier and mandatory declarator together specify the
function's return type and name. The declarator is a combination of the
identifier that names the function and the parentheses following the func­
tion name.

Formal parameter declarations are included in the optional formal­
parameter-list in the parentheses following the function name. The follow­
ing syntax illustrates the form of each parameter in the formal-parameter­
list.

[[register] type-8pecifier [declarator[[, ...] [, ... m
A formal-parameter-list contains declarations for the function's parame­
ters. If no arguments will be passed to the function, the list contains the
keyword void. Otherwise, it may contain a full or partial list of formal
parameters. If the list is partial, it is terminated by the "ellipsis notation,"
a comma followed by three periods (, .•.).The ellipsis notation indicates
there may be more arguments passed to the function. Without the ellipsis
notation, the behavior of a function is undefined if it receives parameters
in addition to those declared in the formal-parameter-list. When a proto­
type is available, argument checking and conversion are automatically per­
formed. If no information is given concerning the formal parameters, any
undeclared arguments simply undergo the usual arithmetic conversions.

The type-specifier can be omitted only if register storage class is specified
for a value of int type.

The function-body is a compound statement containing local variable
declarations, references to externally declared items, and statements.

Note

The old form for function declaration and definition is still supported,
but is considered obsolescent. Use of the prototype form is recom­
mended in new code. The old function-definition form is represented in
the following syntax:

[8C-8pecifier] [type-Bpecifier] declarator ([identifier-liBt])
[parameter-declaration8]
function-body

The identifier-list is an optional list of identifiers that the function will

183

Microsoft C Optimizing Compiler Language Reference

use as the names of formal parameters. The parameter-declarations
establish the types of the formal parameters.

Sections 7 .2.1-7 .2.4 describe the parts of a function definition in detail.

7 .2.1 Storage Class

The storage-class specifier in a function definition gives the function either
extern or static storage class. If a function definition does not include a
storage-class specifier, the storage class defaults to extern. You can
explictly give the extern storage-class specifier in a function definition,
but it is not required.

A function with static storage class is visible only in the source file in
which it is defined. All other functions, whether they are given extern
storage class explicitly or implicitly, are visible throughout all the source
files that make up the program.

The storage-class specifier is required in a function definition in only one
case: if the function is declared elsewhere in the same source file with the
static storage-class specifier.

If static storage class is desired, it must be declared on first occurrence of
a declaration or definition of the function.

Note

184

A Microsoft extension to the ANSI C standard offers some }attitude on
functions declared without a storage-class specifier. When the exten­
sions are enabled, a function originally declared without a storage class
will be given static storage class if the function definition is in the
same source file, and explicitly specifies static storage class. For infor­
mation on enabling and disabling extensions, see your User's Guide.

Functions

7 .2.2 Return Type and Function Name

The return type of a function defines the size and type of the value
returned by the function. The type declaration has the form

[type-specifier] declarator

where the type-specifier, together with the declarator, defines the
function's return type and name.

The type-specifier can specify any fundamental, structure, or union type.
If you do not include a type-specifier, the return type int is assumed.

The declarator is the function identifier, which may be modified to a
pointer type. The parentheses following the identifier establish the item as
a function. Functions cannot return arrays or functions, but they can
return pointers to any type, including arrays and functions.

The return type given in the function definition must match the return
type in declarations of the function elsewhere in the program. You need
not declare functions with int return type before you call them. However,
functions with other return types must be defined or declared before they
are called.

A function's return type is used only when the function returns a value,
which occurs when a return statement containing an expression is exe­
cuted. The expression is evaluated, converted to the return value type if
necessary, and returned to the point at which the function was called. If
no return statement is executed, or if the return statement does not con­
tain an expression, the return value is undefined. If the calling function
expects a return value, the behavior of the program is also undefined.

Examples

/******************** Example 1 ********************/

/* prototype-style definition: */
static add (register x, int y)

{
return (x+y);

}
/* old-style definition: */

subtract (x , y)
{

185

Microsoft C Optimizing Compiler Language Reference

return (x-y);
}

In Example 1, the return type of add is int by default. The function has
static storage class, which means that only functions in the same source
file can call it. The formal parameters declared in the header include one
int, x, for which register storage is requested, and a second int, y. The
second function, subtract is defined in the old form. Its return type is
int by default, and because it has no formal parameter declarations, the
identifiers x and y are assumed to have int type by default.

/********************* Example 2 *********************/

typedef struct {
char name[20];
int id;
long class;

} STUDENT;

/• return type is STUDENT: •/
STUDENT sortstu (STUDENT a, STUDENT b)
{

return ((a.id< b.id) ? a: b);
}

The second example defines the STUDENT type with a typedef declaration
and defines the function sortstu to have STUDENT return type. The
function selects and returns one of its two structure arguments. This
prototype-style definition has the formal parameters declared in the
header. In subsequent calls to the function the compiler will check to make
sure the argument types are STUDENT. Efficiency could be enhanced by
passing pointers to the structure elements, rather than the values them­
selves.

/********************* Example 3 *********************/

188

/* return type is char pointer: */
char •smallstr(sl, s2)
char sl [] , s2 [] :
{

int i;

i=O;
while (sl[i] != '\O' && s2[i] != '\O')

}

i++;
if (sl[i] = '\O')

return (sl);
else

return (s2);

Functions

Example 3 uses the old form to define a function returning a pointer to an
array of characters. The function takes two character arrays (strings) as
arguments and returns a pointer to the shorter of the two strings. A
pointer to an array points to the type of the array elements; thus, the
return type of the function is pointer to char.

7 .2.3 Formal Parameters

Formal parameters are variables that receive values passed to a function
by a function call. In a function prototype-style definition, the parentheses
following the function name contain complete declarations of the
function's formal parameters.

Note

In the old form of a function definition, the formal parameters were
declared following the closing parenthesis, immediately before the
beginning of the compound statement constituting the function body.
In that form, an identifier-list within the parentheses specifies the
name of each of the formal parameters and the order in which they
take on values in the function call. The identifier-list consists of zero
or more identifiers, separated by commas. The list must be enclosed in
parentheses, even if it is empty. This form is obsolescent and should
not be used in new code.

If at least one formal parameter occurs in the f ormal~arameter-list, the
list can end with a comma followed by three periods , •..). This construc­
tion, called the "ellipsis notation," indicates a variab e number of argu­
ments to the function. However, a call to the function is expected to have
at least as many arguments as there are formal parameters before the last
comma. In the obsolescent definition form, the ellipsis notation can follow
the last identifier in the £dentifier-list.

187

Microsoft C Optimizing Compiler Language Reference

If no arguments will be passed to the function, the list of formal parame­
ters is replaced by the keyword void. This use of void is distinct from its
use as a type specifier.

Note

To maintain compatibility with previous versions, a Microsoft exten­
sion to the ANSI C standard allows a comma without trailing periods
(,) at the end of the list of formal parameters to indicate a variable
number of arguments. See your User's Guide for information on ena­
bling and disabling extensions.

Formal parameter declarations specify the types, sizes, and identifiers of
values stored in the formal parameters. In the obsolescent function
definition form, these declarations have the same form as other variable
declarations (see Section Chapter 4, "Declarations"). However, in a func­
tion prototype-style definintion, each identifier in the formal-parameter-list
must be preceded by its appropriate type specifier. For example, in the
following (obsolescent form) definition of the function old, double x,
y, z ; can be declared simply by separating identifiers with commas:

void old(x, y, z)
double x, y, z

{

}
void new(double x, double y, double z)

{

}

The function called new is defined in prototype format, with a list of for­
mal parameters in the parentheses. In this form, the type specifier double
has to be repeated for each identifier.

The order and type of formal parameters, including any use of the ellipsis
notation, must be the same in the all function declarations (if any) as in
the function definition. The order and type must also be the same in argu­
ments specified in calls to the function, up the the point of the ellipsis
notation. Arguments following the ellipsis are not checked. A formal
parameter can have any fundamental, structure, union, pointer, or array
type.

188

Functions

The only storage class you can specify for a formal parameter is register.
Undeclared identifiers in the parentheses following the function name are
assumed to have int type. In the old function-definition form, formal
parameter declarations can be in any order.

The identifiers of the formal parameters are used in the function body to
ref er to the values passed to the function. These identifiers cannot be
redefined in the outermost block of the function body, but they may be
redefined in inner, nested blocks.

In the obsolescent form, only identifiers appearing in the identifier list can
be declared as formal parameters. Functions having variable length argu­
ment lists should use the new prototype form. You are responsible for
determining the number of arguments passed and for retrieving additional
arguments from the stack within the body of the function. (See your User's
Guide for information about macros that allow you to do this in a port­
able way.)

The compiler performs the usual arithmetic conversions independently on
each formal parameter and on each actual argument, if necessary. After
conversion, no formal parameter is shorter than an int, and no formal
parameter has float type. This means, for example, that declaring a for­
mal parameter as a char has the same effect as declaring it as an int.

If the near, far, and huge keywords are implemented, the compiler may
also convert pointer arguments to the function. The conversions per­
formed depend on the default size of pointers in the program and the pres­
ence or absence of a list of argument types for the function. See your
User's Guide for specific information about pointer conversions.

The converted type of each formal parameter determines the interpreta­
tion of the arguments that the function call places on the stack. A type
mismatch between an actual argument and a formal parameter may cause
the arguments on the stack to be misinterpreted. For example, if a 16-bit
pointer is passed as an actual argument, then declared as a long formal
parameter, the first 32 bits on the stack are interpreted as a long formal
parameter. This error creates problems not only with the long formal
parameter, but with any formal parameters that follow it. You can detect
errors of this kind by declaring function prototypes for all functions.

189

Microsoft C Optimizing Compiler Language Reference

Example

struct student {
char name[20];
int id;
long class;
struct student *nextstu;

} student;

main()
{

}

/* declaration of function prototype: */
int match (struct student *r, char *n);

if (match (student.nextstu, student.name) > 0) {

}

/* prototype style function definition */
match struct student *r, char *n)
{

}

int i = 0;

while r->name[i] == n[i])
if (r->name[i++] == '\O'

return (r->id);
return (O);

The example contains a structure-type declaration, a forward declaration
of the function match, a call to match, and the definition of match.
Note that the same name, student, can be used without conflict both for
the structure tag and for the structure variable name.

The match function is declared to have two arguments: the first,
represented by r, is a pointer to the struct student type; the second,
represented by n, is a pointer to .a value of type char.

The two formal parameters of the match function are declared in the for­
mal parameter list in the parentheses following the function name, with
the identifiers r and n. The parameter r is declared as a pointer to the
struct student type; the parameter n is declared as a pointer to a
char type.

190

Functions

The function is called with two arguments, both members of the student
structure. Because there is a forward declaration of match, the compiler
performs type checking between the actual arguments and the the types
specified in the prototype declaration and between the actual arguments
a.nd the formal parameters. Since the types match, no warnings or conver­
sions are necessary.

Note that the array name given as the second argument in the call evalu­
ates to a char pointer. The corresponding formal parameter is also
declared as a char pointer and is used in subscripted expressions as
though it were an array identifier. Since an array identifier evaluates to a
pointer expression, the effect of declaring the formal parameter as char
*n is the same as declaring it char n [] .

Within the function, the local variable i is defined and used to monitor
the current position in the array. The function returns the id structure
member if the name member matches the array n; otherwise, it returns 0.

7 .2.4 Function Body

A function body is a compound statement containing the statements that
define what the function does. It may also contain declarations of variables
used by these statements. (See Section 6.3 for a discussion of compound
statements.)

All variables declared in a function body have auto storage class unless
otherwise specified. When the function is called, storage is created for the
local variables and local initializations are performed. Execution control
passes to the first statement in the compound statement and continues
sequentially until a return statement is executed or the end of the func­
tion body is encountered. Control then returns to the point at which the
function was called.

A return statement containing an expression must be executed if the
function is to return a value. The return value of a function is undefined if
no return statement is executed or if the return statement does not
include an expression.

191

Microsoft C Optimizing Compiler Language Reference

7 .3 Function Prototypes (Declarations)

A function prototype declaration specifies the name, return type, and
storage class of a function. It may also establish types and identifiers of
some or all of the function's arguments. The prototype has the same for­
mat as the function definition, except that it is terminated by a semicolon
immediately following the closing parenthesis and therefore has no body.
(See Chapter 4, "Declarations," for a detailed description of the syntax of
function declarations.)

You can declare a function implicitly, or you can use a "function proto­
type" (forward declaration) to declare it explicitly. A prototype is a
declaration that precedes the function definition. In either case, the
return type must agree with the return type specified in the function
definition.

You implicitly declare a function if a call to the function precedes its
declaration or definition in the source file. In this case the C compiler con­
structs a default prototype of the function, giving it int return type, and
using the types and number of the actual arguments as the basis for
declaring the formal parameters.

A prototype declaration establishes the attributes of a function so that
calls to it that precede its definition or occur in other source files can be
checked for argument and return type mismatches. If you specify the
static storage-class specifier in a forward declaration, you must also
specify the static storage class in the function definition.

If you specify the extern storage-class specifier or omit the storage-class
specifier entirely, the function has extern class. (See the Note in Section
7.2.1 for an explanation of the Microsoft extension that offers some !atti­
tude in function storage-class specification.)

Function prototypes have the following important uses:

192

• They establish the return type for functions that return any type
other than int. If you call such a function before you declare or
define it, the results are undefined. Functions that return int
values can also have prototype declarations, but do not require
them.

• If the prototype contain a full list of parameter types, the types of
the arguments occurring in a function call can be established. The
prototype can include both the type of, and an identifier for, each

Functions

expression that will be passed as an actual argument. However,
such identifiers have scope only until the end of the declaration.
The prototype can also reflect the fact that the number of argu­
ments will be variable.

The parameter list in a prototype is a list of type names, separated
by commas, corresponding to the actual arguments in the function
call. The list is used for checking the correspondence of actual
arguments in the function call with the formal parameters in the
function definition. Without such a list, mismatches may not be
revealed, so the compiler cannot generate diagnostic messages con­
cerning them. (Type checking is discussed further in Section 7.4.1,
"Actual Arguments.")

• Forward declarations are used to initialize pointers to functions
before those functions are defined.

Example

main()
{

int a = 0, b = 1;
float vall= 2.0, val2 = 3.0;

/* function prototype: */
double realadd(double x, double y);

a= intadd (a, b); /*first call to intadd */
vall = realadd(vall, val2);
a= intadd(vall,b); /*second call to intadd */

}

/* function defined with formal parameters in header: /*
intadd(int a, int b)
{

return (a+ b);
}

double realadd(double x, double y)
{

return (x + y);
}

In this example, the function intadd is implicitly declared to return an
int value, since it is called before it is defined. The compiler creates a pro­
totype using the information in the first call. Therefore, when the second
call to intadd is encountered, the compiler sees the mismatch between

193

Microsoft C Optimizing Compiler Language Reference

vall, which is a float, and the int type of the first argument in its self­
created prototype. The float is converted to an int and passed. Note that
if the calls to intadd were reversed, the prototype created would expect a
float as the first argument to intadd. When the second call is made, the
variable a would be converted at the call, but when the value is actually
passed to intadd, a diagnostic would be issued because the int type
specified in the definition does not match the float type in the compiler­
created prototype.

The function real add returns a double value instead of an int. There­
fore, the prototype of real add in the main function is necessary, because
the real add function is called before it is defined. Note that the
definition of real add matches the forward declaration by specifying the
double return type.

The forward declaration of realadd also establishes the types of its two
arguments. The actual argument types match the types given in the
declaration and also match the types of the formal parameters.

7.4 Function Calls

Syntax

expression([expression-list])

A function call is an expression that passes control and actual arguments
(if any) to a function. In a function call, expression evaluates to a function
address and expression-list is a list of expressions (separated by commas).
The values of these latter expressions are the actual arguments passed to
the function. If the function takes no arguments, the expression-l£st can be
empty.

When the function call is executed:

194

1. The expressions in expression-list are evaluated and converted
using the usual arithmetic conversions. If a function prototype is
available, the results of these conversions may be further converted
consistent with the formal parameter declarations.

2. The expressions in expression-list are passed to the formal parame­
ters of the called function. The first expression in the list always
corresponds to the first formal parameter of the function, the
second expression corresponds to the second formal parameter, and

Functions

so on through the list .. Since thecalled function uses copies of the
actual arguments, any changes it makes to the arguments do not
affect the values of variables from which the copies may have been
made.

3. Execution control passes to the first statement in the function.

4. The execution of a return statement in the body of the function
returns control and possibly a value to the calling function. If no
return statement is executed, control returns to the caller after
the last statement of the called function is executed, and the return
value is undefined.

Important

The expressions in the function argument list can be evaluated in any
order, so arguments whose values may be affected by side effects from
another argument have undefined values. The sequence point defined
by the function-call operator guarantees only that all side effects in the
argllment list are evaluated before control passes to the called func­
tion. See Chapter 5, "Expressions and Assignments," for more infor­
mation on sequence points.

The only requirement in a function call is that the expression before the
parentheses must evaluate to a function address. This means that a func­
tion can be called through any function-pointer expression.

A function is called in much the same way it is declared. For instance,
when you declare a function, you specify the name of the function, fol­
lowed by a list of formal parameters in parentheses. Similarly, when a
function is called, you need only specify the name of the function, followed
by an argument list in parentheses. The indirection operator (*) is not
required to call the function because the name of the function evaluates to
the function address.

The same principle applies when you call a function using a pointer. For
example, suppose a function pointer is declared as follows:

int (*fpointer){int numl, int num2);

The identifier fpointer is declared to point to a function taking two int
arguments, represented by numl and num2, respectively, and returning

195

Microsoft 0 Optimizing Compiler Language Reference

an int value. A function call using fpointer might look like this:

(*fpointer) (3,4)

The indirection operator (*) is used to obtain the address of the function
to which fpointer points. The function address is then used to call the
function. If a forward declaration of the pointer to the function precedes
the call, the same checking will be performed as with any other function
declaration.

Examples

/********************* Example 1 *********************/

double *realcomp(double valuel, double value2);
double a, b, *rp;

rp = realcomp(a, b);

In Example 1, the realcomp function is called in the statement rp =
realcomp (a, b);. Two double arguments are passed to the function.
The return value, a pointer to a double value, is assigned to rp.

/********************* Example 2 *********************/

196

main ()
{

/* non-prototype function declarations: */
long lift(int), step(int), drop(int);

/* prototype form of function declaration: */
void work (int number, long (*function) (inti)):
int select, count;
int i;

select = l;
switch (select) {

case 1: work(count, lift);
break;

case 2: work(count, step);

}
}

break;

case 3: work(count, drop);

default:
break;

Functions

/* function definition with formal parameters in header: */
void work (int number, long (*function) (int i))
{

}

int i;
long j;

for (i j O; i < number; i++)
j += (*function) (i) ;

In Example 2, the function call

work (count, lift);

in main passes an integer variable and the address of the function lift
to the function work. Note that the function address is passed simply by
giving the function identifier, since a function identifier evaluates to a
pointer expression. To use a function identifier in this way, the function
must be declared or defined before the identifier is used; otherwise, the
identifier is not recognized. In this case, a prototype declaration for work
is given at the beginning of the main function.

The formal parameter function in work is declared to be a pointer to a
function taking one int argument and returning a long value. The
parentheses around the parameter name are required; without them, the
declaration would specify a function returning a pointer to a long value.

The function work calls the selected function by using the following func­
tion call:

(*function) (i) ;

One argument, i, is passed to the called function.

197

Microsoft C Optimizing Compiler Language Reference

7 .4.1 Actual Arguments

An actual argument can be any value with fundamental, structure, union,
or pointer type. Although you cannot pass arrays or functions as parame­
ters, you can pass pointers to these items.

All actual arguments are passed by value. A copy of the actual argument
is assigned to the corresponding formal parameter. The function uses this
copy without affecting the variable from which it was originally derived.

Pointers provide a way for a function to access a value by reference. Since
a pointer to a variable holds the address of the variable, the function can
use this address to access the value of the variable. Pointer arguments
allow a function to access arrays and functions, even though arrays and
functions cannot be passed as arguments.

The expressions in a function call are evaluated and converted as follows:

• For each actual argument in the function call, the usual arithmetic
conversions are performed on the argument. If a prototype is avail­
able, the resulting argument type is compared to the corresponding
formal parameter. If they do not match, there is either a conver­
sion performed, or a diagnostic message is issued. The formal
parameters also undergo the usual arithmetic conversions.

• If no prototype is available, the results of the usual arithmetic
conversions on the actual arguments are passed, and a prototype is
created with formal parameter types corresponding to the results
of the conversion.

If the near, far, and huge keywords are implemented, iinplementa,.tion­
dependent conversions on pointer arguments may also be performed. See
your User's Guide for information about pointer conversions.

The number of expressions in the expression list must match the number
of formal parameters, unless the function's prototype declaration or
definition explicitly specifies a variable number of arguments. In this case,
the compiler checks as many arguments as there are type names in the list
of formal parameters and converts them, if necessary, as described above.

If the declaration's formal parameter Iist or list of argument types con­
tains only the keyword void, the compiler expects zero actual arguments
in the function call and zero formal parameters. It produces a diagnostic
message if it finds otherwise.

198

Functions

The type of each formal parameter also undergoes the usual arithmetic
conversions. The converted type of each formal parameter determines how
the arguments on the stack are interpreted; if the type of the formal
parameter does not match the type of the actual argument, the data on
the stack may be misinterpreted.

Note

Type mismatches between actual arguments and formal parameters
can produce serious errors, particularly when the sizes are different.
The compiler may not be able to detect these errors unless you declare
complete prototypes of functions prior to calling them. In the absence
of explicit prototypes, the compiler constructs prototypes from what­
ever information is available in the first reference to the function.

As an example of a serious error, consider a call to a function with an
int argument. If the function is defined to take a long, and the
definition occurs in a different module, the compiler-generated proto­
type will not match the definition, but there will be no detection of the
error, because the separate modules will compile without diagnostic
messages.

Example

main ()
{

}

/* function prototype: */
void swap (int *numl, int *num2);
int x, y;

swap(&x, &y);

/* function definition: */
void swap (int *numl, int *num2)
{

int t;

t = *numl;
*DUml = *DUm2;
*num2 = t;

199

Microsoft C Optimizing Compiler Language Reference

}

In this example, the swap function is declared in main to have two argu­
ments, represented respectively by identifiers numl and num2, both of
which are pointers to integers. The formal parameters numl and num2 in
the prototype definition are also declared as pointers to integer variables.
In the function call

swap (&x, &y)

the address of xis stored in numl and the address of y is stored in num2.
Now two names, or "aliases," exist for the same location. References to
*numl and *num2 in swap are effectively references to x and yin main.
The assignments within swap actually exchange the contents of x and y.
Therefore, no return statement is necessary.

The compiler performs type checking on the arguments to swap because
the prototype declaration of swap includes argument types for each for­
mal parameter. The identifiers within the parentheses of the declaration
and definition can be the same or different. What is important is that the
types of the actual arguments match those of the formal parameter lists in
both the prototype declaration and the eventual definition.

7 .4.2 Calls with a Variable Number of Arguments

To call a function with a variable number of arguments, simply specify
any number of arguments in the function call. If there is a prototype
declaration of the function, a variable number of arguments can be
specified by placing a comma followed by three periods (, •..) at the end of
the formal parameter list or list of argument types (see Section 4.5, "Func­
tion Declarations"). The function call must include one argument for each
type name declared in the formal parameter list or the list of argument
type.

Similarly, the formal parameter list (or identifier list, in the obsolescent
form) in the function definition can end with a comma followed by three
periods(, •..) to indicate a variable number of arguments. See Section 7.2,
"Function Definitions," for more information about the form of the formal
parameter list.

Note

To maintain compatibility with previous versions, a Microsoft

200

Functions

extension to the ANSI C standard allows a comma without trailing
periods (,) at the end of the list of formal parameters to indicate a
variable number of arguments. See your User's Guide for information
on enabling and disabling extensions.

All the arguments specified in the function call are placed on the stack.
The number of formal parameters declared for the function determines
how many of the arguments are taken from the stack and assigned to the
formal parameters. You are responsible for retrieving any additional argu­
ments from the stack and for determining how many arguments are
present. See your User's Guide for information about macros that you can
use to handle a variable number of arguments in a portable way.

7 .4.3 Recursive Calls

Any function in a C program can be called recursively; that is, it can call
itself. The C compiler allows any number of recursive calls to a function.
Each time the function is called, new storage is allocated for the formal
parameters and for the auto and register variables so that their values in
previous, unfinished calls are not overwritten. Parameters are only directly
accessible to the instance of the function in which they are created. Previ­
ous parameters are not directly accessible to ensuing instances of the func­
tion.

Note that variables declared with static storage do not require new
storage with each recursive call. Their storage exists for the lifetime of the
program. Each reference to such a variable accesses the same storage
area.

Although the C compiler does not limit the number of times a function can
be called recursively, the operating environment may impose a practical
limit. Since each recursive call requires additional stack memory, too
many recursive calls can cause a stack overflow.

201

Chapter 8

Preprocessor Directives
and Pragrnas

8.1 Introduction 205
8.2 l\1anifest Constants and l\1acros 206
8.2.1 Preprocessor Operators 206
8.2.2 The #define Directive 207
8.2.2.1 Stringizing Operator (#) 208
8.2.2.2 Token-Pasting Operator(##) 209
8.2.3 The #undef Directive 213
8.3 Include Files 214
8.4
8.4.1
8.4.2
8.5
8.6

Conditional Compilation 216
The #if, #elif, #else, and #endif Directives
The #ifdef and #ifndef Directives 220

Line Control 221
Pragmas 222

216

203

Preprocessor Directives and Pragmas

8.1 Introduction

A "preprocessor directive" is an instruction to the C preprocessor. The C
preprocessor is a text processor that manipulates the text of a source file
as the first phase of compilation. The compiler ordinarily invokes the
preprocessor in its first pass, but the preprocessor can also be invoked
separately to process text without compiling.

Preprocessor directives are typically used to make source programs easy to
change and easy to compile in different execution environments. Direc­
tives in the source file tell the preprocessor to perform specific actions.
For example, the preprocessor can replace tokens in the text, insert the
contents of other files into the source file, or suppress compilation of part
of the file by removing sections of text.

The C preprocessor recognizes the following directives:

#define
#elif
#else
#endif

#if
#ifdef
#ifndef
#include

#line
#undef

The number sign (#) must be the first non-white-space character on the
line containing the directive; white-space characters can appear between
the number sign and the first letter of the directive. Some directives
include arguments or values. Any text that follows a directive (except an
argument or value that is part of the directive) must be enclosed in com­
ment delimiters (/ * * /).
Preprocessor directives can appear anywhere in a source file, but they
apply only to the remainder of the source file in which they appear.

A "preprocessor operator" is an operator that is only recognized as an
operator within the context of preprocessor directives. There are only
three preprocessor-specific operators: the "stringizing" operator (#), the
"token-pasting" (##)operator, and the defined operator. The first two
are discussed in in the context of the #define directive in Sections 8.2.2.1
and 8.2.2.2. The defined operator is discussed in Section 8.4.1.

A "pragma" is a "pragmatic," or practical, instruction to the C compiler.
Pragmas in C source files are typically used to control the actions of the
compiler in a particular portion of a program without affecting the pro­
gram as a whole. Section 8.6 describes the syntax for pragmas. However,

205

Microsoft C Optimizing Compiler Language Reference

the compiler implementation defines the particular pragmas that are avail­
able and their meanings. See your User's Guide for information about the
use and effects of pragmas.

8.2 Manifest Constants and Macros

The #define directive is typically used to associate meaningful identifiers
with constants, keywords, and commonly used statements or expressions.
Identifiers that represent constants are called "manifest constants."
Identifiers that represent statements or expressions are called "macros."

Once you have defined an identifier, you cannot redefine it to a different
value without first removing the original definition. However, you can
redefine the identifier with exactly the same definition. Thus, the same
definition can appear more than once in a program.

The #undef directive removes the definition of an identifier. Once you
have removed the definition, you can redefine the identifier to a different
value. Sections 8.2.2 and 8.2.3 discuss the #define and # undef direc­
tives, respectively.

In practical terms there are two types of macros. "Object-like" macros
take no arguments, while "function-like" macros can be defined to accept
arguments, so they look and act like function calls. Because macros do
not generate actual function calls, you can make programs faster by
replacing function calls with macros. However, macros can create prob­
lems if you do not define and use them with care. You may have to use
parentheses in macro definitions with arguments to preserve the proper
precedence in an expression. Also, macros may not handle expressions with
side effects correctly. See the examples in Section 8.2.2 for more informa­
tion.

8.2.1 Preprocessor Operators

There are three preprocessor-specific operators, one of which is represented
by the number sign (#), one by a double number sign (# #), and the
third by the word defined. The # preceding an identifier in the body of a
preprocessor macro allows strings to be formed when the macro is
expanded. It is referred to as the "stringizing" operator. The # # opera­
tor, called the "token pasting" operator, allows tokens used as actual
arguments to be concatenated to form other tokens. These two operators

206

Preprocessor Directives and Pragmas

are used in the context of the #define directive and are described in Sec­
tions 2.2.2.1 and 2.2.2.2.

Finally, the defined operator simplifies the writing of compound expres­
sions in certain macro directives. It is used in conditional compilation, and
is therefore discussed in Section 8.4.1.

8.2.2 The #define Directive

Syntax

#define identifier substitution-text
define identifier(parameter-list) substitution-text

Object-like macro
Function-like macro

The #define directive substitutes the substitution-text for all subsequent
occurrences of the identifier in the source file. The identifier is replaced
only when it forms a token. (Tokens are described in Chapter 2, "Ele­
ments of C" and Appendix B, "Syntax Summary.") For instance, the
identifier is not replaced if it appears within a string or as part of a longer
identifier.

If a parameter-list appears after the identifier, the #define directive
replaces each occurrence of identifier(parameter-list) with a version of
substitution-text that has actual arguments substituted for formal parame­
ters.

The substitution-text consists of a series of tokens, such as keywords, con­
stants, or complete statements. One or more white-space characters must
separate the substitution-text from the identifier (or from the closing
parenthesis of the parameter-list). This white space is not considered part
of the substituted text, nor is any white space following the last token of
the text. Text longer than one line can be continued onto the next line by
placing a backslash(\) before the new-line character.

The substitution-text can also be empty. This option removes instances of
the identifier from the source file. The identifier is still considered defined,
however, and yields the value 1 when tested with the #if directive (dis­
cussed in Section 8.4.1).

The optional parameter-list consists of one or more formal parameter
names separated by commas. Each name in the list must be unique, and
the list must be enclosed in parentheses. No spaces can separate the
identifier and the opening parenthesis. The scope of the formal parameter

207

Microsoft C Optimizing Compiler Language Reference

names extends to the new line that ends the substitution-text.

Formal parameter names appear in substitution-text to mark the places
where actual values will be substituted. Each parameter name can appear
more than once in the substitution-text, and the names can appear in any
order.

The actual arguments following an instance of the identifier in the source
file are matched to the formal parameters of the parameter-list, Each for­
mal parameter in the substitution-text that is not preceded by a # or # #
operator (or followed by a## operator) is replaced by the corresponding
actual argument. (These operators are described below in Sections 2.2.2.1
and 2.2.2.2.) The actual-argument list and the formal parameter-list must
have the same number of arguments.

Any macros in the actual argument are expanded, and the expanded string
is substituted for the formal parameter. However, if the name of the macro
being defined occurs in the substitution-text, it is not expanded.

Arguments with side effects sometimes cause macros to produce unex­
pected results. A given formal parameter may appear more than once in a
macro definition. If that formal parameter is replaced by an expression
with side effects, the expression, with its side effects, is evaluated more
than once (see example 4 below).

8.2.2.1 Stringizing Operator(#)

The # operator is used only with function-like macros. If the # precedes
a formal parameter in the macro definition, the expanded actual argument
passed by the macro invocation is treated as a string literal. The string
literal then replaces each occurrence of the #-formal-parameter combina­
tion within the macro definition. Any white space between the tokens in
the expanded actual argument is reduced to a single white space in the
resulting string literal. Thus if a comment occurs between two tokens in
the actual argument, it is reduced to a single white space. The parameter
is automatically concatenated with any adjacent string literals from which
it is sepatated only by white space. Furthermore, if a character passed as
an argument to the macro would normally require an escape sequence
when used in a string literal (for example the ' character), the backslash is
automatically inserted before the character. Example 6 illustrates some
applications of the # operator.

208

Preprocessor Directives and Pragmas

Note

The Microsoft extension to the ANSI C standard that previously
enabled expansion of macro formal arguments appearing in string
literals and character constants is no longer supported. Macros that
relied on this extension should be rewritten using the stringizing (#)
operator.

8.2.2.2 Token-Pasting Operator (# #)

The # # operator, ref erred to as the "token-pasting" or "concatenation"
operator is used in both object-like and function-like macros. It permits
joining together of separate tokens into a single token, and therefore can­
not be the first or last token in the macro definition. Its use has the follow­
ing form:

define identifier token# # token # # token ...

The identifier represents the name by which the concatenated tokens will
be known in the program before replacement. Each token represents a
token defined elsewhere, either within the program or on the compiler
command line. White space preceeding or following the operator is
optional.

If a formal parameter in the macro definition is preceded or followed by
the # # operator, the fomal parameter is immediately replaced by the
unexpanded actual argument. The # # operator is then removed, and the
tokens preceding and following it are concatenated. The resulting token
must be a valid token, and it is then rescanned for possible replacement if
it represents a macro name. Example 7 shows how tokens can be pasted
together using the # # operator.

Examples

/******************** Example 1 ********************/

#define WIDTH
#define LENGTH

80
(WIDTH + 10)

209

Microsoft C Optimizing Compiler Language Reference

The Example 1 defines the identifier WIDTH as the integer constant 80,
and defines LENGTH in terms of WIDTH and the inte~er constant 10. Each
occurrence of LENGTH is replaced by (WIDTH + 10). In turn, each
occurrence of WIDTH + 10 is replaced by the expression (80 + 10).
The parentheses around WIDTH + 10 are important because they control
the interpretation in a statement such as the following:

var = LENGTH * 20;

After the preprocessing stage the statement becomes

var = (80 + 10) * 20;

which evaluates to 1800. Without parentheses, the result is

var = 80 + 10 * 20;

which evaluates to 280 because the multiplication operator (*) has higher
precedence than the addition operator (+).

/******************** Example 2 ********************/

#define FILEMESSAGE "Attempt to create file \
failed because of insufficient space"

Example 2 defines the identifier FILEMESSAGE. The definition is
extended to a second line by using the backslash escape character (\).

/******************** Example 3 ********************/

#define REGl
#de fine REG2
#de fine REG3

register
register

Example 3 defines three identifiers, REGl, REG2, and REG3. REG! and
REG2 are defined as the keyword register. The definition of REG3 is
empty, so each occurrence of REG3 is removed from the source file. These
directives can be used to ensure that the program's most important vari­
ables (declared with REG! and REG2) are given register storage. (See the
discussion of the #if directive in Section 8.4.1 for an expanded version of
this example.)

/******************** Example 4 ********************/

210

Preprocessor Directives and Pragmas

#define MAX (x, y) ((x) > (y)) ? (x) : (y)

Example 4 defines a macro named MAX. Each occurrence of the identifier
MAX after the definition in the source file is replaced by the expression
((x) > (y)) ? (x) : (y), where actual values replace the parame­
ters x and y. For example, the occurrence

MAX (1, 2)

is replaced by

({1) > (2)) ? (1) (2)

and the occurrence

MAX (i, s [i])

is replaced by

((i) > (s [i])) ? (i) : (s [i])

This macro is easier to read than the corresponding expression, which
makes the source program easier to understand.

Note that arguments with side effects may cause this macro to produce
unexpected results. For example, the occurrence MAX (i, s [i ++]) is
replaced by ((i) > (s [i++])) ? (i) : (s [i++]). The expression
(s [i++]) may be evaluated twice, so by the time the ternary expression
has been fully evaluated, i has increased by 2. The result of the ternary
expression is unpredictable, since its operands can be evaluated in any
order, and the value of i varies depending on the evaluation order.

/******************** Example 5 ********************/

#define MULT(a,b) ((a) * (b))

Example 5 defines the macro MULT. Once the macro is defined, an
occurrence such as MULT (3, 5) is replaced by (3) * (5) . The
parentheses around the parameters are important because they control the
interpretation when complex expressions form the arguments to the
macro. For instance, the occurrence MULT (3 + 4, 5 + 6) is replaced
by (3 + 4) * (5 + 6), which evaluates to 77. Without the
parentheses, the result would be 3 + 4 * 5 + 6, which evaluates to 29

. because the multiplication operator (*) has higher precedence than the
addition operator (+).

211

Microsoft 0 Optimizing Compiler Language Reference

/******************** Example 6 ********************/

#define GREETING Hello, World!
#define show(x) printf(#x)

main()
{

}

show (x + z) ;
printf("\n");
show(n /*some comment*/+ p);
printf("\n");
show(GREETING);
printf("\n");
show("This \"is a double quote mark");
printf("\n");
show ('\x ') ;

Example 6 defines two macros, one an object-like macro that expands to
the string literal Hello, world!, and the other a function-like macro
called show, that takes one argument. However, the definition of the
second macro includes the stringizing operator (#) immediately preceding
the formal parameter x. When an argument is passed to the show macro,
the formal parameter is replaced by the expanded actual argument
enclosed in double quotation marks, thus "stringizing" it.

As the preprocessor progresses through the source file, the references to
show are expanded as follows:

show (x + z) ; produces printf ("x + z");

show (n /* comment */ + p); produces printf ("n + p");

show (GREETING); produces printf ("Hello, world");

show("This \"is a double quote mark");

produces

printf("\"This \\\"is a double quote mark\"");

and finally, show ('\x'); produces printf (" '\ \x' ");

When the program is run, the screen output would be:

x + z
n + p

212

Preprocessor Directives and Pragmas

Hello, world
This " is a double quote mark
\x

/******************* Example 7 *********************/
#define father_ printf("functions look like this: foo()\n");
#define like_ printf("\n\nMicrosoft ");
#define son_ printf ("macros can look like this: me_ too() \n");
#define cat_tokens(x,y,z) x##y##z
#define father like_son_ printf("C has them now!\n");
#define son_like_father_ printf("C has always had them\n");

main()
{

}

like ;
father
like ;
son ;
cat_tokens(father_,like_,son_)
cat_tokens(son_,like_,father_)
like ;
cat_tokens(son_,like_,father_)
like ;
cat_tokens(father_,llke_,son_)

The tokens passed to the cat_tokens macro are pasted together to
create other tokens defined elsewhere in the program. When this code is
executed, the output will appear as follows:

Microsoft functions look like this: foo()
Microsoft macros can look like this: me_too()
C has them now!
C has always had them
Microsoft C has always had them
Microsoft C has them now!

8.2.3 The #undef Directive

Syntax

undef identifier

The #undef directive removes the current definition of identifier. The
preprocessor ignores subsequent occurrences of identifier. To remove a
macro definition using # undef, give only the macro identifier; do not give

213

Microsoft C Optimizing Compiler Language Reference

a parameter list.

You can also apply the #undef directive to an identifier that has no pre­
vious definition. This ensures that the identifier is undefined.

The # undef directive is typically paired with a #define directive to
create a region in a source program in which an identifier has a special
meaning. For example, a specific function of the source program can use
manifest constants to define environment-specific values that do not affect
the rest of the program. The # undef directive also works with the #if
directive (see Section 8.4.1) to control conditional compilation of the
source program.

Example

#define WIDTH
#de fine ADD (X, Y)

#undef WIDTH
#undef ADD

80
(X) + (Y)

In this example, the #undef directive removes definitions of a manifest
constant and a macro. Note that only the identifier of the macro is given.

8.3 Include Files

Syntax

#include "pathname"
#include <pathname>

The #include directive adds the contents of a given "include file" to
another file. You can organize constant and macro definitions into include
files and then use #include directives to add these definitions to any
source file. Include files are also useful for incorporating declarations of
external variables and complex data types. You only need to define and
name the types once in an include file created for that purpose.

214

Preprocessor Directives and Pragmas

The #include directive tells the preprocessor to treat the contents of the
named file as if they appeared in the source program at the point where
the directive appears. The new text can also contain preprocessor direc­
tives. The preprocessor carries out directives in the new text, then contin­
ues processing the original text of the source file.

The pathname is a file name optionally preceded by a directory
specification. It must name an existing file. The syntax of the file
specification depends on the operating system on which the program is
compiled.

The preprocessor uses the concept of a "standard" directory or directories
to search for include files. The location of the standard directories for
include files depends on the implementation and the operating system. See
your User's Guide for a definition of the standard directories.

The preprocessor stops searching as soon as it finds a file with the given
name. If you specify a complete, unambiguous path name for the include
file, in double quotation marks(" "), the preprocessor searches only that
path name and ignores the standard directories.

If you give an incomplete pathname enclosed in double quotation marks for
the include file, the preprocessor first searches for the file in the same
directory as the current source file (the "current working directory"); then
in the directories specified on the compiler command line; and finally in
the standard directories.

If the file specification is enclosed in angle brackets, the preprocessor does
not search the current working directory. It begins by searching for the
file in the directories specified on the compiler command line, then in the
standard directories.

An #include directive can be nested; in other words, the directive can
appear in a file named by another #include directive. When the prepro­
cessor encounters the nested #include directive, it processes the named
file and inserts it into the current file. The preprocessor uses the search
procedures outlined above to search for nested include files.

The new file can also contain #include directives. Nesting can continue
up to 10 levels. Once the nested #include is processed, the preprocessor
continues to insert the enclosing include file into the original source file.

215

Microsoft C Optimizing Compiler Language Reference

Examples

/******************** Example 1 ********************/
#include <stdio.h> /* Example 1 */

Example 1 adds the contents of the file named stdio. h to the source pro­
gram. The angle brackets cause the preprocessor to search the standard
directories for stdio. h, after searching directories specified on the com­
mand line.

/******************** Example 2 ********************/
#include "clefs .h"

Example 2 adds the contents of the file specified by defs .h to the source
program. The double quotation marks mean that the preprocessor
searches the directory containing the current source file first.

8.4 Conditional Compilation

This section describes the syntax and use of directives that control "condi­
tional compilation." These directives allow you to suppress compilation of
parts of a source file by testing a constant expression or identifier to deter­
mine which text blocks will be passed on to the compiler and which text
blocks will be removed from the source file during preprocessing.

8.4.1 The #if, #elif, #else, and #endif Directives

Syntax

if restrz"cted-constant-expression
[substituti"on-text]

[# elif restricted-constant-expression
substitution-text]

[# elif restricted-constant-expression
substitution-text]

216

[#else
subsWution-text]

#endif

Preprocessor Directives and Pragmas

The #if directive, together with the # elif, #else, and # endif directives,
controls compilation of portions of a source file. Each #if directive in a
source file must be matched by a closing #endif directive. Any number of
f/=elif directives can appear between the# if and #endif directives, but
at most one #else directive is allowed. The #else directive, if present,
must be the last directive before #endif.

The preprocessor selects one of the given blocks of substitution-text for
further processing. A substitution-text block can be any sequence of text.
It can occupy more than one line. Usually the substitution-text block is pro­
gram text that has meaning to the compiler or the preprocessor. However,
this is not a requirement; you can use the preprocessor to process any kind
of text.

The preprocessor processes the selected substitution-text and passes it to
the compiler. If the substitution-text contains preprocessor directives, the
preprocessor carries out those directives.

Any substitution-text blocks not selected by the preprocessor are removed
from the file during preprocessing. Thus, these text blocks are not com­
piled.

The preprocessor selects a single substitution-text block by evaluating the
restricted-constant-expressions following each #if or #elif directive until
it finds a true (nonzero) restricted-constant-expression. It selects all
substitution-text between the first true restr£cted-constant-expression and
the next number sign (#) which is not an # elif or #else.

If all occurrences of restricted-constant-expression are false, or if no #elif
directives appear, the preprocessor selects the substitution-text after the
#else clause. If the #else clause is omitted, and all restricted-constant­
expressions in the #if block are false, no substitution text is selected.

Each restricted-constant-expression follows the rules for restricted constant
expressions discussed in Section 5.2.10. Such expressions cannot contain
sizeof expressions, type casts, or enumeration constants. However, they
can contain the preprocessor operator defined in special constant expres­
sions, as shown by the following syntax:

defined(identifier)

217

Microsoft 0 Optimizing Compiler Language Reference

This constant expression is considered true (nonzero) if the identifier is
currently defined; otherwise, the condition is false (0). An identifier
defined as empty text is considered defined.

The #if, #elif, #else, and #endif directives can nest in the text por­
tions of other #if directives. Each nested #else, #elif, or #endif direc­
tive belongs to the closest preceding #if directive.

Examples

/******************** Example 1 ********************/

#if defined(CREDIT)
credit():

#elif defined(DEBIT)
debit():

#else
pr in terror () :

#endif

In example 1, the #if and #endif directives control compilation of one of
three function calls. The function call to credit is compiled if the
identifier CREDIT is defined. If the identifier DEBIT is defined, the func­
tion call to debit is compiled. If neither identifier is defined, the call to
pr interror is compiled. Note that CREDIT and credit are distinct
identifiers in C because their cases are different.

/******************** Example 2 ********************/

#if DLEVEL > 5
#define SIGNAL 1
#if STACKUSE = 1

#else

#endif
#else

#define STACK 200

#define STACK 100

#define SIGNAL 0
#if STACKUSE = 1

#else

#endif
#endif

218

#define STACK 100

#define STACK 50

Preprocessor Directives and Pragmas

/******************** Example 3 ********************/

#if DLEVEL == 0
#de fine STACK 0

#elif DLEVEL = 1
#define STACK 100

#elif DLEVEL > S
display(debugptr);

#else
#define STACK 200

#endif

Examples 2 and 3 assume a previously defined manifest constant named
DLEVEL.

Example 2 shows two sets of nested #if, #else, and #endif directives.
The first set of directives is processed only if DLEVEL > 5 is true. Other­
wise, the second set is processed.

In Example 3, #elif and #else directives are used to make one of four
choices, based on the value of DLEVEL. The manifest constant STACK is
set to 0, 100, or 200, depending on the definition of DLEVEL. If DLEVEL
is greater than 5, display (debugptr); is compiled and STACK is not
defined.

/******************** Example 4 ********************/

#de fine REGl
#define REG2

register
register

#if defined(M._86)
#de fine REG3
#de fine REG4
#define REGS

#else
#define REG3 register
#if defined(M._68000)

#define REG4
#define REGS

#else
#define REG4
#define REGS

#endif
#endif

register
register

register

219

Microsoft C Optimizing Compiler Language Reference

Example 4 uses preprocessor directives to control the meaning of register
declarations in a portable source file. The compiler assigns register
storage to variables in the order in which the register declarations appear
in the source file. If a program contains more register declarations than
the machine allows, the compiler honors earlier declarations over later
ones. The program may be less efficient if the variables declared later are
more heavily used.

The definitions listed in example 4 can be used to give priority to the most
important register declarations. REGl and REG2 are defined as the regis­
ter keyword to declare register storage for the two most important vari­
ables in the program. For example, in the following fragment, b and c
have higher priority than a or d:

func (a)

REG3 int a;

{

}

REGl int b;
REG2 int c;
REG4 int d;

When M_86 is defined, the preprocessor removes the REG3 identifier from
the file by replacing it with empty text. This prevents a from receiving
register storage at the expense of b and c. When M_68000 is defined, all
four variables are declared to have register storage. When neither M_86
nor M_68000 is defined, a, b, and c are declared with register storage.

8.4.2 The #ifdefand #ifndefDirectives

Syntax

ifdef identifier
ifndef identifier

The #if def and # ifndef directives perform the same task as the #if
directive used with defined{ identifier). You can use the #if def and
ifndef directives anywhere #if can be used. These directives are pro­
vided only for compatibility with previous versions of the language. The

220

Preprocessor Directives and Pragmas

defined(identifier) constant expression used with the #if directive is pre­
ferred.

When the preprocessor encounters an #ifdef directive, it checks to see
whether the identifier is currently defined. If so, the condition is true
(nonzero); otherwise, the condition is false (0).

The # ifndef directive checks for the opposite of the condition checked by
#if def. If the identifier has not been defined (or its definition has been
removed with #undef), the condition is true (nonzero). Otherwise, the
condition is false (0).

8.5 Line Control

Syntax

#line constant ["filename"]

The #line directive tells the preprocessor to change the compiler's inter­
nally stored line number and file name to a given line number and file
name. The compiler uses the line number and file name to ref er to errors
that it finds during compilation. The line number normally refers to the
current input line, and the file name refers to the current input file. The
line number is incremented after each line is processed.

If you change the line number and file name, the compiler ignores the pre­
vious values and to continues processing with the new values. The #line
directive is typically used by program generators to cause error messages
to rref er to the original source file instead of the generated program.

The constant value in the #line directive can be any integer constant.
The filename can be any combination of characters and must be enclosed
in double quotation marks (" "). If filename is omitted, the previous file
name remains unchanged.

The current line number and file name are always available through the
predefined identifiers _ _LINE __ and _ _FILE __ . You can use the
_ _LINE __ and _ _FILE __ identifiers to insert self-descriptive error mes­
sages into the program text.

221

Microsoft C Optimizing Compiler Language Reference

The _ _FILE __ identifier contains a string representing the file name, sur­
rounded by double quotation marks(" "). Thus, you do not need to
enclose the _ _FILE __ identifier in quotation marks when you use it as a
string.

Examples

/******************** Example 1 ********************/

#line 151 "copy.c"

In example 1, the internally stored line number is set to 151 and the file
name is changed to copy. c.

/******************** Example 2 ********************/

#define ASSERT(cond} if(!cond}\
{printf ("assertion error line %d, file (%s) \n", \
LINE, _EILE_) ; } else

In example 2, the macro ASSERT uses the predefined identifiers
_ _LINE __ and _ _FILE __ to print an error message about the source file
if a given "assertion" is not true. Note that no quotation marks are needed
around _ _FILE __ .

8.6 Pragmas

Syntax

pragma character-sequence

A #pragma is an implementation-defined instruction to the compiler.
The character-sequence is a series of characters that gives a specific com­
piler instruction and arguments, if any. The number sign (#) must be the
first non-white-space character on the line containing the pragma; white­
space characters can separate the number sign and the word pragma.

222

Preprocessor Directives and Pragmas

See your User's Guide for information abcrntthe pragmas available in your
compiler implementation. ·

223

Appendix A

Differences

This appendix summarizes differences between Microsoft C and the
description of the C language found in Appendix A of The C Programmi"ng
Language by Brian W. Kernighan and Dennis M. Ritchie, published in
1978 by Prentice-Hall, Inc. The following is a list of the differences, with
cross-references to the corresponding section numbers in The C Program­
mi"ng Language:

Section Number in
Kernighan and Ritchie

2.2

2.3

2.4.1

Microsoft C

Identifiers (including those used in
preprocessor directives) are
significant to 31 characters. External
identifiers are also significant to 31
characters.

The identifiers asm and entry are
no longer keywords. New keywords
are const, volatile, enum, signed,
and void. (The volatile keyword is
implemented syntactically, but not
semantically.) The identifiers cdecl,
far, fortran, huge, near, and pas­
cal may be keywords, depending on
whether or not the corresponding
options are enabled when a program
is compiled (see your system docu­
mentation).

As a result of the method used to
assign types to hexadecimal and
octal constants, these constants
always act like unsigned integers in
type conversions.

223

Microsoft C Optimizing Compiler Language Reference

2.4.3

2.6

4

224

Hex. adecimal bitlatterns consisting
of a backslash(\ , the letter x, and
up to three hexa ecimal digits are
permitted as character constants (for
example, \x012).

Microsoft C defines three additional
esc~pe sequences:.\ v represents a
verti<;al tab (VT), \" represents the
double-quote character, and \a
represents the helL(also called alert).

Character constants always have
type int, with the result that they
a_re sign-extended in type conver­
sions.

Adjacent quoted string literals are
concatenated and treated as a single
null-terminated string.

The short type is always 16 bits
long, and the long type is 32 bits
long. The size of an int is machine­
dependent. On 8086/8088, 80186,
and 80286 processors an int is 16
bits long, and on 80386 and 68000
processors it is 32 bits long.

The char type is signed by default,
with the result that a char value is
sign-extended in type conversions.
(In some implementations, the
default for the char type can be
c~an~ed to unsigned at compile
t1me.J

Two additional unsigned types
are supported: unsigned char and
unsigned long.

The keyword unsigned or signed
can be applied as an adjective to an
integer type. When unsigned
appears alone, it means unsigned
int. Similarly, when signed appears
alone, it means int. The additional

6.4

6.6

Preprocessor Directives and Pra.gmas

floating type long double is sup­
ported, but the long float type is no
longer recognized. References to long
float should be recoded to double.
type

The type specifiers constandvolatile
can be used as modifiers for any fun­
damental, aggregate, or pointer type
to indicate that the object or pointer
value will not be modified. Both syn­
tax and semantics of const are
implemented, but only the syntax of
volatile is implemented.

Microsoft C offers an additional fun­
damental type: the en um (enumera­
tion) type. Variables of enum type
are treated as integers in all cases.
The keyword void has three different
usages: as a function return-type
specifier, it indicates that the func­
tion will not return a value. In an
otherwise empty formal-parameter
list, void means that no arguments
will be passed. In the construction
void *, it indicates a pointer to an
object of unspecified type.

If the near, far, and huge keywords
are enabled, pointers of different
sizes may be used in a program.
Operations with pointers of different
sizes may cause conversion of
pointers; the path of the conversion
is implementation-defined.

The arithmetic conversions carried
out by the Microsoft C Optimizing
Compiler are outlined in Sections
5.3.1 and 5.7 of Chapter 5, "Expres­
sions and Assignments." Although
compatible with the Kernighan and
Ritchie conversions, the Microsoft C
conversions are described in greater
detail, including the specific path for

225

Microsoft C Optimizing Compiler Language Reference

7.2

7.14

8.2

226

each type of conversion.

In addition to the usual arithmetic
conversions, conversions between
pointers of different sizes may be rou­
tinely carried out when the near,
far, and huge keywords are enabled.
The path of the pointer conversions
is implementation-dependent.

In connection with the sizeof opera­
tor, a byte is defined as an 8-bit
quantity.

A structure can be assigned to
another structure of the same type.

The keywords enum, const, vola­
tile, and void are additional type
specifiers. The volatile keyword is
implemented syntactically, but not
semantically. The keyword signed or
unsigned can serve either as a type
specifier or as an adjective modifying
an integer type.

Therefore, the following additional
combinations are acceptable:

signed char
signed short
signed short int
signed long
signed long int
unsigned char
unsigned short
unsigned short int
unsigned long
unsigned long int

The long float type is not recog­
nized. The long double type is
recognized and treated in all
instances the same as double.

8.4

8.5

8.6

9.7

10.1

Preprocessor Directives and Pra.gmas

The const and volatile keywords
can be used to modify any fundamen­
tal, aggregate, or pointer object. The
order of the type specifiers is not
significant.

Optional formal-parameter lists or
argument-type lists can be included
in function declarations to notify the
compiler of the number and types of
arguments expected in a function
call.

Bit fields can be declared to be any
signed or unsigned integral type,
except enum. However, in expres­
sions bit fields are always treated as
unsigned.

The names of structure and union
members are not required to be dis­
tinct from structure and union tags
or from the names of other variables.

No relationship exists between the
members of two different structure
types.

Unions can be initialized by giving
a value for the first member of the
umon.

The expression of a switch can be
any integral expression, but the
value of the expression is always con­
verted to an int type. An expression
with enum type is permitted. Each
of the case constant expressions is
cast to the type of the expression.

New styles for function declarations
and definition, as specified in the
Draft Proposed American National
Standard-Programming Language
C , are completely supported. This

227

Microsoft 0 Optimizing Compiler Language Reference

12

12.3

228

includes the function prototype
declaration, the prototype-style
definition with formal parameters
declared in the header, and the
default creation of prototypes from
the first reference to a function (if no
explicit prototype is provided). The
old function declaration and
definition forms are also supported.

The formal parameter list in a func­
tion definition or declaration can end
with a comma followed by three
periods(, ...) or just a comma(,) to
indicate that the number of parame­
ters is variable. The latter is sup­
ported only for compatibility with
older versions of the compiler and
should not be used in new code.

The number sign(#) introduc-
ing the preprocessor directive can be
preceded by any combination of
white-space characters. White space
can also separate the number sign
and the preprocessor keyword.

In addition to preprocessor direc­
tives, the source file can contain
pragmas. Pragmas, like directives,
are introduced by a number sign as
the first non-white-space character in
a line. The action defined by a par­
ticular pragma is implementation­
dependent.

Three preprocessor-only operators
are supported: the "stringizing" (#)
operator, the concatenation or
"token-pasting" (# #) operator, and
the defined operator.

The new combination #if
defined(identifier) is intended to
supplant the #ifdef and #ifndef
directives. Use of the latter directives
is discouraged.

14.l

17

Preprocessor Directives and Pragmas

The new directive #elif (else-if) is
designed for use in #if and #if
defined blocks.

A structure or union can be assigned
to another structure or union of the
same type. Structures and unions
can be passed by value to functions
and returned by functions.

In expressions involving - >, the
expression preceding the arrow must
have the same type (or must be cast
to the same type) as the structure to
which the member on the right-hand
side of the arrow belongs.

The listed anachronisms are not
recognized.

229

Appendix B
Syntax Summary

B.1 Tokens 233
B.1.1 Keywords 233
B.1.2 Identifiers 233
B.1.3 Constants 234
B.1.4 Strings 236
B.1.5 Operators 236
B.1.6 Separators 237
B.2 Expressions 237
B.3 Declarations 239
B.4 Statements 242
B.5 Definitions 243
B.6 Preprocessor Directives
B.7 Pragmas 244

244

231

B.1 Tokens

keyword
identifier
constant
string
operator
separator

B.1.1 Keywords

auto
break
case
char
const
continue
default
do

double
else
en um
extern
float
for
goto
if

* Semantics not yet implemented

int
long
register
return
short
signed
sizeof
static

Syntax Summary

struet
switch
typedef
union
unsigned
void
volatile*
while

The following identifiers may be keywords in some implementations. See
your User's Guide for information.

cdeel
far
fortran
huge
near
pascal

B.1.2 Identifiers

identifier.
letter
underscore
identifier letter
identifier underscore
identifier digit

233

Microsoft C Compiler Language Reference

letter-one of the following:
abcdefghijklm
nopqrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

underscore:

digit-one of the following:
0123456789

B.1.3 Constants

constant:
integer-constant
long-constant
floatz"ng-point-constant
char-constant
enum-constant

integer-constant:
0
decimal-constant
octal-constant
hexadecimal-constant

decimal-constant:
nonzero-digit
decimal-constant digit

nonzero-digit-one of the following:
123456789

octal-constant:
Ooctal-digit
octal-constant octal-digit

octal-digit-one of the following:
01234567

hexadecimal-constant:

234

Oxhexadecimal-digit
OXhexadecimal-digi"t

hexadecimal-constant hexadecimal-digit

hexadecimal-digit-one of the following:
0123456789
abcdef
ABC DEF

long-constant:
integer-constant 1
integer-constant L

floating-point-constant:
fractional-constant exponent
fractional-constant
digit-seq exponent

fractional-constant:
digit-seq . digit-seq
. digit-seq
digit-seq.

digit-aeq:
digit
digit-seq digit

exponent:
e sign digit-seq
E sign digit-seq
e digit-seq
E digit-seq

sign:
+

char-constant:
'char'

char:
rep-char
escape-sequence

Syntax Summary

235

Microsoft C Compiler Language Reference

rep-char:
Any single representable character except the single quote ('),
backslash (\), or new-line character

escape-sequence-one of the following:
\' \" \ \ \ d \ dd \ ddd
\xd \xdd \xddd \a \b \f
\n \r \t \v

enum-constant:
identif£er

B.1.4 Strings

strina-literal: .. ~,
"char-seq"

char-seq:
char
char-seq char

B.1.5 Operators

operator-one of the following:
! - ++

* I %
>> < <= > ,_ I & -- .- I
&& II - +=
*= [= %= >>=
&=

,_ r: - 1-
{] () ->

236

+
<<
>=
A

-=
<<=

B.1.6 Separators

separator-one of the following:
[] () { }
* . - . # ' . - '

B. 2 Expressions

expression:
identifier
constant
string
expression~expression-list)
expression void)
expression expression]
expression. identij£er
expression-> identifi"er
unary-expression
binary-expression
ternary-expression
assignm~nt-expression
(expression)
(type-name) expression
constant-expression

expression-~ist:
expression
expression-list , expression

unary-expression;
unop expression
sizeof(expression)

unop-one of the following:
- ! * &

!value:
identifier
express~on[express~on]
expression. expression
expression-> expression

Syntax Summary

237

Microsoft C Compiler Language Reference

*expression
(type-name) expression
(!value)

type-name:
See Section B.3, "Declarations."

binary-expression:
expression binop expression

binop-one of the following:

* <<
>=

I % +
>> < >
-- != &

II
II &&

<=
I
I

ternary-expression:
expression ? expression : expression

assignment-expression:
/value++
lvalue-­
++lvalue
--/value
/value assignment-op expression

assignment-op-one of the following:
= *= /= %=
<<= >>= &= I=

constant-expression:
identifier
constant

238

(type-name) co.nstant-expression
unary-expression
binary-expression
ternary-expression
(constant-expression)

+= --
=

B.3 Declarations

declaration:
Sc-specifier type-specifier-list declarator-list;
type-specifier-list declarator-list;
sc-specifier declarator-list;
typedef type-specifier-l£st declarator-l£st;

sc-sp ecifier:
auto
extern
register
static

type-spec£fier:
char
double
longdouble
enum-specif£er
float
int
long
short
struct-specifier
typedef-name
union-specifier
unsigned
signed
signed char
const
volatile

type-spec£fier-list:
type-specifier
type-spec£fier-listtype-specif£er

enum-specifier:
en um tag { enum-l£st}
enum { enum-list}
enum tag

tag:
ident£f£er

Syntax Summary

239

Microsoft C Compiler Language Reference

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expressz"on

struct-specifier:
struct tag {member-declaration-list}
struct {member-declaration-list}
struct tag

member-declaration-list:
member-declaration
member-declaration-list member-declaration

member-declaration:
type-specifier declarator-list;
type-specifier identifier : constant-expression;
type-specifier : constant-expression;

declarator-list:
declarator
declarator = initializer
declarator-list , declarator

declarator:
identifier
modifier-list identifier
declarator[]
declarator[constant-expression]
*declarator
declarator!void)
declarator formal-parameter-list)
declarator arg-type-list)
(declarator)

modifier-list
modifier
modifier-list modifier

formal-parameter-list

240

formal-parameter
formal-parameter-list, formal-parameter

arg-type-list:
type-name
arg-type-list, type-name
arg-type-list, •••
arg-type-list,
void
void*

type-name:
type-specifier
type-specifier abstract-declarator

abstract-declarator:

* modifier*

i lrg-type-list)
*abstract-declarator
abstract-declarator*
abstract-declarator[]
abstract-dee[arator[constant-expression]
[]abstract-declarator
[constant-expression] abstract-declarator
abstract-declarato~void)
ab.stract-declarato formal-parameter-list)
abstract-declarator arg-type-lz"st)
(abstract-declarator)

initializer:
expression
{initializer-list}

initializer-list:
initial£zer
initializer-list, initializer

typedef-name:
identifier

union-specifier:
union tag {member-declaration-list}
union {member-declaration-list}
union tag

modifier:

Syntax Summary

241

Microsoft C Compiler Language Reference

cdecl
far
fortran
huge
near
pascal

modifier-list
modifier
modifier-list modifier

B.4 Statements

statement:
break;
case constant-expression : statement
compound-statement
continue;
default : statement
do stat~ment while(expression);
expression;
for ([expression]; [expression]; [expression]) statement;
goto identifier;
identifier : statement
if (expression) statement [else statement]

' return [expression];
switch (expression) statement
while (expression) statement

compound-statement:
{ [declaration-list] [statement-list]}

declaration-list:
declaration
declaration-list declaration

statement-list:
statement
statement-list statement

242

B.5 Definitions

definition:
function-definition
data-def£nition

function-def£nition:
[sc-specifier] [type-specifier] declarator ([formal­

parameter-list]) compound-statement
[sc-specifier] [type-specifier] declarator ([parameter­

list]) [parameter-decs] compound-statement

formal-parameter-list:
fixed-parameter-list
variable-parameter-list

parameter-list:
fixed-parameter-list
variable-parameter-list

fixed-parameter-list:
identifier
parameter-list , identifier

variable-parameter-list:
ffred-parameter-list, ..•
fixed-parameter-list,

parameter-decs:
declaration
declaration-list declaration

data-definition:
declaration

Syntax Summary

243

Microsoft C Compiler Language Reference

B.6 Preprocessor Directives

directive:

#define identifier [([parameter-list])] [token-seq]
elif restricted-constant-expression
#else
#endif
#if restricted-constant-expressz"on
#if def identifier
ifndef identifier
#include "string"
#include <string>
#line digit-seq
#line digit-seq string
undef identifier

token-seq.
token
token-seq token

restricted-constant-expression:
defined (identifier)
Any constant-expression except sizeof expressions,
casts, and enumeration constants

B.7 Pragmas

pragma:
pragma char-seq

244

Language Reference Index

>>(right-shift) operator, 130
< > (angle brackets), 214
- > (arrow) in member-selection

expressions, 113
> (greater-than) operator, 131
>= (greater-than-or-equal-to)

operator, 131
- >~member-selection) operator, 113
- > member-selection) operator, 229
{ } braces)

compound statement, used in, 158,
160

[] (brackets)
array declarators, used in, 57, 74
subscript expressions, used in, 110,

112
? : (conditional) operator, 136
%I]% (double brackets), 8
+ addition) operator, 127
& address-of) operator, 122
- (arithmetic neiation) operator, 121
& (bitwise-AND operator, 132
- ~itwise-comp ement) operator, 121
A bitwise-exclusive-OR) operator, 133
: (itwise-inclusive-OR) operator, 132
{} {braces)

initialization, used in, 95
, (comma)

argument-type list, used in, 82
declarations, used in, 65, 80
function calls, used in, 110, 194
initialization, used in, 95
sequential-evaluation operator, 135

-- (decrement) operator, 139
/(division) operator, 125
= = (equality J operator, 131
++ (increment) operator, 139
* (indirection) operator, 122
!= (inequality) operator, 131
< < (left-shift) operator, 130
< (less-than) operator, 131
< = {less-than-or-equal-to) operator,

131
&& (logical-AND) operator, 134
! (logical-NOT) operator, 121

:: (logical-OR) operator, 134
. (inember-sefection) operator, 113
*(multiplication) operator, 125
(number sign), 205
() (parentheses)

complex declarators, used in, 58
expressions, used in, 116
function calls, used in, 110
function declarators, used in, 57, 80
macros, used in, 211

*(pointer modifier), 57, 76
",,.-(quotation marks)

include directives, used in, 214
notational conventions, 8
representation, 14 224

"" (quotation marks). See also Double­
quote escape seci..uence

"" (quotation marks). See also Single-
quote escape sequence

% (remainder) operator, 126
= (simple-ass1~ment) operator, 140
- (subtraction)_ operator, 127
... (three periods), 82
_ (underscore), 25
Abstract declarators, 102
Actual arguments

conversion, 198
macro, 208, 211
order of evaluation, 195
passing, 198
pointer, 195, 198
side effects, 195
type checking, 198
variable number, 200

Addition operator(+), 127
Address-of operator(&), 122
Aggregate

data type category, 55
Aggregate types

array, 74
initialization, 93, 95
structure, 69
union, 72

Anachronisms, 229
AND operator

245

Language Reference Index

AND operator (continued)
bitwise(&), 132
logical(&&), 134

Angle brackets (< >), 214
ANSI standard C

enabling ANSI, 3
extensions, 3

ANSI standard C (DPANS), 3
Apostrophe. See Smgle-quote escape

sequence
argc parameter, 38
Argument type checking

formal parameters, 189
function calls, 198, 83, 192, 198

Arguments
actual

conversion, 198
macro, 208, 211
order of evaluation, 195
passing, 198
pointer, 195, 198
side effects, 195
type checking, 198
variable number, 200

command line, 38
formal. See Formal parameters
main function, 38
variable number, 82, 200

Arguments. See also Parameters
Argument-type lists

abstract declarator, used with, 103
pointer arguments, used with, 83
void *, used with, 83
void keyword, used with, 83, 81, 82,

192
argv parameter, 38
Arithmetic

data type category, 55
Arithmetic conversions, 119, 225
Arithmetic negation operator(-), 121
Array modifier([]), 57, 74
Arrays

declaration, 57, 74
elements, 110
identifiers, 108
initialization, 93, 95, 99
multidimensional, 7 4, 112
references to, 108, 110
storage, 75, 112
subscripts, 110

asm keyword, 223

246

Assignment
conversions, 146
described, 107
expressions, 115
operators, 137

Assignment. See also Initialization
Associativity

modifiers, 58
operators, 142

auto storage class, 86, 90, 93

Backslash character(\), 14
Backspace escape sequence, 14
Bell character, 14, 224
Binary

expressions, 115
operators, 118

Binary operators
table, 17

Bit fields, 70, 71, 227
Bitwise-AND operator(&), 132
Bitwise-complement operator C) 121
Bitwise-exclusive-OR operator ('J, 133
Bitwise-inclusive-OR operator (1), 132
Block, 38
Braces ({ })

compound statement, used in, 158,
160

Braces({})
initialization, used in, 95

Brackets
array declarators, used in, 57, 74
double (%[]%), 8
subscript expressions, used in, 110,

112
Branch statements, 168, 174
break statement, 159
Byte, size of, 226

C character set, 11
Call by reference. See Passing by

reference
Call by value. See Passing by value
Calls. See Function calls
Carriage-return escape sequence, 14
case keyword, 174
Case sensitivity, 12, 25
Casts. See Type casts
cdecl (keyword), 27

cdecl keyword, 62, 223
char type

conversion, 147
described, 50
differences from Kernighan &

Ritchie, 224
range of values, 53
storage, 53

Character constants
differences from Kernighan &

Ritchie, 224
form, 22
sign-extension, 22
type, 22

Character constants. See also Escape
sequences

Character sets, 11
Characters

backslash(\), 14, 16
backspace escape sequence, 14
bell, 14, 224
carriage-return escape sequence, 14
case, 12, 25
continuation(\), 16
CONTROL-Z, 12
differences from Kernighan &

Ritchie, 224
digits, 12
double-quote escape sequence, 14
end-of-file, 12
escape sequences, 14
form-feed escape sequence, 14
hexadecimal escape sequence, 14
horizontal tab escape sequence, 14
letters, 12
new-line escape sequence, 14
octal escape sequence, 14
punctuation, 13
single-quote escape sequence, 14
special, 13
underscore (-), 12
vertical-tab escape sequence, 14
white space, 12, 14

Comma(,)
argument-type list, used in, 82
declarations, used in, 65, 80
function calls, used in, 110, 194
initialization, used in, 95
operator, 135

Command-line arguments, 38
Comments, 27

Language Reference Index

Comparison operators. See Relational
operators

Compilation, conditional, 216, 220
Complement operators, 120
Complex declarators, 58, 62
Compound statements, 160
Compound-assignment operators, 140
Concatenation

of string literals, 23
Concatenation operator

differences from Kernighan &
Ritchie, 228

Conditional compilation, 216, 220
Conditional operator(?:), 136
Conditional statements, 168, 174
const

as a pointer modifier, 76
const keyword, 223
const type specifier

described, 51
Constant expressions

case, 174
conversion, 55
defined(identifier), 217
described, 107
directives, used in, 117, 217
form, 117
initializers, 117
restricted, 117, 217
switch statement, used in, 174

Constants
character

differences from Kernighan &
Ritchie, 224

form, 22
sign-extension, 22
type, 22

character. See also Escape sequences
conversion, 55
decimal integer, 18, 19
described, 18
enumeration, 67
floating-point, 20, 21, 54
hexadecimal integer

conversion, 20, 55
form, 18
type, 19

integer
differences from Kernighan &

Ritchie, 223
form, 18

247

Language Reference Index

integer (continued}
negative, 19
type, 19

long integer, 20
manifest, 206, 207, 213
octal integer

conversion, 20, 55
form, 18
type, 19

string. See String literals
summarized, 234
type, 108

Continuation character(\), 16
continue statement, 162
CONTROL-Z character, 12
Conventions, notational, 6
Conversions

actual arguments, 198
assignment, 146
constant expressions, 55
constants, 55
enumeration types, 152
floating types, 150
for function prototypes, 153
formal parameters, 189, 198
function call, 153, 198
hexadecimal constants, 55
implicit, 151
octal constants, 55
operator, 152
pointer types, 151
range of values, effects on, 55
signed integral types, 146, 151
structure types, 152
type cast, 152
union types, 152
unsigned integral types, 148, 151
usual arithmetic, 119, 225
void type, 152

Data type categories
aggregate, 55
arithmetic, 55
floating, 55
integral, 55
pointer, 55
scalar, 55

Data types. See Types
Decimal integer constants, 18, 19
Declarations

248

Declarations {continued}
form, 49
formal parameter names, 80
formal parameters, 187, 188
forward. See Declarations, function
function

default return type, 80
default storage class, 92
described, 33, 80, 181, 192
differences from Kernighan &

Ritchie, 227
form, 80
implicit, 192
no arguments, 83
pointer arguments, 83
return type, 80, 192
return value, 191
storage class, 92, 192
variable number of arguments, 82
visibility, 92, 192

function prototype form, 80
pointer, 57, 76, 193
summarized, 239
type, 99, 100
typedef, 99, 101
variable

array, 74
default storage class, 88
described, 33
enumeration, 66
external, 86, 87
form, 64
internal, 86, 90
multidimensional arrays, 74
pointer, 76
simple, 65
structure, 69
union, 72

Declarators
abstract, 102
array, 57
complex, 58, 62
described, 57
function, 57
parentheses, enclosed in, 58
pointer, 57
special keywords, used with, 62

Decrement operator(-), 139
Default

return type, 80
storage class

storage class {continued}
external variable declarations, 88
function declarations, 92
internal variable declarations, 90

default keyword, 174
define directive, 207
defined operator

differences from Kernighan &
Ritchie, 228

defined ,Preprocessor operator, 205
definedl identifier) constant expression,

217
Defining declarations, 87
Definition

functions
obsolescent form, 183

Definitions
function

described, 34, 181, 182
full prototype form, 183
storage class, 184
summarized, 243
visibility' 184

variable
described, 34, 87
storage class, 87
summarized, 243
visibility, 87, 90

Differences from Kernighan & Ritchie,
223

Digits, 12
Dimensions. See Multidimensional

arrays
Directives

constant expressions, used in, 117,
217

define, 207
described, 33, 205
differences from Kernighan &

Ritchie, 228
elif

described, 217
differences from Kernighan &

Ritchie, 229
nesting, 218

#else, 217, 218
endif, 217, 218
#if, 217, 218, 228
#if def, 220, 228
ifndef, 220, 228
#include, 214

J,anguage Reference Index

Directives {continued}
lifetime, 36
#line, 221
restricted constant expressions, 117
summarized, 244
#undef, 213

Division operator(/), 125
do statement

described, 163
execution, continuation of, 162
execution, termination of, 159

Double brackets (%[]%), 8
Double quote. See Quotation marks
double type

conversion, 150
described, 50
internal representation, 54
range of values, 53
storage, 53

Double-<\11;ote escape sequence, 14
DPANS tANSI standard C, 3
Dummy-name list, 83
\ (backslash), 14, 16
\'escape sequence, 14
\a escape sequence, 14
\ b escape sequence, 14
\ \ escape sequence, 14
\ f escape sequence, 14
\

Elements
referring to, 110, 112

elif directive
described, 217
differences from Kernighan &

Ritchie, 229
nesting, 218

Ellipsis dots, 7
#else directive, 217, 218
else keyword, 168
\ n escape sequence, 14
endif directive, 217, 218
End-of-file character, 12
entry keyword, 223
enum type specifier, 66, 223
Enumeration

types
tags

naming class, 45
Enumeration constants, 44, 67

249

Language Reference Index

Enumeration expressions, 108
Enumeration set, 66
Enumeration types

conversion, 152
declaration, 66, 100
described, 50
differences from Kernighan &

Ritchie, 225
identifiers, 108
range of values, 53
storage, 53, 66
tags

type declarations, 100
variable declarations, 67

envp, 38
Equality operator (= =), 131
\ r escape sequence, 14
Escape sequences

described, 14
differences from Kernighan &

Ritchie, 224
\ t escape sequence, 14
\ v escape sequence, 14
Evaluation order, 134, 143
Execution. See Program execution
Exit from functions, 172
Exponents, 20
Expression list, 110
Expressions

assignment, 115
binary, 115
case constant, 17 4
constant. See Constant expressions
described, 107
enumeration, 108
floating type, 108
function-call, 110
grouping, 142
integral, 108
!value, 138
member selection, 113, 229
operators, used in, 115
order of evaluation, 143
parentheses, enclosed in, 116
pointer, 108
side effects, 145
statements, 164
string literal, 109
structure, 108
subscript, 110, 112
summarized, 237

250

Expressions {continued)
switch, 174, 227
ternary, 115
type cast, 116
unary, 115
union, 108

Extensions to ANSI standard 0, 3
extern storage class

described, 86
external variables, 87
function declarations, 92, 192
function definitions, 184
internal variables, 90

External declarations
described, 86
function, 92
variable, 87

far keyword
conversions, 198
described, 62
differences from Kernighan &

Ritchie, 223
far (keyword), 27
Fields. See Bit fields
__ FILE__ identifier, 221
Files

changing name, 221
inclusion, 214
nesting, 215

float type
conversion, 150
described, 50
internal representation, 54
range of values, 53
storage, 53

Floating
data type category, 55
expressions, 108
identifiers, 108
types

conversion, 150
Floating-point

constants
form, 20
internal representation, 54
negative, 21

types
internal representation, 54

types described, 50

for statement
continuation of execution, 162
described, 165
termination of execution, 159

Formal parameter list
in function header, 183

Formal parameter names
in function declarations, 80

Formal parameters
conversion, 189, 198
declaration, 188
described, 187
following function header, 183
identifiers, 189
macro, 207
naming class, 44
obsolescent form, 187
storage class, 189
type checking, 189, 198, 81

Form-feed escape sequence, 14
fortran (keyword), 27
fortran keyword, 62, 223
Forward declarations. See Function

declarations
Function

body, 183, 191
calls

argument type checking, 198
conversions, 153, 198
described, 182
form, 110, 194
indirect, 195
pointers, use of, 195
recursive, 201
variable number of arguments, 200

declarations
default return type, 80
default storage class, 92
described,33,80, 181, 192
differences from Kernighan &

Ritchie, 227
dummy-name list, 83
implicit, 192
no arguments, 83
pointer arguments, 83
return type, 81, 192
return value, 191
storage class, 92, 192
variable number of arguments, 82
visibility, 92, 192

definitions

Language Reference Index

definitions (continued}
described, 34, 181, 182
return type, 185
storage class, 184
summarized, 243
visibility, 184

modifier (), 57
names. See Identifiers
pointers, 193, 195
prototype, 83
prototypes

described, 181
return type. See Return type

Function definition
full prototype form, 183
obsolescent form, 183

Function prototype
declaration, 80

Function prototypes. See Argument­
type lists

Function prototn>es (forward
declarations J

and conversions, 153
Function tyJ>e. See Return type
Function-call conversions, 153, 198
Function-call expressions, 110
Function-call operator

as sequence point, 118
Function-like macros, 206
Functions

described, 181
exit from, 172
identifiers, 109
main, 38
naming class, 44
return value, 172

Global
lifetime, 38, 86
variables

described, 40
initialization, 93
references to, 90

visibility, 40
goto statement, 167
Greater-than operator (>), 131
Greater-than-or-equal-to operator

(>=), 131
Grouping, 142

251

Language Reference Index

Hexadecimal
constants

conversion, 20, 55
differences from Kernighan &

Ritchie, 223
form, 18
sign-extension, 20
type, 19

escape sequences, 14, 224
Horizontal-tab escape sequence, 14
huge keyword

conversions, 198
described, 62
differences from Kernighan &

Ritchie, 223
huge (keyword), 27

Identifier lists
in function definition, 187

Identifiers
array, 108
characters allowed, 25
differences from Kernighan &

Ritchie, 223
enumeration, 108
__ FILE__, 221
floating type, 108
formal parameters, 189
function, 109
integral, 108
length, 25
__ LINE..._, 221
modified, 57
naming classes, 43
pointer, 108
structure, 108
summarized, 233
union, 108

#if directive, 217, 218, 228
if statement, 168
ifdef directive, 220, 228
ifndef directive, 220, 228
#include directive, 214
Include files, 214, 215
Increment operator (++), 139
Indirection operator (*), 122
Inequality operator (~=-), 131
Initialization

arrays, 93, 95, 99
auto storage class, 93

252

Initialization (continued)
constant expressions, 117
differences from Kernighan &

Ritchie, 227
fundamental types, 94
global variables, 93
link time, 88
pointers, 94
register storage class, 93
restrictions, 93
static variables, 93
string literals, 99
structure variables, 93, 95
union variables, 93, 95

Insertion of files, 214
int type

conversion, 148
described, 50
differences from Kernighan &

Ritchie, 224
portability, 54
range of values, 53, 54
storage, 53

Integer constants
decimal, 18, 19
differences from Kernighan &

Ritchie, 223
hexadecimal, 18, 19, 20
long, 20
negative, 19
octal, 18, 19, 20

Integral
data type category, 55
expressions, 108
identifiers, 108
types

conversion, 146, 148, 151
described, 50

Internal declarations, 86, 90
Internal representation, 54, 55
Italics, 6
Iterative statements

do, 163
for, 165
while, 177

Keywords
differences from Kernighan &

Ritchie, 223, 226
listed, 26, 233

Keywords (continued)
notational conventions, 6
special, 62, 77
statements, used in, 157

Labeled statements, 167
Labels

case, 174
default, 174
described, 158
form, 167
naming class, 45

Labels. See also Identifiers
Left-shift operator(<<), 130
Less-than operator { <), 131
Less-than-or-equal-to operator (<=),

131
Letters, 12
Lifetime

described, 38
directives, 36
global, 38, 86
local, 38, 86

Line control, 221
#line directive, 221
__ LINE__ identifier, 221
Lines, continuation, 16
Linked lists, 70
Local lifetime, 38, 86
Local variables, 41, 191
Logical-AND operator\&&), 134
Logical-NOT operator !), 121
Logical-OR operator (ii , 134
long float type, 50
long type

conversion, 147
described, 50
differences from Kernighan &

Ritchie, 224
range of values, 53
storage, 53

Loops
do statement, 163
for statement, 165
while statement, 177

Lvalue expressions, 138

Macros
function-like, 206

Language Reference Index

Macros (continued}
object-like, 206, 207, 208, 211, 213

Main function, 37, 38
Manifest constants, 206, 207, 213
Members

bit fields, 70
naming class, 45
referring to, 113
structure, 69
union, 72

Member-selection expressions, 113, 229
Member-selection operators (- > and .),

113
Member-selection operators (- > and .),

229
Modifiers

array, 57, 74
associativity, 58
function, 57
pointer, 57, 76
precedence, 58

Multidimensional arrays(74, 112
Multiplication operator *), 125

Names. See Identifiers
Naming classes, 43, 227
near keyword

conversions, 198
described, 62
differences from Kernighan &

Ritchie, 223
near (keyword), 27
Negation, 121
Nested visibility, 41
New-line escape sequence, 14
Nongraphic escape sequences, 14, 224
NOT operator (!J, 121
Notational conventions, 6
Null statement, 171
Number sign(#), 205

Object-like macros, 206
Octal

constants
conversion, 20, 55
differences from Kernighan &

Ritchie, 223
form, 18
sign-extension, 20

253

Language Reference Index

constants (cont£nued}
type, 19

escape sequences, 14
One's complement operator C), 121
Operands, 107
Operators

addition (+), 127
address-of(&), 122
arithmetic negation(-), 121
as sequence points, 117
assignment

compound, 140
listed, 137
simple(=), 140

associativity, 142
binary, 118
binary,table, 17
bitwise-AND(&), 132
bitwise-complement n 121
bitwise-exclusive-OR('), 133
bitwise-inclusive-OR (1), 132
complement, 120
compound assignment, 140
conditional(?:), 136
conversions 152
decrement f--), 139
differences from Kernighan &

Ritchie, 229
division()), 125
equality(==), 131
expressions; used in, 115
increment l++), 139
indirection (*), 122
inequality (!=) 131
left-shift (< <), 130
listed, 16, 236
logical

described, 134
order of evaluation, 134

logical-AND\&&), 134
logical-NOT !), 121
logical-OR (:l , 134
multiplication (*), 125
one's complement C), 121
precedence, 142
preprocessor

differences from Kernighan &
Ritchie, 228

stringizing, 228
token pasting, 228

preprocessor specific

254

preprocessor specific {conti'nued)
listed, 206

relational(~<,<=,>=), 130, 131
remainder (/o), 126
right-shift (> >), 130
sequential-evaluation (,), 135
shift (< < and>>), 130
simple assignment(=), 140
sizeof, 124
subtraction (-), 127
ternary(? :), 136
ternary, 119
unary, 118
unary,table, 16

OR operators
bitwise-exclusive m, 133
bitwise-inclusive (1}, 132
logical (Ii), 134

Order of evaluation, 134, 143
Overview, 3

Parameters
actual. See Actual arguments
argc, 38
argv, 38
envp,38
formal

conversion, 189, 198
declaration, 188
described, 187
identifiers, 189
naming class, 44
storage class, 189
type checking, 189, 198

macro, 207
main function, 38

Parentheses in
complex declarators, 58
expressions, 116
function calls, 110
function declarators, 57, 80
macros, 211

pascal (keyword), 27
pascal keyword, 62, 223
Passing by

reference, 198
value, 194, 198

Pointer
data type category, 55

Pointer modifier(*), 57, 76

Pointer to void (void *), 76
Pointers

adding, 128
arithmetic, 128
comparisons, 131
conversion, 151
declaration, 57, 76, 193
differences from Kernighan &

Ritchie, 225
expressions, 108
function, 193, 195
function calls through, 195
identifiers, 108
implicit conversion, 151
initialization, 94
modified by const, 76
modified by volatile, 76
storage, 77
structure, 76
subtraction, 128
union, 77

Portability, 54
Pound sign(#). See Number sign
Pragmas

described, 33, 205
differences from Kernighan &

Ritchie, 228
form, 222

Precedence
modifiers, 58
operators, 142

Predefined identifiers, 221
Preprocessor directives. See Directives
Preprocessor operators

described, 205
listed, 206

Program execution, 37
Program structure, 33
Prototype

function, 83
Prototypes

function
described, 181

Prototypes. See Argument-type lists
Punctuation characters, 13

Quotation marks
#include directives, used in, 214
notational conventions, 8
representation, 14, 224

Language Reference Index

Quotation marks. See also Double­
quote escape sequence

Quotation marks. See also Single-quote
escape sequence

Range of values, 53, 54, 55
Recursion, 201
Reference, passing by, 198
References to global variables, 87, 90
Referencing declarations, 87
register storage class

described, 90
initialization, 93
internal variables, 90
lifetime, 86

Relational operators(>,<,<=,>=),
130, 131

Remainder operator(%), 126
Removing definitions, 213
Representable character set, 11
Representation, internal, 54, 55
Reserved words. See Keywords
Restricted constant expressions, 117,

217
return statement, 172
Return type

declaration, 192
default, 80
described, 81, 185
implicit, 192

Return value, 172, 191
Returning control, 172
Right-shift operator (> >), 130

Scalar
data type category, 55

Search path for include files, 214
Selection statements, 168, 174
Sensitivity

case, 12
Separators, 237
Sequence points

listed, 117
other than operators, 118, 117

Sequential-evaluation operator(,), 135
Shift operators (< < and>>), 130
short type

conversion, 147
described, 50

255

Language Reference Index

short type (continued)
differences from Kernighan &

Ritchie, 224
range of values, 53
storage, 53

Side effects
and sequence points, 117, 145, 208,

211
signed char type, 50, 226
signed char type. See also char type
signed int type, 50
signed int type. See also int type
signed keyword, 51, 224
signed long int type, 226
signed long int type. See also long type
signed long type, 50, 226
signed long type. See also long type
signed short int type, 50, 226
signed short int type. See also short

type
signed short type, 50, 226
signed short type. See also short type
signed type, 50, 224
signed type. See also int type
Sign-extension

of constants, 20, 22
Simple variable declarations, 65
Simple-assignment operator (==), 140
Single-quote escape sequence, 14
sizeof operator, 124
Source files, 35
Special characters, 13
Special keywords

conversions, 198
declarators, used with, 77
differences from Kernighan &

Ritchie, 223
Standard directories, 215
Statement labels

described, 158
form, 167
naming class, 45

Statements
body, 157
break, 159
compound, 160
continue, 162
do, 163
expression, 164
for, 165
form, 158

256

Statements (continued)
goto, 167
if, 168
keywords, 157
labeled, 158, 167
listed, 157
null, 171
return, 172
summarized, 242
switch, 174
while, 177

static storage class
described, 86
external variables, 87
function declarations, 92, 192
function definitions, 184
initialization, 93
internal variables, 90

Storage
array types, 75, 112
bit fields, 71
char type, 53
double type, 53
enumeration types, 53, 66
float type, 53
global, 86
int type, 53, 54
local, 86
long type, 53
pointer types, 77
short type, 53
structure types, 70
union types, 72
unsigned char type, 53
unsigned int type, 53, 54
unsigned long type, 53
unsigned short type, 53
void type, 53

Storage classes
described, 86
external variable declarations, 88
formal parameters, 189
function declarations, 92, 192
function definitions, 184
internal variable declarations, 90

Storage-class specifiers
auto, 86, 90
extern

described, 86
external variables, 87
function declarations, 92, 192

extern (continued}
function definitions, 184
internal variables, 90

listed, 86
register, 86, 90
static

described, 86
external variables, 87
function declarations, 92, 192
function definitions, 184
internal variables, 90

String concatenation, 23
String literals

concatenation, 23
form, 23, 109
initializers, 99
length, 24, 109
storage, 24
type, 24

Stringize operator
differences from Kernighan &

Ritchie, 228
Stringizing operator(#), 205
Stringizing preprocessor operator(#),

206, 208
Strings. See String literals
struct type specifier, 69
Structures

conversion, 152
declaration, 69, 100
differences from Kernighan &

Ritchie, 226, 227, 229
expressions, 108
identifiers, 108
initialization, 93, 95
members

bit field, 70
described, 69
naming class, 45
referring to, 113

pointers to, 77
storage, 70
tags

naming class, 45
type declarations, 100
variable declarations, 69

Subscript expressions, 110, 112
Subtraction operator(-), 127
switch statement

constant expressions, used in, 17 4
described, 174

Language Reference Index

switch statement (continued)
differences from Kernighan &

Ritchie, 227
termination ofexecution, 159

Symbolic constants. See Manifest
constants

Syntax conventions. See Notational
conventions

Syntax summary, 233
System-dependent keywords, 27

Tab escape sequence, 14
Tags

enumeration, 67, 100
naming class, 45
structure, 69, 100
union, 100

Ternary expressions, 115
Ternary operator(?:), 119, 136
The defined preprocessor operator, 206
Token-pasting operator

differences from Kernighan &
Ritchie, 228

Token-pasting operator(##), 205
Token-pasting preprocessor operator

(# #), 206
Token-pasting preprocessor operator,

209
Tokens

operators as, 16, 28, 233
Transfer statements

break, 159
continue, 162
goto, 167
labeled statements, 167

Two's complement operator, 121
Type

casts, 152
checking. See Argument type

checking
declarations, 99
names

argument-type lists, used in, 83
described, 102
sizeof, used with, 124
void, 198

specifiers
abbreviations, 51
differences from Kernighan &

Ritchie, 224, 225, 226

257

Language Reference Index

specifiers (continued)
enum, 50, 66
fundamental types, 50
struct,, 69
union, 72

Type casts
constraints, 116
constraints on assignment, 116
to and from void, 116

Type specifiers
const, 51
volatile, 51

Type-cast expressions, 116
typedef declarations, 99, 101
typedeftypes,45, 101
Types

array
declaration, 57, 74
initialization, 93, 95, 99
multidimensional, 7 4
storage, 75, 112

char
described, 50
storage, 53

const
used with pointers, 76, 51

conversions. See Conversions
differences from Kernighan &

Ritchie, 224, 225, 226
double

internal representation, 54, 50, 53,
54

enumeration
conversion, 152
declaration, 66, 100
described, 50
differences from Kernighan &

Ritchie, 225
identifiers, 108
range of values, 53
storage, 53, 66
tags, 45, 67, 100

float
conversion, 150
described, 50
internal representation, 54
range of values, 53
storage, 53, 54

floating
conversion, 150

floating-point

258

floating-point (continued)
described, 50
internal representation, 54

function. See Return type
fundamental

declaration, 65
described, 50
differences from Kernighan &

Ritchie, 225
initialization, 94
listed, 50
range of values, 53
storage, 53

int
conversion, 148
described, 50
differences from Kernighan &

Ritchie, 224
portability, 54
range of values, 53, 54
storage, 53

integral
conversion, 146, 148, 151
described, 50

long
conversion, 147
described, 50
differences from Kernighan &

Ritchie, 224
range of values, 53
storage, 53

long double
differences from Kernighan &

Ritchie, 225
long float

no longer supported, 225
pointer

conversion, 151
declaration, 57, 76
implicit conversion, 151
initialization, 94
storage, 77

short
conversion, 147
described, 50
differences from Kernighan &

Ritchie, 224
range of values, 53

signed char, 50, 226
signed int, 50
signed long, 50

Types {continued}
signed short, 50
structure

conversion, 152
declaration, 69, 100
initialization, 93, 95
pointers to, 77
storage, 70

type names, 102
tyl?edef, 45, 101
UnlOn

conversion, 152
declaration, 72, 100
initialization, 93, 95
pointers to, 77
storage, 72

unsigned char
conversion, 148
described, 50
differences from Kernighan &

Ritchie, 224, 226
range of values, 53
storage, 53

unsigned int
conversion, 149
described, 50
portability, 54
range of values, 53, 54
storage, 53

unsigned long
conversion, 149
described, 50
differences from Kernighan &

Ritchie, 224, 226
range of values, 53
storage, 53

unsigned short
conversion, 149
described, 50
differences from Kernighan &

Ritchie, 226
range of values, 53
storage, 53

user defined, 99, 100, 101
void, 51, 53
volatile

used with pointers, 76, 51

Unary expressions, 115
Unary operators

Language Reference Index

Unary operators {continued}
table, 16, 118

undef directive, 213
Underscore character (-)

leading, 25, 12, 25
Union declarations

types, 100
variables, 72

union type specifier, 72
Unions

conversion, 152
declaration, 72, 100
differences from Kernighan &

Ritchie, 227, 229
expressions, 108
identifiers, 108
initialization, 93, 95
members

described, 72
naming class, 45
referring to, 113

pointers to, 77
storage, 72
tags, 45, 100

unsigned char type
conversion, 148
described, 50
differences from Kernighan &

Ritchie, 224, 226
range of values, 53
storage, 53

unsigned int type
conversion, 149
described, 50
portability, 54
range of values, 53, 54
storage, 53

unsigned keyword, 51, 224
unsigned long int type, 50, 226
unsigned long int type. See also

unsigned long type
unsigned long type

conversion, 149
described, 50
differences from Kernighan &

Ritchie, 224, 226
range of values, 53
storage, 53

unsigned short int type, 50, 226
unsigned short int type. See also

unsigned short type

259

Langyage Reference Index

unsig, ed short type
con ersion, 149
des ribed, 50
cliff. rences from Kernighan &

Ritchie, 226
ran e of values, 53
sto age, 53

unsig ed type, 50, 224
Unspecified type

pointer to tvoid *), 76
User-defined types, 99, 100, 101
Usual arithmetic conversions, 119, 225

Value, passing by, 194, 198
Variable

declarations
array, 57, 74
described, 33
enumeration, 66
external, 86, 87, 88
form, 64
fundamental types, 65
internal, 86, 90
multidimensional arrays, 7 4
pointer, 76
simple, 65
structure, 69
summarized, 239
union, 72
visibility, 87

definitions
described, 34, 87
summarized, 243
visibility, 87, 90

Variable names. See Identifiers
Variables

array
declaration, 7 4
initialization, 95, 99
storage, 75

auto, 86, 90, 93
communal, 88
enumeration, 66
extern, 87, 90
fundamental types, 65, 94
gloqal, 40, 87, 90, 93
local, 41, 191
multidimensional arrays, 7 4, 112
naming class, 44, 227
pointer, 76, 77, 94

I

260

Variables {conti"nued}
register, 90, 93
simple, 65
static, 87, 90, 93
structure, 69, 70, 95
union, 72, 95
visibility, 87

Vertical-tab escape sequence, 14, 224
Visibility

described, 38
function declarations, 92, 192
function definitions, 184
global, 40
nested, 41
variable declarations, 87
variable definitions, 87, 90

void*, 83
void

argument-type list, 81, 83
as a pointer modifier, 225
function-return type, 81
in formal parameter list, 225
keyword, 223
pointer to

defined, 76
type name, 198

void type
conversion, 152
described, 50, 51
range of values, 53
storage, 53
type specifier, 225

volatile
as a pointer modifier, 76

volatile keyword, 223
volatile type specifier

described, 51

while statement
continuation of execution, 162
described, 177
termination of execution, 159, 177

White-space characters, 12, 14, 224

	00001
	00002
	00003
	00004
	00005
	00006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	223a
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260

